Sample records for abnormal cortical development

  1. Cortical gyrification is abnormal in children with prenatal alcohol exposure.

    PubMed

    Hendrickson, Timothy J; Mueller, Bryon A; Sowell, Elizabeth R; Mattson, Sarah N; Coles, Claire D; Kable, Julie A; Jones, Kenneth L; Boys, Christopher J; Lim, Kelvin O; Riley, Edward P; Wozniak, Jeffrey R

    2017-01-01

    Prenatal alcohol exposure (PAE) adversely affects early brain development. Previous studies have shown a wide range of structural and functional abnormalities in children and adolescents with PAE. The current study adds to the existing literature specifically on cortical development by examining cortical gyrification in a large sample of children with PAE compared to controls. Relationships between cortical development and intellectual functioning are also examined. Included were 92 children with PAE and 83 controls ages 9-16 from four sites in the Collaborative Initiative on FASD (CIFASD). All PAE participants had documented heavy PAE. All underwent a formal evaluation of physical anomalies and dysmorphic facial features. MRI data were collected using modified matched protocols on three platforms (Siemens, GE, and Philips). Cortical gyrification was examined using a semi-automated procedure. Whole brain group comparisons using Monte Carlo z-simulation for multiple comparisons showed significantly lower cortical gyrification across a large proportion of the cerebral cortex amongst PAE compared to controls. Whole brain comparisons and ROI based analyses showed strong positive correlations between cortical gyrification and IQ (i.e. less developed cortex was associated with lower IQ). Abnormalities in cortical development were seen across the brain in children with PAE compared to controls. Cortical gyrification and IQ were strongly correlated, suggesting that examining mechanisms by which alcohol disrupts cortical formation may yield clinically relevant insights and potential directions for early intervention.

  2. Significance of abnormalities in developmental trajectory and asymmetry of cortical serotonin synthesis in autism.

    PubMed

    Chandana, Sreenivasa R; Behen, Michael E; Juhász, Csaba; Muzik, Otto; Rothermel, Robert D; Mangner, Thomas J; Chakraborty, Pulak K; Chugani, Harry T; Chugani, Diane C

    2005-01-01

    The role of serotonin in prenatal and postnatal brain development is well documented in the animal literature. In earlier studies using positron emission tomography (PET) with the tracer alpha[(11)C]methyl-l-tryptophan (AMT), we reported global and focal abnormalities of serotonin synthesis in children with autism. In the present study, we measured brain serotonin synthesis in a large group of autistic children (n = 117) with AMT PET and related these neuroimaging data to handedness and language function. Cortical AMT uptake abnormalities were objectively derived from small homotopic cortical regions using a predefined cutoff asymmetry threshold (>2 S.D. of normal asymmetry). Autistic children demonstrated several patterns of abnormal cortical involvement, including right cortical, left cortical, and absence of abnormal asymmetry. Global brain values for serotonin synthesis capacity (unidirectional uptake rate constant, K-complex) values were plotted as a function of age. K-complex values of autistic children with asymmetry or no asymmetry in cortical AMT uptake followed different developmental patterns, compared to that of a control group of non-autistic children. The autism groups, defined by presence or absence and side of cortical asymmetry, differed on a measure of language as well as handedness. Autistic children with left cortical AMT decreases showed a higher prevalence of severe language impairment, whereas those with right cortical decreases showed a higher prevalence of left and mixed handedness. Global as well as focal abnormally asymmetric development in the serotonergic system could lead to miswiring of the neural circuits specifying hemispheric specialization.

  3. Cortical thickness abnormalities associated with dyslexia, independent of remediation status.

    PubMed

    Ma, Yizhou; Koyama, Maki S; Milham, Michael P; Castellanos, F Xavier; Quinn, Brian T; Pardoe, Heath; Wang, Xiuyuan; Kuzniecky, Ruben; Devinsky, Orrin; Thesen, Thomas; Blackmon, Karen

    2015-01-01

    Abnormalities in cortical structure are commonly observed in children with dyslexia in key regions of the "reading network." Whether alteration in cortical features reflects pathology inherent to dyslexia or environmental influence (e.g., impoverished reading experience) remains unclear. To address this question, we compared MRI-derived metrics of cortical thickness (CT), surface area (SA), gray matter volume (GMV), and their lateralization across three different groups of children with a historical diagnosis of dyslexia, who varied in current reading level. We compared three dyslexia subgroups with: (1) persistent reading and spelling impairment; (2) remediated reading impairment (normal reading scores), and (3) remediated reading and spelling impairments (normal reading and spelling scores); and a control group of (4) typically developing children. All groups were matched for age, gender, handedness, and IQ. We hypothesized that the dyslexia group would show cortical abnormalities in regions of the reading network relative to controls, irrespective of remediation status. Such a finding would support that cortical abnormalities are inherent to dyslexia and are not a consequence of abnormal reading experience. Results revealed increased CT of the left fusiform gyrus in the dyslexia group relative to controls. Similarly, the dyslexia group showed CT increase of the right superior temporal gyrus, extending into the planum temporale, which resulted in a rightward CT asymmetry on lateralization indices. There were no group differences in SA, GMV, or their lateralization. These findings held true regardless of remediation status. Each reading level group showed the same "double hit" of atypically increased left fusiform CT and rightward superior temporal CT asymmetry. Thus, findings provide evidence that a developmental history of dyslexia is associated with CT abnormalities, independent of remediation status.

  4. Cortical thickness abnormalities associated with dyslexia, independent of remediation status

    PubMed Central

    Ma, Yizhou; Koyama, Maki S.; Milham, Michael P.; Castellanos, F. Xavier; Quinn, Brian T.; Pardoe, Heath; Wang, Xiuyuan; Kuzniecky, Ruben; Devinsky, Orrin; Thesen, Thomas; Blackmon, Karen

    2014-01-01

    Abnormalities in cortical structure are commonly observed in children with dyslexia in key regions of the “reading network.” Whether alteration in cortical features reflects pathology inherent to dyslexia or environmental influence (e.g., impoverished reading experience) remains unclear. To address this question, we compared MRI-derived metrics of cortical thickness (CT), surface area (SA), gray matter volume (GMV), and their lateralization across three different groups of children with a historical diagnosis of dyslexia, who varied in current reading level. We compared three dyslexia subgroups with: (1) persistent reading and spelling impairment; (2) remediated reading impairment (normal reading scores), and (3) remediated reading and spelling impairments (normal reading and spelling scores); and a control group of (4) typically developing children. All groups were matched for age, gender, handedness, and IQ. We hypothesized that the dyslexia group would show cortical abnormalities in regions of the reading network relative to controls, irrespective of remediation status. Such a finding would support that cortical abnormalities are inherent to dyslexia and are not a consequence of abnormal reading experience. Results revealed increased CT of the left fusiform gyrus in the dyslexia group relative to controls. Similarly, the dyslexia group showed CT increase of the right superior temporal gyrus, extending into the planum temporale, which resulted in a rightward CT asymmetry on lateralization indices. There were no group differences in SA, GMV, or their lateralization. These findings held true regardless of remediation status. Each reading level group showed the same “double hit” of atypically increased left fusiform CT and rightward superior temporal CT asymmetry. Thus, findings provide evidence that a developmental history of dyslexia is associated with CT abnormalities, independent of remediation status. PMID:25610779

  5. Crumbs 2 prevents cortical abnormalities in mouse dorsal telencephalon.

    PubMed

    Dudok, Jacobus J; Murtaza, Mariyam; Henrique Alves, C; Rashbass, Pen; Wijnholds, Jan

    2016-07-01

    The formation of a functionally integrated nervous system is dependent on a highly organized sequence of events that includes timely division and differentiation of progenitors. Several apical polarity proteins have been shown to play crucial roles during neurogenesis, however, the role of Crumbs 2 (CRB2) in cortical development has not previously been reported. Here, we show that conditional ablation of Crb2 in the murine dorsal telencephalon leads to defects in the maintenance of the apical complex. Furthermore, within the mutant dorsal telencephalon there is premature expression of differentiation proteins. We examined the physiological function of Crb2 on wild type genetic background as well as on background lacking Crb1. Telencephalon lacking CRB2 resulted in reduced levels of PALS1 and CRB3 from the apical complex, an increased number of mitotic cells and expanded neuronal domain. These defects are transient and therefore only result in rather mild cortical abnormalities. We show that CRB2 is required for maintenance of the apical polarity complex during development of the cortex and regulation of cell division, and that loss of CRB2 results in cortical abnormalities. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  6. Cortical thickness abnormalities in late adolescence with online gaming addiction.

    PubMed

    Yuan, Kai; Cheng, Ping; Dong, Tao; Bi, Yanzhi; Xing, Lihong; Yu, Dahua; Zhao, Limei; Dong, Minghao; von Deneen, Karen M; Liu, Yijun; Qin, Wei; Tian, Jie

    2013-01-01

    Online gaming addiction, as the most popular subtype of Internet addiction, had gained more and more attention from the whole world. However, the structural differences in cortical thickness of the brain between adolescents with online gaming addiction and healthy controls are not well unknown; neither was its association with the impaired cognitive control ability. High-resolution magnetic resonance imaging scans from late adolescence with online gaming addiction (n = 18) and age-, education- and gender-matched controls (n = 18) were acquired. The cortical thickness measurement method was employed to investigate alterations of cortical thickness in individuals with online gaming addiction. The color-word Stroop task was employed to investigate the functional implications of the cortical thickness abnormalities. Imaging data revealed increased cortical thickness in the left precentral cortex, precuneus, middle frontal cortex, inferior temporal and middle temporal cortices in late adolescence with online gaming addiction; meanwhile, the cortical thicknesses of the left lateral orbitofrontal cortex (OFC), insula, lingual gyrus, the right postcentral gyrus, entorhinal cortex and inferior parietal cortex were decreased. Correlation analysis demonstrated that the cortical thicknesses of the left precentral cortex, precuneus and lingual gyrus correlated with duration of online gaming addiction and the cortical thickness of the OFC correlated with the impaired task performance during the color-word Stroop task in adolescents with online gaming addiction. The findings in the current study suggested that the cortical thickness abnormalities of these regions may be implicated in the underlying pathophysiology of online gaming addiction.

  7. Abnormalities of neural circuitry in Alzheimer's disease: hippocampus and cortical cholinergic innervation.

    PubMed

    Geula, C

    1998-07-01

    Severe pathology in Alzheimer's disease (AD) results in marked disruption of cortical circuitry. Formation of neurofibrillary tangles, neuronal loss, decrease in dendritic extent, and synaptic depletion combine to halt communication among various cortical areas, resulting in anatomic isolation and fragmentation of many cortical zones. The clinical manifestation of this disruption is severe and debilitating cognitive dysfunction, often accompanied by psychiatric and behavioral disturbances and a diminished ability to perform activities of daily living. However, different cortical circuits are not equally vulnerable to AD pathology. In particular, two cortical systems that appear to be involved in the neural processing of memory are selectively vulnerable to degeneration in AD. One consists of connections between the hippocampus and its neighboring cortical structures within the temporal lobe. The second is the cortical cholinergic system that originates in neurons within the basal forebrain and innervates the entire cortical mantle. The circuitry in these systems shows early and severe degenerative changes in the course of AD. The selective vulnerability of these circuits is the probable reason for the early and marked loss of memory observed in these patients. This review presents current knowledge of the general pattern of cortical circuitry, followed by a summary of abnormalities of this circuitry in AD. The cortical circuits that exhibit selective pathology in AD are described in greater detail. Therapeutic implications of the abnormal circuitry in AD are also discussed. For therapies to be effective, early diagnosis of AD is necessary. Future efforts at AD therapy must be combined with an equally intense effort to develop tools capable of early diagnosis of AD, preferably at a preclinical stage before the onset of cognitive symptoms.

  8. Neurodevelopmental origins of abnormal cortical morphology in dissociative identity disorder.

    PubMed

    Reinders, A A T S; Chalavi, S; Schlumpf, Y R; Vissia, E M; Nijenhuis, E R S; Jäncke, L; Veltman, D J; Ecker, C

    2018-02-01

    To examine the two constitutes of cortical volume (CV), that is, cortical thickness (CT) and surface area (SA), in individuals with dissociative identity disorder (DID) with the view of gaining important novel insights into the underlying neurobiological mechanisms mediating DID. This study included 32 female patients with DID and 43 matched healthy controls. Between-group differences in CV, thickness, and SA, the degree of spatial overlap between differences in CT and SA, and their relative contribution to differences in regional CV were assessed using a novel spatially unbiased vertex-wise approach. Whole-brain correlation analyses were performed between measures of cortical anatomy and dissociative symptoms and traumatization. Individuals with DID differed from controls in CV, CT, and SA, with significantly decreased CT in the insula, anterior cingulate, and parietal regions and reduced cortical SA in temporal and orbitofrontal cortices. Abnormalities in CT and SA shared only about 3% of all significantly different cerebral surface locations and involved distinct contributions to the abnormality of CV in DID. Significant negative associations between abnormal brain morphology (SA and CV) and dissociative symptoms and early childhood traumatization (0 and 3 years of age) were found. In DID, neuroanatomical areas with decreased CT and SA are in different locations in the brain. As CT and SA have distinct genetic and developmental origins, our findings may indicate that different neurobiological mechanisms and environmental factors impact on cortical morphology in DID, such as early childhood traumatization. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Cortical Thickness Abnormalities in Late Adolescence with Online Gaming Addiction

    PubMed Central

    Yuan, Kai; Cheng, Ping; Dong, Tao; Bi, Yanzhi; Xing, Lihong; Yu, Dahua; Zhao, Limei; Dong, Minghao; von Deneen, Karen M.; Liu, Yijun; Qin, Wei; Tian, Jie

    2013-01-01

    Online gaming addiction, as the most popular subtype of Internet addiction, had gained more and more attention from the whole world. However, the structural differences in cortical thickness of the brain between adolescents with online gaming addiction and healthy controls are not well unknown; neither was its association with the impaired cognitive control ability. High-resolution magnetic resonance imaging scans from late adolescence with online gaming addiction (n = 18) and age-, education- and gender-matched controls (n = 18) were acquired. The cortical thickness measurement method was employed to investigate alterations of cortical thickness in individuals with online gaming addiction. The color-word Stroop task was employed to investigate the functional implications of the cortical thickness abnormalities. Imaging data revealed increased cortical thickness in the left precentral cortex, precuneus, middle frontal cortex, inferior temporal and middle temporal cortices in late adolescence with online gaming addiction; meanwhile, the cortical thicknesses of the left lateral orbitofrontal cortex (OFC), insula, lingual gyrus, the right postcentral gyrus, entorhinal cortex and inferior parietal cortex were decreased. Correlation analysis demonstrated that the cortical thicknesses of the left precentral cortex, precuneus and lingual gyrus correlated with duration of online gaming addiction and the cortical thickness of the OFC correlated with the impaired task performance during the color-word Stroop task in adolescents with online gaming addiction. The findings in the current study suggested that the cortical thickness abnormalities of these regions may be implicated in the underlying pathophysiology of online gaming addiction. PMID:23326379

  10. Cortical thickness abnormalities in trichotillomania: international multi-site analysis.

    PubMed

    Chamberlain, Samuel R; Harries, Michael; Redden, Sarah A; Keuthen, Nancy J; Stein, Dan J; Lochner, Christine; Grant, Jon E

    2018-06-01

    Trichotillomania is a prevalent but often hidden psychiatric condition, characterized by repetitive hair pulling. The aim of this study was to confirm or refute structural brain abnormalities in trichotillomania by pooling all available global data. De-identified MRI scans were pooled by contacting authors of previous studies. Cortical thickness and sub-cortical volumes were compared between patients and controls. Patients (n = 76) and controls (n = 41) were well-matched in terms of demographic characteristics. Trichotillomania patients showed excess cortical thickness in a cluster maximal at right inferior frontal gyrus, unrelated to symptom severity. No significant sub-cortical volume differences were detected in the regions of interest. Morphometric changes in the right inferior frontal gyrus appear to play a central role in the pathophysiology of trichotillomania, and to be trait in nature. The findings are distinct from other impulsive-compulsive disorders (OCD, ADHD, gambling disorder), which have typically been associated with reduced, rather than increased, cortical thickness. Future work should examine sub-cortical and cerebellar morphology using analytic approaches designed for this purpose, and should also characterize grey matter densities/volumes.

  11. Quantifying cortical development in typically developing toddlers and young children, 1-6 years of age.

    PubMed

    Remer, Justin; Croteau-Chonka, Elise; Dean, Douglas C; D'Arpino, Sara; Dirks, Holly; Whiley, Dannielle; Deoni, Sean C L

    2017-06-01

    Cortical maturation, including age-related changes in thickness, volume, surface area, and folding (gyrification), play a central role in developing brain function and plasticity. Further, abnormal cortical maturation is a suspected substrate in various behavioral, intellectual, and psychiatric disorders. However, in order to characterize the altered development associated with these disorders, appreciation of the normative patterns of cortical development in neurotypical children between 1 and 6 years of age, a period of peak brain development during which many behavioral and developmental disorders emerge, is necessary. To this end, we examined measures of cortical thickness, surface area, mean curvature, and gray matter volume across 34 bilateral regions in a cohort of 140 healthy children devoid of major risk factors for abnormal development. From these data, we observed linear, logarithmic, and quadratic patterns of change with age depending on brain region. Cortical thinning, ranging from 10% to 20%, was observed throughout most of the brain, with the exception of posterior brain structures, which showed initial cortical thinning from 1 to 5 years, followed by thickening. Cortical surface area expansion ranged from 20% to 108%, and cortical curvature varied by 1-20% across the investigated age range. Right-left hemisphere asymmetry was observed across development for each of the 4 cortical measures. Our results present new insight into the normative patterns of cortical development across an important but under studied developmental window, and provide a valuable reference to which trajectories observed in neurodevelopmental disorders may be compared. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy.

    PubMed

    Shakespeare, Timothy J; Kaski, Diego; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Ryan, Natalie S; Schott, Jonathan M; Crutch, Sebastian J

    2015-07-01

    The clinico-neuroradiological syndrome posterior cortical atrophy is the cardinal 'visual dementia' and most common atypical Alzheimer's disease phenotype, offering insights into mechanisms underlying clinical heterogeneity, pathological propagation and basic visual phenomena (e.g. visual crowding). Given the extensive attention paid to patients' (higher order) perceptual function, it is surprising that there have been no systematic analyses of basic oculomotor function in this population. Here 20 patients with posterior cortical atrophy, 17 patients with typical Alzheimer's disease and 22 healthy controls completed tests of fixation, saccade (including fixation/target gap and overlap conditions) and smooth pursuit eye movements using an infrared pupil-tracking system. Participants underwent detailed neuropsychological and neurological examinations, with a proportion also undertaking brain imaging and analysis of molecular pathology. In contrast to informal clinical evaluations of oculomotor dysfunction frequency (previous studies: 38%, current clinical examination: 33%), detailed eyetracking investigations revealed eye movement abnormalities in 80% of patients with posterior cortical atrophy (compared to 17% typical Alzheimer's disease, 5% controls). The greatest differences between posterior cortical atrophy and typical Alzheimer's disease were seen in saccadic performance. Patients with posterior cortical atrophy made significantly shorter saccades especially for distant targets. They also exhibited a significant exacerbation of the normal gap/overlap effect, consistent with 'sticky fixation'. Time to reach saccadic targets was significantly associated with parietal and occipital cortical thickness measures. On fixation stability tasks, patients with typical Alzheimer's disease showed more square wave jerks whose frequency was associated with lower cerebellar grey matter volume, while patients with posterior cortical atrophy showed large saccadic intrusions

  13. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy

    PubMed Central

    Kaski, Diego; Yong, Keir X. X.; Paterson, Ross W.; Slattery, Catherine F.; Ryan, Natalie S.; Schott, Jonathan M.; Crutch, Sebastian J.

    2015-01-01

    The clinico-neuroradiological syndrome posterior cortical atrophy is the cardinal ‘visual dementia’ and most common atypical Alzheimer’s disease phenotype, offering insights into mechanisms underlying clinical heterogeneity, pathological propagation and basic visual phenomena (e.g. visual crowding). Given the extensive attention paid to patients’ (higher order) perceptual function, it is surprising that there have been no systematic analyses of basic oculomotor function in this population. Here 20 patients with posterior cortical atrophy, 17 patients with typical Alzheimer’s disease and 22 healthy controls completed tests of fixation, saccade (including fixation/target gap and overlap conditions) and smooth pursuit eye movements using an infrared pupil-tracking system. Participants underwent detailed neuropsychological and neurological examinations, with a proportion also undertaking brain imaging and analysis of molecular pathology. In contrast to informal clinical evaluations of oculomotor dysfunction frequency (previous studies: 38%, current clinical examination: 33%), detailed eyetracking investigations revealed eye movement abnormalities in 80% of patients with posterior cortical atrophy (compared to 17% typical Alzheimer’s disease, 5% controls). The greatest differences between posterior cortical atrophy and typical Alzheimer’s disease were seen in saccadic performance. Patients with posterior cortical atrophy made significantly shorter saccades especially for distant targets. They also exhibited a significant exacerbation of the normal gap/overlap effect, consistent with ‘sticky fixation’. Time to reach saccadic targets was significantly associated with parietal and occipital cortical thickness measures. On fixation stability tasks, patients with typical Alzheimer’s disease showed more square wave jerks whose frequency was associated with lower cerebellar grey matter volume, while patients with posterior cortical atrophy showed large

  14. Primary Cortical Folding in the Human Newborn: An Early Marker of Later Functional Development

    ERIC Educational Resources Information Center

    Dubois, J.; Benders, M.; Borradori-Tolsa, C.; Cachia, A.; Lazeyras, F.; Leuchter, R. Ha-Vinh; Sizonenko, S. V.; Warfield, S. K.; Mangin, J. F.; Huppi, P. S.

    2008-01-01

    In the human brain, the morphology of cortical gyri and sulci is complex and variable among individuals, and it may reflect pathological functioning with specific abnormalities observed in certain developmental and neuropsychiatric disorders. Since cortical folding occurs early during brain development, these structural abnormalities might be…

  15. Development of Cortical Morphology Evaluated with Longitudinal MR Brain Images of Preterm Infants

    PubMed Central

    Moeskops, Pim; Benders, Manon J. N. L.; Kersbergen, Karina J.; Groenendaal, Floris; de Vries, Linda S.; Viergever, Max A.; Išgum, Ivana

    2015-01-01

    Introduction The cerebral cortex develops rapidly in the last trimester of pregnancy. In preterm infants, brain development is very vulnerable because of their often complicated extra-uterine conditions. The aim of this study was to quantitatively describe cortical development in a cohort of 85 preterm infants with and without brain injury imaged at 30 and 40 weeks postmenstrual age (PMA). Methods In the acquired T2-weighted MR images, unmyelinated white matter (UWM), cortical grey matter (CoGM), and cerebrospinal fluid in the extracerebral space (CSF) were automatically segmented. Based on these segmentations, cortical descriptors evaluating volume, surface area, thickness, gyrification index, and global mean curvature were computed at both time points, for the whole brain, as well as for the frontal, temporal, parietal, and occipital lobes separately. Additionally, visual scoring of brain abnormality was performed using a conventional scoring system at 40 weeks PMA. Results The evaluated descriptors showed larger change in the occipital lobes than in the other lobes. Moreover, the cortical descriptors showed an association with the abnormality scores: gyrification index and global mean curvature decreased, whereas, interestingly, median cortical thickness increased with increasing abnormality score. This was more pronounced at 40 weeks PMA than at 30 weeks PMA, suggesting that the period between 30 and 40 weeks PMA might provide a window of opportunity for intervention to prevent delay in cortical development. PMID:26161536

  16. Longitudinal changes in cortical thickness in autism and typical development.

    PubMed

    Zielinski, Brandon A; Prigge, Molly B D; Nielsen, Jared A; Froehlich, Alyson L; Abildskov, Tracy J; Anderson, Jeffrey S; Fletcher, P Thomas; Zygmunt, Kristen M; Travers, Brittany G; Lange, Nicholas; Alexander, Andrew L; Bigler, Erin D; Lainhart, Janet E

    2014-06-01

    The natural history of brain growth in autism spectrum disorders remains unclear. Cross-sectional studies have identified regional abnormalities in brain volume and cortical thickness in autism, although substantial discrepancies have been reported. Preliminary longitudinal studies using two time points and small samples have identified specific regional differences in cortical thickness in the disorder. To clarify age-related trajectories of cortical development, we examined longitudinal changes in cortical thickness within a large mixed cross-sectional and longitudinal sample of autistic subjects and age- and gender-matched typically developing controls. Three hundred and forty-five magnetic resonance imaging scans were examined from 97 males with autism (mean age = 16.8 years; range 3-36 years) and 60 males with typical development (mean age = 18 years; range 4-39 years), with an average interscan interval of 2.6 years. FreeSurfer image analysis software was used to parcellate the cortex into 34 regions of interest per hemisphere and to calculate mean cortical thickness for each region. Longitudinal linear mixed effects models were used to further characterize these findings and identify regions with between-group differences in longitudinal age-related trajectories. Using mean age at time of first scan as a reference (15 years), differences were observed in bilateral inferior frontal gyrus, pars opercularis and pars triangularis, right caudal middle frontal and left rostral middle frontal regions, and left frontal pole. However, group differences in cortical thickness varied by developmental stage, and were influenced by IQ. Differences in age-related trajectories emerged in bilateral parietal and occipital regions (postcentral gyrus, cuneus, lingual gyrus, pericalcarine cortex), left frontal regions (pars opercularis, rostral middle frontal and frontal pole), left supramarginal gyrus, and right transverse temporal gyrus, superior parietal lobule, and

  17. Longitudinal changes in cortical thickness in autism and typical development

    PubMed Central

    Prigge, Molly B. D.; Nielsen, Jared A.; Froehlich, Alyson L.; Abildskov, Tracy J.; Anderson, Jeffrey S.; Fletcher, P. Thomas; Zygmunt, Kristen M.; Travers, Brittany G.; Lange, Nicholas; Alexander, Andrew L.; Bigler, Erin D.; Lainhart, Janet E.

    2014-01-01

    The natural history of brain growth in autism spectrum disorders remains unclear. Cross-sectional studies have identified regional abnormalities in brain volume and cortical thickness in autism, although substantial discrepancies have been reported. Preliminary longitudinal studies using two time points and small samples have identified specific regional differences in cortical thickness in the disorder. To clarify age-related trajectories of cortical development, we examined longitudinal changes in cortical thickness within a large mixed cross-sectional and longitudinal sample of autistic subjects and age- and gender-matched typically developing controls. Three hundred and forty-five magnetic resonance imaging scans were examined from 97 males with autism (mean age = 16.8 years; range 3–36 years) and 60 males with typical development (mean age = 18 years; range 4–39 years), with an average interscan interval of 2.6 years. FreeSurfer image analysis software was used to parcellate the cortex into 34 regions of interest per hemisphere and to calculate mean cortical thickness for each region. Longitudinal linear mixed effects models were used to further characterize these findings and identify regions with between-group differences in longitudinal age-related trajectories. Using mean age at time of first scan as a reference (15 years), differences were observed in bilateral inferior frontal gyrus, pars opercularis and pars triangularis, right caudal middle frontal and left rostral middle frontal regions, and left frontal pole. However, group differences in cortical thickness varied by developmental stage, and were influenced by IQ. Differences in age-related trajectories emerged in bilateral parietal and occipital regions (postcentral gyrus, cuneus, lingual gyrus, pericalcarine cortex), left frontal regions (pars opercularis, rostral middle frontal and frontal pole), left supramarginal gyrus, and right transverse temporal gyrus, superior parietal lobule, and

  18. Abnormal cortical synaptic plasticity in primary motor area in progressive supranuclear palsy.

    PubMed

    Conte, Antonella; Belvisi, Daniele; Bologna, Matteo; Ottaviani, Donatella; Fabbrini, Giovanni; Colosimo, Carlo; Williams, David R; Berardelli, Alfredo

    2012-03-01

    No study has yet investigated whether cortical plasticity in primary motor area (M1) is abnormal in patients with progressive supranuclear palsy (PSP). We studied M1 plasticity in 15 PSP patients and 15 age-matched healthy subjects. We used intermittent theta-burst stimulation (iTBS) to investigate long-term potentiation (LTP) and continuous TBS (cTBS) to investigate long-term depression (LTD)-like cortical plasticity in M1. Ten patients underwent iTBS again 1 year later. We also investigated short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in M1 with paired-pulse transcranial magnetic stimulation, tested H reflex from upper limb flexor muscles before and after iTBS, and measured motor evoked potential (MEP) input-output (I/O) curves before and after iTBS. iTBS elicited a significantly larger MEP facilitation after iTBS in patients than in healthy subjects. Whereas in healthy subjects, cTBS inhibited MEP, in patients it significantly facilitated MEPs. In patients, SICI was reduced, whereas ICF was normal. H reflex size remained unchanged after iTBS. Patients had steeper MEP I/O slopes than healthy subjects at baseline and became even more steeper after iTBS only in patients. The iTBS-induced abnormal MEP facilitation in PSP persisted at 1-year follow-up. In conclusion, patients with PSP have abnormal M1 LTP/LTD-like plasticity. The enhanced LTP-like cortical synaptic plasticity parallels disease progression.

  19. Two-year cortical trajectories are abnormal in children and adolescents with prenatal alcohol exposure

    PubMed Central

    Hendrickson, Timothy J.; Mueller, Bryon A.; Sowell, Elizabeth R.; Mattson, Sarah N.; Coles, Claire D.; Kable, Julie A.; Jones, Kenneth L.; Boys, Christopher J.; Lee, Susanne; Lim, Kelvin O.; Riley, Edward P.; Wozniak, Jeffrey R.

    2018-01-01

    Objectives Cortical abnormalities in prenatal alcohol exposure (PAE) are known, including in gyrification (LGI), thickness (CT), volume (CV), and surface area (CS). This study provides longitudinal and developmental context to the PAE cortical development literature. Experimental design Included: 58 children with PAE and 52 controls, ages 6–17 at enrollment, from four Collaborative Initiative on FASD (CIFASD) sites. Participants underwent a formal evaluation of physical anomalies and dysmorphic facial features associated with PAE. MRI data were collected on three platforms (Siemens, GE, and Philips) at four sites. Scans were spaced two years apart. Change in LGI, CT, CS, and CV were examined. Principal observations Several significant regional age-by-diagnosis linear and quadratic interaction effects in LGI, CT, and CV were found, indicating atypical developmental trajectories in PAE. No significant correlations were observed between cortical measures and IQ. Conclusions Regional differences were seen longitudinally in CT, CV, and LGI in those with PAE. The findings represent important insights into developmental trajectories and may have implications for the timing of assessments and interventions in this population. It is noteworthy that cortical metrics did not correlate with IQ, suggesting that more specific aspects of cognitive development may need to be explored to provide further context. PMID:29486453

  20. Two-year cortical trajectories are abnormal in children and adolescents with prenatal alcohol exposure.

    PubMed

    Hendrickson, Timothy J; Mueller, Bryon A; Sowell, Elizabeth R; Mattson, Sarah N; Coles, Claire D; Kable, Julie A; Jones, Kenneth L; Boys, Christopher J; Lee, Susanne; Lim, Kelvin O; Riley, Edward P; Wozniak, Jeffrey R

    2018-04-01

    Cortical abnormalities in prenatal alcohol exposure (PAE) are known, including in gyrification (LGI), thickness (CT), volume (CV), and surface area (CS). This study provides longitudinal and developmental context to the PAE cortical development literature. Included: 58 children with PAE and 52 controls, ages 6-17 at enrollment, from four Collaborative Initiative on FASD (CIFASD) sites. Participants underwent a formal evaluation of physical anomalies and dysmorphic facial features associated with PAE. MRI data were collected on three platforms (Siemens, GE, and Philips) at four sites. Scans were spaced two years apart. Change in LGI, CT, CS, and CV were examined. Several significant regional age-by-diagnosis linear and quadratic interaction effects in LGI, CT, and CV were found, indicating atypical developmental trajectories in PAE. No significant correlations were observed between cortical measures and IQ. Regional differences were seen longitudinally in CT, CV, and LGI in those with PAE. The findings represent important insights into developmental trajectories and may have implications for the timing of assessments and interventions in this population. It is noteworthy that cortical metrics did not correlate with IQ, suggesting that more specific aspects of cognitive development may need to be explored to provide further context. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Malformations of cortical development: 3T magnetic resonance imaging features

    PubMed Central

    Battal, Bilal; Ince, Selami; Akgun, Veysel; Kocaoglu, Murat; Ozcan, Emrah; Tasar, Mustafa

    2015-01-01

    Malformation of cortical development (MCD) is a term representing an inhomogeneous group of central nervous system abnormalities, referring particularly to embriyological aspect as a consequence of any of the three developmental stages, i.e., cell proliferation, cell migration and cortical organization. These include cotical dysgenesis, microcephaly, polymicrogyria, schizencephaly, lissencephaly, hemimegalencephaly, heterotopia and focal cortical dysplasia. Since magnetic resonance imaging is the modality of choice that best identifies the structural anomalies of the brain cortex, we aimed to provide a mini review of MCD by using 3T magnetic resonance scanner images. PMID:26516429

  2. Predictors of seizure freedom after surgery for malformations of cortical development.

    PubMed

    Chang, Edward F; Wang, Doris D; Barkovich, A James; Tihan, Tarik; Auguste, Kurtis I; Sullivan, Joseph E; Garcia, Paul A; Barbaro, Nicholas M

    2011-07-01

    Malformations of cortical development (MCDs) are a major cause of medically refractory epilepsy. Our aim was to examine a surgical series of patients with cortical malformations to determine the prognostic factors associated with long-term seizure control. We conducted a retrospective review of 143 patients with MCD who underwent resective surgery for medically refractory epilepsy. Demographic, imaging, histopathologic, and surgical variables were analyzed for potential association with seizure freedom. Preoperative magnetic resonance imaging (MRI) was evaluated in a blind fashion and classified according to a new imaging/embryologic MCD classification system. Gray-white blurring on MRI, smaller lesions, complete resection of structural lesions, complete resection of abnormal electrocorticographic areas, and locally confined electrocorticographic abnormalities are favorable prognosticators of seizure freedom on univariate analysis. Imaging features consistent with abnormal proliferation (Barkovich class I) were associated with better outcome compared to those related to abnormal neuronal migration (class II) or abnormal cortical organization (class III). Multivariate logistic regression revealed complete resection of tissue manifesting electrocorticographic and/or MRI anatomic abnormalities as the main independent predictor of seizure freedom. Other histopathologic or demographic factors were not associated with seizure control. Long-term follow-up of patients demonstrated sustained overall rates of seizure control (72% at 2 years, 65% at 5 years, and 67% at 10 years). Surgery for MCDs can result in high rates of seizure freedom. Complete resection of electrocorticographic and anatomic abnormalities appears to be most predictive of long-term seizure control. Copyright © 2011 American Neurological Association.

  3. Amygdalo-cortical sprouting continues into early adulthood: implications for the development of normal and abnormal function during adolescence.

    PubMed

    Cunningham, Miles Gregory; Bhattacharyya, Sujoy; Benes, Francine Mary

    2002-11-11

    Adolescence is a critical stage for the development of emotional maturity and diverse forms of psychopathology. The posterior basolateral nucleus of the amygdala is known to mediate fear and anxiety and is important in assigning emotional valence to cognitive processes. The medial prefrontal cortex, a homologue of the human anterior cingulate cortex, mediates emotional, attentional, and motivational behaviors at the cortical level. We postulate that the development of connectivity between these two corticolimbic regions contributes to an enhanced integration of emotion and cognition during the postnatal period. In order to characterize the development of this relay, injections of the anterograde tracer biocytin were stereotaxically placed within the posterior basolateral nucleus of the amygdala of rats at successive postnatal time points (postnatal days 6-120). Labeled fibers in the medial prefrontal cortex were evaluated using a combination of brightfield, confocal, and electron microscopy. We found that the density of labeled fibers originating from the posterior basolateral nucleus shows a sharp curvilinear increase within layers II and V of the anterior cingulate cortex and the infralimbic subdivisions of medial prefrontal cortex during the late postweanling period. This increase was paralleled by a linear rise in the number of axospinous and axodendritic synapses present in the neuropil. Based on these results, we propose that late maturation of amygdalo-cortical connectivity may provide an anatomical basis for the development and integration of normal and possibly abnormal emotional behavior during adolescence and early adulthood. Copyright 2002 Wiley-Liss, Inc.

  4. Primary Hyperparathyroidism is Associated with Abnormal Cortical and Trabecular Microstructure and Reduced Bone Stiffness in Postmenopausal Women

    PubMed Central

    Stein, Emily M; Silva, Barbara C; Boutroy, Stephanie; Zhou, Bin; Wang, Ji; Udesky, Julia; Zhang, Chiyuan; McMahon, Donald J; Romano, Megan; Dworakowski, Elzbieta; Costa, Aline G.; Cusano, Natalie; Irani, Dinaz; Cremers, Serge; Shane, Elizabeth; Guo, X Edward; Bilezikian, John P

    2013-01-01

    Typically, in the milder form of primary hyperparathyroidism (PHPT), seen in most countries now, bone density by DXA and detailed analyses of iliac crest bone biopsies by histomorphometry and µCT show detrimental effects in cortical bone, whereas the trabecular site (lumbar spine by DXA) and the trabecular compartment (by bone biopsy) appear to be relatively well preserved. Despite these findings, fracture risk at both vertebral and non-vertebral sites is increased in PHPT. Emerging technologies, such as high-resolution peripheral quantitative computed tomography (HRpQCT), may provide additional insight into microstructural features at sites such as the forearm and tibia that have heretofore not been easily accessible. Using HRpQCT, we determined cortical and trabecular microstructure at the radius and tibia in 51 postmenopausal women with PHPT and 120 controls. Individual trabecula segmentation (ITS) and micro finite element (µFE) analyses of the HRpQCT images were also performed to further understand how the abnormalities seen by HRpQCT might translate into effects on bone strength. Women with PHPT showed, at both sites, decreased volumetric densities at trabecular and cortical compartments, thinner cortices, and more widely spaced and heterogeneously distributed trabeculae. At the radius, trabeculae were thinner and fewer in PHPT. The radius was affected to a greater extent in the trabecular compartment than the tibia. ITS analyses revealed, at both sites, that plate-like trabeculae were depleted, with a resultant reduction in the plate/rod ratio. Microarchitectural abnormalities were evident by decreased plate-rod and plate-plate junctions at the radius and tibia, and rod-rod junctions at the radius. These trabecular and cortical abnormalities resulted in decreased whole bone stiffness and trabecular stiffness. These results provide evidence that in PHPT, microstructural abnormalities are pervasive and not limited to the cortical compartment. They may help to

  5. Spreading Photoparoxysmal EEG Response is Associated with an Abnormal Cortical Excitability Pattern

    ERIC Educational Resources Information Center

    Siniatchkin, Michael; Groppa, Sergey; Jerosch, Bettina; Muhle, Hiltrud; Kurth, Christoph; Shepherd, Alex J.; Siebner, Hartwig; Stephani, Ulrich

    2007-01-01

    Photosensitivity or photoparoxysmal response (PPR) is a highly heritable electroencephalographic trait characterized by an abnormal cortical response to intermittent photic stimulation (IPS). In PPR-positive individuals, IPS induces spikes, spike-waves or intermittent slow waves. The PPR may be restricted to posterior visual areas (i.e. local PPR…

  6. Anterior Cortical Development During Adolescence in Bipolar Disorder.

    PubMed

    Najt, Pablo; Wang, Fei; Spencer, Linda; Johnston, Jennifer A Y; Cox Lippard, Elizabeth T; Pittman, Brian P; Lacadie, Cheryl; Staib, Lawrence H; Papademetris, Xenophon; Blumberg, Hilary P

    2016-02-15

    Increasing evidence supports a neurodevelopmental model for bipolar disorder (BD), with adolescence as a critical period in its development. Developmental abnormalities of anterior paralimbic and heteromodal frontal cortices, key structures in emotional regulation processes and central in BD, are implicated. However, few longitudinal studies have been conducted, limiting understanding of trajectory alterations in BD. In this study, we performed longitudinal neuroimaging of adolescents with and without BD and assessed volume changes over time, including changes in tissue overall and within gray and white matter. Larger decreases over time in anterior cortical volumes in the adolescents with BD were hypothesized. Gray matter decreases and white matter increases are typically observed during adolescence in anterior cortices. It was hypothesized that volume decreases over time in BD would reflect alterations in those processes, showing larger gray matter contraction and decreased white matter expansion. Two high-resolution magnetic resonance imaging scans were obtained approximately 2 years apart for 35 adolescents with bipolar I disorder (BDI) and 37 healthy adolescents. Differences over time between groups were investigated for volume overall and specifically for gray and white matter. Relative to healthy adolescents, adolescents with BDI showed greater volume contraction over time in a region including insula and orbitofrontal, rostral, and dorsolateral prefrontal cortices (p < .05, corrected), including greater gray matter contraction and decreased white matter expansion over time, in the BD compared with the healthy group. The findings support neurodevelopmental abnormalities during adolescence in BDI in anterior cortices, including altered developmental trajectories of anterior gray and white matter. Published by Elsevier Inc.

  7. Anterior Cortical Development During Adolescence in Bipolar Disorder

    PubMed Central

    Najt, Pablo; Wang, Fei; Spencer, Linda; Johnston, Jennifer A.Y.; Cox Lippard, Elizabeth T.; Pittman, Brian P.; Lacadie, Cheryl; Staib, Lawrence H.; Papademetris, Xenophon; Blumberg, Hilary P.

    2015-01-01

    Background Increasing evidence supports a neurodevelopmental model for bipolar disorder (BD), with adolescence as a critical period in its development. Developmental abnormalities of anterior paralimbic and heteromodal frontal cortices, key structures in emotional regulation processes and central in BD, are implicated. However, few longitudinal studies have been conducted, limiting understanding of trajectory alterations in BD. In this study, we performed longitudinal neuroimaging of adolescents with and without BD and assessed volume changes over time, including changes in tissue overall and within gray and white matter. Larger decreases over time in anterior cortical volumes in the adolescents with BD were hypothesized. Gray matter decreases and white matter increases are typically observed during adolescence in anterior cortices. It was hypothesized that volume decreases over time in BD would reflect alterations in those processes, showing larger gray matter contraction and decreased white matter expansion. Methods Two high-resolution magnetic resonance imaging scans were obtained approximately two-years apart for 35 adolescents with BDI and 37 healthy adolescents. Differences over time between groups were investigated for volume overall and specifically for gray and white matter. Results Relative to healthy adolescents, adolescents with BDI showed greater volume contraction over time in a region including insula, and orbitofrontal, rostral and dorsolateral prefrontal cortices (P<.05, corrected), including greater gray matter contraction and decreased white matter expansion over time, in the BD compared to the healthy group. Conclusions: The findings support neurodevelopmental abnormalities during adolescence in BDI in anterior cortices, include altered developmental trajectories of anterior gray and white matter. PMID:26033826

  8. A mechanical model predicts morphological abnormalities in the developing human brain

    NASA Astrophysics Data System (ADS)

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-07-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism.

  9. Malformations of cortical development and epilepsy: evaluation of 101 cases (part II).

    PubMed

    Güngör, Serdal; Yalnizoğlu, Dilek; Turanli, Güzide; Saatçi, Işil; Erdoğan-Bakar, Emel; Topçu, Meral

    2007-01-01

    Malformations of cortical development (MCD) form a spectrum of lesions produced by insult to the developing neocortex. Clinical presentation and electrophysiologic findings of MCD are variable and depend on the affected cortical area. We evaluated epilepsy, EEG, and response to antiepileptic treatment in patients with MCD with respect to the neuroimaging findings. We studied 101 patients, ranging between 1 month and 19 years of age. Fifty-four patients were diagnosed with polymicrogyria (PMG), 23 patients with lissencephaly, 12 patients with schizencephaly, and 12 patients with heterotopia. With regards to epilepsy and seizure type, 72/101 (71.3%) patients had epilepsy, and 62/101 (61.4%) patients presented with seizures. Overall, 32.7% of patients had generalized seizures, and 25.7% had complex partial seizures. Mean age at the onset of seizures was 2.7 +/- 3.4 years. The onset of epilepsy tended to be younger in patients with lissencephaly and older in patients with heterotopias. Of the cases, 79.2% had abnormal EEG (56.3% with epileptiform abnormality, 22.9% with non-epileptiform abnormality). EEG was abnormal in 44.9% (13/29) of the cases without epilepsy. EEG showed bilateral synchronous and diffuse epileptiform discharges in 90% of patients with lissencephaly. Patients with schizencephaly had mostly focal epileptiform discharges. Heterotopia cases had a high rate of EEG abnormalities (72.7%). Patients with PMG had epileptiform abnormality in 59.5% of the cases. Patients with heterotopias and PMG achieved better seizure control in comparison with the other groups. In conclusion, epilepsy is the most common problem in MCD. Epilepsy and EEG findings of patients with MCD are variable and seem to be correlated with the extent of cortical involvement.

  10. Cortical Abnormalities Associated With Pediatric and Adult Obsessive-Compulsive Disorder: Findings From the ENIGMA Obsessive-Compulsive Disorder Working Group.

    PubMed

    Boedhoe, Premika S W; Schmaal, Lianne; Abe, Yoshinari; Alonso, Pino; Ameis, Stephanie H; Anticevic, Alan; Arnold, Paul D; Batistuzzo, Marcelo C; Benedetti, Francesco; Beucke, Jan C; Bollettini, Irene; Bose, Anushree; Brem, Silvia; Calvo, Anna; Calvo, Rosa; Cheng, Yuqi; Cho, Kang Ik K; Ciullo, Valentina; Dallaspezia, Sara; Denys, Damiaan; Feusner, Jamie D; Fitzgerald, Kate D; Fouche, Jean-Paul; Fridgeirsson, Egill A; Gruner, Patricia; Hanna, Gregory L; Hibar, Derrek P; Hoexter, Marcelo Q; Hu, Hao; Huyser, Chaim; Jahanshad, Neda; James, Anthony; Kathmann, Norbert; Kaufmann, Christian; Koch, Kathrin; Kwon, Jun Soo; Lazaro, Luisa; Lochner, Christine; Marsh, Rachel; Martínez-Zalacaín, Ignacio; Mataix-Cols, David; Menchón, José M; Minuzzi, Luciano; Morer, Astrid; Nakamae, Takashi; Nakao, Tomohiro; Narayanaswamy, Janardhanan C; Nishida, Seiji; Nurmi, Erika; O'Neill, Joseph; Piacentini, John; Piras, Fabrizio; Piras, Federica; Reddy, Y C Janardhan; Reess, Tim J; Sakai, Yuki; Sato, Joao R; Simpson, H Blair; Soreni, Noam; Soriano-Mas, Carles; Spalletta, Gianfranco; Stevens, Michael C; Szeszko, Philip R; Tolin, David F; van Wingen, Guido A; Venkatasubramanian, Ganesan; Walitza, Susanne; Wang, Zhen; Yun, Je-Yeon; Thompson, Paul M; Stein, Dan J; van den Heuvel, Odile A

    2018-05-01

    Brain imaging studies of structural abnormalities in OCD have yielded inconsistent results, partly because of limited statistical power, clinical heterogeneity, and methodological differences. The authors conducted meta- and mega-analyses comprising the largest study of cortical morphometry in OCD ever undertaken. T 1 -weighted MRI scans of 1,905 OCD patients and 1,760 healthy controls from 27 sites worldwide were processed locally using FreeSurfer to assess cortical thickness and surface area. Effect sizes for differences between patients and controls, and associations with clinical characteristics, were calculated using linear regression models controlling for age, sex, site, and intracranial volume. In adult OCD patients versus controls, we found a significantly lower surface area for the transverse temporal cortex and a thinner inferior parietal cortex. Medicated adult OCD patients also showed thinner cortices throughout the brain. In pediatric OCD patients compared with controls, we found significantly thinner inferior and superior parietal cortices, but none of the regions analyzed showed significant differences in surface area. However, medicated pediatric OCD patients had lower surface area in frontal regions. Cohen's d effect sizes varied from -0.10 to -0.33. The parietal cortex was consistently implicated in both adults and children with OCD. More widespread cortical thickness abnormalities were found in medicated adult OCD patients, and more pronounced surface area deficits (mainly in frontal regions) were found in medicated pediatric OCD patients. These cortical measures represent distinct morphological features and may be differentially affected during different stages of development and illness, and possibly moderated by disease profile and medication.

  11. Abnormalities of hippocampal-cortical connectivity in temporal lobe epilepsy patients with hippocampal sclerosis

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Wang, Chunheng; Li, Meng; Lv, Bin; Jin, Zhengyu

    2011-03-01

    Hippocampal sclerosis (HS) is the most common damage seen in the patients with temporal lobe epilepsy (TLE). In the present study, the hippocampal-cortical connectivity was defined as the correlation between the hippocampal volume and cortical thickness at each vertex throughout the whole brain. We aimed to investigate the differences of ipsilateral hippocampal-cortical connectivity between the unilateral TLE-HS patients and the normal controls. In our study, the bilateral hippocampal volumes were first measured in each subject, and we found that the ipsilateral hippocampal volume significantly decreased in the left TLE-HS patients. Then, group analysis showed significant thinner average cortical thickness of the whole brain in the left TLE-HS patients compared with the normal controls. We found significantly increased ipsilateral hippocampal-cortical connectivity in the bilateral superior temporal gyrus, the right cingulate gyrus and the left parahippocampal gyrus of the left TLE-HS patients, which indicated structural vulnerability related to the hippocampus atrophy in the patient group. However, for the right TLE-HS patients, no significant differences were found between the patients and the normal controls, regardless of the ipsilateral hippocampal volume, the average cortical thickness or the patterns of hippocampal-cortical connectivity, which might be related to less atrophies observed in the MRI scans. Our study provided more evidence for the structural abnormalities in the unilateral TLE-HS patients.

  12. An autopsy case of cortical superficial siderosis with persistent abnormal behavior.

    PubMed

    Torii, Youta; Iritani, Shuji; Fujishiro, Hiroshige; Sekiguchi, Hirotaka; Habuchi, Chikako; Umeda, Kentaro; Matsunaga, Shinji; Mimuro, Maya; Ozaki, Norio; Yoshida, Mari; Fujita, Kiyoshi

    2016-12-01

    In recent years, MRI has revealed cortical superficial siderosis (cSS), which exhibits hemosiderin deposition in only the cortical surface. However, the associations between the histological findings and clinical symptoms of cSS remain unclear. We herein report an autopsy case of a 75-year-old Japanese man with cSS with persistent abnormal behavior according to cognitive impairment, hallucination and delusion. At 73 years of age, the patient presented with unusual behavior that indicated auditory hallucination and delusion. One year later, he was admitted to the hospital for malignant lymphoma. On admission, cognitive impairment was detected by a screening test. Soon after hospitalization, he presented with active delirium including visual hallucination and delusion. The patient's excited behavior was improved by the administration of a major tranquilizer. However, the abnormal behavior and cognitive impairment persisted. At 75 years of age, he died of heart failure. A neuropathological investigation revealed hemosiderin depositions in the superficial layer of the cortex in the medial and lateral frontal lobe, the lateral temporal lobe, the parietal lobe, and the medial and lateral occipital lobe. Neuritic plaques and diffuse plaques were extensively observed, which corresponded to Braak stage C and CERAD B, although NFTs were observed that corresponded to Braak stage II. Cortical amyloid angiopathy was not observed in any regions. Ischemic change of brain was also mild. Our report suggests that localized deposition of hemosiderin in the cortex might affect the manifestation of cognitive impairments and hallucination. Further clinicopathological studies are needed to clarify the clinical manifestations of patients with cSS. © 2016 Japanese Society of Neuropathology.

  13. Differential microstructural and morphological abnormalities in mild cognitive impairment and Alzheimer's disease: Evidence from cortical and deep gray matter.

    PubMed

    Gong, Nan-Jie; Chan, Chun-Chung; Leung, Lam-Ming; Wong, Chun-Sing; Dibb, Russell; Liu, Chunlei

    2017-05-01

    One aim of this study is to use non-Gaussian diffusion kurtosis imaging (DKI) for capturing microstructural abnormalities in gray matter of Alzheimer's disease (AD). The other aim is to compare DKI metrics against thickness of cortical gray matter and volume of deep gray matter, respectively. A cohort of 18 patients with AD, 18 patients with amnestic mild cognitive impairment (MCI), and 18 normal controls underwent morphological and DKI MR imaging. Images were investigated using regions-of-interest-based analyses for deep gray matter and vertex-wise analyses for cortical gray matter. In deep gray matter, more regions showed DKI parametric abnormalities than atrophies at the early MCI stage. Mean kurtosis (MK) exhibited the largest number of significant abnormalities among all DKI metrics. At the later AD stage, diffusional abnormalities were observed in fewer regions than atrophies. In cortical gray matter, abnormalities in thickness were mainly in the medial and lateral temporal lobes, which fit the locations of known early pathological changes. Microstructural abnormalities were predominantly in the parietal and even frontal lobes, which fit the locations of known late pathological changes. In conclusion, MK can complement conventional diffusion metrics for detecting microstructural changes, especially in deep gray matter. This study also provides evidence supporting the notion that microstructural changes predate morphological changes. Hum Brain Mapp 38:2495-2508, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Cortical and subcortical abnormalities in youths with conduct disorder and elevated callous-unemotional traits.

    PubMed

    Wallace, Gregory L; White, Stuart F; Robustelli, Briana; Sinclair, Stephen; Hwang, Soonjo; Martin, Alex; Blair, R James R

    2014-04-01

    Although there is growing evidence of brain abnormalities among individuals with conduct disorder (CD), the structural neuroimaging literature is mixed and frequently aggregates cortical volume rather than differentiating cortical thickness from surface area. The current study assesses CD-related differences in cortical thickness, surface area, and gyrification as well as volume differences in subcortical structures critical to neurodevelopmental models of CD (amygdala; striatum) in a carefully characterized sample. We also examined whether group structural differences were related to severity of callous-unemotional (CU) traits in the CD sample. Participants were 49 community adolescents aged 10 to 18 years, 22 with CD and 27 healthy comparison youth. Structural MRI was collected and the FreeSurfer image analysis suite was used to provide measures of cortical thickness, surface area, and local gyrification as well as subcortical (amygdala and striatum) volumes. Youths with CD showed reduced cortical thickness in the superior temporal cortex. There were also indications of reduced gyrification in the ventromedial frontal cortex, particularly for youths with CD without comorbid attention-deficit/hyperactivity disorder. There were no group differences in cortical surface area. However, youths with CD also showed reduced amygdala and striatum (putamen and pallidum) volumes. Right temporal cortical thickness was significantly inversely related to severity of CU traits. Youths with CD show reduced cortical thickness within superior temporal regions, some indication of reduced gyrification within ventromedial frontal cortex and reduced amygdala and striatum (putamen and pallidum) volumes. These results are discussed with reference to neurobiological models of CD. Published by Elsevier Inc.

  15. Functional abnormalities in the cortical processing of sound complexity and musical consonance in schizophrenia: evidence from an evoked potential study

    PubMed Central

    2013-01-01

    Background Previous studies have demonstrated functional and structural temporal lobe abnormalities located close to the auditory cortical regions in schizophrenia. The goal of this study was to determine whether functional abnormalities exist in the cortical processing of musical sound in schizophrenia. Methods Twelve schizophrenic patients and twelve age- and sex-matched healthy controls were recruited, and participants listened to a random sequence of two kinds of sonic entities, intervals (tritones and perfect fifths) and chords (atonal chords, diminished chords, and major triads), of varying degrees of complexity and consonance. The perception of musical sound was investigated by the auditory evoked potentials technique. Results Our results showed that schizophrenic patients exhibited significant reductions in the amplitudes of the N1 and P2 components elicited by musical stimuli, to which consonant sounds contributed more significantly than dissonant sounds. Schizophrenic patients could not perceive the dissimilarity between interval and chord stimuli based on the evoked potentials responses as compared with the healthy controls. Conclusion This study provided electrophysiological evidence of functional abnormalities in the cortical processing of sound complexity and music consonance in schizophrenia. The preliminary findings warrant further investigations for the underlying mechanisms. PMID:23721126

  16. Abnormalities in Structural Covariance of Cortical Gyrification in Parkinson's Disease.

    PubMed

    Xu, Jinping; Zhang, Jiuquan; Zhang, Jinlei; Wang, Yue; Zhang, Yanling; Wang, Jian; Li, Guanglin; Hu, Qingmao; Zhang, Yuanchao

    2017-01-01

    Although abnormal cortical morphology and connectivity between brain regions (structural covariance) have been reported in Parkinson's disease (PD), the topological organizations of large-scale structural brain networks are still poorly understood. In this study, we investigated large-scale structural brain networks in a sample of 37 PD patients and 34 healthy controls (HC) by assessing the structural covariance of cortical gyrification with local gyrification index (lGI). We demonstrated prominent small-world properties of the structural brain networks for both groups. Compared with the HC group, PD patients showed significantly increased integrated characteristic path length and integrated clustering coefficient, as well as decreased integrated global efficiency in structural brain networks. Distinct distributions of hub regions were identified between the two groups, showing more hub regions in the frontal cortex in PD patients. Moreover, the modular analyses revealed significantly decreased integrated regional efficiency in lateral Fronto-Insula-Temporal module, and increased integrated regional efficiency in Parieto-Temporal module in the PD group as compared to the HC group. In summary, our study demonstrated altered topological properties of structural networks at a global, regional and modular level in PD patients. These findings suggests that the structural networks of PD patients have a suboptimal topological organization, resulting in less effective integration of information between brain regions.

  17. Lack of Gender Influence on Cortical and Subcortical Gray Matter Development in Childhood-Onset Schizophrenia

    PubMed Central

    Weisinger, Brian; Greenstein, Deanna; Mattai, Anand; Clasen, Liv; Lalonde, Francois; Feldman, Sara; Miller, Rachel; Tossell, Julia W.; Vyas, Nora S.; Stidd, Reva; David, Christopher; Gogtay, Nitin

    2013-01-01

    Background: Progressive cortical gray matter (GM) abnormalities are an established feature of schizophrenia and are more pronounced in rare, severe, and treatment refractory childhood-onset schizophrenia (COS) cases. The effect of sex on brain development in schizophrenia is poorly understood and studies to date have produced inconsistent results. >Methods: Using the largest to date longitudinal sample of COS cases (n = 104, scans = 249, Male/Female [M/F] = 57/47), we compared COS sex differences with sex differences in a sample of matched typically developing children (n = 104, scans = 244, M/F = 57/47), to determine whether or not sex had differential effects on cortical and subcortical brain development in COS. Results: Our results showed no significant differential sex effects in COS for either GM cortical thickness or subcortical volume development (sex × diagnosis × age interaction; false discovery rate q = 0.05). Conclusion: Sex appears to play a similar role in cortical and subcortical GM development in COS as it does in normally developing children. PMID:21613381

  18. Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age.

    PubMed

    Li, Gang; Wang, Li; Shi, Feng; Lyall, Amanda E; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2014-03-19

    Human cortical folding is believed to correlate with cognitive functions. This likely correlation may have something to do with why abnormalities of cortical folding have been found in many neurodevelopmental disorders. However, little is known about how cortical gyrification, the cortical folding process, develops in the first 2 years of life, a period of dynamic and regionally heterogeneous cortex growth. In this article, we show how we developed a novel infant-specific method for mapping longitudinal development of local cortical gyrification in infants. By using this method, via 219 longitudinal 3T magnetic resonance imaging scans from 73 healthy infants, we systemically and quantitatively characterized for the first time the longitudinal cortical global gyrification index (GI) and local GI (LGI) development in the first 2 years of life. We found that the cortical GI had age-related and marked development, with 16.1% increase in the first year and 6.6% increase in the second year. We also found marked and regionally heterogeneous cortical LGI development in the first 2 years of life, with the high-growth regions located in the association cortex, whereas the low-growth regions located in sensorimotor, auditory, and visual cortices. Meanwhile, we also showed that LGI growth in most cortical regions was positively correlated with the brain volume growth, which is particularly significant in the prefrontal cortex in the first year. In addition, we observed gender differences in both cortical GIs and LGIs in the first 2 years, with the males having larger GIs than females at 2 years of age. This study provides valuable information on normal cortical folding development in infancy and early childhood.

  19. Cortical venous disease severity in MELAS syndrome correlates with brain lesion development.

    PubMed

    Whitehead, M T; Wien, M; Lee, B; Bass, N; Gropman, A

    2017-08-01

    MELAS syndrome is a mitochondrial disorder typified by recurrent stroke-like episodes, seizures, and progressive brain injury. Abnormal mitochondria have been found in arterial walls implicating a vasculogenic etiology. We have observed abnormal cortical vein T2/FLAIR signal in MELAS patients, potentially representing wall thickening and sluggish flow. We sought to examine the relationship of hyperintense veins and brain lesions in MELAS. Imaging databases at two children's hospitals were searched for brain MRIs from MELAS patients. Artifact, sedated exams, and lack of 2D-T2/FLAIR sequences were exclusion criteria. Each exam was assigned a venous score based on number of T2/FLAIR hyperintense veins: 1 = <10, 2 = 10 to 20, 3 = >20. Cumulative brain lesions and venous score in MELAS and aged-matched normal exams were compared by Mann-Whitney test. A total of 106 exams from 14 unique MELAS patients (mean 16 ± 3 years) and 30 exams from normal aged-matched patients (mean 15 ± 3 years) were evaluated. Median venous score between MELAS and control patients significantly differed (3 versus 1; p < 0.001). In the MELAS group, venous score correlated with presence (median = 3) or absence (median = 1) of cumulative brain lesions. In all 8 MELAS patients who developed lesions, venous hyperintensity was present prior to, during, and after lesion onset. Venous score did not correlate with brain lesion acuity. Abnormal venous signal correlates with cumulative brain lesion severity in MELAS syndrome. Cortical venous stenosis, congestion, and venous ischemia may be mechanisms of brain injury. Identification of cortical venous pathology may aid in diagnosis and could be predictive of lesion development.

  20. Primary cortical folding in the human newborn: an early marker of later functional development.

    PubMed

    Dubois, J; Benders, M; Borradori-Tolsa, C; Cachia, A; Lazeyras, F; Ha-Vinh Leuchter, R; Sizonenko, S V; Warfield, S K; Mangin, J F; Hüppi, P S

    2008-08-01

    In the human brain, the morphology of cortical gyri and sulci is complex and variable among individuals, and it may reflect pathological functioning with specific abnormalities observed in certain developmental and neuropsychiatric disorders. Since cortical folding occurs early during brain development, these structural abnormalities might be present long before the appearance of functional symptoms. So far, the precise mechanisms responsible for such alteration in the convolution pattern during intra-uterine or post-natal development are still poorly understood. Here we compared anatomical and functional brain development in vivo among 45 premature newborns who experienced different intra-uterine environments: 22 normal singletons, 12 twins and 11 newborns with intrauterine growth restriction (IUGR). Using magnetic resonance imaging (MRI) and dedicated post-processing tools, we investigated early disturbances in cortical formation at birth, over the developmental period critical for the emergence of convolutions (26-36 weeks of gestational age), and defined early 'endophenotypes' of sulcal development. We demonstrated that twins have a delayed but harmonious maturation, with reduced surface and sulcation index compared to singletons, whereas the gyrification of IUGR newborns is discordant to the normal developmental trajectory, with a more pronounced reduction of surface in relation to the sulcation index compared to normal newborns. Furthermore, we showed that these structural measurements of the brain at birth are predictors of infants' outcome at term equivalent age, for MRI-based cerebral volumes and neurobehavioural development evaluated with the assessment of preterm infant's behaviour (APIB).

  1. Cortical thickness as a contributor to abnormal oscillations in schizophrenia?

    PubMed

    Edgar, J Christopher; Chen, Yu-Han; Lanza, Matthew; Howell, Breannan; Chow, Vivian Y; Heiken, Kory; Liu, Song; Wootton, Cassandra; Hunter, Michael A; Huang, Mingxiong; Miller, Gregory A; Cañive, José M

    2014-01-01

    Although brain rhythms depend on brain structure (e.g., gray and white matter), to our knowledge associations between brain oscillations and structure have not been investigated in healthy controls (HC) or in individuals with schizophrenia (SZ). Observing function-structure relationships, for example establishing an association between brain oscillations (defined in terms of amplitude or phase) and cortical gray matter, might inform models on the origins of psychosis. Given evidence of functional and structural abnormalities in primary/secondary auditory regions in SZ, the present study examined how superior temporal gyrus (STG) structure relates to auditory STG low-frequency and 40 Hz steady-state activity. Given changes in brain activity as a function of age, age-related associations in STG oscillatory activity were also examined. Thirty-nine individuals with SZ and 29 HC were recruited. 40 Hz amplitude-modulated tones of 1 s duration were presented. MEG and T1-weighted sMRI data were obtained. Using the sources localizing 40 Hz evoked steady-state activity (300 to 950 ms), left and right STG total power and inter-trial coherence were computed. Time-frequency group differences and associations with STG structure and age were also examined. Decreased total power and inter-trial coherence in SZ were observed in the left STG for initial post-stimulus low-frequency activity (~ 50 to 200 ms, ~ 4 to 16 Hz) as well as 40 Hz steady-state activity (~ 400 to 1000 ms). Left STG 40 Hz total power and inter-trial coherence were positively associated with left STG cortical thickness in HC, not in SZ. Left STG post-stimulus low-frequency and 40 Hz total power were positively associated with age, again only in controls. Left STG low-frequency and steady-state gamma abnormalities distinguish SZ and HC. Disease-associated damage to STG gray matter in schizophrenia may disrupt the age-related left STG gamma-band function-structure relationships observed in controls.

  2. Cortical thickness and volume abnormalities in Internet gaming disorder: Evidence from comparison of recreational Internet game users.

    PubMed

    Wang, Ziliang; Wu, Lingdan; Yuan, Kai; Hu, Yanbo; Zheng, Hui; Du, Xiaoxia; Dong, Guangheng

    2018-06-08

    Although online gaming may lead to Internet gaming disorder (IGD), most players are recreational game users (RGUs) who do not develop IGD. Thus far, little is known about brain structural abnormalities in IGD subjects relative to RGUs. The inclusion of RGUs as a control group could minimize the potential effects of gaming experience and gaming-related cue familiarity on the neural mechanism of IGD subjects. In the current study, structural magnetic resonance imaging data were acquired from 38 IGD subjects and 66 RGUs with comparable age, gender, and educational level. Group differences in cortical thickness and volume were analyzed using the FreeSurfer software. Correlations between cortical changes and addiction severity were calculated for both groups. Compared with the RGU group, the IGD group showed significantly decreased cortical thickness in the left lateral orbitofrontal cortex, inferior parietal lobule, bilateral cuneus, precentral gyrus, and right middle temporal gyrus. Moreover, significantly reduced cortical volume was observed in the left superior temporal gyrus and right supramarginal gyrus in the IGD group. Whole-brain correlational analysis indicated different correlations between the two groups. The brain regions that showed group differences were considered to be involved in cognitive control, decision making, and reward/loss processing. These functions may serve as potential mechanisms that explain why IGD individuals experience negative outcomes in frequent game playing. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Abnormal dopaminergic modulation of striato-cortical networks underlies levodopa-induced dyskinesias in humans

    PubMed Central

    Haagensen, Brian N.; Christensen, Mark S.; Madsen, Kristoffer H.; Rowe, James B.; Løkkegaard, Annemette; Siebner, Hartwig R.

