Science.gov

Sample records for abnormal calcium cycling

  1. Abnormal calcium homeostasis in peripheral neuropathies

    PubMed Central

    Fernyhough, Paul; Calcutt, Nigel A.

    2010-01-01

    Abnormal neuronal calcium (Ca2+) homeostasis has been implicated in numerous diseases of the nervous system. The pathogenesis of two increasingly common disorders of the peripheral nervous system, namely neuropathic pain and diabetic polyneuropathy, has been associated with aberrant Ca2+ channel expression and function. Here we review the current state of knowledge regarding the role of Ca2+ dyshomeostasis and associated mitochondrial dysfunction in painful and diabetic neuropathies. The central impact of both alterations of Ca2+ signalling at the plasma membrane and also intracellular Ca2+ handling on sensory neuron function is discussed and related to abnormal endoplasmic reticulum performance. We also present new data highlighting sub-optimal axonal Ca 2+ signalling in diabetic neuropathy and discuss the putative role for this abnormality in the induction of axonal degeneration in peripheral neuropathies. The accumulating evidence implicating Ca2+ dysregulation with both painful and degenerative neuropathies, along with recent advances in understanding of regional variations in Ca2+ channel and pump structures, makes modulation of neuronal Ca2+ handling an increasingly viable approach for therapeutic interventions against the painful and degenerative aspects of many peripheral neuropathies. PMID:20034667

  2. Abnormalities of serum calcium and magnesium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neonatal hypocalcemia is defined as a total serum calcium concentration of <7 mg/dL or an ionized calcium concentration of <4 mg/dL (1mmol/L). In very low birth weight (VLBW) infants, ionized calcium values of 0.8 to 1 mmol/L are common and not usually associated with clinical symptoms. In larger in...

  3. Interpretation of Serum Calcium in Patients with Abnormal Serum Proteins

    PubMed Central

    Payne, R. B.; Little, A. J.; Williams, R. B.; Milner, J. R.

    1973-01-01

    Two hundred consecutive specimens received in this laboratory for “liver function tests” showed a wide range of abnormal protein concentrations. Calcium concentration correlated closely with albumin (r = 0·867) but less closely with total protein (r = 0·682). A simple formula for adjusting calcium concentration was derived from the regression equation of calcium on albumin. Adjusted calcium = calcium - albumin + 4·0, where calcium is in mg/100 ml and albumin in g/100 ml. Low calcium concentrations were found in 49 (24·5%) and raised concentrations in six (3%) of the 200 blood specimens taken for liver function tests. After adjustment, the 95% limits of the observed range were identical with the 95% limits of the normal range determined in this laboratory. Unlike adjustments based on total protein or specific gravity, the adjustment on albumin in 39 specimens which showed hypergammaglobulinaemia on electrophoresis gave normal calcium concentrations. PMID:4758544

  4. Cell cycle regulators and their abnormalities in breast cancer.

    PubMed Central

    Fernández, P L; Jares, P; Rey, M J; Campo, E; Cardesa, A

    1998-01-01

    One of the main properties of cancer cells is their increased and deregulated proliferative activity. It is now well known that abnormalities in many positive and negative modulators of the cell cycle are frequent in many cancer types, including breast carcinomas. Abnormalities such as defective function of the retinoblastoma gene and cyclin-dependent kinase inhibitors (for example, p16, p21, and p27), as well as upregulation of cyclins, are often seen in breast tumours. These abnormalities are sometimes coincidental, and newly described interplays between them suggest the existence of a complex regulatory web in the cell cycle. PMID:10193510

  5. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian

    NASA Astrophysics Data System (ADS)

    Komar, N.; Zeebe, R. E.

    2016-01-01

    Negative carbon and calcium isotope excursions, as well as climate shifts, took place during the most severe mass extinction event in Earth's history, the end-Permian (˜252 Ma). Investigating the connection between carbon and calcium cycles during transient carbon cycle perturbation events, such as the end-Permian, may help resolve the intricacies between the coupled calcium-carbon cycles, as well as provide a tool for constraining the causes of mass extinction. Here we identify the deficiencies of a simplified calcium model employed in several previous studies, and we demonstrate the importance of a fully coupled carbon cycle model when investigating the dynamics of carbon and calcium cycling. Simulations with a modified version of the Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir model, which includes a fully coupled carbon-calcium cycle, indicate that increased weathering rates and ocean acidification (potentially caused by Siberian Trap volcanism) are not capable of producing trends observed in the record, as previously claimed. Our model results suggest that combined effects of carbon input via Siberian Trap volcanism (12,000 Pg C), the cessation of biological carbon export, and variable calcium isotope fractionation (due to a change in the seawater carbonate ion concentration) represents a more plausible scenario. This scenario successfully reconciles δ13C and δ44Ca trends observed in the sediment record, as well as the proposed warming of >6°C.

  6. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian

    NASA Astrophysics Data System (ADS)

    Komar, Nemanja; Zeebe, Richard

    2016-04-01

    Negative carbon and calcium isotope excursions, as well as climate shifts, took place during the most severe mass extinction event in Earth's history, the end-Permian (˜252 Ma). Investigating the connection between carbon and calcium cycles during transient carbon cycle perturbation events, such as the end-Permian, may help resolve the intricacies between the coupled calcium-carbon cycles, as well as provide a tool for constraining the causes of mass extinction. Here, we identify the deficiencies of a simplified calcium model employed in several previous studies and we demonstrate the importance of a fully coupled carbon-cycle model when investigating the dynamics of carbon and calcium cycling. Simulations with a modified version of the LOSCAR model, which includes a fully coupled carbon-calcium cycle, indicate that increased weathering rates and ocean acidification (potentially caused by Siberian Trap volcanism) are not capable of producing trends observed in the record, as previously claimed. Our model results suggest that combined effects of carbon input via Siberian Trap volcanism (12,000 Pg C), the cessation of biological carbon export, and variable calcium isotope fractionation (due to a change in the seawater carbonate ion concentration) represents a more plausible scenario. This scenario successfully reconciles δ13C and δ44Ca trends observed in the sediment record, as well as the proposed warming of >6oC.

  7. The link between abnormal calcium handling and electrical instability in acquired long QT syndrome - Does calcium precipitate arrhythmic storms?

    PubMed

    Němec, Jan; Kim, Jong J; Salama, Guy

    2016-01-01

    Release of Ca(2+) ions from sarcoplasmic reticulum (SR) into myocyte cytoplasm and their binding to troponin C is the final signal form myocardial contraction. Synchronous contraction of ventricular myocytes is necessary for efficient cardiac pumping function. This requires both shuttling of Ca(2+) between SR and cytoplasm in individual myocytes, and organ-level synchronization of this process by means of electrical coupling among ventricular myocytes. Abnormal Ca(2+) release from SR causes arrhythmias in the setting of CPVT (catecholaminergic polymorphic ventricular tachycardia) and digoxin toxicity. Recent optical mapping data indicate that abnormal Ca(2+) handling causes arrhythmias in models of both repolarization impairment and profound bradycardia. The mechanisms involve dynamic spatial heterogeneity of myocardial Ca(2+) handling preceding arrhythmia onset, cell-synchronous systolic secondary Ca(2+) elevation (SSCE), as well as more complex abnormalities of intracellular Ca(2+) handling detected by subcellular optical mapping in Langendorff-perfused hearts. The regional heterogeneities in Ca(2+) handling cause action potential (AP) heterogeneities through sodium-calcium exchange (NCX) activation and eventually overwhelm electrical coupling of the tissue. Divergent Ca(2+) dynamics among different myocardial regions leads to temporal instability of AP duration and - on the patient level - in T wave lability. Although T-wave alternans has been linked to cardiac arrhythmias, non-alternans lability is observed in pre-clinical models of the long QT syndrome (LQTS) and CPVT, and in LQTS patients. Analysis of T wave lability may provide a real-time window on the abnormal Ca(2+) dynamics causing specific arrhythmias such as Torsade de Pointes (TdP). PMID:26631594

  8. [Bone metabolic markers and diagnosis of abnormal bone and calcium metabolism].

    PubMed

    Fukunaga, M; Sone, T

    2001-07-01

    Bone metabolic markers increase in blood or urine, when bone formation or bone resorption accelerates. Reference values of bone metabolic markers are determined in male or female, and in pre- or post-menopause, respectively. Values of bone metabolic markers in most patients with primary osteoporosis were distributed within a reference value, mean+/-1.96 SD. When measured values exceeded a reference values, we should survey a possibility of abnormal calcium or bone metabolism such as primary hyperparathyroidism, renal osteodystrophy, hyperthyroidism and Paget's disease of bone or bone metastasis associated with malignant tumor. PMID:15775589

  9. Calcium oxalate contribution to calcium cycling in forests of contrasting nutrient status

    USGS Publications Warehouse

    Dauer, Jenny M.; Perakis, Steven S.

    2014-01-01

    Calcium oxalate (Ca oxalate) is an insoluble biomineral that forms in plants and fungi, and occurs in soils across many types of ecosystems. Assessing how Ca oxalate may shape ecosystem Ca cycling requires information on the distribution of Ca oxalate among plant biomass, detritus, and mineral soil, and how it varies with ecosystem Ca status. We compared two Douglas-fir forests of contrasting ecosystem Ca availability, and found that Ca oxalate was partitioned similarly among plant biomass, detritus and mineral soil major ecosystem compartments at both sites, and total pools of Ca oxalate were greater in the high-Ca forest. However, the proportional importance of Ca oxalate was greater in the low-Ca than high-Ca forest (18% versus 4% of actively cycling ecosystem Ca, respectively). And calcium oxalate in mineral soil, which is of particular interest as a potential long-term Ca reservoir, was a larger portion of total available Ca (exchangeable Ca plus Ca oxalate Ca) in the low-Ca site than the high-Ca site (9% versus 1% of available soil Ca, respectively). Calcium oxalate was the dominant form of Ca returned from plants to soil as leaf litterfall at the high-Ca site, yet calcium oxalate disappeared rapidly from decomposing litter (0.28 yr−1 or faster) at both sites. We conclude that accumulation of Ca oxalate in forest ecosystems appears most closely related to overall Ca supply for live biomass pools, and that the accumulation of Ca oxalate in forest floor and mineral soil is limited by rapid microbial degradation of putatively unavailable Ca oxalate.

  10. Calcium Signaling throughout the Toxoplasma gondii Lytic Cycle: A STUDY USING GENETICALLY ENCODED CALCIUM INDICATORS.

    PubMed

    Borges-Pereira, Lucas; Budu, Alexandre; McKnight, Ciara A; Moore, Christina A; Vella, Stephen A; Hortua Triana, Miryam A; Liu, Jing; Garcia, Celia R S; Pace, Douglas A; Moreno, Silvia N J

    2015-11-01

    Toxoplasma gondii is an obligate intracellular parasite that invades host cells, creating a parasitophorous vacuole where it communicates with the host cell cytosol through the parasitophorous vacuole membrane. The lytic cycle of the parasite starts with its exit from the host cell followed by gliding motility, conoid extrusion, attachment, and invasion of another host cell. Here, we report that Ca(2+) oscillations occur in the cytosol of the parasite during egress, gliding, and invasion, which are critical steps of the lytic cycle. Extracellular Ca(2+) enhances each one of these processes. We used tachyzoite clonal lines expressing genetically encoded calcium indicators combined with host cells expressing transiently expressed calcium indicators of different colors, and we measured Ca(2+) changes in both parasites and host simultaneously during egress. We demonstrated a link between cytosolic Ca(2+) oscillations in the host and in the parasite. Our approach also allowed us to measure two new features of motile parasites, which were enhanced by Ca(2+) influx. This is the first study showing, in real time, Ca(2+) signals preceding egress and their direct link with motility, an essential virulence trait. PMID:26374900

  11. Abnormal Calcium Handling and Exaggerated Cardiac Dysfunction in Mice with Defective Vitamin D Signaling

    PubMed Central

    Choudhury, Sangita; Bae, Soochan; Ke, Qingen; Lee, Ji Yoo; Singh, Sylvia S.; St-Arnaud, René; del Monte, Federica; Kang, Peter M.

    2014-01-01

    Aim Altered vitamin D signaling is associated with cardiac dysfunction, but the pathogenic mechanism is not clearly understood. We examine the mechanism and the role of vitamin D signaling in the development of cardiac dysfunction. Methods and Results We analyzed 1α-hydroxylase (1α-OHase) knockout (1α-OHase−/−) mice, which lack 1α-OH enzymes that convert the inactive form to hormonally active form of vitamin D. 1α-OHase−/− mice showed modest cardiac hypertrophy at baseline. Induction of pressure overload by transverse aortic constriction (TAC) demonstrated exaggerated cardiac dysfunction in 1α-OHase−/− mice compared to their WT littermates with a significant increase in fibrosis and expression of inflammatory cytokines. Analysis of calcium (Ca2+) transient demonstrated profound Ca2+ handling abnormalities in 1α-OHase−/− mouse cardiomyocytes (CMs), and treatment with paricalcitol (PC), an activated vitamin D3 analog, significantly attenuated defective Ca2+ handling in 1α-OHase−/− CMs. We further delineated the effect of vitamin D deficiency condition to TAC by first correcting the vitamin D deficiency in 1α-OHase−/− mice, followed then by either a daily maintenance dose of vitamin D or vehicle (to achieve vitamin D deficiency) at the time of sham or TAC. In mice treated with vitamin D, there was a significant attenuation of TAC-induced cardiac hypertrophy, interstitial fibrosis, inflammatory markers, Ca2+ handling abnormalities and cardiac function compared to the vehicle treated animals. Conclusions Our results provide insight into the mechanism of cardiac dysfunction, which is associated with severely defective Ca2+ handling and defective vitamin D signaling in 1α-OHase−/− mice. PMID:25268137

  12. Quantification of Dialytic Removal and Extracellular Calcium Mass Balance during a Weekly Cycle of Hemodialysis

    PubMed Central

    Wojcik-Zaluska, Alicja; Ksiazek, Andrzej; Zaluska, Wojciech

    2016-01-01

    Objectives The removal of calcium during hemodialysis with low calcium concentration in dialysis fluid is generally slow, and the net absorption of calcium from dialysis fluid is often reported. The details of the calcium transport process during dialysis and calcium mass balance in the extracellular fluid, however, have not been fully studied. Methods Weekly cycle of three dialysis sessions with interdialytic breaks of 2-2-3 days was monitored in 25 stable patients on maintenance hemodialysis with calcium concentration in dialysis fluid of 1.35 mmol/L. Total and ionic calcium were frequently measured in blood and dialysate. The volume of fluid compartments was measured by bioimpedance. Results Weekly dialytic removal of 12.79 ± 8.71 mmol calcium was found in 17 patients, whereas 9.48 ± 8.07 mmol calcium was absorbed per week from dialysis fluid in 8 patients. Ionic calcium was generally absorbed from dialysis fluid, whereas complexed calcium (the difference of total and ionic calcium in dialysis fluid) was removed from the body. The concentration of total calcium in plasma increased slightly during dialysis. The mass of total and ionic calcium in extracellular fluid decreased during dialysis in patients with the dialytic removal of calcium from the body and did not change in patients with the absorption of calcium from dialysis fluid. Conclusions We conclude that about one third of patients on dialysis with calcium 1.35 mmol/L in dialysis fluid may absorb calcium from dialysis fluid and therefore individual prescriptions of calcium concentration in dialysis fluid should be considered for such patients. PMID:27073861

  13. Calcium - ionized

    MedlinePlus

    ... at both ionized calcium and calcium attached to proteins. You may need to have a separate ionized calcium test if you have factors that increase or decrease total calcium levels. These may include abnormal blood levels ...

  14. Sulfur Cycling Mediates Calcium Carbonate Geochemistry in Modern Marine Stromatolites

    NASA Technical Reports Server (NTRS)

    Visscher, P. T.; Hoeft, S. E.; Bebout, B. M.; Reid, R. P.

    2004-01-01

    Modem marine stromatolites forming in Highborne Cay, Exumas (Bahamas), contain microbial mats dominated by Schizothrix. Although saturating concentrations of Ca2+ and CO32- exist, microbes mediate CaCO3 precipitation. Cyanobacterial photosynthesis in these stromatolites aids calcium carbonate precipitation by removal of HS+ through CO2 use. Photorespiration and exopolymer production predominantly by oxygenic phototrophs fuel heterotrophic activity: aerobic respiration (approximately 60 umol/sq cm.h) and sulfate reduction (SR; 1.2 umol SO42-/sq cm.h) are the dominant C- consuming processes. Aerobic microbial respiration and the combination of SR and H2S oxidation both facilitate CaCO3 dissolution through H+ production. Aerobic respiration consumes much more C on an hourly basis, but duel fluctuating O2 and H2 depth profiles indicate that overall, SR consumes only slightly less (0.2-0.5) of the primary production. Moreover, due to low O2 concentrations when SR rates are peaking, reoxidation of the H2S formed is incomplete: both thiosulfate and polythionates are formed. The process of complete H2S oxidation yields H+. However, due to a low O2 concentration late in the day and relatively high O2 concentrations early in the following morning, a two-stage oxidation takes place: first, polythionates are formed from H2S, creating alkalinity which coincides with CaCO3 precipitation; secondly, oxidation of polythionates to sulfate yields acidity, resulting in dissolution, etc. Vertical profiles confirmed that the pH peaked late in the afternoon (greater than 8.8) and had the lowest values (less than 7.4) early in the morning. Thus, the effect of this S-cycling through alkalinity production, followed by acidification during H2S oxidation, results in a six times stronger fluctuation in acidity than photosynthesis plus aerobic respiration accomplish. This implies that anaerobic processes play a pivotal role in stromatolite formation.

  15. Smooth muscle calcium and endothelium-derived relaxing factor in the abnormal vascular responses of acute renal failure.

    PubMed Central

    Conger, J D; Robinette, J B; Schrier, R W

    1988-01-01

    Abnormal renovascular reactivity, characterized by paradoxical vasoconstriction to a reduction in renal perfusion pressure (RPP) in the autoregulatory range, increased sensitivity to renal nerve stimulation (RNS), and loss of vasodilatation to acetylcholine have all been demonstrated in ischemic acute renal failure (ARF). To determine if ischemic injury alters vascular contractility by increasing smooth muscle cell calcium or calcium influx, the renal blood flow (RBF) response to reductions in RPP within the autoregulatory range and to RNS were tested before and after a 90-min intrarenal infusion of verapamil or diltiazem in 7-d ischemic ARF rats. Both calcium entry blockers, verapamil and diltiazem, blocked the aberrant vasoconstrictor response to a reduction in RPP and RNS (both P less than 0.001). In a second series of experiments the potential role of an ischemia-induced endothelial injury and of the absence of endothelium-derived relaxing factor (EDRF) production were examined to explain the lack of vasodilatation to acetylcholine. Acetylcholine, bradykinin (a second EDRF-dependent vasodilator), or prostacyclin, an EDRF-independent vasodilator, was infused intrarenally for 90 min, and RBF responses to a reduction in RPP and RNS were tested in 7-d ischemic ARF rats. Neither acetylcholine nor bradykinin caused vasodilatation or altered the slope of the relationship between RBF and RPP. By contrast, prostacyclin increased RBF (P less than 0.001), but did not change the vascular response to changes in RPP. It was concluded that the abnormal pressor sensitivity to a reduction in RPP and RNS was due to changes in renovascular smooth muscle cell calcium activity that could be blocked by calcium entry blockers. A lack of response to EDRF-dependent vasodilators, as a result of ischemic endothelial injury, may contribute to the increased pressor sensitivity of the renal vessels. PMID:3261301

  16. Solar activity cycle and the incidence of foetal chromosome abnormalities detected at prenatal diagnosis

    NASA Astrophysics Data System (ADS)

    Halpern, Gabrielle J.; Stoupel, Eliahu G.; Barkai, Gad; Chaki, Rina; Legum, Cyril; Fejgin, Moshe D.; Shohat, Mordechai

    1995-06-01

    We studied 2001 foetuses during the period of minimal solar activity of solar cycle 21 and 2265 foetuses during the period of maximal solar activity of solar cycle 22, in all women aged 37 years and over who underwent free prenatal diagnosis in four hospitals in the greater Tel Aviv area. There were no significant differences in the total incidence of chromosomal abnormalities or of trisomy between the two periods (2.15% and 1.8% versus 2.34% and 2.12%, respectively). However, the trend of excessive incidence of chromosomal abnormalities in the period of maximal solar activity suggests that a prospective study in a large population would be required to rule out any possible effect of extreme solar activity.

  17. Biological control of calcium isotopic abundances in the global calcium cycle

    SciTech Connect

    Skulan, J.; DePaolo, D.J.; Owens, T.L. |

    1997-06-01

    Measurements of {sup 44}Ca/{sup 40}Ca, expressed as {delta}{sup 44}Ca, were made on igneous rocks and on shell and bone material from modern organisms to investigate the magnitude and origins of calcium isotopic fractionation in nature. The results document a span of 4{per_thousand} in {delta}{sup 44}Ca, measured with the double spike technique to a precision of {+-}0.15{per_thousand}. Volcanic rocks, including basalt and rhyolite, show little variability and cluster near {delta}{sup 44}Ca = 0 {+-}0.2. Systematic analysis of biological samples indicates that biological processing of calcium discriminates against heavy isotopes, and that biological fractionation is the primary generator of calcium isotopic fractionation in nature. Preliminary data suggest that calcium becomes isotopically lighter as it moves through food chains. Calcium carbonate shells of marine microorganisms and deep-sea carbonate ooze have {delta}{sup 44}Ca about 1.0{per_thousand}, lower than seawater; this fractionation causes seawater to be enriched in heavy calcium ({delta}{sup 44}Ca = +0.9) relative to igneous rocks. Marine organisms consequently are isotopically heavier than their terrestrial counterparts at similar trophic level. The calcium isotopic composition of living and fossil organisms may record information on diet and environment. 22 refs., 3 figs., 2 tabs.

  18. Molten-Phase Hydrolysis Stage Analysis and Experiments for the Calcium Bromine Thermochemical Cycle

    SciTech Connect

    Doctor, Richard D.; Panchal, C.B.; Lottes, Steven A.; Lyczkowski, Robert W.; Yang, Jianhong

    2007-07-01

    The goal of the United States Department of Energy Nuclear Hydrogen Initiative as linked with the Generation IV Nuclear Energy Systems Initiative for Gas Reactor Deployment is to develop a cost-effective, proliferation-resistant, low-greenhouse-gas emissions, and sustainable, nuclear-based energy supply system. The calcium-bromine cycle under development at Argonne National Laboratory combines both experimental and modeling studies of a novel continuous 'hybrid' cycle for hydrogen production, where 'hybrid' means that both nuclear heat and electricity are employed. Engineering the calcium-bromine cycle for continuous operation should facilitate its practical development since there will be an inherent advantage to using components and materials which will operate in a constant, non-cycling chemical and thermal environment. This paper focuses on the first and important calcium bromide hydrolysis stage to generate hydrogen bromide, which when split by electrolysis, produces hydrogen. (authors)

  19. Abnormal Intracellular Calcium Signaling and SNARE-Dependent Exocytosis Contributes to SOD1G93A Astrocyte-Mediated Toxicity in Amyotrophic Lateral Sclerosis

    PubMed Central

    Kawamata, Hibiki; Ng, Seng Kah; Diaz, Natalia; Burstein, Suzanne; Morel, Lydie; Osgood, Alexandra; Sider, Brittany; Higashimori, Haruki; Haydon, Philip G.

    2014-01-01

    Motor neurons are progressively and predominantly degenerated in ALS, which is not only induced by multiple intrinsic pathways but also significantly influenced by the neighboring glial cells. In particular, astrocytes derived from the SOD1 mutant mouse model of ALS or from human familial or sporadic ALS patient brain tissue directly induce motor neuron death in culture; however, the mechanisms of pathological astroglial secretion remain unclear. Here we investigated abnormal calcium homeostasis and altered exocytosis in SOD1G93A astrocytes. We found that purinergic stimulation induces excess calcium release from the ER stores in SOD1G93A astrocytes, which results from the abnormal ER calcium accumulation and is independent of clearance mechanisms. Furthermore, pharmacological studies suggested that store-operated calcium entry (SOCE), a calcium refilling mechanism responsive to ER calcium depletion, is enhanced in SOD1G93A astrocytes. We found that oxidant-induced increased S-glutathionylation and calcium-independent puncta formation of the ER calcium sensor STIM1 underlies the abnormal SOCE response in SOD1G93A astrocytes. Enhanced SOCE contributes to ER calcium overload in SOD1G93A astrocytes and excess calcium release from the ER during ATP stimulation. In addition, ER calcium release induces elevated ATP release from SOD1G93A astrocytes, which can be inhibited by the overexpression of dominant-negative SNARE. Selective inhibition of exocytosis in SOD1G93A astrocytes significantly prevents astrocyte-mediated toxicity to motor neurons and delays disease onset in SOD1G93A mice. Our results characterize a novel mechanism responsible for calcium dysregulation in SOD1G93A astrocytes and provide the first in vivo evidence that astrocyte exocytosis contributes to the pathogenesis of ALS. PMID:24501372

  20. Microdomains bounded by endoplasmic reticulum segregate cell cycle calcium transients in syncytial Drosophila embryos

    PubMed Central

    Parry, Huw; McDougall, Alex; Whitaker, Michael

    2005-01-01

    Cell cycle calcium signals are generated by the inositol trisphosphate (InsP3)–mediated release of calcium from internal stores (Ciapa, B., D. Pesando, M. Wilding, and M. Whitaker. 1994. Nature. 368:875–878; Groigno, L., and M. Whitaker. 1998. Cell. 92:193–204). The major internal calcium store is the endoplasmic reticulum (ER); thus, the spatial organization of the ER during mitosis may be important in shaping and defining calcium signals. In early Drosophila melanogaster embryos, ER surrounds the nucleus and mitotic spindle during mitosis, offering an opportunity to determine whether perinuclear localization of ER conditions calcium signaling during mitosis. We establish that the nuclear divisions in syncytial Drosophila embryos are accompanied by both cortical and nuclear localized calcium transients. Constructs that chelate InsP3 also prevent nuclear division. An analysis of nuclear calcium concentrations demonstrates that they are differentially regulated. These observations demonstrate that mitotic calcium signals in Drosophila embryos are confined to mitotic microdomains and offer an explanation for the apparent absence of detectable global calcium signals during mitosis in some cell types. PMID:16216922

  1. A dynamic marine calcium cycle during the past 28 million years

    USGS Publications Warehouse

    Griffith, E.M.; Paytan, A.; Caldeira, K.; Bullen, T.D.; Thomas, E.

    2008-01-01

    Multiple lines of evidence have shown that the isotopic composition and concentration of calcium in seawater have changed over the past 28 million years. A high-resolution, continuous seawater calcium isotope ratio curve from marine (pelagic) barite reveals distinct features in the evolution of the seawater calcium isotopic ratio suggesting changes in seawater calcium concentrations. The most pronounced increase in the ??44/40Ca value of seawater (of 0.3 per mil) occurred over roughly 4 million years following a period of low values around 13 million years ago. The major change in marine calcium corresponds to a climatic transition and global change in the carbon cycle and suggests a reorganization of the global biogeochemical system.

  2. NO contributes to abnormal vascular calcium regulation and reactivity induced by peritonitis-associated septic shock in rats.

    PubMed

    Chen, Shiu-Jen; Li, Shaio-Yun; Shih, Chih-Chin; Liao, Mei-Huei; Wu, Chin-Chen

    2010-05-01

    Calcium plays an important role in determining vascular smooth muscle tone. Norepinephrine (NE)-induced vascular contraction contains two components: 1) Ca2+ release from the sarcoplasmic reticulum as the fast phase and 2) Ca2+ influx via a voltage-dependent calcium channel as the slow phase. This study used functional isometric tension recording to evaluate mediators contributing to abnormal NE-induced Ca2+ handling and reactivity in isolated thoracic aortas from septic rats. Sepsis was induced by cecal ligation and puncture (CLP), and thoracic aortas were removed at 18 h after CLP. Our results showed that rats that received CLP for 18 h manifested severe hypotension and vascular hyporeactivity to NE in vivo. This vascular hyporeactivity to NE was also observed in the aorta obtained from CLP-induced sepsis rat. Both the fast and slow phases of NE-induced contraction were reduced in aortas from sepsis rats. To clarify what possible mediators contribute to the abnormal Ca2+ handling in aortas from sepsis animals, inhibitors of Ca2+ channel and release were used. Inhibition by 2-aminoethoxy-diphenyl borane, ryanodine, and cyclopiazonic acid of the NE-induced contraction in Ca2+-free solution was greater in the aorta from sepsis rats and inhibitions of cyclopiazonic acid and ryanodine, but not of 2-aminoethoxy-diphenyl borane, were attenuated by NOS inhibitor N[omega]-nitro-l-arginine methyl ester. In addition, the attenuation of NE-induced contraction by nifedipine in the aorta was also greater in the CLP group. Our results suggest that abnormal NE-induced Ca2+ handling associated with vascular hyporeactivity in the CLP-induced sepsis is caused by a major decrease in sarcoplasmic reticulum function and a minor impairment of voltage-dependent Ca2+ channels on membrane to Ca2+ handling, at least, in the aorta, and this could be attributed to an overproduction of NO in sepsis. PMID:19749606

  3. Abnormal blink reflex recovery cycle in manifesting and nonmanifesting carriers of the DYT1 gene mutation.

    PubMed

    Fong, Po-Yu; Edwards, Mark J; Lu, Chin-Song; Chen, Rou-Shayn; Rothwell, John C; Bhatia, Kailash P; Huang, Ying-Zu

    2016-09-28

    The aim of this study is to evaluate the brainstem function in DYT1 carriers manifesting clinical dystonia (MDYT1) and those without clinical symptoms (NMDYT1). Motor cortical inhibition and plasticity were found to be abnormal in MDYT1, whereas these were less abnormal in NMDYT1. However, the spinal reciprocal inhibition was abnormal in MDYT1, but normal in NMDYT1. Moreover, protein accumulation and perinuclear inclusion bodies were found in the brainstem, but not in other brain areas, in DYT1 patients. Therefore, we designed this study to investigate the brainstem physiology using the blink reflex (BR) recovery cycle test in MDYT1 and NMDYT1. We recruited eight MDYT1, five NMDYT1, and nine age-matched healthy controls. The BR recovery cycle was assessed with paired stimuli that induced the BR in a random order at interstimulus intervals of 250, 500, and 1000 ms. A two-way analysis of variance showed a significant difference between MDYT1, NMDYT1, and the healthy control (P=0.004). Post-hoc analysis showed that this was because of a significantly lower inhibition of R2 in MDYT1 and NMDYT1 compared with the controls (two-way analysis of variance: P=0.003 and 0.021, respectively). There was no difference between MDYT1 and NMDYT1 (P=0.224). The tested brainstem circuits were equally involved in MDYT1 and NMDYT1. The finding is in agreement with the pathological findings in DYT1 carriers. Together with previous findings in the motor cortex and the spinal cord, the brainstem may lie closer to the pathogenesis of dystonia than the motor cortex in DYT1 gene carriers. PMID:27508977

  4. Calcium channel blockade attenuates abnormal synaptic transmission in the dentate gyrus elicited by entorhinal amyloidopathy.

    PubMed

    Gholami Pourbadie, Hamid; Naderi, Nima; Janahmadi, Mahyar; Mehranfard, Nasrin; Motamedi, Fereshteh

    2016-10-01

    Entorhinal-hippocampal network is one of the earliest circuits which is affected by Alzheimer's disease (AD). There are numerous data providing the evidence of synaptic deficit in the dentate gyrus (DG) of AD animal model. However, there is little known about how entorhinal cortex (EC) amyloidophaty affects each excitatory and/or inhibitory transmission in the early stage of AD. On the other hand, it is believed that calcium dyshomeostasis has a critical role in the etiology of AD. Here, the effect of the EC amyloid pathogenesis on excitatory or inhibitory post synaptic currents (EPSC and IPSC, respectively) in the DG granule cells and then the possible neuroprotective action of L-type calcium channel blockers (CCBs), nimodipine and isradipine, were examined. The amyloid beta (Aβ) 1-42 was injected bilaterally into the EC of male rats and one week later, synaptic currents in the DG granule cells were assessed by whole cell patch clamp. EPSCs were evoked by stimulating the perforant pathway. Voltage clamp recording showed profound decrease of evoked EPSC amplitude and paired pulse facilitation in the DG granule cells of Aβ treated rats. Furthermore, AMPA/NMDA ratio was significantly decreased in the Aβ treated animals. On the other hand, amplitude of IPSC currents was significantly increased in the DG granule cells of these animals. These modifications of synaptic currents were partially reversed by daily intracerebroventricular administration of isradipine or nimodipine. In conclusion, our results suggest that Aβ in the EC triggers decreased excitatory transmission in the DG with substantial decrement in AMPA currents, leading to a prominent activity of inhibitory circuits and increased inhibition of granule cells which may contribute to the development of AD-related neurological deficits in AD and treatment by CCBs could preserve normal synaptic transmission against Aβ toxicity. PMID:27240164

  5. Blood metabolomics analysis identifies abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism in bipolar disorder

    PubMed Central

    Yoshimi, Noriko; Futamura, Takashi; Kakumoto, Keiji; Salehi, Alireza M.; Sellgren, Carl M.; Holmén-Larsson, Jessica; Jakobsson, Joel; Pålsson, Erik; Landén, Mikael; Hashimoto, Kenji

    2016-01-01

    Background Bipolar disorder (BD) is a severe and debilitating psychiatric disorder. However, the precise biological basis remains unknown, hampering the search for novel biomarkers. We performed a metabolomics analysis to discover novel peripheral biomarkers for BD. Methods We quantified serum levels of 116 metabolites in mood-stabilized male BD patients (n = 54) and age-matched male healthy controls (n = 39). Results After multivariate logistic regression, serum levels of pyruvate, N-acetylglutamic acid, α-ketoglutarate, and arginine were significantly higher in BD patients than in healthy controls. Conversely, serum levels of β-alanine, and serine were significantly lower in BD patients than in healthy controls. Chronic (4-weeks) administration of lithium or valproic acid to adult male rats did not alter serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, or arginine, but lithium administration significantly increased serum levels of α-ketoglutarate. Conclusions The metabolomics analysis demonstrated altered serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, and arginine in BD patients. General significance The present findings suggest that abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism play a role in the pathogenesis of BD. PMID:27114925

  6. Calcium

    MedlinePlus

    ... of calcium dietary supplements are carbonate and citrate. Calcium carbonate is inexpensive, but is absorbed best when taken ... antacid products, such as Tums® and Rolaids®, contain calcium carbonate. Each pill or chew provides 200–400 mg ...

