Sample records for abnormal circadian rhythm

  1. Abnormality of circadian rhythm of serum melatonin and other biochemical parameters in fibromyalgia syndrome.

    PubMed

    Mahdi, Abbas Ali; Fatima, Ghizal; Das, Siddhartha Kumar; Verma, Nar Singh

    2011-04-01

    Fibromyalgia syndrome (FMS) is a complex chronic condition causing widespread pain and variety of other symptoms. It produces pain in the soft tissues located around joints throughout the body. FMS has unknown etiology and its pathophysiology is not fully understood. However, abnormality in circadian rhythm of hormonal profiles and cytokines has been observed in this disorder. Moreover, there are reports of deficiency of serotonin, melatonin, cortisol and cytokines in FMS patients, which are fully regulated by circadian rhythm. Melatonin, the primary hormone of the pineal gland regulates the body's circadian rhythm and normally its levels begin to rise in the mid-to-late evening, remain high for most of the night, and then decrease in the early morning. FMS patients have lower melatonin secretion during the hours of darkness than the healthy subjects. This may contribute to impaired sleep at night, fatigue during the day and changed pain perception. Studies have shown blunting of normal diurnal cortisol rhythm, with elevated evening serum cortisol level in patients with FMS. Thus, due to perturbed level of cortisol secretion several symptoms of FMS may occur. Moreover, disturbed cytokine levels have also been reported in FMS patients. Therefore, circadian rhythm can be an important factor in the pathophysiology, diagnosis and treatment of FMS. This article explores the circadian pattern of abnormalities in FMS patients, as this may help in better understanding the role of variation in symptoms of FMS and its possible relationship with circadian variations of melatonin, cortisol, cytokines and serotonin levels.

  2. Circadian rhythms of women with fibromyalgia

    NASA Technical Reports Server (NTRS)

    Klerman, E. B.; Goldenberg, D. L.; Brown, E. N.; Maliszewski, A. M.; Adler, G. K.

    2001-01-01

    Fibromyalgia syndrome is a chronic and debilitating disorder characterized by widespread nonarticular musculoskeletal pain whose etiology is unknown. Many of the symptoms of this syndrome, including difficulty sleeping, fatigue, malaise, myalgias, gastrointestinal complaints, and decreased cognitive function, are similar to those observed in individuals whose circadian pacemaker is abnormally aligned with their sleep-wake schedule or with local environmental time. Abnormalities in melatonin and cortisol, two hormones whose secretion is strongly influenced by the circadian pacemaker, have been reported in women with fibromyalgia. We studied the circadian rhythms of 10 women with fibromyalgia and 12 control healthy women. The protocol controlled factors known to affect markers of the circadian system, including light levels, posture, sleep-wake state, meals, and activity. The timing of the events in the protocol were calculated relative to the habitual sleep-wake schedule of each individual subject. Under these conditions, we found no significant difference between the women with fibromyalgia and control women in the circadian amplitude or phase of rhythms of melatonin, cortisol, and core body temperature. The average circadian phases expressed in hours posthabitual bedtime for women with and without fibromyalgia were 3:43 +/- 0:19 and 3:46 +/- 0:13, respectively, for melatonin; 10:13 +/- 0:23 and 10:32 +/- 0:20, respectively for cortisol; and 5:19 +/- 0:19 and 4:57 +/- 0:33, respectively, for core body temperature phases. Both groups of women had similar circadian rhythms in self-reported alertness. Although pain and stiffness were significantly increased in women with fibromyalgia compared with healthy women, there were no circadian rhythms in either parameter. We suggest that abnormalities in circadian rhythmicity are not a primary cause of fibromyalgia or its symptoms.

  3. Sleep and circadian rhythm disturbance in bipolar disorder.

    PubMed

    Bradley, A J; Webb-Mitchell, R; Hazu, A; Slater, N; Middleton, B; Gallagher, P; McAllister-Williams, H; Anderson, K N

    2017-07-01

    Subjective reports of insomnia and hypersomnia are common in bipolar disorder (BD). It is unclear to what extent these relate to underlying circadian rhythm disturbance (CRD). In this study we aimed to objectively assess sleep and circadian rhythm in a cohort of patients with BD compared to matched controls. Forty-six patients with BD and 42 controls had comprehensive sleep/circadian rhythm assessment with respiratory sleep studies, prolonged accelerometry over 3 weeks, sleep questionnaires and diaries, melatonin levels, alongside mood, psychosocial functioning and quality of life (QoL) questionnaires. Twenty-three (50%) patients with BD had abnormal sleep, of whom 12 (52%) had CRD and 29% had obstructive sleep apnoea. Patients with abnormal sleep had lower 24-h melatonin secretion compared to controls and patients with normal sleep. Abnormal sleep/CRD in BD was associated with impaired functioning and worse QoL. BD is associated with high rates of abnormal sleep and CRD. The association between these disorders, mood and functioning, and the direction of causality, warrants further investigation.

  4. Circadian Rhythm in Bipolar Disorder: A review of the literature.

    PubMed

    Takaesu, Yoshikazu

    2018-06-05

    Sleep disturbances and circadian rhythm dysfunction have been widely demonstrated in patients with bipolar disorder (BD). Irregularity of the sleep-wake rhythm, eveningness chronotype, abnormality of melatonin secretion, vulnerability of clock genes, and the irregularity of social time cues have also been well-documented in BD. Circadian rhythm dysfunction is prominent in BD compared with that in major depressive disorders, implying that circadian rhythm dysfunction is a trait marker of BD. In the clinical course of BD, the circadian rhythm dysfunctions may act as predictors for the first onset of BD and the relapse of mood episodes. Treatments focusing on sleep disturbances and circadian rhythm dysfunction in combination with pharmacological, psychosocial, and chronobiological treatments are believed to be useful for relapse prevention. Further studies are therefore warranted to clarify the relationship between circadian rhythm dysfunction and the pathophysiology of BD to develop treatment strategies for achieving recovery in BD patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Toward a complex system understanding of bipolar disorder: A chaotic model of abnormal circadian activity rhythms in euthymic bipolar disorder.

    PubMed

    Hadaeghi, Fatemeh; Hashemi Golpayegani, Mohammad Reza; Jafari, Sajad; Murray, Greg

    2016-08-01

    In the absence of a comprehensive neural model to explain the underlying mechanisms of disturbed circadian function in bipolar disorder, mathematical modeling is a helpful tool. Here, circadian activity as a response to exogenous daily cycles is proposed to be the product of interactions between neuronal networks in cortical (cognitive processing) and subcortical (pacemaker) areas of the brain. To investigate the dynamical aspects of the link between disturbed circadian activity rhythms and abnormalities of neurotransmitter functioning in frontal areas of the brain, we developed a novel mathematical model of a chaotic system which represents fluctuations in circadian activity in bipolar disorder as changes in the model's parameters. A novel map-based chaotic system was developed to capture disturbances in circadian activity across the two extreme mood states of bipolar disorder. The model uses chaos theory to characterize interplay between neurotransmitter functions and rhythm generation; it aims to illuminate key activity phenomenology in bipolar disorder, including prolonged sleep intervals, decreased total activity and attenuated amplitude of the diurnal activity rhythm. To test our new cortical-circadian mathematical model of bipolar disorder, we utilized previously collected locomotor activity data recorded from normal subjects and bipolar patients by wrist-worn actigraphs. All control parameters in the proposed model have an important role in replicating the different aspects of circadian activity rhythm generation in the brain. The model can successfully replicate deviations in sleep/wake time intervals corresponding to manic and depressive episodes of bipolar disorder, in which one of the excitatory or inhibitory pathways is abnormally dominant. Although neuroimaging research has strongly implicated a reciprocal interaction between cortical and subcortical regions as pathogenic in bipolar disorder, this is the first model to mathematically represent this

  6. Circadian Rhythm Sleep Disorders

    PubMed Central

    Zhu, Lirong; Zee, Phyllis C.

    2012-01-01

    There have been remarkable advances in our understanding of the molecular, cellular and physiological mechanisms underlying the regulation of circadian rhythms, as well as the impact of circadian dysfunction on health and disease. This information has transformed our understanding of the effect of circadian rhythm sleep disorders (CRSD) on health, performance and safety. CRSDs are caused by alterations of the central circadian time-keeping system, or a misalignment of the endogenous circadian rhythm and the external environment. In this section, we provide a review of circadian biology and discuss the pathophysiology, clinical features, diagnosis, and treatment of the most commonly encountered CRSDs in clinical practice. PMID:23099133

  7. Circadian melatonin concentration rhythm is lost in pregnant women with altered blood pressure rhythm.

    PubMed

    Tranquilli, A L; Turi, A; Giannubilo, S R; Garbati, E

    2004-03-01

    We assessed the correlation between the rhythm of melatonin concentration and circadian blood pressure patterns in normal and hypertensive pregnancy. Ambulatory 24-h blood pressure and blood samples every 4 h were monitored in 16 primigravidae who had shown an abnormal circadian blood pressure pattern (eight pre-eclamptic and eight normotensive) in pregnancy and 6-12 months after pregnancy. The circadian rhythm was analyzed by chronobiological measures. Eight normotensive women with maintained blood pressure rhythm served as controls. During pregnancy, melatonin concentration was significantly higher in pre-eclamptic than in normotensive women (pre-eclampsia, 29.4 +/- 1.9 pg/ml, normotensin, altered rhythm, 15.6 +/- 2.1; controls, 22.7 +/- 1.8; p < 0.001). This difference faded after pregnancy, owing to the fall observed in pre-eclampsia (11.8 +/- 3.2 pg/ml, 9.8 +/- 2.1, and 11.1 +/- 2.0, respectively; NS). The rhythm of melatonin concentration was lost in all pregnant women with loss of blood pressure rhythm. After pregnancy, normotensive women showed a reappearance of both melatonin and blood pressure rhythm, whereas pre-eclamptic women showed a reappearance of blood pressure but not melatonin rhythm. The loss of blood pressure rhythm in pregnancy is consistent with the loss of melatonin concentration rhythm. In pre-eclamptic women, the normalization of blood pressure rhythm, while melatonin rhythm remained altered, suggests a temporal or causal priority of circadian concentration of melatonin in the determination of blood pressure trend.

  8. Rotigotine Improves Abnormal Circadian Rhythm of Blood Pressure in Parkinson's Disease.

    PubMed

    Oka, Hisayoshi; Nakahara, Atuso; Umehara, Tadashi

    2018-05-15

    Cardiovascular autonomic failure is commonly associated with Parkinson's disease (PD), affecting the daily lives of patients. Rotigotine was recently reported not to influence cardiovascular autonomic responses in contrast to other dopaminergic drugs. The effect of rotigotine on daily blood pressure (BP) fluctuations might reflect autonomic failure in patients with PD. Twenty-five PD patients who were receiving rotigotine and 12 patients not receiving rotigotine were recruited. Systolic BP during the daytime and nighttime was measured by 24-h BP monitoring at an interval of 2 years. The patients were divided into 3 groups according to the BP fluctuation type: dippers (nocturnal fall in BP ≥10%), non-dippers (0-10%), and risers (< 0%). The time course of BP was compared between the patients given rotigotine and those not given rotigotine. Among the 25 patients who received rotigotine, the BP type worsened in 2 patients, was unchanged in 16 patients, and improved in 7 patients. Among the 12 patients who were not receiving rotigotine, the BP type worsened in 5 patients, was unchanged in 4 patients, and improved only in 3 patients (p = 0.042). Rotigotine improves the abnormal circadian rhythm of BP in patients with PD. Rotigotine was suggested to have favorable effects on cardiovascular autonomic responses and circadian rhythm in patients with PD. © 2018 S. Karger AG, Basel.

  9. Sleep, Circadian Rhythms, and Performance During Space Shuttle Missions

    NASA Technical Reports Server (NTRS)

    Neri, David F.; Czeisler, Charles A.; Dijk, Derk-Jan; Wyatt, James K.; Ronda, Joseph M.; Hughes, Rod J.

    2003-01-01

    Sleep and circadian rhythms may be disturbed during spaceflight, and these disturbances can affect crewmembers' performance during waking hours. The mechanisms underlying sleep and circadian rhythm disturbances in space are not well understood, and effective countermeasures are not yet available. We investigated sleep, circadian rhythms, cognitive performance, and light-dark cycles in five astronauts prior to, during, and after the 16-day STS-90 mission and the IO-day STS-95 mission. The efficacy of low-dose, alternative-night, oral melatonin administration as a countermeasure for sleep disturbances was evaluated. During these missions, scheduled rest activity cycles were 20-35 minutes shorter than 24 hours. Light levels on the middeck and in the Spacelab were very low; whereas on the flight deck (which has several windows), they were highly variable. Circadian rhythm abnormalities were observed. During the second half of the missions, the rhythm of urinary cortisol appeared to be delayed relative to the sleep-wake schedule. Performance during wakefulness was impaired. Astronauts slept only about 6.5 hours per day, and subjective sleep quality was lower in space. No beneficial effects of melatonin (0.3 mg administered prior to sleep episodes on alternate nights) were observed. A surprising finding was a marked increase in rapid eye movement (REM) sleep upon return to Earth. We conclude that these Space Shuttle missions were associated with circadian rhythm disturbances, sleep loss, decrements in neurobehavioral performance, and alterations in REM sleep homeostasis. Shorter than 24-hour rest-activity schedules and exposure to light-dark cycles inadequate for optimal circadian synchronization may have contributed to these disturbances.

  10. Circadian Rhythm Disruption Promotes Lung Tumorigenesis.

    PubMed

    Papagiannakopoulos, Thales; Bauer, Matthew R; Davidson, Shawn M; Heimann, Megan; Subbaraj, Lakshmipriya; Bhutkar, Arjun; Bartlebaugh, Jordan; Vander Heiden, Matthew G; Jacks, Tyler

    2016-08-09

    Circadian rhythms are 24-hr oscillations that control a variety of biological processes in living systems, including two hallmarks of cancer, cell division and metabolism. Circadian rhythm disruption by shift work is associated with greater risk for cancer development and poor prognosis, suggesting a putative tumor-suppressive role for circadian rhythm homeostasis. Using a genetically engineered mouse model of lung adenocarcinoma, we have characterized the effects of circadian rhythm disruption on lung tumorigenesis. We demonstrate that both physiologic perturbation (jet lag) and genetic mutation of the central circadian clock components decreased survival and promoted lung tumor growth and progression. The core circadian genes Per2 and Bmal1 were shown to have cell-autonomous tumor-suppressive roles in transformation and lung tumor progression. Loss of the central clock components led to increased c-Myc expression, enhanced proliferation, and metabolic dysregulation. Our findings demonstrate that both systemic and somatic disruption of circadian rhythms contribute to cancer progression. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Circadian Rhythm Sleep-Wake Disorders.

    PubMed

    Pavlova, Milena

    2017-08-01

    The endogenous circadian rhythms are one of the cardinal processes that control sleep. They are self-sustaining biological rhythms with a periodicity of approximately 24 hours that may be entrained by external zeitgebers (German for time givers), such as light, exercise, and meal times. This article discusses the physiology of the circadian rhythms, their relationship to neurologic disease, and the presentation and treatment of circadian rhythm sleep-wake disorders. Classic examples of circadian rhythms include cortisol and melatonin secretion, body temperature, and urine volume. More recently, the impact of circadian rhythm on several neurologic disorders has been investigated, such as the timing of occurrence of epileptic seizures as well as neurobehavioral functioning in dementia. Further updates include a more in-depth understanding of the symptoms, consequences, and treatment of circadian sleep-wake disorders, which may occur because of extrinsic misalignment with clock time or because of intrinsic dysfunction of the brain. An example of extrinsic misalignment occurs with jet lag during transmeridian travel or with intrinsic circadian rhythm sleep-wake disorders such as advanced or delayed sleep-wake phase disorders. In advanced sleep-wake phase disorder, which is most common in elderly individuals, sleep onset and morning arousal are undesirably early, leading to impaired evening function with excessive sleepiness and sleep-maintenance insomnia with early morning awakening. By contrast, delayed sleep-wake phase disorder is characterized by an inability to initiate sleep before the early morning hours, with subsequent delayed rise time, leading to clinical symptoms of severe sleep-onset insomnia coupled with excessive daytime sleepiness in the morning hours, as patients are unable to "sleep in" to attain sufficient sleep quantity. Irregular sleep-wake rhythm disorder is misentrainment with patches of brief sleep and wakefulness spread throughout the day

  12. Sleep- and circadian rhythm-associated pathways as therapeutic targets in bipolar disorder.

    PubMed

    Bellivier, Frank; Geoffroy, Pierre-Alexis; Etain, Bruno; Scott, Jan

    2015-06-01

    Disruptions in sleep and circadian rhythms are observed in individuals with bipolar disorders (BD), both during acute mood episodes and remission. Such abnormalities may relate to dysfunction of the molecular circadian clock and could offer a target for new drugs. This review focuses on clinical, actigraphic, biochemical and genetic biomarkers of BDs, as well as animal and cellular models, and highlights that sleep and circadian rhythm disturbances are closely linked to the susceptibility to BDs and vulnerability to mood relapses. As lithium is likely to act as a synchronizer and stabilizer of circadian rhythms, we will review pharmacogenetic studies testing circadian gene polymorphisms and prophylactic response to lithium. Interventions such as sleep deprivation, light therapy and psychological therapies may also target sleep and circadian disruptions in BDs efficiently for treatment and prevention of bipolar depression. We suggest that future research should clarify the associations between sleep and circadian rhythm disturbances and alterations of the molecular clock in order to identify critical targets within the circadian pathway. The investigation of such targets using human cellular models or animal models combined with 'omics' approaches are crucial steps for new drug development.

  13. Melatonin secretion is impaired in women with preeclampsia and an abnormal circadian blood pressure rhythm.

    PubMed

    Bouchlariotou, Sofia; Liakopoulos, Vassilios; Giannopoulou, Myrto; Arampatzis, Spyridon; Eleftheriadis, Theodoros; Mertens, Peter R; Zintzaras, Elias; Messinis, Ioannis E; Stefanidis, Ioannis

    2014-08-01

    Non-dipping circadian blood pressure (BP) is a common finding in preeclampsia, accompanied by adverse outcomes. Melatonin plays pivotal role in biological circadian rhythms. This study investigated the relationship between melatonin secretion and circadian BP rhythm in preeclampsia. Cases were women with preeclampsia treated between January 2006 and June 2007 in the University Hospital of Larissa. Volunteers with normal pregnancy, matched for chronological and gestational age, served as controls. Twenty-four hour ambulatory BP monitoring was applied. Serum melatonin and urine 6-sulfatoxymelatonin levels were determined in day and night time samples by enzyme-linked immunoassays. Measurements were repeated 2 months after delivery. Thirty-one women with preeclampsia and 20 controls were included. Twenty-one of the 31 women with preeclampsia were non-dippers. Compared to normal pregnancy, in preeclampsia there were significantly lower night time melatonin (48.4 ± 24.7 vs. 85.4 ± 26.9 pg/mL, p<0.001) levels. Adjustment for circadian BP rhythm status ascribed this finding exclusively to non-dippers (p<0.01). Two months after delivery, in 11 of the 21 non-dippers both circadian BP and melatonin secretion rhythm reappeared. In contrast, in cases with retained non-dipping status (n=10) melatonin secretion rhythm remained impaired: daytime versus night time melatonin (33.5 ± 13.0 vs. 28.0 ± 13.8 pg/mL, p=0.386). Urinary 6-sulfatoxymelatonin levels were, overall, similar to serum melatonin. Circadian BP and melatonin secretion rhythm follow parallel course in preeclampsia, both during pregnancy and, at least 2 months after delivery. Our findings may be not sufficient to implicate a putative therapeutic effect of melatonin, however, they clearly emphasize that its involvement in the pathogenesis of a non-dipping BP in preeclampsia needs intensive further investigation.

  14. Nocturnal polyuria is related to absent circadian rhythm of glomerular filtration rate.

    PubMed

    De Guchtenaere, A; Vande Walle, C; Van Sintjan, P; Raes, A; Donckerwolcke, R; Van Laecke, E; Hoebeke, P; Vande Walle, J

    2007-12-01

    Monosymptomatic nocturnal enuresis is frequently associated with nocturnal polyuria and low urinary osmolality during the night. Initial studies found decreased vasopressin levels associated with low urinary osmolality overnight. Together with the documented desmopressin response, this was suggestive of a primary role for vasopressin in the pathogenesis of enuresis in the absence of bladder dysfunction. Recent studies no longer confirm this primary role of vasopressin. Other pathogenetic factors such as disordered renal sodium handling, hypercalciuria, increased prostaglandins and/or osmotic excretion might have a role. So far, little attention has been given to abnormalities in the circadian rhythm of glomerular filtration rate. We evaluated the circadian rhythm of glomerular filtration rate and diuresis in children with desmopressin resistant monosymptomatic nocturnal enuresis and nocturnal polyuria. We evaluated 15 children (9 boys) 9 to 14 years old with monosymptomatic nocturnal enuresis and nocturnal polyuria resistant to desmopressin treatment. The control group consisted of 25 children (12 boys) 9 to 16 years old with monosymptomatic nocturnal enuresis without nocturnal polyuria. Compared to the control population, children with nocturnal polyuria lost their circadian rhythm not only for diuresis and sodium excretion but also for glomerular filtration rate. Patients with monosymptomatic nocturnal enuresis and nocturnal polyuria lack a normal circadian rhythm for diuresis and sodium excretion, and the circadian rhythm of glomerular filtration rate is absent. This absence of circadian rhythm of glomerular filtration rate and/or sodium handling cannot be explained by a primary role of vasopressin, but rather by a disorder in circadian rhythm of renal glomerular and/or tubular functions.

  15. [Research advances in circadian rhythm of epileptic seizures].

    PubMed

    Yang, Wen-Qi; Li, Hong

    2017-01-01

    The time phase of epileptic seizures has attracted more and more attention. Epileptic seizures have their own circadian rhythm. The same type of epilepsy has different seizure frequencies in different time periods and states (such as sleeping/awakening state and natural day/night cycle). The circadian rhythm of epileptic seizures has complex molecular and endocrine mechanisms, and currently there are several hypotheses. Clarification of the circadian rhythm of epileptic seizures and prevention and administration according to such circadian rhythm can effectively control seizures and reduce the adverse effects of drugs. The research on the circadian rhythm of epileptic seizures provides a new idea for the treatment of epilepsy.

  16. Circadian Rhythm Sleep-Wake Disorders.

    PubMed

    Abbott, Sabra M; Reid, Kathryn J; Zee, Phyllis C

    2015-12-01

    The circadian system regulates the timing and expression of nearly all biological processes, most notably, the sleep-wake cycle, and disruption of this system can result in adverse effects on both physical and mental health. The circadian rhythm sleep-wake disorders (CRSWDs) consist of 5 disorders that are due primarily to pathology of the circadian clock or to a misalignment of the timing of the endogenous circadian rhythm with the environment. This article outlines the nature of these disorders, the association of many of these disorders with psychiatric illness, and available treatment options. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Circadian rhythms of temperature and activity in obese and lean Zucker rats

    NASA Technical Reports Server (NTRS)

    Murakami, D. M.; Horwitz, B. A.; Fuller, C. A.

    1995-01-01

    The circadian timing system is important in the regulation of feeding and metabolism, both of which are aberrant in the obese Zucker rat. This study tested the hypothesis that these abnormalities involve a deficit in circadian regulation by examining the circadian rhythms of body temperature and activity in lean and obese Zucker rats exposed to normal light-dark cycles, constant light, and constant dark. Significant deficits in both daily mean and circadian amplitude of temperature and activity were found in obese Zucker female rats relative to lean controls in all lighting conditions. However, the circadian period of obese Zucker rats did not exhibit differences relative to lean controls in either of the constant lighting conditions. These results indicate that although the circadian regulation of temperature and activity in obese Zucker female rats is in fact depressed, obese rats do exhibit normal entrainment and pacemaker functions in the circadian timing system. The results suggest a deficit in the process that generates the amplitude of the circadian rhythm.

  18. Sleep and circadian rhythms

    NASA Technical Reports Server (NTRS)

    Monk, Timothy H.

    1991-01-01

    Three interacting processes are involved in the preservation of circadian rhythms: (1) endogenous rhythm generation mechanisms, (2) entrainment mechanisms to keep these rhythms 'on track', and (3) exogenous masking processes stemming from changes in environment and bahavior. These processes, particularly the latter two, can be dramatically affected in individuals of advanced age and in space travelers, with a consequent disruption in sleep and daytime functioning. This paper presents results of a phase-shift experiment investigating the age-related effects of the exogeneous component of circadian rhythms in various physiological and psychological functions by comparing these functions in middle aged and old subjects. Dramatic differences were found between the two age groups in measures of sleep, mood, activation, and performance efficiency.

  19. Circadian Rhythms in Cyanobacteria

    PubMed Central

    Golden, Susan S.

    2015-01-01

    SUMMARY Life on earth is subject to daily and predictable fluctuations in light intensity, temperature, and humidity created by rotation of the earth. Circadian rhythms, generated by a circadian clock, control temporal programs of cellular physiology to facilitate adaptation to daily environmental changes. Circadian rhythms are nearly ubiquitous and are found in both prokaryotic and eukaryotic organisms. Here we introduce the molecular mechanism of the circadian clock in the model cyanobacterium Synechococcus elongatus PCC 7942. We review the current understanding of the cyanobacterial clock, emphasizing recent work that has generated a more comprehensive understanding of how the circadian oscillator becomes synchronized with the external environment and how information from the oscillator is transmitted to generate rhythms of biological activity. These results have changed how we think about the clock, shifting away from a linear model to one in which the clock is viewed as an interactive network of multifunctional components that are integrated into the context of the cell in order to pace and reset the oscillator. We conclude with a discussion of how this basic timekeeping mechanism differs in other cyanobacterial species and how information gleaned from work in cyanobacteria can be translated to understanding rhythmic phenomena in other prokaryotic systems. PMID:26335718

  20. Development of cortisol circadian rhythm in infancy.

    PubMed

    de Weerth, Carolina; Zijl, Robbert H; Buitelaar, Jan K

    2003-08-01

    Cortisol is the final product of the hypothalamus-pituitary-adrenal (HPA) axis. It is secreted in a pulsatile fashion that displays a circadian rhythm. Infants are born without a circadian rhythm in cortisol and they acquire it during their first year of life. Studies do not agree on the age of appearance of the circadian rhythm (varying between 2 weeks till the age of 9 months) nor on whether it is related to the appearance of the sleep-wake circadian rhythm. The object of the present study was to find evidence of the age of appearance of the diurnal rhythm of cortisol and to compare the results obtained by several different analysis methods on a new data set. Cortisol was determined in salival samples of 14 normally developing infants who were followed monthly between the ages of 2 and 5 months. The data were analyzed with several previously published analysis methods as well as with Multilevel Analysis (Hierarchical Linear Modeling). The previously published analysis methods each produced different results when applied to the current data set. Moreover, our results indicate striking differences between young infants in both age of appearance and stability of the diurnal cortisol rhythm. Also, a link was found between the appearance of the sleep-wake circadian rhythm and the cortisol circadian rhythm. An important intraindividual variability in cortisol levels was found even after correcting for the different variables that affect cortisol (i.e. time of sampling, feeding, etc.). Although the choice of analysis method influences the age of appearance obtained, our use of HLM shows that the infants' own variability in onset and stability of the cortisol circadian rhythm greatly contributes to the different results.

  1. Circadian Rhythm of Glomerular Filtration and Solute Handling Related to Nocturnal Enuresis.

    PubMed

    Dossche, L; Raes, A; Hoebeke, P; De Bruyne, P; Vande Walle, J

    2016-01-01

    Although nocturnal polyuria in patients with monosymptomatic enuresis can largely be explained by the decreased nocturnal vasopressin secretion hypothesis, other circadian rhythms in the kidney also seem to have a role. We recently documented an absent day/night rhythm in a subgroup of desmopressin refractory cases. We explore the importance of abnormal circadian rhythm of glomerular filtration and tubular (sodium, potassium) parameters in patients with monosymptomatic enuresis. In this retrospective study of a tertiary enuresis population we collected data subsequent to a standardized screening (International Children's Continence Society questionnaire), 14-day diary for nocturnal enuresis and diuresis, and 24-hour concentration profile. The study population consisted of 139 children with nocturnal enuresis who were 5 years or older. Children with nonmonosymptomatic nocturnal enuresis were used as controls. There was a maintained circadian rhythm of glomerular filtration, sodium, osmotic excretion and diuresis rate in children with monosymptomatic and nonmonosymptomatic nocturnal enuresis, and there was no difference between the 2 groups. Secondary analysis revealed that in patients with nocturnal polyuria (with monosymptomatic or nonmonosymptomatic nocturnal enuresis) circadian rhythm of glomerular filtration, sodium and osmotic excretion, and diuresis rate was diminished in contrast to those without nocturnal polyuria (p <0.001). Circadian rhythm of the kidney does not differ between patients with nonmonosymptomatic and monosymptomatic enuresis. However, the subgroup with enuresis and nocturnal polyuria has a diminished circadian rhythm of nocturnal diuresis, sodium excretion and glomerular filtration in contrast to children without nocturnal polyuria. This observation cannot be explained by the vasopressin theory alone. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. Valproic acid disrupts the oscillatory expression of core circadian rhythm transcription factors.

    PubMed

    Griggs, Chanel A; Malm, Scott W; Jaime-Frias, Rosa; Smith, Catharine L

    2018-01-15

    Valproic acid (VPA) is a well-established therapeutic used in treatment of seizure and mood disorders as well as migraines and a known hepatotoxicant. About 50% of VPA users experience metabolic disruptions, including weight gain, hyperlipidemia, and hyperinsulinemia, among others. Several of these metabolic abnormalities are similar to the effects of circadian rhythm disruption. In the current study, we examine the effect of VPA exposure on the expression of core circadian transcription factors that drive the circadian clock via a transcription-translation feedback loop. In cells with an unsynchronized clock, VPA simultaneously upregulated the expression of genes encoding core circadian transcription factors that regulate the positive and negative limbs of the feedback loop. Using low dose glucocorticoid, we synchronized cultured fibroblast cells to a circadian oscillatory pattern. Whether VPA was added at the time of synchronization or 12h later at CT12, we found that VPA disrupted the oscillatory expression of multiple genes encoding essential transcription factors that regulate circadian rhythm. Therefore, we conclude that VPA has a potent effect on the circadian rhythm transcription-translation feedback loop that may be linked to negative VPA side effects in humans. Furthermore, our study suggests potential chronopharmacology implications of VPA usage. Copyright © 2017. Published by Elsevier Inc.

  3. Nocturnal and Circadian Rhythm of Blood Pressure Is Associated with Renal Structure Damage and Function in Patients with IgAN.

    PubMed

    Lin, Lirong; Zhang, Huhai; Yang, Jurong; Zhang, Jianguo; Li, Kailong; Huo, Bengang; Dai, Huanzi; Zhang, Weiwei; Yang, Jie; Tan, Wei; He, Yani

    2016-01-01

    Abnormal circadian rhythm of blood pressure (BP) is closely related to target organ damage in hypertension. However, the association between abnormal circadian rhythm of BP and renal injury is not clear. We investigated whether renal injury is associated with nocturnal BP and circadian rhythm of BP in Chinese IgAN patients. Clinic and 24 h ambulatory BP monitoring data were obtained from 330 Chinese IgAN patients with mean 24 h BP < 130/80 and mean daytime BP < 135/85 mmHg. Renal histopathological injury was determined according to the Oxford classification of IgAN. Among the 330 IgAN subjects, 35.8% suffered from nocturnal hypertension, 61.5% had abnormal circadian BP, and 27% had nocturnal hypertension with a nondipping pattern. Compared with nocturnal normotensive patients, patients with nocturnal hypertension had significantly higher levels of blood cystatin C, blood uric acid, and lower estimated glomerular filtration rate (eGFR), and significantly a higher mean renal tissue injury score. The nondipping hypertensive group had significantly higher nocturnal diastolic and systolic BP, blood uric acid, and glomerulosclerosis rates, whereas eGFR was lower. In nondipping hypertensive patients, urinary sodium excretion and renal tissue injury scores were significantly higher than dipping patients. Nocturnal hypertension and abnormal circadian BP correlated with renal tissue injury, renal interstitial fibrosis, and aortic arch atherosclerosis. Abnormal circadian rhythm of BP and nocturnal hypertension are common clinical manifestations in Chinese IgAN patients with normal mean 24 h BP. Abnormal circadian BP and nocturnal hypertension may accelerate IgAN progression by inducing renal dysfunction and histopathological damage. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  4. Circadian rhythm and menopause.

    PubMed

    Pines, A

    2016-12-01

    Circadian rhythm is an internal biological clock which initiates and monitors various physiological processes with a fixed time-related schedule. The master circadian pacemaker is located in the suprachiasmatic nucleus in the hypothalamus. The circadian clock undergoes significant changes throughout the life span, at both the physiological and molecular levels. This cyclical physiological process, which is very complex and multifactorial, may be associated with metabolic alterations, atherosclerosis, impaired cognition, mood disturbances and even development of cancer. Sex differences do exist, and the well-known sleep disturbances associated with menopause are a good example. Circadian rhythm was detected in the daily pattern of hot flushes, with a peak in the afternoons. Endogenous secretion of melatonin decreases with aging across genders, and, among women, menopause is associated with a significant reduction of melatonin levels, affecting sleep. Although it might seem that hot flushes and melatonin secretion are likely related, there are not enough data to support such a hypothesis.

  5. Characterisation of circadian rhythms of various duckweeds.

    PubMed

    Muranaka, T; Okada, M; Yomo, J; Kubota, S; Oyama, T

    2015-01-01

    The plant circadian clock controls various physiological phenomena that are important for adaptation to natural day-night cycles. Many components of the circadian clock have been identified in Arabidopsis thaliana, the model plant for molecular genetic studies. Recent studies revealed evolutionary conservation of clock components in green plants. Homologues of clock-related genes have been isolated from Lemna gibba and Lemna aequinoctialis, and it has been demonstrated that these homologues function in the clock system in a manner similar to their functioning in Arabidopsis. While clock components are widely conserved, circadian phenomena display diversity even within the Lemna genus. In order to survey the full extent of diversity in circadian rhythms among duckweed plants, we characterised the circadian rhythms of duckweed by employing a semi-transient bioluminescent reporter system. Using a particle bombardment method, circadian bioluminescent reporters were introduced into nine strains representing five duckweed species: Spirodela polyrhiza, Landoltia punctata, Lemna gibba, L. aequinoctialis and Wolffia columbiana. We then monitored luciferase (luc+) reporter activities driven by AtCCA1, ZmUBQ1 or CaMV35S promoters under entrainment and free-running conditions. Under entrainment, AtCCA1::luc+ showed similar diurnal rhythms in all strains. This suggests that the mechanism of biological timing under day-night cycles is conserved throughout the evolution of duckweeds. Under free-running conditions, we observed circadian rhythms of AtCCA1::luc+, ZmUBQ1::luc+ and CaMV35S::luc+. These circadian rhythms showed diversity in period length and sustainability, suggesting that circadian clock mechanisms are somewhat diversified among duckweeds. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Implications of Circadian Rhythm in Dopamine and Mood Regulation.

    PubMed

    Kim, Jeongah; Jang, Sangwon; Choe, Han Kyoung; Chung, Sooyoung; Son, Gi Hoon; Kim, Kyungjin

    2017-07-31

    Mammalian physiology and behavior are regulated by an internal time-keeping system, referred to as circadian rhythm. The circadian timing system has a hierarchical organization composed of the master clock in the suprachiasmatic nucleus (SCN) and local clocks in extra-SCN brain regions and peripheral organs. The circadian clock molecular mechanism involves a network of transcription-translation feedback loops. In addition to the clinical association between circadian rhythm disruption and mood disorders, recent studies have suggested a molecular link between mood regulation and circadian rhythm. Specifically, genetic deletion of the circadian nuclear receptor Rev-erbα induces mania-like behavior caused by increased midbrain dopaminergic (DAergic) tone at dusk. The association between circadian rhythm and emotion-related behaviors can be applied to pathological conditions, including neurodegenerative diseases. In Parkinson's disease (PD), DAergic neurons in the substantia nigra pars compacta progressively degenerate leading to motor dysfunction. Patients with PD also exhibit non-motor symptoms, including sleep disorder and neuropsychiatric disorders. Thus, it is important to understand the mechanisms that link the molecular circadian clock and brain machinery in the regulation of emotional behaviors and related midbrain DAergic neuronal circuits in healthy and pathological states. This review summarizes the current literature regarding the association between circadian rhythm and mood regulation from a chronobiological perspective, and may provide insight into therapeutic approaches to target psychiatric symptoms in neurodegenerative diseases involving circadian rhythm dysfunction.

  7. Circadian Rhythm Sleep-Wake Disorders in Older Adults.

    PubMed

    Kim, Jee Hyun; Duffy, Jeanne F

    2018-03-01

    The timing, duration, and consolidation of sleep result from the interaction of the circadian timing system with a sleep-wake homeostatic process. When aligned and functioning optimally, this allows wakefulness throughout the day and a long consolidated sleep episode at night. Mismatch between the desired timing of sleep and the ability to fall and remain asleep is a hallmark of the circadian rhythm sleep-wake disorders. This article discusses changes in circadian regulation of sleep with aging; how age influences the prevalence, diagnosis, and treatment of circadian rhythm sleep-wake disorders; and how neurologic diseases in older patients affect circadian rhythms and sleep. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Circadian rhythm in idiopathic normal pressure hydrocephalus.

    PubMed

    Eleftheriou, Andreas; Ulander, Martin; Lundin, Fredrik

    2018-01-01

    The pathogenesis of idiopathic normal pressure hydrocephalus (iNPH) takes place in structures close to the cerebral ventricular system. Suprachiasmatic nucleus (SCN), situated close to the third ventricle, is involved in circadian rhythm. Diurnal disturbances are well-known in demented patients. The cognitive decline in iNPH is potentially reversible after a shunt operation. Diurnal rhythm has never been studied in iNPH. We hypothesize that there is a disturbance of circadian rhythm in iNPH-patients and the aim was to study any changes of the diurnal rhythm (mesor and circadian period) as well as any changes of the diurnal amplitude and acrophase of the activity in iNPH-patients before and after a shunt operation. Twenty consecutive iNPH-patients fulfilling the criteria of the American iNPH-guidelines, 9 males and 11 females, mean age 73 (49-81) years were included. The patients underwent a pre-operative clinical work-up including 10m walk time (w10mt) steps (w10ms), TUG-time (TUGt) and steps (TUGs) and for cognitive function an MMSE score was measured. In order to receive circadian rhythm data actigraphic recordings were performed using the SenseWear 2 (BodyMedia Inc Pittsburgh, PA, USA) actigraph. Cosinor analyses of accelerometry data were performed in "R" using non-linear regression with Levenburg- Marquardt estimation. Pre- and post-operative data regarding mesor, amplitude and circadian period were compared using Wilcoxon-Mann-Whitney test for paired data. Twenty patients were evaluated before and three month post-operatively. Motor function (w10mt, w10ms, TUGt, TUGs) was significantly improved while MMSE was not significantly changed. Actigraphic measurements (mesor, amplitude and circadian period) showed no significant changes after shunt operation. This is the first systematic study of circadian rhythm in iNPH-patients. We found no significant changes in circadian rhythm after shunt surgery. The conceptual idea of diurnal rhythm changes in hydrocephalus is

  9. Synchronous circadian voltage rhythms with asynchronous calcium rhythms in the suprachiasmatic nucleus

    PubMed Central

    Enoki, Ryosuke; Oda, Yoshiaki; Mieda, Michihiro; Ono, Daisuke; Honma, Sato; Honma, Ken-ichi

    2017-01-01

    The suprachiasmatic nucleus (SCN), the master circadian clock, contains a network composed of multiple types of neurons which are thought to form a hierarchical and multioscillator system. The molecular clock machinery in SCN neurons drives membrane excitability and sends time cue signals to various brain regions and peripheral organs. However, how and at what time of the day these neurons transmit output signals remain largely unknown. Here, we successfully visualized circadian voltage rhythms optically for many days using a genetically encoded voltage sensor, ArcLightD. Unexpectedly, the voltage rhythms are synchronized across the entire SCN network of cultured slices, whereas simultaneously recorded Ca2+ rhythms are topologically specific to the dorsal and ventral regions. We further found that the temporal order of these two rhythms is cell-type specific: The Ca2+ rhythms phase-lead the voltage rhythms in AVP neurons but Ca2+ and voltage rhythms are nearly in phase in VIP neurons. We confirmed that circadian firing rhythms are also synchronous and are coupled with the voltage rhythms. These results indicate that SCN networks with asynchronous Ca2+ rhythms produce coherent voltage rhythms. PMID:28270612

  10. Development of salivary cortisol circadian rhythm in preterm infants.

    PubMed

    Ivars, Katrin; Nelson, Nina; Theodorsson, Annette; Theodorsson, Elvar; Ström, Jakob O; Mörelius, Evalotte

    2017-01-01

    To investigate at what age preterm infants develop a salivary cortisol circadian rhythm and identify whether it is dependent on gestational age and/or postnatal age. To evaluate whether salivary cortisol circadian rhythm development is related to behavioral regularity. To elucidate salivary cortisol levels in preterm infants during the first year of life. This prospective, longitudinal study included 51 preterm infants. 130 healthy full-term infants served as controls. Monthly salivary cortisol levels were obtained in the morning (07:30-09:30), at noon (10:00-12:00), and in the evening (19:30-21:30), beginning at gestational age week 28-32 and continuing until twelve months corrected age. Behavioral regularity was studied using the Baby Behavior Questionnaire. A salivary cortisol circadian rhythm was established by one month corrected age and persisted throughout the first year. The preterm infants showed a cortisol pattern increasingly more alike the full-term infants as the first year progressed. The preterm infants increase in behavioral regularity with age but no correlation was found between the development of salivary cortisol circadian rhythm and the development of behavior regularity. The time to establish salivary cortisol circadian rhythm differed between preterm and full-term infants according to postnatal age (p = 0.001) and was dependent on gestational age. Monthly salivary cortisol levels for preterm infants from birth until twelve months are presented. Additional findings were that topical corticosteroid medication was associated with higher concentrations of salivary cortisol (p = 0.02) and establishment of salivary cortisol circadian rhythm occurred later in infants treated with topical corticosteroid medication (p = 0.02). Salivary cortisol circadian rhythm is established by one month corrected age in preterm infants. Establishment of salivary cortisol circadian rhythm is related to gestational age rather than to postnatal age. Salivary cortisol

  11. Circadian rhythms and obesity in mammals.

    PubMed

    Froy, Oren

    2012-01-01

    Obesity has become a serious public health problem and a major risk factor for the development of illnesses, such as insulin resistance and hypertension. Attempts to understand the causes of obesity and develop new therapeutic strategies have mostly focused on caloric intake and energy expenditure. Recent studies have shown that the circadian clock controls energy homeostasis by regulating the circadian expression and/or activity of enzymes, hormones, and transport systems involved in metabolism. Moreover, disruption of circadian rhythms leads to obesity and metabolic disorders. Therefore, it is plausible that resetting of the circadian clock can be used as a new approach to attenuate obesity. Feeding regimens, such as restricted feeding (RF), calorie restriction (CR), and intermittent fasting (IF), provide a time cue and reset the circadian clock and lead to better health. In contrast, high-fat (HF) diet leads to disrupted circadian expression of metabolic factors and obesity. This paper focuses on circadian rhythms and their link to obesity.

  12. Calcium Channel Genes Associated with Bipolar Disorder Modulate Lithium's Amplification of Circadian Rhythms

    PubMed Central

    McCarthy, Michael J.; LeRoux, Melissa; Wei, Heather; Beesley, Stephen; Kelsoe, John R.; Welsh, David K.

    2015-01-01

    Bipolar disorder (BD) is associated with mood episodes and low amplitude circadian rhythms. Previously, we demonstrated that fibroblasts grown from BD patients show weaker amplification of circadian rhythms by lithium compared to control cells. Since calcium signals impact upon the circadian clock, and L-type calcium channels (LTCC) have emerged as genetic risk factors for BD, we examined whether loss of function in LTCCs accounts for the attenuated response to lithium in BD cells. We used fluorescent dyes to measure Ca2+ changes in BD and control fibroblasts after lithium treatment, and bioluminescent reporters to measure Per2∷luc rhythms in fibroblasts from BD patients, human controls, and mice while pharmacologically or genetically manipulating calcium channels. Longitudinal expression of LTCC genes (CACNA1C, CACNA1D and CACNB3) was then measured over 12-24 hr in BD and control cells. Our results indicate that independently of LTCCs, lithium stimulated intracellular Ca2+ less effectively in BD vs. control fibroblasts. In longitudinal studies, pharmacological inhibition of LTCCs or knockdown of CACNA1A, CACNA1C, CACNA1D and CACNB3 altered circadian rhythm amplitude. Diltiazem and knockdown of CACNA1C or CACNA1D eliminated lithium's ability to amplify rhythms. Knockdown of CACNA1A or CACNB3 altered baseline rhythms, but did not affect rhythm amplification by lithium. In human fibroblasts, CACNA1C genotype predicted the amplitude response to lithium, and the expression profiles of CACNA1C, CACNA1D and CACNB3 were altered in BD vs. controls. We conclude that in cells from BD patients, calcium signaling is abnormal, and that LTCCs underlie the failure of lithium to amplify circadian rhythms. PMID:26476274

  13. A New Perspective for Parkinson's Disease: Circadian Rhythm.

    PubMed

    Li, Siyue; Wang, Yali; Wang, Fen; Hu, Li-Fang; Liu, Chun-Feng

    2017-02-01

    Circadian rhythm is manifested by the behavioral and physiological changes from day to night, which is controlled by the pacemaker and its regulator. The former is located at the suprachiasmatic nuclei (SCN) in the anterior hypothalamus, while the latter is composed of clock genes present in all tissues. Circadian desynchronization influences normal patterns of day-night rhythms such as sleep and alertness cycles, rest and activity cycles. Parkinson's disease (PD) exhibits diurnal fluctuations. Circadian dysfunction has been observed in PD patients and animal models, which may result in negative consequences to the homeostasis and even exacerbate the disease progression. Therefore, circadian therapies, including light stimulation, physical activity, dietary and social schedules, may be helpful for PD patients. However, the cellular and molecular mechanisms that underlie the circadian dysfunction in PD remain elusive. Further research on circadian patterns is needed. This article summarizes the existing research on the circadian rhythms in PD, focusing on the clinical symptom variations, molecular changes, as well as the available treatment options.

  14. Metabolic circadian rhythms in embryonic turtles.

    PubMed

    Loudon, Fiona Kay; Spencer, Ricky-John; Strassmeyer, Alana; Harland, Karen

    2013-07-01

    Oviparous species are model organisms for investigating embryonic development of endogenous physiological circadian rhythms without the influence of maternal biorhythms. Recent studies have demonstrated that heart rates and metabolic rates of embryonic turtles are not constant or always maximal and can be altered in response to the presence of embryos at a more advanced stage of development within the nest. A first step in understanding the physiological mechanisms underpinning these responses in embryonic ectothermic organisms is to develop metabolic profiles (e.g., heart rate) at different temperatures throughout incubation. Heart beat and rhythmic patterns or changes in development may represent important signals or cues within a nest and may be vital to coordinate synchronous hatching well in advance of the final stages of incubation. We developed baseline embryonic heart-rate profiles of embryos of the short-necked Murray River turtle (Emydura macquarii) to determine the stage of embryogenesis that metabolic circadian rhythms become established, if at all. Eggs were incubated at constant temperatures (26°C and 30°C) and heart rates were monitored at 6-h intervals over 24 h every 7-11 days until hatching. Circadian heart rate rhythms were detected at the mid-gestation period and were maintained until hatching. Heart rates throughout the day varied by up to 20% over 24 h and were not related to time of day. This study demonstrated that endogenous metabolic circadian rhythms in developing embryos in turtle eggs establish earlier in embryogenesis than those documented in other vertebrate taxa during embryogenesis. Early establishment of circadian rhythms in heart rates may be critical for communication among embryos and synchrony in hatching and emergence from the nest.

  15. Circadian Rhythm Neuropeptides in Drosophila: Signals for Normal Circadian Function and Circadian Neurodegenerative Disease.

    PubMed

    He, Qiankun; Wu, Binbin; Price, Jeffrey L; Zhao, Zhangwu

    2017-04-21

    Circadian rhythm is a ubiquitous phenomenon in many organisms ranging from prokaryotes to eukaryotes. During more than four decades, the intrinsic and exogenous regulations of circadian rhythm have been studied. This review summarizes the core endogenous oscillation in Drosophila and then focuses on the neuropeptides, neurotransmitters and hormones that mediate its outputs and integration in Drosophila and the links between several of these (pigment dispersing factor (PDF) and insulin-like peptides) and neurodegenerative disease. These signaling molecules convey important network connectivity and signaling information for normal circadian function, but PDF and insulin-like peptides can also convey signals that lead to apoptosis, enhanced neurodegeneration and cognitive decline in flies carrying circadian mutations or in a senescent state.

  16. Circadian Rhythm Neuropeptides in Drosophila: Signals for Normal Circadian Function and Circadian Neurodegenerative Disease

    PubMed Central

    He, Qiankun; Wu, Binbin; Price, Jeffrey L.; Zhao, Zhangwu

    2017-01-01

    Circadian rhythm is a ubiquitous phenomenon in many organisms ranging from prokaryotes to eukaryotes. During more than four decades, the intrinsic and exogenous regulations of circadian rhythm have been studied. This review summarizes the core endogenous oscillation in Drosophila and then focuses on the neuropeptides, neurotransmitters and hormones that mediate its outputs and integration in Drosophila and the links between several of these (pigment dispersing factor (PDF) and insulin-like peptides) and neurodegenerative disease. These signaling molecules convey important network connectivity and signaling information for normal circadian function, but PDF and insulin-like peptides can also convey signals that lead to apoptosis, enhanced neurodegeneration and cognitive decline in flies carrying circadian mutations or in a senescent state. PMID:28430154

  17. Preliminary characterization of persisting circadian rhythms during space flight

    NASA Technical Reports Server (NTRS)

    Sultzman, F. M.

    1984-01-01

    In order to evaluate the function of the circadian timing system in space, the circadian rhythm of conidiation of the fungus Neurospora crassa was monitored in constant darkness on the STS 9 flight of the Space Shuttle Columbia. During the first 7 days of spaceflight many tubes showed a marked reduction in the apparent amplitude of the conidiation rhythm, and some cultures appeared arrhythmic. There was more variability in the growth rate and circadian rhythms of individual cultures in space than is usually seen on earth. The results of this experiment indicate that while the circadian rhythm of Neurospora conidiation can persist outside of the earth's environment, either the timekeeping process or its expression is altered in space.

  18. Correlations between Circadian Rhythms and Growth in Challenging Environments.

    PubMed

    Dakhiya, Yuri; Hussien, Duaa; Fridman, Eyal; Kiflawi, Moshe; Green, Rachel

    2017-03-01

    In plants, the circadian system controls a plethora of processes, many with agronomic importance, such as photosynthesis, photoprotection, stomatal opening, and photoperiodic development, as well as molecular processes, such as gene expression. It has been suggested that modifying circadian rhythms may be a means to manipulate crops to develop improved plants for agriculture. However, there is very little information on how the clock influences the performance of crop plants. We used a noninvasive, high-throughput technique, based on prompt chlorophyll fluorescence, to measure circadian rhythms and demonstrated that the technique works in a range of plants. Using fluorescence, we analyzed circadian rhythms in populations of wild barley ( Hordeum vulgare ssp. spontaneum ) from widely different ecogeographical locations in the Southern Levant part of the Fertile Crescent, an area with a high proportion of the total genetic variation of wild barley. Our results show that there is variability for circadian traits in the wild barley lines. We observed that circadian period lengths were correlated with temperature and aspect at the sites of origin of the plants, while the amplitudes of the rhythms were correlated with soil composition. Thus, different environmental parameters may exert selection on circadian rhythms. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Heterogeneity induces rhythms of weakly coupled circadian neurons

    NASA Astrophysics Data System (ADS)

    Gu, Changgui; Liang, Xiaoming; Yang, Huijie; Rohling, Jos H. T.

    2016-02-01

    The main clock located in the suprachiasmatic nucleus (SCN) regulates circadian rhythms in mammals. The SCN is composed of approximately twenty thousand heterogeneous self-oscillating neurons, that have intrinsic periods varying from 22 h to 28 h. They are coupled through neurotransmitters and neuropeptides to form a network and output a uniform periodic rhythm. Previous studies found that the heterogeneity of the neurons leads to attenuation of the circadian rhythm with strong cellular coupling. In the present study, we investigate the heterogeneity of the neurons and of the network in the condition of constant darkness. Interestingly, we found that the heterogeneity of weakly coupled neurons enables them to oscillate and strengthen the circadian rhythm. In addition, we found that the period of the SCN network increases with the increase of the degree of heterogeneity. As the network heterogeneity does not change the dynamics of the rhythm, our study shows that the heterogeneity of the neurons is vitally important for rhythm generation in weakly coupled systems, such as the SCN, and it provides a new method to strengthen the circadian rhythm, as well as an alternative explanation for differences in free running periods between species in the absence of the daily cycle.

  20. The effect of lens aging and cataract surgery on circadian rhythm.

    PubMed

    Yan, Shen-Shen; Wang, Wei

    2016-01-01

    Many organisms have evolved an approximately 24-hour circadian rhythm that allows them to achieve internal physiological homeostasis with external environment. Suprachiasmatic nucleus (SCN) is the central pacemaker of circadian rhythm, and its activity is entrained to the external light-dark cycle. The SCN controls circadian rhythm through regulating the synthesis of melatonin by pineal gland via a multisynaptic pathway. Light, especially short-wavelength blue light, is the most potent environmental time cue in circadian photoentrainment. Recently, the discovery of a novel type of retinal photoreceptors, intrinsically photosensitive retinal ganglion cells, sheds light on the mechanism of circadian photoentrainment and raises concerns about the effect of ocular diseases on circadian system. With age, light transmittance is significantly decreased due to the aging of crystalline lens, thus possibly resulting in progressive loss of circadian photoreception. In the current review, we summarize the circadian physiology, highlight the important role of light in circadian rhythm regulation, discuss about the correlation between age-related cataract and sleep disorders, and compare the effect of blue light- filtering intraocular lenses (IOLs) and ultraviolet only filtering IOLs on circadian rhythm.

  1. Glial Cells in the Genesis and Regulation of Circadian Rhythms

    PubMed Central

    Chi-Castañeda, Donají; Ortega, Arturo

    2018-01-01

    Circadian rhythms are biological oscillations with a period of ~24 h. These rhythms are orchestrated by a circadian timekeeper in the suprachiasmatic nucleus of the hypothalamus, the circadian “master clock,” which exactly adjusts clock outputs to solar time via photic synchronization. At the molecular level, circadian rhythms are generated by the interaction of positive and negative feedback loops of transcriptional and translational processes of the so-called “clock genes.” A large number of clock genes encode numerous proteins that regulate their own transcription and that of other genes, collectively known as “clock-controlled genes.” In addition to the sleep/wake cycle, many cellular processes are regulated by circadian rhythms, including synaptic plasticity in which an exquisite interplay between neurons and glial cells takes place. In particular, there is compelling evidence suggesting that glial cells participate in and regulate synaptic plasticity in a circadian fashion, possibly representing the missing cellular and physiological link between circadian rhythms with learning and cognition processes. Here we review recent studies in support of this hypothesis, focusing on the interplay between glial cells, synaptic plasticity, and circadian rhythmogenesis. PMID:29483880

  2. Circadian rhythm abnormalities and autonomic dysfunction in patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis

    PubMed Central

    Díez-Noguera, Antoni

    2018-01-01

    Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) patients frequently show autonomic symptoms which may be associated with a hypothalamic dysfunction. This study aimed to explore circadian rhythm patterns in rest and activity and distal skin temperature (DST) and their association with self-reported outcome measures, in CFS/ME patients and healthy controls at two different times of year. Ten women who met both the 1994 CDC/Fukuda definition and 2003 Canadian criteria for CFS/ME were included in the study, along with ten healthy controls matched for age, sex and body mass index. Self-reported measures were used to assess fatigue, sleep quality, anxiety and depression, autonomic function and health-related quality of life. The ActTrust actigraph was used to record activity, DST and light intensity, with data intervals of one minute over seven consecutive days. Sleep variables were obtained through actigraphic analysis and from subjective sleep diary. The circadian variables and the spectral analysis of the rhythms were calculated. Linear regression analysis was used to evaluate the relationship between the rhythmic variables and clinical features. Recordings were taken in the same subjects in winter and summer. Results showed no differences in rhythm stability, sleep latency or number of awakenings between groups as measured with the actigraph. However, daily activity, the relative amplitude and the stability of the activity rhythm were lower in CFS/ME patients than in controls. DST was sensitive to environmental temperature and showed lower nocturnal values in CFS/ME patients than controls only in winter. A spectral analysis showed no differences in phase or amplitude of the 24h rhythm, but the power of the second harmonic (12h), revealed differences between groups (controls showed a post-lunch dip in activity and peak in DST, while CFS/ME patients did not) and correlated with clinical features. These findings suggest that circadian regulation and skin

  3. Dynamical Analysis of bantam-Regulated Drosophila Circadian Rhythm Model

    NASA Astrophysics Data System (ADS)

    Li, Ying; Liu, Zengrong

    MicroRNAs (miRNAs) interact with 3‧untranslated region (UTR) elements of target genes to regulate mRNA stability or translation, and play a crucial role in regulating many different biological processes. bantam, a conserved miRNA, is involved in several functions, such as regulating Drosophila growth and circadian rhythm. Recently, it has been discovered that bantam plays a crucial role in the core circadian pacemaker. In this paper, based on experimental observations, a detailed dynamical model of bantam-regulated circadian clock system is developed to show the post-transcriptional behaviors in the modulation of Drosophila circadian rhythm, in which the regulation of bantam is incorporated into a classical model. The dynamical behaviors of the model are consistent with the experimental observations, which shows that bantam is an important regulator of Drosophila circadian rhythm. The sensitivity analysis of parameters demonstrates that with the regulation of bantam the system is more sensitive to perturbations, indicating that bantam regulation makes it easier for the organism to modulate its period against the environmental perturbations. The effectiveness in rescuing locomotor activity rhythms of mutated flies shows that bantam is necessary for strong and sustained rhythms. In addition, the biological mechanisms of bantam regulation are analyzed, which may help us more clearly understand Drosophila circadian rhythm regulated by other miRNAs.

  4. Circadian Activity Rhythms, Time Urgency, and Achievement Concerns.

    ERIC Educational Resources Information Center

    Watts, Barbara L.

    Many physiological and psychological processes fluctuate throughout the day in fairly stable, rhythmic patterns. The relationship between individual differences in circadian activity rhythms and a sense of time urgency were explored as well as a number of achievement-related variables. Undergraduates (N=308), whose circadian activity rhythms were…

  5. Abnormality of circadian rhythm accompanied by an increase in frontal cortex serotonin in animal model of autism.

    PubMed

    Tsujino, Naohisa; Nakatani, Yasushi; Seki, Yoshinari; Nakasato, Akane; Nakamura, Michiko; Sugawara, Michiya; Arita, Hideho

    2007-02-01

    Several clinical reports have indicated that autistic patients often show disturbance of the circadian rhythm, which may be related to dysfunction of the serotonergic system in the brain. Using rats exposed prenatally to valproic acid (VPA) as an animal model of autism, we examined locomotor activity and feeding under a reversed 12-h light/dark cycle, and found disturbance of the circadian rhythm characterized by frequent arousal during the light/sleep phase. In addition, measurement of brain serotonin (5-HT) level using in vivo microdialysis showed that the brain 5-HT level in VPA-exposed rats was significantly higher than that in control rats. These results suggest that a higher brain 5-HT level might be responsible for the irregular sleep/awake rhythm in autism.

  6. Significance of circadian rhythms in severely brain-injured patients

    PubMed Central

    Lechinger, Julia; Santhi, Nayantara; del Giudice, Renata; Gnjezda, Maria-Teresa; Pichler, Gerald; Scarpatetti, Monika; Donis, Johann; Michitsch, Gabriele; Schabus, Manuel

    2017-01-01

    Objective: To investigate the relationship between the presence of a circadian body temperature rhythm and behaviorally assessed consciousness levels in patients with disorders of consciousness (DOC; i.e., vegetative state/unresponsive wakefulness syndrome or minimally conscious state). Methods: In a cross-sectional study, we investigated the presence of circadian temperature rhythms across 6 to 7 days using external skin temperature sensors in 18 patients with DOC. Beyond this, we examined the relationship between behaviorally assessed consciousness levels and circadian rhythmicity. Results: Analyses with Lomb-Scargle periodograms revealed significant circadian rhythmicity in all patients (range 23.5–26.3 hours). We found that especially scores on the arousal subscale of the Coma Recovery Scale–Revised were closely linked to the integrity of circadian variations in body temperature. Finally, we piloted whether bright light stimulation could boost circadian rhythmicity and found positive evidence in 2 out of 8 patients. Conclusion: The study provides evidence for an association between circadian body temperature rhythms and arousal as a necessary precondition for consciousness. Our findings also make a case for circadian rhythms as a target for treatment as well as the application of diagnostic and therapeutic means at times when cognitive performance is expected to peak. PMID:28424270

  7. Environmental synchronizers of squirrel monkey circadian rhythms

    NASA Technical Reports Server (NTRS)

    Sulzman, F. M.; Fuller, C. A.; Moore-Ede, M. C.

    1977-01-01

    Various temporal signals in the environment were tested to determine if they could synchronize the circadian timing system of the squirrel monkey (Saimiri sciureus). The influence of cycles of light and dark, eating and fasting, water availability and deprivation, warm and cool temperature, sound and quiet, and social interaction and isolation on the drinking and activity rhythms of unrestrained monkeys was examined. In the absence of other time cues, 24-hr cycles of each of these potential synchronizers were applied for up to 3 wk, and the periods of the monkey's circadian rhythms were examined. Only light-dark cycles and cycles of food availability were shown to be entraining agents, since they were effective in determining the period and phase of the rhythmic variables. In the presence of each of the other environmental cycles, the monkey's circadian rhythms exhibited free-running periods which were significantly different from 24 hr with all possible phase relationships between the rhythms and the environmental cycles being examined.

  8. The effect of lens aging and cataract surgery on circadian rhythm

    PubMed Central

    Yan, Shen-Shen; Wang, Wei

    2016-01-01

    Many organisms have evolved an approximately 24-hour circadian rhythm that allows them to achieve internal physiological homeostasis with external environment. Suprachiasmatic nucleus (SCN) is the central pacemaker of circadian rhythm, and its activity is entrained to the external light-dark cycle. The SCN controls circadian rhythm through regulating the synthesis of melatonin by pineal gland via a multisynaptic pathway. Light, especially short-wavelength blue light, is the most potent environmental time cue in circadian photoentrainment. Recently, the discovery of a novel type of retinal photoreceptors, intrinsically photosensitive retinal ganglion cells, sheds light on the mechanism of circadian photoentrainment and raises concerns about the effect of ocular diseases on circadian system. With age, light transmittance is significantly decreased due to the aging of crystalline lens, thus possibly resulting in progressive loss of circadian photoreception. In the current review, we summarize the circadian physiology, highlight the important role of light in circadian rhythm regulation, discuss about the correlation between age-related cataract and sleep disorders, and compare the effect of blue light- filtering intraocular lenses (IOLs) and ultraviolet only filtering IOLs on circadian rhythm. PMID:27500118

  9. Circadian rhythms in Macaca mulatta monkeys during Bion 11 flight

    NASA Technical Reports Server (NTRS)

    Alpatov, A. M.; Hoban-Higgins, T. M.; Klimovitsky, V. Y.; Tumurova, E. G.; Fuller, C. A.

    2000-01-01

    Circadian rhythms of primate brain temperature, head and ankle skin temperature, motor activity, and heart rate were studied during spaceflight and on the ground. In space, the circadian rhythms of all the parameters were synchronized with diurnal Zeitgebers. However, in space the brain temperature rhythm showed a significantly more delayed phase angle, which may be ascribed to an increase of the endogenous circadian period.

  10. A novel animal model linking adiposity to altered circadian rhythms

    USDA-ARS?s Scientific Manuscript database

    Researchers have provided evidence for a link between obesity and altered circadian rhythms (e.g., shift work, disrupted sleep), but the mechanism for this association is still unknown. Adipocytes possess an intrinsic circadian clock, and circadian rhythms in adipocytokines and adipose tissue metab...

  11. Circadian Rhythms Regulate Amelogenesis

    PubMed Central

    Zheng, Li; Seon, Yoon Ji; Mourão, Marcio A.; Schnell, Santiago; Kim, Doohak; Harada, Hidemitsu; Papagerakis, Silvana; Papagerakis, Petros

    2013-01-01

    Ameloblasts, the cells responsible for making enamel, modify their morphological features in response to specialized functions necessary for synchronized ameloblast differentiation and enamel formation. Secretory and maturation ameloblasts are characterized by the expression of stage-specific genes which follows strictly controlled repetitive patterns. Circadian rhythms are recognized as key regulators of development and diseases of many tissues including bone. Our aim was to gain novel insights on the role of clock genes in enamel formation and to explore the potential links between circadian rhythms and amelogenesis. Our data shows definitive evidence that the main clock genes (Bmal1, Clock, Per1 and Per2) oscillate in ameloblasts at regular circadian (24h) intervals both at RNA and protein levels. This study also reveals that two markers of ameloblast differentiation i.e. amelogenin (Amelx; a marker of secretory ameloblasts) and kallikrein-related peptidase 4 (Klk4, a marker of maturation ameloblasts) are downstream targets of clock genes. Both, Amelx and Klk4 show 24h oscillatory expression patterns and their expression levels are up-regulated after Bmal1 over-expression in HAT-7 ameloblast cells. Taken together, these data suggest that both the secretory and the maturation stage of amelogenesis might be under circadian control. Changes in clock genes expression patterns might result in significant alterations of enamel apposition and mineralization. PMID:23486183

  12. Activity in the ferret: oestradiol effects and circadian rhythms

    NASA Technical Reports Server (NTRS)

    Stockman, E. R.; Albers, H. E.; Baum, M. J.; Wurtman, R. J. (Principal Investigator)

    1985-01-01

    The present study was conducted to determine whether oestradiol increases activity in the European ferret (Mustela furo), whether this effect is sexually dimorphic, and whether a 24-h rhythm is present in the ferret's daily activity. The activity of male and female adult, postpubertally gonadectomized ferrets was monitored while they were maintained singly on a 13:11 light-dark cycle, before and after implantation with oestradiol-17 beta. Gonadectomized male and female ferrets exhibited equal levels of activity, and neither sex exhibited a significant change in activity following oestradiol implantation. None of the ferrets exhibited a strong circadian rhythm, although weak 24-h rhythms and shorter harmonic rhythms were present. Golden hamsters (Mesocricetus auratus), monitored in an identical manner, exhibited strong circadian rhythms. It was concluded that oestradiol administration may not cause an increase in activity in the ferret, and that this species lacks a strong circadian activity rhythm.

  13. A Circadian Rhythm Regulating Hyphal Melanization in Cercospora Kikuchii

    USDA-ARS?s Scientific Manuscript database

    Circadian rhythms, biochemical or developmental processes with a period length of approximately 24 hours, are thoroughly documented in plants and animals. However, virtually all of what is currently known about circadian rhythms in fungi is derived from the model fungus, Neurospora crassa, including...

  14. Chronotype and circadian rhythm in bipolar disorder: A systematic review.

    PubMed

    Melo, Matias C A; Abreu, Rafael L C; Linhares Neto, Vicente B; de Bruin, Pedro F C; de Bruin, Veralice M S

    2017-08-01

    Despite a complex relationship between mood, sleep and rhythm, the impact of circadian disruptions on bipolar disorder (BD) has not been clarified. The purpose of this systematic review was to define current evidence regarding chronotype and circadian rhythm patterns in BD patients. 42 studies were included, involving 3432 BD patients. Disruption of the biological rhythm was identified, even in drug-naïve BD patients and independently of mood status. Daily profiles of melatonin levels and cortisol indicated a delayed phase. Depression was more frequently associated with circadian alterations than euthymia. Few studies evaluated mania, demonstrating irregular rhythms. Evening type was more common in BD adults. Studies about the influence of chronotype on depressive symptoms showed conflicting results. Only one investigation observed the influences of chronotype in mania, revealing no significant association. Effects of psychoeducation and lithium on rhythm in BD patients were poorly studied, demonstrating no improvement of rhythm parameters. Studies about genetics are incipient. In conclusion, disruption in circadian rhythm and eveningness are common in BD. Prospective research evaluating the impact of circadian disruption on mood symptoms, metabolism, seasonality, the influence of age and the effects of mood stabilizers are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Sleep, circadian rhythm and body weight: parallel developments.

    PubMed

    Westerterp-Plantenga, Margriet S

    2016-11-01

    Circadian alignment is crucial for body-weight management, and for metabolic health. In this context, circadian alignment consists of alignment of sleep, meal patterns and physical activity. During puberty a significant reduction in sleep duration occurs, and pubertal status is inversely associated with sleep duration. A consistent inverse association between habitual sleep duration and body-weight development occurs, independent of possible confounders. Research on misalignment reveals that circadian misalignment affects sleep-architecture and subsequently disturbs glucose-insulin metabolism, substrate oxidation, leptin- and ghrelin concentrations, appetite, food reward, hypothalamic-pituitary-adrenal-axis activity and gut-peptide concentrations enhancing positive energy balance and metabolic disturbance. Not only aligning meals and sleep in a circadian way is crucial, also regular physical activity during the day strongly promotes the stability and amplitude of circadian rhythm, and thus may serve as an instrument to restore poor circadian rhythms. Endogenicity may play a role in interaction of these environmental variables with a genetic predisposition. In conclusion, notwithstanding the separate favourable effects of sufficient daily physical activity, regular meal patterns, sufficient sleep duration and quality sleep on energy balance, the overall effect of the amplitude and stability of the circadian rhythm, perhaps including genetic predisposition, may integrate the separate effects in an additive way.

  16. Alteration of circadian rhythm during epileptogenesis: implications for the suprachiasmatic nucleus circuits.

    PubMed

    Xiang, Yan; Li, Zhi-Xiao; Zhang, Ding-Yu; He, Zhi-Gang; Hu, Ji; Xiang, Hong-Bing

    2017-01-01

    It is important to realize that characterization of the circadian rhythm patterns of seizure occurrence can implicate in diagnosis and treatment of selected types of epilepsy. Evidence suggests a role for the suprachiasmatic nucleus (SCN) circuits in overall circadian rhythm and seizure susceptibility both in animals and humans. Thus, we conclude that SCN circuits may exert modifying effects on circadian rhythmicity and neuronal excitability during epileptogenesis. SCN circuits will be studied in our brain centre and collaborating centres to explore further the interaction between the circadian rhythm and epileptic seizures. More and thorough research is warranted to provide insight into epileptic seizures with circadian disruption comorbidities such as disorders of cardiovascular parameters and core body temperature circadian rhythms.

  17. Sleep and circadian rhythm disruption in neuropsychiatric illness.

    PubMed

    Jagannath, Aarti; Peirson, Stuart N; Foster, Russell G

    2013-10-01

    Sleep and circadian rhythm disruption (SCRD) is a common feature in many neuropsychiatric diseases including schizophrenia, bipolar disorder and depression. Although the precise mechanisms remain unclear, recent evidence suggests that this comorbidity is not simply a product of medication or an absence of social routine, but instead reflects commonly affected underlying pathways and mechanisms. For example, several genes intimately involved in the generation and regulation of circadian rhythms and sleep have been linked to psychiatric illness. Further, several genes linked to mental illness have recently been shown to also play a role in normal sleep and circadian behaviour. Here we describe some of the emerging common mechanisms that link circadian rhythms, sleep and SCRD in severe mental illnesses. A deeper understanding of these links will provide not only a greater understanding of disease mechanisms, but also holds the promise of novel avenues for therapeutic intervention. Copyright © 2013. Published by Elsevier Ltd.

  18. Maternal and infant activity: Analytic approaches for the study of circadian rhythm.

    PubMed

    Thomas, Karen A; Burr, Robert L; Spieker, Susan

    2015-11-01

    The study of infant and mother circadian rhythm entails choice of instruments appropriate for use in the home environment as well as selection of analytic approach that characterizes circadian rhythm. While actigraphy monitoring suits the needs of home study, limited studies have examined mother and infant rhythm derived from actigraphy. Among this existing research a variety of analyses have been employed to characterize 24-h rhythm, reducing ability to evaluate and synthesize findings. Few studies have examined the correspondence of mother and infant circadian parameters for the most frequently cited approaches: cosinor, non-parametric circadian rhythm analysis (NPCRA), and autocorrelation function (ACF). The purpose of this research was to examine analytic approaches in the study of mother and infant circadian activity rhythm. Forty-three healthy mother and infant pairs were studied in the home environment over a 72h period at infant age 4, 8, and 12 weeks. Activity was recorded continuously using actigraphy monitors and mothers completed a diary. Parameters of circadian rhythm were generated from cosinor analysis, NPCRA, and ACF. The correlation among measures of rhythm center (cosinor mesor, NPCRA mid level), strength or fit of 24-h period (cosinor magnitude and R(2), NPCRA amplitude and relative amplitude (RA)), phase (cosinor acrophase, NPCRA M10 and L5 midpoint), and rhythm stability and variability (NPCRA interdaily stability (IS) and intradaily variability (IV), ACF) was assessed, and additionally the effect size (eta(2)) for change over time evaluated. Results suggest that cosinor analysis, NPCRA, and autocorrelation provide several comparable parameters of infant and maternal circadian rhythm center, fit, and phase. IS and IV were strongly correlated with the 24-h cycle fit. The circadian parameters analyzed offer separate insight into rhythm and differing effect size for the detection of change over time. Findings inform selection of analysis and

  19. Maternal and infant activity: Analytic approaches for the study of circadian rhythm

    PubMed Central

    Thomas, Karen A.; Burr, Robert L.; Spieker, Susan

    2015-01-01

    The study of infant and mother circadian rhythm entails choice of instruments appropriate for use in the home environment as well as selection of analytic approach that characterizes circadian rhythm. While actigraphy monitoring suits the needs of home study, limited studies have examined mother and infant rhythm derived from actigraphy. Among this existing research a variety of analyses have been employed to characterize 24-h rhythm, reducing ability to evaluate and synthesize findings. Few studies have examined the correspondence of mother and infant circadian parameters for the most frequently cited approaches: cosinor, non-parametric circadian rhythm analysis (NPCRA), and autocorrelation function (ACF). The purpose of this research was to examine analytic approaches in the study of mother and infant circadian activity rhythm. Forty-three healthy mother and infant pairs were studied in the home environment over a 72 h period at infant age 4, 8, and 12 weeks. Activity was recorded continuously using actigraphy monitors and mothers completed a diary. Parameters of circadian rhythm were generated from cosinor analysis, NPCRA, and ACF. The correlation among measures of rhythm center (cosinor mesor, NPCRA mid level), strength or fit of 24-h period (cosinor magnitude and R2, NPCRA amplitude and relative amplitude (RA)), phase (cosinor acrophase, NPCRA M10 and L5 midpoint), and rhythm stability and variability (NPCRA interdaily stability (IS) and intradaily variability (IV), ACF) was assessed, and additionally the effect size (eta2) for change over time evaluated. Results suggest that cosinor analysis, NPCRA, and autocorrelation provide several comparable parameters of infant and maternal circadian rhythm center, fit, and phase. IS and IV were strongly correlated with the 24-h cycle fit. The circadian parameters analyzed offer separate insight into rhythm and differing effect size for the detection of change over time. Findings inform selection of analysis and

  20. Circadian rhythms in healthy aging--effects downstream from the pacemaker

    NASA Technical Reports Server (NTRS)

    Monk, T. H.; Kupfer, D. J.

    2000-01-01

    Using both previously published findings and entirely new data, we present evidence in support of the argument that the circadian dysfunction of advancing age in the healthy human is primarily one of failing to transduce the circadian signal from the circadian timing system (CTS) to rhythms "downstream" from the pacemaker rather than one of failing to generate the circadian signal itself. Two downstream rhythms are considered: subjective alertness and objective performance. For subjective alertness, we show that in both normal nychthemeral (24 h routine, sleeping at night) and unmasking (36 h of constant wakeful bed rest) conditions, advancing age, especially in men, leads to flattening of subjective alertness rhythms, even when circadian temperature rhythms are relatively robust. For objective performance, an unmasking experiment involving manual dexterity, visual search, and visual vigilance tasks was used to demonstrate that the relationship between temperature and performance is strong in the young, but not in older subjects (and especially not in older men).

  1. Circadian rhythms regulate amelogenesis.

    PubMed

    Zheng, Li; Seon, Yoon Ji; Mourão, Marcio A; Schnell, Santiago; Kim, Doohak; Harada, Hidemitsu; Papagerakis, Silvana; Papagerakis, Petros

    2013-07-01

    Ameloblasts, the cells responsible for making enamel, modify their morphological features in response to specialized functions necessary for synchronized ameloblast differentiation and enamel formation. Secretory and maturation ameloblasts are characterized by the expression of stage-specific genes which follows strictly controlled repetitive patterns. Circadian rhythms are recognized as key regulators of the development and diseases of many tissues including bone. Our aim was to gain novel insights on the role of clock genes in enamel formation and to explore the potential links between circadian rhythms and amelogenesis. Our data shows definitive evidence that the main clock genes (Bmal1, Clock, Per1 and Per2) oscillate in ameloblasts at regular circadian (24 h) intervals both at RNA and protein levels. This study also reveals that the two markers of ameloblast differentiation i.e. amelogenin (Amelx; a marker of secretory stage ameloblasts) and kallikrein-related peptidase 4 (Klk4, a marker of maturation stage ameloblasts) are downstream targets of clock genes. Both, Amelx and Klk4 show 24h oscillatory expression patterns and their expression levels are up-regulated after Bmal1 over-expression in HAT-7 ameloblast cells. Taken together, these data suggest that both the secretory and the maturation stages of amelogenesis might be under circadian control. Changes in clock gene expression patterns might result in significant alterations of enamel apposition and mineralization. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. [The influence of interfered circadian rhythm on pregnancy and neonatal rats].

    PubMed

    Chen, Wen-Jun; Sheng, Wen-Jie; Guo, Yin-Hua; Tan, Yong

    2015-10-25

    The aim of this study was to observe the influence of interfered circadian rhythm on pregnancy of rats and growth of neonatal rats, and to explore the relationship between the interfered circadian rhythm and the changes of melatonin and progesterone. Continuous light was used to inhibit melatonin secretion and therefore the interfered circadian rhythm animal model was obtained. The influence of interfered circadian rhythm on delivery of pregnant rats was observed. Serum was collected from rats during different stages of pregnancy to measure the concentrations of melatonin and progesterone. In order to observe the embryo resorption rate, half of pregnant rats were randomly selected to undergo a laparotomy, and the remainder was used to observe delivery and assess the growth of neonatal rats after delivery. The results showed that the interfered circadian rhythm induced adverse effects on pregnancy outcomes, including an increase of embryo resorption rate and a decrease in the number of live births; inhibited the secretion of melatonin along with decreased serum progesterone level; prolonged the stage of labor, but not the duration of pregnancy; and disturbed the fetal intrauterine growth and the growth of neonatal rats. The results suggest that interfered circadian rhythm condition made by continuous light could make adverse effects on both pregnant rats and neonatal rats. The results of our study may provide a way to modulate pregnant women's circadian rhythm and a possibility of application of melatonin on pregnant women.

  3. Are circadian rhythms new pathways to understand Autism Spectrum Disorder?

    PubMed

    Geoffray, M-M; Nicolas, A; Speranza, M; Georgieff, N

    2016-11-01

    Autism Spectrum Disorder (ASD) is a frequent neurodevelopmental disorder. ASD is probably the result of intricate interactions between genes and environment altering progressively the development of brain structures and functions. Circadian rhythms are a complex intrinsic timing system composed of almost as many clocks as there are body cells. They regulate a variety of physiological and behavioral processes such as the sleep-wake rhythm. ASD is often associated with sleep disorders and low levels of melatonin. This first point raises the hypothesis that circadian rhythms could have an implication in ASD etiology. Moreover, circadian rhythms are generated by auto-regulatory genetic feedback loops, driven by transcription factors CLOCK and BMAL1, who drive transcription daily patterns of a wide number of clock-controlled genes (CCGs) in different cellular contexts across tissues. Among these, are some CCGs coding for synapses molecules associated to ASD susceptibility. Furthermore, evidence emerges about circadian rhythms control of time brain development processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Aging human circadian rhythms: conventional wisdom may not always be right

    NASA Technical Reports Server (NTRS)

    Monk, Timothy H.

    2005-01-01

    This review discusses the ways in which the circadian rhythms of older people are different from those of younger adults. After a brief discussion of clinical issues, the review describes the conventional wisdom regarding age-related changes in circadian rhythms. These can be summarized as four assertions regarding what happens to people as they get older: 1) the amplitude of their circadian rhythms reduces, 2) the phase of their circadian rhythms becomes earlier, 3) their natural free-running period (tau) shortens, and 4) their ability to tolerate abrupt phase shifts (e.g., from jet travel or night work) worsens. The review then discusses the empirical evidence for and against these assertions and discusses some alternative explanations. The conclusions are that although older people undoubtedly have earlier circadian phases than younger adults, and have more trouble coping with shift work and jet lag, evidence for the assertions about rhythm amplitude and tau are, at best, mixed.

  5. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease.

    PubMed

    Videnovic, Aleksandar; Noble, Charleston; Reid, Kathryn J; Peng, Jie; Turek, Fred W; Marconi, Angelica; Rademaker, Alfred W; Simuni, Tanya; Zadikoff, Cindy; Zee, Phyllis C

    2014-04-01

    Diurnal fluctuations of motor and nonmotor symptoms and a high prevalence of sleep-wake disturbances in Parkinson disease (PD) suggest a role of the circadian system in the modulation of these symptoms. However, surprisingly little is known regarding circadian function in PD and whether circadian dysfunction is involved in the development of sleep-wake disturbances in PD. To determine the relationship between the timing and amplitude of the 24-hour melatonin rhythm, a marker of endogenous circadian rhythmicity, with self-reported sleep quality, the severity of daytime sleepiness, and disease metrics. A cross-sectional study from January 1, 2009, through December 31, 2012, of 20 patients with PD receiving stable dopaminergic therapy and 15 age-matched control participants. Both groups underwent blood sampling for the measurement of serum melatonin levels at 30-minute intervals for 24 hours under modified constant routine conditions at the Parkinson's Disease and Movement Disorders Center of Northwestern University. Twenty-four hour monitoring of serum melatonin secretion. Clinical and demographic data, self-reported measures of sleep quality (Pittsburgh Sleep Quality Index) and daytime sleepiness (Epworth Sleepiness Scale), and circadian markers of the melatonin rhythm, including the amplitude, area under the curve (AUC), and phase of the 24-hour rhythm. Patients with PD had blunted circadian rhythms of melatonin secretion compared with controls; the amplitude of the melatonin rhythm and the 24-hour AUC for circulating melatonin levels were significantly lower in PD patients (P < .001). Markers of the circadian phase were not significantly different between the 2 groups. Compared with PD patients without excessive daytime sleepiness, patients with excessive daytime sleepiness (Epworth Sleepiness Scale score ≥10) had a significantly lower amplitude of the melatonin rhythm and 24-hour melatonin AUC (P = .001). Disease duration, Unified Parkinson's Disease

  6. Urinary Cortisol Circadian Rhythm in a Group of High-Functioning Children with Autism.

    ERIC Educational Resources Information Center

    Richdale, Amanda L.; Prior, Margot R.

    1992-01-01

    This study found no evidence for abnormal temporal placement of the basal urinary cortisol circadian rhythm in a group of 18 high-functioning children (ages 4-14) with autism. There was a tendency toward cortisol hypersecretion during the day, predominantly in autistic children who were integrated into the normal school system. (Author/JDD)

  7. Does 'anchor sleep' entrain circadian rhythms? Evidence from constant routine studies.

    PubMed Central

    Minors, D S; Waterhouse, J M

    1983-01-01

    Experiments have been performed in an isolation unit to investigate the effects of abnormal sleep-waking schedules upon circadian rhythms of renal excretion and deep-body temperature. In confirmation of previous work, nychthemeral rhythms appeared to be 'anchored' to a 24 h period if 4 h sleep was taken regularly each day, even though another 4 h was taken irregularly. The endogenous components were investigated by assessing circadian rhythmicity under constant routine conditions, that is, when rhythmic influences in the environment and sleep-waking pattern had been minimized. Analysis of the constant routine data indicated the presence of a rhythmic component which had been stabilized to a period of 24 h by the 'anchor sleep'. In addition, a delayed component was also present. The starting time of the constant routines produced a direct effect upon the rhythms, which was presumed to result from removing the 'masking' effect that sleep normally exerts upon rhythms. There was some evidence that the relative importance of the masking effect and the delayed component depended upon the variable under consideration. The implications of these findings, in terms of the effects of anchor sleep, the presence of more than one internal clock and the usefulness of constant routines, are discussed. PMID:6663508

  8. Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics

    PubMed Central

    Ivanov, Plamen Ch.; Hu, Kun; Hilton, Michael F.; Shea, Steven A.; Stanley, H. Eugene

    2007-01-01

    The endogenous circadian pacemaker influences key physiologic functions, such as body temperature and heart rate, and is normally synchronized with the sleep/wake cycle. Epidemiological studies demonstrate a 24-h pattern in adverse cardiovascular events with a peak at ≈10 a.m. It is unknown whether this pattern in cardiac risk is caused by a day/night pattern of behaviors, including activity level and/or influences from the internal circadian pacemaker. We recently found that a scaling index of cardiac vulnerability has an endogenous circadian peak at the circadian phase corresponding to ≈10 a.m., which conceivably could contribute to the morning peak in cardiac risk. Here, we test whether this endogenous circadian influence on cardiac dynamics is caused by circadian-mediated changes in motor activity or whether activity and heart rate dynamics are decoupled across the circadian cycle. We analyze high-frequency recordings of motion from young healthy subjects during two complementary protocols that decouple the sleep/wake cycle from the circadian cycle while controlling scheduled behaviors. We find that static activity properties (mean and standard deviation) exhibit significant circadian rhythms with a peak at the circadian phase corresponding to 5–9 p.m. (≈9 h later than the peak in the scale-invariant index of heartbeat fluctuations). In contrast, dynamic characteristics of the temporal scale-invariant organization of activity fluctuations (long-range correlations) do not exhibit a circadian rhythm. These findings suggest that endogenous circadian-mediated activity variations are not responsible for the endogenous circadian rhythm in the scale-invariant structure of heartbeat fluctuations and likely do not contribute to the increase in cardiac risk at ≈10 a.m. PMID:18093917

  9. Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics.