    2015-01-01

    Dopaminergic signalling in the striatum contributes to reinforcement of actions and motivational enhancement of motor vigour. Parkinson's disease leads to progressive dopaminergic denervation of the striatum, impairing the function of cortico-basal ganglia networks. While levodopa therapy alleviates basal ganglia dysfunction in Parkinson's disease, it often elicits involuntary movements, referred to as levodopa-induced peak-of-dose dyskinesias. Here, we used a novel pharmacodynamic neuroimaging approach to identify the changes in cortico-basal ganglia connectivity that herald the emergence of levodopa-induced dyskinesias. Twenty-six patients with Parkinson's disease (age range: 51–84 years; 11 females) received a single dose of levodopa and then performed a task in which they had to produce or suppress a movement in response to visual cues. Task-related activity was continuously mapped with functional magnetic resonance imaging. Dynamic causal modelling was applied to assess levodopa-induced modulation of effective connectivity between the pre-supplementary motor area, primary motor cortex and putamen when patients suppressed a motor response. Bayesian model selection revealed that patients who later developed levodopa-induced dyskinesias, but not patients without dyskinesias, showed a linear increase in connectivity between the putamen and primary motor cortex after levodopa intake during movement suppression. Individual dyskinesia severity was predicted by levodopa-induced modulation of striato-cortical feedback connections from putamen to the pre-supplementary motor area (Pcorrected = 0.020) and primary motor cortex (Pcorrected = 0.044), but not feed-forward connections from the cortex to the putamen. Our results identify for the first time, aberrant dopaminergic modulation of striatal-cortical connectivity as a neural signature of levodopa-induced dyskinesias in humans. We argue that excessive striato-cortical connectivity in response to levodopa produces an

  4. The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction.

    PubMed

    Makropoulos, Antonios; Robinson, Emma C; Schuh, Andreas; Wright, Robert; Fitzgibbon, Sean; Bozek, Jelena; Counsell, Serena J; Steinweg, Johannes; Vecchiato, Katy; Passerat-Palmbach, Jonathan; Lenz, Gregor; Mortari, Filippo; Tenev, Tencho; Duff, Eugene P; Bastiani, Matteo; Cordero-Grande, Lucilio; Hughes, Emer; Tusor, Nora; Tournier, Jacques-Donald; Hutter, Jana; Price, Anthony N; Teixeira, Rui Pedro A G; Murgasova, Maria; Victor, Suresh; Kelly, Christopher; Rutherford, Mary A; Smith, Stephen M; Edwards, A David; Hajnal, Joseph V; Jenkinson, Mark; Rueckert, Daniel

    2018-06-01

    The Developing Human Connectome Project (dHCP) seeks to create the first 4-dimensional connectome of early life. Understanding this connectome in detail may provide insights into normal as well as abnormal patterns of brain development. Following established best practices adopted by the WU-MINN Human Connectome Project (HCP), and pioneered by FreeSurfer, the project utilises cortical surface-based processing pipelines. In this paper, we propose a fully automated processing pipeline for the structural Magnetic Resonance Imaging (MRI) of the developing neonatal brain. This proposed pipeline consists of a refined framework for cortical and sub-cortical volume segmentation, cortical surface extraction, and cortical surface inflation, which has been specifically designed to address considerable differences between adult and neonatal brains, as imaged using MRI. Using the proposed pipeline our results demonstrate that images collected from 465 subjects ranging from 28 to 45 weeks post-menstrual age (PMA) can be processed fully automatically; generating cortical surface models that are topologically correct, and correspond well with manual evaluations of tissue boundaries in 85% of cases. Results improve on state-of-the-art neonatal tissue segmentation models and significant errors were found in only 2% of cases, where these corresponded to subjects with high motion. Downstream, these surfaces will enhance comparisons of functional and diffusion MRI datasets, supporting the modelling of emerging patterns of brain connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. A New Methodology of Viewing Extra-Axial Fluid and Cortical Abnormalities in Children with Autism via Transcranial Ultrasonography

    PubMed Central

    Bradstreet, James Jeffrey; Pacini, Stefania; Ruggiero, Marco

    2014-01-01

    Background: Autism spectrum disorders (ASDs) are developmental conditions of uncertain etiology which have now affected more than 1% of the school-age population of children in many developed nations. Transcranial ultrasonography (TUS) via the temporal bone appeared to be a potential window of investigation to determine the presence of both cortical abnormalities and increased extra-axial fluid (EAF). Methods: TUS was accomplished using a linear probe (10–5 MHz). Parents volunteered ASD subjects (N = 23; males 18, females 5) for evaluations (mean = 7.46 years ± 3.97 years), and 15 neurotypical siblings were also examined (mean = 7.15 years ± 4.49 years). Childhood Autism Rating Scale (CARS2®) scores were obtained and the ASD score mean was 48.08 + 6.79 (Severe). Results: Comparisons of the extra-axial spaces indicated increases in the ASD subjects. For EAF we scored based on the gyral summit distances between the arachnoid membrane and the cortical pia layer (subarachnoid space): (1) <0.05 cm, (2) 0.05–0.07 cm, (3) 0.08–0.10 cm, (4) >0.10 cm. All of the neurotypical siblings scored 1, whereas the ASD mean score was 3.41 ± 0.67. We also defined cortical dysplasia as the following: hypoechoic lesions within the substance of the cortex, or disturbed layering within the gray matter. For cortical dysplasia we scored: (1) none observed, (2) rare hypoechogenic lesions and/or mildly atypical cortical layering patterns, (3) more common, but separated areas of cortical hypoechogenic lesions, (4) very common or confluent areas of cortical hypoechogenicity. Again all of the neurotypical siblings scored 1, while the ASD subjects’ mean score was 2.79 ± 0.93. Conclusion: TUS may be a useful screening technique for children at potential risk of ASDs which, if confirmed with repeated studies and high resolution MRI, provides rapid, non-invasive qualification of EAF, and cortical lesions. PMID:24459462

  6. Cortical brain development in nonpsychotic siblings of patients with childhood-onset schizophrenia.

    PubMed

    Gogtay, Nitin; Greenstein, Deanna; Lenane, Marge; Clasen, Liv; Sharp, Wendy; Gochman, Pete; Butler, Philip; Evans, Alan; Rapoport, Judith

    2007-07-01

    Cortical gray matter (GM) loss is marked and progressive in childhood-onset schizophrenia (COS) during adolescence but becomes more circumscribed by early adulthood. Nonpsychotic siblings of COS probands could help evaluate whether the cortical GM abnormalities are familial/trait markers. To map cortical development in nonpsychotic siblings of COS probands. Using an automated measurement and prospectively acquired anatomical brain magnetic resonance images, we mapped cortical GM thickness in healthy full siblings (n = 52, 113 scans; age 8 through 28 years) of patients with COS, contrasting them with age-, sex-, and scan interval-matched healthy controls (n = 52, 108 scans). The false-discovery rate procedure was used to control for type I errors due to multiple comparisons. An ongoing COS study at the National Institute of Mental Health. Fifty-two healthy full siblings of patients with COS, aged 8 through 28 years, and 52 healthy controls. Longitudinal trajectories of cortical GM development in healthy siblings of patients with COS compared with matched healthy controls and exploratory measure of the relationship between developmental GM trajectories and the overall functioning as defined by the Global Assessment Scale (GAS) score. Younger, healthy siblings of patients with COS showed significant GM deficits in the left prefrontal and bilateral temporal cortices and smaller deficits in the right prefrontal and inferior parietal cortices compared with the controls. These cortical deficits in siblings disappeared by age 20 years and the process of deficit reduction correlated with overall functioning (GAS scores) at the last scan. Prefrontal and temporal GM loss in COS appears to be a familial/trait marker. Amelioration of regional GM deficits in healthy siblings was associated with higher global functioning (GAS scores), suggesting a relationship between brain plasticity and functional outcome for these nonpsychotic, nonspectrum siblings.

  7. Reduced Cortical Activity Impairs Development and Plasticity after Neonatal Hypoxia Ischemia

    PubMed Central

    Ranasinghe, Sumudu; Or, Grace; Wang, Eric Y.; Ievins, Aiva; McLean, Merritt A.; Niell, Cristopher M.; Chau, Vann; Wong, Peter K. H.; Glass, Hannah C.; Sullivan, Joseph

    2015-01-01

    Survivors of preterm birth are at high risk of pervasive cognitive and learning impairments, suggesting disrupted early brain development. The limits of viability for preterm birth encompass the third trimester of pregnancy, a “precritical period” of activity-dependent development characterized by the onset of spontaneous and evoked patterned electrical activity that drives neuronal maturation and formation of cortical circuits. Reduced background activity on electroencephalogram (EEG) is a sensitive marker of brain injury in human preterm infants that predicts poor neurodevelopmental outcome. We studied a rodent model of very early hypoxic–ischemic brain injury to investigate effects of injury on both general background and specific patterns of cortical activity measured with EEG. EEG background activity is depressed transiently after moderate hypoxia–ischemia with associated loss of spindle bursts. Depressed activity, in turn, is associated with delayed expression of glutamate receptor subunits and transporters. Cortical pyramidal neurons show reduced dendrite development and spine formation. Complementing previous observations in this model of impaired visual cortical plasticity, we find reduced somatosensory whisker barrel plasticity. Finally, EEG recordings from human premature newborns with brain injury demonstrate similar depressed background activity and loss of bursts in the spindle frequency band. Together, these findings suggest that abnormal development after early brain injury may result in part from disruption of specific forms of brain activity necessary for activity-dependent circuit development. SIGNIFICANCE STATEMENT Preterm birth and term birth asphyxia result in brain injury from inadequate oxygen delivery and constitute a major and growing worldwide health problem. Poor outcomes are noted in a majority of very premature (<25 weeks gestation) newborns, resulting in death or life-long morbidity with motor, sensory, learning, behavioral

  8. Cortical thickness as a contributor to abnormal oscillations in schizophrenia?☆

    PubMed Central

    Edgar, J. Christopher; Chen, Yu-Han; Lanza, Matthew; Howell, Breannan; Chow, Vivian Y.; Heiken, Kory; Liu, Song; Wootton, Cassandra; Hunter, Michael A.; Huang, Mingxiong; Miller, Gregory A.; Cañive, José M.

    2013-01-01

    Introduction Although brain rhythms depend on brain structure (e.g., gray and white matter), to our knowledge associations between brain oscillations and structure have not been investigated in healthy controls (HC) or in individuals with schizophrenia (SZ). Observing function–structure relationships, for example establishing an association between brain oscillations (defined in terms of amplitude or phase) and cortical gray matter, might inform models on the origins of psychosis. Given evidence of functional and structural abnormalities in primary/secondary auditory regions in SZ, the present study examined how superior temporal gyrus (STG) structure relates to auditory STG low-frequency and 40 Hz steady-state activity. Given changes in brain activity as a function of age, age-related associations in STG oscillatory activity were also examined. Methods Thirty-nine individuals with SZ and 29 HC were recruited. 40 Hz amplitude-modulated tones of 1 s duration were presented. MEG and T1-weighted sMRI data were obtained. Using the sources localizing 40 Hz evoked steady-state activity (300 to 950 ms), left and right STG total power and inter-trial coherence were computed. Time–frequency group differences and associations with STG structure and age were also examined. Results Decreased total power and inter-trial coherence in SZ were observed in the left STG for initial post-stimulus low-frequency activity (~ 50 to 200 ms, ~ 4 to 16 Hz) as well as 40 Hz steady-state activity (~ 400 to 1000 ms). Left STG 40 Hz total power and inter-trial coherence were positively associated with left STG cortical thickness in HC, not in SZ. Left STG post-stimulus low-frequency and 40 Hz total power were positively associated with age, again only in controls. Discussion Left STG low-frequency and steady-state gamma abnormalities distinguish SZ and HC. Disease-associated damage to STG gray matter in schizophrenia may disrupt the age-related left STG gamma-band function

  9. Motor cortical oscillations are abnormally suppressed during repetitive movement in patients with Parkinson's disease.

    PubMed

    Stegemöller, Elizabeth L; Allen, David P; Simuni, Tanya; MacKinnon, Colum D

    2016-01-01

    Impaired repetitive movement in persons with Parkinson's disease (PD) is associated with reduced amplitude, paradoxical hastening and hesitations or arrest at higher movement rates. This study examined the effects of movement rate and medication on movement-related cortical oscillations in persons with PD. Nine participants with PD were studied off and on medication and compared to nine control participants. Participants performed index finger movements cued by tones from 1 to 3 Hz. Movement-related oscillations were derived from electroencephalographic recordings over the region of the contralateral sensorimotor cortex (S1/M1) during rest, listening, or synchronized movement. At rest, spectral power recorded over the region of the contralateral S1/M1 was increased in the alpha band and decreased in the beta band in participants with PD relative to controls. During movement, the level of alpha and beta band power relative to baseline was significantly reduced in the PD group, off and on medication, compared to controls. Reduced movement amplitude and hastening at movement rates near 2 Hz was associated with abnormally suppressed and persistent desynchronization of oscillations in alpha and beta bands. Motor cortical oscillations in the alpha and beta bands are abnormally suppressed in PD, particularly during higher rate movements. These findings contribute to the understanding of mechanisms underlying impaired repetitive movement in PD. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Abnormalities of P300 cortical current density in unmedicated depressed patients revealed by LORETA analysis of event-related potentials.

    PubMed

    Kawasaki, Toshihiko; Tanaka, Shin; Wang, Jijun; Hokama, Hiroto; Hiramatsu, Kenichi

    2004-02-01

    The purpose of the present study was to investigate the neural substrates underlying event-related potential (ERP) abnormalities, with respect to the generators of the ERP components in depressed patients. Using an oddball paradigm, ERP from auditory stimuli were recorded from 22 unmedicated patients with current depressive episodes and compared with those from 22 age- and gender-matched normal controls. Cortical current densities of the N100 and P300 components were analyzed using low-resolution electromagnetic tomography (LORETA). Group differences in cortical current density were mapped on a 3-D cortex model. The results revealed that N100 cortical current densities did not differ between the two groups, while P300 cortical current densities were significantly lower in depressed patients over the bilateral temporal lobes, the left frontal region, and the right temporal-parietal area. Furthermore, the cortical area in which the group difference in P300 current density had been identified was remarkably larger over the right than the left hemisphere, thus supporting the hypothesis of right hemisphere dysfunction in depression.

  11. Sensorimotor integration: basic concepts, abnormalities related to movement disorders and sensorimotor training-induced cortical reorganization.

    PubMed

    Machado, Sergio; Cunha, Marlo; Velasques, Bruna; Minc, Daniel; Teixeira, Silmar; Domingues, Clayton A; Silva, Julio G; Bastos, Victor H; Budde, Henning; Cagy, Mauricio; Basile, Luis; Piedade, Roberto; Ribeiro, Pedro

    2010-10-01

    Sensorimotor integration is defined as the capability of the central nervous system to integrate different sources of stimuli, and parallelly, to transform such inputs in motor actions. To review the basic principles of sensorimotor integration, such as, its neural bases and its elementary mechanisms involved in specific goal-directed tasks performed by healthy subjects, and the abnormalities reported in the most common movement disorders, such as, Parkinson' disease, dystonia and stroke, like the cortical reorganization-related mechanisms. Whether these disorders are associated with an abnormal peripheral sensory input or defective central processing is still unclear, but most of the data support a central mechanism. We found that the sensorimotor integration process plays a potential role in elementary mechanisms involved in specific goal-directed tasks performed by healthy subjects and in occurrence of abnormalities in most common movement disorders and, moreover, play a potential role on the acquisition of abilities that have as critical factor the coupling of different sensory data which will constitute the basis of elaboration of motor outputs consciously goal-directed.

  12. Cortical morphology development in patients with 22q11.2 deletion syndrome at ultra-high risk of psychosis.

    PubMed

    Padula, Maria Carmela; Schaer, Marie; Armando, Marco; Sandini, Corrado; Zöller, Daniela; Scariati, Elisa; Schneider, Maude; Eliez, Stephan

    2018-01-17

    Patients with 22q11.2 deletion syndrome (22q11DS) present a high risk of developing psychosis. While clinical and cognitive predictors for the conversion towards a full-blown psychotic disorder are well defined and largely used in practice, neural biomarkers do not yet exist. However, a number of investigations indicated an association between abnormalities in cortical morphology and higher symptoms severities in patients with 22q11DS. Nevertheless, few studies included homogeneous groups of patients differing in their psychotic symptoms profile. In this study, we included 22 patients meeting the criteria for an ultra-high-risk (UHR) psychotic state and 22 age-, gender- and IQ-matched non-UHR patients. Measures of cortical morphology, including cortical thickness, volume, surface area and gyrification, were compared between the two groups using mass-univariate and multivariate comparisons. Furthermore, the development of these measures was tested in the two groups using a mixed-model approach. Our results showed differences in cortical volume and surface area in UHR patients compared with non-UHR. In particular, we found a positive association between surface area and the rate of change of global functioning, suggesting that higher surface area is predictive of improved functioning with age. We also observed accelerated cortical thinning during adolescence in UHR patients with 22q11DS. These results, although preliminary, suggest that alterations in cortical volume and surface area as well as altered development of cortical thickness may be associated to a greater probability to develop psychosis in 22q11DS.

  13. Abnormal cortical sources of resting state electroencephalographic rhythms in single treatment-naïve HIV individuals: A statistical z-score index.

    PubMed

    Babiloni, Claudio; Pennica, Alfredo; Del Percio, Claudio; Noce, Giuseppe; Cordone, Susanna; Muratori, Chiara; Ferracuti, Stefano; Donato, Nicole; Di Campli, Francesco; Gianserra, Laura; Teti, Elisabetta; Aceti, Antonio; Soricelli, Andrea; Viscione, Magdalena; Limatola, Cristina; Andreoni, Massimo; Onorati, Paolo

    2016-03-01

    This study tested a simple statistical procedure to recognize single treatment-naïve HIV individuals having abnormal cortical sources of resting state delta (<4 Hz) and alpha (8-13 Hz) electroencephalographic (EEG) rhythms with reference to a control group of sex-, age-, and education-matched healthy individuals. Compared to the HIV individuals with a statistically normal EEG marker, those with abnormal values were expected to show worse cognitive status. Resting state eyes-closed EEG data were recorded in 82 treatment-naïve HIV (39.8 ys.±1.2 standard error mean, SE) and 59 age-matched cognitively healthy subjects (39 ys.±2.2 SE). Low-resolution brain electromagnetic tomography (LORETA) estimated delta and alpha sources in frontal, central, temporal, parietal, and occipital cortical regions. Ratio of the activity of parietal delta and high-frequency alpha sources (EEG marker) showed the maximum difference between the healthy and the treatment-naïve HIV group. Z-score of the EEG marker was statistically abnormal in 47.6% of treatment-naïve HIV individuals with reference to the healthy group (p<0.05). Compared to the HIV individuals with a statistically normal EEG marker, those with abnormal values exhibited lower mini mental state evaluation (MMSE) score, higher CD4 count, and lower viral load (p<0.05). This statistical procedure permitted for the first time to identify single treatment-naïve HIV individuals having abnormal EEG activity. This procedure might enrich the detection and monitoring of effects of HIV on brain function in single treatment-naïve HIV individuals. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Cortical thickness and surface area in neonates at high risk for schizophrenia.

    PubMed

    Li, Gang; Wang, Li; Shi, Feng; Lyall, Amanda E; Ahn, Mihye; Peng, Ziwen; Zhu, Hongtu; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2016-01-01

    smaller cortical surface area in the right pars triangularis (before FDR correction), compared with control neonates. This preliminary study provides the first evidence that early development of cortical thickness and surface area might be abnormal in the neonates at genetic risk for schizophrenia.

  15. The development of cortical connections.

    PubMed

    Price, David J; Kennedy, Henry; Dehay, Colette; Zhou, Libing; Mercier, Marjorie; Jossin, Yves; Goffinet, André M; Tissir, Fadel; Blakey, Daniel; Molnár, Zoltán

    2006-02-01

    The cortex receives its major sensory input from the thalamus via thalamocortical axons, and cortical neurons are interconnected in complex networks by corticocortical and callosal axons. Our understanding of the mechanisms generating the circuitry that confers functional properties on cortical neurons and networks, although poor, has been advanced significantly by recent research on the molecular mechanisms of thalamocortical axonal guidance and ordering. Here we review recent advances in knowledge of how thalamocortical axons are guided and how they maintain order during that process. Several studies have shown the importance in this process of guidance molecules including Eph receptors and ephrins, members of the Wnt signalling pathway and members of a novel planar cell polarity pathway. Signalling molecules and transcription factors expressed with graded concentrations across the cortex are important in establishing cortical maps of the topography of sensory surfaces. Neural activity, both spontaneous and evoked, plays a role in refining thalamocortical connections but recent work has indicated that neural activity is less important than was previously thought for the development of some early maps. A strategy used widely in the development of corticocortical and callosal connections is the early overproduction of projections followed by selection after contact with the target structure. Here we discuss recent work in primates indicating that elimination of juvenile projections is not a major mechanism in the development of pathways feeding information forward to higher levels of cortical processing, although its use is common to developing feedback pathways.

  16. A fuzzy system for helping medical diagnosis of malformations of cortical development.

    PubMed

    Alayón, Silvia; Robertson, Richard; Warfield, Simon K; Ruiz-Alzola, Juan

    2007-06-01

    Malformations of the cerebral cortex are recognized as a common cause of developmental delay, neurological deficits, mental retardation and epilepsy. Currently, the diagnosis of cerebral cortical malformations is based on a subjective interpretation of neuroimaging characteristics of the cerebral gray matter and underlying white matter. There is no automated system for aiding the observer in making the diagnosis of a cortical malformation. In this paper a fuzzy rule-based system is proposed as a solution for this problem. The system collects the available expert knowledge about cortical malformations and assists the medical observer in arriving at a correct diagnosis. Moreover, the system allows the study of the influence of the various factors that take part in the decision. The evaluation of the system has been carried out by comparing the automated diagnostic algorithm with known case examples of various malformations due to abnormal cortical organization. An exhaustive evaluation of the system by comparison with published cases and a ROC analysis is presented in the paper.

  17. A Fuzzy System for Helping Medical Diagnosis of Malformations of Cortical Development

    PubMed Central

    Alayón, Silvia; Robertson, Richard; Warfield, Simon K.; Ruiz-Alzola, Juan

    2007-01-01

    Malformations of the cerebral cortex are recognized as a common cause of developmental delay, neurological deficits, mental retardation and epilepsy. Currently, the diagnosis of cerebral cortical malformations is based on a subjective interpretation of neuroimaging characteristics of the cerebral gray matter and underlying white matter. There is no automated system for aiding the observer in making the diagnosis of a cortical malformation. In this paper a fuzzy rule-based system is proposed as a solution for this problem. The system collects the available expert knowledge about cortical malformations and assists the medical observer in arriving at a correct diagnosis. Moreover, the system allows the study of the influence of the various factors that take part in the decision. The evaluation of the system has been carried out by comparing the automated diagnostic algorithm with known case examples of various malformations due to abnormal cortical organization. An exhaustive evaluation of the system by comparison with published cases and a ROC analysis is presented in the paper. PMID:17197247

  18. Cortical mechanics and myosin-II abnormalities associated with post-ovulatory aging: implications for functional defects in aged eggs

    PubMed Central

    Mackenzie, Amelia C.L.; Kyle, Diane D.; McGinnis, Lauren A.; Lee, Hyo J.; Aldana, Nathalia; Robinson, Douglas N.; Evans, Janice P.

    2016-01-01

    STUDY HYPOTHESIS Cellular aging of the egg following ovulation, also known as post-ovulatory aging, is associated with aberrant cortical mechanics and actomyosin cytoskeleton functions. STUDY FINDING Post-ovulatory aging is associated with dysfunction of non-muscle myosin-II, and pharmacologically induced myosin-II dysfunction produces some of the same deficiencies observed in aged eggs. WHAT IS KNOWN ALREADY Reproductive success is reduced with delayed fertilization and when copulation or insemination occurs at increased times after ovulation. Post-ovulatory aged eggs have several abnormalities in the plasma membrane and cortex, including reduced egg membrane receptivity to sperm, aberrant sperm-induced cortical remodeling and formation of fertilization cones at the site of sperm entry, and reduced ability to establish a membrane block to prevent polyspermic fertilization. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Ovulated mouse eggs were collected at 21–22 h post-human chorionic gonadotrophin (hCG) (aged eggs) or at 13–14 h post-hCG (young eggs), or young eggs were treated with the myosin light chain kinase (MLCK) inhibitor ML-7, to test the hypothesis that disruption of myosin-II function could mimic some of the effects of post-ovulatory aging. Eggs were subjected to various analyses. Cytoskeletal proteins in eggs and parthenogenesis were assessed using fluorescence microscopy, with further analysis of cytoskeletal proteins in immunoblotting experiments. Cortical tension was measured through micropipette aspiration assays. Egg membrane receptivity to sperm was assessed in in vitro fertilization (IVF) assays. Membrane topography was examined by low-vacuum scanning electron microscopy (SEM). MAIN RESULTS AND THE ROLE OF CHANCE Aged eggs have decreased levels and abnormal localizations of phosphorylated myosin-II regulatory light chain (pMRLC; P = 0.0062). Cortical tension, which is mediated in part by myosin-II, is reduced in aged mouse eggs when compared with

  19. Cortical Development Requires Mesodermal Expression of Tbx1, a Gene Haploinsufficient in 22q11.2 Deletion Syndrome.

    PubMed

    Flore, Gemma; Cioffi, Sara; Bilio, Marchesa; Illingworth, Elizabeth

    2017-03-01

    In mammals, proper temporal control of neurogenesis and neural migration during embryonic development ensures correct formation of the cerebral cortex. Changes in the distribution of cortical projection neurons and interneurons are associated with behavioral disorders and psychiatric diseases, including schizophrenia and autism, suggesting that disrupted cortical connectivity contributes to the brain pathology. TBX1 is the major candidate gene for 22q11.2 deletion syndrome (22q11.2DS), a chromosomal deletion disorder characterized by a greatly increased risk for schizophrenia. We have previously shown that Tbx1 heterozygous mice have reduced prepulse inhibition, a behavioral abnormality that is associated with 22q11.2DS and nonsyndromic schizophrenia. Here, we show that loss of Tbx1 disrupts corticogenesis in mice by promoting premature neuronal differentiation in the medio-lateral embryonic cortex, which gives rise to the somatosensory cortex (S1). In addition, we found altered polarity in both radially migrating excitatory neurons and tangentially migrating inhibitory interneurons. Together, these abnormalities lead to altered lamination in the S1 at the terminal stages of corticogenesis in Tbx1 null mice and similar anomalies in Tbx1 heterozygous adult mice. Finally, we show that mesoderm-specific inactivation of Tbx1 is sufficient to recapitulate the brain phenotype indicating that Tbx1 exerts a cell nonautonomous role in cortical development from the mesoderm. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants.

    PubMed

    Meng, Yu; Li, Gang; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2014-10-15

    Sulcal pits, the locally deepest points in sulci of the highly convoluted and variable cerebral cortex, are found to be spatially consistent across human adult individuals. It is suggested that sulcal pits are genetically controlled and have close relationships with functional areas. To date, the existing imaging studies of sulcal pits are mainly focused on adult brains, yet little is known about the spatial distribution and temporal development of sulcal pits in the first 2 years of life, which is the most dynamic and critical period of postnatal brain development. Studying sulcal pits during this period would greatly enrich our limited understandings of the origins and developmental trajectories of sulcal pits, and would also provide important insights into many neurodevelopmental disorders associated with abnormal cortical foldings. In this paper, by using surface-based morphometry, for the first time, we systemically investigated the spatial distribution and temporal development of sulcal pits in major cortical sulci from 73 healthy infants, each with three longitudinal 3T MR scans at term birth, 1 year, and 2 years of age. Our results suggest that the spatially consistent distributions of sulcal pits in major sulci across individuals have already existed at term birth and this spatial distribution pattern keeps relatively stable in the first 2 years of life, despite that the cerebral cortex expands dramatically and the sulcal depth increases considerably during this period. Specially, the depth of sulcal pits increases regionally heterogeneously, with more rapid growth in the high-order association cortex, including the prefrontal and temporal cortices, than the sensorimotor cortex in the first 2 years of life. Meanwhile, our results also suggest that there exist hemispheric asymmetries of the spatial distributions of sulcal pits in several cortical regions, such as the central, superior temporal and postcentral sulci, consistently from birth to 2 years of age

  1. Morphological abnormalities in prefrontal surface area and thalamic volume in attention deficit/hyperactivity disorder.

    PubMed

    Batty, Martin J; Palaniyappan, Lena; Scerif, Gaia; Groom, Madeleine J; Liddle, Elizabeth B; Liddle, Peter F; Hollis, Chris

    2015-08-30

    Although previous morphological studies have demonstrated abnormalities in prefrontal cortical thickness in children with attention deficit/hyperactivity disorder (ADHD), studies investigating cortical surface area are lacking. As the development of cortical surface is closely linked to the establishment of thalam-ocortical connections, any abnormalities in the structure of the thalamus are likely to relate to altered cortical surface area. Using a clinically well-defined sample of children with ADHD (n = 25, 1 female) and typically developing controls (n = 24, 1 female), we studied surface area across the cortex to determine whether children with ADHD had reduced thalamic volume that related to prefrontal cortical surface area. Relative to controls, children with ADHD had a significant reduction in thalamic volume and dorsolateral prefrontal cortical area in both hemispheres. Furthermore, children with ADHD with smaller thalamic volumes were found to have greater reductions in surface area, a pattern not evident in the control children. Our results are further evidence of reduced lateral prefrontal cortical area in ADHD. Moreover, for the first time, we have also shown a direct association between thalamic anatomy and frontal anatomy in ADHD, suggesting the pathophysiological process that alters surface area maturation is likely to be linked to the development of the thalamus. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Synchronous Changes of Cortical Thickness and Corresponding White Matter Microstructure During Brain Development Accessed by Diffusion MRI Tractography from Parcellated Cortex

    PubMed Central

    Jeon, Tina; Mishra, Virendra; Ouyang, Minhui; Chen, Min; Huang, Hao

    2015-01-01

    Cortical thickness (CT) changes during normal brain development is associated with complicated cellular and molecular processes including synaptic pruning and apoptosis. In parallel, the microstructural enhancement of developmental white matter (WM) axons with their neuronal bodies in the cerebral cortex has been widely reported with measurements of metrics derived from diffusion tensor imaging (DTI), especially fractional anisotropy (FA). We hypothesized that the changes of CT and microstructural enhancement of corresponding axons are highly interacted during development. DTI and T1-weighted images of 50 healthy children and adolescents between the ages of 7 and 25 years were acquired. With the parcellated cortical gyri transformed from T1-weighted images to DTI space as the tractography seeds, probabilistic tracking was performed to delineate the WM fibers traced from specific parcellated cortical regions. CT was measured at certain cortical regions and FA was measured from the WM fibers traced from same cortical regions. The CT of all frontal cortical gyri, including Brodmann areas 4, 6, 8, 9, 10, 11, 44, 45, 46, and 47, decreased significantly and heterogeneously; concurrently, significant, and heterogeneous increases of FA of WM traced from corresponding regions were found. We further revealed significant correlation between the slopes of the CT decrease and the slopes of corresponding WM FA increase in all frontal cortical gyri, suggesting coherent cortical pruning and corresponding WM microstructural enhancement. Such correlation was not found in cortical regions other than frontal cortex. The molecular and cellular mechanisms of these synchronous changes may be associated with overlapping signaling pathways of axonal guidance, synaptic pruning, neuronal apoptosis, and more prevalent interstitial neurons in the prefrontal cortex. Revealing the coherence of cortical and WM structural changes during development may open a new window for understanding the

  3. Cortical Development and Neuroplasticity in Auditory Neuropathy Spectrum Disorder

    PubMed Central

    Sharma, Anu; Cardon, Garrett

    2015-01-01

    Cortical development is dependent to a large extent on stimulus-driven input. Auditory Neuropathy Spectrum Disorder (ANSD) is a recently described form of hearing impairment where neural dys-synchrony is the predominant characteristic. Children with ANSD provide a unique platform to examine the effects of asynchronous and degraded afferent stimulation on cortical auditory neuroplasticity and behavioral processing of sound. In this review, we describe patterns of auditory cortical maturation in children with ANSD. The disruption of cortical maturation that leads to these various patterns includes high levels of intra-individual cortical variability and deficits in cortical phase synchronization of oscillatory neural responses. These neurodevelopmental changes, which are constrained by sensitive periods for central auditory maturation, are correlated with behavioral outcomes for children with ANSD. Overall, we hypothesize that patterns of cortical development in children with ANSD appear to be markers of the severity of the underlying neural dys-synchrony, providing prognostic indicators of success of clinical intervention with amplification and/or electrical stimulation. PMID:26070426

  4. Assessment of quantitative cortical biomarkers in the developing brain of preterm infants

    NASA Astrophysics Data System (ADS)

    Moeskops, Pim; Benders, Manon J. N. L.; Pearlman, Paul C.; Kersbergen, Karina J.; Leemans, Alexander; Viergever, Max A.; Išgum, Ivana

    2013-02-01

    The cerebral cortex rapidly develops its folding during the second and third trimester of pregnancy. In preterm birth, this growth might be disrupted and influence neurodevelopment. The aim of this work is to extract quantitative biomarkers describing the cortex and evaluate them on a set of preterm infants without brain pathology. For this study, a set of 19 preterm - but otherwise healthy - infants scanned coronally with 3T MRI at the postmenstrual age of 30 weeks were selected. In ten patients (test set), the gray and white matter were manually annotated by an expert on the T2-weighted scans. Manual segmentations were used to extract cortical volume, surface area, thickness, and curvature using voxel-based methods. To compute these biomarkers per region in every patient, a template brain image has been generated by iterative registration and averaging of the scans of the remaining nine patients. This template has been manually divided in eight regions, and is transformed to every test image using elastic registration. In the results, gray and white matter volumes and cortical surface area appear symmetric between hemispheres, but small regional differences are visible. Cortical thickness seems slightly higher in the right parietal lobe than in other regions. The parietal lobes exhibit a higher global curvature, indicating more complex folding compared to other regions. The proposed approach can potentially - together with an automatic segmentation algorithm - be applied as a tool to assist in early diagnosis of abnormalities and prediction of the development of the cognitive abilities of these children.

  5. Cortical and subcortical gray matter bases of cognitive deficits in REM sleep behavior disorder.

    PubMed

    Rahayel, Shady; Postuma, Ronald B; Montplaisir, Jacques; Génier Marchand, Daphné; Escudier, Frédérique; Gaubert, Malo; Bourgouin, Pierre-Alexandre; Carrier, Julie; Monchi, Oury; Joubert, Sven; Blanc, Frédéric; Gagnon, Jean-François

    2018-05-15

    To investigate cortical and subcortical gray matter abnormalities underlying cognitive impairment in patients with REM sleep behavior disorder (RBD) with or without mild cognitive impairment (MCI). Fifty-two patients with RBD, including 17 patients with MCI, were recruited and compared to 41 controls. All participants underwent extensive clinical assessments, neuropsychological examination, and 3-tesla MRI acquisition of T1 anatomical images. Vertex-based cortical analyses of volume, thickness, and surface area were performed to investigate cortical abnormalities between groups, whereas vertex-based shape analysis was performed to investigate subcortical structure surfaces. Correlations were performed to investigate associations between cortical and subcortical metrics, cognitive domains, and other markers of neurodegeneration (color discrimination, olfaction, and autonomic measures). Patients with MCI had cortical thinning in the frontal, cingulate, temporal, and occipital cortices, and abnormal surface contraction in the lenticular nucleus and thalamus. Patients without MCI had cortical thinning restricted to the frontal cortex. Lower patient performance in cognitive domains was associated with cortical and subcortical abnormalities. Moreover, impaired performance on olfaction, color discrimination, and autonomic measures was associated with thinning in the occipital lobe. Cortical and subcortical gray matter abnormalities are associated with cognitive status in patients with RBD, with more extensive patterns in patients with MCI. Our results highlight the importance of distinguishing between subgroups of patients with RBD according to cognitive status in order to better understand the neurodegenerative process in this population. © 2018 American Academy of Neurology.

  6. Altered white matter and cortical structure in neonates with antenatally diagnosed isolated ventriculomegaly.

    PubMed

    Lockwood Estrin, G; Kyriakopoulou, V; Makropoulos, A; Ball, G; Kuhendran, L; Chew, A; Hagberg, B; Martinez-Biarge, M; Allsop, J; Fox, M; Counsell, S J; Rutherford, M A

    2016-01-01

    Ventriculomegaly (VM) is the most common central nervous system abnormality diagnosed antenatally, and is associated with developmental delay in childhood. We tested the hypothesis that antenatally diagnosed isolated VM represents a biological marker for altered white matter (WM) and cortical grey matter (GM) development in neonates. 25 controls and 21 neonates with antenatally diagnosed isolated VM had magnetic resonance imaging at 41.97(± 2.94) and 45.34(± 2.14) weeks respectively. T2-weighted scans were segmented for volumetric analyses of the lateral ventricles, WM and cortical GM. Diffusion tensor imaging (DTI) measures were assessed using voxel-wise methods in WM and cortical GM; comparisons were made between cohorts. Ventricular and cortical GM volumes were increased, and WM relative volume was reduced in the VM group. Regional decreases in fractional anisotropy (FA) and increases in mean diffusivity (MD) were demonstrated in WM of the VM group compared to controls. No differences in cortical DTI metrics were observed. At 2 years, neurodevelopmental delays, especially in language, were observed in 6/12 cases in the VM cohort. WM alterations in isolated VM cases may be consistent with abnormal development of WM tracts involved in language and cognition. Alterations in WM FA and MD may represent neural correlates for later neurodevelopmental deficits.

  7. Temporal lobe epilepsy and focal cortical dysplasia in children: A tip to find the abnormality.

    PubMed

    Bartolini, Luca; Whitehead, Matthew T; Ho, Cheng-Ying; Sepeta, Leigh N; Oluigbo, Chima O; Havens, Kathryn; Freilich, Emily R; Schreiber, John M; Gaillard, William D

    2017-01-01

    To demonstrate an association between magnetic resonance imaging (MRI) findings and pathologic characteristics in children who had surgery for medically refractory epilepsy due to focal cortical dysplasia (FCD). We retrospectively studied 110 children who had epilepsy surgery. Twenty-seven patients with FCD were included. Thirteen had temporal lobe epilepsy (TLE) and 14 had extra-temporal lobe epilepsy (ETLE). Three patients had associated mesial temporal sclerosis. Preoperative 3T MRIs interleaved with nine controls were blindly re-reviewed and categorized according to signal alteration. Pathologic specimens were classified according to the 2011 International League Against Epilepsy (ILAE) classification and compared to MRI studies. Rates of pathology subtypes differed between TLE and ETLE (χ 2 (3) = 8.57, p = 0.04). FCD type I was more frequent in TLE, whereas FCD type II was more frequent in ETLE. In the TLE group, nine patients had temporal tip abnormalities. They all exhibited gray-white matter blurring with decreased myelination and white matter hyperintense signal. Blurring involved the whole temporal tip, not just the area of dysplasia. These patients were less likely to demonstrate cortical thickening compared to those without temporal tip findings (χ 2 (1) = 9.55, p = 0.002). Three of them had FCD Ib, three had FCD IIa, two had FCD IIIa, and one had FCD IIb; MRI features could not entirely distinguish between FCD subtypes. TLE patients showed more pronounced findings than ETLE on MRI (χ 2 (1) = 11.95, p = 0.003, odds ratio [OR] 18.00). In all cases of FCD, isolated blurring was more likely to be associated with FCD II, whereas blurring with decreased myelination was seen with FCD I (χ 2 (6) = 13.07, p = 0.042). Our study described associations between MRI characteristics and pathology in children with FCD and offered a detailed analysis of temporal lobe tip abnormalities and FCD subtypes in children with TLE. These findings may contribute to the

  8. Longitudinal MRI Study of Cortical Development through Early Childhood in Autism

    PubMed Central

    Schumann, C.M.; Bloss, C.S.; Barnes, C. Carter; Wideman, G.M.; Carper, R.A.; Akshoomoff, N.; Pierce, K.; Hagler, D.; Schork, N.; Lord, C.; Courchesne, E.

    2010-01-01

    Cross-sectional MRI studies have long hypothesized that the brain in children with autism undergoes an abnormal growth trajectory that includes a period of early overgrowth; however this has never been confirmed by a longitudinal study. We carried out the first longitudinal study of brain growth in toddlers at the time symptoms of autism are becoming clinically apparent utilizing structural MRI scans at multiple time points beginning at 1.5 years up to 5 years of age. We collected 193 scans on 41 toddlers who received a confirmed diagnosis of Autistic Disorder at ~48 months of age and 44 typically developing controls. By 2.5 years of age, both cerebral gray and white matter was significantly enlarged in toddlers with Autistic Disorder, with the most severe enlargement occurring in frontal, temporal and cingulate cortices. In the longitudinal analyses, which we accounted for age and gender effect, we found that all regions (cerebral gray, cerebral white, frontal gray, temporal gray, cingulate gray, and parietal gray) except occipital gray developed at an abnormal growth rate in toddlers with Autistic Disorder that was mainly characterized by a quadratic age effect. Females with Autistic Disorder displayed a more pronounced abnormal growth profile in more brain regions than males with the disorder. Given that overgrowth clearly begins before 2 years of age, future longitudinal studies would benefit from inclusion of even younger populations as well as further characterization of genetic and other biomarkers in order to determine the underlying neuropathological processes causing the onset of autistic symptoms. PMID:20335478

  9. Influences of brain development and ageing on cortical interactive networks.

    PubMed

    Zhu, Chengyu; Guo, Xiaoli; Jin, Zheng; Sun, Junfeng; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao

    2011-02-01

    To study the effect of brain development and ageing on the pattern of cortical interactive networks. By causality analysis of multichannel electroencephalograph (EEG) with partial directed coherence (PDC), we investigated the different neural networks involved in the whole cortex as well as the anterior and posterior areas in three age groups, i.e., children (0-10 years), mid-aged adults (26-38 years) and the elderly (56-80 years). By comparing the cortical interactive networks in different age groups, the following findings were concluded: (1) the cortical interactive network in the right hemisphere develops earlier than its left counterpart in the development stage; (2) the cortical interactive network of anterior cortex, especially at C3 and F3, is demonstrated to undergo far more extensive changes, compared with the posterior area during brain development and ageing; (3) the asymmetry of the cortical interactive networks declines during ageing with more loss of connectivity in the left frontal and central areas. The age-related variation of cortical interactive networks from resting EEG provides new insights into brain development and ageing. Our findings demonstrated that the PDC analysis of EEG is a powerful approach for characterizing the cortical functional connectivity during brain development and ageing. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Comparison of cortical folding measures for evaluation of developing human brain.

    PubMed

    Shimony, Joshua S; Smyser, Christopher D; Wideman, Graham; Alexopoulos, Dimitrios; Hill, Jason; Harwell, John; Dierker, Donna; Van Essen, David C; Inder, Terrie E; Neil, Jeffrey J

    2016-01-15

    We evaluated 22 measures of cortical folding, 20 derived from local curvature (curvature-based measures) and two based on other features (sulcal depth and gyrification index), for their capacity to distinguish between normal and aberrant cortical development. Cortical surfaces were reconstructed from 12 term-born control and 63 prematurely-born infants. Preterm infants underwent 2-4 MR imaging sessions between 27 and 42weeks postmenstrual age (PMA). Term infants underwent a single MR imaging session during the first postnatal week. Preterm infants were divided into two groups. One group (38 infants) had no/minimal abnormalities on qualitative assessment of conventional MR images. The second group (25 infants) consisted of infants with injury on conventional MRI at term equivalent PMA. For both preterm infant groups, all folding measures increased or decreased monotonically with increasing PMA, but only sulcal depth and gyrification index differentiated preterm infants with brain injury from those without. We also compared scans obtained at term equivalent PMA (36-42weeks) for all three groups. No curvature-based measured distinguished between the groups, whereas sulcal depth distinguished term control from injured preterm infants and gyrification index distinguished all three groups. When incorporating total cerebral volume into the statistical model, sulcal depth no longer distinguished between the groups, though gyrification index distinguished between all three groups and positive shape index distinguished between the term control and uninjured preterm groups. We also analyzed folding measures averaged over brain lobes separately. These results demonstrated similar patterns to those obtained from the whole brain analyses. Overall, though the curvature-based measures changed during this period of rapid cerebral development, they were not sensitive for detecting the differences in folding associated with brain injury and/or preterm birth. In contrast, gyrification

  11. Joint Prediction of Longitudinal Development of Cortical Surfaces and White Matter Fibers from Neonatal MRI

    PubMed Central

    Rekik, Islem; Li, Gang; Yap, Pew-Thian; Chen, Geng; Lin, Weili; Shen, Dinggang

    2017-01-01

    The human brain can be modeled as multiple interrelated shapes (or a multishape), each for characterizing one aspect of the brain, such as the cortex and white matter pathways. Predicting the developing multishape is a very challenging task due to the contrasting nature of the developmental trajectories of the constituent shapes: smooth for the cortical surface and non-smooth for white matter tracts due to changes such as bifurcation. We recently addressed this problem and proposed an approach for predicting the multishape developmental spatiotemporal trajectories of infant brains based only on neonatal MRI data using a set of geometric, dynamic, and fiber-to-surface connectivity features. In this paper, we propose two key innovations to further improve the prediction of multishape evolution. First, for a more accurate cortical surface prediction, instead of simply relying on one neonatal atlas to guide the prediction of the multishape, we propose to use multiple neonatal atlases to build a spatially heterogeneous atlas using the multidirectional varifold representation. This individualizes the atlas by locally maximizing its similarity to the testing baseline cortical shape for each cortical region, thereby better representing the baseline testing cortical surface, which founds the multishape prediction process. Second, for temporally consistent fiber prediction, we propose to reliably estimate spatiotemporal connectivity features using low-rank tensor completion, thereby capturing the variability and richness of the temporal development of fibers. Experimental results confirm that the proposed variants significantly improve the prediction performance of our original multishape prediction framework for both cortical surfaces and fiber tracts shape at 3, 6, and 9 months of age. Our pioneering model will pave the way for learning how to predict the evolution of anatomical shapes with abnormal changes. Ultimately, devising accurate shape evolution prediction models

  12. Joint prediction of longitudinal development of cortical surfaces and white matter fibers from neonatal MRI.

    PubMed

    Rekik, Islem; Li, Gang; Yap, Pew-Thian; Chen, Geng; Lin, Weili; Shen, Dinggang

    2017-05-15

    The human brain can be modeled as multiple interrelated shapes (or a multishape), each for characterizing one aspect of the brain, such as the cortex and white matter pathways. Predicting the developing multishape is a very challenging task due to the contrasting nature of the developmental trajectories of the constituent shapes: smooth for the cortical surface and non-smooth for white matter tracts due to changes such as bifurcation. We recently addressed this problem and proposed an approach for predicting the multishape developmental spatiotemporal trajectories of infant brains based only on neonatal MRI data using a set of geometric, dynamic, and fiber-to-surface connectivity features. In this paper, we propose two key innovations to further improve the prediction of multishape evolution. First, for a more accurate cortical surface prediction, instead of simply relying on one neonatal atlas to guide the prediction of the multishape, we propose to use multiple neonatal atlases to build a spatially heterogeneous atlas using the multidirectional varifold representation. This individualizes the atlas by locally maximizing its similarity to the testing baseline cortical shape for each cortical region, thereby better representing the baseline testing cortical surface, which founds the multishape prediction process. Second, for temporally consistent fiber prediction, we propose to reliably estimate spatiotemporal connectivity features using low-rank tensor completion, thereby capturing the variability and richness of the temporal development of fibers. Experimental results confirm that the proposed variants significantly improve the prediction performance of our original multishape prediction framework for both cortical surfaces and fiber tracts shape at 3, 6, and 9 months of age. Our pioneering model will pave the way for learning how to predict the evolution of anatomical shapes with abnormal changes. Ultimately, devising accurate shape evolution prediction models

  13. Abnormal development of sensory-motor, visual temporal and parahippocampal cortex in children with learning disabilities and borderline intellectual functioning

    PubMed Central

    Baglio, Francesca; Cabinio, Monia; Ricci, Cristian; Baglio, Gisella; Lipari, Susanna; Griffanti, Ludovica; Preti, Maria G.; Nemni, Raffaello; Clerici, Mario; Zanette, Michela; Blasi, Valeria

    2014-01-01

    Borderline intellectual functioning (BIF) is a condition characterized by an intelligence quotient (IQ) between 70 and 85. BIF children present with cognitive, motor, social, and adaptive limitations that result in learning disabilities and are more likely to develop psychiatric disorders later in life. The aim of this study was to investigate brain morphometry and its relation to IQ level in BIF children. Thirteen children with BIF and 14 age- and sex-matched typically developing (TD) children were enrolled. All children underwent a full IQ assessment (WISC-III scale) and a magnetic resonance (MR) examination including conventional sequences to assess brain structural abnormalities and high resolution 3D images for voxel-based morphometry analysis. To investigate to what extent the group influenced gray matter (GM) volumes, both univariate and multivariate generalized linear model analysis of variance were used, and the varimax factor analysis was used to explore variable correlations and clusters among subjects. Results showed that BIF children, compared to controls have increased regional GM volume in bilateral sensorimotor and right posterior temporal cortices and decreased GM volume in the right parahippocampal gyrus. GM volumes were highly correlated with IQ indices. The present work is a case study of a group of BIF children showing that BIF is associated with abnormal cortical development in brain areas that have a pivotal role in motor, learning, and behavioral processes. Our findings, although allowing for little generalization to the general population, contribute to the very limited knowledge in this field. Future longitudinal MR studies will be useful in verifying whether cortical features can be modified over time even in association with rehabilitative intervention. PMID:25360097

  14. Epilepsy surgery in patients with malformations of cortical development.

    PubMed

    Lüders, Hans; Schuele, Stephan U

    2006-04-01

    Patients with malformations of cortical development often suffer from intractable focal epilepsy. This review considers recent progress in the selection and seizure outcome of patients undergoing resective epilepsy surgery for this condition. Patients with malformations of cortical development restricted to part or even a whole hemisphere may be candidates for epilepsy surgery even when, due to microscopic malformations, magnetic resonance imaging shows no detectable lesion. Despite recent advances in structural and functional imaging, the majority of patients with this condition undergo invasive evaluation. Patients with focal cortical dysplasia, with and without a detectable lesion on magnetic resonance imaging, often have a favorable outcome with epilepsy surgery. The underlying pathological substrate seems to be a better predictor for surgical outcome in patients with focal cortical dysplasia than the presence of a lesion on magnetic resonance imaging. Epilepsy surgery can be offered in a highly selected subgroup of patients with unilateral nodular heterotopia. Seizures in hemimegalencephaly may respond favorably to hemispherectomy, although most children will continue to have seizures and significant functional impairments. Patients with focal epilepsy due to malformations of cortical development are often intractable to medical management. Resective epilepsy surgery can be beneficial, particularly for patients with focal cortical dysplasia and unilateral hemispheric malformations.

  15. Mild Malformation of Cortical Development with Oligodendroglial Hyperplasia in Frontal Lobe Epilepsy: A New Clinico-Pathological Entity.

    PubMed

    Schurr, Johannes; Coras, Roland; Rössler, Karl; Pieper, Tom; Kudernatsch, Manfred; Holthausen, Hans; Winkler, Peter; Woermann, Friedrich; Bien, Christian G; Polster, Tilman; Schulz, Reinhard; Kalbhenn, Thilo; Urbach, Horst; Becker, Albert; Grunwald, Thomas; Huppertz, Hans-Juergen; Gil-Nagel, Antonio; Toledano, Rafael; Feucht, Martha; Mühlebner, Angelika; Czech, Thomas; Blümcke, Ingmar

    2017-01-01

    The histopathological spectrum of human epileptogenic brain lesions is widespread including common and rare variants of cortical malformations. However, 2-26% of epilepsy surgery specimens are histopathologically classified as nonlesional. We hypothesized that these specimens include also new diagnostic entities, in particular when presurgical magnetic resonance imaging (MRI) can identify abnormal signal intensities within the anatomical region of seizure onset. In our series of 1381 en bloc resected epilepsy surgery brain specimens, 52 cases could not be histopathologically classified and were considered nonlesional (3.7%). An increase of Olig2-, and PDGFR-alpha-immunoreactive oligodendroglia was observed in white matter and deep cortical layers in 22 of these patients (42%). Increased proliferation activity as well as heterotopic neurons in white matter were additional histopathological hallmarks. All patients suffered from frontal lobe epilepsy (FLE) with a median age of epilepsy onset at 4 years and 16 years at epilepsy surgery. Presurgical MRI suggested focal cortical dysplasia (FCD) in all patients. We suggest to classify this characteristic histopathology pattern as "mild malformation of cortical development with oligodendroglial hyperplasia (MOGHE)." Further insights into pathomechanisms of MOGHE may help to bridge the diagnostic gap in children and young adults with difficult-to-treat FLE. © 2016 International Society of Neuropathology.

  16. MACF1 Controls Migration and Positioning of Cortical GABAergic Interneurons in Mice.

    PubMed

    Ka, Minhan; Moffat, Jeffrey J; Kim, Woo-Yang

    2017-12-01

    GABAergic interneurons develop in the ganglionic eminence in the ventral telencephalon and tangentially migrate into the cortical plate during development. However, key molecules controlling interneuron migration remain poorly identified. Here, we show that microtubule-actin cross-linking factor 1 (MACF1) regulates GABAergic interneuron migration and positioning in the developing mouse brain. To investigate the role of MACF1 in developing interneurons, we conditionally deleted the MACF1 gene in mouse interneuron progenitors and their progeny using Dlx5/6-Cre-IRES-EGFP and Nkx2.1-Cre drivers. We found that MACF1 deletion results in a marked reduction and defective positioning of interneurons in the mouse cerebral cortex and hippocampus, suggesting abnormal interneuron migration. Indeed, the speed and mode of interneuron migration were abnormal in the MACF1-mutant brain, compared with controls. Additionally, MACF1-deleted interneurons showed a significant reduction in the length of their leading processes and dendrites in the mouse brain. Finally, loss of MACF1 decreased microtubule stability in cortical interneurons. Our findings suggest that MACF1 plays a critical role in cortical interneuron migration and positioning in the developing mouse brain. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Injury to the Premature Cerebellum: Outcome is Related to Remote Cortical Development

    PubMed Central

    Limperopoulos, Catherine; Chilingaryan, Gevorg; Sullivan, Nancy; Guizard, Nicolas; Robertson, Richard L.; du Plessis, Adré J.

    2014-01-01

    Cerebellar injury is an important complication of preterm birth with far-reaching neuropsychiatric sequelae. We have previously shown a significant association between isolated injury to the premature cerebellum and subsequent impairment of regional volumetric growth in the contralateral cerebrum. In the current study, we examine the relationship between these remote regional impairments of cerebral volumetric growth and domain-specific functional deficits in these children. In 40 ex-preterm infants with isolated cerebellar injury, we performed neurodevelopmental evaluations and quantitative magnetic resonance imaging (MRI) studies at a mean age of 34 months. We measured cortical gray matter volumes in 8 parcellated regions of each cerebral hemisphere, as well as right and left cerebellar volumes. We show highly significant associations between early signs of autism and dorsolateral prefrontal cortex volume (P < 0.001); gross motor scores and sensorimotor cortical volumes (P < 0.001); and cognitive and expressive language scores and premotor and mid-temporal cortical volumes (P < 0.001). By multivariate analyses, each unit increase in the corresponding regional cerebral volume was associated with lower odds of abnormal outcome score, adjusted for age at MRI and contralateral cerebellar volume. This is the first report linking secondary impairment of remote cerebral cortical growth and functional disabilities in survivors of prematurity-related cerebellar brain injury. PMID:23146968

  18. Brainstem timing: implications for cortical processing and literacy.

    PubMed

    Banai, Karen; Nicol, Trent; Zecker, Steven G; Kraus, Nina

    2005-10-26

    The search for a unique biological marker of language-based learning disabilities has so far yielded inconclusive findings. Previous studies have shown a plethora of auditory processing deficits in learning disabilities at both the perceptual and physiological levels. In this study, we investigated the association among brainstem timing, cortical processing of stimulus differences, and literacy skills. To that end, brainstem timing and cortical sensitivity to acoustic change [mismatch negativity (MMN)] were measured in a group of children with learning disabilities and normal-learning children. The learning-disabled (LD) group was further divided into two subgroups with normal and abnormal brainstem timing. MMNs, literacy, and cognitive abilities were compared among the three groups. LD individuals with abnormal brainstem timing were more likely to show reduced processing of acoustic change at the cortical level compared with both normal-learning individuals and LD individuals with normal brainstem timing. This group was also characterized by a more severe form of learning disability manifested by poorer reading, listening comprehension, and general cognitive ability. We conclude that abnormal brainstem timing in learning disabilities is related to higher incidence of reduced cortical sensitivity to acoustic change and to deficient literacy skills. These findings suggest that abnormal brainstem timing may serve as a reliable marker of a subgroup of individuals with learning disabilities. They also suggest that faulty mechanisms of neural timing at the brainstem may be the biological basis of malfunction in this group.

  19. Abnormalities in cortical gray matter density in borderline personality disorder

    PubMed Central

    Rossi, Roberta; Lanfredi, Mariangela; Pievani, Michela; Boccardi, Marina; Rasser, Paul E; Thompson, Paul M; Cavedo, Enrica; Cotelli, Maria; Rosini, Sandra; Beneduce, Rossella; Bignotti, Stefano; Magni, Laura R; Rillosi, Luciana; Magnaldi, Silvia; Cobelli, Milena; Rossi, Giuseppe; Frisoni, Giovanni B

    2015-01-01

    Background Borderline personality disorder (BPD) is a chronic condition with a strong impact on patients‘ affective,cognitive and social functioning. Neuroimaging techniques offer invaluable tools to understand the biological substrate of the disease. We aimed to investigate gray matter alterations over the whole cortex in a group of Borderline Personality Disorder (BPD) patients compared to healthy controls (HC). Methods Magnetic resonance-based cortical pattern matching was used to assess cortical gray matter density (GMD) in 26 BPD patients and in their age- and sex-matched HC (age: 38±11; females: 16, 61%). Results BPD patients showed widespread lower cortical GMD compared to HC (4% difference) with peaks of lower density located in the dorsal frontal cortex, in the orbitofrontal cortex, the anterior and posterior cingulate, the right parietal lobe, the temporal lobe (medial temporal cortex and fusiform gyrus) and in the visual cortex (p<0.005). Our BPD subjects displayed a symmetric distribution of anomalies in the dorsal aspect of the cortical mantle, but a wider involvement of the left hemisphere in the mesial aspect in terms of lower density. A few restricted regions of higher density were detected in the right hemisphere. All regions remained significant after correction for multiple comparisons via permutation testing. Conclusions BPD patients feature specific morphology of the cerebral structures involved in cognitive and emotional processing and social cognition/mentalization, consistent with clinical and functional data. PMID:25561291

  20. Predicting infant cortical surface development using a 4D varifold-based learning framework and local topography-based shape morphing.

    PubMed

    Rekik, Islem; Li, Gang; Lin, Weili; Shen, Dinggang

    2016-02-01

    Longitudinal neuroimaging analysis methods have remarkably advanced our understanding of early postnatal brain development. However, learning predictive models to trace forth the evolution trajectories of both normal and abnormal cortical shapes remains broadly absent. To fill this critical gap, we pioneered the first prediction model for longitudinal developing cortical surfaces in infants using a spatiotemporal current-based learning framework solely from the baseline cortical surface. In this paper, we detail this prediction model and even further improve its performance by introducing two key variants. First, we use the varifold metric to overcome the limitations of the current metric for surface registration that was used in our preliminary study. We also extend the conventional varifold-based surface registration model for pairwise registration to a spatiotemporal surface regression model. Second, we propose a morphing process of the baseline surface using its topographic attributes such as normal direction and principal curvature sign. Specifically, our method learns from longitudinal data both the geometric (vertices positions) and dynamic (temporal evolution trajectories) features of the infant cortical surface, comprising a training stage and a prediction stage. In the training stage, we use the proposed varifold-based shape regression model to estimate geodesic cortical shape evolution trajectories for each training subject. We then build an empirical mean spatiotemporal surface atlas. In the prediction stage, given an infant, we select the best learnt features from training subjects to simultaneously predict the cortical surface shapes at all later timepoints, based on similarity metrics between this baseline surface and the learnt baseline population average surface atlas. We used a leave-one-out cross validation method to predict the inner cortical surface shape at 3, 6, 9 and 12 months of age from the baseline cortical surface shape at birth. Our

  1. GSK-3 signaling in developing cortical neurons is essential for radial migration and dendritic orientation.

    PubMed

    Morgan-Smith, Meghan; Wu, Yaohong; Zhu, Xiaoqin; Pringle, Julia; Snider, William D

    2014-07-29

    GSK-3 is an essential mediator of several signaling pathways that regulate cortical development. We therefore created conditional mouse mutants lacking both GSK-3α and GSK-3β in newly born cortical excitatory neurons. Gsk3-deleted neurons expressing upper layer markers exhibited striking migration failure in all areas of the cortex. Radial migration in hippocampus was similarly affected. In contrast, tangential migration was not grossly impaired after Gsk3 deletion in interneuron precursors. Gsk3-deleted neurons extended axons and developed dendritic arbors. However, the apical dendrite was frequently branched while basal dendrites exhibited abnormal orientation. GSK-3 regulation of migration in neurons was independent of Wnt/β-catenin signaling. Importantly, phosphorylation of the migration mediator, DCX, at ser327, and phosphorylation of the semaphorin signaling mediator, CRMP-2, at Thr514 were markedly decreased. Our data demonstrate that GSK-3 signaling is essential for radial migration and dendritic orientation and suggest that GSK-3 mediates these effects by phosphorylating key microtubule regulatory proteins.DOI: http://dx.doi.org/10.7554/eLife.02663.001. Copyright © 2014, Morgan-Smith et al.

  2. The development of cortical sensitivity to visual word forms.

    PubMed

    Ben-Shachar, Michal; Dougherty, Robert F; Deutsch, Gayle K; Wandell, Brian A

    2011-09-01

    The ability to extract visual word forms quickly and efficiently is essential for using reading as a tool for learning. We describe the first longitudinal fMRI study to chart individual changes in cortical sensitivity to written words as reading develops. We conducted four annual measurements of brain function and reading skills in a heterogeneous group of children, initially 7-12 years old. The results show age-related increase in children's cortical sensitivity to word visibility in posterior left occipito-temporal sulcus (LOTS), nearby the anatomical location of the visual word form area. Moreover, the rate of increase in LOTS word sensitivity specifically correlates with the rate of improvement in sight word efficiency, a measure of speeded overt word reading. Other cortical regions, including V1, posterior parietal cortex, and the right homologue of LOTS, did not demonstrate such developmental changes. These results provide developmental support for the hypothesis that LOTS is part of the cortical circuitry that extracts visual word forms quickly and efficiently and highlight the importance of developing cortical sensitivity to word visibility in reading acquisition.

  3. The Development of Cortical Sensitivity to Visual Word Forms

    PubMed Central

    Ben-Shachar, Michal; Dougherty, Robert F.; Deutsch, Gayle K.; Wandell, Brian A.

    2011-01-01

    The ability to extract visual word forms quickly and efficiently is essential for using reading as a tool for learning. We describe the first longitudinal fMRI study to chart individual changes in cortical sensitivity to written words as reading develops. We conducted four annual measurements of brain function and reading skills in a heterogeneous group of children, initially 7–12 years old. The results show age-related increase in children's cortical sensitivity to word visibility in posterior left occipito-temporal sulcus (LOTS), nearby the anatomical location of the visual word form area. Moreover, the rate of increase in LOTS word sensitivity specifically correlates with the rate of improvement in sight word efficiency, a measure of speeded overt word reading. Other cortical regions, including V1, posterior parietal cortex, and the right homologue of LOTS, did not demonstrate such developmental changes. These results provide developmental support for the hypothesis that LOTS is part of the cortical circuitry that extracts visual word forms quickly and efficiently and highlight the importance of developing cortical sensitivity to word visibility in reading acquisition. PMID:21261451

  4. Thymic Stromal-Cell Abnormalities and Dysregulated T-Cell Development in IL-2-Deficient Mice

    PubMed Central

    Reya, Tannishtha; Bassiri, Hamid; Biancaniello, Renée

    1998-01-01

    The role that interleukin-2 (IL-2) plays in T-cell development is not known. To address this issue, we have investigated the nature of the abnormal thymic development and autoimmune disorders that occurs in IL-2-deficient (IL-2–/–) mice. After 4 to 5 weeks of birth, IL-2–/– mice progressively develop a thymic disorder resulting in the disruption of thymocyte maturation. This disorder is characterized by a dramatic reduction in cellularity, the selective loss of immature CD4-8- (double negative; DN) and CD4+8+ (double positive; DP) thymocytes and defects in the thymic stromal-cell compartment. Immunohistochemical staining of sections of thymuses from specific pathogen-free and germ-free IL-2–/– mice of various ages showed a progressive ,loss of cortical epithelial cells, MHC class II-expressing cells, monocytes, and macrophages. Reduced numbers of macrophages were apparent as early as week after birth. Since IL-2–/– thymocyte progenitor populations could mature normally on transfer into a normal thymus, the thymic defect in IL-2–/– mice appears to be due to abnormalities among thymic stromal cells. These results underscore the role of IL-2 in maintaining functional microenvironments that are necessary to support thymocyte growth, development, and selection. PMID:9814585

  5. Grey matter volume and cortical structure in Prader-Willi syndrome compared to typically developing young adults.

    PubMed

    Manning, Katherine E; Tait, Roger; Suckling, John; Holland, Anthony J

    2018-01-01

    Prader-Willi syndrome (PWS) is a neurodevelopmental disorder of genomic imprinting, presenting with a characteristic overeating disorder, mild to moderate intellectual disability, and a variable range of social and behavioral difficulties. Consequently, widespread alterations in neural structure and developmental and maturational trajectory would be expected. To date, there have been few quantitative and systematic studies of brain morphology in PWS, although alterations of volume and of cortical organisation have been reported. This study aimed to investigate, in detail, the structure of grey matter and cortex in the brain in a sample of young adults with PWS in a well-matched case-controlled analysis. 20 young adults with PWS, aged 19-27 years, underwent multiparameter mapping magnetic resonance imaging sequences, from which measures of grey matter volume, cortical thickness and magnetisation transfer saturation, as a proxy measure of myelination, were examined. These variables were investigated in comparison to a control group of 40 typically developing young adults, matched for age and sex. A voxel-based morphometry analysis identified large and widespread bilateral clusters of both increased and decreased grey matter volume in the brain in PWS. In particular, widespread areas of increased volume encompassed parts of the prefrontal cortex, especially medially, the majority of the cingulate cortices, from anterior to posterior aspects, insula cortices, and areas of the parietal and temporal cortices. Increased volume was also reported in the caudate, putamen and thalamus. The most ventromedial prefrontal areas, in contrast, showed reduced volume, as did the parts of the medial temporal lobe, bilateral temporal poles, and a small cluster in the right lateral prefrontal cortex. Analysis of cortical structure revealed that areas of increased volume in the PWS group were largely driven by greater cortical thickness. Conversely, analysis of myelin content using

  6. Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease.

    PubMed

    Li, Rui; Sun, Le; Fang, Ai; Li, Peng; Wu, Qian; Wang, Xiaoqun

    2017-11-01

    The development of a cerebral organoid culture in vitro offers an opportunity to generate human brain-like organs to investigate mechanisms of human disease that are specific to the neurogenesis of radial glial (RG) and outer radial glial (oRG) cells in the ventricular zone (VZ) and subventricular zone (SVZ) of the developing neocortex. Modeling neuronal progenitors and the organization that produces mature subcortical neuron subtypes during early stages of development is essential for studying human brain developmental diseases. Several previous efforts have shown to grow neural organoid in culture dishes successfully, however we demonstrate a new paradigm that recapitulates neocortical development process with VZ, OSVZ formation and the lamination organization of cortical layer structure. In addition, using patient-specific induced pluripotent stem cells (iPSCs) with dysfunction of the Aspm gene from a primary microcephaly patient, we demonstrate neurogenesis defects result in defective neuronal activity in patient organoids, suggesting a new strategy to study human developmental diseases in central nerve system.