  7. Abnormal calcium homeostasis in heart failure with preserved ejection fraction is related to both reduced contractile function and incomplete relaxation: an electromechanically detailed biophysical modeling study

    PubMed Central

    Adeniran, Ismail; MacIver, David H.; Hancox, Jules C.; Zhang, Henggui

    2015-01-01

    Heart failure with preserved ejection fraction (HFpEF) accounts for about 50% of heart failure cases. It has features of incomplete relaxation and increased stiffness of the left ventricle. Studies from clinical electrophysiology and animal experiments have found that HFpEF is associated with impaired calcium homeostasis, ion channel remodeling and concentric left ventricle hypertrophy (LVH). However, it is still unclear how the abnormal calcium homeostasis, ion channel and structural remodeling affect the electro-mechanical dynamics of the ventricles. In this study we have developed multiscale models of the human left ventricle from single cells to the 3D organ, which take into consideration HFpEF-induced changes in calcium handling, ion channel remodeling and concentric LVH. Our simulation results suggest that at the cellular level, HFpEF reduces the systolic calcium level resulting in a reduced systolic contractile force, but elevates the diastolic calcium level resulting in an abnormal residual diastolic force. In our simulations, these abnormal electro-mechanical features of the ventricular cells became more pronounced with the increase of the heart rate. However, at the 3D organ level, the ejection fraction of the left ventricle was maintained due to the concentric LVH. The simulation results of this study mirror clinically observed features of HFpEF and provide new insights toward the understanding of the cellular bases of impaired cardiac electromechanical functions in heart failure. PMID:25852567

  8. Improved cycling performance of P2-type layered sodium cobalt oxide by calcium substitution

    NASA Astrophysics Data System (ADS)

    Matsui, Masaki; Mizukoshi, Fumikazu; Imanishi, Nobuyuki

    2015-04-01

    P2-type Na2/3-xCaxCoO2 is synthesized via a conventional solid-state reaction. The substituted calcium ions occupy the sodium ion layer and eliminate the lattice mismatches of the two phases in Na2/3-xCaxCoO2. Several voltage steps typically observed in the voltage profiles of NaxCoO2 are mostly disappeared associated with the expansion of single-phase regions, because the substituted calcium ions hinder the ordering of sodium ions and vacancies. Furthermore the Na2/3-xCaxCoO2 shows improved cycling performance especially at high charging-discharging rate. During the cycling test, the calcium-free Na0.74CoO2 shows phase separation to form an inactive sodium poor phase, while the Na5/8Ca1/24CoO2 maintained the single phase, suggesting that the calcium substitution suppress the structural change of the P2-type NaxCoO2 to prevent the phase separation, resulting in the improved cycling performance.

  9. The mitochondrial calcium uniporter is involved in mitochondrial calcium cycle dysfunction: Underlying mechanism of hypertension associated with mitochondrial tRNA(Ile) A4263G mutation.

    PubMed

    Chen, Xi; Zhang, Yu; Xu, Bin; Cai, Zhongqi; Wang, Lin; Tian, Jinwen; Liu, Yuqi; Li, Yang

    2016-09-01

    Recent studies have shown that the mitochondrial DNA mutations are involved in the pathogenesis of hypertension. Our previous study identified mitochondrial tRNA(Ile) A4263G mutation in a large Chinese Han family with maternally-inherited hypertension. This mutation may contribute to mitochondrial Ca(2+) cycling dysfuntion, but the mechanism is unclear. Lymphoblastoid cell lines were derived from hypertensive and normotensive individuals, either with or without tRNA(Ile) A4263G mutation. The mitochondrial calcium ([Ca(2+)]m) in cells from hypertensive subjects with the tRNA(Ile) A4263G mutation, was lower than in cells from normotension or hypertension without mutation, or normotension with mutation (P<0.05). Meanwhile, cytosolic calcium ([Ca(2+)]c) in hypertensive with mutation cells was higher than another three groups. After exposure to caffeine, which could increase the [Ca(2+)]c by activating ryanodine receptor on endoplasmic reticulum, [Ca(2+)]c/[Ca(2+)]m increased higher than in hypertensive with mutation cells from another three groups. Moreover, MCU expression was decreased in hypertensive with mutation cells compared with in another three groups (P<0.05). [Ca(2+)]c increased and [Ca(2+)]m decreased after treatment with Ru360 (an inhibitor of MCU) or an siRNA against MCU. In this study we found decreased MCU expression in hypertensive with mutation cells contributed to dysregulated Ca(2+) uptake into the mitochondria, and cytoplasmic Ca(2+) overload. This abnormality might be involved in the underlying mechanisms of maternally inherited hypertension in subjects carrying the mitochondrial tRNA(Ile) A4263G mutation. PMID:27471128

  10. Calcium

    MedlinePlus

    ... body stores more than 99 percent of its calcium in the bones and teeth to help make and keep them ... in the foods you eat. Foods rich in calcium include Dairy products such as milk, cheese, and yogurt Leafy, green vegetables Fish with soft bones that you eat, such as canned sardines and ...

  11. Crude oil exposures reveal roles for intracellular calcium cycling in haddock craniofacial and cardiac development.

    PubMed

    Sørhus, Elin; Incardona, John P; Karlsen, Ørjan; Linbo, Tiffany; Sørensen, Lisbet; Nordtug, Trond; van der Meeren, Terje; Thorsen, Anders; Thorbjørnsen, Maja; Jentoft, Sissel; Edvardsen, Rolf B; Meier, Sonnich

    2016-01-01

    Recent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.7-7 μg/L ∑PAH), here we exposed a broader range of developmental stages over both short and prolonged durations. We quantified effects on cardiac function and morphogenesis, characterized novel craniofacial defects, and examined the expression of genes encoding potential targets underlying cardiac and craniofacial defects. Because of oil droplet binding, a 24-hr exposure was sufficient to create severe cardiac and craniofacial abnormalities. The specific nature of the craniofacial abnormalities suggests that crude oil may target common craniofacial and cardiac precursor cells either directly or indirectly by affecting ion channels and intracellular calcium in particular. Furthermore, down-regulation of genes encoding specific components of the EC coupling machinery suggests that crude oil disrupts excitation-transcription coupling or normal feedback regulation of ion channels blocked by PAHs. These data support a unifying hypothesis whereby depletion of intracellular calcium pools by crude oil-derived PAHs disrupts several pathways critical for organogenesis in fish. PMID:27506155

  12. Crude oil exposures reveal roles for intracellular calcium cycling in haddock craniofacial and cardiac development

    NASA Astrophysics Data System (ADS)

    Sørhus, Elin; Incardona, John P.; Karlsen, Ørjan; Linbo, Tiffany; Sørensen, Lisbet; Nordtug, Trond; van der Meeren, Terje; Thorsen, Anders; Thorbjørnsen, Maja; Jentoft, Sissel; Edvardsen, Rolf B.; Meier, Sonnich

    2016-08-01

    Recent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.7–7 μg/L ∑PAH), here we exposed a broader range of developmental stages over both short and prolonged durations. We quantified effects on cardiac function and morphogenesis, characterized novel craniofacial defects, and examined the expression of genes encoding potential targets underlying cardiac and craniofacial defects. Because of oil droplet binding, a 24-hr exposure was sufficient to create severe cardiac and craniofacial abnormalities. The specific nature of the craniofacial abnormalities suggests that crude oil may target common craniofacial and cardiac precursor cells either directly or indirectly by affecting ion channels and intracellular calcium in particular. Furthermore, down-regulation of genes encoding specific components of the EC coupling machinery suggests that crude oil disrupts excitation-transcription coupling or normal feedback regulation of ion channels blocked by PAHs. These data support a unifying hypothesis whereby depletion of intracellular calcium pools by crude oil-derived PAHs disrupts several pathways critical for organogenesis in fish.

  13. Crude oil exposures reveal roles for intracellular calcium cycling in haddock craniofacial and cardiac development

    PubMed Central

    Sørhus, Elin; Incardona, John P.; Karlsen, Ørjan; Linbo, Tiffany; Sørensen, Lisbet; Nordtug, Trond; van der Meeren, Terje; Thorsen, Anders; Thorbjørnsen, Maja; Jentoft, Sissel; Edvardsen, Rolf B.; Meier, Sonnich

    2016-01-01

    Recent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.7–7 μg/L ∑PAH), here we exposed a broader range of developmental stages over both short and prolonged durations. We quantified effects on cardiac function and morphogenesis, characterized novel craniofacial defects, and examined the expression of genes encoding potential targets underlying cardiac and craniofacial defects. Because of oil droplet binding, a 24-hr exposure was sufficient to create severe cardiac and craniofacial abnormalities. The specific nature of the craniofacial abnormalities suggests that crude oil may target common craniofacial and cardiac precursor cells either directly or indirectly by affecting ion channels and intracellular calcium in particular. Furthermore, down-regulation of genes encoding specific components of the EC coupling machinery suggests that crude oil disrupts excitation-transcription coupling or normal feedback regulation of ion channels blocked by PAHs. These data support a unifying hypothesis whereby depletion of intracellular calcium pools by crude oil-derived PAHs disrupts several pathways critical for organogenesis in fish. PMID:27506155

  14. Abnormal fb Es enhancements in equatorial Es layers during magnetic storms of solar cycle 23

    NASA Astrophysics Data System (ADS)

    Resende, L. C. A.; Denardini, C. M.; Batista, I. S.

    2013-09-01

    We have analyzed the behavior of blanketing frequency of the Es layer (fb Es) occurring at an equatorial station covering the days before, during and subsequent to 24 intense and very intense magnetic storms (Dst≤-100 nT) that occurred during the solar cycle 23. The fb Es was measured by digital ionosonde over São Luís, Brazil (2.33° S, 44.2° W, dip: -4.5°). Our analysis shows that there are significant changes in the fb Es, mainly during the recovery phase of magnetic storms, characterized by occurrence of peaks that exceed the ambient background values. Also, these peaks are associated to other types of sporadic E layer than the Esq (a non-blanketing layer detected due the plasma irregularities in the equatorial electrojet), which in turn means competing mechanisms. The results are discussed in terms of the statistics of the abnormal enhancement taking into account the phase of the magnetic storm.

  15. Calcium

    MedlinePlus

    ... milligrams) of calcium each day. Get it from: Dairy products. Low-fat milk, yogurt, cheese, and cottage ... lactase that helps digest the sugar (lactose) in dairy products, and may have gas, bloating, cramps, or ...

  16. Abnormalities in intracellular calcium regulation and contractile function in myocardium from dogs with pacing-induced heart failure.

    PubMed Central

    Perreault, C L; Shannon, R P; Komamura, K; Vatner, S F; Morgan, J P

    1992-01-01

    24 d of rapid ventricular pacing induced dilated cardiomyopathy with both systolic and diastolic dysfunction in conscious, chronically instrumented dogs. We studied mechanical properties and intracellular calcium (Ca2+i) transients of trabeculae carneae isolated from 15 control dogs (n = 32) and 11 dogs with pacing-induced cardiac failure (n = 26). Muscles were stretched to maximum length at 30 degrees C and stimulated at 0.33 Hz; a subset (n = 17 control, n = 17 myopathic) was loaded with the [Ca2+]i indicator aequorin. Peak tension was depressed in the myopathic muscles, even in the presence of maximally effective (i.e., 16 mM) [Ca2+] in the perfusate. However, peak [Ca2+]i was similar (0.80 +/- 0.13 vs. 0.71 +/- 0.05 microM; [Ca2+]o = 2.5 mM), suggesting that a decrease in Cai2+ availability was not responsible for the decreased contractility. The time for decline from the peak of the Cai2+ transient was prolonged in the myopathic group, which correlated with prolongation of isometric contraction and relaxation. However, similar end-diastolic [Ca2+]i was achieved in both groups (0.29 +/- 0.05 vs. 0.31 +/- 0.02 microM), indicating that Cai2+ homeostasis can be maintained in myopathic hearts. The inotropic response of the myopathic muscles to milrinone was depressed compared with the controls. However, when cAMP production was stimulated by pretreatment with forskolin, the response of the myopathic muscles to milrinone was improved. Our findings provide direct evidence that abnormal [Ca2+]i handling is an important cause of contractile dysfunction in dogs with pacing-induced heart failure and suggest that deficient production of cAMP may be an important cause of these changes in excitation-contraction coupling. PMID:1311723

  17. Abnormalities in intracellular calcium regulation and contractile function in myocardium from dogs with pacing-induced heart failure

    NASA Technical Reports Server (NTRS)

    Perreault, C. L.; Shannon, R. P.; Komamura, K.; Vatner, S. F.; Morgan, J. P.

    1992-01-01

    24 d of rapid ventricular pacing induced dilated cardiomyopathy with both systolic and diastolic dysfunction in conscious, chronically instrumented dogs. We studied mechanical properties and intracellular calcium (Ca2+i) transients of trabeculae carneae isolated from 15 control dogs (n = 32) and 11 dogs with pacing-induced cardiac failure (n = 26). Muscles were stretched to maximum length at 30 degrees C and stimulated at 0.33 Hz; a subset (n = 17 control, n = 17 myopathic) was loaded with the [Ca2+]i indicator aequorin. Peak tension was depressed in the myopathic muscles, even in the presence of maximally effective (i.e., 16 mM) [Ca2+] in the perfusate. However, peak [Ca2+]i was similar (0.80 +/- 0.13 vs. 0.71 +/- 0.05 microM; [Ca2+]o = 2.5 mM), suggesting that a decrease in Cai2+ availability was not responsible for the decreased contractility. The time for decline from the peak of the Cai2+ transient was prolonged in the myopathic group, which correlated with prolongation of isometric contraction and relaxation. However, similar end-diastolic [Ca2+]i was achieved in both groups (0.29 +/- 0.05 vs. 0.31 +/- 0.02 microM), indicating that Cai2+ homeostasis can be maintained in myopathic hearts. The inotropic response of the myopathic muscles to milrinone was depressed compared with the controls. However, when cAMP production was stimulated by pretreatment with forskolin, the response of the myopathic muscles to milrinone was improved. Our findings provide direct evidence that abnormal [Ca2+]i handling is an important cause of contractile dysfunction in dogs with pacing-induced heart failure and suggest that deficient production of cAMP may be an important cause of these changes in excitation-contraction coupling.

  18. Mechanical regulation of cardiac muscle by coupling calcium kinetics with cross-bridge cycling: a dynamic model.

    PubMed

    Landesberg, A; Sideman, S

    1994-08-01

    This study describes the regulation of mechanical activity in the intact cardiac muscle, the effects of the free calcium transients and the mechanical constraints, and emphasizes the central role of the troponin complex in regulating muscle activity. A "loose coupling" between calcium binding to troponin and cross-bridge cycling is stipulated, allowing the existence of cross bridges in the strong conformation without having bound calcium on the neighboring troponin. The model includes two feedback mechanisms: 1) a positive feedback, or cooperativity, in which the cycling cross bridges affect the affinity of troponin for calcium, and 2) a negative mechanical feedback, where the filament-sliding velocity affects cross-bridge cycling. The model simulates the reported experimental force-length and force-velocity relationships at different levels of activation. The dependence of the shortening velocity on calcium concentration, sarcomere length, internal load, and rate of cross-bridge cycling is described analytically in agreement with reported data. Furthermore, the model provides an analytic solution for Hill's equation of the force-velocity relationship and for the phenomena of unloaded shortening velocity and force deficit. The model-calculated changes in free calcium in various mechanical conditions are in good agreement with the available experimental results. PMID:8067434

  19. A silicon cell cycle in a bacterial model of calcium phosphate mineralogenesis.

    PubMed

    Linton, Kathryn M; Tapping, Charles R; Adams, David G; CarterR, D Howard; Shore, Roger C; Aaron, Jean E

    2013-01-01

    The prokaryote Corynebacterium matruchotii produces calcium phosphate (bone salt) and may serve as a convenient model for examining individual factors relevant to vertebrate calcification. A factor of current clinical uncertainty is silicon. To investigate its possible role in biomineralisation advanced optical (digital deconvolution and 3D fluorescent image rendering) and electron microscopy (EDX microanalysis and elemental mapping) were applied to calcifying microbial colonies grown in graded Si concentrations (0-60mM). Cell viability was confirmed throughout by TO-PRO-3-iodide and SYTO-9 nucleic acid staining. It was observed that calcium accumulated in dense intracellular microspherical objects (types i-iii) as nanoparticles (5 nm, type i), nanospheres (30-50 nm, type ii) and filamentous clusters (0.1-0.5 μm, type iii), with a regular transitory Si content evident. With bacterial colony development (7-28 days) the P content increased from 5 to 60%, while Si was displaced from 60 to 5%, distinguishing the phenomenon from random contamination, and with a significant relationship (p<0.001) found between calcified object number and Si supplementation (optimum 0.01mM). The Si-containing, intracellular calcified objects (also positive for Mg and negative with Lysensor blue DND-167 for acidocalcisomes) were extruded naturally in bubble-like chains to complete the cycle by coating the cell surface with discrete mineral particles. These could be harvested by lysis, French press and density fractionation when Si was confirmed in a proportion. It was concluded that the unexplained orthopaedic activity of Si may derive from its special property to facilitate calcium phosphorylation in biological systems, thereby recapitulating an ancient and conserved bacterial cycle of calcification via silicification. PMID:23098642

  20. Coupled Nitrogen and Calcium Cycling in Forests across a Gradient of Soil Nitrogen Availability

    NASA Astrophysics Data System (ADS)

    Perakis, S.; Maguire, D.; Bullen, T.; Cromack, K.; Waring, R.; Boyle, J.

    2004-05-01

    Nitrogen (N) is a critical limiting nutrient that regulates plant productivity and the cycling of essential base cations in forests. Increases in N availability beyond the threshold of plant and ecosystem needs may drive non-linear biogeochemical changes that include excess nitrate leaching and base cation depletion from soils. While such variations in N cycling are typically associated with polluted regions, comparable changes may also occur in unpolluted forests of the Pacific Northwest due to legacies of soil N enrichment from biological N fixation in red alder. We sampled 22 young Douglas-fir stands in the Oregon Coast Range, and found that surface soil calcium (Ca) and magnesium (Mg) concentrations were inversely related to N across a gradient from 0.15 to 1.1 soil %N. Strontium isotope ratios indicate that N-rich forests are decoupled from weathering, and obtain > 97% of base cation nutrition from marine sea-salt aerosols. However, high Ca:Mg ratios of plant demands relative to aerosol inputs selectively fosters Ca deficiency at high soil N. Plant and soil patterns were similar for sandstone versus basalt derived soils, indicating that biological N availability - not bedrock - can be the primary control of coupled N and base cation cycling across areas of high N enrichment.

  1. Investigation of duty cycle effect on corrosion properties of electrodeposited calcium phosphate coatings.

    PubMed

    Azem, Funda Ak; Delice, Tulay Koc; Ungan, Guler; Cakir, Ahmet

    2016-11-01

    The bioceramic calcium phosphate (CaP) is frequently used for improving bone fixation in titanium medical implants and thus increasing lifetime of the implant. It is known that the application of CaP coatings on metallic implant devices offers the possibility of combining the strength of the metals and the bioactivity of the ceramic materials. Many different techniques are available for producing CaP coatings. Electrochemical deposition method is widely used because of its ease of operation parameters, low temperature requirement, reproducibility and suitability for coating complex structures. This technique allows obtaining CaP coatings which promote bone in growth during the first healing period leading to permanent fixation. Electrochemical pulse technique is an alternative to calcium phosphate deposition techniques usually employed to cover orthopedic or dental titanium implant surfaces. Additionally, pulse electrodeposition technique can produce more uniform and denser CaP coatings on metallic implants. In this study, CaP based coatings were produced by electrochemical pulse technique on Ti6Al4V substrates. The resulting CaP deposits were investigated by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Corrosion properties of the CaP coatings were also investigated. The results showed that various duty cycle ranges have remarkably effect on morphology, crystallinity and corrosion properties of the produced CaP coatings. PMID:27524068

  2. Abnormal regulation of 25-hydroxyvitamin D3-1 alpha-hydroxylase activity by calcium and calcitonin in renal cortex from hypophosphatemic (Hyp) mice.

    PubMed

    Fukase, M; Avioli, L V; Birge, S J; Chase, L R

    1984-04-01

    25-Hydroxyvitamin D3-1 alpha-hydroxylase activity was assayed in primary serum-free monolayer tissue culture of renal cortical cells from hypophosphatemic (Hyp) mice and normal litter mates. Morphological and growth characteristics of cells from the two genotypes were indistinguishable. Basal enzyme activity was not significantly different in either type of cell over a wide range of substrate concentration. The enzyme from both genotypes was stimulated by PTH and suppressed by increased phosphate concentration in the culture medium. Whereas 1 alpha-hydroxylase activity in cells from normal mice was increased in low calcium medium and suppressed in high calcium medium, the enzyme in cells from Hyp mice was not altered by similar changes in the medium calcium concentration. Salmon calcitonin caused a significant increase in 1 alpha-hydroxylase in cells from normal mice, but did not stimulate enzyme activity in cells from Hyp mice. These studies indicate that control of 1 alpha-hydroxylase activity is abnormal in renal cortical cells from Hyp mice. Impaired control of this enzyme could result in the inappropriately low circulating concentrations of 1,25-dihydroxyvitamin D3 that have been observed in humans with hypophosphatemic rickets and in the relatively low activity of 1 alpha-hydroxylase in renal cortical homogenates of Hyp mice compared to that in normal mice on a low phosphate diet. PMID:6705736

  3. The Abnormal Phenotypes of Cartilage and Bone in Calcium-Sensing Receptor Deficient Mice Are Dependent on the Actions of Calcium, Phosphorus, and PTH

    PubMed Central

    Tao, Chunxiang; Ding, Guoxian; Karaplis, Andrew; Brown, Edward; Goltzman, David; Miao, Dengshun

    2011-01-01

    Patients with neonatal severe hyperparathyroidism (NSHPT) are homozygous for the calcium-sensing receptor (CaR) mutation and have very high circulating PTH, abundant parathyroid hyperplasia, and severe life-threatening hypercalcemia. Mice with homozygous deletion of CaR mimic the syndrome of NSHPT. To determine effects of CaR deficiency on skeletal development and interactions between CaR and 1,25(OH)2D3 or PTH on calcium and skeletal homeostasis, we compared the skeletal phenotypes of homozygous CaR–deficient (CaR−/−) mice to those of double homozygous CaR– and 1α(OH)ase–deficient [CaR−/−1α(OH)ase−/−] mice or those of double homozygous CaR– and PTH–deficient [CaR−/−PTH−/−] mice at 2 weeks of age. Compared to wild-type littermates, CaR−/− mice had hypercalcemia, hypophosphatemia, hyperparathyroidism, and severe skeletal growth retardation. Chondrocyte proliferation and PTHrP expression in growth plates were reduced significantly, whereas trabecular volume, osteoblast number, osteocalcin-positive areas, expression of the ALP, type I collagen, osteocalcin genes, and serum ALP levels were increased significantly. Deletion of 1α(OH)ase in CaR−/− mice resulted in a longer lifespan, normocalcemia, lower serum phosphorus, greater elevation in PTH, slight improvement in skeletal growth with increased chondrocyte proliferation and PTHrP expression, and further increases in indices of osteoblastic bone formation. Deletion of PTH in CaR−/− mice resulted in rescue of early lethality, normocalcemia, increased serum phosphorus, undetectable serum PTH, normalization in skeletal growth with normal chondrocyte proliferation and enhanced PTHrP expression, and dramatic decreases in indices of osteoblastic bone formation. Our results indicate that reductions in hypercalcemia play a critical role in preventing the early lethality of CaR−/− mice and that defects in endochondral bone formation in CaR−/− mice result from effects of the

  4. The abnormal phenotypes of cartilage and bone in calcium-sensing receptor deficient mice are dependent on the actions of calcium, phosphorus, and PTH.

    PubMed

    Liu, Jingning; Lv, Fangqiao; Sun, Wen; Tao, Chunxiang; Ding, Guoxian; Karaplis, Andrew; Brown, Edward; Goltzman, David; Miao, Dengshun

    2011-09-01

    Patients with neonatal severe hyperparathyroidism (NSHPT) are homozygous for the calcium-sensing receptor (CaR) mutation and have very high circulating PTH, abundant parathyroid hyperplasia, and severe life-threatening hypercalcemia. Mice with homozygous deletion of CaR mimic the syndrome of NSHPT. To determine effects of CaR deficiency on skeletal development and interactions between CaR and 1,25(OH)(2)D(3) or PTH on calcium and skeletal homeostasis, we compared the skeletal phenotypes of homozygous CaR-deficient (CaR(-/-)) mice to those of double homozygous CaR- and 1α(OH)ase-deficient [CaR(-/-)1α(OH)ase(-/-)] mice or those of double homozygous CaR- and PTH-deficient [CaR(-/-)PTH(-/-)] mice at 2 weeks of age. Compared to wild-type littermates, CaR(-/-) mice had hypercalcemia, hypophosphatemia, hyperparathyroidism, and severe skeletal growth retardation. Chondrocyte proliferation and PTHrP expression in growth plates were reduced significantly, whereas trabecular volume, osteoblast number, osteocalcin-positive areas, expression of the ALP, type I collagen, osteocalcin genes, and serum ALP levels were increased significantly. Deletion of 1α(OH)ase in CaR(-/-) mice resulted in a longer lifespan, normocalcemia, lower serum phosphorus, greater elevation in PTH, slight improvement in skeletal growth with increased chondrocyte proliferation and PTHrP expression, and further increases in indices of osteoblastic bone formation. Deletion of PTH in CaR(-/-) mice resulted in rescue of early lethality, normocalcemia, increased serum phosphorus, undetectable serum PTH, normalization in skeletal growth with normal chondrocyte proliferation and enhanced PTHrP expression, and dramatic decreases in indices of osteoblastic bone formation. Our results indicate that reductions in hypercalcemia play a critical role in preventing the early lethality of CaR(-/-) mice and that defects in endochondral bone formation in CaR(-/-) mice result from effects of the marked elevation in serum

  5. Adenosine Kinase Deficiency Disrupts the Methionine Cycle and Causes Hypermethioninemia, Encephalopathy, and Abnormal Liver Function

    PubMed Central

    Bjursell, Magnus K.; Blom, Henk J.; Cayuela, Jordi Asin; Engvall, Martin L.; Lesko, Nicole; Balasubramaniam, Shanti; Brandberg, Göran; Halldin, Maria; Falkenberg, Maria; Jakobs, Cornelis; Smith, Desiree; Struys, Eduard; von Döbeln, Ulrika; Gustafsson, Claes M.; Lundeberg, Joakim; Wedell, Anna

    2011-01-01

    Four inborn errors of metabolism (IEMs) are known to cause hypermethioninemia by directly interfering with the methionine cycle. Hypermethioninemia is occasionally discovered incidentally, but it is often disregarded as an unspecific finding, particularly if liver disease is involved. In many individuals the hypermethioninemia resolves without further deterioration, but it can also represent an early sign of a severe, progressive neurodevelopmental disorder. Further investigation of unclear hypermethioninemia is therefore important. We studied two siblings affected by severe developmental delay and liver dysfunction. Biochemical analysis revealed increased plasma levels of methionine, S-adenosylmethionine (AdoMet), and S-adenosylhomocysteine (AdoHcy) but normal or mildly elevated homocysteine (Hcy) levels, indicating a block in the methionine cycle. We excluded S-adenosylhomocysteine hydrolase (SAHH) deficiency, which causes a similar biochemical phenotype, by using genetic and biochemical techniques and hypothesized that there was a functional block in the SAHH enzyme as a result of a recessive mutation in a different gene. Using exome sequencing, we identified a homozygous c.902C>A (p.Ala301Glu) missense mutation in the adenosine kinase gene (ADK), the function of which fits perfectly with this hypothesis. Increased urinary adenosine excretion confirmed ADK deficiency in the siblings. Four additional individuals from two unrelated families with a similar presentation were identified and shown to have a homozygous c.653A>C (p.Asp218Ala) and c.38G>A (p.Gly13Glu) mutation, respectively, in the same gene. All three missense mutations were deleterious, as shown by activity measurements on recombinant enzymes. ADK deficiency is a previously undescribed, severe IEM shedding light on a functional link between the methionine cycle and adenosine metabolism. PMID:21963049

  6. Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling

    PubMed Central

    Lumbreras, Vicente; Bas, Esperanza; Gupta, Chhavi

    2014-01-01

    Cochlear implants are currently the most effective solution for profound sensorineural hearing loss, and vestibular prostheses are under development to treat bilateral vestibulopathies. Electrical current spread in these neuroprostheses limits channel independence and, in some cases, may impair their performance. In comparison, optical stimuli that are spatially confined may result in a significant functional improvement. Pulsed infrared radiation (IR) has previously been shown to elicit responses in neurons. This study analyzes the response of neonatal rat spiral and vestibular ganglion neurons in vitro to IR (wavelength = 1,863 nm) using Ca2+ imaging. Both types of neurons responded consistently with robust intracellular Ca2+ ([Ca2+]i) transients that matched the low-frequency IR pulses applied (4 ms, 0.25–1 pps). Radiant exposures of ∼637 mJ/cm2 resulted in continual neuronal activation. Temperature or [Ca2+] variations in the media did not alter the IR-evoked transients, ruling out extracellular Ca2+ involvement or primary mediation by thermal effects on the plasma membrane. While blockage of Na+, K+, and Ca2+ plasma membrane channels did not alter the IR-evoked response, blocking of mitochondrial Ca2+ cycling with CGP-37157 or ruthenium red reversibly inhibited the IR-evoked [Ca2+]i transients. Additionally, the magnitude of the IR-evoked transients was dependent on ryanodine and cyclopiazonic acid-dependent Ca2+ release. These results suggest that IR modulation of intracellular calcium cycling contributes to stimulation of spiral and vestibular ganglion neurons. As a whole, the results suggest selective excitation of neurons in the IR beam path and the potential of IR stimulation in future auditory and vestibular prostheses. PMID:24920028

  7. Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling.

    PubMed

    Lumbreras, Vicente; Bas, Esperanza; Gupta, Chhavi; Rajguru, Suhrud M

    2014-09-15

    Cochlear implants are currently the most effective solution for profound sensorineural hearing loss, and vestibular prostheses are under development to treat bilateral vestibulopathies. Electrical current spread in these neuroprostheses limits channel independence and, in some cases, may impair their performance. In comparison, optical stimuli that are spatially confined may result in a significant functional improvement. Pulsed infrared radiation (IR) has previously been shown to elicit responses in neurons. This study analyzes the response of neonatal rat spiral and vestibular ganglion neurons in vitro to IR (wavelength = 1,863 nm) using Ca(2+) imaging. Both types of neurons responded consistently with robust intracellular Ca(2+) ([Ca(2+)]i) transients that matched the low-frequency IR pulses applied (4 ms, 0.25-1 pps). Radiant exposures of ∼637 mJ/cm(2) resulted in continual neuronal activation. Temperature or [Ca(2+)] variations in the media did not alter the IR-evoked transients, ruling out extracellular Ca(2+) involvement or primary mediation by thermal effects on the plasma membrane. While blockage of Na(+), K(+), and Ca(2+) plasma membrane channels did not alter the IR-evoked response, blocking of mitochondrial Ca(2+) cycling with CGP-37157 or ruthenium red reversibly inhibited the IR-evoked [Ca(2+)]i transients. Additionally, the magnitude of the IR-evoked transients was dependent on ryanodine and cyclopiazonic acid-dependent Ca(2+) release. These results suggest that IR modulation of intracellular calcium cycling contributes to stimulation of spiral and vestibular ganglion neurons. As a whole, the results suggest selective excitation of neurons in the IR beam path and the potential of IR stimulation in future auditory and vestibular prostheses. PMID:24920028

  8. Calcium - ionized

    MedlinePlus

    ... levels. These may include abnormal blood levels of albumin or immunoglobulins. Normal Results Children: 4.8 to ... 2016:chap 245. Read More Acute kidney failure Albumin - blood (serum) test Bone tumor Calcium blood test ...

  9. Tamm-Horsfall protein in recurrent calcium kidney stone formers with positive family history: abnormalities in urinary excretion, molecular structure and function.