    PubMed

    Ivanov, Plamen Ch; Hu, Kun; Hilton, Michael F; Shea, Steven A; Stanley, H Eugene

    2007-12-26

    The endogenous circadian pacemaker influences key physiologic functions, such as body temperature and heart rate, and is normally synchronized with the sleep/wake cycle. Epidemiological studies demonstrate a 24-h pattern in adverse cardiovascular events with a peak at approximately 10 a.m. It is unknown whether this pattern in cardiac risk is caused by a day/night pattern of behaviors, including activity level and/or influences from the internal circadian pacemaker. We recently found that a scaling index of cardiac vulnerability has an endogenous circadian peak at the circadian phase corresponding to approximately 10 a.m., which conceivably could contribute to the morning peak in cardiac risk. Here, we test whether this endogenous circadian influence on cardiac dynamics is caused by circadian-mediated changes in motor activity or whether activity and heart rate dynamics are decoupled across the circadian cycle. We analyze high-frequency recordings of motion from young healthy subjects during two complementary protocols that decouple the sleep/wake cycle from the circadian cycle while controlling scheduled behaviors. We find that static activity properties (mean and standard deviation) exhibit significant circadian rhythms with a peak at the circadian phase corresponding to 5-9 p.m. ( approximately 9 h later than the peak in the scale-invariant index of heartbeat fluctuations). In contrast, dynamic characteristics of the temporal scale-invariant organization of activity fluctuations (long-range correlations) do not exhibit a circadian rhythm. These findings suggest that endogenous circadian-mediated activity variations are not responsible for the endogenous circadian rhythm in the scale-invariant structure of heartbeat fluctuations and likely do not contribute to the increase in cardiac risk at approximately 10 a.m.

  10. Evaluation of circadian phenotypes utilizing fibroblasts from patients with circadian rhythm sleep disorders.

    PubMed

    Hida, A; Ohsawa, Y; Kitamura, S; Nakazaki, K; Ayabe, N; Motomura, Y; Matsui, K; Kobayashi, M; Usui, A; Inoue, Y; Kusanagi, H; Kamei, Y; Mishima, K

    2017-04-25

    We evaluated the circadian phenotypes of patients with delayed sleep-wake phase disorder (DSWPD) and non-24-hour sleep-wake rhythm disorder (N24SWD), two different circadian rhythm sleep disorders (CRSDs) by measuring clock gene expression rhythms in fibroblast cells derived from individual patients. Bmal1-luciferase (Bmal1-luc) expression rhythms were measured in the primary fibroblast cells derived from skin biopsy samples of patients with DSWPD and N24SWD, as well as control subjects. The period length of the Bmal1-luc rhythm (in vitro period) was distributed normally and was 22.80±0.47 (mean±s.d.) h in control-derived fibroblasts. The in vitro periods in DSWPD-derived fibroblasts and N24SWD-derived fibroblasts were 22.67±0.67 h and 23.18±0.70 h, respectively. The N24SWD group showed a significantly longer in vitro period than did the control or DSWPD group. Furthermore, in vitro period was associated with response to chronotherapy in the N24SWD group. Longer in vitro periods were observed in the non-responders (mean±s.d.: 23.59±0.89 h) compared with the responders (mean±s.d.: 22.97±0.47 h) in the N24SWD group. Our results indicate that prolonged circadian periods contribute to the onset and poor treatment outcome of N24SWD. In vitro rhythm assays could be useful for predicting circadian phenotypes and clinical prognosis in patients with CRSDs.

  11. Circadian rhythms of gastrointestinal function are regulated by both central and peripheral oscillators

    PubMed Central

    Malloy, Jaclyn N.; Paulose, Jiffin K.; Li, Ye

    2012-01-01

    Circadian clocks are responsible for daily rhythms in a wide array of processes, including gastrointestinal (GI) function. These are vital for normal digestive rhythms and overall health. Previous studies demonstrated circadian clocks within the cells of GI tissue. The present study examines the roles played by the suprachiasmatic nuclei (SCN), master circadian pacemaker for overt circadian rhythms, and the sympathetic nervous system in regulation of circadian GI rhythms in the mouse Mus musculus. Surgical ablation of the SCN abolishes circadian locomotor, feeding, and stool output rhythms when animals are presented with food ad libitum, while restricted feeding reestablishes these rhythms temporarily. In intact mice, chemical sympathectomy with 6-hydroxydopamine has no effect on feeding and locomotor rhythmicity in light-dark cycles or constant darkness but attenuates stool weight and stool number rhythms. Again, however, restricted feeding reestablishes rhythms in locomotor activity, feeding, and stool output rhythms. Ex vivo, intestinal tissue from PER2::LUC transgenic mice expresses circadian rhythms of luciferase bioluminescence. Chemical sympathectomy has little effect on these rhythms, but timed administration of the β-adrenergic agonist isoproterenol causes a phase-dependent shift in PERIOD2 expression rhythms. Collectively, the data suggest that the SCN are required to maintain feeding, locomotor, and stool output rhythms during ad libitum conditions, acting at least in part through daily activation of sympathetic activity. Even so, this input is not necessary for entrainment to timed feeding, which may be the province of oscillators within the intestines themselves or other components of the GI system. PMID:22723262

  12. Circadian Rhythm Connections to Oxidative Stress: Implications for Human Health

    PubMed Central

    Wilking, Melissa; Ndiaye, Mary; Mukhtar, Hasan

    2013-01-01

    Abstract Significance: Oxygen and circadian rhythmicity are essential in a myriad of physiological processes to maintain homeostasis, from blood pressure and sleep/wake cycles, down to cellular signaling pathways that play critical roles in health and disease. If the human body or cells experience significant stress, their ability to regulate internal systems, including redox levels and circadian rhythms, may become impaired. At cellular as well as organismal levels, impairment in redox regulation and circadian rhythms may lead to a number of adverse effects, including the manifestation of a variety of diseases such as heart diseases, neurodegenerative conditions, and cancer. Recent Advances: Researchers have come to an understanding as to the basics of the circadian rhythm mechanism, as well as the importance of the numerous species of oxidative stress components. The effects of oxidative stress and dysregulated circadian rhythms have been a subject of intense investigations since they were first discovered, and recent investigations into the molecular mechanisms linking the two have started to elucidate the bases of their connection. Critical Issues: While much is known about the mechanics and importance of oxidative stress systems and circadian rhythms, the front where they interact has had very little research focused on it. This review discusses the idea that these two systems are together intricately involved in the healthy body, as well as in disease. Future Directions: We believe that for a more efficacious management of diseases that have both circadian rhythm and oxidative stress components in their pathogenesis, targeting both systems in tandem would be far more successful. Antioxid. Redox Signal. 19, 192–208 PMID:23198849

  13. Resetting the Abnormal Circadian Cortisol Rhythm in Adrenal Incidentaloma Patients With Mild Autonomous Cortisol Secretion.

    PubMed

    Debono, Miguel; Harrison, Robert F; Chadarevian, Rita; Gueroult, Carole; Abitbol, Jean-Louis; Newell-Price, John

    2017-09-01

    Adrenal incidentalomas (AIs) are found commonly on axial imaging. Around 30% exhibit autonomous cortisol secretion (ACS) associated with increased cardiovascular events and death. We hypothesized that AI/ACS patients have an abnormal cortisol rhythm that could be reversed by use of carefully timed short-acting cortisol synthesis blockade, with improvement in cardiovascular disease markers. In a phase 1/2a, prospective study (Eudract no. 2012-002586-35), we recruited six patients with AI/ACS and two control groups of six sex-, age-, and body mass index-matched individuals: (1) patients with AI and no ACS (AI/NoACS) and (2) healthy volunteers with no AI [healthy controls (HC)]. Twenty-four-hour circadian cortisol analysis was performed to determine any differences between groups and timing of intervention for cortisol lowering using the 11β-hydroxylase inhibitor metyrapone. Circadian profiles of serum interleukin-6 (IL-6) were assessed. Serum cortisol levels in group AI/ACS were significantly higher than both group AI/NoACS and group HC from 6 pm to 10 pm [area under the curve (AUC) difference: 0.81 nmol/L/h; P = 0.01] and from 10 pm to 2 am (AUC difference: 0.86 nmol/L/h; P < 0.001). In light of these findings, patients with ACS received metyrapone 500 mg at 6 pm and 250 mg at 10 pm, and cortisol rhythms were reassessed. Postintervention evening serum cortisol was lowered, similar to controls [6 pm to 10 pm (AUC difference: -0.06 nmol/L/h; P = 0.85); 10 pm to 2 am (AUC difference: 0.10 nmol/L/h; P = 0.76)]. Salivary cortisone showed analogous changes. IL-6 levels were elevated before treatment [10 pm to 2 pm (AUC difference: 0.42 pg/mL/h; P = 0.01)] and normalized post treatment. In AI/ACS, the evening and nocturnal cortisol exposure is increased. Use of timed evening doses of metyrapone resets the cortisol rhythm to normal. This unique treatment paradigm is associated with a reduction in the cardiovascular risk marker IL-6. Copyright © 2017 Endocrine Society

  14. A Comparative Study of Circadian Rhythm Functioning and Sleep in People with Asperger Syndrome

    ERIC Educational Resources Information Center

    Hare, Dougal Julian; Jones, Steven; Evershed, Kate

    2006-01-01

    The circadian rhythm functioning and sleep patterns of 10 adults with Asperger syndrome were investigated using actigraphy. When compared with data from neurotypical adults, both statistical and clinically significant differences were found between the two groups, with the adults with Asperger syndrome showing marked abnormalities in both the…

  15. Melatonin, The Pineal Gland and Circadian Rhythms

    DTIC Science & Technology

    1992-04-30

    physiological rhythms including locomotion, sleep/wake, thermoregulation , car- diovascular function and many endocrine processes. Among the rhythms under SCN...control of a wide array of behavioral and physiological rhythms including locomotion, sleep/wake, thermoregulation , cardiovascular function and many... reptiles and birds, overt rhythmicity results from the integration of multiple circadian oscillators within the pineal gland, eyes and the presumed

  16. [Circadian rhythm : Influence on Epworth Sleepiness Scale score].

    PubMed

    Herzog, M; Bedorf, A; Rohrmeier, C; Kühnel, T; Herzog, B; Bremert, T; Plontke, S; Plößl, S

    2017-02-01

    The Epworth Sleepiness Scale (ESS) is frequently used to determine daytime sleepiness in patients with sleep-disordered breathing. It is still unclear whether different levels of alertness induced by the circadian rhythm influence ESS score. The aim of this study is to investigate the influence of circadian rhythm-dependent alertness on ESS performance. In a monocentric prospective noninterventional observation study, 97 patients with suspected sleep-disordered breathing were investigated with respect to daytime sleepiness in temporal relationship to polysomnographic examination and treatment. The Karolinska Sleepiness Scale (KSS) and the Stanford Sleepiness Scale (SSS) served as references for the detection of present sleepiness at three different measurement times (morning, noon, evening), prior to and following a diagnostic polysomnography night as well as after a continuous positive airway pressure (CPAP) titration night (9 measurements in total). The KSS, SSS, and ESS were performed at these times in a randomized order. The KSS and SSS scores revealed a circadian rhythm-dependent curve with increased sleepiness at noon and in the evening. Following a diagnostic polysomnography night, the scores were increased compared to the measurements prior to the night. After the CPAP titration night, sleepiness in the morning was reduced. KSS and SSS reflect the changes in alertness induced by the circadian rhythm. The ESS score war neither altered by the intra-daily nor by the inter-daily changes in the level of alertness. According to the present data, the ESS serves as a reliable instrument to detect the level of daytime sleepiness independently of the circadian rhythm-dependent level of alertness.

  17. Introduction: circadian rhythm and its disruption: impact on reproductive function.

    PubMed

    Casper, Robert F; Gladanac, Bojana

    2014-08-01

    Almost all forms of life have predictable daily or circadian rhythms in molecular, endocrine, and behavioral functions. In mammals, a central pacemaker located in the suprachiasmatic nuclei coordinates the timing of these rhythms. Daily light exposure that affects the retina of the eye directly influences this area, which is required to align endogenous processes to the appropriate time of day. The present "Views and Reviews" articles discuss the influence of circadian rhythms, especially nightly secretion of melatonin, on reproductive function and parturition. In addition, an examination is made of problems that arise from recurrent circadian rhythm disruption associated with changes in light exposure patterns common to modern day society. Finally, a possible solution to prevent disruptions in circadian phase markers by filtering out short wavelengths from nocturnal light is reviewed. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. Circadian rhythms in anesthesia and critical care medicine: potential importance of circadian disruptions.

    PubMed

    Brainard, Jason; Gobel, Merit; Bartels, Karsten; Scott, Benjamin; Koeppen, Michael; Eckle, Tobias

    2015-03-01

    The rotation of the earth and associated alternating cycles of light and dark--the basis of our circadian rhythms--are fundamental to human biology and culture. However, it was not until 1971 that researchers first began to describe the molecular mechanisms for the circadian system. During the past few years, groundbreaking research has revealed a multitude of circadian genes affecting a variety of clinical diseases, including diabetes, obesity, sepsis, cardiac ischemia, and sudden cardiac death. Anesthesiologists, in the operating room and intensive care units, manage these diseases on a daily basis as they significantly affect patient outcomes. Intriguingly, sedatives, anesthetics, and the intensive care unit environment have all been shown to disrupt the circadian system in patients. In the current review, we will discuss how newly acquired knowledge of circadian rhythms could lead to changes in clinical practice and new therapeutic concepts. © The Author(s) 2014.

  19. Biological Clocks & Circadian Rhythms

    ERIC Educational Resources Information Center

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  20. Cortisol-mediated synchronization of circadian rhythm in urinary potassium excretion

    NASA Technical Reports Server (NTRS)

    Moore-Ede, M. C.; Schmelzer, W. S.; Kass, D. A.; Herd, J. A.

    1977-01-01

    Conscious chair-acclimatized squirrel monkeys (Saimiri sciureus) studied with lights on (600 lx) from 0800 to 2000 hr daily (LD 12:12) display a prominent circadian rhythm in renal potassium excretion. The characteristics of this rhythm were reproduced in adrenalectomized monkeys by infusing 5 mg cortisol and 0.001 mg aldosterone, or 5 mg cortisol alone, between 0800 and 0900 kr daily. When the timing of cortisol administration (with or without aldosterone) was phase-delayed by 8 hr, the urinary potassium rhythm resynchronized by 80% of the cortisol phase shift, but only after a transient response lasting 3-4 days. With the same daily dose of adrenal steroids given as a continuous infusion throughout each 24 hr, urinary potassium excretion showed free-running oscillations no longer synchronized to the light-dark cycle. These results indicate that the circadian rhythm of plasma cortisol concentration acts as an internal mediator in the circadian timing system, synchronizing a potentially autonomous oscillation in renal potassium excretion to environmental time cues and to other circadian rhythms within the animal.

  1. Circadian Rest-Activity Rhythm in Pediatric Type 1 Narcolepsy

    PubMed Central

    Filardi, Marco; Pizza, Fabio; Bruni, Oliviero; Natale, Vincenzo; Plazzi, Giuseppe

    2016-01-01

    Study Objectives: Pediatric type 1 narcolepsy is often challenging to diagnose and remains largely undiagnosed. Excessive daytime sleepiness, disrupted nocturnal sleep, and a peculiar phenotype of cataplexy are the prominent features. The knowledge available about the regulation of circadian rhythms in affected children is scarce. This study compared circadian rest-activity rhythm and actigraphic estimated sleep measures of children with type 1 narcolepsy versus healthy controls. Methods: Twenty-two drug-naïve type 1 narcolepsy children and 21 age- and sex- matched controls were monitored for seven days during the school week by actigraphy. Circadian activity rhythms were analyzed through functional linear modeling; nocturnal and diurnal sleep measures were estimated from activity using a validated algorithm. Results: Children with type 1 narcolepsy presented an altered rest-activity rhythm characterized by enhanced motor activity throughout the night and blunted activity in the first afternoon. No difference was found between children with type 1 narcolepsy and controls in the timing of the circadian phase. Actigraphic sleep measures showed good discriminant capabilities in assessing type 1 narcolepsy nycthemeral disruption. Conclusions: Actigraphy reliably renders the nycthemeral disruption typical of narcolepsy type 1 in drug-naïve children with recent disease onset, indicating the sensibility of actigraphic assessment in the diagnostic work-up of childhood narcolepsy type 1. Citation: Filardi M, Pizza F, Bruni O, Natale V, Plazzi G. Circadian rest-activity rhythm in pediatric type 1 narcolepsy. SLEEP 2016;39(6):1241–1247. PMID:27091539

  2. Circadian rhythm of body temperature in an ectotherm (Iguana iguana).

    PubMed

    Tosini, G; Menaker, M

    1995-09-01

    Ectothermic animals regulate their body temperatures primarily by behavioral adjustment in relation to the thermal characteristics of the environment. Several studies have shown that some vertebrate ectotherms may show a daily pattern of body temperature selection when given a choice of environmental temperature. The pattern of body temperature selection free-runs when the animals are kept in constant darkness, demonstrating the existence of circadian regulation. To test whether there might also be a low amplitude circadian rhythm of body temperature itself, we examined the pattern of body temperature and locomotor activity of the lizard Iguana iguana held in a constant environmental temperature. Both variables were recorded for 3 days in a light:dark cycle and then for 10 days in constant dim light (0.1 lux). Under these conditions the body temperature of the lizard oscillates with a circadian period as does the locomotor behavior. These results demonstrate for the first time that ectothermic animals may display physiologically generated circadian rhythms of body temperature similar to those recorded in endotherms. In some animals the circadian rhythms of body temperature and locomotor activity showed different free-running periods, demonstrating that the body temperature rhythm was not caused by locomotor activity and suggesting internal desyncronization of the two rhythms.

  3. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.

    PubMed

    Carrasco-Benso, Maria P; Rivero-Gutierrez, Belen; Lopez-Minguez, Jesus; Anzola, Andrea; Diez-Noguera, Antoni; Madrid, Juan A; Lujan, Juan A; Martínez-Augustin, Olga; Scheer, Frank A J L; Garaulet, Marta

    2016-09-01

    In humans, insulin sensitivity varies according to time of day, with decreased values in the evening and at night. Mechanisms responsible for the diurnal variation in insulin sensitivity are unclear. We investigated whether human adipose tissue (AT) expresses intrinsic circadian rhythms in insulin sensitivity that could contribute to this phenomenon. Subcutaneous and visceral AT biopsies were obtained from extremely obese participants (body mass index, 41.8 ± 6.3 kg/m(2); 46 ± 11 y) during gastric-bypass surgery. To assess the rhythm in insulin signaling, AKT phosphorylation was determined every 4 h over 24 h in vitro in response to different insulin concentrations (0, 1, 10, and 100 nM). Data revealed that subcutaneous AT exhibited robust circadian rhythms in insulin signaling (P < 0.00001). Insulin sensitivity reached its maximum (acrophase) around noon, being 54% higher than during midnight (P = 0.009). The amplitude of the rhythm was positively correlated with in vivo sleep duration (r = 0.53; P = 0.023) and negatively correlated with in vivo bedtime (r = -0.54; P = 0.020). No circadian rhythms were detected in visceral AT (P = 0.643). Here, we demonstrate the relevance of the time of the day for how sensitive AT is to the effects of insulin. Subcutaneous AT shows an endogenous circadian rhythm in insulin sensitivity that could provide an underlying mechanism for the daily rhythm in systemic insulin sensitivity.-Carrasco-Benso, M. P., Rivero-Gutierrez, B., Lopez-Minguez, J., Anzola, A., Diez-Noguera, A., Madrid, J. A., Lujan, J. A., Martínez-Augustin, O., Scheer, F. A. J. L., Garaulet, M. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity. © FASEB.

  4. Effects of exercise on circadian rhythms and mobility in aging Drosophila melanogaster.

    PubMed

    Rakshit, Kuntol; Wambua, Rebecca; Giebultowicz, Tomasz M; Giebultowicz, Jadwiga M

    2013-11-01

    Daily life functions such as sleep and feeding oscillate with circa 24 h period due to endogenous circadian rhythms generated by circadian clocks. Genetic or environmental disruption of circadian rhythms is associated with various aging-related phenotypes. Circadian rhythms decay during normal aging, and there is a need to explore strategies that could avert age-related changes in the circadian system. Exercise was reported to delay aging in mammals. Here, we investigated whether daily exercise via stimulation of upward climbing movement could improve circadian rest/activity rhythms in aging Drosophila melanogaster. We found that repeated exercise regimen did not strengthen circadian locomotor activity rhythms in aging flies and had no effect on their lifespan. We also tested the effects of exercise on mobility and determined that regular exercise lowered age-specific climbing ability in both wild type and clock mutant flies. Interestingly, the climbing ability was most significantly reduced in flies carrying a null mutation in the core clock gene period, while rescue of this gene significantly improved climbing to wild type levels. Our work highlights the importance of period in sustaining endurance in aging flies exposed to physical challenge. © 2013.

  5. Mother-infant circadian rhythm: development of individual patterns and dyadic synchrony.

    PubMed

    Thomas, Karen A; Burr, Robert L; Spieker, Susan; Lee, Jungeun; Chen, Jessica

    2014-12-01

    Mutual circadian rhythm is an early and essential component in the development of maternal-infant physiological synchrony. The aim of this to examine the longitudinal pattern of maternal-infant circadian rhythm and rhythm synchrony as measured by rhythm parameters. In-home dyadic actigraphy monitoring at infant age 4, 8, and 12 weeks. Forty-three healthy mother-infant pairs. Circadian parameters derived from cosinor and non-parametric analysis including mesor, magnitude, acrophase, L5 and M10 midpoints (midpoint of lowest 5 and highest 10h of activity), amplitude, interdaily stability (IS), and intradaily variability (IV). Mothers experienced early disruption of circadian rhythm, with re-establishment of rhythm over time. Significant time effects were noted in increasing maternal magnitude, amplitude, and IS and decreasing IV (p<.001). Infants demonstrated a developmental trajectory of circadian pattern with significant time effects for increasing mesor, magnitude, amplitude, L5, IS, and IV (p<.001). By 12 weeks, infant phase advancement was evidenced by mean acrophase and M10 midpoint occurring 60 and 43 min (respectively) earlier than at 4 weeks. While maternal acrophase remained consistent over time, infants became increasingly phase advanced relative to mother and mean infant acrophase at 12 weeks occurred 60 min before mother. Mother-infant synchrony was evidenced in increasing correspondence of acrophase at 12 weeks (r=0.704), L5 (r=0.453) and M10 (r=0.479) midpoints. Development of mother-infant synchrony reflects shared elements of circadian rhythm. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Mother-Infant Circadian Rhythm: Development of Individual Patterns and Dyadic Synchrony

    PubMed Central

    Thomas, Karen A.; Burr, Robert L.; Spieker, Susan; Lee, Jungeun; Chen, Jessica

    2014-01-01

    Background Mutual circadian rhythm is an early and essential component in the development of maternal-infant physiological synchrony. Aims To examine the longitudinal pattern of maternal-infant circadian rhythm and rhythm synchrony as measured by rhythm parameters. Study Design In-home dyadic actigraphy monitoring at infant age 4, 8, and 12 weeks. Subjects Forty-three healthy mother-infant pairs. Outcome Measures Circadian parameters derived from cosinor and non-parametric analysis including mesor, magnitude, acrophase, L5 and M10 midpoints (midpoint of lowest 5 and highest 10 hours of activity), amplitude, interdaily stability (IS), and intradaily variability (IV). Results Mothers experienced early disruption of circadian rhythm, with re-establishment of rhythm over time. Significant time effects were noted in increasing maternal magnitude, amplitude, and IS and decreasing IV (p < .001). Infants demonstrated a developmental trajectory of circadian pattern with significant time effects for increasing mesor, magnitude, amplitude, L5, IS, and IV (p < .001). By 12 weeks, infant phase advancement was evidenced by mean acrophase and M10 midpoint occurring 60 and 43 minutes (respectively) earlier than at 4 weeks. While maternal acrophase remained consistent over time, infants became increasingly phase advanced relative to mother and mean infant acrophase at 12 weeks occurred 60 minutes before mother. Mother-infant synchrony was evidenced in increasing correspondence of acrophase at 12 weeks (r = 0.704), L5 (r = 0.453) and M10 (r = 0.479) midpoints. Conclusions Development of mother-infant synchrony reflects shared elements of circadian rhythm. PMID:25463836

  7. Disinhibition of the extracellular-signal-regulated kinase restores the amplification of circadian rhythms by lithium in cells from bipolar disorder patients.

    PubMed

    McCarthy, Michael J; Wei, Heather; Landgraf, Dominic; Le Roux, Melissa J; Welsh, David K

    2016-08-01

    Bipolar disorder (BD) is characterized by depression, mania, and circadian rhythm abnormalities. Lithium, a treatment for BD stabilizes mood and increases circadian rhythm amplitude. However, in fibroblasts grown from BD patients, lithium has weak effects on rhythm amplitude compared to healthy controls. To understand the mechanism by which lithium differentially affects rhythm amplitude in BD cells, we investigated the extracellular-signal-regulated kinase (ERK) and related signaling molecules linked to BD and circadian rhythms. In fibroblasts from BD patients, controls and mice, we assessed the contribution of the ERK pathway to lithium-induced circadian rhythm amplification. Protein analyses revealed low phospho-ERK1/2 (p-ERK) content in fibroblasts from BD patients vs. Pharmacological inhibition of ERK1/2 by PD98059 attenuated the rhythm amplification effect of lithium, while inhibition of two related kinases, c-Jun N-terminal kinase (JNK), and P38 did not. Knockdown of the transcription factors CREB and EGR-1, downstream effectors of ERK1/2, reduced baseline rhythm amplitude, but did not alter rhythm amplification by lithium. In contrast, ELK-1 knockdown amplified rhythms, an effect that was not increased further by the addition of lithium, suggesting this transcription factor may regulate the effect of lithium on amplitude. Augmentation of ERK1/2 signaling through DUSP6 knockdown sensitized NIH3T3 cells to rhythm amplification by lithium. In BD fibroblasts, DUSP6 knockdown reversed the BD rhythm phenotype, restoring the ability of lithium to increase amplitude in these cells. We conclude that the inability of lithium to regulate circadian rhythms in BD may reflect reduced ERK activity, and signaling through ELK-1. Published by Elsevier B.V.

  8. The circadian rhythm of core temperature: effects of physical activity and aging.

    PubMed

    Weinert, Dietmar; Waterhouse, Jim

    2007-02-28

    The circadian rhythm of core temperature depends upon several interacting rhythms, of both endogenous and exogenous origin, but an understanding of the process requires these two components to be separated. Constant routines remove the exogenous (masking) component at source, but they are severely limited in their application. By contrast, several purification methods have successfully reduced the masking component of overt circadian rhythms measured in field circumstances. One important, but incidental, outcome from these methods is that they enable a quantitative estimate of masking effects to be obtained. It has been shown that these effects of activity upon the temperature rhythm show circadian rhythmicity, and more detailed investigations of this have aided our understanding of thermoregulation and the genesis of the circadian rhythm of core temperature itself. The observed circadian rhythm of body temperature varies with age; in comparison with adults, it is poorly developed in the neonate and deteriorates in the aged subject. Comparing masked and purified data enables the reasons for these differences--whether due to the body clock, the effector pathways or organs, or irregularities due to the individual's lifestyle--to begin to be understood. Such investigations stress the immaturity of the circadian rhythm in the human neonate and its deterioration in elderly compared with younger subjects, but they also indicate the robustness of the body clock itself into advanced age, at least in mice.

  9. Redox rhythm reinforces the circadian clock to gate immune response.

    PubMed

    Zhou, Mian; Wang, Wei; Karapetyan, Sargis; Mwimba, Musoki; Marqués, Jorge; Buchler, Nicolas E; Dong, Xinnian

    2015-07-23

    Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism's metabolic activities. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant's redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism.

  10. Circadian Rhythm Control: Neurophysiological Investigations

    NASA Technical Reports Server (NTRS)

    Glotzbach, S. F.

    1985-01-01

    The suprachiasmatic nucleus (SCN) was implicated as a primary component in central nervous system mechanisms governing circadian rhythms. Disruption of the normal synchronization of temperature, activity, and other rhythms is detrimental to health. Sleep wake disorders, decreases in vigilance and performance, and certain affective disorders may result from or be exacerbated by such desynchronization. To study the basic neurophysiological mechanisms involved in entrainment of circadian systems by the environment, Parylene-coated, etched microwire electrode bundles were used to record extracellular action potentials from the small somata of the SCN and neighboring hypothalamic nuclei in unanesthetized, behaving animals. Male Wistar rats were anesthetized and chronically prepared with EEG ane EMG electrodes in addition to a moveable microdrive assembly. The majority of cells had firing rates 10 Hz and distinct populations of cells which had either the highest firing rate or lowest firing rate during sleep were seen.

  11. Development of a Low-cost, Comprehensive Recording System for Circadian Rhythm Behavior.

    PubMed

    Kwon, Jea; Park, Min Gu; Lee, Seung Eun; Lee, C Justin

    2018-02-01

    Circadian rhythm is defined as a 24-hour biological oscillation, which persists even without any external cues but also can be re-entrained by various environmental cues. One of the widely accepted circadian rhythm behavioral experiment is measuring the wheel-running activity (WRA) of rodents. However, the price for commercially available WRA recording system is not easily affordable for researchers due to high-cost implementation of sensors for wheel rotation. Here, we developed a cost-effective and comprehensive system for circadian rhythm recording by measuring the house-keeping activities (HKA). We have monitored animal's HKA as electrical signal by simply connecting animal housing cage with a standard analog/digital converter: input to the metal lid and ground to the metal grid floor. We show that acquired electrical signals are combined activities of eating, drinking and natural locomotor behaviors which are well-known indicators of circadian rhythm. Post-processing of measured electrical signals enabled us to draw actogram, which verifies HKA to be reliable circadian rhythm indicator. To provide easy access of HKA recording system for researchers, we have developed user-friendly MATLAB-based software, Circa Analysis. This software provides functions for easy extraction of scalable "touch activity" from raw data files by automating seven steps of post-processing and drawing actograms with highly intuitive user-interface and various options. With our cost-effective HKA circadian rhythm recording system, we have estimated the cost of our system to be less than $150 per channel. We anticipate our system will benefit many researchers who would like to study circadian rhythm.

  12. Circadian Rhythms in Diet-Induced Obesity.

    PubMed

    Engin, Atilla

    2017-01-01

    The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronizes these with daily cycles, feeding patterns also regulates circadian clocks. The clock genes and adipocytokines show circadian rhythmicity. Dysfunction of these genes are involved in the alteration of these adipokines during the development of obesity. Food availability promotes the stimuli associated with food intake which is a circadian oscillator outside of the suprachiasmatic nucleus (SCN). Its circadian rhythm is arranged with the predictable daily mealtimes. Food anticipatory activity is mediated by a self-sustained circadian timing and its principal component is food entrained oscillator. However, the hypothalamus has a crucial role in the regulation of energy balance rather than food intake. Fatty acids or their metabolites can modulate neuronal activity by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. The timing of three-meal schedules indicates close association with the plasma levels of insulin and preceding food availability. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition can lead to uncoupling of peripheral clocks from the central pacemaker and to the development of metabolic disorders. Metabolic dysfunction is associated with circadian disturbances at both central and peripheral levels and, eventual disruption of circadian clock functioning can lead to obesity. While CLOCK expression levels are increased with high fat diet-induced obesity, peroxisome proliferator-activated receptor (PPAR) alpha increases the transcriptional level of brain and muscle ARNT-like 1 (BMAL1) in obese subjects. Consequently, disruption of clock genes results in dyslipidemia, insulin resistance and obesity. Modifying the time of feeding alone can greatly affect body weight. Changes in the circadian clock are associated with temporal alterations in

  13. Timing Matters: Circadian Rhythm in Sepsis, Obstructive Lung Disease, Obstructive Sleep Apnea, and Cancer

    PubMed Central

    Truong, Kimberly K.; Lam, Michael T.; Grandner, Michael A.; Sassoon, Catherine S.

    2016-01-01

    Physiological and cellular functions operate in a 24-hour cyclical pattern orchestrated by an endogenous process known as the circadian rhythm. Circadian rhythms represent intrinsic oscillations of biological functions that allow for adaptation to cyclic environmental changes. Key clock genes that affect the persistence and periodicity of circadian rhythms include BMAL1/CLOCK, Period 1, Period 2, and Cryptochrome. Remarkable progress has been made in our understanding of circadian rhythms and their role in common medical conditions. A critical review of the literature supports the association between circadian misalignment and adverse health consequences in sepsis, obstructive lung disease, obstructive sleep apnea, and malignancy. Circadian misalignment plays an important role in these disease processes and can affect disease severity, treatment response, and survivorship. Normal inflammatory response to acute infections, airway resistance, upper airway collapsibility, and mitosis regulation follows a robust circadian pattern. Disruption of normal circadian rhythm at the molecular level affects severity of inflammation in sepsis, contributes to inflammatory responses in obstructive lung diseases, affects apnea length in obstructive sleep apnea, and increases risk for cancer. Chronotherapy is an underused practice of delivering therapy at optimal times to maximize efficacy and minimize toxicity. This approach has been shown to be advantageous in asthma and cancer management. In asthma, appropriate timing of medication administration improves treatment effectiveness. Properly timed chemotherapy may reduce treatment toxicities and maximize efficacy. Future research should focus on circadian rhythm disorders, role of circadian rhythm in other diseases, and modalities to restore and prevent circadian disruption. PMID:27104378

  14. Timing Matters: Circadian Rhythm in Sepsis, Obstructive Lung Disease, Obstructive Sleep Apnea, and Cancer.

    PubMed

    Truong, Kimberly K; Lam, Michael T; Grandner, Michael A; Sassoon, Catherine S; Malhotra, Atul

    2016-07-01

    Physiological and cellular functions operate in a 24-hour cyclical pattern orchestrated by an endogenous process known as the circadian rhythm. Circadian rhythms represent intrinsic oscillations of biological functions that allow for adaptation to cyclic environmental changes. Key clock genes that affect the persistence and periodicity of circadian rhythms include BMAL1/CLOCK, Period 1, Period 2, and Cryptochrome. Remarkable progress has been made in our understanding of circadian rhythms and their role in common medical conditions. A critical review of the literature supports the association between circadian misalignment and adverse health consequences in sepsis, obstructive lung disease, obstructive sleep apnea, and malignancy. Circadian misalignment plays an important role in these disease processes and can affect disease severity, treatment response, and survivorship. Normal inflammatory response to acute infections, airway resistance, upper airway collapsibility, and mitosis regulation follows a robust circadian pattern. Disruption of normal circadian rhythm at the molecular level affects severity of inflammation in sepsis, contributes to inflammatory responses in obstructive lung diseases, affects apnea length in obstructive sleep apnea, and increases risk for cancer. Chronotherapy is an underused practice of delivering therapy at optimal times to maximize efficacy and minimize toxicity. This approach has been shown to be advantageous in asthma and cancer management. In asthma, appropriate timing of medication administration improves treatment effectiveness. Properly timed chemotherapy may reduce treatment toxicities and maximize efficacy. Future research should focus on circadian rhythm disorders, role of circadian rhythm in other diseases, and modalities to restore and prevent circadian disruption.

  15. Circadian Rhythms, the Molecular Clock, and Skeletal Muscle

    PubMed Central

    Lefta, Mellani; Wolff, Gretchen; Esser, Karyn A.

    2015-01-01

    Almost all organisms ranging from single cell bacteria to humans exhibit a variety of behavioral, physiological, and biochemical rhythms. In mammals, circadian rhythms control the timing of many physiological processes over a 24-h period, including sleep-wake cycles, body temperature, feeding, and hormone production. This body of research has led to defined characteristics of circadian rhythms based on period length, phase, and amplitude. Underlying circadian behaviors is a molecular clock mechanism found in most, if not all, cell types including skeletal muscle. The mammalian molecular clock is a complex of multiple oscillating networks that are regulated through transcriptional mechanisms, timed protein turnover, and input from small molecules. At this time, very little is known about circadian aspects of skeletal muscle function/metabolism but some progress has been made on understanding the molecular clock in skeletal muscle. The goal of this chapter is to provide the basic terminology and concepts of circadian rhythms with a more detailed review of the current state of knowledge of the molecular clock, with reference to what is known in skeletal muscle. Research has demonstrated that the molecular clock is active in skeletal muscles and that the muscle-specific transcription factor, MyoD, is a direct target of the molecular clock. Skeletal muscle of clock-compromised mice, Bmal1−/− and ClockΔ19 mice, are weak and exhibit significant disruptions in expression of many genes required for adult muscle structure and metabolism. We suggest that the interaction between the molecular clock, MyoD, and metabolic factors, such as PGC-1, provide a potential system of feedback loops that may be critical for both maintenance and adaptation of skeletal muscle. PMID:21621073

  16. Circadian rhythm phase shifts and endogenous free-running circadian period differ between African-Americans and European-Americans.

    PubMed

    Eastman, Charmane I; Suh, Christina; Tomaka, Victoria A; Crowley, Stephanie J

    2015-02-11

    Successful adaptation to modern civilization requires the internal circadian clock to make large phase shifts in response to circumstances (e.g., jet travel and shift work) that were not encountered during most of our evolution. We found that the magnitude and direction of the circadian clock's phase shift after the light/dark and sleep/wake/meal schedule was phase-advanced (made earlier) by 9 hours differed in European-Americans compared to African-Americans. European-Americans had larger phase shifts, but were more likely to phase-delay after the 9-hour advance (to phase shift in the wrong direction). The magnitude and direction of the phase shift was related to the free-running circadian period, and European-Americans had a longer circadian period than African-Americans. Circadian period was related to the percent Sub-Saharan African and European ancestry from DNA samples. We speculate that a short circadian period was advantageous during our evolution in Africa and lengthened with northern migrations out of Africa. The differences in circadian rhythms remaining today are relevant for understanding and treating the modern circadian-rhythm-based disorders which are due to a misalignment between the internal circadian rhythms and the times for sleep, work, school and meals.

  17. Modeling the emergence of circadian rhythms in a clock neuron network.

    PubMed

    Diambra, Luis; Malta, Coraci P

    2012-01-01

    Circadian rhythms in pacemaker cells persist for weeks in constant darkness, while in other types of cells the molecular oscillations that underlie circadian rhythms damp rapidly under the same conditions. Although much progress has been made in understanding the biochemical and cellular basis of circadian rhythms, the mechanisms leading to damped or self-sustained oscillations remain largely unknown. There exist many mathematical models that reproduce the circadian rhythms in the case of a single cell of the Drosophila fly. However, not much is known about the mechanisms leading to coherent circadian oscillation in clock neuron networks. In this work we have implemented a model for a network of interacting clock neurons to describe the emergence (or damping) of circadian rhythms in Drosophila fly, in the absence of zeitgebers. Our model consists of an array of pacemakers that interact through the modulation of some parameters by a network feedback. The individual pacemakers are described by a well-known biochemical model for circadian oscillation, to which we have added degradation of PER protein by light and multiplicative noise. The network feedback is the PER protein level averaged over the whole network. In particular, we have investigated the effect of modulation of the parameters associated with (i) the control of net entrance of PER into the nucleus and (ii) the non-photic degradation of PER. Our results indicate that the modulation of PER entrance into the nucleus allows the synchronization of clock neurons, leading to coherent circadian oscillations under constant dark condition. On the other hand, the modulation of non-photic degradation cannot reset the phases of individual clocks subjected to intrinsic biochemical noise.

  18. Circadian Rhythm Shapes the Gut Microbiota Affecting Host Radiosensitivity.

    PubMed

    Cui, Ming; Xiao, Huiwen; Luo, Dan; Zhang, Xin; Zhao, Shuyi; Zheng, Qisheng; Li, Yuan; Zhao, Yu; Dong, Jiali; Li, Hang; Wang, Haichao; Fan, Saijun

    2016-10-26

    Modern lifestyles, such as shift work, nocturnal social activities, and jet lag, disturb the circadian rhythm. The interaction between mammals and the co-evolved intestinal microbiota modulates host physiopathological processes. Radiotherapy is a cornerstone of modern management of malignancies; however, it was previously unknown whether circadian rhythm disorder impairs prognosis after radiotherapy. To investigate the effect of circadian rhythm on radiotherapy, C57BL/6 mice were housed in different dark/light cycles, and their intestinal bacterial compositions were compared using high throughput sequencing. The survival rate, body weight, and food intake of mice in diverse cohorts were measured following irradiation exposure. Finally, the enteric bacterial composition of irradiated mice that experienced different dark/light cycles was assessed using 16S RNA sequencing. Intriguingly, mice housed in aberrant light cycles harbored a reduction of observed intestinal bacterial species and shifts of gut bacterial composition compared with those of the mice kept under 12 h dark/12 h light cycles, resulting in a decrease of host radioresistance. Moreover, the alteration of enteric bacterial composition of mice in different groups was dissimilar. Our findings provide novel insights into the effects of biological clocks on the gut bacterial composition, and underpin that the circadian rhythm influences the prognosis of patients after radiotherapy in a preclinical setting.

  19. Circadian Rhythms, Sleep Deprivation, and Human Performance

    PubMed Central

    Goel, Namni; Basner, Mathias; Rao, Hengyi; Dinges, David F.

    2014-01-01

    Much of the current science on, and mathematical modeling of, dynamic changes in human performance within and between days is dominated by the two-process model of sleep–wake regulation, which posits a neurobiological drive for sleep that varies homeostatically (increasing as a saturating exponential during wakefulness and decreasing in a like manner during sleep), and a circadian process that neurobiologically modulates both the homeostatic drive for sleep and waking alertness and performance. Endogenous circadian rhythms in neurobehavioral functions, including physiological alertness and cognitive performance, have been demonstrated using special laboratory protocols that reveal the interaction of the biological clock with the sleep homeostatic drive. Individual differences in circadian rhythms and genetic and other components underlying such differences also influence waking neurobehavioral functions. Both acute total sleep deprivation and chronic sleep restriction increase homeostatic sleep drive and degrade waking neurobehavioral functions as reflected in sleepiness, attention, cognitive speed, and memory. Recent evidence indicating a high degree of stability in neurobehavioral responses to sleep loss suggests that these trait-like individual differences are phenotypic and likely involve genetic components, including circadian genes. Recent experiments have revealed both sleep homeostatic and circadian effects on brain metabolism and neural activation. Investigation of the neural and genetic mechanisms underlying the dynamically complex interaction between sleep homeostasis and circadian systems is beginning. A key goal of this work is to identify biomarkers that accurately predict human performance in situations in which the circadian and sleep homeostatic systems are perturbed. PMID:23899598

  20. Circadian rhythm, sleep pattern, and metabolic consequences: an overview on cardiovascular risk factors.

    PubMed

    Machado, Roberta Marcondes; Koike, Marcia Kiyomi

    2014-04-01

    Sleep duration is a risk factor for cardiovascular disease. Alteration in sleep pattern can induce the loss of circadian rhythmicity. Chronically, this desynchronization between endogenous rhythm and behavioral cycles can lead to an adverse metabolic profile, a proinflammatory condition and can increase the risk of cardiovascular disease. The circadian cycle can vary due to environmental cues. The circadian pacemaker is located in the suprachiasmatic nuclei; this central clock coordinates the circadian rhythm in the central nervous system and peripheral tissues. The mechanisms involved in sleep disturbance, circadian misalignment and adverse metabolic effects have yet to be fully elucidated. This review looks over the association among sleep alteration, circadian rhythm and the development of risk factors implicated in cardiovascular disease.

  1. Circadian rhythms in handwriting kinematics and legibility.

    PubMed

    Jasper, Isabelle; Gordijn, Marijke; Häussler, Andreas; Hermsdörfer, Joachim

    2011-08-01

    The aim of the present study was to analyze the circadian rhythmicity in handwriting kinematics and legibility and to compare the performance between Dutch and German writers. Two subject groups underwent a 40 h sleep deprivation protocol under Constant Routine conditions either in Groningen (10 Dutch subjects) or in Berlin (9 German subjects). Both groups wrote every 3h a test sentence of similar structure in their native language. Kinematic handwriting performance was assessed with a digitizing tablet and evaluated by writing speed, writing fluency, and script size. Writing speed (frequency of strokes and average velocity) revealed a clear circadian rhythm, with a parallel decline during night and a minimum around 3:00 h in the morning for both groups. Script size and movement fluency did not vary with time of day in neither group. Legibility of handwriting was evaluated by intra-individually ranking handwriting specimens of the 13 sessions by 10 German and 10 Dutch raters. Whereas legibility ratings of the German handwriting specimens deteriorated during night in parallel with slower writing speed, legibility of the Dutch handwriting deteriorated not until the next morning. In conclusion, the circadian rhythm of handwriting kinematics seems to be independent of script language at least among the two tested western countries. Moreover, handwriting legibility is also subject to a circadian rhythm which, however, seems to be influenced by variations in the assessment protocol. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Melatonin and circadian rhythms in autism: Case report.

    PubMed

    Zuculo, Gabriela Melloni; Gonçalves, Bruno S B; Brittes, Clay; Menna-Barreto, Luiz; Pinato, Luciana

    2017-01-01

    Among the most co-occurring conditions in autism spectrum disorders (ASD), there are sleep disorders which may exacerbate associated behavioral disorders and lead to intensification of existing autistic symptoms. Several studies investigating the use of melatonin in the treatment of sleep disorders in ASD have shown comparative efficiency in sleep with little or no side effects. Here we report a case of ASD with non-24-hour rhythm and the effect of melatonin in circadian parameters by actigraphy. Visual analysis of the first 10 days recorded and the periodogram suggest that this patient showed a non-24-hour rhythm. This ASD subject showed before melatonin administration an activity/rest rhythm lower than 24 hours. The results show that melatonin increased approximately 4.7 times the regularity of circadian activity rhythm and resting staying on average between 00:00 and 06:00 and showed positive effects in improving the quality of sleep and behavior. So, the actigraphy showed an ASD subject with a non-24-hour activity/rest rhythm which changed this rhythm to a 24-hour rhythm after melatonin administration. This result reinforces the prospect of therapy with melatonin for synchronization (increased regularity) of endogenous rhythms and improve sleep quality and hence behavior and indicates the actigraphy as a choice tool to characterize several parameters of the activity/rest rhythm of ASD individuals.

  3. Individual variation in circadian rhythms of sleep, EEG, temperature, and activity among monkeys - Implications for regulatory mechanisms.

    NASA Technical Reports Server (NTRS)

    Crowley, T. J.; Halberg, F.; Kripke, D. F.; Pegram, G. V.

    1971-01-01

    Investigation of circadian rhythms in a number of variables related to sleep, EEG, temperature, and motor activity in rhesus monkeys on an LD 12:12 schedule. Circadian rhythms were found to appear in each of 15 variables investigated. Statistical procedures assessed the variables for evidence of common regulation in these aspects of their circadian rhythms: acrophase (timing), amplitude (extent of change), and level (24-hr mean value). Patterns appearing in the data suggested that the circadian rhythms of certain variables are regulated in common. The circadian modulation of activity in the beta and sigma frequency bands of the EEG was correlated with statistical significance in acrophase, level, and amplitude. The delta frequency band appeared to be under circadian rhythm regulation distinct from that of the other bands. The circadian rhythm of REM stage sleep was like that of beta activity in level and amplitude. The data indicate that REM stage may share some common regulation of circadian timing with both stage 3-4 sleep and with temperature. Generally, however, the circadian rhythm of temperature appeared to bear little relation to the circadian rhythms of motor activity, EEG, or sleep.

  4. Environmental Progestins Progesterone and Drospirenone Alter the Circadian Rhythm Network in Zebrafish (Danio rerio).

    PubMed

    Zhao, Yanbin; Castiglioni, Sara; Fent, Karl

    2015-08-18

    Progestins alter hormone homeostasis and may result in reproductive effects in humans and animals. Thus far, studies in fish have focused on the hypothalamic-pituitary-gonadal (HPG)-axis and reproduction, but other effects have little been investigated. Here we report that progesterone (P4) and drospirenone (DRS) interfere with regulation of the circadian rhythm in fish. Breeding pairs of adult zebrafish were exposed to P4 and DRS at concentrations between 7 and 13 650 ng/L for 21 days. Transcriptional analysis revealed significant and dose-dependent alterations of the circadian rhythm network in the brain with little effects in the gonads. Significant alterations of many target transcripts occurred even at environmental relevant concentrations of 7 ng/L P4 and at 99 ng/L DRS. They were fully consistent with the well-described circadian rhythm negative/positive feedback loops. Transcriptional alterations of the circadian rhythm network were correlated with those in the HPG-Liver-axis. Fecundity was decreased at 742 (P4) and 2763 (DRS) ng/L. Dose-dependent alterations in the circadian rhythm network were also observed in F1 eleuthero-embryos. Our results suggest a potential target of environmental progestins, the circadian rhythm network, in addition to the adverse reproductive effects. Forthcoming studies should show whether the transcriptional alterations in circadian rhythm translate into physiological effects.

  5. Circadian Rest-Activity Rhythm in Pediatric Type 1 Narcolepsy.

    PubMed

    Filardi, Marco; Pizza, Fabio; Bruni, Oliviero; Natale, Vincenzo; Plazzi, Giuseppe

    2016-06-01

    Pediatric type 1 narcolepsy is often challenging to diagnose and remains largely undiagnosed. Excessive daytime sleepiness, disrupted nocturnal sleep, and a peculiar phenotype of cataplexy are the prominent features. The knowledge available about the regulation of circadian rhythms in affected children is scarce. This study compared circadian rest-activity rhythm and actigraphic estimated sleep measures of children with type 1 narcolepsy versus healthy controls. Twenty-two drug-naïve type 1 narcolepsy children and 21 age- and sex- matched controls were monitored for seven days during the school week by actigraphy. Circadian activity rhythms were analyzed through functional linear modeling; nocturnal and diurnal sleep measures were estimated from activity using a validated algorithm. Children with type 1 narcolepsy presented an altered rest-activity rhythm characterized by enhanced motor activity throughout the night and blunted activity in the first afternoon. No difference was found between children with type 1 narcolepsy and controls in the timing of the circadian phase. Actigraphic sleep measures showed good discriminant capabilities in assessing type 1 narcolepsy nycthemeral disruption. Actigraphy reliably renders the nycthemeral disruption typical of narcolepsy type 1 in drug-naïve children with recent disease onset, indicating the sensibility of actigraphic assessment in the diagnostic work-up of childhood narcolepsy type 1. © 2016 Associated Professional Sleep Societies, LLC.

  6. Genetic Disruption of Circadian Rhythms in the Suprachiasmatic Nucleus Causes Helplessness, Behavioral Despair, and Anxiety-like Behavior in Mice.

    PubMed

    Landgraf, Dominic; Long, Jaimie E; Proulx, Christophe D; Barandas, Rita; Malinow, Roberto; Welsh, David K

    2016-12-01

    Major depressive disorder is associated with disturbed circadian rhythms. To investigate the causal relationship between mood disorders and circadian clock disruption, previous studies in animal models have employed light/dark manipulations, global mutations of clock genes, or brain area lesions. However, light can impact mood by noncircadian mechanisms; clock genes have pleiotropic, clock-independent functions; and brain lesions not only disrupt cellular circadian rhythms but also destroy cells and eliminate important neuronal connections, including light reception pathways. Thus, a definitive causal role for functioning circadian clocks in mood regulation has not been established. We stereotactically injected viral vectors encoding short hairpin RNA to knock down expression of the essential clock gene Bmal1 into the brain's master circadian pacemaker, the suprachiasmatic nucleus (SCN). In these SCN-specific Bmal1-knockdown (SCN-Bmal1-KD) mice, circadian rhythms were greatly attenuated in the SCN, while the mice were maintained in a standard light/dark cycle, SCN neurons remained intact, and neuronal connections were undisturbed, including photic inputs. In the learned helplessness paradigm, the SCN-Bmal1-KD mice were slower to escape, even before exposure to inescapable stress. They also spent more time immobile in the tail suspension test and less time in the lighted section of a light/dark box. The SCN-Bmal1-KD mice also showed greater weight gain, an abnormal circadian pattern of corticosterone, and an attenuated increase of corticosterone in response to stress. Disrupting SCN circadian rhythms is sufficient to cause helplessness, behavioral despair, and anxiety-like behavior in mice, establishing SCN-Bmal1-KD mice as a new animal model of depression. Copyright © 2016 Society of Biological Psychiatry. All rights reserved.

  7. Genetic Disruption of Circadian Rhythms in the Suprachiasmatic Nucleus Causes Helplessness, Behavioral Despair, and Anxiety-like Behavior in Mice

    PubMed Central

    Landgraf, Dominic; Long, Jaimie E.; Proulx, Christophe D.; Barandas, Rita; Malinow, Roberto; Welsh, David K.

    2016-01-01

    Background Major depressive disorder is associated with disturbed circadian rhythms. To investigate the causal relationship between mood disorders and circadian clock disruption, previous studies in animal models have employed light/dark manipulations, global mutations of clock genes, or brain area lesions. However, light can impact mood by noncircadian mechanisms; clock genes have pleiotropic, clock-independent functions; and brain lesions not only disrupt cellular circadian rhythms but also destroy cells and eliminate important neuronal connections, including light reception pathways. Thus, a definitive causal role for functioning circadian clocks in mood regulation has not been established. Methods We stereotactically injected viral vectors encoding short hairpin RNA to knock down expression of the essential clock gene Bmal1 into the brain's master circadian pacemaker, the suprachiasmatic nucleus (SCN). Results In these SCN-specific Bmal1-knockdown (SCN-Bmal1-KD) mice, circadian rhythms were greatly attenuated in the SCN, while the mice were maintained in a standard light/dark cycle, SCN neurons remained intact, and neuronal connections were undisturbed, including photic inputs. In the learned helplessness paradigm, the SCN-Bmal1-KD mice were slower to escape, even before exposure to inescapable stress. They also spent more time immobile in the tail suspension test and less time in the lighted section of a light/dark box. The SCN-Bmal1-KD mice also showed greater weight gain, an abnormal circadian pattern of corticosterone, and an attenuated increase of corticosterone in response to stress. Conclusions Disrupting SCN circadian rhythms is sufficient to cause helplessness, behavioral despair, and anxiety-like behavior in mice, establishing SCN-Bmal1-KD mice as a new animal model of depression. PMID:27113500

  8. Sleep, circadian rhythms, and athletic performance.

    PubMed

    Thun, Eirunn; Bjorvatn, Bjørn; Flo, Elisabeth; Harris, Anette; Pallesen, Ståle

    2015-10-01

    Sleep deprivation and time of day are both known to influence performance. A growing body of research has focused on how sleep and circadian rhythms impact athletic performance. This review provides a systematic overview of this research. We searched three different databases for articles on these issues and inspected relevant reference lists. In all, 113 articles met our inclusion criteria. The most robust result is that athletic performance seems to be best in the evening around the time when the core body temperature typically is at its peak. Sleep deprivation was negatively associated with performance whereas sleep extension seems to improve performance. The effects of desynchronization of circadian rhythms depend on the local time at which performance occurs. The review includes a discussion of differences regarding types of skills involved as well as methodological issues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Absence of Circadian Rhythms of Preterm Premature Rupture of Membranes and Preterm Placental Abruption

    PubMed Central

    Luque-Fernandez, Miguel Angel; Ananth, Cande V.; Sanchez, Sixto E.; Qiu, Chun-fang; Hernandez-Diaz, Sonia; Valdimarsdottir, Unnur; Gelaye, Bizu; Williams, Michelle A.

    2014-01-01

    Purpose Data regarding circadian rhythm in the onset of spontaneous preterm premature rupture of membranes (PROM) and placental abruption (PA) cases are conflicting. We modeled the time of onset of preterm PROM and PA cases and examined if the circadian profiles varied based on the gestational age at delivery. Methods We used parametric and nonparametric methods, including trigonometric regression in the framework of generalized linear models, to test the presence of circadian rhythms in the time of onset of preterm PROM and PA cases, among 395 women who delivered a singleton between 2009 and 2010 in Lima, Peru. Results We found a diurnal circadian pattern, with a morning peak at 07h:32’ (95%CI:05h:46’ – 09h:18’) among moderate preterm PROM cases (P-value<0.001), and some evidence of a diurnal circadian periodicity among PA cases in term infants (P-value=0.067). However, we did not find evidence of circadian rhythms in the time of onset of extremely or very preterm PROM (P-value=0.259) and preterm PA (P-value=0.224). Conclusions The circadian rhythms of the time of onset of preterm PROM and PA cases varied based on gestational weeks at delivery. While circadian rhythms were presented among moderate preterm PROM and term PA cases, there was no evidence of circadian rhythms among preterm PA and very or extremely preterm PROM cases, underlying other mechanisms associated with the time of onset. PMID:25453346

  10. Preliminary characterization of persisting circadian rhythms during space flight: Neurospora as a model system

    NASA Technical Reports Server (NTRS)

    Sulzman, F. W.

    1981-01-01

    The effects of the Spacelab environment on the circadian rhythms in microorganisms are investigated. Neurospora is chosen because of its well characterized circadian rhythm of growth. Growth rate, banding patterns, and circadian period and phase information are studied.

  11. A circadian rhythm of conidiation in Neurospora crassa (L-12)

    NASA Technical Reports Server (NTRS)

    Miyoshi, Yashuhiro

    1993-01-01

    Two fungi growth chambers containing six growth tubes each are used in this experiment. One chamber is for the space experiment; the other is for the simultaneous ground control experiment. The hyphae of Neurospora crassa band A mutant are inoculated at one end of each tube. Both the chambers are kept at 3 C plus or minus 1.5 C to stop hyphae growth until the Spacelab is activated. After the activation, each chamber is transferred simultaneously to the Spacelab and a phytotron in KSC and kept in continuous light at the same temperature. After about 24 hours of light exposure, each chamber is inserted into a growth chamber bag to keep it in constant darkness. The circadian rhythm of conidiation is initiated by this light to dark transition. After the dark incubation for 5 days at room temperature, both the growth chambers are kept at 3 C plus or minus 1.5 C to stop growth of the hyphae. After the space shuttle lands, both conidiation patterns are compared and analyzed. It has been known that numerous physiological phenomena show circadian rhythms. They are characterized by the fact that the oscillation can persist under constant conditions of light and temperature. Therefore, it has been accepted by most investigators that the generation mechanism of the circadian rhythm is endogeneous. However, one cannot reject the possibility that these rhythms are caused by some geophysical exogeneous factor having a 24-hour period, such as atmospheric pressure, gravity, or electromagnetic radiation. We use Neurospora crassa band A mutual which shows an obvious circadian rhythm in its spore-forming (conidiation) on the ground, and we intend to attempt the conidation of this mutant in the Spacelab where 24-hour periodicity is severely attenuated and to elucidate the effect of the geophysical exogeneous factor in the generation mechanism of the circadian rhythm.

  12. Comparison of hormone and electrolyte circadian rhythms in male and female humans

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, J.; Winget, C. M.; Goodwin, A. E.; Reilly, T.

    1977-01-01

    Circadian rhythm characteristics in healthy male and female humans were studied at 4-hour intervals for urine volume, cortisol, 5-hydroxyindoleacetic acid (5-HIAA), Na, K, Na/K ratios in the urine, as well as plasma cortisol. While plasma and urinary cortisol rhythms were very similar in both sexes, the described rhythms in urine volume, electrolyte, and 5-HIAA excretion differ for the two sexes. The results suggest that sex differences exist in the circadian patterns of important hormone and metabolic functions and that the internal synchrony of circadian rhythms differs for the two sexes. The results seem to indicate that the rhythmical secretion of cortisol does not account for the pattern of Na and K excretion.

  13. Glucocorticoids mediate circadian timing in peripheral osteoclasts resulting in the circadian expression rhythm of osteoclast-related genes.

    PubMed

    Fujihara, Yuko; Kondo, Hisataka; Noguchi, Toshihide; Togari, Akifumi

    2014-04-01

    Circadian rhythms are prevalent in bone metabolism. However, the molecular mechanisms involved are poorly understood. Recently, we suggested that output signals from the suprachiasmatic nucleus (SCN) are transmitted from the master circadian rhythm to peripheral osteoblasts through β-adrenergic and glucocorticoid signaling. In this study, we examined how the master circadian rhythm is transmitted to peripheral osteoclasts and the role of clock gene in osteoclast. Mice were maintained under 12-hour light/dark periods and sacrificed at Zeitgeber times 0, 4, 8, 12, 16 and 20. mRNA was extracted from femur (cancellous bone) and analyzed for the expression of osteoclast-related genes and clock genes. Osteoclast-related genes such as cathepsin K (CTSK) and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) showed circadian rhythmicity like clock genes such as period 1 (PER1), PER2 and brain and muscle Arnt-like protein 1 (BMAL1). In an in vitro study, not β-agonist but glucocorticoid treatment remarkably synchronized clock and osteoclast-related genes in cultured osteoclasts. Chromatin immunoprecipitation (ChIP) assay showed the interaction between BMAL1 proteins and promoter region of CTSK and NFATc1. To examine whether endogenous glucocorticoids influence the osteoclast circadian rhythms, mice were adrenalectomized (ADX) and maintained under 12-hour light/dark periods at least two weeks before glucocorticoid injection. A glucocorticoid injection restarted the circadian expression of CTSK and NFATc1 in ADX mice. These results suggest that glucocorticoids mediate circadian timing to peripheral osteoclasts and osteoclast clock contributes to the circadian expression of osteoclast-related genes such as CTSK and NFATc1. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Endogenous circadian rhythm in vasovagal response to head-up tilt

    PubMed Central

    Hu, Kun; Scheer, Frank AJL; Laker, Michael; Smales, Carolina; Shea, Steven A

    2011-01-01

    Background The incidence of syncope exhibits a daily pattern with more occurrences in the morning, possibly due to influences from the endogenous circadian system and/or the daily pattern of behavioral/emotional stimuli. This study tested the hypothesis that the circadian system modulates cardiovascular responses to postural stress, leading to increased susceptibility to syncope at specific times of day. Methods and Results Twelve subjects underwent a 13-day in-laboratory protocol, in which subjects’ sleep-wake cycles were adjusted to 20 hours for 12 cycles. A 15-minute title-table test (60° head-up) was performed ~4.5 hours after scheduled awakening in each cycle so that twelve tests in each subject were distributed evenly across the circadian cycle. Out of 144 tests, signs/symptoms of presyncope were observed in 21 tests in 6 subjects. These presyncope events displayed a clear circadian rhythm (P=0.028) with 17 cases (81%) in the circadian phase range corresponding to ~22:30-10:30 (4.25 times of the probability from the other half of the circadian cycle). Significant circadian rhythms were also observed in hemodynamic and autonomic function markers (blood pressure, heart rate, epinephrine, norepinephrine, and indices of cardiac vagal tone) that may underlie the circadian rhythm of presyncope susceptibility. Conclusion The circadian system affects cardiovascular responses to postural stressors resulting in greater susceptibility to presyncope during the biological night. This finding suggests that night-shift workers and people with disrupted sleep at night may have great risk of syncope due to their exposure to postural stressors during the biological night. PMID:21339480

  15. Melanopsin resets circadian rhythms in cells by inducing clock gene Period1

    NASA Astrophysics Data System (ADS)

    Yamashita, Shuhei; Uehara, Tomoe; Matsuo, Minako; Kikuchi, Yo; Numano, Rika

    2014-02-01

    The biochemical, physiological and behavioral processes are under the control of internal clocks with the period of approximately 24 hr, circadian rhythms. The expression of clock gene Period1 (Per1) oscillates autonomously in cells and is induced immediately after a light pulse. Per1 is an indispensable member of the central clock system to maintain the autonomous oscillator and synchronize environmental light cycle. Per1 expression could be detected by Per1∷luc and Per1∷GFP plasmid DNA in which firefly luciferase and Green Fluorescence Protein were rhythmically expressed under the control of the mouse Per1 promoter in order to monitor mammalian circadian rhythms. Membrane protein, MELANOPSIN is activated by blue light in the morning on the retina and lead to signals transduction to induce Per1 expression and to reset the phase of circadian rhythms. In this report Per1 induction was measured by reporter signal assay in Per1∷luc and Per1∷GFP fibroblast cell at the input process of circadian rhythms. To the result all process to reset the rhythms by Melanopsin is completed in single cell like in the retina projected to the central clock in the brain. Moreover, the phase of circadian rhythm in Per1∷luc cells is synchronized by photo-activated Melanopsin, because the definite peak of luciferase activity in one dish was found one day after light illumination. That is an available means that physiological circadian rhythms could be real-time monitor as calculable reporter (bioluminescent and fluorescent) chronological signal in both single and groups of cells.

  16. Circadian rhythms of performance: new trends

    NASA Technical Reports Server (NTRS)

    Carrier, J.; Monk, T. H.

    2000-01-01

    This brief review is concerned with how human performance efficiency changes as a function of time of day. It presents an overview of some of the research paradigms and conceptual models that have been used to investigate circadian performance rhythms. The influence of homeostatic and circadian processes on performance regulation is discussed. The review also briefly presents recent mathematical models of alertness that have been used to predict cognitive performance. Related topics such as interindividual differences and the postlunch dip are presented.

  17. Electrochemical Detection of Circadian Redox Rhythm in Cyanobacterial Cells via Extracellular Electron Transfer.

    PubMed

    Nishio, Koichi; Pornpitra, Tunanunkul; Izawa, Seiichiro; Nishiwaki-Ohkawa, Taeko; Kato, Souichiro; Hashimoto, Kazuhito; Nakanishi, Shuji

    2015-06-01

    Recent research on cellular circadian rhythms suggests that the coupling of transcription-translation feedback loops and intracellular redox oscillations is essential for robust circadian timekeeping. For clarification of the molecular mechanism underlying the circadian rhythm, methods that allow for the dynamic and simultaneous detection of transcription/translation and redox oscillations in living cells are needed. Herein, we report that the cyanobacterial circadian redox rhythm can be electrochemically detected based on extracellular electron transfer (EET), a process in which intracellular electrons are exchanged with an extracellular electrode. As the EET-based method is non-destructive, concurrent detection with transcription/translation rhythm using bioluminescent reporter strains becomes possible. An EET pathway that electrochemically connected the intracellular region of cyanobacterial cells with an extracellular electrode was constructed via a newly synthesized electron mediator with cell membrane permeability. In the presence of the mediator, the open circuit potential of the culture medium exhibited temperature-compensated rhythm with approximately 24 h periodicity. Importantly, such circadian rhythm of the open circuit potential was not observed in the absence of the electron mediator, indicating that the EET process conveys the dynamic information regarding the intracellular redox state to the extracellular electrode. These findings represent the first direct demonstration of the intracellular circadian redox rhythm of cyanobacterial cells. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Light and Cognition: Roles for Circadian Rhythms, Sleep, and Arousal

    PubMed Central

    Fisk, Angus S.; Tam, Shu K. E.; Brown, Laurence A.; Vyazovskiy, Vladyslav V.; Bannerman, David M.; Peirson, Stuart N.

    2018-01-01

    Light exerts a wide range of effects on mammalian physiology and behavior. As well as synchronizing circadian rhythms to the external environment, light has been shown to modulate autonomic and neuroendocrine responses as well as regulating sleep and influencing cognitive processes such as attention, arousal, and performance. The last two decades have seen major advances in our understanding of the retinal photoreceptors that mediate these non-image forming responses to light, as well as the neural pathways and molecular mechanisms by which circadian rhythms are generated and entrained to the external light/dark (LD) cycle. By contrast, our understanding of the mechanisms by which lighting influences cognitive processes is more equivocal. The effects of light on different cognitive processes are complex. As well as the direct effects of light on alertness, indirect effects may also occur due to disrupted circadian entrainment. Despite the widespread use of disrupted LD cycles to study the role circadian rhythms on cognition, the different experimental protocols used have subtly different effects on circadian function which are not always comparable. Moreover, these protocols will also disrupt sleep and alter physiological arousal, both of which are known to modulate cognition. Studies have used different assays that are dependent on different cognitive and sensory processes, which may also contribute to their variable findings. Here, we propose that studies addressing the effects of different lighting conditions on cognitive processes must also account for their effects on circadian rhythms, sleep, and arousal if we are to fully understand the physiological basis of these responses. PMID:29479335

  19. Circadian rhythms and reproduction.

    PubMed

    Boden, Michael J; Kennaway, David J

    2006-09-01

    There is a growing recognition that the circadian timing system, in particular recently discovered clock genes, plays a major role in a wide range of physiological systems. Microarray studies, for example, have shown that the expression of hundreds of genes changes many fold in the suprachiasmatic nucleus, liver heart and kidney. In this review, we discuss the role of circadian rhythmicity in the control of reproductive function in animals and humans. Circadian rhythms and clock genes appear to be involved in optimal reproductive performance, but there are sufficient redundancies in their function that many of the knockout mice produced do not show overt reproductive failure. Furthermore, important strain differences have emerged from the studies especially between the various Clock (Circadian Locomotor Output Cycle Kaput) mutant strains. Nevertheless, there is emerging evidence that the primary clock genes, Clock and Bmal1 (Brain and Muscle ARNT-like protein 1, also known as Mop3), strongly influence reproductive competency. The extent to which the circadian timing system affects human reproductive performance is not known, in part, because many of the appropriate studies have not been done. With the role of Clock and Bmal1 in fertility becoming clearer, it may be time to pursue the effect of polymorphisms in these genes in relation to the various types of infertility in humans.

  20. Impairment of heme biosynthesis induces short circadian period in body temperature rhythms in mice.

    PubMed

    Iwadate, Reiko; Satoh, Yoko; Watanabe, Yukino; Kawai, Hiroshi; Kudo, Naomi; Kawashima, Yoichi; Mashino, Tadahiko; Mitsumoto, Atsushi

    2012-07-01

    It has been demonstrated that the function of mammalian clock gene transcripts is controlled by the binding of heme in vitro. To examine the effects of heme on biological rhythms in vivo, we measured locomotor activity (LA) and core body temperature (T(b)) in a mouse model of porphyria with impaired heme biosynthesis by feeding mice a griseofulvin (GF)-containing diet. Mice fed with a 2.0% GF-containing diet (GF2.0) transiently exhibited phase advance or phase advance-like phenomenon by 1-3 h in terms of the biological rhythms of T(b) or LA, respectively (both, P < 0.05) while mice were kept under conditions of a light/dark cycle (12 h:12 h). We also observed a transient, ~0.3 h shortening of the period of circadian T(b) rhythms in mice kept under conditions of constant darkness (P < 0.01). Interestingly, the observed duration of abnormal circadian rhythms in GF2.0 mice lasted between 1 and 3 wk after the onset of GF ingestion; this finding correlated well with the extent of impairment of heme biosynthesis. When we examined the effects of therapeutic agents for acute porphyria, heme, and hypertonic glucose on the pathological status of GF2.0 mice, it was found that the intraperitoneal administration of heme (10 mg·kg(-1)·day(-1)) or glucose (9 g·kg(-1)·day(-1)) for 7 days partially reversed (50%) increases in urinary δ-aminolevulinic acids levels associated with acute porphyria. Treatment with heme, but not with glucose, suppressed the phase advance (-like phenomenon) in the diurnal rhythms (P < 0.05) and restored the decrease of heme (P < 0.01) in GF2.0 mice. These results suggest that impairments of heme biosynthesis, in particular a decrease in heme, may affect phase and period of circadian rhythms in animals.

  1. MicroRNA-433 Dampens Glucocorticoid Receptor Signaling, Impacting Circadian Rhythm and Osteoblastic Gene Expression*

    PubMed Central

    Smith, Spenser S.; Dole, Neha S.; Franceschetti, Tiziana; Hrdlicka, Henry C.; Delany, Anne M.

    2016-01-01

    Serum glucocorticoids play a critical role in synchronizing circadian rhythm in peripheral tissues, and multiple mechanisms regulate tissue sensitivity to glucocorticoids. In the skeleton, circadian rhythm helps coordinate bone formation and resorption. Circadian rhythm is regulated through transcriptional and post-transcriptional feedback loops that include microRNAs. How microRNAs regulate circadian rhythm in bone is unexplored. We show that in mouse calvaria, miR-433 displays robust circadian rhythm, peaking just after dark. In C3H/10T1/2 cells synchronized with a pulse of dexamethasone, inhibition of miR-433 using a tough decoy altered the period and amplitude of Per2 gene expression, suggesting that miR-433 regulates rhythm. Although miR-433 does not directly target the Per2 3′-UTR, it does target two rhythmically expressed genes in calvaria, Igf1 and Hif1α. miR-433 can target the glucocorticoid receptor; however, glucocorticoid receptor protein abundance was unaffected in miR-433 decoy cells. Rather, miR-433 inhibition dramatically enhanced glucocorticoid signaling due to increased nuclear receptor translocation, activating glucocorticoid receptor transcriptional targets. Last, in calvaria of transgenic mice expressing a miR-433 decoy in osteoblastic cells (Col3.6 promoter), the amplitude of Per2 and Bmal1 mRNA rhythm was increased, confirming that miR-433 regulates circadian rhythm. miR-433 was previously shown to target Runx2, and mRNA for Runx2 and its downstream target, osteocalcin, were also increased in miR-433 decoy mouse calvaria. We hypothesize that miR-433 helps maintain circadian rhythm in osteoblasts by regulating sensitivity to glucocorticoid receptor signaling. PMID:27551048

  2. Dim light at night disrupts molecular circadian rhythms and increases body weight.

    PubMed

    Fonken, Laura K; Aubrecht, Taryn G; Meléndez-Fernández, O Hecmarie; Weil, Zachary M; Nelson, Randy J

    2013-08-01

    With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms that are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electric lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however, the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to dim light at night and investigated changes in the circadian system and metabolism. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night altered core circadian clock rhythms in the hypothalamus at both the gene and protein level. Circadian rhythms in clock expression persisted during light at night; however, the amplitude of Per1 and Per2 rhythms was attenuated in the hypothalamus. Circadian oscillations were also altered in peripheral tissues critical for metabolic regulation. Exposure to dimly illuminated, as compared to dark, nights decreased the rhythmic expression in all but one of the core circadian clock genes assessed in the liver. Additionally, mice exposed to dim light at night attenuated Rev-Erb expression in the liver and adipose tissue. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide evidence that mild changes in environmental lighting can alter circadian and metabolic function. Detailed analysis of temporal changes induced by nighttime light exposure may provide insight into the onset and progression of obesity and metabolic syndrome, as well as other disorders involving sleep and circadian rhythm disruption.

  3. Circadian rhythms, metabolism, and chrononutrition in rodents and humans

    USDA-ARS?s Scientific Manuscript database

    Chrononutrition is an emerging discipline that builds on the intimate relation between endogenous circadian (24-h) rhythms and metabolism. Circadian regulation of metabolic function can be observed from the level of intracellular biochemistry to whole-organism physiology and even postprandial respon...

  4. Cancer Clocks Out for Lunch: Disruption of Circadian Rhythm and Metabolic Oscillation in Cancer.

    PubMed

    Altman, Brian J

    2016-01-01

    Circadian rhythms are 24-h oscillations present in most eukaryotes and many prokaryotes that synchronize activity to the day-night cycle. They are an essential feature of organismal and cell physiology that coordinate many of the metabolic, biosynthetic, and signal transduction pathways studied in biology. The molecular mechanism of circadian rhythm is controlled both by signal transduction and gene transcription as well as by metabolic feedback. The role of circadian rhythm in cancer cell development and survival is still not well understood, but as will be discussed in this Review, accumulated research suggests that circadian rhythm may be altered or disrupted in many human cancers downstream of common oncogenic alterations. Thus, a complete understanding of the genetic and metabolic alterations in cancer must take potential circadian rhythm perturbations into account, as this disruption itself will influence how gene expression and metabolism are altered in the cancer cell compared to its non-transformed neighbor. It will be important to better understand these circadian changes in both normal and cancer cell physiology to potentially design treatment modalities to exploit this insight.

  5. Cancer Clocks Out for Lunch: Disruption of Circadian Rhythm and Metabolic Oscillation in Cancer

    PubMed Central

    Altman, Brian J.

    2016-01-01

    Circadian rhythms are 24-h oscillations present in most eukaryotes and many prokaryotes that synchronize activity to the day-night cycle. They are an essential feature of organismal and cell physiology that coordinate many of the metabolic, biosynthetic, and signal transduction pathways studied in biology. The molecular mechanism of circadian rhythm is controlled both by signal transduction and gene transcription as well as by metabolic feedback. The role of circadian rhythm in cancer cell development and survival is still not well understood, but as will be discussed in this Review, accumulated research suggests that circadian rhythm may be altered or disrupted in many human cancers downstream of common oncogenic alterations. Thus, a complete understanding of the genetic and metabolic alterations in cancer must take potential circadian rhythm perturbations into account, as this disruption itself will influence how gene expression and metabolism are altered in the cancer cell compared to its non-transformed neighbor. It will be important to better understand these circadian changes in both normal and cancer cell physiology to potentially design treatment modalities to exploit this insight. PMID:27500134

  6. Circadian rhythms, athletic performance, and jet lag

    PubMed Central

    Manfredini, R.; Manfredini, F.; Fersini, C.; Conconi, F.

    1998-01-01

    Rapid air travel across several time zones exposes the traveller to a shift in his/her internal biological clock. The result is a transient desynchronisation of the circadian rhythm, called jet lag, lasting until the rhythm is rephased to the new environmental conditions. The most commonly experienced symptoms are sleep disorders, difficulties with concentrating, irritability, depression, fatigue, disorientation, loss of appetite, and gastrointestinal disturbance. Apart from the decrements in mental and physical performance directly consequent on such symptoms, competitive athletes are also exposed to the additional negative consequences of a shift from the optimal circadian window of performance. A brief summary of the possible negative effects of jet lag on athletic performance and potentially alleviating strategies is given. 




 PMID:9631214

  7. When the clock strikes: Modeling the relation between circadian rhythms and cardiac arrhythmias

    NASA Astrophysics Data System (ADS)

    Seenivasan, Pavithraa; Menon, Shakti N.; Sridhar, S.; Sinha, Sitabhra

    2016-10-01

    It has recently been observed that the occurrence of sudden cardiac death has a close statistical relationship with the time of day, viz., ventricular fibrillation is most likely to occur between 12am-6am, with 6pm-12am being the next most likely period. Consequently there has been significant interest in understanding how cardiac activity is influenced by the circadian clock, i.e., temporal oscillations in physiological activity with a period close to 24 hours and synchronized with the day-night cycle. Although studies have identified the genetic basis of circadian rhythm at the intracellular level, the mechanisms by which they influence cardiac pathologies are not yet fully understood. Evidence has suggested that diurnal variations in the conductance properties of ion channel proteins that govern the excitation dynamics of cardiac cells may provide the crucial link. In this paper, we investigate the relationship between the circadian rhythm as manifested in modulations of ion channel properties and the susceptibility to cardiac arrhythmias by using a mathematical model that describes the electrical activity in ventricular tissue. We show that changes in the channel conductance that lead to extreme values for the duration of action potentials in cardiac cells can result either in abnormally high-frequency reentrant activity or spontaneous conduction block of excitation waves. Both phenomena increase the likelihood of wavebreaks that are known to initiate potentially life- threatening arrhythmias. Thus, disruptive cardiac excitation dynamics are most likely to occur in time-intervals of the day-night cycle during which the channel properties are closest to these extreme values, providing an intriguing relation between circadian rhythms and cardiac pathologies.

  8. Circadian rhythms and sleep have additive effects on respiration in the rat

    PubMed Central

    Stephenson, Richard; Liao, Kiong Sen; Hamrahi, Hedieh; Horner, Richard L

    2001-01-01

    We tested two hypotheses: that respiration and metabolism are subject to circadian modulation in wakefulness, non-rapid-eye-movement (NREM) sleep and rapid-eye-movement (REM) sleep; and that the effects of sleep on breathing vary as a function of time of day.Electroencephalogram (EEG), neck electromyogram (EMG) and abdominal body temperature (Tb) were measured by telemetry in six male Sprague-Dawley rats. The EEG and EMG were used to identify sleep-wake states. Ventilation (V̇I) and metabolic rate (V̇CO2) were measured by plethysmography. Recordings were made over 24 h (12:12 h light:dark) when rats were in established states of wakefulness, NREM sleep and REM sleep.Statistically significant circadian rhythms were observed in V̇I and V̇CO2 in each of the wakefulness, NREM sleep and REM sleep states. Amplitudes and phases of the circadian rhythms were similar across sleep-wake states.The circadian rhythm in V̇I was mediated by a circadian rhythm in respiratory frequency (fR). Tidal volume (VT) was unaffected by time of day in all three sleep-wake states.The 24 h mean V̇I was significantly greater during wakefulness (363.5 ± 18.5 ml min−1) than during NREM sleep (284.8 ± 11.1 ml min−1) and REM sleep (276.1 ± 13.9 ml min−1). V̇CO2 and VT each significantly decreased from wakefulness to NREM sleep to REM sleep. fR was significantly lower in NREM sleep than in wakefulness and REM sleep.These data confirm that ventilation and metabolism exhibit circadian rhythms during wakefulness, and NREM and REM sleep, and refute the hypothesis that state-related effects on breathing vary as a function of time of day. We conclude that the effects of circadian rhythms and sleep-wake state on respiration and metabolic rate are additive in the rat. PMID:11579171

  9. Dim Light at Night Disrupts Molecular Circadian Rhythms and Affects Metabolism

    PubMed Central

    Fonken, Laura K.; Aubrecht, Taryn G.; Meléndez-Fernández, O. Hecmarie; Weil, Zachary M.; Nelson, Randy J.

    2014-01-01

    With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms which are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electrical lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to nighttime light and investigated changes in the circadian system and body weight. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night attenuate core circadian clock rhythms in the SCN at both the gene and protein level. Moreover, circadian clock rhythms were perturbed in the liver by nighttime light exposure. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide mechanistic evidence for how mild changes in environmental lighting can alter circadian and metabolic function. PMID:23929553

  10. Estimation of Circadian Body Temperature Rhythm Based on Heart Rate in Healthy, Ambulatory Subjects.

    PubMed

    Sim, Soo Young; Joo, Kwang Min; Kim, Han Byul; Jang, Seungjin; Kim, Beomoh; Hong, Seungbum; Kim, Sungwan; Park, Kwang Suk

    2017-03-01

    Core body temperature is a reliable marker for circadian rhythm. As characteristics of the circadian body temperature rhythm change during diverse health problems, such as sleep disorder and depression, body temperature monitoring is often used in clinical diagnosis and treatment. However, the use of current thermometers in circadian rhythm monitoring is impractical in daily life. As heart rate is a physiological signal relevant to thermoregulation, we investigated the feasibility of heart rate monitoring in estimating circadian body temperature rhythm. Various heart rate parameters and core body temperature were simultaneously acquired in 21 healthy, ambulatory subjects during their routine life. The performance of regression analysis and the extended Kalman filter on daily body temperature and circadian indicator (mesor, amplitude, and acrophase) estimation were evaluated. For daily body temperature estimation, mean R-R interval (RRI), mean heart rate (MHR), or normalized MHR provided a mean root mean square error of approximately 0.40 °C in both techniques. The mesor estimation regression analysis showed better performance than the extended Kalman filter. However, the extended Kalman filter, combined with RRI or MHR, provided better accuracy in terms of amplitude and acrophase estimation. We suggest that this noninvasive and convenient method for estimating the circadian body temperature rhythm could reduce discomfort during body temperature monitoring in daily life. This, in turn, could facilitate more clinical studies based on circadian body temperature rhythm.

  11. Vasculature on the clock: Circadian rhythm and vascular dysfunction.

    PubMed

    Crnko, Sandra; Cour, Martin; Van Laake, Linda W; Lecour, Sandrine

    2018-05-17

    The master mammalian circadian clock (i.e. central clock), located in the suprachiasmatic nucleus of the hypothalamus, orchestrates the synchronization of the daily behavioural and physiological rhythms to better adapt the organism to the external environment in an anticipatory manner. This central clock is entrained by a variety of signals, the best established being light and food. However, circadian cycles are not simply the consequences of these two cues but are generated by endogenous circadian clocks. Indeed, clock machinery is found in mainly all tissues and cell types, including cells of the vascular system such as endothelial cells, fibroblasts, smooth muscle cells and stem cells. This machinery physiologically contributes to modulate the daily vascular function, and its disturbance therefore plays a major role in the pathophysiology of vascular dysfunction. Therapies targeting the circadian rhythm may therefore be of benefit against vascular disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Abnormal blood pressure circadian rhythm in acute ischaemic stroke: are lacunar strokes really different?

    PubMed

    Castilla-Guerra, L; Espino-Montoro, A; Fernández-Moreno, M C; López-Chozas, J M

    2009-08-01

    A pathologically reduced or abolished circadian blood pressure variation has been described in acute stroke. However, studies on alterations of circadian blood pressure patterns after stroke and stroke subtypes are scarce. The objective of this study was to evaluate the changes in circadian blood pressure patterns in patients with acute ischaemic stroke and their relation to the stroke subtype. We studied 98 consecutive patients who were admitted within 24 h after ischaemic stroke onset. All patients had a detailed clinical examination, laboratory studies and a CT scan study of the brain on admission. To study the circadian rhythm of blood pressure, a continuous blood pressure monitor (Spacelab 90217) was used. Patients were classified according to the percentage fall in the mean systolic blood pressure or diastolic blood pressure at night compared with during the day as: dippers (fall> or =10-20%); extreme dippers (> or =20%); nondipper (<10%); and reverse dippers (<0%, that is, an increase in the mean nocturnal blood pressure compared with the mean daytime blood pressure). Data were separated and analysed in two groups: lacunar and nonlacunar infarctions. Statistical testing was conducted using the SSPS 12.0. Methods We studied 60 males and 38 females, mean age: 70.5+/-11 years. The patient population consisted of 62 (63.2%) lacunar strokes and 36 (36.8%) nonlacunar strokes. Hypertension was the most common risk factor (67 patients, 68.3%). Other risk factors included hypercholesterolaemia (44 patients, 44.8%), diabetes mellitus (38 patients, 38.7%), smoking (24 patients, 24.8%) and atrial fibrillation (19 patients, 19.3%). The patients with lacunar strokes were predominantly men (P=0.037) and had a lower frequency of atrial fibrillation (P=0.016) as compared with nonlacunar stroke patients. In the acute phase, the mean systolic blood pressure was 136+/-20 mmHg and diastolic blood pressure was 78.7+/-11.8. Comparing stroke subtypes, there were no differences in

  13. Continuous exposure to a novel stressor based on water aversion induces abnormal circadian locomotor rhythms and sleep-wake cycles in mice.

    PubMed

    Miyazaki, Koyomi; Itoh, Nanako; Ohyama, Sumika; Kadota, Koji; Oishi, Katsutaka

    2013-01-01

    Psychological stressors prominently affect diurnal rhythms, including locomotor activity, sleep, blood pressure, and body temperature, in humans. Here, we found that a novel continuous stress imposed by the perpetual avoidance of water on a wheel (PAWW) affected several physiological diurnal rhythms in mice. One week of PAWW stress decayed robust circadian locomotor rhythmicity, while locomotor activity was evident even during the light period when the mice are normally asleep. Daytime activity was significantly upregulated, whereas nighttime activity was downregulated, resulting in a low amplitude of activity. Total daily activity gradually decreased with increasing exposure to PAWW stress. The mice could be exposed to PAWW stress for over 3 weeks without adaptation. Furthermore, continuous PAWW stress enhanced food intake, but decreased body weight and plasma leptin levels, indicating that sleep loss and PAWW stress altered the energy balance in these mice. The diurnal rhythm of corticosterone levels was not severely affected. The body temperature rhythm was diurnal in the stressed mice, but significantly dysregulated during the dark period. Plasma catecholamines were elevated in the stressed mice. Continuous PAWW stress reduced the duration of daytime sleep, especially during the first half of the light period, and increased nighttime sleepiness. Continuous PAWW stress also simultaneously obscured sleep/wake and locomotor activity rhythms compared with control mice. These sleep architecture phenotypes under stress are similar to those of patients with insomnia. The stressed mice could be entrained to the light/dark cycle, and when they were transferred to constant darkness, they exhibited a free-running circadian rhythm with a timing of activity onset predicted by the phase of their entrained rhythms. Circadian gene expression in the liver and muscle was unaltered, indicating that the peripheral clocks in these tissues remained intact.