  7. Self-Referential Processing, Rumination, and Cortical Midline Structures in Major Depression

    PubMed Central

    Nejad, Ayna Baladi; Fossati, Philippe; Lemogne, Cédric

    2013-01-01

    Major depression is associated with a bias toward negative emotional processing and increased self-focus, i.e., the process by which one engages in self-referential processing. The increased self-focus in depression is suggested to be of a persistent, repetitive and self-critical nature, and is conceptualized as ruminative brooding. The role of the medial prefrontal cortex in self-referential processing has been previously emphasized in acute major depression. There is increasing evidence that self-referential processing as well as the cortical midline structures play a major role in the development, course, and treatment response of major depressive disorder. However, the links between self-referential processing, rumination, and the cortical midline structures in depression are still poorly understood. Here, we reviewed brain imaging studies in depressed patients and healthy subjects that have examined these links. Self-referential processing in major depression seems associated with abnormally increased activity of the anterior cortical midline structures. Abnormal interactions between the lateralized task-positive network, and the midline cortical structures of the default mode network, as well as the emotional response network, may underlie the pervasiveness of ruminative brooding. Furthermore, targeting this maladaptive form of rumination and its underlying neural correlates may be key for effective treatment. PMID:24124416

  8. Intramembranous valine linked to schizophrenia is required for neuregulin 1 regulation of the morphological development of cortical neurons

    PubMed Central

    Chen, Yachi; Hancock, Melissa L.; Role, Lorna W.; Talmage, David A.

    2010-01-01

    Neuregulin 1 (NRG1) signaling is critical to various aspects of neuronal development and function. Among different NRG1 isoforms, the Type III isoforms of NRG1 are unique in their ability to signal via the intracellular domain following γ-secretase-dependent intramembranous processing. However, the functional consequences of Type III NRG1 signaling via its intracellular domain are largely unknown. In this study, we have identified mutations within Type III NRG1 that disrupt intramembranous proteolytic processing and abolish intracellular domain signaling. In particular, substitutions at valine 321, previously linked to schizophrenia risks, result in NRG1 proteins that fail to undergo γ-secretase-mediated nuclear localization and transcriptional activation. Using processing-defective mutants of Type III NRG1, we demonstrate that the intracellular domain signaling is specifically required for NRG1 regulation of the growth and branching of cortical dendrites but not axons. Consistent with the role of Type III NRG1 signaling via the intracellular domain in the initial patterning of cortical dendrites, our findings from pharmacological and genetic studies indicate that Type III NRG1 functions in dendritic development independent of ERBB kinase activity. Taken together, these results support the proposal that aberrant intracellular processing and defective signaling via the intracellular domain of Type III NRG1 impair a subset of NRG1 functions in cortical development and contribute to abnormal neuroconnectivity implicated in schizophrenia. PMID:20610754

  9. Cortical-basal ganglionic degeneration.

    PubMed

    Riley, D E; Lang, A E; Lewis, A; Resch, L; Ashby, P; Hornykiewicz, O; Black, S

    1990-08-01

    We report our experience with 15 patients believed to have cortical-basal ganglionic degeneration. The clinical picture is distinctive, comprising features referable to both cortical and basal ganglionic dysfunction. Characteristic manifestations include cortical sensory loss, focal reflex myoclonus, "alien limb" phenomena, apraxia, rigidity and akinesia, a postural-action tremor, limb dystonia, hyperreflexia, and postural instability. The asymmetry of symptoms and signs is often striking. Brain imaging may demonstrate greater abnormalities contralateral to the more affected side. Postmortem studies in 2 patients revealed the characteristic pathologic features of swollen, poorly staining (achromatic) neurons and degeneration of cerebral cortex and substantia nigra. Biochemical analysis of 1 brain showed a severe, diffuse loss of dopamine in the striatum. This condition is more frequent than previously believed, and the diagnosis can be predicted during life on the basis of clinical findings. However, as with other "degenerative" diseases of the nervous system, a definitive diagnosis of cortical-basal ganglionic degeneration requires confirmation by autopsy.

  10. Layer-specific gene expression in epileptogenic type II focal cortical dysplasia: normal-looking neurons reveal the presence of a hidden laminar organization

    PubMed Central

    2014-01-01

    Background Type II focal cortical dysplasias (FCDs) are malformations of cortical development characterised by the disorganisation of the normal neocortical structure and the presence of dysmorphic neurons (DNs) and balloon cells (BCs). The pathogenesis of FCDs has not yet been clearly established, although a number of histopathological patterns and molecular findings suggest that they may be due to abnormal neuronal and glial proliferation and migration processes. In order to gain further insights into cortical layering disruption and investigate the origin of DNs and BCs, we used in situ RNA hybridisation of human surgical specimens with a neuropathologically definite diagnosis of Type IIa/b FCD and a panel of layer-specific genes (LSGs) whose expression covers all cortical layers. We also used anti-phospho-S6 ribosomal protein antibody to investigate mTOR pathway hyperactivation. Results LSGs were expressed in both normal and abnormal cells (BCs and DNs) but their distribution was different. Normal-looking neurons, which were visibly reduced in the core of the lesion, were apparently located in the appropriate cortical laminae thus indicating a partial laminar organisation. On the contrary, DNs and BCs, labelled with anti-phospho-S6 ribosomal protein antibody, were spread throughout the cortex without any apparent rule and showed a highly variable LSG expression pattern. Moreover, LSGs did not reveal any differences between Type IIa and IIb FCD. Conclusion These findings suggest the existence of hidden cortical lamination involving normal-looking neurons, which retain their ability to migrate correctly in the cortex, unlike DNs which, in addition to their morphological abnormalities and mTOR hyperactivation, show an altered migratory pattern. Taken together these data suggest that an external or environmental hit affecting selected precursor cells during the very early stages of cortical development may disrupt normal cortical development. PMID:24735483

  11. The maturation of cortical sleep rhythms and networks over early development

    PubMed Central

    Chu, CJ; Leahy, J; Pathmanathan, J; Kramer, MA; Cash, SS

    2014-01-01

    Objective Although neuronal activity drives all aspects of cortical development, how human brain rhythms spontaneously mature remains an active area of research. We sought to systematically evaluate the emergence of human brain rhythms and functional cortical networks over early development. Methods We examined cortical rhythms and coupling patterns from birth through adolescence in a large cohort of healthy children (n=384) using scalp electroencephalogram (EEG) in the sleep state. Results We found that the emergence of brain rhythms follows a stereotyped sequence over early development. In general, higher frequencies increase in prominence with striking regional specificity throughout development. The coordination of these rhythmic activities across brain regions follows a general pattern of maturation in which broadly distributed networks of low-frequency oscillations increase in density while networks of high frequency oscillations become sparser and more highly clustered. Conclusion Our results indicate that a predictable program directs the development of key rhythmic components and physiological brain networks over early development. Significance This work expands our knowledge of normal cortical development. The stereotyped neurophysiological processes observed at the level of rhythms and networks may provide a scaffolding to support critical periods of cognitive growth. Furthermore, these conserved patterns could provide a sensitive biomarker for cortical health across development. PMID:24418219

  12. APC sets the Wnt tone necessary for cerebral cortical progenitor development.

    PubMed

    Nakagawa, Naoki; Li, Jingjun; Yabuno-Nakagawa, Keiko; Eom, Tae-Yeon; Cowles, Martis; Mapp, Tavien; Taylor, Robin; Anton, E S

    2017-08-15

    Adenomatous polyposis coli (APC) regulates the activity of β-catenin, an integral component of Wnt signaling. However, the selective role of the APC-β-catenin pathway in cerebral cortical development is unknown. Here we genetically dissected the relative contributions of APC-regulated β-catenin signaling in cortical progenitor development, a necessary early step in cerebral cortical formation. Radial progenitor-specific inactivation of the APC-β-catenin pathway indicates that the maintenance of appropriate β-catenin-mediated Wnt tone is necessary for the orderly differentiation of cortical progenitors and the resultant formation of the cerebral cortex. APC deletion deregulates β-catenin, leads to high Wnt tone, and disrupts Notch1 signaling and primary cilium maintenance necessary for radial progenitor functions. β-Catenin deregulation directly disrupts cilium maintenance and signaling via Tulp3, essential for intraflagellar transport of ciliary signaling receptors. Surprisingly, deletion of β-catenin or inhibition of β-catenin activity in APC-null progenitors rescues the APC-null phenotype. These results reveal that APC-regulated β-catenin activity in cortical progenitors sets the appropriate Wnt tone necessary for normal cerebral cortical development. © 2017 Nakagawa et al.; Published by Cold Spring Harbor Laboratory Press.

  13. APC sets the Wnt tone necessary for cerebral cortical progenitor development

    PubMed Central

    Nakagawa, Naoki; Li, Jingjun; Yabuno-Nakagawa, Keiko; Eom, Tae-Yeon; Cowles, Martis; Mapp, Tavien; Taylor, Robin; Anton, E.S.

    2017-01-01

    Adenomatous polyposis coli (APC) regulates the activity of β-catenin, an integral component of Wnt signaling. However, the selective role of the APC–β-catenin pathway in cerebral cortical development is unknown. Here we genetically dissected the relative contributions of APC-regulated β-catenin signaling in cortical progenitor development, a necessary early step in cerebral cortical formation. Radial progenitor-specific inactivation of the APC–β-catenin pathway indicates that the maintenance of appropriate β-catenin-mediated Wnt tone is necessary for the orderly differentiation of cortical progenitors and the resultant formation of the cerebral cortex. APC deletion deregulates β-catenin, leads to high Wnt tone, and disrupts Notch1 signaling and primary cilium maintenance necessary for radial progenitor functions. β-Catenin deregulation directly disrupts cilium maintenance and signaling via Tulp3, essential for intraflagellar transport of ciliary signaling receptors. Surprisingly, deletion of β-catenin or inhibition of β-catenin activity in APC-null progenitors rescues the APC-null phenotype. These results reveal that APC-regulated β-catenin activity in cortical progenitors sets the appropriate Wnt tone necessary for normal cerebral cortical development. PMID:28916710

  14. Gamma band oscillations: a key to understanding schizophrenia symptoms and neural circuit abnormalities.

    PubMed

    McNally, James M; McCarley, Robert W

    2016-05-01

    We review our current understanding of abnormal γ band oscillations in schizophrenia, their association with symptoms and the underlying cortical circuit abnormality, with a particular focus on the role of fast-spiking parvalbumin gamma-aminobutyric acid (GABA) neurons in the disease state. Clinical electrophysiological studies of schizophrenia patients and pharmacological models of the disorder show an increase in spontaneous γ band activity (not stimulus-evoked) measures. These findings provide a crucial link between preclinical and clinical work examining the role of γ band activity in schizophrenia. MRI-based experiments measuring cortical GABA provides evidence supporting impaired GABAergic neurotransmission in schizophrenia patients, which is correlated with γ band activity level. Several studies suggest that stimulation of the cortical circuitry, directly or via subcortical structures, has the potential to modulate cortical γ activity, and improve cognitive function. Abnormal γ band activity is observed in patients with schizophrenia and disease models in animals, and is suggested to underlie the psychosis and cognitive/perceptual deficits. Convergent evidence from both clinical and preclinical studies suggest the central factor in γ band abnormalities is impaired GABAergic neurotransmission, particularly in a subclass of neurons which express parvalbumin. Rescue of γ band abnormalities presents an intriguing option for therapeutic intervention.

  15. Gamma band oscillations: a key to understanding schizophrenia symptoms and neural circuit abnormalities

    PubMed Central

    McNally, James M.; McCarley, Robert W.

    2016-01-01

    Purpose of review We review our current understanding of abnormal γ band oscillations in schizophrenia, their association with symptoms and the underlying cortical circuit abnormality, with a particular focus on the role of fast-spiking parvalbumin gamma-aminobutyric acid (GABA) neurons in the disease state. Recent findings Clinical electrophysiological studies of schizophrenia patients and pharmacological models of the disorder show an increase in spontaneous γ band activity (not stimulus-evoked) measures. These findings provide a crucial link between preclinical and clinical work examining the role of γ band activity in schizophrenia. MRI-based experiments measuring cortical GABA provides evidence supporting impaired GABAergic neurotransmission in schizophrenia patients, which is correlated with γ band activity level. Several studies suggest that stimulation of the cortical circuitry, directly or via subcortical structures, has the potential to modulate cortical γ activity, and improve cognitive function. Summary Abnormal γ band activity is observed in patients with schizophrenia and disease models in animals, and is suggested to underlie the psychosis and cognitive/perceptual deficits. Convergent evidence from both clinical and preclinical studies suggest the central factor in γ band abnormalities is impaired GABAergic neurotransmission, particularly in a subclass of neurons which express parvalbumin. Rescue of γ band abnormalities presents an intriguing option for therapeutic intervention. PMID:26900672

  16. Preliminary Findings Show Maternal Hypothyroidism May Contribute to Abnormal Cortical Morphology in Offspring

    PubMed Central

    Lischinsky, Julieta E.; Skocic, Jovanka; Clairman, Hayyah; Rovet, Joanne

    2016-01-01

    In rodents, insufficient thyroid hormone (TH) gestationally has adverse effects on cerebral cortex development. Comparable studies of humans examining how TH insufficiency affects cortical morphology are limited to children with congenital hypothyroidism or offspring of hypothyroxinemic women; effects on cortex of children born to women with clinically diagnosed hypothyroidism are not known. We studied archived MRI scans from 22 children aged 10–12 years born to women treated for preexisting or de novo hypothyroidism in pregnancy (HYPO) and 24 similar age and sex controls from euthyroid women. FreeSurfer Image Analysis Suite software was used to measure cortical thickness (CT) and a vertex-based approach served to compare HYPO versus control groups and Severe versus Mild HYPO subgroups as well as to perform regression analyses examining effects of trimester-specific maternal TSH on CT. Results showed that relative to controls, HYPO had multiple regions of both cortical thinning and thickening, which differed for left and right hemispheres. In HYPO, thinning was confined to medial and mid-lateral regions of each hemisphere and thickening to superior regions (primarily frontal) of the left hemisphere and inferior regions (particularly occipital and temporal) of the right. The Severe HYPO subgroup showed more thinning than Mild in frontal and temporal regions and more thickening in bilateral posterior and frontal regions. Maternal TSH values predicted degree of thinning and thickening within multiple brain regions, with the pattern and direction of correlations differing by trimester. Notably, some correlations remained when cases born to women with severe hypothyroidism were removed from the analyses, suggesting that mild variations of maternal TH may permanently affect offspring cortex. We conclude that maternal hypothyroidism during pregnancy has long-lasting manifestations on the cortical morphology of their offspring with specific effects reflecting both

  17. The evolution of cortical development: the synapsid-diapsid divergence.

    PubMed

    Goffinet, Andre M

    2017-11-15

    The cerebral cortex covers the rostral part of the brain and, in higher mammals and particularly humans, plays a key role in cognition and consciousness. It is populated with neuronal cell bodies distributed in radially organized layers. Understanding the common and lineage-specific molecular mechanisms that orchestrate cortical development and evolution are key issues in neurobiology. During evolution, the cortex appeared in stem amniotes and evolved divergently in two main branches of the phylogenetic tree: the synapsids (which led to present day mammals) and the diapsids (reptiles and birds). Comparative studies in organisms that belong to those two branches have identified some common principles of cortical development and organization that are possibly inherited from stem amniotes and regulated by similar molecular mechanisms. These comparisons have also highlighted certain essential features of mammalian cortices that are absent or different in diapsids and that probably evolved after the synapsid-diapsid divergence. Chief among these is the size and multi-laminar organization of the mammalian cortex, and the propensity to increase its area by folding. Here, I review recent data on cortical neurogenesis, neuronal migration and cortical layer formation and folding in this evolutionary perspective, and highlight important unanswered questions for future investigation. © 2017. Published by The Company of Biologists Ltd.

  18. Morphological and functional aspects of progenitors perturbed in cortical malformations

    PubMed Central

    Bizzotto, Sara; Francis, Fiona

    2015-01-01

    In this review, we discuss molecular and cellular mechanisms important for the function of neuronal progenitors during development, revealed by their perturbation in different cortical malformations. We focus on a class of neuronal progenitors, radial glial cells (RGCs), which are renowned for their unique morphological and behavioral characteristics, constituting a key element during the development of the mammalian cerebral cortex. We describe how the particular morphology of these cells is related to their roles in the orchestration of cortical development and their influence on other progenitor types and post-mitotic neurons. Important for disease mechanisms, we overview what is currently known about RGC cellular components, cytoskeletal mechanisms, signaling pathways and cell cycle characteristics, focusing on how defects lead to abnormal development and cortical malformation phenotypes. The multiple recent entry points from human genetics and animal models are contributing to our understanding of this important cell type. Combining data from phenotypes in the mouse reveals molecules which potentially act in common pathways. Going beyond this, we discuss future directions that may provide new data in this expanding area. PMID:25729350

  19. The maturation of cortical sleep rhythms and networks over early development.

    PubMed

    Chu, C J; Leahy, J; Pathmanathan, J; Kramer, M A; Cash, S S

    2014-07-01

    Although neuronal activity drives all aspects of cortical development, how human brain rhythms spontaneously mature remains an active area of research. We sought to systematically evaluate the emergence of human brain rhythms and functional cortical networks over early development. We examined cortical rhythms and coupling patterns from birth through adolescence in a large cohort of healthy children (n=384) using scalp electroencephalogram (EEG) in the sleep state. We found that the emergence of brain rhythms follows a stereotyped sequence over early development. In general, higher frequencies increase in prominence with striking regional specificity throughout development. The coordination of these rhythmic activities across brain regions follows a general pattern of maturation in which broadly distributed networks of low-frequency oscillations increase in density while networks of high frequency oscillations become sparser and more highly clustered. Our results indicate that a predictable program directs the development of key rhythmic components and physiological brain networks over early development. This work expands our knowledge of normal cortical development. The stereotyped neurophysiological processes observed at the level of rhythms and networks may provide a scaffolding to support critical periods of cognitive growth. Furthermore, these conserved patterns could provide a sensitive biomarker for cortical health across development. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Motor cortical hyperexcitability in idiopathic scoliosis: could focal dystonia be a subclinical etiological factor?

    PubMed Central

    Tormos, José María; Barrios, Carlos; Pascual-Leone, Alvaro

    2009-01-01

    The aetiology of idiopathic scoliosis (IS) remains unknown; however, there is a growing body of evidence suggesting that the spine deformity could be the expression of a subclinical nervous system disorder. A defective sensory input or an anomalous sensorimotor integration may lead to an abnormal postural tone and therefore the development of a spine deformity. Inhibition of the motor cortico-cortical excitability is abnormal in dystonia. Therefore, the study of cortico-cortical inhibition may shed some insight into the dystonia hypothesis regarding the pathophysiology of IS. Paired pulse transcranial magnetic stimulation was used to study cortico-cortical inhibition and facilitation in nine adolescents with IS, five teenagers with congenital scoliosis (CS) and eight healthy age-matched controls. The effect of a previous conditioning stimulus (80% intensity of resting motor threshold) on the amplitude of the motor-evoked potential induced by the test stimulus (120% of resting motor threshold) was examined at various interstimulus intervals (ISIs) in both abductor pollicis brevis muscles. The results of healthy adolescents and those with CS showed a marked inhibitory effect of the conditioning stimulus on the response to the test stimulus at interstimulus intervals shorter than 6 ms. These findings do not differ from those reported for normal adults. However, children with IS revealed an abnormally reduced cortico-cortical inhibition at the short ISIs. Cortico-cortical inhibition was practically normal on the side of the scoliotic convexity while it was significantly reduced on the side of the scoliotic concavity. In conclusion, these findings support the hypothesis that a dystonic dysfunction underlies in IS. Asymmetrical cortical hyperexcitability may play an important role in the pathogenesis of IS and represents an objective neurophysiological finding that could be used clinically. PMID:20033462

  1. Early development of synchrony in cortical activations in the human.

    PubMed

    Koolen, N; Dereymaeker, A; Räsänen, O; Jansen, K; Vervisch, J; Matic, V; Naulaers, G; De Vos, M; Van Huffel, S; Vanhatalo, S

    2016-05-13

    Early intermittent cortical activity is thought to play a crucial role in the growth of neuronal network development, and large scale brain networks are known to provide the basis for higher brain functions. Yet, the early development of the large scale synchrony in cortical activations is unknown. Here, we tested the hypothesis that the early intermittent cortical activations seen in the human scalp EEG show a clear developmental course during the last trimester of pregnancy, the period of intensive growth of cortico-cortical connections. We recorded scalp EEG from altogether 22 premature infants at post-menstrual age between 30 and 44 weeks, and the early cortical synchrony was quantified using recently introduced activation synchrony index (ASI). The developmental correlations of ASI were computed for individual EEG signals as well as anatomically and mathematically defined spatial subgroups. We report two main findings. First, we observed a robust and statistically significant increase in ASI in all cortical areas. Second, there were significant spatial gradients in the synchrony in fronto-occipital and left-to-right directions. These findings provide evidence that early cortical activity is increasingly synchronized across the neocortex. The ASI-based metrics introduced in our work allow direct translational comparison to in vivo animal models, as well as hold promise for implementation as a functional developmental biomarker in future research on human neonates. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture.

    PubMed

    Paşca, Anca M; Sloan, Steven A; Clarke, Laura E; Tian, Yuan; Makinson, Christopher D; Huber, Nina; Kim, Chul Hoon; Park, Jin-Young; O'Rourke, Nancy A; Nguyen, Khoa D; Smith, Stephen J; Huguenard, John R; Geschwind, Daniel H; Barres, Ben A; Paşca, Sergiu P

    2015-07-01

    The human cerebral cortex develops through an elaborate succession of cellular events that, when disrupted, can lead to neuropsychiatric disease. The ability to reprogram somatic cells into pluripotent cells that can be differentiated in vitro provides a unique opportunity to study normal and abnormal corticogenesis. Here, we present a simple and reproducible 3D culture approach for generating a laminated cerebral cortex-like structure, named human cortical spheroids (hCSs), from pluripotent stem cells. hCSs contain neurons from both deep and superficial cortical layers and map transcriptionally to in vivo fetal development. These neurons are electrophysiologically mature, display spontaneous activity, are surrounded by nonreactive astrocytes and form functional synapses. Experiments in acute hCS slices demonstrate that cortical neurons participate in network activity and produce complex synaptic events. These 3D cultures should allow a detailed interrogation of human cortical development, function and disease, and may prove a versatile platform for generating other neuronal and glial subtypes in vitro.

  3. Cortical thickness and folding deficits in conduct-disordered adolescents

    PubMed Central

    Hyatt, Christopher J.; Haney-Caron, Emily; Stevens, Michael C.

    2012-01-01

    Background Studies of pediatric conduct disorder (CD) have described frontal and temporal lobe structural abnormalities that parallel findings in antisocial adults. The purpose of this study was to examine previously unexplored cortical thickness and folding as markers for brain abnormalities in “pure CD”-diagnosed adolescents. Based on current fronto-temporal theories, we hypothesized that CD youth would have thinner cortex or less cortical folding in temporal and frontal lobes than control subjects. Methods We obtained T1-weighted brain structure images from n=24 control and n=19 CD participants aged 12–18 years, matched by overall gender and age. We measured group differences in cortical thickness and local gyrification index (regional cortical folding measure) using surface-based morphometry with clusterwise correction for multiple comparisons. Results CD participants, when compared with controls, showed both reduced cortical thickness and folding. Thinner cortex was located primarily in posterior brain regions, including left superior temporal and parietal lobes, temporoparietal junction and paracentral lobule, right superior temporal and parietal lobes, temporoparietal junction and precuneus. Folding deficits were located mainly in anterior brain regions and included left insula, ventro- and dorsomedial prefrontal, anterior cingulate and orbitofrontal cortices, temporal lobe, right superior frontal and parietal lobes and paracentral lobule. Conclusions Our findings generally agree with previous CD volumetric studies, but here show the unique contributions of cortical thickness and folding to gray matter reductions in pure CD in different brain regions. PMID:22209639

  4. Reduced Cortical Thickness in Mental Retardation

    PubMed Central

    Wang, Chao; Wang, Jiaojian; Zhang, Yun; Yu, Chunshui; Jiang, Tianzi

    2011-01-01

    Mental retardation is a developmental disorder associated with impaired cognitive functioning and deficits in adaptive behaviors. Many studies have addressed white matter abnormalities in patients with mental retardation, while the changes of the cerebral cortex have been studied to a lesser extent. Quantitative analysis of cortical integrity using cortical thickness measurement may provide new insights into the gray matter pathology. In this study, cortical thickness was compared between 13 patients with mental retardation and 26 demographically matched healthy controls. We found that patients with mental retardation had significantly reduced cortical thickness in multiple brain regions compared with healthy controls. These regions include the bilateral lingual gyrus, the bilateral fusiform gyrus, the bilateral parahippocampal gyrus, the bilateral temporal pole, the left inferior temporal gyrus, the right lateral orbitofrontal cortex and the right precentral gyrus. The observed cortical thickness reductions might be the anatomical substrates for the impaired cognitive functioning and deficits in adaptive behaviors in patients with mental retardation. Cortical thickness measurement might provide a sensitive prospective surrogate marker for clinical trials of neuroprotective medications. PMID:22216343

  5. Ultrasound evaluation of cortical brain development in fetuses with intrauterine growth restriction.

    PubMed

    Businelli, Caterina; de Wit, Charlotte; Visser, Gerard H A; Pistorius, Lourens R

    2014-09-10

    Abstract Objective: We evaluated the ultrasound appearance of brain volume and cortical development in fetuses with early growth restriction and placental insufficiency. Methods: We examined a cohort of 20 fetuses with severe intrauterine growth restriction (IUGR) and evidence of placental insufficiency by three-dimensional (3D) ultrasound between 24 and 34 weeks. We graded cortical development and measured the supratentorial intracranial volume. The cortical grading and volume were compared to data obtained from a reference population of 28 adequate for gestational age (AGA) fetuses. Results: Ultrasound examinations were performed in 20 fetuses with IUGR. The biometry and brain volume were significantly reduced in IUGR fetuses. There was evidence of accelerated cortical development in IUGR fetuses. Conclusion: This study confirms that the smaller brain volume in IUGR fetuses, with normal or accelerated cortical maturation as previously depicted with postnatal MRI examination, can be demonstrated by prenatal 3D ultrasound.

  6. Development of cortical asymmetry in typically developing children and its disruption in attention-deficit/hyperactivity disorder.

    PubMed

    Shaw, Philip; Lalonde, Francois; Lepage, Claude; Rabin, Cara; Eckstrand, Kristen; Sharp, Wendy; Greenstein, Deanna; Evans, Alan; Giedd, J N; Rapoport, Judith

    2009-08-01

    Just as typical development of anatomical asymmetries in the human brain has been linked with normal lateralization of motor and cognitive functions, disruption of asymmetry has been implicated in the pathogenesis of neurodevelopmental disorders such as attention-deficit/hyperactivity disorder (ADHD). No study has examined the development of cortical asymmetry using longitudinal neuroanatomical data. To delineate the development of cortical asymmetry in children with and without ADHD. Longitudinal study. Government Clinical Research Institute. A total of 218 children with ADHD and 358 typically developing children, from whom 1133 neuroanatomical magnetic resonance images were acquired prospectively. Cortical thickness was estimated at 40 962 homologous points in the left and right hemispheres, and the trajectory of change in asymmetry was defined using mixed-model regression. In right-handed typically developing individuals, a mean (SE) increase in the relative thickness of the right orbitofrontal and inferior frontal cortex with age of 0.011 (0.0018) mm per year (t(337) = 6.2, P < .001) was balanced against a relative left-hemispheric increase in the occipital cortical regions of 0.013 (0.0015) mm per year (t(337) = 8.1, P < .001). Age-related change in asymmetry in non-right-handed typically developing individuals was less extensive and was localized to different cortical regions. In ADHD, the posterior component of this evolving asymmetry was intact, but the prefrontal component was lost. These findings explain the way that, in typical development, the increased dimensions of the right frontal and left occipital cortical regions emerge in adulthood from the reversed pattern of childhood cortical asymmetries. Loss of the prefrontal component of this evolving asymmetry in ADHD is compatible with disruption of prefrontal function in the disorder and demonstrates the way that disruption of typical processes of asymmetry can inform our understanding of

  7. Cortical parvalbumin GABAergic deficits with α7 nicotinic acetylcholine receptor deletion: Implications for schizophrenia

    PubMed Central

    Lin, Hong; Hsu, Fu-Chun; Baumann, Bailey H.; Coulter, Douglas A.; Anderson, Stewart A.; Lynch, David R.

    2014-01-01

    Dysfunction of cortical parvalbumin (PV)-containing GABAergic interneurons has been implicated in cognitive deficits of schizophrenia. In humans microdeletion of the CHRNA7 (α7 nicotinic acetylcholine receptor, nAChR) gene is associated with cortical dysfunction in a broad spectrum of neurodevelopmental and neuropsychiatric disorders including schizophrenia while in mice similar deletion causes analogous abnormalities including impaired attention, working-memory and learning. However, the pathophysiological roles of α7 nAChRs in cortical PV GABAergic development remain largely uncharacterized. In both in vivo and in vitro models, we identify here that deletion of the α7 nAChR gene in mice impairs cortical PV GABAergic development and recapitulates many of the characteristic neurochemical deficits in PV-positive GABAergic interneurons found in schizophrenia. α7 nAChR null mice had decreased cortical levels of GABAergic markers including PV, Glutamic Acid Decarboxylase 65/67 (GAD65/67) and the α1 subunit of GABAA receptors, particularly reductions of PV and GAD67 levels in cortical PV-positive interneurons during late postnatal life and adulthood. Cortical GABAergic synaptic deficits were identified in the prefrontal cortex of α7 nAChR null mice and α7 nAChR null cortical cultures. Similar disruptions in development of PV-positive GABAergic interneurons and perisomatic synapses were found in cortical cultures lacking α7 nAChRs. Moreover, NMDA receptor expression was reduced in GABAergic interneurons, implicating NMDA receptor hypofunction in GABAergic deficits in α7 nAChR null mice. Our findings thus demonstrate impaired cortical PV GABAergic development and multiple characteristic neurochemical deficits reminiscent of schizophrenia in cortical PV-positive interneurons in α7 nAChR gene deletion models. This implicates crucial roles of α7 nAChRs in cortical PV GABAergic development and dysfunction in schizophrenia and other neuropsychiatric disorders. PMID

  8. Role of Microglia Disturbances and Immune-Related Marker Abnormalities in Cortical Circuitry Dysfunction in Schizophrenia

    PubMed Central

    Volk, David W.

    2017-01-01

    Studies of genetics, serum cytokines, and autoimmune illnesses suggest that immune-related abnormalities are involved in the disease process of schizophrenia. Furthermore, direct evidence of cortical immune activation, including markedly elevated levels of many immune-related markers, have been reported in the prefrontal cortex in multiple cohorts of schizophrenia subjects. Within the prefrontal cortex in schizophrenia, deficits in the basilar dendritic spines of layer 3 pyramidal neurons and disturbances in inhibitory inputs to pyramidal neurons have also been commonly reported. Interestingly, microglia, the resident immune-related cells of the brain, also regulate excitatory and inhibitory input to pyramidal neurons. Consequently, in this review, we describe the cytological and molecular evidence of immune activation that has been reported in the brains of individuals with schizophrenia and the potential links between these immune-related disturbances with previously reported disturbances in pyramidal and inhibitory neurons in the disorder. Finally, we discuss the role that activated microglia may play in connecting these observations and as potential therapeutic treatment targets in schizophrenia. PMID:28007586

  9. Catechol-o-methyl transferase (COMT) val158met polymorphism and adolescent cortical development in patients with childhood-onset schizophrenia, their non-psychotic siblings, and healthy controls

    PubMed Central

    Raznahan, Armin; Greenstein, Deanna; Lee, Yohan; Long, Robert; Clasen, Liv; Gochman, Pete; Addington, Anjene; Giedd, Jay N.; Rapoport, Judith L.; Gogtay, Nitin

    2012-01-01

    Non-psychotic individuals at increased risk for schizophrenia show alterations in fronto-striatal dopamine signaling and cortical gray matter maturation reminiscent of those seen in schizophrenia. It remains unclear however if variations in dopamine signaling influence rates of structural cortical maturation in typically developing individuals, and whether such influences are disrupted in patients with schizophrenia and their non-psychotic siblings. We sought to address these issues by relating a functional Val→Met polymorphism within the gene encoding catechol-o-methyltransferase (COMT)—a key enzymatic regulator of cortical dopamine levels—to longitudinal structural neuroimaging measures of cortical gray matter thickness. We included a total of 792 magnetic resonance imaging brain scans, acquired between ages 9 and 22 years from patients with childhood-onset schizophrenia (COS), their non-psychotic full siblings, and matched healthy controls. Whereas greater Val allele dose (which confers enhanced dopamine catabolism and is proposed to aggravate cortical deficits in schizophrenia) accelerated adolescent cortical thinning in both schizophrenia probands and their siblings, it attenuated cortical thinning in healthy controls. This similarity between COS patients and their siblings was accompanied by differences between the two groups in the timing and spatial distribution of disrupted COMT influences on cortical maturation. Consequently, whereas greater Val “dose” conferred persistent dorsolateral prefrontal cortical deficits amongst affected probands by adulthood, cortical thickness differences associated with varying Val dose in non-psychotic siblings resolved over the age-range studied. These findings suggest that cortical abnormalities in pedigrees affected by schizophrenia may be contributed to by a disruption of dopaminergic infleunces on cortical maturation. PMID:21620981

  10. Dynamic patterns of cortical expansion during folding of the preterm human brain.

    PubMed

    Garcia, Kara E; Robinson, Emma C; Alexopoulos, Dimitrios; Dierker, Donna L; Glasser, Matthew F; Coalson, Timothy S; Ortinau, Cynthia M; Rueckert, Daniel; Taber, Larry A; Van Essen, David C; Rogers, Cynthia E; Smyser, Christopher D; Bayly, Philip V

    2018-03-20

    During the third trimester of human brain development, the cerebral cortex undergoes dramatic surface expansion and folding. Physical models suggest that relatively rapid growth of the cortical gray matter helps drive this folding, and structural data suggest that growth may vary in both space (by region on the cortical surface) and time. In this study, we propose a unique method to estimate local growth from sequential cortical reconstructions. Using anatomically constrained multimodal surface matching (aMSM), we obtain accurate, physically guided point correspondence between younger and older cortical reconstructions of the same individual. From each pair of surfaces, we calculate continuous, smooth maps of cortical expansion with unprecedented precision. By considering 30 preterm infants scanned two to four times during the period of rapid cortical expansion (28-38 wk postmenstrual age), we observe significant regional differences in growth across the cortical surface that are consistent with the emergence of new folds. Furthermore, these growth patterns shift over the course of development, with noninjured subjects following a highly consistent trajectory. This information provides a detailed picture of dynamic changes in cortical growth, connecting what is known about patterns of development at the microscopic (cellular) and macroscopic (folding) scales. Since our method provides specific growth maps for individual brains, we are also able to detect alterations due to injury. This fully automated surface analysis, based on tools freely available to the brain-mapping community, may also serve as a useful approach for future studies of abnormal growth due to genetic disorders, injury, or other environmental variables.

  11. Abnormal Cortical Plasticity in Youth with Autism Spectrum Disorder: A Transcranial Magnetic Stimulation Case–Control Pilot Study

    PubMed Central

    Gilbert, Donald L.; Erickson, Craig A.; Horn, Paul S.; Shaffer, Rebecca C.; Wink, Logan K.; Laue, Cameron S.; Wu, Steve W.

    2016-01-01

    Abstract Objective: This case–control study investigated the use of a low-intensity repetitive transcranial magnetic stimulation (rTMS) protocol to measure motor cortex (M1) plasticity in youth with autism spectrum disorder (ASD) compared with typically developing children (TDC). We hypothesized that impairments in long-term potentiation-like properties represent a neurophysiological biomarker of abnormal cortical function in ASD. Methods: We studied youth with ASD aged 11–18 years and matched controls (TDC). Intermittent theta burst stimulation (iTBS) was delivered to the dominant M1 at an intensity of 70% of resting motor threshold. Suprathreshold single-pulse TMS was performed to compare amplitudes of motor-evoked potentials (MEP) measured from surface electromyography electrodes on a target muscle before (20 pulses) and after (10 pulses/time point) iTBS at predefined timepoints (up to 30 minutes) to measure any potentiation effects. A linear mixed model was used to examine group differences in MEP amplitudes over time following iTBS. Results: Nine youth with ASD (mean age 15.6; 7 males; 6 right-hand dominant) and 9 TDC (mean age 14.5; 5 males; 9 right-hand dominant) participated. All subjects tolerated the procedure well. Both groups had a mean increase in excitability after iTBS for 30 minutes; however, the time course of excitability changes differed (F9,144 = 2.05; p = 0.038). Post-hoc testing identified a significant decrease in amplitude of the ASD group at 20 minutes following iTBS compared with the TDC after correcting for multiple comparisons. Conclusion: In this study, we demonstrate early evidence for a potential physiological biomarker of cortical plasticity in youth with ASD using a rapid low-intensity rTMS protocol with a discriminate measure at 20 minutes following stimulation. The procedure was well tolerated by all 18 participants. Future work will include modification of the protocol to improve the ability to distinguish subtypes of

  12. Abnormal Cortical Plasticity in Youth with Autism Spectrum Disorder: A Transcranial Magnetic Stimulation Case-Control Pilot Study.

    PubMed

    Pedapati, Ernest V; Gilbert, Donald L; Erickson, Craig A; Horn, Paul S; Shaffer, Rebecca C; Wink, Logan K; Laue, Cameron S; Wu, Steve W

    2016-09-01

    This case-control study investigated the use of a low-intensity repetitive transcranial magnetic stimulation (rTMS) protocol to measure motor cortex (M1) plasticity in youth with autism spectrum disorder (ASD) compared with typically developing children (TDC). We hypothesized that impairments in long-term potentiation-like properties represent a neurophysiological biomarker of abnormal cortical function in ASD. We studied youth with ASD aged 11-18 years and matched controls (TDC). Intermittent theta burst stimulation (iTBS) was delivered to the dominant M1 at an intensity of 70% of resting motor threshold. Suprathreshold single-pulse TMS was performed to compare amplitudes of motor-evoked potentials (MEP) measured from surface electromyography electrodes on a target muscle before (20 pulses) and after (10 pulses/time point) iTBS at predefined timepoints (up to 30 minutes) to measure any potentiation effects. A linear mixed model was used to examine group differences in MEP amplitudes over time following iTBS. Nine youth with ASD (mean age 15.6; 7 males; 6 right-hand dominant) and 9 TDC (mean age 14.5; 5 males; 9 right-hand dominant) participated. All subjects tolerated the procedure well. Both groups had a mean increase in excitability after iTBS for 30 minutes; however, the time course of excitability changes differed (F9,144 = 2.05; p = 0.038). Post-hoc testing identified a significant decrease in amplitude of the ASD group at 20 minutes following iTBS compared with the TDC after correcting for multiple comparisons. In this study, we demonstrate early evidence for a potential physiological biomarker of cortical plasticity in youth with ASD using a rapid low-intensity rTMS protocol with a discriminate measure at 20 minutes following stimulation. The procedure was well tolerated by all 18 participants. Future work will include modification of the protocol to improve the ability to distinguish subtypes of ASD based on behavioral and cognitive testing.

  13. The Bat as a New Model of Cortical Development.

    PubMed

    Martínez-Cerdeño, Verónica; Camacho, Jasmin; Ariza, Jeanelle; Rogers, Hailee; Horton-Sparks, Kayla; Kreutz, Anna; Behringer, Richard; Rasweiler, John J; Noctor, Stephen C

    2017-11-09

    The organization of the mammalian cerebral cortex shares fundamental features across species. However, while the radial thickness of grey matter varies within one order of magnitude, the tangential spread of the cortical sheet varies by orders of magnitude across species. A broader sample of model species may provide additional clues for understanding mechanisms that drive cortical expansion. Here, we introduce the bat Carollia perspicillata as a new model species. The brain of C. perspicillata is similar in size to that of mouse but has a cortical neurogenic period at least 5 times longer than mouse, and nearly as long as that of the rhesus macaque, whose brain is 100 times larger. We describe the development of laminar and regional structures, neural precursor cell identity and distribution, immune cell distribution, and a novel population of Tbr2+ cells in the caudal ganglionic eminence of the developing neocortex of C. perspicillata. Our data indicate that unique mechanisms guide bat cortical development, particularly concerning cell cycle length. The bat model provides new perspective on the evolution of developmental programs that regulate neurogenesis in mammalian cerebral cortex, and offers insight into mechanisms that contribute to tangential expansion and gyri formation in the cerebral cortex. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Similar cortical but not subcortical gray matter abnormalities in women with posttraumatic stress disorder with versus without dissociative identity disorder.

    PubMed

    Chalavi, Sima; Vissia, Eline M; Giesen, Mechteld E; Nijenhuis, Ellert R S; Draijer, Nel; Barker, Gareth J; Veltman, Dick J; Reinders, Antje A T S

    2015-03-30

    Neuroanatomical evidence on the relationship between posttraumatic stress disorder (PTSD) and dissociative disorders is still lacking. We acquired brain structural magnetic resonance imaging (MRI) scans from 17 patients with dissociative identity disorder (DID) and co-morbid PTSD (DID-PTSD) and 16 patients with PTSD but without DID (PTSD-only), and 32 healthy controls (HC), and compared their whole-brain cortical and subcortical gray matter (GM) morphological measurements. Associations between GM measurements and severity of dissociative and depersonalization/derealization symptoms or lifetime traumatizing events were evaluated in the patient groups. DID-PTSD and PTSD-only patients, compared with HC, had similarly smaller cortical GM volumes of the whole brain and of frontal, temporal and insular cortices. DID-PTSD patients additionally showed smaller hippocampal and larger pallidum volumes relative to HC, and larger putamen and pallidum volumes relative to PTSD-only. Severity of lifetime traumatizing events and volume of the hippocampus were negatively correlated. Severity of dissociative and depersonalization/derealization symptoms correlated positively with volume of the putamen and pallidum, and negatively with volume of the inferior parietal cortex. Shared abnormal brain structures in DID-PTSD and PTSD-only, small hippocampal volume in DID-PTSD, more severe lifetime traumatizing events in DID-PTSD compared with PTSD-only, and negative correlations between lifetime traumatizing events and hippocampal volume suggest a trauma-related etiology for DID. Our results provide neurobiological evidence for the side-by-side nosological classification of PTSD and DID in the DSM-5. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Unusual cortical bone features in a patient with gorlin-goltz syndrome: a case report.

    PubMed

    Tarnoki, Adam Domonkos; Tarnoki, David Laszlo; Klara Kiss, Katalin; Bata, Pal; Karlinger, Kinga; Banvolgyi, Andras; Wikonkal, Norbert; Berczi, Viktor

    2014-12-01

    Gorlin-Goltz syndrome (GGS) consists of ectodermal and mesodermal abnormalities. In this case report we will investigate lower extremity lesions of GGS. A 52-year-old man with GGS underwent skull and lower extremity computer tomography. Radiographic findings included cervical spondylosis, transparent areas with slurred margins, and cerebral falx calcification. Tibial and fibular specific cortical lesions (thin cortical and subcortical cystic lesions) were seen on the radiography, which was confirmed by computer tomography. To our knowledge, this is the first report of such a long lesion of the tibia and fibula. Specific lower extremity cortical lesions (thin cortical and subcortical cystic lesions) may occur and these abnormalities can be found on radiography or CT, which are most probably attributed to retinoid treatment.

  16. Unusual Cortical Bone Features in a Patient with Gorlin-Goltz Syndrome: A Case Report

    PubMed Central

    Tarnoki, Adam Domonkos; Tarnoki, David Laszlo; Klara Kiss, Katalin; Bata, Pal; Karlinger, Kinga; Banvolgyi, Andras; Wikonkal, Norbert; Berczi, Viktor

    2014-01-01

    Gorlin-Goltz syndrome (GGS) consists of ectodermal and mesodermal abnormalities. In this case report we will investigate lower extremity lesions of GGS. A 52-year-old man with GGS underwent skull and lower extremity computer tomography. Radiographic findings included cervical spondylosis, transparent areas with slurred margins, and cerebral falx calcification. Tibial and fibular specific cortical lesions (thin cortical and subcortical cystic lesions) were seen on the radiography, which was confirmed by computer tomography. To our knowledge, this is the first report of such a long lesion of the tibia and fibula. Specific lower extremity cortical lesions (thin cortical and subcortical cystic lesions) may occur and these abnormalities can be found on radiography or CT, which are most probably attributed to retinoid treatment. PMID:25780550

  17. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group

    PubMed Central

    Schmaal, L; Hibar, D P; Sämann, P G; Hall, G B; Baune, B T; Jahanshad, N; Cheung, J W; van Erp, T G M; Bos, D; Ikram, M A; Vernooij, M W; Niessen, W J; Tiemeier, H; Hofman, A; Wittfeld, K; Grabe, H J; Janowitz, D; Bülow, R; Selonke, M; Völzke, H; Grotegerd, D; Dannlowski, U; Arolt, V; Opel, N; Heindel, W; Kugel, H; Hoehn, D; Czisch, M; Couvy-Duchesne, B; Rentería, M E; Strike, L T; Wright, M J; Mills, N T; de Zubicaray, G I; McMahon, K L; Medland, S E; Martin, N G; Gillespie, N A; Goya-Maldonado, R; Gruber, O; Krämer, B; Hatton, S N; Lagopoulos, J; Hickie, I B; Frodl, T; Carballedo, A; Frey, E M; van Velzen, L S; Penninx, B W J H; van Tol, M-J; van der Wee, N J; Davey, C G; Harrison, B J; Mwangi, B; Cao, B; Soares, J C; Veer, I M; Walter, H; Schoepf, D; Zurowski, B; Konrad, C; Schramm, E; Normann, C; Schnell, K; Sacchet, M D; Gotlib, I H; MacQueen, G M; Godlewska, B R; Nickson, T; McIntosh, A M; Papmeyer, M; Whalley, H C; Hall, J; Sussmann, J E; Li, M; Walter, M; Aftanas, L; Brack, I; Bokhan, N A; Thompson, P M; Veltman, D J

    2017-01-01

    The neuro-anatomical substrates of major depressive disorder (MDD) are still not well understood, despite many neuroimaging studies over the past few decades. Here we present the largest ever worldwide study by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Major Depressive Disorder Working Group on cortical structural alterations in MDD. Structural T1-weighted brain magnetic resonance imaging (MRI) scans from 2148 MDD patients and 7957 healthy controls were analysed with harmonized protocols at 20 sites around the world. To detect consistent effects of MDD and its modulators on cortical thickness and surface area estimates derived from MRI, statistical effects from sites were meta-analysed separately for adults and adolescents. Adults with MDD had thinner cortical gray matter than controls in the orbitofrontal cortex (OFC), anterior and posterior cingulate, insula and temporal lobes (Cohen's d effect sizes: −0.10 to −0.14). These effects were most pronounced in first episode and adult-onset patients (>21 years). Compared to matched controls, adolescents with MDD had lower total surface area (but no differences in cortical thickness) and regional reductions in frontal regions (medial OFC and superior frontal gyrus) and primary and higher-order visual, somatosensory and motor areas (d: −0.26 to −0.57). The strongest effects were found in recurrent adolescent patients. This highly powered global effort to identify consistent brain abnormalities showed widespread cortical alterations in MDD patients as compared to controls and suggests that MDD may impact brain structure in a highly dynamic way, with different patterns of alterations at different stages of life. PMID:27137745

  18. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group.

    PubMed

    Schmaal, L; Hibar, D P; Sämann, P G; Hall, G B; Baune, B T; Jahanshad, N; Cheung, J W; van Erp, T G M; Bos, D; Ikram, M A; Vernooij, M W; Niessen, W J; Tiemeier, H; Hofman, A; Wittfeld, K; Grabe, H J; Janowitz, D; Bülow, R; Selonke, M; Völzke, H; Grotegerd, D; Dannlowski, U; Arolt, V; Opel, N; Heindel, W; Kugel, H; Hoehn, D; Czisch, M; Couvy-Duchesne, B; Rentería, M E; Strike, L T; Wright, M J; Mills, N T; de Zubicaray, G I; McMahon, K L; Medland, S E; Martin, N G; Gillespie, N A; Goya-Maldonado, R; Gruber, O; Krämer, B; Hatton, S N; Lagopoulos, J; Hickie, I B; Frodl, T; Carballedo, A; Frey, E M; van Velzen, L S; Penninx, B W J H; van Tol, M-J; van der Wee, N J; Davey, C G; Harrison, B J; Mwangi, B; Cao, B; Soares, J C; Veer, I M; Walter, H; Schoepf, D; Zurowski, B; Konrad, C; Schramm, E; Normann, C; Schnell, K; Sacchet, M D; Gotlib, I H; MacQueen, G M; Godlewska, B R; Nickson, T; McIntosh, A M; Papmeyer, M; Whalley, H C; Hall, J; Sussmann, J E; Li, M; Walter, M; Aftanas, L; Brack, I; Bokhan, N A; Thompson, P M; Veltman, D J

    2017-06-01

    The neuro-anatomical substrates of major depressive disorder (MDD) are still not well understood, despite many neuroimaging studies over the past few decades. Here we present the largest ever worldwide study by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Major Depressive Disorder Working Group on cortical structural alterations in MDD. Structural T1-weighted brain magnetic resonance imaging (MRI) scans from 2148 MDD patients and 7957 healthy controls were analysed with harmonized protocols at 20 sites around the world. To detect consistent effects of MDD and its modulators on cortical thickness and surface area estimates derived from MRI, statistical effects from sites were meta-analysed separately for adults and adolescents. Adults with MDD had thinner cortical gray matter than controls in the orbitofrontal cortex (OFC), anterior and posterior cingulate, insula and temporal lobes (Cohen's d effect sizes: -0.10 to -0.14). These effects were most pronounced in first episode and adult-onset patients (>21 years). Compared to matched controls, adolescents with MDD had lower total surface area (but no differences in cortical thickness) and regional reductions in frontal regions (medial OFC and superior frontal gyrus) and primary and higher-order visual, somatosensory and motor areas (d: -0.26 to -0.57). The strongest effects were found in recurrent adolescent patients. This highly powered global effort to identify consistent brain abnormalities showed widespread cortical alterations in MDD patients as compared to controls and suggests that MDD may impact brain structure in a highly dynamic way, with different patterns of alterations at different stages of life.

  19. A family affair: brain abnormalities in siblings of patients with schizophrenia.

    PubMed

    Moran, Marcel E; Hulshoff Pol, Hilleke; Gogtay, Nitin

    2013-11-01

    Schizophrenia is a severe mental disorder that has a strong genetic basis. Converging evidence suggests that schizophrenia is a progressive neurodevelopmental disorder, with earlier onset cases resulting in more profound brain abnormalities. Siblings of patients with schizophrenia provide an invaluable resource for differentiating between trait and state markers, thus highlighting possible endophenotypes for ongoing research. However, findings from sibling studies have not been systematically put together in a coherent story across the broader age span. We review here the cortical grey matter abnormalities in siblings of patients with schizophrenia from childhood to adulthood, by reviewing sibling studies from both childhood-onset schizophrenia, and the more common adult-onset schizophrenia. When reviewed together, studies suggest that siblings of patients with schizophrenia display significant brain abnormalities that highlight both similarities and differences between the adult and childhood populations, with shared developmental risk patterns, and segregating trajectories. Based on current research it appears that the cortical grey matter abnormalities in siblings are likely to be an age-dependent endophenotype, which normalize by the typical age of onset of schizophrenia unless there has been more genetic or symptom burdening. With increased genetic burdening (e.g. discordant twins of patients) the grey matter abnormalities in (twin) siblings are progressive in adulthood. This synthesis of the literature clarifies the importance of brain plasticity in the pathophysiology of the illness, indicating that probands may lack protective factors critical for healthy development.

  20. A family affair: brain abnormalities in siblings of patients with schizophrenia

    PubMed Central

    Hulshoff Pol, Hilleke; Gogtay, Nitin

    2013-01-01

    Schizophrenia is a severe mental disorder that has a strong genetic basis. Converging evidence suggests that schizophrenia is a progressive neurodevelopmental disorder, with earlier onset cases resulting in more profound brain abnormalities. Siblings of patients with schizophrenia provide an invaluable resource for differentiating between trait and state markers, thus highlighting possible endophenotypes for ongoing research. However, findings from sibling studies have not been systematically put together in a coherent story across the broader age span. We review here the cortical grey matter abnormalities in siblings of patients with schizophrenia from childhood to adulthood, by reviewing sibling studies from both childhood-onset schizophrenia, and the more common adult-onset schizophrenia. When reviewed together, studies suggest that siblings of patients with schizophrenia display significant brain abnormalities that highlight both similarities and differences between the adult and childhood populations, with shared developmental risk patterns, and segregating trajectories. Based on current research it appears that the cortical grey matter abnormalities in siblings are likely to be an age-dependent endophenotype, which normalize by the typical age of onset of schizophrenia unless there has been more genetic or symptom burdening. With increased genetic burdening (e.g. discordant twins of patients) the grey matter abnormalities in (twin) siblings are progressive in adulthood. This synthesis of the literature clarifies the importance of brain plasticity in the pathophysiology of the illness, indicating that probands may lack protective factors critical for healthy development. PMID:23698280

  1. Low-Intensity Repetitive Transcranial Magnetic Stimulation Improves Abnormal Visual Cortical Circuit Topography and Upregulates BDNF in Mice

    PubMed Central

    Makowiecki, Kalina; Harvey, Alan R.; Sherrard, Rachel M.

    2014-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is increasingly used as a treatment for neurological and psychiatric disorders. Although the induced field is focused on a target region during rTMS, adjacent areas also receive stimulation at a lower intensity and the contribution of this perifocal stimulation to network-wide effects is poorly defined. Here, we examined low-intensity rTMS (LI-rTMS)-induced changes on a model neural network using the visual systems of normal (C57Bl/6J wild-type, n = 22) and ephrin-A2A5−/− (n = 22) mice, the latter possessing visuotopic anomalies. Mice were treated with LI-rTMS or sham (handling control) daily for 14 d, then fluorojade and fluororuby were injected into visual cortex. The distribution of dorsal LGN (dLGN) neurons and corticotectal terminal zones (TZs) was mapped and disorder defined by comparing their actual location with that predicted by injection sites. In the afferent geniculocortical projection, LI-rTMS decreased the abnormally high dispersion of retrogradely labeled neurons in the dLGN of ephrin-A2A5−/− mice, indicating geniculocortical map refinement. In the corticotectal efferents, LI-rTMS improved topography of the most abnormal TZs in ephrin-A2A5−/− mice without altering topographically normal TZs. To investigate a possible molecular mechanism for LI-rTMS-induced structural plasticity, we measured brain derived neurotrophic factor (BDNF) in the visual cortex and superior colliculus after single and multiple stimulations. BDNF was upregulated after a single stimulation for all groups, but only sustained in the superior colliculus of ephrin-A2A5−/− mice. Our results show that LI-rTMS upregulates BDNF, promoting a plastic environment conducive to beneficial reorganization of abnormal cortical circuits, information that has important implications for clinical rTMS. PMID:25100609

  2. Transcranial magnetic stimulation reveals cortical hyperexcitability in episodic cluster headache.

    PubMed

    Cosentino, Guiseppe; Brighina, Filippo; Brancato, Sara; Valentino, Francesca; Indovino, Serena; Fierro, Brigida

    2015-01-01

    Evidence shows involvement of the cerebral cortex in the pathophysiology of cluster headache (CH). Here we investigated cortical excitability in episodic CH patients by using transcranial magnetic stimulation. In 25 patients with episodic CH and 13 healthy subjects we evaluated the motor cortical response to single-pulse (ie, motor threshold, input-output curves, cortical silent period) and paired-pulse (ie, intracortical facilitation, short intracortical inhibition) transcranial magnetic stimulation in both hemispheres. Thirteen patients were evaluated outside bout and the remaining 12 patients inside bout. Our results showed increased slope of the input-output curves after stimulation of both hemispheres in patients outside bout and in the hemisphere contralateral to the headache side in patients inside bout. Increased intracortical facilitation was observed in the hemisphere ipsilateral to the headache side in patients evaluated both outside and inside bout; reduced short intracortical inhibition was observed in patients inside bout ipsilateral to the side of pain. In conclusion, we provide evidence of increased cortical excitability in episodic CH both outside and inside bout, especially in the hemisphere ipsilateral to the side of headache attacks. Our results suggest that an abnormal regulation of cortical excitability could be involved in the pathophysiology of CH. We investigated cortical excitability in episodic cluster headache by using transcranial magnetic stimulation, providing evidence of cortical hyperexcitability in patients both inside and outside bout. We suggest that an abnormal state of cortical excitability could be involved in the pathophysiology of the disease. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  3. Altered behavior in experimental cortical dysplasia.

    PubMed

    Zhou, Fu-Wen; Rani, Asha; Martinez-Diaz, Hildabelis; Foster, Thomas C; Roper, Steven N

    2011-12-01

    Developmental delay and cognitive impairment are common comorbidities in people with epilepsy associated with malformations of cortical development (MCDs). We studied cognition and behavior in an animal model of diffuse cortical dysplasia (CD), in utero irradiation, using a battery of behavioral tests for neuromuscular and cognitive function. Fetal rats were exposed to 2.25 Gy external radiation on embryonic day 17 (E17). At 1 month of age they were tested using an open field task, a grip strength task, a grid walk task, inhibitory avoidance, an object recognition task, and the Morris water maze task. Rats with CD showed reduced nonlocomotor activity in the open field task and impaired motor coordination for grid walking but normal grip strength. They showed a reduced tendency to recognize novel objects and reduced retention in an inhibitory avoidance task. Water maze testing showed that learning and memory were impaired in irradiated rats for both cue discrimination and spatially oriented tasks. These results demonstrate significant deficits in cortex- and hippocampus-dependent cognitive functions associated with the diffuse abnormalities of cortical and hippocampal development that have been documented in this model. This study documents multimodal cognitive deficits associated with CD and can serve as the foundation for future investigations into the mechanisms of and possible therapeutic interventions for this problem. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.

  4. Altered cortical thickness and attentional deficits in adolescent girls and women with bulimia nervosa.

    PubMed

    Berner, Laura A; Stefan, Mihaela; Lee, Seonjoo; Wang, Zhishun; Terranova, Kate; Attia, Evelyn; Marsh, Rachel

    2018-05-01

    Frontostriatal and frontoparietal abnormalities likely contribute to deficits in control and attentional processes in individuals with bulimia nervosa and to the persistence of dysregulated eating across development. This study assessed these processes and cortical thickness in a large sample of adolescent girls and women with bulimia nervosa compared with healthy controls. We collected anatomical MRI data from adolescent girls and women (ages 12-38 yr) with full or subthreshold bulimia nervosa and age-matched healthy controls who also completed the Conners Continuous Performance Test-II (CPT-II). Groups were compared on task performance and cortical thickness. Mediation analyses explored associations among cortical thickness, CPT-II variables, bulimia nervosa symptoms and age. We included 60 girls and women with bulimia nervosa and 54 controls in the analyses. Compared with healthy participants, those with bulimia nervosa showed increased impulsivity and inattention on the CPT-II, along with reduced thickness of the right pars triangularis, right superior parietal and left dorsal posterior cingulate cortices. In the bulimia nervosa group, exploratory analyses revealed that binge eating frequency correlated inversely with cortical thickness of frontoparietal and insular regions and that reduced frontoparietal thickness mediated the association between age and increased symptom severity and inattention. Binge eating frequency also mediated the association between age and lower prefrontal cortical thickness. These findings are applicable to only girls and women with bulimia nervosa, and our cross-sectional design precludes understanding of whether cortical thickness alterations precede or result from bulimia nervosa symptoms. Structural abnormalities in the frontoparietal and posterior cingulate regions comprising circuits that support control and attentional processes should be investigated as potential contributors to the maintenance of bulimia nervosa and useful

  5. Altered cortical thickness and attentional deficits in adolescent girls and women with bulimia nervosa.

    PubMed

    Berner, Laura A; Stefan, Mihaela; Lee, Seonjoo; Wang, Zhishun; Terranova, Kate; Attia, Evelyn; Marsh, Rachel

    2018-01-12

    Frontostriatal and frontoparietal abnormalities likely contribute to deficits in control and attentional processes in individuals with bulimia nervosa and to the persistence of dysregulated eating across development. This study assessed these processes and cortical thickness in a large sample of adolescent girls and women with bulimia nervosa compared with healthy controls. We collected anatomical MRI data from adolescent girls and women (ages 12-38 yr) with full or subthreshold bulimia nervosa and age-matched healthy controls who also completed the Conners Continuous Performance Test-II (CPT-II). Groups were compared on task performance and cortical thickness. Mediation analyses explored associations among cortical thickness, CPT-II variables, bulimia nervosa symptoms and age. We included 60 girls and women with bulimia nervosa and 54 controls in the analyses. Compared with healthy participants, those with bulimia nervosa showed increased impulsivity and inattention on the CPT-II, along with reduced thickness of the right pars triangularis, right superior parietal and left dorsal posterior cingulate cortices. In the bulimia nervosa group, exploratory analyses revealed that binge eating frequency correlated inversely with cortical thickness of frontoparietal and insular regions and that reduced frontoparietal thickness mediated the association between age and increased symptom severity and inattention. Binge eating frequency also mediated the association between age and lower prefrontal cortical thickness. These findings are applicable to only girls and women with bulimia nervosa, and our cross-sectional design precludes understanding of whether cortical thickness alterations precede or result from bulimia nervosa symptoms. Structural abnormalities in the frontoparietal and posterior cingulate regions comprising circuits that support control and attentional processes should be investigated as potential contributors to the maintenance of bulimia nervosa and useful

  6. Thalamo-Cortical Connectivity: What Can Diffusion Tractography Tell Us About Reading Difficulties in Children?

    PubMed Central

    Fan, Qiuyun; Davis, Nicole; Anderson, Adam W.

    2014-01-01

    Abstract Reading is an essential skill in modern society, but many people have deficits in the decoding and word recognition aspects of reading, a difficulty often referred to as dyslexia. The primary focus of neuroimaging studies to date in dyslexia has been on cortical regions; however, subcortical regions may also be important for explaining this disability. Here, we used diffusion tensor imaging to examine the association between thalamo-cortical connectivity and children's reading ability in 20 children with typically developed reading ability (age range 8–17/10–17 years old from two imaging centers) and 19 children with developmental dyslexia (DYS) (age range 9–17/9–16 years old). To measure thalamo-cortical connections, the structural images were segmented into cortical and subcortical anatomical regions that were used as target and seed regions in the probabilistic tractography analysis. Abnormal thalamic connectivity was found in the dyslexic group in the sensorimotor and lateral prefrontal cortices. These results suggest that the thalamus may play a key role in reading behavior by mediating the functions of task-specific cortical regions; such findings lay the foundation for future studies to investigate further neurobiological anomalies in the development of thalamo-cortical connectivity in DYS. PMID:24963547

  7. Detection and mapping of delays in early cortical folding derived from in utero MRI

    NASA Astrophysics Data System (ADS)

    Habas, Piotr A.; Rajagopalan, Vidya; Scott, Julia A.; Kim, Kio; Roosta, Ahmad; Rousseau, Francois; Barkovich, A. James; Glenn, Orit A.; Studholme, Colin

    2011-03-01

    Understanding human brain development in utero and detecting cortical abnormalities related to specific clinical conditions is an important area of research. In this paper, we describe and evaluate methodology for detection and mapping of delays in early cortical folding from population-based studies of fetal brain anatomies imaged in utero. We use a general linear modeling framework to describe spatiotemporal changes in curvature of the developing brain and explore the ability to detect and localize delays in cortical folding in the presence of uncertainty in estimation of the fetal age. We apply permutation testing to examine which regions of the brain surface provide the most statistical power to detect a given folding delay at a given developmental stage. The presented methodology is evaluated using MR scans of fetuses with normal brain development and gestational ages ranging from 20.57 to 27.86 weeks. This period is critical in early cortical folding and the formation of the primary and secondary sulci. Finally, we demonstrate a clinical application of the framework for detection and localization of folding delays in fetuses with isolated mild ventriculomegaly.

  8. Dynamic Development of Regional Cortical Thickness and Surface Area in Early Childhood.

    PubMed

    Lyall, Amanda E; Shi, Feng; Geng, Xiujuan; Woolson, Sandra; Li, Gang; Wang, Li; Hamer, Robert M; Shen, Dinggang; Gilmore, John H

    2015-08-01

    Cortical thickness (CT) and surface area (SA) are altered in many neuropsychiatric disorders and are correlated with cognitive functioning. Little is known about how these components of cortical gray matter develop in the first years of life. We studied the longitudinal development of regional CT and SA expansion in healthy infants from birth to 2 years. CT and SA have distinct and heterogeneous patterns of development that are exceptionally dynamic; overall CT increases by an average of 36.1%, while cortical SA increases 114.6%. By age 2, CT is on average 97% of adult values, compared with SA, which is 69%. This suggests that early identification, prevention, and intervention strategies for neuropsychiatric illness need to be targeted to this period of rapid postnatal brain development, and that SA expansion is the principal driving factor in cortical volume after 2 years of age. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Arid1b haploinsufficiency disrupts cortical interneuron development and mouse behavior.

    PubMed

    Jung, Eui-Man; Moffat, Jeffrey Jay; Liu, Jinxu; Dravid, Shashank Manohar; Gurumurthy, Channabasavaiah Basavaraju; Kim, Woo-Yang

    2017-12-01

    Haploinsufficiency of the AT-rich interactive domain 1B (ARID1B) gene causes autism spectrum disorder and intellectual disability; however, the neurobiological basis for this is unknown. Here we generated Arid1b-knockout mice and examined heterozygotes to model human patients. Arid1b-heterozygous mice showed a decreased number of cortical GABAergic interneurons and reduced proliferation of interneuron progenitors in the ganglionic eminence. Arid1b haploinsufficiency also led to an imbalance between excitatory and inhibitory synapses in the cerebral cortex. Furthermore, we found that Arid1b haploinsufficiency suppressed histone H3 lysine 9 acetylation (H3K9ac) overall and particularly reduced H3K9ac of the Pvalb promoter, resulting in decreased transcription. Arid1b-heterozygous mice exhibited abnormal cognitive and social behaviors, which were rescued by treatment with a positive allosteric GABA A receptor modulator. Our results demonstrate a critical role for Arid1b in interneuron development and behavior and provide insight into the pathogenesis of autism spectrum disorder and intellectual disability.

  10. Abnormalities in the zinc-metalloprotease-BDNF axis may contribute to megalencephaly and cortical hyperconnectivity in young autism spectrum disorder patients.