    PubMed

    Jaggi, Markus; Nakagawa, Yasushi; Zipperle, Ljerka; Hess, Bernhard

    2007-04-01

    Tamm-Horsfall protein (THP) powerfully inhibits calcium oxalate crystal aggregation, but structurally abnormal THPs from recurrent calcium stone formers may promote crystal aggregation. Therefore, increased urinary excretion of abnormal THP might be of relevance in nephrolithiasis. We studied 44 recurrent idiopathic calcium stone formers with a positive family history of stone disease (RCSF(fam)) and 34 age- and sex-matched healthy controls (C). Twenty-four-hour urinary THP excretion was measured by enzyme linked immunosorbent assay. Structural properties of individually purified THPs were obtained from analysis of elution patterns from a Sepharose 4B column. Sialic acid (SA) contents of native whole 24-h urines, crude salt precipitates of native urines and individually purified THPs were measured. THP function was studied by measuring inhibition of CaOx crystal aggregation in vitro (pH 5.7, 200 mM sodium chloride). Twenty-four-hour urine excretion of THP was higher in RCSF(fam) (44.0 +/- 4.0 mg/day) than in C (30.9 +/- 2.2 mg/day, P = 0.015). Upon salt precipitation and lyophilization, elution from a Sepharose 4B column revealed one major peak (peak A, cross-reacting with polyclonal anti-THP antibody) and a second minor peak (peak B, not cross-reacting). THPs from RCSF(fam) eluted later than those from C (P = 0.021), and maximum width of THP peaks was higher in RCSF(fam )than in C (P = 0.024). SA content was higher in specimens from RCSF(fam) than from C, in native 24-h urines (207.5 +/- 20.4 mg vs. 135.2 +/- 16.1 mg, P = 0.013) as well as in crude salt precipitates of 24-h urines (10.4 +/- 0.5 mg vs. 7.4 +/- 0.9 mg, P = 0.002) and in purified THPs (75.3 +/- 9.3 microg/mg vs. 48.8 +/- 9.8 microg/mg THP, P = 0.043). Finally, inhibition of calcium oxalate monohydrate crystal aggregation by 40 mg/L of THP was lower in RCSF(fam) (6.1 +/- 5.5%, range -62.0 to +84.2%) than in C (24.9 +/- 6.0%, range -39.8 to +82.7%), P = 0.022, and only 25 out of 44 (57%) THPs from RCSF

  10. Quetiapine Inhibits Microglial Activation by Neutralizing Abnormal STIM1-Mediated Intercellular Calcium Homeostasis and Promotes Myelin Repair in a Cuprizone-Induced Mouse Model of Demyelination

    PubMed Central

    Wang, Hanzhi; Liu, Shubao; Tian, Yanping; Wu, Xiyan; He, Yangtao; Li, Chengren; Namaka, Michael; Kong, Jiming; Li, Hongli; Xiao, Lan

    2015-01-01

    Microglial activation has been considered as a crucial process in the pathogenesis of neuroinflammation and psychiatric disorders. Several antipsychotic drugs (APDs) have been shown to display inhibitory effects on microglial activation in vitro, possibly through the suppression of elevated intracellular calcium (Ca2+) concentration. However, the exact underlying mechanisms still remain elusive. In this study, we aimed to investigate the inhibitory effects of quetiapine (Que), an atypical APD, on microglial activation. We utilized a chronic cuprizone (CPZ)-induced demyelination mouse model to determine the direct effect of Que on microglial activation. Our results showed that treatment with Que significantly reduced recruitment and activation of microglia/macrophage in the lesion of corpus callosum and promoted remyelination after CPZ withdrawal. Our in vitro studies also confirmed the direct effect of Que on lipopolysaccharide (LPS)-induced activation of microglial N9 cells, whereby Que significantly inhibited the release of nitric oxide (NO) and tumor necrosis factor α (TNF-α). Moreover, we demonstrated that pretreatment with Que, neutralized the up-regulation of STIM1 induced by LPS and declined both LPS and thapsigargin (Tg)-induced store-operated Ca2+ entry (SOCE). Finally, we found that pretreatment with Que significantly reduced the translocation of nuclear factor kappa B (NF-κB) p65 subunit from cytoplasm to nuclei in LPS-activated primary microglial cells. Overall, our data suggested that Que may inhibit microglial activation by neutralization of the LPS-induced abnormal STIM1-mediated intercellular calcium homeostasis. PMID:26732345

  11. Allosteric Modulation of the Calcium-sensing Receptor Rectifies Signaling Abnormalities Associated with G-protein α-11 Mutations Causing Hypercalcemic and Hypocalcemic Disorders*

    PubMed Central

    Babinsky, Valerie N.; Hannan, Fadil M.; Gorvin, Caroline M.; Howles, Sarah A.; Nesbit, M. Andrew; Rust, Nigel; Hanyaloglu, Aylin C.; Hu, Jianxin; Spiegel, Allen M.; Thakker, Rajesh V.

    2016-01-01

    Germline loss- and gain-of-function mutations of G-protein α-11 (Gα11), which couples the calcium-sensing receptor (CaSR) to intracellular calcium (Ca2+i) signaling, lead to familial hypocalciuric hypercalcemia type 2 (FHH2) and autosomal dominant hypocalcemia type 2 (ADH2), respectively, whereas somatic Gα11 mutations mediate uveal melanoma development by constitutively up-regulating MAPK signaling. Cinacalcet and NPS-2143 are allosteric CaSR activators and inactivators, respectively, that ameliorate signaling disturbances associated with CaSR mutations, but their potential to modulate abnormalities of the downstream Gα11 protein is unknown. This study investigated whether cinacalcet and NPS-2143 may rectify Ca2+i alterations associated with FHH2- and ADH2-causing Gα11 mutations, and evaluated the influence of germline gain-of-function Gα11 mutations on MAPK signaling by measuring ERK phosphorylation, and assessed the effect of NPS-2143 on a uveal melanoma Gα11 mutant. WT and mutant Gα11 proteins causing FHH2, ADH2 or uveal melanoma were transfected in CaSR-expressing HEK293 cells, and Ca2+i and ERK phosphorylation responses measured by flow-cytometry and Alphascreen immunoassay following exposure to extracellular Ca2+ (Ca2+o) and allosteric modulators. Cinacalcet and NPS-2143 rectified the Ca2+i responses of FHH2- and ADH2-associated Gα11 loss- and gain-of-function mutations, respectively. ADH2-causing Gα11 mutations were demonstrated not to be constitutively activating and induced ERK phosphorylation following Ca2+o stimulation only. The increased ERK phosphorylation associated with ADH2 and uveal melanoma mutants was rectified by NPS-2143. These findings demonstrate that CaSR-targeted compounds can rectify signaling disturbances caused by germline and somatic Gα11 mutations, which respectively lead to calcium disorders and tumorigenesis; and that ADH2-causing Gα11 mutations induce non-constitutive alterations in MAPK signaling. PMID:26994139

  12. Calcium sensitivity of the cross-bridge cycle of Myo1c, the adaptation motor in the inner ear

    PubMed Central

    Adamek, Nancy; Coluccio, Lynne M.; Geeves, Michael A.

    2008-01-01

    The class I myosin Myo1c is a mediator of adaptation of mechanoelectrical transduction in the stereocilia of the inner ear. Adaptation, which is strongly affected by Ca2+, permits hair cells under prolonged stimuli to remain sensitive to new stimuli. Using a Myo1c fragment (motor domain and one IQ domain with associated calmodulin), with biochemical and kinetic properties similar to those of the native molecule, we have performed a thorough analysis of the biochemical cross-bridge cycle. We show that, although the steady-state ATPase activity shows little calcium sensitivity, individual molecular events of the cross-bridge cycle are calcium-sensitive. Of significance is a 7-fold inhibition of the ATP hydrolysis step and a 10-fold acceleration of ADP release in calcium. These changes result in an acceleration of detachment of the cross-bridge and a lengthening of the lifetime of the detached M–ATP state. These data support a model in which slipping adaptation, which reduces tip-link tension and allows the transduction channels to close after an excitatory stimulus, is mediated by Myo1c and modulated by the calcium transient. PMID:18391215

  13. The Transient Role for Calcium and Vitamin D during the Developmental Hair Follicle Cycle.

    PubMed

    Mady, Leila J; Ajibade, Dare V; Hsaio, Connie; Teichert, Arnaud; Fong, Chak; Wang, Yongmei; Christakos, Sylvia; Bikle, Daniel D

    2016-07-01

    The role for 1,25-dihydroxyvitamin D3 and/or calcium in hair follicle cycling is not clear despite their impact on keratinocyte differentiation. We found that calbindin-D9k null (knockout) pups generated from calbindin-D9k knockout females fed a vitamin D-deficient, low-calcium (0.47%) diet develop transient alopecia. The pups appear phenotypically normal until 13 days of age, after which the hair progressively sheds in a caudocephalic direction, resulting in truncal alopecia totalis by 20-23 days, with spontaneous recovery by 28 days. Histological studies showed markedly dystrophic hair follicles, loss of hair shafts with increased apoptosis, and hyperplastic epidermis during this time. Ha1 expression is lost during catagen in all mice but recovers more slowly in the knockout pups on the vitamin D-deficient, low-calcium diet. Keratin 1 expression is reduced throughout days 19-28. The expressions of involucrin, loricrin, and cathepsin L is initially increased by day 19 but subsequently falls below those of controls by day 23, as does that of desmoglein 3. Feeding the mothers a high-vitamin D/high-calcium (2%)/lactose (20%) diet lessens the phenotype, and knockout pups fostered to mothers fed a normal diet do not develop alopecia. Our results show that in calbindin-D9k knockout pups, a maternal vitamin D-deficient/low-calcium diet leads to transient noncicatricial alopecia. PMID:26994969

  14. Coupled nitrogen and calcium cycles in forests of the Oregon Coast Range

    USGS Publications Warehouse

    Perakis, S.S.; Maguire, D.A.; Bullen, T.D.; Cromack, K.; Waring, R.H.; Boyle, J.R.

    2006-01-01

    Nitrogen (N) is a critical limiting nutrient that regulates plant productivity and the cycling of other essential elements in forests. We measured foliar and soil nutrients in 22 young Douglas-fir stands in the Oregon Coast Range to examine patterns of nutrient availability across a gradient of N-poor to N-rich soils. N in surface mineral soil ranged from 0.15 to 1.05% N, and was positively related to a doubling of foliar N across sites. Foliar N in half of the sites exceeded 1.4% N, which is considered above the threshold of N-limitation in coastal Oregon Douglas-fir. Available nitrate increased five-fold across this gradient, whereas exchangeable magnesium (Mg) and calcium (Ca) in soils declined, suggesting that nitrate leaching influences base cation availability more than soil parent material across our sites. Natural abundance strontium isotopes (87Sr/86Sr) of a single site indicated that 97% of available base cations can originate from atmospheric inputs of marine aerosols, with negligible contributions from weathering. Low annual inputs of Ca relative to Douglas-fir growth requirements may explain why foliar Ca concentrations are highly sensitive to variations in soil Ca across our sites. Natural abundance calcium isotopes (??44Ca) in exchangeable and acid leachable pools of surface soil measured at a single site showed 1 per mil depletion relative to deep soil, suggesting strong Ca recycling to meet tree demands. Overall, the biogeochemical response of these Douglas-fir forests to gradients in soil N is similar to changes associated with chronic N deposition in more polluted temperate regions, and raises the possibility that Ca may be deficient on excessively N-rich sites. We conclude that wide gradients in soil N can drive non-linear changes in base-cation biogeochemistry, particularly as forests cross a threshold from N-limitation to N-saturation. The most acute changes may occur in forests where base cations are derived principally from atmospheric

  15. Coupled nitrogen and calcium cycling in forests of the Oregon Coast Range

    USGS Publications Warehouse

    Perakis, Steven S.; Maguire, Douglas A.; Bullen, Thomas D.; Cromack, Kermit; Waring, Richard H.; Boyle, James R.

    2006-01-01

    Nitrogen (N) is a critical limiting nutrient that regulates plant productivity and the cycling of other essential elements in forests. We measured foliar and soil nutrients in 22 young Douglas-fir stands in the Oregon Coast Range to examine patterns of nutrient availability across a gradient of N-poor to N-rich soils. N in surface mineral soil ranged from 0.15 to 1.05% N, and was positively related to a doubling of foliar N across sites. Foliar N in half of the sites exceeded 1.4% N, which is considered above the threshold of N-limitation in coastal Oregon Douglas-fir. Available nitrate increased five-fold across this gradient, whereas exchangeable magnesium (Mg) and calcium (Ca) in soils declined, suggesting that nitrate leaching influences base cation availability more than soil parent material across our sites. Natural abundance strontium isotopes (87Sr/86Sr) of a single site indicated that 97% of available base cations can originate from atmospheric inputs of marine aerosols, with negligible contributions from weathering. Low annual inputs of Ca relative to Douglas-fir growth requirements may explain why foliar Ca concentrations are highly sensitive to variations in soil Ca across our sites. Natural abundance calcium isotopes (I'44Ca) in exchangeable and acid leachable pools of surface soil measured at a single site showed 1 per mil depletion relative to deep soil, suggesting strong Ca recycling to meet tree demands. Overall, the biogeochemical response of these Douglas-fir forests to gradients in soil N is similar to changes associated with chronic N deposition in more polluted temperate regions, and raises the possibility that Ca may be deficient on excessively N-rich sites. We conclude that wide gradients in soil N can drive non-linear changes in base-cation biogeochemistry, particularly as forests cross a threshold from N-limitation to N-saturation. The most acute changes may occur in forests where base cations are derived principally from atmospheric

  16. Drastic reduction of sarcalumenin in Dp427 (dystrophin of 427 kDa)-deficient fibres indicates that abnormal calcium handling plays a key role in muscular dystrophy.

    PubMed Central

    Dowling, Paul; Doran, Philip; Ohlendieck, Kay

    2004-01-01

    Although the primary abnormality in dystrophin is the underlying cause for mdx (X-chromosome-linked muscular dystrophy), abnormal Ca2+ handling after sarcolemmal microrupturing appears to be the pathophysiological mechanism leading to muscle weakness. To develop novel pharmacological strategies for eliminating Ca2+-dependent proteolysis, it is crucial to determine the fate of Ca2+-handling proteins in dystrophin-deficient fibres. In the present study, we show that a key luminal Ca2+-binding protein SAR (sarcalumenin) is affected in mdx skeletal-muscle fibres. One- and two-dimensional immunoblot analyses revealed the relative expression of the 160 kDa SR (sarcoplasmic reticulum) protein to be approx. 70% lower in mdx fibres when compared with normal skeletal muscles. This drastic reduction in SAR was confirmed by immunofluorescence microscopy. Patchy internal labelling of SAR in dystrophic fibres suggests an abnormal formation of SAR domains. Differential co-immunoprecipitation experiments and chemical cross-linking demonstrated a tight linkage between SAR and the SERCA1 (sarcoplasmic/endoplasmic-reticulum Ca2+-ATPase 1) isoform of the SR Ca2+-ATPase. However, the relative expression of the fast Ca2+ pump was not decreased in dystrophic membrane preparations. This implies that the reduction in SAR and calsequestrin-like proteins plays a central role in the previously reported impairment of Ca2+ buffering in the dystrophic SR [Culligan, Banville, Dowling and Ohlendieck (2002) J. Appl. Physiol. 92, 435-445]. Impaired Ca2+ shuttling between the Ca2+-uptake SERCA units and calsequestrin clusters via SAR, as well as an overall decreased luminal ion-binding capacity, might indirectly amplify the Ca2+-leak-channel-induced increase in cytosolic Ca2+ levels. This confirms the idea that abnormal Ca2+ cycling is involved in Ca2+-induced myonecrosis. Hence, manipulating disturbed Ca2+ handling might represent new modes of abolishing proteolytic degradation in muscular dystrophy

  17. Increased Mitochondrial Calcium Sensitivity and Abnormal Expression of Innate Immunity Genes Precede Dopaminergic Defects in Pink1-Deficient Mice

    PubMed Central

    Akundi, Ravi S.; Huang, Zhenyu; Eason, Joshua; Pandya, Jignesh D.; Zhi, Lianteng; Cass, Wayne A.; Sullivan, Patrick G.; Büeler, Hansruedi

    2011-01-01

    Background PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca2+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson's disease (PD) display altered activity in the nigrostriatal system of Pink1−/− mice. Methods and Findings Purified brain mitochondria of Pink1−/− mice showed impaired Ca2+ storage capacity, resulting in increased Ca2+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1−/− mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1−/− mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1−/− mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1−/− embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1−/− mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting. Conclusions Increased mitochondrial Ca2+ sensitivity and JNK activity are early defects in Pink1−/− mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1−/− mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant

  18. Hereditary urea cycle abnormality

    MedlinePlus

    ... there is no way to prevent these disorders. Prenatal testing is available. Genetic testing before an embryo is ... there is no way to prevent these disorders. Prenatal testing is available. Genetic testing before an embryo is ...

  19. Hereditary urea cycle abnormality

    MedlinePlus

    ... help rid the body of excess ammonia during extreme illness. ... to normal adult intelligence. Repeatedly not following the diet or ... patients. Extreme care is needed to avoid problems during such ...

  20. Abnormal interactions of calsequestrin with the ryanodine receptor calcium release channel complex linked to exercise-induced sudden cardiac death.

    PubMed

    Terentyev, Dmitry; Nori, Alessandra; Santoro, Massimo; Viatchenko-Karpinski, Serge; Kubalova, Zuzana; Gyorke, Inna; Terentyeva, Radmila; Vedamoorthyrao, Srikanth; Blom, Nico A; Valle, Giorgia; Napolitano, Carlo; Williams, Simon C; Volpe, Pompeo; Priori, Silvia G; Gyorke, Sandor

    2006-05-12

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmogenic disorder associated with mutations in the cardiac ryanodine receptor (RyR2) and cardiac calsequestrin (CASQ2) genes. Previous in vitro studies suggested that RyR2 and CASQ2 interact as parts of a multimolecular Ca(2+)-signaling complex; however, direct evidence for such interactions and their potential significance to myocardial function remain to be determined. We identified a novel CASQ2 mutation in a young female with a structurally normal heart and unexplained syncopal episodes. This mutation results in the nonconservative substitution of glutamine for arginine at amino acid 33 of CASQ2 (R33Q). Adenoviral-mediated expression of CASQ2(R33Q) in adult rat myocytes led to an increase in excitation-contraction coupling gain and to more frequent occurrences of spontaneous propagating (Ca2+ waves) and local Ca2+ signals (sparks) with respect to control cells expressing wild-type CASQ2 (CASQ2WT). As revealed by a Ca2+ indicator entrapped inside the sarcoplasmic reticulum (SR) of permeabilized myocytes, the increased occurrence of spontaneous Ca2+ sparks and waves was associated with a dramatic decrease in intra-SR [Ca2+]. Recombinant CASQ2WT and CASQ2R33Q exhibited similar Ca(2+)-binding capacities in vitro; however, the mutant protein lacked the ability of its WT counterpart to inhibit RyR2 activity at low luminal [Ca2+] in planar lipid bilayers. We conclude that the R33Q mutation disrupts interactions of CASQ2 with the RyR2 channel complex and impairs regulation of RyR2 by luminal Ca2+. These results show that intracellular Ca2+ cycling in normal heart relies on an intricate interplay of CASQ2 with the proteins of the RyR2 channel complex and that disruption of these interactions can lead to cardiac arrhythmia. PMID:16601229

  1. Calcium and Calcineurin-NFAT Signaling Regulate Granulocyte-Monocyte Progenitor Cell Cycle via Flt3-L

    PubMed Central

    Fric, Jan; Lim, Clarice XF; Mertes, Alexandra; Lee, Bernett TK; Viganò, Elena; Chen, Jinmiao; Zolezzi, Francesca; Poidinger, Michael; Larbi, Anis; Strobl, Herbert; Zelante, Teresa; Ricciardi-Castagnoli, Paola

    2014-01-01

    Abstract Maintenance of myeloid progenitor cells is controlled by complex regulatory mechanisms and is orchestrated by multiple different transcription factors. Here, we report that the activation of the transcription factor nuclear factor of activated T cells (NFAT) by calcium-sensing protein calcineurin inhibits the proliferation of myeloid granulocyte–monocyte progenitors (GMPs). Myeloid progenitor subtypes exhibit variable sensitivity to induced Ca2+ entry and consequently display differential engagement of the calcineurin-NFAT pathway. This study shows that inhibition of the calcineurin-NFAT pathway enhances the proliferation of GMPs both in vitro and in vivo and demonstrates that calcineurin-NFAT signaling in GMPs is initiated by Flt3-L. Inhibition of the calcineurin-NFAT pathway modified expression of the cell cycle regulation genes Cdk4, Cdk6, and Cdkn1a (p21), thus enabling rapid cell cycle progression specifically in GMPs. NFAT inhibitor drugs are extensively used in the clinic to restrict the pathological activation of lymphoid cells, and our data reveal for the first time that these therapies also exert potent effects on maintenance of the myeloid cell compartment through specific regulation of GMP proliferation. Stem Cells 2014;32:3232–3244 PMID:25100642

  2. Mitochondria-derived ROS bursts disturb Ca²⁺ cycling and induce abnormal automaticity in guinea pig cardiomyocytes: a theoretical study.

    PubMed

    Li, Qince; Su, Di; O'Rourke, Brian; Pogwizd, Steven M; Zhou, Lufang

    2015-03-15

    Mitochondria are in close proximity to the redox-sensitive sarcoplasmic reticulum (SR) Ca(2+) release [ryanodine receptors (RyRs)] and uptake [Ca(2+)-ATPase (SERCA)] channels. Thus mitochondria-derived reactive oxygen species (mdROS) could play a crucial role in modulating Ca(2+) cycling in the cardiomyocytes. However, whether mdROS-mediated Ca(2+) dysregulation translates to abnormal electrical activities under pathological conditions, and if yes what are the underlying ionic mechanisms, have not been fully elucidated. We hypothesize that pathological mdROS induce Ca(2+) elevation by modulating SR Ca(2+) handling, which activates other Ca(2+) channels and further exacerbates Ca(2+) dysregulation, leading to abnormal action potential (AP). We also propose that the morphologies of elicited AP abnormality rely on the time of mdROS induction, interaction between mitochondria and SR, and intensity of mitochondrial oxidative stress. To test the hypotheses, we developed a multiscale guinea pig cardiomyocyte model that incorporates excitation-contraction coupling, local Ca(2+) control, mitochondrial energetics, and ROS-induced ROS release. This model, for the first time, includes mitochondria-SR microdomain and modulations of mdROS on RyR and SERCA activities. Simulations show that mdROS bursts increase cytosolic Ca(2+) by stimulating RyRs and inhibiting SERCA, which activates the Na(+)/Ca(2+) exchanger, Ca(2+)-sensitive nonspecific cationic channels, and Ca(2+)-induced Ca(2+) release, eliciting abnormal AP. The morphologies of AP abnormality are largely influenced by the time interval among mdROS burst induction and AP firing, dosage and diffusion of mdROS, and SR-mitochondria distance. This study defines the role of mdROS in Ca(2+) overload-mediated cardiac arrhythmogenesis and underscores the importance of considering mitochondrial targets in designing new antiarrhythmic therapies. PMID:25539710

  3. Early development of intracellular calcium cycling defects in intact hearts of spontaneously hypertensive rats

    PubMed Central

    Kapur, Sunil; Aistrup, Gary L.; Sharma, Rohan; Kelly, James E.; Arora, Rishi; Zheng, Jiabo; Veramasuneni, Mitra; Kadish, Alan H.; Balke, C. William

    2010-01-01

    Defects in excitation-contraction coupling have been reported in failing hearts, but little is known about the relationship between these defects and the development of heart failure (HF). We compared the early changes in intracellular Ca2+ cycling to those that underlie overt pump dysfunction and arrhythmogenesis found later in HF. Laser-scanning confocal microscopy was used to measure Ca2+ transients in myocytes of intact hearts in Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs) at different ages. Early compensatory mechanisms include a positive inotropic effect in SHRs at 7.5–9 mo compared with 6 mo. Ca2+ transient duration increased at 9 mo in SHRs, indicating changes in Ca2+ reuptake during decompensation. Cell-to-cell variability in Ca2+ transient duration increased at 7.5 mo, decreased at 9 mo, and increased again at 22 mo (overt HF), indicating extensive intercellular variability in Ca2+ transient kinetics during disease progression. Vulnerability to intercellular concordant Ca2+ alternans increased at 9–22 mo in SHRs and was mirrored by a slowing in Ca2+ transient restitution, suggesting that repolarization alternans and the resulting repolarization gradients might promote reentrant arrhythmias early in disease development. Intercellular discordant and subcellular Ca2+ alternans increased as early as 7.5 mo in SHRs and may also promote arrhythmias during the compensated phase. The incidence of spontaneous and triggered Ca2+ waves was increased in SHRs at all ages, suggesting a higher likelihood of triggered arrhythmias in SHRs compared with WKY rats well before HF develops. Thus serious and progressive defects in Ca2+ cycling develop in SHRs long before symptoms of HF occur. Defective Ca2+ cycling develops early and affects a small number of myocytes, and this number grows with age and causes the transition from asymptomatic to overt HF. These defects may also underlie the progressive susceptibility to Ca2+ alternans and Ca2+ wave

  4. Beat-to-beat cycle length variability of spontaneously beating guinea pig sinoatrial cells: relative contributions of the membrane and calcium clocks.

    PubMed

    Zaniboni, Massimiliano; Cacciani, Francesca; Lux, Robert L

    2014-01-01

    The heartbeat arises rhythmically in the sino-atrial node (SAN) and then spreads regularly throughout the heart. The molecular mechanism underlying SAN rhythm has been attributed by recent studies to the interplay between two clocks, one involving the hyperpolarization activated cation current If (the membrane clock), and the second attributable to activation of the electrogenic NaCa exchanger by spontaneous sarcoplasmic releases of calcium (the calcium clock). Both mechanisms contain, in principle, sources of beat-to-beat cycle length variability, which can determine the intrinsic variability of SAN firing and, in turn, contribute to the heart rate variability. In this work we have recorded long sequences of action potentials from patch clamped guinea pig SAN cells (SANCs) perfused, in turn, with normal Tyrode solution, with the If inhibitor ivabradine (3 µM), then back to normal Tyrode, and again with the ryanodine channels inhibitor ryanodine (3 µM). We have found that, together with the expected increase in beating cycle length (+25%), the application of ivabradine brought about a significant and dramatic increase in beat-to-beat cycle length variability (+50%). Despite the similar effect on firing rate, ryanodine did not modify significantly beat-to-beat cycle length variability. Acetylcholine was also applied and led to a 131% increase of beating cycle length, with only a 70% increase in beat-to-beat cycle length variability. We conclude that the main source of inter-beat variability of SANCs firing rate is related to the mechanism of the calcium clock, whereas the membrane clock seems to act in stabilizing rate. Accordingly, when the membrane clock is silenced by application of ivabradine, stochastic variations of the calcium clock are free to make SANCs beating rhythm more variable. PMID:24940609

  5. Beat-to-Beat Cycle Length Variability of Spontaneously Beating Guinea Pig Sinoatrial Cells: Relative Contributions of the Membrane and Calcium Clocks

    PubMed Central

    Zaniboni, Massimiliano; Cacciani, Francesca; Lux, Robert L.

    2014-01-01

    The heartbeat arises rhythmically in the sino-atrial node (SAN) and then spreads regularly throughout the heart. The molecular mechanism underlying SAN rhythm has been attributed by recent studies to the interplay between two clocks, one involving the hyperpolarization activated cation current If (the membrane clock), and the second attributable to activation of the electrogenic NaCa exchanger by spontaneous sarcoplasmic releases of calcium (the calcium clock). Both mechanisms contain, in principle, sources of beat-to-beat cycle length variability, which can determine the intrinsic variability of SAN firing and, in turn, contribute to the heart rate variability. In this work we have recorded long sequences of action potentials from patch clamped guinea pig SAN cells (SANCs) perfused, in turn, with normal Tyrode solution, with the If inhibitor ivabradine (3 µM), then back to normal Tyrode, and again with the ryanodine channels inhibitor ryanodine (3 µM). We have found that, together with the expected increase in beating cycle length (+25%), the application of ivabradine brought about a significant and dramatic increase in beat-to-beat cycle length variability (+50%). Despite the similar effect on firing rate, ryanodine did not modify significantly beat-to-beat cycle length variability. Acetylcholine was also applied and led to a 131% increase of beating cycle length, with only a 70% increase in beat-to-beat cycle length variability. We conclude that the main source of inter-beat variability of SANCs firing rate is related to the mechanism of the calcium clock, whereas the membrane clock seems to act in stabilizing rate. Accordingly, when the membrane clock is silenced by application of ivabradine, stochastic variations of the calcium clock are free to make SANCs beating rhythm more variable. PMID:24940609

  6. Abnormal Ca2+ Cycling in Failing Ventricular Myocytes: Role of NOS1-Mediated Nitroso-Redox Balance

    PubMed Central

    Houser, Steven R.

    2014-01-01

    Abstract Significance: Heart failure (HF) results from poor heart function and is the leading cause of death in Western society. Abnormalities of Ca2+ handling at the level of the ventricular myocyte are largely responsible for much of the poor heart function. Recent Advances: Although studies have unraveled numerous mechanisms for the abnormal Ca2+ handling, investigations over the past decade have indicated that much of the contractile dysfunction and adverse remodeling that occurs in HF involves oxidative stress. Critical Issues: Regrettably, antioxidant therapy has been an immense disappointment in clinical trials. Thus, redox signaling is being reassessed to elucidate why antioxidants failed to treat HF. Future Directions: A recently identified aspect of redox signaling (specifically the superoxide anion radical) is its interaction with nitric oxide, known as the nitroso-redox balance. There is a large nitroso-redox imbalance with HF, and we suggest that correcting this imbalance may be able to restore myocyte contraction and improve heart function. Antioxid. Redox Signal. 21, 2044–2059. PMID:24801117

  7. Regions of abnormally low proton temperature as signatures of ejecta: Solar cycle dependence and association with other ejecta signatures

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    1995-01-01

    Solar wind proton temperatures lower than expected for 'normal' solar wind expansion are a common signature of 'ejecta' (i.e. interplanetary coronal mass ejections). We have surveyed the OMNI solar wind data base for 1965-1991, and Helios data for 1974-1980, to identify regions of abnormally low temperatures. Their occurrence rate is clearly dependent on solar activity levels, in particular when the minority of events associated with encounters with the heliospheric plasma sheet are excluded. The analysis of the OMNI data may provide an indication of the rate of ejecta at the Earth, and hence of the CME rate, extending back to before spacecraft coronagraph observations became available in the early 1970's. We discuss the association of these solar wind structures with cosmic ray depressions bidirectional particle flows, and other ejecta signatures. Our impression is that no one ejecta signature provides a truly comprehensive indication of the presence of ejecta, but that abnormally low temperature depressions encompass most of the regions identified by these other individual signatures.

  8. Mice deficient in carbonic anhydrase type 8 exhibit motor dysfunctions and abnormal calcium dynamics in the somatic region of cerebellar granule cells.

    PubMed

    Lamont, Matthew G; Weber, John T

    2015-06-01

    The waddles (wdl) mouse is characterized by a namesake "side-to-side" waddling gait due to a homozygous mutation of the Car8 gene. This mutation results in non-functional copies of the protein carbonic anhydrase type 8. Rota-rod testing was conducted to characterize the wdl mutations' effect on motor output. Results indicated that younger homozygotes outperformed their older cohorts, an effect not seen in previous studies. Heterozygotes, which were thought to be free of motor impairment, displayed motor learning deficiencies when compared with wild type performance. Acute cerebellar slices were then utilized for fluorescent calcium imaging experiments, which revealed significant alterations in cerebellar granule cell somatic calcium signaling when exposed to glutamate. The contribution of GABAergic signaling to these alterations was also verified using bath application of bicuculline. Changes in somatic calcium signals were found to be applicable to an in vivo scenario by comparing group responses to electrical stimulation of afferent mossy fiber projections. Finally, intracellular calcium store function was also found to be altered by the wdl mutation when slices were treated with thapsigargin. These findings, taken together with previous work on the wdl mouse, indicate a widespread disruption in cerebellar circuitry hampering proper neuronal communication. PMID:25721739

  9. Sulforaphane induces DNA damage and mitotic abnormalities in human osteosarcoma MG-63 cells: correlation with cell cycle arrest and apoptosis.

    PubMed

    Ferreira de Oliveira, José Miguel P; Remédios, Catarina; Oliveira, Helena; Pinto, Pedro; Pinho, Francisco; Pinho, Sónia; Costa, Maria; Santos, Conceição

    2014-01-01

    Osteosarcoma is a recalcitrant bone malignancy with poor responsiveness to treatments; therefore, new chemotherapeutic compounds are needed. Sulforaphane (SFN) has been considered a promising chemotherapeutic compound for several types of tumors by inducing apoptosis and cytostasis, but its effects (e.g., genotoxicity) in osteosarcoma cells remains exploratory. In this work, the MG-63 osteosarcoma cell line was exposed to SFN up to 20 μM for 24 and 48 h. SFN induced G2/M phase arrest and decreased nuclear division index, associated with disruption of cytoskeletal organization. Noteworthy, SFN induced a transcriptome response supportive of G2/M phase arrest, namely a decrease in Chk1- and Cdc25C-encoding transcripts, and an increase in Cdk1-encoding transcripts. After 48-h exposure, SFN at a dietary concentration (5 μM) contributed to genomic instability in the MG-63 cells as confirmed by increased number of DNA breaks, clastogenicity, and nuclear and mitotic abnormalities. The increased formation of nucleoplasmic bridges, micronuclei, and apoptotic cells positively correlated with loss of viability. These results suggest that genotoxic damage is an important step for SFN-induced cytotoxicity in MG-63 cells. In conclusion, SFN shows potential to induce genotoxic damage at low concentrations and such potential deserves further investigation in other tumor cell types. PMID:24405297

  10. Abnormal crystal growth in CH3NH3PbI3-xClx using a multi-cycle solution coating process

    DOE PAGESBeta

    Dong, Qingfeng; Yuan, Yongbo; Shao, Yuchuan; Fang, Yanjun; Wang, Qi; Huang, Jinsong

    2015-06-23

    Recently, the efficiency of organolead trihalide perovskite solar cells has improved greatly because of improved material qualities with longer carrier diffusion lengths. Mixing chlorine in the precursor for mixed halide films has been reported to dramatically enhance the diffusion lengths of mixed halide perovskite films, mainly as a result of a much longer carrier recombination lifetime. Here we report that adding Cl containing precursor for mixed halide perovskite formation can induce the abnormal grain growth behavior that yields well-oriented grains accompanied by the appearance of some very large size grains. The abnormal grain growth becomes prominent only after multi-cycle coatingmore » of MAI : MACl blend precursor. The large grain size is found mainly to contribute to a longer carrier charge recombination lifetime, and thus increases the device efficiency to 18.9%, but without significantly impacting the carrier transport property. As a result, the strong correlation identified between material process and morphology provides guidelines for future material optimization and device efficiency enhancement.« less

  11. Calcium and Arrhythmogenesis

    PubMed Central

    Ter Keurs, Henk E. D. J.; Boyden, Penelope A.

    2010-01-01

    Triggered activity in cardiac muscle and intracellular Ca2+ have been linked in the past. However, today not only are there a number of cellular proteins that show clear Ca2+ dependence but also there are a number of arrhythmias whose mechanism appears to be linked to Ca2+-dependent processes. Thus we present a systematic review of the mechanisms of Ca2+ transport (forward excitation-contraction coupling) in the ventricular cell as well as what is known for other cardiac cell types. Second, we review the molecular nature of the proteins that are involved in this process as well as the functional consequences of both normal and abnormal Ca2+ cycling (e.g., Ca2+ waves). Finally, we review what we understand to be the role of Ca2+ cycling in various forms of arrhythmias, that is, those associated with inherited mutations and those that are acquired and resulting from reentrant excitation and/or abnormal impulse generation (e.g., triggered activity). Further solving the nature of these intricate and dynamic interactions promises to be an important area of research for a better recognition and understanding of the nature of Ca2+ and arrhythmias. Our solutions will provide a more complete understanding of the molecular basis for the targeted control of cellular calcium in the treatment and prevention of such. PMID:17429038

  12. Impaired hair follicle morphogenesis and cycling with abnormal epidermal differentiation in nackt mice, a cathepsin L-deficient mutation.