  14. MicroRNA-433 Dampens Glucocorticoid Receptor Signaling, Impacting Circadian Rhythm and Osteoblastic Gene Expression.

    PubMed

    Smith, Spenser S; Dole, Neha S; Franceschetti, Tiziana; Hrdlicka, Henry C; Delany, Anne M

    2016-10-07

    Serum glucocorticoids play a critical role in synchronizing circadian rhythm in peripheral tissues, and multiple mechanisms regulate tissue sensitivity to glucocorticoids. In the skeleton, circadian rhythm helps coordinate bone formation and resorption. Circadian rhythm is regulated through transcriptional and post-transcriptional feedback loops that include microRNAs. How microRNAs regulate circadian rhythm in bone is unexplored. We show that in mouse calvaria, miR-433 displays robust circadian rhythm, peaking just after dark. In C3H/10T1/2 cells synchronized with a pulse of dexamethasone, inhibition of miR-433 using a tough decoy altered the period and amplitude of Per2 gene expression, suggesting that miR-433 regulates rhythm. Although miR-433 does not directly target the Per2 3'-UTR, it does target two rhythmically expressed genes in calvaria, Igf1 and Hif1α. miR-433 can target the glucocorticoid receptor; however, glucocorticoid receptor protein abundance was unaffected in miR-433 decoy cells. Rather, miR-433 inhibition dramatically enhanced glucocorticoid signaling due to increased nuclear receptor translocation, activating glucocorticoid receptor transcriptional targets. Last, in calvaria of transgenic mice expressing a miR-433 decoy in osteoblastic cells (Col3.6 promoter), the amplitude of Per2 and Bmal1 mRNA rhythm was increased, confirming that miR-433 regulates circadian rhythm. miR-433 was previously shown to target Runx2, and mRNA for Runx2 and its downstream target, osteocalcin, were also increased in miR-433 decoy mouse calvaria. We hypothesize that miR-433 helps maintain circadian rhythm in osteoblasts by regulating sensitivity to glucocorticoid receptor signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Therapeutic strategies for circadian rhythm and sleep disturbances in Huntington disease.

    PubMed

    van Wamelen, Daniel J; Roos, Raymund Ac; Aziz, Nasir A

    2015-12-01

    Aside from the well-known motor, cognitive and psychiatric signs and symptoms, Huntington disease (HD) is also frequently complicated by circadian rhythm and sleep disturbances. Despite the observation that these disturbances often precede motor onset and have a high prevalence, no studies are available in HD patients which assess potential treatments. In this review, we will briefly outline the nature of circadian rhythm and sleep disturbances in HD and subsequently focus on potential treatments based on findings in other neurodegenerative diseases with similarities to HD, such as Parkinson and Alzheimer disease. The most promising treatment options to date for circadian rhythm and sleep disruption in HD include melatonin (agonists) and bright light therapy, although further corroboration in clinical trials is warranted.

  16. Role of Circadian Rhythms in Potassium Homeostasis

    PubMed Central

    Gumz, Michelle L.; Rabinowitz, Lawrence

    2013-01-01

    It has been known for decades that urinary potassium excretion varies with a circadian pattern. In this review, we consider the historical evidence for this phenomenon and present an overview of recent developments in the field. Extensive evidence from the latter part of the last century clearly demonstrates that circadian potassium excretion does not depend on endogenous aldosterone. Of note is the recent discovery that the expression of several renal potassium transporters varies with a circadian pattern that appears to be consistent with substantial clinical data regarding daily fluctuations in urinary potassium levels. We propose the circadian clock mechanism as a key regulator of renal potassium transporters, and consequently renal potassium excretion. Further investigation into the mechanism of regulation of renal potassium transport by the circadian clock is warranted in order to increase our understanding of the clinical relevance of circadian rhythms to potassium homeostasis. PMID:23953800

  17. Diminished circadian rhythms in hippocampal microglia may contribute to age-related neuroinflammatory sensitization

    PubMed Central

    Fonken, Laura K.; Kitt, Meagan M.; Gaudet, Andrew D.; Barrientos, Ruth M.; Watkins, Linda R.; Maier, Steven F.

    2016-01-01

    Aged animals exhibit diminished circadian rhythms, and both aging and circadian disruption sensitize neuroinflammatory responses. Microglia –the innate immune cell of the CNS – possess endogenous timekeeping mechanisms that regulate immune responses. Here, we explored whether aging is associated with disrupted diurnal rhythms in microglia and neuroinflammatory processes. First, hippocampal microglia isolated from young rats (4 mos. F344XBN) rhythmically expressed circadian clock genes, whereas microglia isolated from the hippocampus of aged rats (25 mos.) had aberrant Per1 and Per2 rhythms. Unstimulated microglia from young rats exhibited robust rhythms of TNFα and IL-1β mRNA expression, whereas those from aged rats had flattened and tonically-elevated cytokine expression. Similarly, microglial activation markers were diurnally regulated in the hippocampus of young but not aged rats and diurnal differences in responsiveness to both ex vivo and in vivo inflammatory challenges were abolished in aged rats. Corticosterone is an entraining signal for extra-SCN circadian rhythms. Here, corticosterone stimulation elicited similar Per1 induction in aged and young microglia. Overall, these results indicate that aging dysregulates circadian regulation of neuroinflammatory functions. PMID:27568094

  18. Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers

    PubMed Central

    Yon, Felipe; Joo, Youngsung; Cortés Llorca, Lucas; Rothe, Eva; Baldwin, Ian T.; Kim, Sang-Gyu

    2016-01-01

    Summary The rhythmic opening/closing and volatile emissions of flowers is known to attract pollinators at specific times. That these rhythms are maintained under constant light or dark conditions suggests a circadian clock involvement. Although a forward and reverse genetic approach led to the identification of core circadian clock components in Arabidopsis thaliana, involvement of these clock components for floral rhythms remained untested likely due to weak diurnal rhythms in A. thaliana flowers.Here we addressed the role of these core clock components in the flowers of the wild tobacco Nicotiana attenuata, whose flowers open at night, emit benzyl acetone (BA) scents, and move vertically through a 140° arc.We first measured N. attenuata floral rhythms under constant light conditions. The results suggest that the circadian clock controls flower opening, BA emission, and pedicel movement, but not flower closing.We generated transgenic N. attenuata lines silenced in the homologous genes of Arabidopsis LATE ELONGATED HYPOCOTYL (LHY) and ZEITLUPE (ZTL), which are known as a core clock component. Silencing NaLHY and NaZTL strongly altered floral rhythms in different ways, indicating that conserved clock components in N. attenuata coordinate these floral rhythms. PMID:26439540

  19. Circadian rhythm disruption was observed in hand, foot, and mouth disease patients.

    PubMed

    Zhu, Yu; Jiang, Zhou; Xiao, Guoguang; Cheng, Suting; Wen, Yang; Wan, Chaomin

    2015-03-01

    Hand, foot, and mouth disease (HFMD) with central nerve system complications may rapidly progress to fulminated cardiorespiratory failure, with higher mortality and worse prognosis. It has been reported that circadian rhythms of heart rate (HR) and respiratory rate are useful in predicting prognosis of severe cardiovascular and neurological diseases. The present study aims to investigate the characteristics of the circadian rhythms of HR, respiratory rate, and temperature in HFMD patients with neurological complications. Hospitalized HFMD patients including 33 common cases (common group), 61 severe cases (severe group), and 9 critical cases (critical group) were contrasted retrospectively. Their HR, respiratory rate, and temperatures were measured every 4 hours during the first 48-hour in the hospital. Data were analyzed with the least-squares fit of a 24-hour cosine function by the single cosinor and population-mean cosinor method. Results of population-mean cosinor analysis demonstrated that the circadian rhythm of HR, respiratory rate, and temperature was present in the common and severe group, but absent in the critical group. The midline-estimating statistic of rhythm (MESOR) (P = 0.016) and acrophase (P < 0.01) of temperature and respiratory rate were significantly different among 3 groups. But no statistical difference of amplitude in temperature and respiratory rate was observed among the 3 groups (P = 0.14). MESOR value of HR (P < 0.001) was significantly different in 3 groups. However, amplitude and acrophase revealed no statistical difference in circadian characteristics of HR among 3 groups. Compared with the common group, the MESOR of temperature and respiratory rate was significantly higher, and acrophase of temperature and respiratory rate was 2 hours ahead in the severe group, critical HFMD patients lost their population-circadian rhythm of temperature, HR, and respiratory rate. The high values of temperature and respiratory rate for

  20. [Effects of acupuncture on circadian rhythm of blood pressure in patients with essential hypertension].

    PubMed

    Lei, Yun; Jin, Jiu; Ban, Haipeng; Du, Yuzheng

    2017-11-12

    To observe the effects of acupuncture combined with medication on circadian rhythm of blood pressure in patients with essential hypertension. Sixty-four patients of essential hypertension were randomly divided into an observation group and a control group, 32 cases in each group. All the patients maintained original treatment (taking antihypertensive medication); the patients in the observation group were treated with acupuncture method of " Huoxue Sanfeng , Shugan Jianpi ", once a day, five times per week, for totally 6 weeks (30 times). The circadian rhythm of blood pressure and related dynamic parameters were observed before and after treatment in the two groups. (1) The differences of daytime average systolic blood pressure (dASBP), daytime average diastolic blood pressure (dADBP), nighttime average systolic blood pressure (nASBP) and circadian rhythm of systolic blood pressure before and after treatment were significant in the observation group (all P <0.05); the differences of circadian rhythm of blood pressure and related dynamic parameters before and after treatment were insignificant in the control group (all P >0.05). The nASBP and circadian rhythm of systolic blood pressure in the observation group were significantly different from those in the control group (all P <0.05). (2) After the treatment, the spoon-shaped rate of circadian rhythm of blood pressure in the observation group was higher than that in the control group ( P <0.05). The acupuncture combined with medication could effectively improve the circadian rhythm of blood pressure and related dynamic parameters in patients with essential hypertension.

  1. Circadian Rhythms and Sleep in Drosophila melanogaster

    PubMed Central

    Dubowy, Christine; Sehgal, Amita

    2017-01-01

    The advantages of the model organism Drosophila melanogaster, including low genetic redundancy, functional simplicity, and the ability to conduct large-scale genetic screens, have been essential for understanding the molecular nature of circadian (∼24 hr) rhythms, and continue to be valuable in discovering novel regulators of circadian rhythms and sleep. In this review, we discuss the current understanding of these interrelated biological processes in Drosophila and the wider implications of this research. Clock genes period and timeless were first discovered in large-scale Drosophila genetic screens developed in the 1970s. Feedback of period and timeless on their own transcription forms the core of the molecular clock, and accurately timed expression, localization, post-transcriptional modification, and function of these genes is thought to be critical for maintaining the circadian cycle. Regulators, including several phosphatases and kinases, act on different steps of this feedback loop to ensure strong and accurately timed rhythms. Approximately 150 neurons in the fly brain that contain the core components of the molecular clock act together to translate this intracellular cycling into rhythmic behavior. We discuss how different groups of clock neurons serve different functions in allowing clocks to entrain to environmental cues, driving behavioral outputs at different times of day, and allowing flexible behavioral responses in different environmental conditions. The neuropeptide PDF provides an important signal thought to synchronize clock neurons, although the details of how PDF accomplishes this function are still being explored. Secreted signals from clock neurons also influence rhythms in other tissues. SLEEP is, in part, regulated by the circadian clock, which ensures appropriate timing of sleep, but the amount and quality of sleep are also determined by other mechanisms that ensure a homeostatic balance between sleep and wake. Flies have been useful

  2. Dopaminergic Regulation of Circadian Food Anticipatory Activity Rhythms in the Rat

    PubMed Central

    Smit, Andrea N.; Patton, Danica F.; Michalik, Mateusz; Opiol, Hanna; Mistlberger, Ralph E.

    2013-01-01

    Circadian activity rhythms are jointly controlled by a master pacemaker in the hypothalamic suprachiasmatic nuclei (SCN) and by food-entrainable circadian oscillators (FEOs) located elsewhere. The SCN mediates synchrony to daily light-dark cycles, whereas FEOs generate activity rhythms synchronized with regular daily mealtimes. The location of FEOs generating food anticipation rhythms, and the pathways that entrain these FEOs, remain to be clarified. To gain insight into entrainment pathways, we developed a protocol for measuring phase shifts of anticipatory activity rhythms in response to pharmacological probes. We used this protocol to examine a role for dopamine signaling in the timing of circadian food anticipation. To generate a stable food anticipation rhythm, rats were fed 3h/day beginning 6-h after lights-on or in constant light for at least 3 weeks. Rats then received the D2 agonist quinpirole (1 mg/kg IP) alone or after pretreatment with the dopamine synthesis inhibitor α-methylparatyrosine (AMPT). By comparison with vehicle injections, quinpirole administered 1-h before lights-off (19h before mealtime) induced a phase delay of activity onset prior to the next meal. Delay shifts were larger in rats pretreated with AMPT, and smaller following quinpirole administered 4-h after lights-on. A significant shift was not observed in response to the D1 agonist SKF81297. These results provide evidence that signaling at D2 receptors is involved in phase control of FEOs responsible for circadian food anticipatory rhythms in rats. PMID:24312417

  3. Effect of spaceflight on the circadian rhythm, lifespan and gene expression of Drosophila melanogaster.

    PubMed

    Ma, Lingling; Ma, Jun; Xu, Kanyan

    2015-01-01

    Space travelers are reported to experience circadian rhythm disruption during spaceflight. However, how the space environment affects circadian rhythm is yet to be determined. The major focus of this study was to investigate the effect of spaceflight on the Drosophila circadian clock at both the behavioral and molecular level. We used China's Shenzhou-9 spaceship to carry Drosophila. After 13 days of spaceflight, behavior tests showed that the flies maintained normal locomotor activity rhythm and sleep pattern. The expression level and rhythm of major clock genes were also unaffected. However, expression profiling showed differentially regulated output genes of the circadian clock system between space flown and control flies, suggesting that spaceflight affected the circadian output pathway. We also investigated other physiological effects of spaceflight such as lipid metabolism and lifespan, and searched genes significantly affected by spaceflight using microarray analysis. These results provide new information on the effects of spaceflight on circadian rhythm, lipid metabolism and lifespan. Furthermore, we showed that studying the effect of spaceflight on gene expression using samples collected at different Zeitgeber time could obtain different results, suggesting the importance of appropriate sampling procedures in studies on the effects of spaceflight.

  4. Effect of Spaceflight on the Circadian Rhythm, Lifespan and Gene Expression of Drosophila melanogaster

    PubMed Central

    Xu, Kanyan

    2015-01-01

    Space travelers are reported to experience circadian rhythm disruption during spaceflight. However, how the space environment affects circadian rhythm is yet to be determined. The major focus of this study was to investigate the effect of spaceflight on the Drosophila circadian clock at both the behavioral and molecular level. We used China’s Shenzhou-9 spaceship to carry Drosophila. After 13 days of spaceflight, behavior tests showed that the flies maintained normal locomotor activity rhythm and sleep pattern. The expression level and rhythm of major clock genes were also unaffected. However, expression profiling showed differentially regulated output genes of the circadian clock system between space flown and control flies, suggesting that spaceflight affected the circadian output pathway. We also investigated other physiological effects of spaceflight such as lipid metabolism and lifespan, and searched genes significantly affected by spaceflight using microarray analysis. These results provide new information on the effects of spaceflight on circadian rhythm, lipid metabolism and lifespan. Furthermore, we showed that studying the effect of spaceflight on gene expression using samples collected at different Zeitgeber time could obtain different results, suggesting the importance of appropriate sampling procedures in studies on the effects of spaceflight. PMID:25798821

  5. Sleep and Circadian Rhythms in Four Orbiting Astronauts

    NASA Technical Reports Server (NTRS)

    Monk, Timothy H.; Buysse, Daniel J.; Billy, Bart D.; Kennedy, Kathy S.; Willrich, Linda M.

    1999-01-01

    INTRODUCTION The study of human sleep and circadian rhythms in space has both operational and scientific significance. Operationally, U.S. Spaceflight is moving away from brief missions with durations of less than one week. Most space shuttle missions now last two weeks or more, and future plans involving space stations, lunar bases and interplanetary missions all presume that people will be living away from the gravity and time cues of earth for months at a time. Thus, missions are moving away from situations where astronauts can "tough it out" for comparatively brief durations, to situations where sleep and circadian disruptions are likely to become chronic, and thus resistant to short term pharmacological or behavioral manipulations. As well as the operational significance, there is a strong theoretical imperative for studying the sleep and circadian rhythms of people who are removed from the gravity and time cues of earth. Like other animals, in humans, the Circadian Timekeeping System (CTS) is entrained to the correct period (24h) and temporal orientation by various time cues ("zeitgebers"), the most powerful of which is the alternation of daylight and darkness. In leaving Earth, astronauts are removing themselves from the prime zeitgeber of their circadian system -- the 24h alternation of daylight and darkness.

  6. Multimodal Regulation of Circadian Glucocorticoid Rhythm by Central and Adrenal Clocks.

    PubMed

    Son, Gi Hoon; Cha, Hyo Kyeong; Chung, Sooyoung; Kim, Kyungjin

    2018-05-01

    Adrenal glucocorticoids (GCs) control a wide range of physiological processes, including metabolism, cardiovascular and pulmonary activities, immune and inflammatory responses, and various brain functions. During stress responses, GCs are secreted through activation of the hypothalamic-pituitary-adrenal axis, whereas circulating GC levels in unstressed states follow a robust circadian oscillation with a peak around the onset of the active period of a day. A recent advance in chronobiological research has revealed that multiple regulatory mechanisms, along with classical neuroendocrine regulation, underlie this GC circadian rhythm. The hierarchically organized circadian system, with a central pacemaker in the suprachiasmatic nucleus of the hypothalamus and local oscillators in peripheral tissues, including the adrenal gland, mediates periodicities in physiological processes in mammals. In this review, we primarily focus on our understanding of the circadian regulation of adrenal GC rhythm, with particular attention to the cooperative actions of the suprachiasmatic nucleus central and adrenal local clocks, and the clinical implications of this rhythm in human diseases.

  7. Multimodal Regulation of Circadian Glucocorticoid Rhythm by Central and Adrenal Clocks

    PubMed Central

    Son, Gi Hoon; Cha, Hyo Kyeong; Chung, Sooyoung; Kim, Kyungjin

    2018-01-01

    Abstract Adrenal glucocorticoids (GCs) control a wide range of physiological processes, including metabolism, cardiovascular and pulmonary activities, immune and inflammatory responses, and various brain functions. During stress responses, GCs are secreted through activation of the hypothalamic–pituitary–adrenal axis, whereas circulating GC levels in unstressed states follow a robust circadian oscillation with a peak around the onset of the active period of a day. A recent advance in chronobiological research has revealed that multiple regulatory mechanisms, along with classical neuroendocrine regulation, underlie this GC circadian rhythm. The hierarchically organized circadian system, with a central pacemaker in the suprachiasmatic nucleus of the hypothalamus and local oscillators in peripheral tissues, including the adrenal gland, mediates periodicities in physiological processes in mammals. In this review, we primarily focus on our understanding of the circadian regulation of adrenal GC rhythm, with particular attention to the cooperative actions of the suprachiasmatic nucleus central and adrenal local clocks, and the clinical implications of this rhythm in human diseases. PMID:29713692

  8. Significance of circadian rhythms in severely brain-injured patients: A clue to consciousness?

    PubMed

    Blume, Christine; Lechinger, Julia; Santhi, Nayantara; del Giudice, Renata; Gnjezda, Maria-Teresa; Pichler, Gerald; Scarpatetti, Monika; Donis, Johann; Michitsch, Gabriele; Schabus, Manuel

    2017-05-16

    To investigate the relationship between the presence of a circadian body temperature rhythm and behaviorally assessed consciousness levels in patients with disorders of consciousness (DOC; i.e., vegetative state/unresponsive wakefulness syndrome or minimally conscious state). In a cross-sectional study, we investigated the presence of circadian temperature rhythms across 6 to 7 days using external skin temperature sensors in 18 patients with DOC. Beyond this, we examined the relationship between behaviorally assessed consciousness levels and circadian rhythmicity. Analyses with Lomb-Scargle periodograms revealed significant circadian rhythmicity in all patients (range 23.5-26.3 hours). We found that especially scores on the arousal subscale of the Coma Recovery Scale-Revised were closely linked to the integrity of circadian variations in body temperature. Finally, we piloted whether bright light stimulation could boost circadian rhythmicity and found positive evidence in 2 out of 8 patients. The study provides evidence for an association between circadian body temperature rhythms and arousal as a necessary precondition for consciousness. Our findings also make a case for circadian rhythms as a target for treatment as well as the application of diagnostic and therapeutic means at times when cognitive performance is expected to peak. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  9. Circadian rhythms, time-restricted feeding, and healthy aging.

    PubMed

    Manoogian, Emily N C; Panda, Satchidananda

    2017-10-01

    Circadian rhythms optimize physiology and health by temporally coordinating cellular function, tissue function, and behavior. These endogenous rhythms dampen with age and thus compromise temporal coordination. Feeding-fasting patterns are an external cue that profoundly influence the robustness of daily biological rhythms. Erratic eating patterns can disrupt the temporal coordination of metabolism and physiology leading to chronic diseases that are also characteristic of aging. However, sustaining a robust feeding-fasting cycle, even without altering nutrition quality or quantity, can prevent or reverse these chronic diseases in experimental models. In humans, epidemiological studies have shown erratic eating patterns increase the risk of disease, whereas sustained feeding-fasting cycles, or prolonged overnight fasting, is correlated with protection from breast cancer. Therefore, optimizing the timing of external cues with defined eating patterns can sustain a robust circadian clock, which may prevent disease and improve prognosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Circadian rhythm of urinary potassium excretion during treatment with an angiotensin receptor blocker.

    PubMed

    Ogiyama, Yoshiaki; Miura, Toshiyuki; Watanabe, Shuichi; Fuwa, Daisuke; Tomonari, Tatsuya; Ota, Keisuke; Kato, Yoko; Ichikawa, Tadashi; Shirasawa, Yuichi; Ito, Akinori; Yoshida, Atsuhiro; Fukuda, Michio; Kimura, Genjiro

    2014-12-01

    We have reported that the circadian rhythm of urinary potassium excretion (U(K)V) is determined by the rhythm of urinary sodium excretion (U(Na)V) in patients with chronic kidney disease (CKD). We also reported that treatment with an angiotensin receptor blocker (ARB) increased the U(Na)V during the daytime, and restored the non-dipper blood pressure (BP) rhythm into a dipper pattern. However, the circadian rhythm of U(K)V during ARB treatment has not been reported. Circadian rhythms of U(Na)V and U(K)V were examined in 44 patients with CKD undergoing treatment with ARB. Whole-day U(Na)V was not altered by ARB whereas whole-day U(K)V decreased. Even during the ARB treatment, the significant relationship persisted between the night/day ratios of U(Na)V and U(K)V (r=0.56, p<0.0001). Whole-day U(K)V/U(Na)V ratio (p=0.0007) and trans-tubular potassium concentration gradient (p=0.002) were attenuated but their night/day ratios remained unchanged. The change in the night/day U(K)V ratio correlated directly with the change in night/day U(Na)V ratio (F=20.4) rather than with the changes in aldosterone, BP or creatinine clearance. The circadian rhythm of U(K)V was determined by the rhythm of UNaV even during ARB treatment. Changes in the circadian U(K)V rhythm were not determined by aldosterone but by U(Na)V. © The Author(s) 2013.

  11. Circadian Rhythms, Sleep, and Disorders of Aging.

    PubMed

    Mattis, Joanna; Sehgal, Amita

    2016-04-01

    Sleep-wake cycles are known to be disrupted in people with neurodegenerative disorders. These findings are now supported by data from animal models for some of these disorders, raising the question of whether the disrupted sleep/circadian regulation contributes to the loss of neural function. As circadian rhythms and sleep consolidation also break down with normal aging, changes in these may be part of what makes aging a risk factor for disorders like Alzheimer's disease (AD). Mechanisms underlying the connection between circadian/sleep dysregulation and neurodegeneration remain unclear, but several recent studies provide interesting possibilities. While mechanistic analysis is under way, it is worth considering treatment of circadian/sleep disruption as a means to alleviate symptoms of neurodegenerative disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Chronobiology and obesity: Interactions between circadian rhythms and energy regulation.

    PubMed

    Summa, Keith C; Turek, Fred W

    2014-05-01

    Recent advances in the understanding of the molecular, genetic, neural, and physiologic basis for the generation and organization of circadian clocks in mammals have revealed profound bidirectional interactions between the circadian clock system and pathways critical for the regulation of metabolism and energy balance. The discovery that mice harboring a mutation in the core circadian gene circadian locomotor output cycles kaput (Clock) develop obesity and evidence of the metabolic syndrome represented a seminal moment for the field, clearly establishing a link between circadian rhythms, energy balance, and metabolism at the genetic level. Subsequent studies have characterized in great detail the depth and magnitude of the circadian clock's crucial role in regulating body weight and other metabolic processes. Dietary nutrients have been shown to influence circadian rhythms at both molecular and behavioral levels; and many nuclear hormone receptors, which bind nutrients as well as other circulating ligands, have been observed to exhibit robust circadian rhythms of expression in peripheral metabolic tissues. Furthermore, the daily timing of food intake has itself been shown to affect body weight regulation in mammals, likely through, at least in part, regulation of the temporal expression patterns of metabolic genes. Taken together, these and other related findings have transformed our understanding of the important role of time, on a 24-h scale, in the complex physiologic processes of energy balance and coordinated regulation of metabolism. This research has implications for human metabolic disease and may provide unique and novel insights into the development of new therapeutic strategies to control and combat the epidemic of obesity. © 2014 American Society for Nutrition.

  13. Development of Salivary Cortisol Circadian Rhythm and Reference Intervals in Full-Term Infants.

    PubMed

    Ivars, Katrin; Nelson, Nina; Theodorsson, Annette; Theodorsson, Elvar; Ström, Jakob O; Mörelius, Evalotte

    2015-01-01

    Cortisol concentrations in plasma display a circadian rhythm in adults and children older than one year. Earlier studies report divergent results regarding when cortisol circadian rhythm is established. The present study aims to investigate at what age infants develop a circadian rhythm, as well as the possible influences of behavioral regularity and daily life trauma on when the rhythm is established. Furthermore, we determine age-related reference intervals for cortisol concentrations in saliva during the first year of life. 130 healthy full-term infants were included in a prospective, longitudinal study with saliva sampling on two consecutive days, in the morning (07:30-09:30), noon (10:00-12:00) and evening (19:30-21:30), each month from birth until the infant was twelve months old. Information about development of behavioral regularity and potential exposure to trauma was obtained from the parents through the Baby Behavior Questionnaire and the Life Incidence of Traumatic Events checklist. A significant group-level circadian rhythm of salivary cortisol secretion was established at one month, and remained throughout the first year of life, although there was considerable individual variability. No correlation was found between development of cortisol circadian rhythm and the results from either the Baby Behavior Questionnaire or the Life Incidence of Traumatic Events checklist. The study presents salivary cortisol reference intervals for infants during the first twelve months of life. Cortisol circadian rhythm in infants is already established by one month of age, earlier than previous studies have shown. The current study also provides first year age-related reference intervals for salivary cortisol levels in healthy, full-term infants.

  14. Development of Salivary Cortisol Circadian Rhythm and Reference Intervals in Full-Term Infants

    PubMed Central

    Ivars, Katrin; Nelson, Nina; Theodorsson, Annette; Theodorsson, Elvar; Ström, Jakob O.; Mörelius, Evalotte

    2015-01-01

    Background Cortisol concentrations in plasma display a circadian rhythm in adults and children older than one year. Earlier studies report divergent results regarding when cortisol circadian rhythm is established. The present study aims to investigate at what age infants develop a circadian rhythm, as well as the possible influences of behavioral regularity and daily life trauma on when the rhythm is established. Furthermore, we determine age-related reference intervals for cortisol concentrations in saliva during the first year of life. Methods 130 healthy full-term infants were included in a prospective, longitudinal study with saliva sampling on two consecutive days, in the morning (07:30-09:30), noon (10:00-12:00) and evening (19:30-21:30), each month from birth until the infant was twelve months old. Information about development of behavioral regularity and potential exposure to trauma was obtained from the parents through the Baby Behavior Questionnaire and the Life Incidence of Traumatic Events checklist. Results A significant group-level circadian rhythm of salivary cortisol secretion was established at one month, and remained throughout the first year of life, although there was considerable individual variability. No correlation was found between development of cortisol circadian rhythm and the results from either the Baby Behavior Questionnaire or the Life Incidence of Traumatic Events checklist. The study presents salivary cortisol reference intervals for infants during the first twelve months of life. Conclusions Cortisol circadian rhythm in infants is already established by one month of age, earlier than previous studies have shown. The current study also provides first year age-related reference intervals for salivary cortisol levels in healthy, full-term infants. PMID:26086734

  15. Circadian intraocular pressure rhythms in athletic horses under different lighting regime.

    PubMed

    Bertolucci, Cristiano; Giudice, Elisabetta; Fazio, Francesco; Piccione, Giuseppe

    2009-02-01

    The present study was undertaken to investigate the existence of intraocular pressure (IOP) rhythms in athletic thoroughbred horses maintained under a 24 h cycle of light and darkness (LD) or under constant light (LL) or constant dark (DD) conditions. We identified an IOP circadian rhythm that is entrained to the 24 h LD cycle. IOP was low during the dark phase and high during the light phase, with a peak at the end of the light phase (ZT10). The circadian rhythm of IOP persisted in DD (with a peak at CT9.5), demonstrating an endogenous component in IOP rhythm. As previously shown in other mammalian species, horse IOP circadian rhythmicity was abolished in LL. Because tonometry is performed in horses for the diagnosis of ophthalmologic diseases, such as glaucoma or anterior uveitis, the daily variation in IOP must be taken into account in clinical practice to properly time tests and to interpret clinical findings.

  16. Comparison of synchronization of primate circadian rhythms by light and food

    NASA Technical Reports Server (NTRS)

    Sulzman, F. M.; Fuller, C. A.; Moore-Ede, M. C.

    1978-01-01

    It is a well-documented fact that cycles of light and dark (LD) are the major entraining agent or 'zeitgeber' for circadian rhythms and that cycles of eating and fasting (EF) are capable of synchronizing a few circadian rhythms in the squirrel monkey. In this paper, by contrasting how these rhythms are timed by LD and EF cycles, the differential coupling to the oscillating system within adult male squirrel monkeys is examined. The variables measured are the rhythms of drinking, colonic temperature, and urinary potassium and water excretion. Attention is given to a comparison of the reproducibility of the averaged waveforms of the rhythms, the stability of the timing of a phase reference point, and the rate of resynchronization of these rhythms following an abrupt 8-hr phase delay in the zeitgeber. It is shown that the colonic temperature rhythm is more tightly controlled by LD than EF cycles, and that the drinking and urinary rhythms are more tightly coupled to EF than LD cycles.

  17. The pathophysiology of monosymptomatic nocturnal enuresis with special emphasis on the circadian rhythm of renal physiology.

    PubMed

    Dossche, L; Walle, J Vande; Van Herzeele, C

    2016-06-01

    Nocturnal polyuria in monosymptomatic nocturnal enuresis (MNE) has so far mainly been attributed to a disturbed circadian rhythm of renal water handling. Low vasopressin levels overnight correlate with absent maximal concentrating activity, resulting in an increased nocturnal diuresis with low urinary osmolality. Therefore, treatment with desmopressin is a rational choice. Unfortunately, 20 to 60 % of children with monosymptomatic enuresis are desmopressin-resistant. There is increasing evidence that other disturbed circadian rhythms might play a role in nocturnal polyuria. This review focuses on renal aspects in the pathophysiology of nocturnal polyuria in MNE, with special emphasis on circadian rhythms. Articles related to renal circadian rhythms and enuresis were searched through the PubMed library with the goal of providing a concise review. Nocturnal polyuria can only partially be explained by blunted circadian rhythm of vasopressin secretion. Other alterations in the intrinsic renal circadian clock system also seem to be involved, especially in desmopressin-resistant enuresis. • Disturbance in the circadian rhythm of arginine vasopressin secretion is related to nocturnal polyuria in children with enuresis. • Desmopressin is recommended as a treatment for monosymptomatic nocturnal enuresis, working as a vasopressin analogue acting on V2 receptors in the collecting ducts of the kidney. What is New: • Other renal circadian rhythms might play a role in nocturnal polyuria, especially in desmopressin-resistant case.

  18. Parkinsonian syndromes presenting with circadian rhythm sleep disorder- advanced sleep-phase type.

    PubMed

    Shukla, Garima; Kaul, Bhavna; Gupta, Anupama; Goyal, Vinay; Behari, Madhuri

    2015-01-01

    Circadian rhythm sleep disorder-advanced sleep-phase type is a relatively uncommon disorder, mostly seen among the elderly population. Impaired circadian rhythms have been reported in neurodegenerative conditions; however, there are no reports of any circadian rhythm sleep disorder among patients with Parkinsonian syndromes. We report two patients who presented with this circadian rhythm disorder, and were then diagnosed with a Parkinsonian syndrome. The cases. A 65-year-old retired man presented with history of abrupt change in sleep schedules, sleeping around 6.30-7 p.m. and waking up around 3-4 a.m. for the last 2 months. On detailed examination, the patient was observed to have symmetrical bradykinesia and cogwheel rigidity of limbs. A diagnosis of multiple system atrophy was made, supported by MRI findings and evidence of autonomic dysfunction. Symptoms of change in sleep-wake cycles resolved over the next 1 year, while the patient was treated with dopaminergic therapy. A 47-year-old man, who was being evaluated for presurgical investigation for refractory temporal lobe epilepsy, presented with complaints suggestive of dysarthria, bradykinesia of limbs and frequent falls for 5 months. Simultaneously, he began to sleep around 7 p.m. and wake up at about 2-3 a.m. Examination revealed severe axial rigidity, restricted vertical gaze and bradykinesia of limbs. A diagnosis of progressive supranuclear palsy was made. This is the first report of Parkinson's plus syndromes presenting with a circadian rhythm sleep disorder-advanced sleep-phase type. More prospective assessment for circadian sleep disorders may introduce useful insights into similar associations. Copyright 2015, NMJI.

  19. Analysis of a Gene Regulatory Cascade Mediating Circadian Rhythm in Zebrafish

    PubMed Central

    Wang, Haifang; Du, Jiulin; Yan, Jun

    2013-01-01

    In the study of circadian rhythms, it has been a puzzle how a limited number of circadian clock genes can control diverse aspects of physiology. Here we investigate circadian gene expression genome-wide using larval zebrafish as a model system. We made use of a spatial gene expression atlas to investigate the expression of circadian genes in various tissues and cell types. Comparison of genome-wide circadian gene expression data between zebrafish and mouse revealed a nearly anti-phase relationship and allowed us to detect novel evolutionarily conserved circadian genes in vertebrates. We identified three groups of zebrafish genes with distinct responses to light entrainment: fast light-induced genes, slow light-induced genes, and dark-induced genes. Our computational analysis of the circadian gene regulatory network revealed several transcription factors (TFs) involved in diverse aspects of circadian physiology through transcriptional cascade. Of these, microphthalmia-associated transcription factor a (mitfa), a dark-induced TF, mediates a circadian rhythm of melanin synthesis, which may be involved in zebrafish's adaptation to daily light cycling. Our study describes a systematic method to discover previously unidentified TFs involved in circadian physiology in complex organisms. PMID:23468616

  20. Circadian rhythm resynchronization improved isoflurane-induced cognitive dysfunction in aged mice.

    PubMed

    Song, Jia; Chu, Shuaishuai; Cui, Yin; Qian, Yue; Li, Xiuxiu; Xu, Fangxia; Shao, Xueming; Ma, Zhengliang; Xia, Tianjiao; Gu, Xiaoping

    2018-04-13

    Postoperative cognitive dysfunction (POCD) is a common clinical phenomenon characterized by cognitive deficits in patients after anesthesia and surgery. Advanced age is a significant independent risk factor for POCD. We previously reported that in young mice, sleep-wake rhythm is involved in the isoflurane-induced memory impairment. In present study, we sought to determine whether advanced age increased the risk of POCD through aggravated and prolonged post-anesthetic circadian disruption in the elderly. We constructed POCD model by submitting the mice to 5-h 1.3% isoflurane anesthesia from Zeitgeber Time (ZT) 14 to ZT19. Under novel object recognition assay (NOR) and Morris water maze (MWM) test, We found 5-h isoflurane anesthesia impaired the cognition of young mice for early 3 days after anesthesia but damaged the aged for at least 1 week. With Mini-Mitter continuously monitoring, a 3.22 ± 0.75 h gross motor activity acrophase delay was manifested in young mice on D1, while in the aged mice, the gross motor activity phase shift lasted for 3 days, consistent with the body temperature rhythm trends of change. Melatonin has been considered as an effective remedy for circadian rhythm shift. In aged mice, melatonin was pretreated intragastrically at the dose of 10 mg/kg daily for 7 consecutive days before anesthesia. We found that melatonin prevented isoflurane-induced cognitive impairments by restoring the locomotor activity and temperature circadian rhythm via clock gene resynchronization. Overall, these results indicated that Long-term isoflurane anesthesia induced more aggravated and prolonged memory deficits and circadian rhythms disruption in aged mice. Melatonin could prevent isoflurane-induced cognitive impairments by circadian rhythm resynchronization. Copyright © 2018. Published by Elsevier Inc.

  1. Influence of sleep-wake and circadian rhythm disturbances in psychiatric disorders

    PubMed Central

    Boivin, DB

    2000-01-01

    Recent evidence shows that the temporal alignment between the sleep-wake cycle and the circadian pacemaker affects self-assessment of mood in healthy subjects. Despite the differences in affective state between healthy subjects and patients with psychiatric disorders, these results have implications for analyzing diurnal variation of mood in unipolar and bipolar affective disorders and sleep disturbances in other major psychiatric conditions such as chronic schizophrenia. In a good proportion of patients with depression, mood often improves over the course of the day; an extension of waking often has an antidepressant effect. Sleep deprivation has been described as a treatment for depression for more than 30 years, and approximately 50% to 60% of patients with depression respond to this approach, especially those patients who report that their mood improves over the course of the day. The mechanisms by which sleep deprivation exerts its antidepressant effects are still controversial, but a reduction in rapid eye movement sleep (REM sleep), sleep pressure and slow-wave sleep (SWS), or a circadian phase disturbance, have been proposed. Although several studies support each of these hypotheses, none is sufficient to explain all observations reported to date. Unfortunately, the disturbed sleep-wake cycle or behavioural activities of depressed patients often explain several of the abnormalities reported in the diurnal rhythms of these patients. Thus, protocols that specifically manipulate the sleep-wake cycle to unmask the expression of the endogenous circadian pacemaker are greatly needed. In chronic schizophrenia, significant disturbances in sleep continuity, REM sleep, and SWS have been consistently reported. These disturbances are different from those observed in depression, especially with regard to REM sleep. Circadian phase abnormalities in schizophrenic patients have also been reported. Future research is expected to clarify the nature of these abnormalities

  2. Lighting, sleep and circadian rhythm: An intervention study in the intensive care unit.

    PubMed

    Engwall, Marie; Fridh, Isabell; Johansson, Lotta; Bergbom, Ingegerd; Lindahl, Berit

    2015-12-01

    Patients in an intensive care unit (ICU) may risk disruption of their circadian rhythm. In an intervention research project a cycled lighting system was set up in an ICU room to support patients' circadian rhythm. Part I aimed to compare experiences of the lighting environment in two rooms with different lighting environments by lighting experiences questionnaire. The results indicated differences in advantage for the patients in the intervention room (n=48), in perception of daytime brightness (p=0.004). In nighttime, greater lighting variation (p=0.005) was found in the ordinary room (n=52). Part II aimed to describe experiences of lighting in the room equipped with the cycled lighting environment. Patients (n=19) were interviewed and the results were presented in categories: "A dynamic lighting environment", "Impact of lighting on patients' sleep", "The impact of lighting/lights on circadian rhythm" and "The lighting calms". Most had experiences from sleep disorders and half had nightmares/sights and circadian rhythm disruption. Nearly all were pleased with the cycled lighting environment, which together with daylight supported their circadian rhythm. In night's actual lighting levels helped patients and staff to connect which engendered feelings of calm. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. The impact of non-dipper circadian rhythm of blood pressure on left ventricular hypertrophy in patients with non-dialysis chronic kidney disease.

    PubMed

    Che, Xiajing; Mou, Shan; Zhang, Weiming; Zhang, Minfang; Gu, Leyi; Yan, Yucheng; Ying, Hua; Hu, Chunhua; Qian, Jiaqi; Ni, Zhaohui

    2017-04-01

    Objective The aim of this study was to investigate the correlation between non-dipper circadian rhythm of blood pressure (BP) and left ventricular hypertrophy (LVH) in patients with chronic kidney disease (CKD). Methods and results All 257 patients with stage 1 to 5 CKD were enrolled in the study and classified into a CKD1-3 group and a CKD4-5 group according to renal function. The parameters and circadian rhythm of BP were measured by a GE Marquette Tonoport V Eng dynamic sphygmomanometer, and cardiac structure was examined by echocardiography. The incidence of abnormal circadian BP rhythm (non-dipper rhythm) was quite high (75.4% in all enrolled patients and 71.3% in the patients with normal BP levels) in CKD patients and increased with the deterioration of renal function. Changes of cardiac structure such as LVH in patients with non-dipper BP were more distinct than in patients with dipper BP. The development of left ventricular mass index (LVMI) correlated positively with the incidence of non-dipper BP rhythm. Multiple regression analysis showed that 24-h systolic BP (β = 0.417, P < 0.01), triglycerides (TG) (β = -0.132, P = 0.007), Hb (β = -0.394, P = 0.016) and gender (β = 0.158, P = 0.039) were independent risk factors of LVMI. Conclusions The incidence of non-dipper circadian rhythm of blood pressure was quite high in CKD patients and increased with the deterioration of renal function. Non-dipper circadian rhythm of BP is closely related with LVMI.

  4. Light and Gravity Effects on Circadian Rhythms of Rhesus Macaques

    NASA Technical Reports Server (NTRS)

    Fuller, Charles

    1997-01-01

    Temporal integration of a biological organism's physiological, behavioral and biochemical systems depends upon its circadian timing system. The endogenous period of this timing system is typically synchronized to the 24- hour day by environmental cues. The daily alternation of light and dark has long been known as one of the most potent environmental synchronizers influencing the circadian timing system. Alterations in the lighting environment (length or intensity of light exposure) can also affect the homeostatic state of the organism. A series of experiments was performed using rhesus monkeys with the objective of defining the fundamental properties of the circadian rhythm of body temperature. Three major experiments were performed in addition to several preliminary studies. These experiments explored 1.) the response of the rhesus body temperature rhythm to varying day length and light intensity; 2.) the response of the body temperature rhythm to light exposure as a function of time of day; and 3.) the characteristics of the metabolic heat production rhythm which is responsible for the daily cycle in body temperature. Results of these three completed experiments will be reported here. In addition, preliminary experiments were also performed in social entrainment of rhesus circadian rhythms and the properties of rhesus body temperature rhythms in constant conditions, where no external time cues were provided. Four adult male rhesus monkeys served as subjects in all experiments. All experiments were performed at the California Regional Primate Research Center. Each animal was implanted with a biotelemetry unit that measured deep body temperature. All surgeries were performed by a board certified veterinary surgeon under sterile conditions. The biotelemetry implants also provided an index of activity level in each animal. For metabolic heat production measurements, oxygen consumption and carbon dioxide production were measured and the caloric equivalent of these

  5. Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers.

    PubMed

    Yon, Felipe; Joo, Youngsung; Cortés Llorca, Lucas; Rothe, Eva; Baldwin, Ian T; Kim, Sang-Gyu

    2016-02-01

    The rhythmic opening/closing and volatile emissions of flowers are known to attract pollinators at specific times. That these rhythms are maintained under constant light or dark conditions suggests a circadian clock involvement. Although a forward and reverse genetic approach has led to the identification of core circadian clock components in Arabidopsis thaliana, the involvement of these clock components in floral rhythms has remained untested, probably because of the weak diurnal rhythms in A. thaliana flowers. Here, we addressed the role of these core clock components in the flowers of the wild tobacco Nicotiana attenuata, whose flowers open at night, emit benzyl acetone (BA) scents and move vertically through a 140° arc. We first measured N. attenuata floral rhythms under constant light conditions. The results suggest that the circadian clock controls flower opening, BA emission and pedicel movement, but not flower closing. We generated transgenic N. attenuata lines silenced in the homologous genes of Arabidopsis LATE ELONGATED HYPOCOTYL (LHY) and ZEITLUPE (ZTL), which are known to be core clock components. Silencing NaLHY and NaZTL strongly altered floral rhythms in different ways, indicating that conserved clock components in N. attenuata coordinate these floral rhythms. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. Circadian rhythms in human performance and mood under constant conditions

    NASA Technical Reports Server (NTRS)

    Monk, T. H.; Buysse, D. J.; Reynolds, C. F. 3rd; Berga, S. L.; Jarrett, D. B.; Begley, A. E.; Kupfer, D. J.

    1997-01-01

    This study explored the relationship between circadian performance rhythms and rhythms in rectal temperature, plasma cortisol, plasma melatonin, subjective alertness and well-being. Seventeen healthy young adults were studied under 36 h of 'unmasking' conditions (constant wakeful bedrest, temporal isolation, homogenized 'meals') during which rectal temperatures were measured every minute, and plasma cortisol and plasma melatonin measured every 20 min. Hourly subjective ratings of global vigour (alertness) and affect (well-being) were obtained followed by one of two performance batteries. On odd-numbered hours performance (speed and accuracy) of serial search, verbal reasoning and manual dexterity tasks was assessed. On even-numbered hours, performance (% hits, response speed) was measured at a 25-30 min visual vigilance task. Performance of all tasks (except search accuracy) showed a significant time of day variation usually with a nocturnal trough close to the trough in rectal temperature. Performance rhythms appeared not to reliably differ with working memory load. Within subjects, predominantly positive correlations emerged between good performance and higher temperatures and better subjective alertness; predominantly negative correlations between good performance and higher plasma levels of cortisol and melatonin. Temperature and cortisol rhythms correlated with slightly more performance measures (5/7) than did melatonin rhythms (4/7). Global vigour correlated about as well with performance (5/7) as did temperature, and considerably better than global affect (1/7). In conclusion: (1) between-task heterogeneity in circadian performance rhythms appeared to be absent when the sleep/wake cycle was suspended; (2) temperature (positively), cortisol and melatonin (negatively) appeared equally good as circadian correlates of performance, and (3) subjective alertness correlated with performance rhythms as well as (but not better than) body temperature, suggesting that

  7. Melatonin Entrains PER2::LUC Bioluminescence Circadian Rhythm in the Mouse Cornea

    PubMed Central

    Baba, Kenkichi; Davidson, Alec J.; Tosini, Gianluca

    2015-01-01

    Purpose Previous studies have reported the presence of a circadian rhythm in PERIOD2::LUCIFERASE (PER2::LUC) bioluminescence in mouse photoreceptors, retina, RPE, and cornea. Melatonin (MLT) modulates many physiological functions in the eye and it is believed to be one of the key circadian signals within the eye. The aim of the present study was to investigate the regulation of the PER2::LUC circadian rhythm in mouse cornea and to determine the role played by MLT. Methods Corneas were obtained from PER2::LUC mice and cultured to measure bioluminescence rhythmicity in isolated tissue using a Lumicycle or CCD camera. To determine the time-dependent resetting of the corneal circadian clocks in response to MLT or IIK7 (a melatonin type 2 receptor, MT2, agonist) was added to the cultured corneas at different times of the day. We also defined the location of the MT2 receptor within different corneal layers using immunohistochemistry. Results A long-lasting bioluminescence rhythm was recorded from cultured PER2::LUC cornea and PER2::LUC signal was localized to the corneal epithelium and endothelium. MLT administration in the early night delayed the cornea rhythm, whereas administration of MLT at late night to early morning advanced the cornea rhythm. Treatment with IIK7 mimicked the MLT phase-shifting effect. Consistent with these results, MT2 immunoreactivity was localized to the corneal epithelium and endothelium. Conclusions Our work demonstrates that MLT entrains the PER2::LUC bioluminescence rhythm in the cornea. Our data indicate that the cornea may represent a model to study the molecular mechanisms by which MLT affects the circadian clock. PMID:26207312

  8. Differential Sensitivity to Ethanol-Induced Circadian Rhythm Disruption in Adolescent and Adult Mice

    PubMed Central

    Ruby, Christina L.; Palmer, Kaitlyn N.; Zhang, Jiawen; Risinger, Megan O.; Butkowski, Melissa A.; Swartzwelder, H. Scott

    2016-01-01

    Background Growing evidence supports a central role for the circadian system in alcohol use disorders, but few studies have examined this relationship during adolescence. In mammals, circadian rhythms are regulated by the suprachiasmatic nucleus (SCN), a biological clock whose timing is synchronized (reset) to the environment primarily by light (photic) input. Alcohol (ethanol) disrupts circadian timing in part by attenuating photic phase-resetting responses in adult rodents. However, circadian rhythms change throughout life and it is not yet known whether ethanol has similar effects on circadian regulation during adolescence. Methods General circadian locomotor activity was monitored in male C57BL6/J mice beginning in adolescence (P27) or adulthood (P61) in a 12 h light, 12 h dark photocycle for ~2 weeks to establish baseline circadian activity measures. On the day of the experiment, mice received an acute injection of ethanol (1.5 g/kg, i.p.) or equal volume saline 15 min prior to a 30-min light pulse at Zeitgeber Time 14 (2 h into the dark phase), then were released into constant darkness (DD) for ~2 weeks to assess phase-resetting responses. Control mice of each age group received injections but no light pulse prior to DD. Results While adults showed the expected decrease in photic phase-delays induced by acute ethanol, this effect was absent in adolescent mice. Adolescents also showed baseline differences in circadian rhythmicity compared to adults, including advanced photocycle entrainment, larger photic phase-delays, a shorter free-running (endogenous) circadian period, and greater circadian rhythm amplitude. Conclusions Collectively, our results indicate that adolescent mice are less sensitive to the effect of ethanol on circadian photic phase-resetting and that their daily activity rhythms are markedly different than those of adults. PMID:27997028

  9. Abnormal circadian locomotor rhythms and Per gene expression in six-month-old triple transgenic mice model of Alzheimer's disease.

    PubMed

    Wu, Meina; Zhou, Fang; Cao, Xiuli; Yang, Junting; Bai, Yu; Yan, Xudong; Cao, Jimin; Qi, Jinshun

    2018-05-29

    Circadian rhythm disturbance (CRD) is one of the iconic manifestations in Alzheimer's disease (AD), a disease tightly associated with age, but the characteristics and gender difference of CRD occurred in AD have not been well demonstrated. Using 6-month-old triple transgenic AD mouse model (3xTg-AD) without obvious brain pathological changes, we demonstrated the gender difference of CRD at this age. We further showed abnormal Per gene expression in the central clock suprachiasmatic nucleus (SCN) of the 3xTg-AD mice. Specifically, compared with the wide type (WT) mice, the 3xTg-AD mice showed disrupted circadian locomotor rhythms both at LD (light-dark 12 h:12 h) and DD (constant dark) conditions, such as increased activities in the resting phase, decreased and scattered activities in the active phase, decreased overall activity intensities, amplitude, robustness, and increased intradaily variability. We further observed that 3xTg-AD female mice showed obviously less CRD compared with the 3xTg-AD male mice, and female mice of both WT and 3xTg-AD were more active in locomotor activity. Accordingly, 3xTg-AD mice showed a phase delay in the expression of Per1 and Per2 mRNA in the SCN, with the levels of Per1 and Per2 mRNA were significantly lower than that of WT mice at specific time points. We conclude that 3xTg-AD mice exhibit behavioral CRD at the age of six months with male gender preference, and these phenomena are at least partly associated with the alteration of Per1 and Per2 transcription patterns in the SCN. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Circadian Sleep-Wake Rhythm of Older Adults with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Maaskant, Marijke; van de Wouw, Ellen; van Wijck, Ruud; Evenhuis, Heleen M.; Echteld, Michael A.

    2013-01-01

    The circadian sleep-wake rhythm changes with aging, resulting in a more fragmented sleep-wake pattern. In individuals with intellectual disabilities (ID), brain structures regulating the sleep-wake rhythm might be affected. The aims of this study were to compare the sleep-wake rhythm of older adults with ID to that of older adults in the general…

  11. Maternal circadian rhythms and the programming of adult health and disease.

    PubMed

    Varcoe, Tamara J; Gatford, Kathryn L; Kennaway, David J

    2018-02-01

    The in utero environment is inherently rhythmic, with the fetus subjected to circadian changes in temperature, substrates, and various maternal hormones. Meanwhile, the fetus is developing an endogenous circadian timing system, preparing for life in an external environment where light, food availability, and other environmental factors change predictably and repeatedly every 24 h. In humans, there are many situations that can disrupt circadian rhythms, including shift work, international travel, insomnias, and circadian rhythm disorders (e.g., advanced/delayed sleep phase disorder), with a growing consensus that this chronodisruption can have deleterious consequences for an individual's health and well-being. However, the impact of chronodisruption during pregnancy on the health of both the mother and fetus is not well understood. In this review, we outline circadian timing system ontogeny in mammals and examine emerging research from animal models demonstrating long-term negative implications for progeny health following maternal chronodisruption during pregnancy.

  12. Neurospora circadian rhythms in space - A reexamination of the endogenous-exogenous question

    NASA Technical Reports Server (NTRS)

    Sulzman, F. M.; Ellman, D.; Wassmer, G.; Fuller, C. A.; Moore-Ede, M.

    1984-01-01

    To test the functioning of circadian rhythms removed from periodicities of the earth's 24-hour rotation, the conidiation rhythm of the fungus Neurospora crassa was monitored in constant darkness during spaceflight. The free-running period of the rhythm was the same in space as on the earth, but there was a marked reduction in the clarity of the rhythm, and apparent arrhythmicity in some tubes. At the current stage of analysis of the results there is insufficient evidence to determine whether the effect seen in space was related to removal from 24-hour periodicities and whether the circadian timekeeping mechanism, or merely its expression, was affected.

  13. Possible molecular mechanism underlying cadmium-induced circadian rhythms disruption in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Bo; Chen, Tian-Ming; Zhong, Yingbin

    This study was aimed to explore the mechanisms underlying cadmium-induced circadian rhythms disruption. Two groups of zebrafish larvae treated with or without 5 ppm CdCl{sub 2} were incubated in a photoperiod of 14-h light/10-h dark conditions. The mRNA levels of clock1a, bmal1b, per2 and per1b in two groups were determined. Microarray data were generated in two group of samples. Differential expression of genes were identified and the changes in expression level for some genes were validated by RT-PCR. Finally, Gene Ontology functional and KEGG pathway enrichment analysis of differentially expressed genes (DEGs) were performed. In comparison with normal group, the mRNAmore » levels of clock1a, bmal1b, and per2 were significantly changed and varied over the circadian cycle in CdCl2-treated group. DEGs were obtained from the light (84 h, ZT12) and dark (88 h, ZT16) phase. In addition, G-protein coupled receptor protein signaling pathway and immune response were both enriched by DEGs in both groups. While, proteolysis and amino acid metabolism were found associated with DEGs in light phase, and Neuroactive ligand-receptor interaction and oxidation-reduction process were significantly enriched by DEGs in dark phase. Besides, the expression pattern of genes including hsp70l and or115-11 obtained by RT-PCR were consistent with those obtained by microarray analysis. As a consequence, cadmium could make significant effects on circadian rhythms through immune response and G protein-coupled receptor signaling pathway. Besides, between the dark and the light phase, the mechanism by which cadmium inducing disruption of circadian rhythms were different to some extent. - Highlights: • Cadmium could affect the expression levels of circadian rhythm-related genes. • Genes expression in microarray data were consistent with those in RT-PCR analysis. • Immune response and G protein-coupled receptor signaling pathway were identified. • Cadmium induces circadian rhythm

  14. Circadian rhythms in effects of hypnotics and sleep inducers.

    PubMed

    Reinberg, A

    1986-01-01

    Chronopharmacology involves the investigation of drug effects as a function of biological time and the investigation of drug effects on rhythm characteristics. Three new concepts must be considered: (a) the chronokinetics of a drug, embracing rhythmic (circadian) changes in drug bioavailability (or pharmacokinetics) and its excretion (urinary among others); (b) the chronaesthesia of a biosystem to a drug, i.e. circadian changes in the susceptibility of any biosystem to a drug (including organ systems, parasites, etc.); skin and bronchial chronaesthesia to various agents have been documented in man; and (c) the chronergy of a drug, taking into consideration its chronokinetics and the chronaesthesia of the involved organismic biosystems. The term chronergy includes rhythmic changes in the overall effects and in the effectiveness of some drugs. Clinical chronopharmacology is useful for solving problems of drug optimization, i.e. enhancing the desired efficiency of a drug and reducing its undesired effects. Circadian rhythms can be demonstrated in various effects of drugs on sleep, anaesthesia and related processes. For example, in the rat the duration of sleep induced by substances such as pentobarbital, hexobarbital, Althesin (alphaxadone and alphadoline in castor oil) is circadian system stage-dependent. Time-dependent changes of liver enzymes (e.g. hexobarbital oxidase) play a role in these circadian rhythms. The clinical chronopharmacokinetics of benzodiazepines have been documented in man. Chronopharmacologic methods can be used to study desired and undesired hypnotic effects of substances. Such is the case of new antihistamines (anti-H1), which do not induce sleepiness, in either acute or chronic administration. Pertinent also is the problem of intolerance to shift-work. Intolerant shift-workers are subject to internal desynchronization between at least two rhythms (e.g. activity-rest cycle and body temperature). Clinically these workers suffer from sleep

  15. Chronobiology and circadian rhythms establish a connection to diagnosis.

    PubMed

    Nydegger, Urs E; Escobar, Pedro Medina; Risch, Lorenz; Risch, Martin; Stanga, Zeno

    2014-12-01

    Circadian rhythms are synchronized by the light/dark (L/D) cycle over the 24-h day. A suprachiasmatic nucleus in the hypothalamus governs time keeping based on melanopsin messages from the retina in the eyes and transduces regulatory signals to tissues through an array of hormonal, metabolic and neural outputs. Currently, vague impressions on circadian regulation in health and disease are replaced by scientific facts: in addition to L/D cyling, oscillation is maintained by genetic (Clock, Bmal1, Csnk1, CHRONO, Cry, Per) programs, autonomous feedback loops, including melatonin activities, aerobic glycolysis intensity and lipid signalling, among others. Such a multifaceted influential system on circadian rhythm is bound to be fragile and genomic clock acitvities can become disrupted by epigenetic modifications or such environmental factors as mistimed sleep and feeding schedules albeit leaving the centrally driven melatonin-dependent pacemakter more or less unaffected.

  16. Sirtuins, Melatonin and Circadian Rhythms: Building a Bridge between Aging and Cancer

    PubMed Central

    Jung-Hynes, Brittney; Reiter, Russel J.; Ahmad, Nihal

    2010-01-01

    Histone deacetylases (HDACs) have been under intense scientific investigation for a number of years. However, only recently the unique class III HDACs, sirtuins, have gained increasing investigational momentum. Originally linked to longevity in yeast, sirtuins and more specifically, SIRT1 have been implicated in numerous biological processes having both protective and/or detrimental effects. SIRT1 appears to play a critical role in the process of carcinogenesis, especially in age-related neoplasms. Similarly, alterations in circadian rhythms as well as production of the pineal hormone melatonin have been linked to aging and cancer risk. Melatonin has been found act as a differentiating agent in some cancer cells and to lower their invasive and metastatic status. In addition, melatonin synthesis and release occurs in a circadian rhythm fashion and it has been linked to the core circadian machinery genes (Clock, Bmal1, Periods, and Cryptochromes). Melatonin has also been associated with chronotherapy, the timely administration of chemotherapy agents to optimize trends in biological cycles. Interestingly, a recent set of studies have linked SIRT1 to the circadian rhythm machinery through direct deacetylation activity as well as through the NAD+ salvage pathway. In this review, we provide evidence for a possible connection between sirtuins, melatonin, and the circadian rhythm circuitry and their implications in aging, chronomodulation and cancer. PMID:20025641

  17. Circadian rhythm of blood pressure and the renin-angiotensin system in the kidney.

    PubMed

    Ohashi, Naro; Isobe, Shinsuke; Ishigaki, Sayaka; Yasuda, Hideo

    2017-05-01

    Activation of the intrarenal renin-angiotensin system (RAS) has a critical role in the pathophysiology of the circadian rhythm of blood pressure (BP) and renal injury, independent of circulating RAS. Although it is clear that the circulating RAS has a circadian rhythm, reports of a circadian rhythm in tissue-specific RAS are limited. Clinical studies evaluating intrarenal RAS activity by urinary angiotensinogen (AGT) levels have indicated that urinary AGT levels were equally low during both the daytime and nighttime in individuals without chronic kidney disease (CKD) and that urinary AGT levels were higher during the daytime than at nighttime in patients with CKD. Moreover, urinary AGT levels of the night-to-day (N/D) ratio of urinary AGT were positively correlated with the levels of N/D of urinary protein, albumin excretion and BP. In addition, animal studies have demonstrated that the expression of intrarenal RAS components, such as AGT, angiotensin II (AngII) and AngII type 1 receptor proteins, increased and peaked at the same time as BP and urinary protein excretion during the resting phase, and the amplitude of the oscillations of these proteins was augmented in a chronic progressive nephritis animal compared with a control. Thus, the circadian rhythm of intrarenal RAS activation may lead to renal damage and hypertension, which both are associated with diurnal variations in BP. It is possible that augmented glomerular permeability increases AGT excretion levels into the tubular lumen and that circadian fluctuation of glomerular permeability influences the circadian rhythm of the intrarenal RAS.

  18. F-spondin Is Essential for Maintaining Circadian Rhythms

    PubMed Central

    Carrillo, Gabriela L.; Su, Jianmin; Monavarfeshani, Aboozar; Fox, Michael A.

    2018-01-01

    The suprachiasmatic nucleus (SCN) is the master pacemaker that drives circadian behaviors. SCN neurons have intrinsic, self-sustained rhythmicity that is governed by transcription-translation feedback loops. Intrinsic rhythms within the SCN do not match the day-night cycle and are therefore entrained by light-derived cues. Such cues are transmitted to the SCN by a class of intrinsically photosensitive retinal ganglion cells (ipRGCs). In the present study, we sought to identify how axons from ipRGCs target the SCN. While none of the potential targeting cues identified appeared necessary for retinohypothalamic innervation, we unexpectedly identified a novel role for the extracellular matrix protein F-spondin in circadian behavior. In the absence of F-spondin, mice lost their ability to maintain typical intrinsic rhythmicity. Moreover, F-spondin loss results in the displacement of vasoactive intestinal peptide (VIP)-expressing neurons, a class of neurons that are essential for maintaining rhythmicity among SCN neurons. Thus, this study highlights a novel role for F-spondin in maintaining circadian rhythms. PMID:29472844

  19. Circadian rhythm in melatonin release as a mechanism to reinforce the temporal organization of the circadian system in crayfish.

    PubMed

    Mendoza-Vargas, Leonor; Báez-Saldaña, Armida; Alvarado, Ramón; Fuentes-Pardo, Beatriz; Flores-Soto, Edgar; Solís-Chagoyán, Héctor

    2017-06-01

    Melatonin (MEL) is a conserved molecule with respect to its synthesis pathway and functions. In crayfish, MEL content in eyestalks (Ey) increases at night under the photoperiod, and this indoleamine synchronizes the circadian rhythm of electroretinogram amplitude, which is expressed by retinas and controlled by the cerebroid ganglion (CG). The aim of this study was to determine whether MEL content in eyestalks and CG or circulating MEL in hemolymph (He) follows a circadian rhythm under a free-running condition; in addition, it was tested whether MEL might directly influence the spontaneous electrical activity of the CG. Crayfish were maintained under constant darkness and temperature, a condition suitable for studying the intrinsic properties of circadian systems. MEL was quantified in samples obtained from He, Ey, and CG by means of an enzyme-linked immunosorbent assay, and the effect of exogenous MEL on CG spontaneous activity was evaluated by electrophysiological recording. Variation of MEL content in He, Ey, and CG followed a circadian rhythm that peaked at the same circadian time (CT). In addition, a single dose of MEL injected into the crayfish at different CTs reduced the level of spontaneous electrical activity in the CG. Results suggest that the circadian increase in MEL content directly affects the CG, reducing its spontaneous electrical activity, and that MEL might act as a periodical signal to reinforce the organization of the circadian system in crayfish.

  20. Circadian rhythms and risk for substance use disorders in adolescence

    PubMed Central

    Hasler, Brant P.; Soehner, Adriane M.; Clark, Duncan B.

    2014-01-01

    Purpose of the review This article explores recent research in adolescent circadian rhythms, neurobiological changes influencing affective regulation and reward responding, and the emergence of substance use and related problems. Recent findings Recent findings have confirmed that adolescents with drug and alcohol problems are also beset by sleep problems, and have advanced our understanding of the relationship between sleep problems and substance involvement in this developmental period. During adolescence, a shift to later preferred sleep times interacts with early school start times to cause sleep loss and circadian misalignment. Sleep loss and circadian misalignment may disrupt reward-related brain function and impair inhibitory control. Deficits or delays in mature reward and inhibitory functions may contribute to adolescent alcohol use and other substance involvement. Summary An integration of the available research literature suggests that changes in sleep and circadian rhythms during adolescence may contribute to accelerated substance use and related problems. PMID:25247459

  1. Circadian Rhythm Regulates Development of Enamel in Mouse Mandibular First Molar.

    PubMed

    Tao, Jiang; Zhai, Yue; Park, Hyun; Han, Junli; Dong, Jianhui; Xie, Ming; Gu, Ting; Lewi, Keidren; Ji, Fang; Jia, William

    2016-01-01

    Rhythmic incremental growth lines and the presence of melatonin receptors were discovered in tooth enamel, suggesting possible role of circadian rhythm. We therefore hypothesized that circadian rhythm may regulate enamel formation through melatonin receptors. To test this hypothesis, we examined expression of melatonin receptors (MTs) and amelogenin (AMELX), a maker of enamel formation, during tooth germ development in mouse. Using qRT-PCR and immunocytochemistry, we found that mRNA and protein levels of both MTs and AMELX in normal mandibular first molar tooth germs increased gradually after birth, peaked at 3 or 4 day postnatal, and then decreased. Expression of MTs and AMELX by immunocytochemistry was significantly delayed in neonatal mice raised in all-dark or all-light environment as well as the enamel development. Furthermore, development of tooth enamel was also delayed showing significant immature histology in those animals, especially for newborn mice raised in all daylight condition. Interestingly, disruption in circadian rhythm in pregnant mice also resulted in delayed enamel development in their babies. Treatment with melatonin receptor antagonist 4P-PDOT in pregnant mice caused underexpression of MTs and AMELX associated with long-lasting deficiency in baby enamel tissue. Electromicroscopic evidence demonstrated increased necrosis and poor enamel mineralization in ameloblasts. The above results suggest that circadian rhythm is important for normal enamel development at both pre- and postnatal stages. Melatonin receptors were partly responsible for the regulation.

  2. Circadian rhythms and memory: not so simple as cogs and gears.

    PubMed

    Eckel-Mahan, Kristin L; Storm, Daniel R

    2009-06-01

    The influence of circadian rhythms on memory has long been studied; however, the molecular prerequisites for their interaction remain elusive. The hippocampus, which is a region of the brain important for long-term memory formation and temporary maintenance, shows circadian rhythmicity in pathways central to the memory-consolidation process. As neuronal plasticity is the translation of numerous inputs, illuminating the direct molecular links between circadian rhythms and memory consolidation remains a daunting task. However, the elucidation of how clock genes contribute to synaptic plasticity could provide such a link. Furthermore, the idea that memory training could actually function as a zeitgeber for hippocampal neurons is worth consideration, based on our knowledge of the entrainment of the circadian clock system. The integration of many inputs in the hippocampus affects memory consolidation at both the cellular and the systems level, leaving the molecular connections between circadian rhythmicity and memory relatively obscure but ripe for investigation.

  3. The Pathophysiologic Role of Disrupted Circadian and Neuroendocrine Rhythms in Breast Carcinogenesis.

    PubMed

    Ball, Lonnele J; Palesh, Oxana; Kriegsfeld, Lance J

    2016-10-01

    Most physiological processes in the brain and body exhibit daily (circadian) rhythms coordinated by an endogenous master clock located in the suprachiasmatic nucleus of the hypothalamus that are essential for normal health and functioning. Exposure to sunlight during the day and darkness at night optimally entrains biological rhythms to promote homeostasis and human health. Unfortunately, a major consequence of the modern lifestyle is increased exposure to sun-free environments during the day and artificial lighting at night. Additionally, behavioral disruptions to circadian rhythms (ie, repeated transmeridian flights, night or rotating shift work, or sleep disturbances) have a profound influence on health and have been linked to a number of pathological conditions, including endocrine-dependent cancers. Specifically, night shift work has been identified as a significant risk factor for breast cancer in industrialized countries. Several mechanisms have been proposed by which shift work-induced circadian disruptions promote cancer. In this review, we examine the importance of the brain-body link through which circadian disruptions contribute to endocrine-dependent diseases, including breast carcinogenesis, by negatively impacting neuroendocrine and neuroimmune cells, and we consider preventive measures directed at maximizing circadian health.

  4. The Pathophysiologic Role of Disrupted Circadian and Neuroendocrine Rhythms in Breast Carcinogenesis

    PubMed Central

    Ball, Lonnele J.; Palesh, Oxana

    2016-01-01

    Most physiological processes in the brain and body exhibit daily (circadian) rhythms coordinated by an endogenous master clock located in the suprachiasmatic nucleus of the hypothalamus that are essential for normal health and functioning. Exposure to sunlight during the day and darkness at night optimally entrains biological rhythms to promote homeostasis and human health. Unfortunately, a major consequence of the modern lifestyle is increased exposure to sun-free environments during the day and artificial lighting at night. Additionally, behavioral disruptions to circadian rhythms (ie, repeated transmeridian flights, night or rotating shift work, or sleep disturbances) have a profound influence on health and have been linked to a number of pathological conditions, including endocrine-dependent cancers. Specifically, night shift work has been identified as a significant risk factor for breast cancer in industrialized countries. Several mechanisms have been proposed by which shift work-induced circadian disruptions promote cancer. In this review, we examine the importance of the brain-body link through which circadian disruptions contribute to endocrine-dependent diseases, including breast carcinogenesis, by negatively impacting neuroendocrine and neuroimmune cells, and we consider preventive measures directed at maximizing circadian health. PMID:27712099

  5. Circadian Rhythm Disturbances in Mood Disorders: Insights into the Role of the Suprachiasmatic Nucleus

    PubMed Central

    2017-01-01

    Circadian rhythm disturbances are a common symptom among individuals with mood disorders. The suprachiasmatic nucleus (SCN), in the ventral part of the anterior hypothalamus, orchestrates physiological and behavioral circadian rhythms. The SCN consists of self-sustaining oscillators and receives photic and nonphotic cues, which entrain the SCN to the external environment. In turn, through synaptic and hormonal mechanisms, the SCN can drive and synchronize circadian rhythms in extra-SCN brain regions and peripheral tissues. Thus, genetic or environmental perturbations of SCN rhythms could disrupt brain regions more closely related to mood regulation and cause mood disturbances. Here, we review clinical and preclinical studies that provide evidence both for and against a causal role for the SCN in mood disorders. PMID:29230328

  6. Environmental Disruption of Circadian Rhythm Predisposes Mice to Osteoarthritis-Like Changes in Knee Joint

    PubMed Central

    Voigt, Robin M; Ellman, Michael B; Summa, Keith C; Vitaterna, Martha Hotz; Keshavarizian, Ali; Turek, Fred W; Meng, Qing-Jun; Stein, Gary S.; van Wijnen, Andre J.; Chen, Di; Forsyth, Christopher B; Im, Hee-Jeong

    2015-01-01

    Circadian rhythm dysfunction is linked to many diseases, yet pathophysiological roles in articular cartilage homeostasis and degenerative joint disease including osteoarthritis (OA) remains to be investigated in vivo. Here, we tested whether environmental or genetic disruption of circadian homeostasis predisposes to OA-like pathological changes. Male mice were examined for circadian locomotor activity upon changes in the light:dark (LD) cycle or genetic disruption of circadian rhythms. Wild-type (WT) mice were maintained on a constant 12 hour:12 hour LD cycle (12:12 LD) or exposed to weekly 12 hour phase shifts. Alternatively, male circadian mutant mice (ClockΔ19 or Csnk1etau mutants) were compared with age-matched WT littermates that were maintained on a constant 12:12 LD cycle. Disruption of circadian rhythms promoted osteoarthritic changes by suppressing proteoglycan accumulation, upregulating matrix-degrading enzymes and downregulating anabolic mediators in the mouse knee joint. Mechanistically, these effects involved activation of the PKCδ-ERK-RUNX2/NFκB and β-catenin signaling pathways, stimulation of MMP-13 and ADAMTS-5, as well as suppression of the anabolic mediators SOX9 and TIMP-3 in articular chondrocytes of phase-shifted mice. Genetic disruption of circadian homeostasis does not predispose to OA-like pathological changes in joints. Our results, for the first time, provide compelling in vivo evidence that environmental disruption of circadian rhythms is a risk factor for the development of OA-like pathological changes in the mouse knee joint. PMID:25655021

  7. Adolescents at clinical-high risk for psychosis: Circadian rhythm disturbances predict worsened prognosis at 1-year follow-up.

    PubMed

    Lunsford-Avery, Jessica R; Gonçalves, Bruno da Silva Brandão; Brietzke, Elisa; Bressan, Rodrigo A; Gadelha, Ary; Auerbach, Randy P; Mittal, Vijay A

    2017-11-01

    Individuals with psychotic disorders experience disruptions to both the sleep and circadian components of the sleep/wake cycle. Recent evidence has supported a role of sleep disturbances in emerging psychosis. However, less is known about how circadian rhythm disruptions may relate to psychosis symptoms and prognosis for adolescents with clinical high-risk (CHR) syndromes. The present study examines circadian rest/activity rhythms in CHR and healthy control (HC) youth to clarify the relationships among circadian rhythm disturbance, psychosis symptoms, psychosocial functioning, and the longitudinal course of illness. Thirty-four CHR and 32 HC participants were administered a baseline evaluation, which included clinical interviews, 5days of actigraphy, and a sleep/activity diary. CHR (n=29) participants were re-administered clinical interviews at a 1-year follow-up assessment. Relative to HC, CHR youth exhibited more fragmented circadian rhythms and later onset of nocturnal rest. Circadian disturbances (fragmented rhythms, low daily activity) were associated with increased psychotic symptom severity among CHR participants at baseline. Circadian disruptions (lower daily activity, rhythms that were more fragmented and/or desynchronized with the light/dark cycle) also predicted severity of psychosis symptoms and psychosocial impairment at 1-year follow-up among CHR youth. Circadian rhythm disturbances may represent a potential vulnerability marker for emergence of psychosis, and thus, rest/activity rhythm stabilization has promise to inform early-identification and prevention/intervention strategies for CHR youth. Future studies with longer study designs are necessary to further examine circadian rhythms in the prodromal period and rates of conversion to psychosis among CHR teens. Copyright © 2017. Published by Elsevier B.V.

  8. Wheel-running activity modulates circadian organization and the daily rhythm of eating behavior

    PubMed Central

    Pendergast, Julie S.; Branecky, Katrina L.; Huang, Roya; Niswender, Kevin D.; Yamazaki, Shin

    2014-01-01

    Consumption of high-fat diet acutely alters the daily rhythm of eating behavior and circadian organization (the phase relationship between oscillators in central and peripheral tissues) in mice. Voluntary wheel-running activity counteracts the obesogenic effects of high-fat diet and also modulates circadian rhythms in mice. In this study, we sought to determine whether voluntary wheel-running activity could prevent the proximate effects of high-fat diet consumption on circadian organization and behavioral rhythms in mice. Mice were housed with locked or freely rotating running wheels and fed chow or high-fat diet for 1 week and rhythms of locomotor activity, eating behavior, and molecular timekeeping (PERIOD2::LUCIFERASE luminescence rhythms) in ex vivo tissues were measured. Wheel-running activity delayed the phase of the liver rhythm by 4 h in both chow- and high-fat diet-fed mice. The delayed liver phase was specific to wheel-running activity since an enriched environment without the running wheel did not alter the phase of the liver rhythm. In addition, wheel-running activity modulated the effect of high-fat diet consumption on the daily rhythm of eating behavior. While high-fat diet consumption caused eating events to be more evenly dispersed across the 24 h-day in both locked-wheel and wheel-running mice, the effect of high-fat diet was much less pronounced in wheel-running mice. Together these data demonstrate that wheel-running activity is a salient factor that modulates liver phase and eating behavior rhythms in both chow- and high-fat-diet fed mice. Wheel-running activity in mice is both a source of exercise and a self-motivating, rewarding behavior. Understanding the putative reward-related mechanisms whereby wheel-running activity alters circadian rhythms could have implications for human obesity since palatable food and exercise may modulate similar reward circuits. PMID:24624109

  9. Circadian-Rhythm Sleep Disorders in Persons Who Are Totally Blind.

    ERIC Educational Resources Information Center

    Sack, R. L.; Blood, M. L.; Hughes, R. J.; Lewy, A. J.

    1998-01-01

    Discusses the diagnosis and management of "non-24-hour sleep-wake syndrome," a form of cyclic insomnia to which people who are totally blind are prone. Covered are incidence and clinical features, formal diagnostic criteria, the biological basis of circadian sleep disorders, circadian rhythms in blind people, pharmacological entrainment,…

  10. Circadian Rhythms and Substance Abuse: Chronobiological Considerations for the Treatment of Addiction.

    PubMed

    Webb, Ian C

    2017-02-01

    Reward-related learning, including that associated with drugs of abuse, is largely mediated by the dopaminergic mesolimbic pathway. Mesolimbic neurophysiology and motivated behavior, in turn, are modulated by the circadian timing system which generates ∼24-h rhythms in cellular activity. Both drug taking and seeking and mesolimbic dopaminergic neurotransmission can vary widely over the day. Moreover, circadian clock genes are expressed in ventral tegmental area dopaminergic cells and in mesolimbic target regions where they can directly modulate reward-related neurophysiology and behavior. There also exists a reciprocal influence between drug taking and circadian timing as the administration of drugs of abuse can alter behavioral rhythms and circadian clock gene expression in mesocorticolimbic structures. These interactions suggest that manipulations of the circadian timing system may have some utility in the treatment of substance abuse disorders. Here, the literature on bidirectional interactions between the circadian timing system and drug taking is briefly reviewed, and potential chronotherapeutic considerations for the treatment of addiction are discussed.

  11. Circadian rhythm of leaf movement in Capsicum annuum observed during centrifugation

    NASA Technical Reports Server (NTRS)

    Chapman, D. K.; Brown, A. H.; Dahl, A. O.

    1975-01-01

    Plant circadian rhythms of leaf movement in seedlings of the pepper plant (Capsicum annuum L., var. Yolo Wonder) were observed at different g-levels by means of a centrifuge. Except for the chronically imposed g-force all environmental conditions to which the plants were exposed were held constant. The circadian period, rate of change of amplitude of successive oscillations, symmetry of the cycles, and phase of the rhythm all were found not to be significantly correlated with the magnitude of the sustained g-force.

  12. The circadian rhythm of core temperature: origin and some implications for exercise performance.

    PubMed

    Waterhouse, Jim; Drust, Barry; Weinert, Dietmar; Edwards, Benjamin; Gregson, Warren; Atkinson, Greg; Kao, Shaoyuan; Aizawa, Seika; Reilly, Thomas

    2005-01-01

    This review first examines reliable and convenient ways of measuring core temperature for studying the circadian rhythm, concluding that measurements of rectal and gut temperature fulfil these requirements, but that insulated axilla temperature does not. The origin of the circadian rhythm of core temperature is mainly due to circadian changes in the rate of loss of heat through the extremities, mediated by vasodilatation of the cutaneous vasculature. Difficulties arise when the rhythm of core temperature is used as a marker of the body clock, since it is also affected by the sleep-wake cycle. This masking effect can be overcome directly by constant routines and indirectly by "purification" methods, several of which are described. Evidence supports the value of purification methods to act as a substitute when constant routines cannot be performed. Since many of the mechanisms that rise to the circadian rhythm of core temperature are the same as those that occur during thermoregulation in exercise, there is an interaction between the two. This interaction is manifest in the initial response to spontaneous activity and to mild exercise, body temperature rising more quickly and thermoregulatory reflexes being recruited less quickly around the trough and rising phase of the resting temperature rhythm, in comparison with the peak and falling phase. There are also implications for athletes, who need to exercise maximally and with minimal risk of muscle injury or heat exhaustion in a variety of ambient temperatures and at different times of the day. Understanding the circadian rhythm of core temperature may reduce potential hazards due to the time of day when exercise is performed.

  13. Circadian rhythms, sleep, and performance in space

    NASA Technical Reports Server (NTRS)

    Mallis, M. M.; DeRoshia, C. W.

    2005-01-01

    Maintaining optimal alertness and neurobehavioral functioning during space operations is critical to enable the National Aeronautics and Space Administration's (NASA's) vision "to extend humanity's reach to the Moon, Mars and beyond" to become a reality. Field data have demonstrated that sleep times and performance of crewmembers can be compromised by extended duty days, irregular work schedules, high workload, and varying environmental factors. This paper documents evidence of significant sleep loss and disruption of circadian rhythms in astronauts and associated performance decrements during several space missions, which demonstrates the need to develop effective countermeasures. Both sleep and circadian disruptions have been identified in the Behavioral Health and Performance (BH&P) area and the Advanced Human Support Technology (AHST) area of NASA's Bioastronautics Critical Path Roadmap. Such disruptions could have serious consequences on the effectiveness, health, and safety of astronaut crews, thus reducing the safety margin and increasing the chances of an accident or incident. These decrements oftentimes can be difficult to detect and counter effectively in restrictive operational environments. NASA is focusing research on the development of optimal sleep/wake schedules and countermeasure timing and application to help mitigate the cumulative effects of sleep and circadian disruption and enhance operational performance. Investing research in humans is one of NASA's building blocks that will allow for both short- and long-duration space missions and help NASA in developing approaches to manage and overcome the human limitations of space travel. In addition to reviewing the current state of knowledge concerning sleep and circadian disruptions during space operations, this paper provides an overview of NASA's broad research goals. Also, NASA-funded research, designed to evaluate the relationships between sleep quality, circadian rhythm stability, and

  14. Circadian rhythms, sleep, and performance in space.

    PubMed

    Mallis, M M; DeRoshia, C W

    2005-06-01

    Maintaining optimal alertness and neurobehavioral functioning during space operations is critical to enable the National Aeronautics and Space Administration's (NASA's) vision "to extend humanity's reach to the Moon, Mars and beyond" to become a reality. Field data have demonstrated that sleep times and performance of crewmembers can be compromised by extended duty days, irregular work schedules, high workload, and varying environmental factors. This paper documents evidence of significant sleep loss and disruption of circadian rhythms in astronauts and associated performance decrements during several space missions, which demonstrates the need to develop effective countermeasures. Both sleep and circadian disruptions have been identified in the Behavioral Health and Performance (BH&P) area and the Advanced Human Support Technology (AHST) area of NASA's Bioastronautics Critical Path Roadmap. Such disruptions could have serious consequences on the effectiveness, health, and safety of astronaut crews, thus reducing the safety margin and increasing the chances of an accident or incident. These decrements oftentimes can be difficult to detect and counter effectively in restrictive operational environments. NASA is focusing research on the development of optimal sleep/wake schedules and countermeasure timing and application to help mitigate the cumulative effects of sleep and circadian disruption and enhance operational performance. Investing research in humans is one of NASA's building blocks that will allow for both short- and long-duration space missions and help NASA in developing approaches to manage and overcome the human limitations of space travel. In addition to reviewing the current state of knowledge concerning sleep and circadian disruptions during space operations, this paper provides an overview of NASA's broad research goals. Also, NASA-funded research, designed to evaluate the relationships between sleep quality, circadian rhythm stability, and

  15. Weak circadian rhythm increases neutropenia risk among breast cancer patients undergoing adjuvant chemotherapy.

    PubMed

    Li, Wentao; Kwok, Carol Chi-Hei; Chan, Dominic Chun-Wan; Wang, Feng; Tse, Lap Ah

    2018-04-01

    Severe neutropenia is a common dose-limiting side effect of adjuvant breast cancer chemotherapy. We aimed to test the hypothesis that weak circadian rhythm is associated with an increased risk of neutropenia using a cohort study. We consecutively recruited 193 breast cancer patients who received adjuvant chemotherapy (5-fluorouracil, epirubicin, and cyclophosphamide followed by docetaxel; doxorubicin and cyclophosphamide; docetaxel and cyclophosphamide). Participants wore a wrist actigraph continuously for 168 h at the beginning of chemotherapy. Values of percent rhythm and double amplitude below medians represented weak circadian rhythm. Mesor measured the mean activity level and acrophase symboled the peak time of the rhythm. We used Cox proportional hazard regression model to estimate hazard ratios (HRs) with 95% confidence intervals (CIs) of grade 4 neutropenia and febrile neutropenia in relation to actigraphy-derived parameters. Low levels of percent rhythm (HR:2.59, 95% CI 1.50-4.72), double amplitude (HR:2.70, 95% CI 1.51-4.85), and mesor (HR: 2.48, 95% CI 1.44-4.29) were positively associated with the risk of grade 4 neutropenia during chemotherapy. Low levels of percent rhythm (HR: 2.41, 95% CI 1.02-5.69) and double amplitude (HR:2.49, 95% CI 1.05-5.90) were also associated with increased risks of febrile neutropenia. The HRs for acrophase were not statistically significant. This study provides the first epidemiological evidence that increased risks of grade 4 neutropenia and febrile neutropenia are associated with weak circadian rhythm among adjuvant breast cancer patients. The results suggest that circadian rhythm might be one potential target for the prevention of chemotherapy-induced neutropenia among cancer patients.