    PubMed

    Koh, Jae-Young; Lim, Joon Seo; Byun, Hyae-Ran; Yoo, Min-Heui

    2014-09-03

    Whereas aberrant brain connectivity is likely the core pathology of autism-spectrum disorder (ASD), studies do not agree as to whether hypo- or hyper-connectivity is the main underlying problem. Recent functional imaging studies have shown that, in most young ASD patients, cerebral cortical regions appear hyperconnected, and cortical thickness/brain size is increased. Collectively, these findings indicate that developing ASD brains may exist in an altered neurotrophic milieu. Consistently, some ASD patients, as well as some animal models of ASD, show increased levels of brain-derived neurotrophic factor (BDNF). However, how BDNF is upregulated in ASD is unknown. To address this question, we propose the novel hypothesis that a putative zinc-metalloprotease-BDNF (ZMB) axis in the forebrain plays a pivotal role in the development of hyperconnectivity and megalencephaly in ASD. We have previously demonstrated that extracellular zinc at micromolar concentrations can rapidly increase BDNF levels and phosphorylate the receptor tyrosine kinase TrkB via the activation of metalloproteases. The role of metalloproteases in ASD is still uncertain, but in fragile X syndrome, a monogenic disease with an autistic phenotype, the levels of MMP are increased. Early exposure to lipopolysaccharides (LPS) and other MMP activators such as organic mercurials also have been implicated in ASD pathogenesis. The resultant increases in BDNF levels at synapses, especially those involved in the zinc-containing, associative glutamatergic system may produce abnormal brain circuit development. Various genetic mutations that lead to ASD are also known to affect BDNF signaling: some down-regulate, and others up-regulate it. We hypothesize that, although both up- and down-regulation of BDNF may induce autism symptoms, only BDNF up-regulation is associated with the hyperconnectivity and large brain size observed in most young idiopathic ASD patients. To test this hypothesis, we propose to examine the

  11. Abnormalities in the zinc-metalloprotease-BDNF axis may contribute to megalencephaly and cortical hyperconnectivity in young autism spectrum disorder patients

    PubMed Central

    2014-01-01

    Whereas aberrant brain connectivity is likely the core pathology of autism-spectrum disorder (ASD), studies do not agree as to whether hypo- or hyper-connectivity is the main underlying problem. Recent functional imaging studies have shown that, in most young ASD patients, cerebral cortical regions appear hyperconnected, and cortical thickness/brain size is increased. Collectively, these findings indicate that developing ASD brains may exist in an altered neurotrophic milieu. Consistently, some ASD patients, as well as some animal models of ASD, show increased levels of brain-derived neurotrophic factor (BDNF). However, how BDNF is upregulated in ASD is unknown. To address this question, we propose the novel hypothesis that a putative zinc-metalloprotease-BDNF (ZMB) axis in the forebrain plays a pivotal role in the development of hyperconnectivity and megalencephaly in ASD. We have previously demonstrated that extracellular zinc at micromolar concentrations can rapidly increase BDNF levels and phosphorylate the receptor tyrosine kinase TrkB via the activation of metalloproteases. The role of metalloproteases in ASD is still uncertain, but in fragile X syndrome, a monogenic disease with an autistic phenotype, the levels of MMP are increased. Early exposure to lipopolysaccharides (LPS) and other MMP activators such as organic mercurials also have been implicated in ASD pathogenesis. The resultant increases in BDNF levels at synapses, especially those involved in the zinc-containing, associative glutamatergic system may produce abnormal brain circuit development. Various genetic mutations that lead to ASD are also known to affect BDNF signaling: some down-regulate, and others up-regulate it. We hypothesize that, although both up- and down-regulation of BDNF may induce autism symptoms, only BDNF up-regulation is associated with the hyperconnectivity and large brain size observed in most young idiopathic ASD patients. To test this hypothesis, we propose to examine the

  12. Longitudinal development of cortical and subcortical gray matter from birth to 2 years.

    PubMed

    Gilmore, John H; Shi, Feng; Woolson, Sandra L; Knickmeyer, Rebecca C; Short, Sarah J; Lin, Weili; Zhu, Hongtu; Hamer, Robert M; Styner, Martin; Shen, Dinggang

    2012-11-01

    Very little is known about cortical development in the first years of life, a time of rapid cognitive development and risk for neurodevelopmental disorders. We studied regional cortical and subcortical gray matter volume growth in a group of 72 children who underwent magnetic resonance scanning after birth and at ages 1 and 2 years using a novel longitudinal registration/parcellation approach. Overall, cortical gray matter volumes increased substantially (106%) in the first year of life and less so in the second year (18%). We found marked regional differences in developmental rates, with primary motor and sensory cortices growing slower in the first year of life with association cortices growing more rapidly. In the second year of life, primary sensory regions continued to grow more slowly, while frontal and parietal regions developed relatively more quickly. The hippocampus grew less than other subcortical structures such as the amygdala and thalamus in the first year of life. It is likely that these patterns of regional gray matter growth reflect maturation and development of underlying function, as they are consistent with cognitive and functional development in the first years of life.

  13. Altered cortical thickness and attentional deficits in adolescent girls and women with bulimia nervosa

    PubMed Central

    Stefan, Mihaela; Lee, Seonjoo; Wang, Zhishun; Terranova, Kate; Attia, Evelyn; Marsh, Rachel

    2018-01-01

    Background Frontostriatal and frontoparietal abnormalities likely contribute to deficits in control and attentional processes in individuals with bulimia nervosa and to the persistence of dysregulated eating across development. This study assessed these processes and cortical thickness in a large sample of adolescent girls and women with bulimia nervosa compared with healthy controls. Methods We collected anatomical MRI data from adolescent girls and women (ages 12–38 yr) with full or subthreshold bulimia nervosa and age-matched healthy controls who also completed the Conners Continuous Performance Test-II (CPT-II). Groups were compared on task performance and cortical thickness. Mediation analyses explored associations among cortical thickness, CPT-II variables, bulimia nervosa symptoms and age. Results We included 60 girls and women with bulimia nervosa and 54 controls in the analyses. Compared with healthy participants, those with bulimia nervosa showed increased impulsivity and inattention on the CPT-II, along with reduced thickness of the right pars triangularis, right superior parietal and left dorsal posterior cingulate cortices. In the bulimia nervosa group, exploratory analyses revealed that binge eating frequency correlated inversely with cortical thickness of frontoparietal and insular regions and that reduced frontoparietal thickness mediated the association between age and increased symptom severity and inattention. Binge eating frequency also mediated the association between age and lower prefrontal cortical thickness. Limitations These findings are applicable to only girls and women with bulimia nervosa, and our cross-sectional design precludes understanding of whether cortical thickness alterations precede or result from bulimia nervosa symptoms. Conclusion Structural abnormalities in the frontoparietal and posterior cingulate regions comprising circuits that support control and attentional processes should be investigated as potential

  14. DMRTA2 (DMRT5) is mutated in a novel cortical brain malformation.

    PubMed

    Urquhart, J E; Beaman, G; Byers, H; Roberts, N A; Chervinsky, E; O'Sullivan, J; Pilz, D; Fry, A; Williams, S G; Bhaskar, S S; Khayat, M; Simanovsky, N; Shachar, I B; Shalev, S A; Newman, W G

    2016-06-01

    Lissencephaly is a phenotypically and genetically heterogeneous group of cortical brain malformations due to abnormal neuronal migration. The identification of many causative genes has increased the understanding of normal brain development. A consanguineous family was ascertained with three siblings affected by a severe prenatal neurodevelopmental disorder characterised by fronto-parietal pachygyria, agenesis of the corpus callosum and progressive severe microcephaly. Autozygosity mapping and exome sequencing identified a homozygous novel single base pair deletion, c.1197delT in DMRTA2, predicted to result in a frameshift variant p.(Pro400Leufs*33). DMRTA2 encodes doublesex and mab-3-related transcription factor a2, a transcription factor key to the development of the dorsal telencephalon. Data from murine and zebrafish knockout models are consistent with the variant of DMTRA2 (DMRT5) as responsible for the cortical brain phenotype. Our study suggests that loss of function of DMRTA2 leads to a novel disorder of cortical development. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Isolated Cortical Vein Thrombosis - The Cord Sign

    PubMed Central

    Sharma, Vijay K.; Teoh, Hock L

    2009-01-01

    Isolated cortical vein thrombosis is an uncommon condition and often difficult to diagnose, both clinically and radiologically. We report a case of a 38 years old man who presented with headache of new onset and clinical examination was unremarkable. The unenhanced brain CT did not reveal any abnormality. In view of unrelenting headache and partial seizures, we performed magnetic resonance imaging (with axial T1, T2 and gradient echo sequences, coronal FLAIR, diffusion weighted imaging as well as Gadolinium contrast-enhanced images) and magnetic resonance venography of the brain that revealed an isolated parietal cortical vein thrombosis with the rarely reported 'cord sign'. We report the clinical and radiological findings in our patient with isolated parietal cortical vein thrombosis. PMID:22470649

  16. Longitudinal development of cortical thickness, folding, and fiber density networks in the first 2 years of life.

    PubMed

    Nie, Jingxin; Li, Gang; Wang, Li; Shi, Feng; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2014-08-01

    Quantitatively characterizing the development of cortical anatomical networks during the early stage of life plays an important role in revealing the relationship between cortical structural connection and high-level functional development. The development of correlation networks of cortical-thickness, cortical folding, and fiber-density is systematically analyzed in this article to study the relationship between different anatomical properties during the first 2 years of life. Specifically, longitudinal MR images of 73 healthy subjects from birth to 2 year old are used. For each subject at each time point, its measures of cortical thickness, cortical folding, and fiber density are projected to its cortical surface that has been partitioned into 78 cortical regions. Then, the correlation matrices for cortical thickness, cortical folding, and fiber density at each time point can be constructed, respectively, by computing the inter-regional Pearson correlation coefficient (of any pair of ROIs) across all 73 subjects. Finally, the presence/absence pattern (i.e., binary pattern) of the connection network is constructed from each inter-regional correlation matrix, and its statistical and anatomical properties are adopted to analyze the longitudinal development of anatomical networks. The results show that the development of anatomical network could be characterized differently by using different anatomical properties (i.e., using cortical thickness, cortical folding, or fiber density). Copyright © 2013 Wiley Periodicals, Inc.

  17. Malformations of Cortical Development and Epilepsy

    PubMed Central

    Barkovich, A. James; Dobyns, William B.; Guerrini, Renzo

    2015-01-01

    Malformations of cortical development (MCDs) are an important cause of epilepsy and an extremely interesting group of disorders from the perspective of brain development and its perturbations. Many new MCDs have been described in recent years as a result of improvements in imaging, genetic testing, and understanding of the effects of mutations on the ability of their protein products to correctly function within the molecular pathways by which the brain functions. In this review, most of the major MCDs are reviewed from a clinical, embryological, and genetic perspective. The most recent literature regarding clinical diagnosis, mechanisms of development, and future paths of research are discussed. PMID:25934463

  18. APLP2 regulates neuronal stem cell differentiation during cortical development.

    PubMed

    Shariati, S Ali M; Lau, Pierre; Hassan, Bassem A; Müller, Ulrike; Dotti, Carlos G; De Strooper, Bart; Gärtner, Annette

    2013-03-01

    Expression of amyloid precursor protein (APP) and its two paralogues, APLP1 and APLP2 during brain development coincides with key cellular events such as neuronal differentiation and migration. However, genetic knockout and shRNA studies have led to contradictory conclusions about their role during embryonic brain development. To address this issue, we analysed in depth the role of APLP2 during neurogenesis by silencing APLP2 in vivo in an APP/APLP1 double knockout mouse background. We find that under these conditions cortical progenitors remain in their undifferentiated state much longer, displaying a higher number of mitotic cells. In addition, we show that neuron-specific APLP2 downregulation does not impact the speed or position of migrating excitatory cortical neurons. In summary, our data reveal that APLP2 is specifically required for proper cell cycle exit of neuronal progenitors, and thus has a distinct role in priming cortical progenitors for neuronal differentiation.

  19. Maturation trajectories of cortical resting-state networks depend on the mediating frequency band.

    PubMed

    Khan, Sheraz; Hashmi, Javeria A; Mamashli, Fahimeh; Michmizos, Konstantinos; Kitzbichler, Manfred G; Bharadwaj, Hari; Bekhti, Yousra; Ganesan, Santosh; Garel, Keri-Lee A; Whitfield-Gabrieli, Susan; Gollub, Randy L; Kong, Jian; Vaina, Lucia M; Rana, Kunjan D; Stufflebeam, Steven M; Hämäläinen, Matti S; Kenet, Tal

    2018-07-01

    The functional significance of resting state networks and their abnormal manifestations in psychiatric disorders are firmly established, as is the importance of the cortical rhythms in mediating these networks. Resting state networks are known to undergo substantial reorganization from childhood to adulthood, but whether distinct cortical rhythms, which are generated by separable neural mechanisms and are often manifested abnormally in psychiatric conditions, mediate maturation differentially, remains unknown. Using magnetoencephalography (MEG) to map frequency band specific maturation of resting state networks from age 7 to 29 in 162 participants (31 independent), we found significant changes with age in networks mediated by the beta (13-30 Hz) and gamma (31-80 Hz) bands. More specifically, gamma band mediated networks followed an expected asymptotic trajectory, but beta band mediated networks followed a linear trajectory. Network integration increased with age in gamma band mediated networks, while local segregation increased with age in beta band mediated networks. Spatially, the hubs that changed in importance with age in the beta band mediated networks had relatively little overlap with those that showed the greatest changes in the gamma band mediated networks. These findings are relevant for our understanding of the neural mechanisms of cortical maturation, in both typical and atypical development. Copyright © 2018. Published by Elsevier Inc.

  20. Cortical sensorimotor alterations classify clinical phenotype and putative genotype of spasmodic dysphonia.

    PubMed

    Battistella, G; Fuertinger, S; Fleysher, L; Ozelius, L J; Simonyan, K

    2016-10-01

    Spasmodic dysphonia (SD), or laryngeal dystonia, is a task-specific isolated focal dystonia of unknown causes and pathophysiology. Although functional and structural abnormalities have been described in this disorder, the influence of its different clinical phenotypes and genotypes remains scant, making it difficult to explain SD pathophysiology and to identify potential biomarkers. We used a combination of independent component analysis and linear discriminant analysis of resting-state functional magnetic resonance imaging data to investigate brain organization in different SD phenotypes (abductor versus adductor type) and putative genotypes (familial versus sporadic cases) and to characterize neural markers for genotype/phenotype categorization. We found abnormal functional connectivity within sensorimotor and frontoparietal networks in patients with SD compared with healthy individuals as well as phenotype- and genotype-distinct alterations of these networks, involving primary somatosensory, premotor and parietal cortices. The linear discriminant analysis achieved 71% accuracy classifying SD and healthy individuals using connectivity measures in the left inferior parietal and sensorimotor cortices. When categorizing between different forms of SD, the combination of measures from the left inferior parietal, premotor and right sensorimotor cortices achieved 81% discriminatory power between familial and sporadic SD cases, whereas the combination of measures from the right superior parietal, primary somatosensory and premotor cortices led to 71% accuracy in the classification of adductor and abductor SD forms. Our findings present the first effort to identify and categorize isolated focal dystonia based on its brain functional connectivity profile, which may have a potential impact on the future development of biomarkers for this rare disorder. © 2016 EAN.

  1. Effects of Age and Symptomatology on Cortical Thickness in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Doyle-Thomas, Krissy A. R.; Duerden, Emma G.; Taylor, Margot J.; Lerch, Jason P.; Soorya, Latha V.; Wang, A. Ting; Fan, Jin; Hollander, Eric; Anagnostou, Evdokia

    2013-01-01

    Several brain regions show structural and functional abnormalities in individuals with autism spectrum disorders (ASD), but the developmental trajectory of abnormalities in these structures and how they may relate to social and communicative impairments are still unclear. We assessed the effects of age on cortical thickness in individuals with…

  2. Development of global cortical networks in early infancy.

    PubMed

    Homae, Fumitaka; Watanabe, Hama; Otobe, Takayuki; Nakano, Tamami; Go, Tohshin; Konishi, Yukuo; Taga, Gentaro

    2010-04-07

    Human cognition and behaviors are subserved by global networks of neural mechanisms. Although the organization of the brain is a subject of interest, the process of development of global cortical networks in early infancy has not yet been clarified. In the present study, we explored developmental changes in these networks from several days to 6 months after birth by examining spontaneous fluctuations in brain activity, using multichannel near-infrared spectroscopy. We set up 94 measurement channels over the frontal, temporal, parietal, and occipital regions of the infant brain. The obtained signals showed complex time-series properties, which were characterized as 1/f fluctuations. To reveal the functional connectivity of the cortical networks, we calculated the temporal correlations of continuous signals between all the pairs of measurement channels. We found that the cortical network organization showed regional dependency and dynamic changes in the course of development. In the temporal, parietal, and occipital regions, connectivity increased between homologous regions in the two hemispheres and within hemispheres; in the frontal regions, it decreased progressively. Frontoposterior connectivity changed to a "U-shaped" pattern within 6 months: it decreases from the neonatal period to the age of 3 months and increases from the age of 3 months to the age of 6 months. We applied cluster analyses to the correlation coefficients and showed that the bilateral organization of the networks begins to emerge during the first 3 months of life. Our findings suggest that these developing networks, which form multiple clusters, are precursors of the functional cerebral architecture.

  3. High-expanding cortical regions in human development and evolution are related to higher intellectual abilities.

    PubMed

    Fjell, Anders M; Westlye, Lars T; Amlien, Inge; Tamnes, Christian K; Grydeland, Håkon; Engvig, Andreas; Espeseth, Thomas; Reinvang, Ivar; Lundervold, Astri J; Lundervold, Arvid; Walhovd, Kristine B

    2015-01-01

    Cortical surface area has tremendously expanded during human evolution, and similar patterns of cortical expansion have been observed during childhood development. An intriguing hypothesis is that the high-expanding cortical regions also show the strongest correlations with intellectual function in humans. However, we do not know how the regional distribution of correlations between intellectual function and cortical area maps onto expansion in development and evolution. Here, in a sample of 1048 participants, we show that regions in which cortical area correlates with visuospatial reasoning abilities are generally high expanding in both development and evolution. Several regions in the frontal cortex, especially the anterior cingulate, showed high expansion in both development and evolution. The area of these regions was related to intellectual functions in humans. Low-expanding areas were not related to cognitive scores. These findings suggest that cortical regions involved in higher intellectual functions have expanded the most during development and evolution. The radial unit hypothesis provides a common framework for interpretation of the findings in the context of evolution and prenatal development, while additional cellular mechanisms, such as synaptogenesis, gliogenesis, dendritic arborization, and intracortical myelination, likely impact area expansion in later childhood. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. 83. Ventricular Enlargement and Progressive Reduction in Cortical Gray Matter Are Linked in Prodromal Youth Who Develop Psychosis

    PubMed Central

    Chung, Yoonho; Haut, Kristen; He, George; Van Erp, Theo; McEwen, Sarah; Addington, Jean; Bearden, Carrie; Cadenhead, Kristin; Cornblatt, Barbara; Mathalon, Daniel; McGlashan, Thomas; Perkins, Diana; Seidman, Larry; Tsuang, Ming; Walker, Elaine; Woods, Scott; Cannon, Tyrone

    2017-01-01

    Abstract Background: In a recent prospective longitudinal neuroimaging study, clinical high-risk (CHR) individuals who later developed full-blown psychosis showed an accelerated rate of gray matter thinning in superior and medial prefrontal cortex (PFC) and expansion of the ventricular system after applying a stringent correction for multiple comparisons. Although cortical and subcortical volume loss and enlarged ventricles are well characterized structural brain abnormalities among patients with schizophrenia, no prior study has evaluated whether these progressive changes of neuroanatomical indicators are linked in time prior to onset of psychosis. Therefore, we investigated the relationship between the changes in cortical gray matter thickness and ventricular volume using the longitudinal neuroimaging data from the North American Prodrome Longitudinal Study (NAPLS) at the whole-brain level. Methods: MRI structural data were acquired at baseline and 12-month follow-up, and follow-up scans for those who developed fully psychotic symptoms were assessed at the point of conversion. In total, 37 CHR cases who converted to psychosis, 230 CHR cases who did not convert (nonconverters), and 132 healthy comparison subjects had usable baseline and second time point scans. Imaging measures were first transformed to annualized rates of percent change (ARCH) in each cortical vertex. Interval is the time between BL and FU scans in years. Relationships between ARCH of total ventricle volume and ARCH of cortical gray matter values were tested vertex-wise using the general linear model. Among the subjects with BL and 12-FU data available, 125 CHR cases and 66 controls were followed to an additional third time point for a 24-month MRI assessment. For the purpose of testing the replicability of our main hypotheses, neuroanatomical ARCH measures between the 12 and 24 month follow-ups were also computed with a parallel set of statistical tests as described earlier. Results: The

  5. Brain abnormalities in murderers indicated by positron emission tomography.

    PubMed

    Raine, A; Buchsbaum, M; LaCasse, L

    1997-09-15

    Murderers pleading not guilty by reason of insanity (NGRI) are thought to have brain dysfunction, but there have been no previous studies reporting direct measures of both cortical and subcortical brain functioning in this specific group. Positron emission tomography brain imaging using a continuous performance challenge task was conducted on 41 murderers pleading not guilty by reason of insanity and 41 age- and sex-matched controls. Murderers were characterized by reduced glucose metabolism in the prefrontal cortex, superior parietal gyrus, left angular gyrus, and the corpus callosum, while abnormal asymmetries of activity (left hemisphere lower than right) were also found in the amygdala, thalamus, and medial temporal lobe. These preliminary findings provide initial indications of a network of abnormal cortical and subcortical brain processes that may predispose to violence in murderers pleading NGRI.

  6. Cognitive impairment and spontaneous epilepsy in rats with malformations of cortical development.

    PubMed

    Ye-wei, Xiao; Rong, Wang; Xun-tai, Ma; Shan, Zhang; Qian, Chen; Shi-hua, Huang; Fu-qun, Mao; Xiao-ming, Xiong

    2015-12-01

    To examine the cognition, spontaneous epilepsy, and electroencephalography (EEG) characteristics of rats with malformations of cortical development (MCD) and their use as an animal model for investigating the pathogenesis of intractable epilepsy and screening novel antiepileptic drugs. An epileptic rat model of MCD was established with the F1 generation of pregnant rats after X-irradiation with 175 cGy (Group L), 195 cGy (Group M), or 215 cGy (Group H). Long-term video-EEG monitoring was used to record the seizures in the rats with MCD. Cognition was assessed with the Morris water maze. The EEGs were recorded and analyzed in the frontal and parietal lobes and hippocampi of adult rats. Finally, the brain tissues were processed for Nissl staining. The model groups exhibited markedly prolonged escape latencies and distinct decrements in the percent distance traveled in the target quadrant and platform-crossing frequency. These findings were dose-dependent. Frequent interictal epileptiform discharges were observed in the frontal and parietal lobes and hippocampi of adult rats, and their incidences were markedly higher in the model groups compared with that in the normal controls, with Group M having the highest incidence. Spontaneous seizures were observed in the model groups (mean incidence, 46.7%). The daily mean frequency of seizures and the incidence of spontaneous seizures were highest in Group M. Nissl staining revealed a dose-dependent pattern of hippocampal abnormalities, cortical and subcortical nodular heterotopia, and callosal agenesis in the model groups. The 195 cGy dose was most appropriate for establishing an epileptic model of MCD with X-irradiation. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  7. Quantitative Folding Pattern Analysis of Early Primary Sulci in Human Fetuses with Brain Abnormalities.

    PubMed

    Im, K; Guimaraes, A; Kim, Y; Cottrill, E; Gagoski, B; Rollins, C; Ortinau, C; Yang, E; Grant, P E

    2017-07-01

    Aberrant gyral folding is a key feature in the diagnosis of many cerebral malformations. However, in fetal life, it is particularly challenging to confidently diagnose aberrant folding because of the rapid spatiotemporal changes of gyral development. Currently, there is no resource to measure how an individual fetal brain compares with normal spatiotemporal variations. In this study, we assessed the potential for automatic analysis of early sulcal patterns to detect individual fetal brains with cerebral abnormalities. Triplane MR images were aligned to create a motion-corrected volume for each individual fetal brain, and cortical plate surfaces were extracted. Sulcal basins were automatically identified on the cortical plate surface and compared with a combined set generated from 9 normal fetal brain templates. Sulcal pattern similarities to the templates were quantified by using multivariate geometric features and intersulcal relationships for 14 normal fetal brains and 5 fetal brains that were proved to be abnormal on postnatal MR imaging. Results were compared with the gyrification index. Significantly reduced sulcal pattern similarities to normal templates were found in all abnormal individual fetuses compared with normal fetuses (mean similarity [normal, abnormal], left: 0.818, 0.752; P < .001; right: 0.810, 0.753; P < .01). Altered location and depth patterns of sulcal basins were the primary distinguishing features. The gyrification index was not significantly different between the normal and abnormal groups. Automated analysis of interrelated patterning of early primary sulci could outperform the traditional gyrification index and has the potential to quantitatively detect individual fetuses with emerging abnormal sulcal patterns. © 2017 by American Journal of Neuroradiology.

  8. Cortical thickness in bipolar disorder: a systematic review.

    PubMed

    Hanford, Lindsay C; Nazarov, Anthony; Hall, Geoffrey B; Sassi, Roberto B

    2016-02-01

    Bipolar disorder (BD) is a debilitating illness, the psychopathology of which is associated with aberrant structural and functional differences in the brain. Despite the many advances in psychiatric research, our understanding of the complex neurobiological underpinnings of BD remains incomplete. The aim of this review was to critically examine all available published magnetic resonance imaging (MRI) research reporting cortical thickness in BD with respect to a healthy population and/or other psychiatric samples. The systematic search encompassed all relevant studies published until November 2014. Relevant papers were identified through an online search of select databases (MEDLINE and EMBASE) using key terms bipolar disorder or mania, and cortical thickness. Two independent raters determined the eligibility of papers and performed separate data extraction to ensure quality and accuracy of reporting. A total of 17 papers met the criteria and were included in this review. Compared to a healthy population, the majority of studies reported decreased cortical thickness in the left anterior cingulate/paracingulate and the left superior temporal gyrus, as well as several prefrontal regions bilaterally in patients with BD. Studies also show consistency of cortical thinning in individuals with BD and schizophrenia in frontal and temporal regions, suggesting some common neuropathology. This systematic review further supports a link between specific structural brain abnormalities and BD. Future studies should investigate cortical thickness with respect to at-risk populations to determine whether these neuropathologies develop before or after the onset of BD. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Haploinsufficiency of MeCP2-interacting transcriptional co-repressor SIN3A causes mild intellectual disability by affecting the development of cortical integrity.

    PubMed

    Witteveen, Josefine S; Willemsen, Marjolein H; Dombroski, Thaís C D; van Bakel, Nick H M; Nillesen, Willy M; van Hulten, Josephus A; Jansen, Eric J R; Verkaik, Dave; Veenstra-Knol, Hermine E; van Ravenswaaij-Arts, Conny M A; Wassink-Ruiter, Jolien S Klein; Vincent, Marie; David, Albert; Le Caignec, Cedric; Schieving, Jolanda; Gilissen, Christian; Foulds, Nicola; Rump, Patrick; Strom, Tim; Cremer, Kirsten; Zink, Alexander M; Engels, Hartmut; de Munnik, Sonja A; Visser, Jasper E; Brunner, Han G; Martens, Gerard J M; Pfundt, Rolph; Kleefstra, Tjitske; Kolk, Sharon M

    2016-08-01

    Numerous genes are associated with neurodevelopmental disorders such as intellectual disability and autism spectrum disorder (ASD), but their dysfunction is often poorly characterized. Here we identified dominant mutations in the gene encoding the transcriptional repressor and MeCP2 interactor switch-insensitive 3 family member A (SIN3A; chromosome 15q24.2) in individuals who, in addition to mild intellectual disability and ASD, share striking features, including facial dysmorphisms, microcephaly and short stature. This phenotype is highly related to that of individuals with atypical 15q24 microdeletions, linking SIN3A to this microdeletion syndrome. Brain magnetic resonance imaging showed subtle abnormalities, including corpus callosum hypoplasia and ventriculomegaly. Intriguingly, in vivo functional knockdown of Sin3a led to reduced cortical neurogenesis, altered neuronal identity and aberrant corticocortical projections in the developing mouse brain. Together, our data establish that haploinsufficiency of SIN3A is associated with mild syndromic intellectual disability and that SIN3A can be considered to be a key transcriptional regulator of cortical brain development.

  10. Intelligence and cortical thickness in children with complex partial seizures.

    PubMed

    Tosun, Duygu; Caplan, Rochelle; Siddarth, Prabha; Seidenberg, Michael; Gurbani, Suresh; Toga, Arthur W; Hermann, Bruce

    2011-07-15

    Prior studies on healthy children have demonstrated regional variations and a complex and dynamic relationship between intelligence and cerebral tissue. Yet, there is little information regarding the neuroanatomical correlates of general intelligence in children with epilepsy compared to healthy controls. In vivo imaging techniques, combined with methods for advanced image processing and analysis, offer the potential to examine quantitative mapping of brain development and its abnormalities in childhood epilepsy. A surface-based, computational high resolution 3-D magnetic resonance image analytic technique was used to compare the relationship of cortical thickness with age and intelligence quotient (IQ) in 65 children and adolescents with complex partial seizures (CPS) and 58 healthy controls, aged 6-18 years. Children were grouped according to health status (epilepsy; controls) and IQ level (average and above; below average) and compared on age-related patterns of cortical thickness. Our cross-sectional findings suggest that disruption in normal age-related cortical thickness expression is associated with intelligence in pediatric CPS patients both with average and below average IQ scores. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Somatosensory cortex functional connectivity abnormalities in autism show opposite trends, depending on direction and spatial scale

    PubMed Central

    Khan, Sheraz; Michmizos, Konstantinos; Tommerdahl, Mark; Ganesan, Santosh; Kitzbichler, Manfred G.; Zetino, Manuel; Garel, Keri-Lee A.; Herbert, Martha R.; Hämäläinen, Matti S.

    2015-01-01

    Functional connectivity is abnormal in autism, but the nature of these abnormalities remains elusive. Different studies, mostly using functional magnetic resonance imaging, have found increased, decreased, or even mixed pattern functional connectivity abnormalities in autism, but no unifying framework has emerged to date. We measured functional connectivity in individuals with autism and in controls using magnetoencephalography, which allowed us to resolve both the directionality (feedforward versus feedback) and spatial scale (local or long-range) of functional connectivity. Specifically, we measured the cortical response and functional connectivity during a passive 25-Hz vibrotactile stimulation in the somatosensory cortex of 20 typically developing individuals and 15 individuals with autism, all males and right-handed, aged 8–18, and the mu-rhythm during resting state in a subset of these participants (12 per group, same age range). Two major significant group differences emerged in the response to the vibrotactile stimulus. First, the 50-Hz phase locking component of the cortical response, generated locally in the primary (S1) and secondary (S2) somatosensory cortex, was reduced in the autism group (P < 0.003, corrected). Second, feedforward functional connectivity between S1 and S2 was increased in the autism group (P < 0.004, corrected). During resting state, there was no group difference in the mu-α rhythm. In contrast, the mu-β rhythm, which has been associated with feedback connectivity, was significantly reduced in the autism group (P < 0.04, corrected). Furthermore, the strength of the mu-β was correlated to the relative strength of 50 Hz component of the response to the vibrotactile stimulus (r = 0.78, P < 0.00005), indicating a shared aetiology for these seemingly unrelated abnormalities. These magnetoencephalography-derived measures were correlated with two different behavioural sensory processing scores (P < 0.01 and P < 0.02 for the autism

  12. Abnormal Structure–Function Relationship in Spasmodic Dysphonia

    PubMed Central

    Ludlow, Christy L.

    2012-01-01

    Spasmodic dysphonia (SD) is a primary focal dystonia characterized by involuntary spasms in the laryngeal muscles during speech production. Although recent studies have found abnormal brain function and white matter organization in SD, the extent of gray matter alterations, their structure–function relationships, and correlations with symptoms remain unknown. We compared gray matter volume (GMV) and cortical thickness (CT) in 40 SD patients and 40 controls using voxel-based morphometry and cortical distance estimates. These measures were examined for relationships with blood oxygen level–dependent signal change during symptomatic syllable production in 15 of the same patients. SD patients had increased GMV, CT, and brain activation in key structures of the speech control system, including the laryngeal sensorimotor cortex, inferior frontal gyrus (IFG), superior/middle temporal and supramarginal gyri, and in a structure commonly abnormal in other primary dystonias, the cerebellum. Among these regions, GMV, CT and activation of the IFG and cerebellum showed positive relationships with SD severity, while CT of the IFG correlated with SD duration. The left anterior insula was the only region with decreased CT, which also correlated with SD symptom severity. These findings provide evidence for coupling between structural and functional abnormalities at different levels within the speech production system in SD. PMID:21666131

  13. Normalization of Cortical Gray Matter Deficits in Nonpsychotic Siblings of Patients with Childhood-Onset Schizophrenia

    ERIC Educational Resources Information Center

    Mattai, Anand A.; Weisinger, Brian; Greenstein, Deanna; Stidd, Reva; Clasen, Liv; Miller, Rachel; Tossell, Julia W.; Rapoport, Judith L.; Gogtay, Nitin

    2011-01-01

    Objective: Cortical gray matter (GM) abnormalities in patients with childhood-onset schizophrenia (COS) progress during adolescence ultimately localizing to prefrontal and temporal cortices by early adult age. A previous study of 52 nonpsychotic siblings of COS probands had significant prefrontal and temporal GM deficits that appeared to…

  14. Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia.

    PubMed

    Kita, Hitoshi; Kita, Takako

    2011-07-13

    The motor cortex (MC) sends massive projections to the basal ganglia. Motor disabilities in patients and animal models of Parkinson's disease (PD) may be caused by dopamine (DA)-depleted basal ganglia that abnormally process the information originating from MC. To study how DA depletion alters signal transfer in the basal ganglia, MC stimulation-induced (MC-induced) unitary responses were recorded from the basal ganglia of control and 6-hydroxydopamine-treated hemi-parkinsonian rats anesthetized with isoflurane. This report describes new findings about how DA depletion alters MC-induced responses. MC stimulation evokes an excitation in normally quiescent striatal (Str) neurons projecting to the globus pallidus external segment (GPe). After DA-depletion, the spontaneous firing of Str-GPe neurons increases, and MC stimulation evokes a shorter latency excitation followed by a long-lasting inhibition that was invisible under normal conditions. The increased firing activity and the newly exposed long inhibition generate tonic inhibition and a disfacilitation in GPe. The disfacilitation in GPe is then amplified in basal ganglia circuitry and generates a powerful long inhibition in the basal ganglia output nucleus, the globus pallidus internal segment. Intra-Str injections of a behaviorally effective dose of DA precursor l-3,4-dihydroxyphenylalanine effectively reversed these changes. These newly observed mechanisms also support the generation of pauses and burst activity commonly observed in the basal ganglia of parkinsonian subjects. These results suggest that the generation of abnormal response sequences in the basal ganglia contributes to the development of motor disabilities in PD and that intra-Str DA supplements effectively suppress abnormal signal transfer.

  15. Gestational Age is Dimensionally Associated with Structural Brain Network Abnormalities Across Development.

    PubMed

    Nassar, Rula; Kaczkurkin, Antonia N; Xia, Cedric Huchuan; Sotiras, Aristeidis; Pehlivanova, Marieta; Moore, Tyler M; Garcia de La Garza, Angel; Roalf, David R; Rosen, Adon F G; Lorch, Scott A; Ruparel, Kosha; Shinohara, Russell T; Davatzikos, Christos; Gur, Ruben C; Gur, Raquel E; Satterthwaite, Theodore D

    2018-04-21

    Prematurity is associated with diverse developmental abnormalities, yet few studies relate cognitive and neurostructural deficits to a dimensional measure of prematurity. Leveraging a large sample of children, adolescents, and young adults (age 8-22 years) studied as part of the Philadelphia Neurodevelopmental Cohort, we examined how variation in gestational age impacted cognition and brain structure later in development. Participants included 72 preterm youth born before 37 weeks' gestation and 206 youth who were born at term (37 weeks or later). Using a previously-validated factor analysis, cognitive performance was assessed in three domains: (1) executive function and complex reasoning, (2) social cognition, and (3) episodic memory. All participants completed T1-weighted neuroimaging at 3 T to measure brain volume. Structural covariance networks were delineated using non-negative matrix factorization, an advanced multivariate analysis technique. Lower gestational age was associated with both deficits in executive function and reduced volume within 11 of 26 structural covariance networks, which included orbitofrontal, temporal, and parietal cortices as well as subcortical regions including the hippocampus. Notably, the relationship between lower gestational age and executive dysfunction was accounted for in part by structural network deficits. Together, these findings emphasize the durable impact of prematurity on cognition and brain structure, which persists across development.

  16. Increased Cortical Synaptic Activation of TrkB and Downstream Signaling Markers in a Mouse Model of Down Syndrome

    PubMed Central

    Nosheny, RL; Belichenko, PV; Busse, BL; Weissmiller, AM; Dang, V; Das, D; Fahimi, A; Salehi, A; Smith, SJ; Mobley, WC

    2015-01-01

    Down Syndrome (DS), trisomy 21, is characterized by synaptic abnormalities and cognitive deficits throughout the lifespan and with development of Alzheimer’s disease (AD) neuropathology and progressive cognitive decline in adults. Synaptic abnormalities are also present in the Ts65Dn mouse model of DS, but which synapses are affected and the mechanisms underlying synaptic dysfunction are unknown. Here we show marked increases in the levels and activation status of TrkB and associated signaling proteins in cortical synapses in Ts65Dn mice. Proteomic analysis at the single synapse level of resolution using array tomography (AT) uncovered increased colocalization of activated TrkB with signaling endosome related proteins, and demonstrated increased TrkB signaling. The extent of increases in TrkB signaling differed in each of the cortical layers examined and with respect to the type of synapse, with the most marked increases seen in inhibitory synapses. These findings are evidence of markedly abnormal TrkB-mediated signaling in synapses. They raise the possibility that dysregulated TrkB signaling contributes to synaptic dysfunction and cognitive deficits in DS. PMID:25753471

  17. Tissue-nonspecific Alkaline Phosphatase Deficiency Causes Abnormal Craniofacial Bone Development in the Alpl−/− Mouse Model of Infantile Hypophosphatasia

    PubMed Central

    Liu, Jin; Nam, Hwa Kyung; Campbell, Cassie; Gasque, Kellen Cristina da Silva; Millán, José Luis; Hatch, Nan E.

    2014-01-01

    Tissue-nonspecific alkaline phosphatase (TNAP) is an enzyme present on the surface of mineralizing cells and their derived matrix vesicles that promotes hydroxyapatite crystal growth. Hypophosphatasia (HPP) is an inborn-error-of-metabolism that, dependent upon age of onset, features rickets or osteomalacia due to loss-of function mutations in the gene (Alpl) encoding TNAP. Craniosynostosis is prevalent in infants with HPP and other forms of rachitic disease but how craniosynostosis develops in these disorders is unknown. Objectives: Because craniosynostosis carries high morbidity, we are investigating craniofacial skeletal abnormalities in Alpl−/− mice to establish these mice as a model of HPP-associated craniosynostosis and determine mechanisms by which TNAP influences craniofacial skeletal development. Methods: Cranial bone, cranial suture and cranial base abnormalities were analyzed by micro-CT and histology. Craniofacial shape abnormalities were quantified using digital calipers. TNAP expression was suppressed in MC3T3E1(C4) calvarial cells by TNAP-specific shRNA. Cells were analyzed for changes in mineralization, gene expression, proliferation, apoptosis, matrix deposition and cell adhesion. Results: Alpl−/− mice feature craniofacial shape abnormalities suggestive of limited anterior-posterior growth. Craniosynostosis in the form of bony coronal suture fusion is present by three weeks after birth. Alpl−/− mice also exhibit marked histologic abnormalities of calvarial bones and the cranial base involving growth plates, cortical and trabecular bone within two weeks of birth. Analysis of calvarial cells in which TNAP expression was suppressed by shRNA indicates that TNAP deficiency promotes aberrant osteoblastic gene expression, diminished matrix deposition, diminished proliferation, increased apoptosis and increased cell adhesion. Conclusions: These findings demonstrate that Alpl−/− mice exhibit a craniofacial skeletal phenotype similar to that

  18. Abuse of Amphetamines and Structural Abnormalities in Brain

    PubMed Central

    Berman, Steven; O’Neill, Joseph; Fears, Scott; Bartzokis, George; London, Edythe D.

    2009-01-01

    We review evidence that structural brain abnormalities are associated with abuse of amphetamines. A brief history of amphetamine use/abuse, and evidence for toxicity is followed by a summary of findings from structural magnetic resonance imaging (MRI) studies of human subjects who had abused amphetamines and children who were exposed to amphetamines in utero. Evidence comes from studies that used a variety of techniques that include manual tracing, pattern matching, voxel-based, tensor-based, or cortical thickness mapping, quantification of white matter signal hyperintensities, and diffusion tensor imaging. Ten studies compared controls to individuals who were exposed to methamphetamine. Three studies assessed individuals exposed to 3-4-methylenedioxymethamphetamine (MDMA). Brain structural abnormalities were consistently reported in amphetamine abusers, as compared to control subjects. These included lower cortical gray matter volume and higher striatal volume than control subjects. These differences might reflect brain features that could predispose to substance dependence. High striatal volumes might also reflect compensation for toxicity in the dopamine-rich basal ganglia. Prenatal exposure was associated with striatal volume that was below control values, suggesting that such compensation might not occur in utero. Several forms of white matter abnormality are also common, and may involve gliosis. Many of the limitations and inconsistencies in the literature relate to techniques and cross-sectional designs, which cannot infer causality. Potential confounding influences include effects of pre-existing risk/protective factors, development, gender, severity of amphetamine abuse, abuse of other drugs, abstinence, and differences in lifestyle. Longitudinal designs in which multimodal datasets are acquired and are subjected to multivariate analyses would enhance our ability to provide general conclusions regarding the associations between amphetamine abuse and brain

  19. Gross Motor Development, Movement Abnormalities, and Early Identification of Autism

    PubMed Central

    Young, Gregory S.; Goldring, Stacy; Greiss-Hess, Laura; Herrera, Adriana M.; Steele, Joel; Macari, Suzanne; Hepburn, Susan; Rogers, Sally J.

    2015-01-01

    Gross motor development (supine, prone, rolling, sitting, crawling, walking) and movement abnormalities were examined in the home videos of infants later diagnosed with autism (regression and no regression subgroups), developmental delays (DD), or typical development. Group differences in maturity were found for walking, prone, and supine, with the DD and Autism-No Regression groups both showing later developing motor maturity than typical children. The only statistically significant differences in movement abnormalities were in the DD group; the two autism groups did not differ from the typical group in rates of movement abnormalities or lack of protective responses. These findings do not replicate previous investigations suggesting that early motor abnormalities seen on home video can assist in early identification of autism. PMID:17805956

  20. Cortical Activation Deficits During Facial Emotion Processing in Youth at High Risk for the Development of Substance Use Disorders*

    PubMed Central

    Hulvershorn, Leslie A.; Finn, Peter; Hummer, Tom A.; Leibenluft, Ellen; Ball, Brandon; Gichina, Victoria; Anand, Amit

    2013-01-01

    Background Recent longitudinal studies demonstrate that addiction risk may be influenced by a cognitive, affective and behavioral phenotype that emerges during childhood. Relatively little research has focused on the affective or emotional risk components of this high-risk phenotype, including the relevant neurobiology. Methods Non-substance abusing youth (N = 19; mean age = 12.2) with externalizing psychopathology and paternal history of a substance use disorder and demographically matched healthy comparisons (N=18; mean age = 11.9) were tested on a facial emotion matching task during functional MRI. This task involved matching faces by emotions (angry, anxious) or matching shape orientation. Results High-risk youth exhibited increased medial prefrontal, precuneus and occipital cortex activation compared to the healthy comparison group during the face matching condition, relative to the control shape condition. The occipital activation correlated positively with parent-rated emotion regulation impairments in the high-risk group. Conclusions These findings suggest a preexisting abnormality in cortical activation in response to facial emotion matching in youth at high risk for the development of problem drug or alcohol use. These cortical deficits may underlie impaired affective processing and regulation, which in turn may contribute to escalating drug use in adolescence. PMID:23768841

  1. [Research advances on cortical functional and structural deficits of amblyopia].

    PubMed

    Wu, Y; Liu, L Q

    2017-05-11

    Previous studies have observed functional deficits in primary visual cortex. With the development of functional magnetic resonance imaging and electrophysiological technique, the research of the striate, extra-striate cortex and higher-order cortical deficit underlying amblyopia reaches a new stage. The neural mechanisms of amblyopia show that anomalous responses exist throughout the visual processing hierarchy, including the functional and structural abnormalities. This review aims to summarize the current knowledge about structural and functional deficits of brain regions associated with amblyopia. (Chin J Ophthalmol, 2017, 53: 392 - 395) .

  2. Cortical Thinning and Altered Cortico-Cortical Structural Covariance of the Default Mode Network in Patients with Persistent Insomnia Symptoms.

    PubMed

    Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol

    2016-01-01

    Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. © 2016 Associated Professional Sleep Societies, LLC.

  3. Cortical Thinning and Altered Cortico-Cortical Structural Covariance of the Default Mode Network in Patients with Persistent Insomnia Symptoms

    PubMed Central

    Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol

    2016-01-01

    Study Objectives: Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). Methods: The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Results: Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Conclusion: Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. Citation: Suh S, Kim H, Dang-Vu TT, Joo E, Shin C. Cortical thinning and altered cortico-cortical structural covariance of the default mode network in patients with

  4. Evolution of New miRNAs and Cerebro-Cortical Development.

    PubMed

    Kosik, Kenneth S; Nowakowski, Tomasz

    2018-04-04

    The noncoding portion of the genome, including microRNAs, has been fertile evolutionary soil for cortical development in primates. A major contribution to cortical expansion in primates is the generation of novel precursor cell populations. Because miRNA expression profiles track closely with cell identity, it is likely that numerous novel microRNAs have contributed to cellular diversity in the brain. The tools to determine the genomic context within which novel microRNAs emerge and how they become integrated into molecular circuitry are now in hand. Expected final online publication date for the Annual Review of Neuroscience Volume 41 is July 8, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  5. A knowledge-guided active model method of cortical structure segmentation on pediatric MR images.

    PubMed

    Shan, Zuyao Y; Parra, Carlos; Ji, Qing; Jain, Jinesh; Reddick, Wilburn E

    2006-10-01

    To develop an automated method for quantification of cortical structures on pediatric MR images. A knowledge-guided active model (KAM) approach was proposed with a novel object function similar to the Gibbs free energy function. Triangular mesh models were transformed to images of a given subject by maximizing entropy, and then actively slithered to boundaries of structures by minimizing enthalpy. Volumetric results and image similarities of 10 different cortical structures segmented by KAM were compared with those traced manually. Furthermore, the segmentation performances of KAM and SPM2, (statistical parametric mapping, a MATLAB software package) were compared. The averaged volumetric agreements between KAM- and manually-defined structures (both 0.95 for structures in healthy children and children with medulloblastoma) were higher than the volumetric agreement for SPM2 (0.90 and 0.80, respectively). The similarity measurements (kappa) between KAM- and manually-defined structures (0.95 and 0.93, respectively) were higher than those for SPM2 (both 0.86). We have developed a novel automatic algorithm, KAM, for segmentation of cortical structures on MR images of pediatric patients. Our preliminary results indicated that when segmenting cortical structures, KAM was in better agreement with manually-delineated structures than SPM2. KAM can potentially be used to segment cortical structures for conformal radiation therapy planning and for quantitative evaluation of changes in disease or abnormality. Copyright (c) 2006 Wiley-Liss, Inc.

  6. Altered brain structural networks in attention deficit/hyperactivity disorder children revealed by cortical thickness.

    PubMed

    Liu, Tian; Chen, Yanni; Li, Chenxi; Li, Youjun; Wang, Jue

    2017-07-04

    This study investigated the cortical thickness and topological features of human brain anatomical networks related to attention deficit/hyperactivity disorder. Data were collected from 40 attention deficit/hyperactivity disorder children and 40 normal control children. Interregional correlation matrices were established by calculating the correlations of cortical thickness between all pairs of cortical regions (68 regions) of the whole brain. Further thresholds were applied to create binary matrices to construct a series of undirected and unweighted graphs, and global, local, and nodal efficiencies were computed as a function of the network cost. These experimental results revealed abnormal cortical thickness and correlations in attention deficit/hyperactivity disorder, and showed that the brain structural networks of attention deficit/hyperactivity disorder subjects had inefficient small-world topological features. Furthermore, their topological properties were altered abnormally. In particular, decreased global efficiency combined with increased local efficiency in attention deficit/hyperactivity disorder children led to a disorder-related shift of the network topological structure toward regular networks. In addition, nodal efficiency, cortical thickness, and correlation analyses revealed that several brain regions were altered in attention deficit/hyperactivity disorder patients. These findings are in accordance with a hypothesis of dysfunctional integration and segregation of the brain in patients with attention deficit/hyperactivity disorder and provide further evidence of brain dysfunction in attention deficit/hyperactivity disorder patients by observing cortical thickness on magnetic resonance imaging.

  7. Cognition and brain development in children with benign epilepsy with centrotemporal spikes.

    PubMed

    Garcia-Ramos, Camille; Jackson, Daren C; Lin, Jack J; Dabbs, Kevin; Jones, Jana E; Hsu, David A; Stafstrom, Carl E; Zawadzki, Lucy; Seidenberg, Michael; Prabhakaran, Vivek; Hermann, Bruce P

    2015-10-01

    Benign epilepsy with centrotemporal spikes (BECTS), the most common focal childhood epilepsy, is associated with subtle abnormalities in cognition and possible developmental alterations in brain structure when compared to healthy participants, as indicated by previous cross-sectional studies. To examine the natural history of BECTS, we investigated cognition, cortical thickness, and subcortical volumes in children with new/recent onset BECTS and healthy controls (HC). Participants were 8-15 years of age, including 24 children with new-onset BECTS and 41 age- and gender-matched HC. At baseline and 2 years later, all participants completed a cognitive assessment, and a subset (13 BECTS, 24 HC) underwent T1 volumetric magnetic resonance imaging (MRI) scans focusing on cortical thickness and subcortical volumes. Baseline cognitive abnormalities associated with BECTS (object naming, verbal learning, arithmetic computation, and psychomotor speed/dexterity) persisted over 2 years, with the rate of cognitive development paralleling that of HC. Baseline neuroimaging revealed thinner cortex in BECTS compared to controls in frontal, temporal, and occipital regions. Longitudinally, HC showed widespread cortical thinning in both hemispheres, whereas BECTS participants showed sparse regions of both cortical thinning and thickening. Analyses of subcortical volumes showed larger left and right putamens persisting over 2 years in BECTS compared to HC. Cognitive and structural brain abnormalities associated with BECTS are present at onset and persist (cognition) and/or evolve (brain structure) over time. Atypical maturation of cortical thickness antecedent to BECTS onset results in early identified abnormalities that continue to develop abnormally over time. However, compared to anatomic development, cognition appears more resistant to further change over time. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  8. Abnormal functional connectivity and cortical integrity influence dominant hand motor disability in multiple sclerosis: a multimodal analysis.

    PubMed

    Zhong, Jidan; Nantes, Julia C; Holmes, Scott A; Gallant, Serge; Narayanan, Sridar; Koski, Lisa

    2016-12-01

    Functional reorganization and structural damage occur in the brains of people with multiple sclerosis (MS) throughout the disease course. However, the relationship between resting-state functional connectivity (FC) reorganization in the sensorimotor network and motor disability in MS is not well understood. This study used resting-state fMRI, T1-weighted and T2-weighted, and magnetization transfer (MT) imaging to investigate the relationship between abnormal FC in the sensorimotor network and upper limb motor disability in people with MS, as well as the impact of disease-related structural abnormalities within this network. Specifically, the differences in FC of the left hemisphere hand motor region between MS participants with preserved (n = 17) and impaired (n = 26) right hand function, compared with healthy controls (n = 20) was investigated. Differences in brain atrophy and MT ratio measured at the global and regional levels were also investigated between the three groups. Motor preserved MS participants had stronger FC in structurally intact visual information processing regions relative to motor impaired MS participants. Motor impaired MS participants showed weaker FC in the sensorimotor and somatosensory association cortices and more severe structural damage throughout the brain compared with the other groups. Logistic regression analysis showed that regional MTR predicted motor disability beyond the impact of global atrophy whereas regional grey matter volume did not. More importantly, as the first multimodal analysis combining resting-state fMRI, T1-weighted, T2-weighted and MTR images in MS, we demonstrate how a combination of structural and functional changes may contribute to motor impairment or preservation in MS. Hum Brain Mapp 37:4262-4275, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Fragile X-like behaviors and abnormal cortical dendritic spines in cytoplasmic FMR1-interacting protein 2-mutant mice.

    PubMed

    Han, Kihoon; Chen, Hogmei; Gennarino, Vincenzo A; Richman, Ronald; Lu, Hui-Chen; Zoghbi, Huda Y

    2015-04-01

    Silencing of fragile X mental retardation 1 (FMR1) gene and loss of fragile X mental retardation protein (FMRP) cause fragile X syndrome (FXS), a genetic disorder characterized by intellectual disability and autistic behaviors. FMRP is an mRNA-binding protein regulating neuronal translation of target mRNAs. Abnormalities in actin-rich dendritic spines are major neuronal features in FXS, but the molecular mechanism and identity of FMRP targets mediating this phenotype remain largely unknown. Cytoplasmic FMR1-interacting protein 2 (Cyfip2) was identified as an interactor of FMRP, and its mRNA is a highly ranked FMRP target in mouse brain. Importantly, Cyfip2 is a component of WAVE regulatory complex, a key regulator of actin cytoskeleton, suggesting that Cyfip2 could be implicated in the dendritic spine phenotype of FXS. Here, we generated and characterized Cyfip2-mutant (Cyfip2(+/-)) mice. We found that Cyfip2(+/-) mice exhibited behavioral phenotypes similar to Fmr1-null (Fmr1(-/y)) mice, an animal model of FXS. Synaptic plasticity and dendritic spines were normal in Cyfip2(+/-) hippocampus. However, dendritic spines were altered in Cyfip2(+/-) cortex, and the dendritic spine phenotype of Fmr1(-/y) cortex was aggravated in Fmr1(-/y); Cyfip2(+/-) double-mutant mice. In addition to the spine changes at basal state, metabotropic glutamate receptor (mGluR)-induced dendritic spine regulation was impaired in both Fmr1(-/y) and Cyfip2(+/-) cortical neurons. Mechanistically, mGluR activation induced mRNA translation-dependent increase of Cyfip2 in wild-type cortical neurons, but not in Fmr1(-/y) or Cyfip2(+/-) neurons. These results suggest that misregulation of Cyfip2 function and its mGluR-induced expression contribute to the neurobehavioral phenotypes of FXS. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Oxygen Levels Regulate the Development of Human Cortical Radial Glia Cells.

    PubMed

    Ortega, J Alberto; Sirois, Carissa L; Memi, Fani; Glidden, Nicole; Zecevic, Nada

    2017-07-01

    The oxygen (O2) concentration is a vital parameter for controlling the survival, proliferation, and differentiation of neural stem cells. A prenatal reduction of O2 levels (hypoxia) often leads to cognitive and behavioral defects, attributable to altered neural development. In this study, we analyzed the effects of O2 levels on human cortical progenitors, the radial glia cells (RGCs), during active neurogenesis, corresponding to the second trimester of gestation. Small changes in O2 levels profoundly affected RGC survival, proliferation, and differentiation. Physiological hypoxia (3% O2) promoted neurogenesis, whereas anoxia (<1% O2) and severe hypoxia (1% O2) arrested the differentiation of human RGCs, mainly by altering the generation of glutamatergic neurons. The in vitro activation of Wnt-β-catenin signaling rescued the proliferation and neuronal differentiation of RGCs subjected to anoxia. Pathologic hypoxia (≤1% O2) also exerted negative effects on gliogenesis, by decreasing the number of O4+ preoligodendrocytes and increasing the number of reactive astrocytes derived from cortical RGCs. O2-dependent alterations in glutamatergic neurogenesis and oligodendrogenesis can lead to significant changes in cortical circuitry formation. A better understanding of the cellular effects caused by changes in O2 levels during human cortical development is essential to elucidating the etiology of numerous neurodevelopmental disorders. Published by Oxford University Press 2016.

  11. The role of white matter abnormalities in treatment-resistant depression: a systematic review.

    PubMed

    Serafini, Gianluca; Pompili, Maurizio; Borgwardt, Stefan; Giuffra, Enrico; Howes, Oliver; Girardi, Paolo; Amore, Mario

    2015-01-01

    Patients with treatment-resistant depression (TRD) commonly report significant disability together with an increased risk of functional impairment. Neuroimaging techniques have been used to investigate the neuropathology of this complex illness, but it is still quite unknown whether abnormalities in the integrity of white matter (WM) of specific brain areas may be considered as trait markers of TRD. Electronic databases were searched from 1980 to 2013. Nine studies - comprising a total of 228 subjects and 171 controls - fulfilled our inclusion criteria and were analyzed in the present overview. Several cross-sectional studies showed the association between WM abnormalities and TRD. According to the selected studies, sub-callosal cingulated cortex (SCC) WM abnormalities were largely implicated in the pathogenesis of both major depressive disorder and TRD. However, alterations in cortical-limbic or cortical-subcortical circuits, particularly the left middle frontal gyrus (which is thought to have a major role in emotional regulation) may also be involved in the pathophysiology of TRD. TRD may be related to the presence of specific microstructural WM abnormalities. WM abnormalities of specific brain regions such as SCC may have a major involvement in the pathogenesis of TRD.

  12. In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons.

    PubMed

    Thomas, Elizabeth A; Coppola, Giovanni; Tang, Bin; Kuhn, Alexandre; Kim, SoongHo; Geschwind, Daniel H; Brown, Timothy B; Luthi-Carter, Ruth; Ehrlich, Michelle E

    2011-03-15

    Huntington's disease (HD), caused by a CAG repeat expansion in the huntingtin (HTT) gene, is characterized by abnormal protein aggregates and motor and cognitive dysfunction. Htt protein is ubiquitously expressed, but the striatal medium spiny neuron (MSN) is most susceptible to dysfunction and death. Abnormal gene expression represents a core pathogenic feature of HD, but the relative roles of cell-autonomous and non-cell-autonomous effects on transcription remain unclear. To determine the extent of cell-autonomous dysregulation in the striatum in vivo, we examined genome-wide RNA expression in symptomatic D9-N171-98Q (a.k.a. DE5) transgenic mice in which the forebrain expression of the first 171 amino acids of human Htt with a 98Q repeat expansion is limited to MSNs. Microarray data generated from these mice were compared with those generated on the identical array platform from a pan-neuronal HD mouse model, R6/2, carrying two different CAG repeat lengths, and a relatively high degree of overlap of changes in gene expression was revealed. We further focused on known canonical pathways associated with excitotoxicity, oxidative stress, mitochondrial dysfunction, dopamine signaling and trophic support. While genes related to excitotoxicity, dopamine signaling and trophic support were altered in both DE5 and R6/2 mice, which may be either cell autonomous or non-cell autonomous, genes related to mitochondrial dysfunction, oxidative stress and the peroxisome proliferator-activated receptor are primarily affected in DE5 transgenic mice, indicating cell-autonomous mechanisms. Overall, HD-induced dysregulation of the striatal transcriptome can be largely attributed to intrinsic effects of mutant Htt, in the absence of expression in cortical neurons.

  13. From sauropsids to mammals and back: New approaches to comparative cortical development

    PubMed Central

    Montiel, Juan F.; Vasistha, Navneet A.; Garcia‐Moreno, Fernando

    2015-01-01

    Abstract Evolution of the mammalian neocortex (isocortex) has been a persisting problem in neurobiology. While recent studies have attempted to understand the evolutionary expansion of the human neocortex from rodents, similar approaches have been used to study the changes between reptiles, birds, and mammals. We review here findings from the past decades on the development, organization, and gene expression patterns in various extant species. This review aims to compare cortical cell numbers and neuronal cell types to the elaboration of progenitor populations and their proliferation in these species. Several progenitors, such as the ventricular radial glia, the subventricular intermediate progenitors, and the subventricular (outer) radial glia, have been identified but the contribution of each to cortical layers and cell types through specific lineages, their possible roles in determining brain size or cortical folding, are not yet understood. Across species, larger, more diverse progenitors relate to cortical size and cell diversity. The challenge is to relate the radial and tangential expansion of the neocortex to the changes in the proliferative compartments during mammalian evolution and with the changes in gene expression and lineages evident in various sectors of the developing brain. We also review the use of recent lineage tracing and transcriptomic approaches to revisit theories and to provide novel understanding of molecular processes involved in specification of cortical regions. J. Comp. Neurol. 524:630–645, 2016. © 2015 The Authors. The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26234252

  14. Developing guinea pig brain as a model for cortical folding.

    PubMed

    Hatakeyama, Jun; Sato, Haruka; Shimamura, Kenji

    2017-05-01

    The cerebral cortex in mammals, the neocortex specifically, is highly diverse among species with respect to its size and morphology, likely reflecting the immense adaptiveness of this lineage. In particular, the pattern and number of convoluted ridges and fissures, called gyri and sulci, respectively, on the surface of the cortex are variable among species and even individuals. However, little is known about the mechanism of cortical folding, although there have been several hypotheses proposed. Recent studies on embryonic neurogenesis revealed the differences in cortical progenitors as a critical factor of the process of gyrification. Here, we investigated the gyrification processes using developing guinea pig brains that form a simple but fundamental pattern of gyri. In addition, we established an electroporation-mediated gene transfer method for guinea pig embryos. We introduce the guinea pig brain as a useful model system to understand the mechanisms and basic principle of cortical folding. © 2017 Japanese Society of Developmental Biologists.

  15. Effect of malaria in pregnancy on foetal cortical brain development: a longitudinal observational study.

    PubMed

    Rijken, Marcus J; de Wit, Merel Charlotte; Mulder, Eduard J H; Kiricharoen, Suporn; Karunkonkowit, Noaeni; Paw, Tamalar; Visser, Gerard H A; McGready, Rose; Nosten, François H; Pistorius, Lourens R

    2012-07-02

    Malaria in pregnancy has a negative impact on foetal growth, but it is not known whether this also affects the foetal nervous system. The aim of this study was to examine the effects of malaria on foetal cortex development by three-dimensional ultrasound. Brain images were acquired using a portable ultrasound machine and a 3D ultrasound transducer. All recordings were analysed, blinded to clinical data, using the 4D view software package. The foetal supra-tentorial brain volume was determined and cortical development was qualitatively followed by scoring the appearance and development of six sulci. Multilevel analysis was used to study brain volume and cortical development in individual foetuses. Cortical grading was possible in 161 out of 223 (72%) serial foetal brain images in pregnant women living in a malaria endemic area. There was no difference between foetal cortical development or brain volumes at any time in pregnancy between women with immediately treated malaria infections and non-infected pregnancies. The percentage of images that could be graded was similar to other neuro-sonographic studies. Maternal malaria does not have a gross effect on foetal brain development, at least in this population, which had access to early detection and effective treatment of malaria.

  16. Postnatal Erythropoietin Mitigates Impaired Cerebral Cortical Development Following Subplate Loss from Prenatal Hypoxia–Ischemia

    PubMed Central

    Jantzie, Lauren L.; Corbett, Christopher J.; Firl, Daniel J.; Robinson, Shenandoah

    2015-01-01

    Preterm birth impacts brain development and leads to chronic deficits including cognitive delay, behavioral problems, and epilepsy. Premature loss of the subplate, a transient subcortical layer that guides development of the cerebral cortex and axonal refinement, has been implicated in these neurological disorders. Subplate neurons influence postnatal upregulation of the potassium chloride co-transporter KCC2 and maturation of γ-amino-butyric acid A receptor (GABAAR) subunits. We hypothesized that prenatal transient systemic hypoxia–ischemia (TSHI) in Sprague–Dawley rats that mimic brain injury from extreme prematurity in humans would cause premature subplate loss and affect cortical layer IV development. Further, we predicted that the neuroprotective agent erythropoietin (EPO) could attenuate the injury. Prenatal TSHI induced subplate neuronal loss via apoptosis. TSHI impaired cortical layer IV postnatal upregulation of KCC2 and GABAAR subunits, and postnatal EPO treatment mitigated the loss (n ≥ 8). To specifically address how subplate loss affects cortical development, we used in vitro mechanical subplate ablation in slice cultures (n ≥ 3) and found EPO treatment attenuates KCC2 loss. Together, these results show that subplate loss contributes to impaired cerebral development, and EPO treatment diminishes the damage. Limitation of premature subplate loss and the resultant impaired cortical development may minimize cerebral deficits suffered by extremely preterm infants. PMID:24722771

  17. New MR imaging assessment tool to define brain abnormalities in very preterm infants at term.

    PubMed

    Kidokoro, H; Neil, J J; Inder, T E

    2013-01-01

    WM injury is the dominant form of injury in preterm infants. However, other cerebral structures, including the deep gray matter and the cerebellum, can also be affected by injury and/or impaired growth. Current MR imaging injury assessment scales are subjective and are challenging to apply. Thus, we developed a new assessment tool and applied it to MR imaging studies obtained from very preterm infants at term age. MR imaging scans from 97 very preterm infants (< 30 weeks' gestation) and 22 healthy term-born infants were evaluated retrospectively. The severity of brain injury (defined by signal abnormalities) and impaired brain growth (defined with biometrics) was scored in the WM, cortical gray matter, deep gray matter, and cerebellum. Perinatal variables for clinical risks were collected. In very preterm infants, brain injury was observed in the WM (n=23), deep GM (n=5), and cerebellum (n=23). Combining measures of injury and impaired growth showed moderate to severe abnormalities most commonly in the WM (n=38) and cerebellum (n=32) but still notable in the cortical gray matter (n=16) and deep gray matter (n=11). WM signal abnormalities were associated with a reduced deep gray matter area but not with cerebellar abnormality. Intraventricular and/or parenchymal hemorrhage was associated with cerebellar signal abnormality and volume reduction. Multiple clinical risk factors, including prolonged intubation, prolonged parenteral nutrition, postnatal corticosteroid use, and postnatal sepsis, were associated with increased global abnormality on MR imaging. Very preterm infants demonstrate a high prevalence of injury and growth impairment in both the WM and gray matter. This MR imaging scoring system provides a more comprehensive and objective classification of the nature and extent of abnormalities than existing measures.

  18. Comparison of gray matter volume and thickness for analysis of cortical changes in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Liu, Jiachao; Li, Ziyi; Chen, Kewei; Yao, Li; Wang, Zhiqun; Li, Kunchen; Guo, Xiaojuan

    2011-03-01

    Gray matter volume and cortical thickness are two indices of concern in brain structure magnetic resonance imaging research. Gray matter volume reflects mixed-measurement information of cerebral cortex, while cortical thickness reflects only the information of distance between inner surface and outer surface of cerebral cortex. Using Scaled Subprofile Modeling based on Principal Component Analysis (SSM_PCA) and Pearson's Correlation Analysis, this study further provided quantitative comparisons and depicted both global relevance and local relevance to comprehensively investigate morphometrical abnormalities in cerebral cortex in Alzheimer's disease (AD). Thirteen patients with AD and thirteen age- and gender-matched healthy controls were included in this study. Results showed that factor scores from the first 8 principal components accounted for ~53.38% of the total variance for gray matter volume, and ~50.18% for cortical thickness. Factor scores from the fifth principal component showed significant correlation. In addition, gray matter voxel-based volume was closely related to cortical thickness alterations in most cortical cortex, especially, in some typical abnormal brain regions such as insula and the parahippocampal gyrus in AD. These findings suggest that these two measurements are effective indices for understanding the neuropathology in AD. Studies using both gray matter volume and cortical thickness can separate the causes of the discrepancy, provide complementary information and carry out a comprehensive description of the morphological changes of brain structure.

  19. The developing human brain: age-related changes in cortical, subcortical, and cerebellar anatomy.

    PubMed

    Sussman, Dafna; Leung, Rachel C; Chakravarty, M Mallar; Lerch, Jason P; Taylor, Margot J

    2016-04-01

    This study is the first to characterize normal development and sex differences across neuroanatomical structures in cortical, subcortical, and cerebellar brain regions in a single large cohort. One hundred and ninety-two magnetic resonance images were examined from 96 typically developing females and 96 age-matched typically developing males from 4 to 18 years of age. Image segmentation of the cortex was conducted with CIVET, while that of the cerebellum, hippocampi, thalamus, and basal ganglia were conducted using the MAGeT algorithm. Cortical thickness analysis revealed that most cortical regions decrease linearly, while surface area increases linearly with age. Volume relative to total cerebrum followed a quadratic trend with age, with only the left supramarginal gyrus showing sexual dimorphism. Hippocampal relative volume increased linearly, while the thalamus, caudate, and putamen decreased linearly, and the cerebellum did not change with age. The relative volumes of several subcortical subregions followed inverted U-shaped trends that peaked at ~12 years of age. Many subcortical structures were found to be larger in females than in males, independently of age, while others showed a sex-by-age interaction. This study provides a comprehensive assessment of cortical, subcortical, and cerebellar growth patterns during normal development, and draws attention to the role of sex on neuroanatomical maturation throughout childhood and adolescence.