    PubMed

    Benavides, Fernando; Starost, Matthew F; Flores, Mónica; Gimenez-Conti, Irma B; Guénet, Jean-Louis; Conti, Claudio J

    2002-08-01

    We previously described an autosomal-recessive mutation named nackt (nkt) exhibiting partial alopecia associated with CD4(+) T-cell deficiency. Also, we recently reported that nkt (now Ctsl(nkt)) comprises a deletion in the cathepsin L (Ctsl) gene. Another recent study reported that Ctsl knockout mice have CD4(+) T-cell deficiency and periodic shedding of hair, which recapitulate the nkt mutation and the old furless (fs) mutation. The current study focuses on the dermatological aspects of the nkt mutation. Careful histological analysis of skin development of homozygous nkt mice revealed a delayed hair follicle morphogenesis and late onset of the first catagen stage. The skin of Ctsl(nkt)/Ctsl(nkt) mice showed mild epidermal hyperplasia and hyperkeratosis, severe hyperplasia of the sebaceous glands, and structural alterations of hair follicles. Epidermal differentiation seems to be affected in nkt skin, with overexpression of involucrin and profilaggrin/filaggrin along with focal areas of keratin 6 expression in the interfollicular epidermis. Severe epidermal hyperplasia, acanthosis, orthokeratosis, and hyperkeratosis were only observed in mice maintained in nonpathogen-free environments. The analysis of Rag2-/- Ctsl(nkt)/Ctsl(nkt) double-mutant mice indicates that the skin defect remains under the absence of T and B cells. This animal model provides in vivo evidence that cysteine protease cathepsin L plays a critical role in hair follicle morphogenesis and cycling, as well as epidermal differentiation. PMID:12163394

  13. Impaired Hair Follicle Morphogenesis and Cycling with Abnormal Epidermal Differentiation in nackt Mice, a Cathepsin L-Deficient Mutation

    PubMed Central

    Benavides, Fernando; Starost, Matthew F.; Flores, Mónica; Gimenez-Conti, Irma B.; Guénet, Jean-Louis; Conti, Claudio J.

    2002-01-01

    We previously described an autosomal-recessive mutation named nackt (nkt) exhibiting partial alopecia associated with CD4+ T-cell deficiency. Also, we recently reported that nkt (now Ctslnkt) comprises a deletion in the cathepsin L (Ctsl) gene. Another recent study reported that Ctsl knockout mice have CD4+ T-cell deficiency and periodic shedding of hair, which recapitulate the nkt mutation and the old furless (fs) mutation. The current study focuses on the dermatological aspects of the nkt mutation. Careful histological analysis of skin development of homozygous nkt mice revealed a delayed hair follicle morphogenesis and late onset of the first catagen stage. The skin of Ctslnkt/Ctslnkt mice showed mild epidermal hyperplasia and hyperkeratosis, severe hyperplasia of the sebaceous glands, and structural alterations of hair follicles. Epidermal differentiation seems to be affected in nkt skin, with overexpression of involucrin and profilaggrin/filaggrin along with focal areas of keratin 6 expression in the interfollicular epidermis. Severe epidermal hyperplasia, acanthosis, orthokeratosis, and hyperkeratosis were only observed in mice maintained in nonpathogen-free environments. The analysis of Rag2−/− Ctslnkt/Ctslnkt double-mutant mice indicates that the skin defect remains under the absence of T and B cells. This animal model provides in vivo evidence that cysteine protease cathepsin L plays a critical role in hair follicle morphogenesis and cycling, as well as epidermal differentiation. PMID:12163394

  14. Absence of the Regulator of G-protein Signaling, RGS4, Predisposes to Atrial Fibrillation and Is Associated with Abnormal Calcium Handling.

    PubMed

    Opel, Aaisha; Nobles, Muriel; Montaigne, David; Finlay, Malcolm; Anderson, Naomi; Breckenridge, Ross; Tinker, Andrew

    2015-07-31

    The description of potential molecular substrates for predisposition to atrial fibrillation (AF) is incomplete, and it is unknown what role regulators of G-protein signaling might play. We address whether the attenuation of RGS4 function may promote AF and the mechanism through which this occurs. For this purpose, we studied a mouse with global genetic deletion of RGS4 (RGS4(-/-)) and the normal littermate controls (RGS4(+/+)). In vivo electrophysiology using atrial burst pacing revealed that mice with global RGS4 deletion developed AF more frequently than control littermates. Isolated atrial cells from RGS4(-/-) mice show an increase in Ca(2+) spark frequency under basal conditions and after the addition of endothelin-1 and abnormal spontaneous Ca(2+) release events after field stimulation. Isolated left atria studied on a multielectrode array revealed modest changes in path length for re-entry but abnormal electrical events after a pacing train in RGS4(-/-) mice. RGS4 deletion results in a predisposition to atrial fibrillation from enhanced activity in the Gαq/11-IP3 pathway, resulting in abnormal Ca(2+) release and corresponding electrical events. PMID:26088132

  15. Calcilytic Ameliorates Abnormalities of Mutant Calcium-Sensing Receptor (CaSR) Knock-In Mice Mimicking Autosomal Dominant Hypocalcemia (ADH).

    PubMed

    Dong, Bingzi; Endo, Itsuro; Ohnishi, Yukiyo; Kondo, Takeshi; Hasegawa, Tomoka; Amizuka, Norio; Kiyonari, Hiroshi; Shioi, Go; Abe, Masahiro; Fukumoto, Seiji; Matsumoto, Toshio

    2015-11-01

    Activating mutations of calcium-sensing receptor (CaSR) cause autosomal dominant hypocalcemia (ADH). ADH patients develop hypocalcemia, hyperphosphatemia, and hypercalciuria, similar to the clinical features of hypoparathyroidism. The current treatment of ADH is similar to the other forms of hypoparathyroidism, using active vitamin D3 or parathyroid hormone (PTH). However, these treatments aggravate hypercalciuria and renal calcification. Thus, new therapeutic strategies for ADH are needed. Calcilytics are allosteric antagonists of CaSR, and may be effective for the treatment of ADH caused by activating mutations of CaSR. In order to examine the effect of calcilytic JTT-305/MK-5442 on CaSR harboring activating mutations in the extracellular and transmembrane domains in vitro, we first transfected a mutated CaSR gene into HEK cells. JTT-305/MK-5442 suppressed the hypersensitivity to extracellular Ca(2+) of HEK cells transfected with the CaSR gene with activating mutations in the extracellular and transmembrane domains. We then selected two activating mutations locating in the extracellular (C129S) and transmembrane (A843E) domains, and generated two strains of CaSR knock-in mice to build an ADH mouse model. Both mutant mice mimicked almost all the clinical features of human ADH. JTT-305/MK-5442 treatment in vivo increased urinary cAMP excretion, improved serum and urinary calcium and phosphate levels by stimulating endogenous PTH secretion, and prevented renal calcification. In contrast, PTH(1-34) treatment normalized serum calcium and phosphate but could not reduce hypercalciuria or renal calcification. CaSR knock-in mice exhibited low bone turnover due to the deficiency of PTH, and JTT-305/MK-5442 as well as PTH(1-34) increased bone turnover and bone mineral density (BMD) in these mice. These results demonstrate that calcilytics can reverse almost all the phenotypes of ADH including hypercalciuria and renal calcification, and suggest that calcilytics can become a

  16. Long-term behavior of CaO-based pellets supported by calcium aluminate cements in a long series of CO{sub 2} capture cycles

    SciTech Connect

    Manovic, V.; Anthony, E.J.

    2009-10-15

    A series of carbonation/calcination tests consisting of 1000 cycles was performed with CaO-based pellets prepared using hydrated lime and calcium aluminate cement. The change in CO{sub 2} carrying capacity of the sorbent was investigated in a thermogravimetric analyzer (TGA) apparatus and the morphology of residues after those cycles in the TGA was examined by scanning electron microscopy (SEM). Larger quantities of sorbent pellets underwent 300 carbonation/calcination cycles in a tube furnace (TF), and their properties were examined by nitrogen physisorption tests (BET and BJH). The crushing strength of the pellets before and after the CO{sub 2} cycles was determined by means of a custom-made strength testing apparatus. The results showed high CO{sub 2} carrying capacity in long series of cycles with an extremely high residual activity of the order of 28%. This superior performance is a result of favorable morphology due to the existence of large numbers of nanosized pores suitable for carbonation. This morphology is relatively stable during cycles due to the presence of mayenite (Ca{sub 12}Al{sub 14}O{sub 33}) in the CaO structure. However, the crushing tests showed that pellets lost strength after 300 carbonation/calcination cycles, and this appears to be due to the cracks formed in the pellets. This effect was not observed in smaller particles suitable for use in fluidized bed (FBC) systems.

  17. Abnormality in glutamine–glutamate cycle in the cerebrospinal fluid of cognitively intact elderly individuals with major depressive disorder: a 3-year follow-up study

    PubMed Central

    Hashimoto, K; Bruno, D; Nierenberg, J; Marmar, C R; Zetterberg, H; Blennow, K; Pomara, N

    2016-01-01

    Major depressive disorder (MDD), common in the elderly, is a risk factor for dementia. Abnormalities in glutamatergic neurotransmission via the N-methyl-d-aspartate receptor (NMDA-R) have a key role in the pathophysiology of depression. This study examined whether depression was associated with cerebrospinal fluid (CSF) levels of NMDA-R neurotransmission-associated amino acids in cognitively intact elderly individuals with MDD and age- and gender-matched healthy controls. CSF was obtained from 47 volunteers (MDD group, N=28; age- and gender-matched comparison group, N=19) at baseline and 3-year follow-up (MDD group, N=19; comparison group, N=17). CSF levels of glutamine, glutamate, glycine, l-serine and d-serine were measured by high-performance liquid chromatography. CSF levels of amino acids did not differ across MDD and comparison groups. However, the ratio of glutamine to glutamate was significantly higher at baseline in subjects with MDD than in controls. The ratio decreased in individuals with MDD over the 3-year follow-up, and this decrease correlated with a decrease in the severity of depression. No correlations between absolute amino-acid levels and clinical variables were observed, nor were correlations between amino acids and other biomarkers (for example, amyloid-β42, amyloid-β40, and total and phosphorylated tau protein) detected. These results suggest that abnormalities in the glutamine–glutamate cycle in the communication between glia and neurons may have a role in the pathophysiology of depression in the elderly. Furthermore, the glutamine/glutamate ratio in CSF may be a state biomarker for depression. PMID:26926880

  18. Calcium supplements

    MedlinePlus

    ... TYPES OF CALCIUM SUPPLEMENTS Forms of calcium include: Calcium carbonate: Over-the-counter (OTC) antacid products, such as Tums and Rolaids, contain calcium carbonate. These sources of calcium do not cost much. ...

  19. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  20. Craniofacial Abnormalities

    MedlinePlus

    ... of the skull and face. Craniofacial abnormalities are birth defects of the face or head. Some, like cleft ... palate, are among the most common of all birth defects. Others are very rare. Most of them affect ...

  1. Walking abnormalities

    MedlinePlus

    ... include: Arthritis of the leg or foot joints Conversion disorder (a psychological disorder) Foot problems (such as a ... injuries. For an abnormal gait that occurs with conversion disorder, counseling and support from family members are strongly ...

  2. Congenital Abnormalities

    MedlinePlus

    ... serious health problems (e.g. Down syndrome ). Single-Gene Abnormalities Sometimes the chromosomes are normal in number, ... blood flow to the fetus impair fetal growth. Alcohol consumption and certain drugs during pregnancy significantly increase ...

  3. Chromosome Abnormalities

    MedlinePlus

    ... decade, newer techniques have been developed that allow scientists and doctors to screen for chromosomal abnormalities without using a microscope. These newer methods compare the patient's DNA to a normal DNA ...

  4. Nail abnormalities

    MedlinePlus

    Nail abnormalities are problems with the color, shape, texture, or thickness of the fingernails or toenails. ... Fungus or yeast cause changes in the color, texture, and shape of the nails. Bacterial infection may ...

  5. Total and free myoplasmic calcium during a contraction cycle: x-ray microanalysis in guinea-pig ventricular myocytes.

    PubMed Central

    Wendt-Gallitelli, M F; Isenberg, G

    1991-01-01

    1. At 36 degrees C and 2 mM [Ca2+]o single guinea-pig ventricular myocytes were voltage clamped with patch electrodes. With a paired-pulse protocol applied at 1 Hz, a first pulse to +5 mV was followed by a second pulse to +50 mV. When paired pulsing had potentiated the contraction to the maximum, the cells were shock-frozen for electron-probe microanalysis (EPMA). Shock-freezing was timed at the end of diastole (-80 mV) or at different times during systole (+5 mV). 2. The same paired-pulse protocol was applied to another group of myocytes from which contraction and [Ca2+]i was estimated by microfluospectroscopy (50 microM-Na5-Indo-1). Potentiation moderately reduced diastolic sarcomere length from 1.85 to 1.82 microns and increased diastolic [Ca2+]i from about 95 to 180 nM. In potentiated cells, during the first pulse, contraction peaked within 128 +/- 25 ms after start of depolarization. [Ca2+]i peaked within 25 ms to 890 +/- 220 nM (mean +/- S.E.M.) and fell within 100 ms to about 450 nM. 3. Sigma Camyo, the total calcium concentration in the overlapping myofilaments (A-band), was measured by EPMA in seventeen potentiated myocytes. During diastole, sigma Camyo was 2.6 +/- 0.4 mmol (kg dry weight (DW]-1 which can be converted to 0.65 mM (mmoles per litre myofibrillar space). Since [Ca2+]i was 180 nM, we estimate that 99.97% of total calcium is bound. 4. A time course for systolic sigma Camyo was determined by shock-freezing thirteen cells at different times after start of depolarization to +5 mV. Sigma Camyo was 5.5 +/- 0.3 mmol (kg DW)-1 (1.4 mM) after 15-25 ms, 4.6 +/- 0.5 mmol (kg DW)-1 (1.1 mM) after 30-45 ms, and 3.1 mmol (kg DW)-1 (0.8 mM) after 60-120 ms. The fast time course of sigma Camyo suggests that calcium binds to and unbinds from troponin C at a fast rate. Hence, it is the slow kinetics of the cross-bridges that determines the 130 ms time-to-peak shortening. 5. Mitochondria of potentiated cells contained during diastole a total calcium concentration

  6. Long-term rescue of a familial hypertrophic cardiomyopathy caused by a mutation in the thin filament protein, tropomyosin, via modulation of a calcium cycling protein.

    PubMed

    Gaffin, Robert D; Peña, James R; Alves, Marco S L; Dias, Fernando A L; Chowdhury, Shamim A K; Heinrich, Lynley S; Goldspink, Paul H; Kranias, Evangelia G; Wieczorek, David F; Wolska, Beata M

    2011-11-01

    We have recently shown that a temporary increase in sarcoplasmic reticulum (SR) cycling via adenovirus-mediated overexpression of sarcoplasmic reticulum ATPase (SERCA2) transiently improves relaxation and delays hypertrophic remodeling in a familial hypertrophic cardiomyopathy (FHC) caused by a mutation in the thin filament protein, tropomyosin (i.e., α-TmE180G or Tm180). In this study, we sought to permanently alter calcium fluxes via phospholamban (PLN) gene deletion in Tm180 mice in order to sustain long-term improvements in cardiac function and adverse cardiac remodeling/hypertrophy. While similar work has been done in FHCs resulting from mutations in thick myofilament proteins, no one has studied these effects in an FHC resulting from a thin filament protein mutation. Tm180 transgenic (TG) mice were crossbred with PLN knockout (KO) mice and four groups were studied in parallel: 1) non-TG (NTG), 2) Tm180, 3) PLNKO/NTG and 4) PLNKO/Tm180. Tm180 mice exhibit increased heart weight/body weight and hypertrophic gene markers compared to NTG mice, but levels in PLNKO/Tm180 mice were similar to NTG. Tm180 mice also displayed altered function as assessed via in situ pressure-volume analysis and echocardiography at 3-6 months and one year; however, altered function in Tm180 mice was rescued back to NTG levels in PLNKO/Tm180 mice. Collagen deposition, as assessed by Picrosirius Red staining, was increased in Tm180 mice but was similar in NTG and in PLNKO/Tm180 mice. Extracellular signal-regulated kinase (ERK1/2) phosphorylation increased in Tm180 mice while levels in PLNKO/Tm180 mice were similar to NTGs. The present study shows that by modulating SR calcium cycling, we were able to rescue many of the deleterious aspects of FHC caused by a mutation in the thin filament protein, Tm. PMID:21840315

  7. Middle Holocene daily light cycle recorded in the strontium/calcium ratios of a fossil giant clam shell

    NASA Astrophysics Data System (ADS)

    Sano, Y.; Hori, M.; Takahata, N.; Shirai, K.; Watanabe, T.

    2013-12-01

    The historical record of daily light cycle in tropical and subtropical regions is short. Moreover, it remains difficult to extract this cycle in the past from natural archives such as biogenic marine carbonates. Our previous analyses of cultivated giant clam shells (Tridacna derasa) showed a diurnal variation in the Sr/Ca ratio, which is probably reflecting the daily light cycle and not the seawater temperature [1]. In order to apply the proxy method to prehistoric era, we analyzed trace elements of a fossil giant clam shell (Tridacna gigas) which was collected at the coast of the Ishigaki Island (124 09' E, 24 20' N), southern Japan. The giant clam specimen has been living in the middle Holocene, the warmest climate after the last glacial period. An inner layer part of the sample was cut and mounted in Araldite resin disk together with a carbonate standard. This species is known to form a growth line each day [2] and we found similar Sr enrichment lines to those of the cultivated clam [1] using a EPMA. The lines may facilitate age-model determination. We carried out a preliminary analysis of Sr/Ca, Mg/Ca and Ba/Ca ratios along the growth axis with a 2-micron spot at 2 micron interval using a laterally high-resolution secondary ion mass spectrometer (NanoSIMS) installed at Atmosphere and Ocean Research Institute, University of Tokyo. The Sr/Ca ratios of dark and relatively opaque area, which is probably corresponding to a cool winter [3], show striking diurnal cycle. This cycle generally consist of narrow lines of high Sr/Ca ratio and broad increments of low ratio. These variations are consistent with those of the cultivated clam [1] and pointing to the possibility of reconstructing daily light cycle at a few hour timescale in the middle Holocene. The Mg/Ca and Ba/Ca ratios also appear to indicate a diurnal cycle, but the amplitude is rather large and highly irregular, suggesting a strong biological control. Light-enhanced calcification and elemental transportation

  8. Calcium and magnesium content of the uterine fluid and blood serum during the estrous cycle and pre-pubertal phase in water buffaloes

    PubMed Central

    Alavi Shoushtari, Sayed Mortaza; Asri Rezaie, Siamak; Khaki, Amir; Belbasi, Abulfazle; Tahmasebian, Hamid

    2014-01-01

    To investigate uterine fluid and serum calcium (Ca) and Magnesium (Mg) variations during the estrus cycle in water buffaloes, 71 genital tracts and blood samples were collected from the abattoir in Urmia. The phase of the estrous cycle was determined by examining ovarian structures. 18 animals were pro-estrous, 15 estrous, 16 met-estrous and 22 diestrous. The uterine fluid was collected by gentle scraping of the uterine mucosa with a curette. Blood serum and uterine fluid samples of 71 pre-pubertal buffalo calves were also collected and treated in similar manners. The mean ± SEM total serum and uterine fluid Ca in cyclic buffaloes were 8.68 ± 0.28 mg dL-1 and 8.10 ± 0.2 mg dL-1 vs. 6.76 ± 0.65 mg dL-1 and 7.90 ± 0.15 mg dL-1 in pre-pubertal calves, respectively. Blood serum Mg was not different in cyclic and pre-pubertal animals but the uterine fluid Mg in cyclic cows was higher than those in pre-pubertal calves. Serum Ca in pro-estrus and estrus were higher than those in other stages and also higher than those in the uterine fluid. The lowest Mg content of serum was recorded in diestrus, while in the uterine fluid it was observed in estrus. In all stages of estrous cycle except for estrus the uterine fluid Mg content was significantly higher than those of the serum. These results suggested that during the estrous cycle in the buffalo cows, Ca was passively secreted in uterine lumen and mostly dependent on blood serum Ca concentrations but Mg was secreted independently. The values (except for serum total Mg) also increased after puberty. PMID:25610582

  9. Calcium Oscillations

    PubMed Central

    Dupont, Geneviève; Combettes, Laurent; Bird, Gary S.; Putney, James W.

    2011-01-01

    Calcium signaling results from a complex interplay between activation and inactivation of intracellular and extracellular calcium permeable channels. This complexity is obvious from the pattern of calcium signals observed with modest, physiological concentrations of calcium-mobilizing agonists, which typically present as sequential regenerative discharges of stored calcium, a process referred to as calcium oscillations. In this review, we discuss recent advances in understanding the underlying mechanism of calcium oscillations through the power of mathematical modeling. We also summarize recent findings on the role of calcium entry through store-operated channels in sustaining calcium oscillations and in the mechanism by which calcium oscillations couple to downstream effectors. PMID:21421924

  10. Calcium and magnesium concentrations in uterine fluid and blood serum during the estrous cycle in the bovine

    PubMed Central

    Alavi-Shoushtari, Sayed Mortaza; Asri-Rezaie, Siamak; Abedizadeh, Roya; Khaki, Amir; Pak, Mozhgan; Alizadeh, Sajad

    2012-01-01

    To investigate uterine and serum Ca++ and Mg++ variations during the estrous cycle in the bovine, 66 genital tracts and blood samples were collected from Urmia abattoir, Urmia, Iran. The phase of the estrous cycle was determined by examination of the structures present on ovaries and uterine tonicity. Of the collected samples, 17 were pro-estrus, 12 estrus, 14 metestrus and 23 diestrus. The uterine fluid was collected by gentle scraping of the uterine mucosa with a curette. The mean ± SEM concentration of serum Ca++ in pro-estrus, estrus, metestrus and diestrus was 5.77 ± 0.69, 8.87 ± 1.83, 10.95 ± 1.52, 11.09 ± 1.08 mg dL-1, and the mean concentration of uterine fluid Ca++ was 4.40 ± 0.72, 3.15 ± 0.67, 5.89 ± 0.88, 8.63 ± 0.97 mg dL-1, respectively. The mean concentration of serum Mg++ in pro-estrus, estrus, metestrus and diestrus was 3.53 ± 0.30, 4.20 ± 0.52, 3.49 ± 0.38, 3.39 ± 0.29 mg dL-1, and mean concentration of uterine fluid Mg++ was 5.27 ± 0.42, 4.92 ± 0.60, 5.56 ± 0.30, 5.88 ± 0.36 mg dL-1, respectively. The serum and uterine fluid Ca++ in pro-estrus were significantly different from those of the metestrus and diestrus. In all stages of estrous cycle the mean concentration of serum Ca++ was higher than that in the uterine fluid. The difference between serum and uterine fluid Ca++ in estrus, metestrus and diestrus was significant. There was no significant difference between serum Mg++ content nor was it different from uterine fluid Mg++ content at any stages of estrous cycle. In all stages of estrous cycle the uterine fluid Mg++ was higher than that of the serum. These results suggest that during the estrous cycle in the cow, Ca++ is passively secreted in uterine fluids and is mostly dependent on blood serum Ca++ variations but Mg++ is secreted independently and does not follow variations in the serum concentrations. PMID:25653760

  11. Calcium and magnesium concentrations in uterine fluid and blood serum during the estrous cycle in the bovine.

    PubMed

    Alavi-Shoushtari, Sayed Mortaza; Asri-Rezaie, Siamak; Abedizadeh, Roya; Khaki, Amir; Pak, Mozhgan; Alizadeh, Sajad

    2012-01-01

    To investigate uterine and serum Ca(++) and Mg(++) variations during the estrous cycle in the bovine, 66 genital tracts and blood samples were collected from Urmia abattoir, Urmia, Iran. The phase of the estrous cycle was determined by examination of the structures present on ovaries and uterine tonicity. Of the collected samples, 17 were pro-estrus, 12 estrus, 14 metestrus and 23 diestrus. The uterine fluid was collected by gentle scraping of the uterine mucosa with a curette. The mean ± SEM concentration of serum Ca(++) in pro-estrus, estrus, metestrus and diestrus was 5.77 ± 0.69, 8.87 ± 1.83, 10.95 ± 1.52, 11.09 ± 1.08 mg dL(-1), and the mean concentration of uterine fluid Ca(++) was 4.40 ± 0.72, 3.15 ± 0.67, 5.89 ± 0.88, 8.63 ± 0.97 mg dL(-1), respectively. The mean concentration of serum Mg(++) in pro-estrus, estrus, metestrus and diestrus was 3.53 ± 0.30, 4.20 ± 0.52, 3.49 ± 0.38, 3.39 ± 0.29 mg dL(-1), and mean concentration of uterine fluid Mg(++) was 5.27 ± 0.42, 4.92 ± 0.60, 5.56 ± 0.30, 5.88 ± 0.36 mg dL(-1), respectively. The serum and uterine fluid Ca(++) in pro-estrus were significantly different from those of the metestrus and diestrus. In all stages of estrous cycle the mean concentration of serum Ca(++) was higher than that in the uterine fluid. The difference between serum and uterine fluid Ca(++) in estrus, metestrus and diestrus was significant. There was no significant difference between serum Mg(++) content nor was it different from uterine fluid Mg(++) content at any stages of estrous cycle. In all stages of estrous cycle the uterine fluid Mg(++) was higher than that of the serum. These results suggest that during the estrous cycle in the cow, Ca(++) is passively secreted in uterine fluids and is mostly dependent on blood serum Ca(++) variations but Mg(++) is secreted independently and does not follow variations in the serum concentrations. PMID:25653760

  12. Predominant role of the hypothalamic-pituitary axis, not the ovary, in different types of abnormal cycle induction by postnatal exposure to high dose p-tert-octylphenol in rats.

    PubMed

    Yoshida, Midori; Katashima, Sayumi; Tahahashi, Miwa; Ichimura, Ryohei; Inoue, Kaoru; Taya, Kazuyoshi; Watanabe, Gen

    2015-11-01

    To determine whether it is the hypothalamic-pituitary axis or the ovary that plays the predominant role in abnormal estrous cycling induction by postnatal exposure to estrogenic compounds, female rats were subcutaneously injected with 100mg/kg p-tert-octylphenol or vehicle for 5 or 15 days after birth (OP-PND5, OP-PND15 or control). Ovaries were exchanged between control and treated groups on PND28. Controls receiving control or OP-PND5 ovaries showed normal cycles within 4 weeks after the exchange, and corpora lutea were detected in transplanted ovaries. Controls receiving OP-PND15 ovaries consistently increased persistent estrus (PE). OP-PND15 rats receiving control or OP-PND15 ovaries immediately descended into PE, and transplanted ovaries were atrophic with cystic follicles, indicating anovulation. OP-PND5 rats receiving control or OP-PND5 ovaries showed early onset of PE after normal cycling. The hypothalamic-pituitary axis is predominant in abnormal cycling induction by postnatal exposure to OP. OP-PND15 ovaries were impaired compared to other groups. PMID:25975844

  13. Molt cycle-associated changes in calcium-dependent proteinase activity that degrades actin and myosin in crustacean muscle

    SciTech Connect

    Mykles, D.L.; Skinner, D.M.

    1982-01-01

    The role of calcium-dependent proteinase (CDP) in the proecdysial atrophy of crustacean claw muscle has been investigated. During atrophy the molar ratio of actin to myosin heavy chain decreased 31%, confirming earlier ultrastructural observations that the ratio of thin:thick myofilaments declined from 9:1 to 6:1 (D.L. Mykles and D.M. Skinner, 1981, J. Ultrastruct. Res. 75, 314 to 325). The release of TCA-soluble material in muscle homogenates at neutral pH was stimulated by Ca/sup 2 +/ and completely inhibited by EGTA. The specific degradation of the major myofibrillar proteins (actin, myosin heavy and light chains, paramyosin, tropomyosin, troponin-T, and troponin-I) was demonstrated by SDS-polyacrylamide gel electrophoresis. Proteolytic activity was more than twofold greater in proecdysial muscle homogenates. Degradation of myofibrillar proteins was inhibited by EGTA, and the two inhibitors of crysteine proteinases, leupeptin, and antipain, but not pepstatin, an inhibitor of aspartic proteinases. Unlike CDPs from vertebrate muscle, the CDP(s) in crab claw muscle degrades actin and myosin in addition to other myofibrillar proteins.

  14. Effect of cerium oxide doping on the performance of CaO-based sorbents during calcium looping cycles.

    PubMed

    Wang, Shengping; Fan, Shasha; Fan, Lijing; Zhao, Yujun; Ma, Xinbin

    2015-04-21

    A series of CaO-based sorbents were synthesized through a sol-gel method and doped with different amounts of CeO2. The sorbent with a Ca/Ce molar ratio of 15:1 showed an excellent absorption capacity (0.59 gCO2/g sorbent) and a remarkable cycle durability (up to 18 cycles). The admirable capture performance of CaCe-15 was ascribed to its special morphology formed by the doping of CeO2 and the well-distributed CeO2 particles. The sorbents doped with CeO2 possessed a loose shell-connected cross-linking structure, which was beneficial for the contact between CaO and CO2. CaO and CeO2 were dispersed homogeneously, and the existence of CeO2 also decreased the grain size of CaO. The well-dispersed CeO2, which could act as a barrier, effectively prevented the CaO crystallite from growing and sintering, thus the sorbent exhibited outstanding stability. The doping of CeO2 also improved the carbonation rate of the sorbent, resulting in a high capacity in a short period of time. PMID:25815798

  15. Middle Holocene daily light cycle reconstructed from the strontium/calcium ratios of a fossil giant clam shell.

    PubMed

    Hori, Masako; Sano, Yuji; Ishida, Akizumi; Takahata, Naoto; Shirai, Kotaro; Watanabe, Tsuyoshi

    2015-01-01

    Insolation is an important component of meteorological data because solar energy is the primary and direct driver of weather and climate. Previous analyses of cultivated giant clam shells revealed diurnal variation in the Sr/Ca ratio, which might reflect the influence of the daily light cycle. We applied proxy method to sample from prehistoric era, a fossil giant clam shell collected at Ishigaki Island in southern Japan. The specimen was alive during the middle Holocene and thus exposed to the warmest climate after the last glacial period. This bivalve species is known to form a growth line each day, as confirmed by the analysis of the Sr enrichment bands using EPMA and facilitated age-model. We analyzed the Sr/Ca, Mg/Ca and Ba/Ca ratios along the growth axis, measuring a 2-μm spot size at 2-μm interval using NanoSIMS. The Sr/Ca ratios in the winter layers are characterized by a striking diurnal cycle consisting of narrow growth lines with high Sr/Ca ratios and broad growth bands with low Sr/Ca ratios. These variations, which are consistent with those of the cultivated clam shell, indicate the potential for the reconstruction of the variation in solar insolation during the middle Holocene at a multi-hourly resolution. PMID:25736488

  16. Middle Holocene daily light cycle reconstructed from the strontium/calcium ratios of a fossil giant clam shell

    PubMed Central

    Hori, Masako; Sano, Yuji; Ishida, Akizumi; Takahata, Naoto; Shirai, Kotaro; Watanabe, Tsuyoshi

    2015-01-01

    Insolation is an important component of meteorological data because solar energy is the primary and direct driver of weather and climate. Previous analyses of cultivated giant clam shells revealed diurnal variation in the Sr/Ca ratio, which might reflect the influence of the daily light cycle. We applied proxy method to sample from prehistoric era, a fossil giant clam shell collected at Ishigaki Island in southern Japan. The specimen was alive during the middle Holocene and thus exposed to the warmest climate after the last glacial period. This bivalve species is known to form a growth line each day, as confirmed by the analysis of the Sr enrichment bands using EPMA and facilitated age-model. We analyzed the Sr/Ca, Mg/Ca and Ba/Ca ratios along the growth axis, measuring a 2-μm spot size at 2-μm interval using NanoSIMS. The Sr/Ca ratios in the winter layers are characterized by a striking diurnal cycle consisting of narrow growth lines with high Sr/Ca ratios and broad growth bands with low Sr/Ca ratios. These variations, which are consistent with those of the cultivated clam shell, indicate the potential for the reconstruction of the variation in solar insolation during the middle Holocene at a multi-hourly resolution. PMID:25736488

  17. Middle Holocene daily light cycle reconstructed from the strontium/calcium ratios of a fossil giant clam shell

    NASA Astrophysics Data System (ADS)

    Hori, Masako; Sano, Yuji; Ishida, Akizumi; Takahata, Naoto; Shirai, Kotaro; Watanabe, Tsuyoshi

    2015-03-01

    Insolation is an important component of meteorological data because solar energy is the primary and direct driver of weather and climate. Previous analyses of cultivated giant clam shells revealed diurnal variation in the Sr/Ca ratio, which might reflect the influence of the daily light cycle. We applied proxy method to sample from prehistoric era, a fossil giant clam shell collected at Ishigaki Island in southern Japan. The specimen was alive during the middle Holocene and thus exposed to the warmest climate after the last glacial period. This bivalve species is known to form a growth line each day, as confirmed by the analysis of the Sr enrichment bands using EPMA and facilitated age-model. We analyzed the Sr/Ca, Mg/Ca and Ba/Ca ratios along the growth axis, measuring a 2-μm spot size at 2-μm interval using NanoSIMS. The Sr/Ca ratios in the winter layers are characterized by a striking diurnal cycle consisting of narrow growth lines with high Sr/Ca ratios and broad growth bands with low Sr/Ca ratios. These variations, which are consistent with those of the cultivated clam shell, indicate the potential for the reconstruction of the variation in solar insolation during the middle Holocene at a multi-hourly resolution.

  18. Calcium - urine

    MedlinePlus

    ... best treatment for the most common type of kidney stone , which is made of calcium. This type of ... the kidneys into the urine, which causes calcium kidney stones Sarcoidosis Taking too much calcium Too much production ...

  19. Calcium Carbonate

    MedlinePlus

    Calcium carbonate is a dietary supplement used when the amount of calcium taken in the diet is not ... for healthy bones, muscles, nervous system, and heart. Calcium carbonate also is used as an antacid to relieve ...

  20. Cell-cycle control as a target for calcium, hormonal and developmental signals: the role of phosphorylation in the retinoblastoma-centred pathway

    PubMed Central

    Dudits, Dénes; Ábrahám, Edit; Miskolczi, Pál; Ayaydin, Ferhan; Bilgin, Metin; Horváth, Gábor V.