  16. A simple model of circadian rhythms based on dimerization and proteolysis of PER and TIM

    PubMed Central

    Tyson, JJ; Hong, CI; Thron, CD; Novak, B

    1999-01-01

    Many organisms display rhythms of physiology and behavior that are entrained to the 24-h cycle of light and darkness prevailing on Earth. Under constant conditions of illumination and temperature, these internal biological rhythms persist with a period close to 1 day ("circadian"), but it is usually not exactly 24 h. Recent discoveries have uncovered stunning similarities among the molecular circuitries of circadian clocks in mice, fruit flies, and bread molds. A consensus picture is coming into focus around two proteins (called PER and TIM in fruit flies), which dimerize and then inhibit transcription of their own genes. Although this picture seems to confirm a venerable model of circadian rhythms based on time-delayed negative feedback, we suggest that just as crucial to the circadian oscillator is a positive feedback loop based on stabilization of PER upon dimerization. These ideas can be expressed in simple mathematical form (phase plane portraits), and the model accounts naturally for several hallmarks of circadian rhythms, including temperature compensation and the per(L) mutant phenotype. In addition, the model suggests how an endogenous circadian oscillator could have evolved from a more primitive, light-activated switch. PMID:20540926

  17. Circadian rhythm in QT interval is preserved in mice deficient of potassium channel interacting protein 2.

    PubMed

    Gottlieb, Lisa A; Lubberding, Anniek; Larsen, Anders Peter; Thomsen, Morten B

    2017-01-01

    Potassium Channel Interacting Protein 2 (KChIP2) is suggested to be responsible for the circadian rhythm in repolarization duration, ventricular arrhythmias, and sudden cardiac death. We investigated the hypothesis that there is no circadian rhythm in QT interval in the absence of KChIP2. Implanted telemetric devices recorded electrocardiogram continuously for 5 days in conscious wild-type mice (WT, n = 9) and KChIP2 -/- mice (n = 9) in light:dark periods and in complete darkness. QT intervals were determined from all RR intervals and corrected for heart rate (QT 100 = QT/(RR/100) 1/2 ). Moreover, QT intervals were determined from complexes within the RR range of mean-RR ± 1% in the individual mouse (QT mean-RR ). We find that RR intervals are 125 ± 5 ms in WT and 123 ± 4 ms in KChIP2 -/- (p = 0.81), and QT intervals are 52 ± 1 and 52 ± 1 ms, respectively(p = 0.89). No ventricular arrhythmias or sudden cardiac deaths were observed. We find similar diurnal (light:dark) and circadian (darkness) rhythms of RR intervals in WT and KChIP2 -/- mice. Circadian rhythms in QT 100 intervals are present in both groups, but at physiological small amplitudes: 1.6 ± 0.2 and 1.0 ± 0.3 ms in WT and KChIP2 -/- , respectively (p = 0.15). A diurnal rhythm in QT 100 intervals was only found in WT mice. QT mean-RR intervals display clear diurnal and circadian rhythms in both WT and KChIP2 -/- . The amplitude of the circadian rhythm in QT mean-RR is 4.0 ± 0.3 and 3.1 ± 0.5 ms in WT and KChIP2 -/- , respectively (p = 0.16). In conclusion, KChIP2 expression does not appear to underlie the circadian rhythm in repolarization duration.

  18. Light as a central modulator of circadian rhythms, sleep and affect.

    PubMed

    LeGates, Tara A; Fernandez, Diego C; Hattar, Samer

    2014-07-01

    Light has profoundly influenced the evolution of life on earth. As widely appreciated, light enables us to generate images of our environment. However, light - through intrinsically photosensitive retinal ganglion cells (ipRGCs) - also influences behaviours that are essential for our health and quality of life but are independent of image formation. These include the synchronization of the circadian clock to the solar day, tracking of seasonal changes and the regulation of sleep. Irregular light environments lead to problems in circadian rhythms and sleep, which eventually cause mood and learning deficits. Recently, it was found that irregular light can also directly affect mood and learning without producing major disruptions in circadian rhythms and sleep. In this Review, we discuss the indirect and direct influence of light on mood and learning, and provide a model for how light, the circadian clock and sleep interact to influence mood and cognitive functions.

  19. Circadian Rhythm Regulates Development of Enamel in Mouse Mandibular First Molar

    PubMed Central

    Tao, Jiang; Zhai, Yue; Park, Hyun; Han, Junli; Dong, Jianhui; Xie, Ming; Gu, Ting; Lewi, Keidren; Ji, Fang; Jia, William

    2016-01-01

    Rhythmic incremental growth lines and the presence of melatonin receptors were discovered in tooth enamel, suggesting possible role of circadian rhythm. We therefore hypothesized that circadian rhythm may regulate enamel formation through melatonin receptors. To test this hypothesis, we examined expression of melatonin receptors (MTs) and amelogenin (AMELX), a maker of enamel formation, during tooth germ development in mouse. Using qRT-PCR and immunocytochemistry, we found that mRNA and protein levels of both MTs and AMELX in normal mandibular first molar tooth germs increased gradually after birth, peaked at 3 or 4 day postnatal, and then decreased. Expression of MTs and AMELX by immunocytochemistry was significantly delayed in neonatal mice raised in all-dark or all-light environment as well as the enamel development. Furthermore, development of tooth enamel was also delayed showing significant immature histology in those animals, especially for newborn mice raised in all daylight condition. Interestingly, disruption in circadian rhythm in pregnant mice also resulted in delayed enamel development in their babies. Treatment with melatonin receptor antagonist 4P-PDOT in pregnant mice caused underexpression of MTs and AMELX associated with long-lasting deficiency in baby enamel tissue. Electromicroscopic evidence demonstrated increased necrosis and poor enamel mineralization in ameloblasts. The above results suggest that circadian rhythm is important for normal enamel development at both pre- and postnatal stages. Melatonin receptors were partly responsible for the regulation. PMID:27494172

  20. Environmental disruption of circadian rhythm predisposes mice to osteoarthritis-like changes in knee joint.

    PubMed

    Kc, Ranjan; Li, Xin; Voigt, Robin M; Ellman, Michael B; Summa, Keith C; Vitaterna, Martha Hotz; Keshavarizian, Ali; Turek, Fred W; Meng, Qing-Jun; Stein, Gary S; van Wijnen, Andre J; Chen, Di; Forsyth, Christopher B; Im, Hee-Jeong

    2015-09-01

    Circadian rhythm dysfunction is linked to many diseases, yet pathophysiological roles in articular cartilage homeostasis and degenerative joint disease including osteoarthritis (OA) remains to be investigated in vivo. Here, we tested whether environmental or genetic disruption of circadian homeostasis predisposes to OA-like pathological changes. Male mice were examined for circadian locomotor activity upon changes in the light:dark (LD) cycle or genetic disruption of circadian rhythms. Wild-type (WT) mice were maintained on a constant 12 h:12 h LD cycle (12:12 LD) or exposed to weekly 12 h phase shifts. Alternatively, male circadian mutant mice (Clock(Δ19) or Csnk1e(tau) mutants) were compared with age-matched WT littermates that were maintained on a constant 12:12 LD cycle. Disruption of circadian rhythms promoted osteoarthritic changes by suppressing proteoglycan accumulation, upregulating matrix-degrading enzymes and downregulating anabolic mediators in the mouse knee joint. Mechanistically, these effects involved activation of the PKCδ-ERK-RUNX2/NFκB and β-catenin signaling pathways, stimulation of MMP-13 and ADAMTS-5, as well as suppression of the anabolic mediators SOX9 and TIMP-3 in articular chondrocytes of phase-shifted mice. Genetic disruption of circadian homeostasis does not predispose to OA-like pathological changes in joints. Our results, for the first time, provide compelling in vivo evidence that environmental disruption of circadian rhythms is a risk factor for the development of OA-like pathological changes in the mouse knee joint. © 2015 Wiley Periodicals, Inc.

  1. Light and maternal influence in the entrainment of activity circadian rhythm in infants 4-12 weeks of age.

    PubMed

    Thomas, Karen A; Burr, Robert L; Spieker, Susan

    2016-07-01

    The influence of light and maternal activity on early infant activity rhythm were studied in 43 healthy, maternal-infant pairs. Aims included description of infant and maternal circadian rhythm of environmental light, assessing relations among of activity and light circadian rhythm parameters, and exploring the influence of light on infant activity independent of maternal activity. Three-day light and activity records were obtained using actigraphy monitors at infant ages 4, 8, and 12 weeks. Circadian rhythm timing, amplitude, 24-hour fit, rhythm center, and regularity were determined using cosinor and nonparametric circadian rhythm analyses (NPCRA). All maternal and infant circadian parameters for light were highly correlated. When maternal activity was controlled, the partial correlations between infant activity and light rhythm timing, amplitude, 24-hour fit, and rhythm center demonstrated significant relation (r = .338 to .662) at infant age 12 weeks, suggesting entrainment. In contrast, when maternal light was controlled there was significant relation between maternal and infant activity rhythm (r = 0.470, 0.500, and 0.638 at 4, 8 and 12 weeks, respectively) suggesting the influence of maternal-infant interaction independent of photo entrainment of cycle timing over the first 12 weeks of life. Both light and maternal activity may offer avenues for shaping infant activity rhythm during early infancy.

  2. The role of race and ethnicity in sleep, circadian rhythms and cardiovascular health.

    PubMed

    Egan, Kieren J; Knutson, Kristen L; Pereira, Alexandre C; von Schantz, Malcolm

    2017-06-01

    In recent years, strong evidence has emerged suggesting that insufficient duration, quality, and/or timing of sleep are associated with cardiovascular disease (CVD), and various mechanisms for this association have been proposed. Such associations may be related to endophenotypic features of the sleep homeostat and the circadian oscillator, or may be state-like effects of the environment. Here, we review recent literature on sleep, circadian rhythms and CVD with a specific emphasis on differences between racial/ethnic groups. We discuss the reported differences, mainly between individuals of European and African descent, in parameters related to sleep (architecture, duration, quality) and circadian rhythms (period length and phase shifting). We further review racial/ethnic differences in cardiovascular disease and its risk factors, and develop the hypothesis that racial/ethnic health disparities may, to a greater or smaller degree, relate to differences in parameters related to sleep and circadian rhythms. When humans left Africa some 100,000 years ago, some genetic differences between different races/ethnicities were acquired. These genetic differences have been proposed as a possible predictor of CVD disparities, but concomitant differences in culture and lifestyle between different groups may equally explain CVD disparities. We discuss the evidence for genetic and environmental causes of these differences in sleep and circadian rhythms, and their usefulness as health intervention targets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. LY2033298, a positive allosteric modulator at muscarinic M₄ receptors, enhances inhibition by oxotremorine of light-induced phase shifts in hamster circadian activity rhythms.

    PubMed

    Gannon, Robert L; Millan, Mark J

    2012-11-01

    Entrainment of circadian rhythms to the light-dark cycle is essential for restorative sleep, and abnormal sleep timing is implicated in central nervous system (CNS) disorders like depression, schizophrenia, and Alzheimer's disease. Many transmitters, including acetylcholine, that exerts its actions via muscarinic receptors modulate the suprachiasmatic nucleus, the master pacemaker. Since positive allosteric modulators of muscarinic M(4) receptors are candidates for treatment of mood and cognitive deficits of CNS disorders, it is important to evaluate their circadian actions. The effects of intraperitoneally applied muscarinic agents on circadian wheel-running rhythms were measured employing hamsters, a model organism for studying activity rhythms. Systemic administration of the muscarinic receptor agonist oxotremorine (0.01-0.04 mg/kg) inhibited light-induced phase delays and advances of hamster circadian wheel-running rhythms. The M₄ positive allosteric modulator, LY2033298 (10-40 mg/kg), had no effect on light-induced phase shifts when administered alone, yet significantly enhanced (at 20 mg/kg) the inhibitory influence of oxotremorine on light-induced phase delays. In addition, the muscarinic receptor antagonist, scopolamine, which was without effect on light-induced phase shifts when administered alone (0.001-0.1 mg/kg), antagonized (at 0.1 mg/kg) the inhibitory effect of oxotremorine and LY2033298 on light-induced phase delays. These results are the first to demonstrate that systemically applied muscarinic receptor agonists modulate circadian activity rhythms, and they also reveal a specific role for M₄ receptors. It will be of importance to evaluate circadian actions of psychotropic drugs acting via M₄ receptors, since they may display beneficial properties under pathological conditions.

  4. [Circadian rhythm disruption and human development].

    PubMed

    Kohyama, Jun

    2013-12-01

    Ontogenetic developments of rest-activity, sleep-wakefulness, temperature and several hormone rhythms in humans were reviewed. The reported effects of environment on these alterations were also summarized. Then, disorders or conditions which often encounter during early stage of life and reveal circadian rhythm disruptions were described. These disorders or conditions included severe brain damage, visual disturbance, developmental disorders(autistic spectrum disorder and attention deficit/hyperactivity disorder), Rett syndrome, Angelman syndrome, Smith-Magenis syndrome, epilepsy, Yonaki, and inadequate sleep hygiene. Finally, it was emphasized that we should pay special attention on the development of youngsters who showed sleep disturbance during early stage of life with special reference to the later occurrence of developmental disorders.

  5. Resetting of circadian melatonin and cortisol rhythms in humans by ordinary room light

    NASA Technical Reports Server (NTRS)

    Boivin, D. B.; Czeisler, C. A.

    1998-01-01

    The present study was designed to investigate whether a weak photic stimulus can reset the endogenous circadian rhythms of plasma melatonin and plasma cortisol in human subjects. A stimulus consisting of three cycles of 5 h exposures to ordinary room light (approximately 180 lux), centered 1.5 h after the endogenous temperature nadir, significantly phase-advanced the plasma melatonin rhythm in eight healthy young men compared with the phase delays observed in eight control subjects who underwent the same protocol but were exposed to darkness (p < or = 0.003). After light-induced phase advances, the circadian rhythms of plasma melatonin and plasma cortisol maintained stable temporal relationships with the endogenous core body temperature cycle, consistent with the conclusion that exposure to ordinary indoor room light had shifted a master circadian pacemaker.

  6. Air Travel, Circadian Rhythms/Hormones, and Autoimmunity.

    PubMed

    Torres-Ruiz, J; Sulli, A; Cutolo, M; Shoenfeld, Y

    2017-08-01

    Biological rhythms are fundamental for homeostasis and have recently been involved in the regulatory processes of various organs and systems. Circadian cycle proteins and hormones have a direct effect on the inflammatory response and have shown pro- or anti-inflammatory effects in animal models of autoimmune diseases. The cells of the immune system have their own circadian rhythm, and the light-dark cycle directly influences the inflammatory response. On the other hand, patients with autoimmune diseases characteristically have sleep disorders and fatigue, and in certain disease, such as rheumatoid arthritis (RA), a frank periodicity in the signs and symptoms is recognized. The joint symptoms predominate in the morning, and apparently, subjects with RA have relative adrenal insufficiency, with a cortisol peak unable to control the late night load of pro-inflammatory cytokines. Transatlantic flights represent a challenge in the adjustment of biological rhythms, since they imply sleep deprivation, time zone changes, and potential difficulties for drug administration. In patients with autoimmune diseases, the use of DMARDs and prednisone at night is probably best suited to lessen morning symptoms. It is also essential to sleep during the trip to improve adaptation to the new time zone and to avoid, as far as possible, works involving flexible or nocturnal shifts. The study of proteins and hormones related to biological rhythms will demonstrate new pathophysiological pathways of autoimmune diseases, which will emphasize the use of general measures for sleep respect and methods for drug administration at key daily times to optimize their anti-inflammatory and immune modulatory effects.

  7. Circadian rhythm of the Leydig cells endocrine function is attenuated during aging.

    PubMed

    Baburski, Aleksandar Z; Sokanovic, Srdjan J; Bjelic, Maja M; Radovic, Sava M; Andric, Silvana A; Kostic, Tatjana S

    2016-01-01

    Although age-related hypofunction of Leydig cells is well illustrated across species, its circadian nature has not been analyzed. Here we describe changes in circadian behavior in Leydig cells isolated from adult (3-month) and aged (18- and 24-month) rats. The results showed reduced circadian pattern of testosterone secretion in both groups of aged rats despite unchanged LH circadian secretion. Although arrhythmic, the expression of Insl3, another secretory product of Leydig cells, was decreased in both groups. Intracellular cAMP and most important steroidogenic genes (Star, Cyp11a1 and Cyp17a1), together with positive steroidogenic regulator (Nur77), showed preserved circadian rhythm in aging although rhythm robustness and expression level were attenuated in both aged groups. Aging compromised cholesterol mobilization and uptake by Leydig cells: the oscillatory transcription pattern of genes encoding HDL-receptor (Scarb1), hormone sensitive lipase (Lipe, enzyme that converts cholesterol esters from lipid droplets into free cholesterol) and protein responsible for forming the cholesterol esters (Soat2) were flattened in 24-month group. The majority of examined clock genes displayed circadian behavior in expression but only a few of them (Bmal1, Per1, Per2, Per3 and Rev-Erba) were reduced in 24-month-old group. Furthermore, aging reduced oscillatory expression pattern of Sirt1 and Nampt, genes encoding key enzymes that connect cellular metabolism and circadian network. Altogether circadian amplitude of Leydig cell's endocrine function decreased during aging. The results suggest that clock genes are more resistant to aging than genes involved in steroidogenesis supporting the hypothesis about peripheral clock involvement in rhythm maintenance during aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Pineal Photoreceptor Cells Are Required for Maintaining the Circadian Rhythms of Behavioral Visual Sensitivity in Zebrafish

    PubMed Central

    Li, Xinle; Montgomery, Jake; Cheng, Wesley; Noh, Jung Hyun; Hyde, David R.; Li, Lei

    2012-01-01

    In non-mammalian vertebrates, the pineal gland functions as the central pacemaker that regulates the circadian rhythms of animal behavior and physiology. We generated a transgenic zebrafish line [Tg(Gnat2:gal4-VP16/UAS:nfsB-mCherry)] in which the E. coli nitroreductase is expressed in pineal photoreceptor cells. In developing embryos and young adults, the transgene is expressed in both retinal and pineal photoreceptor cells. During aging, the expression of the transgene in retinal photoreceptor cells gradually diminishes. By 8 months of age, the Gnat2 promoter-driven nitroreductase is no longer expressed in retinal photoreceptor cells, but its expression in pineal photoreceptor cells persists. This provides a tool for selective ablation of pineal photoreceptor cells, i.e., by treatments with metronidazole. In the absence of pineal photoreceptor cells, the behavioral visual sensitivity of the fish remains unchanged; however, the circadian rhythms of rod and cone sensitivity are diminished. Brief light exposures restore the circadian rhythms of behavioral visual sensitivity. Together, the data suggest that retinal photoreceptor cells respond to environmental cues and are capable of entraining the circadian rhythms of visual sensitivity; however, they are insufficient for maintaining the rhythms. Cellular signals from the pineal photoreceptor cells may be required for maintaining the circadian rhythms of visual sensitivity. PMID:22815753

  9. In Vitro Bioluminescence Assay to Characterize Circadian Rhythm in Mammary Epithelial Cells.

    PubMed

    Fang, Mingzhu; Kang, Hwan-Goo; Park, Youngil; Estrella, Brian; Zarbl, Helmut

    2017-09-28

    The circadian rhythm is a fundamental physiological process present in all organisms that regulates biological processes ranging from gene expression to sleep behavior. In vertebrates, circadian rhythm is controlled by a molecular oscillator that functions in both the suprachiasmatic nucleus (SCN; central pacemaker) and individual cells comprising most peripheral tissues. More importantly, disruption of circadian rhythm by exposure to light-at-night, environmental stressors and/or toxicants is associated with increased risk of chronic diseases and aging. The ability to identify agents that can disrupt central and/or peripheral biological clocks, and agents that can prevent or mitigate the effects of circadian disruption, has significant implications for prevention of chronic diseases. Although rodent models can be used to identify exposures and agents that induce or prevent/mitigate circadian disruption, these experiments require large numbers of animals. In vivo studies also require significant resources and infrastructure, and require researchers to work all night. Thus, there is an urgent need for a cell-type appropriate in vitro system to screen for environmental circadian disruptors and enhancers in cell types from different organs and disease states. We constructed a vector that drives transcription of the destabilized luciferase in eukaryotic cells under the control of the human PERIOD 2 gene promoter. This circadian reporter construct was stably transfected into human mammary epithelial cells, and circadian responsive reporter cells were selected to develop the in vitro bioluminescence assay. Here, we present a detailed protocol to establish and validate the assay. We further provide details for proof of concept experiments demonstrating the ability of our in vitro assay to recapitulate the in vivo effects of various chemicals on the cellular biological clock. The results indicate that the assay can be adapted to a variety of cell types to screen for both

  10. Experiment K-7-35: Circadian Rhythms and Temperature Regulation During Spaceflight. Part 1; Circadian Rhythms and Temperature Regulation

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Alpatov, A. M.; Hoban-Higgins, T. M.; Klimovitsky, V. Y.

    1994-01-01

    Mammals have developed the ability to adapt to most variations encountered in their everyday environment. For example, homeotherms have developed the ability to maintain the internal cellular environment at a relatively constant temperature. Also, in order to compensate for temporal variations in the terrestrial environment, the circadian timing system has evolved. However, throughout the evolution of life on earth, living organisms have been exposed to the influence of an unvarying level of earth's gravity. As a result changes in gravity produce adaptive responses which are not completely understood. In particular, spaceflight has pronounced effects on various physiological and behavioral systems. Such systems include body temperature regulation and circadian rhythms. This program has examined the influence of microgravity on temperature regulation and circadian timekeeping systems in Rhesus monkeys. Animals flown on the Soviet Biosatellite, COSMOS 2044, were exposed to 14 days of microgravity while constantly monitoring the circadian patterns temperature regulation, heart rate and activity. This experiment has extended our previous observations from COSMOS 1514, as well as providing insights into the physiological mechanisms that produce these changes.

  11. Relationship between circadian rhythm amplitude and stability with sleep quality and sleepiness among shift nurses and health care workers.

    PubMed

    Jafari Roodbandi, Akram; Choobineh, Alireza; Daneshvar, Somayeh

    2015-01-01

    Sleep is affected by the circadian cycle and its features. Amplitude and stability of circadian rhythm are important parameters of the circadian cycle. This study aims to examine the relationship between amplitude and stability of circadian rhythm with sleep quality and sleepiness. In this cross-sectional research, 315 shift nurses and health care workers from educational hospitals of Kerman University of Medical Sciences (KUMS), Iran, were selected using a random sampling method. The Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale (ESS) and Circadian Type Inventory (CTI) were used to collect the required data. In this study, 83.2% suffered from poor sleep and one-half had moderate and excessive sleepiness. The results showed that flexibility in circadian rhythm stability, job stress and sleepiness are among the factors affecting quality sleep in shift workers. Those whose circadian rhythm amplitude was languid suffered more from sleepiness and those whose circadian stability was flexible had a better sleep. Variables including circadian rhythm stability (flexible/rigid) and amplitude (languid/vigorous) can act as predictive indices in order to employ people in a shift work system so that sleepiness and a drop in quality of sleep are prevented.

  12. Circadian rhythm dissociation in an environment with conflicting temporal information

    NASA Technical Reports Server (NTRS)

    Sulzman, F. M.; Fuller, C. A.; Hiles, L. G.; Moore-Ede, M. C.

    1978-01-01

    The relative contributions of light-dark (LD) cycles and eating-fasting (EF) cycles in providing temporal information to the circadian time-keeping system were examined in chair-acclimatized squirrel monkeys (Saimiri sciureus). The circadian rhythms of drinking, colonic temperature, urine volume, and urinary potassium excretion were measured with the LD and EF cycles providing either conflicting phases or periods. In conflicting phase experiments, animals were exposed to 24-hr LD cycles consisting of 12 hr of 600 lx followed by 12 hr of less than 1 lx and concurrent 24-hr EF cycles in which the animals ate for 3 hr and then fasted for 21 hr. One group had food available at the beginning and a second group at the end of the light period. In conflicting period experiments, monkeys were exposed to 23-hr LD cycles and 24-hr EF cycles. Analysis of the rhythms showed that both phase and period information were conveyed to the drinking and urinary rhythms by the EF cycle, and to the temperature rhythm by the LD cycle.

  13. Circadian rhythm asynchrony in man during hypokinesis.

    NASA Technical Reports Server (NTRS)

    Winget, C. M.; Vernikos-Danellis, J.; Cronin, S. E.; Leach, C. S.; Rambaut, P. C.; Mack, P. B.

    1972-01-01

    Posture and exercise were investigated as synchronizers of certain physiologic rhythms in eight healthy male subjects in a defined environment. Four subjects exercised during bed rest. Body temperature (BT), heart rate, plasma thyroid hormone, and plasma steroid data were obtained from the subjects for a 6-day ambulatory equilibration period before bed rest, 56 days of bed rest, and a 10-day recovery period after bed rest. The results indicate that the mechanism regulating the circadian rhythmicity of the cardiovascular system is rigorously controlled and independent of the endocrine system, while the BT rhythm is more closely aligned to the endocrine system.

  14. Sleep and circadian rhythms in four orbiting astronauts.

    PubMed

    Monk, T H; Buysse, D J; Billy, B D; Kennedy, K S; Willrich, L M

    1998-06-01

    This experiment measured the sleep and circadian rhythms of four male astronauts aboard a space shuttle (STS-78) orbiting the Earth for 17 days. The space mission was specially scheduled to minimize disruptions in circadian rhythms and sleep so that the effects of space flight and microgravity per se could be studied. Data were collected in 72-h measurement blocks: one block 7 days before launch, one early within the mission (3 days after launch), one late in the mission (12 days after launch), and one 18 days after landing. Within each measurement block, all sleep was recorded both polysomnographically and by sleep diary. Core body temperature was sampled every 6 mins. Actillumes were worn continuously. All urine samples were collected separately. Performance was assessed by a computerized test battery (3/day) and by end-of-shift questionnaires (1/day); mood and alertness were measured by visual analogue scales (5/day). Circadian rhythms in orbit appeared to be very similar in phase and amplitude to those on the ground, and were appropriately aligned for the required work/rest schedule. There was no change from early flight to late flight. This was also reflected in mood, alertness, and performance scores, which were satisfactory at both in-flight time points. However, in-flight sleep showed a decreased amount of sleep obtained (mean = 6.1 h), and all four astronauts showed a decrease in delta sleep. No further degradation in sleep was seen when early flight was compared to late flight, and no other sleep parameters showed reliable trends.

  15. Vitamin B12 affects non-photic entrainment of circadian locomotor activity rhythms in mice.

    PubMed

    Ebihara, S; Mano, N; Kurono, N; Komuro, G; Yoshimura, T

    1996-07-15

    Administration of vitamin B12 (VB12) has been reported to normalize human sleep-wake rhythm disorders such as non-24-h sleep-wake syndrome (HNS), delayed sleep phase syndrome (DSPS) or insomnia. However, the mechanisms of the action of VB12 on the rhythm disorders are unknown. In the present study, therefore, effects of VB12 on circadian rhythms of locomotor activity were examined in mice. In the first experiment, CBA/J mice were maintained under continuous light condition (LL) or blinded, and after free-running rhythms became stable, the mice were intraperitoneally injected with either VB12 or saline at a fixed time every day. In all the mice with tau > 24 h, saline injections resulted in entrainment of circadian rhythms, whereas not all the mice with tau < 24 h entrained to the injection. In contrast to saline injections, VB12 injections did not always induce entrainment and about half of the mice with tau > 24 h free-ran during the injection. In the second experiment, the amount of phase advances of circadian rhythms induced by a single injection of saline at circadian time (CT) 11 under LL was compared between the mice with and without VB12 silastic tubes. The results showed that the amplitude of phase advances was smaller in the mice with VB12 than those without VB12. In the third experiment, daily injections of saline were given to the mice with VB12 silastic tubes maintained under LL. In this chronic treatment of VB12 as well, attenuating effects of VB12 on saline-induced entrainment were observed. These results suggest that VB12 affects the mechanisms implicated in non-photic entrainment of circadian rhythms in mice.

  16. Circulating tumoral cells lack circadian-rhythm in hospitalized metastasic breast cancer patients.

    PubMed

    García-Sáenz, José Angel; Martín, Miguel; Maestro, Marisa; Vidaurreta, Marta; Veganzones, Silvia; Villalobos, Laura; Rodríguez-Lajusticia, Laura; Rafael, Sara; Sanz-Casla, María Teresa; Casado, Antonio; Sastre, Javier; Arroyo, Manuel; Díaz-Rubio, Eduardo

    2006-11-01

    The relationship between breast cancer and circadian rhythm variation has been extensively studied. Increased breast tumorigenesis has been reported in melatonin-suppressed experimental models and in observational studies. Circulating Tumor Cells (CTC) circadian- rhythm may optimize the timing of therapies. This is a prospective experimental study to ascertain the day-time and night-time CTC levels in hospitalized metastasic breast cancer (MBC) patients. CTC are isolated and enumerated from a 08:00 AM and 08:00 PM blood collections. 23 MBC and 23 healthy volunteers entered the study. 69 samples were collected (23 samples at 08:00 AM and 23 samples at 08:00 PM from MBC; 23 samples from healthy volunteers). Results from two patients were rejected due to sample processing errors. No CTC were isolated from healthy-volunteers. No-differences between daytime and night-time CTC were observed. Therefore, we could not ascertain CTC circadian-rhythm in hospitalized metastasic breast cancer patients.

  17. Do permanent night workers show circadian adjustment? A review based on the endogenous melatonin rhythm.

    PubMed

    Folkard, Simon

    2008-04-01

    "Permanent" or "fixed" night shifts have been argued to offer a potential benefit over rotating shift systems in that they may serve to maximize circadian adjustment and hence minimize the various health and safety problems associated with night work. For this reason, some authors have argued in favor of permanent shift systems, but their arguments assume at least a substantial, if not complete, adjustment of the circadian clock. They have emphasized the finding that the day sleeps taken between successive night shifts by permanent night workers are rather longer than those of either slowly or rapidly rotating shift workers, but this could simply reflect increased pressure for sleep. The present paper reviews the literature on the adjustment to permanent night work of the circadian rhythm in the secretion of melatonin, which is generally considered to be the best known indicator of the state of the endogenous circadian body clock. Studies of workers in "abnormal" environments, such as oil rigs and remote mining operations, were excluded, as the nature of these unique settings might serve to assist adjustment. The results of the six studies included indicate that only a very small minority (<3%) of permanent night workers evidence "complete"adjustment of their endogenous melatonin rhythm to night work, less than one in four permanent night workers evidence sufficiently "substantial" adjustment to derive any benefit from it, there is no difference between studies conducted in normal or dim lighting, and there is no evidence of gender difference in the adjustment to permanent night work. It is concluded that in normal environments, permanent night-shift systems are unlikely to result in sufficient circadian adjustment in most individuals to benefit health and safety.

  18. Procedures for numerical analysis of circadian rhythms

    PubMed Central

    REFINETTI, ROBERTO; LISSEN, GERMAINE CORNÉ; HALBERG, FRANZ

    2010-01-01

    This article reviews various procedures used in the analysis of circadian rhythms at the populational, organismal, cellular and molecular levels. The procedures range from visual inspection of time plots and actograms to several mathematical methods of time series analysis. Computational steps are described in some detail, and additional bibliographic resources and computer programs are listed. PMID:23710111

  19. Time-of-day effects in implicit racial in-group preferences are likely selection effects, not circadian rhythms

    PubMed Central

    2016-01-01

    Time-of-day effects in human psychological functioning have been known of since the 1800s. However, outside of research specifically focused on the quantification of circadian rhythms, their study has largely been neglected. Moves toward online data collection now mean that psychological investigations take place around the clock, which affords researchers the ability to easily study time-of-day effects. Recent analyses have shown, for instance, that implicit attitudes have time-of-day effects. The plausibility that these effects indicate circadian rhythms rather than selection effects is considered in the current study. There was little evidence that the time-of-day effects in implicit attitudes shifted appropriately with factors known to influence the time of circadian rhythms. Moreover, even variables that cannot logically show circadian rhythms demonstrated stronger time-of-day effects than did implicit attitudes. Taken together, these results suggest that time-of-day effects in implicit attitudes are more likely to represent processes of selection rather than circadian rhythms, but do not rule out the latter possibility. PMID:27114886

  20. Time-of-day effects in implicit racial in-group preferences are likely selection effects, not circadian rhythms.

    PubMed

    Schofield, Timothy P

    2016-01-01

    Time-of-day effects in human psychological functioning have been known of since the 1800s. However, outside of research specifically focused on the quantification of circadian rhythms, their study has largely been neglected. Moves toward online data collection now mean that psychological investigations take place around the clock, which affords researchers the ability to easily study time-of-day effects. Recent analyses have shown, for instance, that implicit attitudes have time-of-day effects. The plausibility that these effects indicate circadian rhythms rather than selection effects is considered in the current study. There was little evidence that the time-of-day effects in implicit attitudes shifted appropriately with factors known to influence the time of circadian rhythms. Moreover, even variables that cannot logically show circadian rhythms demonstrated stronger time-of-day effects than did implicit attitudes. Taken together, these results suggest that time-of-day effects in implicit attitudes are more likely to represent processes of selection rather than circadian rhythms, but do not rule out the latter possibility.

  1. Circadian rhythms and fractal fluctuations in forearm motion

    NASA Astrophysics Data System (ADS)

    Hu, Kun; Hilton, Michael F.

    2005-03-01

    Recent studies have shown that the circadian pacemaker --- an internal body clock located in the brain which is normally synchronized with the sleep/wake behavioral cycles --- influences key physiologic functions such as the body temperature, hormone secretion and heart rate. Surprisingly, no previous studies have investigated whether the circadian pacemaker impacts human motor activity --- a fundamental physiologic function. We investigate high-frequency actigraph recordings of forearm motion from a group of young and healthy subjects during a forced desynchrony protocol which allows to decouple the sleep/wake cycles from the endogenous circadian cycle while controlling scheduled behaviors. We investigate both static properties (mean value, standard deviation), dynamical characteristics (long-range correlations), and nonlinear features (magnitude and Fourier-phase correlations) in the fluctuations of forearm acceleration across different circadian phases. We demonstrate that while the static properties exhibit significant circadian rhythms with a broad peak in the afternoon, the dynamical and nonlinear characteristics remain invariant with circadian phase. This finding suggests an intrinsic multi-scale dynamic regulation of forearm motion the mechanism of which is not influenced by the circadian pacemaker, thus suggesting that increased cardiac risk in the early morning hours is not related to circadian-mediated influences on motor activity.

  2. Circadian rhythm disruption as a link between Attention-Deficit/Hyperactivity Disorder and obesity?

    PubMed

    Vogel, Suzan W N; Bijlenga, Denise; Tanke, Marjolein; Bron, Tannetje I; van der Heijden, Kristiaan B; Swaab, Hanna; Beekman, Aartjan T F; Kooij, J J Sandra

    2015-11-01

    Patients with Attention-Deficit/Hyperactivity Disorder (ADHD) have a high prevalence of obesity. This is the first study to investigate whether circadian rhythm disruption is a mechanism linking ADHD symptoms to obesity. ADHD symptoms and two manifestations of circadian rhythm disruption: sleep problems and an unstable eating pattern (skipping breakfast and binge eating later in the day) were assessed in participants with obesity (n= 114), controls (n= 154), and adult ADHD patients (n= 202). Participants with obesity had a higher prevalence of ADHD symptoms and short sleep on free days as compared to controls, but a lower prevalence of ADHD symptoms, short sleep on free days, and an unstable eating pattern as compared to ADHD patients.We found that participants with obesity had a similar prevalence rate of an unstable eating pattern when compared to controls. Moreover, mediation analyses showed that both sleep duration and an unstable eating pattern mediated the association between ADHD symptoms and body mass index (BMI). Our study supports the hypothesis that circadian rhythm disruption is a mechanism linking ADHD symptoms to obesity. Further research is needed to determine if treatment of ADHD and circadian rhythm disruption is effective in the prevention and treatment of obesity in patients with obesity and/or ADHD. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. A circadian rhythm in optic nerve impulses from an isolated eye in darkness.

    NASA Technical Reports Server (NTRS)

    Jacklet, J. W.

    1971-01-01

    Study of the circadian rhythm of optic nerve potentials recorded from the isolated eye of the sea hare Aplysia. The optic nerve activity in constant conditions is found to be clearly circadian and to obey the circadian rule for diurnal animals. In addition, the period length depends on the in vitro culturing solution. In seawater it is about 22 hr, but in culture medium it is 27 hr. The rhythm can be completely phase-shifted in one trial if the phase of the LD 12:12 Zeitgeber is advanced or delayed 4 hr. The rhythm in one eye can be phase-shifted in vivo independently of the other eye and in vitro independently of the rest of the animal. Thus, in the animal, the eye oscillators are, at most, only slightly influenced by each other or by other oscillators in the animal.

  4. Circadian locomotor rhythms in the cricket, Gryllodes sigillatus. II. Interactions between bilaterally paired circadian pacemakers.

    PubMed

    Ushirogawa, H; Abe, Y; Tomioka, K

    1997-10-01

    The optic lobe is essential for circadian locomotor rhythms in the cricket, Gryllodes sigillatus. We examined potential interactions between the bilaterally paired optic lobes in circadian rhythm generation. When one optic lobe was removed, the free-running period of the locomotor rhythm slightly but significantly lengthened. When exposed to light-dark cycles (LD) with 26 hr period, intact and sham operated animals were clearly entrained to the light cycle, but a large number of animals receiving unilateral optic nerve severance showed rhythm dissociation. In the dissociation, two rhythmic components appeared; one was readily entrained to the given LD and the other free-ran with a period shorter than 24 hr, and activity was expressed only when they were inphase. The period of the free-running component was significantly longer than that of the animals with a single blinded pacemaker kept in LD13:13, suggesting that the pacemaker on the intact side had some influence on the blinded pacemaker even in the dissociated state. The ratio of animals with rhythm dissociation was greater with the lower light intensity of the LD. The results suggest that the bilaterally distributed pacemakers are only weakly coupled to one another but strongly suppress the activity driven by the partner pacemaker during their subjective day. The strong suppression of activity would be advantageous to keep a stable nocturnality for this cricket living indoors.

  5. Circadian rhythms synchronize mitosis in Neurospora crassa.

    PubMed

    Hong, Christian I; Zámborszky, Judit; Baek, Mokryun; Labiscsak, Laszlo; Ju, Kyungsu; Lee, Hyeyeong; Larrondo, Luis F; Goity, Alejandra; Chong, Hin Siong; Belden, William J; Csikász-Nagy, Attila

    2014-01-28

    The cell cycle and the circadian clock communicate with each other, resulting in circadian-gated cell division cycles. Alterations in this network may lead to diseases such as cancer. Therefore, it is critical to identify molecular components that connect these two oscillators. However, molecular mechanisms between the clock and the cell cycle remain largely unknown. A model filamentous fungus, Neurospora crassa, is a multinucleate system used to elucidate molecular mechanisms of circadian rhythms, but not used to investigate the molecular coupling between these two oscillators. In this report, we show that a conserved coupling between the circadian clock and the cell cycle exists via serine/threonine protein kinase-29 (STK-29), the Neurospora homolog of mammalian WEE1 kinase. Based on this finding, we established a mathematical model that predicts circadian oscillations of cell cycle components and circadian clock-dependent synchronized nuclear divisions. We experimentally demonstrate that G1 and G2 cyclins, CLN-1 and CLB-1, respectively, oscillate in a circadian manner with bioluminescence reporters. The oscillations of clb-1 and stk-29 gene expression are abolished in a circadian arrhythmic frq(ko) mutant. Additionally, we show the light-induced phase shifts of a core circadian component, frq, as well as the gene expression of the cell cycle components clb-1 and stk-29, which may alter the timing of divisions. We then used a histone hH1-GFP reporter to observe nuclear divisions over time, and show that a large number of nuclear divisions occur in the evening. Our findings demonstrate the circadian clock-dependent molecular dynamics of cell cycle components that result in synchronized nuclear divisions in Neurospora.

  6. Aberrant Proteostasis of BMAL1 Underlies Circadian Abnormalities in a Paradigmatic mTOR-opathy.

    PubMed

    Lipton, Jonathan O; Boyle, Lara M; Yuan, Elizabeth D; Hochstrasser, Kevin J; Chifamba, Fortunate F; Nathan, Ashwin; Tsai, Peter T; Davis, Fred; Sahin, Mustafa

    2017-07-25

    Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder characterized by mutations in either the TSC1 or TSC2 genes, whose products form a critical inhibitor of the mechanistic target of rapamycin (mTOR). Loss of TSC1/2 gene function renders an mTOR-overactivated state. Clinically, TSC manifests with epilepsy, intellectual disability, autism, and sleep dysfunction. Here, we report that mouse models of TSC have abnormal circadian rhythms. We show that mTOR regulates the proteostasis of the core clock protein BMAL1, affecting its translation, degradation, and subcellular localization. This results in elevated levels of BMAL1 and a dysfunctional clock that displays abnormal timekeeping under constant conditions and exaggerated responses to phase resetting. Genetically lowering the dose of BMAL1 rescues circadian behavioral phenotypes in TSC mouse models. These findings indicate that BMAL1 deregulation is a feature of the mTOR-activated state and suggest a molecular mechanism for mitigating circadian phenotypes in a neurodevelopmental disorder. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights

    NASA Technical Reports Server (NTRS)

    Dijk, D. J.; Neri, D. F.; Wyatt, J. K.; Ronda, J. M.; Riel, E.; Ritz-De Cecco, A.; Hughes, R. J.; Elliott, A. R.; Prisk, G. K.; West, J. B.; hide

    2001-01-01

    Sleep, circadian rhythm, and neurobehavioral performance measures were obtained in five astronauts before, during, and after 16-day or 10-day space missions. In space, scheduled rest-activity cycles were 20-35 min shorter than 24 h. Light-dark cycles were highly variable on the flight deck, and daytime illuminances in other compartments of the spacecraft were very low (5.0-79.4 lx). In space, the amplitude of the body temperature rhythm was reduced and the circadian rhythm of urinary cortisol appeared misaligned relative to the imposed non-24-h sleep-wake schedule. Neurobehavioral performance decrements were observed. Sleep duration, assessed by questionnaires and actigraphy, was only approximately 6.5 h/day. Subjective sleep quality diminished. Polysomnography revealed more wakefulness and less slow-wave sleep during the final third of sleep episodes. Administration of melatonin (0.3 mg) on alternate nights did not improve sleep. After return to earth, rapid eye movement (REM) sleep was markedly increased. Crewmembers on these flights experienced circadian rhythm disturbances, sleep loss, decrements in neurobehavioral performance, and postflight changes in REM sleep.

  8. Age, circadian rhythms, and sleep loss in flight crews

    NASA Technical Reports Server (NTRS)

    Gander, Philippa H.; Nguyen, DE; Rosekind, Mark R.; Connell, Linda J.

    1993-01-01

    Age-related changes in trip-induced sleep loss, personality, and the preduty temperature rhythm were analyzed in crews from various flight operations. Eveningness decreased with age. The minimum of the baseline temperature rhythm occurred earlier with age. The amplitude of the baseline temperature rhythm declined with age. Average daily percentage sleep loss during trips increased with age. Among crewmembers flying longhaul flight operations, subjects aged 50-60 averaged 3.5 times more sleep loss per day than subjects aged 20-30. These studies support previous findings that evening types and subjects with later peaking temperature rhythms adapt better to shift work and time zone changes. Age and circadian type may be important considerations for duty schedules and fatigue countermeasures.

  9. Influence of gestational diabetes on circadian rhythms of children and their association with fetal adiposity.

    PubMed

    Zornoza-Moreno, Matilde; Fuentes-Hernández, Silvia; Prieto-Sánchez, María T; Blanco, José E; Pagán, Ana; Rol, María-Ángeles; Parrilla, Juan J; Madrid, Juan A; Sánchez-Solis, Manuel; Larqué, Elvira

    2013-09-01

    To analyse the circadian rhythm maturation of temperature, activity and sleep during the first year of life in offspring of diabetic mothers (ODM) and its relationship with obesity markers. A prospective analysis of the children of 63 pregnant women (23 controls, 21 gestational diabetes mellitus (GDM) controlled with diet and 19 GDM with insulin). Fetal abdominal circumference was evaluated ecographically during gestation. Skin temperature and rest-activity rhythms were monitored for 3 consecutive days in children at 15 days and 1, 3 and 6 months. Anthropometrical parameters of the children were evaluated during the first year of life. Children from the GDM groups tended to higher fetal abdominal circumference z-score than controls at the beginning of the last trimester (p = 0.077) and at delivery (p = 0.078). Mean skin temperature or activity was not different among the groups. The I < O sleep index pointed to increasing concordance with parental sleeping at 3 and 6 months but no significant GDM-dependent differences. However, some of the parameters that define temperature maturation and also the circadian function index from the temperature-activity variable were significantly lower at 6 months in the GDM + insulin group. Fetal abdominal circumference z-score, as a predictor of fetal adiposity, correlated negatively with parameters related to circadian rhythm maturation as the circadian/ultradian rhythm (P1 /Pult ratio). Fetal adiposity correlated with a worse circadian rhythm regulation in ODM. In addition, ODM insulin-treated showed a disturbed pattern of the circadian function index of temperature activity at 6 months of age. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Circadian Rhythm Sleep Disorders: Part II, Advanced Sleep Phase Disorder, Delayed Sleep Phase Disorder, Free-Running Disorder, and Irregular Sleep-Wake Rhythm

    PubMed Central

    Sack, Robert L; Auckley, Dennis; Auger, R. Robert; Carskadon, Mary A.; Wright, Kenneth P.; Vitiello, Michael V.; Zhdanova, Irina V.

    2007-01-01

    Objective: This the second of two articles reviewing the scientific literature on the evaluation and treatment of circadian rhythm sleep disorders (CRSDs), employing the methodology of evidence-based medicine. We herein report on the accumulated evidence regarding the evaluation and treatment of Advamced Sleep Phase Disorder (ASPD), Delayed Sleep Phase Disorder (DSPD), Free-Running Disorder (FRD) and Irregular Sleep-Wake Rhythm ISWR). Methods: A set of specific questions relevant to clinical practice were formulated, a systematic literature search was performed, and relevant articles were abstracted and graded. Results: A substantial body of literature has accumulated that provides a rational basis the evaluation and treatment of CRSDs. Physiological assessment has involved determination of circadian phase using core body temperature and the timing of melatonin secretion. Behavioral assessment has involved sleep logs, actigraphy and the Morningness-Eveningness Questionnaire (MEQ). Treatment interventions fall into three broad categories: 1) prescribed sleep scheduling, 2) circadian phase shifting (“resetting the clock”), and 3) symptomatic treatment using hypnotic and stimulant medications. Conclusion: Circadian rhythm science has also pointed the way to rational interventions for CRSDs and these treatments have been introduced into the practice of sleep medicine with varying degrees of success. More translational research is needed using subjects who meet current diagnostic criteria. Citation: Sack R; Auckley D; Auger RR; Carskadon MA; Wright KP; Vitiello MV; Zhdanova IV. Circadian rhythm sleep disorders: Part II, advanced sleep phase disorder, delayed sleep phase disorder, free-running disorder, and irregular sleep-wake rhythm. SLEEP 2007;30(11):1484-1501. PMID:18041481

  11. Evidence of depression-associated circadian rhythm disruption and regret in prostate cancer patients after surgery.

    PubMed

    Christie, Joanne; Sharpley, Christopher F; Bitsika, Vicki; Christie, David

    2017-12-01

    The purpose of this study is to investigate the association between prostate cancer (PCa) patients' regret that their surgery harmed them, and their scores on the two key symptoms of major depressive disorder (depressed mood, anhedonia) and a symptom of melancholic depression (disruption to circadian rhythm). Forty PCa patients who had received surgery for their PCa completed a postal survey including background information, regret about surgery that 'did them a lot of harm' and three items drawn from the Zung Self-Rating Depression Scale measuring depressed mood, anhedonia and circadian rhythm disruption. There were significant correlations between all three symptoms of depression (depressed mood, anhedonia, disruption to circadian rhythm) and between patients' regret that surgery did them a lot of harm and their circadian rhythm disruption, but not between depressed mood or anhedonia and regret about surgery doing harm. These findings suggest that PCa patients' post-surgery regrets about major harm may lead to a significant disruption in a central physiological function and raise the need to consider this side effect of surgery when planning supportive services for these men.

  12. Application of long-term microdialysis in circadian rhythm research

    PubMed Central

    Borjigin, Jimo; Liu, Tiecheng

    2008-01-01

    Our laboratory has pioneered long-term microdialysis to monitor pineal melatonin secretion in living animals across multiple circadian cycles. There are numerous advantages of this approach for rhythm analysis: (1) we can precisely define melatonin onset and offset phases; (2) melatonin is a reliable and stable neuroendocrine output of the circadian clock (versus behavioral output which is sensitive to stress or other factors); (3) melatonin measurements can be performed extremely frequently, permitting high temporal resolution (10 min sampling intervals), which allows detection of slight changes in phase; (4) the measurements can be performed for more than four weeks, allowing perturbations of the circadian clock to be followed long-term in the same animals; (5) this is an automated process (microdialysis coupled with on-line HPLC analysis), which increases accuracy and bypasses the labor-intensive and error-prone manual handling of dialysis samples; and (6) our approach allows real-time investigation of circadian rhythm function and permits appropriate timely adjustments of experimental conditions. The longevity of microdialysis probes, the key to the success of this approach, depends at least in part on the methods of the construction and implantation of dialysis probes. In this article, we have detailed the procedures of construction and surgical implantation of microdialysis probes used currently in our laboratory, which are significantly improved from our previous methods. PMID:18045670

  13. PPARalpha is a potential therapeutic target of drugs to treat circadian rhythm sleep disorders.

    PubMed

    Shirai, Hidenori; Oishi, Katsutaka; Kudo, Takashi; Shibata, Shigenobu; Ishida, Norio

    2007-06-08

    Recent progress at the molecular level has revealed that nuclear receptors play an important role in the generation of mammalian circadian rhythms. To examine whether peroxisome proliferator-activated receptor alpha (PPARalpha) is involved in the regulation of circadian behavioral rhythms in mammals, we evaluated the locomotor activity of mice administered with the hypolipidemic PPARalpha ligand, bezafibrate. Circadian locomotor activity was phase-advanced about 3h in mice given bezafibrate under light-dark (LD) conditions. Transfer from LD to constant darkness did not change the onset of activity in these mice, suggesting that bezafibrate advanced the phase of the endogenous clock. Surprisingly, bezafibrate also advanced the phase in mice with lesions of the suprachiasmatic nucleus (SCN; the central clock in mammals). The circadian expression of clock genes such as period2, BMAL1, and Rev-erbalpha was also phase-advanced in various tissues (cortex, liver, and fat) without affecting the SCN. Bezafibrate also phase-advanced the activity phase that is delayed in model mice with delayed sleep phase syndrome (DSPS) due to a Clock gene mutation. Our results indicated that PPARalpha is involved in circadian clock control independently of the SCN and that PPARalpha could be a potent target of drugs to treat circadian rhythm sleep disorders including DSPS.

  14. Agomelatine's effect on circadian locomotor rhythm alteration and depressive-like behavior in 6-OHDA lesioned rats.

    PubMed

    Souza, Leonardo C; Martynhak, Bruno J; Bassani, Taysa B; Turnes, Joelle de M; Machado, Meira M; Moura, Eric; Andreatini, Roberto; Vital, Maria A B F

    2018-05-01

    Parkinson's disease (PD) patients often suffer from circadian locomotor rhythms impairment and depression, important non-motor symptoms. It is known that toxin-based animal models of PD can reproduce these features. In a 6-hydroxydopamine (6-OHDA) intranigral model, we first investigated the possible disturbances on circadian rhythms of locomotor activity. The rats were divided into 6-OHDA and Sham groups. After a partial dopaminergic lesion, the 6-OHDA group showed slight alterations in different circadian locomotor rhythms parameters. In a second experiment, we hypothesized agomelatine, an melatoninergic antidepressant with potential to resynchronize disturbed rhythms, could prevent neuronal damage and rhythm alterations in the same 6-OHDA model. The animals were divided into four groups: 6-OHDA+vehicle, 6-OHDA+ago, Sham+vehicle and 6-OHDA+ago. However, the treated animals (agomelatine 50 mg/kg for 22 days) showed an impaired rhythm robustness, and agomelatine did not induce significant changes in the other circadian parameters nor neuroprotection. Finally, in a third experiment, we examined the effects of agomelatine in the 6-OHDA model regarding depressive-like behavior, evaluated by sucrose preference test. The animals were also divided into four groups: 6-OHDA+vehicle, 6-OHDA+ago, Sham+vehicle and 6-OHDA+ago. The toxin infused animals showed a decrease in sucrose preference in comparison with the vehicle infused animals, however, agomelatine did not prevent this decrease. Our findings indicate that agomelatine worsened circadian locomotor rhythm and was not able to reverse the depressive-like behavior of rats in the 6-OHDA PD model. Copyright © 2018. Published by Elsevier Inc.

  15. Effect of age, gender and exercise on salivary dehydroepiandrosterone circadian rhythm profile in human volunteers.

    PubMed

    Al-Turk, Walid; Al-Dujaili, Emad A S

    2016-02-01

    There has been a lot of effort by scientists to elucidate the multi functions of the naturally occurring hormone, dehydroepiandrosterone (DHEA). However, to plan research experiments optimally, it is important first to characterize the diurnal rhythm in healthy individuals. The aim of this research was to investigate the daily circadian rhythms of DHEA among the 2 genders, and the effect of age and exercise on salivary DHEA circadian rhythms. Volunteers (20-39 and 40-60 years) were recruited for 2 studies investigating the salivary DHEA circadian rhythm. The first study looked at the effect of gender and age on DHEA levels on 2 non-consecutive days, and the second study explored the effect of exercise on DHEA circadian rhythm in males. DHEA levels were estimated by a sensitive and specific ELISA method. The results showed a clear daily circadian rhythm in salivary DHEA in all participants groups, however the profile was flatter in the older female group. There was a significant difference between age and gender groups particularly at 8.00 h. In young males DHEA reduced from 541.1 ± 101.3 (mean ± sd) at 8.00 h to 198.9 ± 90.7 pg/mL at 18.00 h; p<0.0001, and young females from 401.6 ± 149.5 to 215.4 ± 95.3 pg/mL; p<0.001. In older males DHEA reduced from 267.5 ± 32.4 to 132.5 ± 46.7 pg/mL; p<0.001, and older females from 147.7 ± 78.1 to 89.5 ± 29.1 pg/mL; p=0.05. DHEA levels on 2 non-consecutive days showed some variations but this was not significant. Aerobic exercise has significantly increased DHEA levels at 2 time points of the day (p=0.05) in male subjects. In conclusion, our study showed a clear daily circadian rhythm in salivary DHEA in all participants was observed, but the profile was flatter in the older groups. Copyright © 2016. Published by Elsevier Inc.

  16. An approximation to the temporal order in endogenous circadian rhythms of genes implicated in human adipose tissue metabolism

    USDA-ARS?s Scientific Manuscript database

    Although it is well established that human adipose tissue (AT) shows circadian rhythmicity, published studies have been discussed as if tissues or systems showed only one or few circadian rhythms at a time. To provide an overall view of the internal temporal order of circadian rhythms in human AT in...

  17. Postnatal Ontogeny of the Circadian Expression of the Adrenal Clock Genes and Corticosterone Rhythm in Male Rats.

    PubMed

    Roa, Silvia Liliana Ruiz; Martinez, Edson Zangiacomi; Martins, Clarissa Silva; Antonini, Sonir Rauber; de Castro, Margaret; Moreira, Ayrton Custódio

    2017-05-01

    The postnatal synchronization of the circadian variation of the adrenal clock genes in mammals remains unknown. We evaluated the postnatal ontogeny of daily variation of clock genes (Clock/Bmal1/Per1/Per2/Per3/Cry1/Cry2/Rorα/Rev-Erbα) and steroidogenesis-related genes (Star and Mc2r) in rat adrenals and its relationship with the emergence of plasma corticosterone rhythm using cosinor analysis. Plasma corticosterone circadian rhythm was detected from postnatal day (P)1, with morning acrophase, between zeitgeber time (ZT)0 and ZT2. From P14, there was a nocturnal acrophase of corticosterone at ZT20, which was associated with pups' eye opening. From P3 there was a circadian variation of the mRNA expression of Bmal1, Per2, Per3, and Cry1 genes with morning acrophase, whereas Rev-Erbα had nocturnal acrophase. From P14, Bmal1, Per2, Per3, and Cry1 acrophases advanced by approximately 10 hours, as compared with early neonatal days, becoming vespertine-nocturnal. In all postnatal ages, Per2 and Cry1 circadian profiles were synchronized in phase with the circadian rhythm of plasma corticosterone, whereas Bmal1 was in antiphase. An adult-like Star circadian rhythm profile was observed only from P21. In conclusion, our original data demonstrated a progressive postnatal maturation of the circadian variation of the adrenal clock genes in synchrony with the development of the corticosterone circadian rhythm in rats. Copyright © 2017 Endocrine Society.

  18. Glucocorticoid-mediated Period2 induction delays the phase of circadian rhythm

    PubMed Central

    Cheon, Solmi; Park, Noheon; Cho, Sehyung; Kim, Kyungjin

    2013-01-01

    Glucocorticoid (GC) signaling synchronizes the circadian rhythm of individual peripheral cells and induces the expression of circadian genes, including Period1 (Per1) and Period2 (Per2). However, no GC response element (GRE) has been reported in the Per2 promoter region. Here we report the molecular mechanisms of Per2 induction by GC signaling and its relevance to the regulation of circadian timing. We found that GC prominently induced Per2 expression and delayed the circadian phase. The overlapping GRE and E-box (GE2) region in the proximal Per2 promoter was responsible for GC-mediated Per2 induction. The GRE in the Per2 promoter was unique in that brain and muscle ARNT-like protein-1 (BMAL1) was essential for GC-induced Per2 expression, whereas other GRE-containing promoters, such as Per1 and mouse mammary tumor virus, responded to dexamethasone in the absence of BMAL1. This specialized regulatory mechanism was mediated by BMAL1-dependent binding of the GC receptor to GRE in Per2 promoter. When Per2 induction was abrogated by the mutation of the GRE or E-box, the circadian oscillation phase failed to be delayed compared with that of the wild-type. Therefore, the current study demonstrates that the rapid Per2 induction mediated by GC is crucial for delaying the circadian rhythm. PMID:23620290

  19. Uncovering the mystery of opposite circadian rhythms between mouse and human leukocytes in humanized mice.

    PubMed

    Zhao, Yue; Liu, Min; Chan, Xue Ying; Tan, Sue Yee; Subramaniam, Sharrada; Fan, Yong; Loh, Eva; Chang, Kenneth Tou En; Tan, Thiam Chye; Chen, Qingfeng

    2017-11-02

    Many immune parameters show circadian rhythms during the 24-hour day in mammals. The most striking circadian oscillation is the number of circulating immune cells that display an opposite rhythm between humans and mice. The physiological roles and mechanisms of circadian variations in mouse leukocytes are well studied, whereas for humans they remain unclear because of the lack of a proper model. In this study, we found that consistent with their natural host species, mouse and human circulating leukocytes exhibited opposite circadian oscillations in humanized mice. This cyclic pattern of trafficking correlated well with the diurnal expression levels of C-X-C chemokine receptor 4, which were controlled by the intracellular hypoxia-inducible factor 1α/aryl hydrocarbon receptor nuclear translocator-like heterodimer. Furthermore, we also discovered that p38 mitogen-activated protein kinases/mitogen-activated 2 had opposite effects between mice and humans in generating intracellular reactive oxygen species, which subsequently regulated HIF-1α expression. In conclusion, we propose humanized mice as a robust model for human circadian studies and reveal insights on a novel molecular clock network in the human circadian rhythm. © 2017 by The American Society of Hematology.

  20. Development of the cortisol circadian rhythm in the light of stress early in life.

    PubMed

    Simons, Sterre S H; Beijers, Roseriet; Cillessen, Antonius H N; de Weerth, Carolina

    2015-12-01

    The secretion of the stress hormone cortisol follows a diurnal circadian rhythm. There are indications that this rhythm is affected by stress early in life. This paper addresses the development of the cortisol circadian rhythm between 1 and 6 years of age, and the role of maternal stress and anxiety early in the child's life on this (developing) rhythm. Participants were 193 healthy mother-child dyads from a community sample. Self-reported maternal stress and anxiety and physiological stress (saliva cortisol), were assessed prenatally (gestational week 37). Postnatally, self-reported maternal stress and anxiety were measured at 3, 6, 12, 30, and 72 months. Saliva cortisol samples from the children were collected on two days (four times each day) at 12, 30, and 72 months of age. The total amount of cortisol during the day and the cortisol decline over the day were determined to indicate children's cortisol circadian rhythm. Multilevel analyses showed that the total amount of cortisol decreased between 1 and 6 years. Furthermore, more maternal pregnancy-specific stress was related to higher total amounts of cortisol in the child. Higher levels of early postnatal maternal anxiety were associated with flatter cortisol declines in children. Higher levels of early postnatal maternal daily hassles were associated with steeper child cortisol declines over the day. These results indicated developmental change in children's cortisol secretion from 1 to 6 years and associations between maternal stress and anxiety early in children's lives and children's cortisol circadian rhythm in early childhood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Circadian rhythms accelerate wound healing in female Siberian hamsters

    PubMed Central

    Cable, Erin J.; Onishi, Kenneth G.; Prendergast, Brian J.

    2017-01-01

    Circadian rhythms (CRs) provide temporal regulation and coordination of numerous physiological traits, including immune function. CRs in multiple aspects of immune function are absent in rodents that have been rendered circadian-arrhythmic through various methods. In Siberian hamsters, circadian arrhythmia can be induced by disruptive light treatments (DPS). Here we examined CRs in wound healing, and the effects of circadian disruption on wound healing in DPS-arrhythmic hamsters. Circadian entrained/rhythmic (RHYTH) and behaviorally-arrhythmic (ARR) female hamsters were administered a cutaneous wound either 3 h after light onset (ZT03) or 2 h after dark onset (ZT18); wound size was quantified daily using image analyses. Among RHYTH hamsters, ZT03 wounds healed faster than ZT18 wounds, whereas in ARR hamsters, circadian phase did not affect wound healing. In addition, wounds healed slower in ARR hamsters. The results document a clear CR in wound healing, and indicate that the mere presence of organismal circadian organization enhances this aspect of immune function. Faster wound healing in CR-competent hamsters may be mediated by CR-driven coordination of the temporal order of mechanisms (inflammation, leukocyte trafficking, tissue remodeling) underlying cutaneous wound healing. PMID:27998755

  2. Plasticity of circadian activity and body temperature rhythms in golden spiny mice.

    PubMed

    Cohen, Rotem; Smale, Laura; Kronfeld-Schor, Noga

    2009-04-01

    Most animals can be categorized as nocturnal, diurnal, or crepuscular. However, rhythms can be quite plastic in some species and vary from one individual to another within a species. In the golden spiny mouse (Acomys russatus), a variety of rhythm patterns have been seen, and these patterns can change considerably as animals are transferred from the field into the laboratory. We previously suggested that these animals may have a circadian time-keeping system that is fundamentally nocturnal and that diurnal patterns seen in their natural habitat reflect mechanisms operating outside of the basic circadian time-keeping system (i.e., masking). In the current study, we further characterized plasticity evident in the daily rhythms of golden spiny mice by measuring effects of lighting conditions and access to a running wheel on rhythms in general activity (GA) and body temperature (Tb). Before the wheel was introduced, most animals were active mainly during the night, though there was considerable inter-individual variability and patterns were quite plastic. The introduction of the wheel caused an increase in the level of nighttime activity and Tb in most individuals. The periods of the rhythms in constant darkness (DD) were very similar, and even slightly longer in this study (24.1+/-0.2 h) than in an earlier one in which animals had not been provided with running wheels. We found no correlation between the distance animals ran in their wheels and the period of their rhythms in DD. Re-entrainment after phase delays of the LD cycle occurred more rapidly in the presence than absence of the running wheel. The characteristics of the rhythms of golden spiny mice seen in this study may be the product of natural selection favoring plasticity of the circadian system, perhaps reflecting what can happen during an evolutionary transition as animals move from a nocturnal to a diurnal niche.

  3. Effect of circadian rhythm on CNS oxygen toxicity.

    NASA Technical Reports Server (NTRS)

    Hof, D. G.; Dexter, J. D.; Mengel, C. E.

    1971-01-01

    The circadian rhythm in susceptibility to oxygen toxicity seizures was investigated by using six groups of 20 male Sprague-Dawley rats (101-196 gm.). The animals were given standard chow, exposed to standard diurnal conditions of light (0700-1900 hr) and dark (1900-0700 hr), and fasted for 15-16 hr prior to exposure to hyperbaric oxygen. The animals were placed in a previously oxygen flushed chamber and raised to 60 psi (gauge) oxygen at a rate of 3 psi/min. Time of exposure started with attainment of 60 psi. End point was first convulsion. The animals' weights were equally distributed within the groups, and the groups were defined by hour of exposure. Time of exposure in minutes prior to seizure was significantly longer in those exposed at 0700-0800 hr and 1000-1100 hr than in four other groups. There was no relationship between animals' weights and time of exposure to seizures. All R values were negative, and the highest R value was -035. These data suggest a definite circadian rhythm in susceptibility to oxygen toxicity seizures.

  4. Circadian rhythms in myocardial metabolism and contractile function: influence of workload and oleate.

    PubMed

    Durgan, David J; Moore, Michael W S; Ha, Ngan P; Egbejimi, Oluwaseun; Fields, Anna; Mbawuike, Uchenna; Egbejimi, Anu; Shaw, Chad A; Bray, Molly S; Nannegari, Vijayalakshmi; Hickson-Bick, Diane L; Heird, William C; Dyck, Jason R B; Chandler, Margaret P; Young, Martin E

    2007-10-01

    Multiple extracardiac stimuli, such as workload and circulating nutrients (e.g., fatty acids), known to influence myocardial metabolism and contractile function exhibit marked circadian rhythms. The aim of the present study was to investigate whether the rat heart exhibits circadian rhythms in its responsiveness to changes in workload and/or fatty acid (oleate) availability. Thus, hearts were isolated from male Wistar rats (housed during a 12:12-h light-dark cycle: lights on at 9 AM) at 9 AM, 3 PM, 9 PM, and 3 AM and perfused in the working mode ex vivo with 5 mM glucose plus either 0.4 or 0.8 mM oleate. Following 20-min perfusion at normal workload (i.e., 100 cm H(2)O afterload), hearts were challenged with increased workload (140 cm H(2)O afterload plus 1 microM epinephrine). In the presence of 0.4 mM oleate, myocardial metabolism exhibited a marked circadian rhythm, with decreased rates of glucose oxidation, increased rates of lactate release, decreased glycogenolysis capacity, and increased channeling of oleate into nonoxidative pathways during the light phase. Rat hearts also exhibited a modest circadian rhythm in responsiveness to the workload challenge when perfused in the presence of 0.4 mM oleate, with increased myocardial oxygen consumption at the dark-to-light phase transition. However, rat hearts perfused in the presence of 0.8 mM oleate exhibited a markedly blunted contractile function response to the workload challenge during the light phase. In conclusion, these studies expose marked circadian rhythmicities in myocardial oxidative and nonoxidative metabolism as well as responsiveness of the rat heart to changes in workload and fatty acid availability.

  5. Light entrainment of the murine intraocular pressure circadian rhythm utilizes non-local mechanisms.

    PubMed

    Tsuchiya, Shunsuke; Buhr, Ethan D; Higashide, Tomomi; Sugiyama, Kazuhisa; Van Gelder, Russell N

    2017-01-01

    Intraocular pressure (IOP) is known to have a strong circadian rhythm, yet how light/dark cycles entrain this rhythm is unknown. The purpose of this study was to assess whether, like the retina, the mammalian ciliary body and IOP clocks have an intrinsic ability to entrain to light/dark cycles. Iris-ciliary body complexes were obtained from period2:luciferase (PER2::LUC) mice and cultured to measure bioluminescence rhythmicity. Pairs of the iris-ciliary body complex were exposed to antiphasic 9:15 h light/dark cycle in vitro. After 4 days of exposure to light/dark cycles, bioluminescence was recorded to establish their circadian phases. In addition, pairs of the iris-ciliary body complex co-cultured with the retinas or corneas of wild-type mice were also investigated. The IOP circadian changes of free-running Opn4-/-;rd1/rd1 mice whose behavior was antiphasic to wild-type were measured by a rebound tonometry, and compared with wild-type mice. Opn3, Opn4, and Opn5 mRNA expression in the iris-ciliary body were analyzed using RT-PCR. The iris/ciliary body complex expressed Opn3, Opn4, and Opn5 mRNA; however, unlike in retina and cornea, neither the iris-CB complex nor the co-cultured complex was directly entrained by light-dark cycle in vitro. The diurnal IOP change of Opn4-/-;rd1/rd1 mice showed an antiphasic pattern to wild-type mice and their rhythms followed the whole-animal behavioral rhythm. Despite expressing mRNA for several non-visual opsins, circadian rhythms of the iris-ciliary body complex of mice do not entrain directly to light-dark cycles ex vivo. Unlike retina, the iris/ciliary body clocks of blind mice remain synchronized to the organismal behavioral rhythm rather than local light-dark cycles. These results suggest that IOP rhythm entrainment is mediated by a systemic rather than local signal in mice.

  6. Light entrainment of the murine intraocular pressure circadian rhythm utilizes non-local mechanisms

    PubMed Central

    Tsuchiya, Shunsuke; Buhr, Ethan D.; Higashide, Tomomi; Sugiyama, Kazuhisa

    2017-01-01

    Purpose Intraocular pressure (IOP) is known to have a strong circadian rhythm, yet how light/dark cycles entrain this rhythm is unknown. The purpose of this study was to assess whether, like the retina, the mammalian ciliary body and IOP clocks have an intrinsic ability to entrain to light/dark cycles. Methods Iris-ciliary body complexes were obtained from period2:luciferase (PER2::LUC) mice and cultured to measure bioluminescence rhythmicity. Pairs of the iris-ciliary body complex were exposed to antiphasic 9:15 h light/dark cycle in vitro. After 4 days of exposure to light/dark cycles, bioluminescence was recorded to establish their circadian phases. In addition, pairs of the iris-ciliary body complex co-cultured with the retinas or corneas of wild-type mice were also investigated. The IOP circadian changes of free-running Opn4-/-;rd1/rd1 mice whose behavior was antiphasic to wild-type were measured by a rebound tonometry, and compared with wild-type mice. Opn3, Opn4, and Opn5 mRNA expression in the iris-ciliary body were analyzed using RT-PCR. Results The iris/ciliary body complex expressed Opn3, Opn4, and Opn5 mRNA; however, unlike in retina and cornea, neither the iris-CB complex nor the co-cultured complex was directly entrained by light-dark cycle in vitro. The diurnal IOP change of Opn4-/-;rd1/rd1 mice showed an antiphasic pattern to wild-type mice and their rhythms followed the whole-animal behavioral rhythm. Conclusions Despite expressing mRNA for several non-visual opsins, circadian rhythms of the iris-ciliary body complex of mice do not entrain directly to light-dark cycles ex vivo. Unlike retina, the iris/ciliary body clocks of blind mice remain synchronized to the organismal behavioral rhythm rather than local light-dark cycles. These results suggest that IOP rhythm entrainment is mediated by a systemic rather than local signal in mice. PMID:28934261

  7. Naturally occurring circadian rhythm and sleep duration are related to executive functions in early adulthood.

    PubMed

    Kuula, Liisa; Pesonen, Anu-Katriina; Heinonen, Kati; Kajantie, Eero; Eriksson, Johan Gunnar; Andersson, Sture; Lano, Aulikki; Lahti, Jari; Wolke, Dieter; Räikkönen, Katri

    2018-02-01

    Experimental sleep deprivation studies suggest that insufficient sleep and circadian misalignment associates with poorer executive function. It is not known whether this association translates to naturally occurring sleep patterns. A total of 512 of full-term-born members of the Arvo Ylppö Longitudinal Study [mean age = 25.3, standard deviation (SD) = 0.65] (44.3% men) wore actigraphs to define sleep duration, its irregularity and circadian rhythm (sleep mid-point) during a 1-week period (mean 6.9 nights, SD = 1.7). Performance-based executive function was assessed with the Trail-Making Test, Conners' Continuous Performance Test and Stroop. The self-rated adult version of Behavior Rating Inventory of Executive Function was used to assess trait-like executive function. We found that performance-based and self-reported trait-like executive function correlated only modestly (all correlations ≤0.17). Shorter sleep duration associated with more commission errors. Later circadian rhythm associated with poorer trait-like executive function, as indicated by the Brief Metacognitive Index and the Behavior Regulation Index. Those belonging to the group with the most irregular sleep duration performed slower than others in the Trail-Making Test Part A. All associations were adjusted for sex, age, socioeconomic status and body mass index. In conclusion, naturally occurring insufficient sleep and later circadian rhythm showed modest associations with poorer executive function. Shorter habitual sleep duration was associated with lower scores of performance-based tests of executive function, and later circadian rhythm was associated mainly with poorer trait-like executive function characteristics. Our findings suggest additionally that sleep duration and circadian rhythm associate with different domains of executive function, and there are no additive effects between the two. © 2017 European Sleep Research Society.

  8. A Screening of UNF Targets Identifies Rnb, a Novel Regulator of Drosophila Circadian Rhythms.

    PubMed

    Kozlov, Anatoly; Jaumouillé, Edouard; Machado Almeida, Pedro; Koch, Rafael; Rodriguez, Joseph; Abruzzi, Katharine C; Nagoshi, Emi

    2017-07-12

    Behavioral circadian rhythms are controlled by multioscillator networks comprising functionally different subgroups of clock neurons. Studies have demonstrated that molecular clocks in the fruit fly Drosophila melanogaster are regulated differently in clock neuron subclasses to support their specific functions (Lee et al., 2016; Top et al., 2016). The nuclear receptor unfulfilled ( unf ) represents a regulatory node that provides the small ventral lateral neurons (s-LNvs) unique characteristics as the master pacemaker (Beuchle et al., 2012). We previously showed that UNF interacts with the s-LNv molecular clocks by regulating transcription of the core clock gene period ( per ) (Jaumouillé et al., 2015). To gain more insight into the mechanisms by which UNF contributes to the functioning of the circadian master pacemaker, we identified UNF target genes using chromatin immunoprecipitation. Our data demonstrate that a previously uncharacterized gene CG7837 , which we termed R and B ( Rnb ), acts downstream of UNF to regulate the function of the s-LNvs as the master circadian pacemaker. Mutations and LNv-targeted adult-restricted knockdown of Rnb impair locomotor rhythms. RNB localizes to the nucleus, and its loss-of-function blunts the molecular rhythms and output rhythms of the s-LNvs, particularly the circadian rhythms in PDF accumulation and axonal arbor remodeling. These results establish a second pathway by which UNF interacts with the molecular clocks in the s-LNvs and highlight the mechanistic differences in the molecular clockwork within the pacemaker circuit. SIGNIFICANCE STATEMENT Circadian behavior is generated by a pacemaker circuit comprising diverse classes of pacemaker neurons, each of which contains a molecular clock. In addition to the anatomical and functional diversity, recent studies have shown the mechanistic differences in the molecular clockwork among the pacemaker neurons in Drosophila Here, we identified the molecular characteristics

  9. Evolution of circadian rhythms in Drosophila melanogaster populations reared in constant light and dark regimes for over 330 generations.

    PubMed

    Shindey, Radhika; Varma, Vishwanath; Nikhil, K L; Sharma, Vijay Kumar

    2017-01-01

    Organisms are believed to have evolved circadian clocks as adaptations to deal with cyclic environmental changes, and therefore it has been hypothesized that evolution in constant environments would lead to regression of such clocks. However, previous studies have yielded mixed results, and evolution of circadian clocks under constant conditions has remained an unsettled topic of debate in circadian biology. In continuation of our previous studies, which reported persistence of circadian rhythms in Drosophila melanogaster populations evolving under constant light, here we intended to examine whether circadian clocks and the associated properties evolve differently under constant light and constant darkness. In this regard, we assayed activity-rest, adult emergence and oviposition rhythms of D. melanogaster populations which have been maintained for over 19 years (~330 generations) under three different light regimes - constant light (LL), light-dark cycles of 12:12 h (LD) and constant darkness (DD). We observed that while circadian rhythms in all the three behaviors persist in both LL and DD stocks with no differences in circadian period, they differed in certain aspects of the entrained rhythms when compared to controls reared in rhythmic environment (LD). Interestingly, we also observed that DD stocks have evolved significantly higher robustness or power of free-running activity-rest and adult emergence rhythms compared to LL stocks. Thus, our study, in addition to corroborating previous results of circadian clock evolution in constant light, also highlights that, contrary to the expected regression of circadian clocks, rearing in constant darkness leads to the evolution of more robust circadian clocks which may be attributed to an intrinsic adaptive advantage of circadian clocks and/or pleiotropic functions of clock genes in other traits.

  10. Circadian Rhythm Sleep Disorder, Free-Running Type in a Sighted Male with Severe Depression, Anxiety, and Agoraphobia

    PubMed Central

    Brown, Mark A.; Quan, Stuart F.; Eichling, Philip S.

    2011-01-01

    Circadian rhythm sleep disorder, free-running type (CRSD, FRT) is a disorder in which the intrinsic circadian rhythm is no longer entrained to the 24-hour schedule. A unique case of CRSD, FRT in a 67-year-old sighted male is presented. The patient had a progressively delayed time in bed (TIB) each night, so that he would cycle around the 24-h clock approximately every 30 days. This was meticulously documented each night by the patient over the course of 22 years. The patient's CRSD, FRT was associated with severe depression, anxiety, and agoraphobia. The agoraphobia may have exacerbated the CRSD, FRT. Entrainment and stabilization of his circadian rhythm was accomplished after treatment that included melatonin, light therapy, and increased sleep structure. Citation: Brown MA; Quan SF; Eichling PS. Circadian rhythm sleep disorder, free-running type in a sighted male with severe depression, anxiety, and agoraphobia. J Clin Sleep Med 2011;7(1):93-94. PMID:21344043

  11. The importance of hormonal circadian rhythms in daily feeding patterns: An illustration with simulated pigs.

    PubMed

    Boumans, Iris J M M; de Boer, Imke J M; Hofstede, Gert Jan; la Fleur, Susanne E; Bokkers, Eddie A M

    2017-07-01

    The interaction between hormonal circadian rhythms and feeding behaviour is not well understood. This study aimed to deepen our understanding of mechanisms underlying circadian feeding behaviour in animals, using pigs, Sus scrofa, as a case study. Pigs show an alternans feeding pattern, that is, a small peak of feed intake at the beginning of the day and a larger peak at the end of the day. We simulated the feeding behaviour of pigs over a 24h period. The simulation model contained mechanisms that regulate feeding behaviour of animals, including: processing of feed in the gastrointestinal tract, fluctuation in energy balance, circadian rhythms of melatonin and cortisol and motivational decision-making. From the interactions between these various processes, feeding patterns (e.g. feed intake, meal frequency, feeding rate) emerge. These feeding patterns, as well as patterns for the underlying mechanisms (e.g. energy expenditure), fitted empirical data well, indicating that our model contains relevant mechanisms. The circadian rhythms of cortisol and melatonin explained the alternans pattern of feeding in pigs. Additionally, the timing and amplitude of cortisol peaks affected the diurnal and nocturnal peaks in feed intake. Furthermore, our results suggest that circadian rhythms of other hormones, such as leptin and ghrelin, are less important in circadian regulation of feeding behaviour than previously thought. These results are relevant to animal species with a metabolic and endocrine system similar to that of pigs, such as humans. Moreover, the modelling approach to understand feeding behaviour can be applied to other animal species. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Circadian Rhythms Differ between Sexes and Closely Related Species of Nasonia Wasps

    PubMed Central

    Bertossa, Rinaldo C.; van Dijk, Jeroen; Diao, Wenwen; Saunders, David; Beukeboom, Leo W.; Beersma, Domien G. M.

    2013-01-01

    Activity rhythms in 24 h light-dark cycles, constant darkness, and constant light conditions were analyzed in four different Nasonia species for each sex separately. Besides similarities, clear differences are evident among and within Nasonia species as well as between sexes. In all species, activity in a light-dark cycle is concentrated in the photophase, typical for diurnal organisms. Contrary to most diurnal insect species so far studied, Nasonia follows Aschoff's rule by displaying long (>24 h) internal rhythms in constant darkness but short (<24 h) in constant light. In constant light, N. vitripennis males display robust circadian activity rhythms, whereas females are usually arrhythmic. In contrast to other Nasonia species, N. longicornis males display anticipatory activity, i.e. activity shortly before light-on in a light-dark cycle. As expected, N. oneida shows activity patterns similar to those of N. giraulti but with important differences in key circadian parameters. Differences in circadian activity patterns and parameters between species may reflect synchronization of specific life-history traits to environmental conditions. Scheduling mating or dispersion to a specific time of the day could be a strategy to avoid interspecific hybridization in Nasonia species that live in sympatry. PMID:23555911

  13. Constant light disrupts the circadian rhythm of steroidogenic proteins in the rat adrenal gland.

    PubMed

    Park, Shin Y; Walker, Jamie J; Johnson, Nicholas W; Zhao, Zidong; Lightman, Stafford L; Spiga, Francesca

    2013-05-22

    The circadian rhythm of corticosterone (CORT) secretion from the adrenal cortex is regulated by the suprachiasmatic nucleus (SCN), which is entrained to the light-dark cycle. Since the circadian CORT rhythm is associated with circadian expression of the steroidogenic acute regulatory (StAR) protein, we investigated the 24h pattern of hormonal secretion (ACTH and CORT), steroidogenic gene expression (StAR, SF-1, DAX1 and Nurr77) and the expression of genes involved in ACTH signalling (MC2R and MRAP) in rats entrained to a normal light-dark cycle. We found that circadian changes in ACTH and CORT were associated with the circadian expression of all gene targets; with SF-1, Nurr77 and MRAP peaking in the evening, and DAX1 and MC2R peaking in the morning. Since disruption of normal SCN activity by exposure to constant light abolishes the circadian rhythm of CORT in the rat, we also investigated whether the AM-PM variation of our target genes was also disrupted in rats exposed to constant light conditions for 5weeks. We found that the disruption of the AM-PM variation of ACTH and CORT secretion in rats exposed to constant light was accompanied by a loss of AM-PM variation in StAR, SF-1 and DAX1, and a reversed AM-PM variation in Nurr77, MC2R and MRAP. Our data suggest that circadian expression of StAR is regulated by the circadian expression of nuclear receptors and proteins involved in both ACTH signalling and StAR transcription. We propose that ACTH regulates the secretion of CORT via the circadian control of steroidogenic gene pathways that become dysregulated under the influence of constant light. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Wavelet-based analysis of circadian behavioral rhythms.

    PubMed

    Leise, Tanya L

    2015-01-01

    The challenging problems presented by noisy biological oscillators have led to the development of a great variety of methods for accurately estimating rhythmic parameters such as period and amplitude. This chapter focuses on wavelet-based methods, which can be quite effective for assessing how rhythms change over time, particularly if time series are at least a week in length. These methods can offer alternative views to complement more traditional methods of evaluating behavioral records. The analytic wavelet transform can estimate the instantaneous period and amplitude, as well as the phase of the rhythm at each time point, while the discrete wavelet transform can extract the circadian component of activity and measure the relative strength of that circadian component compared to those in other frequency bands. Wavelet transforms do not require the removal of noise or trend, and can, in fact, be effective at removing noise and trend from oscillatory time series. The Fourier periodogram and spectrogram are reviewed, followed by descriptions of the analytic and discrete wavelet transforms. Examples illustrate application of each method and their prior use in chronobiology is surveyed. Issues such as edge effects, frequency leakage, and implications of the uncertainty principle are also addressed. © 2015 Elsevier Inc. All rights reserved.

  15. Circadian Disruption Alters the Effects of Lipopolysaccharide Treatment on Circadian and Ultradian Locomotor Activity and Body Temperature Rhythms of Female Siberian Hamsters

    PubMed Central

    Prendergast, Brian J.; Cable, Erin J.; Stevenson, Tyler J.; Onishi, Kenneth G.; Zucker, Irving; Kay, Leslie M.

    2016-01-01

    The effect of circadian rhythm (CR) disruption on immune function depends on the method by which CRs are disrupted. Behavioral and thermoregulatory responses induced by lipopolysaccharide (LPS) treatment were assessed in female Siberian hamsters in which circadian locomotor activity (LMA) rhythms were eliminated by exposure to a disruptive phase-shifting protocol (DPS) that sustains arrhythmicity even when hamsters are housed in a light-dark cycle. This noninvasive treatment avoids genome manipulations and neurological damage associated with other models of CR disruption. Circadian rhythmic (RHYTH) and arrhythmic (ARR) hamsters housed in a 16L:8D photocycle were injected with bacterial LPS near the onset of the light (zeitgeber time 1; ZT1) or dark (ZT16) phase. LPS injections at ZT16 and ZT1 elicited febrile responses in both RHYTH and ARR hamsters, but the effect was attenuated in the arrhythmic females. In ZT16, LPS inhibited LMA in the dark phase immediately after injection but not on subsequent nights in both chronotypes; in contrast, LPS at ZT1 elicited more enduring (~4 day) locomotor hypoactivity in ARR than in RHYTH hamsters. Power and period of dark-phase ultradian rhythms (URs) in LMA and Tb were markedly altered by LPS treatment, as was the power in the circadian waveform. Disrupted circadian rhythms in this model system attenuated responses to LPS in a trait- and ZT-specific manner; changes in UR period and power are novel components of the acute-phase response to infection that may affect energy conservation. PMID:26566981

  16. Alteration of Daily and Circadian Rhythms following Dopamine Depletion in MPTP Treated Non-Human Primates

    PubMed Central

    Fifel, Karim; Vezoli, Julien; Dzahini, Kwamivi; Claustrat, Bruno; Leviel, Vincent; Kennedy, Henry; Procyk, Emmanuel; Dkhissi-Benyahya, Ouria; Gronfier, Claude; Cooper, Howard M.