  20. Parallel changes in cortical neuron biochemistry and motor function in protein-energy malnourished adult rats.

    PubMed

    Alaverdashvili, Mariam; Hackett, Mark J; Caine, Sally; Paterson, Phyllis G

    2017-04-01

    While protein-energy malnutrition in the adult has been reported to induce motor abnormalities and exaggerate motor deficits caused by stroke, it is not known if alterations in mature cortical neurons contribute to the functional deficits. Therefore, we explored if PEM in adult rats provoked changes in the biochemical profile of neurons in the forelimb and hindlimb regions of the motor cortex. Fourier transform infrared spectroscopic imaging using a synchrotron generated light source revealed for the first time altered lipid composition in neurons and subcellular domains (cytosol and nuclei) in a cortical layer and region-specific manner. This change measured by the area under the curve of the δ(CH 2 ) band may indicate modifications in membrane fluidity. These PEM-induced biochemical changes were associated with the development of abnormalities in forelimb use and posture. The findings of this study provide a mechanism by which PEM, if not treated, could exacerbate the course of various neurological disorders and diminish treatment efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Comprehensive genomic analysis of patients with disorders of cerebral cortical development.

    PubMed

    Wiszniewski, Wojciech; Gawlinski, Pawel; Gambin, Tomasz; Bekiesinska-Figatowska, Monika; Obersztyn, Ewa; Antczak-Marach, Dorota; Akdemir, Zeynep Hande Coban; Harel, Tamar; Karaca, Ender; Jurek, Marta; Sobecka, Katarzyna; Nowakowska, Beata; Kruk, Malgorzata; Terczynska, Iwona; Goszczanska-Ciuchta, Alicja; Rudzka-Dybala, Mariola; Jamroz, Ewa; Pyrkosz, Antoni; Jakubiuk-Tomaszuk, Anna; Iwanowski, Piotr; Gieruszczak-Bialek, Dorota; Piotrowicz, Malgorzata; Sasiadek, Maria; Kochanowska, Iwona; Gurda, Barbara; Steinborn, Barbara; Dawidziuk, Mateusz; Castaneda, Jennifer; Wlasienko, Pawel; Bezniakow, Natalia; Jhangiani, Shalini N; Hoffman-Zacharska, Dorota; Bal, Jerzy; Szczepanik, Elzbieta; Boerwinkle, Eric; Gibbs, Richard A; Lupski, James R

    2018-04-30

    Malformations of cortical development (MCDs) manifest with structural brain anomalies that lead to neurologic sequelae, including epilepsy, cerebral palsy, developmental delay, and intellectual disability. To investigate the underlying genetic architecture of patients with disorders of cerebral cortical development, a cohort of 54 patients demonstrating neuroradiologic signs of MCDs was investigated. Individual genomes were interrogated for single-nucleotide variants (SNV) and copy number variants (CNV) with whole-exome sequencing and chromosomal microarray studies. Variation affecting known MCDs-associated genes was found in 16/54 cases, including 11 patients with SNV, 2 patients with CNV, and 3 patients with both CNV and SNV, at distinct loci. Diagnostic pathogenic SNV and potentially damaging variants of unknown significance (VUS) were identified in two groups of seven individuals each. We demonstrated that de novo variants are important among patients with MCDs as they were identified in 10/16 individuals with a molecular diagnosis. Three patients showed changes in known MCDs genes  and a clinical phenotype beyond the usual characteristics observed, i.e., phenotypic expansion, for a particular known disease gene clinical entity. We also discovered 2 likely candidate genes, CDH4, and ASTN1, with human and animal studies supporting their roles in brain development, and 5 potential candidate genes. Our findings emphasize genetic heterogeneity of MCDs disorders and postulate potential novel candidate genes involved in cerebral cortical development.

  2. In Vivo Imaging of Cortical Inflammation and Subpial Pathology in Multiple Sclerosis by Combined PET and MRI

    DTIC Science & Technology

    2015-09-01

    abnormalities in MS associated with changes in cortical myelin and/or iron concentration. The purpose of this project is to evaluate inflammation and...al., 2011). We demonstrated that surface-based mapping of quanti - tative T2* as a function of cortical depth (laminar analysis) from ultra-high...cortical grey matter (NACGM), to better understand their role in determining laminar quanti - tative T2* changes in multiple sclerosis. Materials and

  3. High phosphate feeding promotes mineral and bone abnormalities in mice with chronic kidney disease.

    PubMed

    Lau, Wei Ling; Linnes, Michael; Chu, Emily Y; Foster, Brian L; Bartley, Bryan A; Somerman, Martha J; Giachelli, Cecilia M

    2013-01-01

    Chronic kidney disease-mineral bone disorder (CKD-MBD) is a systemic syndrome characterized by imbalances in mineral homeostasis, renal osteodystrophy (ROD) and ectopic calcification. The mechanisms underlying this syndrome in individuals with chronic kidney disease (CKD) are not yet clear. We examined the effect of normal phosphate (NP) or high phosphate (HP) feeding in the setting of CKD on bone pathology, serum biochemistry and vascular calcification in calcification-prone dilute brown non-agouti (DBA/2) mice. In both NP and HP-fed CKD mice, elevated serum parathyroid hormone and alkaline phosphatase (ALP) levels were observed, but serum phosphorus levels were equivalent compared with sham controls. CKD mice on NP diet showed trabecular alterations in the long bone consistent with high-turnover ROD, including increased trabecular number with abundant osteoblasts and osteoclasts. Despite trabecular bone and serum biochemical changes, CKD/NP mice did not develop vascular calcification. In contrast, CKD/HP mice developed arterial medial calcification (AMC), more severe trabecular bone alterations and cortical bone abnormalities that included decreased cortical thickness and density, and increased cortical porosity. Cortical bone porosity and trabecular number strongly correlated with the degree of aortic calcification. HP feeding was required to induce the full spectrum of CKD-MBD symptoms in CKD mice.

  4. PARD3 dysfunction in conjunction with dynamic HIPPO signaling drives cortical enlargement with massive heterotopia.

    PubMed

    Liu, Wenying Angela; Chen, She; Li, Zhizhong; Lee, Choong Heon; Mirzaa, Ghayda; Dobyns, William B; Ross, M Elizabeth; Zhang, Jiangyang; Shi, Song-Hai

    2018-06-01

    Proper organization and orderly mitosis of radial glial progenitors (RGPs) drive the formation of a laminated mammalian cortex in the correct size. However, the molecular underpinnings of the intricate process remain largely unclear. Here we show that RGP behavior and cortical development are controlled by temporally distinct actions of partitioning-defective 3 (PARD3) in concert with dynamic HIPPO signaling. RGPs lacking PARD3 exhibit developmental stage-dependent abnormal switches in division mode, resulting in an initial overproduction of RGPs located largely outside the ventricular zone at the expense of deep-layer neurons. Ectopically localized RGPs subsequently undergo accelerated and excessive neurogenesis, leading to the formation of an enlarged cortex with massive heterotopia and increased seizure susceptibility. Simultaneous removal of HIPPO pathway effectors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) suppresses cortical enlargement and heterotopia formation. These results define a dynamic regulatory program of mammalian cortical development and highlight a progenitor origin of megalencephaly with ribbon heterotopia and epilepsy. © 2018 Liu et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Cortical sensorimotor alterations classify clinical phenotype and putative genotype of spasmodic dysphonia

    PubMed Central

    Battistella, Giovanni; Fuertinger, Stefan; Fleysher, Lazar; Ozelius, Laurie J.; Simonyan, Kristina

    2017-01-01

    Background Spasmodic dysphonia (SD), or laryngeal dystonia, is a task-specific isolated focal dystonia of unknown causes and pathophysiology. Although functional and structural abnormalities have been described in this disorder, the influence of its different clinical phenotypes and genotypes remains scant, making it difficult to explain SD pathophysiology and to identify potential biomarkers. Methods We used a combination of independent component analysis and linear discriminant analysis of resting-state functional MRI data to investigate brain organization in different SD phenotypes (abductor vs. adductor type) and putative genotypes (familial vs. sporadic cases) and to characterize neural markers for genotype/phenotype categorization. Results We found abnormal functional connectivity within sensorimotor and frontoparietal networks in SD patients compared to healthy individuals as well as phenotype- and genotype-distinct alterations of these networks, involving primary somatosensory, premotor and parietal cortices. The linear discriminant analysis achieved 71% accuracy classifying SD and healthy individuals using connectivity measures in the left inferior parietal and sensorimotor cortex. When categorizing between different forms of SD, the combination of measures from left inferior parietal, premotor and right sensorimotor cortices achieved 81% discriminatory power between familial and sporadic SD cases, whereas the combination of measures from the right superior parietal, primary somatosensory and premotor cortices led to 71% accuracy in the classification of adductor and abductor SD forms. Conclusions Our findings present the first effort to identify and categorize isolated focal dystonia based on its brain functional connectivity profile, which may have a potential impact on the future development of biomarkers for this rare disorder. PMID:27346568

  6. Cortical activation deficits during facial emotion processing in youth at high risk for the development of substance use disorders.

    PubMed

    Hulvershorn, Leslie A; Finn, Peter; Hummer, Tom A; Leibenluft, Ellen; Ball, Brandon; Gichina, Victoria; Anand, Amit

    2013-08-01

    Recent longitudinal studies demonstrate that addiction risk may be influenced by a cognitive, affective and behavioral phenotype that emerges during childhood. Relatively little research has focused on the affective or emotional risk components of this high-risk phenotype, including the relevant neurobiology. Non-substance abusing youth (N=19; mean age=12.2) with externalizing psychopathology and paternal history of a substance use disorder and demographically matched healthy comparisons (N=18; mean age=11.9) were tested on a facial emotion matching task during functional MRI. This task involved matching faces by emotions (angry, anxious) or matching shape orientation. High-risk youth exhibited increased medial prefrontal, precuneus and occipital cortex activation compared to the healthy comparison group during the face matching condition, relative to the control shape condition. The occipital activation correlated positively with parent-rated emotion regulation impairments in the high-risk group. These findings suggest a preexisting abnormality in cortical activation in response to facial emotion matching in youth at high risk for the development of problem drug or alcohol use. These cortical deficits may underlie impaired affective processing and regulation, which in turn may contribute to escalating drug use in adolescence. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Abnormal hippocampal functioning and impaired spatial navigation in depressed individuals: evidence from whole-head magnetoencephalography.

    PubMed

    Cornwell, Brian R; Salvadore, Giacomo; Colon-Rosario, Veronica; Latov, David R; Holroyd, Tom; Carver, Frederick W; Coppola, Richard; Manji, Husseini K; Zarate, Carlos A; Grillon, Christian

    2010-07-01

    Dysfunction of the hippocampus has long been suspected to be a key component of the pathophysiology of major depressive disorder. Despite evidence of hippocampal structural abnormalities in depressed patients, abnormal hippocampal functioning has not been demonstrated. The authors aimed to link spatial navigation deficits previously documented in depressed patients to abnormal hippocampal functioning using a virtual reality navigation task. Whole-head magnetoencephalography (MEG) recordings were collected while participants (19 patients diagnosed with major depressive disorder and 19 healthy subjects matched by gender and age) navigated a virtual Morris water maze to find a hidden platform; navigation to a visible platform served as a control condition. Behavioral measures were obtained to assess navigation performance. Theta oscillatory activity (4-8 Hz) was mapped across the brain on a voxel-wise basis using a spatial-filtering MEG source analysis technique. Depressed patients performed worse than healthy subjects in navigating to the hidden platform. Robust group differences in theta activity were observed in right medial temporal cortices during navigation, with patients exhibiting less engagement of the anterior hippocampus and parahippocampal cortices relative to comparison subjects. Left posterior hippocampal theta activity was positively correlated with individual performance within each group. Consistent with previous findings, depressed patients showed impaired spatial navigation. Dysfunction of right anterior hippocampus and parahippocampal cortices may underlie this deficit and stem from structural abnormalities commonly found in depressed patients.

  8. The Development of Cortical Sensitivity to Visual Word Forms

    ERIC Educational Resources Information Center

    Ben-Shachar, Michal; Dougherty, Robert F.; Deutsch, Gayle K.; Wandell, Brian A.

    2011-01-01

    The ability to extract visual word forms quickly and efficiently is essential for using reading as a tool for learning. We describe the first longitudinal fMRI study to chart individual changes in cortical sensitivity to written words as reading develops. We conducted four annual measurements of brain function and reading skills in a heterogeneous…

  9. Gamma abnormalities during perception of illusory figures in autism.

    PubMed

    Brown, Caroline; Gruber, Thomas; Boucher, Jill; Rippon, Gina; Brock, Jon

    2005-06-01

    This experiment was designed to test the hypothesis that perceptual abnormalities in autism might be associated with alteration of induced gamma activity patterns overlying visual cortical regions. EEG was recorded from six adolescents with autism and eight controls matched on chronological age, and verbal and nonverbal mental age, whilst identifying the presence or absence of an illusory Kanizsa shape. Although there were no reaction time or accuracy differences between the groups there were significant task-related differences in cortical activity. Control participants showed typical gamma-band activity over parietal regions at around 350 msec post onset of shape trials, similar to gamma patterns found in previous studies with non-impaired adults. In contrast, autistic participants showed overall increased activity, including an early 100 msec gamma peak and a late induced peak, 50 to 70 msec earlier than that shown by the control group. We interpret the abnormal gamma activity to reflect decreased "signal to noise" due to decreased inhibitory processing. In this experiment we did not establish a link between altered perception and abnormal gamma, as the autistic participants' behaviour did not differ from the controls. Future work should be designed to replicate this phenomenon and establish the perceptual consequences of altered gamma activity.

  10. Grey matter abnormalities in social anxiety disorder: a pilot study.

    PubMed

    Syal, Supriya; Hattingh, Coenraad J; Fouché, Jean-Paul; Spottiswoode, Bruce; Carey, Paul D; Lochner, Christine; Stein, Dan J

    2012-09-01

    While a number of studies have explored the functional neuroanatomy of social anxiety disorder (SAD), data on grey matter integrity are lacking. We conducted structural MRI scans to examine the cortical thickness of grey matter in individuals with SAD. 13 unmedicated adult patients with a primary diagnosis of generalized social anxiety disorder and 13 demographically (age, gender and education) matched healthy controls underwent 3T structural magnetic resonance imaging. Cortical thickness and subcortical volumes were estimated using an automated algorithm (Freesurfer Version 4.5). Compared to controls, social anxiety disorder patients showed significant bilateral cortical thinning in the fusiform and post central regions. Additionally, right hemisphere specific thinning was found in the frontal, temporal, parietal and insular cortices of individuals with social anxiety disorder. Although uncorrected cortical grey matter volumes were significantly lower in individuals with SAD, we did not detect volumetric differences in corrected amygdala, hippocampal or cortical grey matter volumes across study groups. Structural differences in grey matter thickness between SAD patients and controls highlight the diffuse neuroanatomical networks involved in both social anxiety and social behavior. Additional work is needed to investigate the causal mechanisms involved in such structural abnormalities in SAD.

  11. Altered regional cortical thickness and subcortical volume in women with primary dysmenorrhoea.

    PubMed

    Liu, P; Yang, J; Wang, G; Liu, Y; Liu, X; Jin, L; Liang, F; Qin, W; Calhoun, V D

    2016-04-01

    There is emerging evidence that primary dysmenorrhoea (PDM) is associated with altered brain function and structure. However, few studies have investigated changes in regional cortical thickness and subcortical volumes in PDM patients. The purpose of this study was to characterize differences in both cortical thickness and subcortical volumes between PDM patients and healthy controls (HCs). T1-weighted magnetic resonance images were obtained from 44 PDM patients and 32 HCs matched for age and handedness. Cortical thickness was compared in multiple locations across the continuous cortical surface, and subcortical volumes were compared on a structure-by-structure basis. Correlation analysis was then used to evaluate relationships between the clinical symptoms and abnormal brain structure in PDM. PDM patients had significantly increased cortical thickness in the orbitofrontal cortex (OFC), insula (IN), primary/secondary sensory area (SI/SII), superior temporal cortex (STC), precuneus (pCUN) and posterior cingulate cortex (PCC). Meanwhile, significantly decreased subcortical volumes of the caudate, thalamus and amygdala were found in PDM patients. Moreover, there were significant positive correlations between the PDM-related duration and the OFC, SFC, STC and IN. The MPQ scores were positively correlated with the pCUN. These findings provide further evidence for grey matter changes in patients with PDM, and in addition, the results support relationships between the structural abnormalities and their role in symptom production. All these results are likely to be potential valuable to provide us with direct information about the neural basis of PDM. © 2015 European Pain Federation - EFIC®

  12. A functional Magnetic Resonance Imaging study of neurohemodynamic abnormalities during emotion processing in subjects at high risk for schizophrenia

    PubMed Central

    Venkatasubramanian, Ganesan; Puthumana, Dawn Thomas K.; Jayakumar, Peruvumba N.; Gangadhar, B. N.

    2010-01-01

    Background: Emotion processing abnormalities are considered among the core deficits in schizophrenia. Subjects at high risk (HR) for schizophrenia also show these deficits. Structural neuroimaging studies examining unaffected relatives at high risk for schizophrenia have demonstrated neuroanatomical abnormalities involving neo-cortical and sub-cortical brain regions related to emotion processing. The brain functional correlates of emotion processing in these HR subjects in the context of ecologically valid, real-life dynamic images using functional Magnetic Resonance Imaging (fMRI) has not been examined previously. Aim: To examine the neurohemodynamic abnormalities during emotion processing in unaffected subjects at high risk for schizophrenia in comparison with age-, sex-, handedness- and education-matched healthy controls, using fMRI. Materials and Methods: HR subjects for schizophrenia (n=17) and matched healthy controls (n=16) were examined. The emotion processing of fearful facial expression was examined using a culturally appropriate and valid tool for Indian subjects. The fMRI was performed in a 1.5-T scanner during an implicit emotion processing paradigm. The fMRI analyses were performed using the Statistical Parametric Mapping 2 (SPM2) software. Results: HR subjects had significantly reduced brain activations in left insula, left medial frontal gyrus, left inferior frontal gyrus, right cingulate gyrus, right precentral gyrus and right inferior parietal lobule. Hypothesis-driven region-of-interest analysis revealed hypoactivation of right amygdala in HR subjects. Conclusions: Study findings suggest that neurohemodynamic abnormalities involving limbic and frontal cortices could be potential indicators for increased vulnerability toward schizophrenia. The clinical utility of these novel findings in predicting the development of psychosis needs to be evaluated. PMID:21267363

  13. No Association between Cortical Gyrification or Intrinsic Curvature and Attention-deficit/Hyperactivity Disorder in Adolescents and Young Adults.

    PubMed

    Forde, Natalie J; Ronan, Lisa; Zwiers, Marcel P; Alexander-Bloch, Aaron F; Faraone, Stephen V; Oosterlaan, Jaap; Heslenfeld, Dirk J; Hartman, Catharina A; Buitelaar, Jan K; Hoekstra, Pieter J

    2017-01-01

    Magnetic resonance imaging (MRI) studies have highlighted subcortical, cortical, and structural connectivity abnormalities associated with attention-deficit/hyperactivity disorder (ADHD). Gyrification investigations of the cortex have been inconsistent and largely negative, potentially due to a lack of sensitivity of the previously used morphological parameters. The innovative approach of applying intrinsic curvature analysis, which is predictive of gyrification pattern, to the cortical surface applied herein allowed us greater sensitivity to determine whether the structural connectivity abnormalities thus far identified at a centimeter scale also occur at a millimeter scale within the cortical surface. This could help identify neurodevelopmental processes that contribute to ADHD. Structural MRI datasets from the NeuroIMAGE project were used [ n = 306 ADHD, n = 164 controls, and n = 148 healthy siblings of individuals with ADHD (age in years, mean(sd); 17.2 (3.4), 16.8 (3.2), and 17.7 (3.8), respectively)]. Reconstructions of the cortical surfaces were computed with FreeSurfer. Intrinsic curvature (taken as a marker of millimeter-scale surface connectivity) and local gyrification index were calculated for each point on the surface (vertex) with Caret and FreeSurfer, respectively. Intrinsic curvature skew and mean local gyrification index were extracted per region; frontal, parietal, temporal, occipital, cingulate, and insula. A generalized additive model was used to compare the trajectory of these measures between groups over age, with sex, scanner site, total surface area of hemisphere, and familiality accounted for. After correcting for sex, scanner site, and total surface area no group differences were found in the developmental trajectory of intrinsic curvature or local gyrification index. Despite the increased sensitivity of intrinsic curvature, compared to gyrification measures, to subtle morphological abnormalities of the cortical surface we found no

  14. Skeletal structure in postmenopausal women with osteopenia and fractures is characterized by abnormal trabecular plates and cortical thinning.

    PubMed

    Stein, Emily M; Kepley, Anna; Walker, Marcella; Nickolas, Thomas L; Nishiyama, Kyle; Zhou, Bin; Liu, X Sherry; McMahon, Donald J; Zhang, Chiyuan; Boutroy, Stephanie; Cosman, Felicia; Nieves, Jeri; Guo, X Edward; Shane, Elizabeth

    2014-01-01

    The majority of fragility fractures occur in women with osteopenia rather than osteoporosis as determined by dual‐energy X‐ray absorptiometry (DXA). However, it is difficult to identify which women with osteopenia are at greatest risk. We performed this study to determine whether osteopenic women with and without fractures had differences in trabecular morphology and biomechanical properties of bone. We hypothesized that women with fractures would have fewer trabecular plates, less trabecular connectivity, and lower stiffness. We enrolled 117 postmenopausal women with osteopenia by DXA (mean age 66 years; 58 with fragility fractures and 59 nonfractured controls). All had areal bone mineral density (aBMD) measured by DXA. Trabecular and cortical volumetric bone mineral density (vBMD), trabecular microarchitecture, and cortical porosity were measured by high‐resolution peripheral computed tomography (HR‐pQCT) of the distal radius and tibia. HR‐pQCT scans were subjected to finite element analysis to estimate whole bone stiffness and individual trabecula segmentation (ITS) to evaluate trabecular type (as plate or rod), orientation, and connectivity.Groups had similar age, race, body mass index (BMI), and mean T‐scores. Fracture subjects had lower cortical and trabecular vBMD, thinner cortices, and thinner, more widely separated trabeculae. By ITS, fracture subjects had fewer trabecular plates, less axially aligned trabeculae, and less trabecular connectivity. Whole bone stiffness was lower in women with fractures. Cortical porosity did not differ. Differences in cortical bone were found at both sites, whereas trabecular differences were more pronounced at the radius.In summary, postmenopausal women with osteopenia and fractures had lower cortical and trabecular vBMD; thinner, more widely separated and rodlike trabecular structure; less trabecular connectivity; and lower whole bone stiffness compared with controls,despite similar aBMD by DXA. Our results

  15. Progressive deterioration of thalamic nuclei relates to cortical network decline in schizophrenia

    PubMed Central

    Cobia, Derin J.; Smith, Matthew J.; Salinas, Ilse; Ng, Charlene; Gado, Mohktar; Csernansky, John G.; Wang, Lei

    2016-01-01

    Thalamic abnormalities are considered part of the complex pathophysiology of schizophrenia, particularly the involvement of specific thalamic nuclei. The goals of this study were to: introduce a novel atlas-based parcellation scheme for defining various thalamic nuclei; compare their integrity in a schizophrenia sample against healthy individuals at baseline and follow-up time points, as well as rates of change over time; examine relationships between the nuclei and abnormalities in known connected cortical regions; and finally, to determine if schizophrenia-related thalamic nuclei changes relate to cognitive functioning and clinical symptoms. Subjects were from a larger longitudinal 2-year follow-up study, schizophrenia (n=20) and healthy individuals (n=20) were group-matched for age, gender, and recent-alcohol use. We used high-dimensional brain mapping to obtain thalamic morphology, and applied a novel atlas-based method for delineating anterior, mediodorsal, and pulvinar nuclei. Results from cross sectional GLMs revealed group differences in bilateral mediodorsal and anterior nuclei, while longitudinal models revealed significant group-by-time interactions for the mediodorsal and pulvinar nuclei. Cortical correlations were the strongest for the pulvinar in frontal, temporal and parietal regions, followed by the mediodorsal nucleus in frontal regions, but none in the anterior nucleus. Thalamic measures did not correlate with cognitive and clinical scores at any time point or longitudinally. Overall, findings revealed a pattern of persistent progressive abnormalities in thalamic nuclei that relate to advancing cortical decline in schizophrenia, but not with measures of behavior. PMID:27613507

  16. Bilateral Thalamocortical Abnormalities in Focal Cortical Dysplasia.

    PubMed

    Rezayev, Arthur; Feldman, Henry A; Levman, Jacob; Takahashi, Emi

    2018-05-05

    Focal cortical dysplasia (FCD), a congenital malformation of the neocortex and one of the most common causes of medication resistant epilepsy in pediatric populations, can be studied noninvasively by diffusion tensor imaging (DTI). The present study aimed to quantify changes in the thalamus and thalamocortical pathways with respect to fractional anisotropy (FA), apparent diffusion coefficient (ADC), volume, and other common measures. The study quantified data collected from pediatric patients with a prior diagnosis of FCD; 75 patients (35 females, 10.1 ± 6.5 years) for analysis of thalamic volume and 68 patients (32 females, 10.2 ± 6.4 years) for DTI analysis. DTI scans were taken at 3 Tesla MRI scanners (30 diffusion gradient directions; b= 1000 s/mm 2 and 5 non diffusion-weighted measurements). DTI tractography was performed using the FACT algorithm with an angle threshold of 45 degrees. Manually delineated ROIs were used to compare the hemisphere containing the dysplasia to the contralateral hemisphere and controls. A significant decrease in the volume of the FCD hemisphere thalamus was detected as compared to the contralateral hemisphere. In comparison to controls, there was an observed reduction in tract volume, length, count, FA of thalami, and FA of thalamocortical pathways in FCD patients. FCD patients had higher odds of exhibiting high ADC in both the thalamus and thalamocortical pathways. The data implied a widespread reduction in structural connectivity of the thalamocortical network. MRI analysis suggests a potential influence of FCD on thalamic volume. Copyright © 2018. Published by Elsevier B.V.

  17. Cortical granule exocytosis in Bufo arenarum oocytes matured in vitro.

    PubMed

    Oterino, J; Sanchez Toranzo, G; Zelarayán, L; Valz-Gianinet, J N; Bühler, M I

    2001-08-01

    Denuded Bufo arenarum oocytes matured in vitro by progesterone treatment exhibited abnormal segmentation due to the penetration of more than one sperm. These oocytes were able to respond to activation stimuli and exhibited the external signs characteristic of activation. However, the prevention of polyspermy was not effective in these oocytes, which exhibited numerous sperm in their cytoplasm. The aim of this work was to analyse the cortical reaction in polyspermic Bufo arenarum oocytes matured in vitro. The result indicate that the cortical reaction of these oocytes seems to occur with a chronological sequence similar to that described for ovoposited oocytes of this species. In addition, when, 1 min after pricking, cortical granule exocytosis occurred, the oocytes became refractory to sperm entry, suggesting that they are able to establish a slow block to polyspermy.

  18. Altered cortical anatomical networks in temporal lobe epilepsy

    NASA Astrophysics Data System (ADS)

    Lv, Bin; He, Huiguang; Lu, Jingjing; Li, Wenjing; Dai, Dai; Li, Meng; Jin, Zhengyu

    2011-03-01

    Temporal lobe epilepsy (TLE) is one of the most common epilepsy syndromes with focal seizures generated in the left or right temporal lobes. With the magnetic resonance imaging (MRI), many evidences have demonstrated that the abnormalities in hippocampal volume and the distributed atrophies in cortical cortex. However, few studies have investigated if TLE patients have the alternation in the structural networks. In the present study, we used the cortical thickness to establish the morphological connectivity networks, and investigated the network properties using the graph theoretical methods. We found that all the morphological networks exhibited the small-world efficiency in left TLE, right TLE and normal groups. And the betweenness centrality analysis revealed that there were statistical inter-group differences in the right uncus region. Since the right uncus located at the right temporal lobe, these preliminary evidences may suggest that there are topological alternations of the cortical anatomical networks in TLE, especially for the right TLE.

  19. Mammary development, hyperestrogenemia, and hypocortisolemia in a male cat with an adrenal cortical carcinoma.

    PubMed

    Nadolski, Amy C; Markovich, Jessica E; Jennings, Samuel H; Mahony, Orla M

    2016-10-01

    A 14-year-old neutered male domestic shorthaired cat was diagnosed with an adrenal cortical carcinoma causing hyperestrogenemia that resulted in mammary hyperplasia and sexual behavior. A right adrenalectomy and mammary gland biopsy were performed. Adrenal cortical neoplasia should be ruled out in any neutered male cat with mammary development and/or exhibiting sexual behavior.

  20. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia

    PubMed Central

    Mirzaa, Ghayda M.; Ishak, Gisele E.; O'Roak, Brian J.; Hiatt, Joseph B.; Roden, William H.; Gunter, Sonya A.; Christian, Susan L.; Collins, Sarah; Adams, Carissa; Rivière, Jean-Baptiste; St-Onge, Judith; Ojemann, Jeffrey G.; Shendure, Jay; Hevner, Robert F.; Dobyns, William B.

    2015-01-01

    Malformations of cortical development containing dysplastic neuronal and glial elements, including hemimegalencephaly and focal cortical dysplasia, are common causes of intractable paediatric epilepsy. In this study we performed multiplex targeted sequencing of 10 genes in the PI3K/AKT pathway on brain tissue from 33 children who underwent surgical resection of dysplastic cortex for the treatment of intractable epilepsy. Sequencing results were correlated with clinical, imaging, pathological and immunohistological phenotypes. We identified mosaic activating mutations in PIK3CA and AKT3 in this cohort, including cancer-associated hotspot PIK3CA mutations in dysplastic megalencephaly, hemimegalencephaly, and focal cortical dysplasia type IIa. In addition, a germline PTEN mutation was identified in a male with hemimegalencephaly but no peripheral manifestations of the PTEN hamartoma tumour syndrome. A spectrum of clinical, imaging and pathological abnormalities was found in this cohort. While patients with more severe brain imaging abnormalities and systemic manifestations were more likely to have detected mutations, routine histopathological studies did not predict mutation status. In addition, elevated levels of phosphorylated S6 ribosomal protein were identified in both neurons and astrocytes of all hemimegalencephaly and focal cortical dysplasia type II specimens, regardless of the presence or absence of detected PI3K/AKT pathway mutations. In contrast, expression patterns of the T308 and S473 phosphorylated forms of AKT and in vitro AKT kinase activities discriminated between mutation-positive dysplasia cortex, mutation-negative dysplasia cortex, and non-dysplasia epilepsy cortex. Our findings identify PI3K/AKT pathway mutations as an important cause of epileptogenic brain malformations and establish megalencephaly, hemimegalencephaly, and focal cortical dysplasia as part of a single pathogenic spectrum. PMID:25722288

  1. Seven tesla MRI improves detection of focal cortical dysplasia in patients with refractory focal epilepsy.

    PubMed

    Veersema, Tim J; Ferrier, Cyrille H; van Eijsden, Pieter; Gosselaar, Peter H; Aronica, Eleonora; Visser, Fredy; Zwanenburg, Jaco M; de Kort, Gerard A P; Hendrikse, Jeroen; Luijten, Peter R; Braun, Kees P J

    2017-06-01

    The aim of this study is to determine whether the use of 7 tesla (T) MRI in clinical practice leads to higher detection rates of focal cortical dysplasias in possible candidates for epilepsy surgery. In our center patients are referred for 7 T MRI if lesional focal epilepsy is suspected, but no abnormalities are detected at one or more previous, sufficient-quality lower-field MRI scans, acquired with a dedicated epilepsy protocol, or when concealed pathology is suspected in combination with MR-visible mesiotemporal sclerosis-dual pathology. We assessed 40 epilepsy patients who underwent 7 T MRI for presurgical evaluation and whose scans (both 7 T and lower field) were discussed during multidisciplinary epilepsy surgery meetings that included a dedicated epilepsy neuroradiologist. We compared the conclusions of the multidisciplinary visual assessments of 7 T and lower-field MRI scans. In our series of 40 patients, multidisciplinary evaluation of 7 T MRI identified additional lesions not seen on lower-field MRI in 9 patients (23%). These findings were guiding in surgical planning. So far, 6 patients underwent surgery, with histological confirmation of focal cortical dysplasia or mild malformation of cortical development. Seven T MRI improves detection of subtle focal cortical dysplasia and mild malformations of cortical development in patients with intractable epilepsy and may therefore contribute to identification of surgical candidates and complete resection of the epileptogenic lesion, and thus to postoperative seizure freedom.

  2. Decreased centrality of cortical volume covariance networks in autism spectrum disorders.

    PubMed

    Balardin, Joana Bisol; Comfort, William Edgar; Daly, Eileen; Murphy, Clodagh; Andrews, Derek; Murphy, Declan G M; Ecker, Christine; Sato, João Ricardo

    2015-10-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions characterized by atypical structural and functional brain connectivity. Complex network analysis has been mainly used to describe altered network-level organization for functional systems and white matter tracts in ASD. However, atypical functional and structural connectivity are likely to be also linked to abnormal development of the correlated structure of cortical gray matter. Such covariations of gray matter are particularly well suited to the investigation of the complex cortical pathology of ASD, which is not confined to isolated brain regions but instead acts at the systems level. In this study, we examined network centrality properties of gray matter networks in adults with ASD (n = 84) and neurotypical controls (n = 84) using graph theoretical analysis. We derived a structural covariance network for each group using interregional correlation matrices of cortical volumes extracted from a surface-based parcellation scheme containing 68 cortical regions. Differences between groups in closeness network centrality measures were evaluated using permutation testing. We identified several brain regions in the medial frontal, parietal and temporo-occipital cortices with reductions in closeness centrality in ASD compared to controls. We also found an association between an increased number of autistic traits and reduced centrality of visual nodes in neurotypicals. Our study shows that ASD are accompanied by atypical organization of structural covariance networks by means of a decreased centrality of regions relevant for social and sensorimotor processing. These findings provide further evidence for the altered network-level connectivity model of ASD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Mammary development, hyperestrogenemia, and hypocortisolemia in a male cat with an adrenal cortical carcinoma

    PubMed Central

    Nadolski, Amy C.; Markovich, Jessica E.; Jennings, Samuel H.; Mahony, Orla M.

    2016-01-01

    A 14-year-old neutered male domestic shorthaired cat was diagnosed with an adrenal cortical carcinoma causing hyperestrogenemia that resulted in mammary hyperplasia and sexual behavior. A right adrenalectomy and mammary gland biopsy were performed. Adrenal cortical neoplasia should be ruled out in any neutered male cat with mammary development and/or exhibiting sexual behavior. PMID:27708447

  4. MOG antibody–positive, benign, unilateral, cerebral cortical encephalitis with epilepsy

    PubMed Central

    Ogawa, Ryo; Takahashi, Toshiyuki; Kaneko, Kimihiko; Akaishi, Tetsuya; Takai, Yoshiki; Sato, Douglas Kazutoshi; Nishiyama, Shuhei; Misu, Tatsuro; Kuroda, Hiroshi; Aoki, Masashi; Fujihara, Kazuo

    2017-01-01

    Objective: To describe the features of adult patients with benign, unilateral cerebral cortical encephalitis positive for the myelin oligodendrocyte glycoprotein (MOG) antibody. Methods: In this retrospective, cross-sectional study, after we encountered an index case of MOG antibody–positive unilateral cortical encephalitis with epileptic seizure, we tested for MOG antibody using our in-house, cell-based assay in a cohort of 24 consecutive adult patients with steroid-responsive encephalitis of unknown etiology seen at Tohoku University Hospital (2008–2014). We then analyzed the findings in MOG antibody–positive cases. Results: Three more patients, as well as the index case, were MOG antibody–positive, and all were adult men (median age 37 years, range 23–39 years). The main symptom was generalized epileptic seizure with or without abnormal behavior or consciousness disturbance. Two patients also developed unilateral benign optic neuritis (before or after seizure). In all patients, brain MRI demonstrated unilateral cerebral cortical fluid-attenuated inversion recovery hyperintense lesions, which were swollen and corresponded to hyperperfusion on SPECT. CSF studies showed moderate mononuclear pleocytosis with some polymorphonuclear cells and mildly elevated total protein levels, but myelin basic protein was not elevated. A screening of encephalitis-associated autoantibodies, including aquaporin-4, glutamate receptor, and voltage-gated potassium channel antibodies, was negative. All patients received antiepilepsy drugs and fully recovered after high-dose methylprednisolone, and the unilateral cortical MRI lesions subsequently disappeared. No patient experienced relapse. Conclusions: These MOG antibody–positive cases represent unique benign unilateral cortical encephalitis with epileptic seizure. The pathology may be autoimmune, although the findings differ from MOG antibody–associated demyelination and Rasmussen and other known immune

  5. The anatomy and development of normal and abnormal coronary arteries.

    PubMed

    Spicer, Diane E; Henderson, Deborah J; Chaudhry, Bill; Mohun, Timothy J; Anderson, Robert H

    2015-12-01

    At present, there is significant interest in the morphology of the coronary arteries, not least due to the increasingly well-recognised association between anomalous origin of the arteries and sudden cardiac death. Much has also been learnt over the last decade regarding the embryology of the arteries. In this review, therefore, we provide a brief introduction into the recent findings regarding their development. In particular, we emphasise that new evidence, derived using the developing murine heart, points to the arterial stems growing out from the adjacent sinuses of the aortic root, rather than the arteries growing in, as is currently assumed. As we show, the concept of outgrowth provides an excellent explanation for several of the abnormal arrangements encountered in the clinical setting. Before summarising these abnormal features, we draw attention to the need to describe the heart in an attitudinally appropriate manner, following the basic rule of human anatomy, rather than describing the cardiac components with the heart in the "Valentine" orientation. We then show how the major abnormalities involving the coronary arteries in humans can be summarised in terms of abnormal origin from the pulmonary circulation, abnormal aortic origin, or fistulous communications between the coronary arteries and the cardiac cavities. In the case of abnormal aortic origin, we highlight those malformations known to be associated with sudden cardiac death.

  6. Abnormalities of tooth development in pituitary dwarfism.

    PubMed

    Kosowicz, J; Rzymski, K

    1977-12-01

    Roentgenographic studies of the jaws and teeth in a group of forty-eight pituitary dwarfs showed the following abnormalities in the development of the teeth: 1. Delayed shedding of the deciduous teeth. 2. Absence of resorption of the roots of the deciduous teeth at the usual time. 3. Marked delay in eruption of the permanent teeth. 4. Retention of permanent teeth in the maxillary and mandibular shafts. 5. Development of the apical parts of roots of the retained permanent teeth and their growth toward the lower mandibular edge. 6. Displacement of the first molars from the mandibular shaft to rami. 7. Tilting of some of the retained teeth. 8. Small size of the maxilla and mandible with overcrowding of the teeth in these bones. 9. Complete absence of buds of the wisdom teeth, even in patients in the fourth decade of life. 10. Stimulation of development and eruption of the teeth after administration of anabolic drugs. These abnormalities when present in combination depend on growth hormone deficiency since they do not occur in other types of dwarfism.

  7. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons

    PubMed Central

    Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew CN; Swindale, Nicholas V; Murphy, Timothy H

    2017-01-01

    Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps. DOI: http://dx.doi.org/10.7554/eLife.19976.001 PMID:28160463

  8. Visual Cortical Function in Very Low Birth Weight Infants without Retinal or Cerebral Pathology

    PubMed Central

    Hou, Chuan; Norcia, Anthony M.; Madan, Ashima; Tith, Solina; Agarwal, Rashi

    2011-01-01

    Purpose. Preterm infants are at high risk of visual and neural developmental deficits. However, the development of visual cortical function in preterm infants with no retinal or neurologic morbidity has not been well defined. To determine whether premature birth itself alters visual cortical function, swept parameter visual evoked potential (sVEP) responses of healthy preterm infants were compared with those of term infants. Methods. Fifty-two term infants and 58 very low birth weight (VLBW) infants without significant retinopathy of prematurity or neurologic morbidities were enrolled. Recruited VLBW infants were between 26 and 33 weeks of gestational age, with birth weights of less than 1500 g. Spatial frequency, contrast, and vernier offset sweep VEP tuning functions were measured at 5 to 7 months' corrected age. Acuity and contrast thresholds were derived by extrapolating the tuning functions to 0 amplitude. These thresholds and suprathreshold response amplitudes were compared between groups. Results. Preterm infants showed increased thresholds (indicating decreased sensitivity to visual stimuli) and reductions in amplitudes for all three measures. These changes in cortical responsiveness were larger in the <30 weeks ' gestational age subgroup than in the ≥30 weeks' gestational age subgroup. Conclusions. Preterm infants with VLBW had measurable and significant changes in cortical responsiveness that were correlated with gestational age. These results suggest that premature birth in the absence of identifiable retinal or neurologic abnormalities has a significant effect on visual cortical sensitivity at 5 to 7 months' of corrected age and that gestational age is an important factor in visual development. PMID:22025567

  9. Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders

    NASA Astrophysics Data System (ADS)

    Kana, Rajesh K.; Libero, Lauren E.; Moore, Marie S.

    2011-12-01

    Recent findings of neurological functioning in autism spectrum disorder (ASD) point to altered brain connectivity as a key feature of its pathophysiology. The cortical underconnectivity theory of ASD (Just et al., 2004) provides an integrated framework for addressing these new findings. This theory suggests that weaker functional connections among brain areas in those with ASD hamper their ability to accomplish complex cognitive and social tasks successfully. We will discuss this theory, but will modify the term underconnectivity to ‘disrupted cortical connectivity’ to capture patterns of both under- and over-connectivity in the brain. In this paper, we will review the existing literature on ASD to marshal supporting evidence for hypotheses formulated on the disrupted cortical connectivity theory. These hypotheses are: 1) underconnectivity in ASD is manifested mainly in long-distance cortical as well as subcortical connections rather than in short-distance cortical connections; 2) underconnectivity in ASD is manifested only in complex cognitive and social functions and not in low-level sensory and perceptual tasks; 3) functional underconnectivity in ASD may be the result of underlying anatomical abnormalities, such as problems in the integrity of white matter; 4) the ASD brain adapts to underconnectivity through compensatory strategies such as overconnectivity mainly in frontal and in posterior brain areas. This may be manifested as deficits in tasks that require frontal-parietal integration. While overconnectivity can be tested by examining the cortical minicolumn organization, long-distance underconnectivity can be tested by cognitively demanding tasks; and 5) functional underconnectivity in brain areas in ASD will be seen not only during complex tasks but also during task-free resting states. We will also discuss some empirical predictions that can be tested in future studies, such as: 1) how disrupted connectivity relates to cognitive impairments in skills

  10. Interactive effects of dehydroepiandrosterone and testosterone on cortical thickness during early brain development.

    PubMed

    Nguyen, Tuong-Vi; McCracken, James T; Ducharme, Simon; Cropp, Brett F; Botteron, Kelly N; Evans, Alan C; Karama, Sherif

    2013-06-26

    Humans and the great apes are the only species demonstrated to exhibit adrenarche, a key endocrine event associated with prepubertal increases in the adrenal production of androgens, most significantly dehydroepiandrosterone (DHEA) and to a certain degree testosterone. Adrenarche also coincides with the emergence of the prosocial and neurobehavioral skills of middle childhood and may therefore represent a human-specific stage of development. Both DHEA and testosterone have been reported in animal and in vitro studies to enhance neuronal survival and programmed cell death depending on the timing, dose, and hormonal context involved, and to potentially compete for the same signaling pathways. Yet no extant brain-hormone studies have examined the interaction between DHEA- and testosterone-related cortical maturation in humans. Here, we used linear mixed models to examine changes in cortical thickness associated with salivary DHEA and testosterone levels in a longitudinal sample of developmentally healthy children and adolescents 4-22 years old. DHEA levels were associated with increases in cortical thickness of the left dorsolateral prefrontal cortex, right temporoparietal junction, right premotor and right entorhinal cortex between the ages of 4-13 years, a period marked by the androgenic changes of adrenarche. There was also an interaction between DHEA and testosterone on cortical thickness of the right cingulate cortex and occipital pole that was most significant in prepubertal subjects. DHEA and testosterone appear to interact and modulate the complex process of cortical maturation during middle childhood, consistent with evidence at the molecular level of fast/nongenomic and slow/genomic or conversion-based mechanisms underlying androgen-related brain development.

  11. Morphometric brain abnormalities in boys with conduct disorder.

    PubMed

    Huebner, Thomas; Vloet, Timo D; Marx, Ivo; Konrad, Kerstin; Fink, Gereon R; Herpertz, Sabine C; Herpertz-Dahlmann, Beate

    2008-05-01

    Children with the early-onset type of conduct disorder (CD) are at high risk for developing an antisocial personality disorder. Although there have been several neuroimaging studies on morphometric differences in adults with antisocial personality disorder, little is known about structural brain aberrations in boys with CD. Magnetic resonance imaging and voxel-based morphometry were used to assess abnormalities in gray matter volumes in 23 boys ages 12 to 17 years with CD (17 comorbid for attention-deficit/hyperactivity disorder) in comparison with age- and IQ-matched controls. Compared with healthy controls, mean gray matter volume was 6% smaller in the clinical group. Compared with controls, reduced gray matter volumes were found in the left orbitofrontal region and bilaterally in the temporal lobes, including the amygdala and hippocampus on the left side in the CD group. Regression analyses in the clinical group indicated an inverse association of hyperactive/impulsive symptoms and widespread gray matter abnormalities in the frontoparietal and temporal cortices. By contrast, CD symptoms correlated primarily with gray matter reductions in limbic brain structures. The data suggest that boys with CD and comorbid attention-deficit/hyperactivity disorder show brain abnormalities in frontolimbic areas that resemble structural brain deficits, which are typically observed in adults with antisocial behavior.

  12. The relationship of impulsivity and cortical thickness in depressed and non-depressed adolescents.

    PubMed

    Fradkin, Yuli; Khadka, Sabin; Bessette, Katie L; Stevens, Michael C

    2017-10-01

    Major Depressive Disorder (MDD) is recognized to be heterogeneous in terms of brain structure abnormality findings across studies, which might reflect previously unstudied traits that confer variability to neuroimaging measurements. The purpose of this study was to examine the relationships between different types of trait impulsivity and MDD diagnosis on adolescent brain structure. We predicted that adolescents with depression who were high on trait impulsivity would have more abnormal cortical structure than depressed patients or non-MDD who were low on impulsivity. We recruited 58 subjects, including 29 adolescents (ages 12-19) with a primary DSM-IV diagnosis of MDD and a history of suicide attempt and 29 demographically-matched healthy control participants. Our GLM-based analyses sought to describe differences in the linear relationships between cortical thickness and impulsivity trait levels. As hypothesized, we found significant moderation effects in rostral middle frontal gyrus and right paracentral lobule cortical thickness for different subscales of the Barratt Impulsiveness Scale. However, although these brain-behavior relationships differed between diagnostic study groups, they were not simple additive effects as we had predicted. For the middle frontal gyrus, non-MDD participants showed a strong positive association between cortical thickness and BIS-11 Motor scores, while MDD-diagnosed participants showed a negative association. For Non-Planning Impulsiveness, paracentral lobule cortical thickness was observed with greater impulsivity in MDD, but no association was found for controls. In conclusion, the findings confirm that dimensions of impulsivity have discrete neural correlates, and show that relationships between impulsivity and brain structure are expressed differently in adolescents with MDD compared to non-MDD.

  13. Abnormal Superior Temporal Connectivity During Fear Perception in Schizophrenia

    PubMed Central

    Leitman, David I.; Loughead, James; Wolf, Daniel H.; Ruparel, Kosha; Kohler, Christian G.; Elliott, Mark A.; Bilker, Warren B.; Gur, Raquel E.; Gur, Ruben C.

    2008-01-01

    Patients with schizophrenia have difficulty in decoding facial affect. A study using event–related functional neuroimaging indicated that errors in fear detection in schizophrenia are associated with paradoxically higher activation in the amygdala and an associated network implicated in threat detection. Furthermore, this exaggerated activation to fearful faces correlated with severity of flat affect. These findings suggest that abnormal threat detection processing may reflect disruptions between nodes that comprise the affective appraisal circuit. Here we examined connectivity within this network by determining the pattern of intercorrelations among brain regions (regions of interest) significantly activated during fear identification in both healthy controls and patients using a novel procedure CORANOVA. This analysis tests differences in the interregional correlation strength between schizophrenia and healthy controls. Healthy subjects' task activation was principally characterized by robust correlations between medial structures like thalamus (THA) and amygdala (AMY) and middle frontal (MF), inferior frontal (IF), and prefrontal cortical (PFC) regions. In contrast, schizophrenia patients displayed no significant correlations between the medial regions and either MF or IF. Further, patients had significantly higher correlations between occipital lingual gyrus and superior temporal gyrus than healthy subjects. These between-group connectivity differences suggest that schizophrenia threat detection impairment may stem from abnormal stimulus integration. Such abnormal integration may disrupt the evaluation of threat within fronto-cortical regions. PMID:18550592

  14. Cortical thickness development of human primary visual cortex related to the age of blindness onset.

    PubMed

    Li, Qiaojun; Song, Ming; Xu, Jiayuan; Qin, Wen; Yu, Chunshui; Jiang, Tianzi

    2017-08-01

    Blindness primarily induces structural alteration in the primary visual cortex (V1). Some studies have found that the early blind subjects had a thicker V1 compared to sighted controls, whereas late blind subjects showed no significant differences in the V1. This implies that the age of blindness onset may exert significant effects on the development of cortical thickness of the V1. However, no previous research used a trajectory of the age of blindness onset-related changes to investigate these effects. Here we explored this issue by mapping the cortical thickness trajectory of the V1 against the age of blindness onset using data from 99 blind individuals whose age of blindness onset ranged from birth to 34 years. We found that the cortical thickness of the V1 could be fitted well with a quadratic curve in both the left (F = 11.59, P = 3 × 10 -5 ) and right hemispheres (F = 6.54, P = 2 × 10 -3 ). Specifically, the cortical thickness of the V1 thinned rapidly during childhood and adolescence and did not change significantly thereafter. This trend was not observed in the primary auditory cortex (A1), primary motor cortex (M1), or primary somatosensory cortex (S1). These results provide evidence that an onset of blindness before adulthood significantly affects the cortical thickness of the V1 and suggest a critical period for cortical development of the human V1.

  15. Structural Brain Abnormalities of Attention-Deficit/Hyperactivity Disorder With Oppositional Defiant Disorder.

    PubMed

    Noordermeer, Siri D S; Luman, Marjolein; Greven, Corina U; Veroude, Kim; Faraone, Stephen V; Hartman, Catharina A; Hoekstra, Pieter J; Franke, Barbara; Buitelaar, Jan K; Heslenfeld, Dirk J; Oosterlaan, Jaap

    2017-11-01

    Attention-deficit/hyperactivity disorder (ADHD) is associated with structural abnormalities in total gray matter, basal ganglia, and cerebellum. Findings of structural abnormalities in frontal and temporal lobes, amygdala, and insula are less consistent. Remarkably, the impact of comorbid oppositional defiant disorder (ODD) (comorbidity rates up to 60%) on these neuroanatomical differences is scarcely studied, while ODD (in combination with conduct disorder) has been associated with structural abnormalities of the frontal lobe, amygdala, and insula. The aim of this study was to investigate the effect of comorbid ODD on cerebral volume and cortical thickness in ADHD. Three groups, 16 ± 3.5 years of age (mean ± SD; range 7-29 years), were studied on volumetric and cortical thickness characteristics using structural magnetic resonance imaging (surface-based morphometry): ADHD+ODD (n = 67), ADHD-only (n = 243), and control subjects (n = 233). Analyses included the moderators age, gender, IQ, and scan site. ADHD+ODD and ADHD-only showed volumetric reductions in total gray matter and (mainly) frontal brain areas. Stepwise volumetric reductions (ADHD+ODD < ADHD-only < control subjects) were found for mainly frontal regions, and ADHD+ODD was uniquely associated with reductions in several structures (e.g., the precuneus). In general, findings remained significant after accounting for ADHD symptom severity. There were no group differences in cortical thickness. Exploratory voxelwise analyses showed no group differences. ADHD+ODD and ADHD-only were associated with volumetric reductions in brain areas crucial for attention, (working) memory, and decision-making. Volumetric reductions of frontal lobes were largest in the ADHD+ODD group, possibly underlying observed larger impairments in neurocognitive functions. Previously reported striatal abnormalities in ADHD may be caused by comorbid conduct disorder rather than ODD. Copyright © 2017 Society of Biological Psychiatry

  16. Progressive deterioration of thalamic nuclei relates to cortical network decline in schizophrenia.

    PubMed

    Cobia, Derin J; Smith, Matthew J; Salinas, Ilse; Ng, Charlene; Gado, Mokhtar; Csernansky, John G; Wang, Lei

    2017-02-01

    Thalamic abnormalities are considered part of the complex pathophysiology of schizophrenia, particularly the involvement of specific thalamic nuclei. The goals of this study were to: introduce a novel atlas-based parcellation scheme for defining various thalamic nuclei; compare their integrity in a schizophrenia sample against healthy individuals at baseline and follow-up time points, as well as rates of change over time; examine relationships between the nuclei and abnormalities in known connected cortical regions; and finally, to determine if schizophrenia-related thalamic nuclei changes relate to cognitive functioning and clinical symptoms. Subjects were from a larger longitudinal 2-year follow-up study, schizophrenia (n=20) and healthy individuals (n=20) were group-matched for age, gender, and recent-alcohol use. We used high-dimensional brain mapping to obtain thalamic morphology, and applied a novel atlas-based method for delineating anterior, mediodorsal, and pulvinar nuclei. Results from cross sectional GLMs revealed group differences in bilateral mediodorsal and anterior nuclei, while longitudinal models revealed significant group-by-time interactions for the mediodorsal and pulvinar nuclei. Cortical correlations were the strongest for the pulvinar in frontal, temporal and parietal regions, followed by the mediodorsal nucleus in frontal regions, but none in the anterior nucleus. Thalamic measures did not correlate with cognitive and clinical scores at any time point or longitudinally. Overall, findings revealed a pattern of persistent progressive abnormalities in thalamic nuclei that relate to advancing cortical decline in schizophrenia, but not with measures of behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Continuation of ECT after recovery from transient, ECT-induced, postictal cortical blindness.

    PubMed

    Sonavane, Sushma; Bambole, Vivek; Bang, Abha; Shah, Nilesh; Andrade, Chittaranjan

    2012-03-01

    Transient, postictal cortical blindness is a rare adverse effect of electroconvulsive therapy (ECT). There is no information on the safety of continuation of ECT in patients who recover from ECT-induced cortical blindness. An 18-year-old woman with paranoid schizophrenia experienced cortical blindness immediately after her first bifrontotemporal ECT treatment. There was complete, spontaneous recovery of vision after 6 hours. Neurological examination, computed tomography of the brain, and electroencephalographic study revealed no abnormality. A combination of circumstances suggested that continuation of ECT was desirable. After clearances from neurological and ophthalmological teams, she received 6 more ECT treatments, starting 9 days after the first. After resumption of ECT, there was marked improvement in psychopathology across the ECT course. There was no recurrence of visual symptoms. Patients who experience transient, ECT-induced, postictal cortical blindness may not necessarily experience the same adverse effect on rechallenge with ECT.

  18. Alterations of cortical GABA neurons and network oscillations in schizophrenia.

    PubMed

    Gonzalez-Burgos, Guillermo; Hashimoto, Takanori; Lewis, David A

    2010-08-01

    The hypothesis that alterations of cortical inhibitory gamma-aminobutyric acid (GABA) neurons are a central element in the pathology of schizophrenia has emerged from a series of postmortem studies. How such abnormalities may contribute to the clinical features of schizophrenia has been substantially informed by a convergence with basic neuroscience studies revealing complex details of GABA neuron function in the healthy brain. Importantly, activity of the parvalbumin-containing class of GABA neurons has been linked to the production of cortical network oscillations. Furthermore, growing knowledge supports the concept that gamma band oscillations (30-80 Hz) are an essential mechanism for cortical information transmission and processing. Herein we review recent studies further indicating that inhibition from parvalbumin-positive GABA neurons is necessary to produce gamma oscillations in cortical circuits; provide an update on postmortem studies documenting that deficits in the expression of glutamic acid decarboxylase67, which accounts for most GABA synthesis in the cortex, are widely observed in schizophrenia; and describe studies using novel, noninvasive approaches directly assessing potential relations between alterations in GABA, oscillations, and cognitive function in schizophrenia.

  19. Functional networks in parallel with cortical development associate with executive functions in children.

    PubMed

    Zhong, Jidan; Rifkin-Graboi, Anne; Ta, Anh Tuan; Yap, Kar Lai; Chuang, Kai-Hsiang; Meaney, Michael J; Qiu, Anqi

    2014-07-01

    Children begin performing similarly to adults on tasks requiring executive functions in late childhood, a transition that is probably due to neuroanatomical fine-tuning processes, including myelination and synaptic pruning. In parallel to such structural changes in neuroanatomical organization, development of functional organization may also be associated with cognitive behaviors in children. We examined 6- to 10-year-old children's cortical thickness, functional organization, and cognitive performance. We used structural magnetic resonance imaging (MRI) to identify areas with cortical thinning, resting-state fMRI to identify functional organization in parallel to cortical development, and working memory/response inhibition tasks to assess executive functioning. We found that neuroanatomical changes in the form of cortical thinning spread over bilateral frontal, parietal, and occipital regions. These regions were engaged in 3 functional networks: sensorimotor and auditory, executive control, and default mode network. Furthermore, we found that working memory and response inhibition only associated with regional functional connectivity, but not topological organization (i.e., local and global efficiency of information transfer) of these functional networks. Interestingly, functional connections associated with "bottom-up" as opposed to "top-down" processing were more clearly related to children's performance on working memory and response inhibition, implying an important role for brain systems involved in late childhood. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia.

    PubMed

    Jansen, Laura A; Mirzaa, Ghayda M; Ishak, Gisele E; O'Roak, Brian J; Hiatt, Joseph B; Roden, William H; Gunter, Sonya A; Christian, Susan L; Collins, Sarah; Adams, Carissa; Rivière, Jean-Baptiste; St-Onge, Judith; Ojemann, Jeffrey G; Shendure, Jay; Hevner, Robert F; Dobyns, William B

    2015-06-01

    Malformations of cortical development containing dysplastic neuronal and glial elements, including hemimegalencephaly and focal cortical dysplasia, are common causes of intractable paediatric epilepsy. In this study we performed multiplex targeted sequencing of 10 genes in the PI3K/AKT pathway on brain tissue from 33 children who underwent surgical resection of dysplastic cortex for the treatment of intractable epilepsy. Sequencing results were correlated with clinical, imaging, pathological and immunohistological phenotypes. We identified mosaic activating mutations in PIK3CA and AKT3 in this cohort, including cancer-associated hotspot PIK3CA mutations in dysplastic megalencephaly, hemimegalencephaly, and focal cortical dysplasia type IIa. In addition, a germline PTEN mutation was identified in a male with hemimegalencephaly but no peripheral manifestations of the PTEN hamartoma tumour syndrome. A spectrum of clinical, imaging and pathological abnormalities was found in this cohort. While patients with more severe brain imaging abnormalities and systemic manifestations were more likely to have detected mutations, routine histopathological studies did not predict mutation status. In addition, elevated levels of phosphorylated S6 ribosomal protein were identified in both neurons and astrocytes of all hemimegalencephaly and focal cortical dysplasia type II specimens, regardless of the presence or absence of detected PI3K/AKT pathway mutations. In contrast, expression patterns of the T308 and S473 phosphorylated forms of AKT and in vitro AKT kinase activities discriminated between mutation-positive dysplasia cortex, mutation-negative dysplasia cortex, and non-dysplasia epilepsy cortex. Our findings identify PI3K/AKT pathway mutations as an important cause of epileptogenic brain malformations and establish megalencephaly, hemimegalencephaly, and focal cortical dysplasia as part of a single pathogenic spectrum. © The Author (2015). Published by Oxford University Press

  1. Major Superficial White Matter Abnormalities in Huntington's Disease

    PubMed Central

    Phillips, Owen R.; Joshi, Shantanu H.; Squitieri, Ferdinando; Sanchez-Castaneda, Cristina; Narr, Katherine; Shattuck, David W.; Caltagirone, Carlo; Sabatini, Umberto; Di Paola, Margherita

    2016-01-01

    Background: The late myelinating superficial white matter at the juncture of the cortical gray and white matter comprising the intracortical myelin and short-range association fibers has not received attention in Huntington's disease. It is an area of the brain that is late myelinating and is sensitive to both normal aging and neurodegenerative disease effects. Therefore, it may be sensitive to Huntington's disease processes. Methods: Structural MRI data from 25 Pre-symptomatic subjects, 24 Huntington's disease patients and 49 healthy controls was run through a cortical pattern-matching program. The surface corresponding to the white matter directly below the cortical gray matter was then extracted. Individual subject's Diffusion Tensor Imaging (DTI) data was aligned to their structural MRI data. Diffusivity values along the white matter surface were then sampled at each vertex point. DTI measures with high spatial resolution across the superficial white matter surface were then analyzed with the General Linear Model to test for the effects of disease. Results: There was an overall increase in the axial and radial diffusivity across much of the superficial white matter (p < 0.001) in Pre-symptomatic subjects compared to controls. In Huntington's disease patients increased diffusivity covered essentially the whole brain (p < 0.001). Changes are correlated with genotype (CAG repeat number) and disease burden (p < 0.001). Conclusions: This study showed broad abnormalities in superficial white matter even before symptoms are present in Huntington's disease. Since, the superficial white matter has a unique microstructure and function these abnormalities suggest it plays an important role in the disease. PMID:27242403

  2. A Developmental and Genetic Classification for Malformations of Cortical Development: Update 2012

    ERIC Educational Resources Information Center

    Barkovich, A. James; Guerrini, Renzo; Kuzniecky, Ruben I.; Jackson, Graeme D.; Dobyns, William B.

    2012-01-01

    Malformations of cerebral cortical development include a wide range of developmental disorders that are common causes of neurodevelopmental delay and epilepsy. In addition, study of these disorders contributes greatly to the understanding of normal brain development and its perturbations. The rapid recent evolution of molecular biology, genetics…

  3. O6.5. LINKING CORTICAL AND CONNECTIONAL PATHOLOGY IN SCHIZOPHRENIA

    PubMed Central

    Di Biase, Maria; Cropley, Vanessa; Cocchi, Luca; Fornito, Alexander; Calamante, Fernando; Ganella, Eleni; Pantelis, Christos; Zalesky, Andrew

    2018-01-01

    Abstract Background Schizophrenia is associated with cortical thinning and breakdown in white matter microstructure. Whether these pathological processes are related remains unclear. We used multimodal neuroimaging to investigate the relation between regional cortical thinning and breakdown in adjacent infracortical white matter as a function of age and illness duration. Methods Structural magnetic resonance and diffusion images were acquired in 218 schizophrenia patients and 167 age-matched healthy controls to map cortical thickness (CT) and fractional anisotropy (FA) in regionally adjacent infracortical white matter at various cortical depths. Results Between-group differences in CT and infracortical FA were inversely correlated across cortical regions (r=−0.5, p<0.0001), such that the most anisotropic infracortical white matter was found adjacent to regions with extensive cortical thinning. This pattern was evident in early (20 years: r=−0.3, p=0.005) and middle life (30 years: r=−0.4, p=0.004, 40 years: r=−0.3, p=0.04), but not beyond 50 years (p>0.05). Frontal pathology contributed most to this pattern, with extensive cortical thinning in patients compared to controls at all ages (p<0.05); in contrast to initially increased frontal infracortical FA in patients at 30 years, followed by rapid decline in frontal FA with age (rate of annual decline; patients: 0.0012, controls 0.0006, p<0.001). Discussion Cortical thinning and breakdown in white matter anisotropy are inversely related in young schizophrenia patients, with abnormally elevated white matter myelination found adjacent to frontal regions with extensive cortical thinning. We argue that elevated frontal anisotropy reflects regionally-specific, compensatory responses to cortical thinning, which are eventually overwhelmed with increasing illness duration.

  4. Neurochemical abnormalities in brains of renal failure patients treated by repeated hemodialysis.

    PubMed

    Perry, T L; Yong, V W; Kish, S J; Ito, M; Foulks, J G; Godolphin, W J; Sweeney, V P

    1985-10-01

    We examined autopsied brain from 10 patients with end-stage renal failure who had undergone repeated hemodialysis. Eight had classic symptoms, and two had suggestive symptoms of dialysis encephalopathy. Findings were compared with those in autopsied brain from control adults who had never been hemodialyzed. Mean gamma-aminobutyric acid (GABA) contents were significantly reduced in frontal and occipital cortex, cerebellar cortex, dentate nucleus, caudate nucleus, and medial-dorsal thalamus of the hemodialyzed patients, the reduction being greater than 40% in cerebral cortex and thalamus. Choline acetyltransferase activity was reduced by 25-35% in three cortical regions in the hemodialyzed patients. These two abnormalities were observed in the brain of each hemodialyzed patient, regardless of whether or not the patient died with unequivocal dialysis encephalopathy. Pyridoxal phosphate contents were substantially reduced in brains of the hemodialyzed patients, but metabolites of noradrenaline, 3,4-dihydroxyphenylethylamine (dopamine), and 5-hydroxytryptamine (serotonin) were present in normal amounts. Aluminum levels were abnormally high in frontal cortical gray matter in the hemodialyzed patients. Although this study does not clarify the role played by aluminum toxicity in the pathogenesis of dialysis encephalopathy, the abnormalities we found suggest the need for further neurochemical investigations in this disorder.

  5. Normalization of Cortical Gray Matter Deficits in Nonpsychotic Siblings of Patients With Childhood-Onset Schizophrenia

    PubMed Central

    Mattai, Anand A.; Weisinger, Brian; Greenstein, Deanna; Stidd, Reva; Clasen, Liv; Miller, Rachel; Tossell, Julia W.; Rapoport, Judith L.; Gogtay, Nitin

    2012-01-01

    Objective Cortical gray matter (GM) abnormalities in patients with childhood-onset schizophrenia (COS) progress during adolescence ultimately localizing to prefrontal and temporal cortices by early adult age. A previous study of 52 nonpsychotic siblings of COS probands had significant prefrontal and temporal GM deficits that appeared to “normalize” by age 17 years. Here we present a replication with nonoverlapping groups of healthy full siblings and healthy controls. Method Using an automated measure and prospectively acquired anatomical brain magnetic resonance images, we mapped cortical GM thickness in nonpsychotic full siblings (n = 43, 68 scans; ages 5 through 26 years) of patients with COS, contrasting them with age-, gender-, and scan interval–matched healthy controls (n = 86, 136 scans). The false-discovery rate procedure was used to control for type I errors due to multiple comparisons. Results As in our previous study, young nonpsychotic siblings (<17 years) showed significant GM deficits in bilateral prefrontal and left temporal cortices and, in addition, smaller deficits in the parietal and right inferior temporal cortices. These deficits in nonpsychotic siblings normalized with age with minimal abnormalities remaining by age 17. Conclusions Our results support previous findings showing nonpsychotic siblings of COS probands to have early GM deficits that ameliorate with time. At early ages, prefrontal and/or temporal loss may serve as a familial/trait marker for COS. Late adolescence appears to be a critical period for greatest localization of deficits in probands or normalization in nonpsychotic siblings. PMID:21703497

  6. Visual Behaviors and Adaptations Associated with Cortical and Ocular Impairment in Children.

    ERIC Educational Resources Information Center

    Jan, J. E.; Groenveld, M.