    2011-01-01

    ) increased biomass by auxin-dependent activation of both D- and B-type cyclins. The direct involvement of auxin-binding protein (ABP1) in the entry into the cell cycle and the regulation of leaf size and morphology is based on the transcriptional control of D-cyclins and retinoblastoma-related protein (RBR) interacting with inhibitory E2FC transcriptional factor. The central role of RBRs in cell-cycle progression is well documented by a variety of experimental approaches. Their function is phosphorylation-dependent and both RBR and phospho-RBR proteins are present in interphase and mitotic phase cells. Immunolocalization studies showed the presence of phospho-RBR protein in spots of interphase nuclei or granules in mitotic prophase cells. The Ca2+-dependent phosphorylation events can be accomplished by the calcium-dependent, calmodulin-independent or calmodulin-like domain protein kinases (CDPKs/CPKs) phosphorylating the CDK inhibitor protein (KRP). Dephosphorylation of the phospho-RBR protein by PP2A phosphatase is regulated by a Ca2+-binding subunit. PMID:21441245

  1. Calcium - urine

    MedlinePlus

    ... into the urine, which causes calcium kidney stones Sarcoidosis Taking too much calcium Too much production of ... Milk-alkali syndrome Proximal renal tubular acidosis Rickets Sarcoidosis Vitamin D Update Date 5/3/2015 Updated ...

  2. Abnormal crystal growth in CH3NH3PbI3-xClx using a multi-cycle solution coating process

    SciTech Connect

    Dong, Qingfeng; Yuan, Yongbo; Shao, Yuchuan; Fang, Yanjun; Wang, Qi; Huang, Jinsong

    2015-06-23

    Recently, the efficiency of organolead trihalide perovskite solar cells has improved greatly because of improved material qualities with longer carrier diffusion lengths. Mixing chlorine in the precursor for mixed halide films has been reported to dramatically enhance the diffusion lengths of mixed halide perovskite films, mainly as a result of a much longer carrier recombination lifetime. Here we report that adding Cl containing precursor for mixed halide perovskite formation can induce the abnormal grain growth behavior that yields well-oriented grains accompanied by the appearance of some very large size grains. The abnormal grain growth becomes prominent only after multi-cycle coating of MAI : MACl blend precursor. The large grain size is found mainly to contribute to a longer carrier charge recombination lifetime, and thus increases the device efficiency to 18.9%, but without significantly impacting the carrier transport property. As a result, the strong correlation identified between material process and morphology provides guidelines for future material optimization and device efficiency enhancement.

  3. The efflux of potassium, sodium, chloride, calcium and sulphate ions and of sorbitol and glycerol during the cardiac cycle in frog's ventricle

    PubMed Central

    Lamb, J. F.; McGuigan, J. A. S.

    1968-01-01

    1. The exchanges of potassium and various other substances have been measured in beating frog's ventricles, using both superfused and distended preparations. In both preparations the high fluid flow rates used (1 ml./sec) cleared the ventricular cavity with a half-time (T½) of about 130 msec. 2. Histological sections show that the modal strand radius in the relaxed or contracted distended ventricle is 17·5 μ, and in the relaxed and contracted superfused ventricle is 17·5 and 27·5 μ respectively. 3. In quiescent ventricles the resting potassium influx and efflux are approximately equal at about 16 p-mole/cm2.sec. This figure is computed from Niedergerke's (1963b) estimate of a cell size of 3·5 μ taken from electron-micrographs. If the older figure of 9·2 μ from single isolated cells is used (Skramlik, 1921) then the fluxes are about 44 p-mole/cm2.sec. To allow for some cell damage in these preparations a further increase in flux of about 30% may be necessary. 4. Contraction leads to a diminution of both potassium influx and efflux. Measurements made at 100 msec intervals throughout the cardiac cycle have demonstrated (a) that this decreased K efflux occurs at the same time as the mechanical twitch, and (b) that the size of the decrease is dependent on the external calcium concentration. Other experiments show that a similar decrease can be obtained by inducing a contracture at a constant membrane potential. It is concluded that the decreased K efflux during contraction is due to mechanical distortion of the tissue. This leads to a further slowing of the K diffusion and allows considerable reabsorption of K to occur into the cells. 5. Efflux analysis suggests that normal K diffusion in the extracellular space may be about 1/10 of that in free solution. If this is correct the true membrane fluxes may be × 5 those measured. 6. Phasic efflux measurements of Na, Ca, K, Cl, SO4, sorbitol and erythritol show that a peak of efflux occurs just after the point of

  4. Calcium supplements

    MedlinePlus

    ... SHOULD TAKE CALCIUM SUPPLEMENTS? Calcium is an important mineral for the human body. It helps build and protect your teeth ... absorb calcium. You can get vitamin D from sunlight exposure to your skin and from your diet. Ask your provider whether ...

  5. Calcium efflux activity of plasma membrane Ca2+ ATPase-4 (PMCA4) mediates cell cycle progression in vascular smooth muscle cells.

    PubMed

    Afroze, Talat; Yang, Ge; Khoshbin, Amir; Tanwir, Mansoor; Tabish, Taha; Momen, Abdul; Husain, Mansoor

    2014-03-01

    We explored the role played by plasma membrane calcium ATPase-4 (PMCA4) and its alternative splice variants in the cell cycle of vascular smooth muscle cells (VSMC). A novel variant (PMCA4e) was discovered. Quantitative real-time-PCR-quantified PMCA4 splice variant proportions differed in specific organs. The PMCA4a:4b ratio in uninjured carotid arteries (∼1:1) was significantly reduced by wire denudation injury (to ∼1:3) by modulation of alternative splicing, as confirmed by novel antibodies against PMCA4a/e and PMCA4b. Laser capture microdissection localized this shift to the media and adventitia. Primary carotid VSMC from PMCA4 knock-out (P4KO) mice showed impaired [(3)H]thymidine incorporation and G1 phase arrest as compared with wild type (P4WT). Electroporation of expression constructs encoding PMCA4a, PMCA4b, and a PMCA4b mutant lacking PDZ binding rescued this phenotype of P4KO cells, whereas a mutant with only 10% of normal Ca(2+) efflux activity could not. Microarray of early G1-synchronized VSMC showed 39-fold higher Rgs16 (NFAT (nuclear factor of activated T-cells) target; MAPK inhibitor) and 69-fold higher Decorin (G1 arrest marker) expression in P4KO versus P4WT. Validation by Western blot also revealed decreased levels of Cyclin D1 and NFATc3 in P4KO. Microarrays of P4KO VSMC rescued by PMCA4a or PMCA4b expression showed reversal of perturbed Rgs16, Decorin, and NFATc3 expression levels. However, PMCA4a rescue caused a 44-fold reduction in AP-2β, a known anti-proliferative transcription factor, whereas PMCA4b rescue resulted in a 50-fold reduction in p15 (Cyclin D1/Cdk4 inhibitor). We conclude that Ca(2+) efflux activity of PMCA4 underlies G1 progression in VSMC and that PMCA4a and PMCA4b differentially regulate specific downstream mediators. PMID:24448801

  6. Calcium channel blockers and dementia

    PubMed Central

    Nimmrich, V; Eckert, A

    2013-01-01

    Degenerative dementia is mainly caused by Alzheimer's disease and/or cerebrovascular abnormalities. Disturbance of the intracellular calcium homeostasis is central to the pathophysiology of neurodegeneration. In Alzheimer's disease, enhanced calcium load may be brought about by extracellular accumulation of amyloid-β. Recent studies suggest that soluble forms facilitate influx through calcium-conducting ion channels in the plasma membrane, leading to excitotoxic neurodegeneration. Calcium channel blockade attenuates amyloid-β-induced neuronal decline in vitro and is neuroprotective in animal models. Vascular dementia, on the other hand, is caused by cerebral hypoperfusion and may benefit from calcium channel blockade due to relaxation of the cerebral vasculature. Several calcium channel blockers have been tested in clinical trials of dementia and the outcome is heterogeneous. Nimodipine as well as nilvadipine prevent cognitive decline in some trials, whereas other calcium channel blockers failed. In trials with a positive outcome, BP reduction did not seem to play a role in preventing dementia, indicating a direct protecting effect on neurons. An optimization of calcium channel blockers for the treatment of dementia may involve an increase of selectivity for presynaptic calcium channels and an improvement of the affinity to the inactivated state. Novel low molecular weight compounds suitable for proof-of-concept studies are now available. PMID:23638877

  7. Continuous exposure to a novel stressor based on water aversion induces abnormal circadian locomotor rhythms and sleep-wake cycles in mice.

    PubMed

    Miyazaki, Koyomi; Itoh, Nanako; Ohyama, Sumika; Kadota, Koji; Oishi, Katsutaka

    2013-01-01

    Psychological stressors prominently affect diurnal rhythms, including locomotor activity, sleep, blood pressure, and body temperature, in humans. Here, we found that a novel continuous stress imposed by the perpetual avoidance of water on a wheel (PAWW) affected several physiological diurnal rhythms in mice. One week of PAWW stress decayed robust circadian locomotor rhythmicity, while locomotor activity was evident even during the light period when the mice are normally asleep. Daytime activity was significantly upregulated, whereas nighttime activity was downregulated, resulting in a low amplitude of activity. Total daily activity gradually decreased with increasing exposure to PAWW stress. The mice could be exposed to PAWW stress for over 3 weeks without adaptation. Furthermore, continuous PAWW stress enhanced food intake, but decreased body weight and plasma leptin levels, indicating that sleep loss and PAWW stress altered the energy balance in these mice. The diurnal rhythm of corticosterone levels was not severely affected. The body temperature rhythm was diurnal in the stressed mice, but significantly dysregulated during the dark period. Plasma catecholamines were elevated in the stressed mice. Continuous PAWW stress reduced the duration of daytime sleep, especially during the first half of the light period, and increased nighttime sleepiness. Continuous PAWW stress also simultaneously obscured sleep/wake and locomotor activity rhythms compared with control mice. These sleep architecture phenotypes under stress are similar to those of patients with insomnia. The stressed mice could be entrained to the light/dark cycle, and when they were transferred to constant darkness, they exhibited a free-running circadian rhythm with a timing of activity onset predicted by the phase of their entrained rhythms. Circadian gene expression in the liver and muscle was unaltered, indicating that the peripheral clocks in these tissues remained intact. PMID:23383193

  8. Negative Regulation of p21Waf1/Cip1 by Human INO80 Chromatin Remodeling Complex Is Implicated in Cell Cycle Phase G2/M Arrest and Abnormal Chromosome Stability

    PubMed Central

    Cao, Lingling; Ding, Jian; Dong, Liguo; Zhao, Jiayao; Su, Jiaming; Wang, Lingyao; Sui, Yi; Zhao, Tong; Wang, Fei; Jin, Jingji; Cai, Yong

    2015-01-01

    We previously identified an ATP-dependent human Ino80 (INO80) chromatin remodeling complex which shares a set of core subunits with yeast Ino80 complex. Although research evidence has suggested that INO80 complex functions in gene transcription and genome stability, the precise mechanism remains unclear. Herein, based on gene expression profiles from the INO80 complex-knockdown in HeLa cells, we first demonstrate that INO80 complex negatively regulates the p21Waf1/Cip1 (p21) expression in a p53-mediated mechanism. In chromatin immunoprecipitation (ChIP) and a sequential ChIP (Re-ChIP) assays, we determined that the INO80 complex and p53 can bind to the same promoter region of p21 gene (-2.2kb and -1.0kb upstream of the p21 promoter region), and p53 is required for the recruitment of the INO80 complex to the p21 promoter. RNAi knockdown strategies of INO80 not only led to prolonged progression of cell cycle phase G2/M to G1, but it also resulted in abnormal chromosome stability. Interestingly, high expression of p21 was observed in most morphologically-changed cells, suggesting that negative regulation of p21 by INO80 complex might be implicated in maintaining the cell cycle process and chromosome stability. Together, our findings will provide a theoretical basis to further elucidate the cellular mechanisms of the INO80 complex. PMID:26340092

  9. Abnormal movement of tropomyosin and response of myosin heads and actin during the ATPase cycle caused by the Arg167His, Arg167Gly and Lys168Glu mutations in TPM1 gene.

    PubMed

    Borovikov, Yurii S; Rysev, Nikita A; Chernev, Aleksey A; Avrova, Stanislava V; Karpicheva, Olga E; Borys, Danuta; Śliwińska, Małgorzata; Moraczewska, Joanna

    2016-09-15

    Amino acid substitutions: Arg167His, Arg167Gly and Lys168Glu, located in a consensus actin-binding site of the striated muscle tropomyosin Tpm1.1 (TM), were used to investigate mechanisms of the thin filament regulation. The azimuthal movement of TM strands on the actin filament and the responses of the myosin heads and actin subunits during the ATPase cycle were studied using fluorescence polarization of muscle fibres. The recombinant wild-type and mutant TMs labelled with 5-IAF, 1,5-IAEDANS-labelled S1and FITC-phalloidin F-actin were incorporated into the ghost muscle fibres to acquire information on the orientation of the probes relative to the fibre axis. The substitutions Arg167Gly and Lys168Glu shifted TM strands into the actin filament centre, whereas Arg167His moved TM towards the periphery of the filament. In the presence of Arg167Gly-TM and Lys168Glu-TM the fraction of actin monomers that were switched on and the number of the myosin heads strongly bound to F-actin were abnormally high even under conditions close to relaxation. In contrast, Arg167His-TM decreased the fraction of switched on actin and reduced the formation of strongly bound myosin heads throughout the ATPase cycle. We concluded that the altered TM-actin contacts destabilized the thin filament and affected the actin-myosin interactions. PMID:27480605

  10. Effects of seawater alkalinity on calcium and acid-base regulation in juvenile European lobster (Homarus gammarus) during a moult cycle.

    PubMed

    Middlemiss, Karen L; Urbina, Mauricio A; Wilson, Rod W

    2016-03-01

    Fluxes of NH4(+) (acid) and HCO3(-) (base), and whole body calcium content were measured in European lobster (Homarus gammarus) during intermoult (megalopae stage), and during the first 24h for postmoult juveniles under control (~2000 μeq/L) and low seawater alkalinity (~830 μeq/L). Immediately after moulting, animals lost 45% of the total body calcium via the shed exoskeleton (exuvia), and only 11% was retained in the uncalcified body. At 24h postmoult, exoskeleton calcium increased to ~46% of the intermoult stage. Ammonia excretion was not affected by seawater alkalinity. After moulting, bicarbonate excretion was immediately reversed from excretion to uptake (~4-6 fold higher rates than intermoult) over the whole 24h postmoult period, peaking at 3-6h. These data suggest that exoskeleton calcification is not completed by 24h postmoult. Low seawater alkalinity reduced postmoult bicarbonate uptake by 29% on average. Net acid-base flux (equivalent to net base uptake) followed the same pattern as HCO3(-) fluxes, and was 22% lower in low alkalinity seawater over the whole 24h postmoult period. The common occurrence of low alkalinity in intensive aquaculture systems may slow postmoult calcification in juvenile H. gammarus, increasing the risk of mortalities through cannibalism. PMID:26691956

  11. Calcium antagonists.

    PubMed

    Grossman, Ehud; Messerli, Franz H

    2004-01-01

    Calcium antagonists were introduced for the treatment of hypertension in the 1980s. Their use was subsequently expanded to additional disorders, such as angina pectoris, paroxysmal supraventricular tachycardias, hypertrophic cardiomyopathy, Raynaud phenomenon, pulmonary hypertension, diffuse esophageal spasms, and migraine. Calcium antagonists as a group are heterogeneous and include 3 main classes--phenylalkylamines, benzothiazepines, and dihydropyridines--that differ in their molecular structure, sites and modes of action, and effects on various other cardiovascular functions. Calcium antagonists lower blood pressure mainly through vasodilation and reduction of peripheral resistance. They maintain blood flow to vital organs, and are safe in patients with renal impairment. Unlike diuretics and beta-blockers, calcium antagonists do not impair glucose metabolism or lipid profile and may even attenuate the development of arteriosclerotic lesions. In long-term follow-up, patients treated with calcium antagonists had development of less overt diabetes mellitus than those who were treated with diuretics and beta-blockers. Moreover, calcium antagonists are able to reduce left ventricular mass and are effective in improving anginal pain. Recent prospective randomized studies attested to the beneficial effects of calcium antagonists in hypertensive patients. In comparison with placebo, calcium antagonist-based therapy reduced major cardiovascular events and cardiovascular death significantly in elderly hypertensive patients and in diabetic patients. In several comparative studies in hypertensive patients, treatment with calcium antagonists was equally effective as treatment with diuretics, beta-blockers, or angiotensin-converting enzyme inhibitors. From these studies, it seems that a calcium antagonist-based regimen is superior to other regimens in preventing stroke, equivalent in preventing ischemic heart disease, and inferior in preventing congestive heart failure

  12. Calcium in diet

    MedlinePlus

    ... of calcium dietary supplements include calcium citrate and calcium carbonate. Calcium citrate is the more expensive form of ... the body on a full or empty stomach. Calcium carbonate is less expensive. It is absorbed better by ...

  13. Abnormal Head Position

    MedlinePlus

    ... cause. Can a longstanding head turn lead to any permanent problems? Yes, a significant abnormal head posture could cause permanent ... occipitocervical synostosis and unilateral hearing loss. Are there any ... postures? Yes. Abnormal head postures can usually be improved depending ...

  14. Urine - abnormal color

    MedlinePlus

    ... straw-yellow. Abnormally colored urine may be cloudy, dark, or blood-colored. Causes Abnormal urine color may ... red blood cells, or mucus in the urine. Dark brown but clear urine is a sign of ...

  15. Calcium Test

    MedlinePlus

    ... as thyroid disease , parathyroid disorder , malabsorption , cancer, or malnutrition An ionized calcium test may be ordered when ... albumin , which can result from liver disease or malnutrition , both of which may result from alcoholism or ...

  16. Calcium Calculator

    MedlinePlus

    ... with Sarcopenia Skeletal Rare Disorders Data & Publications Facts and Statistics Vitamin D map Fracture Risk Map Hip Fracture ... Training Courses Working Groups Regional Audits Reports Facts and Statistics Popular content Calcium content of common foods What ...

  17. Calcium Carbonate.

    PubMed

    Al Omari, M M H; Rashid, I S; Qinna, N A; Jaber, A M; Badwan, A A

    2016-01-01

    Calcium carbonate is a chemical compound with the formula CaCO3 formed by three main elements: carbon, oxygen, and calcium. It is a common substance found in rocks in all parts of the world (most notably as limestone), and is the main component of shells of marine organisms, snails, coal balls, pearls, and eggshells. CaCO3 exists in different polymorphs, each with specific stability that depends on a diversity of variables. PMID:26940168

  18. Calcium orthophosphates

    PubMed Central

    Dorozhkin, Sergey V.

    2011-01-01

    The present overview is intended to point the readers’ attention to the important subject of calcium orthophosphates. This type of materials is of special significance for human beings, because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with calcium orthophosphates, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenphosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of calcium orthophosphates. Similarly, dental caries and osteoporosis might be considered an in vivo dissolution of calcium orthophosphates. Thus, calcium orthophosphates hold a great significance for humankind, and in this paper, an overview on the current knowledge on this subject is provided. PMID:23507744

  19. Calcium Hydroxylapatite

    PubMed Central

    Yutskovskaya, Yana Alexandrovna; Philip Werschler, WM.

    2015-01-01

    Background: Calcium hydroxylapatite is one of the most well-studied dermal fillers worldwide and has been extensively used for the correction of moderate-to-severe facial lines and folds and to replenish lost volume. Objectives: To mark the milestone of 10 years of use in the aesthetic field, this review will consider the evolution of calcium hydroxylapatite in aesthetic medicine, provide a detailed injection protocol for a global facial approach, and examine how the unique properties of calcium hydroxylapatite provide it with an important place in today’s market. Methods: This article is an up-to-date review of calcium hydroxylapatite in aesthetic medicine along with procedures for its use, including a detailed injection protocol for a global facial approach by three expert injectors. Conclusion: Calcium hydroxylapatite is a very effective agent for many areas of facial soft tissue augmentation and is associated with a high and well-established safety profile. Calcium hydroxylapatite combines high elasticity and viscosity with an ability to induce long-term collagen formation making it an ideal agent for a global facial approach. PMID:25610523

  20. Calcium and aluminum cycling in a temperate broadleaved deciduous forest of the eastern USA: relative impacts of tree species, canopy state, and flux type.

    PubMed

    Levia, Delphis F; Shiklomanov, Alexey N; Van Stan, John T; Scheick, Carrie E; Inamdar, Shreeram P; Mitchell, Myron J; McHale, Patrick J

    2015-07-01

    Ca/Al molar ratios are commonly used to assess the extent of aluminum stress in forests. This is among the first studies to quantify Ca/Al molar ratios for stemflow. Ca/Al molar ratios in bulk precipitation, throughfall, stemflow, litter leachate, near-trunk soil solution, and soil water were quantified for a deciduous forest in northeastern MD, USA. Data were collected over a 3-year period. The Ca/Al molar ratios in this study were above the threshold for aluminum stress (<1). Fagus grandifolia Ehrh. (American beech) had a median annual stemflow Ca/Al molar ratio of 15.7, with the leafed and leafless values of 12.4 and 19.2, respectively. The corresponding Ca/Al molar ratios for Liriodendron tulipifera L. (yellow poplar) were 11.9 at the annual time scale and 11.9 and 13.6 for leafed and leafless periods, respectively. Bayesian statistical analysis showed no significant effect of canopy state (leafed, leafless) on Ca/Al molar ratios. DOC was consistently an important predictor of calcium, aluminum, and Ca/Al ratios. pH was occasionally an important predictor of calcium and aluminum concentrations, but was not a good predictor of Ca/Al ratio in any of the best-fit models (of >500 examined). This study supplies new data on Ca/Al molar ratios for stemflow from two common deciduous tree species. Future work should examine Ca/Al molar ratios in stemflow of other species and examine both inorganic and organic aluminum species to better gauge the potential for, and understand the dynamics of, aluminum toxicity in the proximal area around tree boles. PMID:26100445

  1. Sleep physiology, abnormal States, and therapeutic interventions.

    PubMed

    Wickboldt, Alvah T; Bowen, Alex F; Kaye, Aaron J; Kaye, Adam M; Rivera Bueno, Franklin; Kaye, Alan D

    2012-01-01

    Sleep is essential. Unfortunately, a significant portion of the population experiences altered sleep states that often result in a multitude of health-related issues. The regulation of sleep and sleep-wake cycles is an area of intense research, and many options for treatment are available. The following review summarizes the current understanding of normal and abnormal sleep-related conditions and the available treatment options. All clinicians managing patients must recommend appropriate therapeutic interventions for abnormal sleep states. Clinicians' solid understanding of sleep physiology, abnormal sleep states, and treatments will greatly benefit patients regardless of their disease process. PMID:22778676

  2. Sleep Physiology, Abnormal States, and Therapeutic Interventions

    PubMed Central

    Wickboldt, Alvah T.; Bowen, Alex F.; Kaye, Aaron J.; Kaye, Adam M.; Rivera Bueno, Franklin; Kaye, Alan D.

    2012-01-01

    Sleep is essential. Unfortunately, a significant portion of the population experiences altered sleep states that often result in a multitude of health-related issues. The regulation of sleep and sleep-wake cycles is an area of intense research, and many options for treatment are available. The following review summarizes the current understanding of normal and abnormal sleep-related conditions and the available treatment options. All clinicians managing patients must recommend appropriate therapeutic interventions for abnormal sleep states. Clinicians' solid understanding of sleep physiology, abnormal sleep states, and treatments will greatly benefit patients regardless of their disease process. PMID:22778676

  3. Cause and Consequence: Mitochondrial Dysfunction Initiates and Propagates Neuronal Dysfunction, Neuronal Death and Behavioral Abnormalities in Age Associated Neurodegenerative Diseases

    PubMed Central

    Gibson, Gary E.; Starkov, Anatoly; Blass, John P.; Ratan, Rajiv R.; Beal, M. Flint

    2009-01-01

    SUMMARY Age-related neurodegenerative diseases are associated with mild impairment of oxidative metabolism and accumulation of abnormal proteins. Within the cell, the mitochondria appears to be a dominant site for initiation and propagation of disease processes. Shifts in metabolism in response to mild metabolic perturbations may decrease the threshold for irreversible injury in response to ordinarily sub lethal metabolic insults. Mild impairment of metabolism accrue from and lead to increased reactive oxygen species (ROS). Increased ROS change cell signaling via post transcriptional and transcriptional changes. The cause and consequences of mild impairment of mitochondrial metabolism is one focus of this review. Many experiments in tissues from humans support the notion that oxidative modification of the α-ketoglutarate dehydrogenase complex (KGDHC) compromises neuronal energy metabolism and enhance ROS production in Alzheimer’s Disease (AD). These data suggest that cognitive decline in AD derives from the selective tricarboxylic acid (TCA) cycle abnormalities. By contrast in Huntington’s Disease (HD), a movement disorder with cognitive features distinct form AD, complex II + III abnormalities may dominate. These distinct mitochondrial abnormalities culminate in oxidative stress, energy dysfunction, and aberrant homeostasis of cytosolic calcium. Cytosolic calcium, elevations even only transiently, leads to hyperactivity of a number of enzymes. One calcium activated enzyme with demonstrated pathophysiological import in HD and AD is transglutaminase (TGase). TGase is a cross linking enzymes that can modulate transcrption, inactivate metabolic enzymes, and cause aggregation of critical proteins. Recent data indicate that TGase can silence expression of genes involved in compensating for metabolic stress. Altogether, our results suggest that increasing KGDHC via inhibition of TGase or via a host of other strategies to be described would be effective therapeutic

  4. Tooth - abnormal shape

    MedlinePlus

    Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... from many different conditions. Specific diseases can affect tooth shape, tooth color, time of appearance, or absence ...

  5. Tooth - abnormal shape

    MedlinePlus

    Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... The appearance of normal teeth varies, especially the molars. ... conditions. Specific diseases can affect tooth shape, tooth ...

  6. Role of calcium and vitamin D in the treatment of muscle pain

    PubMed Central

    Liang, Raymond CR

    1985-01-01

    Calcium and vitamin D deficiencies are associated with abnormal muscular functions including non-specific pain and weakness. A diet survey of a patient complaining of back pain showed a low calcium intake. Clinically patients may have low utilization of dietary calcium. In addition to the normal chiropractic treatments, the patient was given calcium and vitamin D supplements. These supplements greatly improved the recovery of the patient. The nutritional status of calcium and vitamin D in the general Canadian population is discussed.

  7. Calcium and bones

    MedlinePlus

    Bone strength and calcium ... calcium (as well as phosphorus) to make healthy bones. Bones are the main storage site of calcium in ... your body does not absorb enough calcium, your bones can get weak or will not grow properly. ...

  8. Get Enough Calcium

    MedlinePlus

    ... Calcium Print This Topic En español Get Enough Calcium Browse Sections The Basics Overview Foods and Vitamins ... 2 of 4 sections Take Action! Take Action: Calcium Sources Protect your bones – get plenty of calcium ...

  9. Calcium carbonate overdose

    MedlinePlus

    Tums overdose; Calcium overdose ... Calcium carbonate can be dangerous in large amounts. ... Some products that contain calcium carbonate are certain: ... and mineral supplements Other products may also contain calcium ...

  10. Calcium cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for calcium cyanide is included in th

  11. Structurally abnormal human autosomes

    SciTech Connect

    1993-12-31

    Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.

  12. Tooth - abnormal colors

    MedlinePlus

    ... appear as spots or lines in the tooth enamel. Your genes affect your tooth color. Other things ... Infections Inherited diseases may affect the thickness of enamel or the calcium or protein content of the ...

  13. Redox control of brain calcium in health and disease.

    PubMed

    Hidalgo, Cecilia; Carrasco, M Angélica

    2011-04-01

    Calcium ion is a highly versatile cellular messenger. Calcium signals-defined as transient increments in intracellular-free calcium concentration-elicit a multiplicity of responses that depend on cell type and signal properties such as their intensity, duration, cellular localization, and frequency. The vast literature available on the role of calcium signals in brain cells, chiefly centered on neuronal cells, indicates that calcium signals regulate essential neuronal functions, including synaptic transmission, gene expression, synaptic plasticity processes underlying learning and memory, and survival or death. The eight articles comprising this forum issue address different and novel aspects of calcium signaling in normal neuronal function, including how calcium signals interact with the generation of reactive species of oxygen/nitrogen with various functional consequences, and focus also on how abnormal calcium homeostasis and signaling, plus oxidative stress, affect overall brain physiology during aging and in neurodegenerative conditions such as Alzheimer's or Parkinson's disease. PMID:21050143

  14. Altered Calcium Signaling Following Traumatic Brain Injury

    PubMed Central

    Weber, John T.

    2012-01-01

    Cell death and dysfunction after traumatic brain injury (TBI) is caused by a primary phase, related to direct mechanical disruption of the brain, and a secondary phase which consists of delayed events initiated at the time of the physical insult. Arguably, the calcium ion contributes greatly to the delayed cell damage and death after TBI. A large, sustained influx of calcium into cells can initiate cell death signaling cascades, through activation of several degradative enzymes, such as proteases and endonucleases. However, a sustained level of intracellular free calcium is not necessarily lethal, but the specific route of calcium entry may couple calcium directly to cell death pathways. Other sources of calcium, such as intracellular calcium stores, can also contribute to cell damage. In addition, calcium-mediated signal transduction pathways in neurons may be perturbed following injury. These latter types of alterations may contribute to abnormal physiology in neurons that do not necessarily die after a traumatic episode. This review provides an overview of experimental evidence that has led to our current understanding of the role of calcium signaling in death and dysfunction following TBI. PMID:22518104

  15. Abnormal Uterine Bleeding

    MedlinePlus

    ... Abnormal uterine bleeding is any bleeding from the uterus (through your vagina) other than your normal monthly ... or fibroids (small and large growths) in the uterus can also cause bleeding. Rarely, a thyroid problem, ...

  16. "Jeopardy" in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Keutzer, Carolin S.

    1993-01-01

    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  17. Abnormal Uterine Bleeding FAQ

    MedlinePlus

    ... as cancer of the uterus, cervix, or vagina • Polycystic ovary syndrome How is abnormal bleeding diagnosed? Your health care ... before the fetus can survive outside the uterus. Polycystic Ovary Syndrome: A condition characterized by two of the following ...

  18. Chromosomal Abnormalities and Schizophrenia

    PubMed Central

    BASSETT, ANNE S.; CHOW, EVA W.C.; WEKSBERG, ROSANNA

    2011-01-01

    Schizophrenia is a common and serious psychiatric illness with strong evidence for genetic causation, but no specific loci yet identified. Chromosomal abnormalities associated with schizophrenia may help to understand the genetic complexity of the illness. This paper reviews the evidence for associations between chromosomal abnormalities and schizophrenia and related disorders. The results indicate that 22q11.2 microdeletions detected by fluorescence in-situ hybridization (FISH) are significantly associated with schizophrenia. Sex chromosome abnormalities seem to be increased in schizophrenia but insufficient data are available to indicate whether schizophrenia or related disorders are increased in patients with sex chromosome aneuploidies. Other reports of chromosomal abnormalities associated with schizophrenia have the potential to be important adjuncts to linkage studies in gene localization. Advances in molecular cytogenetic techniques (i.e., FISH) have produced significant increases in rates of identified abnormalities in schizophrenia, particularly in patients with very early age at onset, learning difficulties or mental retardation, or dysmorphic features. The results emphasize the importance of considering behavioral phenotypes, including adult onset psychiatric illnesses, in genetic syndromes and the need for clinicians to actively consider identifying chromosomal abnormalities and genetic syndromes in selected psychiatric patients. PMID:10813803

  19. Calcium and Vitamin D

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium is required for the bone formation phase of bone remodeling. Typically about 5 nmol (200 mg) of calcium is removed from the adult skeleton and replaced each day. To supply this amount, one would need to consume about 600 mg of calcium, since calcium is not very efficiently absorbed. Calcium ...

  20. SECONDARY HYPERPARATHYROIDISM AFTER BARIATRIC SURGERY: TREATMENT IS WITH CALCIUM CARBONATE OR CALCIUM CITRATE?

    PubMed Central

    BARETTA, Giorgio Alfredo Pedroso; CAMBI, Maria Paula Carlini; RODRIGUES, Arieli Luz; MENDES, Silvana Aparecida

    2015-01-01

    Background : Bariatric surgery, especially Roux-en-Y gastric bypass, can cause serious nutritional complications arising from poor absorption of essential nutrients. Secondary hyperparathyroidism is one such complications that leads to increased parathyroid hormone levels due to a decrease in calcium and vitamin D, which may compromise bone health. Aim : To compare calcium carbonate and calcium citrate in the treatment of secondary hyperparathyroidism. Method : Patients were selected on the basis of their abnormal biochemical test and treatment was randomly done with citrate or calcium carbonate. Results : After 60 days of supplementation, biochemical tests were repeated, showing improvement in both groups. Conclusion : Supplementation with calcium (citrate or carbonate) and vitamin D is recommended after surgery for prevention of secondary hyperparathyroidism. PMID:26537273

  1. Calcium and bones (image)

    MedlinePlus

    Calcium is one of the most important minerals for the growth, maintenance, and reproduction of the human ... body, are continually being re-formed and incorporate calcium into their structure. Calcium is essential for the ...

  2. Calcium source (image)

    MedlinePlus

    Getting enough calcium to keep bones from thinning throughout a person's life may be made more difficult if that person has ... as a tendency toward kidney stones, for avoiding calcium-rich food sources. Calcium deficiency also effects the ...

  3. Coronary Calcium Scan

    MedlinePlus

    ... the NHLBI on Twitter. What Is a Coronary Calcium Scan? A coronary calcium scan is a test ... you have calcifications in your coronary arteries. Coronary Calcium Scan Figure A shows the position of the ...

  4. Calcium hydroxide poisoning

    MedlinePlus

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  5. Calcitonin control of calcium metabolism during weightlessness

    NASA Technical Reports Server (NTRS)

    Soliman, Karam F. A.

    1993-01-01

    The main objective of this proposal is to elucidate calcitonin role in calcium homeostasis during weightlessness. In this investigation our objectives are to study: the effect of weightlessness on thyroid and serum calcitonin, the effect of weightlessness on the circadian variation of calcitonin in serum and the thyroid gland, the role of light as zeitgeber for calcitonin circadian rhythm, the circadian pattern of thyroid sensitivity to release calcitonin in response to calcium load, and the role of serotonin and norepinephrine in the control of calcitonin release. The main objective of this research/proposal is to establish the role of calcitonin in calcium metabolism during weightlessness condition. Understanding the mechanism of these abnormalities will help in developing therapeutic means to counter calcium imbalance in spaceflights.