    2014-01-01

    Disturbances of the daily sleep/wake cycle are common non-motor symptoms of Parkinson's disease (PD). However, the impact of dopamine (DA) depletion on circadian rhythms in PD patients or non-human primate (NHP) models of the disorder have not been investigated. We evaluated alterations of circadian rhythms in NHP following MPTP lesion of the dopaminergic nigro-striatal system. DA degeneration was assessed by in vivo PET ([11C]-PE2I) and post-mortem TH and DAT quantification. In a light∶dark cycle, control and MPTP-treated NHP both exhibit rest-wake locomotor rhythms, although DA-depleted NHP show reduced amplitude, decreased stability and increased fragmentation. In all animals, 6-sulphatoxymelatonin peaks at night and cortisol in early morning. When the circadian system is challenged by exposure to constant light, controls retain locomotor rest-wake and hormonal rhythms that free-run with stable phase relationships whereas in the DA-depleted NHP, locomotor rhythms are severely disturbed or completely abolished. The amplitude and phase relations of hormonal rhythms nevertheless remain unaltered. Use of a light-dark masking paradigm shows that expression of daily rest-wake activity in MPTP monkeys requires the stimulatory and inhibitory effects of light and darkness. These results suggest that following DA lesion, the central clock in the SCN remains intact but, in the absence of environmental timing cues, is unable to drive downstream rhythmic processes of striatal clock gene and dopaminergic functions that control locomotor output. These findings suggest that the circadian component of the sleep-wake disturbances in PD is more profoundly affected than previously assumed. PMID:24465981

  17. Studying circadian rhythm and sleep using genetic screens in Drosophila.

    PubMed

    Axelrod, Sofia; Saez, Lino; Young, Michael W

    2015-01-01

    The power of Drosophila melanogaster as a model organism lies in its ability to be used for large-scale genetic screens with the capacity to uncover the genetic basis of biological processes. In particular, genetic screens for circadian behavior, which have been performed since 1971, allowed researchers to make groundbreaking discoveries on multiple levels: they discovered that there is a genetic basis for circadian behavior, they identified the so-called core clock genes that govern this process, and they started to paint a detailed picture of the molecular functions of these clock genes and their encoded proteins. Since the discovery that fruit flies sleep in 2000, researchers have successfully been using genetic screening to elucidate the many questions surrounding this basic animal behavior. In this chapter, we briefly recall the history of circadian rhythm and sleep screens and then move on to describe techniques currently employed for mutagenesis and genetic screening in the field. The emphasis lies on comparing the newer approaches of transgenic RNA interference (RNAi) to classical forms of mutagenesis, in particular in their application to circadian behavior and sleep. We discuss the different screening approaches in light of the literature and published and unpublished sleep and rhythm screens utilizing ethyl methanesulfonate mutagenesis and transgenic RNAi from our lab. © 2015 Elsevier Inc. All rights reserved.

  18. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine.

    PubMed

    Pagel, René; Bär, Florian; Schröder, Torsten; Sünderhauf, Annika; Künstner, Axel; Ibrahim, Saleh M; Autenrieth, Stella E; Kalies, Kathrin; König, Peter; Tsang, Anthony H; Bettenworth, Dominik; Divanovic, Senad; Lehnert, Hendrik; Fellermann, Klaus; Oster, Henrik; Derer, Stefanie; Sina, Christian

    2017-11-01

    Endogenous circadian clocks regulate 24-h rhythms of physiology and behavior. Circadian rhythm disruption (CRD) is suggested as a risk factor for inflammatory bowel disease. However, the underlying molecular mechanisms remain unknown. Intestinal biopsies from Per1/2 mutant and wild-type (WT) mice were investigated by electron microscopy, immunohistochemistry, and bromodeoxyuridine pulse-chase experiments. TNF-α was injected intraperitoneally, with or without necrostatin-1, into Per1/2 mice or rhythmic and externally desynchronized WT mice to study intestinal epithelial cell death. Experimental chronic colitis was induced by oral administration of dextran sodium sulfate. In vitro , caspase activity was assayed in Per1/2-specific small interfering RNA-transfected cells. Wee1 was overexpressed to study antiapoptosis and the cell cycle. Genetic ablation of circadian clock function or environmental CRD in mice increased susceptibility to severe intestinal inflammation and epithelial dysregulation, accompanied by excessive necroptotic cell death and a reduced number of secretory epithelial cells. Receptor-interacting serine/threonine-protein kinase (RIP)-3-mediated intestinal necroptosis was linked to increased mitotic cell cycle arrest via Per1/2-controlled Wee1, resulting in increased antiapoptosis via cellular inhibitor of apoptosis-2. Together, our data suggest that circadian rhythm stability is pivotal for the maintenance of mucosal barrier function. CRD increases intestinal necroptosis, thus rendering the gut epithelium more susceptible to inflammatory processes.-Pagel, R., Bär, F., Schröder, T., Sünderhauf, A., Künstner, A., Ibrahim, S. M., Autenrieth, S. E., Kalies, K., König, P., Tsang, A. H., Bettenworth, D., Divanovic, S., Lehnert, H., Fellermann, K., Oster, H., Derer, S., Sina, C. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine. © FASEB.

  19. The effects of gender on circadian rhythm of human physiological indexes in high temperature environment

    NASA Astrophysics Data System (ADS)

    Zheng, G. Z.; Li, K.; Bu, W. T.; Lu, Y. Z.; Wang, Y. J.

    2018-03-01

    In the context of frequent high temperature weather in recent years, peoples’ physical health is seriously threatened by the indoor high temperature. The physiological activities of human body show a certain changes of circadian rhythm. In this paper, the circadian rhythms of the physiological indexes in indoor high temperature environment were quantified and compared between the male subjects and female subjects. Ten subjects (five males and five females) were selected. The temperature conditions were set at 28°C, 32°C, 36°C and 38°C, respectively. The blood pressure, heart rate, rectal temperature, eardrum temperature, forehead temperature and mean skin temperature were measured for 24 hours continuously. The medians, amplitudes and acrophases of the circadian rhythms were obtained by the cosinor analysis method. Then the effects of gender on the circadian rhythm of the human body in high temperature environment were analyzed. The results indicate that, compared with the female subjects, the male medians of the systolic pressure and diastolic pressure were higher, and the male medians of heart rate and rectal temperature were lower, however, no significant differences were found between eardrum temperature, forehead temperature and mean skin temperature. This study can provide scientific basis for the health protection of the indoor relevant personnel.

  20. Circadian rhythms, Wnt/beta-catenin pathway and PPAR alpha/gamma profiles in diseases with primary or secondary cardiac dysfunction

    PubMed Central

    Lecarpentier, Yves; Claes, Victor; Duthoit, Guillaume; Hébert, Jean-Louis

    2014-01-01

    Circadian clock mechanisms are far-from-equilibrium dissipative structures. Peroxisome proliferator-activated receptors (PPAR alpha, beta/delta, and gamma) play a key role in metabolic regulatory processes, particularly in heart muscle. Links between circadian rhythms (CRs) and PPARs have been established. Mammalian CRs involve at least two critical transcription factors, CLOCK and BMAL1 (Gekakis et al., 1998; Hogenesch et al., 1998). PPAR gamma plays a major role in both glucose and lipid metabolisms and presents circadian properties which coordinate the interplay between metabolism and CRs. PPAR gamma is a major component of the vascular clock. Vascular PPAR gamma is a peripheral regulator of cardiovascular rhythms controlling circadian variations in blood pressure and heart rate through BMAL1. We focused our review on diseases with abnormalities of CRs and with primary or secondary cardiac dysfunction. Moreover, these diseases presented changes in the Wnt/beta-catenin pathway and PPARs, according to two opposed profiles. Profile 1 was defined as follows: inactivation of the Wnt/beta-catenin pathway with increased expression of PPAR gamma. Profile 2 was defined as follows: activation of the Wnt/beta-catenin pathway with decreased expression of PPAR gamma. A typical profile 1 disease is arrhythmogenic right ventricular cardiomyopathy, a genetic cardiac disease which presents mutations of the desmosomal proteins and is mainly characterized by fatty acid accumulation in adult cardiomyocytes mainly in the right ventricle. The link between PPAR gamma dysfunction and desmosomal genetic mutations occurs via inactivation of the Wnt/beta-catenin pathway presenting oscillatory properties. A typical profile 2 disease is type 2 diabetes, with activation of the Wnt/beta-catenin pathway and decreased expression of PPAR gamma. CRs abnormalities are present in numerous pathologies such as cardiovascular diseases, sympathetic/parasympathetic dysfunction, hypertension, diabetes

  1. [Circadian rhythms and temperature homeostasis in monkeys during a flight on the Kosmos 1514 biosatellite

    NASA Technical Reports Server (NTRS)

    Klimovitskui, V. Ia; Alpatov, A. M.; Salzman, F. M.; Fuller, C. A.; Moore-Ede, M. S.

    1987-01-01

    In the course of a 5-day space flight of two rhesus-monkeys the following parameters were recorded at an interval of 16 min: core body temperature (Tc), skin temperature (Ts), and motor activity (MA). The telemetric Tc sensor was implanted subcutaneously in the right axilla, Ts thermistor was attached to the right ankle, and the MA piezotape was fixed to the inner side of the vest. Circadian rhythms of Tc varied with a period of 24 hours in one monkey and 25 hours in the other. The daily Tc decreased on the average by 0.5 degrees C, Ts fell immediately after launch and remained close to the lower limit throughout the flight. The Ts amplitude decreased 5-fold. Phases of the circadian rhythms of Ts changed and circadian rhythms of MA remained unchanged and equal to 24 hours.

  2. [Circadian rhythms and temperature homeostasis in monkeys during a flight on the Kosmos 1514 biosatellite].

    PubMed

    Klimovitskuĭ, V Ia; Alpatov, A M; Salzman, F M; Fuller, C A; Moore-Ede, M S

    1987-01-01

    In the course of a 5-day space flight of two rhesus-monkeys the following parameters were recorded at an interval of 16 min: core body temperature (Tc), skin temperature (Ts), and motor activity (MA). The telemetric Tc sensor was implanted subcutaneously in the right axilla, Ts thermistor was attached to the right ankle, and the MA piezotape was fixed to the inner side of the vest. Circadian rhythms of Tc varied with a period of 24 hours in one monkey and 25 hours in the other. The daily Tc decreased on the average by 0.5 degrees C, Ts fell immediately after launch and remained close to the lower limit throughout the flight. The Ts amplitude decreased 5-fold. Phases of the circadian rhythms of Ts changed and circadian rhythms of MA remained unchanged and equal to 24 hours.

  3. Circadian temperature rhythms of older people

    NASA Technical Reports Server (NTRS)

    Monk, T. H.; Buysse, D. J.; Reynolds, C. F. 3rd; Kupfer, D. J.; Houck, P. R.

    1995-01-01

    This collection of studies had the aim of exploring whether older (77+ years) men and women have circadian body temperature rhythms different from those of younger adults. A total of 20 older men and 28 older women were compared with either 22 young men or 14 middle-aged men in four protocols; all but the first protocol using a subset of the sample. The four protocols were: 1) 24 h, and 2) 72 h data collections on a normal laboratory routine (sleeping at night); 3) between 36 h and 153 h of field data collection at home; and 4) 36 h of a constant conditions routine (wakeful bedrest under temporal isolation) in the laboratory. There was some evidence for an age-related phase advance in temperature rhythm, especially for the older men on a normal routine, though this was not present in the constant conditions protocol, where 5 of the older subjects showed major delays in the timing of the body temperature trough (10:00 or later). There was no statistically significant evidence from any of the protocols that older subjects generally had lower temperature rhythm amplitudes than younger adults. Only when older men were compared with younger men in 24-h rhythm amplitude by simple t-test did any comparison involving amplitude achieve statistical significance (p < 0.05).

  4. The circadian rhythm induced by the heterogeneous network structure of the suprachiasmatic nucleus

    NASA Astrophysics Data System (ADS)

    Gu, Changgui; Yang, Huijie

    2016-05-01

    In mammals, the master clock is located in the suprachiasmatic nucleus (SCN), which is composed of about 20 000 nonidentical neuronal oscillators expressing different intrinsic periods. These neurons are coupled through neurotransmitters to form a network consisting of two subgroups, i.e., a ventrolateral (VL) subgroup and a dorsomedial (DM) subgroup. The VL contains about 25% SCN neurons that receive photic input from the retina, and the DM comprises the remaining 75% SCN neurons which are coupled to the VL. The synapses from the VL to the DM are evidently denser than that from the DM to the VL, in which the VL dominates the DM. Therefore, the SCN is a heterogeneous network where the neurons of the VL are linked with a large number of SCN neurons. In the present study, we mimicked the SCN network based on Goodwin model considering four types of networks including an all-to-all network, a Newman-Watts (NW) small world network, an Erdös-Rényi (ER) random network, and a Barabási-Albert (BA) scale free network. We found that the circadian rhythm was induced in the BA, ER, and NW networks, while the circadian rhythm was absent in the all-to-all network with weak cellular coupling, where the amplitude of the circadian rhythm is largest in the BA network which is most heterogeneous in the network structure. Our finding provides an alternative explanation for the induction or enhancement of circadian rhythm by the heterogeneity of the network structure.

  5. Spontaneous circadian rhythms in a cold-adapted natural isolate of Aureobasidium pullulans.

    PubMed

    Franco, Diana L; Canessa, Paulo; Bellora, Nicolás; Risau-Gusman, Sebastián; Olivares-Yañez, Consuelo; Pérez-Lara, Rodrigo; Libkind, Diego; Larrondo, Luis F; Marpegan, Luciano

    2017-10-23

    Circadian systems enable organisms to synchronize their physiology to daily and seasonal environmental changes relying on endogenous pacemakers that oscillate with a period close to 24 h even in the absence of external timing cues. The oscillations are achieved by intracellular transcriptional/translational feedback loops thoroughly characterized for many organisms, but still little is known about the presence and characteristics of circadian clocks in fungi other than Neurospora crassa. We sought to characterize the circadian system of a natural isolate of Aureobasidium pullulans, a cold-adapted yeast bearing great biotechnological potential. A. pullulans formed daily concentric rings that were synchronized by light/dark cycles and were also formed in constant darkness with a period of 24.5 h. Moreover, these rhythms were temperature compensated, as evidenced by experiments conducted at temperatures as low as 10 °C. Finally, the expression of clock-essential genes, frequency, white collar-1, white collar-2 and vivid was confirmed. In summary, our results indicate the existence of a functional circadian clock in A. pullulans, capable of sustaining rhythms at very low temperatures and, based on the presence of conserved clock-gene homologues, suggest a molecular and functional relationship to well-described circadian systems.

  6. PPAR{alpha} is a potential therapeutic target of drugs to treat circadian rhythm sleep disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirai, Hidenori; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8502; Oishi, Katsutaka

    Recent progress at the molecular level has revealed that nuclear receptors play an important role in the generation of mammalian circadian rhythms. To examine whether peroxisome proliferator-activated receptor alpha (PPAR{alpha}) is involved in the regulation of circadian behavioral rhythms in mammals, we evaluated the locomotor activity of mice administered with the hypolipidemic PPAR{alpha} ligand, bezafibrate. Circadian locomotor activity was phase-advanced about 3 h in mice given bezafibrate under light-dark (LD) conditions. Transfer from LD to constant darkness did not change the onset of activity in these mice, suggesting that bezafibrate advanced the phase of the endogenous clock. Surprisingly, bezafibrate alsomore » advanced the phase in mice with lesions of the suprachiasmatic nucleus (SCN; the central clock in mammals). The circadian expression of clock genes such as period2, BMAL1, and Rev-erb{alpha} was also phase-advanced in various tissues (cortex, liver, and fat) without affecting the SCN. Bezafibrate also phase-advanced the activity phase that is delayed in model mice with delayed sleep phase syndrome (DSPS) due to a Clock gene mutation. Our results indicated that PPAR{alpha} is involved in circadian clock control independently of the SCN and that PPAR{alpha} could be a potent target of drugs to treat circadian rhythm sleep disorders including DSPS.« less

  7. Circadian Disruption Changes Gut Microbiome Taxa and Functional Gene Composition.

    PubMed

    Deaver, Jessica A; Eum, Sung Y; Toborek, Michal

    2018-01-01

    Disrupted circadian rhythms and alterations of the gut microbiome composition were proposed to affect host health. Therefore, the aim of this research was to identify whether these events are connected and if circadian rhythm disruption by abnormal light-dark (LD) cycles affects microbial community gene expression and host vulnerability to intestinal dysfunction. Mice were subjected to either a 4-week period of constant 24-h light or of normal 12-h LD cycles. Stool samples were collected at the beginning and after the circadian rhythm disruption. A metatranscriptomic analysis revealed an increase in Ruminococcus torques , a bacterial species known to decrease gut barrier integrity, and a decrease in Lactobacillus johnsonii , a bacterium that helps maintain the intestinal epithelial cell layer, after circadian rhythm disruption. In addition, genes involved in pathways promoting host beneficial immune responses were downregulated, while genes involved in the synthesis and transportation of the endotoxin lipopolysaccharide were upregulated in mice with disrupted circadian cycles. Importantly, these mice were also more prone to dysfunction of the intestinal barrier. These results further elucidate the impact of light-cycle disruption on the gut microbiome and its connection with increased incidence of disease in response to circadian rhythm disturbances.

  8. Circadian Rhythm and Sleep During Prolonged Antarctic Residence at Chinese Zhongshan Station.

    PubMed

    Chen, Nan; Wu, Quan; Xiong, Yanlei; Chen, Guang; Song, Dandan; Xu, Chengli

    2016-12-01

    Residence at Zhongshan Station (69°22'24″S, 76°22'40″E) for over 1 year exposes winter-over members to marked changes of light-dark cycle, ranging from the constant daylight of polar days to the constant darkness of polar nights, in addition to geographic and social isolation. This extreme photoperiodic environment may increase the risk of sleep disturbances and circadian desynchrony. The aim of this study was to investigate the circadian rhythm and sleep phase of Chinese winter-over expeditioners at Zhongshan Station. This study was conducted on 17 healthy male participants before departure from Shanghai and during residence at Zhongshan Station for 1 year (before winter, mid-winter, and end of winter). Sequential urine samples over 48 hours were obtained, 6-sulphatoxymelatonin in urine was assessed, and the circadian rhythm was analyzed by a cosine curve-fitting method. Participants' sleep parameters were obtained from wrist actigraphy and sleep logs. Morningness-Eveningness Questionnaire and Seasonal Pattern Assessment Questionnaire were completed. The acrophase of 6-sulphatoxymelatonin rhythm, sleep onset, sleep offset, and mid-sleep time were delayed significantly (P < .05) in Antarctica relative to departure values. The subjects had greater eveningness preference (P < .05) in mid-winter in Antarctica. The Global Seasonality Score and the prevalence of subsyndromal seasonal affective disorder increased (P < .05) during winter. Our results indicate that during polar nights Chinese expeditioners experienced the following problems: delayed circadian rhythm and sleep phase, later chronotype, and incidence of subsyndromal seasonal affective disorder. An appropriate combination of artificial bright light during dark winter months and a strict social schedule are recommended in a winter-over station in Antarctica. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  9. Activity and circadian rhythm influence synaptic Shank3 protein levels in mice.

    PubMed

    Sarowar, Tasnuva; Chhabra, Resham; Vilella, Antonietta; Boeckers, Tobias M; Zoli, Michele; Grabrucker, Andreas M

    2016-09-01

    Various recent studies revealed that the proteins of the Shank family act as major scaffold organizing elements in the post-synaptic density of excitatory synapses and that their expression level is able to influence synapse formation, maturation and ultimately brain plasticity. An imbalance in Shank3 protein levels has been associated with a variety of neuropsychological and neurodegenerative disorders including autism spectrum disorders and Phelan-McDermid syndrome. Given that sleep disorders and low melatonin levels are frequently observed in autism spectrum disorders, and that circadian rhythms may be able to modulate Shank3 signaling and thereby synaptic function, here, we performed in vivo studies on CBA mice using protein biochemistry to investigate the synaptic expression levels of Shank3α during the day in different brain regions. Our results show that synaptic Shank3 protein concentrations exhibit minor oscillations during the day in hippocampal and striatal brain regions that correlate with changes in serum melatonin levels. Furthermore, as circadian rhythms are tightly connected to activity levels in mice, we increased physical activity using running wheels. The expression of Shank3α increases rapidly by induced activity in thalamus and cortex, but decreases in striatum, superimposing the circadian rhythms of different brain regions. We conclude that synaptic Shank3 proteins build highly dynamic platforms that are modulated by the light:dark cycles but even more so driven by activity. Using wild-type CBA mice, we show that Shank3 is a highly dynamic and activity-regulated protein at synapses. In the hippocampus, changes in synaptic Shank3 levels are influenced by circadian rhythm/melatonin concentration, while running activity increases and decreases levels of Shank3 in the cortex and striatum respectively. © 2016 International Society for Neurochemistry.

  10. [Circadian rhythm in susceptibility of mice to the anti-tumor drug carboplatin].

    PubMed

    Lu, X H; Yin, L J

    1994-12-01

    The platinum-containing compounds has become a major chemical agent in the treatment of cancer. A circadian rhythm in the susceptibility of rodents and human being to cisplatin has been demonstrated, the maximal tolerance being found in the animal's active phase. Carboplatin is a second generation analog. Two studies were performed on mice with carboplatin under 12:12 light dark cycle to study its chronotoxicity and chronoeffectiveness. In study I, single intraperitoneal injection of 192mg/kg (LD50) carboplatin was given to four groups of mice at four different circadian stage. It was found that at 50% the overall mortality of mice, there was a mortality difference of 28% for mice receiving the drug at 9 a.m. to 71% for mice receiving drug at 9 p.m. It demonstrated that carboplatin was better tolerated in the animal's early sleep phase. In study II, S180 tumor-bearing mice were treated with 50mg/kg of carboplatin. The longest mean survival time and the lowest marrow toxicity occurred in the group which received the drug at the beginning of the sleep phase. It showed that the susceptibility of mice to carboplatin is circadian stage dependent. These data clearly demonstrate that, by timing the administration of drugs according to body rhythms, such as the host susceptibility-resistance rhythm to a drug, one can gain a therapeutic advantage over an approach which ignores such rhythms.

  11. Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer.

    PubMed

    Maiese, Kenneth

    2017-01-01

    The mammalian circadian clock and its associated clock genes are increasingly been recognized as critical components for a number of physiological and disease processes that extend beyond hormone release, thermal regulation, and sleep-wake cycles. New evidence suggests that clinical behavior disruptions that involve prolonged shift work and even space travel may negatively impact circadian rhythm and lead to multi-system disease. In light of the significant role circadian rhythm can hold over the body's normal physiology as well as disease processes, we examined and discussed the impact circadian rhythm and clock genes hold over lifespan, neurodegenerative disorders, and tumorigenesis. In experimental models, lifespan is significantly reduced with the introduction of arrhythmic mutants and leads to an increase in oxidative stress exposure. Interestingly, patients with Alzheimer's disease and Parkinson's disease may suffer disease onset or progression as a result of alterations in the DNA methylation of clock genes as well as prolonged pharmacological treatment for these disorders that may lead to impairment of circadian rhythm function. Tumorigenesis also can occur with the loss of a maintained circadian rhythm and lead to an increased risk for nasopharyngeal carcinoma, breast cancer, and metastatic colorectal cancer. Interestingly, the circadian clock system relies upon the regulation of the critical pathways of autophagy, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) as well as proliferative mechanisms that involve the wingless pathway of Wnt/β-catenin pathway to foster cell survival during injury and block tumor cell growth. Future targeting of the pathways of autophagy, mTOR, SIRT1, and Wnt that control mammalian circadian rhythm may hold the key for the development of novel and effective therapies against aging- related disorders

  12. Single-cell resolution fluorescence imaging of circadian rhythms detected with a Nipkow spinning disk confocal system.

    PubMed

    Enoki, Ryosuke; Ono, Daisuke; Hasan, Mazahir T; Honma, Sato; Honma, Ken-Ichi

    2012-05-30

    Single-point laser scanning confocal imaging produces signals with high spatial resolution in living organisms. However, photo-induced toxicity, bleaching, and focus drift remain challenges, especially when recording over several days for monitoring circadian rhythms. Bioluminescence imaging is a tool widely used for this purpose, and does not cause photo-induced difficulties. However, bioluminescence signals are dimmer than fluorescence signals, and are potentially affected by levels of cofactors, including ATP, O(2), and the substrate, luciferin. Here we describe a novel time-lapse confocal imaging technique to monitor circadian rhythms in living tissues. The imaging system comprises a multipoint scanning Nipkow spinning disk confocal unit and a high-sensitivity EM-CCD camera mounted on an inverted microscope with auto-focusing function. Brain slices of the suprachiasmatic nucleus (SCN), the central circadian clock, were prepared from transgenic mice expressing a clock gene, Period 1 (Per1), and fluorescence reporter protein (Per1::d2EGFP). The SCN slices were cut out together with membrane, flipped over, and transferred to the collagen-coated glass dishes to obtain signals with a high signal-to-noise ratio and to minimize focus drift. The imaging technique and improved culture method enabled us to monitor the circadian rhythm of Per1::d2EGFP from optically confirmed single SCN neurons without noticeable photo-induced effects or focus drift. Using recombinant adeno-associated virus carrying a genetically encoded calcium indicator, we also monitored calcium circadian rhythms at a single-cell level in a large population of SCN neurons. Thus, the Nipkow spinning disk confocal imaging system developed here facilitates long-term visualization of circadian rhythms in living cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Osteoarthritis-like pathologic changes in the knee joint induced by environmental disruption of circadian rhythms is potentiated by a high-fat diet.

    PubMed

    Kc, Ranjan; Li, Xin; Forsyth, Christopher B; Voigt, Robin M; Summa, Keith C; Vitaterna, Martha Hotz; Tryniszewska, Beata; Keshavarzian, Ali; Turek, Fred W; Meng, Qing-Jun; Im, Hee-Jeong

    2015-11-20

    A variety of environmental factors contribute to progressive development of osteoarthritis (OA). Environmental factors that upset circadian rhythms have been linked to various diseases. Our recent work establishes chronic environmental circadian disruption - analogous to rotating shiftwork-associated disruption of circadian rhythms in humans - as a novel risk factor for the development of OA. Evidence suggests shift workers are prone to obesity and also show altered eating habits (i.e., increased preference for high-fat containing food). In the present study, we investigated the impact of chronic circadian rhythm disruption in combination with a high-fat diet (HFD) on progression of OA in a mouse model. Our study demonstrates that when mice with chronically circadian rhythms were fed a HFD, there was a significant proteoglycan (PG) loss and fibrillation in knee joint as well as increased activation of the expression of the catabolic mediators involved in cartilage homeostasis. Our results, for the first time, provide the evidence that environmental disruption of circadian rhythms plus HFD potentiate OA-like pathological changes in the mouse joints. Thus, our findings may open new perspectives on the interactions of chronic circadian rhythms disruption with diet in the development of OA and may have potential clinical implications.

  14. Adaptation of sleep and circadian rhythms to the Antarctic summer - A question of zeitgeber strength

    NASA Technical Reports Server (NTRS)

    Gander, Philippa H.; Macdonald, John A.; Montgomery, John C.; Paulin, Michael G.

    1991-01-01

    Adaptation of sleep and circadian rhythms was examined in three temperate zone dwellers arriving in Antarctica during summer. Rectal temperature, wrist activity, and heart rate were monitored continuously, sleep timing and quality noted on awakening, and mood and fatigue rated every 2 h while awake. Sleep was poorer in 2/3 subjects in Antarctica, where all subjects reported more difficulty rising. Sleep occurred at the same clock times in New Zealand and Antarctica, however, the rhythms of temperature, activity, and heart rate underwent a delay of about of 2 h. The subject with the most Antarctic experience had the least difficulty adapting to sleeping during constant daylight. The subject with the most delayed circadian rhythms had the most difficulty. The delay in the circadian system with respect to sleep and clock time is hypothesized to be due to differences in zeitgeber strength and/or zeitgeber exposure between Antarctica and New Zealand.

  15. Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures

    PubMed Central

    Skene, Debra J.; Arendt, Josephine; Cade, Janet E.; Grant, Peter J.; Hardie, Laura J.

    2016-01-01

    Circadian (∼24-hour) timing systems pervade all kingdoms of life and temporally optimize behavior and physiology in humans. Relatively recent changes to our environments, such as the introduction of artificial lighting, can disorganize the circadian system, from the level of the molecular clocks that regulate the timing of cellular activities to the level of synchronization between our daily cycles of behavior and the solar day. Sleep/wake cycles are intertwined with the circadian system, and global trends indicate that these, too, are increasingly subject to disruption. A large proportion of the world's population is at increased risk of environmentally driven circadian rhythm and sleep disruption, and a minority of individuals are also genetically predisposed to circadian misalignment and sleep disorders. The consequences of disruption to the circadian system and sleep are profound and include myriad metabolic ramifications, some of which may be compounded by adverse effects on dietary choices. If not addressed, the deleterious effects of such disruption will continue to cause widespread health problems; therefore, implementation of the numerous behavioral and pharmaceutical interventions that can help restore circadian system alignment and enhance sleep will be important. PMID:27763782

  16. Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures.

    PubMed

    Potter, Gregory D M; Skene, Debra J; Arendt, Josephine; Cade, Janet E; Grant, Peter J; Hardie, Laura J

    2016-12-01

    Circadian (∼24-hour) timing systems pervade all kingdoms of life and temporally optimize behavior and physiology in humans. Relatively recent changes to our environments, such as the introduction of artificial lighting, can disorganize the circadian system, from the level of the molecular clocks that regulate the timing of cellular activities to the level of synchronization between our daily cycles of behavior and the solar day. Sleep/wake cycles are intertwined with the circadian system, and global trends indicate that these, too, are increasingly subject to disruption. A large proportion of the world's population is at increased risk of environmentally driven circadian rhythm and sleep disruption, and a minority of individuals are also genetically predisposed to circadian misalignment and sleep disorders. The consequences of disruption to the circadian system and sleep are profound and include myriad metabolic ramifications, some of which may be compounded by adverse effects on dietary choices. If not addressed, the deleterious effects of such disruption will continue to cause widespread health problems; therefore, implementation of the numerous behavioral and pharmaceutical interventions that can help restore circadian system alignment and enhance sleep will be important.

  17. Circadian Rhythms and Clock Genes in Reproduction: Insights From Behavior and the Female Rabbit’s Brain

    PubMed Central

    Caba, Mario; González-Mariscal, Gabriela; Meza, Enrique

    2018-01-01

    Clock gene oscillations are necessary for a successful pregnancy and parturition, but little is known about their function during lactation, a period demanding from the mother multiple physiological and behavioral adaptations to fulfill the requirements of the offspring. First, we will focus on circadian rhythms and clock genes in reproductive tissues mainly in rodents. Disruption of circadian rhythms or proper rhythmic oscillations of clock genes provoke reproductive problems, as found in clock gene knockout mice. Then, we will focus mainly on the rabbit doe as this mammal nurses the young just once a day with circadian periodicity. This daily event synchronizes the behavior and the activity of specific brain regions critical for reproductive neuroendocrinology and maternal behavior, like the preoptic area. This region shows strong rhythms of the PER1 protein (product of the Per1 clock gene) associated with circadian nursing. Additionally, neuroendocrine cells related to milk production and ejections are also synchronized to daily nursing. A threshold of suckling is necessary to entrain once a day nursing; this process is independent of milk output as even virgin does (behaving maternally following anosmia) can display circadian nursing behavior. A timing motivational mechanism may regulate such behavior as mesolimbic dopaminergic cells are entrained by daily nursing. Finally, we will explore about the clinical importance of circadian rhythms. Indeed, women in chronic shift-work schedules show problems in their menstrual cycles and pregnancies and also have a high risk of preterm delivery, making this an important field of translational research. PMID:29599751

  18. Circadian activity rhythm in adult attention-deficit hyperactivity disorder.

    PubMed

    Tonetti, Lorenzo; Conca, Andreas; Giupponi, Giancarlo; Filardi, Marco; Natale, Vincenzo

    2018-05-06

    The aim of the present study was to analyze the features of circadian motor activity rhythm of adult attention-deficit hyperactivity disorder (ADHD) patients, by means of functional linear modeling, within the theoretical framework of the two-process model of sleep regulation. Thirty-two ADHD patients and 32 healthy controls (HCs) participated the study. Actiwatch AW64 actigraph was used to quantify motor activity data in 1-min epochs. Participants wore the actigraph on the non-dominant wrist for seven consecutive days. Results show that ADHD patients had significantly higher motor activity than HCs from 4:00 to 7:00, with a peak around 5:00, and from 12:00 to 18:00, with another peak around 14:00. According to the two-process model of sleep regulation, the circadian activity rhythm of ADHD patients may indicate a lower homeostatic sleep pressure, as reflected by the absence of post-lunch dip, which could be considered a potential trait marker of adult ADHD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Circadian rhythms constrain leaf and canopy gas exchange in an Amazonian forest

    NASA Astrophysics Data System (ADS)

    Doughty, Christopher E.; Goulden, Michael L.; Miller, Scott D.; da Rocha, Humberto R.

    2006-08-01

    We used a controlled-environment leaf gas-exchange system and the micrometeorological technique eddy covariance to determine whether circadian rhythms constrain the rates of leaf and canopy gas exchange in an Amazonian forest over a day. When exposed to continuous and constant light for 20 to 48 hours leaves of eleven of seventeen species reduced their photosynthetic rates and closed their stomata during the normally dark period and resumed active gas exchange during the normally light period. Similarly, the rate of whole-forest CO2 uptake at a predetermined irradiance declined during the late afternoon and early morning and increased during the middle of the day. We attribute these cycles to circadian rhythms that are analogous to ones that have been reported for herbaceous plants in the laboratory. The importance of endogenous gas exchange rhythms presents a previously unrecognized challenge for efforts to both interpret and model land-atmosphere energy and mass exchange.

  20. Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons.

    PubMed

    Webb, Alexis B; Angelo, Nikhil; Huettner, James E; Herzog, Erik D

    2009-09-22

    Circadian rhythms are modeled as reliable and self-sustained oscillations generated by single cells. The mammalian suprachiasmatic nucleus (SCN) keeps near 24-h time in vivo and in vitro, but the identity of the individual cellular pacemakers is unknown. We tested the hypothesis that circadian cycling is intrinsic to a unique class of SCN neurons by measuring firing rate or Period2 gene expression in single neurons. We found that fully isolated SCN neurons can sustain circadian cycling for at least 1 week. Plating SCN neurons at <100 cells/mm(2) eliminated synaptic inputs and revealed circadian neurons that contained arginine vasopressin (AVP) or vasoactive intestinal polypeptide (VIP) or neither. Surprisingly, arrhythmic neurons (nearly 80% of recorded neurons) also expressed these neuropeptides. Furthermore, neurons were observed to lose or gain circadian rhythmicity in these dispersed cell cultures, both spontaneously and in response to forskolin stimulation. In SCN explants treated with tetrodotoxin to block spike-dependent signaling, neurons gained or lost circadian cycling over many days. The rate of PERIOD2 protein accumulation on the previous cycle reliably predicted the spontaneous onset of arrhythmicity. We conclude that individual SCN neurons can generate circadian oscillations; however, there is no evidence for a specialized or anatomically localized class of cell-autonomous pacemakers. Instead, these results indicate that AVP, VIP, and other SCN neurons are intrinsic but unstable circadian oscillators that rely on network interactions to stabilize their otherwise noisy cycling.

  1. Circadian rhythms of body temperature and locomotor activity in the antelope ground squirrel, Ammospermophilus leucurus.

    PubMed

    Refinetti, Roberto; Kenagy, G J

    2018-02-01

    We studied circadian rhythms of body temperature and locomotor activity in antelope ground squirrels (Ammospermophilus leucurus) under laboratory conditions of a 12L:12D light-dark cycle and in constant darkness. Antelope ground squirrels are diurnally active and, exceptionally among ground squirrels and other closely related members of the squirrel family in general, they do not hibernate. Daily oscillations in body temperature consisted of a rise in temperature during the daytime activity phase of the circadian cycle and a decrease in temperature during the nighttime rest phase. The body temperature rhythms were robust (71% of maximal strength) with a daily range of oscillation of 4.6°C, a daytime mean of 38.7°C, and a nighttime mean of 34.1°C (24-h overall mean 36.4°C). The body temperature rhythm persisted in continuous darkness with a free-running period of 24.2h. This pattern is similar to that of hibernating species of ground squirrels but with a wave form more similar to that of non-hibernating rodents. Daily oscillations in body temperature were correlated with individual bouts of activity, but daytime temperatures were higher than nighttime temperatures even when comparing short episodes of nocturnal activity that were as intense as diurnal activity. This suggests that although muscular thermogenesis associated with locomotor activity can modify the level of body temperature, the circadian rhythm of body temperature is not simply a consequence of the circadian rhythm of activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Dissociation of Per1 and Bmal1 circadian rhythms in the suprachiasmatic nucleus in parallel with behavioral outputs

    PubMed Central

    Ono, Daisuke; Honma, Sato; Nakajima, Yoshihiro; Kuroda, Shigeru; Enoki, Ryosuke; Honma, Ken-ichi

    2017-01-01

    The temporal order of physiology and behavior in mammals is primarily regulated by the circadian pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). Taking advantage of bioluminescence reporters, we monitored the circadian rhythms of the expression of clock genes Per1 and Bmal1 in the SCN of freely moving mice and found that the rate of phase shifts induced by a single light pulse was different in the two rhythms. The Per1-luc rhythm was phase-delayed instantaneously by the light presented at the subjective evening in parallel with the activity onset of behavioral rhythm, whereas the Bmal1-ELuc rhythm was phase-delayed gradually, similar to the activity offset. The dissociation was confirmed in cultured SCN slices of mice carrying both Per1-luc and Bmal1-ELuc reporters. The two rhythms in a single SCN slice showed significantly different periods in a long-term (3 wk) culture and were internally desynchronized. Regional specificity in the SCN was not detected for the period of Per1-luc and Bmal1-ELuc rhythms. Furthermore, neither is synchronized with circadian intracellular Ca2+ rhythms monitored by a calcium indicator, GCaMP6s, or with firing rhythms monitored on a multielectrode array dish, although the coupling between the circadian firing and Ca2+ rhythms persisted during culture. These findings indicate that the expressions of two key clock genes, Per1 and Bmal1, in the SCN are regulated in such a way that they may adopt different phases and free-running periods relative to each other and are respectively associated with the expression of activity onset and offset. PMID:28416676

  3. Circadian rhythm sleep disorder, free-running type in a sighted male with severe depression, anxiety, and agoraphobia.

    PubMed

    Brown, Mark A; Quan, Stuart F; Eichling, Philip S

    2011-02-15

    Circadian rhythm sleep disorder, free-running type (CRSD, FRT) is a disorder in which the intrinsic circadian rhythm is no longer entrained to the 24-hour schedule. A unique case of CRSD, FRT in a 67-year-old sighted male is presented. The patient had a progressively delayed time in bed (TIB) each night, so that he would cycle around the 24-h clock approximately every 30 days. This was meticulously documented each night by the patient over the course of 22 years. The patient's CRSD, FRT was associated with severe depression, anxiety, and agoraphobia. The agoraphobia may have exacerbated the CRSD, FRT. Entrainment and stabilization of his circadian rhythm was accomplished after treatment that included melatonin, light therapy, and increased sleep structure.

  4. Characterization of neurospora circadian rhythms in space

    NASA Technical Reports Server (NTRS)

    Ferraro, James S.

    1987-01-01

    To determine whether the circadian rhythm of conidiation in neurospora crassa is endogenously derived or is driven by some geophysical time cue, an experiment was conducted on space shuttle flight STS-9, where inoculated race tubes were exposed to the microgravity environment of space. The results demonstated that the rhythm can persist in space. However, there were several minor alterations noted; an increase in the period of the oscillation and the variability of the growth rate and a diminished rhythm amplitude, which eventually damped out in 25% of the flight tubes. On day seven of the flight, the tubes were exposed to light while their growth fronts were marked. It appears that some aspects of this marking process reinstated a robust rhythm in all the tubes which continued throughout the remainder of the flight. It was hypothesized that the damping found prior to the marking procedure on STS-9 may have been a result of the hypergravity pulse of launch and not due to the microgravity of the orbital lab; furthermore, that the marking procedure, by exposing the samples to light, had reinstated rhythmicity. To test this, an investigation was conducted into the effects of acute and chronic exposure to hypergravity.

  5. Circadian rhythm genes mediate fenvalerate-induced inhibition of testosterone synthesis in mouse Leydig cells.

    PubMed

    Guo, Yichen; Shen, Ouxi; Han, Jingjing; Duan, Hongyu; Yang, Siyuan; Zhu, Zhenghong; Tong, Jian; Zhang, Jie

    2017-01-01

    Fenvalerate (Fen), a widely used pesticide, is known to impair male reproductive functions by mechanisms that remain to be elucidated. Recent studies indicated that circadian clock genes may play an important role in successful male reproduction. The aim of this study was to determine the effects of Fen on circadian clock genes involved in the biosynthesis of testosterone using TM3 cells derived from mouse Leydig cells. Data demonstrated that the circadian rhythm of testosterone synthesis in TM3 cells was disturbed following Fen treatment as evidenced by changes in the circadian rhythmicity of core clock genes (Bmal1, Rev-erbα, Rorα). Further, the observed altered rhythms were accompanied by increased intracellular Ca 2+ levels and modified steroidogenic acute regulatory (StAR) mRNA expression. Thus, data suggested that Fen inhibits testosterone synthesis via pathways involving intracellular Ca 2+ and clock genes (Bmal1, Rev-Erbα, Rorα) as well as StAR mRNA expression in TM3 cells.

  6. Animal activity around the clock with no overt circadian rhythms: patterns, mechanisms and adaptive value

    PubMed Central

    Bloch, Guy; Barnes, Brian M.; Gerkema, Menno P.; Helm, Barbara

    2013-01-01

    Circadian rhythms are ubiquitous in many organisms. Animals that are forced to be active around the clock typically show reduced performance, health and survival. Nevertheless, we review evidence of animals showing prolonged intervals of activity with attenuated or nil overt circadian rhythms and no apparent ill effects. We show that around-the-clock and ultradian activity patterns are more common than is generally appreciated, particularly in herbivores, in animals inhabiting polar regions and habitats with constant physical environments, in animals during specific life-history stages (such as migration or reproduction), and in highly social animals. The underlying mechanisms are diverse, but studies suggest that some circadian pacemakers continue to measure time in animals active around the clock. The prevalence of around-the-clock activity in diverse animals and habitats, and an apparent diversity of underlying mechanisms, are consistent with convergent evolution. We suggest that the basic organizational principles of the circadian system and its complexity encompass the potential for chronobiological plasticity. There may be trade-offs between benefits of persistent daily rhythms versus plasticity, which for reasons still poorly understood make overt daily arrhythmicity functionally adaptive only in selected habitats and for selected lifestyles. PMID:23825202

  7. Neurophysiological and Behavioural Analysis of Circadian Rhythm Entrainment

    DTIC Science & Technology

    2000-03-29

    another source of p75- NGFR in the SCN (Bina et al., 1997). Carbachol , a non-specific cholinergic agonist, has been shown to phase shift circadian...has been that the endpoints and species examined have differed among studies. Thus, it appears that carbachol acts via receptors that resemble...mediating the effects of carbachol on behavioral rhythms in hamsters (Keefe et al., 1987) is subject to alternative interpretations (Rusak and Bina

  8. Design and Analysis of Temperature Preference Behavior and its Circadian Rhythm in Drosophila

    PubMed Central

    Goda, Tadahiro; Leslie, Jennifer R.; Hamada, Fumika N.

    2014-01-01

    The circadian clock regulates many aspects of life, including sleep, locomotor activity, and body temperature (BTR) rhythms1,2. We recently identified a novel Drosophila circadian output, called the temperature preference rhythm (TPR), in which the preferred temperature in flies rises during the day and falls during the night 3. Surprisingly, the TPR and locomotor activity are controlled through distinct circadian neurons3. Drosophila locomotor activity is a well known circadian behavioral output and has provided strong contributions to the discovery of many conserved mammalian circadian clock genes and mechanisms4. Therefore, understanding TPR will lead to the identification of hitherto unknown molecular and cellular circadian mechanisms. Here, we describe how to perform and analyze the TPR assay. This technique not only allows for dissecting the molecular and neural mechanisms of TPR, but also provides new insights into the fundamental mechanisms of the brain functions that integrate different environmental signals and regulate animal behaviors. Furthermore, our recently published data suggest that the fly TPR shares features with the mammalian BTR3. Drosophila are ectotherms, in which the body temperature is typically behaviorally regulated. Therefore, TPR is a strategy used to generate a rhythmic body temperature in these flies5-8. We believe that further exploration of Drosophila TPR will facilitate the characterization of the mechanisms underlying body temperature control in animals. PMID:24457268

  9. Assessing circadian rhythms in propofol PK and PD during prolonged infusion in ICU patients

    PubMed Central

    Kusza, Krzysztof; Wawrzyniak, Katarzyna; Grześkowiak, Edmund; Kokot, Zenon J.; Matysiak, Jan; Grabowski, Tomasz; Wolc, Anna; Wiczling, Paweł; Regulski, Miłosz

    2010-01-01

    This study evaluates possible circadian rhythms during prolonged propofol infusion in patients in the intensive care unit. Eleven patients were sedated with a constant propofol infusion. The blood samples for the propofol assay were collected every hour during the second day, the third day, and after the termination of the propofol infusion. Values of electroencephalographic bispectral index (BIS), arterial blood pressure, heart rate, blood oxygen saturation and body temperature were recorded every hour at the blood collection time points. A two-compartment model was used to describe propofol pharmacokinetics. Typical values of the central and peripheral volume of distribution and inter-compartmental clearance were VC = 27.7 l, VT = 801 l, and CLD = 2.73 l/min. The systolic blood pressure (SBP) was found to influence the propofol metabolic clearance according to Cl (l/min) = 2.65·(1 − 0.00714·(SBP − 135)). There was no significant circadian rhythm detected with respect to propofol pharmacokinetics. The BIS score was assessed as a direct effect model with EC50 equal 1.98 mg/l. There was no significant circadian rhythm detected within the BIS scores. We concluded that the light–dark cycle did not influence propofol pharmacokinetics and pharmacodynamics in intensive care units patients. The lack of night–day differences was also noted for systolic blood pressure, diastolic blood pressure and blood oxygenation. Circadian rhythms were detected for heart rate and body temperature, however they were severely disturbed from the pattern of healthy patients. PMID:20544262

  10. [Sedation with stimulative circadian rhythm in mechanically ventilation patients in intensive care unit].

    PubMed

    Guo, Jian-ying; Deng, Qun; Guo, Xu-sheng; Liu, Shuang-qing; Zhang, Yu-hong; He, Zhong-jie; Yao, Yong-ming; Lin, Hong-yuan

    2012-07-01

    To sedate the mechanically ventilation patients in intensive care unit (ICU) with stimulative circadian rhythm, and evaluate whether the protocol has advantages in recovering natural circadian rhythm, duration of mechanical ventilation, and length of ICU stay after weaning of sedation. A prospective random control trial was conducted. One hundred and twenty ventilated patients in ICU were randomly assigned to four groups: circadian rhythm (CR), daily interruption (DI), continuous sedation (CS) or demand sedation (DS) group, each n = 30. Given more complications, DS group was deleted after recruiting 10 cases and 90 patients were admitted ultimately. Patients' age, gender, body weight, acute physiology and chronic health evaluation II (APACHE II) scores, sedatives dosages, daily arousal time, duration of mechanical ventilation, length of ICU stay, complications (ventilator-associated pneumonia, barotrauma with intrathoracic drain tube) and untoward reactions (accidental extubation, reintubation, tracheotomy, death) were recorded, the biochemical indicators were determined, as well as number of nurses on duty at 10:00 and 22:00. The patients' sex ratio, age, body weight, APACHEII scores, duration of mechanical ventilation, length of ICU stay showed no difference among CR, DI and CS groups. The total sedatives dosages (mg: 5466.7 ± 620.4) and average sedatives dosages [mg×h(-1) ×kg(-1): 2.19 ± 0.61] in CS group were significantly higher than those in CR group (4344.5 ± 816.0, 1.00 ± 0.51) and DI group (4154.3 ± 649.4, 1.23 ± 0.62, all P < 0.01), and there was no difference between CR group and DI group. Daily arousal time in the CR group (hours: 4.40 ± 1.30) was significantly lengthened compared with that in DI group (0.59 ± 0.26) and CS group (0.15 ± 0.02, both P < 0.05). The complications showed no differences in each group, but incidences of the untoward reactions in DI group (2 cases) were significantly increased compared with that in CR group (1 case

  11. Therapeutic applications of circadian rhythms for the cardiovascular system

    PubMed Central

    Tsimakouridze, Elena V.; Alibhai, Faisal J.; Martino, Tami A.

    2015-01-01

    The cardiovascular system exhibits dramatic time-of-day dependent rhythms, for example the diurnal variation of heart rate, blood pressure, and timing of onset of adverse cardiovascular events such as heart attack and sudden cardiac death. Over the past decade, the circadian clock mechanism has emerged as a crucial factor regulating these daily fluctuations. Most recently, these studies have led to a growing clinical appreciation that targeting circadian biology offers a novel therapeutic approach toward cardiovascular (and other) diseases. Here we describe leading-edge therapeutic applications of circadian biology including (1) timing of therapy to maximize efficacy in treating heart disease (chronotherapy); (2) novel biomarkers discovered by testing for genomic, proteomic, metabolomic, or other factors at different times of day and night (chronobiomarkers); and (3) novel pharmacologic compounds that target the circadian mechanism with potential clinical applications (new chronobiology drugs). Cardiovascular disease remains a leading cause of death worldwide and new approaches in the management and treatment of heart disease are clearly warranted and can benefit patients clinically. PMID:25941487

  12. Cycles of circadian illuminance are sufficient to entrain and maintain circadian locomotor rhythms in Drosophila

    NASA Astrophysics Data System (ADS)

    Cho, Eunjoo; Oh, Ji Hye; Lee, Euna; Do, Young Rag; Kim, Eun Young

    2016-11-01

    Light at night disrupts the circadian clock and causes serious health problems in the modern world. Here, we show that newly developed four-package light-emitting diodes (LEDs) can provide harmless lighting at night. To quantify the effects of light on the circadian clock, we employed the concept of circadian illuminance (CIL). CIL represents the amount of light weighted toward the wavelengths to which the circadian clock is most sensitive, whereas visual illuminance (VIL) represents the total amount of visible light. Exposure to 12 h:12 h cycles of white LED light with high and low CIL values but a constant VIL value (conditions hereafter referred to as CH/CL) can entrain behavioral and molecular circadian rhythms in flies. Moreover, flies re-entrain to phase shift in the CH/CL cycle. Core-clock proteins are required for the rhythmic behaviors seen with this LED lighting scheme. Taken together, this study provides a guide for designing healthful white LED lights for use at night, and proposes the use of the CIL value for estimating the harmful effects of any light source on organismal health.

  13. Circadian Disruption Changes Gut Microbiome Taxa and Functional Gene Composition

    PubMed Central

    Deaver, Jessica A.; Eum, Sung Y.; Toborek, Michal

    2018-01-01

    Disrupted circadian rhythms and alterations of the gut microbiome composition were proposed to affect host health. Therefore, the aim of this research was to identify whether these events are connected and if circadian rhythm disruption by abnormal light–dark (LD) cycles affects microbial community gene expression and host vulnerability to intestinal dysfunction. Mice were subjected to either a 4-week period of constant 24-h light or of normal 12-h LD cycles. Stool samples were collected at the beginning and after the circadian rhythm disruption. A metatranscriptomic analysis revealed an increase in Ruminococcus torques, a bacterial species known to decrease gut barrier integrity, and a decrease in Lactobacillus johnsonii, a bacterium that helps maintain the intestinal epithelial cell layer, after circadian rhythm disruption. In addition, genes involved in pathways promoting host beneficial immune responses were downregulated, while genes involved in the synthesis and transportation of the endotoxin lipopolysaccharide were upregulated in mice with disrupted circadian cycles. Importantly, these mice were also more prone to dysfunction of the intestinal barrier. These results further elucidate the impact of light-cycle disruption on the gut microbiome and its connection with increased incidence of disease in response to circadian rhythm disturbances. PMID:29706947

  14. Deriving the reference value from the circadian motor active patterns in the "non-dementia" population, compared to the "dementia" population: What is the amount of physical activity conducive to the good circadian rhythm.

    PubMed

    Kodama, Ayuto; Kume, Yu; Tsugaruya, Megumi; Ishikawa, Takashi

    2016-01-01

    The circadian rhythm in older adults is commonly known to change with a decrease in physical activity. However, the association between circadian rhythm metrics and physical activity remains unclear. The objective of this study was to examine circadian activity patterns in older people with and without dementia and to determine the amount of physical activity conducive to a good circadian measurement. Circadian parameters were collected from 117 older community-dwelling people (66 subjects without dementia and 52 subjects with dementia); the parameters were measured continuously using actigraphy for 7 days. A receiver operating characteristic (ROC) curve was applied to determine reference values for the circadian rhythm parameters, consisting of interdaily stability (IS), intradaily variability (IV), and relative amplitude (RA), in older subjects. The ROC curve revealed reference values of 0.55 for IS, 1.10 for IV, and 0.82 for RA. In addition, as a result of the ROC curve in the moderate-to-vigorous physical Activity (MVPA) conducive to the reference value of the Non-parametric Circadian Rhythm Analysis per day, the optimal reference values were 51 minutes for IV and 55 minutes for RA. However, the IS had no classification accuracy. Our results demonstrated the reference values derived from the circadian parameters of older Japanese population with or without dementia. Also, we determined the MVPA conducive to a good circadian rest-active pattern. This reference value for physical activity conducive to a good circadian rhythm might be useful for developing a new index for health promotion in the older community-dwelling population.

  15. A statistical model of the human core-temperature circadian rhythm

    NASA Technical Reports Server (NTRS)

    Brown, E. N.; Choe, Y.; Luithardt, H.; Czeisler, C. A.

    2000-01-01

    We formulate a statistical model of the human core-temperature circadian rhythm in which the circadian signal is modeled as a van der Pol oscillator, the thermoregulatory response is represented as a first-order autoregressive process, and the evoked effect of activity is modeled with a function specific for each circadian protocol. The new model directly links differential equation-based simulation models and harmonic regression analysis methods and permits statistical analysis of both static and dynamical properties of the circadian pacemaker from experimental data. We estimate the model parameters by using numerically efficient maximum likelihood algorithms and analyze human core-temperature data from forced desynchrony, free-run, and constant-routine protocols. By representing explicitly the dynamical effects of ambient light input to the human circadian pacemaker, the new model can estimate with high precision the correct intrinsic period of this oscillator ( approximately 24 h) from both free-run and forced desynchrony studies. Although the van der Pol model approximates well the dynamical features of the circadian pacemaker, the optimal dynamical model of the human biological clock may have a harmonic structure different from that of the van der Pol oscillator.

  16. Maternal obesity disrupts circadian rhythms of clock and metabolic genes in the offspring heart and liver.

    PubMed

    Wang, Danfeng; Chen, Siyu; Liu, Mei; Liu, Chang

    2015-06-01

    Early life nutritional adversity is tightly associated with the development of long-term metabolic disorders. Particularly, maternal obesity and high-fat diets cause high risk of obesity in the offspring. Those offspring are also prone to develop hyperinsulinemia, hepatic steatosis and cardiovascular diseases. However, the precise underlying mechanisms leading to these metabolic dysregulation in the offspring remain unclear. On the other hand, disruptions of diurnal circadian rhythms are known to impair metabolic homeostasis in various tissues including the heart and liver. Therefore, we investigated that whether maternal obesity perturbs the circadian expression rhythms of clock, metabolic and inflammatory genes in offspring heart and liver by using RT-qPCR and Western blotting analysis. Offspring from lean and obese dams were examined on postnatal day 17 and 35, when pups were nursed by their mothers or took food independently. On P17, genes examined in the heart either showed anti-phase oscillations (Cpt1b, Pparα, Per2) or had greater oscillation amplitudes (Bmal1, Tnf-α, Il-6). Such phase abnormalities of these genes were improved on P35, while defects in amplitudes still existed. In the liver of 17-day-old pups exposed to maternal obesity, the oscillation amplitudes of most rhythmic genes examined (except Bmal1) were strongly suppressed. On P35, the oscillations of circadian and inflammatory genes became more robust in the liver, while metabolic genes were still kept non-rhythmic. Maternal obesity also had a profound influence in the protein expression levels of examined genes in offspring heart and liver. Our observations indicate that the circadian clock undergoes nutritional programing, which may contribute to the alternations in energy metabolism associated with the development of metabolic disorders in early life and adulthood.

  17. Renal electrolyte circadian rhythms - Independence from feeding and activity patterns

    NASA Technical Reports Server (NTRS)

    Moore-Ede, M. C.; Herd, J. A.

    1977-01-01

    Experiments were conducted on six unanesthetized chair-acclimatized adult male squirrel monkeys (Saimiri sciureus) weighing 600-900 g to determine whether internal synchronization is the result of simple passive dependence of renal excretory rhythms on endogenous rhythms of those variable that influence electrolyte excretion such as dietary intake and muscular activity. Independence of the urinary rhythms from diurnal variations in feeding, drinking, and activity was secured by depriving the animals of food, water, and training them to perform a two-hourly schedule of feeding, drinking, and activity throughout day and night. Results indicate that the internal synchronization which is normally observed between the behavioral and urinary rhythms cannot be explained by any direct dependence of renal function on behavioral patterns. The most probable mechanism for circadian internal synchronization is that the various behavioral and renal rhythms are controlled by potentially independent separate oscillators which are normally kept in synchrony with one another.

  18. Ovariectomy influences the circadian rhythm of locomotor activity and the photic phase shifts in the volcano mouse.

    PubMed

    Juárez-Tapia, Cinthia; Miranda-Anaya, Manuel

    2017-12-01

    Recently, the relationship between the circadian system and female reproduction has been of great interest; ovarian hormones can modify the amount and distribution of daily activity differently in rodent species. The volcano mouse Neotomodon alstoni is a species in which it is possible to study the circadian rhythm of locomotion, and it offers comparative information about the influence of ovaries on the circadian system. In this study, we used infrared crossings to compare free movement in intact and sham-operated or ovariectomized mice. We analyzed behavioral and endocrine changes related to the estrous cycle and locomotor circadian rhythm in free-running mice and photic phase shifting. Evidence shows that intact mice present a scalloped pattern of daily activity during the estrous cycle. In constant darkness, the ovariectomy reduces the total amount of activity, shortens the free-running circadian period of locomotion and increases photic phase shifts during the early subjective night. During entrainment, the ovariectomized mice increased the amplitude of total activity during the scotophase, and delay the time of activity onset. These results suggest that ovarian hormones in N. alstoni modulate the circadian rhythm of locomotor activity in a species-specific manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Depression-like behaviour in mice is associated with disrupted circadian rhythms in nucleus accumbens and periaqueductal grey.

    PubMed

    Landgraf, Dominic; Long, Jaimie E; Welsh, David K

    2016-05-01

    An association between circadian rhythms and mood regulation is well established, and disturbed circadian clocks are believed to contribute to the development of mood disorders, including major depressive disorder. The circadian system is coordinated by the suprachiasmatic nucleus (SCN), the master pacemaker in the hypothalamus that receives light input from the retina and synchronizes circadian oscillators in other brain regions and peripheral tissues. Lacking the tight neuronal network that couples single-cell oscillators in the SCN, circadian clocks outside the SCN may be less stable and more susceptible to disturbances, for example by clock gene mutations or uncontrollable stress. However, non-SCN circadian clocks have not been studied extensively in rodent models of mood disorders. In the present study, it was hypothesized that disturbances of local circadian clocks in mood-regulating brain areas are associated with depression-like behaviour in mice. Using the learned helplessness procedure, depression-like behaviour was evoked in mice bearing the PER2::LUC circadian reporter, and then circadian rhythms of PER2 expression were examined in brain slices from these mice using luminometry and bioluminescence imaging. It was found that helplessness is associated with absence of circadian rhythms in the nucleus accumbens and the periaqueductal grey, two of the most critical brain regions within the reward circuit. The current study provides evidence that susceptibility of mice to depression-like behaviour is associated with disturbed local circadian clocks in a subset of mood-regulating brain areas, but the direction of causality remains to be determined. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Differential roles of AVP and VIP signaling in the postnatal changes of neural networks for coherent circadian rhythms in the SCN

    PubMed Central

    Ono, Daisuke; Honma, Sato; Honma, Ken-ichi

    2016-01-01

    The suprachiasmatic nucleus (SCN) is the site of the master circadian clock in mammals. The SCN neural network plays a critical role in expressing the tissue-level circadian rhythm. Previously, we demonstrated postnatal changes in the SCN network in mice, in which the clock gene products CRYPTOCHROMES (CRYs) are involved. Here, we show that vasoactive intestinal polypeptide (VIP) signaling is essential for the tissue-level circadian PER2::LUC rhythm in the neonatal SCN of CRY double-deficient mice (Cry1,2−/−). VIP and arginine vasopressin (AVP) signaling showed redundancy in expressing the tissue-level circadian rhythm in the SCN. AVP synthesis was significantly attenuated in the Cry1,2−/− SCN, which contributes to aperiodicity in the adult mice together with an attenuation of VIP signaling as a natural process of ontogeny. The SCN network consists of multiple clusters of cellular circadian rhythms that are differentially integrated by AVP and VIP signaling, depending on the postnatal period. PMID:27626074

  1. Review article: chronobiology: influence of circadian rhythms on the therapy of severe pain.

    PubMed

    Junker, Uwe; Wirz, Stefan

    2010-06-01

    Modern pain therapy widely follows the WHO (World Health Organization) guidelines using a three-step 'ladder' for pain relief. This escalating step scheme includes the administration in the order nonopioids, mild opioids and strong opioids, and adjuvants at any step. Analgesics should be given 'by the clock' rather than 'on demand'. However, the chronobiological parameters circadian pain rhythm, circadian efficacy of analgesics, and individual circadian need for analgesics are to be considered. The results of a multitude of studies in chronobiology are not consistent. Therefore, further studies with standardized protocols are needed that allow to assign more consistent rhythms to diseases, pain causes, and analgesic efficacy of opioids. In many cases, each patient perceives pain and its intensity individually during the time of day. By administration of analgesics over a constant or continuous dosage time fluctuations in pain perception and the outcomes of many studies in chronobiology are ignored that prove the influence of biological rhythms on the pharmacokinetic and pharmacodynamic aspects of analgesics. As different types of pain show different rhythms (highest pain intensities arising at different times of the day) analgesics should be dosed flexibly. It is also very important that drug therapy can be adjusted individually to the pain rhythm of the patient as well as to the type and cause of pain. In severe pain, therapy should be particularly careful. A flexible dosage depending on pain intensity and rapid dose adjustment are essentials of a modern pain therapy. Therefore, opioids that are flexible to use are better suited to treat the individual pain of the patient than rigid modified release oral or transdermal systems.

  2. Pinealectomy shortens resynchronisation times of house sparrow ( Passer domesticus) circadian rhythms

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod; Gwinner, Eberhard

    2005-09-01

    In many birds periodic melatonin secretion by the pineal organ is essential for the high-amplitude self-sustained output of the circadian pacemaker, and thus for the persistence of rhythmicity in 24 h oscillations controlled by it. The elimination of the pineal melatonin rhythm, or a reduction of its amplitude, renders the circadian pacemaker a less self-sustained, often highly damped, oscillatory system. A reduction in the degree of self-sustainment of a rhythm should not only increase its range of entrainment but also shorten the resynchronization times following phase-shifts of the zeitgeber. This hypothesis has not yet been directly tested. We therefore carried out the present study in which house sparrows (Passer domesticus) were subjected to both 6-h advance and 6-h delay phase-shifts of the light-dark cycle before and after the pinealectomy, and the rhythms in locomotion and feeding were recorded. The results indicate that following the delay, but not the advance, phase shift, resynchronization times were significantly shorter after pinealectomy. The dependence of resynchronization times on the presence or absence of the pineal organ is not only of theoretical interest but might also be of functional significance in the natural life of birds. A reduction or elimination of the amplitude of the melatonin secretion rhythm by the pineal organ might be responsible for faster adjustment to changes in zeitgeber conditions in nature.

  3. SLEEP AND CIRCADIAN RHYTHM DISORDERS IN PARKINSON'S DISEASE.

    PubMed

    Gros, Priti; Videnovic, Aleksandar

    2017-09-01

    Sleep disorders are among the most challenging non-motor features of Parkinson's disease (PD) and significantly affect quality of life. Research in this field has gained recent interest among clinicians and scientists and is rapidly evolving. This review is dedicated to sleep and circadian dysfunction associated with PD. Most primary sleep disorders may co-exist with PD; majority of these disorders have unique features when expressed in the PD population. We discuss the specific considerations related to the common sleep problems in Parkinson's disease including insomnia, rapid eye movement sleep behavior disorder, restless legs syndrome, sleep disordered breathing, excessive daytime sleepiness and circadian rhythm disorders. Within each of these sleep disorders, we present updated definitions, epidemiology, etiology, diagnosis, clinical implications and management. Furthermore, areas of potential interest for further research are outlined.

  4. Circadian and feeding cues integrate to drive rhythms of physiology in Drosophila insulin-producing cells.

    PubMed

    Barber, Annika F; Erion, Renske; Holmes, Todd C; Sehgal, Amita

    2016-12-01

    Circadian clocks regulate much of behavior and physiology, but the mechanisms by which they do so remain poorly understood. While cyclic gene expression is thought to underlie metabolic rhythms, little is known about cycles in cellular physiology. We found that Drosophila insulin-producing cells (IPCs), which are located in the pars intercerebralis and lack an autonomous circadian clock, are functionally connected to the central circadian clock circuit via DN1 neurons. Insulin mediates circadian output by regulating the rhythmic expression of a metabolic gene (sxe2) in the fat body. Patch clamp electrophysiology reveals that IPCs display circadian clock-regulated daily rhythms in firing event frequency and bursting proportion under light:dark conditions. The activity of IPCs and the rhythmic expression of sxe2 are additionally regulated by feeding, as demonstrated by night feeding-induced changes in IPC firing characteristics and sxe2 levels in the fat body. These findings indicate circuit-level regulation of metabolism by clock cells in Drosophila and support a role for the pars intercerebralis in integrating circadian control of behavior and physiology. © 2016 Barber et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Loss of circadian rhythm of circulating insulin concentration induced by high-fat diet intake is associated with disrupted rhythmic expression of circadian clock genes in the liver.

    PubMed

    Honma, Kazue; Hikosaka, Maki; Mochizuki, Kazuki; Goda, Toshinao

    2016-04-01

    Peripheral clock genes show a circadian rhythm is correlated with the timing of feeding in peripheral tissues. It was reported that these clock genes are strongly regulated by insulin action and that a high-fat diet (HFD) intake in C57BL/6J mice for 21days induced insulin secretion during the dark phase and reduced the circadian rhythm of clock genes. In this study, we examined the circadian expression patterns of these clock genes in insulin-resistant animal models with excess secretion of insulin during the day. We examined whether insulin resistance induced by a HFD intake for 80days altered blood parameters (glucose and insulin concentrations) and expression of mRNA and proteins encoded by clock and functional genes in the liver using male ICR mice. Serum insulin concentrations were continuously higher during the day in mice fed a HFD than control mice. Expression of lipogenesis-related genes (Fas and Accβ) and the transcription factor Chrebp peaked at zeitgeber time (ZT)24 in the liver of control mice. A HFD intake reduced the expression of these genes at ZT24 and disrupted the circadian rhythm. Expression of Bmal1 and Clock, transcription factors that compose the core feedback loop, showed circadian variation and were synchronously associated with Fas gene expression in control mice, but not in those fed a HFD. These results indicate that the disruption of the circadian rhythm of insulin secretion by HFD intake is closely associated with the disappearance of circadian expression of lipogenic and clock genes in the liver of mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Masking of the circadian rhythms of heart rate and core temperature by the rest-activity cycle in man

    NASA Technical Reports Server (NTRS)

    Gander, Philippa H.; Connell, Linda J.; Graeber, R. Curtis

    1986-01-01

    Experiments were conducted to estimate the magnitude of the masking effect produced in humans by alternate periods of physical activity and rest or sleep on the circadian rhythms of heart rate and core temperature. The heart rate, rectal temperature, and nondominant wrist activity were monitored in 12 male subjects during 6 days of normal routine at home and during 6 days of controlled bed-rest regimen. The comparisons of averaged waveforms for the activity, heart rate, and temperature indicated that about 45 percent of the range of the circadian heart rate rhythm during normal routine and about 14 percent of the range of the circadian temperature rhythm were attributable to the effects of activity. The smaller effect of activity on the temperature rhythm may be partially attributable to the fact that core temperature is being more rigorously conserved than heart rate, at least during moderate exercise.

  7. Sleep, Hormones, and Circadian Rhythms throughout the Menstrual Cycle in Healthy Women and Women with Premenstrual Dysphoric Disorder.

    PubMed

    Shechter, Ari; Boivin, Diane B

    2010-01-01

    A relationship exists between the sleep-wake cycle and hormone secretion, which, in women, is further modulated by the menstrual cycle. This interaction can influence sleep across the menstrual cycle in healthy women and in women with premenstrual dysphoric disorder (PMDD), who experience specific alterations of circadian rhythms during their symptomatic luteal phase along with sleep disturbances during this time. This review will address the variation of sleep at different menstrual phases in healthy and PMDD women, as well as changes in circadian rhythms, with an emphasis on their relationship with female sex hormones. It will conclude with a brief discussion on nonpharmacological treatments of PMDD which use chronotherapeutic methods to realign circadian rhythms as a means of improving sleep and mood in these women.

  8. Corkscrews and singularities in fruitflies - Resetting behavior of the circadian eclosion rhythm.

    NASA Technical Reports Server (NTRS)

    Winfree, A. T.

    1971-01-01

    Description of experiments undertaken to define the phase-resetting behavior of the circadian rhythm of pupal eclosion in populations of fruitflies. An attempt is made to determine how and why the resetting response depends on the duration of a standard perturbation as well as on the time at which it is given. Plotting a three-dimensional graph of the measured emergence centroids vs the stimulus variables, the data are found to spiral up around a vertical rotation axis. Using a computer, a smooth surface, called the resetting surface, which approximately fits the helicoidal cloud of data points, is obtained and is shown to be best described as a vertical corkscrew linking together tilted planes. This corkscrew feature of the resetting surface is taken to indicate that there is an isolated perturbation following which there is either no circadian rhythm of emergence in the steady state, or one of unpredictable phase. A hypothesis concerning the clock dynamics underlying the eclosion rhythm is briefly sketched which encompasses the main features of known resetting data using single discrete pulses of any perturbing agent.

  9. Daily Fasting Blood Glucose Rhythm in Male Mice: A Role of the Circadian Clock in the Liver.

    PubMed

    Ando, Hitoshi; Ushijima, Kentaro; Shimba, Shigeki; Fujimura, Akio

    2016-02-01

    Fasting blood glucose (FBG) and hepatic glucose production are regulated according to a circadian rhythm. An early morning increase in FBG levels, which is pronounced among diabetic patients, is known as the dawn phenomenon. Although the intracellular circadian clock generates various molecular rhythms, whether the hepatic clock is involved in FBG rhythm remains unclear. To address this issue, we investigated the effects of phase shift and disruption of the hepatic clock on the FBG rhythm. In both C57BL/6J and diabetic ob/ob mice, FBG exhibited significant daily rhythms with a peak at the beginning of the dark phase. Light-phase restricted feeding altered the phase of FBG rhythm mildly in C57BL/6J mice and greatly in ob/ob mice, in concert with the phase shifts of mRNA expression rhythms of the clock and glucose production-related genes in the liver. Moreover, the rhythmicity of FBG and Glut2 expression was not detected in liver-specific Bmal1-deficient mice. Furthermore, treatment with octreotide suppressed the plasma growth hormone concentration but did not affect the hepatic mRNA expression of the clock genes or the rise in FBG during the latter half of the resting phase in C57BL/6J mice. These results suggest that the hepatic circadian clock plays a critical role in regulating the daily FBG rhythm, including the dawn phenomenon.

  10. Phase-shifting human circadian rhythms: influence of sleep timing, social contact and light exposure

    NASA Technical Reports Server (NTRS)

    Duffy, J. F.; Kronauer, R. E.; Czeisler, C. A.

    1996-01-01

    1. Both the timing of behavioural events (activity, sleep and social interactions) and the environmental light-dark cycle have been reported to contribute to entrainment of human circadian rhythms to the 24 h day. Yet, the relative contribution of those putative behavioural synchronizers to that of light exposure remains unclear. 2. To investigate this, we inverted the schedule of rest, sedentary activity and social contact of thirty-two young men either with or without exposure to bright light. 3. On this inverted schedule, the endogenous component of the core temperature rhythm of subjects who were exposed to bright light showed a significant phase shift, demonstrating that they were adapting to the new schedule. In contrast, the core temperature rhythm of subjects who were not exposed to bright light moved on average 0.2 h later per day and after 10 days had not significantly adapted to the new schedule. 4. The direction of phase shift in the groups exposed to bright light was dependent on the time of bright light exposure, while control subjects drifted to a later hour regardless of the timing of their schedule of sleep timing, social contact and meals. 5. These results support the concept that the light-dark cycle is the most important synchronizer of the human circadian system. They suggest that inversion of the sleep-wake, rest-activity and social contact cycles provides relatively minimal drive for resetting the human circadian pacemaker. 6. These data indicate that interventions designed to phase shift human circadian rhythms for adjustment to time zone changes or altered work schedules should focus on properly timed light exposure.

  11. Sleep and Circadian Rhythms in Spousally Bereaved Seniors

    PubMed Central

    Monk, Timothy H.; Begley, Amy E.; Billy, Bart D.; Fletcher, Mary E.; Germain, Anne; Mazumdar, Sati; Moul, Douglas E.; Shear, M. Katherine; Thompson, Wesley K.; Zarotney, Joette R.

    2009-01-01

    A laboratory study of sleep and circadian rhythms was undertaken in 28 spousally bereaved seniors (≥60 yrs) at least four months after the loss event. Measures taken included two nights of polysomnography (second night used), ∼36 h of continuous core body temperature monitoring, and four assessments of mood and alertness throughout a day. Preceding the laboratory study, two-week diaries were completed, allowing the assessment of lifestyle regularity using the 17-item Social Rhythm Metric (SRM) and the timing of sleep using the Pittsburgh Sleep Diary (PghSD). Also completed were questionnaires assessing level of grief (Texas Revised Inventory of Grief [TRIG] and Index of Complicated Grief [ICG]), subjective sleep quality (Pittsburgh Sleep Quality Index [PSQI]), morningness-eveningness (Composite Scale of Morningness [CSM]), and clinical interview yielding a Hamilton Depression Rating Scale (HDRS) score. Grief was still present, as indicated by an average TRIG score of about 60. On average, the bereaved seniors habitually slept between ∼23:00 and ∼06:40 h, achieving ∼6 h of sleep with a sleep efficiency of ∼80%. They took about 30 min to fall asleep, and had their first REM episode after 75 min. About 20% of their sleep was in Stage REM, and about 3% in Stages 3 or 4 (slow wave sleep). Their mean PSQI score was 6.4. Their circadian temperature rhythms showed the usual classic shape with a trough at ∼01:00 h, a fairly steep rise through the morning hours, and a more gradual rise to mid-evening, with an amplitude of ∼0.8°C. In terms of lifestyle regularity, the mean regularity (SRM) score was 3.65 (slightly lower than that usually seen in seniors). Mood and alertness showed time-of-day variation with peak alertness in the late morning and peak mood in the afternoon. Correlations between outcome sleep/circadian variables and level of grief (TRIG score) were calculated; there was a slight trend for higher grief to be associated with less time spent

  12. An allele of the crm gene blocks cyanobacterial circadian rhythms.

    PubMed

    Boyd, Joseph S; Bordowitz, Juliana R; Bree, Anna C; Golden, Susan S

    2013-08-20

    The SasA-RpaA two-component system constitutes a key output pathway of the cyanobacterial Kai circadian oscillator. To date, rhythm of phycobilisome associated (rpaA) is the only gene other than kaiA, kaiB, and kaiC, which encode the oscillator itself, whose mutation causes completely arrhythmic gene expression. Here we report a unique transposon insertion allele in a small ORF located immediately upstream of rpaA in Synechococcus elongatus PCC 7942 termed crm (for circadian rhythmicity modulator), which results in arrhythmic promoter activity but does not affect steady-state levels of RpaA. The crm ORF complements the defect when expressed in trans, but only if it can be translated, suggesting that crm encodes a small protein. The crm1 insertion allele phenotypes are distinct from those of an rpaA null; crm1 mutants are able to grow in a light:dark cycle and have no detectable oscillations of KaiC phosphorylation, whereas low-amplitude KaiC phosphorylation rhythms persist in the absence of RpaA. Levels of phosphorylated RpaA in vivo measured over time are significantly altered compared with WT in the crm1 mutant as well as in the absence of KaiC. Taken together, these results are consistent with the hypothesis that the Crm polypeptide modulates a circadian-specific activity of RpaA.

  13. The effect of depression on sleep quality and the circadian rhythm of ambulatory blood pressure in older patients with hypertension.

    PubMed

    Ma, Lina; Li, Yun

    2017-05-01

    To explore the effect of depression on the sleep quality, and the circadian rhythm of ambulatory blood pressure in patients with essential hypertension. A total of 73 older patients with hypertension were screened for depression and divided into two groups. The Pittsburgh Sleep Quality Index (PSQI) and the circadian rhythm of ambulatory blood pressure were compared between the non-depressed (control) and depressed (case) group. In the case group, 24h ambulatory SBP and DBP, and nocturnal SBP and DBP were higher than in the control group, and the circadian rhythm of non-dipper was higher (67.22% vs 40.13%,P<0.01). There was a positive correlation between PSQI and depression (r=0.432, P<0.01). There was a significant correlation between sleep quality and depression in older patients with hypertension. Depression increases the circadian rhythm of non-dipper in older patients with hypertension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Chronic stress induces brain region specific alterations of molecular rhythms in mice that correlate with depression-like behavior

    PubMed Central

    Logan, Ryan W.; Edgar, Nicole; Gillman, Andrea G.; Hoffman, Daniel; Zhu, Xiyu; McClung, Colleen A.

    2015-01-01

    Background Emerging evidence implicates circadian abnormalities as a component of the pathophysiology of major depressive disorder (MDD). The suprachiasmatic nucleus (SCN) of the hypothalamus coordinates rhythms throughout the brain and body. On a cellular level, rhythms are generated by transcriptional, translational, and post-translational feedback loops of core circadian genes and proteins. In patients with MDD, recent evidence suggests reduced amplitude of molecular rhythms in extra-SCN brain regions. We investigated whether unpredictable chronic mild stress (UCMS), an animal model that induces a depression-like physiological and behavioral phenotype, induces circadian disruptions similar to those seen with MDD. Methods Activity and temperature rhythms were recorded in C57BL/6J mice before, during, and after exposure to UCMS, and brain tissue explants were collected from Period2 luciferase (Per2::luc) mice following UCMS to assess cellular rhythmicity. Results UCMS significantly decreased circadian amplitude of activity and body temperature in mice, similar to findings in MDD patients and these changes directly correlate with depression-related behavior. While amplitude of molecular rhythms in the SCN was decreased following UCMS, surprisingly, rhythms in the nucleus accumbens were amplified with no changes seen in the prefrontal cortex or amygdala. These molecular rhythm changes in the SCN and the nucleus accumbens (NAc) also directly correlated with mood-related behavior. Conclusions These studies find that circadian rhythm abnormalities directly correlate with depression-related behavior following UCMS and suggest a desynchronization of rhythms in the brain with an independent enhancement of rhythms in the NAc. PMID:25771506

  15. Effects of Chronic Social Defeat Stress on Sleep and Circadian Rhythms Are Mitigated by Kappa-Opioid Receptor Antagonism

    PubMed Central

    Wells, Audrey M.; Ridener, Elysia; Kim, Woori; Carroll, F. Ivy; Cohen, Bruce M.

    2017-01-01

    Stress plays a critical role in the neurobiology of mood and anxiety disorders. Sleep and circadian rhythms are affected in many of these conditions. Here we examined the effects of chronic social defeat stress (CSDS), an ethological form of stress, on sleep and circadian rhythms. We exposed male mice implanted with wireless telemetry transmitters to a 10 day CSDS regimen known to produce anhedonia (a depressive-like effect) and social avoidance (an anxiety-like effect). EEG, EMG, body temperature, and locomotor activity data were collected continuously during the CSDS regimen and a 5 day recovery period. CSDS affected numerous endpoints, including paradoxical sleep (PS) and slow-wave sleep (SWS), as well as the circadian rhythmicity of body temperature and locomotor activity. The magnitude of the effects increased with repeated stress, and some changes (PS bouts, SWS time, body temperature, locomotor activity) persisted after the CSDS regimen had ended. CSDS also altered mRNA levels of the circadian rhythm-related gene mPer2 within brain areas that regulate motivation and emotion. Administration of the κ-opioid receptor (KOR) antagonist JDTic (30 mg/kg, i.p.) before CSDS reduced stress effects on both sleep and circadian rhythms, or hastened their recovery, and attenuated changes in mPer2. Our findings show that CSDS produces persistent disruptions in sleep and circadian rhythmicity, mimicking attributes of stress-related conditions as they appear in humans. The ability of KOR antagonists to mitigate these disruptions is consistent with previously reported antistress effects. Studying homologous endpoints across species may facilitate the development of improved treatments for psychiatric illness. SIGNIFICANCE STATEMENT Stress plays a critical role in the neurobiology of mood and anxiety disorders. We show that chronic social defeat stress in mice produces progressive alterations in sleep and circadian rhythms that resemble features of depression as it appears in

  16. Effects of Chronic Social Defeat Stress on Sleep and Circadian Rhythms Are Mitigated by Kappa-Opioid Receptor Antagonism.

    PubMed

    Wells, Audrey M; Ridener, Elysia; Bourbonais, Clinton A; Kim, Woori; Pantazopoulos, Harry; Carroll, F Ivy; Kim, Kwang-Soo; Cohen, Bruce M; Carlezon, William A

    2017-08-09

    Stress plays a critical role in the neurobiology of mood and anxiety disorders. Sleep and circadian rhythms are affected in many of these conditions. Here we examined the effects of chronic social defeat stress (CSDS), an ethological form of stress, on sleep and circadian rhythms. We exposed male mice implanted with wireless telemetry transmitters to a 10 day CSDS regimen known to produce anhedonia (a depressive-like effect) and social avoidance (an anxiety-like effect). EEG, EMG, body temperature, and locomotor activity data were collected continuously during the CSDS regimen and a 5 day recovery period. CSDS affected numerous endpoints, including paradoxical sleep (PS) and slow-wave sleep (SWS), as well as the circadian rhythmicity of body temperature and locomotor activity. The magnitude of the effects increased with repeated stress, and some changes (PS bouts, SWS time, body temperature, locomotor activity) persisted after the CSDS regimen had ended. CSDS also altered mRNA levels of the circadian rhythm-related gene mPer2 within brain areas that regulate motivation and emotion. Administration of the κ-opioid receptor (KOR) antagonist JDTic (30 mg/kg, i.p.) before CSDS reduced stress effects on both sleep and circadian rhythms, or hastened their recovery, and attenuated changes in mPer2 Our findings show that CSDS produces persistent disruptions in sleep and circadian rhythmicity, mimicking attributes of stress-related conditions as they appear in humans. The ability of KOR antagonists to mitigate these disruptions is consistent with previously reported antistress effects. Studying homologous endpoints across species may facilitate the development of improved treatments for psychiatric illness. SIGNIFICANCE STATEMENT Stress plays a critical role in the neurobiology of mood and anxiety disorders. We show that chronic social defeat stress in mice produces progressive alterations in sleep and circadian rhythms that resemble features of depression as it appears in

  17. An Approximation to the Temporal Order in Endogenous Circadian Rhythms of Genes Implicated in Human Adipose Tissue Metabolism

    PubMed Central

    GARAULET, MARTA; ORDOVÁS, JOSÉ M.; GÓMEZ-ABELLÁN, PURIFICACIÓN; MARTÍNEZ, JOSE A.; MADRID, JUAN A.

    2015-01-01

    Although it is well established that human adipose tissue (AT) shows circadian rhythmicity, published studies have been discussed as if tissues or systems showed only one or few circadian rhythms at a time. To provide an overall view of the internal temporal order of circadian rhythms in human AT including genes implicated in metabolic processes such as energy intake and expenditure, insulin resistance, adipocyte differentiation, dyslipidemia, and body fat distribution. Visceral and subcutaneous abdominal AT biopsies (n = 6) were obtained from morbid obese women (BMI ≥ 40 kg/m2). To investigate rhythmic expression pattern, AT explants were cultured during 24-h and gene expression was analyzed at the following times: 08:00, 14:00, 20:00, 02:00 h using quantitative real-time PCR. Clock genes, glucocorticoid metabolism-related genes, leptin, adiponectin and their receptors were studied. Significant differences were found both in achrophases and relative-amplitude among genes (P <0.05). Amplitude of most genes rhythms was high (>30%). When interpreting the phase map of gene expression in both depots, data indicated that circadian rhythmicity of the genes studied followed a predictable physiological pattern, particularly for subcutaneous AT. Interesting are the relationships between adiponectin, leptin, and glucocorticoid metabolism-related genes circadian profiles. Their metabolic significance is discussed. Visceral AT behaved in a different way than subcutaneous for most of the genes studied. For every gene, protein mRNA levels fluctuated during the day in synchrony with its receptors. We have provided an overall view of the internal temporal order of circadian rhythms in human adipose tissue. PMID:21520059

  18. Circadian rhythms as a basis for work organization: a study with live line electricians.

    PubMed

    Guimarães, Lia Buarque de Macedo; Ribeiro, Jose Luis Duarte; Saurin, Tarcísio Abreu; de Bittencourt Júnior, Paulo Ivo Homem

    2013-02-01

    With the assumption that circadian rhythms influence human performance, the work of live line electricians was reorganized and evaluated. The hypothesis was that in highly physical and attention-demanding work, the organization of tasks, according to the ideal period of day and day of week, should diminish stress and consequent work risks. There are only a few studies reporting the work of electricians and even fewer approaching work organization. Moreover, these investigations often do not consider human physiological limitations and capabilities as well as task demands. A new work system was proposed with consideration of (a) the circadian cycles and homeostatic processes; (b) the effect of heat, which is a zeitgeber (synchronizer) for the biological clocks; and (c) the degree of physical and mental demands of the different performed tasks, which was assessed on the basis of opinions of the electricians and physiological markers of stress that are controlled by circadian rhythms. The traditional and new systems were compared on the basis of two cognitive indices (the arrangement of matchsticks and the perception of a minute) and three physiological markers of mental-to-physical loads (heart frequency and the level of adrenaline and noradrenaline). Both physical and mental loads were reduced in the new system. Work organization should include consideration of human circadian rhythms, mainly when stressful and high-risk tasks are involved. The findings can be applied in any work design, but they are especially suited for highly demanding work carried out outdoors.

  19. Scheduled Daily Mating Induces Circadian Anticipatory Activity Rhythms in the Male Rat

    PubMed Central

    Landry, Glenn J.; Opiol, Hanna; Marchant, Elliott G.; Pavlovski, Ilya; Mear, Rhiannon J.; Hamson, Dwayne K.; Mistlberger, Ralph E.