    1993-01-01

    This article shows the usefulness of understanding visual behaviors in the diagnosis of various types of visual impairments that are due to ocular and cortical disorders. Behaviors discussed include nystagmus, ocular motor dyspraxia, head position, close viewing, field loss adaptations, mannerisms, photophobia, and abnormal color perception. (JDD)

  7. Cortical inhibition deficits in recent onset PTSD after a single prolonged trauma exposure☆

    PubMed Central

    Qi, Shun; Mu, Yunfeng; Liu, Kang; Zhang, Jian; Huan, Yi; Tan, Qingrong; Shi, Mei; Wang, Qiang; Chen, Yunchun; Wang, Huaihai; Wang, Huaning; Zhang, Nanyin; Zhang, Xiaoliang; Xiong, Lize; Yin, Hong

    2013-01-01

    A variety of structural abnormalities have been described in post traumatic stress disorder (PTSD), but only a few studies have focused on cortical thickness alterations in recent onset PTSD. In this study, we adopted surface-based morphometry (SBM), which enables an exploration of global structural changes throughout the brain, in order to compare cortical thickness alterations in recent onset PTSD patients, trauma-exposed subjects but without PTSD, and normal controls. Moreover, we used region of interest (ROI) partial correlation analysis to evaluate the correlation among PTSD symptom severity and significant changes of cortical thickness. The widespread cortical thickness reduction relative to the normal controls were found in bilateral inferior and superior parietal lobes, frontal lobes, hippocampus, cingulate cortex, and right lateral occipital lobes in trauma survivors, whereas cortical thickness was only increased in left calcarine cortex in PTSD group. The average cortical thickness of hippocampus and cingulate cortex decreased by 10.75% and 9.09% in PTSD, 3.48% and 2.86% in non PTSD. We further demonstrated that the cortical thicknesses of bilateral ACC and PCC, superior frontal lobes, and hippocampus are negatively correlated with CAPS scores in all trauma survivors. Our study results suggest that stress widens cortical thinning regions and causes more serious effect in recent onset PTSD than non PTSD. It also shows that the cortical thinning in recent onset PTSD predicts the symptom severity. PMID:24273707

  8. Different early rearing experiences have long term effects on cortical organization in captive chimpanzees (Pan troglodytes)

    PubMed Central

    Bogart, Stephanie L.; Bennett, Allyson J.; Schapiro, Steven J.; Reamer, Lisa A.; Hopkins, William D.

    2014-01-01

    Consequences of rearing history in chimpanzees (Pan troglodytes) have been explored in relation to behavioral abnormalities and cognition, however, little is known about the effects of rearing conditions on anatomical brain development. Human studies have revealed that experiences of maltreatment and neglect during infancy and childhood can have detrimental effects on brain development and cognition. In this study, we evaluated the effects of early rearing experience on brain morphology in 92 captive chimpanzees (ages 11-43) who were either reared by their mothers (n = 46) or in a nursery (n = 46) with age-group peers. Magnetic resonance brain images were analyzed with a processing program (BrainVISA) that extracts cortical sulci. We obtained various measurements from 11 sulci located throughout the brain, as well as whole brain gyrification and white and grey matter volumes. We found that mother-reared chimpanzees have greater global white-to-grey matter volume, more cortical folding and thinner grey matter within the cortical folds than nursery-reared animals. The findings reported here are the first to demonstrate that differences in early rearing conditions have significant consequences on brain morphology in chimpanzees and suggests potential differences in the development of white matter expansion and myelination. PMID:24206013

  9. Different early rearing experiences have long-term effects on cortical organization in captive chimpanzees (Pan troglodytes).

    PubMed

    Bogart, Stephanie L; Bennett, Allyson J; Schapiro, Steven J; Reamer, Lisa A; Hopkins, William D

    2014-03-01

    Consequences of rearing history in chimpanzees (Pan troglodytes) have been explored in relation to behavioral abnormalities and cognition; however, little is known about the effects of rearing conditions on anatomical brain development. Human studies have revealed that experiences of maltreatment and neglect during infancy and childhood can have detrimental effects on brain development and cognition. In this study, we evaluated the effects of early rearing experience on brain morphology in 92 captive chimpanzees (ages 11-43) who were either reared by their mothers (n = 46) or in a nursery (n = 46) with age-group peers. Magnetic resonance brain images were analyzed with a processing program (BrainVISA) that extracts cortical sulci. We obtained various measurements from 11 sulci located throughout the brain, as well as whole brain gyrification and white and grey matter volumes. We found that mother-reared chimpanzees have greater global white-to-grey matter volume, more cortical folding and thinner grey matter within the cortical folds than nursery-reared animals. The findings reported here are the first to demonstrate that differences in early rearing conditions have significant consequences on brain morphology in chimpanzees and suggests potential differences in the development of white matter expansion and myelination. © 2013 John Wiley & Sons Ltd.

  10. Hierarchical cortical transcriptome disorganization in autism.

    PubMed

    Lombardo, Michael V; Courchesne, Eric; Lewis, Nathan E; Pramparo, Tiziano

    2017-01-01

    Autism spectrum disorders (ASD) are etiologically heterogeneous and complex. Functional genomics work has begun to identify a diverse array of dysregulated transcriptomic programs (e.g., synaptic, immune, cell cycle, DNA damage, WNT signaling, cortical patterning and differentiation) potentially involved in ASD brain abnormalities during childhood and adulthood. However, it remains unclear whether such diverse dysregulated pathways are independent of each other or instead reflect coordinated hierarchical systems-level pathology. Two ASD cortical transcriptome datasets were re-analyzed using consensus weighted gene co-expression network analysis (WGCNA) to identify common co-expression modules across datasets. Linear mixed-effect models and Bayesian replication statistics were used to identify replicable differentially expressed modules. Eigengene network analysis was then utilized to identify between-group differences in how co-expression modules interact and cluster into hierarchical meta-modular organization. Protein-protein interaction analyses were also used to determine whether dysregulated co-expression modules show enhanced interactions. We find replicable evidence for 10 gene co-expression modules that are differentially expressed in ASD cortex. Rather than being independent non-interacting sources of pathology, these dysregulated co-expression modules work in synergy and physically interact at the protein level. These systems-level transcriptional signals are characterized by downregulation of synaptic processes coordinated with upregulation of immune/inflammation, response to other organism, catabolism, viral processes, translation, protein targeting and localization, cell proliferation, and vasculature development. Hierarchical organization of meta-modules (clusters of highly correlated modules) is also highly affected in ASD. These findings highlight that dysregulation of the ASD cortical transcriptome is characterized by the dysregulation of multiple

  11. Brain development during adolescence: A mixed-longitudinal investigation of cortical thickness, surface area, and volume.

    PubMed

    Vijayakumar, Nandita; Allen, Nicholas B; Youssef, George; Dennison, Meg; Yücel, Murat; Simmons, Julian G; Whittle, Sarah

    2016-06-01

    What we know about cortical development during adolescence largely stems from analyses of cross-sectional or cohort-sequential samples, with few studies investigating brain development using a longitudinal design. Further, cortical volume is a product of two evolutionarily and genetically distinct features of the cortex - thickness and surface area, and few studies have investigated development of these three characteristics within the same sample. The current study examined maturation of cortical thickness, surface area and volume during adolescence, as well as sex differences in development, using a mixed longitudinal design. 192 MRI scans were obtained from 90 healthy (i.e., free from lifetime psychopathology) adolescents (11-20 years) at three time points (with different MRI scanners used at time 1 compared to 2 and 3). Developmental trajectories were estimated using linear mixed models. Non-linear increases were present across most of the cortex for surface area. In comparison, thickness and volume were both characterised by a combination of non-linear decreasing and increasing trajectories. While sex differences in volume and surface area were observed across time, no differences in thickness were identified. Furthermore, few regions exhibited sex differences in the cortical development. Our findings clearly illustrate that volume is a product of surface area and thickness, with each exhibiting differential patterns of development during adolescence, particularly in regions known to contribute to the development of social-cognition and behavioral regulation. These findings suggest that thickness and surface area may be driven by different underlying mechanisms, with each measure potentially providing independent information about brain development. Hum Brain Mapp 37:2027-2038, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Muscle volume is related to trabecular and cortical bone architecture in typically developing children.

    PubMed

    Bajaj, Deepti; Allerton, Brianne M; Kirby, Joshua T; Miller, Freeman; Rowe, David A; Pohlig, Ryan T; Modlesky, Christopher M

    2015-12-01

    Muscle is strongly related to cortical bone architecture in children; however, the relationship between muscle volume and trabecular bone architecture is poorly studied. The aim of this study was to determine if muscle volume is related to trabecular bone architecture in children and if the relationship is different than the relationship between muscle volume and cortical bone architecture. Forty typically developing children (20 boys and 20 girls; 6 to 12y) were included in the study. Measures of trabecular bone architecture [i.e., apparent trabecular bone volume to total volume (appBV/TV), trabecular number (appTb.N), trabecular thickness (appTb.Th) and trabecular separation (appTb.Sp)] in the distal femur, cortical bone architecture [cortical volume, total volume, section modulus (Z) and polar moment of inertia (J)] in the midfemur, muscle volume in the midthigh and femur length were assessed using magnetic resonance imaging. Total physical activity and moderate-to-vigorous physical activity were assessed using an accelerometer-based activity monitor worn around the waist for four days. Calcium intake was assessed using diet records. Relationships among the measures were tested using multiple linear regression analysis. Muscle volume was moderately-to-strongly related to measures of trabecular bone architecture [appBV/TV (r=0.81), appTb.N (r=0.53), appTb.Th (r=0.67), appTb.Sp (r=-0.71); all p<0.001] but more strongly related to measures of cortical bone architecture [cortical volume (r=0.96), total volume (r=0.94), Z (r=0.94) and J (r=0.92; all p<0.001)]. Similar relationships were observed between femur length and measures of trabecular (p<0.01) and cortical (p<0.001) bone architecture. Sex, physical activity and calcium intake were not related to any measure of bone architecture (p>0.05). Because muscle volume and femur length were strongly related (r=0.91, p<0.001), muscle volume was scaled for femur length (muscle volume/femur length(2.77)). When muscle

  13. Differences in cortical development assessed by fetal MRI in late-onset intrauterine growth restriction.

    PubMed

    Egaña-Ugrinovic, Gabriela; Sanz-Cortes, Magdalena; Figueras, Francesc; Bargalló, Nuria; Gratacós, Eduard

    2013-08-01

    The objective of the study was to evaluate cortical development parameters by magnetic resonance imaging (MRI) in late-onset intrauterine growth-restricted (IUGR) fetuses and normally grown fetuses. A total of 52 IUGR and 50 control fetuses were imaged using a 3T MRI scanner at 37 weeks of gestational age. T2 half-Fourier acquisition single-shot turbo spin-echo anatomical acquisitions were obtained in 3 planes. Cortical sulcation (fissures depth corrected by biparietal diameter), brain volumetry, and asymmetry indices were assessed by means of manual delineation and compared between cases and controls. Late-onset IUGR fetuses had significantly deeper measurements in the left insula (late-onset IUGR: 0.293 vs control: 0.267; P = .02) and right insula (0.379 vs 0.318; P < .01) and the left cingulate fissure (0.096 vs 0.087; P = .03) and significantly lower intracranial (441.25 cm(3) vs 515.82 cm(3); P < .01), brain (276.47 cm(3) vs 312.07 cm(3); P < .01), and left opercular volumes (2.52 cm(3) vs 3.02 cm(3); P < .01). IUGR fetuses showed significantly higher right insular asymmetry indices. Late-onset IUGR fetuses had a different pattern of cortical development assessed by MRI, supporting the existence of in utero brain reorganization. Cortical development could be useful to define fetal brain imaging-phenotypes characteristic of IUGR. Copyright © 2013 Mosby, Inc. All rights reserved.

  14. Thalamocortical functional connectivity in Lennox-Gastaut syndrome is abnormally enhanced in executive-control and default-mode networks.

    PubMed

    Warren, Aaron E L; Abbott, David F; Jackson, Graeme D; Archer, John S

    2017-12-01

    To identify abnormal thalamocortical circuits in the severe epilepsy of Lennox-Gastaut syndrome (LGS) that may explain the shared electroclinical phenotype and provide potential treatment targets. Twenty patients with a diagnosis of LGS (mean age = 28.5 years) and 26 healthy controls (mean age = 27.6 years) were compared using task-free functional magnetic resonance imaging (MRI). The thalamus was parcellated according to functional connectivity with 10 cortical networks derived using group-level independent component analysis. For each cortical network, we assessed between-group differences in thalamic functional connectivity strength using nonparametric permutation-based tests. Anatomical locations were identified by quantifying spatial overlap with a histologically informed thalamic MRI atlas. In both groups, posterior thalamic regions showed functional connectivity with visual, auditory, and sensorimotor networks, whereas anterior, medial, and dorsal thalamic regions were connected with networks of distributed association cortex (including the default-mode, anterior-salience, and executive-control networks). Four cortical networks (left and right executive-control network; ventral and dorsal default-mode network) showed significantly enhanced thalamic functional connectivity strength in patients relative to controls. Abnormal connectivity was maximal in mediodorsal and ventrolateral thalamic nuclei. Specific thalamocortical circuits are affected in LGS. Functional connectivity is abnormally enhanced between the mediodorsal and ventrolateral thalamus and the default-mode and executive-control networks, thalamocortical circuits that normally support diverse cognitive processes. In contrast, thalamic regions connecting with primary and sensory cortical networks appear to be less affected. Our previous neuroimaging studies show that epileptic activity in LGS is expressed via the default-mode and executive-control networks. Results of the present study suggest that

  15. Cortical Plasticity Induction by Pairing Subthalamic Nucleus Deep-Brain Stimulation and Primary Motor Cortical Transcranial Magnetic Stimulation in Parkinson's Disease.

    PubMed

    Udupa, Kaviraja; Bahl, Nina; Ni, Zhen; Gunraj, Carolyn; Mazzella, Filomena; Moro, Elena; Hodaie, Mojgan; Lozano, Andres M; Lang, Anthony E; Chen, Robert

    2016-01-13

    Noninvasive brain stimulation studies have shown abnormal motor cortical plasticity in Parkinson's disease (PD). These studies used peripheral nerve stimulation paired with transcranial magnetic stimulation (TMS) to primary motor cortex (M1) at specific intervals to induce plasticity. Induction of cortical plasticity through stimulation of the basal ganglia (BG)-M1 connections has not been studied. In the present study, we used a novel technique of plasticity induction by repeated pairing of deep-brain stimulation (DBS) of the BG with M1 stimulation using TMS. We hypothesize that repeated pairing of subthalamic nucleus (STN)-DBS and M1-TMS at specific time intervals will lead to plasticity in the M1. Ten PD human patients with STN-DBS were studied in the on-medication state with DBS set to 3 Hz. The interstimulus intervals (ISIs) between STN-DBS and TMS that produced cortical facilitation were determined individually for each patient. Three plasticity induction conditions with repeated pairings (180 times) at specific ISIs (∼ 3 and ∼ 23 ms) that produced cortical facilitation and a control ISI of 167 ms were tested in random order. Repeated pairing of STN-DBS and M1-TMS at short (∼ 3 ms) and medium (∼ 23 ms) latencies increased M1 excitability that lasted for at least 45 min, whereas the control condition (fixed ISI of 167 ms) had no effect. There were no specific changes in motor thresholds, intracortical circuits, or recruitment curves. Our results indicate that paired-associative cortical plasticity can be induced by repeated STN and M1 stimulation at specific intervals. These results show that STN-DBS can modulate cortical plasticity. We introduced a new experimental paradigm to test the hypothesis that pairing subthalamic nucleus deep-brain stimulation (STN-DBS) with motor cortical transcranial magnetic stimulation (M1-TMS) at specific times can induce cortical plasticity in patients with Parkinson's disease (PD). We found that repeated pairing of STN

  16. Disentangling How the Brain is "Wired" in Cortical (Cerebral) Visual Impairment.

    PubMed

    Merabet, Lotfi B; Mayer, D Luisa; Bauer, Corinna M; Wright, Darick; Kran, Barry S

    2017-05-01

    Cortical (cerebral) visual impairment (CVI) results from perinatal injury to visual processing structures and pathways of the brain and is the most common cause of severe visual impairment or blindness in children in developed countries. Children with CVI display a wide range of visual deficits including decreased visual acuity, impaired visual field function, as well as impairments in higher-order visual processing and attention. Together, these visual impairments can dramatically influence a child's development and well-being. Given the complex neurologic underpinnings of this condition, CVI is often undiagnosed by eye care practitioners. Furthermore, the neurophysiological basis of CVI in relation to observed visual processing deficits remains poorly understood. Here, we present some of the challenges associated with the clinical assessment and management of individuals with CVI. We discuss how advances in brain imaging are likely to help uncover the underlying neurophysiology of this condition. In particular, we demonstrate how structural and functional neuroimaging approaches can help gain insight into abnormalities of white matter connectivity and cortical activation patterns, respectively. Establishing a connection between how changes within the brain relate to visual impairments in CVI will be important for developing effective rehabilitative and education strategies for individuals living with this condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Development of coherent neuronal activity patterns in mammalian cortical networks: common principles and local hetereogeneity.

    PubMed

    Egorov, Alexei V; Draguhn, Andreas

    2013-01-01

    Many mammals are born in a very immature state and develop their rich repertoire of behavioral and cognitive functions postnatally. This development goes in parallel with changes in the anatomical and functional organization of cortical structures which are involved in most complex activities. The emerging spatiotemporal activity patterns in multi-neuronal cortical networks may indeed form a direct neuronal correlate of systemic functions like perception, sensorimotor integration, decision making or memory formation. During recent years, several studies--mostly in rodents--have shed light on the ontogenesis of such highly organized patterns of network activity. While each local network has its own peculiar properties, some general rules can be derived. We therefore review and compare data from the developing hippocampus, neocortex and--as an intermediate region--entorhinal cortex. All cortices seem to follow a characteristic sequence starting with uncorrelated activity in uncoupled single neurons where transient activity seems to have mostly trophic effects. In rodents, before and shortly after birth, cortical networks develop weakly coordinated multineuronal discharges which have been termed synchronous plateau assemblies (SPAs). While these patterns rely mostly on electrical coupling by gap junctions, the subsequent increase in number and maturation of chemical synapses leads to the generation of large-scale coherent discharges. These patterns have been termed giant depolarizing potentials (GDPs) for predominantly GABA-induced events or early network oscillations (ENOs) for mostly glutamatergic bursts, respectively. During the third to fourth postnatal week, cortical areas reach their final activity patterns with distinct network oscillations and highly specific neuronal discharge sequences which support adult behavior. While some of the mechanisms underlying maturation of network activity have been elucidated much work remains to be done in order to fully

  18. Abnormal interhemispheric connectivity in male psychopathic offenders.

    PubMed

    Hoppenbrouwers, Sylco S; De Jesus, Danilo R; Sun, Yinming; Stirpe, Tania; Hofman, Dennis; McMaster, Jeff; Hughes, Ginny; Daskalakis, Zafiris J; Schutter, Dennis J L G

    2014-01-01

    Psychopathic offenders inevitably violate interpersonal norms and frequently resort to aggressive and criminal behaviour. The affective and cognitive deficits underlying these behaviours have been linked to abnormalities in functional interhemispheric connectivity. However, direct neurophysiological evidence for dysfunctional connectivity in psychopathic offenders is lacking. We used transcranial magnetic stimulation combined with electroencephalography to examine interhemispheric connectivity in the dorsolateral and motor cortex in a sample of psychopathic offenders and healthy controls. We also measured intracortical inhibition and facilitation over the left and right motor cortex to investigate the effects of local cortical processes on interhemispheric connectivity. We enrolled 17 psychopathic offenders and 14 controls in our study. Global abnormalities in right to left functional connectivity were observed in psychopathic offenders compared with controls. Furthermore, in contrast to controls, psychopathic offenders showed increased intracortical inhibition in the right, but not the left, hemisphere. The relatively small sample size limited the sensitivity to show that the abnormalities in interhemispheric connectivity were specifically related to the dorsolateral prefrontal cortex in psychopathic offenders. To our knowledge, this study provides the first neurophysiological evidence for abnormal interhemispheric connectivity in psychopathic offenders and may further our understanding of the disruptive antisocial behaviour of these offenders.

  19. Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders.

    PubMed

    Kana, Rajesh K; Libero, Lauren E; Moore, Marie S

    2011-12-01

    Recent findings of neurological functioning in autism spectrum disorder (ASD) point to altered brain connectivity as a key feature of its pathophysiology. The cortical underconnectivity theory of ASD (Just et al., 2004) provides an integrated framework for addressing these new findings. This theory suggests that weaker functional connections among brain areas in those with ASD hamper their ability to accomplish complex cognitive and social tasks successfully. We will discuss this theory, but will modify the term underconnectivity to 'disrupted cortical connectivity' to capture patterns of both under- and over-connectivity in the brain. In this paper, we will review the existing literature on ASD to marshal supporting evidence for hypotheses formulated on the disrupted cortical connectivity theory. These hypotheses are: 1) underconnectivity in ASD is manifested mainly in long-distance cortical as well as subcortical connections rather than in short-distance cortical connections; 2) underconnectivity in ASD is manifested only in complex cognitive and social functions and not in low-level sensory and perceptual tasks; 3) functional underconnectivity in ASD may be the result of underlying anatomical abnormalities, such as problems in the integrity of white matter; 4) the ASD brain adapts to underconnectivity through compensatory strategies such as overconnectivity mainly in frontal and in posterior brain areas. This may be manifested as deficits in tasks that require frontal-parietal integration. While overconnectivity can be tested by examining the cortical minicolumn organization, long-distance underconnectivity can be tested by cognitively demanding tasks; and 5) functional underconnectivity in brain areas in ASD will be seen not only during complex tasks but also during task-free resting states. We will also discuss some empirical predictions that can be tested in future studies, such as: 1) how disrupted connectivity relates to cognitive impairments in skills such

  20. X Chromosome Abnormalities and Cognitive Development: Implications for Understanding Normal Human Development.

    ERIC Educational Resources Information Center

    Walzer, Stanley

    1985-01-01

    Argues that knowledge from studies of individuals with sex chromosome abnormalities can further understanding of aspects of normal human development. Studies of XO girls, XXY boys, XXX girls, and males with a fragile X chromosome are summarized to demonstrate how results contribute to knowledge about normal cognitive development and about…

  1. Development of cortical orientation selectivity in the absence of visual experience with contour

    PubMed Central

    Hussain, Shaista; Weliky, Michael

    2011-01-01

    Visual cortical neurons are selective for the orientation of lines, and the full development of this selectivity requires natural visual experience after eye opening. Here we examined whether this selectivity develops without seeing lines and contours. Juvenile ferrets were reared in a dark room and visually trained by being shown a movie of flickering, sparse spots. We found that despite the lack of contour visual experience, the cortical neurons of these ferrets developed strong orientation selectivity and exhibited simple-cell receptive fields. This finding suggests that overt contour visual experience is unnecessary for the maturation of orientation selectivity and is inconsistent with the computational models that crucially require the visual inputs of lines and contours for the development of orientation selectivity. We propose that a correlation-based model supplemented with a constraint on synaptic strength dynamics is able to account for our experimental result. PMID:21753023

  2. Aberrant Hyperconnectivity in the Motor System at Rest Is Linked to Motor Abnormalities in Schizophrenia Spectrum Disorders.

    PubMed

    Walther, Sebastian; Stegmayer, Katharina; Federspiel, Andrea; Bohlhalter, Stephan; Wiest, Roland; Viher, Petra V

    2017-09-01

    Motor abnormalities are frequently observed in schizophrenia and structural alterations of the motor system have been reported. The association of aberrant motor network function, however, has not been tested. We hypothesized that abnormal functional connectivity would be related to the degree of motor abnormalities in schizophrenia. In 90 subjects (46 patients) we obtained resting stated functional magnetic resonance imaging (fMRI) for 8 minutes 40 seconds at 3T. Participants further completed a motor battery on the scanning day. Regions of interest (ROI) were cortical motor areas, basal ganglia, thalamus and motor cerebellum. We computed ROI-to-ROI functional connectivity. Principal component analyses of motor behavioral data produced 4 factors (primary motor, catatonia and dyskinesia, coordination, and spontaneous motor activity). Motor factors were correlated with connectivity values. Schizophrenia was characterized by hyperconnectivity in 3 main areas: motor cortices to thalamus, motor cortices to cerebellum, and prefrontal cortex to the subthalamic nucleus. In patients, thalamocortical hyperconnectivity was linked to catatonia and dyskinesia, whereas aberrant connectivity between rostral anterior cingulate and caudate was linked to the primary motor factor. Likewise, connectivity between motor cortex and cerebellum correlated with spontaneous motor activity. Therefore, altered functional connectivity suggests a specific intrinsic and tonic neural abnormality in the motor system in schizophrenia. Furthermore, altered neural activity at rest was linked to motor abnormalities on the behavioral level. Thus, aberrant resting state connectivity may indicate a system out of balance, which produces characteristic behavioral alterations. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Postpartum cortical blindness.

    PubMed

    Faiz, Shakeel Ahmed

    2008-09-01

    A 30-years-old third gravida with previous normal pregnancies and an unremarkable prenatal course had an emergency lower segment caesarean section at a periphery hospital for failure of labour to progress. She developed bilateral cortical blindness immediately after recovery from anesthesia due to cerebral angiopathy shown by CT and MR scan as cortical infarct cerebral angiopathy, which is a rare complication of a normal pregnancy.

  4. Temporal and frontal cortical thickness associations with M100 auditory activity and attention in healthy controls and individuals with schizophrenia

    PubMed Central

    Edgar, J. Christopher; Hunter, Michael A.; Huang, Mingxiong; Smith, Ashley K.; Chen, Yuhan; Sadek, Joseph; Lu, Brett Y; Miller, Gregory A.; Cañive, José M.

    2012-01-01

    Background Although gray matter (GM) abnormalities are frequently observed in individuals with schizophrenia (SCZ), the functional consequences of these structural abnormalities are not yet understood. The present study sought to better understand GM abnormalities in SCZ by examining associations between GM and two putative functional SCZ biomarkers: weak 100 ms (M100) auditory responses and impairment on tests of attention. Methods Data were available from 103 subjects (healthy controls=52, SCZ=51). GM cortical thickness measures were obtained for superior temporal gyrus (STG) and prefrontal cortex (PFC). Magnetoencephalography (MEG) provided measures of left and right STG M100 source strength. Subjects were administered the Trail Making Test A and the Connors’ Continuous Performance Test to assess attention. Results A strong trend indicated less GM cortical thickness in SCZ than controls in both regions and in both hemispheres (p=0.06). Individuals with SCZ had weaker M100 responses than controls bilaterally, and individuals with SCZ performed more poorly than controls on tests of attention. Across groups, left STG GM was positively associated with left M00 source strength. In SCZ only, less left and right STG and PFC GM predicted poorer performance on tests of attention. After removing variance in attention associated with age, associations between GM and attention remained significant only in left and right STG. Conclusions Reduced GM cortical thickness may serve as a common substrate for multiple functional abnormalities in SCZ, with structural-functional abnormalities in STG GM especially prominent. As suggested by others, functional abnormalities in SCZ may be a consequence of elimination of the neuropil (dendritic arbors and associated synaptic infrastructure) between neuron bodies. PMID:22766129

  5. Cortical folding in post-traumatic stress disorder after motor vehicle accidents: Regional differences in gyrification.

    PubMed

    Chu, Chun; Xie, Bing; Qiu, Mingguo; Liu, Kaijun; Tan, Liwen; Wu, Yi; Chen, Wei; Zhang, Shaoxiang

    2017-04-01

    Structural and functional magnetic resonance imaging (MRI) studies have revealed evidence of brain abnormalities in post-traumatic stress disorder (PTSD) patients. Cortical complexity and local gyrification index (lGI) reflect potential biological processes associated with normal or abnormal cognitive functioning. In the current study, lGI was used to explore cortical folding in PTSD patients involved in motor vehicle accidents (MVA). MRI brain scans were acquired from 18 PTSD patients who had suffered MVA at least 6 months previously and 18 healthy control subjects. All MRI images were obtained on a 3-T Siemens MRI machine and the cortical folding was analyzed using the workflow provided by software FreeSurfer. A general FreeSurfer's general linear model was used in the group analysis. In addition, correlation analysis was performed between the average of lGI extracted from the significantly different areas and the data for the clinical scale. The PTSD patients had significantly greater Clinician-Administered PTSD Scale scores than the control group. The patients showed significantly reduced lGI in the left lateral orbitofrontal cortex, consistent with findings of previous volumetric studies on PTSD. But there were no significant correlations in the left lateral orbitofrontal cortex between Clinician-Administered PTSD Scale scores and lGI. We suggest that abnormal gyrification in PTSD patients can be an important indicator of neurodevelopment deficits and may indeed be a biological marker for PTSD. © 2016 The Authors. Psychiatry and Clinical Neurosciences © 2016 Japanese Society of Psychiatry and Neurology.

  6. Characterization of Early Cortical Neural Network Development in Multiwell Microelectrode Array Plates

    EPA Science Inventory

    We examined the development of neural network activity using microelectrode array (MEA) recordings made in multi-well MEA plates (mwMEAs) over the first 12 days in vitro (DIV). In primary cortical cultures made from postnatal rats, action potential spiking activity was essentiall...

  7. Cortical gyrification in autistic and Asperger disorders: a preliminary magnetic resonance imaging study.

    PubMed

    Jou, Roger J; Minshew, Nancy J; Keshavan, Matcheri S; Hardan, Antonio Y

    2010-12-01

    The validity of Asperger disorder as a distinct syndrome from autism is unclear partly because of the paucity of differentiating neurobiological evidence. Frontal lobe cortical folding between these disorders was compared using the gyrification index. Twenty-three boys underwent structural magnetic resonance imaging: 6 with high-functioning autism, 9 with Asperger disorder, and 8 controls. Using the first coronal slice anterior to the corpus callosum, total and outer cortical contours were traced to calculate the gyrification index. This index was also calculated for superior and inferior regions to examine dorsolateral prefrontal and orbitofrontal cortices, respectively. Analysis of variance revealed differences in the left inferior gyrification index, which was higher in the autism group compared with Asperger and control groups. There were no differences in age, intelligence quotient, and brain volume. These preliminary findings suggest that cortical folding may be abnormally high in the frontal lobe in autism but not Asperger disorder, suggesting distinct frontal lobe neuropathology.

  8. Characteristics of lesional and extra-lesional cortical grey matter in relapsing-remitting and secondary progressive multiple sclerosis: A magnetisation transfer and diffusion tensor imaging study.

    PubMed

    Yaldizli, Özgür; Pardini, Matteo; Sethi, Varun; Muhlert, Nils; Liu, Zheng; Tozer, Daniel J; Samson, Rebecca S; Wheeler-Kingshott, Claudia Am; Yousry, Tarek A; Miller, David H; Chard, Declan T

    2016-02-01

    In multiple sclerosis (MS), diffusion tensor and magnetisation transfer imaging are both abnormal in lesional and extra-lesional cortical grey matter, but differences between clinical subtypes and associations with clinical outcomes have only been partly assessed. To compare mean diffusivity, fractional anisotropy and magnetisation transfer ratio (MTR) in cortical grey matter lesions (detected using phase-sensitive inversion recovery (PSIR) imaging) and extra-lesional cortical grey matter, and assess associations with disability in relapse-onset MS. Seventy-two people with MS (46 relapsing-remitting (RR), 26 secondary progressive (SP)) and 36 healthy controls were included in this study. MTR, mean diffusivity and fractional anisotropy were measured in lesional and extra-lesional cortical grey matter. Mean fractional anisotropy was higher and MTR lower in lesional compared with extra-lesional cortical grey matter. In extra-lesional cortical grey matter mean fractional anisotropy and MTR were lower, and mean diffusivity was higher in the MS group compared with controls. Mean MTR was lower and mean diffusivity was higher in lesional and extra-lesional cortical grey matter in SPMS when compared with RRMS. These differences were independent of disease duration. In multivariate analyses, MTR in extra-lesional more so than lesional cortical grey matter was associated with disability. Magnetic resonance abnormalities in lesional and extra-lesional cortical grey matter are greater in SPMS than RRMS. Changes in extra-lesional compared with lesional cortical grey matter are more consistently associated with disability. © The Author(s), 2015.

  9. NFIB-mediated repression of the epigenetic factor Ezh2 regulates cortical development.

    PubMed

    Piper, Michael; Barry, Guy; Harvey, Tracey J; McLeay, Robert; Smith, Aaron G; Harris, Lachlan; Mason, Sharon; Stringer, Brett W; Day, Bryan W; Wray, Naomi R; Gronostajski, Richard M; Bailey, Timothy L; Boyd, Andrew W; Richards, Linda J

    2014-02-19

    Epigenetic mechanisms are essential in regulating neural progenitor cell self-renewal, with the chromatin-modifying protein Enhancer of zeste homolog 2 (EZH2) emerging as a central player in promoting progenitor cell self-renewal during cortical development. Despite this, how Ezh2 is itself regulated remains unclear. Here, we demonstrate that the transcription factor nuclear factor IB (NFIB) plays a key role in this process. Nfib(-/-) mice exhibit an increased number of proliferative ventricular zone cells that express progenitor cell markers and upregulation of EZH2 expression within the neocortex and hippocampus. NFIB binds to the Ezh2 promoter and overexpression of NFIB represses Ezh2 transcription. Finally, key downstream targets of EZH2-mediated epigenetic repression are misregulated in Nfib(-/-) mice. Collectively, these results suggest that the downregulation of Ezh2 transcription by NFIB is an important component of the process of neural progenitor cell differentiation during cortical development.

  10. Cell Type-Specific Circuit Mapping Reveals the Presynaptic Connectivity of Developing Cortical Circuits

    PubMed Central

    Cocas, Laura A.; Fernandez, Gloria; Barch, Mariya; Doll, Jason; Zamora Diaz, Ivan

    2016-01-01

    The mammalian cerebral cortex is a dense network composed of local, subcortical, and intercortical synaptic connections. As a result, mapping cell type-specific neuronal connectivity in the cerebral cortex in vivo has long been a challenge for neurobiologists. In particular, the development of excitatory and inhibitory interneuron presynaptic input has been hard to capture. We set out to analyze the development of this connectivity in the first postnatal month using a murine model. First, we surveyed the connectivity of one of the earliest populations of neurons in the brain, the Cajal-Retzius (CR) cells in the neocortex, which are known to be critical for cortical layer formation and are hypothesized to be important in the establishment of early cortical networks. We found that CR cells receive inputs from deeper-layer excitatory neurons and inhibitory interneurons in the first postnatal week. We also found that both excitatory pyramidal neurons and inhibitory interneurons received broad inputs in the first postnatal week, including inputs from CR cells. Expanding our analysis into the more mature brain, we assessed the inputs onto inhibitory interneurons and excitatory projection neurons, labeling neuronal progenitors with Cre drivers to study discrete populations of neurons in older cortex, and found that excitatory cortical and subcortical inputs are refined by the fourth week of development, whereas local inhibitory inputs increase during this postnatal period. Cell type-specific circuit mapping is specific, reliable, and effective, and can be used on molecularly defined subtypes to determine connectivity in the cortex. SIGNIFICANCE STATEMENT Mapping cortical connectivity in the developing mammalian brain has been an intractable problem, in part because it has not been possible to analyze connectivity with cell subtype precision. Our study systematically targets the presynaptic connections of discrete neuronal subtypes in both the mature and developing

  11. Identifying homologous anatomical landmarks on reconstructed magnetic resonance images of the human cerebral cortical surface

    PubMed Central

    MAUDGIL, D. D.; FREE, S. L.; SISODIYA, S. M.; LEMIEUX, L.; WOERMANN, F. G.; FISH, D. R.; SHORVON, S. D.

    1998-01-01

    Guided by a review of the anatomical literature, 36 sulci on the human cerebral cortical surface were designated as homologous. These sulci were assessed for visibility on 3-dimensional images reconstructed from magnetic resonance imaging scans of the brains of 20 normal volunteers by 2 independent observers. Those sulci that were found to be reproducibly identifiable were used to define 24 landmarks around the cortical surface. The interobserver and intraobserver variabilities of measurement of the 24 landmarks were calculated. These reliably reproducible landmarks can be used for detailed morphometric analysis, and may prove helpful in the analysis of suspected cerebral cortical structured abnormalities in patients with such conditions as epilepsy. PMID:10029189

  12. Tangential migration of glutamatergic neurons and cortical patterning during development: Lessons from Cajal-Retzius cells.

    PubMed

    Barber, Melissa; Pierani, Alessandra

    2016-08-01

    Tangential migration is a mode of cell movement, which in the developing cerebral cortex, is defined by displacement parallel to the ventricular surface and orthogonal to the radial glial fibers. This mode of long-range migration is a strategy by which distinct neuronal classes generated from spatially and molecularly distinct origins can integrate to form appropriate neural circuits within the cortical plate. While it was previously believed that only GABAergic cortical interneurons migrate tangentially from their origins in the subpallial ganglionic eminences to integrate in the cortical plate, it is now known that transient populations of glutamatergic neurons also adopt this mode of migration. These include Cajal-Retzius cells (CRs), subplate neurons (SPs), and cortical plate transient neurons (CPTs), which have crucial roles in orchestrating the radial and tangential development of the embryonic cerebral cortex in a noncell-autonomous manner. While CRs have been extensively studied, it is only in the last decade that the molecular mechanisms governing their tangential migration have begun to be elucidated. To date, the mechanisms of SPs and CPTs tangential migration remain unknown. We therefore review the known signaling pathways, which regulate parameters of CRs migration including their motility, contact-redistribution and adhesion to the pial surface, and discuss this in the context of how CR migration may regulate their signaling activity in a spatial and temporal manner. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 847-881, 2016. © 2015 Wiley Periodicals, Inc.

  13. Vascular-Derived Vegfa Promotes Cortical Interneuron Migration and Proximity to the Vasculature in the Developing Forebrain

    PubMed Central

    Barber, Melissa; Andrews, William D; Memi, Fani; Gardener, Phillip; Ciantar, Daniel; Tata, Mathew; Ruhrberg, Christiana; Parnavelas, John G

    2018-01-01

    Abstract Vascular endothelial growth factor (Vegfa) is essential for promoting the vascularization of the embryonic murine forebrain. In addition, it directly influences neural development, although its role in the forming forebrain is less well elucidated. It was recently suggested that Vegfa may influence the development of GABAergic interneurons, inhibitory cells with crucial signaling roles in cortical neuronal circuits. However, the mechanism by which it affects interneuron development remains unknown. Here we investigated the developmental processes by which Vegfa may influence cortical interneuron development by analyzing transgenic mice that ubiquitously express the Vegfa120 isoform to perturb its signaling gradient. We found that interneurons reach the dorsal cortex at mid phases of corticogenesis despite an aberrant vascular network. Instead, endothelial ablation of Vegfa alters cortical interneuron numbers, their intracortical distribution and spatial proximity to blood vessels. We show for the first time that vascular-secreted guidance factors promote early-migrating interneurons in the intact forebrain in vivo and identify a novel role for vascular-Vegfa in this process. PMID:29901792

  14. Cortical thickness maturation and duration of music training: health-promoting activities shape brain development.

    PubMed

    Hudziak, James J; Albaugh, Matthew D; Ducharme, Simon; Karama, Sherif; Spottswood, Margaret; Crehan, Eileen; Evans, Alan C; Botteron, Kelly N

    2014-11-01

    To assess the extent to which playing a musical instrument is associated with cortical thickness development among healthy youths. Participants were part of the National Institutes of Health (NIH) Magnetic Resonance Imaging (MRI) Study of Normal Brain Development. This study followed a longitudinal design such that participants underwent MRI scanning and behavioral testing on up to 3 separate visits, occurring at 2-year intervals. MRI, IQ, and music training data were available for 232 youths (334 scans), ranging from 6 to 18 years of age. Cortical thickness was regressed against the number of years that each youth had played a musical instrument. Next, thickness was regressed against an "Age × Years of Playing" interaction term. Age, gender, total brain volume, and scanner were controlled for in analyses. Participant ID was entered as a random effect to account for within-person dependence. False discovery rate correction was applied (p ≤ .05). There was no association between thickness and years playing a musical instrument. The "Age × Years of Playing" interaction was associated with thickness in motor, premotor, and supplementary motor cortices, as well as prefrontal and parietal cortices. Follow-up analysis revealed that music training was associated with an increased rate of thickness maturation. Results were largely unchanged when IQ and handedness were included as covariates. Playing a musical instrument was associated with more rapid cortical thickness maturation within areas implicated in motor planning and coordination, visuospatial ability, and emotion and impulse regulation. However, given the quasi-experimental nature of this study, we cannot rule out the influence of confounding variables. Copyright © 2014 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Discovering Cortical Folding Patterns in Neonatal Cortical Surfaces Using Large-Scale Dataset

    PubMed Central

    Meng, Yu; Li, Gang; Wang, Li; Lin, Weili; Gilmore, John H.

    2017-01-01

    The cortical folding of the human brain is highly complex and variable across individuals. Mining the major patterns of cortical folding from modern large-scale neuroimaging datasets is of great importance in advancing techniques for neuroimaging analysis and understanding the inter-individual variations of cortical folding and its relationship with cognitive function and disorders. As the primary cortical folding is genetically influenced and has been established at term birth, neonates with the minimal exposure to the complicated postnatal environmental influence are the ideal candidates for understanding the major patterns of cortical folding. In this paper, for the first time, we propose a novel method for discovering the major patterns of cortical folding in a large-scale dataset of neonatal brain MR images (N = 677). In our method, first, cortical folding is characterized by the distribution of sulcal pits, which are the locally deepest points in cortical sulci. Because deep sulcal pits are genetically related, relatively consistent across individuals, and also stable during brain development, they are well suitable for representing and characterizing cortical folding. Then, the similarities between sulcal pit distributions of any two subjects are measured from spatial, geometrical, and topological points of view. Next, these different measurements are adaptively fused together using a similarity network fusion technique, to preserve their common information and also catch their complementary information. Finally, leveraging the fused similarity measurements, a hierarchical affinity propagation algorithm is used to group similar sulcal folding patterns together. The proposed method has been applied to 677 neonatal brains (the largest neonatal dataset to our knowledge) in the central sulcus, superior temporal sulcus, and cingulate sulcus, and revealed multiple distinct and meaningful folding patterns in each region. PMID:28229131

  16. Organizing Principles of Human Cortical Development--Thickness and Area from 4 to 30 Years: Insights from Comparative Primate Neuroanatomy.

    PubMed

    Amlien, Inge K; Fjell, Anders M; Tamnes, Christian K; Grydeland, Håkon; Krogsrud, Stine K; Chaplin, Tristan A; Rosa, Marcello G P; Walhovd, Kristine B

    2016-01-01

    The human cerebral cortex undergoes a protracted, regionally heterogeneous development well into young adulthood. Cortical areas that expand the most during human development correspond to those that differ most markedly when the brains of macaque monkeys and humans are compared. However, it remains unclear to what extent this relationship derives from allometric scaling laws that apply to primate brains in general, or represents unique evolutionary adaptations. Furthermore, it is unknown whether the relationship only applies to surface area (SA), or also holds for cortical thickness (CT). In 331 participants aged 4 to 30, we calculated age functions of SA and CT, and examined the correspondence of human cortical development with macaque to human expansion, and with expansion across nonhuman primates. CT followed a linear negative age function from 4 to 30 years, while SA showed positive age functions until 12 years with little further development. Differential cortical expansion across primates was related to regional maturation of SA and CT, with age trajectories differing between high- and low-expanding cortical regions. This relationship adhered to allometric scaling laws rather than representing uniquely macaque-human differences: regional correspondence with human development was as large for expansion across nonhuman primates as between humans and macaque. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Amphetamine Dependence and Co-Morbid Alcohol Abuse: Associations to Brain Cortical Thickness

    PubMed Central

    2010-01-01

    Background Long-term amphetamine and methamphetamine dependence has been linked to cerebral blood perfusion, metabolic, and white matter abnormalities. Several studies have linked methamphetamine abuse to cortical grey matter reduction, though with divergent findings. Few publications investigate unmethylated amphetamine's potential effects on cortical grey matter. This work investigated if amphetamine dependent patients showed reduced cortical grey matter thickness. Subjects were 40 amphetamine dependent subjects and 40 healthy controls. While all subjects were recruited to be free of alcohol dependence, structured clinical interviews revealed significant patterns of alcohol use in the patients. Structural magnetic resonance brain images were obtained from the subjects using a 1.5 Tesla GE Signa machine. Brain cortical thickness was measured with submillimeter precision at multiple finely spaced cortical locations using semi-automated post-processing (FreeSurfer). Contrast analysis of a general linear model was used to test for differences between the two groups at each cortical location. In addition to contrasting patients with controls, a number of analyses sought to identify possible confounding effects from alcohol. Results No significant cortical thickness differences were observed between the full patient group and controls, nor between non-drinking patients and controls. Patients with a history of co-morbid heavy alcohol use (n = 29) showed reductions in the superior-frontal right hemisphere and pre-central left hemisphere when compared to healthy controls (n = 40). Conclusions Amphetamine usage was associated with reduced cortical thickness only in patients co-morbid for heavy alcohol use. Since cortical thickness is but one measure of brain structure and does not capture brain function, further studies of brain structure and function in amphetamine dependence are warranted. PMID:20487539

  18. Abnormal interhemispheric connectivity in male psychopathic offenders

    PubMed Central

    Hoppenbrouwers, Sylco S.; De Jesus, Danilo R.; Sun, Yinming; Stirpe, Tania; Hofman, Dennis; McMaster, Jeff; Hughes, Ginny; Daskalakis, Zafiris J.; Schutter, Dennis J.L.G.

    2014-01-01

    Background Psychopathic offenders inevitably violate interpersonal norms and frequently resort to aggressive and criminal behaviour. The affective and cognitive deficits underlying these behaviours have been linked to abnormalities in functional interhemispheric connectivity. However, direct neurophysiological evidence for dysfunctional connectivity in psychopathic offenders is lacking. Methods We used transcranial magnetic stimulation combined with electroencephalography to examine interhemispheric connectivity in the dorsolateral and motor cortex in a sample of psychopathic offenders and healthy controls. We also measured intracortical inhibition and facilitation over the left and right motor cortex to investigate the effects of local cortical processes on interhemispheric connectivity. Results We enrolled 17 psychopathic offenders and 14 controls in our study. Global abnormalities in right to left functional connectivity were observed in psychopathic offenders compared with controls. Furthermore, in contrast to controls, psychopathic offenders showed increased intracortical inhibition in the right, but not the left, hemisphere. Limitations The relatively small sample size limited the sensitivity to show that the abnormalities in interhemispheric connectivity were specifically related to the dorsolateral prefrontal cortex in psychopathic offenders. Conclusion To our knowledge, this study provides the first neurophysiological evidence for abnormal interhemispheric connectivity in psychopathic offenders and may further our understanding of the disruptive antisocial behaviour of these offenders. PMID:23937798

  19. Renal cortical involvement in children with first UTI: does it differ in the presence of primary VUR?

    PubMed

    Aktaş, Gül Ege; Inanir, Sabahat; Turoğlu, Halil Turgut

    2008-12-01

    The aim of this study was to investigate the influence of vesicoureteral reflux (VUR) on dimercaptosuccinic acid (DMSA) scintigraphic patterns in children with first symptomatic urinary tract infection (UTI). A total of 45 children with the diagnosis of first symptomatic UTI (28 girls, 17 boys, mean age 18 months, range 1 month-11 years) were reviewed. All DMSA scans were obtained within 2 months of bacteriologically proven UTI (median 21 days, mean 26 +/- 21, 14). After the exclusion of the patients with bilateral cortical lesions, 82 renal units were analyzed. The scintigraphic patterns included regional and global description of renal cortical abnormality (normal or decreased differential renal function, regional renal function (RRF), and the number and severity of cortical lesions). Vesicoureteral reflux was detected in 26 (32%) renal units (15 with grade 1-2, 11 with grade 3-4). Renal cortical abnormality was observed in 10 renal units without VUR (10/56, 17%) and 13 renal units with VUR (13/26: 50%). Of the 15 renal units, 5 with grade 1-2 VUR (5/15) and 8 of the 11 renal units with grade 3-4 VUR (8/11) had renal cortical involvement. The most common scintigraphic pattern in the patients without VUR was the preserved RRF (>or=45%) and two or fewer photon-deficient areas. On the other hand, a decreased RRF (<45) associated with cortical lesions was the most frequent finding in patients with refluxing kidneys (8/26, 30%), especially in those with grade 3-4 disease. This investigation showed that the presence of VUR affects DMSA patterns in children with first symptomatic UTI.

  20. The development of inter-strain variation in cortical and trabecular traits during growth of the mouse lumbar vertebral body.

    PubMed

    Ramcharan, M A; Faillace, M E; Guengerich, Z; Williams, V A; Jepsen, K J

    2017-03-01

    How cortical and trabecular bone co-develop to establish a mechanically functional structure is not well understood. Comparing early postnatal differences in morphology of lumbar vertebral bodies for three inbred mouse strains identified coordinated changes within and between cortical and trabecular traits. These early coordinate changes defined the phenotypic differences among the inbred mouse strains. Age-related changes in cortical and trabecular traits have been well studied; however, very little is known about how these bone tissues co-develop from day 1 of postnatal growth to establish functional structures by adulthood. In this study, we aimed to establish how cortical and trabecular tissues within the lumbar vertebral body change during growth for three inbred mouse strains that express wide variation in adult bone structure and function. Bone traits were quantified for lumbar vertebral bodies of female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse strains from 1 to 105 days of age (n = 6-10 mice/age/strain). Inter-strain differences in external bone size were observed as early as 1 day of age. Reciprocal and rapid changes in the trabecular bone volume fraction and alignment in the direction of axial compression were observed by 7 days of age. Importantly, the inter-strain difference in adult trabecular bone volume fraction was established by 7 days of age. Early variation in external bone size and trabecular architecture was followed by progressive increases in cortical area between 28 and 105 days of age, with the greatest increases in cortical area seen in the mouse strain with the lowest trabecular mass. Establishing the temporal changes in bone morphology for three inbred mouse strains revealed that genetic variation in adult trabecular traits were established early in postnatal development. Early variation in trabecular architecture preceded strain-specific increases in cortical area and changes in cortical thickness. This study

  1. Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Khan, Bilal; Tian, Fenghua; Behbehani, Khosrow; Romero, Mario I.; Delgado, Mauricio R.; Clegg, Nancy J.; Smith, Linsley; Reid, Dahlia; Liu, Hanli; Alexandrakis, George

    2010-05-01

    We demonstrate the utility of functional near-infrared spectroscopy (fNIRS) as a tool for physicians to study cortical plasticity in children with cerebral palsy (CP). Motor cortex activation patterns were studied in five healthy children and five children with CP (8.4+/-2.3 years old in both groups) performing a finger-tapping protocol. Spatial (distance from center and area difference) and temporal (duration and time-to-peak) image metrics are proposed as potential biomarkers for differentiating abnormal cortical activation in children with CP from healthy pediatric controls. In addition, a similarity image-analysis concept is presented that unveils areas that have similar activation patterns as that of the maximum activation area, but are not discernible by visual inspection of standard activation images. Metrics derived from the images presenting areas of similarity are shown to be sensitive identifiers of abnormal activation patterns in children with CP. Importantly, the proposed similarity concept and related metrics may be applicable to other studies for the identification of cortical activation patterns by fNIRS.

  2. Hierarchical genetic interactions between FOXG1 and LHX2 regulate the formation of the cortical hem in the developing telencephalon.

    PubMed

    Godbole, Geeta; Shetty, Ashwin S; Roy, Achira; D'Souza, Leora; Chen, Bin; Miyoshi, Goichi; Fishell, Gordon; Tole, Shubha

    2018-01-09

    During forebrain development, a telencephalic organizer called the cortical hem is crucial for inducing hippocampal fate in adjacent cortical neuroepithelium. How the hem is restricted to its medial position is therefore a fundamental patterning issue. Here, we demonstrate that Foxg1 - Lhx2 interactions are crucial for the formation of the hem. Loss of either gene causes a region of the cortical neuroepithelium to transform into hem. We show that FOXG1 regulates Lhx2 expression in the cortical primordium. In the absence of Foxg1 , the presence of Lhx2 is sufficient to suppress hem fate, and hippocampal markers appear selectively in Lhx2 -expressing regions. FOXG1 also restricts the temporal window in which loss of Lhx2 results in a transformation of cortical primordium into hem. Therefore, Foxg1 and Lhx2 form a genetic hierarchy in the spatiotemporal regulation of cortical hem specification and positioning, and together ensure the normal development of this hippocampal organizer. © 2018. Published by The Company of Biologists Ltd.

  3. Cortical relapses in multiple sclerosis.

    PubMed

    Puthenparampil, Marco; Poggiali, Davide; Causin, Francesco; Rolma, Giuseppe; Rinaldi, Francesca; Perini, Paola; Gallo, Paolo

    2016-08-01

    Multiple sclerosis (MS) is a white and grey matter disease of the central nervous system (CNS). It is recognized that cortical damage (i.e. focal lesions and atrophy) plays a role in determining the accumulation of physical and cognitive disability that is observed in patients with progressive MS. To date, an association of cortical lesions with clinical relapses has not been described. We report clinical and magnetic resonance imaging (MRI) findings of five relapsing-remitting MS (RRMS) patients who had clinical relapses characterized by the acute appearance of cortical symptoms, due to the development of large, snake-like, cortical inflammatory lesions. Symptoms were: acute Wernicke's aphasia mimicking stroke; agraphia with acalculia, not associated to a motor deficit nor linguistic disturbance; hyposthenia of the left arm, followed by muscle twitching of the hand, spreading to arm and face; acute onset of left lower limb paroxysmal hypertonia; and temporal lobe status epilepticus, with psychotic symptoms. Cortical relapses may occur in MS. MRI examination in MS should include sequences, such as double inversion recovery (DIR) or phase sensitive inversion recovery (PSIR), that are aimed at visualizing cortical lesions, especially in the presence of symptoms of cortical dysfunction. Our observation further stresses and extends the clinical relevance of cortical pathology in MS. © The Author(s), 2015.

  4. Cortical Spreading Depression Closes Paravascular Space and Impairs Glymphatic Flow: Implications for Migraine Headache

    PubMed Central

    Melo-Carrillo, Agustin; Strassman, Andrew M.

    2017-01-01

    Functioning of the glymphatic system, a network of paravascular tunnels through which cortical interstitial solutes are cleared from the brain, has recently been linked to sleep and traumatic brain injury, both of which can affect the progression of migraine. This led us to investigate the connection between migraine and the glymphatic system. Taking advantage of a novel in vivo method we developed using two-photon microscopy to visualize the paravascular space (PVS) in naive uninjected mice, we show that a single wave of cortical spreading depression (CSD), an animal model of migraine aura, induces a rapid and nearly complete closure of the PVS around surface as well as penetrating cortical arteries and veins lasting several minutes, and gradually recovering over 30 min. A temporal mismatch between the constriction or dilation of the blood vessel lumen and the closure of the PVS suggests that this closure is not likely to result from changes in vessel diameter. We also show that CSD impairs glymphatic flow, as indicated by the reduced rate at which intraparenchymally injected dye was cleared from the cortex to the PVS. This is the first observation of a PVS closure in connection with an abnormal cortical event that underlies a neurological disorder. More specifically, the findings demonstrate a link between the glymphatic system and migraine, and suggest a novel mechanism for regulation of glymphatic flow. SIGNIFICANCE STATEMENT Impairment of brain solute clearance through the recently described glymphatic system has been linked with traumatic brain injury, prolonged wakefulness, and aging. This paper shows that cortical spreading depression, the neural correlate of migraine aura, closes the paravascular space and impairs glymphatic flow. This closure holds the potential to define a novel mechanism for regulation of glymphatic flow. It also implicates the glymphatic system in the altered cortical and endothelial functioning of the migraine brain. PMID:28193695

  5. Glial activation colocalizes with structural abnormalities in amyotrophic lateral sclerosis.

    PubMed

    Alshikho, Mohamad J; Zürcher, Nicole R; Loggia, Marco L; Cernasov, Paul; Chonde, Daniel B; Izquierdo Garcia, David; Yasek, Julia E; Akeju, Oluwaseun; Catana, Ciprian; Rosen, Bruce R; Cudkowicz, Merit E; Hooker, Jacob M; Atassi, Nazem

    2016-12-13

    In this cross-sectional study, we aimed to evaluate brain structural abnormalities in relation to glial activation in the same cohort of participants. Ten individuals with amyotrophic lateral sclerosis (ALS) and 10 matched healthy controls underwent brain imaging using integrated MR/PET and the radioligand [ 11 C]-PBR28. Diagnosis history and clinical assessments including Upper Motor Neuron Burden Scale (UMNB) were obtained from patients with ALS. Diffusion tensor imaging (DTI) analyses including tract-based spatial statistics and tractography were applied. DTI metrics including fractional anisotropy (FA) and diffusivities (mean, axial, and radial) were measured in regions of interest. Cortical thickness was assessed using surface-based analysis. The locations of structural changes, measured by DTI and the areas of cortical thinning, were compared to regional glial activation measured by relative [ 11 C]-PBR28 uptake. In this cohort of individuals with ALS, reduced FA and cortical thinning colocalized with regions demonstrating higher radioligand binding. [ 11 C]-PBR28 binding in the left motor cortex was correlated with FA (r = -0.68, p < 0.05) and cortical thickness (r = -0.75, p < 0.05). UMNB was correlated with glial activation (r = +0.75, p < 0.05), FA (r = -0.77, p < 0.05), and cortical thickness (r = -0.75, p < 0.05) in the motor cortex. Increased uptake of the glial marker [ 11 C]-PBR28 colocalizes with changes in FA and cortical thinning. This suggests a link between disease mechanisms (gliosis and inflammation) and structural changes (cortical thinning and white and gray matter changes). In this multimodal neuroimaging work, we provide an in vivo model to investigate the pathogenesis of ALS. © 2016 American Academy of Neurology.

  6. [X-ray computed tomographic abnormalities in schizophrenia. Trial of relationship with clinical data].

    PubMed

    D'Amato, T; Rochet, T; Dalery, J; Chauchat, J H; Terra, J L; Arteaga, C; Marie-Cardine, M

    1992-01-01

    Computerized tomography (CT-scan) studies in schizophrenia revealed that some patients have neuromorphological abnormalities. The structural changes consist mainly in lateral and third ventricle enlargement, and in cortical atrophy. The present study evaluates these three changes in 42 schizophrenics aged 18 to 50, compared to 24 healthy controls. Diagnosis were established from information gathered by personal interview with the SADS-LA. Clinical sub-types were evaluated according to the DSM III-R criteria. Moreover, detailed symptoms were rated according to the Positive And Negative Syndrome Scale (PANSS). CT scans were recorded in floppy disks and blindly analyzed. Schizophrenics shown significant higher mean size of lateral and third ventricles, and higher mean anterior cortical atrophy than healthy subjects. Significant differences were also found between subtypes, with more marked abnormalities in the disorganized group. The relationship between brain abnormalities and clinical symptoms recorded with the PANSS, were analysed using Pearson correlates. Positive correlations concerned mainly negative symptoms like blunted affect, emotional withdrawal, difficulties in abstract thinking, passive apathetic social withdrawal and lack of spontaneity of conversation. Positive correlations are also observed with some symptoms classified with the PANSS in the General Psychopathology scale such as mannerism and disorientation. Negative correlation concerned most of PANSS positive symptoms.

  7. A Computed Tomography-Based Comparison of Abnormal Vertebrae Pedicles Between Dystrophic and Nondystrophic Scoliosis in Neurofibromatosis Type 1.

    PubMed

    Li, Ying; Luo, Ming; Wang, Wengang; Shen, Mingkui; Xu, Genzhong; Gao, Jianbo; Xia, Lei

    2017-10-01

    To explore the prevalence and distribution of abnormal vertebral pedicles in scoliosis secondary to neurofibromatosis type 1 (NF1-S) and to compare the abnormal vertebrae pedicles between dystrophic and nondystrophic scoliosis. Using computed tomography images, we carefully measured 2652 vertebral pedicles from 56 patients with NF1-S with dystrophic scoliosis and 22 patients with NF1-S with nondystrophic scoliosis. Pedicle morphology was classified as follows: type A, a cancellous channel of >4 mm; type B, a cancellous channel of 2 to 4 mm; type C, a cancellous channel of <2 mm with an entirely cortical channel of ≥2 mm; type D, a cortical channel of <2 mm; or type E, absent pedicle. Types B, C, D, and E were defined as abnormal. The total prevalence of abnormal vertebral pedicles in patients with NF1-S was as high as 67%, with type B comprising 39%, type C comprising 22%, type D comprising 4%, and type E comprising 2%. A significantly greater rate of abnormal pedicles was found in dystrophic scoliosis compared with nondystrophic scoliosis (70% vs. 59%, P < 0.0001). The upper thoracic spine (87%) is the most concentrated region of abnormal pedicles compared with the lower thoracic (73%) and lumbar spine (34%). There is a significantly high prevalence of abnormal pedicles in patients with NF1-S and an increased rate of abnormal pedicles in dystrophic scoliosis compared with nondystrophic ones. The described pedicle classification system could serve as an objective tool to guide preoperative assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Malformations of cortical development: clinical spectrum in a series of 101 patients and review of the literature (Part I).

    PubMed

    Güngör, Serdal; Yalnizoğlu, Dilek; Turanli, Güzide; Saatçi, Işil; Erdoğan-Bakar, Emel; Topçu, Meral

    2007-01-01

    Patients with malformations of cortical development (MCD) present with a wide spectrum of clinical manifestations ranging from asymptomatic cases to those with epilepsy and neurodevelopmental problems. Thorough clinical delineation of patients with MCD may provide clues for future phenotype-genotype correlation studies. We studied clinical features of patients with MCD, including developmental risk factors and family history. We evaluated 10 patients with MCD at Hacettepe University Children's Hospital, Department of Pediatric Neurology. All patients underwent neurological evaluation with detailed medical and family history, and neuropsychological evaluation. Routine EEG and MRI were obtained. The patients were between 1 month and 19 years of age (mean: 6.1 +/- 4.4 years). Fifty-four patients were diagnosed with polymicrogyria (PMG), 23 patients with lissencephaly, 12 patients with schizencephaly, and 12 patients with heterotopia. Parents were relatives in 31.7% of the cases; consanguinity was most common in patients with lissencephaly and other MCDs with diffuse/bilateral involvement. Initial clinical presentation was seizures in 61.4% of the cases, developmental delays in 12.9%, and microcephaly in 9.9%. Neurological evaluation revealed most severe abnormalities in patients with lissencephaly, and relatively better outcome in patients with heterotopias. Cognitive functions were better in patients with heterotopias compared to other groups. Overall, 71.3% of patients ha epilepsy. In conclusion, initial presentation and clinical course of patients with MCD are variable and seem to be correlated with the extent of cortical involvement. Epilepsy and mental retardation are the most common problems. The most severe clinical outcome was seen in patients with lissencephaly.

  9. Isolated cortical visual loss with subtle brain MRI abnormalities in a case of hypoxic-ischemic encephalopathy.

    PubMed

    Margolin, Edward; Gujar, Sachin K; Trobe, Jonathan D

    2007-12-01

    A 16-year-old boy who was briefly asystolic and hypotensive after a motor vehicle accident complained of abnormal vision after recovering consciousness. Visual acuity was normal, but visual fields were severely constricted without clear hemianopic features. The ophthalmic examination was otherwise normal. Brain MRI performed 11 days after the accident showed no pertinent abnormalities. At 6 months after the event, brain MRI demonstrated brain volume loss in the primary visual cortex and no other abnormalities. One year later, visual fields remained severely constricted; neurologic examination, including formal neuropsychometric testing, was normal. This case emphasizes the fact that hypoxic-ischemic encephalopathy (HIE) may cause enduring damage limited to primary visual cortex and that the MRI abnormalities may be subtle. These phenomena should be recognized in the management of patients with HIE.

  10. Increased pCREB expression and the spontaneous epileptiform activity in a BCNU-treated rat model of cortical dysplasia.

    PubMed

    Pennacchio, Paolo; Noé, Francesco; Gnatkovsky, Vadym; Moroni, Ramona Frida; Zucca, Ileana; Regondi, Maria Cristina; Inverardi, Francesca; de Curtis, Marco; Frassoni, Carolina

    2015-09-01

    Cortical dysplasias (CDs) represent a wide range of cortical abnormalities that closely correlate with intractable epilepsy. Rats prenatally exposed to 1-3-bis-chloroethyl-nitrosurea (BCNU) represent an injury-based model that reproduces many histopathologic features of human CD. Previous studies reported in vivo hyperexcitability in this model, but in vivo epileptogenicity has not been confirmed. To determine whether cortical and hippocampal lesions lead to epileptiform discharges and/or seizures in the BCNU model, rats at three different ages (3, 5, and 9 months old) were implanted for long-term video electroencephalographic recording. At the end of the recording session, brain tissue was processed for histologic and immunohistochemical investigation including cAMP response element binding protein (CREB) phosphorylation, as a biomarker of epileptogenicity. BCNU-treated rats showed spontaneous epileptiform activity (67%) in the absence of a second seizure-provoking hit. Such activity originated mainly from one hippocampus and propagated to the ipsilateral neocortex. No epileptiform activity was found in age-matched control rats. The histopathologic investigation revealed that all BCNU rats with epileptiform activity showed neocortical and hippocampal abnormalities; the presence and the severity of these lesions did not correlate consistently with the propensity to generate epileptiform discharges. Epileptiform activity was found only in cortical areas of BCNU-treated rats in which a correlation between brain abnormalities and increased pCREB expression was observed. This study demonstrates the in vivo occurrence of spontaneous epileptiform discharges in the BCNU model and shows that increased pCREB expression can be utilized as a reliable biomarker of epileptogenicity. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  11. Atypical Pulvinar-Cortical Pathways During Sustained Attention Performance in Children with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Li, Xiaobo; Sroubek, Ariane; Kelly, Mary S.; Lesser, Iris; Sussman, Elyse; He, Yong; Branch, Craig; Foxe, John J.

    2012-01-01

    Objective: The neurobiological basis of inattentiveness, a core feature of attention-deficit/hyperactivity disorder (ADHD), is not yet well understood. Structural abnormalities in thalamus, especially the pulvinar nuclei, have recently been reported in ADHD. Pulvinar nuclei maintain reciprocal connections with cortical/subcortical areas, and play…

  12. Disentangling How the Brain is “Wired” in Cortical/Cerebral Visual Impairment (CVI)

    PubMed Central

    Merabet, Lotfi B.; Mayer, D. Luisa; Bauer, Corinna M.; Wright, Darick; Kran, Barry S.

    2017-01-01

    Cortical/cerebral visual impairment (CVI) results from perinatal injury to visual processing structures and pathways of the brain and is the most common cause of severe visual impairment/blindness in children in developed countries. Children with CVI display a wide range of visual deficits including decreased visual acuity, impaired visual field function, as well as impairments in higher order visual processing and attention. Together, these visual impairments can dramatically impact upon a child’s development and well-being. Given the complex neurological underpinnings of this condition, CVI is often undiagnosed by eye care practitioners. Furthermore, the neurophysiological basis of CVI in relation to observed visual processing deficits remains poorly understood. Here, we present some of the challenges associated with the clinical assessment and management of individuals with CVI. We discuss how advances in brain imaging are likely to help uncover the underlying neurophysiology of this condition. In particular, we demonstrate how structural and functional neuroimaging approaches can help gain insight into abnormalities of white matter connectivity and cortical activation patterns respectively. Establishing a connection between how changes within the brain relate to visual impairments in CVI will be important for developing effective rehabilitative and education strategies for individuals living with this condition. PMID:28941531

  13. Longitudinal trajectory of clinical insight and covariation with cortical thickness in first-episode psychosis.

    PubMed

    Buchy, Lisa; Makowski, Carolina; Malla, Ashok; Joober, Ridha; Lepage, Martin

    2017-03-01

    Among people with a first-episode of psychosis, those with poorer clinical insight show neuroanatomical abnormalities in frontal, temporal and parietal cortices compared to those with better clinical insight. Whether changes in clinical insight are associated with progressive structural brain changes is unknown. We aimed to evaluate 1) associations between clinical insight and cortical thickness at a baseline assessment, 2) covariation between clinical insight and cortical thickness across baseline, one-year and two-year follow-up assessments, and 3) the predictive value of clinical insight for cortical thickness at one-year and two-year follow-ups. Scale for the assessment of Unawareness of Mental Disorder ratings and magnetic resonance imaging scans were acquired at baseline, one-year, and two-year follow-ups in 128, 74, and 44 individuals with a first-episode psychosis, respectively. Cortical thickness metrics were then computed at baseline, one-year and two-year follow-ups and analyzed with linear mixed models. At baseline, clinical insight was not significantly associated with cortical thickness in any region. Longitudinal mixed effects models showed that a worsening in clinical insight between the one-year and two-year assessments was significantly associated with cortical thinning in dorsal pre-central and post-central gyri. Cortical thinning in left fusiform gyrus at two-years was predicted by poorer clinical insight at baseline. Results suggest that poor clinical insight soon after the onset of a first-episode psychosis may lead to progressive cortical changes in temporal lobe, while changes in clinical insight during the second year covary with cortical thinning in circumscribed dorsal frontal and parietal cortices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Deterioration of Cortical Bone Microarchitecture: Critical Component of Renal Osteodystrophy Evaluation.