  6. Biochemical abnormalities in Pearson syndrome.

    PubMed

    Crippa, Beatrice Letizia; Leon, Eyby; Calhoun, Amy; Lowichik, Amy; Pasquali, Marzia; Longo, Nicola

    2015-03-01

    Pearson marrow-pancreas syndrome is a multisystem mitochondrial disorder characterized by bone marrow failure and pancreatic insufficiency. Children who survive the severe bone marrow dysfunction in childhood develop Kearns-Sayre syndrome later in life. Here we report on four new cases with this condition and define their biochemical abnormalities. Three out of four patients presented with failure to thrive, with most of them having normal development and head size. All patients had evidence of bone marrow involvement that spontaneously improved in three out of four patients. Unique findings in our patients were acute pancreatitis (one out of four), renal Fanconi syndrome (present in all patients, but symptomatic only in one), and an unusual organic aciduria with 3-hydroxyisobutyric aciduria in one patient. Biochemical analysis indicated low levels of plasma citrulline and arginine, despite low-normal ammonia levels. Regression analysis indicated a significant correlation between each intermediate of the urea cycle and the next, except between ornithine and citrulline. This suggested that the reaction catalyzed by ornithine transcarbamylase (that converts ornithine to citrulline) might not be very efficient in patients with Pearson syndrome. In view of low-normal ammonia levels, we hypothesize that ammonia and carbamylphosphate could be diverted from the urea cycle to the synthesis of nucleotides in patients with Pearson syndrome and possibly other mitochondrial disorders. PMID:25691415

  7. Morphological abnormalities in elasmobranchs.

    PubMed

    Moore, A B M

    2015-08-01

    A total of 10 abnormal free-swimming (i.e., post-birth) elasmobranchs are reported from The (Persian-Arabian) Gulf, encompassing five species and including deformed heads, snouts, caudal fins and claspers. The complete absence of pelvic fins in a milk shark Rhizoprionodon acutus may be the first record in any elasmobranch. Possible causes, including the extreme environmental conditions and the high level of anthropogenic pollution particular to The Gulf, are briefly discussed. PMID:25903257

  8. Calcium at fertilization and in early development

    PubMed Central

    Whitaker, Michael

    2012-01-01

    Fertilization calcium waves are introduced and the evidence from which we can infer general mechanisms of these waves is presented. The two main classes of hypothesis put forward to explain the generation of the fertilization calcium wave are set out and it is concluded that initiation of the fertilization calcium wave can be most generally explained in inverterbrates by a mechanism in which an activating substance enters the egg from the sperm on sperm-egg fusion, activating the egg by stimulating phospholipase C activation through a src family kinase pathway and in mammals by the diffusion of a sperm-specific phospholipase C from sperm to egg on sperm-egg fusion. The fertilization calcium wave is then set into the context of cell cycle control and the mechanism of repetitive calcium spiking in mammalian eggs is investigated. Evidence that calcium signals control cell division in early embryos is reviewed, and it is concluded that calcium signals are essential at all three stages of cell division in early embryos. Evidence that phosphoinositide signalling pathways control the resumption of meiosis during oocyte maturation is considered. It is concluded on balance that the evidence points to a need for phosphoinositide/calcium signalling during resumption of meiosis. Changes to the calcium signalling machinery occur during meiosis to enable the production of a calcium wave in the mature oocyte when it is fertilized; evidence that the shape and structure of the endoplasmic reticulum alters dynamically during maturation and after fertilization is reviewed and the link between ER dynamics and the cytoskeleton is discussed. There is evidence that calcium signalling plays a key part in the development of patterning in early embryos. Morphogenesis in ascidian, frog and zebrafish embryos is briefly described to provide the developmental context in which calcium signals act. Intracellular calcium waves that may play a role in axis formation in ascidian are discussed

  9. Chromosome abnormalities in glioma

    SciTech Connect

    Li, Y.S.; Ramsay, D.A.; Fan, Y.S.

    1994-09-01

    Cytogenetic studies were performed in 25 patients with gliomas. An interesting finding was a seemingly identical abnormality, an extra band on the tip of the short arm of chromosome 1, add(1)(p36), in two cases. The abnormality was present in all cells from a patient with a glioblastoma and in 27% of the tumor cells from a patient with a recurrent irradiated anaplastic astrocytoma; in the latter case, 7 unrelated abnormal clones were identified except 4 of those clones shared a common change, -Y. Three similar cases have been described previously. In a patient with pleomorphic astrocytoma, the band 1q42 in both homologues of chromosome 1 was involved in two different rearrangements. A review of the literature revealed that deletion of the long arm of chromosome 1 including 1q42 often occurs in glioma. This may indicate a possible tumor suppressor gene in this region. Cytogenetic follow-up studies were carried out in two patients and emergence of unrelated clones were noted in both. A total of 124 clonal breakpoints were identified in the 25 patients. The breakpoints which occurred three times or more were: 1p36, 1p22, 1q21, 1q25, 3q21, 7q32, 8q22, 9q22, 16q22, and 22q13.

  10. [Congenital foot abnormalities].

    PubMed

    Delpont, M; Lafosse, T; Bachy, M; Mary, P; Alves, A; Vialle, R

    2015-03-01

    The foot may be the site of birth defects. These abnormalities are sometimes suspected prenatally. Final diagnosis depends on clinical examination at birth. These deformations can be simple malpositions: metatarsus adductus, talipes calcaneovalgus and pes supinatus. The prognosis is excellent spontaneously or with a simple orthopedic treatment. Surgery remains outstanding. The use of a pediatric orthopedist will be considered if malposition does not relax after several weeks. Malformations (clubfoot, vertical talus and skew foot) require specialized care early. Clubfoot is characterized by an equine and varus hindfoot, an adducted and supine forefoot, not reducible. Vertical talus combines equine hindfoot and dorsiflexion of the forefoot, which is performed in the midfoot instead of the ankle. Skew foot is suspected when a metatarsus adductus is resistant to conservative treatment. Early treatment is primarily orthopedic at birth. Surgical treatment begins to be considered after walking age. Keep in mind that an abnormality of the foot may be associated with other conditions: malposition with congenital hip, malformations with syndromes, neurological and genetic abnormalities. PMID:25524290

  11. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  12. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  13. Abnormal human sex chromosome constitutions

    SciTech Connect

    1993-12-31

    Chapter 22, discusses abnormal human sex chromosome constitution. Aneuploidy of X chromosomes with a female phenotype, sex chromosome aneuploidy with a male phenotype, and various abnormalities in X chromosome behavior are described. 31 refs., 2 figs.

  14. Exercises to Improve Gait Abnormalities

    MedlinePlus

    ... Home About iChip Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner ...

  15. Spirometric abnormalities among welders

    SciTech Connect

    Rastogi, S.K.; Gupta, B.N.; Husain, T.; Mathur, N.; Srivastava, S. )

    1991-10-01

    A group of manual welders age group 13-60 years having a mean exposure period of 12.4 {plus minus} 1.12 years were subjected to spirometry to evaluate the prevalence of spirometric abnormalities. The welders showed a significantly higher prevalence of respiratory impairment than that observed among the unexposed controls as a result of exposure to welding gases which comprised fine particles of lead, zinc, chromium, and manganese. This occurred despite the lower concentration of the pollutants at the work place. In the expose group, the smoking welders showed a prevalence of respiratory impairment significantly higher than that observed in the nonsmoking welders. The results of the pulmonary function tests showed a predominantly restrictive type of pulmonary impairment followed by a mixed ventilatory defect among the welders. The effect of age on pulmonary impairment was not discernible. Welders exposed for over 10 years showed a prevalence of respiratory abnormalities significantly higher than those exposed for less than 10 years. Smoking also had a contributory role.

  16. Acute Calcium Ingestion Attenuates Exercise-induced Disruption of Calcium Homeostasis

    PubMed Central

    Barry, Daniel W; Hansen, Kent C; Van Pelt, Rachael E; Witten, Michael; Wolfe, Pamela; Kohrt, Wendy M

    2011-01-01

    Purpose Exercise is associated with a decrease in bone mineral density under certain conditions. One potential mechanism is increased bone resorption due to an exercise-induced increase in parathyroid hormone (PTH), possibly triggered by dermal calcium loss. The purpose of this investigation was to determine whether calcium supplementation either before or during exercise attenuates exercise-induced increases in PTH and C-terminal telopeptide of type I collagen (CTX; a marker of bone resorption). Methods Male endurance athletes (n=20) completed three 35-km cycling time trials under differing calcium supplementation conditions: 1) 1000 mg calcium 20 minutes before exercise and placebo during, 2) placebo before and 250 mg calcium every 15 minutes during exercise (1000 mg total), or 3) placebo before and during exercise. Calcium was delivered in a 1000 mg/L solution. Supplementation was double-blinded and trials were performed in random order. PTH, CTX, bone-specific alkaline phosphatase (BAP; a marker of bone formation), and ionized calcium (iCa) were measured before and immediately after exercise. Results CTX increased and iCa decreased similarly in response to exercise under all test conditions. When compared to placebo, calcium supplementation before exercise attenuated the increase in PTH (55.8 ± 15.0 vs. 74.0 ± 14.2; mean ± SE; p=0.04); there was a similar trend (58.0 ± 17.4; p=0.07) for calcium supplementation during exercise. There were no effects of calcium on changes in CTX, BAP, and iCa. Conclusions Calcium supplementation before exercise attenuated the disruption of PTH. Further research is needed to determine the effects of repeated increases in PTH and CTX on bone (i.e., exercise training), and whether calcium supplementation can diminish any exercise-induced demineralization. PMID:20798655

  17. [Do cows drink calcium?].

    PubMed

    Geishauser, T; Lechner, S; Plate, I; Heidemann, B

    2008-03-01

    The objective of this study was to investigate how well cows drink the Propeller calcium drink, and it's effect on blood calcium concentration. Drinking was tested in 120 cows right after calving, before cows drank anything else. 60 cows each were offered 20 liters of Propeller calcium drink or 20 liters of water. Cows drank the Propeller as good as water. 72% of all cows drank all 20 liters, 18% drank on average 8.2 liters and 10% drank less than 1 liter. Blood calcium concentration was studied in 16 cows right after calving. Eight cows each were offered 20 liters of Propeller calcium drink or no calcium drink. Blood calcium significantly increased ten minutes after Propeller intake and stayed significantly elevated for 24 hours. Without calcium drink blood calcium levels decreased significantly. Advantages of the new Propeller calcium drink over calcium gels or boli could be that cows now drink calcium themselves and that the Propeller increases blood calcium concentration rapidly and long lasting. PMID:18429501

  18. Crystal structure of calcium dodecin (Rv0379), from Mycobacterium tuberculosis with a unique calcium-binding site

    SciTech Connect

    Arockiasamy, Arulandu; Aggarwal, Anup; Savva, Christos G.; Holzenburg, Andreas; Sacchettini, James C.

    2011-09-28

    In eukaryotes, calcium-binding proteins play a pivotal role in diverse cellular processes, and recent findings suggest similar roles for bacterial proteins at different stages in their life cycle. Here, we report the crystal structure of calcium dodecin, Rv0379, from Mycobacterium tuberculosis with a dodecameric oligomeric assembly and a unique calcium-binding motif. Structure and sequence analysis were used to identify orthologs of Rv0379 with different ligand-binding specificity

  19. Direct Imaging of Hippocampal Epileptiform Calcium Motifs Following Kainic Acid Administration in Freely Behaving Mice

    PubMed Central

    Berdyyeva, Tamara K.; Frady, E. Paxon; Nassi, Jonathan J.; Aluisio, Leah; Cherkas, Yauheniya; Otte, Stephani; Wyatt, Ryan M.; Dugovic, Christine; Ghosh, Kunal K.; Schnitzer, Mark J.; Lovenberg, Timothy; Bonaventure, Pascal

    2016-01-01

    Prolonged exposure to abnormally high calcium concentrations is thought to be a core mechanism underlying hippocampal damage in epileptic patients; however, no prior study has characterized calcium activity during seizures in the live, intact hippocampus. We have directly investigated this possibility by combining whole-brain electroencephalographic (EEG) measurements with microendoscopic calcium imaging of pyramidal cells in the CA1 hippocampal region of freely behaving mice treated with the pro-convulsant kainic acid (KA). We observed that KA administration led to systematic patterns of epileptiform calcium activity: a series of large-scale, intensifying flashes of increased calcium fluorescence concurrent with a cluster of low-amplitude EEG waveforms. This was accompanied by a steady increase in cellular calcium levels (>5 fold increase relative to the baseline), followed by an intense spreading calcium wave characterized by a 218% increase in global mean intensity of calcium fluorescence (n = 8, range [114–349%], p < 10−4; t-test). The wave had no consistent EEG phenotype and occurred before the onset of motor convulsions. Similar changes in calcium activity were also observed in animals treated with 2 different proconvulsant agents, N-methyl-D-aspartate (NMDA) and pentylenetetrazol (PTZ), suggesting the measured changes in calcium dynamics are a signature of seizure activity rather than a KA-specific pathology. Additionally, despite reducing the behavioral severity of KA-induced seizures, the anticonvulsant drug valproate (VA, 300 mg/kg) did not modify the observed abnormalities in calcium dynamics. These results confirm the presence of pathological calcium activity preceding convulsive motor seizures and support calcium as a candidate signaling molecule in a pathway connecting seizures to subsequent cellular damage. Integrating in vivo calcium imaging with traditional assessment of seizures could potentially increase translatability of pharmacological

  20. Fenoprofen calcium overdose

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002649.htm Fenoprofen calcium overdose To use the sharing features on this page, please enable JavaScript. Fenoprofen calcium is a type of medicine called a nonsteroidal ...

  1. Calcium channel blocker overdose

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002580.htm Calcium channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium channel blockers are a type of medicine used ...

  2. Calcium and Vitamin D

    MedlinePlus

    ... to your weekly shopping list. Produce Serving Size Estimated Calcium* Collard greens, frozen 8 oz 360 mg ... Oranges 1 whole 55 mg Seafood Serving Size Estimated Calcium* Sardines, canned with bones 3 oz 325 ...

  3. Calcium and bones (image)

    MedlinePlus

    Calcium is one of the most important minerals for the growth, maintenance, and reproduction of the human body. Bones, like other tissues in the body, are continually being re-formed and incorporate calcium into their ...

  4. Fenoprofen calcium overdose

    MedlinePlus

    Fenoprofen calcium is a type of medicine called a nonsteroidal anti-inflammatory drug. It is a prescription pain medicine used to relieve symptoms of arthritis . Fenoprofen calcium overdose occurs when someone takes more than the ...

  5. Myelodysplastic syndromes: pathogenesis, functional abnormalities, and clinical implications.

    PubMed Central

    Jacobs, A

    1985-01-01

    The myelodysplastic syndromes represent a preleukaemic state in which a clonal abnormality of haemopoietic stem cell is characterised by a variety of phenotypic manifestations with varying degrees of ineffective haemopoiesis. This state probably develops as a sequence of events in which the earliest stages may be difficult to detect by conventional pathological techniques. The process is characterised by genetic changes leading to abnormal control of cell proliferation and differentiation. Expansion of an abnormal clone may be related to independence from normal growth factors, insensitivity to normal inhibitory factors, suppression of normal clonal growth, or changes in the immunological or nutritional condition of the host. The haematological picture is of peripheral blood cytopenias: a cellular bone marrow, and functional abnormalities of erythroid, myeloid, and megakaryocytic cells. In most cases marrow cells have an abnormal DNA content, often with disturbances of the cell cycle: an abnormal karyotype is common in premalignant clones. Growth abnormalities of erythroid or granulocyte-macrophage progenitors are common in marrow cultures, and lineage specific surface membrane markers indicate aberrations of differentiation. Progression of the disorder may occur through clonal expansion or through clonal evolution with a greater degree of malignancy. Current attempts to influence abnormal growth and differentiation have had only limited success. Clinical recognition of the syndrome depends on an acute awareness of the signs combined with the identification of clonal and functional abnormalities. PMID:2999194

  6. Calcium and magnesium disorders.

    PubMed

    Goff, Jesse P

    2014-07-01

    Hypocalcemia is a clinical disorder that can be life threatening to the cow (milk fever) and predisposes the animal to various other metabolic and infectious disorders. Calcium homeostasis is mediated primarily by parathyroid hormone, which stimulates bone calcium resorption and renal calcium reabsorption. Parathyroid hormone stimulates the production of 1,25-dihydroxyvitamin D to enhance diet calcium absorption. High dietary cation-anion difference interferes with tissue sensitivity to parathyroid hormone. Hypomagnesemia reduces tissue response to parathyroid hormone. PMID:24980727

  7. Calcium and Mitosis

    NASA Technical Reports Server (NTRS)

    Hepler, P.

    1983-01-01

    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  8. Eye movement abnormalities.

    PubMed

    Moncayo, Jorge; Bogousslavsky, Julien

    2012-01-01

    Generation and control of eye movements requires the participation of the cortex, basal ganglia, cerebellum and brainstem. The signals of this complex neural network finally converge on the ocular motoneurons of the brainstem. Infarct or hemorrhage at any level of the oculomotor system (though more frequent in the brain-stem) may give rise to a broad spectrum of eye movement abnormalities (EMAs). Consequently, neurologists and particularly stroke neurologists are routinely confronted with EMAs, some of which may be overlooked in the acute stroke setting and others that, when recognized, may have a high localizing value. The most complex EMAs are due to midbrain stroke. Horizontal gaze disorders, some of them manifesting unusual patterns, may occur in pontine stroke. Distinct varieties of nystagmus occur in cerebellar and medullary stroke. This review summarizes the most representative EMAs from the supratentorial level to the brainstem. PMID:22377853

  9. Calcium and Vitamin D

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the roles of calcium and vitamin D in bone health. Calcium is required for the bone formation phase of bone remodeling and it also affects bone mass through its impact on the remodeling rate. Typically, about 5 nmol (200 mg) of calcium is removed from the adult skeleton and ...

  10. Calcium and bones

    MedlinePlus

    Bone strength and calcium ... or if your body does not absorb enough calcium, your bones can get weak or will not grow properly. ... injury. As you age, your body still needs calcium to keep your bones dense and strong. Most experts recommend at least ...

  11. [Bone and calcium metabolism in life-style related diseases].

    PubMed

    Kanazawa, Ippei; Sugimoto, Toshitsugu

    2016-03-01

    Accumulating evidence shows that life-style related diseases such as diabetes mellitus, hypertension, dyslipidemia are associated with bone and calcium metabolism. Patients with diabetes mellitus have increased fracture risks, independently of bone mineral density, with abnormality of parathyroid hormone secretion and impaired osteoblastic function. On the other hand, osteocalcin secreted from bone is reported to regulate glucose metabolism. Thus, bone, calcium and glucose metabolism may be deeply associated with each other. In this review, we describe the association between life-style related diseases, especially diabetes mellitus, and metabolism of bone and calcium. PMID:26923977

  12. Calcium bioavailability from calcium fortified food products.

    PubMed

    Kohls, K

    1991-08-01

    The calcium balance of 12 presumed healthy human young adult subjects was assessed. Subjects consumed a constant laboratory-controlled diet supplemented with one of four calcium-fortified food products: orange juice (OJ), milk (M), experimental pasteurized processed cheese (T), soda (S), or a calcium carbonate plus vitamin D tablet (CC). Study length was 6 weeks with seven-day experimental periods (2-days allowed for adjustment with 5-days combined for purposes of analysis). All urine and fecal samples were collected by the subjects for the duration of the study. Blood samples were drawn at the end of each experimental period. Urine and fecal calcium contents were determined. Blood samples were analyzed for alkaline phosphatase. Results of this study indicate a higher fecal calcium content (mg/day) when subjects consumed CC and T, and when subjects consumed self-selected diets, than when given S, M, or OJ. Urinary calcium excretion was significantly lower when subjects consumed OJ than when they consumed M, T, or their self-selected diets. A significantly larger positive calcium balance was demonstrated when subjects consumed OJ as compared to T. Fecal transmit time did not vary significantly. Serum alkaline phosphatase was significantly lower when subjects consumed T than when they consumed self-selected diets. PMID:1765836

  13. Microtubule-Dependent Mitochondria Alignment Regulates Calcium Release in Response to Nanomechanical Stimulus in Heart Myocytes.

    PubMed

    Miragoli, Michele; Sanchez-Alonso, Jose L; Bhargava, Anamika; Wright, Peter T; Sikkel, Markus; Schobesberger, Sophie; Diakonov, Ivan; Novak, Pavel; Castaldi, Alessandra; Cattaneo, Paola; Lyon, Alexander R; Lab, Max J; Gorelik, Julia

    2016-01-01

    Arrhythmogenesis during heart failure is a major clinical problem. Regional electrical gradients produce arrhythmias, and cellular ionic transmembrane gradients are its originators. We investigated whether the nanoscale mechanosensitive properties of cardiomyocytes from failing hearts have a bearing upon the initiation of abnormal electrical activity. Hydrojets through a nanopipette indent specific locations on the sarcolemma and initiate intracellular calcium release in both healthy and heart failure cardiomyocytes, as well as in human failing cardiomyocytes. In healthy cells, calcium is locally confined, whereas in failing cardiomyocytes, calcium propagates. Heart failure progressively stiffens the membrane and displaces sub-sarcolemmal mitochondria. Colchicine in healthy cells mimics the failing condition by stiffening the cells, disrupting microtubules, shifting mitochondria, and causing calcium release. Uncoupling the mitochondrial proton gradient abolished calcium initiation in both failing and colchicine-treated cells. We propose the disruption of microtubule-dependent mitochondrial mechanosensor microdomains as a mechanism for abnormal calcium release in failing heart. PMID:26725114

  14. Mineral Metabolic Abnormalities and Mortality in Dialysis Patients

    PubMed Central

    Abe, Masanori; Okada, Kazuyoshi; Soma, Masayoshi

    2013-01-01

    The survival rate of dialysis patients, as determined by risk factors such as hypertension, nutritional status, and chronic inflammation, is lower than that of the general population. In addition, disorders of bone mineral metabolism are independently related to mortality and morbidity associated with cardiovascular disease and fracture in dialysis patients. Hyperphosphatemia is an important risk factor of, not only secondary hyperparathyroidism, but also cardiovascular disease. On the other hand, the risk of death reportedly increases with an increase in adjusted serum calcium level, while calcium levels below the recommended target are not associated with a worsened outcome. Thus, the significance of target levels of serum calcium in dialysis patients is debatable. The consensus on determining optimal parathyroid function in dialysis patients, however, is yet to be established. Therefore, the contribution of phosphorus and calcium levels to prognosis is perhaps more significant. Elevated fibroblast growth factor 23 levels have also been shown to be associated with cardiovascular events and death. In this review, we examine the associations between mineral metabolic abnormalities including serum phosphorus, calcium, and parathyroid hormone and mortality in dialysis patients. PMID:23525083

  15. Ictal Cardiac Ryhthym Abnormalities

    PubMed Central

    Ali, Rushna

    2016-01-01

    Cardiac rhythm abnormalities in the context of epilepsy are a well-known phenomenon. However, they are under-recognized and often missed. The pathophysiology of these events is unclear. Bradycardia and asystole are preceded by seizure onset suggesting ictal propagation into the cortex impacting cardiac autonomic function, and the insula and amygdala being possible culprits. Sudden unexpected death in epilepsy (SUDEP) refers to the unanticipated death of a patient with epilepsy not related to status epilepticus, trauma, drowning, or suicide. Frequent refractory generalized tonic-clonic seizures, anti-epileptic polytherapy, and prolonged duration of epilepsy are some of the commonly identified risk factors for SUDEP. However, the most consistent risk factor out of these is an increased frequency of generalized tonic–clonic seizures (GTC). Prevention of SUDEP is extremely important in patients with chronic, generalized epilepsy. Since increased frequency of GTCS is the most consistently reported risk factor for SUDEP, effective seizure control is the most important preventive strategy. PMID:27347227

  16. Abnormal uterine bleeding.

    PubMed

    Whitaker, Lucy; Critchley, Hilary O D

    2016-07-01

    Abnormal uterine bleeding (AUB) is a common and debilitating condition with high direct and indirect costs. AUB frequently co-exists with fibroids, but the relationship between the two remains incompletely understood and in many women the identification of fibroids may be incidental to a menstrual bleeding complaint. A structured approach for establishing the cause using the Fédération International de Gynécologie et d'Obstétrique (FIGO) PALM-COEIN (Polyp, Adenomyosis, Leiomyoma, Malignancy (and hyperplasia), Coagulopathy, Ovulatory disorders, Endometrial, Iatrogenic and Not otherwise classified) classification system will facilitate accurate diagnosis and inform treatment options. Office hysteroscopy and increasing sophisticated imaging will assist provision of robust evidence for the underlying cause. Increased availability of medical options has expanded the choice for women and many will no longer need to recourse to potentially complicated surgery. Treatment must remain individualised and encompass the impact of pressure symptoms, desire for retention of fertility and contraceptive needs, as well as address the management of AUB in order to achieve improved quality of life. PMID:26803558

  17. Micronutrients and the premenstrual syndrome: the case for calcium.

    PubMed

    Thys-Jacobs, S

    2000-04-01

    Premenstrual syndrome afflicts millions of premenopausal women and has been described as one of the most common disorders in women. Research over the past few years suggests that a variety of nutrients may have an important role in the phase related mood and behavioral disturbances of the premenstrual syndrome. There is scientific evidence, at least for a few of these micronutrients, specifically calcium and vitamin D, supporting cyclic fluctuations during the menstrual cycle that may help explain some features of PMS. Ovarian hormones influence calcium, magnesium and vitamin D metabolism. Estrogen regulates calcium metabolism, intestinal calcium absorption and parathyroid gene expression and secretion, triggering fluctuations across the menstrual cycle. Alterations in calcium homeostasis (hypocalcemia and hypercalcemia) have long been associated with many affective disturbances. PMS shares many features of depression, anxiety and the dysphoric states. The similarity between the symptoms of PMS and hypocalcemia is remarkable. Clinical trials in women with PMS have found that calcium supplementation effectively alleviates the majority of mood and somatic symptoms. Evidence to date indicates that women with luteal phase symptomatology have an underlying calcium dysregulation with a secondary hyperparathyroidism and vitamin D deficiency. This strongly suggests that PMS represents the clinical manifestation of a calcium deficiency state that is unmasked following the rise of ovarian steroid hormone concentrations during the menstrual cycle. PMID:10763903

  18. Cellular Mechanisms of Calcium-Mediated Triggered Activity

    NASA Astrophysics Data System (ADS)

    Song, Zhen

    Life-threatening cardiac arrhythmias continue to pose a major health problem. Ventricular fibrillation, which is a complex form of electrical wave turbulence in the lower chambers of the heart, stops the heart from pumping and is the largest cause of natural death in the United States. Atrial fibrillation, a related form of wave turbulence in the upper heart chambers, is in turn the most common arrhythmia diagnosed in clinical practice. Despite extensive research to date, mechanisms of cardiac arrhythmias remain poorly understood. It is well established that both spatial disorder of the refractory period of heart cells and triggered activity (TA) jointly contribute to the initiation and maintenance of arrhythmias. TA broadly refers to the abnormal generation of a single or a sequence of abnormal excitation waves from a small submillimeter region of the heart in the interval of time between two normal waves generated by the heart's natural pacemaker (the sinoatrial node). TA has been widely investigated experimentally and occurs in several pathological conditions where the intracellular concentration of free Ca2+ ions in heart cells becomes elevated. Under such conditions, Ca2+ can be spontaneously released from intracellular stores, thereby driving an electrogenic current that exchanges 3Na+ ions for one Ca2+ ion across the cell membrane. This current in turn depolarizes the membrane of heart cells after a normal excitation. If this calcium-mediated "delayed after depolarization'' (DAD) is sufficiently large, it can generate an action potential. While the arrhythmogenic importance of spontaneous Ca2+ release and DADs is well appreciated, the conditions under which they occur in heart pathologies remain poorly understood. Calcium overload is only one factor among several other factors that can promote DADs, including sympathetic nerve stimulation, different expression levels of membrane ion channels and calcium handling proteins, and different mutations of those

  19. The regulation of neuronal mitochondrial metabolism by calcium

    PubMed Central

    Llorente-Folch, I; Rueda, C B; Pardo, B; Szabadkai, G; Duchen, M R; Satrustegui, J

    2015-01-01

    Calcium signalling is fundamental to the function of the nervous system, in association with changes in ionic gradients across the membrane. Although restoring ionic gradients is energetically costly, a rise in intracellular Ca2+ acts through multiple pathways to increase ATP synthesis, matching energy supply to demand. Increasing cytosolic Ca2+ stimulates metabolite transfer across the inner mitochondrial membrane through activation of Ca2+-regulated mitochondrial carriers, whereas an increase in matrix Ca2+ stimulates the citric acid cycle and ATP synthase. The aspartate–glutamate exchanger Aralar/AGC1 (Slc25a12), a component of the malate–aspartate shuttle (MAS), is stimulated by modest increases in cytosolic Ca2+ and upregulates respiration in cortical neurons by enhancing pyruvate supply into mitochondria. Failure to increase respiration in response to small (carbachol) and moderate (K+-depolarization) workloads and blunted stimulation of respiration in response to high workloads (veratridine) in Aralar/AGC1 knockout neurons reflect impaired MAS activity and limited mitochondrial pyruvate supply. In response to large workloads (veratridine), acute stimulation of respiration occurs in the absence of MAS through Ca2+ influx through the mitochondrial calcium uniporter (MCU) and a rise in matrix [Ca2+]. Although the physiological importance of the MCU complex in work-induced stimulation of respiration of CNS neurons is not yet clarified, abnormal mitochondrial Ca2+ signalling causes pathology. Indeed, loss of function mutations in MICU1, a regulator of MCU complex, are associated with neuromuscular disease. In patient-derived MICU1 deficient fibroblasts, resting matrix Ca2+ is increased and mitochondria fragmented. Thus, the fine tuning of Ca2+ signals plays a key role in shaping mitochondrial bioenergetics. PMID:25809592

  20. The regulation of neuronal mitochondrial metabolism by calcium.

    PubMed

    Llorente-Folch, I; Rueda, C B; Pardo, B; Szabadkai, G; Duchen, M R; Satrustegui, J

    2015-08-15

    Calcium signalling is fundamental to the function of the nervous system, in association with changes in ionic gradients across the membrane. Although restoring ionic gradients is energetically costly, a rise in intracellular Ca(2+) acts through multiple pathways to increase ATP synthesis, matching energy supply to demand. Increasing cytosolic Ca(2+) stimulates metabolite transfer across the inner mitochondrial membrane through activation of Ca(2+) -regulated mitochondrial carriers, whereas an increase in matrix Ca(2+) stimulates the citric acid cycle and ATP synthase. The aspartate-glutamate exchanger Aralar/AGC1 (Slc25a12), a component of the malate-aspartate shuttle (MAS), is stimulated by modest increases in cytosolic Ca(2+) and upregulates respiration in cortical neurons by enhancing pyruvate supply into mitochondria. Failure to increase respiration in response to small (carbachol) and moderate (K(+) -depolarization) workloads and blunted stimulation of respiration in response to high workloads (veratridine) in Aralar/AGC1 knockout neurons reflect impaired MAS activity and limited mitochondrial pyruvate supply. In response to large workloads (veratridine), acute stimulation of respiration occurs in the absence of MAS through Ca(2+) influx through the mitochondrial calcium uniporter (MCU) and a rise in matrix [Ca(2+) ]. Although the physiological importance of the MCU complex in work-induced stimulation of respiration of CNS neurons is not yet clarified, abnormal mitochondrial Ca(2+) signalling causes pathology. Indeed, loss of function mutations in MICU1, a regulator of MCU complex, are associated with neuromuscular disease. In patient-derived MICU1 deficient fibroblasts, resting matrix Ca(2+) is increased and mitochondria fragmented. Thus, the fine tuning of Ca(2+) signals plays a key role in shaping mitochondrial bioenergetics. PMID:25809592

  1. [Walking abnormalities in children].

    PubMed

    Segawa, Masaya

    2010-11-01

    Walking is a spontaneous movement termed locomotion that is promoted by activation of antigravity muscles by serotonergic (5HT) neurons. Development of antigravity activity follows 3 developmental epochs of the sleep-wake (S-W) cycle and is modulated by particular 5HT neurons in each epoch. Activation of antigravity activities occurs in the first epoch (around the age of 3 to 4 months) as restriction of atonia in rapid eye movement (REM) stage and development of circadian S-W cycle. These activities strengthen in the second epoch, with modulation of day-time sleep and induction of crawling around the age of 8 months and induction of walking by 1 year. Around the age of 1 year 6 months, absence of guarded walking and interlimb cordination is observed along with modulation of day-time sleep to once in the afternoon. Bipedal walking in upright position occurs in the third epoch, with development of a biphasic S-W cycle by the age of 4-5 years. Patients with infantile autism (IA), Rett syndrome (RTT), or Tourette syndrome (TS) show failure in the development of the first, second, or third epoch, respectively. Patients with IA fail to develop interlimb coordination; those with RTT, crawling and walking; and those with TS, walking in upright posture. Basic pathophysiology underlying these condition is failure in restricting atonia in REM stage; this induces dysfunction of the pedunculopontine nucleus and consequently dys- or hypofunction of the dopamine (DA) neurons. DA hypofunction in the developing brain, associated with compensatory upward regulation of the DA receptors causes psychobehavioral disorders in infancy (IA), failure in synaptogenesis in the frontal cortex and functional development of the motor and associate cortexes in late infancy through the basal ganglia (RTT), and failure in functional development of the prefrontal cortex through the basal ganglia (TS). Further, locomotion failure in early childhood causes failure in development of functional

  2. Haem degradation in abnormal haemoglobins.

    PubMed Central

    Brown, S B; Docherty, J C

    1978-01-01

    The coupled oxidation of certain abnormal haemoglobins leads to different bile-pigment isomer distributions from that of normal haemoglobin. The isomer pattern may be correlated with the structure of the abnormal haemoglobin in the neighbourhood of the haem pocket. This is support for haem degradation by an intramolecular reaction. PMID:708385

  3. Electrocardiograph abnormalities revealed during laparoscopy

    PubMed Central

    Nijjer, Sukhjinder; Dubrey, Simon William

    2010-01-01

    This brief case presents a well patient in whom an electrocardiograph abnormality consistent with an accessory pathway was found during a routine procedure. We present the electrocardiographs, explain the underlying condition, and consider why the abnormality was revealed in this manner. PMID:22419949

  4. Abnormal pressure in hydrocarbon environments

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  5. [Abnormal synthesis of 1,25-dihydroxyvitamin D and hypercalcemia in children with tuberculosis].