    2012-01-01

    Daily schedules of limited access to food, palatable high calorie snacks, water and salt can induce circadian rhythms of anticipatory locomotor activity in rats and mice. All of these stimuli are rewarding, but whether anticipation can be induced by neural correlates of reward independent of metabolic perturbations associated with manipulations of food and hydration is unclear. Three experiments were conducted to determine whether mating, a non-ingestive behavior that is potently rewarding, can induce circadian anticipatory activity rhythms in male rats provided scheduled daily access to steroid-primed estrous female rats. In Experiment 1, rats anticipated access to estrous females in the mid-light period, but also exhibited post-coital eating and running. In Experiment 2, post-coital eating and running were prevented and only a minority of rats exhibited anticipation. Rats allowed to see and smell estrous females showed no anticipation. In both experiments, all rats exhibited sustained behavioral arousal and multiple mounts and intromissions during every session, but ejaculated only every 2–3 days. In Experiment 3, the rats were given more time with individual females, late at night for 28 days, and then in the midday for 28 days. Ejaculation rates increased and anticipation was robust to night sessions and significant although weaker to day sessions. The anticipation rhythm persisted during 3 days of constant dark without mating. During anticipation of nocturnal mating, the rats exhibited a significant preference for a tube to the mating cage over a tube to a locked cage with mating cage litter. This apparent place preference was absent during anticipation of midday mating, which may reflect a daily rhythm of sexual reward. The results establish mating as a reward stimulus capable of inducing circadian rhythms of anticipatory behavior in the male rat, and reveal a critical role for ejaculation, a modulatory role for time of day, and a potential confound role

  20. Comparison of circadian rhythms in male and female humans

    NASA Technical Reports Server (NTRS)

    Winget, C. M.; Deroshia, C. W.; Vernikos-Danellis, J.; Rosenblatt, W. S.; Hetherington, N. W.

    1977-01-01

    Heart rate (HR) and rectal temperature (RT) data were obtained from 12 female and 27 male subjects. The subjects were housed in a facility where the environment was controlled. Human male and female RT and HR exhibit a circadian rhythm with an excursion of about 1.2 C and 30 beats/min, respectively. The acrophases, amplitudes, and level crossings are only slightly different between the sexes. The male HR and RT circadian wave forms are more stable than those of the females. However, the actual RT and HR of males were always lower than that of females at all time points around the clock. The HR during sleep in females is 15 per cent below the daily mean heart rate and in males, 22 per cent.

  1. Comparison of Wearable Activity Tracker with Actigraphy for Sleep Evaluation and Circadian Rest-Activity Rhythm Measurement in Healthy Young Adults.

    PubMed

    Lee, Hyun-Ah; Lee, Heon-Jeong; Moon, Joung-Ho; Lee, Taek; Kim, Min-Gwan; In, Hoh; Cho, Chul-Hyun; Kim, Leen

    2017-03-01

    The purpose of this study was to evaluate the applicability of data obtained from a wearable activity tracker (Fitbit Charge HR) to medical research. This was performed by comparing the wearable activity tracker (Fitbit Charge HR) with actigraphy (Actiwatch 2) for sleep evaluation and circadian rest-activity rhythm measurement. Sixteen healthy young adults (female participants, 62.5%; mean age, 22.8 years) wore the Fitbit Charge HR and the Actiwatch 2 on the same wrist; a sleep log was recorded over a 14-day period. We compared the sleep variables and circadian rest-activity rhythm measures with Wilcoxon signed-rank tests and Spearman's correlations. The periods and acrophases of the circadian rest-activity rhythms and the sleep start times did not differ and correlated significantly between the Fitbit Charge HR and the Actiwatch 2. The Fitbit Charge HR tended to overestimate the sleep durations compared with the Actiwatch 2. However, the sleep durations showed high correlation between the two devices for all days. We found that the Fitbit Charge HR showed high accuracy in sleep evaluation and circadian rest-activity rhythm measurement when compared with actigraphy for healthy young adults. The results suggest that the Fitbit Charge HR could be applicable on medical research as an alternative tool to actigraphy for sleep evaluation and measurement of the circadian rest-activity rhythm.

  2. WNK-OSR1/SPAK-NCC signal cascade has circadian rhythm dependent on aldosterone.

    PubMed

    Susa, Koichiro; Sohara, Eisei; Isobe, Kiyoshi; Chiga, Motoko; Rai, Tatemitsu; Sasaki, Sei; Uchida, Shinichi

    2012-11-02

    Blood pressure and renal salt excretion show circadian rhythms. Recently, it has been clarified that clock genes regulate circadian rhythms of renal transporter expression in the kidney. Since we discovered the WNK-OSR1/SPAK-NaCl cotransporter (NCC) signal cascade, which is important for regulating salt balance and blood pressure, we have sought to determine whether NCC protein expression or phosphorylation shows diurnal rhythms in the mouse kidneys. Male C57BL/6J mice were sacrificed every 4h (at 20:00, 0:00, 4:00, 8:00, 12:00, and 16:00), and the expression and phosphorylation of WNK4, OSR1, SPAK, and NCC were determined by immunoblot. (Lights were turned on at 8:00, which was the start of the rest period, and turned off at 20:00, which was the start of the active period, since mice are nocturnal.) Although expression levels of each protein did not show diurnal rhythm, the phosphorylation levels of OSR1, SPAK, and NCC were increased around the start of the active period and decreased around the start of the rest period. Oral administration of eplerenone (10mg/day) attenuated the phosphorylation levels of these proteins and also diminished the diurnal rhythm of NCC phosphorylation. Thus, the activity of the WNK4-OSR1/SPAK-NCC cascade was shown to have a diurnal rhythm in the kidney that may be governed by aldosterone. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. [Effect of Earth magnetic field on circadian rhythm of total antioxidant capacity of human saliva in the North].

    PubMed

    Borisenkov, M F

    2007-01-01

    In the inhabitants of the North during increase of geomagnetic activity and during magnetic calm the decrease of amplitude of circadian rhythm of total antioxidant capacity of saliva is observed. The most favorable conditions to display the circadian rhythm are observed at Kp from 0,5 up to 2. The long residing in the North is connected to influence of irregularly varying geomagnetic activity causing disturbance of function of circadian and antioxidant systems that, probably, is one of the reasons of acceleration of process of aging at northerner and of higher risk of occurrence in them the age associated diseases.

  4. Adaptation to Experimental Jet-Lag in R6/2 Mice despite Circadian Dysrhythmia

    PubMed Central

    Wood, Nigel I.; McAllister, Catherine J.; Cuesta, Marc; Aungier, Juliet; Fraenkel, Eloise; Morton, A. Jennifer

    2013-01-01

    The R6/2 transgenic mouse model of Huntington’s disease (HD) shows a disintegration of circadian rhythms that can be delayed by pharmacological and non-pharmacological means. Since the molecular machinery underlying the circadian clocks is intact, albeit progressively dysfunctional, we wondered if light phase shifts could modulate the deterioration in daily rhythms in R6/2 mice. Mice were subjected to four x 4 hour advances in light onset. R6/2 mice adapted to phase advances, although angles of entrainment increased with age. A second cohort was subjected to a jet-lag paradigm (6 hour delay or advance in light onset, then reversal after 2 weeks). R6/2 mice adapted to the original shift, but could not adjust accurately to the reversal. Interestingly, phase shifts ameliorated the circadian rhythm breakdown seen in R6/2 mice under normal LD conditions. Our previous finding that the circadian period (tau) of 16 week old R6/2 mice shortens to approximately 23 hours may explain how they adapt to phase advances and maintain regular circadian rhythms. We tested this using a 23 hour period light/dark cycle. R6/2 mice entrained to this cycle, but onsets of activity continued to advance, and circadian rhythms still disintegrated. Therefore, the beneficial effects of phase-shifting are not due solely to the light cycle being closer to the tau of the mice. Our data show that R6/2 mice can adapt to changes in the LD schedule, even beyond the age when their circadian rhythms would normally disintegrate. Nevertheless, they show abnormal responses to changes in light cycles. These might be caused by a shortened tau, impaired photic re-synchronization, impaired light detection and/or reduced masking by evening light. If similar abnormalities are present in HD patients, they may suffer exaggerated jet-lag. Since the underlying molecular clock mechanism remains intact, light may be a useful treatment for circadian dysfunction in HD. PMID:23390510

  5. The role of melatonin and cortisol circadian rhythms in the pathogenesis of infantile colic.

    PubMed

    İnce, Tolga; Akman, Hakkı; Çimrin, Dilek; Aydın, Adem

    2018-03-05

    Despite the high prevalence of infantile colic, the pathogenesis remains incompletely understood. Cortisol and melatonin hormones affect gastrointestinal system development in several ways, and interestingly, both cortisol and melatonin's circadian rhythms begin around the 3rd month in which infantile colic symptoms start to decrease. We hypothesized that infantile colic might associate with desynchronization of normal circadian rhythms of these hormones. In this study, we aimed to investigate the role of melatonin and cortisol in the pathogenesis of infantile colic. Patients who were diagnosed as infantile colic according to Wessel's "rule of three" were enrolled in the colic group. We measured the saliva melatonin and cortisol levels of colic group and control group infants. In both groups, the saliva samples were taken in mornings and at evenings, at the time of diagnosis and 6th month. Fifty-five infants finished the study. Melatonin circadian rhythm developed earlier in the control group than the infantile colic group in our study. We found no significant difference between the daily mean cortisol levels. However, infants with colic had flatter daily cortisol slope than controls which pointed out the probability that they had a less clearly defined cortisol rhythm than infants without colic. We found an association between melatonin levels and infantile colic. However, more research is needed to fully understand the role of hypothalamic-pituitary-adrenal axis and hormone's role on infantile colic physiopathology.

  6. Variation of electroencephalographic activity during non-rapid eye movement and rapid eye movement sleep with phase of circadian melatonin rhythm in humans.

    PubMed Central

    Dijk, D J; Shanahan, T L; Duffy, J F; Ronda, J M; Czeisler, C A

    1997-01-01

    1. The circadian pacemaker regulates the timing, structure and consolidation of human sleep. The extent to which this pacemaker affects electroencephalographic (EEG) activity during sleep remains unclear. 2. To investigate this, a total of 1.22 million power spectra were computed from EEGs recorded in seven men (total, 146 sleep episodes; 9 h 20 min each) who participated in a one-month-long protocol in which the sleep-wake cycle was desynchronized from the rhythm of plasma melatonin, which is driven by the circadian pacemaker. 3. In rapid eye movement (REM) sleep a small circadian variation in EEG activity was observed. The nadir of the circadian rhythm of alpha activity (8.25-10.5 Hz) coincided with the end of the interval during which plasma melatonin values were high, i.e. close to the crest of the REM sleep rhythm. 4. In non-REM sleep, variation in EEG activity between 0.25 and 11.5 Hz was primarily dependent on prior sleep time and only slightly affected by circadian phase, such that the lowest values coincided with the phase of melatonin secretion. 5. In the frequency range of sleep spindles, high-amplitude circadian rhythms with opposite phase positions relative to the melatonin rhythm were observed. Low-frequency sleep spindle activity (12.25-13.0 Hz) reached its crest and high-frequency sleep spindle activity (14.25-15.5 Hz) reached its nadir when sleep coincided with the phase of melatonin secretion. 6. These data indicate that the circadian pacemaker induces changes in EEG activity during REM and non-REM sleep. The changes in non-REM sleep EEG spectra are dissimilar from the spectral changes induced by sleep deprivation and exhibit a close temporal association with the melatonin rhythm and the endogenous circadian phase of sleep consolidation. PMID:9457658

  7. Body weight gain in rats by a high-fat diet produces chronodisruption in activity/inactivity circadian rhythm.

    PubMed

    Bravo, Rafael; Cubero, Javier; Franco, Lourdes; Mesa, Mónica; Galán, Carmen; Rodríguez, Ana Beatriz; Jarne, Carlos; Barriga, Carmen

    2014-04-01

    In the last few decades, obesity has become one of the most important public health problems. Adipose tissue is an active endocrine tissue which follows a rhythmic pattern in its functions and may produce alterations in certain circadian rhythms. Our aim was to evaluate whether the locomotor activity circadian rhythm could be modified by a hypercaloric diet in rodents. Two groups were considered in the experiment: 16 rats were used as a control group and were fed standard chow; the other group comprised 16 rats fed a high-fat diet (35.8% fat, 35% glucides). The trial lasted 16 weeks. Body weight was measured every week, and a blood sample was extracted every two weeks to quantify triglyceride levels. The activity/inactivity circadian rhythm was logged through actimetry throughout the trial, and analysed using the DAS 24© software package. At the end of the experiment, the high-fat fed rats had obese-like body weights and high plasma triglyceride levels, and, compared with the control group, increased diurnal activity, decreased nocturnal activity, reductions in amplitude, midline estimating statistic of rhythm, acrophase and interdaily stability, and increases in intradaily variability of their activity rhythms. The results thus show how obesity can lead to symptoms of chronodisruption in the body similar to those of ageing.

  8. Treatment of a Circadian Rhythm Disturbance in a 2-Year-Old Blind Child.

    ERIC Educational Resources Information Center

    Mindell, J. A.; And Others

    1996-01-01

    The use of sleep scheduling and a daytime routine for the treatment of circadian rhythm disorder was found helpful in decreasing a blind 2-year old's nighttime wake periods and daytime sleepiness. (DB)

  9. Stretch, Shrink, and Shatter the Rhythms: The Intrinsic Circadian Period in Mania and Depression.

    PubMed

    Martynhak, Bruno Jacson; Pereira, Marcela; de Souza, Camila Pasquini; Andreatini, Roberto

    2015-01-01

    Disturbances in the circadian rhythms have long been associated with depression and mania. Animal models of mania and depression exhibit differential effects upon the intrinsic circadian period and the same occurs with antidepressants and mood stabilizers treatment. The intrinsic circadian period is expressed when there are no time clues or when the light/dark cycle length is beyond the capacity of synchronization. In summary, while there is no clear association between the circadian period and mania, depressive-like behaviour is generally associated either with lengthening of the circadian period or with arrythmicity, and the improvement of depressive-like behaviour is associated with shortening of the circadian period. Thus, this review is an attempt to summarize data regarding these correlations and find a putative role of the circadian intrinsic period in mood regulation, particularly concerning the switch from depression to mania.

  10. Comparative Review of Approved Melatonin Agonists for the Treatment of Circadian Rhythm Sleep-Wake Disorders.

    PubMed

    Williams, Wilbur P Trey; McLin, Dewey E; Dressman, Marlene A; Neubauer, David N

    2016-09-01

    Circadian rhythm sleep-wake disorders (CRSWDs) are characterized by persistent or recurrent patterns of sleep disturbance related primarily to alterations of the circadian rhythm system or the misalignment between the endogenous circadian rhythm and exogenous factors that affect the timing or duration of sleep. These disorders collectively represent a significant unmet medical need, with a total prevalence in the millions, a substantial negative impact on quality of life, and a lack of studied treatments for most of these disorders. Activation of the endogenous melatonin receptors appears to play an important role in setting the circadian clock in the suprachiasmatic nucleus of the hypothalamus. Therefore, melatonin agonists, which may be able to shift and/or stabilize the circadian phase, have been identified as potential therapeutic candidates for the treatment of CRSWDs. Currently, only one melatonin receptor agonist, tasimelteon, is approved for the treatment of a CRSWD: non-24-hour sleep-wake disorder (or non-24). However, three additional commercially available melatonin receptor agonists-agomelatine, prolonged-release melatonin, and ramelteon-have been investigated for potential use for treatment of CRSWDs. Data indicate that these melatonin receptor agonists have distinct pharmacologic profiles that may help clarify their clinical use in CRSWDs. We review the pharmacokinetic and pharmacodynamic properties of these melatonin agonists and summarize their efficacy profiles when used for the treatment of CRSWDs. Further studies are needed to determine the therapeutic potential of these melatonin agonists for most CRSWDs. © 2016 Vanda Pharmaceuticals, Inc. Pharmacotherapy published by Wiley Periodicals, Inc. on behalf of Pharmacotherapy Publications, Inc.

  11. An arousing, musically enhanced bird song stimulus mediates circadian rhythm phase advances in dim light.

    PubMed

    Goel, Namni

    2006-09-01

    A musically enhanced bird song stimulus presented in the early subjective night phase delays human circadian rhythms. This study determined the phase-shifting effects of the same stimulus in the early subjective day. Eleven subjects (ages 18-63 yr; mean +/- SD: 28.0 +/- 16.6 yr) completed two 4-day laboratory sessions in constant dim light (<20 lux). They received two consecutive presentations of either a 2-h musically enhanced bird song or control stimulus from 0600 to 0800 on the second and third mornings while awake. The 4-day sessions employing either the stimulus or control were counterbalanced. Core body temperature (CBT) was collected throughout the study, and salivary melatonin was obtained every 30 min from 1900 to 2330 on the baseline and poststimulus/postcontrol nights. Dim light melatonin onset and CBT minimum circadian phase before and after stimulus or control presentation was assessed. The musically enhanced bird song stimulus produced significantly larger phase advances of the circadian melatonin (mean +/- SD: 0.87 +/- 0.36 vs. 0.24 +/- 0.22 h) and CBT (1.08 +/- 0.50 vs. 0.43 +/- 0.37 h) rhythms than the control. The stimulus also decreased fatigue and total mood disturbance, suggesting arousing effects. This study shows that a musically enhanced bird song stimulus presented during the early subjective day phase advances circadian rhythms. However, it remains unclear whether the phase shifts are due directly to effects of the stimulus on the clock or are arousal- or dim light-mediated effects. This nonphotic stimulus mediates circadian resynchronization in either the phase advance or delay direction.

  12. Timed feeding of mice modulates light-entrained circadian rhythms of reticulated platelet abundance and plasma thrombopoietin and affects gene expression in megakaryocytes.

    PubMed

    Hartley, Paul S; Sheward, John; Scholefield, Emma; French, Karen; Horn, Jacqueline M; Holmes, Megan C; Harmar, Anthony J

    2009-07-01

    Circadian (c. 24 h) rhythms of physiology are entrained to either the environmental light-dark cycle or the timing of food intake. In the current work the hypothesis that rhythms of platelet turnover in mammals are circadian and entrained by food intake was explored in mice. Mice were entrained to 12 h light-dark cycles and given either ad libitum (AL) or restricted access (RF) to food during the light phase. Blood and megakaryocytes were then collected from mice every 4 h for 24 h. It was found that total and reticulated platelet numbers, plasma thrombopoietin (TPO) concentration and the mean size of mature megakaryocytes were circadian but not entrained by food intake. In contrast, a circadian rhythm in the expression of Arnt1 in megakaryocytes was entrained by food. Although not circadian, the expression in megakaryocytes of Nfe2, Gata1, Itga2b and Tubb1 expression was downregulated by RF, whereas Ccnd1 was not significantly affected by the feeding protocol. It is concluded that circadian rhythms of total platelet number, reticulated platelet number and plasma TPO concentration are entrained by the light-dark cycle rather than the timing of food intake. These findings imply that circadian clock gene expression regulates platelet turnover in mammals.

  13. Long-term imaging of circadian locomotor rhythms of a freely crawling C. elegans population

    PubMed Central

    Winbush, Ari; Gruner, Matthew; Hennig, Grant W.; van der Linden, Alexander M.

    2016-01-01

    Background Locomotor activity is used extensively as a behavioral output to study the underpinnings of circadian rhythms. Recent studies have required a populational approach for the study of circadian rhythmicity in Caenorhabditis elegans locomotion. New method We describe an imaging system for long-term automated recording and analysis of locomotion data of multiple free-crawling C. elegans animals on the surface of an agar plate. We devised image analysis tools for measuring specific features related to movement and shape to identify circadian patterns. Results We demonstrate the utility of our system by quantifying circadian locomotor rhythms in wild-type and mutant animals induced by temperature cycles. We show that 13 °C:18 °C (12:12 h) cycles are sufficient to entrain locomotor activity of wild-type animals, which persist but are rapidly damped during 13 °C free-running conditions. Animals with mutations in tax-2, a cyclic nucleotide-gated (CNG) ion channel, significantly reduce locomotor activity during entrainment and free-running. Comparison with existing method(s) Current methods for measuring circadian locomotor activity is generally restricted to recording individual swimming animals of C. elegans, which is a distinct form of locomotion from crawling behavior generally observed in the laboratory. Our system works well with up to 20 crawling adult animals, and allows for a detailed analysis of locomotor activity over long periods of time. Conclusions Our population-based approach provides a powerful tool for quantification of circadian rhythmicity of C. elegans locomotion, and could allow for a screening system of candidate circadian genes in this model organism. PMID:25911068

  14. Protecting the Melatonin Rhythm through Circadian Healthy Light Exposure

    PubMed Central

    Bonmati-Carrion, Maria Angeles; Arguelles-Prieto, Raquel; Martinez-Madrid, Maria Jose; Reiter, Russel; Hardeland, Ruediger; Rol, Maria Angeles; Madrid, Juan Antonio

    2014-01-01

    Currently, in developed countries, nights are excessively illuminated (light at night), whereas daytime is mainly spent indoors, and thus people are exposed to much lower light intensities than under natural conditions. In spite of the positive impact of artificial light, we pay a price for the easy access to light during the night: disorganization of our circadian system or chronodisruption (CD), including perturbations in melatonin rhythm. Epidemiological studies show that CD is associated with an increased incidence of diabetes, obesity, heart disease, cognitive and affective impairment, premature aging and some types of cancer. Knowledge of retinal photoreceptors and the discovery of melanopsin in some ganglion cells demonstrate that light intensity, timing and spectrum must be considered to keep the biological clock properly entrained. Importantly, not all wavelengths of light are equally chronodisrupting. Blue light, which is particularly beneficial during the daytime, seems to be more disruptive at night, and induces the strongest melatonin inhibition. Nocturnal blue light exposure is currently increasing, due to the proliferation of energy-efficient lighting (LEDs) and electronic devices. Thus, the development of lighting systems that preserve the melatonin rhythm could reduce the health risks induced by chronodisruption. This review addresses the state of the art regarding the crosstalk between light and the circadian system. PMID:25526564

  15. Protecting the melatonin rhythm through circadian healthy light exposure.

    PubMed

    Bonmati-Carrion, Maria Angeles; Arguelles-Prieto, Raquel; Martinez-Madrid, Maria Jose; Reiter, Russel; Hardeland, Ruediger; Rol, Maria Angeles; Madrid, Juan Antonio

    2014-12-17

    Currently, in developed countries, nights are excessively illuminated (light at night), whereas daytime is mainly spent indoors, and thus people are exposed to much lower light intensities than under natural conditions. In spite of the positive impact of artificial light, we pay a price for the easy access to light during the night: disorganization of our circadian system or chronodisruption (CD), including perturbations in melatonin rhythm. Epidemiological studies show that CD is associated with an increased incidence of diabetes, obesity, heart disease, cognitive and affective impairment, premature aging and some types of cancer. Knowledge of retinal photoreceptors and the discovery of melanopsin in some ganglion cells demonstrate that light intensity, timing and spectrum must be considered to keep the biological clock properly entrained. Importantly, not all wavelengths of light are equally chronodisrupting. Blue light, which is particularly beneficial during the daytime, seems to be more disruptive at night, and induces the strongest melatonin inhibition. Nocturnal blue light exposure is currently increasing, due to the proliferation of energy-efficient lighting (LEDs) and electronic devices. Thus, the development of lighting systems that preserve the melatonin rhythm could reduce the health risks induced by chronodisruption. This review addresses the state of the art regarding the crosstalk between light and the circadian system.

  16. An Endogenous Circadian Rhythm in Sleep Inertia Results in Greatest Cognitive Impairment upon Awakening during the Biological Night

    PubMed Central

    Scheer, Frank A. J. L.; Shea, Thomas J.; Hilton, Michael F.; Shea, Steven A.

    2011-01-01

    Sleep inertia is the impaired cognitive performance immediately upon awakening, which decays over tens of minutes. This phenomenon has relevance to people who need to make important decisions soon after awakening, such as on-call emergency workers. Such awakenings can occur at varied times of day or night, so the objective of the study was to determine whether or not the magnitude of sleep inertia varies according to the phase of the endogenous circadian cycle. Twelve adults (mean, 24 years; 7 men) with no medical disorders other than mild asthma were studied. Following 2 baseline days and nights, subjects underwent a forced desynchrony protocol composed of seven 28-h sleep/wake cycles, while maintaining a sleep/wakefulness ratio of 1:2 throughout. Subjects were awakened by a standardized auditory stimulus 3 times each sleep period for sleep inertia assessments. The magnitude of sleep inertia was quantified as the change in cognitive performance (number of correct additions in a 2-min serial addition test) across the first 20 min of wakefulness. Circadian phase was estimated from core body temperature (fitted temperature minimum assigned 0°). Data were segregated according to: (1) circadian phase (60° bins); (2) sleep stage; and (3) 3rd of the night after which awakenings occurred (i.e., tertiary 1, 2, or 3). To control for any effect of sleep stage, the circadian rhythm of sleep inertia was initially assessed following awakenings from Stage 2 (62% of awakening occurred from this stage; n = 110). This revealed a significant circadian rhythm in the sleep inertia of cognitive performance (p = 0.007), which was 3.6 times larger during the biological night (circadian bin 300°, ~2300–0300 h in these subjects) than during the biological day (bin 180°, ~1500–1900 h). The circadian rhythm in sleep inertia was still present when awakenings from all sleep stages were included (p = 0.004), and this rhythm could not be explained by changes in underlying sleep drive

  17. An endogenous circadian rhythm in sleep inertia results in greatest cognitive impairment upon awakening during the biological night.

    PubMed

    Scheer, Frank A J L; Shea, Thomas J; Hilton, Michael F; Shea, Steven A

    2008-08-01

    Sleep inertia is the impaired cognitive performance immediately upon awakening, which decays over tens of minutes. This phenomenon has relevance to people who need to make important decisions soon after awakening, such as on-call emergency workers. Such awakenings can occur at varied times of day or night, so the objective of the study was to determine whether or not the magnitude of sleep inertia varies according to the phase of the endogenous circadian cycle. Twelve adults (mean, 24 years; 7 men) with no medical disorders other than mild asthma were studied. Following 2 baseline days and nights, subjects underwent a forced desynchrony protocol composed of seven 28-h sleep/wake cycles, while maintaining a sleep/wakefulness ratio of 1:2 throughout. Subjects were awakened by a standardized auditory stimulus 3 times each sleep period for sleep inertia assessments. The magnitude of sleep inertia was quantified as the change in cognitive performance (number of correct additions in a 2-min serial addition test) across the first 20 min of wakefulness. Circadian phase was estimated from core body temperature (fitted temperature minimum assigned 0 degrees ). Data were segregated according to: (1) circadian phase (60 degrees bins); (2) sleep stage; and (3) 3rd of the night after which awakenings occurred (i.e., tertiary 1, 2, or 3). To control for any effect of sleep stage, the circadian rhythm of sleep inertia was initially assessed following awakenings from Stage 2 (62% of awakening occurred from this stage; n = 110). This revealed a significant circadian rhythm in the sleep inertia of cognitive performance (p = 0.007), which was 3.6 times larger during the biological night (circadian bin 300 degrees , approximately 2300-0300 h in these subjects) than during the biological day (bin 180 degrees , approximately 1500-1900 h). The circadian rhythm in sleep inertia was still present when awakenings from all sleep stages were included (p = 0.004), and this rhythm could not be

  18. Circadian Rhythms in Floral Scent Emission.

    PubMed

    Fenske, Myles P; Imaizumi, Takato

    2016-01-01

    To successfully recruit pollinators, plants often release attractive floral scents at specific times of day to coincide with pollinator foraging. This timing of scent emission is thought to be evolutionarily beneficial to maximize resource efficiency while attracting only useful pollinators. Temporal regulation of scent emission is tied to the activity of the specific metabolic pathways responsible for scent production. Although floral volatile profiling in various plants indicated a contribution by the circadian clock, the mechanisms by which the circadian clock regulates timing of floral scent emission remained elusive. Recent studies using two species in the Solanaceae family provided initial insight into molecular clock regulation of scent emission timing. In Petunia hybrida, the floral volatile benzenoid/phenylpropanoid (FVBP) pathway is the major metabolic pathway that produces floral volatiles. Three MYB-type transcription factors, ODORANT 1 (ODO1), EMISSION OF BENZENOIDS I (EOBI), and EOBII, all of which show diurnal rhythms in mRNA expression, act as positive regulators for several enzyme genes in the FVBP pathway. Recently, in P. hybrida and Nicotiana attenuata, homologs of the Arabidopsis clock gene LATE ELONGATED HYPOCOTYL (LHY) have been shown to have a similar role in the circadian clock in these plants, and to also determine the timing of scent emission. In addition, in P. hybrida, PhLHY directly represses ODO1 and several enzyme genes in the FVBP pathway during the morning as an important negative regulator of scent emission. These findings facilitate our understanding of the relationship between a molecular timekeeper and the timing of scent emission, which may influence reproductive success.

  19. Age-Related Sleep Disruption and Reduction in the Circadian Rhythm of Urine Output: Contribution to Nocturia?

    PubMed Central

    Duffy, Jeanne F.; Scheuermaier, Karine; Loughlin, Kevin R.

    2015-01-01

    Aging is associated with a marked increase in sleep complaints, and one factor causing sleep disruption is waking to void (nocturia). Urological surveys have found that few young adults report nocturia symptoms, but about half of those in their 60’s and nearly 80% of older age groups are affected. Sleep surveys have found nocturia is a major cause of sleep disruption, with a majority of older adults with sleep disruption citing the need to void as the cause of their awakening. While much of the urological literature implies that nocturia causes sleep disruption, age-related changes in sleep depth and continuity may make it more likely that an older adult will wake in response to a filling bladder, or that an older adult will wake for another reason and then decide to void. There is also evidence that age-related changes in the amplitude of circadian rhythms contribute to nocturia. There is a well-described circadian rhythm in urine output, and evidence of circadian rhythmicity in some diuretic and anti-diuretic hormones. In this article we describe how age-related changes in sleep depth and continuity and age-related changes in circadian rhythm amplitude may contribute to nocturia, and how nocturia in turn leads to sleep disruption. Better understanding of how changes in sleep and circadian rhythmicity impact nocturia may lead to improved treatments and better quality of life for older adults. PMID:26632430

  20. Activity/inactivity circadian rhythm shows high similarities between young obesity-induced rats and old rats.

    PubMed

    Bravo Santos, R; Delgado, J; Cubero, J; Franco, L; Ruiz-Moyano, S; Mesa, M; Rodríguez, A B; Uguz, C; Barriga, C

    2016-03-01

    The objective of the present study was to compare differences between elderly rats and young obesity-induced rats in their activity/inactivity circadian rhythm. The investigation was motivated by the differences reported previously for the circadian rhythms of both obese and elderly humans (and other animals), and those of healthy, young or mature individuals. Three groups of rats were formed: a young control group which was fed a standard chow for rodents; a young obesity-induced group which was fed a high-fat diet for four months; and an elderly control group with rats aged 2.5 years that was fed a standard chow for rodents. Activity/inactivity data were registered through actimetry using infrared actimeter systems in each cage to detect activity. Data were logged on a computer and chronobiological analysis were performed. The results showed diurnal activity (sleep time), nocturnal activity (awake time), amplitude, acrophase, and interdaily stability to be similar between the young obesity-induced group and the elderly control group, but different in the young control group. We have concluded that obesity leads to a chronodisruption status in the body similar to the circadian rhythm degradation observed in the elderly.

  1. Effects of light, food, and methamphetamine on the circadian activity rhythm in mice.

    PubMed

    Pendergast, Julie S; Yamazaki, Shin

    2014-04-10

    The circadian rhythm of locomotor activity in mice is synchronized to environmental factors such as light and food availability. It is well-known that entrainment of the activity rhythm to the light-dark cycle is attained by the circadian pacemaker in the suprachiasmatic nucleus (SCN). Locomotor activity is also controlled by two extra-SCN oscillators; periodic food availability entrains the food-entrainable oscillator (FEO) and constant consumption of low-dose methamphetamine reveals the output of the methamphetamine-sensitive circadian oscillator (MASCO). In this study, we sought to investigate the relationship between the SCN, FEO, and MASCO by examining the combinatorial effects of light, food restriction, and/or methamphetamine on locomotor activity. To investigate coupling between the SCN and FEO, we tested whether food anticipatory activity, which is the output of the FEO, shifted coordinately with phase shifts of the light-dark cycle. We found that the phase of food anticipatory activity was phase-delayed or phase-advanced symmetrically with the respective shift of the light-dark cycle, suggesting that the FEO is strongly coupled to the SCN and the phase angle between the SCN and FEO is maintained during ad libitum feeding. To examine the effect of methamphetamine on the output of the FEO, we administered methamphetamine to mice undergoing restricted feeding and found that food-entrained activity was delayed by methamphetamine treatment. In addition, restricted feeding induced dissociation of the MASCO and SCN activity rhythms during short-term methamphetamine treatment, when these rhythms are typically integrated. In conclusion, our data suggest that the outputs of the SCN, FEO and MASCO collectively drive locomotor activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The Development and Course of Bipolar Spectrum Disorders: An Integrated Reward and Circadian Rhythm Dysregulation Model

    PubMed Central

    Alloy, Lauren B.; Nusslock, Robin; Boland, Elaine M.

    2014-01-01

    In this article, we present and review the evidence for two major biopsychosocial theories of the onset and course of bipolar spectrum disorders (BSDs) that integrate behavioral, environmental, and neurobiological mechanisms: the reward hypersensitivity and the social and circadian rhythm disruption models. We describe the clinical features, spectrum, age of onset, and course of BSDs. We then discuss research designs relevant to demonstrating whether a hypothesized mechanism represents a correlate, vulnerability, or predictor of the course of BSDs, as well as important methodological issues. We next present the reward hypersensitivity model of BSD, followed by the social/circadian rhythm disruption model of BSD. For each model, we review evidence regarding whether the proposed underlying mechanism is associated with BSDs, provides vulnerability to the onset of BSDs, and predicts the course of BSDs. We then present a new integrated reward/circadian rhythm (RCR) dysregulation model of BSD and discuss how the RCR model explains the symptoms, onset, and course of BSDs. We end with recommendations for future research directions. PMID:25581235

  3. Entrainment of the Circadian Rhythm in Egg Hatching of the Crab Dyspanopeus sayi by Chemical Cues from Ovigerous Females.

    PubMed

    Forward, Richard B; Sanchez, Kevin G; Riley, Paul P

    2016-02-01

    The subtidal crab Dyspanopeus sayi has a circadian rhythm in larval release with a free-running period of 24.1 h. Under constant conditions, eggs hatch primarily in the 4-h interval after the time of sunset. The study tested the new model for entrainment in subtidal crabs, which proposes that the female perceives the environmental cycles and entrains the endogenous rhythm in the embryos. Results verified the model for D. sayi. Hatching by embryos collected from the field when they had not yet developed eye pigments, and were kept in constant conditions attached to their mother, exhibited the circadian hatching rhythm. Attached embryos could also be entrained to a new photoperiod in the laboratory before they developed eye pigments. Further, mature embryos removed from the female hatched rhythmically, indicating that a circadian rhythm resides in the embryos. However, if mature embryos with eye pigments were removed from the female and exposed to a new light-dark cycle, they could not be entrained to the new cycle; rather, they hatched according to the timing of the original light-dark cycle. Nevertheless, detached, mature embryos would entrain to a new light-dark cycle if they were in chemical, but not physical, contact with the female. Thus, the female perceives the light-dark cycle, and uses chemical cues to entrain the circadian rhythm of hatching by the embryos. © 2016 Marine Biological Laboratory.

  4. Pilot Investigation of the Circadian Plasma Melatonin Rhythm across the Menstrual Cycle in a Small Group of Women with Premenstrual Dysphoric Disorder

    PubMed Central

    Shechter, Ari; Lespérance, Paul; Ng Ying Kin, N. M. K.; Boivin, Diane B.

    2012-01-01

    Women with premenstrual dysphoric disorder (PMDD) experience mood deterioration and altered circadian rhythms during the luteal phase (LP) of their menstrual cycles. Disturbed circadian rhythms may be involved in the development of clinical mood states, though this relationship is not fully characterized in PMDD. We therefore conducted an extensive chronobiological characterization of the melatonin rhythm in a small group of PMDD women and female controls. In this pilot study, participants included five women with PMDD and five age-matched controls with no evidence of menstrual-related mood disorders. Participants underwent two 24-hour laboratory visits, during the follicular phase (FP) and LP of the menstrual cycle, consisting of intensive physiological monitoring under “unmasked”, time-isolation conditions. Measures included visual analogue scale for mood, ovarian hormones, and 24-hour plasma melatonin. Mood significantly (P≤.03) worsened during LP in PMDD compared to FP and controls. Progesterone was significantly (P = .025) increased during LP compared to FP, with no between-group differences. Compared to controls, PMDD women had significantly (P<.05) decreased melatonin at circadian phases spanning the biological night during both menstrual phases and reduced amplitude of its circadian rhythm during LP. PMDD women also had reduced area under the curve of melatonin during LP compared to FP. PMDD women showed affected circadian melatonin rhythms, with reduced nocturnal secretion and amplitude during the symptomatic phase compared to controls. Despite our small sample size, these pilot findings support a role for disturbed circadian rhythms in affective disorders. Possible associations with disrupted serotonergic transmission are proposed. PMID:23284821

  5. Darwin, Earthworms & Circadian Rhythms: A Fertile Field for Science Fair Experiments

    ERIC Educational Resources Information Center

    Burns, John T.; Scurti, Paul J.; Furda, Amy M.

    2009-01-01

    This article discusses why the study of earthworms has fascinated many scientists, and why earthworms make ideal experimental animals for students to test in the laboratory. Although earthworms may appear to be primitive, they are governed by both circadian and seasonal rhythms, just as more advanced organisms are. They possess an intelligence…

  6. Dark goggles and bright light improve circadian rhythm adaptation to night-shift work.

    PubMed

    Eastman, C I; Stewart, K T; Mahoney, M P; Liu, L; Fogg, L F

    1994-09-01

    We compared the contributions of bright light during the night shift and dark goggles during daylight for phase shifting the circadian rhythm of temperature to realign with a 12-hour shift of sleep. After 10 baseline days there were 8 night-work/day-sleep days. Temperature was continuously recorded from 50 subjects. There were four groups in a 2 x 2 design: light (bright, dim), goggles (yes, no). Subjects were exposed to bright light (about 5,000 lux) for 6 hours on the first 2 night shifts. Dim light was < 500 lux. Both bright light and goggles were significant factors for producing circadian rhythm phase shifts. The combination of bright light plus goggles was the most effective, whereas the combination of dim light and no goggles was the least effective. The temperature rhythm either phase advanced or phase delayed when it aligned with daytime sleep. However, when subjects did not have goggles only phase advances occurred. Goggles were necessary for producing phase delays. The most likely explanation is that daylight during the travel-home window after a night shift inhibits phase-delay shifts, and goggles can prevent this inhibition. Larger temperature-rhythm phase shifts were associated with better subjective daytime sleep, less subjective fatigue and better mood.

  7. Circadian rhythm of energy expenditure and oxygen consumption.

    PubMed

    Leuck, Marlene; Levandovski, Rosa; Harb, Ana; Quiles, Caroline; Hidalgo, Maria Paz

    2014-02-01

    This study aimed to evaluate the effect of continuous and intermittent methods of enteral nutrition (EN) administration on circadian rhythm. Thirty-four individuals, aged between 52 and 80 years, were fed through a nasoenteric tube. Fifteen individuals received a continuous infusion for 24 hours/d, and 19 received an intermittent infusion in comparable quantities, every 4 hours from 8:00 to 20:00. In each patient, 4 indirect calorimetric measurements were carried out over 24 hours (A: 7:30, B: 10:30, C: 14:30, and D: 21:30) for 3 days. Energy expenditure and oxygen consumption were significantly higher in the intermittent group than in the continuous group (1782 ± 862 vs 1478 ± 817 kcal/24 hours, P = .05; 257 125 vs 212 117 ml/min, P = .048, respectively). The intermittent group had higher levels of energy expenditure and oxygen consumption at all the measured time points compared with the continuous group. energy expenditure and oxygen consumption in both groups were significantly different throughout the day for 3 days. There is circadian rhythm variation of energy expenditure and oxygen consumption with continuous and intermittent infusion for EN. This suggests that only one indirect daily calorimetric measurement is not able to show the patient's true needs. Energy expenditure is higher at night with both food administration methods. Moreover, energy expenditure and oxygen consumption are higher with the intermittent administration method at all times.

  8. Organizational influence of the postnatal testosterone surge on the circadian rhythm of core body temperature of adult male rats.

    PubMed

    Zuloaga, Damian G; McGivern, Robert F; Handa, Robert J

    2009-05-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus coordinates physiological and behavioral circadian rhythms such as activity, body temperature, and hormone secretion. Circadian rhythms coordinated by the SCN often show sex differences arising from both organizational and activational effects of gonadal hormones. In males, little is known about the organizational role of testosterone on the circadian regulation of core body temperature (CBT) in adulthood. To explore this, we castrated or sham-operated male rats on the day of birth, and at 4 months of age, implanted them with transmitters that measured CBT rhythms under a 12:12 light/dark cycle. This study revealed a significantly earlier rise in CBT during the light phase in neonatally castrated males. Subsequently, we found that treating neonatally castrated males with testosterone propionate (TP) in adulthood did not reverse the effect of neonatal castration, thus indicating an organizational role for testosterone. In contrast, a single injection of TP at the time of neonatal surgery, to mimic the postnatal surge of testosterone, coupled with TP treatment in adulthood, normalized the circadian rise in CBT. In a final study we examined CBT circadian rhythms in intact adult male and female rats and detected no differences in the rise of CBT during the light phase, although there was a greater overall elevation in female CBT. Together, results of these studies reveal an early organizational role of testosterone in males on the timing of the circadian rise of CBT, a difference that does not appear to reflect "defeminization".

  9. Circadian rhythm adaptation to simulated night shift work: effect of nocturnal bright-light duration.

    PubMed

    Eastman, C I; Liu, L; Fogg, L F

    1995-07-01

    We compared bright-light durations of 6, 3 and 0 hours (i.e. dim light) during simulated night shifts for phase shifting the circadian rectal temperature rhythm to align with a 12-hour shift of the sleep schedule. After 10 baseline days there were 8 consecutive night-work, day-sleep days, with 8-hour sleep (dark) periods. The bright light (about 5,000 lux, around the baseline temperature minimum) was used during all 8 night shifts, and dim light was < 500 lux. This was a field study in which subjects (n = 46) went outside after the night shifts and slept at home. Substantial circadian adaptation (i.e. a large cumulative temperature rhythm phase shift) was produced in many subjects in the bright light groups, but not in the dim light group. Six and 3 hours of bright light were each significantly better than dim light for phase shifting the temperature rhythm, but there was no significant difference between 6 and 3 hours. Thus, durations > 3 hours are probably not necessary in similar shift-work situations. Larger temperature rhythm phase shifts were associated with better subjective daytime sleep, less subjective fatigue and better overall mood.

  10. Purinergic Signaling in Neuron-Astrocyte Interactions, Circadian Rhythms, and Alcohol Use Disorder

    PubMed Central

    Lindberg, Daniel; Andres-Beck, Lindsey; Jia, Yun-Fang; Kang, Seungwoo; Choi, Doo-Sup

    2018-01-01

    Alcohol use disorder (AUD) is a debilitating condition marked by cyclic patterns of craving, use, and withdrawal. These pathological behaviors are mediated by multiple neurotransmitter systems utilizing glutamate, GABA, dopamine, ATP, and adenosine. In particular, purines such as ATP and adenosine have been demonstrated to alter the phase and function of the circadian clock and are reciprocally regulated by the clock itself. Importantly, chronic ethanol intake has been demonstrated to disrupt the molecular circadian clock and is associated with altered circadian patterns of activity and sleep. Moreover, ethanol has been demonstrated to disrupt purinergic signaling, while dysfunction of the purinergic system has been implicated in conditions of drug abuse such as AUD. In this review, we summarize our current knowledge regarding circadian disruption by ethanol, focusing on the reciprocal relationship that exists between oscillatory neurotransmission and the molecular circadian clock. In particular, we offer detailed explanations and hypotheses regarding the concerted regulation of purinergic signaling and circadian oscillations by neurons and astrocytes, and review the diverse mechanisms by which purinergic dysfuction may contribute to circadian disruption or alcohol abuse. Finally, we describe the mechanisms by which ethanol may disrupt or hijack endogenous circadian rhythms to induce the maladaptive behavioral patterns associated with AUD. PMID:29467662

  11. Why a fly? Using Drosophila to understand the genetics of circadian rhythms and sleep.

    PubMed

    Hendricks, Joan C; Sehgal, Amita

    2004-03-15

    Among simple model systems, Drosophila has specific advantages for neurobehavioral investigations. It has been particularly useful for understanding the molecular basis of circadian rhythms. In addition, the genetics of fruit-fly sleep are beginning to develop. This review summarizes the current state of understanding of circadian rhythms and sleep in the fruit fly for the readers of Sleep. We note where information is available in mammals, for comparison with findings in fruit flies, to provide an evolutionary perspective, and we focus on recent findings and new questions. We propose that sleep-specific neural activity may alter cellular function and thus accomplish the restorative function or functions of sleep. In conclusion, we sound some cautionary notes about some of the complexities of working with this "simple" organism.

  12. Melatonin promotes circadian rhythm-induced proliferation through Clock/histone deacetylase 3/c-Myc interaction in mouse adipose tissue.

    PubMed

    Liu, Zhenjiang; Gan, Lu; Luo, Dan; Sun, Chao

    2017-05-01

    Melatonin is synthesized in the pineal gland and controls circadian rhythm of peripheral adipose tissue, resulting in changes in body weight. Although core regulatory components of clock rhythmicity have been defined, insight into the mechanisms of circadian rhythm-mediated proliferation in adipose tissue is still limited. Here, we showed that melatonin (20 mg/kg/d) promoted circadian and proliferation processes in white adipose tissue. The circadian amplitudes of brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (Bmal1, P<.05) and circadian locomotor output cycles kaput (Clock, P<.05), period 2 (Per2, P<.05), cyclin E (P<.05), and c-Myc (P<.05) were directly increased by melatonin in adipose tissue. Melatonin also promoted cell cycle and increased cell numbers (P<.05), which was correlated with the Clock expression (P<.05). Further analysis demonstrated that Clock bound to the E-box elements in the promoter region of c-Myc and then directly stimulated c-Myc transcription. Moreover, Clock physically interacted with histone deacetylase 3 (HDAC3) and formed a complex with c-Myc to promote adipocyte proliferation. Melatonin also attenuated circadian disruption and promoted adipocyte proliferation in chronic jet-lagged mice and obese mice. Thus, our study found that melatonin promoted adipocyte proliferation by forming a Clock/HDAC3/c-Myc complex and subsequently driving the circadian amplitudes of proliferation genes. Our data reveal a novel mechanism that links circadian rhythm to cell proliferation in adipose tissue. These findings also identify a new potential means for melatonin to prevent and treat sleep deprivation-caused obesity. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Nonentrained circadian rhythms of melatonin in submariners scheduled to an 18-hour day.

    PubMed

    Kelly, T L; Neri, D F; Grill, J T; Ryman, D; Hunt, P D; Dijk, D J; Shanahan, T L; Czeisler, C A

    1999-06-01

    The human circadian timing system has previously been shown to free run with a period slightly longer than 24 h in subjects living in the laboratory under conditions of forced desynchrony. In forced desynchrony, subjects are shielded from bright light and periodic time cues and are required to live on a day length outside the range of circadian entrainment. The work schedule used for most personnel aboard American submarines is 6 h on duty alternating with 12 h off duty. This imposed 18-h cycle is too short for human circadian synchronization, especially given that there is no bright-light exposure aboard submarines. However, crew members are exposed to 24-h stimuli that could mediate synchronization, such as clocks and social contacts with personnel who are living on a 24-h schedule. The authors investigated circadian rhythms of salivary melatonin in 20 crew members during a prolonged voyage on a Trident nuclear submarine. The authors found that in crew members living on the 18-h duty cycle, the endogenous rhythm of melatonin showed an average period of 24.35 h (n = 12, SD = 0.18 h). These data indicate that social contacts and knowledge of clock time are insufficient for entrainment to a 24-h period in personnel living by an 18-h rest-activity cycle aboard a submarine.

  14. Relationship of endogenous circadian melatonin and temperature rhythms to self-reported preference for morning or evening activity in young and older people

    NASA Technical Reports Server (NTRS)

    Duffy, J. F.; Dijk, D. J.; Hall, E. F.; Czeisler, C. A.

    1999-01-01

    BACKGROUND: Morningness-eveningness refers to interindividual differences in preferred timing of behavior (i.e., bed and wake times). Older people have earlier wake times and rate themselves as more morning-like than young adults. It has been reported that the phase of circadian rhythms is earlier in morning-types than in evening types, and that older people have earlier phases than young adults. These changes in phase have been considered to be the chronobiological basis of differences in preferred bed and wake times and age-related changes therein. Whether such differences in phase are associated with changes in the phase relationship between endogenous circadian rhythms and the sleep-wake cycle has not been investigated previously. METHODS: We investigated the association between circadian phase, the phase relationship between the sleep-wake cycle and circadian rhythms, and morningness-eveningness, and their interaction with aging. In this circadian rhythm study, 68 young and 40 older subjects participated. RESULTS: Among the young subjects, the phase of the melatonin and core temperature rhythms occurred earlier in morning than in evening types and the interval between circadian phase and usual wake time was longer in morning types. Thus, while evening types woke at a later clock hour than morning types, morning types actually woke at a later circadian phase. Comparing young and older morning types we found that older morning types had an earlier circadian phase and a shorter phase-wake time interval. The shorter phase-waketime interval in older "morning types" is opposite to the change associated with morningness in young people, and is more similar to young evening types. CONCLUSIONS: These findings demonstrate an association between circadian phase, the relationship between the sleep-wake cycle and circadian phase, and morningness-eveningness in young adults. Furthermore, they demonstrate that age-related changes in phase angle cannot be attributed fully to

  15. Practice parameters for the clinical evaluation and treatment of circadian rhythm sleep disorders. An American Academy of Sleep Medicine report.

    PubMed

    Morgenthaler, Timothy I; Lee-Chiong, Teofilo; Alessi, Cathy; Friedman, Leah; Aurora, R Nisha; Boehlecke, Brian; Brown, Terry; Chesson, Andrew L; Kapur, Vishesh; Maganti, Rama; Owens, Judith; Pancer, Jeffrey; Swick, Todd J; Zak, Rochelle

    2007-11-01

    The expanding science of circadian rhythm biology and a growing literature in human clinical research on circadian rhythm sleep disorders (CRSDs) prompted the American Academy of Sleep Medicine (AASM) to convene a task force of experts to write a review of this important topic. Due to the extensive nature of the disorders covered, the review was written in two sections. The first review paper, in addition to providing a general introduction to circadian biology, addresses "exogenous" circadian rhythm sleep disorders, including shift work disorder (SWD) and jet lag disorder (JLD). The second review paper addresses the "endogenous" circadian rhythm sleep disorders, including advanced sleep phase disorder (ASPD), delayed sleep phase disorder (DSPD), irregular sleep-wake rhythm (ISWR), and the non-24-hour sleep-wake syndrome (nonentrained type) or free-running disorder (FRD). These practice parameters were developed by the Standards of Practice Committee and reviewed and approved by the Board of Directors of the AASM to present recommendations for the assessment and treatment of CRSDs based on the two accompanying comprehensive reviews. The main diagnostic tools considered include sleep logs, actigraphy, the Morningness-Eveningness Questionnaire (MEQ), circadian phase markers, and polysomnography. Use of a sleep log or diary is indicated in the assessment of patients with a suspected circadian rhythm sleep disorder (Guideline). Actigraphy is indicated to assist in evaluation of patients suspected of circadian rhythm disorders (strength of recommendation varies from "Option" to "Guideline," depending on the suspected CRSD). Polysomnography is not routinely indicated for the diagnosis of CRSDs, but may be indicated to rule out another primary sleep disorder (Standard). There is insufficient evidence to justify the use of MEQ for the routine clinical evaluation of CRSDs (Option). Circadian phase markers are useful to determine circadian phase and confirm the diagnosis of

  16. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver

    PubMed Central

    Atger, Florian; Gobet, Cédric; Marquis, Julien; Martin, Eva; Wang, Jingkui; Weger, Benjamin; Lefebvre, Grégory; Descombes, Patrick; Naef, Felix; Gachon, Frédéric

    2015-01-01

    Diurnal oscillations of gene expression are a hallmark of rhythmic physiology across most living organisms. Such oscillations are controlled by the interplay between the circadian clock and feeding rhythms. Although rhythmic mRNA accumulation has been extensively studied, comparatively less is known about their transcription and translation. Here, we quantified simultaneously temporal transcription, accumulation, and translation of mouse liver mRNAs under physiological light–dark conditions and ad libitum or night-restricted feeding in WT and brain and muscle Arnt-like 1 (Bmal1)-deficient animals. We found that rhythmic transcription predominantly drives rhythmic mRNA accumulation and translation for a majority of genes. Comparison of wild-type and Bmal1 KO mice shows that circadian clock and feeding rhythms have broad impact on rhythmic gene expression, Bmal1 deletion affecting surprisingly both transcriptional and posttranscriptional levels. Translation efficiency is differentially regulated during the diurnal cycle for genes with 5′-Terminal Oligo Pyrimidine tract (5′-TOP) sequences and for genes involved in mitochondrial activity, many harboring a Translation Initiator of Short 5′-UTR (TISU) motif. The increased translation efficiency of 5′-TOP and TISU genes is mainly driven by feeding rhythms but Bmal1 deletion also affects amplitude and phase of translation, including TISU genes. Together this study emphasizes the complex interconnections between circadian and feeding rhythms at several steps ultimately determining rhythmic gene expression and translation. PMID:26554015

  17. Sleeping sickness is a circadian disorder.

    PubMed

    Rijo-Ferreira, Filipa; Carvalho, Tânia; Afonso, Cristina; Sanches-Vaz, Margarida; Costa, Rui M; Figueiredo, Luísa M; Takahashi, Joseph S

    2018-01-04

    Sleeping sickness is a fatal disease caused by Trypanosoma brucei, a unicellular parasite that lives in the bloodstream and interstitial spaces of peripheral tissues and the brain. Patients have altered sleep/wake cycles, body temperature, and endocrine profiles, but the underlying causes are unknown. Here, we show that the robust circadian rhythms of mice become phase advanced upon infection, with abnormal activity occurring during the rest phase. This advanced phase is caused by shortening of the circadian period both at the behavioral level as well as at the tissue and cell level. Period shortening is T. brucei specific and independent of the host immune response, as co-culturing parasites with explants or fibroblasts also shortens the clock period, whereas malaria infection does not. We propose that T. brucei causes an advanced circadian rhythm disorder, previously associated only with mutations in clock genes, which leads to changes in the timing of sleep.

  18. A circadian rhythm in skill-based errors in aviation maintenance.

    PubMed

    Hobbs, Alan; Williamson, Ann; Van Dongen, Hans P A

    2010-07-01

    In workplaces where activity continues around the clock, human error has been observed to exhibit a circadian rhythm, with a characteristic peak in the early hours of the morning. Errors are commonly distinguished by the nature of the underlying cognitive failure, particularly the level of intentionality involved in the erroneous action. The Skill-Rule-Knowledge (SRK) framework of Rasmussen is used widely in the study of industrial errors and accidents. The SRK framework describes three fundamental types of error, according to whether behavior is under the control of practiced sensori-motor skill routines with minimal conscious awareness; is guided by implicit or explicit rules or expertise; or where the planning of actions requires the conscious application of domain knowledge. Up to now, examinations of circadian patterns of industrial errors have not distinguished between different types of error. Consequently, it is not clear whether all types of error exhibit the same circadian rhythm. A survey was distributed to aircraft maintenance personnel in Australia. Personnel were invited to anonymously report a safety incident and were prompted to describe, in detail, the human involvement (if any) that contributed to it. A total of 402 airline maintenance personnel reported an incident, providing 369 descriptions of human error in which the time of the incident was reported and sufficient detail was available to analyze the error. Errors were categorized using a modified version of the SRK framework, in which errors are categorized as skill-based, rule-based, or knowledge-based, or as procedure violations. An independent check confirmed that the SRK framework had been applied with sufficient consistency and reliability. Skill-based errors were the most common form of error, followed by procedure violations, rule-based errors, and knowledge-based errors. The frequency of errors was adjusted for the estimated proportion of workers present at work/each hour of the day

  19. Intranasal administration of Exendin-4 antagonizes Aβ31-35-induced disruption of circadian rhythm and impairment of learning and memory.

    PubMed

    Wang, Xiaohui; Wang, Li; Xu, Yunyun; Yu, Qianqian; Li, Lin; Guo, Yanlin

    2016-12-01

    The deposition of β-amyloid protein (Aβ) is one of the pathological characteristics of Alzheimer's disease (AD) and can disrupt circadian rhythm and impair learning and memory. Exendin-4, a therapeutic drug for type II diabetes mellitus (T2DM), exerts neuroprotective effects from the toxicity of Aβ. However, it is not clear whether Exendin-4 protects against Aβ-induced disruption of circadian rhythm. The neuroprotective effects of Exendin-4 have been studied using injection of Exendin-4 into the lateral ventricle and abdomen. However, these procedures are not suitable for clinical application. First, male C57BL/6 mice received triple distilled water or Exendin-4 (0.1 nmol, 0.5 nmol) by intranasal administration. Exendin-4 levels were measured in the hippocampal samples using an ELISA Kit. Then, the study examined whether intranasal or hippocampal administration of Exendin-4 antagonized Aβ-induced disruption of circadian rhythm as well as impairment of learning and memory using the wheel-running activity assay and the Morris water maze test. The study showed that intranasally administered Exendin-4 passed through the blood-brain barrier. Aβ31-35 given by intrahippocampal injection disrupted circadian rhythm and impaired learning and memory in C57BL/6 mice, and Exendin-4 given by nasal cavity or hippocampal administration ameliorated Aβ31-35-induced circadian rhythm disturbance of locomotor activity and impairment of learning and memory. These findings provide pivotal experimental support for further study of the neuroprotective effects and clinical application of Exendin-4.

  20. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging

    PubMed Central

    Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei

    2015-01-01

    The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants. PMID:26059057

  1. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging

    NASA Astrophysics Data System (ADS)

    Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei

    2015-06-01

    The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants.

  2. Advancing circadian rhythms before eastward flight: a strategy to prevent or reduce jet lag.

    PubMed

    Eastman, Charmane I; Gazda, Clifford J; Burgess, Helen J; Crowley, Stephanie J; Fogg, Louis F

    2005-01-01

    To develop a practical pre-eastward flight treatment to advance circadian rhythms as much as possible but not misalign them with sleep. One group had their sleep schedule advanced by 1 hour per day and another by 2 hours per day. Baseline at home, treatment in lab. Young healthy adults (11 men, 15 women) between the ages of 22 and 36 years. Three days of a gradually advancing sleep schedule (1 or 2 hours per day) plus intermittent morning bright light (one-half hour approximately 5000 lux, one-half hour of <60 lux) for 3.5 hours. The dim light melatonin onset was assessed before and after the 3-day treatment. Subjects completed daily sleep logs and symptom questionnaires and wore wrist activity monitors. The dim light melatonin onset advanced more in the 2-hours-per-day group than in the 1-hour-per-day group (median phase advances of 1.9 and 1.4 hours), but the difference between the means (1.8 and 1.5 hours) was not statistically significant. By the third treatment day, circadian rhythms were misaligned relative to the sleep schedule, and subjects had difficulty falling asleep in the 2-hours-per-day group, but this was not the case in the 1-hour-per-day group. Nevertheless, the 2-hours-per-day group did slightly better on the symptom questionnaires. In general, sleep disturbance and other side effects were small. A gradually advancing sleep schedule with intermittent morning bright light can be used to advance circadian rhythms before eastward flight and, thus, theoretically, prevent or reduce subsequent jet lag. Given the morning light treatment used here, advancing the sleep schedule 2 hours per day is not better than advancing it 1 hour per day because it was too fast for the advance in circadian rhythms. A diagram is provided to help the traveler plan a preflight schedule.

  3. A Novel Quantitative Trait Locus on Mouse Chromosome 18, “era1,” Modifies the Entrainment of Circadian Rhythms

    PubMed Central

    Wisor, Jonathan P.; Striz, Martin; DeVoss, Jason; Murphy, Greer M.; Edgar, Dale M.; O'Hara, Bruce F.

    2007-01-01

    Study Objectives: The mammalian circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus conveys 24-h rhythmicity to sleep-wake cycles, locomotor activity, and other behavioral and physiological processes. The timing of rhythms relative to the light/dark (LD12:12) cycle is influenced in part by the endogenous circadian period and the time of day specific sensitivity of the clock to light. We now describe a novel circadian rhythm phenotype, and a locus influencing that phenotype, in a segregating population of mice. Methods: By crossbreeding 2 genetically distinct nocturnal strains of mice (Cast/Ei and C57BL/6J) and backcrossing the resulting progeny to Cast/Ei, we have produced a novel circadian phenotype, called early runner mice. Results: Early runner mice entrain to a light/dark cycle at an advanced phase, up to 9 hours before dark onset. This phenotype is not significantly correlated with circadian period in constant darkness and is not associated with disruption of molecular circadian rhythms in the SCN, as assessed by analysis of period gene expression. We have identified a genomic region that regulates this phenotype—a major quantitative trait locus on chromosome 18 (near D18Mit184) that we have named era1 for Early Runner Activity locus one. Phase delays caused by light exposure early in the subjective night were of smaller magnitude in backcross offspring that were homozygous Cast/Ei at D18Mit184 than in those that were heterozygous at this locus. Conclusion: Genetic variability in the circadian response to light may, in part, explain the variance in phase angle of entrainment in this segregating mouse population. Citation: Wisor JP; Striz M; DeVoss J; Murphy GM; Edgar DM; O'Hara BF. A novel quantitative trait locus on mouse chromosome 18, “era1,” modifies the entrainment of circadian rhythms. SLEEP 2007;30(10):1255-1263. PMID:17969459

  4. Circadian Clock Protein Content and Daily Rhythm of Locomotor Activity Are Altered after Chronic Exposure to Lead in Rat

    PubMed Central

    Sabbar, Mariam; Dkhissi-Benyahya, Ouria; Benazzouz, Abdelhamid; Lakhdar-Ghazal, Nouria

    2017-01-01

    Lead exposure has been reported to produce many clinical features, including parkinsonism. However, its consequences on the circadian rhythms are still unknown. Here we aimed to examine the circadian rhythms of locomotor activity following lead intoxication and investigate the mechanisms by which lead may induce alterations of circadian rhythms in rats. Male Wistar rats were injected with lead or sodium acetate (10 mg/kg/day, i.p.) during 4 weeks. Both groups were tested in the “open field” to quantify the exploratory activity and in the rotarod to evaluate motor coordination. Then, animals were submitted to continuous 24 h recordings of locomotor activity under 14/10 Light/dark (14/10 LD) cycle and in complete darkness (DD). At the end of experiments, the clock proteins BMAL1, PER1-2, and CRY1-2 were assayed in the suprachiasmatic nucleus (SCN) using immunohistochemistry. We showed that lead significantly reduced the number of crossing in the open field, impaired motor coordination and altered the daily locomotor activity rhythm. When the LD cycle was advanced by 6 h, both groups adjusted their daily locomotor activity to the new LD cycle with high onset variability in lead-intoxicated rats compared to controls. Lead also led to a decrease in the number of immunoreactive cells (ir-) of BMAL1, PER1, and PER2 without affecting the number of ir-CRY1 and ir-CRY2 cells in the SCN. Our data provide strong evidence that lead intoxication disturbs the rhythm of locomotor activity and alters clock proteins expression in the SCN. They contribute to the understanding of the mechanism by which lead induce circadian rhythms disturbances. PMID:28970786

  5. Sleep-wake profiles and circadian rhythms of core temperature and melatonin in young people with affective disorders.

    PubMed

    Carpenter, Joanne S; Robillard, Rébecca; Hermens, Daniel F; Naismith, Sharon L; Gordon, Christopher; Scott, Elizabeth M; Hickie, Ian B

    2017-11-01

    While disturbances of the sleep-wake cycle are common in people with affective disorders, the characteristics of these disturbances differ greatly between individuals. This heterogeneity is likely to reflect multiple underlying pathophysiologies, with different perturbations in circadian systems contributing to the variation in sleep-wake cycle disturbances. Such disturbances may be particularly relevant in adolescents and young adults with affective disorders as circadian rhythms undergo considerable change during this key developmental period. This study aimed to identify profiles of sleep-wake disturbance in young people with affective disorders and investigate associations with biological circadian rhythms. Fifty young people with affective disorders and 19 control participants (aged 16-31 years) underwent actigraphy monitoring for approximately two weeks to derive sleep-wake cycle parameters, and completed an in-laboratory assessment including evening dim-light saliva collection for melatonin assay and overnight continuous core body temperature measurement. Cluster analysis based on sleep-wake cycle parameters identified three distinct patient groups, characterised by 'delayed sleep-wake', 'disrupted sleep', and 'long sleep' respectively. The 'delayed sleep-wake' group had both delayed melatonin onset and core temperature nadir; whereas the other two cluster groups did not differ from controls on these circadian markers. The three groups did not differ on clinical characteristics. These results provide evidence that only some types of sleep-wake disturbance in young people with affective disorders are associated with fundamental circadian perturbations. Consequently, interventions targeting endogenous circadian rhythms to promote a phase shift may be particularly relevant in youth with affective disorders presenting with delayed sleep-wake cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Pharmacology of Myopia and Potential Role for Intrinsic Retinal Circadian Rhythms

    PubMed Central

    Stone, Richard A.; Pardue, Machelle T.; Iuvone, P. Michael; Khurana, Tejvir S.

    2013-01-01

    ; these rhythms shift in eyes developing experimental ametropia. Long-standing clinical ideas about myopia in particular have postulated a role for ambient lighting, although molecular or cellular mechanisms for these speculations have remained obscure. Experimental myopia induced by the wearing of a concave spectacle lens alters the retinal expression of a significant proportion of intrinsic circadian clock genes, as well as genes encoding a melatonin receptor and the photopigment melanopsin. Together this evidence suggests a hypothesis that the retinal clock and intrinsic retinal circadian rhythms may be fundamental to the mechanism(s) regulating refractive development, and that disruptions in circadian signals may produce refractive errors. Here we review the potential role of biological rhythms in refractive development. While much future research is needed, this hypothesis could unify many of the disparate clinical and laboratory observations addressing the pathogenesis of refractive errors. PMID:23313151

  7. Agomelatine as chronopsychopharmaceutics restoring circadian rhythms and enhancing resilience to stress: a wishfull thinking or an innovative strategy for superior management of depression?

    PubMed

    Jakovljević, Miro

    2011-03-01

    While the research and treatment focus of biological aspects of depression has traditionally centered on neutrotransmitters disturbances, there has been relatively little attention paid to the chronobiological aspects of depression that offer rapid acting chronotherapeutis and from recently also an innovative circadian rhythms resynchronizing antidepressant. This article discusses chronobiological aspects of psychiatric treatment, particularly related to depression. It is concerned with chronotherapeutics and pharmacological interventions to resychronize circadian rhythms, particularly focused on agomelatine, an innovative antidepressant targeting melatonergic M1/M2 and serotonergic 5-HT2c receptors. Depression can be explained as dysfunction at the nexus of the body, brain and mind, three mutually very dependent components, associated through circadian pace makers at the molecular, cellular, physiological and behavioral levels. Mental disorders, particularly depression, are common in people with circadian rest-activity cycle disturbances and sleep-wake problems. The circadian rest-activity and sleep-wake cycle disturbances are risk factors for developing and recurrence of mental disorders as well as, what is very important, they are associated with worse outcome. The interrelationships between circadian rhythm disturbances and depression is very complex, and the fundamental question is whether they trigger depression or whether these disturbances arise as a consequence of the disease. However, both depression and circadian rhythm disturbances may have a common aetiology: a decreased cellurar resilience associated with lower resistance to stressful events. Treating depression pharmacologicaly through the restoration of circadian rhythms may open a new era of superior management of depression and other mental disorders. Chronotherapeutic strategies that reset the internal clock may have specific advantage for the treatment of depression and other mental disorders

  8. Circadian and circannual rhythms in the metabolism and ventilation of red-eared sliders (Trachemys scripta elegans).

    PubMed

    Reyes, Catalina; Milsom, William K

    2010-01-01

    Endogenous circadian and circannual rhythms may exist in the metabolism, ventilation, and breathing pattern of turtles that could further prolong dive times during daily and seasonal periods of reduced activity. To test this hypothesis, turtles were held under seasonal or constant environmental conditions over a 1-yr period, and in each season, V(O)(2) and respiratory variables were measured in all animals under both the prevailing seasonal conditions and the constant conditions for 24 h. Endogenous circadian and circannual rhythms in metabolism and ventilation occurred independent of ambient temperature, photoperiod, and activity, although long-term entrainment to daily and seasonal changes in temperature and photoperiod were required for them to be expressed. Metabolism and ventilation were always higher during the photophase, and the day-night difference was greater at any given temperature when the photoperiod was provided. When corrected for temperature, turtles had elevated metabolic and ventilation rates in the fall and spring (corresponding to the reproductive seasons) and suppressed metabolism and ventilation during winter. The strength of the circadian rhythm varied seasonally, with proportionately larger day-night differences in colder seasons. Daily and seasonal cycles in ventilation largely followed metabolism, although daily and seasonal changes did occur in the breathing pattern independent of levels of total ventilation. These endogenous circadian and circannual changes in metabolism, ventilation, and breathing pattern prolonged dive times at night and in winter and may serve to reduce the costs of breathing and transport and risk of predation.

  9. Effects of menstrual cycle phase and oral contraceptives on alertness, cognitive performance, and circadian rhythms during sleep deprivation

    NASA Technical Reports Server (NTRS)

    Wright, K. P. Jr; Badia, P.; Czeisler, C. A. (Principal Investigator)

    1999-01-01

    The influence of menstrual cycle phase and oral contraceptive use on neurobehavioral function and circadian rhythms were studied in healthy young women (n = 25) using a modified constant routine procedure during 24 h of sleep deprivation. Alertness and performance worsened across sleep deprivation and also varied with circadian phase. Entrained circadian rhythms of melatonin and body temperature were evident in women regardless of menstrual phase or oral contraceptive use. No significant difference in melatonin levels, duration, or phase was observed between women in the luteal and follicular phases, whereas oral contraceptives appeared to increase melatonin levels. Temperature levels were higher in the luteal phase and in oral contraceptive users compared to women in the follicular phase. Alertness on the maintenance of wakefulness test and some tests of cognitive performance were poorest for women in the follicular phase especially near the circadian trough of body temperature. These observations suggest that hormonal changes associated with the menstrual cycle and the use of oral contraceptives contribute to changes in nighttime waking neurobehavioral function and temperature level whereas these factors do not appear to affect circadian phase.

  10. Characterization of locomotor activity circadian rhythms in athymic nude mice

    PubMed Central

    2013-01-01

    Background The relation between circadian dysregulation and cancer incidence and progression has become a topic of major interest over the last decade. Also, circadian timing has gained attention regarding the use of chronopharmacology-based therapeutics. Given its lack of functional T lymphocytes, due to a failure in thymus development, mice carrying the Foxn1(Δ/Δ) mutation (nude mice) have been traditionally used in studies including implantation of xenogeneic tumors. Since the immune system is able to modulate the circadian clock, we investigated if there were alterations in the circadian system of the athymic mutant mice. Methods General activity circadian rhythms in 2–4 month-old Foxn1(Δ/Δ) mice (from Swiss Webster background) and their corresponding wild type (WT) controls was recorded. The response of the circadian system to different manipulations (constant darkness, light pulses and shifts in the light–dark schedule) was analyzed. Results Free-running periods of athymic mice and their wild type counterpart were 23.86 ± 0.03 and 23.88 ± 0.05 hours, respectively. Both strains showed similar phase delays in response to 10 or 120 minutes light pulses applied in the early subjective night and did not differ in the number of c-Fos-expressing cells in the suprachiasmatic nuclei, after a light pulse at circadian time (CT) 15. Similarly, the two groups showed no significant difference in the time needed for resynchronization after 6-hour delays or advances in the light–dark schedule. The proportion of diurnal activity, phase-angle with the zeitgeber, subjective night duration and other activity patterns were similar between the groups. Conclusions Since athymic Foxn1(Δ/Δ) mice presented no differences with the WT controls in the response of the circadian system to the experimental manipulations performed in this work, we conclude that they represent a good model in studies that combine xenograft implants with either alteration of the circadian

  11. Gravity and thermoregulation: metabolic changes and circadian rhythms

    NASA Technical Reports Server (NTRS)

    Robinson, E. L.; Fuller, C. A.

    2000-01-01

    Gravity appears to alter thermoregulation through changes in both the regulated level of body temperature and the rhythmic organization of temperature regulation. Gravity has been hypothesized to have an associated metabolic cost. Increased resting energy expenditure and dietary intake have been observed in animals during centrifuge experiments at hypergravity. Thus far, only animals have shown a corresponding reduction in metabolism in microgravity. Altered heat loss has been proposed as a response to altered gravitational environments, but remains documented only as changes in skin temperature. Changes in circadian timing, including the body temperature rhythm, have been shown in both hypergravity and microgravity, and probably contribute to alterations in sleep and performance. Changes in body temperature regulation may result from circadian disturbance, from the direct or indirect actions of gravity on the regulated temperature, or from changes in thermoregulatory effectors (heat production and heat loss) due to altered gravitational load and convective changes. To date, however, we have little data on the underlying thermoregulatory changes in altered gravity, and thus the precise mechanisms by which gravity alters temperature regulation remain largely unknown.

  12. Effects of short-term quetiapine treatment on emotional processing, sleep and circadian rhythms.

    PubMed

    Rock, Philippa L; Goodwin, Guy M; Wulff, Katharina; McTavish, Sarah F B; Harmer, Catherine J

    2016-03-01

    Quetiapine is an atypical antipsychotic that can stabilise mood from any index episode of bipolar disorder. This study investigated the effects of seven-day quetiapine administration on sleep, circadian rhythms and emotional processing in healthy volunteers. Twenty healthy volunteers received 150 mg quetiapine XL for seven nights and 20 matched controls received placebo. Sleep-wake actigraphy was completed for one week both pre-dose and during drug treatment. On Day 8, participants completed emotional processing tasks. Actigraphy revealed that quetiapine treatment increased sleep duration and efficiency, delayed final wake time and had a tendency to reduce within-day variability. There were no effects of quetiapine on subjective ratings of mood or energy. Quetiapine-treated participants showed diminished bias towards positive words and away from negative words during recognition memory. Quetiapine did not significantly affect facial expression recognition, emotional word categorisation, emotion-potentiated startle or emotional word/faces dot-probe vigilance reaction times. These changes in sleep timing and circadian rhythmicity in healthy volunteers may be relevant to quetiapine's therapeutic actions. Effects on emotional processing did not emulate the effects of antidepressants. The effects of quetiapine on sleep and circadian rhythms in patients with bipolar disorder merit further investigation to elucidate its mechanisms of action. © The Author(s) 2016.

  13. Traffic crash accidents in Tehran, Iran: Its relation with circadian rhythm of sleepiness.

    PubMed

    Sadeghniiat-Haghighi, Khosro; Yazdi, Zohreh; Moradinia, Mohsen; Aminian, Omid; Esmaili, Alireza

    2015-01-01

    Road traffic accidents are one of main problems in Iran. Multiple factors cause traffic accidents and the most important one is sleepiness. This factor, however, is given less attention in our country. Road traffic accidents relevant to sleepiness are studied. In this cross-sectional study, all road traffic accidents relevant to sleepiness, which were reported by police, were studied in Tehran province in 2009. The risk of road traffic accidents due to sleepiness was increased by more than sevenfold (odds ratio = 7.33) in low alertness hours (0:00-6:00) compared to other time of day. The risk of road traffic accidents due to sleepiness was decreased by 0.15-fold (odds ratio = 0.15) in hours with maximum of alertness (18:00-22:00) of circadian rhythm compared to other time of day. The occurrence of road traffic accidents due to sleepiness has significant statistical relations with driving during lowest point of alertness of circadian rhythm.

  14. Circadian Rhythm of Wrist Temperature among Shift Workers in South Korea: A Prospective Observational Study

    PubMed Central

    Kim, Hyunjoo; Kang, Suk-Hoon; Choo, Sang-Hyo; Lee, In-Seok; Choi, Kyung-Hwa

    2017-01-01

    Background: Human body temperature varies with circadian rhythm. To determine the effect of shift work on the circadian rhythm of the distal-skin temperature, wrist temperatures were measured. Methods: Wrist-skin temperatures were measured by an iButton® Temperature Logger. It was measured every 3 min for two and eight consecutive working days in the day and shift workers, respectively. Mesor, amplitude, and acrophase were measured by Cosinor analysis. Results: The shift-worker amplitude dropped significantly as the night shift progressed (0.92 to 0.85 °C), dropped further during rest (0.69 °C), and rose during the morning-shift days (0.82 °C). Day workers still had higher amplitudes (0.93 °C) than the morning-shift workers. The acrophase was delayed during the four night-shift days, then advanced during rest days and the morning-shift days. Nevertheless, the morning-shift worker acrophase was still significantly delayed compared to the day workers (08:03 a.m. vs. 04:11 a.m.). Conclusions: The further reduction of wrist-temperature amplitude during rest after the night shift may be due to the signal circadian rhythm disruption. Reduced amplitudes have been reported to be associated with intolerance to shift work. The findings of our study may help to design the most desirable schedule for shift workers. PMID:28946653

  15. Circadian Rhythm of Wrist Temperature among Shift Workers in South Korea: A Prospective Observational Study.

    PubMed

    Jang, Tae-Won; Kim, Hyunjoo; Kang, Suk-Hoon; Choo, Sang-Hyo; Lee, In-Seok; Choi, Kyung-Hwa

    2017-09-24

    Background : Human body temperature varies with circadian rhythm. To determine the effect of shift work on the circadian rhythm of the distal-skin temperature, wrist temperatures were measured. Methods : Wrist-skin temperatures were measured by an iButton ® Temperature Logger. It was measured every 3 min for two and eight consecutive working days in the day and shift workers, respectively. Mesor, amplitude, and acrophase were measured by Cosinor analysis. Results : The shift-worker amplitude dropped significantly as the night shift progressed (0.92 to 0.85 °C), dropped further during rest (0.69 °C), and rose during the morning-shift days (0.82 °C). Day workers still had higher amplitudes (0.93 °C) than the morning-shift workers. The acrophase was delayed during the four night-shift days, then advanced during rest days and the morning-shift days. Nevertheless, the morning-shift worker acrophase was still significantly delayed compared to the day workers (08:03 a.m. vs. 04:11 a.m.). Conclusions : The further reduction of wrist-temperature amplitude during rest after the night shift may be due to the signal circadian rhythm disruption. Reduced amplitudes have been reported to be associated with intolerance to shift work. The findings of our study may help to design the most desirable schedule for shift workers.

  16. Progestins alter photo-transduction cascade and circadian rhythm network in eyes of zebrafish (Danio rerio)

    NASA Astrophysics Data System (ADS)

    Zhao, Yanbin; Fent, Karl

    2016-02-01

    Environmental progestins are implicated in endocrine disruption in vertebrates. Additional targets that may be affected in organisms are poorly known. Here we report that progesterone (P4) and drospirenone (DRS) interfere with the photo-transduction cascade and circadian rhythm network in the eyes of zebrafish. Breeding pairs of adult zebrafish were exposed to P4 and DRS for 21 days with different measured concentrations of 7-742 ng/L and 99-13´650 ng/L, respectively. Of totally 10 key photo-transduction cascade genes analyzed, transcriptional levels of most were significantly up-regulated, or normal down-regulation was attenuated. Similarly, for some circadian rhythm genes, dose-dependent transcriptional alterations were also observed in the totally 33 genes analyzed. Significant alterations occurred even at environmental relevant levels of 7 ng/L P4. Different patterns were observed for these transcriptional alterations, of which, the nfil3 family displayed most significant changes. Furthermore, we demonstrate the importance of sampling time for the determination and interpretation of gene expression data, and put forward recommendations for sampling strategies to avoid false interpretations. Our results suggest that photo-transduction signals and circadian rhythm are potential targets for progestins. Further studies are required to assess alterations on the protein level, on physiology and behavior, as well as on implications in mammals.

  17. Acute dim light at night increases body mass, alters metabolism, and shifts core body temperature circadian rhythms.

    PubMed

    Borniger, Jeremy C; Maurya, Santosh K; Periasamy, Muthu; Nelson, Randy J

    2014-10-01

    The circadian system is primarily entrained by the ambient light environment and is fundamentally linked to metabolism. Mounting evidence suggests a causal relationship among aberrant light exposure, shift work, and metabolic disease. Previous research has demonstrated deleterious metabolic phenotypes elicited by chronic (>4 weeks) exposure to dim light at night (DLAN) (∼ 5 lux). However, the metabolic effects of short-term (<2 weeks) exposure to DLAN are unspecified. We hypothesized that metabolic alterations would arise in response to just 2 weeks of DLAN. Specifically, we predicted that mice exposed to dim light would gain more body mass, alter whole body metabolism, and display altered body temperature (Tb) and activity rhythms compared to mice maintained in dark nights. Our data largely support these predictions; DLAN mice gained significantly more mass, reduced whole body energy expenditure, increased carbohydrate over fat oxidation, and altered temperature circadian rhythms. Importantly, these alterations occurred despite similar activity locomotor levels (and rhythms) and total food intake between groups. Peripheral clocks are potently entrained by body temperature rhythms, and the deregulation of body temperature we observed may contribute to metabolic problems due to "internal desynchrony" between the central circadian oscillator and temperature sensitive peripheral clocks. We conclude that even relatively short-term exposure to low levels of nighttime light can influence metabolism to increase mass gain.

  18. Effects of exposure to intermittent versus continuous red light on human circadian rhythms, melatonin suppression, and pupillary constriction.

    PubMed

    Ho Mien, Ivan; Chua, Eric Chern-Pin; Lau, Pauline; Tan, Luuan-Chin; Lee, Ivan Tian-Guang; Yeo, Sing-Chen; Tan, Sara Shuhui; Gooley, Joshua J

    2014-01-01

    Exposure to light is a major determinant of sleep timing and hormonal rhythms. The role of retinal cones in regulating circadian physiology remains unclear, however, as most studies have used light exposures that also activate the photopigment melanopsin. Here, we tested the hypothesis that exposure to alternating red light and darkness can enhance circadian resetting responses in humans by repeatedly activating cone photoreceptors. In a between-subjects study, healthy volunteers (n = 24, 21-28 yr) lived individually in a laboratory for 6 consecutive days. Circadian rhythms of melatonin, cortisol, body temperature, and heart rate were assessed before and after exposure to 6 h of continuous red light (631 nm, 13 log photons cm(-2) s(-1)), intermittent red light (1 min on/off), or bright white light (2,500 lux) near the onset of nocturnal melatonin secretion (n = 8 in each group). Melatonin suppression and pupillary constriction were also assessed during light exposure. We found that circadian resetting responses were similar for exposure to continuous versus intermittent red light (P = 0.69), with an average phase delay shift of almost an hour. Surprisingly, 2 subjects who were exposed to red light exhibited circadian responses similar in magnitude to those who were exposed to bright white light. Red light also elicited prolonged pupillary constriction, but did not suppress melatonin levels. These findings suggest that, for red light stimuli outside the range of sensitivity for melanopsin, cone photoreceptors can mediate circadian phase resetting of physiologic rhythms in some individuals. Our results also show that sensitivity thresholds differ across non-visual light responses, suggesting that cones may contribute differentially to circadian resetting, melatonin suppression, and the pupillary light reflex during exposure to continuous light.

  19. Effects of square-wave and simulated natural light-dark cycles on hamster circadian rhythms

    NASA Technical Reports Server (NTRS)

    Tang, I. H.; Murakami, D. M.; Fuller, C. A.

    1999-01-01

    Circadian rhythms of activity (Act) and body temperature (Tb) were recorded from male Syrian hamsters under square-wave (LDSq) and simulated natural (LDSN, with dawn and dusk transitions) light-dark cycles. Light intensity and data sampling were under the synchronized control of a laboratory computer. Changes in reactive and predictive onsets and offsets for the circadian rhythms of Act and Tb were examined in both lighting conditions. The reactive Act onset occurred 1.1 h earlier (P < 0.01) in LDSN than in LDSq and had a longer alpha-period (1.7 h; P < 0.05). The reactive Tb onset was 0.7 h earlier (P < 0.01) in LDSN. In LDSN, the predictive Act onset advanced by 0.3 h (P < 0.05), whereas the Tb predictive onset remained the same as in LDSq. The phase angle difference between Act and Tb predictive onsets decreased by 0.9 h (P < 0.05) in LDSN, but the offsets of both measures remained unchanged. In this study, animals exhibited different circadian entrainment characteristics under LDSq and LDSN, suggesting that gradual and abrupt transitions between light and dark may provide different temporal cues.

  20. Circannual and circadian rhythms in the concentration of corticosterone in the plasma of the edible frog (Rana esculenta L.).

    PubMed

    Dupont, W; Bourgeois, P; Reinberg, A; Vaillant, R

    1979-01-01

    For a period of 21 months between May 1974 and September 1976, circadian variations in the plasma concentration of corticosterone were studied by competitive protein-binding techniques in mature male and female edible frogs living in their natural environment. Blood samples were taken from 8 to 12 frogs six times daily and conventional and cosinor methods were used for statistical analysis. Circadian rhythms were not detected during February and March (time of hibernation). Circannual rhythms were detected in three parameters of the circadian rhythm. The mean concentration of corticosterone over a 24 h period (24 h mean) reached a peak on 1 May (between 15 April and 15 May; 95% limits of confidence); the annual mean value of the 24 h means was 1.97 +/- 0.25 (S.E.M.) microgram/100 ml, with an amplitude of 0.66 microgram/100 ml (0.53--0.79 microgram/100 ml; 95% limits of confidence). Circadian variations in the concentration of corticosterone were largest in May (peak of reproductive activity). The times at which the peak concentration of corticosterone occurred showed circannual variations: peak values were detected around 24.00 h in May, 19.00 h in July and 08.00 h in November. Both circadian and circannual variations have therefore been demonstrated in an endocrine function of an amphibian in its natural habitat.

  1. Chronic food restriction and the circadian rhythms of pituitary-adrenal hormones, growth hormone and thyroid-stimulating hormone.

    PubMed

    Armario, A; Montero, J L; Jolin, T

    1987-01-01

    Adult male Sprague-Dawley rats were subjected to food restriction so that they ate 65% of food ingested by control rats. While control rats had free access to food over the 24-hour period, food-restricted rats were provided with food daily at 10 a.m. The experimental period lasted for 34 days. On day 35, rats from both experimental groups were killed at 08.00, 11.00, 14.00, 24.00 and 02.00 h. Food restriction modified the circadian rhythms of ACTH and corticosterone. In addition, total circulating corticosterone throughout the day was higher in food-restricted than in control rats. In contrast, food restriction resulted in depressed secretion of thyroid-stimulating hormone and growth hormone. The results indicate that time of food availability entrained circadian corticosterone rhythm but not thyroid-stimulating hormone and growth hormone rhythms.