    PubMed

    Sharma, Ashish K; Toussaint, Nigel D; Masterson, Rosemary; Holt, Stephen G; Rajapakse, Chamith S; Ebeling, Peter R; Mohanty, Sindhu T; Baldock, Paul; Elder, Grahame J

    2018-05-23

    Cortical bone is a significant determinant of bone strength and its deterioration contributes to bone fragility. Thin cortices and increased cortical porosity have been noted in patients with chronic kidney disease (CKD), but the "Turnover Mineralization Volume" classification of renal osteodystrophy does not emphasize cortical bone as a key parameter. We aimed to assess trabecular and cortical bone microarchitecture by histomorphometry and micro-CT in patients with CKD G5 and 5D (dialysis). Transiliac bone biopsies were performed in 14 patients undergoing kidney transplantation (n = 12) and parathyroidectomy (n = 2). Structural parameters were analysed by histomorphometry and micro-CT including trabecular bone volume, thickness (TbTh), number (TbN) and separation and cortical thickness (CtTh) and porosity (CtPo). Indices of bone remodelling and mineralisation were obtained and relationships to bone biomarkers examined. Associations were determined by Spearman's or Pearson's rank correlation coefficients. By micro-CT, trabecular parameters were within normal ranges in most patients, but all patients showed very low CtTh (127 ± 44 µm) and high CtPo (60.3 ± 22.5%). CtPo was inversely related to TbN (r = -0.56; p = 0.03) by micro-CT and to TbTh (r = -0.60; p = 0.024) by histomorphometry and correlated to parathyroid hormone values (r = 0.62; p = 0.021). By histomorphometry, bone turnover was high in 50%, low in 21% and normal in 29%, while 36% showed abnormal patterns of mineralization. Significant positive associations were observed between osteoblast surface, osteoclast surface, mineralization surface and bone turnover markers. Deterioration of cortical -microarchitecture despite predominantly normal trabecular parameters reinforces the importance of comprehensive cortical evaluation in patients with CKD. © 2018 S. Karger AG, Basel.

  15. Seckel's syndrome and malformations of cortical development: report of three new cases and review of the literature.

    PubMed

    Capovilla, G; Lorenzetti, M E; Montagnini, A; Borgatti, R; Piccinelli, P; Giordano, L; Accorsi, P; Caudana, R

    2001-05-01

    Seckel's syndrome is a rare form of primordial dwarfism, characterized by peculiar facial appearance. In the past, this condition was overdiagnosed, and most attention was given to the facial and skeletal features to define more precise diagnostic criteria. The presence of mental retardation and neurologic signs is one of the peculiar features of this syndrome, but only recently were rare cases of malformation of cortical development described, as documented by magnetic resonance imaging (MRI). Here, we present three new cases of Seckel's syndrome showing different malformations of cortical development (one gyral hypoplasia, one macrogyria and partial corpus callosum agenesis, and one bilateral opercular macrogyria). We hypothesize that the different types of clinical expression of our patients could be explained by different malformation of cortical development types. We think that MRI studies could be performed in malformative syndromes because of the possible correlations between type and extent of the lesion and the clinical picture of any individual case.

  16. Cortical influences drive amyotrophic lateral sclerosis.

    PubMed

    Eisen, Andrew; Braak, Heiko; Del Tredici, Kelly; Lemon, Roger; Ludolph, Albert C; Kiernan, Matthew C

    2017-11-01

    The early motor manifestations of sporadic amyotrophic lateral sclerosis (ALS), while rarely documented, reflect failure of adaptive complex motor skills. The development of these skills correlates with progressive evolution of a direct corticomotoneuronal system that is unique to primates and markedly enhanced in humans. The failure of this system in ALS may translate into the split hand presentation, gait disturbance, split leg syndrome and bulbar symptomatology related to vocalisation and breathing, and possibly diffuse fasciculation, characteristic of ALS. Clinical neurophysiology of the brain employing transcranial magnetic stimulation has convincingly demonstrated a presymptomatic reduction or absence of short interval intracortical inhibition, accompanied by increased intracortical facilitation, indicating cortical hyperexcitability. The hallmark of the TDP-43 pathological signature of sporadic ALS is restricted to cortical areas as well as to subcortical nuclei that are under the direct control of corticofugal projections. This provides anatomical support that the origins of the TDP-43 pathology reside in the cerebral cortex itself, secondarily in corticofugal fibres and the subcortical targets with which they make monosynaptic connections. The latter feature explains the multisystem degeneration that characterises ALS. Consideration of ALS as a primary neurodegenerative disorder of the human brain may incorporate concepts of prion-like spread at synaptic terminals of corticofugal axons. Further, such a concept could explain the recognised widespread imaging abnormalities of the ALS neocortex and the accepted relationship between ALS and frontotemporal dementia. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Progressive posterior cortical dysfunction

    PubMed Central

    Porto, Fábio Henrique de Gobbi; Machado, Gislaine Cristina Lopes; Morillo, Lilian Schafirovits; Brucki, Sonia Maria Dozzi

    2010-01-01

    Progressive posterior cortical dysfunction (PPCD) is an insidious syndrome characterized by prominent disorders of higher visual processing. It affects both dorsal (occipito-parietal) and ventral (occipito-temporal) pathways, disturbing visuospatial processing and visual recognition, respectively. We report a case of a 67-year-old woman presenting with progressive impairment of visual functions. Neurologic examination showed agraphia, alexia, hemispatial neglect (left side visual extinction), complete Balint’s syndrome and visual agnosia. Magnetic resonance imaging showed circumscribed atrophy involving the bilateral parieto-occipital regions, slightly more predominant to the right. Our aim was to describe a case of this syndrome, to present a video showing the main abnormalities, and to discuss this unusual presentation of dementia. We believe this article can contribute by improving the recognition of PPCD. PMID:29213665

  18. Muscle volume is related to trabecular and cortical bone architecture in typically developing children

    PubMed Central

    Bajaj, Deepti; Allerton, Brianne M.; Kirby, Joshua T.; Miller, Freeman; Rowe, David A.; Pohlig, Ryan T.; Modlesky, Christopher M.

    2016-01-01

    Introduction Muscle is strongly related to cortical bone architecture in children; however, the relationship between muscle volume and trabecular bone architecture is poorly studied. The aim of this study was to determine if muscle volume is related to trabecular bone architecture in children and if the relationship is different than the relationship between muscle volume and cortical bone architecture. Materials and methods Forty typically developing children (20 boys and 20 girls; 6 to 12 y) were included in the study. Measures of trabecular bone architecture [apparent trabecular bone volume to total volume (appBV/TV), trabecular number (appTb.N), trabecular thickness (appTb.Th), and trabecular separation (appTb.Sp)] in the distal femur, cortical bone architecture [(cortical volume, medullary volume, total volume, polar moment of inertia (J) and section modulus (Z)] in the midfemur, muscle volume in the midthigh and femur length were assessed using magnetic resonance imaging. Total and moderate-to-vigorous physical activity were assessed using an accelerometer-based activity monitor worn around the waist for four days. Calcium intake was assessed using diet records. Relationships among the measures were tested using multiple linear regression analysis. Results Muscle volume was moderately-to-strongly related to measures of trabecular bone architecture [appBV/TV (r = 0.81, appTb.N (r = 0.53), appTb.Th (r = 0.67), appTb.Sp (r = −0.71; all p < 0.001] but more strongly related to measures of cortical bone architecture [cortical volume (r = 0.96), total volume (r = 0.94), Z (r = 0.94) and J (r = 0.92; all p < 0.001)]. Similar relationships were observed between femur length and measures of trabecular (p < 0.01) and cortical (p < 0.001) bone architecture. Sex, physical activity and calcium intake were not related to any measure of bone architecture (p > 0.05). Because muscle volume and femur length were strongly related (r = 0.91, p < 0.001), muscle volume was scaled

  19. Cortical Lesions as Determinants of White Matter Lesion Formation and Cognitive Abnormalities in MS

    DTIC Science & Technology

    2015-05-01

    documented a characteristic “ halo ” around larger MS lesions that seems specific to MS. We are currently collecting and analyzing data from our... halos may serve as novel new imaging biomarkers for the disease. We have explored automated cortical lesion detection. We have begun preparation for...diameter) demonstrate a low signal “ halo ” around a high signal “interior” (see figure). This finding has been previously noted on scans obtained using 7T

  20. An in silico agent-based model demonstrates Reelin function in directing lamination of neurons during cortical development.

    PubMed

    Caffrey, James R; Hughes, Barry D; Britto, Joanne M; Landman, Kerry A

    2014-01-01

    The characteristic six-layered appearance of the neocortex arises from the correct positioning of pyramidal neurons during development and alterations in this process can cause intellectual disabilities and developmental delay. Malformations in cortical development arise when neurons either fail to migrate properly from the germinal zones or fail to cease migration in the correct laminar position within the cortical plate. The Reelin signalling pathway is vital for correct neuronal positioning as loss of Reelin leads to a partially inverted cortex. The precise biological function of Reelin remains controversial and debate surrounds its role as a chemoattractant or stop signal for migrating neurons. To investigate this further we developed an in silico agent-based model of cortical layer formation. Using this model we tested four biologically plausible hypotheses for neuron motility and four biologically plausible hypotheses for the loss of neuron motility (conversion from migration). A matrix of 16 combinations of motility and conversion rules was applied against the known structure of mouse cortical layers in the wild-type cortex, the Reelin-null mutant, the Dab1-null mutant and a conditional Dab1 mutant. Using this approach, many combinations of motility and conversion mechanisms can be rejected. For example, the model does not support Reelin acting as a repelling or as a stopping signal. In contrast, the study lends very strong support to the notion that the glycoprotein Reelin acts as a chemoattractant for neurons. Furthermore, the most viable proposition for the conversion mechanism is one in which conversion is affected by a motile neuron sensing in the near vicinity neurons that have already converted. Therefore, this model helps elucidate the function of Reelin during neuronal migration and cortical development.

  1. Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons

    PubMed Central

    Young, Allison; Petros, Timothy; Karayannis, Theofanis; McKenzie Chang, Melissa; Lavado, Alfonso; Iwano, Tomohiko; Nakajima, Miho; Taniguchi, Hiroki; Huang, Z. Josh; Heintz, Nathaniel; Oliver, Guillermo; Matsuzaki, Fumio; Machold, Robert P.

    2015-01-01

    Neurogliaform (RELN+) and bipolar (VIP+) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been elucidated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP). Interestingly, Prox1 promotes the maturation of CGE-derived interneuron subtypes through intrinsic differentiation programs that operate in tandem with extrinsically driven neuronal activity-dependent pathways. Thus Prox1 represents the first identified transcription factor specifically required for the embryonic and postnatal acquisition of CGE-derived cortical interneuron properties. SIGNIFICANCE STATEMENT Despite the recognition that 30% of GABAergic cortical interneurons originate from the caudal ganglionic eminence (CGE), to date, a specific transcriptional program that selectively regulates the development of these populations has not yet been identified. Moreover, while CGE-derived interneurons display unique patterns of tangential and radial migration and preferentially populate the superficial layers of the cortex, identification of a molecular program that controls these events is lacking. Here, we demonstrate that the homeodomain transcription factor Prox1 is expressed in postmitotic CGE-derived cortical interneuron precursors and is maintained into adulthood. We found that Prox1 function is differentially required during both embryonic and postnatal stages of development to

  2. Glial activation colocalizes with structural abnormalities in amyotrophic lateral sclerosis

    PubMed Central

    Alshikho, Mohamad J.; Zürcher, Nicole R.; Loggia, Marco L.; Cernasov, Paul; Chonde, Daniel B.; Izquierdo Garcia, David; Yasek, Julia E.; Akeju, Oluwaseun; Catana, Ciprian; Rosen, Bruce R.; Cudkowicz, Merit E.

    2016-01-01

    Objective: In this cross-sectional study, we aimed to evaluate brain structural abnormalities in relation to glial activation in the same cohort of participants. Methods: Ten individuals with amyotrophic lateral sclerosis (ALS) and 10 matched healthy controls underwent brain imaging using integrated MR/PET and the radioligand [11C]-PBR28. Diagnosis history and clinical assessments including Upper Motor Neuron Burden Scale (UMNB) were obtained from patients with ALS. Diffusion tensor imaging (DTI) analyses including tract-based spatial statistics and tractography were applied. DTI metrics including fractional anisotropy (FA) and diffusivities (mean, axial, and radial) were measured in regions of interest. Cortical thickness was assessed using surface-based analysis. The locations of structural changes, measured by DTI and the areas of cortical thinning, were compared to regional glial activation measured by relative [11C]-PBR28 uptake. Results: In this cohort of individuals with ALS, reduced FA and cortical thinning colocalized with regions demonstrating higher radioligand binding. [11C]-PBR28 binding in the left motor cortex was correlated with FA (r = −0.68, p < 0.05) and cortical thickness (r = −0.75, p < 0.05). UMNB was correlated with glial activation (r = +0.75, p < 0.05), FA (r = −0.77, p < 0.05), and cortical thickness (r = −0.75, p < 0.05) in the motor cortex. Conclusions: Increased uptake of the glial marker [11C]-PBR28 colocalizes with changes in FA and cortical thinning. This suggests a link between disease mechanisms (gliosis and inflammation) and structural changes (cortical thinning and white and gray matter changes). In this multimodal neuroimaging work, we provide an in vivo model to investigate the pathogenesis of ALS. PMID:27837005

  3. Toward the development of a cortically based visual neuroprosthesis.

    PubMed

    Normann, Richard A; Greger, Bradley; Greger, Bradley A; House, Paul; Romero, Samuel F; Pelayo, Francisco; Fernandez, Eduardo

    2009-06-01

    Motivated by the success of cochlear implants for deaf patients, we are now facing the goal of creating a visual neuroprosthesis designed to interface with the occipital cortex as a means through which a limited but useful sense of vision could be restored in profoundly blind patients. We review the most important challenges regarding this neuroprosthetic approach and emphasize the need for basic human psychophysical research on the best way of presenting complex stimulating patterns through multiple microelectrodes. Continued research will hopefully lead to the development of and design specifications for the first generation of a cortically based visual prosthesis system.

  4. Neural Progenitor Cells Rptor Ablation Impairs Development but Benefits to Seizure-Induced Behavioral Abnormalities.

    PubMed

    Chen, Ling-Lin; Wu, Mei-Ling; Zhu, Feng; Kai, Jie-Jing; Dong, Jing-Yin; Wu, Xi-Mei; Zeng, Ling-Hui

    2016-12-01

    Previous study suggests that mTOR signaling pathway may play an important role in epileptogenesis. The present work was designed to explore the contribution of raptor protein to the development of epilepsy and comorbidities. Mice with conditional knockout of raptor protein were generated by cross-bred Rptor flox/flox mice with nestin-CRE mice. The expression of raptor protein was analyzed by Western blotting in brain tissue samples. Neuronal death and mossy fiber sprouting were detected by FJB staining and Timm staining, respectively. Spontaneous seizures were recorded by EEG-video system. Morris water maze, open field test, and excitability test were used to study the behaviors of Rptor CKO mice. As the consequence of deleting Rptor, downstream proteins of raptor in mTORC1 signaling were partly blocked. Rptor CKO mice exhibited decrease in body and brain weight under 7 weeks old and accordingly, cortical layer thickness. After kainic acid (KA)-induced status epilepticus, overactivation of mTORC1 signaling was markedly reversed in Rptor CKO mice. Although low frequency of spontaneous seizure and seldom neuronal cell death were observed in both Rptor CKO and control littermates, KA seizure-induced mossy fiber spouting were attenuated in Rptor CKO mice. Additionally, cognitive-deficit and anxiety-like behavior after KA-induced seizures were partly reversed in Rptor CKO mice. Loss of the Rptor gene in mice neural progenitor cells affects normal development in young age and may contribute to alleviate KA seizure-induced behavioral abnormalities, suggesting that raptor protein plays an important role in seizure comorbidities. © 2016 John Wiley & Sons Ltd.

  5. Grey matter volume and thickness abnormalities in young people with a history of childhood abuse.

    PubMed

    Lim, L; Hart, H; Mehta, M; Worker, A; Simmons, A; Mirza, K; Rubia, K

    2018-04-01

    Childhood abuse is associated with abnormalities in brain structure and function. Few studies have investigated abuse-related brain abnormalities in medication-naïve, drug-free youth that also controlled for psychiatric comorbidities by inclusion of a psychiatric control group, which is crucial to disentangle the effects of abuse from those associated with the psychiatric conditions. Cortical volume (CV), cortical thickness (CT) and surface area (SA) were measured in 22 age- and gender-matched medication-naïve youth (aged 13-20) exposed to childhood abuse, 19 psychiatric controls matched for psychiatric diagnoses and 27 healthy controls. Both region-of-interest (ROI) and whole-brain analyses were conducted. For the ROI analysis, the childhood abuse group compared with healthy controls only, had significantly reduced CV in bilateral cerebellum and reduced CT in left insula and right lateral orbitofrontal cortex (OFC). At the whole-brain level, relative to healthy controls, the childhood abuse group showed significantly reduced CV in left lingual, pericalcarine, precuneus and superior parietal gyri, and reduced CT in left pre-/postcentral and paracentral regions, which furthermore correlated with greater abuse severity. They also had increased CV in left inferior and middle temporal gyri relative to healthy controls. Abnormalities in the precuneus, temporal and precentral regions were abuse-specific relative to psychiatric controls, albeit at a more lenient level. Groups did not differ in SA. Childhood abuse is associated with widespread structural abnormalities in OFC-insular, cerebellar, occipital, parietal and temporal regions, which likely underlie the abnormal affective, motivational and cognitive functions typically observed in this population.

  6. Abnormal resting-state cortical coupling in chronic tinnitus

    PubMed Central

    Schlee, Winfried; Hartmann, Thomas; Langguth, Berthold; Weisz, Nathan

    2009-01-01

    Background Subjective tinnitus is characterized by an auditory phantom perception in the absence of any physical sound source. Consequently, in a quiet environment, tinnitus patients differ from control participants because they constantly perceive a sound whereas controls do not. We hypothesized that this difference is expressed by differential activation of distributed cortical networks. Results The analysis was based on a sample of 41 participants: 21 patients with chronic tinnitus and 20 healthy control participants. To investigate the architecture of these networks, we used phase locking analysis in the 1–90 Hz frequency range of a minute of resting-state MEG recording. We found: 1) For tinnitus patients: A significant decrease of inter-areal coupling in the alpha (9–12 Hz) band and an increase of inter-areal coupling in the 48–54 Hz gamma frequency range relative to the control group. 2) For both groups: an inverse relationship (r = -.71) of the alpha and gamma network coupling. 3) A discrimination of 83% between the patient and the control group based on the alpha and gamma networks. 4) An effect of manifestation on the distribution of the gamma network: In patients with a tinnitus history of less than 4 years, the left temporal cortex was predominant in the gamma network whereas in patients with tinnitus duration of more than 4 years, the gamma network was more widely distributed including more frontal and parietal regions. Conclusion In the here presented data set we found strong support for an alteration of long-range coupling in tinnitus. Long-range coupling in the alpha frequency band was decreased for tinnitus patients while long-range gamma coupling was increased. These changes discriminate well between tinnitus and control participants. We propose a tinnitus model that integrates this finding in the current knowledge about tinnitus. Furthermore we discuss the impact of this finding to tinnitus therapies using Transcranial Magnetic Stimulation

  7. T wave abnormalities, high body mass index, current smoking and high lipoprotein (a) levels predict the development of major abnormal Q/QS patterns 20 years later. A population-based study

    PubMed Central

    Moller, Christina Strom; Byberg, Liisa; Sundstrom, Johan; Lind, Lars

    2006-01-01

    Background Most studies on risk factors for development of coronary heart disease (CHD) have been based on the clinical outcome of CHD. Our aim was to identify factors that could predict the development of ECG markers of CHD, such as abnormal Q/QS patterns, ST segment depression and T wave abnormalities, in 70-year-old men, irrespective of clinical outcome. Methods Predictors for development of different ECG abnormalities were identified in a population-based study using stepwise logistic regression. Anthropometrical and metabolic factors, ECG abnormalities and vital signs from a health survey of men at age 50 were related to ECG abnormalities identified in the same cohort 20 years later. Results At the age of 70, 9% had developed a major abnormal Q/QS pattern, but 63% of these subjects had not been previously hospitalized due to MI, while 57% with symptomatic MI between age 50 and 70 had no major Q/QS pattern at age 70. T wave abnormalities (Odds ratio 3.11, 95% CI 1.18–8.17), high lipoprotein (a) levels, high body mass index (BMI) and smoking were identified as significant independent predictors for the development of abnormal major Q/QS patterns. T wave abnormalities and high fasting glucose levels were significant independent predictors for the development of ST segment depression without abnormal Q/QS pattern. Conclusion T wave abnormalities on resting ECG should be given special attention and correlated with clinical information. Risk factors for major Q/QS patterns need not be the same as traditional risk factors for clinically recognized CHD. High lipoprotein (a) levels may be a stronger risk factor for silent myocardial infarction (MI) compared to clinically recognized MI. PMID:16519804

  8. Convergence of Cortical, Thalamocortical, and Callosal Pathways during Human Fetal Development Revealed by Diffusion MRI Tractography.

    PubMed

    Wang, Rongpin; Wilkinson, Molly; Kane, Tara; Takahashi, Emi

    2017-01-01

    There has been evidence that during brain development, emerging thalamocortical (TC) and corticothalamic (CT) pathways converge in some brain regions and follow each other's trajectories to their final destinations. Corpus callosal (CC) pathways also emerge at a similar developmental stage, and are known to converge with TC pathways in specific cortical regions in mature brains. Given the functional relationships between TC and CC pathways, anatomical convergence of the two pathways are likely important for their functional integration. However, it is unknown (1) where TC and CT subcortically converge in the human brain, and (2) where TC and CC converge in the cortex of the human brain, due to the limitations of non-invasive methods. The goals of this study were to describe the spatio-temporal relationships in the development of the TC/CT and CC pathways in the human brain, using high-angular resolution diffusion MR imaging (HARDI) tractography. Emerging cortical, TC and CC pathways were identified in postmortem fetal brains ranging from 17 gestational weeks (GW) to 30 GW, as well as in vivo 34-40 GW newborns. Some pathways from the thalami were found to be converged with pathways from the cerebral cortex as early as 17 GW. Such convergence was observed mainly in anterior and middle regions of the brain until 21 GW. At 22 GW and onwards, posterior pathways from the thalami also converged with cortical pathways. Many CC pathways reached the full length up to the cortical surface as early as 17 GW, while pathways linked to thalami (not only TC axons but also including pathways linked to thalamic neuronal migration) reached the cortical surface at and after 20 GW. These results suggest that CC pathways developed earlier than the TC pathways. The two pathways were widespread at early stages, but by 40 GW they condensed and formed groups of pathways that projected to specific regions of the cortex and overlapped in some brain regions. These results suggest that HARDI

  9. Convergence of Cortical, Thalamocortical, and Callosal Pathways during Human Fetal Development Revealed by Diffusion MRI Tractography

    PubMed Central

    Wang, Rongpin; Wilkinson, Molly; Kane, Tara; Takahashi, Emi

    2017-01-01

    There has been evidence that during brain development, emerging thalamocortical (TC) and corticothalamic (CT) pathways converge in some brain regions and follow each other's trajectories to their final destinations. Corpus callosal (CC) pathways also emerge at a similar developmental stage, and are known to converge with TC pathways in specific cortical regions in mature brains. Given the functional relationships between TC and CC pathways, anatomical convergence of the two pathways are likely important for their functional integration. However, it is unknown (1) where TC and CT subcortically converge in the human brain, and (2) where TC and CC converge in the cortex of the human brain, due to the limitations of non-invasive methods. The goals of this study were to describe the spatio-temporal relationships in the development of the TC/CT and CC pathways in the human brain, using high-angular resolution diffusion MR imaging (HARDI) tractography. Emerging cortical, TC and CC pathways were identified in postmortem fetal brains ranging from 17 gestational weeks (GW) to 30 GW, as well as in vivo 34–40 GW newborns. Some pathways from the thalami were found to be converged with pathways from the cerebral cortex as early as 17 GW. Such convergence was observed mainly in anterior and middle regions of the brain until 21 GW. At 22 GW and onwards, posterior pathways from the thalami also converged with cortical pathways. Many CC pathways reached the full length up to the cortical surface as early as 17 GW, while pathways linked to thalami (not only TC axons but also including pathways linked to thalamic neuronal migration) reached the cortical surface at and after 20 GW. These results suggest that CC pathways developed earlier than the TC pathways. The two pathways were widespread at early stages, but by 40 GW they condensed and formed groups of pathways that projected to specific regions of the cortex and overlapped in some brain regions. These results suggest that HARDI

  10. The continuum of spreading depolarizations in acute cortical lesion development: Examining Leão’s legacy

    PubMed Central

    Shuttleworth, C William; Kirov, Sergei A; Ayata, Cenk; Hinzman, Jason M; Foreman, Brandon; Andrew, R David; Boutelle, Martyn G; Brennan, KC; Carlson, Andrew P; Dahlem, Markus A; Drenckhahn, Christoph; Dohmen, Christian; Fabricius, Martin; Farkas, Eszter; Feuerstein, Delphine; Graf, Rudolf; Helbok, Raimund; Lauritzen, Martin; Major, Sebastian; Oliveira-Ferreira, Ana I; Richter, Frank; Rosenthal, Eric S; Sakowitz, Oliver W; Sánchez-Porras, Renán; Santos, Edgar; Schöll, Michael; Strong, Anthony J; Urbach, Anja; Westover, M Brandon; Winkler, Maren KL; Witte, Otto W; Woitzik, Johannes; Dreier, Jens P

    2016-01-01

    A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leão’s historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum of spreading mass depolarizations, a concept that is central to understanding their pathologic effects. Within minutes of acute severe ischemia, the onset of persistent depolarization triggers the breakdown of ion homeostasis and development of cytotoxic edema. These persistent changes are diagnosed as diffusion restriction in magnetic resonance imaging and define the ischemic core. In delayed lesion growth, transient spreading depolarizations arise spontaneously in the ischemic penumbra and induce further persistent depolarization and excitotoxic damage, progressively expanding the ischemic core. The causal role of these waves in lesion development has been proven by real-time monitoring of electrophysiology, blood flow, and cytotoxic edema. The spreading depolarization continuum further applies to other models of acute cortical lesions, suggesting that it is a universal principle of cortical lesion development. These pathophysiologic concepts establish a working hypothesis for translation to human disease, where complex patterns of depolarizations are observed in acute brain injury and appear to mediate and signal ongoing secondary damage. PMID:27328690

  11. Prenatal Ontogeny as a Susceptibility Period for Cortical GABA Neuron Disturbances in Schizophrenia

    PubMed Central

    Volk, David W.; Lewis, David A.

    2013-01-01

    Cognitive deficits in schizophrenia have been linked to disturbances in GABA neurons in the prefrontal cortex. Furthermore, cognitive deficits in schizophrenia appear well before the onset of psychosis and have been reported to be present during early childhood and even during the first year of life. Taken together, these data raise the following question: Does the disease process that produces abnormalities in prefrontal GABA neurons in schizophrenia begin prenatally and disrupt the ontogeny of cortical GABA neurons? Here, we address this question through a consideration of evidence that genetic and/or environmental insults that occur during gestation initiate a pathogenetic process that alters cortical GABA neuron ontogeny and produces the pattern of GABA neuron abnormalities, and consequently cognitive difficulties, seen in schizophrenia. First, we review available evidence from postmortem human brain tissue studies characterizing alterations in certain subpopulations of prefrontal GABA neuron that provide clues to a prenatal origin in schizophrenia. Second, we review recent discoveries of transcription factors, cytokine receptors, and other developmental regulators that govern the birth, migration, specification, maturation, and survival of different subpopulations of prefrontal GABA neurons. Third, we discuss recent studies demonstrating altered expression of these ontogenetic factors in the prefrontal cortex in schizophrenia. Fourth, we discuss the potential role of disturbances in the maternal-fetal environment such as maternal immune activation in the development of GABA neuron dysfunction. Finally, we propose critical questions that need to be answered in future research to further investigate the role of altered GABA neuron ontogeny in the pathogenesis of schizophrenia. PMID:23769891

  12. Cognitive Plasticity and Cortical Modules

    PubMed Central

    Mercado, Eduardo

    2009-01-01

    Some organisms learn to calculate, accumulate knowledge, and communicate in ways that others do not. What factors determine which intellectual abilities a particular species or individual can easily acquire? I propose that cognitive-skill learning capacity reflects (a) the availability of specialized cortical circuits, (b) the flexibility with which cortical activity is coordinated, and (c) the customizability of cortical networks. This framework can potentially account for differences in learning capacity across species, individuals, and developmental stages. Understanding the mechanisms that constrain cognitive plasticity is fundamental to developing new technologies and educational practices that maximize intellectual advancements. PMID:19750239

  13. Cognitive Plasticity and Cortical Modules.

    PubMed

    Mercado, Eduardo

    2009-06-01

    Some organisms learn to calculate, accumulate knowledge, and communicate in ways that others do not. What factors determine which intellectual abilities a particular species or individual can easily acquire? I propose that cognitive-skill learning capacity reflects (a) the availability of specialized cortical circuits, (b) the flexibility with which cortical activity is coordinated, and (c) the customizability of cortical networks. This framework can potentially account for differences in learning capacity across species, individuals, and developmental stages. Understanding the mechanisms that constrain cognitive plasticity is fundamental to developing new technologies and educational practices that maximize intellectual advancements.

  14. Focal cortical dysplasias: surgical outcome in 67 patients in relation to histological subtypes and dual pathology.

    PubMed

    Fauser, Susanne; Schulze-Bonhage, Andreas; Honegger, Juergen; Carmona, Hans; Huppertz, Hans-Juergen; Pantazis, Georgios; Rona, Sabine; Bast, Thomas; Strobl, Karl; Steinhoff, Bernhard J; Korinthenberg, Rudolf; Rating, Dietz; Volk, Benedikt; Zentner, Josef

    2004-11-01

    The purpose of this study was to assess whether the histological subtype of focal cortical dysplasia and dual pathology affect surgical outcome in patients with medically intractable epilepsy due to focal cortical dysplasia (FCD). We retrospectively analysed the outcome of 67 patients from 2 to 66 years of age at follow-up periods of 6 to 48 months after epilepsy surgery. Histological subtypes were classified according to Palmini and included a few cases with mild histological abnormalities corresponding to the definition of mild malformations of cortical development. The seizure outcome was classified according to Engel and evaluated at the last follow-up visit as well as at follow-up periods of 12 and 24 months after surgery. The outcome in patients with FCD and additional hippocampal pathology (dual pathology) was analysed separately. Distribution of histological subtypes differed in temporal and extratemporal localization, with a significantly higher extratemporal prevalence of FCD type 2. There was a tendency towards better postsurgical outcome related to the last follow-up visit in patients with more subtle abnormalities classified as mild malformations of cortical development (mMCD) (63% Engel Ia), FCD type 1a (67% Engel Ia) and FCD type 1b (55% Engel Ia) compared with patients with FCD type 2a (43% Engel Ia) and FCD type 2b (Taylor type) (50% Engel Ia). Considering the outcome at follow-up periods over 12 and 24 months, complete seizure-freedom was achieved significantly more often in patients with FCD type 1 and mMCD than with FCD type 2, and seizure reduction by less than 75% (Engel IV) occurred in more patients with FCD type 2a compared with the other subgroups. This tendency was seen in the whole patient group and in the extratemporal subgroup. Patients with dual pathology almost always had temporal lobe epilepsy; the outcome in this patient group was generally favourable (66% complete seizure-freedom at the last follow-up visit). The outcome remained

  15. Trade-off of cerebello-cortical and cortico-cortical functional networks for planning in 6-year-old children.

    PubMed

    Kipping, Judy A; Margulies, Daniel S; Eickhoff, Simon B; Lee, Annie; Qiu, Anqi

    2018-08-01

    Childhood is a critical period for the development of cognitive planning. There is a lack of knowledge on its neural mechanisms in children. This study aimed to examine cerebello-cortical and cortico-cortical functional connectivity in association with planning skills in 6-year-olds (n = 76). We identified the cerebello-cortical and cortico-cortical functional networks related to cognitive planning using activation likelihood estimation (ALE) meta-analysis on existing functional imaging studies on spatial planning, and data-driven independent component analysis (ICA) of children's resting-state functional MRI (rs-fMRI). We investigated associations of cerebello-cortical and cortico-cortical functional connectivity with planning ability in 6-year-olds, as assessed using the Stockings of Cambridge task. Long-range functional connectivity of two cerebellar networks (lobules VI and lateral VIIa) with the prefrontal and premotor cortex were greater in children with poorer planning ability. In contrast, cortico-cortical association networks were not associated with the performance of planning in children. These results highlighted the key contribution of the lateral cerebello-frontal functional connectivity, but not cortico-cortical association functional connectivity, for planning ability in 6-year-olds. Our results suggested that brain adaptation to the acquisition of planning ability during childhood is partially achieved through the engagement of the cerebello-cortical functional connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. [Schizophrenia and cortical GABA neurotransmission].

    PubMed

    Hashimoto, Takanori; Matsubara, Takuro; Lewis, David A

    2010-01-01

    Individuals with schizophrenia show disturbances in a number of brain functions that regulate cognitive, affective, motor, and sensory processing. The cognitive deficits associated with dysfunction of the dorsolateral prefrontal cortex result, at least in part, from abnormalities in GABA neurotransmission, as reflected in a specific pattern of altered expression of GABA-related molecules. First, mRNA levels for the 67-kilodalton isoform of glutamic acid decarboxylase (GAD67), an enzyme principally responsible for GABA synthesis, and the GABA membrane transporter GAT1, which regulates the reuptake of synaptically released GABA, are decreased in a subset of GABA neurons. Second, affected GABA neurons include those that express the calcium-binding protein parvalbumin (PV), because PV mRNA levels are decreased in the prefrontal cortex of subjects with schizophrenia and GAD67 mRNA is undetectable in almost half of PV-containing neurons. These changes are accompanied by decreased GAT1 expression in the presynaptic terminals of PV-containing neurons and by increased postsynaptic GABA-A receptor alpha2 subunit expression at the axon initial segments of pyramidal neurons. These findings indicate decreased GABA synthesis/release by PV-containing GABA neurons and compensatory changes at synapses formed by these neurons. Third, another subset of GABA neurons that express the neuropeptide somatostatin (SST) also appear to be affected because their specific markers, SST and neuropeptide Y mRNAs, are decreased in a manner highly correlated with the decreases in GAD67 mRNA. Finally, mRNA levels for GABA-A receptor subunits for synaptic (alpha1 and gamma2) and extra-synaptic (delta) receptors are decreased, indicating alterations in both synaptic and extra-synaptic GABA neurotransmission. Together, this pattern of changes indicates that the altered GABA neurotransmission is specific to PV-containing and SST-containing GABA neuron subsets and involves both synaptic and extra

  17. Antiepileptic drugs and brain maturation: fetal exposure to lamotrigine generates cortical malformations in rats.

    PubMed

    Manent, Jean-Bernard; Jorquera, Isabel; Franco, Valentina; Ben-Ari, Yehezkel; Perucca, Emilio; Represa, Alfonso

    2008-02-01

    Intake of antiepileptic drugs (AEDs) during pregnancy can provoke severe and subtle fetal malformations associated with deleterious sequelae, reflecting the need for experimental investigations on the comparative teratogenic potential of these agents. We recently reported that prenatal exposure to vigabatrin and valproate, two AEDs which act through GABAergic mechanisms, induces hippocampal and cortical dysplasias in rodents. We have now investigated the effects of phenobarbital (PB, 30 mg/kg day) i.p.), a drug also endowed with GABAergic effects, and the new generation AEDs lamotrigine (LTG, 5-20mg/kg/day i.p.), topiramate (TPM, 10mg/kg/day i.p.), and levetiracetam (LEV, 50mg/kg/day i.p.) on brain development. Prenatal exposure to LTG induced hippocampal and cortical malformations in a dose-dependent manner, at maternal plasma concentrations within the clinically occurring range. These abnormalities were not observed after exposure to PB, TP and LEV. These observations raise concerns about potential clinical correlates and call for detailed comparative investigations on the consequences of AED use during pregnancy.

  18. Pitch-Responsive Cortical Regions in Congenital Amusia.

    PubMed

    Norman-Haignere, Sam V; Albouy, Philippe; Caclin, Anne; McDermott, Josh H; Kanwisher, Nancy G; Tillmann, Barbara

    2016-03-09

    Congenital amusia is a lifelong deficit in music perception thought to reflect an underlying impairment in the perception and memory of pitch. The neural basis of amusic impairments is actively debated. Some prior studies have suggested that amusia stems from impaired connectivity between auditory and frontal cortex. However, it remains possible that impairments in pitch coding within auditory cortex also contribute to the disorder, in part because prior studies have not measured responses from the cortical regions most implicated in pitch perception in normal individuals. We addressed this question by measuring fMRI responses in 11 subjects with amusia and 11 age- and education-matched controls to a stimulus contrast that reliably identifies pitch-responsive regions in normal individuals: harmonic tones versus frequency-matched noise. Our findings demonstrate that amusic individuals with a substantial pitch perception deficit exhibit clusters of pitch-responsive voxels that are comparable in extent, selectivity, and anatomical location to those of control participants. We discuss possible explanations for why amusics might be impaired at perceiving pitch relations despite exhibiting normal fMRI responses to pitch in their auditory cortex: (1) individual neurons within the pitch-responsive region might exhibit abnormal tuning or temporal coding not detectable with fMRI, (2) anatomical tracts that link pitch-responsive regions to other brain areas (e.g., frontal cortex) might be altered, and (3) cortical regions outside of pitch-responsive cortex might be abnormal. The ability to identify pitch-responsive regions in individual amusic subjects will make it possible to ask more precise questions about their role in amusia in future work. Copyright © 2016 the authors 0270-6474/16/362986-09$15.00/0.

  19. A Sharp Cadherin-6 Gene Expression Boundary in the Developing Mouse Cortical Plate Demarcates the Future Functional Areal Border

    PubMed Central

    Terakawa, Youhei W.; Inoue, Yukiko U.; Asami, Junko; Hoshino, Mikio; Inoue, Takayoshi

    2013-01-01

    The mammalian cerebral cortex can be tangentially subdivided into tens of functional areas with distinct cyto-architectures and neural circuitries; however, it remains elusive how these areal borders are genetically elaborated during development. Here we establish original bacterial artificial chromosome transgenic mouse lines that specifically recapitulate cadherin-6 (Cdh6) mRNA expression profiles in the layer IV of the somatosensory cortex and by detailing their cortical development, we show that a sharp Cdh6 gene expression boundary is formed at a mediolateral coordinate along the cortical layer IV as early as the postnatal day 5 (P5). By further applying mouse genetics that allows rigid cell fate tracing with CreERT2 expression, it is demonstrated that the Cdh6 gene expression boundary set at around P4 eventually demarcates the areal border between the somatosensory barrel and limb field at P20. In the P6 cortical cell pellet culture system, neurons with Cdh6 expression preferentially form aggregates in a manner dependent on Ca2+ and electroporation-based Cdh6 overexpression limited to the postnatal stages perturbs area-specific cell organization in the barrel field. These results suggest that Cdh6 expression in the nascent cortical plate may serve solidification of the protomap for cortical functional areas. PMID:22875867

  20. M30. Cortical Thickness Patterns of Cognitive Impairment in Schizophrenia

    PubMed Central

    Pinnock, Farena; Hanford, Lindsay; Heinrichs, R. Walter

    2017-01-01

    , there were several regions of reduced cortical thickness among patients with no corresponding relationship to cognitive performance. Conclusion: These findings suggest that despite their high rates of co-occurrence, cognitive impairment and psychosis may be partially independent pathologies of the schizophrenia disease process. Cortical thickness varies with cognition in both schizophrenia patients and healthy controls, but remains significantly reduced in patients. This occurs even when cognitive performance is largely equalized between patients and controls. These findings are consistent with recent neurogenetic research linking liability to schizophrenia with cortical abnormalities including thinning, reduced synaptic structure and excessive pruning. The results point to the importance of studying cognition and psychotic symptoms as potentially separable processes that may also represent independent treatment targets.

  1. Abnormal Neural Progenitor Cells Differentiated from Induced Pluripotent Stem Cells Partially Mimicked Development of TSC2 Neurological Abnormalities.

    PubMed

    Li, Yaqin; Cao, Jiqing; Chen, Menglong; Li, Jing; Sun, Yiming; Zhang, Yu; Zhu, Yuling; Wang, Liang; Zhang, Cheng

    2017-04-11

    Tuberous sclerosis complex (TSC) is a disease featuring devastating and therapeutically challenging neurological abnormalities. However, there is a lack of specific neural progenitor cell models for TSC. Here, the pathology of TSC was studied using primitive neural stem cells (pNSCs) from a patient presenting a c.1444-2A>C mutation in TSC2. We found that TSC2 pNSCs had higher proliferative activity and increased PAX6 expression compared with those of control pNSCs. Neurons differentiated from TSC2 pNSCs showed enlargement of the soma, perturbed neurite outgrowth, and abnormal connections among cells. TSC2 astrocytes had increased saturation density and higher proliferative activity. Moreover, the activity of the mTOR pathway was enhanced in pNSCs and induced in neurons and astrocytes. Thus, our results suggested that TSC2 heterozygosity caused neurological malformations in pNSCs, indicating that its heterozygosity might be sufficient for the development of neurological abnormalities in patients. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Altered Cortical Activation in Adolescents With Acute Migraine: A Magnetoencephalography Study

    PubMed Central

    Xiang, Jing; deGrauw, Xinyao; Korostenskaja, Milena; Korman, Abraham M.; O’Brien, Hope L.; Kabbouche, Marielle A.; Powers, Scott W.; Hershey, Andrew D.

    2013-01-01

    To quantitatively assess cortical dysfunction in pediatric migraine, 31 adolescents with acute migraine and age- and gender-matched controls were studied using a magnetoencephalography (MEG) system at a sampling rate of 6,000 Hz. Neuromagnetic brain activation was elicited by a finger-tapping task. The spectral and spatial signatures of magnetoencephalography data in 5 to 2,884 Hz were analyzed using Morlet wavelet and beamformers. Compared with controls, 31 migraine subjects during their headache attack phases (ictal) showed significantly prolonged latencies of neuromagnetic activation in 5 to 30 Hz, increased spectral power in 100 to 200 Hz, and a higher likelihood of neuromagnetic activation in the supplementary motor area, the occipital and ipsilateral sensorimotor cortices, in 2,200 to 2,800 Hz. Of the 31 migraine subjects, 16 migraine subjects during their headache-free phases (interictal) showed that there were no significant differences between interictal and control MEG data except that interictal spectral power in 100 to 200 Hz was significantly decreased. The results demonstrated that migraine subjects had significantly aberrant ictal brain activation, which can normalize interictally. The spread of abnormal ictal brain activation in both low- and high-frequency ranges triggered by movements may play a key role in the cascade of migraine attacks. Perspective This is the first study focusing on the spectral and spatial signatures of cortical dysfunction in adolescents with migraine using MEG signals in a frequency range of 5 to 2,884 Hz. This analyzing aberrant brain activation may be important for developing new therapeutic interventions for migraine in the future. PMID:23792072

  3. Adolescent Development of Cortical and White Matter Structure in the NCANDA Sample: Role of Sex, Ethnicity, Puberty, and Alcohol Drinking.

    PubMed

    Pfefferbaum, Adolf; Rohlfing, Torsten; Pohl, Kilian M; Lane, Barton; Chu, Weiwei; Kwon, Dongjin; Nolan Nichols, B; Brown, Sandra A; Tapert, Susan F; Cummins, Kevin; Thompson, Wesley K; Brumback, Ty; Meloy, M J; Jernigan, Terry L; Dale, Anders; Colrain, Ian M; Baker, Fiona C; Prouty, Devin; De Bellis, Michael D; Voyvodic, James T; Clark, Duncan B; Luna, Beatriz; Chung, Tammy; Nagel, Bonnie J; Sullivan, Edith V

    2016-10-01

    Brain structural development continues throughout adolescence, when experimentation with alcohol is often initiated. To parse contributions from biological and environmental factors on neurodevelopment, this study used baseline National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA) magnetic resonance imaging (MRI) data, acquired in 674 adolescents meeting no/low alcohol or drug use criteria and 134 adolescents exceeding criteria. Spatial integrity of images across the 5 recruitment sites was assured by morphological scaling using Alzheimer's disease neuroimaging initiative phantom-derived volume scalar metrics. Clinical MRI readings identified structural anomalies in 11.4%. Cortical volume and thickness were smaller and white matter volumes were larger in older than in younger adolescents. Effects of sex (male > female) and ethnicity (majority > minority) were significant for volume and surface but minimal for cortical thickness. Adjusting volume and area for supratentorial volume attenuated or removed sex and ethnicity effects. That cortical thickness showed age-related decline and was unrelated to supratentorial volume is consistent with the radial unit hypothesis, suggesting a universal neural development characteristic robust to sex and ethnicity. Comparison of NCANDA with PING data revealed similar but flatter, age-related declines in cortical volumes and thickness. Smaller, thinner frontal, and temporal cortices in the exceeds-criteria than no/low-drinking group suggested untoward effects of excessive alcohol consumption on brain structural development. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Electrical stimulation of the brain and the development of cortical visual prostheses: An historical perspective.

    PubMed

    Lewis, Philip M; Rosenfeld, Jeffrey V

    2016-01-01

    Rapid advances are occurring in neural engineering, bionics and the brain-computer interface. These milestones have been underpinned by staggering advances in micro-electronics, computing, and wireless technology in the last three decades. Several cortically-based visual prosthetic devices are currently being developed, but pioneering advances with early implants were achieved by Brindley followed by Dobelle in the 1960s and 1970s. We have reviewed these discoveries within the historical context of the medical uses of electricity including attempts to cure blindness, the discovery of the visual cortex, and opportunities for cortex stimulation experiments during neurosurgery. Further advances were made possible with improvements in electrode design, greater understanding of cortical electrophysiology and miniaturisation of electronic components. Human trials of a new generation of prototype cortical visual prostheses for the blind are imminent. This article is part of a Special Issue entitled Hold Item. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Cortical Spreading Depression Closes Paravascular Space and Impairs Glymphatic Flow: Implications for Migraine Headache.

    PubMed

    Schain, Aaron J; Melo-Carrillo, Agustin; Strassman, Andrew M; Burstein, Rami

    2017-03-15

    Functioning of the glymphatic system, a network of paravascular tunnels through which cortical interstitial solutes are cleared from the brain, has recently been linked to sleep and traumatic brain injury, both of which can affect the progression of migraine. This led us to investigate the connection between migraine and the glymphatic system. Taking advantage of a novel in vivo method we developed using two-photon microscopy to visualize the paravascular space (PVS) in naive uninjected mice, we show that a single wave of cortical spreading depression (CSD), an animal model of migraine aura, induces a rapid and nearly complete closure of the PVS around surface as well as penetrating cortical arteries and veins lasting several minutes, and gradually recovering over 30 min. A temporal mismatch between the constriction or dilation of the blood vessel lumen and the closure of the PVS suggests that this closure is not likely to result from changes in vessel diameter. We also show that CSD impairs glymphatic flow, as indicated by the reduced rate at which intraparenchymally injected dye was cleared from the cortex to the PVS. This is the first observation of a PVS closure in connection with an abnormal cortical event that underlies a neurological disorder. More specifically, the findings demonstrate a link between the glymphatic system and migraine, and suggest a novel mechanism for regulation of glymphatic flow. SIGNIFICANCE STATEMENT Impairment of brain solute clearance through the recently described glymphatic system has been linked with traumatic brain injury, prolonged wakefulness, and aging. This paper shows that cortical spreading depression, the neural correlate of migraine aura, closes the paravascular space and impairs glymphatic flow. This closure holds the potential to define a novel mechanism for regulation of glymphatic flow. It also implicates the glymphatic system in the altered cortical and endothelial functioning of the migraine brain. Copyright © 2017

  6. Large-scale mapping of cortical alterations in 22q11.2 deletion syndrome: Convergence with idiopathic psychosis and effects of deletion size.

    PubMed

    Sun, Daqiang; Ching, Christopher R K; Lin, Amy; Forsyth, Jennifer K; Kushan, Leila; Vajdi, Ariana; Jalbrzikowski, Maria; Hansen, Laura; Villalon-Reina, Julio E; Qu, Xiaoping; Jonas, Rachel K; van Amelsvoort, Therese; Bakker, Geor; Kates, Wendy R; Antshel, Kevin M; Fremont, Wanda; Campbell, Linda E; McCabe, Kathryn L; Daly, Eileen; Gudbrandsen, Maria; Murphy, Clodagh M; Murphy, Declan; Craig, Michael; Vorstman, Jacob; Fiksinski, Ania; Koops, Sanne; Ruparel, Kosha; Roalf, David R; Gur, Raquel E; Schmitt, J Eric; Simon, Tony J; Goodrich-Hunsaker, Naomi J; Durdle, Courtney A; Bassett, Anne S; Chow, Eva W C; Butcher, Nancy J; Vila-Rodriguez, Fidel; Doherty, Joanne; Cunningham, Adam; van den Bree, Marianne B M; Linden, David E J; Moss, Hayley; Owen, Michael J; Murphy, Kieran C; McDonald-McGinn, Donna M; Emanuel, Beverly; van Erp, Theo G M; Turner, Jessica A; Thompson, Paul M; Bearden, Carrie E

    2018-06-13

    The 22q11.2 deletion (22q11DS) is a common chromosomal microdeletion and a potent risk factor for psychotic illness. Prior studies reported widespread cortical changes in 22q11DS, but were generally underpowered to characterize neuroanatomic abnormalities associated with psychosis in 22q11DS, and/or neuroanatomic effects of variability in deletion size. To address these issues, we developed the ENIGMA (Enhancing Neuro Imaging Genetics Through Meta-Analysis) 22q11.2 Working Group, representing the largest analysis of brain structural alterations in 22q11DS to date. The imaging data were collected from 10 centers worldwide, including 474 subjects with 22q11DS (age = 18.2 ± 8.6; 46.9% female) and 315 typically developing, matched controls (age = 18.0 ± 9.2; 45.9% female). Compared to controls, 22q11DS individuals showed thicker cortical gray matter overall (left/right hemispheres: Cohen's d = 0.61/0.65), but focal thickness reduction in temporal and cingulate cortex. Cortical surface area (SA), however, showed pervasive reductions in 22q11DS (left/right hemispheres: d = -1.01/-1.02). 22q11DS cases vs. controls were classified with 93.8% accuracy based on these neuroanatomic patterns. Comparison of 22q11DS-psychosis to idiopathic schizophrenia (ENIGMA-Schizophrenia Working Group) revealed significant convergence of affected brain regions, particularly in fronto-temporal cortex. Finally, cortical SA was significantly greater in 22q11DS cases with smaller 1.5 Mb deletions, relative to those with typical 3 Mb deletions. We found a robust neuroanatomic signature of 22q11DS, and the first evidence that deletion size impacts brain structure. Psychotic illness in this highly penetrant deletion was associated with similar neuroanatomic abnormalities to idiopathic schizophrenia. These consistent cross-site findings highlight the homogeneity of this single genetic etiology, and support the suitability of 22q11DS as a biological model of

  7. Can zero-hour cortical biopsy predict early graft outcomes after living donor renal transplantation?

    PubMed

    Rathore, Ranjeet Singh; Mehta, Nisarg; Mehta, Sony Bhaskar; Babu, Manas; Bansal, Devesh; Pillai, Biju S; Sam, Mohan P; Krishnamoorthy, Hariharan

    2017-11-01

    The aim of this study was to identify relevance of subclinical pathological findings in the kidneys of living donors and correlate these with early graft renal function. This was a prospective study on 84 living donor kidney transplant recipients over a period of two years. In all the donors, cortical wedge biopsy was taken and sent for assessment of glomerular, mesangial, and tubule status. The graft function of patients with normal histology was compared with those of abnormal histological findings at one, three, and six months, and one year post-surgery. Most abnormal histological findings were of mild degree. Glomerulosclerosis (GS, 25%), interstitial fibrosis (IF, 13%), acute tubular necrosis (ATN 5%), and focal tubal atrophy (FTA, 5%) were the commonly observed pathological findings in zero-hour biopsies. Only those donors who had histological changes of IF and ATN showed progressive deterioration of renal function at one month, three months, six months, and one year post-transplantation. In donors with other histological changes, no significant effect on graft function was observed. Zero-hour cortical biopsy gave us an idea of the general status of the donor kidney and presence or absence of subclinical pathological lesions. A mild degree of subclinical and pathological findings on zero-hour biopsy did not affect early graft renal function in living donor kidney transplantation. Zero-hour cortical biopsy could also help in discriminating donor-derived lesions from de novo alterations in the kidney that could happen subsequently.

  8. Genetic and epigenetic contributions to the cortical phenotype in mammals☆

    PubMed Central

    Larsen, DeLaine D.; Krubitzer, Leah

    2008-01-01

    One aspect of cortical organization, cortical field size, is variable both within and across species. The observed variability arises from a variety of sources, including genes intrinsic to the neocortex and a number of extrinsic and epigenetic factors. Genes intrinsic to the cortex are directly involved in the development and specification of cortical fields and are regulated from both signaling centers located outside of the neocortex, which secrete diffusible molecules, and the expression of transcription factors within the neocortex. In addition, extrinsic factors such as the type, location and density of sensory receptor arrays and how these receptor arrays are utilized, are also strongly related to cortical field size. Epigenetic factors including the relative activity patterns generated by the different types of physical stimuli in a given environment also contribute to differences in cortical organization, including cortical field size. Since both genetic and epigenetic factors contribute to cortical organization, some aspects of the cortical phenotype evolve, while other aspects of the cortical phenotype persist only if the environment in which an individual develops is relatively stable. PMID:18331904

  9. Regional reduction in cortical blood flow among cognitively impaired adults with relapsing-remitting multiple sclerosis patients

    PubMed Central

    Hojjat, Seyed-Parsa; Cantrell, Charles Grady; Vitorino, Rita; Feinstein, Anthony; Shirzadi, Zahra; MacIntosh, Bradley J.; Crane, David E.; Zhang, Lying; Morrow, Sarah A; Lee, Liesly; O’Connor, Paul; Carroll, Timothy J.; Aviv, Richard I.

    2015-01-01

    Purpose Detection of cortical abnormalities in relapsing-remitting multiple sclerosis (RRMS) remains elusive. Structural MRI measures of cortical integrity are limited, although functional techniques such as pseudocontinuous Arterial Spin Labeling (pCASL) show promise as a surrogate marker of disease severity. We sought to determine the utility of pCASL to assess cortical cerebral blood flow (CBF) in RRMS patients with (RRMS-I) and without (RRMS-NI) cognitive impairment. Methods 19 age-matched healthy controls and 39 RRMS patients were prospectively recruited. Cognition was assessed using the MACFIMS battery. Cortical CBF was compared between groups using a mass univariate voxel-based morphometric analysis accounting for demographic and structural variable covariates. Results Cognitive impairment was present in 51.3% of patients. Significant CBF reduction was present in the RRMS-I compared to other groups in left frontal and right superior frontal cortex. Compared to healthy controls, RRMS-I displayed reduced CBF in the frontal, limbic, parietal and temporal cortex and putamen/thalamus. RRMS-I demonstrated reduced left superior frontal lobe cortical CBF compared to RRMS-NI. No significant cortical CBF differences were present between healthy controls and RRMS-NI. Conclusion Significant cortical CBF reduction occurs in RRMS-I compared to healthy controls and RRMS-NI in anatomically significant regions after controlling for structural and demographic differences. PMID:26754799

  10. Sporadic adult onset dystonia: sensory abnormalities as an endophenotype in unaffected relatives

    PubMed Central

    Walsh, Richard; O'Dwyer, John P; Sheikh, Ifthikar H; O'Riordan, Sean; Lynch, Tim; Hutchinson, Michael

    2007-01-01

    Background Most patients with adult onset primary torsion dystonia (AOPTD) have the sporadic form of the disease. They may however be the only manifesting family members of a poorly penetrant genetic disorder. Sensory changes, including structural abnormalities of the primary sensory cortex, are found in AOPTD. Spatial discrimination threshold (SDT), a measure of sensory cortical organisation, is abnormal in AOPTD and in unaffected relatives of patients with familial AOPTD. Our hypothesis was that abnormal SDTs might be found in unaffected relatives of patients with sporadic AOPTD. Methods SDTs were assessed at the index finger bilaterally by a grating orientation task. Normal age related SDTs were derived from 141 control subjects aged 20–64 years. SDTs were considered abnormal when greater than 2.5 SD above the control mean. In total, 105 of 171 (61%) eligible unaffected siblings and offspring of patients with cervical dystonia had SDT examined. Results Fourteen of 48 siblings (29%) and 10 of 57 (18%) offspring were found to have an abnormal SDT. Only five of the 20 patients examined had abnormal SDTs. In 11 of the 25 families, no abnormality was found in an unaffected relative. In the 14 families where at least one unaffected relative had an abnormal SDT, 14 of 37 siblings (38%) and 10 of 33 offspring (30%) had abnormal SDTs. Conclusion Sensory abnormalities found in unaffected relatives of patients with apparently sporadic AOPTD may be a surrogate marker for the carriage of an abnormal gene. PMID:17702779

  11. Evaluating interhemispheric cortical responses to transcranial magnetic stimulation in chronic stroke: A TMS-EEG investigation.

    PubMed

    Borich, Michael R; Wheaton, Lewis A; Brodie, Sonia M; Lakhani, Bimal; Boyd, Lara A

    2016-04-08

    TMS-evoked cortical responses can be measured using simultaneous electroencephalography (TMS-EEG) to directly quantify cortical connectivity in the human brain. The purpose of this study was to evaluate interhemispheric cortical connectivity between the primary motor cortices (M1s) in participants with chronic stroke and controls using TMS-EEG. Ten participants with chronic stroke and four controls were tested. TMS-evoked responses were recorded at rest and during a typical TMS assessment of transcallosal inhibition (TCI). EEG recordings from peri-central gyral electrodes (C3 and C4) were evaluated using imaginary phase coherence (IPC) analyses to quantify levels of effective interhemispheric connectivity. Significantly increased TMS-evoked beta (15-30Hz frequency range) IPC was observed in the stroke group during ipsilesional M1 stimulation compared to controls during TCI assessment but not at rest. TMS-evoked beta IPC values were associated with TMS measures of transcallosal inhibition across groups. These results suggest TMS-evoked EEG responses can index abnormal effective interhemispheric connectivity in chronic stroke. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Toward a complex system understanding of bipolar disorder: A chaotic model of abnormal circadian activity rhythms in euthymic bipolar disorder.

    PubMed

    Hadaeghi, Fatemeh; Hashemi Golpayegani, Mohammad Reza; Jafari, Sajad; Murray, Greg

    2016-08-01

    In the absence of a comprehensive neural model to explain the underlying mechanisms of disturbed circadian function in bipolar disorder, mathematical modeling is a helpful tool. Here, circadian activity as a response to exogenous daily cycles is proposed to be the product of interactions between neuronal networks in cortical (cognitive processing) and subcortical (pacemaker) areas of the brain. To investigate the dynamical aspects of the link between disturbed circadian activity rhythms and abnormalities of neurotransmitter functioning in frontal areas of the brain, we developed a novel mathematical model of a chaotic system which represents fluctuations in circadian activity in bipolar disorder as changes in the model's parameters. A novel map-based chaotic system was developed to capture disturbances in circadian activity across the two extreme mood states of bipolar disorder. The model uses chaos theory to characterize interplay between neurotransmitter functions and rhythm generation; it aims to illuminate key activity phenomenology in bipolar disorder, including prolonged sleep intervals, decreased total activity and attenuated amplitude of the diurnal activity rhythm. To test our new cortical-circadian mathematical model of bipolar disorder, we utilized previously collected locomotor activity data recorded from normal subjects and bipolar patients by wrist-worn actigraphs. All control parameters in the proposed model have an important role in replicating the different aspects of circadian activity rhythm generation in the brain. The model can successfully replicate deviations in sleep/wake time intervals corresponding to manic and depressive episodes of bipolar disorder, in which one of the excitatory or inhibitory pathways is abnormally dominant. Although neuroimaging research has strongly implicated a reciprocal interaction between cortical and subcortical regions as pathogenic in bipolar disorder, this is the first model to mathematically represent this

  13. Development of the Cerebral Cortex across Adolescence: A Multisample Study of Inter-Related Longitudinal Changes in Cortical Volume, Surface Area, and Thickness.

    PubMed

    Tamnes, Christian K; Herting, Megan M; Goddings, Anne-Lise; Meuwese, Rosa; Blakemore, Sarah-Jayne; Dahl, Ronald E; Güroğlu, Berna; Raznahan, Armin; Sowell, Elizabeth R; Crone, Eveline A; Mills, Kathryn L

    2017-03-22

    Before we can assess and interpret how developmental changes in human brain structure relate to cognition, affect, and motivation, and how these processes are perturbed in clinical or at-risk populations, we must first precisely understand typical brain development and how changes in different structural components relate to each other. We conducted a multisample magnetic resonance imaging study to investigate the development of cortical volume, surface area, and thickness, as well as their inter-relationships, from late childhood to early adulthood (7-29 years) using four separate longitudinal samples including 388 participants and 854 total scans. These independent datasets were processed and quality-controlled using the same methods, but analyzed separately to study the replicability of the results across sample and image-acquisition characteristics. The results consistently showed widespread and regionally variable nonlinear decreases in cortical volume and thickness and comparably smaller steady decreases in surface area. Further, the dominant contributor to cortical volume reductions during adolescence was thinning. Finally, complex regional and topological patterns of associations between changes in surface area and thickness were observed. Positive relationships were seen in sulcal regions in prefrontal and temporal cortices, while negative relationships were seen mainly in gyral regions in more posterior cortices. Collectively, these results help resolve previous inconsistencies regarding the structural development of the cerebral cortex from childhood to adulthood, and provide novel insight into how changes in the different dimensions of the cortex in this period of life are inter-related. SIGNIFICANCE STATEMENT Different measures of brain anatomy develop differently across adolescence. Their precise trajectories and how they relate to each other throughout development are important to know if we are to fully understand both typical development and

  14. Epilepsy in the setting of full trisomy 18: A multicenter study on 18 affected children with and without structural brain abnormalities.

    PubMed

    Matricardi, Sara; Spalice, Alberto; Salpietro, Vincenzo; Di Rosa, Gabriella; Balistreri, Maria Cristina; Grosso, Salvatore; Parisi, Pasquale; Elia, Maurizio; Striano, Pasquale; Accorsi, Patrizia; Cusmai, Raffaella; Specchio, Nicola; Coppola, Giangennaro; Savasta, Salvatore; Carotenuto, Marco; Tozzi, Elisabetta; Ferrara, Pietro; Ruggieri, Martino; Verrotti, Alberto

    2016-09-01

    This paper reports on the clinical aspects, electroencephalographic (EEG) features, and neuroimaging findings in children with full trisomy 18 and associated epilepsy, and compares the evolution and outcome of their neurological phenotype. We retrospectively studied 18 patients (10 males and 8 females; aged 14 months to 9 years) with full trisomy 18 and epilepsy. All patients underwent comprehensive assessment including neuroimaging studies of the brain. We divided patients into two groups according to neuroimaging findings: (Group 1) 10 patients harboring structural brain malformations, and (Group 2) 8 patients with normal brain images. Group 1 had a significantly earlier age at seizure onset (2 months) compared to Group 2 (21 months). The seizure semiology was more severe in Group 1, who presented multiple seizure types, need for polytherapy (80% of patients), multifocal EEG abnormalities and poorer outcome (drug resistant epilepsy in 90% of patients) than Group 2 who presented a single seizure type, generalized or focal, and non-specific EEG pattern; these patients were successfully treated with monotherapy with good outcome. Imaging revealed a wide and complex spectrum of structural brain abnormalities including anomalies of the commissures, cerebellar malformations, cortical abnormalities, and various degrees of cortical atrophy. Epilepsy in full trisomy 18 may develop during the first months of life and can be associated with structural brain malformations. Patients with brain malformations can show multiple seizure types and can frequently be resistant to therapy with antiepileptic drugs. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Abnormal regional cerebral blood flow in childhood autism.

    PubMed

    Ohnishi, T; Matsuda, H; Hashimoto, T; Kunihiro, T; Nishikawa, M; Uema, T; Sasaki, M

    2000-09-01

    Neuroimaging studies of autism have shown abnormalities in the limbic system and cerebellar circuits and additional sites. These findings are not, however, specific or consistent enough to build up a coherent theory of the origin and nature of the brain abnormality in autistic patients. Twenty-three children with infantile autism and 26 non-autistic controls matched for IQ and age were examined using brain-perfusion single photon emission computed tomography with technetium-99m ethyl cysteinate dimer. In autistic subjects, we assessed the relationship between regional cerebral blood flow (rCBF) and symptom profiles. Images were anatomically normalized, and voxel-by-voxel analyses were performed. Decreases in rCBF in autistic patients compared with the control group were identified in the bilateral insula, superior temporal gyri and left prefrontal cortices. Analysis of the correlations between syndrome scores and rCBF revealed that each syndrome was associated with a specific pattern of perfusion in the limbic system and the medial prefrontal cortex. The results confirmed the associations of (i) impairments in communication and social interaction that are thought to be related to deficits in the theory of mind (ToM) with altered perfusion in the medial prefrontal cortex and anterior cingulate gyrus, and (ii) the obsessive desire for sameness with altered perfusion in the right medial temporal lobe. The perfusion abnormalities seem to be related to the cognitive dysfunction observed in autism, such as deficits in ToM, abnormal responses to sensory stimuli, and the obsessive desire for sameness. The perfusion patterns suggest possible locations of abnormalities of brain function underlying abnormal behaviour patterns in autistic individuals.

  16. Cortical Feedback Regulates Feedforward Retinogeniculate Refinement

    PubMed Central

    Thompson, Andrew D; Picard, Nathalie; Min, Lia; Fagiolini, Michela; Chen, Chinfei

    2016-01-01

    SUMMARY According to the prevailing view of neural development, sensory pathways develop sequentially in a feedforward manner, whereby each local microcircuit refines and stabilizes before directing the wiring of its downstream target. In the visual system, retinal circuits are thought to mature first and direct refinement in the thalamus, after which cortical circuits refine with experience-dependent plasticity. In contrast, we now show that feedback from cortex to thalamus critically regulates refinement of the retinogeniculate projection during a discrete window in development, beginning at postnatal day 20 in mice. Disrupting cortical activity during this window, pharmacologically or chemogenetically, increases the number of retinal ganglion cells innervating each thalamic relay neuron. These results suggest that primary sensory structures develop through the concurrent and interdependent remodeling of subcortical and cortical circuits in response to sensory experience, rather than through a simple feedforward process. Our findings also highlight an unexpected function for the corticothalamic projection. PMID:27545712

  17. Adolescent cortical thickness pre- and post marijuana and alcohol initiation.

    PubMed

    Jacobus, Joanna; Castro, Norma; Squeglia, Lindsay M; Meloy, M J; Brumback, Ty; Huestis, Marilyn A; Tapert, Susan F

    Cortical thickness abnormalities have been identified in youth using both alcohol and marijuana. However, limited studies have followed individuals pre- and post initiation of alcohol and marijuana use to help identify to what extent discrepancies in structural brain integrity are pre-existing or substance-related. Adolescents (N=69) were followed from ages 13 (pre-initiation of substance use, baseline) to ages 19 (post-initiation, follow-up). Three subgroups were identified, participants that initiated alcohol use (ALC, n=23, >20 alcohol use episodes), those that initiated both alcohol and marijuana use (ALC+MJ, n=23, >50 marijuana use episodes) and individuals that did not initiate either substance regularly by follow-up (CON, n=23, <3 alcohol use episodes, no marijuana use episodes). All adolescents underwent neurocognitive testing, neuroimaging, and substance use and mental health interviews. Significant group by time interactions and main effects on cortical thickness estimates were identified for 18 cortical regions spanning the left and right hemisphere (ps<0.05). The vast majority of findings suggest a more substantial decrease, or within-subjects effect, in cortical thickness by follow-up for individuals who have not initiated regular substance use or alcohol use only by age 19; modest between-group differences were identified at baseline in several cortical regions (ALC and CON>ALC+MJ). Minimal neurocognitive differences were observed in this sample. Findings suggest pre-existing neural differences prior to marijuana use may contribute to initiation of use and observed neural outcomes. Marijuana use may also interfere with thinning trajectories that contribute to morphological differences in young adulthood that are often observed in cross-sectional studies of heavy marijuana users. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Adolescent Cortical Thickness Pre- and Post Marijuana and Alcohol Initiation

    PubMed Central

    Jacobus, Joanna; Castro, Norma; Squeglia, Lindsay M.; Meloy, M.J.; Brumback, Ty; Huestis, Marilyn; Tapert, Susan F.