    PubMed

    Saggese, G; Bertelloni, S; Baroncelli, G I; Fusaro, C; Gualtieri, M

    1989-01-01

    Three children with tuberculosis and hypercalcemia are reported. Before antitubercular treatment 1,25-dihydroxyvitamin D serum levels and urinary calcium excretion were elevated for age in all patients; vitamin D and 25-hydroxyvitamin D were in normal range whereas serum intact parathyroid hormone concentrations were suppressed. Low calcium diet and antitubercular treatment caused a normalization of serum calcium levels and urinary calcium excretion; 1,25-dihydroxyvitamin D concentrations returned in normal range after three months of antituberculosis therapy. When 1,25-dihydroxyvitamin D was normal, a reintroduction of a diet with normal calcium content did not determine new hypercalcemic episodes. These data suggest that an abnormal 1,25-dihydroxyvitamin D production sustains the hypercalcemia of children with tuberculosis. An ectopic and unregulated synthesis of 1,25-dihydroxyvitamin D by macrophages of granulomatous tissue is proposed. PMID:2631059

  6. Disturbed calcium signaling in spinocerebellar ataxias and Alzheimer’s disease

    PubMed Central

    Egorova, Polina; Popugaeva, Elena; Bezprozvanny, Ilya

    2015-01-01

    Neurodegenerative disorders, such as spinocerebellar ataxias (SCAs) and Alzheimer’s disease (AD) represent a huge scientific and medical question, but the molecular mechanisms of these diseases are still not clear. There is increasing evidence that neuronal calcium signaling is abnormal in many neurodegenerative disorders. Abnormal neuronal calcium release from the endoplasmic reticulum may result in disturbances of cell homeostasis, synaptic dysfunction, and eventual cell death. Neuronal loss is observed in most cases of neurodegenerative diseases. Recent experimental evidence supporting the role of neuronal calcium signaling in the pathogenesis of SCAs and AD is discussed in this review. PMID:25846864

  7. Mitochondrial dysfunction and intracellular calcium dysregulation in ALS

    PubMed Central

    Kawamata, Hibiki; Manfredi, Giovanni

    2010-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that affects the aging population. A progressive loss of motor neurons in the spinal cord and brain leads to muscle paralysis and death. As in other common neurodegenerative diseases, aging-related mitochondrial dysfunction is increasingly being considered among the pathogenic factors. Mitochondria are critical for cell survival: they provide energy to the cell, buffer intracellular calcium, and regulate apoptotic cell death. Whether mitochondrial abnormalities are a trigger or a consequence of the neurodegenerative process and the mechanisms whereby mitochondrial dysfunction contributes to disease are not clear yet. Calcium homeostasis is a major function of mitochondria in neurons, and there is ample evidence that intracellular calcium is dysregulated in ALS. The impact of mitochondrial dysfunction on intracellular calcium homeostasis and its role in motor neuron demise are intriguing issues that warrants in depth discussion. Clearly, unraveling the causal relationship between mitochondrial dysfunction, calcium dysregulation, and neuronal death is critical for the understanding of ALS pathogenesis. In this review, we will outline the current knowledge of various aspects of mitochondrial dysfunction in ALS, with a special emphasis on the role of these abnormalities on intracellular calcium handling. PMID:20493207

  8. Chromosomal abnormalities in human sperm

    SciTech Connect

    Martin, R.H.

    1985-01-01

    The ability to analyze human sperm chromosome complements after penetration of zona pellucida-free hamster eggs provides the first opportunity to study the frequency and type of chromosomal abnormalities in human gametes. Two large-scale studies have provided information on normal men. We have studied 1,426 sperm complements from 45 normal men and found an abnormality rate of 8.9%. Brandriff et al. (5) found 8.1% abnormal complements in 909 sperm from 4 men. The distribution of numerical and structural abnormalities was markedly dissimilar in the 2 studies. The frequency of aneuploidy was 5% in our sample and only 1.6% in Brandriff's, perhaps reflecting individual variability among donors. The frequency of 24,YY sperm was low: 0/1,426 and 1/909. This suggests that the estimates of nondisjunction based on fluorescent Y body data (1% to 5%) are not accurate. We have also studied men at increased risk of sperm chromosomal abnormalities. The frequency of chromosomally unbalanced sperm in 6 men heterozygous for structural abnormalities varied dramatically: 77% for t11;22, 32% for t6;14, 19% for t5;18, 13% for t14;21, and 0% for inv 3 and 7. We have also studied 13 cancer patients before and after radiotherapy and demonstrated a significant dose-dependent increase of sperm chromosome abnormalities (numerical and structural) 36 months after radiation treatment.

  9. Thermochemical cycles

    NASA Technical Reports Server (NTRS)

    Funk, J. E.; Soliman, M. A.; Carty, R. H.; Conger, W. L.; Cox, K. E.; Lawson, D.

    1975-01-01

    The thermochemical production of hydrogen is described along with the HYDRGN computer program which attempts to rate the various thermochemical cycles. Specific thermochemical cycles discussed include: iron sulfur cycle; iron chloride cycle; and hybrid sulfuric acid cycle.

  10. Haematological abnormalities in mitochondrial disorders

    PubMed Central

    Finsterer, Josef; Frank, Marlies

    2015-01-01

    INTRODUCTION This study aimed to assess the kind of haematological abnormalities that are present in patients with mitochondrial disorders (MIDs) and the frequency of their occurrence. METHODS The blood cell counts of a cohort of patients with syndromic and non-syndromic MIDs were retrospectively reviewed. MIDs were classified as ‘definite’, ‘probable’ or ‘possible’ according to clinical presentation, instrumental findings, immunohistological findings on muscle biopsy, biochemical abnormalities of the respiratory chain and/or the results of genetic studies. Patients who had medical conditions other than MID that account for the haematological abnormalities were excluded. RESULTS A total of 46 patients (‘definite’ = 5; ‘probable’ = 9; ‘possible’ = 32) had haematological abnormalities attributable to MIDs. The most frequent haematological abnormality in patients with MIDs was anaemia. 27 patients had anaemia as their sole haematological problem. Anaemia was associated with thrombopenia (n = 4), thrombocytosis (n = 2), leucopenia (n = 2), and eosinophilia (n = 1). Anaemia was hypochromic and normocytic in 27 patients, hypochromic and microcytic in six patients, hyperchromic and macrocytic in two patients, and normochromic and microcytic in one patient. Among the 46 patients with a mitochondrial haematological abnormality, 78.3% had anaemia, 13.0% had thrombopenia, 8.7% had leucopenia and 8.7% had eosinophilia, alone or in combination with other haematological abnormalities. CONCLUSION MID should be considered if a patient’s abnormal blood cell counts (particularly those associated with anaemia, thrombopenia, leucopenia or eosinophilia) cannot be explained by established causes. Abnormal blood cell counts may be the sole manifestation of MID or a collateral feature of a multisystem problem. PMID:26243978

  11. Circulating calcium concentrations, vascular disease and mortality: a systematic review.

    PubMed

    Reid, I R; Gamble, G D; Bolland, M J

    2016-06-01

    Associations between serum calcium and vascular disease have been reported, but the consistency of these findings is unknown. We conducted a systematic review to determine whether circulating calcium concentrations are associated with risks of cardiovascular disease and death in normocalcaemic populations. We conducted PubMed searches up to 18 December 2014 and scrutinized reference lists of papers. Eligible studies related serum calcium to mortality or cardiovascular events in humans. A follow-up of at least one year was required for longitudinal studies. Studies in populations selected on the basis of renal disease or abnormal serum calcium were excluded. Two investigators performed independent data extraction. The results were tabulated and, where possible, meta-analysed. Five of 11 studies reported a statistically significant positive association between serum calcium and mortality. Meta-analysis of eight of these studies showed a hazard ratio of death of 1.13 (1.09, 1.18) per standard deviation of serum calcium. Eight of 13 studies reported a statistically significant positive association between serum calcium and cardiovascular disease. Meta-analysis of eight studies showed a hazard ratio of cardiovascular disease of 1.08 (1.04, 1.13) per standard deviation of serum calcium. For two studies reporting odds ratios, the pooled odds ratio per standard deviation was 1.22 (1.11, 1.32). When hazard ratios adjusted for cardiovascular risk factors were meta-analysed, the pooled hazard ratio was 1.04 (1.01, 1.08). Other studies demonstrated associations between serum calcium and stroke and between serum calcium and direct measurements of arterial disease and calcification. These observational data indicate that serum calcium is associated with vascular disease and death, but they cannot determine causality. PMID:26749423

  12. Lead in calcium supplements.

    PubMed

    Scelfo, G M; Flegal, A R

    2000-04-01

    Intercalibrated measurements of lead in calcium supplements indicate the importance of rigorous analytical techniques to accurately quantify contaminant exposures in complex matrices. Without such techniques, measurements of lead concentrations in calcium supplements may be either erroneously low, by as much as 50%, or below the detection limit needed for new public health criteria. In this study, we determined the lead content of 136 brands of supplements that were purchased in 1996. The calcium in the products was derived from natural sources (bonemeal, dolomite, or oyster shell) or was synthesized and/or refined (chelated and nonchelated calcium). The dried products were acid digested and analyzed for lead by high resolution-inductively coupled plasma-mass spectrometry. The method's limit of quantitation averaged 0.06 microg/g, with a coefficient of variation of 1.7% and a 90-100% lead recovery of a bonemeal standard reference material. Two-thirds of those calcium supplements failed to meet the 1999 California criteria for acceptable lead levels (1.5 microg/daily dose of calcium) in consumer products. The nonchelated synthesized and/or refined calcium products, specifically antacids and infant formulas, had the lowest lead concentrations, ranging from nondetectable to 2.9 microg Pb/g calcium, and had the largest proportion of brands meeting the new criteria (85% of the antacids and 100% of the infant formulas). PMID:10753088

  13. Lead in calcium supplements.

    PubMed Central

    Scelfo, G M; Flegal, A R

    2000-01-01

    Intercalibrated measurements of lead in calcium supplements indicate the importance of rigorous analytical techniques to accurately quantify contaminant exposures in complex matrices. Without such techniques, measurements of lead concentrations in calcium supplements may be either erroneously low, by as much as 50%, or below the detection limit needed for new public health criteria. In this study, we determined the lead content of 136 brands of supplements that were purchased in 1996. The calcium in the products was derived from natural sources (bonemeal, dolomite, or oyster shell) or was synthesized and/or refined (chelated and nonchelated calcium). The dried products were acid digested and analyzed for lead by high resolution-inductively coupled plasma-mass spectrometry. The method's limit of quantitation averaged 0.06 microg/g, with a coefficient of variation of 1.7% and a 90-100% lead recovery of a bonemeal standard reference material. Two-thirds of those calcium supplements failed to meet the 1999 California criteria for acceptable lead levels (1.5 microg/daily dose of calcium) in consumer products. The nonchelated synthesized and/or refined calcium products, specifically antacids and infant formulas, had the lowest lead concentrations, ranging from nondetectable to 2.9 microg Pb/g calcium, and had the largest proportion of brands meeting the new criteria (85% of the antacids and 100% of the infant formulas). Images Figure 1 Figure 2 PMID:10753088

  14. Towards a calcium-based rechargeable battery

    NASA Astrophysics Data System (ADS)

    Ponrouch, A.; Frontera, C.; Bardé, F.; Palacín, M. R.

    2016-02-01

    The development of a rechargeable battery technology using light electropositive metal anodes would result in a breakthrough in energy density. For multivalent charge carriers (Mn+), the number of ions that must react to achieve a certain electrochemical capacity is diminished by two (n = 2) or three (n = 3) when compared with Li+ (ref. ). Whereas proof of concept has been achieved for magnesium, the electrodeposition of calcium has so far been thought to be impossible and research has been restricted to non-rechargeable systems. Here we demonstrate the feasibility of calcium plating at moderate temperatures using conventional organic electrolytes, such as those used for the Li-ion technology. The reversibility of the process on cycling has been ascertained and thus the results presented here constitute the first step towards the development of a new rechargeable battery technology using calcium anodes.

  15. Towards a calcium-based rechargeable battery.

    PubMed

    Ponrouch, A; Frontera, C; Bardé, F; Palacín, M R

    2016-02-01

    The development of a rechargeable battery technology using light electropositive metal anodes would result in a breakthrough in energy density. For multivalent charge carriers (M(n+)), the number of ions that must react to achieve a certain electrochemical capacity is diminished by two (n = 2) or three (n = 3) when compared with Li(+) (ref. ). Whereas proof of concept has been achieved for magnesium, the electrodeposition of calcium has so far been thought to be impossible and research has been restricted to non-rechargeable systems. Here we demonstrate the feasibility of calcium plating at moderate temperatures using conventional organic electrolytes, such as those used for the Li-ion technology. The reversibility of the process on cycling has been ascertained and thus the results presented here constitute the first step towards the development of a new rechargeable battery technology using calcium anodes. PMID:26501412

  16. Role of calcium in growth inhibition induced by a novel cell surface sialoglycopeptide

    NASA Technical Reports Server (NTRS)

    Betz, N. A.; Westhoff, B. A.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Our laboratory has purified an 18 kDa cell surface sialoglycopeptide growth inhibitor (CeReS-18) from intact bovine cerebral cortex cells. Evidence presented here demonstrates that sensitivity to CeReS-18-induced growth inhibition in BALB-c 3T3 cells is influenced by calcium, such that a decrease in the calcium concentration in the growth medium results in an increase in sensitivity to CeReS-18. Calcium did not alter CeReS-18 binding to its cell surface receptor and CeReS-18 does not bind calcium directly. Addition of calcium, but not magnesium, to CeReS-18-inhibited 3T3 cells results in reentry into the cell cycle. A greater than 3-hour exposure to increased calcium is required for escape from CeReS-18-induced growth inhibition. The calcium ionophore ionomycin could partially mimic the effect of increasing extracellular calcium, but thapsigargin was ineffective in inducing escape from growth inhibition. Increasing extracellular calcium 10-fold resulted in an approximately 7-fold increase in total cell-associated 45Ca+2, while free intracellular calcium only increased approximately 30%. However, addition of CeReS-18 did not affect total cell-associated calcium or the increase in total cell-associated calcium observed with an increase in extracellular calcium. Serum addition induced mobilization of intracellular calcium and influx across the plasma membrane in 3T3 cells, and pretreatment of 3T3 cells with CeReS-18 appeared to inhibit these calcium mobilization events. These results suggest that a calcium-sensitive step exists in the recovery from CeReS-18-induced growth inhibition. CeReS-18 may inhibit cell proliferation through a novel mechanism involving altering the intracellular calcium mobilization/regulation necessary for cell cycle progression.

  17. Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems.

    PubMed

    Blum, Joel D; Klaue, Andrea; Nezat, Carmen A; Driscoll, Charles T; Johnson, Chris E; Siccama, Thomas G; Eagar, Christopher; Fahey, Timothy J; Likens, Gene E

    2002-06-13

    The depletion of calcium in forest ecosystems of the northeastern USA is thought to be a consequence of acidic deposition and to be at present restricting the recovery of forest and aquatic systems now that acidic deposition itself is declining. This depletion of calcium has been inferred from studies showing that sources of calcium in forest ecosystems namely, atmospheric deposition and mineral weathering of silicate rocks such as plagioclase, a calcium-sodium silicate do not match calcium outputs observed in forest streams. It is therefore thought that calcium is being lost from exchangeable and organically bound calcium in forest soils. Here we investigate the sources of calcium in the Hubbard Brook experimental forest, through analysis of calcium and strontium abundances and strontium isotope ratios within various soil, vegetation and hydrological pools. We show that the dissolution of apatite (calcium phosphate) represents a source of calcium that is comparable in size to known inputs from atmospheric sources and silicate weathering. Moreover, apatite-derived calcium was utilized largely by ectomycorrhizal tree species, suggesting that mycorrhizae may weather apatite and absorb the released ions directly, without the ions entering the exchangeable soil pool. Therefore, it seems that apatite weathering can compensate for some of the calcium lost from base-poor ecosystems, and should be considered when estimating soil acidification impacts and calcium cycling. PMID:12066181

  18. Distal Renal Tubular Acidosis and Calcium Nephrolithiasis

    NASA Astrophysics Data System (ADS)

    Moe, Orson W.; Fuster, Daniel G.; Xie, Xiao-Song

    2008-09-01

    Calcium stones are commonly encountered in patients with congenital distal renal tubular acidosis, a disease of renal acidification caused by mutations in either the vacuolar H+-ATPase (B1 or a4 subunit), anion exchanger-1, or carbonic anhydrase II. Based on the existing database, we present two hypotheses. First, heterozygotes with mutations in B1 subunit of H+-ATPase are not normal but may harbor biochemical abnormalities such as renal acidification defects, hypercalciuria, and hypocitraturia which can predispose them to kidney stone formation. Second, we propose at least two mechanisms by which mutant B1 subunit can impair H+-ATPase: defective pump assembly and defective pump activity.

  19. Disorders Involving Calcium, Phosphorus, and Magnesium

    PubMed Central

    Moe, Sharon M.

    2008-01-01

    Abnormalities of calcium, phosphorus and magnesium homeostasis are common, and collectively are called disorders of mineral metabolism. Normal homeostatic regulation maintains serum levels, intracellular levels, and optimal mineral content in bone. This regulation occurs at three major target organs, the intestine, kidney and bone, principally via the complex integration of two hormones, parathyroid hormone and vitamin D. An understanding of normal physiology is necessary to accurately diagnose and treat disorders of mineral metabolism and will be briefly reviewed before discussing the differential diagnosis and treatment of specific disorders. PMID:18486714

  20. Calcium's role in mechanotransduction during muscle development.

    PubMed

    Benavides Damm, Tatiana; Egli, Marcel

    2014-01-01

    Mechanotransduction is a process where cells sense their surroundings and convert the physical forces in their environment into an appropriate response. Calcium plays a crucial role in the translation of such forces to biochemical signals that control various biological processes fundamental in muscle development. The mechanical stimulation of muscle cells may for example result from stretch, electric and magnetic stimulation, shear stress, and altered gravity exposure. The response, mainly involving changes in intracellular calcium concentration then leads to a cascade of events by the activation of downstream signaling pathways. The key calcium-dependent pathways described here include the nuclear factor of activated T cells (NFAT) and mitogen-activated protein kinase (MAPK) activation. The subsequent effects in cellular homeostasis consist of cytoskeletal remodeling, cell cycle progression, growth, differentiation, and apoptosis, all necessary for healthy muscle development, repair, and regeneration. A deregulation from the normal process due to disuse, trauma, or disease can result in a clinical condition such as muscle atrophy, which entails a significant loss of muscle mass. In order to develop therapies against such diseased states, we need to better understand the relevance of calcium signaling and the downstream responses to mechanical forces in skeletal muscle. The purpose of this review is to discuss in detail how diverse mechanical stimuli cause changes in calcium homeostasis by affecting membrane channels and the intracellular stores, which in turn regulate multiple pathways that impart these effects and control the fate of muscle tissue. PMID:24525559

  1. Pure hemidystonia with basal ganglion abnormalities on positron emission tomography

    SciTech Connect

    Perlmutter, J.S.; Raichle, M.E.

    1984-03-01

    We present a patient with hemidystonia and an abnormality of the contralateral basal ganglion seen only with positron emission tomography. A 50-year-old sinistral man suffered minor trauma to the right side of his head and neck. Within 20 minutes he developed paroxysmal intermittent dystonic posturing of his right face, forearm, hand, and foot, with weaker contractions of the left foot, lasting several seconds and recurring every few minutes. Neurological findings between spells were normal. The following were also normal: electrolyte, calcium, magnesium, and arterial blood gas levels, and findings of drug screen, cerebrospinal fluid examination, electroencephalography with nasopharyngeal leads, computed tomographic scanning (initially and four weeks later), and cerebral angiography. Positron emission tomographic scanning revealed abnormalities in the left basal ganglion region, including decreased oxygen metabolism, decreased oxygen extraction, increased blood volume, and increased blood flow.

  2. [Calcium and health].

    PubMed

    Ortega Anta, Rosa M; Jiménez Ortega, Ana I; López-Sobaler, Ana M

    2015-01-01

    An adequate intake of calcium is only not limited to avoid the risk of osteoporosis and its benefits in longterm bone health, but also it has been linked to protection against various major diseases, such as hypertension, cancer, kidney stones, insulin resistance, diabetes... and several investigations suggest its importance in preventing and controlling obesity. Studies conducted in Spanish representative samples show that a high percentage of adults and children (> 75%) don't achieve the recommended intake of calcium. Moreover, are growing trends among the population suggesting that calcium intake and dairy consumption (main food source of the mineral) are high, and even excessive, in many individuals. This misconception results in that the calcium intake is increasingly far from the recommended one. The maximum tolerable intake of the mineral is fixed at 2.500 mg/day, but this intake is unusual, and it's more disturbing and frequent, to find intakes below the recommended calcium intakes (1.000 and 1.200 mg/day in adults, men and women, respectively). Data from different studies highlight the risk of an inadequate calcium intake and the damages that may affect the health in a long term. It is not about transmitting indiscriminate guidelines in order to increase the intake of calcium / dairy, but the recommended intakes must be met to achieve both the nutritional and health benefits. Also activities for demystification of misconceptions are need, increasingly frequent, that may impair health population. PMID:25862324

  3. In vivo impact of presynaptic calcium channel dysfunction on motor axons in episodic ataxia type 2

    PubMed Central

    Tan, S. Veronica; Burke, David; Labrum, Robyn W.; Haworth, Andrea; Gibbons, Vaneesha S.; Sweeney, Mary G.; Griggs, Robert C.; Kullmann, Dimitri M.; Bostock, Hugh; Hanna, Michael G.

    2016-01-01

    Ion channel dysfunction causes a range of neurological disorders by altering transmembrane ion fluxes, neuronal or muscle excitability, and neurotransmitter release. Genetic neuronal channelopathies affecting peripheral axons provide a unique opportunity to examine the impact of dysfunction of a single channel subtype in detail in vivo. Episodic ataxia type 2 is caused by mutations in CACNA1A, which encodes the pore-forming subunit of the neuronal voltage-gated calcium channel Cav2.1. In peripheral motor axons, this channel is highly expressed at the presynaptic neuromuscular junction where it contributes to action potential-evoked neurotransmitter release, but it is not expressed mid-axon or thought to contribute to action potential generation. Eight patients from five families with genetically confirmed episodic ataxia type 2 underwent neurophysiological assessment to determine whether axonal excitability was normal and, if not, whether changes could be explained by Cav2.1 dysfunction. New mutations in the CACNA1A gene were identified in two families. Nerve conduction studies were normal, but increased jitter in single-fibre EMG studies indicated unstable neuromuscular transmission in two patients. Excitability properties of median motor axons were compared with those in 30 age-matched healthy control subjects. All patients had similar excitability abnormalities, including a high electrical threshold and increased responses to hyperpolarizing (P < 0.00007) and depolarizing currents (P < 0.001) in threshold electrotonus. In the recovery cycle, refractoriness (P < 0.0002) and superexcitability (P < 0.006) were increased. Cav2.1 dysfunction in episodic ataxia type 2 thus has unexpected effects on axon excitability, which may reflect an indirect effect of abnormal calcium current fluxes during development. PMID:26912519

  4. In vivo impact of presynaptic calcium channel dysfunction on motor axons in episodic ataxia type 2.

    PubMed

    Tomlinson, Susan E; Tan, S Veronica; Burke, David; Labrum, Robyn W; Haworth, Andrea; Gibbons, Vaneesha S; Sweeney, Mary G; Griggs, Robert C; Kullmann, Dimitri M; Bostock, Hugh; Hanna, Michael G

    2016-02-01

    Ion channel dysfunction causes a range of neurological disorders by altering transmembrane ion fluxes, neuronal or muscle excitability, and neurotransmitter release. Genetic neuronal channelopathies affecting peripheral axons provide a unique opportunity to examine the impact of dysfunction of a single channel subtype in detail in vivo. Episodic ataxia type 2 is caused by mutations in CACNA1A, which encodes the pore-forming subunit of the neuronal voltage-gated calcium channel Cav2.1. In peripheral motor axons, this channel is highly expressed at the presynaptic neuromuscular junction where it contributes to action potential-evoked neurotransmitter release, but it is not expressed mid-axon or thought to contribute to action potential generation. Eight patients from five families with genetically confirmed episodic ataxia type 2 underwent neurophysiological assessment to determine whether axonal excitability was normal and, if not, whether changes could be explained by Cav2.1 dysfunction. New mutations in the CACNA1A gene were identified in two families. Nerve conduction studies were normal, but increased jitter in single-fibre EMG studies indicated unstable neuromuscular transmission in two patients. Excitability properties of median motor axons were compared with those in 30 age-matched healthy control subjects. All patients had similar excitability abnormalities, including a high electrical threshold and increased responses to hyperpolarizing (P < 0.00007) and depolarizing currents (P < 0.001) in threshold electrotonus. In the recovery cycle, refractoriness (P < 0.0002) and superexcitability (P < 0.006) were increased. Cav2.1 dysfunction in episodic ataxia type 2 thus has unexpected effects on axon excitability, which may reflect an indirect effect of abnormal calcium current fluxes during development. PMID:26912519

  5. Urine risk factors in children with calcium kidney stones and their siblings.

    PubMed

    Bergsland, Kristin J; Coe, Fredric L; White, Mark D; Erhard, Michael J; DeFoor, William R; Mahan, John D; Schwaderer, Andrew L; Asplin, John R

    2012-06-01

    Calcium nephrolithiasis in children is increasing in prevalence and tends to be recurrent. Although children have a lower incidence of nephrolithiasis than adults, its etiology in children is less well understood; hence, treatments targeted for adults may not be optimal in children. To better understand metabolic abnormalities in stone-forming children, we compared chemical measurements and the crystallization properties of 24-h urine collections from 129 stone formers matched to 105 non-stone-forming siblings and 183 normal, healthy children with no family history of stones, all aged 6 to 17 years. The principal risk factor for calcium stone formation was hypercalciuria. Stone formers have strikingly higher calcium excretion along with high supersaturation for calcium oxalate and calcium phosphate, and a reduced distance between the upper limit of metastability and supersaturation for calcium phosphate, indicating increased risk of calcium phosphate crystallization. Other differences in urine chemistry that exist between adult stone formers and normal individuals such as hyperoxaluria, hypocitraturia, abnormal urine pH, and low urine volume were not found in these children. Hence, hypercalciuria and a reduction in the gap between calcium phosphate upper limit of metastability and supersaturation are crucial determinants of stone risk. This highlights the importance of managing hypercalciuria in children with calcium stones. PMID:22358148

  6. Urine risk factors in children with calcium kidney stones and their siblings

    PubMed Central

    Bergsland, Kristin J.; Coe, Fredric L.; White, Mark D.; Erhard, Michael J.; DeFoor, William R.; Mahan, John D.; Schwaderer, Andrew L.; Asplin, John R.

    2012-01-01

    Calcium nephrolithiasis in children is increasing in prevalence and tends to be recurrent. Although children have a lower incidence of nephrolithiasis than adults, its etiology in children is less well understood; hence treatments targeted for adults may not be optimal in children. To better understand metabolic abnormalities in stone forming children, we compared chemical measurements and the crystallization properties of 24-hour urine collections from 129 stone formers matched to 105 non-stone forming siblings and 183 normal, healthy children with no family history of stones; all aged 6 to 17 years. The principal risk factor for calcium stone formation was hypercalciuria. Stone formers have strikingly higher calcium excretion along with high supersaturation for calcium oxalate and calcium phosphate, and a reduced distance between the upper limit of metastability and supersaturation for calcium phosphate, indicating increased risk of calcium phosphate crystallization. Other differences in urine chemistry that exist between adult stone formers and normal individuals such as hyperoxaluria, hypocitraturia, abnormal urine pH and low urine volume were not found in these children. Hence, hypercalciuria and a reduction in the gap between calcium phosphate upper limit of metastability and supersaturation are crucial determinants of stone risk. This highlights the importance of managing hypercalciuria in children with calcium stones. PMID:22358148

  7. Mechanisms of Normal and Abnormal Endometrial Bleeding

    PubMed Central

    Lockwood, Charles J.

    2011-01-01

    Expression of tissue factor (TF), the primary initiator of coagulation, is enhanced in decidualized human endometrial stromal cells (HESC) during the progesterone-dominated luteal phase. Progesterone also augments a second HESC hemostatic factor, plasminogen activator inhibitor-1 (PAI-1). In contrast, progestins inhibit HESC matrix metalloproteinase (MMP)-1, 3 and 9 expression to stabilize endometrial stromal and vascular extracellular matrix. Through these mechanisms decidualized endometrium is rendered both hemostatic and resistant to excess trophoblast invasion in the mid-luteal phase and throughout gestation to prevent hemorrhage and accreta. In non-fertile cycles, progesterone withdrawal results in decreased HESC TF and PAI-expression and increased MMP activity and inflammatory cytokine production promoting the controlled hemorrhage of menstruation and related tissue sloughing. In contrast to these well ordered biochemical processes, unpredictable endometrial bleeding associated with anovulation reflects absence of progestational effects on TF, PAI-1 and MMP activity as well as unrestrained angiogenesis rendering the endometrium non-hemostatic, proteolytic and highly vascular. Abnormal bleeding associated with long-term progestin-only contraceptives results not from impaired hemostasis but from unrestrained angiogenesis leading to large fragile endometrial vessels. This abnormal angiogenesis reflects progestational inhibition of endometrial blood flow promoting local hypoxia and generation of reactive oxygen species that increase production of angiogenic factors such as vascular endothelial growth factor (VEGF) in HESCs and Angiopoietin-2 (Ang-2) in endometrial endothelial cells while decreasing HESC expression of angiostatic, Ang-1. The resulting vessel fragility promotes bleeding. Aberrant angiogenesis also underlies abnormal bleeding associated with myomas and endometrial polyps however there are gaps in our understanding of this pathology. PMID:21499503

  8. Complex patterns of abnormal heartbeats

    NASA Technical Reports Server (NTRS)

    Schulte-Frohlinde, Verena; Ashkenazy, Yosef; Goldberger, Ary L.; Ivanov, Plamen Ch; Costa, Madalena; Morley-Davies, Adrian; Stanley, H. Eugene; Glass, Leon

    2002-01-01

    Individuals having frequent abnormal heartbeats interspersed with normal heartbeats may be at an increased risk of sudden cardiac death. However, mechanistic understanding of such cardiac arrhythmias is limited. We present a visual and qualitative method to display statistical properties of abnormal heartbeats. We introduce dynamical "heartprints" which reveal characteristic patterns in long clinical records encompassing approximately 10(5) heartbeats and may provide information about underlying mechanisms. We test if these dynamics can be reproduced by model simulations in which abnormal heartbeats are generated (i) randomly, (ii) at a fixed time interval following a preceding normal heartbeat, or (iii) by an independent oscillator that may or may not interact with the normal heartbeat. We compare the results of these three models and test their limitations to comprehensively simulate the statistical features of selected clinical records. This work introduces methods that can be used to test mathematical models of arrhythmogenesis and to develop a new understanding of underlying electrophysiologic mechanisms of cardiac arrhythmia.

  9. Molecular abnormalities in Ewing's sarcoma.

    PubMed

    Burchill, Susan Ann

    2008-10-01

    Ewing's sarcoma is one of the few solid tumors for which the underlying molecular genetic abnormality has been described: rearrangement of the EWS gene on chromosome 22q12 with an ETS gene family member. These translocations define the Ewing's sarcoma family of tumors (ESFT) and provide a valuable tool for their accurate and unequivocal diagnosis. They also represent ideal targets for the development of tumor-specific therapeutics. Although secondary abnormalities occur in over 80% of primary ESFT the clinical utility of these is currently unclear. However, abnormalities in genes that regulate the G(1)/S checkpoint are frequently described and may be important in predicting outcome and response. Increased understanding of the molecular events that arise in ESFT and their role in the development and maintenance of the malignant phenotype will inform the improved stratification of patients for therapy and identify targets and pathways for the design of more effective cancer therapeutics. PMID:18925858

  10. Get Enough Calcium

    MedlinePlus

    ... Previous section Overview 2 of 4 sections Take Action! Take Action: Calcium Sources Protect your bones – get plenty of ... Foods and Vitamins 3 of 4 sections Take Action: Vitamin D Get enough vitamin D. Vitamin D ...

  11. Stoichiometry of Calcium Medicines

    ERIC Educational Resources Information Center

    Pinto, Gabriel

    2005-01-01

    The topic of calcium supplement and its effects on human lives is presented in the way of questions to the students. It enables the students to realize the relevance of chemistry outside the classroom surrounding.

  12. Calcium in diet

    MedlinePlus

    ... level based on scientific research evidence. Adequate Intake (AI): This level is established when there is not ... enough calcium from the foods they eat. Infants (AI) 0 to 6 months: 200 milligrams per day ( ...

  13. Calcium pyrophosphate arthritis

    MedlinePlus

    ... that can cause attacks of arthritis. Like with gout, crystals form in the joints. But in calcium ... pyrophosphate arthritis can be misdiagnosed as: Gouty arthritis (gout) Osteoarthritis Rheumatoid arthritis

  14. Ultrasonographic assessment of abnormal pregnancy.

    PubMed

    England, G C

    1998-07-01

    Ultrasonographic imaging is widely used in small animal practice for the diagnosis of pregnancy and the determination of fetal number. Ultrasonography can also be used to monitor abnormal pregnancies, for example, conceptuses that are poorly developed for their gestational age (and therefore are likely to fail), and pregnancies in which there is embryonic resorption or fetal abortion. An ultrasound examination may reveal fetal abnormalities and therefore alter the management of the pregnant bitch or queen prior to parturition. There are, however, a number of ultrasonographic features of normal pregnancies that may mimic disease, and these must be recognized. PMID:9698618

  15. [Emotion Disorders and Abnormal Perspiration].