  2. The discoveries of molecular mechanisms for the circadian rhythm: The 2017 Nobel Prize in Physiology or Medicine.

    PubMed

    Huang, Rong-Chi

    2018-02-01

    Circadian clocks evolved to allow plants and animals to adapt their behaviors to the 24-hr change in the external environment due to the Earth's rotation. While the first scientific observation of circadian rhythm in the plant leaf movement may be dated back to the early 18th century, it took 200 years to realize that the leaf movement is controlled by an endogenous circadian clock. The cloning and characterization of the first Drosophila clock gene period in the early 1980s, independently by Jeffery C. Hall and Michael Rosbash at Brandeis University and Michael Young at Rockefeller University, paved the way for their further discoveries of additional genes and proteins, culminating in establishing the so-called transcriptional translational feedback loop (TTFL) model for the generation of autonomous oscillator with a period of ∼24 h. The 2017 Nobel Prize in Physiology or Medicine was awarded to honor their discoveries of molecular mechanisms controlling the circadian rhythm. Copyright © 2018 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  3. Inherited variation in circadian rhythm genes and risks of prostate cancer and three other cancer sites in combined cancer consortia.

    PubMed

    Gu, Fangyi; Zhang, Han; Hyland, Paula L; Berndt, Sonja; Gapstur, Susan M; Wheeler, William; Ellipse Consortium, The; Amos, Christopher I; Bezieau, Stephane; Bickeböller, Heike; Brenner, Hermann; Brennan, Paul; Chang-Claude, Jenny; Conti, David V; Doherty, Jennifer Anne; Gruber, Stephen B; Harrison, Tabitha A; Hayes, Richard B; Hoffmeister, Michael; Houlston, Richard S; Hung, Rayjean J; Jenkins, Mark A; Kraft, Peter; Lawrenson, Kate; McKay, James; Markt, Sarah; Mucci, Lorelei; Phelan, Catherine M; Qu, Conghui; Risch, Angela; Rossing, Mary Anne; Wichmann, H-Erich; Shi, Jianxin; Schernhammer, Eva; Yu, Kai; Landi, Maria Teresa; Caporaso, Neil E

    2017-11-01

    Circadian disruption has been linked to carcinogenesis in animal models, but the evidence in humans is inconclusive. Genetic variation in circadian rhythm genes provides a tool to investigate such associations. We examined associations of genetic variation in nine core circadian rhythm genes and six melatonin pathway genes with risk of colorectal, lung, ovarian and prostate cancers using data from the Genetic Associations and Mechanisms in Oncology (GAME-ON) network. The major results for prostate cancer were replicated in the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial, and for colorectal cancer in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO). The total number of cancer cases and controls was 15,838/18,159 for colorectal, 14,818/14,227 for prostate, 12,537/17,285 for lung and 4,369/9,123 for ovary. For each cancer site, we conducted gene-based and pathway-based analyses by applying the summary-based Adaptive Rank Truncated Product method (sARTP) on the summary association statistics for each SNP within the candidate gene regions. Aggregate genetic variation in circadian rhythm and melatonin pathways were significantly associated with the risk of prostate cancer in data combining GAME-ON and PLCO, after Bonferroni correction (p pathway  < 0.00625). The two most significant genes were NPAS2 (p gene  = 0.0062) and AANAT (p gene  = 0.00078); the latter being significant after Bonferroni correction. For colorectal cancer, we observed a suggestive association with the circadian rhythm pathway in GAME-ON (p pathway  = 0.021); this association was not confirmed in GECCO (p pathway  = 0.76) or the combined data (p pathway  = 0.17). No significant association was observed for ovarian and lung cancer. These findings support a potential role for circadian rhythm and melatonin pathways in prostate carcinogenesis. Further functional studies are needed to better understand the underlying biologic

  4. Effect of hypergravity on the circadian rhythms of white rats.

    NASA Technical Reports Server (NTRS)

    Lafferty, J. F.

    1972-01-01

    The effects of artificial gravity on the circadian rhythm of white rats was observed by comparing feeding activity at 1.0 and 1.75 g. The feeding cycle data were obtained by observing the number of feeding switch responses, as well as the amount of food obtained, as a function of time. One of the three subjects clearly established a free-running cycle with a period of 24.742 hr. During a 40-day exposure to the 1.75 g environment, the subjects maintained the same feeding cycle period which was established at 1.0 g. While the results of this study indicate that the activity rhythms of rats are insensitive to gravity levels between 1.0 and 1.75 g, the effects of gravity levels below 1.0 g are yet to be determined.

  5. Circadian physiology of metabolism.

    PubMed

    Panda, Satchidananda

    2016-11-25

    A majority of mammalian genes exhibit daily fluctuations in expression levels, making circadian expression rhythms the largest known regulatory network in normal physiology. Cell-autonomous circadian clocks interact with daily light-dark and feeding-fasting cycles to generate approximately 24-hour oscillations in the function of thousands of genes. Circadian expression of secreted molecules and signaling components transmits timing information between cells and tissues. Such intra- and intercellular daily rhythms optimize physiology both by managing energy use and by temporally segregating incompatible processes. Experimental animal models and epidemiological data indicate that chronic circadian rhythm disruption increases the risk of metabolic diseases. Conversely, time-restricted feeding, which imposes daily cycles of feeding and fasting without caloric reduction, sustains robust diurnal rhythms and can alleviate metabolic diseases. These findings highlight an integrative role of circadian rhythms in physiology and offer a new perspective for treating chronic diseases in which metabolic disruption is a hallmark. Copyright © 2016, American Association for the Advancement of Science.

  6. Potent Effects of Flavonoid Nobiletin on Amplitude, Period, and Phase of the Circadian Clock Rhythm in PER2::LUCIFERASE Mouse Embryonic Fibroblasts.

    PubMed

    Shinozaki, Ayako; Misawa, Kenichiro; Ikeda, Yuko; Haraguchi, Atsushi; Kamagata, Mayo; Tahara, Yu; Shibata, Shigenobu

    2017-01-01

    Flavonoids are natural polyphenols that are widely found in plants. The effects of flavonoids on obesity and numerous diseases such as cancer, diabetes, and Alzheimer's have been well studied. However, little is known about the relationships between flavonoids and the circadian clock. In this study, we show that continuous or transient application of flavonoids to the culture medium of embryonic fibroblasts from PER2::LUCIFERASE (PER2::LUC) mice induced various modifications in the circadian clock amplitude, period, and phase. Transient application of some of the tested flavonoids to cultured cells induced a phase delay of the PER2::LUC rhythm at the down slope phase. In addition, continuous application of the polymethoxy flavonoids nobiletin and tangeretin increased the amplitude and lengthened the period of the PER2::LUC rhythm. The nobiletin-induced phase delay was blocked by co-treatment with U0126, an ERK inhibitor. In summary, among the tested flavonoids, polymethoxy flavones increased the amplitude, lengthened the period, and delayed the phase of the PER2::LUC circadian rhythm. Therefore, foods that contain polymethoxy flavones may have beneficial effects on circadian rhythm disorders and jet lag.

  7. TOR signaling pathway and autophagy are involved in the regulation of circadian rhythms in behavior and plasticity of L2 interneurons in the brain of Drosophila melanogaster.

    PubMed

    Kijak, Ewelina; Pyza, Elżbieta

    2017-01-01

    Drosophila melanogaster is a common model used to study circadian rhythms in behavior and circadian clocks. However, numerous circadian rhythms have also been detected in non-clock neurons, especially in the first optic neuropil (lamina) of the fly's visual system. Such rhythms have been observed in the number of synapses and in the structure of interneurons, which exhibit changes in size and shape in a circadian manner. Although the patterns of these changes are known, the mechanism remains unclear. In the present study, we investigated the role of the TOR signaling pathway and autophagy in regulating circadian rhythms based on the behavior and structural plasticity of the lamina L2 monopolar cell dendritic trees. In addition, we examined the cyclic expression of the TOR signaling pathway (Tor, Pi3K class 1, Akt1) and autophagy (Atg5 and Atg7) genes in the fly's brain. We observed that Tor, Atg5 and Atg7 exhibit rhythmic expressions in the brain of wild-type flies in day/night conditions (LD 12:12) that are abolished in per01 clock mutants. The silencing of Tor in per expressing cells shortens a period of the locomotor activity rhythm of flies. In addition, silencing of the Tor and Atg5 genes in L2 cells disrupts the circadian plasticity of the L2 cell dendritic trees measured in the distal lamina. In turn, silencing of the Atg7 gene in L2 cells changes the pattern of this rhythm. Our results indicate that the TOR signaling pathway and autophagy are involved in the regulation of circadian rhythms in the behavior and plasticity of neurons in the brain of adult flies.

  8. Time-Dependent Trapping of Pollinators Driven by the Alignment of Floral Phenology with Insect Circadian Rhythms

    PubMed Central

    Lau, Jenny Y. Y.; Guo, Xing; Pang, Chun-Chiu; Tang, Chin Cheung; Thomas, Daniel C.; Saunders, Richard M. K.

    2017-01-01

    Several evolutionary lineages in the early divergent angiosperm family Annonaceae possess flowers with a distinctive pollinator trapping mechanism, in which floral phenological events are very precisely timed in relation with pollinator activity patterns. This contrasts with previously described angiosperm pollinator traps, which predominantly function as pitfall traps. We assess the circadian rhythms of pollinators independently of their interactions with flowers, and correlate these data with detailed assessments of floral phenology. We reveal a close temporal alignment between patterns of pollinator activity and the floral phenology driving the trapping mechanism (termed ‘circadian trapping’ here). Non-trapping species with anthesis of standard duration (c. 48 h) cannot be pollinated effectively by pollinators with a morning-unimodal activity pattern; non-trapping species with abbreviated anthesis (23–27 h) face limitations in utilizing pollinators with a bimodal circadian activity; whereas species that trap pollinators (all with short anthesis) can utilize a broader range of potential pollinators, including those with both unimodal and bimodal circadian rhythms. In addition to broadening the range of potential pollinators based on their activity patterns, circadian trapping endows other selective advantages, including the possibility of an extended staminate phase to promote pollen deposition, and enhanced interfloral movement of pollinators. The relevance of the alignment of floral phenological changes with peaks in pollinator activity is furthermore evaluated for pitfall trap pollination systems. PMID:28713403

  9. Suicide attempts in children and adolescents: The place of clock genes and early rhythm dysfunction.

    PubMed

    Olliac, Bertrand; Ouss, Lisa; Charrier, Annaëlle

    2016-11-01

    Suicide remains one of the leading causes of death among young people, and suicidal ideation and behavior are relatively common in healthy and clinical populations. Suicide risk in childhood and adolescence is often approached from the perspective of nosographic categories to which predictive variables for suicidal acts are often linked. The cascading effects resulting from altered clock genes in a pediatric population could participate in biological rhythm abnormalities and the emergence of suicide attempts through impaired regulation of circadian rhythms and emotional states with neurodevelopmental effects. Also, early trauma and stressful life events can alter the expression of clock genes and contribute to the emergence of suicide attempts. Alteration of clock genes might lead to desynchronized and abnormal circadian rhythms impairing in turn the synchronization between external and internal rhythms and therefore the adaptation of the individual to his/her internal and external environment with the development of psychiatric disorders associated with increased risk for suicide attempts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Chronic paroxetine treatment prevents disruption of methamphetamine-sensitive circadian oscillator in a transgenic mouse model of Huntington's disease.

    PubMed

    Ouk, Koliane; Aungier, Juliet; Cuesta, Marc; Morton, A Jennifer

    2018-03-15

    Circadian abnormalities seen in Huntington's disease (HD) patients are recapitulated in several HD transgenic mouse models. In mice, alongside the master clock located in the suprachiasmatic nucleus (SCN), two other oscillators may influence circadian behaviour. These are the food-entrainable oscillator (FEO) and the methamphetamine-sensitive circadian oscillator (MASCO). SCN- and MASCO- (but not FEO-) driven rhythms are progressively disrupted in the R6/2 mouse model of HD. MASCO-driven rhythms are induced by chronic treatment with low dose of methamphetamine and characterised by an increase in period length to greater than 24 h. Interestingly, the rhythms mediated by MASCO deteriorate earlier than those mediated by the SCN in R6/2 mice. Here, we used a pharmacological strategy to investigate the mechanisms underlying MASCO-driven rhythms in WT mice. In contrast to methamphetamine, chronic cocaine was ineffective in generating a MASCO-like component of activity although it markedly increased locomotion. Furthermore, neither blocking dopamine (DA) receptors (with the DA antagonist haloperidol) nor blocking neurotransmission by inhibiting the activity of vesicular monoamine transporter (with reserpine) prevented the expression of the MASCO-driven rhythms, although both treatments downregulated locomotor activity. Interestingly, chronic treatment with paroxetine, a serotonin-specific reuptake inhibitor commonly used as antidepressant in HD, was able to restore the expression of MASCO-driven rhythms in R6/2 mice. Thus, MASCO-driven rhythms appear to be mediated by both serotoninergic and dopaminergic systems. This supports the idea that abnormalities in MASCO output may contribute to both the HD circadian and psychiatric phenotype. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Positive and negative modulation of circadian activity rhythms by mGluR5 and mGluR2/3 metabotropic glutamate receptors.

    PubMed

    Gannon, Robert L; Millan, Mark J

    2011-01-01

    Glutamate released from retinal ganglion cells conveys information about the daily light:dark cycle to master circadian pacemaker neurons within the suprachiasmatic nucleus that then synchronize internal circadian rhythms with the external day-length. Glutamate activation of ionotropic glutamate receptors in the suprachiasmatic nucleus is well established, but the function of the metabotropic glutamate receptors that are also located in this nucleus is not known. Therefore, in this study we evaluated agonists and antagonists acting at orthosteric or allosteric sites for mGluR5 and mGluR2/3 metabotropic glutamate receptors for their ability to modulate light-induced phase advances and delays of hamster circadian activity rhythms. mGluR5 allosteric antagonists fenobam, MPEP and MTEP, each 10 mg/kg, potentiated light-induced phase advances of hamster circadian activity rhythms, while the mGluR5 agonists CHPG, (S)-3,5-DHPG or positive allosteric modulator CDPPB had no effect. Neither mGluR5 agonists nor antagonists had any effect on light-induced phase delays of activity rhythms. The competitive mGluR2/3 antagonist LY341495, 10 mg/kg, also potentiated light-induced phase advances, but inhibited light-induced phase delays. The mGluR2/3 agonists LY354740 and LY404039 were without effect on phase advances while a third agonist LY379268, 10 mg/kg, inhibited both light-induced advances and delays. Finally, mGluR2/3 agonists LY379268 and LY404039 also inhibited light-induced phase delays of activity rhythms. These results suggest that during light-induced phase advances, mGluR2/3 and mGluR5 receptors act to negatively modulate the effects of light on the circadian pacemaker or its output(s). mGluR5 receptors do not appear to be involved during light-induced phase delays. In contrast, the role for mGluR2/3 receptors during phase delays is more complicated as both agonists and antagonists inhibit light-induced phase delays. Dysfunctions in human circadian rhythms have been

  12. Axillary and thoracic skin temperatures poorly comparable to core body temperature circadian rhythm: results from 2 adult populations.

    PubMed

    Thomas, Karen A; Burr, Robert; Wang, Shu-Yuann; Lentz, Martha J; Shaver, Joan

    2004-01-01

    Data from 2 separate studies were used to examine the relationships of axillary or thoracic skin temperature to rectal temperature and to determine the phase relationships of the circadian rhythms of these temperatures. In study 1, axillary skin and rectal temperatures were recorded in 19 healthy women, 21 to 36 years of age. In study 2, thoracic skin and rectal temperatures were recorded in 74 healthy women, 39 to 59 years of age. In both studies, temperatures were recorded continuously for 24 h while subjects carried out normal activities. Axillary and thoracic probes were insulated purposely to prevent ambient effects. Cosinor analysis was employed to estimate circadian rhythm mesor, amplitude, and acrophase. In addition, correlations between temperatures at various measurement sites were calculated and agreement determined. The circadian timing of axillary and skin temperature did not closely approximate that of rectal temperature: the mean acrophase (clock time) for study 1 was 18:57 h for axillary temperature and 16:12 h for rectal; for study 2, it was 03:05 h for thoracic and 15:05 h for rectal. Across individual subjects, the correlations of axillary or thoracic temperatures with rectal temperatures were variable. Results do not support the use of either axillary or skin temperature as a substitute for rectal temperature in circadian rhythm research related to adult women.

  13. The circadian rhythm of locomotory activity in a Neotropical forest scorpion, Opisthacanthus sp. (Scorpionidae)

    NASA Astrophysics Data System (ADS)

    Cloudsley-Thompson, J. L.; Constantinou, C.

    1985-03-01

    Opisthacanthus sp. from Panama resembles tropical forest scorpions from other zoogeographical regions in being comparatively inactive and showing some movement in light. Its circadian rhythm is not clear cut. It has a dirty appearance and a repugnatorial odour, a phenomenon not previously recorded in scorpions.

  14. Circadian rhythms and sleep patterns in urban Greek couples.

    PubMed

    Lee, Kathryn A; Beyene, Yewoubdar; Paparrigopoulos, Thomas J; Dikeos, Dimitris G; Soldatos, Constantin R

    2007-07-01

    A convenience sample of 14 adults (seven couples) who intentionally nap regularly was recruited to describe circadian rhythms and sleep patterns in a culture in which afternoon naps are routine. Participants wore a wrist actigraph for 48 hr during May to obtain two peaks and troughs of activity data. Peak activity, estimated by cosinor analysis (acrophase), occurred at 1542 hours for men and at 1600 hours for women. Compared to their male partners, women had a later acrophase and a significantly stronger 24-hr rhythm, despite similar nap and nighttime sleep schedules. Men had more awakenings during the night and slightly shorter naps than did women. For the 24-hr period, men averaged 6.8 +/- 1.0 hr of sleep and women averaged 7.4 +/- 1.1 hr. Results indicate that Greek adults delay sleep onset at night and awaken early in the morning. Among this small group, naps are an accepted cultural behavior.

  15. The timing of the human circadian clock is accurately represented by the core body temperature rhythm following phase shifts to a three-cycle light stimulus near the critical zone

    NASA Technical Reports Server (NTRS)

    Jewett, M. E.; Duffy, J. F.; Czeisler, C. A.

    2000-01-01

    A double-stimulus experiment was conducted to evaluate the phase of the underlying circadian clock following light-induced phase shifts of the human circadian system. Circadian phase was assayed by constant routine from the rhythm in core body temperature before and after a three-cycle bright-light stimulus applied near the estimated minimum of the core body temperature rhythm. An identical, consecutive three-cycle light stimulus was then applied, and phase was reassessed. Phase shifts to these consecutive stimuli were no different from those obtained in a previous study following light stimuli applied under steady-state conditions over a range of circadian phases similar to those at which the consecutive stimuli were applied. These data suggest that circadian phase shifts of the core body temperature rhythm in response to a three-cycle stimulus occur within 24 h following the end of the 3-day light stimulus and that this poststimulus temperature rhythm accurately reflects the timing of the underlying circadian clock.

  16. TOR signaling pathway and autophagy are involved in the regulation of circadian rhythms in behavior and plasticity of L2 interneurons in the brain of Drosophila melanogaster

    PubMed Central

    Kijak, Ewelina; Pyza, Elżbieta

    2017-01-01

    Drosophila melanogaster is a common model used to study circadian rhythms in behavior and circadian clocks. However, numerous circadian rhythms have also been detected in non-clock neurons, especially in the first optic neuropil (lamina) of the fly’s visual system. Such rhythms have been observed in the number of synapses and in the structure of interneurons, which exhibit changes in size and shape in a circadian manner. Although the patterns of these changes are known, the mechanism remains unclear. In the present study, we investigated the role of the TOR signaling pathway and autophagy in regulating circadian rhythms based on the behavior and structural plasticity of the lamina L2 monopolar cell dendritic trees. In addition, we examined the cyclic expression of the TOR signaling pathway (Tor, Pi3K class 1, Akt1) and autophagy (Atg5 and Atg7) genes in the fly’s brain. We observed that Tor, Atg5 and Atg7 exhibit rhythmic expressions in the brain of wild-type flies in day/night conditions (LD 12:12) that are abolished in per01 clock mutants. The silencing of Tor in per expressing cells shortens a period of the locomotor activity rhythm of flies. In addition, silencing of the Tor and Atg5 genes in L2 cells disrupts the circadian plasticity of the L2 cell dendritic trees measured in the distal lamina. In turn, silencing of the Atg7 gene in L2 cells changes the pattern of this rhythm. Our results indicate that the TOR signaling pathway and autophagy are involved in the regulation of circadian rhythms in the behavior and plasticity of neurons in the brain of adult flies. PMID:28196106

  17. Aging and Circadian Rhythms

    PubMed Central

    Duffy, Jeanne F.; Zitting, Kirsi-Marja; Chinoy, Evan D.

    2015-01-01

    Aging is associated with numerous changes, including changes in sleep timing, duration, and quality. The circadian timing system interacts with a sleep-wake homeostatic system to regulate human sleep, including sleep timing and structure. Here, we review key features of the human circadian timing system, age-related changes in the circadian timing system, and how those changes may contribute to the observed alterations in sleep. PMID:26568120

  18. Dissecting Daily and Circadian Expression Rhythms of Clock-Controlled Genes in Human Blood.

    PubMed

    Lech, Karolina; Ackermann, Katrin; Revell, Victoria L; Lao, Oscar; Skene, Debra J; Kayser, Manfred

    2016-02-01

    The identification and investigation of novel clock-controlled genes (CCGs) has been conducted thus far mainly in model organisms such as nocturnal rodents, with limited information in humans. Here, we aimed to characterize daily and circadian expression rhythms of CCGs in human peripheral blood during a sleep/sleep deprivation (S/SD) study and a constant routine (CR) study. Blood expression levels of 9 candidate CCGs (SREBF1, TRIB1, USF1, THRA1, SIRT1, STAT3, CAPRIN1, MKNK2, and ROCK2), were measured across 48 h in 12 participants in the S/SD study and across 33 h in 12 participants in the CR study. Statistically significant rhythms in expression were observed for STAT3, SREBF1, TRIB1, and THRA1 in samples from both the S/SD and the CR studies, indicating that their rhythmicity is driven by the endogenous clock. The MKNK2 gene was significantly rhythmic in the S/SD but not the CR study, which implies its exogenously driven rhythmic expression. In addition, we confirmed the circadian expression of PER1, PER3, and REV-ERBα in the CR study samples, while BMAL1 and HSPA1B were not significantly rhythmic in the CR samples; all 5 genes previously showed significant expression in the S/SD study samples. Overall, our results demonstrate that rhythmic expression patterns of clock and selected clock-controlled genes in human blood cells are in part determined by exogenous factors (sleep and fasting state) and in part by the endogenous circadian timing system. Knowledge of the exogenous and endogenous regulation of gene expression rhythms is needed prior to the selection of potential candidate marker genes for future applications in medical and forensic settings. © 2015 The Author(s).

  19. Dynamic mechanistic explanation: computational modeling of circadian rhythms as an exemplar for cognitive science.

    PubMed

    Bechtel, William; Abrahamsen, Adele

    2010-09-01

    We consider computational modeling in two fields: chronobiology and cognitive science. In circadian rhythm models, variables generally correspond to properties of parts and operations of the responsible mechanism. A computational model of this complex mechanism is grounded in empirical discoveries and contributes a more refined understanding of the dynamics of its behavior. In cognitive science, on the other hand, computational modelers typically advance de novo proposals for mechanisms to account for behavior. They offer indirect evidence that a proposed mechanism is adequate to produce particular behavioral data, but typically there is no direct empirical evidence for the hypothesized parts and operations. Models in these two fields differ in the extent of their empirical grounding, but they share the goal of achieving dynamic mechanistic explanation. That is, they augment a proposed mechanistic explanation with a computational model that enables exploration of the mechanism's dynamics. Using exemplars from circadian rhythm research, we extract six specific contributions provided by computational models. We then examine cognitive science models to determine how well they make the same types of contributions. We suggest that the modeling approach used in circadian research may prove useful in cognitive science as researchers develop procedures for experimentally decomposing cognitive mechanisms into parts and operations and begin to understand their nonlinear interactions.

  20. Sleep and circadian rhythms in long duration space flight - Antarctica as an analogue environment

    NASA Technical Reports Server (NTRS)

    Gander, Philippa H.

    1992-01-01

    The feasibility of using Antarctica as an environment for studying the impact of unusual 24 h environmental cycles (zeitgebers) on the circadian system is discussed. Adaptation of circadian rhythms and sleep of three scientists travelling from New Zealand to Antarctica during summer (which is analogous to arrival at a lunar base during the lunar day) has been studied. Data obtained indicate that sleep occurred at the same clock time, but sleep quality was poorer in Antarctica, which can be explained by the fact that the circadian system delayed by about 2 h in Antarctica, as would be expected in a weaker zeitgeber environment. It is suggested that sleep could be improved by altering patterns of exposure to the available zeitgebers to increase their effective strength.

  1. Voluntary exercise enhances activity rhythms and ameliorates anxiety- and depression-like behaviors in the sand rat model of circadian rhythm-related mood changes.

    PubMed

    Tal-Krivisky, Katy; Kronfeld-Schor, Noga; Einat, Haim

    2015-11-01

    Physical exercise is a non-pharmacological treatment for affective disorders. The mechanisms of its effects are unknown although some suggest a relationship to synchronization of circadian rhythms. One way to explore mechanisms is to utilize animal models. We previously demonstrated that the diurnal fat sand rat is an advantageous model for studying the interactions between photoperiods and mood. The current study was designed to evaluate the effects of voluntary exercise on activity rhythms and anxiety and depression-like behaviors in sand rats as a step towards better understanding of the underlying mechanisms. Male sand rats were housed in short photoperiod (SP; 5h light/19 h dark) or neutral light (NP; 12h light/12h dark) regimens for 3 weeks and divided into subgroups with or without running wheels. Activity was monitored for 3 additional weeks and then animals were tested in the elevated plus-maze, the forced swim test and the social interaction test. Activity rhythms were enhanced by the running wheels. As hypothesized, voluntary exercise had significant effects on SP animals' anxiety- and depression-like behaviors but not on NP animals. Results are discussed in the context of interactions between physical exercise, circadian rhythms and mood. We suggest that the sand rat model can be used to explore the underlying mechanism of the effects of physical exercise for mood disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Titanium biomaterials with complex surfaces induced aberrant peripheral circadian rhythms in bone marrow mesenchymal stromal cells.

    PubMed

    Hassan, Nathaniel; McCarville, Kirstin; Morinaga, Kenzo; Mengatto, Cristiane M; Langfelder, Peter; Hokugo, Akishige; Tahara, Yu; Colwell, Christopher S; Nishimura, Ichiro

    2017-01-01

    Circadian rhythms maintain a high level of homeostasis through internal feed-forward and -backward regulation by core molecules. In this study, we report the highly unusual peripheral circadian rhythm of bone marrow mesenchymal stromal cells (BMSCs) induced by titanium-based biomaterials with complex surface modifications (Ti biomaterial) commonly used for dental and orthopedic implants. When cultured on Ti biomaterials, human BMSCs suppressed circadian PER1 expression patterns, while NPAS2 was uniquely upregulated. The Ti biomaterials, which reduced Per1 expression and upregulated Npas2, were further examined with BMSCs harvested from Per1::luc transgenic rats. Next, we addressed the regulatory relationship between Per1 and Npas2 using BMSCs from Npas2 knockout mice. The Npas2 knockout mutation did not rescue the Ti biomaterial-induced Per1 suppression and did not affect Per2, Per3, Bmal1 and Clock expression, suggesting that the Ti biomaterial-induced Npas2 overexpression was likely an independent phenomenon. Previously, vitamin D deficiency was reported to interfere with Ti biomaterial osseointegration. The present study demonstrated that vitamin D supplementation significantly increased Per1::luc expression in BMSCs, though the presence of Ti biomaterials only moderately affected the suppressed Per1::luc expression. Available in vivo microarray data from femurs exposed to Ti biomaterials in vitamin D-deficient rats were evaluated by weighted gene co-expression network analysis. A large co-expression network containing Npas2, Bmal1, and Vdr was observed to form with the Ti biomaterials, which was disintegrated by vitamin D deficiency. Thus, the aberrant BMSC peripheral circadian rhythm may be essential for the integration of Ti biomaterials into bone.

  3. Sleep and circadian rhythm disruption in social jetlag and mental illness.

    PubMed

    Foster, Russell G; Peirson, Stuart N; Wulff, Katharina; Winnebeck, Eva; Vetter, Céline; Roenneberg, Till

    2013-01-01

    Sleep and wake represent two profoundly different states of physiology that arise within the brain from a complex interaction between multiple neural circuits and neurotransmitter systems. These neural networks are, in turn, adjusted by three key drivers that collectively determine the duration, quality, and efficiency of sleep. Two of these drivers are endogenous, namely, the circadian system and a homeostatic hourglass oscillator, while the third is exogenous-our societal structure (social time). In this chapter, we outline the neuroscience of sleep and highlight the links between sleep, mood, cognition, and mental health. We emphasize that the complexity of sleep/wake generation and regulation makes this behavioral cycle very vulnerable to disruption and then explore this concept by examining sleep and circadian rhythm disruption (SCRD) when the exogenous and endogenous drivers of sleep are in conflict. SCRD can be particularly severe when social timing forces an abnormal pattern of sleep and wake upon our endogenous sleep biology. SCRD is also very common in mental illness, and although well known, this association is poorly understood or treated. Recent studies suggest that the generation of sleep and mental health shares overlapping neural mechanisms such that defects in these endogenous pathways result in pathologies to both behaviors. The evidence for this association is examined in some detail. We conclude this review by suggesting that the emerging understanding of the neurobiology of sleep/wake behavior, and of the health consequences of sleep disruption, will provide new ways to decrease the conflict between biological and societal timing in both the healthy and individuals with mental illness. © 2013, Elsevier Inc. All Rights Reserved.

  4. Modified-release hydrocortisone to provide circadian cortisol profiles.

    PubMed

    Debono, Miguel; Ghobadi, Cyrus; Rostami-Hodjegan, Amin; Huatan, Hiep; Campbell, Michael J; Newell-Price, John; Darzy, Ken; Merke, Deborah P; Arlt, Wiebke; Ross, Richard J

    2009-05-01

    Cortisol has a distinct circadian rhythm regulated by the brain's central pacemaker. Loss of this rhythm is associated with metabolic abnormalities, fatigue, and poor quality of life. Conventional glucocorticoid replacement cannot replicate this rhythm. Our objectives were to define key variables of physiological cortisol rhythm, and by pharmacokinetic modeling test whether modified-release hydrocortisone (MR-HC) can provide circadian cortisol profiles. The study was performed at a Clinical Research Facility. Using data from a cross-sectional study in healthy reference subjects (n = 33), we defined parameters for the cortisol rhythm. We then tested MR-HC against immediate-release hydrocortisone in healthy volunteers (n = 28) in an open-label, randomized, single-dose, cross-over study. We compared profiles with physiological cortisol levels, and modeled an optimal treatment regimen. The key variables in the physiological cortisol profile included: peak 15.5 microg/dl (95% reference range 11.7-20.6), acrophase 0832 h (95% confidence interval 0759-0905), nadir less than 2 microg/dl (95% reference range 1.5-2.5), time of nadir 0018 h (95% confidence interval 2339-0058), and quiescent phase (below the mesor) 1943-0531 h. MR-HC 15 mg demonstrated delayed and sustained release with a mean (sem) maximum observed concentration of 16.6 (1.4) microg/dl at 7.41 (0.57) h after drug. Bioavailability of MR-HC 5, 10, and 15 mg was 100, 79, and 86% that of immediate-release hydrocortisone. Modeling suggested that MR-HC 15-20 mg at 2300 h and 10 mg at 0700 h could reproduce physiological cortisol levels. By defining circadian rhythms and using modern formulation technology, it is possible to allow a more physiological circadian replacement of cortisol.

  5. Simulated Night Shift Disrupts Circadian Rhythms of Immune Functions in Humans.

    PubMed

    Cuesta, Marc; Boudreau, Philippe; Dubeau-Laramée, Geneviève; Cermakian, Nicolas; Boivin, Diane B

    2016-03-15

    Recent research unveiled a circadian regulation of the immune system in rodents, yet little is known about rhythms of immune functions in humans and how they are affected by circadian disruption. In this study, we assessed rhythms of cytokine secretion by immune cells and tested their response to simulated night shifts. PBMCs were collected from nine participants kept in constant posture over 24 h under a day-oriented schedule (baseline) and after 3 d under a night-oriented schedule. Monocytes and T lymphocytes were stimulated with LPS and PHA, respectively. At baseline, a bimodal rhythmic secretion was detected for IL-1β, IL-6, and TNF-α: a night peak was primarily due to a higher responsiveness of monocytes, and a day peak was partly due to a higher proportion of monocytes. A rhythmic release was also observed for IL-2 and IFN-γ, with a nighttime peak due to a higher cell count and responsiveness of T lymphocytes. Following night shifts, with the exception of IL-2, cytokine secretion was still rhythmic but with peak levels phase advanced by 4.5-6 h, whereas the rhythm in monocyte and T lymphocyte numbers was not shifted. This suggests distinct mechanisms of regulation between responsiveness to stimuli and cell numbers of the human immune system. Under a night-oriented schedule, only cytokine release was partly shifted in response to the change in the sleep-wake cycle. This led to a desynchronization of rhythmic immune parameters, which might contribute to the increased risk for infection, autoimmune diseases, cardiovascular and metabolic disorders, and cancer reported in shift workers. Copyright © 2016 by The American Association of Immunologists, Inc.

  6. Photosensitivity in the circadian hatching rhythm of the carotenoid-depleted silkworm, Bombyx mori.

    PubMed

    Sakamoto, K; Shimizu, I

    1994-01-01

    Silkworms (Bombyx mori) were reared on a carotenoid-deprived artificial diet, and the carotenoid-depleted eggs of the next generation were incubated so that we could observe the effect of the depletion on the circadian rhythm of hatching. The phototactic response curves of newly hatched larvae showed that the visual photosensitivity in ocelli of larvae from the carotenoid-depleted eggs was at least 4 log units lower than that of a carotenoid-rich control group. However, the phase-shift experiment revealed that carotenoid depletion did not reduce the photosensitivity in the hatching rhythm. When the hatching rhythm was generated by exposure to a single light pulse in constant darkness, the first peak in the rhythm of the carotenoid-depleted silkworms occurred significantly earlier than that of the carotenoid-rich group, but the following second peaks of both groups were found at the same time. These results suggest that for the silkworm, carotenoid is not involved in photoreception for the hatching rhythm, but is involved in the timing of hatching.

  7. Blood pressure circadian rhythms and adverse outcomes in type 2 diabetes patients diagnosed with orthostatic hypotension.

    PubMed

    Chang, Jing; Hou, Yuan-Ping; Wu, Jin-Ling; Fang, Xiang-Yang; Li, Sheng-Li; Liu, Miao-Bing; Sun, Qian-Mei

    2018-03-01

    Patients with diabetes frequently develop orthostatic hypotension (OH). The present study was designed to examine the relationship of blood pressure (BP) circadian rhythms and outcomes in diabetes with OH. In the present study, 173 inpatients with type 2 diabetes were enrolled. Patients were divided into an OH group and a non-OH group according to the BP changes detected in the supine and standing position. Then, 24-h ambulatory BP was monitored. Patients were followed up for an average of 45 ± 10 months post-discharge. Outcomes - death and major adverse cardiac and cerebrovascular events, including heart failure, myocardial infarction and stroke - were recorded. There were 61 patients (35.26%) in the OH group and 112 patients (64.74%) in the non-OH group. In the OH group, the night-time systolic BP and night-time diastolic BP were higher, the blood BP rhythms were predominantly of the riser type (67.21%). OH was as an independent marker of riser type circadian rhythm (adjusted odds ratio 4.532, 95% confidence interval 2.579-7.966). In the OH group, the incidence rates of mortality, and major adverse cardiac and cerebrovascular events were increased significantly compared with those in the non-OH group (11.48 vs 2.68%, P = 0.014; 37.70 vs 8.93%, P < 0.01). In patients who had type 2 diabetes diagnosed with OH, the BP circadian rhythm usually showed riser patterns, and they had increased rates of mortality, and major adverse cardiac and cerebrovascular events. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  8. Sleep, circadian rhythms, and psychomotor vigilance.

    PubMed

    Van Dongen, Hans P A; Dinges, David F

    2005-04-01

    Psychomotor vigilance performance is highly relevant to athletic performance. It is influenced by a sleep homeostatic process, which builds up pressure for sleep during wakefulness and dissipates this pressure during sleep, and a circadian rhythm process, which produces a waxing and waning of pressure for wakefulness over a 24 hours of the day. During total sleep deprivation, these two processes cause performance to deteriorate progressively over days, modulated within days by further performance reductions at night and relative improvements during the daytime. As the homeostatic pressure for sleep builds up higher across prolonged wakefulness, the rate of dissipation of that pressure during subsequent sleep is enhanced exponentially, so that even brief periods of sleep provide significant performance recuperation. Nevertheless, sleep restriction practiced on a chronic basis induces cumulative performance deficits of the same order of magnitude as observed during total sleep deprivation. There are also considerable individual differences in the degree of vulnerability to performance impairment from sleep loss, and these differences represent a trait.

  9. A circadian and an ultradian rhythm are both evident in root growth of rice.

    PubMed

    Iijima, Morio; Matsushita, Naofumi

    2011-11-15

    This paper presents evidence for the existence of both a circadian and an ultradian rhythm in the elongation growth of rice roots. Root elongation of rice (Oryza sativa) was recorded under dim green light by using a CCD camera connected to a computer. Four treatment conditions were set-up to investigate the existence of endogenous rhythms: 28°C constant temperature and continuous dark (28 DD); 28°C constant temperature and alternating light and dark (28 LD); 33°C constant temperature and continuous dark (33 DD); and diurnal temperature change and alternating light and dark (DT-LD). The resulting spectral densities suggested the existence of periodicities of 20.4-25.2 h (circadian cycles) and 2.0-6.0 h (ultradian cycles) in each of the 4 treatments. The shorter ultradian cycles can be attributed to circumnutational growth of roots and/or to mucilage exudation. The average values across all the replicate data showed that the highest power spectral densities (PSDs) corresponded to root growth rhythms with periods of 22.9, 23.7, and 2.1 h for the 28 DD, 28 LD, and 33 DD treatments, respectively. Accumulation of PSD for each data set indicated that the periodicity was similar in both the 28 DD and 33 DD treatments. We conclude that a 23-h circadian and a 2-h ultradian rhythmicity exist in rice root elongation. Moreover, root elongation rates during the day were 1.08 and 1.44 times faster than those during the night for the 28 LD and DT-LD treatments, respectively. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. The development of new purification methods to assess the circadian rhythm of body temperature in Mongolian gerbils.

    PubMed

    Weinert, D; Nevill, A; Weinandy, R; Waterhouse, J

    2003-03-01

    Six Mongolian gerbils were studied for 8-10d while housed in separate cages in a 12:12h light-dark (L-D) cycle (lights on at 07:00h). Recordings of body temperature, heart rate, and spontaneous activity were made throughout. The temperature and heart rate rhythms were "purified" to take into account the effects of activity, and then the rhythm of temperature was further purified to take into account other masking influences ("non-activity masking effects" or NAME,). The methods employed in the purification processes involved linear regression analysis or analysis of covariance, the latter using functions of activity and NAME as covariates. From these methods, it was possible to obtain not only an estimate of the endogenous component of the temperature rhythm but also a measure of circadian changes in the sensitivity of temperature to masking effects. Even though all purification methods removed many of the effects of spontaneous activity from the temperature record, there remained temperature fluctuations at the L-D and D-L transitions that appeared to be independent of activity. The NAME was of only very marginal value in the purification process. Comparison of the purification methods indicated that the linear methods were inferior (both from a biological viewpoint and when the results were compared mathematically) to those that allowed the rate of rise of temperature due to increasing amounts of activity to become progressively less. The sensitivity of temperature and heart rate to the masking effects of activity showed a circadian rhythm, with sensitivities in the resting phase being greater than those in the active phase. These findings are compatible with the view that thermoregulatory reflexes are induced by spontaneous activity of sufficient amount, and that there is a circadian rhythm in the body temperature at which these reflexes are initiated and in their effectiveness.

  11. Interplay between environmentally modulated feedback loops - hypoxia and circadian rhythms - two sides of the same coin?

    PubMed

    Depping, Reinhard; Oster, Henrik

    2017-11-01

    Sensing of environmental parameters is critically important for cells of metazoan organisms. Members of the superfamily of bHLH-PAS transcription factors, involved in oxygen sensing and circadian rhythm generation, are important players in such molecular pathways. The interplay between both networks includes a so far unknown factor, connecting PER2 (circadian clocks) to hypoxia sensing (HIF-1 α) to result in a more adapted state of homeostasis at the right time. © 2017 Federation of European Biochemical Societies.

  12. The effects of feedback lighting on the circadian drinking rhythm in the diurnal new world primate Saimiri sciureus

    NASA Technical Reports Server (NTRS)

    Ferraro, J. S.; Sulzman, F. M.

    1988-01-01

    Feedback lighting provides illumination primarily during the subjective night (i.e., the photosensitive portion of the circadian cycle) in response to a given behavior. This technique has previously been used to test the nonparametric model of entrainment in nocturnal rodents. In three species (Rattus norvegicus, Mesocricetus auratus, and Mus musculus), the free-running period of the locomotor activity rhythm was similar whether the animals were exposed to continuous light or discrete light pulses occurring essentially only during the subjective night (i.e., feedback lighting). In the current experiments, feedback lighting was presented to squirrel monkeys so that light fell predominantly during the subjective night. Feedback lighting was linked to the drinking behavior in this diurnal primate so that when the animal drank, the lights went out. Despite the seemingly adverse predicament, the monkeys maintained regular circadian drinking rhythms. Furthermore, just as the period of the free-running activity rhythms of nocturnal rodents exposed to continuous light or feedback lighting were similar, the period of the drinking rhythms of the squirrel monkeys in continuous light and feedback lighting were comparable (25.6 +/- 0.1 and 25.9 +/- 0.1 hours, respectively), despite a substantial decrease in the total amount of light exposure associated with feedback lighting. The free-running period of monkeys exposed to continuous dark (24.5 +/- 0.1 hours) was significantly shorter than either of the two lighting conditions (P < 0.001). The results presented for the drinking rhythm were confirmed by examination of the temperature and activity rhythms. Therefore, discrete light pulses given predominately during the subjective night are capable of simulating the effects of continuous light on the free-running period of the circadian rhythms of a diurnal primate. The response of squirrel monkeys to feedback lighting thus lends further support for the model and suggests that the

  13. Composition and functional property of photosynthetic pigments under circadian rhythm in the cyanobacterium Spirulina platensis.

    PubMed

    Kumar, Deepak; Kannaujiya, Vinod K; Richa; Pathak, Jainendra; Sundaram, Shanthy; Sinha, Rajeshwar P

    2018-05-01

    Circadian rhythm is an important endogenous biological signal for sustainable growth and development of cyanobacteria in natural ecosystems. Circadian effects of photosynthetically active radiation (PAR), ultraviolet-A (UV-A) and ultraviolet-B (UV-B) radiations on pigment composition have been studied in the cyanobacterium Spirulina platensis under light (L)/dark (D) oscillation with a combination of 4/20, 8/16, 12/12, 16/8, 20/4 and 24/24 h time duration. Circadian exposure of PAR + UV-A (PA) and PAR + UV-A + UV-B (PAB) showed more than twofold decline in Chl a, total protein and phycocyanin (PC) in light phase and significant recovery was achieved in dark phase. The fluorescence emission wavelength of PC was shifted towards lower wavelengths in the light phase of PAB in comparison to P and PA whereas the same wavelength was retrieved in the dark phase. The production of free radicals was accelerated twofold in the light phase (24 h L) whereas the same was retrieved to the level of control during the dark phase. Oxidatively induced damage was alleviated by antioxidative enzymes such as catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and ascorbate peroxidase (APX) in the light phase (0-24-h L) whereas the dark phase showed significant inhibition of the same enzymes. Similar characteristic inhibition of free radicals and recovery of PC was observed inside cellular filament after circadian rhythm of 24/24 h (L/D). Circadian exposure of P, PA and PAB significantly altered the synthesis and recovery of pigments that could be crucial for optimization and sustainable production of photosynthetic products for human welfare.

  14. Season-dependent effects of photoperiod and temperature on circadian rhythm of arylalkylamine N-acetyltransferase2 gene expression in pineal organ of an air-breathing catfish, Clarias gariepinus.

    PubMed

    Singh, Kshetrimayum Manisana; Saha, Saurav; Gupta, Braj Bansh Prasad

    2017-08-01

    Arylalkylamine N-acetyltransferase (AANAT) activity, aanat gene expression and melatonin production have been reported to exhibit prominent circadian rhythm in the pineal organ of most species of fish. Three types of aanat genes are expressed in fish, but the fish pineal organ predominantly expresses aanat2 gene. Increase and decrease in daylength is invariably associated with increase and decrease in temperature, respectively. But so far no attempt has been made to delineate the role of photoperiod and temperature in regulation of the circadian rhythm of aanat2 gene expression in the pineal organ of any fish with special reference to seasons. Therefore, we studied effects of various lighting regimes (12L-12D, 16L-8D, 8L-16D, LL and DD) at a constant temperature (25°C) and effects of different temperatures (15°, 25° and 35°C) under a common photoperiod 12L-12D on circadian rhythm of aanat2 gene expression in the pineal organ of Clarias gariepinus during summer and winter seasons. Aanat2 gene expression in fish pineal organ was studied by measuring aanat2 mRNA levels using Real-Time PCR. Our findings indicate that the pineal organ of C. gariepinus exhibits a prominent circadian rhythm of aanat2 gene expression irrespective of photoperiods, temperatures and seasons, and the circadian rhythm of aanat2 gene expression responds differently to different photoperiods and temperatures in a season-dependent manner. Existence of circadian rhythm of aanat2 gene expression in pineal organs maintained in vitro under 12L-12D and DD conditions as well as a free running rhythm of the gene expression in pineal organ of the fish maintained under LL and DD conditions suggest that the fish pineal organ possesses an endogenous circadian oscillator, which is entrained by light-dark cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cardioprotective effects of SGLT2 inhibitors are possibly associated with normalization of the circadian rhythm of blood pressure.

    PubMed

    Rahman, Asadur; Hitomi, Hirofumi; Nishiyama, Akira

    2017-06-01

    Improvement in cardiovascular (CV) morbidity and mortality in the EMPA-REG OUTCOME study provides new insight into the therapeutic use of sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors in patients with type 2 diabetes. Although SGLT2 inhibitors have several pleiotropic effects, the underlying mechanism responsible for their cardioprotective effects remains undetermined. In this regard, the absence of a nocturnal fall in blood pressure (BP), that is, non-dipping BP, is a common phenomenon in type 2 diabetes and has a crucial role in the pathogenesis of CV morbidity and mortality. In most clinical trials, SGLT2 inhibitors reduce both systolic BP (~3-5 mm Hg) and diastolic BP (~2 mm Hg) in patients with type 2 diabetes. In addition, recent clinical and animal studies have revealed that SGLT2 inhibitors enable the change in BP circadian rhythm from a non-dipper to a dipper type, which is possibly associated with the improvement in CV outcomes in patients with type 2 diabetes. In this review, recent data on the effect of SGLT2 inhibitors on the circadian rhythm of BP will be summarized. The possible underlying mechanisms responsible for the SGLT2 inhibitor-induced improvement in the circadian rhythm of BP will also be discussed.

  16. Principles for circadian orchestration of metabolic pathways.

    PubMed

    Thurley, Kevin; Herbst, Christopher; Wesener, Felix; Koller, Barbara; Wallach, Thomas; Maier, Bert; Kramer, Achim; Westermark, Pål O

    2017-02-14

    Circadian rhythms govern multiple aspects of animal metabolism. Transcriptome-, proteome- and metabolome-wide measurements have revealed widespread circadian rhythms in metabolism governed by a cellular genetic oscillator, the circadian core clock. However, it remains unclear if and under which conditions transcriptional rhythms cause rhythms in particular metabolites and metabolic fluxes. Here, we analyzed the circadian orchestration of metabolic pathways by direct measurement of enzyme activities, analysis of transcriptome data, and developing a theoretical method called circadian response analysis. Contrary to a common assumption, we found that pronounced rhythms in metabolic pathways are often favored by separation rather than alignment in the times of peak activity of key enzymes. This property holds true for a set of metabolic pathway motifs (e.g., linear chains and branching points) and also under the conditions of fast kinetics typical for metabolic reactions. By circadian response analysis of pathway motifs, we determined exact timing separation constraints on rhythmic enzyme activities that allow for substantial rhythms in pathway flux and metabolite concentrations. Direct measurements of circadian enzyme activities in mouse skeletal muscle confirmed that such timing separation occurs in vivo.

  17. Principles for circadian orchestration of metabolic pathways

    PubMed Central

    Thurley, Kevin; Herbst, Christopher; Wesener, Felix; Koller, Barbara; Wallach, Thomas; Maier, Bert; Kramer, Achim

    2017-01-01

    Circadian rhythms govern multiple aspects of animal metabolism. Transcriptome-, proteome- and metabolome-wide measurements have revealed widespread circadian rhythms in metabolism governed by a cellular genetic oscillator, the circadian core clock. However, it remains unclear if and under which conditions transcriptional rhythms cause rhythms in particular metabolites and metabolic fluxes. Here, we analyzed the circadian orchestration of metabolic pathways by direct measurement of enzyme activities, analysis of transcriptome data, and developing a theoretical method called circadian response analysis. Contrary to a common assumption, we found that pronounced rhythms in metabolic pathways are often favored by separation rather than alignment in the times of peak activity of key enzymes. This property holds true for a set of metabolic pathway motifs (e.g., linear chains and branching points) and also under the conditions of fast kinetics typical for metabolic reactions. By circadian response analysis of pathway motifs, we determined exact timing separation constraints on rhythmic enzyme activities that allow for substantial rhythms in pathway flux and metabolite concentrations. Direct measurements of circadian enzyme activities in mouse skeletal muscle confirmed that such timing separation occurs in vivo. PMID:28159888

  18. Circadian Rhythm Sleep Disorders: Part I, Basic Principles, Shift Work and Jet Lag DisordersAn American Academy of Sleep Medicine Review

    PubMed Central

    Sack, Robert L; Auckley, Dennis; Auger, R. Robert; Carskadon, Mary A.; Wright, Kenneth P.; Vitiello, Michael V.; Zhdanova, Irina V.

    2007-01-01

    Objective: This the first of two articles reviewing the scientific literature on the evaluation and treatment of circadian rhythm sleep disorders (CRSDs), employing the methodology of evidence-based medicine. In this first part of this paper, the general principles of circadian biology that underlie clinical evaluation and treatment are reviewed. We then report on the accumulated evidence regarding the evaluation and treatment of shift work disorder (SWD) and jet lag disorder (JLD). Methods: A set of specific questions relevant to clinical practice were formulated, a systematic literature search was performed, and relevant articles were abstracted and graded. Results: A substantial body of literature has accumulated that provides a rational basis the evaluation and treatment of SWD and JLD. Physiological assessment has involved determination of circadian phase using core body temperature and the timing of melatonin secretion. Behavioral assessment has involved sleep logs, actigraphy and the Morningness-Eveningness Questionnaire (MEQ). Treatment interventions fall into three broad categories: 1) prescribed sleep scheduling, 2) circadian phase shifting (“resetting the clock”), and 3) symptomatic treatment using hypnotic and stimulant medications. Conclusion: Circadian rhythm science has also pointed the way to rational interventions for the SWD and JLD, and these treatments have been introduced into the practice of sleep medicine with varying degrees of success. More translational research is needed using subjects who meet current diagnostic criteria. Citation: Sack RL; Auckley D; Auger RR; Carskadon MA; Wright KP; Vitiello MV; Zhdanova IV. Circadian rhythm sleep disorders: Part I, basic principles, shift work and jet lag disorders. SLEEP 2007;30(11):1460-1483. PMID:18041480

  19. Anabolic Heterogeneity Following Resistance Training: A Role for Circadian Rhythm?

    PubMed

    Camera, Donny M

    2018-01-01

    It is now well established that resistance exercise stimulates muscle protein synthesis and promotes gains in muscle mass and strength. However, considerable variability exists following standardized resistance training programs in the magnitude of muscle cross-sectional area and strength responses from one individual to another. Several studies have recently posited that alterations in satellite cell population, myogenic gene expression and microRNAs may contribute to individual variability in anabolic adaptation. One emerging factor that may also explain the variability in responses to resistance exercise is circadian rhythms and underlying molecular clock signals. The molecular clock is found in most cells within the body, including skeletal muscle, and principally functions to optimize the timing of specific cellular events around a 24 h cycle. Accumulating evidence investigating the skeletal muscle molecular clock indicates that exercise-induced contraction and its timing may regulate gene expression and protein synthesis responses which, over time, can influence and modulate key physiological responses such as muscle hypertrophy and increased strength. Therefore, the circadian clock may play a key role in the heterogeneous anabolic responses with resistance exercise. The central aim of this Hypothesis and Theory is to discuss and propose the potential interplay between the circadian molecular clock and established molecular mechanisms mediating muscle anabolic responses with resistance training. This article begins with a current review of the mechanisms associated with the heterogeneity in muscle anabolism with resistance training before introducing the molecular pathways regulating circadian function in skeletal muscle. Recent work showing members of the core molecular clock system can regulate myogenic and translational signaling pathways is also discussed, forming the basis for a possible role of the circadian clock in the variable anabolic responses with

  20. Neonatal Alcohol Exposure Permanently Disrupts the Circadian Properties and Photic Entrainment of the Activity Rhythm in Adult Rats

    PubMed Central

    Allen, Gregg C.; West, James R.; Chen, Wei-Jung A.; Earnest, David J.

    2009-01-01

    Background Alcohol exposure during the period of rapid brain development produces structural damage in different brain regions, including the suprachiasmatic nucleus (SCN), that may have permanent neurobehavioral consequences. Thus, this study examined the long-term effects of neonatal alcohol exposure on circadian behavioral activity in adult rats. Methods Artificially reared Sprague-Dawley rat pups were exposed to alcohol (EtOH; 4.5 g/kg/day) or isocaloric milk formula (gastrostomy control; GC) on postnatal days 4–9. At 2 months of age, rats from the EtOH, GC, and suckle control (SC) groups were housed individually, and properties of the circadian rhythm in wheel-running behavior were continuously analyzed during exposure to a 12-hr light:12-hr dark photoperiod (LD 12:12) or constant darkness (DD). Results Neonatal alcohol exposure had distinctive effects on the rhythmic properties and quantitative parameters of adult wheel-running behavior. EtOH-treated animals were distinguished by unstable and altered entrainment to LD 12:12 such that their daily onsets of activity were highly variable and occurred at earlier times relative to control animals. In DD, circadian regulation of wheel-running behavior was altered by neonatal alcohol exposure such that the free-running period of the activity rhythm was shorter in EtOH-exposed rats than in control animals. Total amount of daily wheel-running activity in EtOH-treated rats was greater than that observed in the SC group. In addition, the circadian activity patterns of EtOH-exposed rats were fragmented such that the duration of the active phase and the number of activity bouts per day were increased. Conclusions These data indicate that neonatal alcohol exposure produces permanent changes in the circadian regulation of the rat activity rhythm and its entrainment to LD cycles. These long-term alterations in circadian behavior, along with the developmental alcohol-induced changes in SCN endogenous rhythmicity, may have

  1. Long term rebaudioside A treatment does not alter circadian activity rhythms, adiposity, or insulin action in male mice

    PubMed Central

    Reynolds, Thomas H.; Soriano, Rachelle A.; Obadi, Obadi A.; Murkland, Stanley; Possidente, Bernard

    2017-01-01

    Obesity is a major public health problem that is highly associated with insulin resistance and type 2 diabetes, two conditions associated with circadian disruption. To date, dieting is one of the only interventions that result in substantial weight loss, but restricting caloric intake is difficult to maintain long-term. The use of artificial sweeteners, particularly in individuals that consume sugar sweetened beverages (energy drinks, soda), can reduce caloric intake and possibly facilitate weight loss. The purpose of the present study was to examine the effects of the artificial sweetener, rebaudioside A (Reb-A), on circadian rhythms, in vivo insulin action, and the susceptibility to diet-induced obesity. Six month old male C57BL/6 mice were assigned to a control or Reb-A (0.1% Reb-A supplemented drinking water) group for six months. Circadian wheel running rhythms, body weight, caloric intake, insulin action, and susceptibility to diet-induced obesity were assessed. Time of peak physical activity under a 12:12 light-dark (LD) cycle, mean activity levels, and circadian period in constant dark were not significantly different in mice that consumed Reb-A supplemented water compared to normal drinking water, indicating that circadian rhythms and biological clock function were unaltered. Although wheel running significantly reduced body weight in both Reb-A and control mice (P = 0.0001), consuming Reb-A supplemented water did not alter the changes in body weight following wheel running (P = 0.916). In vivo insulin action, as assessed by glucose, insulin, and pyruvate tolerance tests, was not different between mice that consumed Reb-A treated water compared to normal drinking water. Finally, Reb-A does not appear to change the susceptibility to diet-induced obesity as both groups of mice gained similar amounts of body weight when placed on a high fat diet. Our results indicate that consuming Reb-A supplemented water does not promote circadian disruption, insulin

  2. Long term rebaudioside A treatment does not alter circadian activity rhythms, adiposity, or insulin action in male mice.

    PubMed

    Reynolds, Thomas H; Soriano, Rachelle A; Obadi, Obadi A; Murkland, Stanley; Possidente, Bernard

    2017-01-01

    Obesity is a major public health problem that is highly associated with insulin resistance and type 2 diabetes, two conditions associated with circadian disruption. To date, dieting is one of the only interventions that result in substantial weight loss, but restricting caloric intake is difficult to maintain long-term. The use of artificial sweeteners, particularly in individuals that consume sugar sweetened beverages (energy drinks, soda), can reduce caloric intake and possibly facilitate weight loss. The purpose of the present study was to examine the effects of the artificial sweetener, rebaudioside A (Reb-A), on circadian rhythms, in vivo insulin action, and the susceptibility to diet-induced obesity. Six month old male C57BL/6 mice were assigned to a control or Reb-A (0.1% Reb-A supplemented drinking water) group for six months. Circadian wheel running rhythms, body weight, caloric intake, insulin action, and susceptibility to diet-induced obesity were assessed. Time of peak physical activity under a 12:12 light-dark (LD) cycle, mean activity levels, and circadian period in constant dark were not significantly different in mice that consumed Reb-A supplemented water compared to normal drinking water, indicating that circadian rhythms and biological clock function were unaltered. Although wheel running significantly reduced body weight in both Reb-A and control mice (P = 0.0001), consuming Reb-A supplemented water did not alter the changes in body weight following wheel running (P = 0.916). In vivo insulin action, as assessed by glucose, insulin, and pyruvate tolerance tests, was not different between mice that consumed Reb-A treated water compared to normal drinking water. Finally, Reb-A does not appear to change the susceptibility to diet-induced obesity as both groups of mice gained similar amounts of body weight when placed on a high fat diet. Our results indicate that consuming Reb-A supplemented water does not promote circadian disruption, insulin

  3. Circadian Periods of Sensitivity for Ramelteon on the onset of Running-wheel Activity and the Peak of Suprachiasmatic Nucleus Neuronal Firing Rhythms in C3H/HeN Mice

    PubMed Central

    Rawashdeh, Oliver; Hudson, Randall L.; Stepien, Iwona; Dubocovich, Margarita L.

    2016-01-01

    Ramelteon, an MT1/MT2 melatonin receptor agonist, is used for the treatment of sleep-onset insomnia and circadian sleep disorders. Ramelteon phase shifts circadian rhythms in rodents and humans when given at the end of the subjective day; however, its efficacy at other circadian times is not known. Here, the authors determined in C3H/ HeN mice the maximal circadian sensitivity for ramelteon in vivo on the onset of circadian running-wheel activity rhythms, and in vitro on the peak of circadian rhythm of neuronal firing in suprachiasmatic nucleus (SCN) brain slices. The phase response curve (PRC) for ramelteon (90 μg/mouse, subcutaneous [sc]) on circadian wheel-activity rhythms shows maximal sensitivity during the late mid to end of the subjective day, between CT8 and CT12 (phase advance), and late subjective night and early subjective day, between CT20 and CT2 (phase delay), using a 3-day-pulse treatment regimen in C3H/HeN mice. The PRC for ramelteon resembles that for melatonin in C3H/ HeN mice, showing the same magnitude of maximal shifts at CT10 and CT2, except that the range of sensitivity for ramelteon (CT8–CT12) during the subjective day is broader. Furthermore, in SCN brain slices in vitro, ramelteon (10 pM) administered at CT10 phase advances (5.6 ± 0.29 h, n = 3) and at CT2 phase delays (−3.2 ± 0.12 h, n = 6) the peak of circadian rhythm of neuronal firing, with the shifts being significantly larger than those induced by melatonin (10 pM) at the same circadian times (CT10: 2.7 ± 0.15 h, n = 4, p < .05; CT2: −1.13 ± 0.08 h, n = 6, p < .001, respectively). The phase shifts induced by both melatonin and ramelteon in the SCN brain slice at either CT10 or CT2 corresponded with the period of sensitivity observed in vivo. In conclusion, melatonin and ramelteon showed identical periods of circadian sensitivity at CT10 (advance) and CT2 (delay) to shift the onset of circadian activity rhythms in vivo and the peak of SCN neuronal firing rhythms in vitro

  4. l-5-hydroxytryptophan resets the circadian locomotor activity rhythm of the nocturnal Indian pygmy field mouse, Mus terricolor

    NASA Astrophysics Data System (ADS)

    Basu, Priyoneel; Singaravel, Muniyandi; Haldar, Chandana

    2012-03-01

    We report that l-5-hydroxytryptophan (5-HTP), a serotonin precursor, resets the overt circadian rhythm in the Indian pygmy field mouse, Mus terricolor, in a phase- and dose-dependent manner. We used wheel running to assess phase shifts in the free-running locomotor activity rhythm. Following entrainment to a 12:12 h light-dark cycle, 5-HTP (100 mg/kg in saline) was intraperitoneally administered in complete darkness at circadian time (CT)s 0, 3, 6, 9, 12, 15, 18, and 21, and the ensuing phase shifts in the locomotor activity rhythm were calculated. The results show that 5-HTP differentially shifts the phase of the rhythm, causing phase advances from CT 0 to CT 12 and phase delays from CT 12 to CT 21. Maximum advance phase shift was at CT 6 (1.18 ± 0.37 h) and maximum delay was at CT 18 (-2.36 ± 0.56 h). No extended dead zone is apparent. Vehicle (saline) at any CT did not evoke a significant phase shift. Investigations with different doses (10, 50, 100, and 200 mg/kg) of 5-HTP revealed that the phase resetting effect is dose-dependent. The shape of the phase-response curve (PRC) has a strong similarity to PRCs obtained using some serotonergic agents. There was no significant increase in wheel-running activity after 5-HTP injection, ruling out behavioral arousal-dependent shifts. This suggests that this phase resetting does not completely depend on feedback of the overt rhythmic behavior on the circadian clock. A mechanistic explanation of these shifts is currently lacking.

  5. Rhythm and mood: relationships between the circadian clock and mood-related behavior.

    PubMed

    Schnell, Anna; Albrecht, Urs; Sandrelli, Federica

    2014-06-01

    Mood disorders are multifactorial and heterogeneous diseases caused by the interplay of several genetic and environmental factors. In humans, mood disorders are often accompanied by abnormalities in the organization of the circadian system, which normally synchronizes activities and functions of cells and tissues. Studies on animal models suggest that the basic circadian clock mechanism, which runs in essentially all cells, is implicated in the modulation of biological phenomena regulating affective behaviors. In particular, recent findings highlight the importance of the circadian clock mechanisms in neurological pathways involved in mood, such as monoaminergic neurotransmission, hypothalamus-pituitary-adrenal axis regulation, suprachiasmatic nucleus and olfactory bulb activities, and neurogenesis. Defects at the level of both, the circadian clock mechanism and system, may contribute to the etiology of mood disorders. Modification of the circadian system using chronotherapy appears to be an effective treatment for mood disorders. Additionally, understanding the role of circadian clock mechanisms, which affect the regulation of different mood pathways, will open up the possibility for targeted pharmacological treatments. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  6. Maternal obesity and post-natal high fat diet disrupt hepatic circadian rhythm in rat offspring

    USDA-ARS?s Scientific Manuscript database

    Offspring of obese (Ob) rat dams gain greater body wt and fat mass when fed high-fat diet (HFD) as compared to controls. Alterations of diurnal circadian rhythm are known to detrimentally impact metabolically active tissues such as liver. We sought to determine if maternal obesity (MOb) leads to p...

  7. The interference of flexible working times with the circadian temperature rhythm--a predictor of impairment to health and well-being?

    PubMed

    Giebel, Ole; Wirtz, Anna; Nachreiner, Friedhelm

    2008-04-01

    In order to analyze whether impairments to health and well-being under flexible working hours can be predicted from specific characteristics of the work schedules, periodic components in flexible working hours and their interference with the circadian temperature rhythm were analyzed applying univariate and bivariate spectrum analyses to both time series. The resulting indicators of spectral power and phase shift of these components were then related to reported health impairments using regression analysis. The results show that a suppression of both the 24 and the 168 h components in the work schedules (i.e., a lack of periodicity) can be used to predict reported health impairments, and that if there are relatively strong 24 and 168 h components left in the work schedules, their phase difference with the temperature rhythm (as an indicator of the interference between working time and the circadian rhythm) further predicts impairment. The results indicate that the periodicity of working hours and the amount of (circadian) desynchronization induced by flexible work schedules can be used for predicting the impairing effects of flexible work schedules on health and well-being. The results can thus be used for evaluating and designing flexible shift rosters.

  8. The volcano mouse Neotomodon alstoni of central Mexico, a biological model in the study of breeding, obesity and circadian rhythms.

    PubMed

    Miranda-Anaya, M; Pérez-Mendoza, M; Juárez-Tapia, C R; Carmona-Castro, A

    2018-04-24

    The "Mexican volcano mouse" Neotomodon alstoni, is endemic of the Transverse Neovolcanic Ridge in central Mexico. It is considered as least concern species and has been studied as a potential laboratory model from different perspectives. Two lines of research in neuroendocrinology have been addressed: reproduction and parental care, particularly focused on paternal attention and the influence of testosterone, and studies on physiology and behavior of circadian rhythms, focused on the circadian biology of the species, its circadian locomotor activity and daily neuroendocrine regulation of metabolic parameters related to energy balance. Some mice, when captive, spontaneously develop obesity, which allows for comparisons between lean and obese mice of daily changes in neuronal and metabolic parameters associated with changes in food intake and locomotor activity. This review includes studies that consider this species an attractive animal model where the alteration of circadian rhythms influences the pathogenesis of obesity, specifically with the basic regulation of food intake and metabolism and differences related to sex. This study can be considered as a reference to the comparative animal physiology among rodents. Copyright © 2018. Published by Elsevier Inc.

  9. Circadian Rhythm of Ambient Noise Off the Southeast Coast of India

    NASA Astrophysics Data System (ADS)

    Kannan, R.; Latha, G.; Prashanthi Devi, M.

    An ambient noise system consisting of a vertical linear hydrophone array was deployed in the shallow waters off Chennai, southeast coast of India from 1 August to 16 September 2013 to record ambient ocean noise of frequencies up to 10kHz. Biological sounds, which are broadband, short duration signals resulting from Terapon theraps, a native species, are a prominent feature of the ocean soundscape. Terapon activity peaks at 8pm and 11pm, and its presence is not observed after 12 midnight in both the months. In the other period, the ambient noise fluctuation is due to wind and vessel traffic. Hence, the present study focuses on the description of the ambient noise fluctuation over two 12h periods, i.e., 12 midnight-12 noon considered as period I, and 12 noon-12 midnight as period II in order to show the circadian rhythm of ambient noise. In this study area, Terapon vocalization reached 25dB above the ambient noise level and it dominates the short-term spectra records in the 0.4-4kHz range. All Terapon signals had daily patterns of sound production with highest levels of activity after dusk during the study period. The result shows that the circadian rhythm of ambient noise is mainly of biological sound generated by Terapon and it is reported first time in the shallow waters off the southeast coast of India.

  10. Daily Rhythms of Hunger and Satiety in Healthy Men during One Week of Sleep Restriction and Circadian Misalignment.

    PubMed

    Sargent, Charli; Zhou, Xuan; Matthews, Raymond W; Darwent, David; Roach, Gregory D

    2016-01-29

    The impact of sleep restriction on the endogenous circadian rhythms of hunger and satiety were examined in 28 healthy young men. Participants were scheduled to 2 × 24-h days of baseline followed by 8 × 28-h days of forced desynchrony during which sleep was either moderately restricted (equivalent to 6 h in bed/24 h; n = 14) or severely restricted (equivalent to 4 h in bed/24 h; n = 14). Self-reported hunger and satisfaction were assessed every 2.5 h during wake periods using visual analogue scales. Participants were served standardised meals and snacks at regular intervals and were not permitted to eat ad libitum. Core body temperature was continuously recorded with rectal thermistors to determine circadian phase. Both hunger and satiety exhibited a marked endogenous circadian rhythm. Hunger was highest, and satiety was lowest, in the biological evening (i.e., ~17:00-21:00 h) whereas hunger was lowest, and satiety was highest in the biological night (i.e., 01:00-05:00 h). The results are consistent with expectations based on previous reports and may explain in some part the decrease in appetite that is commonly reported by individuals who are required to work at night. Interestingly, the endogenous rhythms of hunger and satiety do not appear to be altered by severe--as compared to moderate--sleep restriction.

  11. Evidence for Time-of-Day Dependent Effect of Neurotoxic Dorsomedial Hypothalamic Lesions on Food Anticipatory Circadian Rhythms in Rats

    PubMed Central

    Landry, Glenn J.; Kent, Brianne A.; Patton, Danica F.; Jaholkowski, Mark; Marchant, Elliott G.; Mistlberger, Ralph E.

    2011-01-01

    The dorsomedial hypothalamus (DMH) is a site of circadian clock gene and immediate early gene expression inducible by daytime restricted feeding schedules that entrain food anticipatory circadian rhythms in rats and mice. The role of the DMH in the expression of anticipatory rhythms has been evaluated using different lesion methods. Partial lesions created with the neurotoxin ibotenic acid (IBO) have been reported to attenuate food anticipatory rhythms, while complete lesions made with radiofrequency current leave anticipatory rhythms largely intact. We tested a hypothesis that the DMH and fibers of passage spared by IBO lesions play a time-of-day dependent role in the expression of food anticipatory rhythms. Rats received intra-DMH microinjections of IBO and activity and body temperature (T b) rhythms were recorded by telemetry during ad-lib food access, total food deprivation and scheduled feeding, with food provided for 4-h/day for 20 days in the middle of the light period and then for 20 days late in the dark period. During ad-lib food access, rats with DMH lesions exhibited a lower amplitude and mean level of light-dark entrained activity and T b rhythms. During the daytime feeding schedule, all rats exhibited food anticipatory activity and T b rhythms that persisted during 2 days without food in constant dark. In some rats with partial or total DMH ablation, the magnitude of the anticipatory rhythm was weak relative to most intact rats. When mealtime was shifted to the late night, the magnitude of the food anticipatory activity rhythms in these cases was restored to levels characteristic of intact rats. These results confirm that rats can anticipate scheduled daytime or nighttime meals without the DMH. Improved anticipation at night suggests a modulatory role for the DMH in the expression of food anticipatory activity rhythms during the daily light period, when nocturnal rodents normally sleep. PMID:21912674

  12. Health impact of fasting in Saudi Arabia during Ramadan: association with disturbed circadian rhythm and metabolic and sleeping patterns.

    PubMed

    Ajabnoor, Ghada M; Bahijri, Suhad; Borai, Anwar; Abdulkhaliq, Altaf A; Al-Aama, Jumana Y; Chrousos, George P

    2014-01-01

    Muslims go through strict Ramadan fasting from dawn till sunset for one month yearly. These practices are associated with disturbed feeding and sleep patterns. We recently demonstrated that, during Ramadan, circadian cortisol rhythm of Saudis is abolished, exposing these subjects to continuously increased cortisol levels. Secretory patterns of other hormones and metabolic parameters associated with cortisol, and insulin resistance, might be affected during Ramadan. Ramadan practitioners (18 males, 5 females; mean age ±SEM = 23.16±1.2 years) were evaluated before and two weeks into Ramadan. Blood was collected for measurements of endocrine and metabolic parameters at 9 am (±1 hour) and again twelve hours later. In Ramadan, glucose concentration was kept within normal range, with a significant increase in the morning. Mean morning concentration of leptin was significantly higher than pre-Ramadan values (p = 0.001), in contrast to that of adiponectin, which was significantly lower (p<0.001). These changes were associated with increased insulin resistance in morning and evening. Concentrations of hsCRP were lower during Ramadan than those during regular living conditions, however, normal circadian fluctuation was abolished (p = 0.49). Even though means of liver enzymes, total bilirubin, total protein and albumin were all decreased during Ramadan, statistically lower means were only noted for GGT, total protein, and albumin (p = 0.018, 0.002 and 0.001 respectively). Saudi Ramadan practitioners have altered adipokine patterns, typical of insulin resistance. The noted decreases of hsCRP, liver enzymes, total protein, and albumin, are most likely a result of fasting, while loss of circadian rhythmicity of hsCRP is probably due to loss of circadian cortisol rhythm. Modern Ramadan practices in Saudi Arabia, which are associated with evening hypercortisolism, are also characterized by altered adipokines patterns, and an abolished hsCRP circadian rhythm, all

  13. Circadian systems biology in Metazoa.

    PubMed

    Lin, Li-Ling; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2015-11-01

    Systems biology, which can be defined as integrative biology, comprises multistage processes that can be used to understand components of complex biological systems of living organisms and provides hierarchical information to decoding life. Using systems biology approaches such as genomics, transcriptomics and proteomics, it is now possible to delineate more complicated interactions between circadian control systems and diseases. The circadian rhythm is a multiscale phenomenon existing within the body that influences numerous physiological activities such as changes in gene expression, protein turnover, metabolism and human behavior. In this review, we describe the relationships between the circadian control system and its related genes or proteins, and circadian rhythm disorders in systems biology studies. To maintain and modulate circadian oscillation, cells possess elaborative feedback loops composed of circadian core proteins that regulate the expression of other genes through their transcriptional activities. The disruption of these rhythms has been reported to be associated with diseases such as arrhythmia, obesity, insulin resistance, carcinogenesis and disruptions in natural oscillations in the control of cell growth. This review demonstrates that lifestyle is considered as a fundamental factor that modifies circadian rhythm, and the development of dysfunctions and diseases could be regulated by an underlying expression network with multiple circadian-associated signals. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. Preserved circadian rhythm of serum insulin concentration at low plasma glucose during fasting in lean and overweight humans.

    PubMed

    Merl, Volker; Peters, Achim; Oltmanns, Kerstin M; Kern, Werner; Hubold, Christian; Hallschmid, Manfred; Born, Jan; Fehm, Horst L; Schultes, Bernd

    2004-11-01

    Circadian rhythms in glucose metabolism are well documented. Most studies, however, evaluated such variations under conditions of continuous glucose supply, either via food intake or glucose infusion. Here we assessed in 30 subjects circadian variations in concentrations of plasma glucose, serum insulin, and C-peptide during a 72-hour fasting period to evaluate rhythms independent from glucose supply. Furthermore we assessed differences in these parameters between normal-weight (n = 20) and overweight (n = 10) subjects. Blood was sampled every 4 hours. During fasting, plasma glucose, serum insulin, and C-peptide levels gradually decreased (all P < .001). While there was no circadian variation in plasma glucose levels after the first day of fasting, serum levels of insulin were constantly higher in the morning (8.00 h) than at night (0.00 h) (P < .001), although the extent of this morning-associated rise in insulin levels decreased with the time spent fasting (P = .001). Also, morning C-peptide concentrations were higher compared to the preceding night (P < .001). The C-peptide/insulin ratio (CIR) decreased during prolonged fasting (P = .030), suggesting a decrease in hepatic insulin clearance. Moreover, CIR was significantly lower in the morning than at the night of day 1 and day 2 of fasting (P = .010 and P = .004, respectively). Compared to normal-weight subjects, overweight subjects had higher plasma glucose, as well as serum insulin and C-peptide levels (all P < .03). Data indicate preserved circadian rhythms in insulin concentrations in the presence of substantially decreased glucose levels in normal-weight and overweight subjects. This finding suggests a central nervous system contribution to the regulation of insulin secretion independent of plasma glucose levels.

  15. The Clock gene clone and its circadian rhythms in Pelteobagrus vachelli

    NASA Astrophysics Data System (ADS)

    Qin, Chuanjie; Shao, Ting

    2015-05-01

    The Clock gene, a key molecule in circadian systems, is widely distributed in the animal kingdom. We isolated a 936-bp partial cDNA sequence of the Clock gene ( Pva-clock) from the darkbarbel catfish Pelteobagrus vachelli that exhibited high identity with Clock genes of other species of fish and animals (65%-88%). The putative domains included a basic helix-loop-helix (bHLH) domain and two period-ARNT-single-minded (PAS) domains, which were also similar to those in other species of fish and animals. Pva-Clock was primarily expressed in the brain, and was detected in all of the peripheral tissues sampled. Additionally, the pattern of Pva-Clock expression over a 24-h period exhibited a circadian rhythm in the brain, liver and intestine, with the acrophase at zeitgeber time 21:35, 23:00, and 23:23, respectively. Our results provide insight into the function of the molecular Clock of P. vachelli.

  16. Light masking of circadian rhythms of heat production, heat loss, and body temperature in squirrel monkeys

    NASA Technical Reports Server (NTRS)

    Robinson, E. L.; Fuller, C. A.

    1999-01-01

    Whole body heat production (HP) and heat loss (HL) were examined to determine their relative contributions to light masking of the circadian rhythm in body temperature (Tb). Squirrel monkey metabolism (n = 6) was monitored by both indirect and direct calorimetry, with telemetered measurement of body temperature and activity. Feeding was also measured. Responses to an entraining light-dark (LD) cycle (LD 12:12) and a masking LD cycle (LD 2:2) were compared. HP and HL contributed to both the daily rhythm and the masking changes in Tb. All variables showed phase-dependent masking responses. Masking transients at L or D transitions were generally greater during subjective day; however, L masking resulted in sustained elevation of Tb, HP, and HL during subjective night. Parallel, apparently compensatory, changes of HL and HP suggest action by both the circadian timing system and light masking on Tb set point. Furthermore, transient HL increases during subjective night suggest that gain change may supplement set point regulation of Tb.

  17. Polysialic acid enters the cell nucleus attached to a fragment of the neural cell adhesion molecule NCAM to regulate the circadian rhythm in mouse brain.

    PubMed

    Westphal, Nina; Kleene, Ralf; Lutz, David; Theis, Thomas; Schachner, Melitta

    2016-07-01

    In the mammalian nervous system, the neural cell adhesion molecule NCAM is the major carrier of the glycan polymer polysialic acid (PSA) which confers important functions to NCAM's protein backbone. PSA attached to NCAM contributes not only to cell migration, neuritogenesis, synaptic plasticity, and behavior, but also to regulation of the circadian rhythm by yet unknown molecular mechanisms. Here, we show that a PSA-carrying transmembrane NCAM fragment enters the nucleus after stimulation of cultured neurons with surrogate NCAM ligands, a phenomenon that depends on the circadian rhythm. Enhanced nuclear import of the PSA-carrying NCAM fragment is associated with altered expression of clock-related genes, as shown by analysis of cultured neuronal cells deprived of PSA by specific enzymatic removal. In vivo, levels of nuclear PSA in different mouse brain regions depend on the circadian rhythm and clock-related gene expression in suprachiasmatic nucleus and cerebellum is affected by the presence of PSA-carrying NCAM in the cell nucleus. Our conceptually novel observations reveal that PSA attached to a transmembrane proteolytic NCAM fragment containing part of the extracellular domain enters the cell nucleus, where PSA-carrying NCAM contributes to the regulation of clock-related gene expression and of the circadian rhythm. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Circadian rhythms in sports performance--an update.

    PubMed

    Drust, B; Waterhouse, J; Atkinson, G; Edwards, B; Reilly, T

    2005-01-01

    We discuss current knowledge on the description, impact, and underlying causes of circadian rhythmicity in sports performance. We argue that there is a wealth of information from both applied and experimental work, which, when considered together, suggests that sports performance is affected by time of day in normal entrained conditions and that the variation has at least some input from endogenous mechanisms. Nevertheless, precise information on the relative importance of endogenous and exogenous factors is lacking. No single study can answer both the applied and basic research questions that are relevant to this topic, but an appropriate mixture of real-world research on rhythm disturbances and tightly controlled experiments involving forced desynchronization protocols is needed. Important issues, which should be considered by any chronobiologist interested in sports and exercise, include how representative the study sample and the selected performance tests are, test-retest reliability, as well as overall design of the experiment.

  19. Impact of dispersed coupling strength on the free running periods of circadian rhythms

    NASA Astrophysics Data System (ADS)

    Gu, Changgui; Rohling, Jos H. T.; Liang, Xiaoming; Yang, Huijie

    2016-03-01

    The dominant endogenous clock, named the suprachiasmatic nucleus (SCN), regulates circadian rhythms of behavioral and physiological activity in mammals. One of the main characteristics of the SCN is that the animal maintains a circadian rhythm with a period close to 24 h in the absence of a daily light-dark cycle (called the free running period). The free running period varies among species due to heterogeneity of the SCN network. Previous studies have shown that the heterogeneity in cellular coupling as well as in intrinsic neuronal periods shortens the free running period. Furthermore, as derived from experiments, one neuron's coupling strength is negatively associated with its period. It is unknown what the effects of this association between coupling strength and period are on the free running period and how the heterogeneity in coupling strength influences this free running period. In the present study we found that in the presence of a negative relationship between one neuron's coupling strength and its period, surprisingly, the dispersion of coupling strengths increases the free running period. Our present finding may shed new light on the understanding of the heterogeneous SCN network and provides an alternative explanation for the diversity of free running periods between species.

  20. Integration of human sleep-wake regulation and circadian rhythmicity

    NASA Technical Reports Server (NTRS)

    Dijk, Derk-Jan; Lockley, Steven W.

    2002-01-01

    The human sleep-wake cycle is generated by a circadian process, originating from the suprachiasmatic nuclei, in interaction with a separate oscillatory process: the sleep homeostat. The sleep-wake cycle is normally timed to occur at a specific phase relative to the external cycle of light-dark exposure. It is also timed at a specific phase relative to internal circadian rhythms, such as the pineal melatonin rhythm, the circadian sleep-wake propensity rhythm, and the rhythm of responsiveness of the circadian pacemaker to light. Variations in these internal and external phase relationships, such as those that occur in blindness, aging, morning and evening, and advanced and delayed sleep-phase syndrome, lead to sleep disruptions and complaints. Changes in ocular circadian photoreception, interindividual variation in the near-24-h intrinsic period of the circadian pacemaker, and sleep homeostasis can contribute to variations in external and internal phase. Recent findings on the physiological and molecular-genetic correlates of circadian sleep disorders suggest that the timing of the sleep-wake cycle and circadian rhythms is closely integrated but is, in part, regulated differentially.

  1. The Effects of the Mars Exploration Rovers (MER) Work Schedule Regime on Locomotor Activity Circadian Rhythms, Sleep and Fatigue

    NASA Technical Reports Server (NTRS)

    DeRoshia, Charles W.; Colletti, Laura C.; Mallis, Melissa M.

    2008-01-01

    This study assessed human adaptation to a Mars sol by evaluating sleep metrics obtained by actigraphy and subjective responses in 22 participants, and circadian rhythmicity in locomotor activity in 9 participants assigned to Mars Exploration Rover (MER) operational work schedules (24.65 hour days) at the Jet Propulsion Laboratory in 2004. During MER operations, increased work shift durations and reduced sleep durations and time in bed were associated with the appearance of pronounced 12-hr (circasemidian) rhythms with reduced activity levels. Sleep duration, workload, and circadian rhythm stability have important implications for adaptability and maintenance of operational performance not only of MER operations personnel but also in space crews exposed to a Mars sol of 24.65 hours during future Mars missions.

  2. Manipulating the sleep-wake cycle and circadian rhythms to improve clinical management of major depression

    PubMed Central

    2013-01-01

    Background Clinical psychiatry has always been limited by the lack of objective tests to substantiate diagnoses and a lack of specific treatments that target underlying pathophysiology. One area in which these twin failures has been most frustrating is major depression. Due to very considerable progress in the basic and clinical neurosciences of sleep-wake cycles and underlying circadian systems this situation is now rapidly changing. Discussion The development of specific behavioral or pharmacological strategies that target these basic regulatory systems is driving renewed clinical interest. Here, we explore the extent to which objective tests of sleep-wake cycles and circadian function - namely, those that measure timing or synchrony of circadian-dependent physiology as well as daytime activity and nighttime sleep patterns - can be used to identify a sub-class of patients with major depression who have disturbed circadian profiles. Summary Once this unique pathophysiology is characterized, a highly personalized treatment plan can be proposed and monitored. New treatments will now be designed and old treatments re-evaluated on the basis of their effects on objective measures of sleep-wake cycles, circadian rhythms and related metabolic systems. PMID:23521808

  3. Attention-deficit hyperactivity disorder symptoms add risk to circadian rhythm sleep problems in depression and anxiety.

    PubMed

    Bron, T I; Bijlenga, D; Kooij, J J S; Vogel, S W N; Wynchank, D; Beekman, A T F; Penninx, B W J H

    2016-08-01

    Comorbid ADHD symptoms may partly account for circadian rhythm disturbances in depression and anxiety disorders. Self-reported sleep characteristics of 2090 participants in the Netherlands Study of Depression and Anxiety were assessed using the Munich Chronotype Questionnaire. We defined 3 groups: healthy controls (HC), persons with lifetime depression and/or anxiety disorders (LDA), and those with both LDA and high ADHD symptoms (LDA+ADHD), using the Conner's Adult ADHD Rating Scale. Sleep characteristics were least favorable in the LDA+ADHD group. Important group differences between LDA+ADHD, LDA and HC were found for extremely late chronotype (12% vs. 5% vs. 3%; p<.001), sleep duration <6h (15% vs. 5% vs. 4%; p<.001), and for an indication of the Delayed Sleep Phase Syndrome (DSPS; 16% vs. 8% vs. 5%; p<.001). After adjustment for covariates, including depression and anxiety, presence of ADHD symptoms increased the odds ratio for late chronotype (OR=2.6; p=.003), indication of DSPS (OR=2.4; p=.002), and sleep duration <6h (OR=2.7; p=.007). ADHD conceptually overlaps with symptom presentation of depression and anxiety. We used a cross-sectional study design, and used self reported sleep characteristics. High ADHD symptoms were associated with an increased rate of circadian rhythm sleep disturbances in an already at-risk population of people with depression and/or anxiety disorders. Circadian rhythm sleep disorders, as often seen in ADHD are not entirely due to any comorbid depression and/or anxiety disorder. Adequate treatment of such sleep problems is needed and may prevent serious health conditions in the long term. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effect of feeding and temperature on the circadian rhythms of cortisol, thyroxine and triiodothyronine in pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, B.A.; Nienaber, J.A.; Ford, J.J.