    PubMed

    Umeda, Satoshi

    2016-08-01

    This article reviewed the relationship between emotional disorders and abnormal perspiration. First, I focused on local brain areas related to emotional processing, and summarized the functions of the emotional network involving those local areas. Functional disorders followed by the damage in the amygdala, orbitofrontal cortex, and insular cortex were reviewed, including related abnormal perspiration. I then addressed the mechanisms of how autonomic disorders influence emotional processing. Finally, possible future directions for integrated understanding of the connection between neural activities and bodily reactions were discussed. PMID:27503817

  16. Detection, Properties, and Frequency of Local Calcium Release from the Sarcoplasmic Reticulum in Teleost Cardiomyocytes

    PubMed Central

    Alvarez-Lacalle, Enrique; Tort, Lluis; Benítez, Raul; Hove-Madsen, Leif

    2011-01-01

    Calcium release from the sarcoplasmic reticulum (SR) plays a central role in the regulation of cardiac contraction and rhythm in mammals and humans but its role is controversial in teleosts. Since the zebrafish is an emerging model for studies of cardiovascular function and regeneration we here sought to determine if basic features of SR calcium release are phylogenetically conserved. Confocal calcium imaging was used to detect spontaneous calcium release (calcium sparks and waves) from the SR. Calcium sparks were detected in 16 of 38 trout atrial myocytes and 6 of 15 ventricular cells. The spark amplitude was 1.45±0.03 times the baseline fluorescence and the time to half maximal decay of sparks was 27±3 ms. Spark frequency was 0.88 sparks µm−1 min−1 while calcium waves were 8.5 times less frequent. Inhibition of SR calcium uptake reduced the calcium transient (F/F0) from 1.77±0.17 to 1.12±0.18 (p = 0.002) and abolished calcium sparks and waves. Moreover, elevation of extracellular calcium from 2 to 10 mM promoted early and delayed afterdepolarizations (from 0.6±0.3 min−1 to 8.1±2.0 min−1, p = 0.001), demonstrating the ability of SR calcium release to induce afterdepolarizations in the trout heart. Calcium sparks of similar width and duration were also observed in zebrafish ventricular myocytes. In conclusion, this is the first study to consistently report calcium sparks in teleosts and demonstrate that the basic features of calcium release through the ryanodine receptor are conserved, suggesting that teleost cardiac myocytes is a relevant model to study the functional impact of abnormal SR function. PMID:21897853

  17. T-Type Calcium Channel: A Privileged Gate for Calcium Entry and Control of Adrenal Steroidogenesis.

    PubMed

    Rossier, Michel F

    2016-01-01

    Intracellular calcium plays a crucial role in modulating a variety of functions such as muscle contraction, hormone secretion, gene expression, or cell growth. Calcium signaling has been however shown to be more complex than initially thought. Indeed, it is confined within cell microdomains, and different calcium channels are associated with different functions, as shown by various channelopathies. Sporadic mutations on voltage-operated L-type calcium channels in adrenal glomerulosa cells have been shown recently to be the second most prevalent genetic abnormalities present in human aldosterone-producing adenoma. The observed modification of the threshold of activation of the mutated channels not only provides an explanation for this gain of function but also reminds us on the importance of maintaining adequate electrophysiological characteristics to make channels able to exert specific cellular functions. Indeed, the contribution to steroid production of the various calcium channels expressed in adrenocortical cells is not equal, and the reason has been investigated for a long time. Given the very negative resting potential of these cells, and the small membrane depolarization induced by their physiological agonists, low threshold T-type calcium channels are particularly well suited for responding under these conditions and conveying calcium into the cell, at the right place for controlling steroidogenesis. In contrast, high threshold L-type channels are normally activated by much stronger cell depolarizations. The fact that dihydropyridine calcium antagonists, specific for L-type channels, are poorly efficient for reducing aldosterone secretion either in vivo or in vitro, strongly supports the view that these two types of channels differently affect steroid biosynthesis. Whether a similar analysis is transposable to fasciculata cells and cortisol secretion is one of the questions addressed in the present review. No similar mutations on L-type or T-type channels

  18. Extracellular Matrix Abnormalities in Schizophrenia

    PubMed Central

    Berretta, Sabina

    2011-01-01

    Emerging evidence points to the involvement of the brain extracellular matrix (ECM) in the pathophysiology of schizophrenia (SZ). Abnormalities affecting several ECM components, including Reelin and chondroitin sulfate proteoglycans (CSPGs), have been described in subjects with this disease. Solid evidence supports the involvement of Reelin, an ECM glycoprotein involved in corticogenesis, synaptic functions and glutamate NMDA receptor regulation, expressed prevalently in distinct populations of GABAergic neurons, which secrete it into the ECM. Marked changes of Reelin expression in SZ have typically been reported in association with GABA-related abnormalities in subjects with SZ and bipolar disorder. Recent findings from our group point to substantial abnormalities affecting CSPGs, a main ECM component, in the amygdala and entorhinal cortex of subjects with schizophrenia, but not bipolar disorder. Striking increases of glial cells expressing CSPGs were accompanied by reductions of perineuronal nets, CSPG- and Reelin-enriched ECM aggregates enveloping distinct neuronal populations. CSPGs developmental and adult functions, including neuronal migration, axon guidance, synaptic and neurotransmission regulation are highly relevant to the pathophysiology of SZ. Together with reports of anomalies affecting several other ECM components, these findings point to the ECM as a key component of the pathology of SZ. We propose that ECM abnormalities may contribute to several aspects of the pathophysiology of this disease, including disrupted connectivity and neuronal migration, synaptic anomalies and altered GABAergic, glutamatergic and dopaminergic neurotransmission. PMID:21856318

  19. Lipopolysaccharides upregulate calcium concentration in mouse uterine smooth muscle cells through the T-type calcium channels.

    PubMed

    Zhang, Lijuan; Wang, Lin; Jiang, Jingyi; Zheng, Dongming; Liu, Sishi; Liu, Caixia

    2015-03-01

    Infection is a significant cause of preterm birth. Abnormal changes in intracellular calcium signals are the ultimate triggers of early uterine contractions that result in preterm birth. T‑type calcium channels play an important role in the pathogenesis of cancer, as well as endocrine and cardiovascular diseases. However, there are limited studies on their role in uterine contractions and parturition. In the present study, mouse uterine smooth muscle cells were isolated and treated with lipopolysaccharides (LPS) to mimic the microenvironment of uterine infection in vitro to investigate the role of T‑type calcium channels in the process of infection‑induced preterm birth. The results from quantitative polymerase chain reaction and western blot analysis showed that LPS significantly induced the expression of the Cav3.1 and Cav3.2 subtypes of T‑type calcium channels. Measurements of intracellular calcium concentration showed a significant increase in response to LPS. However, these effects can be reversed by T‑type calcium channel blockers. Western blot analysis further indicated that LPS induced the activation of the nuclear factor (NF)‑κB signaling pathway, and endothelin‑1 (ET‑1) was significantly upregulated, whereas NF‑κB inhibitors significantly inhibited the LPS‑induced upregulation of Cav3.1, Cav3.2 and ET‑1 expression. In addition, ET‑1 directly induced Cav3.1 and Cav3.2 expression, whereas ET‑1 antagonists inhibited the LPS‑induced upregulation of Cav3.1 and Cav3.2 expression. In conclusion, the present study demonstrates that infection triggers the upregulation of T‑type calcium channels and promotes calcium influx. This process relies on the activation of the NF‑κB/ET‑1 signaling pathway. The T‑type calcium channel is expected to become an effective target for the prevention of infection‑induced preterm birth. PMID:25573237

  20. Collective Calcium Signaling of Defective Multicellular Networks

    NASA Astrophysics Data System (ADS)

    Potter, Garrett; Sun, Bo

    2015-03-01

    A communicating multicellular network processes environmental cues into collective cellular dynamics. We have previously demonstrated that, when excited by extracellular ATP, fibroblast monolayers generate correlated calcium dynamics modulated by both the stimuli and gap junction communication between the cells. However, just as a well-connected neural network may be compromised by abnormal neurons, a tissue monolayer can also be defective with cancer cells, which typically have down regulated gap junctions. To understand the collective cellular dynamics in a defective multicellular network we have studied the calcium signaling of co-cultured breast cancer cells and fibroblast cells in various concentrations of ATP delivered through microfluidic devices. Our results demonstrate that cancer cells respond faster, generate singular spikes, and are more synchronous across all stimuli concentrations. Additionally, fibroblast cells exhibit persistent calcium oscillations that increase in regularity with greater stimuli. To interpret these results we quantitatively analyzed the immunostaining of purigenic receptors and gap junction channels. The results confirm our hypothesis that collective dynamics are mainly determined by the availability of gap junction communications.

  1. Modelling of calcium phosphates

    NASA Astrophysics Data System (ADS)

    Calderin Hidalgo, Lazaro Juan

    This work is a contribution to a large scale joint experimental and theoretical effort to understand the biological properties of silicon doped calcium phosphates undertaken by Queen's University and Millenium Biologix Corp. We have modeled calcium phosphates and silicon doped calcium phosphates in close relation to experiment in order to study possible location of silicon in the lattice. Density functional theory has been used to study the structural and dynamical properties of small systems of calcium phosphates to gain preliminary information on phosphates and the performance of the theoretical methods. The same methods were used to investigate structural and electronic properties of larger scale calcium phosphate systems, while a classical shell model was developed to investigate the dynamical properties of such large and complex systems. In the context of the shell model a method was devised to calculate the dynamical matrix corrected for the long range Coulomb interaction in the long wave length limit. It was necessary also to develop a theoretical expression for the dielectric function in the context of the shell model. Infrared spectra and thermal parameters were calculated based on these methods. We also propose some directions for future research.

  2. Calcium and ER stress mediate hepatic apoptosis after burn injury

    PubMed Central

    Gauglitz, Gerd G.; Song, Juquan; Kulp, Gabriela A.; Finnerty, Celeste C.; Cox, Robert A.; Barral, José M.; Herndon, David N.; Boehning, Darren

    2009-01-01

    Abstract A hallmark of the disease state following severe burn injury is decreased liver function, which results in gross metabolic derangements that compromise patient survival. The underlying mechanisms leading to hepatocyte dysfunction after burn are essentially unknown. The aim of the present study was to determine the underlying mechanisms leading to hepatocyte dysfunction and apoptosis after burn. Rats were randomized to either control (no burn) or burn (60% total body surface area burn) and sacrificed at various time‐points. Liver was either perfused to isolate primary rat hepatocytes, which were used for in vitro calcium imaging, or liver was harvested and processed for immunohistology, transmission electron microscopy, mitochondrial isolation, mass spectroscopy or Western blotting to determine the hepatic response to burn injury in vivo. We found that thermal injury leads to severely depleted endoplasmic reticulum (ER) calcium stores and consequent elevated cytosolic calcium concentrations in primary hepatocytes in vitro. Burn‐induced ER calcium depletion caused depressed hepatocyte responsiveness to signalling molecules that regulate hepatic homeostasis, such as vasopressin and the purinergic agonist ATP. In vivo, thermal injury resulted in activation of the ER stress response and major alterations in mitochondrial structure and function – effects which may be mediated by increased calcium release by inositol 1,4,5‐trisphosphate receptors. Our results reveal that thermal injury leads to dramatic hepatic disturbances in calcium homeostasis and resultant ER stress leading to mitochondrial abnormalities contributing to hepatic dysfunction and apoptosis after burn injury. PMID:20141609

  3. Calcium and voltage imaging in arrhythmia models by high-speed microscopy

    NASA Astrophysics Data System (ADS)

    de Mauro, C.; Cecchetti, C. A.; Alfieri, D.; Borile, G.; Urbani, A.; Mongillo, M.; Pavone, F. S.

    2014-03-01

    Alterations in intracellular cardiomyocyte calcium handling have a key role in initiating and sustaining arrhythmias. Arrhythmogenic calcium leak from sarcoplasmic reticulum (SR) can be attributed to all means by which calcium exits the SR store in an abnormal fashion. Abnormal SR calcium exit maymanifest as intracellular Ca2+ sparks and/or Ca2+ waves. Ca2+ signaling in arrhythmogenesis has been mainly studied in isolated cardiomyocytes and given that the extracellular matrix influences both Ca2+ and membrane potential dynamics in the intact heart and underlies environmentally mediated changes, understanding how Ca2+ and voltage are regulated in the intact heart will represent a tremendous advancement in the understanding of arrhythmogenic mechanisms. Using novel high-speed multiphoton microscopy techinques, such as multispot and random access, we investigated animal models with inherited and acquired arrhythmias to assess the role of Ca2+ and voltage signals as arrhythmia triggers in cell and subcellular components of the intact heart and correlate these with electrophysiology.

  4. Effects of Oxcarbazepine and Levetiracetam on Calcium, Ionized Calcium, and 25-OH Vitamin-D3 Levels in Patients with Epilepsy

    PubMed Central

    Aksoy, Duygu; Güveli, Betül Tekin; Ak, Pelin Doğan; Sarı, Hüseyin; Ataklı, Dilek; Arpacı, Baki

    2016-01-01

    Objective The primary objective of the present study was to further elucidate the effects of oxcarbazepine (OXC) and levetiracetam (LEV) monotherapies on the bone health status of patients with epilepsy. Methods This study included 48 patients who attended our epilepsy outpatient clinic, had a diagnosis of epilepsy, and were undergoing either OXC or LEV monotherapy and 42 healthy control subjects. The demographic and clinical features of the patients, including gender, age, onset of disease, daily drug dosage, and duration of disease, were noted. Additionally, the calcium, ionized calcium, and 25-OH vitamin-D3 levels of the participants were prospectively evaluated. Results The 25-OH vitamin-D3, calcium, and ionized calcium levels of the patients taking OXC were significantly lower than those of the control group. These levels did not significantly differ between the patients taking LEV and the control group, but there was a significant negative relationship between daily drug dose and ionized calcium levels in the LEV patients. Conclusion In the present study, anti-epileptic drugs altered the calcium, ionized calcium, and 25-OH vitamin-D3 levels of epilepsy patients and resulted in bone loss, abnormal mineralization, and fractures. These findings suggest that the calcium, ionized calcium, and 25-OH vitamin-D3 levels of patients with epilepsy should be regularly assessed. PMID:26792043

  5. [Cognitive Function and Calcium. The link between dementia and bone and calcium metabolism disorders].

    PubMed

    Yamaguchi, Kiyoshi

    2015-02-01

    Bone and calcium metabolism disorders are closely linked with dementia. Screening for dementia is important since chronic hypercalcemia and hypocalcemia resulting from parathyroid function abnormalities can become a cause of dementia onset. In recent years, it has become clear that vitamin D deficiencies inducing cardiovascular disease and other factors are involved in the pathogenesis of various diseases that in turn become risk factors in dementia, especially Alzheimer's disease. Moreover, osteoporosis and dementia both commonly occur among the elderly. Treating dementia patients for osteoporosis is important since fragility fractures, especially femoral neck fractures, resulting from osteoporosis greatly affect the prognosis of patients with dementia. PMID:25634043

  6. Gravimetric Determination of Calcium as Calcium Carbonate Hydrate.

    ERIC Educational Resources Information Center

    Henrickson, Charles H.; Robinson, Paul R.

    1979-01-01

    The gravimetric determination of calcium as calcium carbonate is described. This experiment is suitable for undergraduate quantitative analysis laboratories. It is less expensive than determination of chloride as silver chloride. (BB)

  7. GLIAL ABNORMALITIES IN MOOD DISORDERS

    PubMed Central

    Öngür, Dost; Bechtholt, Anita J.; Carlezon, William A.; Cohen, Bruce M.

    2015-01-01

    Multiple lines of evidence indicate that mood disorders are associated with abnormalities in the brain's cellular composition, especially in glial cells. Considered inert support cells in the past, glial cells are now known to be important for brain function. Treatments for mood disorders enhance glial cell proliferation, and experimental stimulation of cell growth has antidepressant effects in animal models of mood disorders. These findings suggest that the proliferation and survival of glial cells may be important in the pathogenesis of mood disorders and may be possible targets for the development of new treatments. In this chapter, we will review the evidence for glial abnormalities in mood disorders. We will discuss glial cell biology and evidence from postmortem studies of mood disorders. This is not carry out a comprehensive review; rather we selectively discuss existing evidence in building an argument for the role of glial cells in mood disorders. PMID:25377605

  8. [Mitochondria, calcium homeostasis and calcium signaling].

    PubMed

    Zavodnik, I B

    2016-03-01

    Са2+ is a very important and versatile intracellular signal which controls numerous biochemical and physiological (pathophysiological) processes in the cell. Good evidence exists that mitochondria are sensors, decoders and regulators of calcium signaling. Precise regulation of calcium signaling in the cell involves numerous molecular targets, which induce and decode changes of Са2+ concentrations in the cell (pumps, channels, Са2+-binding proteins, Са2+-dependent enzymes, localized in the cytoplasm and organelles). Mitochondrial Са2+ uniporter accumulates excess of Са2+ in mitochondria, while Na+/Са2+- and H+/Са2+-antiporters extrude Са2+ in the cytoplasm. Mitochondrial Са2+ overloading results in formation of mitochondria permeability transition pores which play an important role in cell death under many pathological conditions. Mitochondria regulate Са2+ homeostasis and control important cellular functions such as metabolism, proliferation, survival. Identification of cellular and mitochondrial Ca2+ transporters and understanding their functional mechanisms open up new prospects for their using as therapeutic targets. PMID:27420625

  9. Calcium and olfactory transduction.

    PubMed

    Winegar, B D; Rosick, E R; Schafer, R

    1988-01-01

    1. Inorganic cations, organic calcium antagonists, and calmodulin antagonists were applied to olfactory epithelia of frogs (Rana pipiens) while recording electroolfactogram (EOG) responses. 2. Inorganic cations inhibited EOGs in a rank order, reflecting their calcium channel blocking potency: La3+ greater than Zn2+ greater than Cd2+ greater than Al3+ greater than Ca2+ greater than Sr2+ greater than Co2+ greater than Ba2+ greater than Mg2+. Barium ion significantly enhanced EOGs immediately following application. 3. Diltiazem and verapamil produced dose-dependent EOG inhibition. 4. Calmodulin antagonists inhibited EOGs without correlation to their anti-calmodulin potency. PMID:2904344

  10. Calcium metabolism in microgravity.

    PubMed

    Heer, M; Kamps, N; Biener, C; Korr, C; Boerger, A; Zittermann, A; Stehle, P; Drummer, C

    1999-09-01

    Unloading of weight bearing bones as induced by microgravity or immobilization has significant impacts on the calcium and bone metabolism and is the most likely cause for space osteoporosis. During a 4.5 to 6 month stay in space most of the astronauts develop a reduction in bone mineral density in spine, femoral neck, trochanter, and pelvis of 1%-1.6% measured by Dual Energy X-ray Absorption (DEXA). Dependent on the mission length and the individual turnover rates of the astronauts it can even reach individual losses of up to 14% in the femoral neck. Osteoporosis itself is defined as the deterioration of bone tissue leading to enhanced bone fragility and to a consequent increase in fracture risk. Thinking of long-term missions to Mars or interplanetary missions for years, space osteoporosis is one of the major concerns for manned spaceflight. However, decrease in bone density can be initiated differently. It either can be caused by increases in bone formation and bone resorption resulting in a net bone loss, as obtained in fast looser postmenopausal osteoporosis. On the other hand decrease in bone formation and increase in bone resorption also leads to bone losses as obtained in slow looser postmenopausal osteoporosis or in Anorexia Nervosa patients. Biomarkers of bone turnover measured during several missions indicated that the pattern of space osteoporosis is very similar to the pattern of Anorexia Nervosa patients or slow looser postmenopausal osteoporosis. However, beside unloading, other risk factors for space osteoporosis exist such as stress, nutrition, fluid shifts, dehydration and bone perfusion. Especially nutritional factors may contribute considerably to the development of osteoporosis. From earthbound studies it is known that calcium supplementation in women and men can prevent bone loss of 1% bone per year. Based on these results we studied the calcium intake during several European missions and performed an experiment during the German MIR 97 mission

  11. Evidence for a possible calcium flux dependent cardiomyopathy in hyperthyroidism

    SciTech Connect

    Barat, J.L.; Wicker, P.; Manley, W.; Brendel, A.J.; Lefort, G.; San Galli, F.; Commenges-Ducos, M.; Latapie, J.L.; Riviere, J.; Ducassou, D.

    1985-05-01

    This study was designed to test the hypothesis that the impaired functional cardiac reserve to exercise in hyperthyroidism is related to alterations in the regulation of calcium transport. In 2l hyperthyroid patients, the left ventricular ejection fraction (LVEF) was measured using equilibrium gated radionuclide angiocardiography at rest and during supine dynamic exercise. After a recovery period, the patients performed a second exercise study after random administration of Verapamil, a calcium entry blocker (11 pts), or propanolol, a beta adrenergic antagonist (10 pts) for comparison. The results showed i) normal resting LVEF with no significant change during exercise before any medication, ii) resting LVEF significantly decreased after Propanolol, and no significantly changed after Verapamil, iii) during exercise, significant increase of LVEF after Verapamil, and no significant change after Propanolol. These results are consistent with previous studies showing that abnormal change in LVEF during exercise in hyperthyroidism seems independent of beta adrenergic activation, and suggest a reversible functional cardiomyopathy dependent of calcium transporting systems.

  12. T-Type Calcium Channel: A Privileged Gate for Calcium Entry and Control of Adrenal Steroidogenesis

    PubMed Central

    Rossier, Michel F.

    2016-01-01

    Intracellular calcium plays a crucial role in modulating a variety of functions such as muscle contraction, hormone secretion, gene expression, or cell growth. Calcium signaling has been however shown to be more complex than initially thought. Indeed, it is confined within cell microdomains, and different calcium channels are associated with different functions, as shown by various channelopathies. Sporadic mutations on voltage-operated L-type calcium channels in adrenal glomerulosa cells have been shown recently to be the second most prevalent genetic abnormalities present in human aldosterone-producing adenoma. The observed modification of the threshold of activation of the mutated channels not only provides an explanation for this gain of function but also reminds us on the importance of maintaining adequate electrophysiological characteristics to make channels able to exert specific cellular functions. Indeed, the contribution to steroid production of the various calcium channels expressed in adrenocortical cells is not equal, and the reason has been investigated for a long time. Given the very negative resting potential of these cells, and the small membrane depolarization induced by their physiological agonists, low threshold T-type calcium channels are particularly well suited for responding under these conditions and conveying calcium into the cell, at the right place for controlling steroidogenesis. In contrast, high threshold L-type channels are normally activated by much stronger cell depolarizations. The fact that dihydropyridine calcium antagonists, specific for L-type channels, are poorly efficient for reducing aldosterone secretion either in vivo or in vitro, strongly supports the view that these two types of channels differently affect steroid biosynthesis. Whether a similar analysis is transposable to fasciculata cells and cortisol secretion is one of the questions addressed in the present review. No similar mutations on L-type or T-type channels

  13. CALCIUM-INDUCED SUPRAMOLECULAR STRUCTURES IN THE CALCIUM CASEINATE SYSTEM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molecular details deciphering the spontaneous calcium-induced protein aggregation process in the calcium caseinate system remain obscure. Understanding this complex process could lead to potential new applications of this important food ingredient. In this work, we studied calcium-induced supra...

  14. Intestinal Stem Cells: Got Calcium?

    PubMed

    Nászai, Máté; Cordero, Julia B

    2016-02-01

    Calcium ions are well-known intracellular signalling molecules. A new study identifies local cytoplasmic calcium as a central integrator of metabolic and proliferative signals in Drosophila intestinal stem cells. PMID:26859268

  15. Children's Bone Health and Calcium

    MedlinePlus

    ... Trials Resources and Publications Children's Bone Health and Calcium: Condition Information Skip sharing on social media links ... straight, walk, run, and lead an active life. Calcium is one of the key dietary building blocks ...

  16. Calcium carbonate with magnesium overdose

    MedlinePlus

    The combination of calcium carbonate and magnesium is commonly found in antacids. These medicines provide heartburn relief. Calcium carbonate with magnesium overdose occurs when someone takes more than the ...

  17. Calcium Content of Common Foods

    MedlinePlus

    ... 130 Waffle 80 g 47 Meat, fish and eggs Food Serving Size Calcium (mg) Egg 50 g 27 Red meat 120 g 7 ... foods Food Serving Size Calcium (mg) Quiche (cheese, eggs) 200 g 212 Omelette with cheese 120 g ...

  18. Calcium and phosphorus fluxes during hemodialysis with low calcium dialysate.

    PubMed

    Hou, S H; Zhao, J; Ellman, C F; Hu, J; Griffin, Z; Spiegel, D M; Bourdeau, J E

    1991-08-01

    We evaluated the acute effects of varying dialysate calcium concentration on plasma concentrations and dialyzer fluxes of calcium and phosphorus in adult hemodialysis patients. Seven individuals with stable end-stage renal failure were dialyzed 4 hours, three times weekly. The effects of dialysates containing 1.75, 1.25, or 0.75 mmol/L (70.1, 50.1, or 30.1 mg/L) of calcium were compared. Each patient was studied once at each bath calcium concentration. Compared with the predialysis mean value of 2.27 mmol/L (9.1 mg/dL), plasma total calcium concentration increased, remained constant, or decreased with the 1.75-, 1.25-, or 0.75-mmol/L calcium dialysates, respectively. The 0.75-mmol/L calcium dialysate did not cause signs or symptoms of hypocalcemia (and the plasma calcium concentration did not fall below 1.80 mmol/L [7.2 mg/dL]). Plasma phosphorus concentrations decreased equally from a predialysis mean value of 2.16 mmol/L (6.7 mg/dL), regardless of the dialysate calcium concentration. After 4 hours of treatment with the three different dialysates, the cumulative calcium fluxes were significantly different. With 1.75 mmol/L calcium, mean bodily calcium accumulation was 21.9 mmol (879 mg). With 1.25 mmol/L, there was no net calcium flux. With 0.75 mmol/L, mean patient calcium loss was 5.8 mmol (231 mg). Mean phosphorus removal after 4 hours was 32.5 mmol (1,006 mg) and was unaffected by dialysate calcium concentration.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1867178

  19. Calcium regulation of mitochondrial carriers.

    PubMed

    Del Arco, Araceli; Contreras, Laura; Pardo, Beatriz; Satrustegui, Jorgina

    2016-10-01

    Mitochondrial function is regulated by calcium. In addition to the long known effects of matrix Ca(2+), regulation of metabolite transport by extramitochondrial Ca(2+) represents an alternative Ca(2+)-dependent mechanism to regulate mitochondrial function. The Ca(2+) regulated mitochondrial transporters (CaMCs) are well suited for that role, as they contain long N-terminal extensions harboring EF-hand Ca(2+) binding domains facing the intermembrane space. They fall in two groups, the aspartate/glutamate exchangers, AGCs, major components of the NADH malate aspartate shuttle (MAS) and urea cycle, and the ATP-Mg(2+)/Pi exchangers or short CaMCs (APCs or SCaMCs). The AGCs are activated by relatively low Ca(2+) levels only slightly higher than resting Ca(2+), whereas all SCaMCs studied so far require strong Ca(2+) signals, above micromolar, for activation. In addition, AGCs are not strictly Ca(2+) dependent, being active even in Ca(2+)-free conditions. Thus, AGCs are well suited to respond to small Ca(2+) signals and that do not reach mitochondria. In contrast, ATP-Mg(2+)/Pi carriers are inactive in Ca(2+) free conditions and activation requires Ca(2+) signals that will also activate the calcium uniporter (MCU). By changing the net content of adenine nucleotides of the matrix upon activation, SCaMCs regulate the activity of the permeability transition pore, and the Ca(2+) retention capacity of mitochondria (CRC), two functions synergizing with those of the MCU. The different Ca(2+) activation properties of the two CaMCs are discussed in relation to their newly obtained structures. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou. PMID:27033520

  20. Calcium biofortification of crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More than half of the world's population is deficient in calcium (Ca), iron (Fe), iodine (I), magnesium (Mg), selenium (Se), or zinc (Zn). The consumption of plants, directly or via livestock, containing inadequate concentrations of particular minerals causes these deficiencies. Agronomic and geneti...

  1. Calcium and Vitamin D

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adequate intakes of vitamin D and calcium are essential preventative measures and essential components of any therapeutic regimen for osteoporosis. Vitamin D is also important for the prevention of falls. Current evidence suggests that a 25-hydroxyvitamin D level of 75 nmol/L (30 ng/ml) or higher ...

  2. High Blood Calcium (Hypercalcemia)

    MedlinePlus

    ... as sarcoidosis • Hormone disorders, such as overactive thyroid (hyperthyroidism) • A genetic condition called familial hypocalciuric hypercalcemia • Kidney ... topics: www.hormone.org (search for PHPT, calcium, hyperthyroidism, or osteoporosis) • MedlinePlus (National Institutes of Health-NIH): ...

  3. Calcium silicate insulation structure

    DOEpatents

    Kollie, Thomas G.; Lauf, Robert J.

    1995-01-01

    An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

  4. Diet and calcium stones.

    PubMed Central

    Hughes, J; Norman, R W

    1992-01-01

    OBJECTIVE: To review the current literature on the dietary modification of urinary risk factors as a means of reducing the likelihood of recurrent stone formation and to develop practical dietary recommendations that might be useful to this end. DATA SOURCES: MEDLINE was searched for English-language articles published from 1983 to 1990. Additional references were selected from the bibliographies of identified articles. STUDY SELECTION: Nonrandomized trials and retrospective reviews were included because of a paucity of randomized controlled trials. DATA SYNTHESIS: Information on the dietary intake of calcium, oxalate, protein, sodium and fibre and on alcohol and fluid intake was used to develop practical guidelines on dietary modification. CONCLUSION: Dietary modification plays an important role in the reduction of urinary risk factors in patients with calcium stone disease of the urinary tract. As an initial form of prevention attention should be directed toward moderating the intake of calcium, oxalate, protein, sodium and alcohol and increasing the intake of fibre and water. Future research should include an assessment of the long-term reduction of dietary and urinary risk factors and the rates of recurrence of calcium stones. PMID:1310430

  5. Cellular Mechanisms of Calcium-Mediated Triggered Activity

    NASA Astrophysics Data System (ADS)

    Song, Zhen

    Life-threatening cardiac arrhythmias continue to pose a major health problem. Ventricular fibrillation, which is a complex form of electrical wave turbulence in the lower chambers of the heart, stops the heart from pumping and is the largest cause of natural death in the United States. Atrial fibrillation, a related form of wave turbulence in the upper heart chambers, is in turn the most common arrhythmia diagnosed in clinical practice. Despite extensive research to date, mechanisms of cardiac arrhythmias remain poorly understood. It is well established that both spatial disorder of the refractory period of heart cells and triggered activity (TA) jointly contribute to the initiation and maintenance of arrhythmias. TA broadly refers to the abnormal generation of a single or a sequence of abnormal excitation waves from a small submillimeter region of the heart in the interval of time between two normal waves generated by the heart's natural pacemaker (the sinoatrial node). TA has been widely investigated experimentally and occurs in several pathological conditions where the intracellular concentration of free Ca2+ ions in heart cells becomes elevated. Under such conditions, Ca2+ can be spontaneously released from intracellular stores, thereby driving an electrogenic current that exchanges 3Na+ ions for one Ca2+ ion across the cell membrane. This current in turn depolarizes the membrane of heart cells after a normal excitation. If this calcium-mediated "delayed after depolarization'' (DAD) is sufficiently large, it can generate an action potential. While the arrhythmogenic importance of spontaneous Ca2+ release and DADs is well appreciated, the conditions under which they occur in heart pathologies remain poorly understood. Calcium overload is only one factor among several other factors that can promote DADs, including sympathetic nerve stimulation, different expression levels of membrane ion channels and calcium handling proteins, and different mutations of those

  6. The Plasma Membrane Calcium Pump

    NASA Technical Reports Server (NTRS)

    Rasmussen, H.

    1983-01-01

    Three aspect of cellular calcium metabolism in animal cells was discussed including the importance of the plasma membrane in calcium homeostasis, experiments dealing with the actual mechanism of the calcium pump, and the function of the pump in relationship to the mitochondria and to the function of calmodulin in the intact cell.

  7. Impregnating Coal With Calcium Carbonate

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Voecks, Gerald E.; Gavalas, George R.

    1991-01-01

    Relatively inexpensive process proposed for impregnating coal with calcium carbonate to increase rates of gasification and combustion of coal and to reduce emission of sulfur by trapping sulfur in calcium sulfide. Process involves aqueous-phase reactions between carbon dioxide (contained within pore network of coal) and calcium acetate. Coal impregnated with CO2 by exposing it to CO2 at high pressure.

  8. Fragile cycles

    NASA Astrophysics Data System (ADS)

    Bonatti, Ch.; Díaz, L. J.

    We study diffeomorphisms f with heterodimensional cycles, that is, heteroclinic cycles associated to saddles p and q with different indices. Such a cycle is called fragile if there is no diffeomorphism close to f with a robust cycle associated to hyperbolic sets containing the continuations of p and q. We construct a codimension one submanifold of Diff(S×S) that consists of diffeomorphisms with fragile heterodimensional cycles. Our construction holds for any manifold of dimension ⩾4.

  9. Foot abnormalities of wild birds

    USGS Publications Warehouse

    Herman, C.M.; Locke, L.N.; Clark, G.M.

    1962-01-01

    The various foot abnormalities that occur in birds, including pox, scaly-leg, bumble-foot, ergotism and freezing are reviewed. In addition, our findings at the Patuxent Wildlife Research Center include pox from dove, mockingbird, cowbird, grackle and several species of sparrows. Scaly-leg has been particularly prevalent on icterids. Bumble foot has been observed in a whistling swan and in a group of captive woodcock. Ergotism is reported from a series of captive Canada geese from North Dakota. Several drug treatments recommended by others are presented.

  10. Making chromosome abnormalities treatable conditions.

    PubMed

    Cody, Jannine DeMars; Hale, Daniel Esten

    2015-09-01

    Individuals affected by the classic chromosome deletion syndromes which were first identified at the beginning of the genetic age, are now positioned to benefit from genomic advances. This issue highlights five of these conditions (4p-, 5p-, 11q-, 18p-, and 18q-). It focuses on the increased in understanding of the molecular underpinnings and envisions how these can be transformed into effective treatments. While it is scientifically exciting to see the phenotypic manifestations of hemizygosity being increasingly understood at the molecular and cellular level, it is even more amazing to consider that we are now on the road to making chromosome abnormalities treatable conditions. PMID:26351122