    1986-03-05

    An experiment was conducted to evaluate the circadian rhythms of cortisol, thyroxine (T/sub 4/) and triiodothyronine (T/sub 3/) in pigs under two temperature and feeding regimes. Twenty-eight barrows were randomly assigned to one of the following: 1) ad-libitum fed at 5/sup 0/C(AL-5); 2) ad-libitum fed at 20/sup 0/C(AL-20); 3) meal fed at 5/sup 0/C(M-5); and 4) meal fed at 20/sup 0/C(M-20). M-5 and M-20 animals were fed at 0730 and 1400 hrs. Lights were on from 0600 to 2000 hrs. After 5 wks, blood samples were collected for 27 hrs. Serum cortisol, T/sub 4/ and T/sub 3/ concentrations were determinedmore » by RIA. No significant differences were found in the mesors, amplitudes or acrophases for cortisol. The mesors for T/sub 4/ (p<.01) were 60.6 +/- 5.6, 40.2 +/- 5.6, 61.2 +/- 5.6 and 49.1 +/- 5.0 ng/ml for AL-5, AL-20, M-5, and M-20, respectively. The mesors for T/sub 3/ (p<.01) were .85 +/- .06, .69 +/- .06, .92 +/- .06 and .66 +/- .05 ng/ml for AL-5, AL-20, M-5, and M-20 respectively. No differences in the amplitudes or acrophases for T/sub 3/ or T/sub 4/ were found. These data show that temperature and feeding regimes do not entrain the circadian rhythm of cortisol in pigs. The circadian rhythms of T/sub 4/ and T/sub 3/ are also not altered by feeding regimes but are affected by temperature.« less

  5. [Influence of extremely low-frequency magnetic field on circadian rhythm of cryptochrome in mouse embryonic fibroblasts].

    PubMed

    Sun, Z Y; Geng, D Y; Chen, C F; Wang, P P; Song, T

    2017-06-20

    Objective: To investigate the influence of extremely low-frequency magnetic field on periodical expression of cryptochrome ( Cry ) gene in mouse embryonic fibroblast NIH3T3 cells. Methods: The NIH3T3 cells were divided into magnetic field group and sham-exposure group. The NIH3T3 cells in the magnetic field group were stimulated by horse serum and then exposed to an extremely low-frequency magnetic field (50 Hz and 0.3 mT) for 48 hours, and those in the sham-exposure group were also stimulated by horse serum and then exposed to a coil for 48 hours. The NIH3T3 cells were collected, total RNA was extracted, and cDNA was obtained via reverse transcription. Real-time fluorescent quantitative RT-PCR was used to measure the changes in transcription cycles of Cry and Period genes in both groups. Results: There was no significant difference in the proliferation rate at 0, 12, 24, and 48 hours of exposure between the two groups ( P >0.05) . Both sham-exposure group and magnetic field group showed a rhythmic change in the expression of Cry gene, and compared with the sham-exposure group, the magnetic field group had a significantly shortened circadian rhythm of Cry gene in NIH3T3 cells ( t =2.57, P <0.05) . Both groups had rhythmic and periodical expression of Period gene and there was no significant difference between the two groups ( t =0.70, P >0.05) . Conclusion: Extremely low-frequency magnetic field can significantly shorten the circadian rhythm of Cry gene in mouse embryonic fibroblasts, while there is no significant change in the circadian rhythm of Period gene.

  6. A tunable artificial circadian clock in clock-defective mice

    PubMed Central

    D'Alessandro, Matthew; Beesley, Stephen; Kim, Jae Kyoung; Chen, Rongmin; Abich, Estela; Cheng, Wayne; Yi, Paul; Takahashi, Joseph S.; Lee, Choogon

    2015-01-01

    Self-sustaining oscillations are essential for diverse physiological functions such as the cell cycle, insulin secretion and circadian rhythms. Synthetic oscillators using biochemical feedback circuits have been generated in cell culture. These synthetic systems provide important insight into design principles for biological oscillators, but have limited similarity to physiological pathways. Here we report the generation of an artificial, mammalian circadian clock in vivo, capable of generating robust, tunable circadian rhythms. In mice deficient in Per1 and Per2 genes (thus lacking circadian rhythms), we artificially generate PER2 rhythms and restore circadian sleep/wake cycles with an inducible Per2 transgene. Our artificial clock is tunable as the period and phase of the rhythms can be modulated predictably. This feature, and other design principles of our work, might enhance the study and treatment of circadian dysfunction and broader aspects of physiology involving biological oscillators. PMID:26617050

  7. Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day

    NASA Technical Reports Server (NTRS)

    Wyatt, J. K.; Ritz-De Cecco, A.; Czeisler, C. A.; Dijk, D. J.

    1999-01-01

    The interaction of homeostatic and circadian processes in the regulation of waking neurobehavioral functions and sleep was studied in six healthy young subjects. Subjects were scheduled to 15-24 repetitions of a 20-h rest/activity cycle, resulting in desynchrony between the sleep-wake cycle and the circadian rhythms of body temperature and melatonin. The circadian components of cognitive throughput, short-term memory, alertness, psychomotor vigilance, and sleep disruption were at peak levels near the temperature maximum, shortly before melatonin secretion onset. These measures exhibited their circadian nadir at or shortly after the temperature minimum, which in turn was shortly after the melatonin maximum. Neurobehavioral measures showed impairment toward the end of the 13-h 20-min scheduled wake episodes. This wake-dependent deterioration of neurobehavioral functions can be offset by the circadian drive for wakefulness, which peaks in the latter half of the habitual waking day during entrainment. The data demonstrate the exquisite sensitivity of many neurobehavioral functions to circadian phase and the accumulation of homeostatic drive for sleep.

  8. Metabolic heat production, heat loss and the circadian rhythm of body temperature in the rat.

    PubMed

    Refinetti, Roberto

    2003-05-01

    Metabolic heat production (calculated from oxygen consumption), dry heat loss (measured in a calorimeter) and body temperature (measured by telemetry) were recorded simultaneously at 6 min intervals over five consecutive days in rats maintained in constant darkness. Robust circadian rhythmicity (confirmed by chi square periodogram analysis) was observed in all three variables. The rhythm of heat production was phase-advanced by about half an hour in relation to the body temperature rhythm, whereas the rhythm of heat loss was phase-delayed by about half an hour. The balance of heat production and heat loss exhibited a daily oscillation 180 deg out of phase with the oscillation in body temperature. Computations indicated that the amount of heat associated with the generation of the body temperature rhythm (1.6 kJ) corresponds to less than 1 % of the total daily energy budget (172 kJ) in this species. Because of the small magnitude of the fraction of heat balance associated with the body temperature rhythm, it is likely that the daily oscillation in heat balance has a very slow effect on body temperature, thus accounting for the 180 deg phase difference between the rhythms of heat balance and body temperature.

  9. Altered circadian rhythms of the stress hormone and melatonin response in lupus-prone MRL/MP-fas(Ipr) mice.

    PubMed

    Lechner, O; Dietrich, H; Oliveira dos Santos, A; Wiegers, G J; Schwarz, S; Harbutz, M; Herold, M; Wick, G

    2000-06-01

    The immune system interacts with the hypothalamo-pituitary-adrenal axis via so-called glucocorticoid increasing factors, which are produced by the immune system during immune reactions, causing an elevation of systemic glucocorticoid levels that contribute to preservation of the immune reactions specificities. Previous results from our laboratory had already shown an altered immuno-neuroendocrine dialogue via the hypothalamo-pituitary-adrenal axis in autoimmune disease-prone chicken and mouse strains. In the present study, we further investigated the altered glucocorticoid response via the hypothalamo-pituitary-adrenal axis in murine lupus. We established the circadian rhythms of corticosterone, dehydroepiandrosterone-sulfate, adrenocorticotropic hormone and melatonin, as well as the time response curves after injection of interleukin-1 of the first three parameters in normal SWISS and lupus-prone MRL/MP-fas(Ipr) mice. The results show that lupus-prone MRL/ MP-fas(Ipr) mice do not react appropriately to changes of the light/dark cycle, circadian melatonin rhythms seem to uncouple from the light/dark cycle, and plasma corticosterone levels are elevated during the resting phase. Diurnal changes of dehydroepiandrosterone-sulfate and adrenocorticotropic hormone were normal compared to healthy controls. These data indicate that MRL/ MP-fas(Ipr) mice not only show an altered glucocorticoid response mediated via the hypothalamo pituitary adrenal axis to IL-1, but are also affected by disturbances of corticosterone and melatonin circadian rhythms. Our findings may have implications for intrathymic T cell development and the emergence of autoimmune disease.

  10. Control mechanisms of circadian rhythms in body composition: Implications for manned spaceflight

    NASA Technical Reports Server (NTRS)

    Ede, M. C. M.

    1975-01-01

    The mechanisms that underlie the circadian variations in electrolyte content in body fluid compartments were investigated, and the mechanisms that control the oscillations were studied in order to investigate what effects internal desynchronization in such a system would have during manned space flight. The studies were performed using volunteer human subjects and squirrel monkeys. The intercompartmental distribution of potassium was examined when dietary intake, activity, and posture are held constant throughout each 24-hour day. A net flux of potassium was observed out of the body cell mass during the day and a reverse flux from the extracellular fluid into the body cell mass during the night, counterbalanced by changes in urinary potassium excretion. Experiments with monkeys provided evidence for the synchronization of renal potassium excretion by the rhythm of cortisol secretion with the light-dark cycle. Three models of the circadian timing system were formalized.

  11. Influence of head-down bed rest on the circadian rhythms of hormones and electrolytes involved in hydroelectrolytic regulation

    NASA Technical Reports Server (NTRS)

    Millet, C.; Custaud, M. A.; Allevard, A. M.; Zaouali-Ajina, M.; Monk, T. H.; Arnaud, S. B.; Claustrat, B.; Gharib, C.; Gauquelin-Koch, G.

    2001-01-01

    We investigated in six men the impact of a 17-day head-down bed rest (HDBR) on the circadian rhythms of the hormones and electrolytes involved in hydroelectrolytic regulation. This HDBR study was designed to mimic an actual spaceflight. Urine samples were collected at each voiding before, during and after HDBR. Urinary excretion of aldosterone, arginine vasopressin (AVP), cyclic guanosine monophosphate (cGMP), cortisol, electrolytes (Na+ and K+) and creatinine were determined. HDBR resulted in a significant reduction of body mass (P < 0.01) and of caloric intake [mean (SEM) 2,778 (37) kcal.24 h(-1) to 2,450 (36) kcal.24 h(-1), where 1 kcal.h(-1) = 1.163 J.s(-1); P< 0.01]. There was a significant increase in diastolic blood pressure [71.8 (0.7) mmHg vs 75.6 (0.91) mmHg], with no significant changes in either systolic blood pressure or heart rate. The nocturnal hormonal decrease of aldosterone was clearly evident only before and after HDBR, but the day/night difference did not appear during HDBR. The rhythm of K+ excretion was unchanged during HDBR, whereas for Na+ excretion, a large decrease was shown during the night as compared to the day. The circadian rhythm of cortisol persisted. These data suggest that exposure to a 17-day HDBR could induce an exaggeration of the amplitude of the Na+ rhythm and abolition of the aldosterone rhythm.

  12. Influence of head-down bed rest on the circadian rhythms of hormones and electrolytes involved in hydroelectrolytic regulation.

    PubMed

    Millet, C; Custaud, M A; Allevard, A M; Zaouali-Ajina, M; Monk, T H; Arnaud, S B; Claustrat, B; Gharib, C; Gauquelin-Koch, G

    2001-07-01

    We investigated in six men the impact of a 17-day head-down bed rest (HDBR) on the circadian rhythms of the hormones and electrolytes involved in hydroelectrolytic regulation. This HDBR study was designed to mimic an actual spaceflight. Urine samples were collected at each voiding before, during and after HDBR. Urinary excretion of aldosterone, arginine vasopressin (AVP), cyclic guanosine monophosphate (cGMP), cortisol, electrolytes (Na+ and K+) and creatinine were determined. HDBR resulted in a significant reduction of body mass (P < 0.01) and of caloric intake [mean (SEM) 2,778 (37) kcal.24 h(-1) to 2,450 (36) kcal.24 h(-1), where 1 kcal.h(-1) = 1.163 J.s(-1); P< 0.01]. There was a significant increase in diastolic blood pressure [71.8 (0.7) mmHg vs 75.6 (0.91) mmHg], with no significant changes in either systolic blood pressure or heart rate. The nocturnal hormonal decrease of aldosterone was clearly evident only before and after HDBR, but the day/night difference did not appear during HDBR. The rhythm of K+ excretion was unchanged during HDBR, whereas for Na+ excretion, a large decrease was shown during the night as compared to the day. The circadian rhythm of cortisol persisted. These data suggest that exposure to a 17-day HDBR could induce an exaggeration of the amplitude of the Na+ rhythm and abolition of the aldosterone rhythm.

  13. Homeostatic and Circadian Abnormalities in Sleep and Arousal in Gulf War Syndrome

    DTIC Science & Technology

    2013-10-01

    temperature, melatonin , vigilance 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON...analysis of slow wave characteristics, origin and propagation. Circadian rhythm is also assessed, including temperature and salivary melatonin ...to note diurnal changes, as well as morning cortisol rise from natural wake. We also have collected melatonin samples in a low light environment to

  14. What time is it? Deep learning approaches for circadian rhythms.

    PubMed

    Agostinelli, Forest; Ceglia, Nicholas; Shahbaba, Babak; Sassone-Corsi, Paolo; Baldi, Pierre

    2016-06-15

    Circadian rhythms date back to the origins of life, are found in virtually every species and every cell, and play fundamental roles in functions ranging from metabolism to cognition. Modern high-throughput technologies allow the measurement of concentrations of transcripts, metabolites and other species along the circadian cycle creating novel computational challenges and opportunities, including the problems of inferring whether a given species oscillate in circadian fashion or not, and inferring the time at which a set of measurements was taken. We first curate several large synthetic and biological time series datasets containing labels for both periodic and aperiodic signals. We then use deep learning methods to develop and train BIO_CYCLE, a system to robustly estimate which signals are periodic in high-throughput circadian experiments, producing estimates of amplitudes, periods, phases, as well as several statistical significance measures. Using the curated data, BIO_CYCLE is compared to other approaches and shown to achieve state-of-the-art performance across multiple metrics. We then use deep learning methods to develop and train BIO_CLOCK to robustly estimate the time at which a particular single-time-point transcriptomic experiment was carried. In most cases, BIO_CLOCK can reliably predict time, within approximately 1 h, using the expression levels of only a small number of core clock genes. BIO_CLOCK is shown to work reasonably well across tissue types, and often with only small degradation across conditions. BIO_CLOCK is used to annotate most mouse experiments found in the GEO database with an inferred time stamp. All data and software are publicly available on the CircadiOmics web portal: circadiomics.igb.uci.edu/ fagostin@uci.edu or pfbaldi@uci.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  15. What time is it? Deep learning approaches for circadian rhythms

    PubMed Central

    Agostinelli, Forest; Ceglia, Nicholas; Shahbaba, Babak; Sassone-Corsi, Paolo; Baldi, Pierre

    2016-01-01

    Motivation: Circadian rhythms date back to the origins of life, are found in virtually every species and every cell, and play fundamental roles in functions ranging from metabolism to cognition. Modern high-throughput technologies allow the measurement of concentrations of transcripts, metabolites and other species along the circadian cycle creating novel computational challenges and opportunities, including the problems of inferring whether a given species oscillate in circadian fashion or not, and inferring the time at which a set of measurements was taken. Results: We first curate several large synthetic and biological time series datasets containing labels for both periodic and aperiodic signals. We then use deep learning methods to develop and train BIO_CYCLE, a system to robustly estimate which signals are periodic in high-throughput circadian experiments, producing estimates of amplitudes, periods, phases, as well as several statistical significance measures. Using the curated data, BIO_CYCLE is compared to other approaches and shown to achieve state-of-the-art performance across multiple metrics. We then use deep learning methods to develop and train BIO_CLOCK to robustly estimate the time at which a particular single-time-point transcriptomic experiment was carried. In most cases, BIO_CLOCK can reliably predict time, within approximately 1 h, using the expression levels of only a small number of core clock genes. BIO_CLOCK is shown to work reasonably well across tissue types, and often with only small degradation across conditions. BIO_CLOCK is used to annotate most mouse experiments found in the GEO database with an inferred time stamp. Availability and Implementation: All data and software are publicly available on the CircadiOmics web portal: circadiomics.igb.uci.edu/. Contacts: fagostin@uci.edu or pfbaldi@uci.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307647

  16. The effects on human sleep and circadian rhythms of 17 days of continuous bedrest in the absence of daylight

    NASA Technical Reports Server (NTRS)

    Monk, T. H.; Buysse, D. J.; Billy, B. D.; Kennedy, K. S.; Kupfer, D. J.

    1997-01-01

    As part of a larger bedrest study involving various life science experiments, a study was conducted on the effects of 17 days of continuous bedrest and elimination of daylight on circadian rectal temperature rhythms, mood, alertness, and sleep (objective and diary) in eight healthy middle-aged men. Sleep was timed from 2300 to 0700 hours throughout. Three 72-hour measurement blocks were compared: ambulatory prebedrest, early bedrest (days 5-7), and late bedrest (days 15-17). Temperature rhythms showed reduced amplitude and later phases resulting from the bedrest conditions. This was associated with longer nocturnal sleep onset latencies and poorer subjectively rated sleep but with no reliable changes in any of the other sleep parameters. Daily changes in posture and/or exposure to daylight appear to be important determinants of a properly entrained circadian system.

  17. Chronotype influences activity circadian rhythm and sleep: differences in sleep quality between weekdays and weekend.

    PubMed

    Vitale, Jacopo A; Roveda, Eliana; Montaruli, Angela; Galasso, Letizia; Weydahl, Andi; Caumo, Andrea; Carandente, Franca

    2015-04-01

    Several studies have shown the differences among chronotypes in the circadian rhythm of different physiological variables. Individuals show variation in their preference for the daily timing of activity; additionally, there is an association between chronotype and sleep duration/sleep complaints. Few studies have investigated sleep quality during the week days and weekends in relation to the circadian typology using self-assessment questionnaires or actigraphy. The purpose of this study was to use actigraphy to assess the relationship between the three chronotypes and the circadian rhythm of activity levels and to determine whether sleep parameters respond differently with respect to time (weekdays versus the weekend) in Morning-types (M-types), Neither-types (N-types) and Evening-types (E-types). The morningness-eveningness questionnaire (MEQ) was administered to 502 college students to determine their chronotypes. Fifty subjects (16 M-types, 15 N-types and 19 E-types) were recruited to undergo a 7-days monitoring period with an actigraph (Actiwacth® actometers, CNT, Cambridge, UK) to evaluate their sleep parameters and the circadian rhythm of their activity levels. To compare the amplitude and the acrophase among the three chronotypes, we used a one-way ANOVA followed by the Tukey-Kramer post-hoc test. To compare the Midline Estimating Statistic of Rhythm (MESOR) among the three chronotypes, we used a Kruskal-Wallis non-parametric test followed by pairwise comparisons that were performed using Dunn's procedure with a Bonferroni correction for multiple comparisons. The analysis of each sleep parameter was conducted using the mixed ANOVA procedure. The results showed that the chronotype was influenced by sex (χ(2) with p = 0.011) and the photoperiod at birth (χ(2) with p < 0.05). Though the MESOR and amplitude of the activity levels were not different among the three chronotypes, the acrophases compared by the ANOVA post-hoc test were significantly

  18. Treatment guidelines for Circadian Rhythm Sleep-Wake Disorders of the Polish Sleep Research Society and the Section of Biological Psychiatry of the Polish Psychiatric Association. Part I. Physiology, assessment and therapeutic methods.

    PubMed

    Wichniak, Adam; Jankowski, Konrad S; Skalski, Michal; Skwarło-Sońta, Krystyna; Zawilska, Jolanta B; Żarowski, Marcin; Poradowska, Ewa; Jernajczyk, Wojciech

    2017-10-29

    Majority of the physiological processes in the human organism are rhythmic. The most common are the diurnal changes that repeat roughly every 24 hours, called circadian rhythms. Circadian rhythms disorders have negative influence on human functioning. The aim of this article is to present the current understanding of the circadian rhythms physiological role, with particular emphasis on the circadian rhythm sleep-wake disorders (CRSWD), principles of their diagnosis and chronobiological therapy. The guidelines are based on the review of recommendations from the scientific societies involved in sleep medicine and the clinical experiences of the authors. Researchers participating in the preparation of guidelines were invited by the Polish Sleep Research Society and the Section of Biological Psychiatry of the Polish Psychiatric Association, based on their significant contributions in circadian rhythm research and/or clinical experience in the treatment of such disorders. Finally, the guidelines were adjusted to the questions and comments given by the members of both Societies. CRSWD have a significant negative impact on human health and functioning. Standard methods used to assess CRSWD are sleep diaries and sleep logs, while the actigraphy, when available, should be also used. The most effective methods of CRSWD treatment are melatonin administration and light therapy. Behavioral interventions are also recommended. Afourteen-day period of sleep-wake rhythm assessment in CRSWD enables accurate diagnosis, adequate selection of chronobiological interventions, and planning adequate diurnal timing of their application. This type of assessment is quite easy, low-cost, and provides valuable indications how to adjust the therapeutic approach to the circadian phase of the particular patient.

  19. Predicted Role of NAD Utilization in the Control of Circadian Rhythms during DNA Damage Response

    PubMed Central

    Luna, Augustin; McFadden, Geoffrey B.; Aladjem, Mirit I.; Kohn, Kurt W.

    2015-01-01

    The circadian clock is a set of regulatory steps that oscillate with a period of approximately 24 hours influencing many biological processes. These oscillations are robust to external stresses, and in the case of genotoxic stress (i.e. DNA damage), the circadian clock responds through phase shifting with primarily phase advancements. The effect of DNA damage on the circadian clock and the mechanism through which this effect operates remains to be thoroughly investigated. Here we build an in silico model to examine damage-induced circadian phase shifts by investigating a possible mechanism linking circadian rhythms to metabolism. The proposed model involves two DNA damage response proteins, SIRT1 and PARP1, that are each consumers of nicotinamide adenine dinucleotide (NAD), a metabolite involved in oxidation-reduction reactions and in ATP synthesis. This model builds on two key findings: 1) that SIRT1 (a protein deacetylase) is involved in both the positive (i.e. transcriptional activation) and negative (i.e. transcriptional repression) arms of the circadian regulation and 2) that PARP1 is a major consumer of NAD during the DNA damage response. In our simulations, we observe that increased PARP1 activity may be able to trigger SIRT1-induced circadian phase advancements by decreasing SIRT1 activity through competition for NAD supplies. We show how this competitive inhibition may operate through protein acetylation in conjunction with phosphorylation, consistent with reported observations. These findings suggest a possible mechanism through which multiple perturbations, each dominant during different points of the circadian cycle, may result in the phase advancement of the circadian clock seen during DNA damage. PMID:26020938

  20. Caffeine does not entrain the circadian clock but improves daytime alertness in blind patients with non-24-hour rhythms

    PubMed Central

    St. Hilaire, Melissa A.; Lockley, Steven W.

    2015-01-01

    Objective/Background Totally blind individuals are highly likely to suffer from Non-24-Hour Sleep-Wake Disorder due to a failure of light to reset the circadian pacemaker in the suprachiasmatic nuclei. In this outpatient case series, we investigated whether daily caffeine administration could entrain the circadian pacemaker in non-entrained blind patients to alleviate symptoms of non-24-hour sleep–wake disorder. Patients/Methods Three totally blind males (63.0 ± 7.5 years old) were studied at home over ~4 months. Urinary 6-sulphatoxymelatonin (aMT6s) rhythms were measured for 48 h every 1–2 weeks. Participants completed daily sleep–wake logs, and rated their alertness and mood using nine-point scales every ~2–4 h while awake on urine sampling days. Caffeine capsules (150 mg per os) were self-administered daily at 10 a.m. for approximately one circadian beat cycle based on each participant's endogenous circadian period τ and compared to placebo (n = 2) or no treatment (n = 1) in a single-masked manner. Results Non-24-h aMT6s rhythms were confirmed in all three participants (τ range = 24.32–24.57 h). Daily administration of 150 mg caffeine did not entrain the circadian clock. Caffeine treatment significantly improved daytime alertness at adverse circadian phases (p < 0.0001) but did not decrease the occurrence of daytime naps compared with placebo. Conclusions Although caffeine was able to improve daytime alertness acutely and may therefore provide temporary symptomatic relief, the inability of caffeine to correct the underlying circadian disorder means that an entraining agent is required to treat Non-24-Hour Sleep–Wake Disorder in the blind appropriately. PMID:25891543

  1. Caffeine does not entrain the circadian clock but improves daytime alertness in blind patients with non-24-hour rhythms.

    PubMed

    St Hilaire, Melissa A; Lockley, Steven W

    2015-06-01

    Totally blind individuals are highly likely to suffer from Non-24-Hour Sleep-Wake Disorder due to a failure of light to reset the circadian pacemaker in the suprachiasmatic nuclei. In this outpatient case series, we investigated whether daily caffeine administration could entrain the circadian pacemaker in non-entrained blind patients to alleviate symptoms of non-24-hour sleep-wake disorder. Three totally blind males (63.0 ± 7.5 years old) were studied at home over ~4 months. Urinary 6-sulphatoxymelatonin (aMT6s) rhythms were measured for 48 h every 1-2 weeks. Participants completed daily sleep-wake logs, and rated their alertness and mood using nine-point scales every ~2-4 h while awake on urine sampling days. Caffeine capsules (150 mg per os) were self-administered daily at 10 a.m. for approximately one circadian beat cycle based on each participant's endogenous circadian period τ and compared to placebo (n = 2) or no treatment (n = 1) in a single-masked manner. Non-24-h aMT6s rhythms were confirmed in all three participants (τ range = 24.32-24.57 h). Daily administration of 150 mg caffeine did not entrain the circadian clock. Caffeine treatment significantly improved daytime alertness at adverse circadian phases (p <0.0001) but did not decrease the occurrence of daytime naps compared with placebo. Although caffeine was able to improve daytime alertness acutely and may therefore provide temporary symptomatic relief, the inability of caffeine to correct the underlying circadian disorder means that an entraining agent is required to treat Non-24-Hour Sleep-Wake Disorder in the blind appropriately. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Dim nighttime illumination interacts with parametric effects of bright light to increase the stability of circadian rhythm bifurcation in hamsters.

    PubMed

    Evans, Jennifer A; Elliott, Jeffrey A; Gorman, Michael R

    2011-07-01

    The endogenous circadian pacemaker of mammals is synchronized to the environmental day by the ambient cycle of relative light and dark. The present studies assessed the actions of light in a novel circadian entrainment paradigm where activity rhythms are bifurcated following exposure to a 24-h light:dark:light:dark (LDLD) cycle. Bifurcated entrainment under LDLD reflects the temporal dissociation of component oscillators that comprise the circadian system and is facilitated when daily scotophases are dimly lit rather than completely dark. Although bifurcation can be stably maintained in LDLD, it is quickly reversed under constant conditions. Here the authors examine whether dim scotophase illumination acts to maintain bifurcated entrainment under LDLD through potential interactions with the parametric actions of bright light during the two daily photophases. In three experiments, wheel-running rhythms of Syrian hamsters were bifurcated under LDLD with dimly lit scotophases, and after several weeks, dim scotophase illumination was either retained or extinguished. Additionally, "full" and "skeleton" photophases were employed under LDLD cycles with dimly lit or completely dark scotophases to distinguish parametric from nonparametric effects of bright light. Rhythm bifurcation was more stable in full versus skeleton LDLD cycles. Dim light facilitated the maintenance of bifurcated entrainment under full LDLD cycles but did not prevent the loss of rhythm bifurcation in skeleton LDLD cycles. These studies indicate that parametric actions of bright light maintain the bifurcated entrainment state; that dim scotophase illumination increases the stability of the bifurcated state; and that dim light interacts with the parametric effects of bright light to increase the stability of rhythm bifurcation under full LDLD cycles. A further understanding of the novel actions of dim light may lead to new strategies for understanding, preventing, and treating chronobiological

  3. A Circadian Clock in Antarctic Krill: An Endogenous Timing System Governs Metabolic Output Rhythms in the Euphausid Species Euphausia superba

    PubMed Central

    Teschke, Mathias; Wendt, Sabrina; Kawaguchi, So; Kramer, Achim; Meyer, Bettina

    2011-01-01

    Antarctic krill, Euphausia superba, shapes the structure of the Southern Ocean ecosystem. Its central position in the food web, the ongoing environmental changes due to climatic warming, and increasing commercial interest on this species emphasize the urgency of understanding the adaptability of krill to its environment. Krill has evolved rhythmic physiological and behavioral functions which are synchronized with the daily and seasonal cycles of the complex Southern Ocean ecosystem. The mechanisms, however, leading to these rhythms are essentially unknown. Here, we show that krill possesses an endogenous circadian clock that governs metabolic and physiological output rhythms. We found that expression of the canonical clock gene cry2 was highly rhythmic both in a light-dark cycle and in constant darkness. We detected a remarkable short circadian period, which we interpret as a special feature of the krill's circadian clock that helps to entrain the circadian system to the extreme range of photoperiods krill is exposed to throughout the year. Furthermore, we found that important key metabolic enzymes of krill showed bimodal circadian oscillations (∼9–12 h period) in transcript abundance and enzymatic activity. Oxygen consumption of krill showed ∼9–12 h oscillations that correlated with the temporal activity profile of key enzymes of aerobic energy metabolism. Our results demonstrate the first report of an endogenous circadian timing system in Antarctic krill and its likely link to metabolic key processes. Krill's circadian clock may not only be critical for synchronization to the solar day but also for the control of seasonal events. This study provides a powerful basis for the investigation into the mechanisms of temporal synchronization in this marine key species and will also lead to the first comprehensive analyses of the circadian clock of a polar marine organism through the entire photoperiodic cycle. PMID:22022521

  4. A circadian clock in Antarctic krill: an endogenous timing system governs metabolic output rhythms in the euphausid species Euphausia superba.

    PubMed

    Teschke, Mathias; Wendt, Sabrina; Kawaguchi, So; Kramer, Achim; Meyer, Bettina

    2011-01-01

    Antarctic krill, Euphausia superba, shapes the structure of the Southern Ocean ecosystem. Its central position in the food web, the ongoing environmental changes due to climatic warming, and increasing commercial interest on this species emphasize the urgency of understanding the adaptability of krill to its environment. Krill has evolved rhythmic physiological and behavioral functions which are synchronized with the daily and seasonal cycles of the complex Southern Ocean ecosystem. The mechanisms, however, leading to these rhythms are essentially unknown. Here, we show that krill possesses an endogenous circadian clock that governs metabolic and physiological output rhythms. We found that expression of the canonical clock gene cry2 was highly rhythmic both in a light-dark cycle and in constant darkness. We detected a remarkable short circadian period, which we interpret as a special feature of the krill's circadian clock that helps to entrain the circadian system to the extreme range of photoperiods krill is exposed to throughout the year. Furthermore, we found that important key metabolic enzymes of krill showed bimodal circadian oscillations (∼9-12 h period) in transcript abundance and enzymatic activity. Oxygen consumption of krill showed ∼9-12 h oscillations that correlated with the temporal activity profile of key enzymes of aerobic energy metabolism. Our results demonstrate the first report of an endogenous circadian timing system in Antarctic krill and its likely link to metabolic key processes. Krill's circadian clock may not only be critical for synchronization to the solar day but also for the control of seasonal events. This study provides a powerful basis for the investigation into the mechanisms of temporal synchronization in this marine key species and will also lead to the first comprehensive analyses of the circadian clock of a polar marine organism through the entire photoperiodic cycle.

  5. Brief light exposure at night disrupts the circadian rhythms in eye growth and choroidal thickness in chicks

    PubMed Central

    Nickla, Debora L.; Totonelly, Kristen

    2016-01-01

    Changes in ocular growth that lead to myopia or hyperopia are associated with alterations in the circadian rhythms in eye growth, choroidal thickness and intraocular pressure in animal models of emmetropization. Recent studies have shown that light at night has deleterious effects on human health, acting via “circadian disruptions” of various diurnal rhythms, including changes in phase or amplitude. The purpose of this study was to determine the effects of brief, 2-hour episodes of light in the middle of the night on the rhythms in axial length and choroidal thickness, and whether these alter eye growth and refractive error in the chick model of myopia. Starting at 2 weeks of age, birds received 2 hours of light between 12:00 am and 2:00 am for 7 days (n=12; total hours of light: 14 hrs). Age-matched controls had a continuous dark night (n=14; 14L/10D). Ocular dimensions were measured using high-frequency A-scan ultrasonography on the first day of the experiment, and again on day 7, at 6-hour intervals, starting at noon (12pm, 6pm, 12am, 6am, 12pm). Measurements during the night were done under a photographic safe-light. These data were used to determine rhythm parameters of phase and amplitude. 2 groups of birds, both experimental (light at night) and control, were measured with ultrasound at various intervals over the course of 4 weeks to determine growth rates. Refractive errors were measured in 6 experimental and 6 control birds at the end of 2 weeks. Eyes of birds in a normal L/D cycle showed sinusoidal 24-hour period diurnal rhythms in axial length and choroid thickness. Light in the middle of the night caused changes in both the rhythms in axial length and choroidal thickness, such that neither could be fit to a sine function having a period of 24 hours. Light caused an acute, transient stimulation in ocular growth rate in the subsequent 6-hour period (12 am to 6 am), that may be responsible for the increased growth rate seen 4 weeks later, and the more

  6. Circadian Variation in Host Defense.

    DTIC Science & Technology

    1987-05-21

    block fevers by Inhibiting the production of prostaglandins of the E series (PGE) In the hypothalamus , our data suggest to us that there is a circadian...Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Key words: Interleukin-l, fever , circadian, rhythm, 08 body...to a rhythm in the thermoregulatory "set-point". The overall goal of our research was to determine whether this represents a circadian " fever ". If

  7. The Scorpion An ideal animal model to study long-term microgravity effects on circadian rhythms

    NASA Astrophysics Data System (ADS)

    Riewe, Pascal C.; Horn, Eberhard R.

    2000-01-01

    The temporal pattern of light and darkness is basic for the coordination of circadian rhythms and establishment of homoeostasis. The 24th frequency of zeitgebers is probably a function of the Earth's rotation. The only way to eliminate its influence on organisms is to study their behavior in space because the reduced day length during orbiting the Earth might disrupt synchronizing mechanisms based on the 24th rhythm. The stability of microgravity induced disturbances of synchronization as well as the extent of adaptation of different physiological processes to this novel environment can only be studied during long-term exposures to microgravity, i.e., on the International Space Station. Biological studies within the long-term domain on ISS demand the use of experimental models which can be exposed to automatic handling of measurements and which need less or no nutritional care. Scorpions offer these features. We describe a fully automatic recording device for the simultaneous collection of data regarding the sensorimotor system and homoeostatic mechanisms. In particular, we record sensitivity changes of the eyes, motor activity and heart beat and/or respiratory activity. The advantage of the scorpion model is supported by the fact that data can be recorded preflight, inflight and postflight from the same animal. With this animal model, basic insights will be obtained about the de-coupling of circadian rhythms of multiple oscillators and their adaptation to the entraining zeitgeber periodicity during exposure to microgravity for at least three biological parameters recorded simultaneously. .

  8. Improvement of a patient's circadian rhythm sleep disorders by aripiprazole was associated with stabilization of his bipolar illness.

    PubMed

    Tashiro, Tetsuo

    2017-04-01

    Splitting of the behavioural activity phase has been found in nocturnal rodents with suprachiasmatic nucleus (SCN) coupling disorder. A similar phenomenon was observed in the sleep phase in the diurnal human discussed here, suggesting that there are so-called evening and morning oscillators in the SCN of humans. The present case suffered from bipolar disorder refractory to various treatments, and various circadian rhythm sleep disorders, such as delayed sleep phase, polyphasic sleep, separation of the sleep bout resembling splitting and circabidian rhythm (48 h), were found during prolonged depressive episodes with hypersomnia. Separation of sleep into evening and morning components and delayed sleep-offset (24.69-h cycle) developed when lowering and stopping the dose of aripiprazole (APZ). However, resumption of APZ improved these symptoms in 2 weeks, accompanied by improvement in the patient's depressive state. Administration of APZ may improve various circadian rhythm sleep disorders, as well as improve and prevent manic-depressive episodes, via augmentation of coupling in the SCN network. © 2017 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.

  9. Polysomnographic Sleep and Circadian Temperature Rhythms as a Function of Prior Shift Work Exposure in Retired Seniors.

    PubMed

    Monk, Timothy H; Buysse, Daniel J; Billy, Bart D; Fletcher, Mary E; Kennedy, Kathy S

    2013-04-29

    In an earlier published telephone interview study (n > 1,000) we have shown that retired shift workers subjectively report worse sleep than retired day workers. This laboratory study sought to determine whether these findings held up when objective polysomnograhic (PSG) measures of sleep were taken and whether retirees' circadian temperature rhythms differed as a function of shift work exposure. All completers of the telephone interview were invited to attend a 36-hour laboratory study for which participants were paid. This involved continuous core body temperature measurement (using an ingestible pill-based system) and 2 nights of PSG. Shift work exposure (plus other measures) was collected by taking a detailed work history. The second laboratory night was scored into sleep stages. Post hoc, we divided participants into 4 shift work exposure groups: 0 years (ie, no exposure to shift work), 1 to 7 years, 7 to 20 years, and >20 years. Sample sizes were 11, 16, 15, and 15, respectively, with approximate equality in mean age (71.7 years of age, 69.1 years of age, 70.0 years of age, and 70.4 years of age, respectively) and percent male (63%, 50%, 67%, and 73%, respectively). Shift work exposure was associated with worse PSG sleep in a dose-related fashion. The percentages of participants with sleep efficiency, 80% for the 0 years, 1 to 7 years, 7 to 20 years, and >20 years groups were 36%, 63%, 67%, and 73%, respectively ( P < 0.01), and the percentages with total sleep time (TST), 6 hours were 36%, 56%, 53%, and 73%, respectively ( P < 0.01). From the circadian rhythm record, shift work exposure appeared to result ( P = 0.06) in an increased spread of phase angles (difference between habitual bedtime and time of temperature trough). In conclusion, it appears likely that shift work may be related to a scarring of sleep and circadian rhythms. This may be associated with a change in the relationship between habitual sleep timing and the phase of the circadian pacemaker.

  10. The circadian body temperature rhythm in the elderly: effect of single daily melatonin dosing.

    PubMed

    Gubin, D G; Gubin, G D; Waterhouse, J; Weinert, D

    2006-01-01

    The present study is part of a more extensive investigation dedicated to the study and treatment of age-dependent changes/disturbances in the circadian system in humans. It was performed in the Tyumen Elderly Veteran House and included 97 subjects of both genders, ranging from 63 to 91 yrs of age. They lived a self-chosen sleep-wake regimen to suit their personal convenience. The experiment lasted 3 wks. After 1 control week, part of the group (n=63) received 1.5 mg melatonin (Melaxen) daily at 22:30 h for 2 wks. The other 34 subjects were given placebo. Axillary temperature was measured using calibrated mercury thermometers at 03:00, 08:00, 11:00, 14:00, 17:00, and 23:00 h each of the first and third week. Specially trained personnel took the measurements, avoiding disturbing the sleep of the subjects. To evaluate age-dependent changes, data obtained under similar conditions on 58 young adults (both genders, 17 to 39 yrs of age) were used. Rhythm characteristics were estimated by means of cosinor analyses, and intra- and inter-individual variability by analysis of variance (ANOVA). In both age groups, the body temperature underwent daily changes. The MESOR (36.38+/-0.19 degrees C vs. 36.17+/-0.21 degrees C) and circadian amplitude (0.33+/-0.01 degrees C vs. 0.26+/-0.01 degrees C) were slightly decreased in the elderly compared to the young adult subjects (p<0.001). The mean circadian acrophase was similar in both age groups (17.19+/-1.66 vs. 16.93+/-3.08 h). However, the inter-individual differences were higher in the older group, with individual values varying between 10:00 and 23:00 h. It was mainly this phase variability that caused a decrease in the inter-daily rhythm stability and lower group amplitude. With melatonin treatment, the MESOR was lower by 0.1 degrees C and the amplitude increased to 0.34+/-0.01 degrees C, a similar value to that found in young adults. This was probably due to the increase of the inter-daily rhythm stability. The mean acrophase

  11. Circadian rhythm of a Silene species favours nocturnal pollination and constrains diurnal visitation

    PubMed Central

    Prieto-Benítez, Samuel; Dötterl, Stefan; Giménez-Benavides, Luis

    2016-01-01

    Background and Aims Traits related to flower advertisement and reward sometimes vary in a circadian way, reflecting phenotypic specialization. However, specialized flowers are not necessarily restricted to specialized pollinators. This is the case of most Silene species, typically associated with diurnal or nocturnal syndromes of pollination but usually showing complex suites of pollinators. Methods A Silene species with mixed floral features between diurnal and nocturnal syndromes was used to test how petal opening, nectar production, scent emission and pollination success correlate in a circadian rhythm, and whether this is influenced by environmental conditions. The effect of diurnal and nocturnal visitation rates on plant reproductive success is also explored in three populations, including the effect of the pollinating seed predator Hadena sancta. Key Results The result showed that repeated petal opening at dusk was correlated with nectar secretion and higher scent production during the night. However, depending on environmental conditions, petals remain opened for a while in the morning, when nectar and pollen still were available. Pollen deposition was similarly effective at night and in the morning, but less effective in the afternoon. These results were consistent with field studies. Conclusions The circadian rhythm regulating floral attractiveness and reward in S. colorata is predominantly adapted to nocturnal flower visitors. However, favourable environmental conditions lengthen the optimal daily period of flower attraction and pollination towards morning. This allows the complementarity of day and night pollination. Diurnal pollination may help to compensate the plant reproductive success when nocturnal pollinators are scarce and when the net outcome of H. sancta shifts from mutualism to parasitism. These results suggest a functional mechanism explaining why the supposed nocturnal syndrome of many Silene species does not successfully predict their

  12. The circatidal rhythm persists without the optic lobe in the mangrove cricket Apteronemobius asahinai.

    PubMed

    Takekata, Hiroki; Numata, Hideharu; Shiga, Sakiko

    2014-02-01

    Whether the circatidal rhythm is generated by a machinery common to the circadian clock is one of the important and interesting questions in chronobiology. The mangrove cricket Apteronemobius asahinai shows a circatidal rhythm generating active and inactive phases and a circadian rhythm modifying the circatidal rhythm by inhibiting activity during the subjective day simultaneously. In the previous study, RNA interference of the circadian clock gene period disrupted the circadian rhythm but not the circatidal rhythm, suggesting a difference in molecular mechanisms between the circatidal and circadian rhythms. In the present study, to compare the neural mechanisms of these 2 rhythms, we observed locomotor activity in the mangrove cricket after surgical removal of the optic lobe, which has been shown to be the locus of the circadian clock in other crickets. We also noted the pigment-dispersing factor immunoreactive neurons (PDF-IRNs) in the optic lobe, because PDF is a key output molecule in the circadian clock system in some insects. The results showed that the circadian modulation was disrupted after the removal of the optic lobes but that the circatidal rhythm was maintained with no remarkable changes in its free-running period. Even in crickets in which some PDF-immunoreactive somata remained after removal of the optic lobe, the circadian rhythm was completely disrupted. The remnants of PDF-IRNs were not correlated to the occurrence and free-running period of the circatidal rhythm. These results indicate that the principal circatidal clock is located in a region(s) different from the optic lobe, whereas the circadian clock is located in the optic lobe, as in other crickets, and PDF-IRNs are not important for circatidal rhythm. Therefore, it is suggested that the circatidal rhythm of A. asahinai is driven by a neural basis different from that driving the circadian rhythm.

  13. Development of diabetes does not alter behavioral and molecular circadian rhythms in a transgenic rat model of type 2 diabetes mellitus.

    PubMed

    Qian, Jingyi; Thomas, Anthony P; Schroeder, Analyne M; Rakshit, Kuntol; Colwell, Christopher S; Matveyenko, Aleksey V

    2017-08-01

    Metabolic state and circadian clock function exhibit a complex bidirectional relationship. Circadian disruption increases propensity for metabolic dysfunction, whereas common metabolic disorders such as obesity and type 2 diabetes (T2DM) are associated with impaired circadian rhythms. Specifically, alterations in glucose availability and glucose metabolism have been shown to modulate clock gene expression and function in vitro; however, to date, it is unknown whether development of diabetes imparts deleterious effects on the suprachiasmatic nucleus (SCN) circadian clock and SCN-driven outputs in vivo. To address this question, we undertook studies in aged diabetic rats transgenic for human islet amyloid polypeptide, an established nonobese model of T2DM (HIP rat), which develops metabolic defects closely recapitulating those present in patients with T2DM. HIP rats were also cross-bred with a clock gene reporter rat model (Per1:luciferase transgenic rat) to permit assessment of the SCN and the peripheral molecular clock function ex vivo. Utilizing these animal models, we examined effects of diabetes on 1 ) behavioral circadian rhythms, 2 ) photic entrainment of circadian activity, 3 ) SCN and peripheral tissue molecular clock function, and 4 ) melatonin secretion. We report that circadian activity, light-induced entrainment, molecular clockwork, as well as melatonin secretion are preserved in the HIP rat model of T2DM. These results suggest that despite the well-characterized ability of glucose to modulate circadian clock gene expression acutely in vitro, SCN clock function and key behavioral and physiological outputs appear to be preserved under chronic diabetic conditions characteristic of nonobese T2DM. Copyright © 2017 the American Physiological Society.

  14. Circadian rhythmicity of active GSK3 isoforms modulates molecular clock gene rhythms in the suprachiasmatic nucleus.

    PubMed

    Besing, Rachel C; Paul, Jodi R; Hablitz, Lauren M; Rogers, Courtney O; Johnson, Russell L; Young, Martin E; Gamble, Karen L

    2015-04-01

    The suprachiasmatic nucleus (SCN) drives and synchronizes daily rhythms at the cellular level via transcriptional-translational feedback loops comprising clock genes such as Bmal1 and Period (Per). Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, phosphorylates at least 5 core clock proteins and shows diurnal variation in phosphorylation state (inactivation) of the GSK3β isoform. Whether phosphorylation of the other primary isoform (GSK3α) varies across the subjective day-night cycle is unknown. The purpose of this study was to determine if the endogenous rhythm of GSK3 (α and β) phosphorylation is critical for rhythmic BMAL1 expression and normal amplitude and periodicity of the molecular clock in the SCN. Significant circadian rhythmicity of phosphorylated GSK3 (α and β) was observed in the SCN from wild-type mice housed in constant darkness for 2 weeks. Importantly, chronic activation of both GSK3 isoforms impaired rhythmicity of the GSK3 target BMAL1. Furthermore, chronic pharmacological inhibition of GSK3 with 20 µM CHIR-99021 enhanced the amplitude and shortened the period of PER2::luciferase rhythms in organotypic SCN slice cultures. These results support the model that GSK3 activity status is regulated by the circadian clock and that GSK3 feeds back to regulate the molecular clock amplitude in the SCN. © 2015 The Author(s).

  15. The effect of intermittent fasting during Ramadan on sleep, sleepiness, cognitive function, and circadian rhythm.

    PubMed

    Qasrawi, Shaden O; Pandi-Perumal, Seithikurippu R; BaHammam, Ahmed S

    2017-09-01

    Studies have shown that experimental fasting can affect cognitive function, sleep, and wakefulness patterns. However, the effects of experimental fasting cannot be generalized to fasting during Ramadan due to its unique characteristics. Therefore, there has been increased interest in studying the effects of fasting during Ramadan on sleep patterns, daytime sleepiness, cognitive function, sleep architecture, and circadian rhythm. In this review, we critically discuss the current research findings in those areas during the month of Ramadan. Available data that controlled for sleep/wake schedule, sleep duration, light exposure, and energy expenditure do not support the notion that Ramadan intermittent fasting increases daytime sleepiness and alters cognitive function. Additionally, recent well-designed studies showed no effect of fasting on circadian rhythms. However, in non-constrained environments that do not control for lifestyle changes, studies have demonstrated sudden and significant delays in bedtime and wake time. Studies that controlled for environmental factors and sleep/wake schedule reported no significant disturbances in sleep architecture. Nevertheless, several studies have consistently reported that the main change in sleep architecture during fasting is a reduction in the proportion of REM sleep.

  16. Ecstasy (MDMA) Alters Cardiac Gene Expression and DNA Methylation: Implications for Circadian Rhythm Dysfunction in the Heart

    PubMed Central

    Koczor, Christopher A.; Ludlow, Ivan; Hight, Robert S.; Jiao, Zhe; Fields, Earl; Ludaway, Tomika; Russ, Rodney; Torres, Rebecca A.; Lewis, William

    2015-01-01

    MDMA (ecstasy) is an illicit drug that stimulates monoamine neurotransmitter release and inhibits reuptake. MDMA’s acute cardiotoxicity includes tachycardia and arrhythmia which are associated with cardiomyopathy. MDMA acute cardiotoxicity has been explored, but neither long-term MDMA cardiac pathological changes nor epigenetic changes have been evaluated. Microarray analyses were employed to identify cardiac gene expression changes and epigenetic DNA methylation changes. To identify permanent MDMA-induced pathogenetic changes, mice received daily 10- or 35-day MDMA, or daily 10-day MDMA followed by 25-day saline washout (10 + 25 days). MDMA treatment caused differential gene expression (p < .05, fold change >1.5) in 752 genes following 10 days, 558 genes following 35 days, and 113 genes following 10-day MDMA + 25-day saline washout. Changes in MAPK and circadian rhythm gene expression were identified as early as 10 days. After 35 days, circadian rhythm genes (Per3, CLOCK, ARNTL, and NPAS2) persisted to be differentially expressed. MDMA caused DNA hypermethylation and hypomethylation that was independent of gene expression; hypermethylation of genes was found to be 71% at 10 days, 68% at 35 days, and 91% at 10 + 25 days washout. Differential gene expression paralleled DNA methylation in 22% of genes at 10-day treatment, 17% at 35 days, and 48% at 10 + 25 days washout. We show here that MDMA induced cardiac epigenetic changes in DNA methylation where hypermethylation predominated. Moreover, MDMA induced gene expression of key elements of circadian rhythm regulatory genes. This suggests a fundamental organism-level event to explain some of the etiologies of MDMA dysfunction in the heart. PMID:26251327

  17. Circadian rhythms in bed rest: Monitoring core body temperature via heat-flux approach is superior to skin surface temperature.

    PubMed

    Mendt, Stefan; Maggioni, Martina Anna; Nordine, Michael; Steinach, Mathias; Opatz, Oliver; Belavý, Daniel; Felsenberg, Dieter; Koch, Jochim; Shang, Peng; Gunga, Hanns-Christian; Stahn, Alexander

    2017-01-01

    Continuous recordings of core body temperature (CBT) are a well-established approach in describing circadian rhythms. Given the discomfort of invasive CBT measurement techniques, the use of skin temperature recordings has been proposed as a surrogate. More recently, we proposed a heat-flux approach (the so-called Double Sensor) for monitoring CBT. Studies investigating the reliability of the heat-flux approach over a 24-hour period, as well as comparisons with skin temperature recordings, are however lacking. The first aim of the study was therefore to compare rectal, skin, and heat-flux temperature recordings for monitoring circadian rhythm. In addition, to assess the optimal placement of sensor probes, we also investigated the effect of different anatomical measurement sites, i.e. sensor probes positioned at the forehead vs. the sternum. Data were collected as part of the Berlin BedRest study (BBR2-2) under controlled, standardized, and thermoneutral conditions. 24-hours temperature data of seven healthy males were collected after 50 days of -6° head-down tilt bed-rest. Mean Pearson correlation coefficients indicated a high association between rectal and forehead temperature recordings (r > 0.80 for skin and Double Sensor). In contrast, only a poor to moderate relationship was observed for sensors positioned at the sternum (r = -0.02 and r = 0.52 for skin and Double Sensor, respectively). Cross-correlation analyses further confirmed the feasibility of the forehead as a preferred monitoring site. The phase difference between forehead Double Sensor and rectal recordings was not statistically different from zero (p = 0.313), and was significantly smaller than the phase difference between forehead skin and rectal temperatures (p = 0.016). These findings were substantiated by cosinor analyses, revealing significant differences for mesor, amplitude, and acrophase between rectal and forehead skin temperature recordings, but not between forehead Double Sensor and rectal

  18. Multiscale adaptive analysis of circadian rhythms and intradaily variability: Application to actigraphy time series in acute insomnia subjects

    PubMed Central

    Rivera, Ana Leonor; Toledo-Roy, Juan C.; Ellis, Jason; Angelova, Maia

    2017-01-01

    Circadian rhythms become less dominant and less regular with chronic-degenerative disease, such that to accurately assess these pathological conditions it is important to quantify not only periodic characteristics but also more irregular aspects of the corresponding time series. Novel data-adaptive techniques, such as singular spectrum analysis (SSA), allow for the decomposition of experimental time series, in a model-free way, into a trend, quasiperiodic components and noise fluctuations. We compared SSA with the traditional techniques of cosinor analysis and intradaily variability using 1-week continuous actigraphy data in young adults with acute insomnia and healthy age-matched controls. The findings suggest a small but significant delay in circadian components in the subjects with acute insomnia, i.e. a larger acrophase, and alterations in the day-to-day variability of acrophase and amplitude. The power of the ultradian components follows a fractal 1/f power law for controls, whereas for those with acute insomnia this power law breaks down because of an increased variability at the 90min time scale, reminiscent of Kleitman’s basic rest-activity (BRAC) cycles. This suggests that for healthy sleepers attention and activity can be sustained at whatever time scale required by circumstances, whereas for those with acute insomnia this capacity may be impaired and these individuals need to rest or switch activities in order to stay focused. Traditional methods of circadian rhythm analysis are unable to detect the more subtle effects of day-to-day variability and ultradian rhythm fragmentation at the specific 90min time scale. PMID:28753669

  19. The association of quality of life with potentially remediable disruptions of circadian sleep/activity rhythms in patients with advanced lung cancer.

    PubMed

    Grutsch, James F; Ferrans, Carol; Wood, Patricia A; Du-Quiton, Jovelyn; Quiton, Dinah Faith T; Reynolds, Justin L; Ansell, Christine M; Oh, Eun Young; Daehler, Mary Ann; Levin, Robert D; Braun, Donald P; Gupta, Digant; Lis, Christopher G; Hrushesky, William J M

    2011-05-23

    Cancer patients routinely develop symptoms consistent with profound circadian disruption, which causes circadian disruption diminished quality of life. This study was initiated to determine the relationship between the severity of potentially remediable cancer-associated circadian disruption and quality of life among patients with advanced lung cancer. We concurrently investigated the relationship between the circadian rhythms of 84 advanced lung cancer patients and their quality of life outcomes as measured by the EORTC QLQ C30 and Ferrans and Powers QLI. The robustness and stability of activity/sleep circadian daily rhythms were measured by actigraphy. Fifty three of the patients in the study were starting their definitive therapy following diagnosis and thirty one patients were beginning second-line therapy. Among the patients who failed prior therapy, the median time between completing definitive therapy and baseline actigraphy was 4.3 months, (interquartile range 2.1 to 9.8 months). We found that circadian disruption is universal and severe among these patients compared to non-cancer-bearing individuals. We found that each of these patient's EORTC QLQ C30 domain scores revealed a compromised capacity to perform the routine activities of daily life. The severity of several, but not all, EORTC QLQ C30 symptom items correlate strongly with the degree of individual circadian disruption. In addition, the scores of all four Ferrans/Powers QLI domains correlate strongly with the degree of circadian disruption. Although Ferrans/Powers QLI domain scores show that cancer and its treatment spared these patients' emotional and psychological health, the QLI Health/Function domain score revealed high levels of patients' dissatisfaction with their health which is much worse when circadian disruption is severe. Circadian disruption selectively affects specific Quality of Life domains, such as the Ferrans/Powers Health/Function domain, and not others, such as EORTC QLQ C30

  20. Entrainment of the Mammalian Cell Cycle by the Circadian Clock: Modeling Two Coupled Cellular Rhythms

    PubMed Central

    Gérard, Claude; Goldbeter, Albert

    2012-01-01

    The cell division cycle and the circadian clock represent two major cellular rhythms. These two periodic processes are coupled in multiple ways, given that several molecular components of the cell cycle network are controlled in a circadian manner. For example, in the network of cyclin-dependent kinases (Cdks) that governs progression along the successive phases of the cell cycle, the synthesis of the kinase Wee1, which inhibits the G2/M transition, is enhanced by the complex CLOCK-BMAL1 that plays a central role in the circadian clock network. Another component of the latter network, REV-ERBα, inhibits the synthesis of the Cdk inhibitor p21. Moreover, the synthesis of the oncogene c-Myc, which promotes G1 cyclin synthesis, is repressed by CLOCK-BMAL1. Using detailed computational models for the two networks we investigate the conditions in which the mammalian cell cycle can be entrained by the circadian clock. We show that the cell cycle can be brought to oscillate at a period of 24 h or 48 h when its autonomous period prior to coupling is in an appropriate range. The model indicates that the combination of multiple modes of coupling does not necessarily facilitate entrainment of the cell cycle by the circadian clock. Entrainment can also occur as a result of circadian variations in the level of a growth factor controlling entry into G1. Outside the range of entrainment, the coupling to the circadian clock may lead to disconnected oscillations in the cell cycle and the circadian system, or to complex oscillatory dynamics of the cell cycle in the form of endoreplication, complex periodic oscillations or chaos. The model predicts that the transition from entrainment to 24 h or 48 h might occur when the strength of coupling to the circadian clock or the level of growth factor decrease below critical values. PMID:22693436

  1. Hypothesis driven single cell dual oscillator mathematical model of circadian rhythms

    PubMed Central

    S, Shiju

    2017-01-01

    Molecular mechanisms responsible for 24 h circadian oscillations, entrainment to external cues, encoding of day length and the time-of-day effects have been well studied experimentally. However, it is still debated from the molecular network point of view whether each cell in suprachiasmatic nuclei harbors two molecular oscillators, where one tracks dawn and the other tracks dusk activities. A single cell dual morning and evening oscillator was proposed by Daan et al., based on the molecular network that has two sets of similar non-redundant per1/cry1 and per2/cry2 circadian genes and each can independently maintain their endogenous oscillations. Understanding of dual oscillator dynamics in a single cell at molecular level may provide insight about the circadian mechanisms that encodes day length variations and its response to external zeitgebers. We present here a realistic dual oscillator model of circadian rhythms based on the series of hypotheses proposed by Daan et al., in which they conjectured that the circadian genes per1/cry1 track dawn while per2/cry2 tracks dusk and they together constitute the morning and evening oscillators (dual oscillator). Their hypothesis also provides explanations about the encoding of day length in terms of molecular mechanisms of per/cry expression. We frame a minimal mathematical model with the assumption that per1 acts a morning oscillator and per2 acts as an evening oscillator and to support and interpret this assumption we fit the model to the experimental data of per1/per2 circadian temporal dynamics, phase response curves (PRC's), and entrainment phenomena under various light-dark conditions. We also capture different patterns of splitting phenomena by coupling two single cell dual oscillators with neuropeptides vasoactive intestinal polypeptide (VIP) and arginine vasopressin (AVP) as the coupling agents and provide interpretation for the occurrence of splitting in terms of ME oscillators, though they are not required to

  2. Hypothesis driven single cell dual oscillator mathematical model of circadian rhythms.

    PubMed

    S, Shiju; Sriram, K

    2017-01-01

    Molecular mechanisms responsible for 24 h circadian oscillations, entrainment to external cues, encoding of day length and the time-of-day effects have been well studied experimentally. However, it is still debated from the molecular network point of view whether each cell in suprachiasmatic nuclei harbors two molecular oscillators, where one tracks dawn and the other tracks dusk activities. A single cell dual morning and evening oscillator was proposed by Daan et al., based on the molecular network that has two sets of similar non-redundant per1/cry1 and per2/cry2 circadian genes and each can independently maintain their endogenous oscillations. Understanding of dual oscillator dynamics in a single cell at molecular level may provide insight about the circadian mechanisms that encodes day length variations and its response to external zeitgebers. We present here a realistic dual oscillator model of circadian rhythms based on the series of hypotheses proposed by Daan et al., in which they conjectured that the circadian genes per1/cry1 track dawn while per2/cry2 tracks dusk and they together constitute the morning and evening oscillators (dual oscillator). Their hypothesis also provides explanations about the encoding of day length in terms of molecular mechanisms of per/cry expression. We frame a minimal mathematical model with the assumption that per1 acts a morning oscillator and per2 acts as an evening oscillator and to support and interpret this assumption we fit the model to the experimental data of per1/per2 circadian temporal dynamics, phase response curves (PRC's), and entrainment phenomena under various light-dark conditions. We also capture different patterns of splitting phenomena by coupling two single cell dual oscillators with neuropeptides vasoactive intestinal polypeptide (VIP) and arginine vasopressin (AVP) as the coupling agents and provide interpretation for the occurrence of splitting in terms of ME oscillators, though they are not required to

  3. Associations between circadian and stress response cortisol in children.

    PubMed

    Simons, Sterre S H; Cillessen, Antonius H N; de Weerth, Carolina

    2017-01-01

    Hypothalamic-pituitary-adrenal (HPA) axis functioning is characterized by the baseline production of cortisol following a circadian rhythm, as well as by the superimposed production of cortisol in response to a stressor. However, it is relatively unknown whether the basal cortisol circadian rhythm is associated with the cortisol stress response in children. Since alterations in cortisol stress responses have been associated with mental and physical health, this study investigated whether the cortisol circadian rhythm is associated with cortisol stress responses in 6-year-old children. To this end, 149 normally developing children (M age  = 6.09 years; 70 girls) participated in an innovative social evaluative stress test that effectively provoked increases in cortisol. To determine the cortisol stress response, six cortisol saliva samples were collected and two cortisol stress response indices were calculated: total stress cortisol and cortisol stress reactivity. To determine children's cortisol circadian rhythm eight cortisol circadian samples were collected during two days. Total diurnal cortisol and diurnal cortisol decline scores were calculated as indices of the cortisol circadian rhythm. Hierarchical regression analyses indicated that higher total diurnal cortisol as well as a smaller diurnal cortisol decline, were both uniquely associated with higher total stress cortisol. No associations were found between the cortisol circadian rhythm indices and cortisol stress reactivity. Possible explanations for the patterns found are links with children's self-regulatory capacities and parenting quality.

  4. Circadian locomotor rhythms in the cricket, Gryllodes sigillatus. I. Localization of the pacemaker and the photoreceptor.

    PubMed

    Abe, Y; Ushirogawa, H; Tomioka, K

    1997-10-01

    Circadian locomotor rhythm and its underlying mechanism were investigated in the cricket, Gryllodes sigillatus. Adult male crickets showed a nocturnal locomotor rhythm peaking early in the dark phase of a light to dark cycle. This rhythm persisted under constant darkness (DD) with a free-running period averaging 23.1 +/- 0.3 hr. Although constant bright light made most animals arrhythmic, about 40% of the animals showed free-running rhythms with a period longer than 24 hr under constant dim light condition. On transfer to DD, all arrhythmic animals restored the locomotor rhythm. Bilateral optic nerve severance resulted in free-running of the rhythm even under light-dark cycles. The free-running period of the optic nerve severed animals was significantly longer than sham operated crickets in DD, suggesting that the compound eye plays some role in determining the free-running period. Removal of bilateral lamina-medulla portion of the optic lobe abolished the rhythm under DD. These results demonstrate that the photoreceptor for entrainment is the compound eye and the optic lobe is indispensable for persistence of the rhythm. However, 75% and 54% of the optic lobeless animals showed aberrant rhythms with a period very close to 24 hr under light and temperature cycles, respectively, suggesting that there are neural and/or humoral mechanisms for the aberrant rhythms outside of the optic lobe. Since ocelli removal did not affect the photoperiodically induced rhythm, it is likely that the photoreception for the rhythm is performed through an extraretinal photoreceptor.

  5. 24-h activity rhythm and sleep in depressed outpatients.

    PubMed

    Hori, Hiroaki; Koga, Norie; Hidese, Shinsuke; Nagashima, Anna; Kim, Yoshiharu; Higuchi, Teruhiko; Kunugi, Hiroshi

    2016-06-01

    Disturbances in sleep and circadian rest-activity rhythms are key features of depression. Actigraphy, a non-invasive method for monitoring motor activity, can be used to objectively assess circadian rest-activity rhythms and sleep patterns. While recent studies have measured sleep and daytime activity of depressed patients using wrist-worn actigraphy, the actigraphic 24-h rest-activity rhythm in depression has not been well documented. We aimed to examine actigraphically measured sleep and circadian rest-activity rhythms in depressed outpatients. Twenty patients with DSM-IV major depressive episode and 20 age- and sex-matched healthy controls participated in this study. Participants completed 7 consecutive days of all-day actigraphic activity monitoring while engaging in usual activities. For sleep parameters, total sleep time, wake after sleep onset, and sleep fragmentation index were determined. Circadian rhythms were estimated by fitting individual actigraphy data to a cosine curve of a 24-h activity rhythm using the cosinor method, which generated three circadian activity rhythm parameters, i.e., MESOR (rhythm-adjusted mean), amplitude, and acrophase. Subjective sleep was also assessed using a sleep diary and the Pittsburgh Sleep Quality Index. Patients showed significantly lower MESOR and more dampened amplitude along with significant sleep disturbances. Logistic regression analysis revealed that lower MESOR and more fragmented sleep emerged as the significant predictors of depression. Correlations between subjectively and actigraphically measured parameters demonstrated the validity of actigraphic measurements. These results indicate marked disturbances in sleep and circadian rest-activity rhythms of depression. By simultaneously measuring sleep and rest-activity rhythm parameters, actigraphy might serve as an objective diagnostic aid for depression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Circadian adaptations to meal timing: neuroendocrine mechanisms

    PubMed Central

    Patton, Danica F.; Mistlberger, Ralph E.

    2013-01-01

    Circadian rhythms of behavior and physiology are generated by central and peripheral circadian oscillators entrained by periodic environmental or physiological stimuli. A master circadian pacemaker in the hypothalamic suprachiasmatic nucleus (SCN) is directly entrained by daily light-dark (LD) cycles, and coordinates the timing of other oscillators by direct and indirect neural, hormonal and behavioral outputs. The daily rhythm of food intake provides stimuli that entrain most peripheral and central oscillators, some of which can drive a daily rhythm of food anticipatory activity if food is restricted to one daily mealtime. The location of food-entrainable oscillators (FEOs) that drive food anticipatory rhythms, and the food-related stimuli that entrain these oscillators, remain to be clarified. Here, we critically examine the role of peripheral metabolic hormones as potential internal entrainment stimuli or outputs for FEOs controlling food anticipatory rhythms in rats and mice. Hormones for which data are available include corticosterone, ghrelin, leptin, insulin, glucagon, and glucagon-like peptide 1. All of these hormones exhibit daily rhythms of synthesis and secretion that are synchronized by meal timing. There is some evidence that ghrelin and leptin modulate the expression of food anticipatory rhythms, but none of the hormones examined so far are necessary for entrainment. Ghrelin and leptin likely modulate food-entrained rhythms by actions in hypothalamic circuits utilizing melanocortin and orexin signaling, although again food-entrained behavioral rhythms can persist in lesion and gene knockout models in which these systems are disabled. Actions of these hormones on circadian oscillators in central reward circuits remain to be evaluated. Food-entrained activity rhythms are likely mediated by a distributed system of circadian oscillators sensitive to multiple feeding related inputs. Metabolic hormones appear to play a modulatory role within this system

  7. Association of Amplitude and Stability of Circadian Rhythm, Sleep Quality, and Occupational Stress with Sickness Absence among a Gas Company Employees-A Cross Sectional Study from Iran.

    PubMed

    Zare, Rezvan; Choobineh, Alireza; Keshavarzi, Sareh

    2017-09-01

    The present study was carried out to assess the relationship between sickness absence and occupational stress, sleep quality, and amplitude and stability of circadian rhythm as well as to determine contributing factors of sickness absence. This cross sectional study was conducted on 400 randomly selected employees of an Iranian gas company. The data were collected using Pittsburgh sleep quality index, Karolinska sleepiness scale, circadian type inventory, and Osipow occupational stress questionnaires. The mean age and job tenure of the participants were 33.18 ± 5.64 years and 6.06 ± 4.99 years, respectively. Also, the participants had been absent from work on average 2.16 days a year. According to the results, 209 participants had no absences, 129 participants had short-term absences, and 62 participants had long-term absences. The results showed a significant relationship between short-term absenteeism and amplitude of circadian rhythm [odds ratio (OR) = 6.13], sleep quality (OR = 14.46), sleepiness (OR = 2.08), role boundary (OR = 6.45), and responsibility (OR = 5.23). Long-term absenteeism was also significantly associated with amplitude of circadian rhythm (OR = 2.42), sleep quality (OR = 21.56), sleepiness (OR = 6.44), role overload (OR = 4.84), role boundary (OR = 4.27), and responsibility (OR = 3.72). The results revealed that poor sleep quality, amplitude of circadian rhythm, and occupational stress were the contributing factors for sickness absence in the study population.

  8. CSF generation by pineal gland results in a robust melatonin circadian rhythm in the third ventricle as an unique light/dark signal.

    PubMed

    Tan, Dun-Xian; Manchester, Lucien C; Reiter, Russel J

    2016-01-01

    Pineal gland is an important organ for the regulation of the bio-clock in all vertebrate species. Its major secretory product is melatonin which is considered as the chemical expression of darkness due to its circadian peak exclusively at night. Pineal melatonin can be either released into the blood stream or directly enter into the CSF of the third ventricle via the pineal recess. We have hypothesized that rather than the peripheral circulatory melatonin circadian rhythm serving as the light/dark signal, it is the melatonin rhythm in CSF of the third ventricle that serves this purpose. This is due to the fact that melatonin circadian rhythm in the CSF is more robust in terms of its extremely high concentration and its precise on/off peaks. Thus, extrapineal-generated melatonin or diet-derived melatonin which enters blood would not interfere with the bio-clock function of vertebrates. In addition, based on the relationship of the pineal gland to the CSF and the vascular structure of this gland, we also hypothesize that pineal gland is an essential player for CSF production. We feel it participates in both the formation and reabsorption of CSF. The mechanisms associated with these processes are reviewed and discussed in this brief review. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A Role for CHH Methylation in the Parent-of-Origin Effect on Altered Circadian Rhythms and Biomass Heterosis in Arabidopsis Intraspecific Hybrids[W][OPEN

    PubMed Central

    Ng, Danny W.-K.; Miller, Marisa; Yu, Helen H.; Huang, Tien-Yu; Kim, Eun-Deok; Lu, Jie; Xie, Qiguang; McClung, C. Robertson; Chen, Z. Jeffrey

    2014-01-01

    Hybrid plants and animals often show increased levels of growth and fitness, a phenomenon known as hybrid vigor or heterosis. Circadian rhythms optimize physiology and metabolism in plants and animals. In plant hybrids and polyploids, expression changes of the genes within the circadian regulatory network, such as CIRCADIAN CLOCK ASSOCIATED1 (CCA1), lead to heterosis. However, the relationship between allelic CCA1 expression and heterosis has remained elusive. Here, we show a parent-of-origin effect on altered circadian rhythms and heterosis in Arabidopsis thaliana F1 hybrids. This parent-of-origin effect on biomass heterosis correlates with altered CCA1 expression amplitudes, which are associated with methylation levels of CHH (where H = A, T, or C) sites in the promoter region. The direction of rhythmic expression and hybrid vigor is reversed in reciprocal F1 crosses involving mutants that are defective in the RNA-directed DNA methylation pathway (argonaute4 and nuclear RNA polymerase D1a) but not in the maintenance methylation pathway (methyltransferase1 and decrease in DNA methylation1). This parent-of-origin effect on circadian regulation and heterosis is established during early embryogenesis and maintained throughout growth and development. PMID:24894042

  10. Ecstasy (MDMA) Alters Cardiac Gene Expression and DNA Methylation: Implications for Circadian Rhythm Dysfunction in the Heart.

    PubMed

    Koczor, Christopher A; Ludlow, Ivan; Hight, Robert S; Jiao, Zhe; Fields, Earl; Ludaway, Tomika; Russ, Rodney; Torres, Rebecca A; Lewis, William

    2015-11-01

    MDMA (ecstasy) is an illicit drug that stimulates monoamine neurotransmitter release and inhibits reuptake. MDMA's acute cardiotoxicity includes tachycardia and arrhythmia which are associated with cardiomyopathy. MDMA acute cardiotoxicity has been explored, but neither long-term MDMA cardiac pathological changes nor epigenetic changes have been evaluated. Microarray analyses were employed to identify cardiac gene expression changes and epigenetic DNA methylation changes. To identify permanent MDMA-induced pathogenetic changes, mice received daily 10- or 35-day MDMA, or daily 10-day MDMA followed by 25-day saline washout (10 + 25 days). MDMA treatment caused differential gene expression (p < .05, fold change >1.5) in 752 genes following 10 days, 558 genes following 35 days, and 113 genes following 10-day MDMA + 25-day saline washout. Changes in MAPK and circadian rhythm gene expression were identified as early as 10 days. After 35 days, circadian rhythm genes (Per3, CLOCK, ARNTL, and NPAS2) persisted to be differentially expressed. MDMA caused DNA hypermethylation and hypomethylation that was independent of gene expression; hypermethylation of genes was found to be 71% at 10 days, 68% at 35 days, and 91% at 10 + 25 days washout. Differential gene expression paralleled DNA methylation in 22% of genes at 10-day treatment, 17% at 35 days, and 48% at 10 + 25 days washout. We show here that MDMA induced cardiac epigenetic changes in DNA methylation where hypermethylation predominated. Moreover, MDMA induced gene expression of key elements of circadian rhythm regulatory genes. This suggests a fundamental organism-level event to explain some of the etiologies of MDMA dysfunction in the heart. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. An investigation of natural genetic variation in the circadian system of Drosophila melanogaster: rhythm characteristics and methods of quantification.

    PubMed

    Emery, P T; Morgan, E; Birley, A J

    1994-04-01

    Variation in four characteristics of the circadian locomotor activity rhythm was investigated in 24 true-breeding strains of Drosophila melanogaster with a view to establishing methods of phenotypic measurement sufficiently robust to allow subsequent biometric analysis. Between them, these strains formed a representative sample of the genetic variability of a natural population. Period, phase, definition (the degree to which a rhythmic signal was obscured by noise), and rhythm waveform were all found to vary continuously among the strains, although within each strain the rhythm phenotype was remarkably consistent. Each characteristic was found to be sufficiently robust to permit objective measurement using several different methods of quantification, which were then compared.

  12. Circadian activity rhythms during the last days of Nothobranchius rachovii's life: a descriptive model of circadian system breakdown.

    PubMed

    Lucas-Sánchez, Alejandro; Martínez-Nicolás, Antonio; Madrid, Juan Antonio; Almaida-Pagán, Pedro Francisco; Mendiola, Pilar; de Costa, Jorge

    2015-04-01

    Several studies have been performed to identify age-related changes in the circadian system (CS) but the impairment of the CS and its chronodisruption at the end of an organism life have not been studied in depth. Aging commonly affects the input pathways into the biological clock or restraints their processing, therefore simplifying the system output, the overt rhythms. The purpose of this work was to do a complete characterization of changes that occurs in the CS in the last stage of a vertebrate organism life and to develop tools able to detect in which moment of the last days of life is the animal, using an overt rhythm, the rest-activity rhythm (RAR). For that, a fish species proposed as model for aging studies, Nothobranchius rachovii, has been used. A progressive and sequential CS breakdown has been described for the last 22 d of life of N. rachovii (∼7% of total life), suffering a general RAR impairment mainly reflected by changes in phase regularity, complexity, amplitude and the ability to stay synchronized to the LD cycle. Also, an equation of days remaining of life, based on the RAR description, has been calculated and proposed as a tool to identify close-to-death individuals which could be subjected to an adequate restoring treatment to enhance the CS function and improve their well-being.

  13. The parathyroid hormone circadian rhythm is truly endogenous--a general clinical research center study

    NASA Technical Reports Server (NTRS)

    el-Hajj Fuleihan, G.; Klerman, E. B.; Brown, E. N.; Choe, Y.; Brown, E. M.; Czeisler, C. A.

    1997-01-01

    While circulating levels of PTH follow a diurnal pattern, it has been unclear whether these changes are truly endogenous or are dictated by external factors that themselves follow a diurnal pattern, such as sleep-wake cycles, light-dark cycles, meals, or posture. We evaluated the diurnal rhythm of PTH in 11 normal healthy male volunteers in our Intensive Physiologic Monitoring Unit. The first 36 h spent under baseline conditions were followed by 28-40 h of constant routine conditions (CR; enforced wakefulness in the strict semirecumbent position, with the consumption of hourly snacks). During baseline conditions, PTH levels followed a bimodal diurnal rhythm with an average amplitude of 4.2 pg/mL. A primary peak (t1max) occurred at 0314 h, and the secondary peak (t2max) occurred at 1726 h, whereas the primary and secondary nadirs (t1min and t2min) took place, on the average, at 1041 and 2103 h, respectively. This rhythm was preserved under CR conditions, albeit with different characteristics, thus confirming its endogenous nature. The serum ionized calcium (Cai) demonstrated a rhythm in 3 of the 5 subjects studied that varied widely between individuals and did not have any apparent relation to PTH. Urinary calcium/creatinine (UCa/Cr), phosphate/Cr (UPO4/Cr), and sodium/Cr (UNa/Cr) ratios all followed a diurnal rhythm during the baseline day. These rhythms persisted during the CR, although with different characteristics for the first two parameters, whereas that of UNa/Cr was unchanged. In general, the temporal pattern for the UCa/Cr curve was a mirror image of the PTH curve, whereas the UPO4/Cr pattern moved in parallel with the PTH curve. In conclusion, PTH levels exhibit a diurnal rhythm that persists during a CR, thereby confirming that a large component of this rhythm is an endogenous circadian rhythm. The clinical relevance of this rhythm is reflected in the associated rhythms of biological markers of PTH effect at the kidney, namely UCa/Cr and UPO4/Cr.

  14. Human sleep and circadian rhythms: a simple model based on two coupled oscillators.

    PubMed

    Strogatz, S H

    1987-01-01

    We propose a model of the human circadian system. The sleep-wake and body temperature rhythms are assumed to be driven by a pair of coupled nonlinear oscillators described by phase variables alone. The novel aspect of the model is that its equations may be solved analytically. Computer simulations are used to test the model against sleep-wake data pooled from 15 studies of subjects living for weeks in unscheduled, time-free environments. On these tests the model performs about as well as the existing models, although its mathematical structure is far simpler.

  15. Circadian rhythm of acute phase proteins under the influence of bright/dim light during the daytime.

    PubMed

    Kanikowska, Dominika; Hyun, Ki-Ja; Tokura, Hiromi; Azama, Takashi; Nishimura, Shinya

    2005-01-01

    We investigated the influence of two different light intensities, dim (100 lx) and bright (5000 lx), during the daytime on the circadian rhythms of selected acute phase proteins of C-reactive protein (CRP), alpha1-acid glycoprotein (AGP), alpha1-antichymotrypsin (ACT), transfferin (TF), alpha2-macroglobulin (alpha2-m), haptoglobin (HP), and ceruloplasmin (CP). Serum samples were collected from 7 healthy volunteers at 4 h intervals during two separate single 24 h spans during which they were exposed to the respective light intensity conditions. A circadian rhythm was detected only in ACT concentration in the bright light condition. The concentration of ACT, a positive acute phase protein (APP), increased (significantly significant differences in the ACT concentration were detected at 14:00 and 22:00 h) and AGP showed a tendency to be higher under the daytime bright compared to dim light conditions. There were no significant differences between the time point means under daytime dim and bright light conditions for alpha2-M, AGP, Tf, Cp, or Hp. The findings suggest that some, but not all, APP may be influenced by the environmental light intensity.

  16. Carbon Monoxide Preserves Circadian Rhythm to Reduce the Severity of Subarachnoid Hemorrhage in Mice.

    PubMed

    Schallner, Nils; Lieberum, Judith-Lisa; Gallo, David; LeBlanc, Robert H; Fuller, Patrick M; Hanafy, Khalid A; Otterbein, Leo E

    2017-09-01

    Subarachnoid hemorrhage (SAH) is associated with a temporal pattern of stroke incidence. We hypothesized that natural oscillations in gene expression controlling circadian rhythm affect the severity of neuronal injury. We moreover predict that heme oxygenase-1 (HO-1/ Hmox1 ) and its product carbon monoxide (CO) contribute to the restoration of rhythm and neuroprotection. Murine SAH model was used where blood was injected at various time points of the circadian cycle. Readouts included circadian clock gene expression, locomotor activity, vasospasm, neuroinflammatory markers, and apoptosis. In addition, cerebrospinal fluid and peripheral blood leukocytes from SAH patients and controls were analyzed for clock gene expression. Significant elevations in the clock genes Per-1 , Per-2 , and NPAS-2 were observed in the hippocampus, cortex, and suprachiasmatic nucleus in mice subjected to SAH at zeitgeber time (ZT) 12 when compared with ZT2. Clock gene expression amplitude correlated with basal expression of HO-1, which was also significantly greater at ZT12. SAH animals showed a significant reduction in cerebral vasospasm, neuronal apoptosis, and microglial activation at ZT12 compared with ZT2. In animals with myeloid-specific HO-1 deletion ( Lyz-Cre-Hmox1 fl/fl ), Per-1, Per-2 , and NPAS-2 expression was reduced in the suprachiasmatic nucleus, which correlated with increased injury. Treatment with low-dose CO rescued Lyz-Cre-Hmox1 fl/fl mice, restored Per-1, Per-2 , and NPAS-2 expression, and reduced neuronal apoptosis. Clock gene expression regulates, in part, the severity of SAH and requires myeloid HO-1 activity to clear the erythrocyte burden and inhibit neuronal apoptosis. Exposure to CO rescues the loss of HO-1 and thus merits further investigation in patients with SAH. © 2017 American Heart Association, Inc.

  17. Adjustment of sleep and the circadian temperature rhythm after flights across nine time zones

    NASA Technical Reports Server (NTRS)

    Gander, Philippa H.; Myhre, Grete; Graeber, R. Curtis; Lauber, John K.; Andersen, Harald T.

    1989-01-01

    The adjustment of sleep-wake patterns and the circadian temperature rhythm was monitored in nine Royal Norwegian Airforce volunteers operating P-3 aircraft during a westward training deployment across nine time zones. Subjects recorded all sleep and nap times, rated nightly sleep quality, and completed personality inventories. Rectal temperature, heart rate, and wrist activity were continuously monitored. Adjustment was slower after the return eastward flight than after the outbound westward flight. The eastward flight produced slower readjustment of sleep timing to local time and greater interindividual variability in the patterns of adjustment of sleep and temperature. One subject apparently exhibited resynchronization by partition, with the temperature rhythm undergoing the reciprocal 15-h delay. In contrast, average heart rates during sleep were significantly elevated only after westward flight. Interindividual differences in adjustment of the temperature rhythm were correlated with some of the personality measures. Larger phase delays in the overall temperature waveform (as measured on the 5th day after westward flight) were exhibited by extraverts, and less consistently by evening types.

  18. Molecular cloning and characterization of the light-regulation and circadian-rhythm of the VDE gene promoter from Zingiber officinale.

    PubMed

    Zhao, Wenchao; Wang, Shaohui; Li, Xin; Huang, Hongyu; Sui, Xiaolei; Zhang, Zhenxian

    2012-08-01

    Ginger (Zingiber officinale Rosc.) is prone to photoinhibition under intense sunlight. Excessive light can be dissipated by the xanthophyll cycle, where violaxanthin de-epoxidase (VDE) plays a critical role in protecting the photosynthesis apparatus from the damage of excessive light. We isolated ~2.0 kb of ginger VDE (GVDE) gene promoter, which contained the circadian box, I-box, G-box and GT-1 motif. Histochemical staining of Arabidopsis indicated the GVDE promoter was active in almost all organs, especially green tissues. β-glucuronidase (GUS) activity driven by GVDE promoter was repressed rather than activated by high light. GUS activity was altered by hormones, growth regulators and abiotic stresses, which increased with 2,4-dichlorophenoxyacetic acid and decreased with abscisic acid, salicylic acid, zeatin, salt (sodium chloride) and polyethylene glycol. Interestingly, GUS activities with gibberellin or indole-3-acetic acid increased in the short-term (24 h) and decreased in the long-term (48 and 72 h). Analysis of 5' flank deletion found two crucial functional regions residing in -679 to -833 and -63 to -210. Northern blotting analysis found transcription to be regulated by the endogenous circadian clock. Finally, we found a region necessary for regulating the circadian rhythm and another for the basic promoter activity. Key message A novel promoter, named GVDE promoter, was first isolated and analyzed in this study. We have determined one region crucial for promoter activity and another responsible for keeping circadian rhythms.

  19. Dynamics of three coupled van der Pol oscillators with application to circadian rhythms

    NASA Astrophysics Data System (ADS)

    Rompala, Kevin; Rand, Richard; Howland, Howard

    2007-08-01

    In this work we study a system of three van der Pol oscillators. Two of the oscillators are identical, and are not directly coupled to each other, but rather are coupled via the third oscillator. We investigate the existence of the in-phase mode in which the two identical oscillators have the same behavior. To this end we use the two variable expansion perturbation method (also known as multiple scales) to obtain a slow flow, which we then analyze using the computer algebra system MACSYMA and the numerical bifurcation software AUTO. Our motivation for studying this system comes from the presence of circadian rhythms in the chemistry of the eyes. We model the circadian oscillator in each eye as a van der Pol oscillator. Although there is no direct connection between the two eyes, they are both connected to the brain, especially to the pineal gland, which is here represented by a third van der Pol oscillator.

  20. Bidirectional interactions between circadian entrainment and cognitive performance

    PubMed Central

    Gritton, Howard J.; Kantorowski, Ana; Sarter, Martin; Lee, Theresa M.

    2012-01-01

    Circadian rhythms influence a variety of physiological and behavioral processes; however, little is known about how circadian rhythms interact with the organisms' ability to acquire and retain information about their environment. These experiments tested whether rats trained outside their endogenous active period demonstrate the same rate of acquisition, daily performance, and remote memory ability as their nocturnally trained counterparts in tasks of sustained attention and spatial memory. Furthermore, we explored how daily task training influenced circadian patterns of activity. We found that rats demonstrate better acquisition and performance on an operant task requiring attentional effort when trained during the dark-phase. Time of day did not affect acquisition or performance on the Morris water maze; however, when animals were retested 2 wk after their last day of training, they showed better remote memory if training originally occurred during the dark-phase. Finally, attentional, but not spatial, task performance during the light-phase promotes a shift toward diurnality and the synchronization of activity to the time of daily training; this shift was most robust when the demands on the cognitive control of attention were highest. Our findings support a theory of bidirectional interactions between cognitive performance and circadian processes and are consistent with the view that the circadian abnormalities associated with shift-work, aging, and neuropsychiatric illnesses may contribute to the deleterious effects on cognition often present in these populations. Furthermore, these findings suggest that time of day should be an important consideration for a variety of cognitive tasks principally used in psychological and neuroscience research. PMID:22383380