    2016-01-01

    Cortical thickness abnormalities have been identified in youth using both alcohol and marijuana. However, limited studies have followed individuals pre- and post initiation of alcohol and marijuana use to help identify to what extent discrepancies in structural brain integrity are pre-existing or substance-related. Adolescents (N=69) were followed from ages 13 (pre-initiation of substance use, baseline) to ages 19 (post-initiation, follow-up). Three subgroups were identified, participants that initiated alcohol use (ALC, n=23, >20 alcohol use episodes), those that initiated both alcohol and marijuana use (ALC+MJ, n=23, >50 marijuana use episodes) and individuals that did not initiate either substance regularly by follow-up (CON, n=23, <3 alcohol use episodes, no marijuana use episodes). All adolescents underwent neurocognitive testing, neuroimaging, and substance use and mental health interviews. Significant group by time interactions and main effects on cortical thickness estimates were identified for 18 cortical regions spanning the left and right hemisphere (ps<.05). The vast majority of findings suggest a more substantial decrease, or within-subjects effect, in cortical thickness by follow-up for individuals who have not initiated regular substance use or alcohol use only by age 19; modest between-group differences were identified at baseline in several cortical regions (ALC and CON>ALC+MJ). Minimal neurocognitive differences were observed in this sample. Findings suggest pre-existing neural differences prior to marijuana use may contribute to initiation of use and observed neural outcomes. Marijuana use may also interfere with thinning trajectories that contribute to morphological differences in young adulthood that are often observed in cross-sectional studies of heavy marijuana users. PMID:27687470

  19. Cortical morphology of adolescents with bipolar disorder and with schizophrenia.

    PubMed

    Janssen, Joost; Alemán-Gómez, Yasser; Schnack, Hugo; Balaban, Evan; Pina-Camacho, Laura; Alfaro-Almagro, Fidel; Castro-Fornieles, Josefina; Otero, Soraya; Baeza, Inmaculada; Moreno, Dolores; Bargalló, Nuria; Parellada, Mara; Arango, Celso; Desco, Manuel

    2014-09-01

    Recent evidence points to overlapping decreases in cortical thickness and gyrification in the frontal lobe of patients with adult-onset schizophrenia and bipolar disorder with psychotic symptoms, but it is not clear if these findings generalize to patients with a disease onset during adolescence and what may be the mechanisms underlying a decrease in gyrification. This study analyzed cortical morphology using surface-based morphometry in 92 subjects (age range 11-18 years, 52 healthy controls and 40 adolescents with early-onset first-episode psychosis diagnosed with schizophrenia (n=20) or bipolar disorder with psychotic symptoms (n=20) based on a two year clinical follow up). Average lobar cortical thickness, surface area, gyrification index (GI) and sulcal width were compared between groups, and the relationship between the GI and sulcal width was assessed in the patient group. Both patients groups showed decreased cortical thickness and increased sulcal width in the frontal cortex when compared to healthy controls. The schizophrenia subgroup also had increased sulcal width in all other lobes. In the frontal cortex of the combined patient group sulcal width was negatively correlated (r=-0.58, p<0.001) with the GI. In adolescents with schizophrenia and bipolar disorder with psychotic symptoms there is cortical thinning, decreased GI and increased sulcal width of the frontal cortex present at the time of the first psychotic episode. Decreased frontal GI is associated with the widening of the frontal sulci which may reduce sulcal surface area. These results suggest that abnormal growth (or more pronounced shrinkage during adolescence) of the frontal cortex represents a shared endophenotype for psychosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Cell death in neural precursor cells and neurons before neurite formation prevents the emergence of abnormal neural structures in the Drosophila optic lobe.

    PubMed

    Hara, Yusuke; Sudo, Tatsuya; Togane, Yu; Akagawa, Hiromi; Tsujimura, Hidenobu

    2018-04-01

    Programmed cell death is a conserved strategy for neural development both in vertebrates and invertebrates and is recognized at various developmental stages in the brain from neurogenesis to adulthood. To understand the development of the central nervous system, it is essential to reveal not only molecular mechanisms but also the role of neural cell death (Pinto-Teixeira et al., 2016). To understand the role of cell death in neural development, we investigated the effect of inhibition of cell death on optic lobe development. Our data demonstrate that, in the optic lobe of Drosophila, cell death occurs in neural precursor cells and neurons before neurite formation and functions to prevent various developmental abnormalities. When neuronal cell death was inhibited by an effector caspase inhibitor, p35, multiple abnormal neuropil structures arose during optic lobe development-e.g., enlarged or fused neuropils, misrouted neurons and abnormal neurite lumps. Inhibition of cell death also induced morphogenetic defects in the lamina and medulla development-e.g., failures in the separation of the lamina and medulla cortices and the medulla rotation. These defects were reproduced in the mutant of an initiator caspase, dronc. If cell death was a mechanism for removing the abnormal neuropil structures, we would also expect to observe them in mutants defective for corpse clearance. However, they were not observed in these mutants. When dead cell-membranes were visualized with Apoliner, they were observed only in cortices and not in neuropils. These results suggest that the cell death occurs before mature neurite formation. Moreover, we found that inhibition of cell death induced ectopic neuroepithelial cells, neuroblasts and ganglion mother cells in late pupal stages, at sites where the outer and inner proliferation centers were located at earlier developmental stages. Caspase-3 activation was observed in the neuroepithelial cells and neuroblasts in the proliferation centers

  1. Abnormal functional connectivity density in children with anisometropic amblyopia at resting-state.

    PubMed

    Wang, Tianyue; Li, Qian; Guo, Mingxia; Peng, Yanmin; Li, Qingji; Qin, Wen; Yu, Chunshui

    2014-05-14

    Amblyopia is a developmental disorder resulting from anomalous binocular visual input in early life. Task-based neuroimaging studies have widely investigated cortical functional impairments in amblyopia, but changes in spontaneous neuronal functional activities in amblyopia remain largely unknown. In the present study, functional connectivity density (FCD) mapping, an ultrafast data-driven method based on fMRI, was applied for the first time to investigate changes in cortical functional connectivities in amblyopia during the resting-state. We quantified and compared both short- and long-range FCD in both the brains of children with anisometropic amblyopia (AAC) and normal sighted children (NSC). In contrast to the NSC, the AAC showed significantly decreased short-range FCD in the inferior temporal/fusiform gyri, parieto-occipital and rostrolateral prefrontal cortices, as well as decreased long-range FCD in the premotor cortex, dorsal inferior parietal lobule, frontal-insular and dorsal prefrontal cortices. Furthermore, most regions with reduced long-range FCD in the AAC showed decreased functional connectivity with occipital and posterior parietal cortices in the AAC. The results suggest that chronically poor visual input in amblyopia not only impairs the brain's short-range functional connections in visual pathways and in the frontal cortex, which is important for cognitive control, but also affects long-range functional connections among the visual areas, posterior parietal and frontal cortices that subserve visuomotor and visual-guided actions, visuospatial attention modulation and the integration of salient information. This study provides evidence for abnormal spontaneous brain activities in amblyopia. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Regional cortical thinning in subjects with violent antisocial personality disorder or schizophrenia.

    PubMed

    Narayan, Veena M; Narr, Katherine L; Kumari, Veena; Woods, Roger P; Thompson, Paul M; Toga, Arthur W; Sharma, Tonmoy

    2007-09-01

    Violent behavior is associated with antisocial personality disorder and to a lesser extent with schizophrenia. Neuroimaging studies have suggested that several biological systems are disturbed in schizophrenia, and structural changes in frontal and temporal lobe regions are reported in both antisocial personality disorder and schizophrenia. The neural substrates that underlie violent behavior specifically and their structural analogs, however, remain poorly understood. Nor is it known whether a common biological basis exists for aggressive, impulsive, and violent behavior across these clinical populations. To explore the correlates of violence with brain structure in antisocial personality disorder and schizophrenia, the authors used magnetic resonance imaging data to investigate for the first time, to the authors' knowledge, regional differences in cortical thickness in violent and nonviolent individuals with schizophrenia and/or antisocial personality disorder and in healthy comparison subjects. Subject groups included right-handed men closely matched for demographic variables (total number of subjects=56). Violence was associated with cortical thinning in the medial inferior frontal and lateral sensory motor cortex, particularly in the right hemisphere, and surrounding association areas (Brodmann's areas 10, 11, 12, and 32). Only violent subjects with antisocial personality disorder exhibited cortical thinning in inferior mesial frontal cortices. The biological underpinnings of violent behavior may therefore vary between these two violent subject groups in which the medial frontal cortex is compromised in antisocial personality disorder exclusively, but laminar abnormalities in sensorimotor cortices may relate to violent behavior in both antisocial personality disorder and schizophrenia.

  3. Regional Cortical Thinning in Subjects With Violent Antisocial Personality Disorder or Schizophrenia

    PubMed Central

    Narayan, Veena M.; Narr, Katherine L.; Kumari, Veena; Woods, Roger P.; Thompson, Paul M.; Toga, Arthur W.; Sharma, Tonmoy

    2011-01-01

    Violent behavior is associated with antisocial personality disorder and to a lesser extent with schizophrenia. Neuroimaging studies have suggested that several biological systems are disturbed in schizophrenia, and structural changes in frontal and temporal lobe regions are reported in both antisocial personality disorder and schizophrenia. The neural substrates that underlie violent behavior specifically and their structural analogs, however, remain poorly understood. Nor is it known whether a common biological basis exists for aggressive, impulsive, and violent behavior across these clinical populations. To explore the correlates of violence with brain structure in antisocial personality disorder and schizophrenia, the authors used magnetic resonance imaging data to investigate for the first time, to the authors’ knowledge, regional differences in cortical thickness in violent and nonviolent individuals with schizophrenia and/or antisocial personality disorder and in healthy comparison subjects. Subject groups included right-handed men closely matched for demographic variables (total number of subjects=56). Violence was associated with cortical thinning in the medial inferior frontal and lateral sensory motor cortex, particularly in the right hemisphere, and surrounding association areas (Brodmann’s areas 10, 11, 12, and 32). Only violent subjects with antisocial personality disorder exhibited cortical thinning in inferior mesial frontal cortices. The biological underpinnings of violent behavior may therefore vary between these two violent subject groups in which the medial frontal cortex is compromised in antisocial personality disorder exclusively, but laminar abnormalities in sensorimotor cortices may relate to violent behavior in both antisocial personality disorder and schizophrenia. PMID:17728428

  4. The Changing Roles of Neurons in the Cortical Subplate

    PubMed Central

    Friedlander, Michael J.; Torres-Reveron, Juan

    2009-01-01

    Neurons may serve different functions over the course of an organism's life. Recent evidence suggests that cortical subplate (SP) neurons including those that reside in the white matter may perform longitudinal multi-tasking at different stages of development. These cells play a key role in early cortical development in coordinating thalamocortical reciprocal innervation. At later stages of development, they become integrated within the cortical microcircuitry. This type of longitudinal multi-tasking can enhance the capacity for information processing by populations of cells serving different functions over the lifespan. Subplate cells are initially derived when cells from the ventricular zone underlying the cortex migrate to the cortical preplate that is subsequently split by the differentiating neurons of the cortical plate with some neurons locating in the marginal zone and others settling below in the SP. While the cortical plate neurons form most of the cortical layers (layers 2–6), the marginal zone neurons form layer 1 and the SP neurons become interstitial cells of the white matter as well as forming a compact sublayer along the bottom of layer 6. After serving as transient innervation targets for thalamocortical axons, most of these cells die and layer 4 neurons become innervated by thalamic axons. However, 10–20% survives, remaining into adulthood along the bottom of layer 6 and as a scattered population of interstitial neurons in the white matter. Surviving SP cells' axons project throughout the overlying laminae, reaching layer 1 and issuing axon collaterals within white matter and in lower layer 6. This suggests that they participate in local synaptic networks, as well. Moreover, they receive excitatory and inhibitory synaptic inputs, potentially monitoring outputs from axon collaterals of cortical efferents, from cortical afferents and/or from each other. We explore our understanding of the functional connectivity of these cells at different

  5. Differential Motor and Prefrontal Cerebello-Cortical Network Development: Evidence from Multimodal Neuroimaging

    PubMed Central

    Bernard, Jessica A.; Orr, Joseph M.; Mittal, Vijay A.

    2015-01-01

    While our understanding of cerebellar structural development through adolescence and young adulthood has expanded, we still lack knowledge of the developmental patterns of cerebellar networks during this critical portion of the lifespan. Volume in lateral posterior cerebellar regions associated with cognition and the prefrontal cortex develops more slowly, reaching their peak volume in adulthood, particularly as compared to motor Lobule V. We predicted that resting state functional connectivity of the lateral posterior regions would show a similar pattern of development during adolescence and young adulthood. That is, we expected to see changes over time in Crus I and Crus II connectivity with the cortex, but no changes in Lobule V connectivity. Additionally, we were interested in how structural connectivity changes in cerebello-thalamo-cortical white matter are related to changes in functional connectivity. A sample of 23 individuals between 12 and 21 years old underwent neuroimaging scans at baseline and 12-months later. Functional networks of Crus I and Crus II showed significant connectivity decreases over 12-months, though there were no differences in Lobule V. Furthermore, these functional connectivity changes were correlated with increases in white matter structural integrity in the corresponding cerebello-thalamo-cortical white matter tract. We suggest that these functional network changes are due to both later pruning in the prefrontal cortex as well as further development of the white matter tracts linking these brain regions. PMID:26391125

  6. Defective cancellous bone structure and abnormal response to PTH in cortical bone of mice lacking Cx43 cytoplasmic C-terminus domain

    PubMed Central

    Pacheco-Costa, Rafael; Davis, Hannah M.; Sorenson, Chad; Hon, Mary C.; Hassan, Iraj; Reginato, Rejane D.; Allen, Matthew R.; Bellido, Teresita; Plotkin, Lilian I.

    2015-01-01

    Connexin43 (Cx43) forms gap junction channels and hemichannels that allow the communication among osteocytes, osteoblasts, and osteoclasts. Cx43 carboxy-terminal (CT) domain regulates channel opening and intracellular signaling by acting as a scaffold for structural and signaling proteins. To determine the role of Cx43 CT domain in bone, mice in which one allele of full length Cx43 was replaced by a mutant lacking the CT domain (Cx43ΔCT/fl) were studied. Cx43ΔCT/fl mice exhibit lower cancellous bone volume but higher cortical thickness than Cx43fl/fl controls, indicating that the CT domain is involved in normal cancellous bone gain but opposes cortical bone acquisition. Further, Cx43ΔCT is able to exert the functions of full length osteocytic Cx43 on cortical bone geometry and mechanical properties, demonstrating that domains other than the CT are responsible for Cx43 function in cortical bone. In addition, parathyroid hormone (PTH) failed to increase endocortical bone formation or energy to failure, a mechanical property that indicates resistance to fracture, in cortical bone in Cx43ΔCT mice with or without osteocytic full length Cx43. On the other hand, bone mass and bone formation markers were increased by the hormone in all mouse models, regardless of whether full length or Cx43ΔCT were or not expressed. We conclude that Cx43 CT domain is involved in proper bone acquisition; and that Cx43 expression in osteocytes is dispensable for some but not all PTH anabolic actions. PMID:26409319

  7. A Preliminary Transcranial Magnetic Stimulation Study of Cortical Inhibition and Excitability in High-Functioning Autism and Asperger Disorder

    ERIC Educational Resources Information Center

    Enticott, Peter G.; Rinehart, Nicole J.; Tonge, Bruce J.; Bradshaw, John L.; Fitzgerald, Paul B.

    2010-01-01

    Aim: Controversy surrounds the distinction between high-functioning autism (HFA) and Asperger disorder, but motor abnormalities are associated features of both conditions. This study examined motor cortical inhibition and excitability in HFA and Asperger disorder using transcranial magnetic stimulation (TMS). Method: Participants were diagnosed by…

  8. Abnormal thalamocortical activity in patients with Complex Regional Pain Syndrome (CRPS) type I.

    PubMed

    Walton, K D; Dubois, M; Llinás, R R

    2010-07-01

    Complex Regional Pain Syndrome (CRPS) is a neuropathic disease that presents a continuing challenge in terms of pathophysiology, diagnosis, and treatment. Recent studies of neuropathic pain, in both animals and patients, have established a direct relationship between abnormal thalamic rhythmicity related to Thalamo-cortical Dysrhythmia (TCD) and the occurrence of central pain. Here, this relationship has been examined using magneto-encephalographic (MEG) imaging in CRPS Type I, characterized by the absence of nerve lesions. The study addresses spontaneous MEG activity from 13 awake, adult patients (2 men, 11 women; age 15-62), with CRPS Type I of one extremity (duration range: 3months to 10years) and from 13 control subjects. All CRPS I patients demonstrated peaks in power spectrum in the delta (<4Hz) and/or theta (4-9Hz) frequency ranges resulting in a characteristically increased spectral power in those ranges when compared to control subjects. The localization of such abnormal activity, implemented using independent component analysis (ICA) of the sensor data, showed delta and/or theta range activity localized to the somatosensory cortex corresponding to the pain localization, and to orbitofrontal-temporal cortices related to the affective pain perception. Indeed, CRPS Type I patients presented abnormal brain activity typical of TCD, which has both diagnostic value indicating a central origin for this ailment and a potential treatment interest involving pharmacological and electrical stimulation therapies. Copyright 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  9. Cerebellar cortex development in the weaver condition presents regional and age-dependent abnormalities without differences in Purkinje cells neurogenesis.

    PubMed

    Martí, Joaquín; Santa-Cruz, María C; Hervás, José P; Bayer, Shirley A; Villegas, Sandra

    2016-01-01

    Ataxias are neurological disorders associated with the degeneration of Purkinje cells (PCs). Homozygous weaver mice (wv/wv) have been proposed as a model for hereditary cerebellar ataxia because they present motor abnormalities and PC loss. To ascertain the physiopathology of the weaver condition, the development of the cerebellar cortex lobes was examined at postnatal day (P): P8, P20 and P90. Three approaches were used: 1) quantitative determination of several cerebellar features; 2) qualitative evaluation of the developmental changes occurring in the cortical lobes; and 3) autoradiographic analyses of PC generation and placement. Our results revealed a reduction in the size of the wv/wv cerebellum as a whole, confirming previous results. However, as distinguished from these reports, we observed that quantified parameters contribute differently to the abnormal growth of the wv/wv cerebellar lobes. Qualitative analysis showed anomalies in wv/wv cerebellar cytoarchitecture, depending on the age and lobe analyzed. Such abnormalities included the presence of the external granular layer after P20 and, at P90, ectopic cells located in the molecular layer following several placement patterns. Finally, we obtained autoradiographic evidence that wild-type and wv/wv PCs presented similar neurogenetic timetables, as reported. However, the innovative character of this current work lies in the fact that the neurogenetic gradients of wv/wv PCs were not modified from P8 to P90. A tendency for the accumulation of late-formed PCs in the anterior and posterior lobes was found, whereas early-generated PCs were concentrated in the central and inferior lobes. These data suggested that wv/wv PCs may migrate properly to their final destinations. The extrapolation of our results to patients affected with cerebellar ataxias suggests that all cerebellar cortex lobes are affected with several age-dependent alterations in cytoarchitectonics. We also propose that PC loss may be regionally

  10. PERSPECTIVE: Toward the development of a cortically based visual neuroprosthesis

    NASA Astrophysics Data System (ADS)

    Normann, Richard A.; Greger, Bradley A.; House, Paul; Romero, Samuel F.; Pelayo, Francisco; Fernandez, Eduardo

    2009-06-01

    Motivated by the success of cochlear implants for deaf patients, we are now facing the goal of creating a visual neuroprosthesis designed to interface with the occipital cortex as a means through which a limited but useful sense of vision could be restored in profoundly blind patients. We review the most important challenges regarding this neuroprosthetic approach and emphasize the need for basic human psychophysical research on the best way of presenting complex stimulating patterns through multiple microelectrodes. Continued research will hopefully lead to the development of and design specifications for the first generation of a cortically based visual prosthesis system.

  11. Cortical serotonin-S2 receptor binding in Lewy body dementia, Alzheimer's and Parkinson's diseases.

    PubMed

    Cheng, A V; Ferrier, I N; Morris, C M; Jabeen, S; Sahgal, A; McKeith, I G; Edwardson, J A; Perry, R H; Perry, E K

    1991-11-01

    The binding of the selective 5-HT2 antagonist [3H]ketanserin has been investigated in the temporal cortex of patients with Alzheimer's disease (SDAT), Parkinson's disease (PD), senile dementia of Lewy body type (SDLT) and neuropathologically normal subjects (control). 5-HT2 binding was reduced in SDAT, PD with dementia and SDLT. SDAT showed a 5-HT2 receptor deficit across most of the cortical layers. A significant decrease in 5-HT2 binding in the deep cortical layers was found in those SDLT cases without hallucinations. SDLT cases with hallucinations only showed a deficit in one upper layer. There was a significant difference in cortical layers III and V between SDLT without hallucinations and SDLT with hallucinations. The results confirm an abnormality of serotonin binding in various forms of dementia and suggest that preservation of 5-HT2 receptor in the temporal cortex may differentiate hallucinating from non-hallucinating cases of SDLT.

  12. Theory for the alignment of cortical feature maps during development.

    PubMed

    Bressloff, Paul C; Oster, Andrew M

    2010-08-01

    We present a developmental model of ocular dominance column formation that takes into account the existence of an array of intrinsically specified cytochrome oxidase blobs. We assume that there is some molecular substrate for the blobs early in development, which generates a spatially periodic modulation of experience-dependent plasticity. We determine the effects of such a modulation on a competitive Hebbian mechanism for the modification of the feedforward afferents from the left and right eyes. We show how alternating left and right eye dominated columns can develop, in which the blobs are aligned with the centers of the ocular dominance columns and receive a greater density of feedforward connections, thus becoming defined extrinsically. More generally, our results suggest that the presence of periodically distributed anatomical markers early in development could provide a mechanism for the alignment of cortical feature maps.

  13. Cortical Drive to Breathe during Wakefulness in Patients with Obstructive Sleep Apnea Syndrome.

    PubMed

    Launois, Claire; Attali, Valérie; Georges, Marjolaine; Raux, Mathieu; Morawiec, Elise; Rivals, Isabelle; Arnulf, Isabelle; Similowski, Thomas

    2015-11-01

    The obstructive sleep apnea syndrome (OSAS) involves recurrent sleep-related upper airways (UA) collapse. UA mechanical properties and neural control are altered, imposing a mechanical load on inspiration. UA collapse does not occur during wakefulness, hence arousal-dependent compensation. Experimental inspiratory loading in normal subjects elicits respiratory-related cortical activity. The objective of this study was to test whether awake OSAS patients would exhibit a similar cortical activity. Descriptive physiology study. Sleep laboratory in a large university affiliated tertiary hospital. 26 patients with moderate OSAS according to polysomnography (5 < apnea-hypopnea index [AHI] ≤ 30, n = 14) or severe OSAS (AHI > 30, n = 12); 13 non-OSAS patients for comparison. None. Respiratory time-locked electroencephalographic segments ensemble averaged and analyzed for slow premotor potentials preceding inspiration ("pre-inspiratory potentials" [PIPs]). PIPs were present in 1/13 controls and 11/26 patients (P = 0.0336; 4/14 "moderate" and 7/12 "severe" patients). Awake OSAS patients therefore exhibit respiratory-related cortical activity during quiet breathing significantly more frequently than non-OSAS individuals. The corresponding PIPs resemble those observed during prepared voluntary inspirations and in response to experimental inspiratory loads in normal subjects, which involve a cortical network comprising the supplementary motor area. A respiratory-related cortical activity could contribute to the increased neural drive to upper airway and to inspiratory muscles that has previously been described in obstructive sleep apnea, and could therefore contribute to the arousal-dependent compensation of upper airway abnormalities. Whether or not such cortical compensatory mechanisms have cognitive consequences remains to be determined. © 2015 Associated Professional Sleep Societies, LLC.

  14. Association of Optic Radiation Integrity with Cortical Thickness in Children with Anisometropic Amblyopia.

    PubMed

    Qi, Shun; Mu, Yun-Feng; Cui, Long-Biao; Li, Rong; Shi, Mei; Liu, Ying; Xu, Jun-Qing; Zhang, Jian; Yang, Jian; Yin, Hong

    2016-02-01

    Previous studies have indicated regional abnormalities of both gray and white matter in amblyopia. However, alterations of cortical thickness associated with changes in white matter integrity have rarely been reported. In this study, structural magnetic resonance imaging and diffusion tensor imaging (DTI) data were obtained from 15 children with anisometropic amblyopia and 15 age- and gender-matched children with normal sight. Combining DTI and surface-based morphometry, we examined a potential linkage between disrupted white matter integrity and altered cortical thickness. The fractional anisotropy (FA) values in the optic radiations (ORs) of children with anisometropic amblyopia were lower than in controls (P < 0.05). The cortical thickness in amblyopic children was lower than controls in the following subregions: lingual cortex, lateral occipitotemporal gyrus, cuneus, occipital lobe, inferior parietal lobe, and temporal lobe (P < 0.05, corrected), but was higher in the calcarine gyrus (P < 0.05, corrected). Node-by-node correlation analysis of changes in cortical thickness revealed a significant association between a lower FA value in the OR and diminished cortical thickness in the following subregions: medial lingual cortex, lateral occipitotemporal gyrus, lateral, superior, and medial occipital cortex, and lunate cortex. We also found a relationship between changes of cortical thickness and white matter OR integrity in amblyopia. These findings indicate that developmental changes occur simultaneously in the OR and visual cortex in amblyopia, and provide key information on complex damage of brain networks in anisometropic amblyopia. Our results also support the hypothesis that the pathogenesis of anisometropic amblyopia is neurodevelopmental.

  15. Bipolar disorder type I and II show distinct relationships between cortical thickness and executive function.

    PubMed

    Abé, C; Rolstad, S; Petrovic, P; Ekman, C-J; Sparding, T; Ingvar, M; Landén, M

    2018-06-15

    Frontal cortical abnormalities and executive function impairment co-occur in bipolar disorder. Recent studies have shown that bipolar subtypes differ in the degree of structural and functional impairments. The relationships between cognitive performance and cortical integrity have not been clarified and might differ across patients with bipolar disorder type I, II, and healthy subjects. Using a vertex-wise whole-brain analysis, we investigated how cortical integrity, as measured by cortical thickness, correlates with executive performance in patients with bipolar disorder type I, II, and controls (N = 160). We found focal associations between executive function and cortical thickness in the medial prefrontal cortex in bipolar II patients and controls, but not in bipolar I disorder. In bipolar II patients, we observed additional correlations in lateral prefrontal and occipital regions. Our findings suggest that bipolar disorder patients show altered structure-function relationships, and importantly that those relationships may differ between bipolar subtypes. The findings are line with studies suggesting subtype-specific neurobiological and cognitive profiles. This study contributes to a better understanding of brain structure-function relationships in bipolar disorder and gives important insights into the neuropathophysiology of diagnostic subtypes. © 2018 The Authors Acta Psychiatrica Scandinavica Published by John Wiley & Sons Ltd.

  16. Defective cancellous bone structure and abnormal response to PTH in cortical bone of mice lacking Cx43 cytoplasmic C-terminus domain.

    PubMed

    Pacheco-Costa, Rafael; Davis, Hannah M; Sorenson, Chad; Hon, Mary C; Hassan, Iraj; Reginato, Rejane D; Allen, Matthew R; Bellido, Teresita; Plotkin, Lilian I

    2015-12-01

    Connexin 43 (Cx43) forms gap junction channels and hemichannels that allow the communication among osteocytes, osteoblasts, and osteoclasts. Cx43 carboxy-terminal (CT) domain regulates channel opening and intracellular signaling by acting as a scaffold for structural and signaling proteins. To determine the role of Cx43 CT domain in bone, mice in which one allele of full length Cx43 was replaced by a mutant lacking the CT domain (Cx43(ΔCT/fl)) were studied. Cx43(ΔCT/fl) mice exhibit lower cancellous bone volume but higher cortical thickness than Cx43(fl/fl) controls, indicating that the CT domain is involved in normal cancellous bone gain but opposes cortical bone acquisition. Further, Cx43(ΔCT) is able to exert the functions of full length osteocytic Cx43 on cortical bone geometry and mechanical properties, demonstrating that domains other than the CT are responsible for Cx43 function in cortical bone. In addition, parathyroid hormone (PTH) failed to increase endocortical bone formation or energy to failure, a mechanical property that indicates resistance to fracture, in cortical bone in Cx43(ΔCT) mice with or without osteocytic full length Cx43. On the other hand, bone mass and bone formation markers were increased by the hormone in all mouse models, regardless of whether full length or Cx43(ΔCT) were or not expressed. We conclude that Cx43 CT domain is involved in proper bone acquisition; and that Cx43 expression in osteocytes is dispensable for some but not all PTH anabolic actions. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Role of mechanical factors in cortical folding development

    NASA Astrophysics Data System (ADS)

    Razavi, Mir Jalil; Zhang, Tuo; Li, Xiao; Liu, Tianming; Wang, Xianqiao

    2015-09-01

    Deciphering mysteries of the structure-function relationship in cortical folding has emerged as the cynosure of recent research on brain. Understanding the mechanism of convolution patterns can provide useful insight into the normal and pathological brain function. However, despite decades of speculation and endeavors the underlying mechanism of the brain folding process remains poorly understood. This paper focuses on the three-dimensional morphological patterns of a developing brain under different tissue specification assumptions via theoretical analyses, computational modeling, and experiment verifications. The living human brain is modeled with a soft structure having outer cortex and inner core to investigate the brain development. Analytical interpretations of differential growth of the brain model provide preliminary insight into the critical growth ratio for instability and crease formation of the developing brain followed by computational modeling as a way to offer clues for brain's postbuckling morphology. Especially, tissue geometry, growth ratio, and material properties of the cortex are explored as the most determinant parameters to control the morphogenesis of a growing brain model. As indicated in results, compressive residual stresses caused by the sufficient growth trigger instability and the brain forms highly convoluted patterns wherein its gyrification degree is specified with the cortex thickness. Morphological patterns of the developing brain predicted from the computational modeling are consistent with our neuroimaging observations, thereby clarifying, in part, the reason of some classical malformation in a developing brain.

  18. Distinct cortical correlates of autistic versus antisocial traits in a longitudinal sample of typically developing youth

    PubMed Central

    Wallace, Gregory L.; Shaw, Philip; Lee, Nancy Raitano; Clasen, Liv S.; Raznahan, Armin; Lenroot, Rhoshel K.; Martin, Alex; Giedd, Jay N.

    2012-01-01

    In humans, behaviors associated with autism and antisociality, disorders characterized by distinct social impairments, can be viewed as quantitative traits that range from frank impairment to normal variation, as found in the general population. Neuroimaging investigations of autism and antisociality demonstrate diagnostically specific aberrant cortical brain structure. However, little is known about structural brain correlates of social behavior in non-clinical populations. Therefore, we sought to determine if autistic and antisocial traits exhibit dissociable cortical correlates and whether these associations are stable across development among typically developing youth. 323 typically developing youth (age at first scan: mean=10.63, SD=3.71 years) underwent anatomic magnetic resonance imaging (1–6 scans each; total=742 scans), and provided ratings of autistic and antisocial traits. Higher autistic trait ratings were associated with thinner cortex most prominently in right superior temporal sulcus while higher antisocial trait ratings were associated with thinner cortex in primarily bilateral anterior prefrontal cortices. There was no interaction with age, indicating that these brain-behavior associations were stable across development. Using assessments of both subclinical autistic and subclinical antisocial traits within a large longitudinal sample of typically developing youth, we demonstrate dissociable neuroanatomic correlations that parallel those found in the frank clinical disorders of autism (e.g., superior temporal cortex) and antisociality (e.g., anterior prefrontal cortex). Moreover, these correlations appear to be established in early childhood and remain fixed into early adulthood. These results support the dimensional view of psychopathology and provide neural signatures that can serve as informative endophenotypes for future genetic studies. PMID:22492041

  19. Distinct cortical correlates of autistic versus antisocial traits in a longitudinal sample of typically developing youth.

    PubMed

    Wallace, Gregory L; Shaw, Philip; Lee, Nancy Raitano; Clasen, Liv S; Raznahan, Armin; Lenroot, Rhoshel K; Martin, Alex; Giedd, Jay N

    2012-04-04

    In humans, behaviors associated with autism and antisociality, disorders characterized by distinct social impairments, can be viewed as quantitative traits that range from frank impairment to normal variation, as found in the general population. Neuroimaging investigations of autism and antisociality demonstrate diagnostically specific aberrant cortical brain structure. However, little is known about structural brain correlates of social behavior in nonclinical populations. Therefore, we sought to determine whether autistic and antisocial traits exhibit dissociable cortical correlates and whether these associations are stable across development among typically developing youth. Three hundred twenty-three typically developing youth (age at first scan: mean = 10.63, SD = 3.71 years) underwent anatomic magnetic resonance imaging (1-6 scans each; total = 742 scans), and provided ratings of autistic and antisocial traits. Higher autistic trait ratings were associated with thinner cortex most prominently in right superior temporal sulcus while higher antisocial trait ratings were associated with thinner cortex in primarily bilateral anterior prefrontal cortices. There was no interaction with age, indicating that these brain-behavior associations were stable across development. Using assessments of both subclinical autistic and subclinical antisocial traits within a large longitudinal sample of typically developing youth, we demonstrate dissociable neuroanatomic correlations that parallel those found in the frank clinical disorders of autism (e.g., superior temporal cortex) and antisociality (e.g., anterior prefrontal cortex). Moreover, these correlations appear to be established in early childhood and remain fixed into early adulthood. These results support the dimensional view of psychopathology and provide neural signatures that can serve as informative endophenotypes for future genetic studies.

  20. Left-Hemispheric Microstructural Abnormalities in Children With High Functioning Autism Spectrum Disorder

    PubMed Central

    Peterson, Daniel; Mahajan, Rajneesh; Crocetti, Deana; Mejia, Amanda; Mostofsky, Stewart

    2014-01-01

    Current theories of the neurobiological basis of Autism Spectrum Disorder (ASD) posit an altered pattern of connectivity in large-scale brain networks. Here we used Diffusion Tensor Imaging to investigate the microstructural properties of the white matter that mediates inter-regional connectivity in 36 high-functioning children with ASD (HF-ASD), as compared to 37 controls. By employing an atlas-based analysis using LDDMM registration, a widespread, but left-lateralized pattern of abnormalities was revealed. The Mean Diffusivity (MD) of water in the white matter of HF-ASD children was significantly elevated throughout the left hemisphere, particularly in the outer-zone cortical white matter. Across diagnostic groups there was a significant effect of age on left hemisphere MD, with a similar reduction in MD during childhood in both TD and HF-ASD children. The increased MD in children with HF-ASD suggests hypomyelination, and may reflect increased short-range cortico-cortical connections subsequent to early white matter overgrowth. These findings also highlight left hemispheric connectivity as relevant to the pathophysiology of ASD, and indicate that the spatial distribution of microstructural abnormalities in HF-ASD is widespread, and left-lateralized. This altered left-hemispheric connectivity may contribute to deficits in communication and praxis observed in ASD. PMID:25256103

  1. Methomyl poisoning presenting with decorticate posture and cortical blindness.

    PubMed

    Lin, Chih-Ming

    2014-01-17

    Methomyl is a potent pesticide that is widely used in the field of agriculture. The systemic toxic effects of methomyl have been well described. However, the neurological effects of methomyl intoxication are not well understood. In this study, we report a 61-year-old Taiwanese man sent to our emergency department because of altered mental status. His family stated that he had consumed liquid methomyl in a suicide attempt. He was provided cardiopulmonary resuscitation because of unstable vital signs. He was then sent to an intensive care unit for close observation. On the second day of admission, he regained consciousness but exhibited irregular limb and torso posture. On the sixth day, he started to complain of blurred vision. An ophthalmologist was consulted but no obvious abnormalities could be identified. On suspicion of cerebral disease, a neurologist was consulted. Further examination revealed cortical blindness and decorticate posture. Cerebral magnetic resonance imaging (MRI) was arranged, which identified bilateral occipital regions lesions. The patient was administered normal saline and treated with aspirin and piracetam for 3 weeks in hospital. During the treatment period, his symptom of cortical blindness resolved, whereas his decorticate posture was refractory. Follow-up brain MRI results supported our clinical observations by indicating the disappearance of the bilateral occipital lesions and symmetrical putaminal high signal abnormalities. In this article, we briefly discuss the possible mechanisms underlying the cerebral effects of methomyl poisoning. Our study can provide clinicians with information on the manifestations of methomyl intoxication and an appropriate treatment direction.

  2. Cortical Iron Reflects Severity of Alzheimer’s Disease

    PubMed Central

    van Duijn, Sara; Bulk, Marjolein; van Duinen, Sjoerd G.; Nabuurs, Rob J.A.; van Buchem, Mark A.; van der Weerd, Louise; Natté, Remco

    2017-01-01

    Abnormal iron distribution in the isocortex is increasingly recognized as an in vivo marker for Alzheimer’s disease (AD). However, the contribution of iron accumulation to the AD pathology is still poorly understood. In this study, we investigated: 1) frontal cortical iron distribution in AD and normal aging and 2) the relation between iron distribution and degree of AD pathology. We used formalin fixed paraffin embedded frontal cortex from 10 AD patients, 10 elder, 10 middle aged, and 10 young controls and visualized iron with a modified Perl’s histochemical procedure. AD and elderly subjects were not different with respect to age and sex distribution. Iron distribution in the frontal cortex was not affected by normal aging but was clearly different between AD and controls. AD showed accumulation of iron in plaques, activated microglia, and, in the most severe cases, in the mid-cortical layers along myelinated fibers. The degree of altered iron accumulations was correlated to the amount of amyloid-β plaques and tau pathology in the same block, as well as to Braak stage (p < 0.001). AD and normal aging show different iron and myelin distribution in frontal cortex. These changes appear to occur after the development of the AD pathological hallmarks. These findings may help the interpretation of high resolution in vivo MRI and suggest the potential of using changes in iron-based MRI contrast to indirectly determine the degree of AD pathology in the frontal cortex. PMID:29081415

  3. The apical complex couples cell fate and cell survival to cerebral cortical development

    PubMed Central

    Kim, Seonhee; Lehtinen, Maria K.; Sessa, Alessandro; Zappaterra, Mauro; Cho, Seo-Hee; Gonzalez, Dilenny; Boggan, Brigid; Austin, Christina A.; Wijnholds, Jan; Gambello, Michael J.; Malicki, Jarema; LaMantia, Anthony S.; Broccoli, Vania; Walsh, Christopher A.

    2010-01-01

    Cortical development depends upon tightly controlled cell fate and cell survival decisions that generate a functional neuronal population, but the coordination of these two processes is poorly understood. Here we show that conditional removal of a key apical complex protein, Pals1, causes premature withdrawal from the cell cycle, inducing excessive generation of early-born postmitotic neurons followed by surprisingly massive and rapid cell death, leading to the abrogation of virtually the entire cortical structure. Pals1 loss shows exquisite dosage sensitivity, so that heterozygote mutants show an intermediate phenotype on cell fate and cell death. Loss of Pals1 blocks essential cell survival signals, including the mammalian target of rapamycin (mTOR) pathway, while mTORC1 activation partially rescues Pals1 deficiency. These data highlight unexpected roles of the apical complex protein Pals1 in cell survival through interactions with mTOR signaling. PMID:20399730

  4. A prospective study of diffusion weighted magnetic resonance imaging abnormalities in patients with cluster of seizures and status epilepticus.

    PubMed

    Jabeen, S A; Cherukuri, Pavankumar; Mridula, Rukmini; Harshavardhana, K R; Gaddamanugu, Padmaja; Sarva, Sailaja; Meena, A K; Borgohain, Rupam; Jyotsna Rani, Y

    2017-04-01

    To study the frequency, imaging characteristics, and clinical predictors for development of periictal diffusion weighted MRI abnormalities. We prospectively analyzed electro clinical and imaging characteristic of adult patients with cluster of seizures or status epilepticus between November 2013 and November 2015, in whom the diffusion weighted imaging was done within 24h after the end of last seizure (clinical or electrographic). There were thirty patients who fulfilled the inclusion and exclusion criteria. Twenty patients (66%) had periictal MRI abnormalities. Nine patients (34%) did not have any MRI abnormality. All the patients with PMA had abnormalities on diffusion weighted imaging (DWI). Hippocampal abnormalities were seen in nine (53%), perisylvian in two (11.7%), thalamic in five (30%), splenium involvement in two (11.7%) and cortical involvement (temporo-occipital, parieto-occipital, temporo-parietal, fronto-parietal and fronto-temporal) in sixteen (94.1%) patients. Complete reversal of DWI changes was noted in sixteen (80%) patients and four (20%) patients showed partial resolution of MRI abnormalities. Mean duration of seizures was significantly higher among patients with PMA (59.11+20.97h) compared to those without MRI changes (27.33+9.33h) (p<0.001). Diffusion abnormalities on MRI are common in patients with cluster of seizures and status epilepticus and were highly concordant with clinical semiology and EEG activity. Patients with longer duration of seizures/status were more likely to have PMA. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Neonatal Brain Abnormalities and Memory and Learning Outcomes at 7 Years in Children Born Very Preterm

    PubMed Central

    Omizzolo, Cristina; Scratch, Shannon E; Stargatt, Robyn; Kidokoro, Hiroyuki; Thompson, Deanne K; Lee, Katherine J; Cheong, Jeanie; Neil, Jeffrey; Inder, Terrie E; Doyle, Lex W; Anderson, Peter J

    2014-01-01

    Using prospective longitudinal data from 198 very preterm and 70 full term children, this study characterised the memory and learning abilities of very preterm children at 7 years of age in both verbal and visual domains. The relationship between the extent of brain abnormalities on neonatal magnetic resonance imaging (MRI) and memory and learning outcomes at 7 years of age in very preterm children was also investigated. Neonatal MRI scans were qualitatively assessed for global, white-matter, cortical grey-matter, deep grey-matter, and cerebellar abnormalities. Very preterm children performed less well on measures of immediate memory, working memory, long-term memory, and learning compared with term born controls. Neonatal brain abnormalities, and in particular deep grey matter abnormality, were associated with poorer memory and learning performance at 7 years in very preterm children, especially global, white-matter, grey-matter and cerebellar abnormalities. Findings support the importance of cerebral neonatal pathology for predicting later memory and learning function. PMID:23805915

  6. Cortical dynamics and subcortical signatures of motor-language coupling in Parkinson's disease.

    PubMed

    Melloni, Margherita; Sedeño, Lucas; Hesse, Eugenia; García-Cordero, Indira; Mikulan, Ezequiel; Plastino, Angelo; Marcotti, Aida; López, José David; Bustamante, Catalina; Lopera, Francisco; Pineda, David; García, Adolfo M; Manes, Facundo; Trujillo, Natalia; Ibáñez, Agustín

    2015-07-08

    Impairments of action language have been documented in early stage Parkinson's disease (EPD). The action-sentence compatibility effect (ACE) paradigm has revealed that EPD involves deficits to integrate action-verb processing and ongoing motor actions. Recent studies suggest that an abolished ACE in EPD reflects a cortico-subcortical disruption, and recent neurocognitive models highlight the role of the basal ganglia (BG) in motor-language coupling. Building on such breakthroughs, we report the first exploration of convergent cortical and subcortical signatures of ACE in EPD patients and matched controls. Specifically, we combined cortical recordings of the motor potential, functional connectivity measures, and structural analysis of the BG through voxel-based morphometry. Relative to controls, EPD patients exhibited an impaired ACE, a reduced motor potential, and aberrant frontotemporal connectivity. Furthermore, motor potential abnormalities during the ACE task were predicted by overall BG volume and atrophy. These results corroborate that motor-language coupling is mainly subserved by a cortico-subcortical network including the BG as a key hub. They also evince that action-verb processing may constitute a neurocognitive marker of EPD. Our findings suggest that research on the relationship between language and motor domains is crucial to develop models of motor cognition as well as diagnostic and intervention strategies.

  7. Abnormal branching and regression of the notochord and its relationship to foregut abnormalities.

    PubMed

    Vleesch Dubois, V N; Quan Qi, B; Beasley, S W; Williams, A

    2002-04-01

    An abnormally positioned notochord has been reported in embryos that develop foregut abnormalities, vertebral defects and other abnormalities of the VATER association. This study examines the patterns of regression of the abnormal notochord in the rat model of the VATER association and investigates the relationship between developmental abnormalities of the notochord and those of the vertebra and foregut. Timed-pregnant Sprague-Dawley rats were given daily intraperitoneal injections of 1.75 mg/kg adriamycin on gestational days 6 - 9 inclusive. Rats were sacrificed between days 14 and 20 and their embryos harvested, histologically sectioned and stained and examined serially. The location and appearance of the degenerating notochord and its relationship to regional structural defects were analysed. All 26 embryos exposed to adriamycin developed foregut abnormalities and had an abnormal notochord. The notochord disappeared by a process of apoptotic degeneration that lagged behind that of the normal embryo: the notochord persisted in the abnormal embryo beyond day 17, whereas in the normal rat it had already disappeared. Similarly, formation of the nucleus pulposus was delayed. Vertebral abnormalities occurred when the notochord was ventrally-positioned. The notochord disappears during day 16 in the normal embryo whereas abnormal branches of the notochord persist until day 19 in the adriamycin-treated embryo. Degeneration of the notochord is dominated by apoptosis. An excessively ventrally-placed notochord is closely associated with abnormalities of the vertebral column, especially hemivertebrae.

  8. Decreased oxygen saturation in asymmetrically prominent cortical veins in patients with cerebral ischemic stroke.

    PubMed

    Xia, Shuang; Utriainen, David; Tang, Jin; Kou, Zhifeng; Zheng, Gang; Wang, Xuesong; Shen, Wen; Haacke, E Mark; Lu, Guangming

    2014-12-01

    Decreased oxygen saturation in asymmetrically prominent cortical veins (APCV) seen in ischemic stroke has been hypothesized to correlate with an increase of de-oxygenated hemoglobin. Our goal is to quantify magnetic susceptibility to define APCV by establishing a cutoff above which the deoxyhemoglobin levels are considered abnormal. A retrospective study was conducted on 26 patients with acute ischemic stroke in one cerebral hemisphere that exhibited APCV with 30 age- and sex-matched healthy controls. Quantitative susceptibility mapping (QSM) was used to calculate the magnetic susceptibility of the cortical veins. A paired t-test was used to compare the susceptibility of the cortical veins in the left and right hemispheres for healthy controls as well as in the contralateral hemisphere for stroke patients with APCV. The change in oxygen saturation in the APCV relative to the contralateral side was calculated after thresholding the susceptibility using the mean plus two standard deviations of the contralateral side for each individual. The thresholded susceptibility value of the APCVs in the stroke hemisphere was 254±48 ppb which was significantly higher (p<0.05) than that in the contralateral hemisphere (123±12 ppb) and in healthy controls (125±8 ppb). There was a decrease of oxygen saturation in the APCV ranging from 16% to 44% relative to the veins of the contralateral hemisphere. In conclusion, APCV seen in SWI correspond to reduced levels of oxygen saturation and these abnormal veins can be identified using a susceptibility threshold on the QSM data. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Convergent evidence for abnormal striatal synaptic plasticity in dystonia

    PubMed Central

    Peterson, David A.; Sejnowski, Terrence J.; Poizner, Howard

    2010-01-01

    Dystonia is a functionally disabling movement disorder characterized by abnormal movements and postures. Although substantial recent progress has been made in identifying genetic factors, the pathophysiology of the disease remains a mystery. A provocative suggestion gaining broader acceptance is that some aspect of neural plasticity may be abnormal. There is also evidence that, at least in some forms of dystonia, sensorimotor “use” may be a contributing factor. Most empirical evidence of abnormal plasticity in dystonia comes from measures of sensorimotor cortical organization and physiology. However, the basal ganglia also play a critical role in sensorimotor function. Furthermore, the basal ganglia are prominently implicated in traditional models of dystonia, are the primary targets of stereotactic neurosurgical interventions, and provide a neural substrate for sensorimotor learning influenced by neuromodulators. Our working hypothesis is that abnormal plasticity in the basal ganglia is a critical link between the etiology and pathophysiology of dystonia. In this review we set up the background for this hypothesis by integrating a large body of disparate indirect evidence that dystonia may involve abnormalities in synaptic plasticity in the striatum. After reviewing evidence implicating the striatum in dystonia, we focus on the influence of two neuromodulatory systems: dopamine and acetylcholine. For both of these neuromodulators, we first describe the evidence for abnormalities in dystonia and then the means by which it may influence striatal synaptic plasticity. Collectively, the evidence suggests that many different forms of dystonia may involve abnormal plasticity in the striatum. An improved understanding of these altered plastic processes would help inform our understanding of the pathophysiology of dystonia, and, given the role of the striatum in sensorimotor learning, provide a principled basis for designing therapies aimed at the dynamic processes

  10. Altered Cortical Swallowing Processing in Patients with Functional Dysphagia: A Preliminary Study

    PubMed Central

    Wollbrink, Andreas; Warnecke, Tobias; Winkels, Martin; Pantev, Christo; Dziewas, Rainer

    2014-01-01

    Objective Current neuroimaging research on functional disturbances provides growing evidence for objective neuronal correlates of allegedly psychogenic symptoms, thereby shifting the disease concept from a psychological towards a neurobiological model. Functional dysphagia is such a rare condition, whose pathogenetic mechanism is largely unknown. In the absence of any organic reason for a patient's persistent swallowing complaints, sensorimotor processing abnormalities involving central neural pathways constitute a potential etiology. Methods In this pilot study we measured cortical swallow-related activation in 5 patients diagnosed with functional dysphagia and a matched group of healthy subjects applying magnetoencephalography. Source localization of cortical activation was done with synthetic aperture magnetometry. To test for significant differences in cortical swallowing processing between groups, a non-parametric permutation test was afterwards performed on individual source localization maps. Results Swallowing task performance was comparable between groups. In relation to control subjects, in whom activation was symmetrically distributed in rostro-medial parts of the sensorimotor cortices of both hemispheres, patients showed prominent activation of the right insula, dorsolateral prefrontal cortex and lateral premotor, motor as well as inferolateral parietal cortex. Furthermore, activation was markedly reduced in the left medial primary sensory cortex as well as right medial sensorimotor cortex and adjacent supplementary motor area (p<0.01). Conclusions Functional dysphagia - a condition with assumed normal brain function - seems to be associated with distinctive changes of the swallow-related cortical activation pattern. Alterations may reflect exaggerated activation of a widely distributed vigilance, self-monitoring and salience rating network that interferes with down-stream deglutition sensorimotor control. PMID:24586948

  11. Neural correlates of abnormal sensory discrimination in laryngeal dystonia.

    PubMed

    Termsarasab, Pichet; Ramdhani, Ritesh A; Battistella, Giovanni; Rubien-Thomas, Estee; Choy, Melissa; Farwell, Ian M; Velickovic, Miodrag; Blitzer, Andrew; Frucht, Steven J; Reilly, Richard B; Hutchinson, Michael; Ozelius, Laurie J; Simonyan, Kristina

    2016-01-01

    Aberrant sensory processing plays a fundamental role in the pathophysiology of dystonia; however, its underpinning neural mechanisms in relation to dystonia phenotype and genotype remain unclear. We examined temporal and spatial discrimination thresholds in patients with isolated laryngeal form of dystonia (LD), who exhibited different clinical phenotypes (adductor vs. abductor forms) and potentially different genotypes (sporadic vs. familial forms). We correlated our behavioral findings with the brain gray matter volume and functional activity during resting and symptomatic speech production. We found that temporal but not spatial discrimination was significantly altered across all forms of LD, with higher frequency of abnormalities seen in familial than sporadic patients. Common neural correlates of abnormal temporal discrimination across all forms were found with structural and functional changes in the middle frontal and primary somatosensory cortices. In addition, patients with familial LD had greater cerebellar involvement in processing of altered temporal discrimination, whereas sporadic LD patients had greater recruitment of the putamen and sensorimotor cortex. Based on the clinical phenotype, adductor form-specific correlations between abnormal discrimination and brain changes were found in the frontal cortex, whereas abductor form-specific correlations were observed in the cerebellum and putamen. Our behavioral and neuroimaging findings outline the relationship of abnormal sensory discrimination with the phenotype and genotype of isolated LD, suggesting the presence of potentially divergent pathophysiological pathways underlying different manifestations of this disorder.

  12. pitx2 Deficiency Results in Abnormal Ocular and Craniofacial Development in Zebrafish

    PubMed Central

    Liu, Yi; Semina, Elena V.

    2012-01-01

    Human PITX2 mutations are associated with Axenfeld-Rieger syndrome, an autosomal-dominant developmental disorder that involves ocular anterior segment defects, dental hypoplasia, craniofacial dysmorphism and umbilical abnormalities. Characterization of the PITX2 pathway and identification of the mechanisms underlying the anomalies associated with PITX2 deficiency is important for better understanding of normal development and disease; studies of pitx2 function in animal models can facilitate these analyses. A knockdown of pitx2 in zebrafish was generated using a morpholino that targeted all known alternative transcripts of the pitx2 gene; morphant embryos generated with the pitx2ex4/5 splicing-blocking oligomer produced abnormal transcripts predicted to encode truncated pitx2 proteins lacking the third (recognition) helix of the DNA-binding homeodomain. The morphological phenotype of pitx2ex4/5 morphants included small head and eyes, jaw abnormalities and pericardial edema; lethality was observed at ∼6–8-dpf. Cartilage staining revealed a reduction in size and an abnormal shape/position of the elements of the mandibular and hyoid pharyngeal arches; the ceratobranchial arches were also decreased in size. Histological and marker analyses of the misshapen eyes of the pitx2ex4/5 morphants identified anterior segment dysgenesis and disordered hyaloid vasculature. In summary, we demonstrate that pitx2 is essential for proper eye and craniofacial development in zebrafish and, therefore, that PITX2/pitx2 function is conserved in vertebrates. PMID:22303467

  13. Cortical excitability and neurology: insights into the pathophysiology

    PubMed Central

    Badawy, Radwa A.B.; Loetscher, Tobias; Macdonell, Richard A.L.; Brodtmann, Amy

    2012-01-01

    Summary Transcranial magnetic stimulation (TMS) is a technique developed to non-invasively investigate the integrity of human motor corticospinal tracts. Over the last three decades, the use of stimulation paradigms including single-pulse TMS, paired-pulse TMS, repetitive TMS, and integration with EEG and functional imaging have been developed to facilitate measurement of cortical excitability. Through the use of these protocols, TMS has evolved into an excellent tool for measuring cortical excitability. TMS has high sensitivity in detecting subtle changes in cortical excitability, and therefore it is also a good measure of disturbances associated with brain disorders. In this review, we appraise the current literature on cortical excitability studies using TMS in neurological disorders. We begin with a brief overview of current TMS measures and then show how these have added to our understanding of the underlying mechanisms of brain disorders. PMID:23402674

  14. Biomechanics of Single Cortical Neurons

    PubMed Central

    Bernick, Kristin B.; Prevost, Thibault P.; Suresh, Subra; Socrate, Simona

    2011-01-01

    This study presents experimental results and computational analysis of the large strain dynamic behavior of single neurons in vitro with the objective of formulating a novel quantitative framework for the biomechanics of cortical neurons. Relying on the atomic force microscopy (AFM) technique, novel testing protocols are developed to enable the characterization of neural soma deformability over a range of indentation rates spanning three orders of magnitude – 10, 1, and 0.1 μm/s. Modified spherical AFM probes were utilized to compress the cell bodies of neonatal rat cortical neurons in load, unload, reload and relaxation conditions. The cell response showed marked hysteretic features, strong non-linearities, and substantial time/rate dependencies. The rheological data were complemented with geometrical measurements of cell body morphology, i.e. cross-diameter and height estimates. A constitutive model, validated by the present experiments, is proposed to quantify the mechanical behavior of cortical neurons. The model aimed to correlate empirical findings with measurable degrees of (hyper-) elastic resilience and viscosity at the cell level. The proposed formulation, predicated upon previous constitutive model developments undertaken at the cortical tissue level, was implemented into a three-dimensional finite element framework. The simulated cell response was calibrated to the experimental measurements under the selected test conditions, providing a novel single cell model that could form the basis for further refinements. PMID:20971217

  15. Dynamic Mapping of Cortical Development before and after the Onset of Pediatric Bipolar Illness

    ERIC Educational Resources Information Center

    Gogtay, Nitin; Ordonez, Anna; Herman, David H.; Hayashi, Kiralee M.; Greenstein, Deanna; Vaituzis, Cathy; Lenane, Marge; Clasen, Liv; Sharp, Wendy; Giedd, Jay N.; Jung, David; Nugent, Tom F., III; Toga, Arthur W.; Leibenluft, Ellen; Thompson, Paul M.; Rapoport, Judith L.

    2007-01-01

    Background: There are, to date, no pre-post onset longitudinal imaging studies of bipolar disorder at any age. We report the first prospective study of cortical brain development in pediatric bipolar illness for 9 male children, visualized before and after illness onset. Method: We contrast this pattern with that observed in a matched group of…

  16. Postsynaptic density scaffold SAP102 regulates cortical synapse development through EphB and PAK signaling pathway

    PubMed Central

    Murata, Yasunobu; Constantine-Paton, Martha

    2013-01-01

    Membrane associated guanylate kinases (MAGUKs), including SAP102, PSD-95, PSD-93 and SAP97, are scaffolding proteins for ionotropic glutamate receptors at excitatory synapses. MAGUKs play critical roles in synaptic plasticity; however, details of signaling roles for each MAGUK remain largely unknown. Here we report that SAP102 regulates cortical synapse development through the EphB and PAK signaling pathways. Using lentivirus-delivered shRNAs, we found that SAP102 and PSD-95, but not PSD-93, are necessary for excitatory synapse formation and synaptic AMPA receptor localization in developing mouse cortical neurons. SAP102 knockdown (KD) increased numbers of elongated dendritic filopodia, which is often observed in mouse models and human patients with mental retardation. Further analysis revealed that SAP102 co-immunoprecipitated the receptor tyrosine kinase EphB2 and RacGEF Kalirin-7 in neonatal cortex, and SAP102 KD reduced surface expression and dendritic localization of EphB. Moreover, SAP102 KD prevented reorganization of actin filaments, synapse formation and synaptic AMPAR trafficking in response to EphB activation triggered by its ligand ephrinB. Lastly, p21-activated kinases (PAKs) were down-regulated in SAP102 KD neurons. These results demonstrate that SAP102 has unique roles in cortical synapse development by mediating EphB and its downstream PAK signaling pathway. Both SAP102 and PAKs are associated with X-linked mental retardation in humans; thus, synapse formation mediated by EphB/SAP102/PAK signaling in the early postnatal brain may be crucial for cognitive development. PMID:23486974

  17. Abnormal global processing along the dorsal visual pathway in autism: a possible mechanism for weak visuospatial coherence?

    PubMed

    Pellicano, Elizabeth; Gibson, Lisa; Maybery, Murray; Durkin, Kevin; Badcock, David R

    2005-01-01

    Frith and Happe (Frith, U., & Happe, F. (1994). Autism: Beyond theory of mind. Cognition, 50, 115-132) argue that individuals with autism exhibit 'weak central coherence': an inability to integrate elements of information into coherent wholes. Some authors have speculated that a high-level impairment might be present in the dorsal visual pathway in autism, and furthermore, that this might account for weak central coherence, at least at the visuospatial level. We assessed the integrity of the dorsal visual pathway in children diagnosed with an autism spectrum disorder (ASD), and in typically developing children, using two visual tasks, one examining functioning at higher levels of the dorsal cortical stream (Global Dot Motion (GDM)), and the other assessing lower-level dorsal stream functioning (Flicker Contrast Sensitivity (FCS)). Central coherence was tested using the Children's Embedded Figures Test (CEFT). Relative to the typically developing children, the children with ASD had shorter CEFT latencies and higher GDM thresholds but equivalent FCS thresholds. Additionally, CEFT latencies were inversely related to GDM thresholds in the ASD group. These outcomes indicate that the elevated global motion thresholds in autism are the result of high-level impairments in dorsal cortical regions. Weak visuospatial coherence in autism may be in the form of abnormal cooperative mechanisms in extra-striate cortical areas, which might contribute to differential performance when processing stimuli as Gestalts, including both dynamic (i.e., global motion perception) and static (i.e., disembedding performance) stimuli.

  18. Reduced right frontal cortical thickness in children, adolescents and adults with ADHD and its correlation to clinical variables: a cross-sectional study.

    PubMed

    Almeida, Luis G; Ricardo-Garcell, Josefina; Prado, Hugo; Barajas, Lázaro; Fernández-Bouzas, Antonio; Avila, David; Martínez, Reyna B

    2010-12-01

    Some longitudinal magnetic resonance imaging (MRI) studies have shown reduced volume or cortical thickness (CT) in the frontal cortices of individuals with attention-deficit/hyperactivity disorder (ADHD). These studies indicated that the aforementioned anatomical abnormalities disappear during adolescence. In contrast, cross-sectional studies on adults with ADHD have shown anatomical abnormalities in the frontal lobe region. It is not known whether the anatomical abnormalities in ADHD are a delay or a deviation in the encephalic maturation. The aim of this study was to compare CT in the frontal lobe of children, adolescents and adults of both genders presenting ADHD with that in corresponding healthy controls and to explore its relationship with the severity of the illness. An MRI scan study was performed on never-medicated ADHD patients. Twenty-one children (6-10 year-olds), twenty adolescents (14-17 year-olds) and twenty adults (25-35 year-olds) were matched with healthy controls according to age and sex. CT measurements were performed using the Freesurfer image analysis suite. The data showed regions in the right superior frontal gyrus where CT was reduced in children, adolescents and adults with ADHD in contrast to their respective healthy controls. The CT of these regions correlated with the severity of the illness. In subjects with ADHD, there is a thinning of the cortical surface in the right frontal lobe, which is present in the children, adolescents and in adults. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Functional Significance of Atypical Cortical Organization in Spina Bifida Myelomeningocele: Relations of Cortical Thickness and Gyrification with IQ and Fine Motor Dexterity

    PubMed Central

    Treble, Amery; Juranek, Jenifer; Stuebing, Karla K.; Dennis, Maureen; Fletcher, Jack M.

    2013-01-01

    The cortex in spina bifida myelomeningocele (SBM) is atypically organized, but it is not known how specific features of atypical cortical organization promote or disrupt cognitive and motor function. Relations of deviant cortical thickness and gyrification with IQ and fine motor dexterity were investigated in 64 individuals with SBM and 26 typically developing (TD) individuals, aged 8–28 years. Cortical thickness and 3D local gyrification index (LGI) were quantified from 33 cortical regions per hemisphere using FreeSurfer. Results replicated previous findings, showing regions of higher and lower cortical thickness and LGI in SBM relative to the TD comparison individuals. Cortical thickness and LGI were negatively associated in most cortical regions, though less consistently in the TD group. Whereas cortical thickness and LGI tended to be negatively associated with IQ and fine motor outcomes in regions that were thicker or more gyrified in SBM, associations tended to be positive in regions that were thinner or less gyrified in SBM. The more deviant the levels of cortical thickness and LGI—whether higher or lower relative to the TD group—the more impaired the IQ and fine motor outcomes, suggesting that these cortical atypicalities in SBM are functionally maladaptive, rather than adaptive. PMID:22875857

  20. Impaired coupling of local and global functional feedbacks underlies abnormal synchronization and negative symptoms of schizophrenia.

    PubMed

    Noh, Kyungchul; Shin, Kyung Soon; Shin, Dongkwan; Hwang, Jae Yeon; Kim, June Sic; Jang, Joon Hwan; Chung, Chun Kee; Kwon, Jun Soo; Cho, Kwang-Hyun

    2013-04-10

    Abnormal synchronization of brain oscillations is found to be associated with various core symptoms of schizophrenia. However, the underlying mechanism of this association remains yet to be elucidated. In this study, we found that coupled local and global feedback (CLGF) circuits in the cortical functional network are related to the abnormal synchronization and also correlated to the negative symptom of schizophrenia. Analysis of the magnetoencephalography data obtained from patients with chronic schizophrenia during rest revealed an increase in beta band synchronization and a reduction in gamma band power compared to healthy controls. Using a feedback identification method based on non-causal impulse responses, we constructed functional feedback networks and found that CLGF circuits were significantly reduced in schizophrenia. From computational analysis on the basis of the Wilson-Cowan model, we unraveled that the CLGF circuits are critically involved in the abnormal synchronization and the dynamical switching between beta and gamma bands power in schizophrenia. Moreover, we found that the abundance of CLGF circuits was negatively correlated with the development of negative symptoms of schizophrenia, suggesting that the negative symptom is closely related to the impairment of this circuit. Our study implicates that patients with schizophrenia might have the impaired coupling of inter- and intra-regional functional feedbacks and that the CLGF circuit might serve as a critical bridge between abnormal synchronization and the negative symptoms of schizophrenia.

  1. [Acquired drives. The cortical mechanism responsible to the emergence and development of social existence].

    PubMed

    József, Knoll

    2007-10-01

    This paper is a brief interpretation of the theory (J. Knoll: The Brain and Its Self, Springer, 2005) the main message of which is that the appearance of the mammalian brain with the ability to acquire drives ensured the development of social life, and eventually led to the evolution of the human society. In the mammalian brain capable to acquire drives, untrained cortical neurons (Group 1) possess the potentiality to change their functional state in response to practice, training, or experience in three consecutive stages, namely, by getting involved in (a) an extinguishable conditioned reflex (ECR) (Group 2), (b) an inextinguishable conditioned reflex (ICR) (Group 3), or (c)an acquired drive (Group 4). The activity of the cortical neurons belonging to Group 3 and 4 is inseparable from conscious perception. In any moment of life self is the sum of those cortical neurons that have already changed their functional significance and belong to Group 3 or 4. Metaphorically, every human being is born with a telencephalon that resembles a book with over 100 billion empty pages (untrained, naive cortical neurons, Group 1), and with the capacity to inscribe as much as possible in this book throughout life. Whenever a drive is acquired, chains of ICRs are fixed, neurons responsible for emotions are also coupled to the integral whole, thus cognitive/volitional consciousness is necessarily inseparable from an affective state of consciousness. Cortical neurons belonging to Group 3 or 4 continuously synthesize their specific enhancer substance within their capacity. This means that even in the vigilant resting state (leisure), in the absence of a dominant drive, as well as in the non-vigilant resting state (sleeping), the cortical neurons representing the totality of the already fixed ICRs and acquired drives are permanently under the influence of their specific enhancer substance. Although the level of this permanent, undulating activation remains low, it is unpredictable as to

  2. The impact of ADHD persistence, recent cannabis use, and age of regular cannabis use onset on subcortical volume and cortical thickness in young adults.

    PubMed

    Lisdahl, Krista M; Tamm, Leanne; Epstein, Jeffery N; Jernigan, Terry; Molina, Brooke S G; Hinshaw, Stephen P; Swanson, James M; Newman, Erik; Kelly, Clare; Bjork, James M

    2016-04-01

    Both Attention Deficit Hyperactivity Disorder (ADHD) and chronic cannabis (CAN) use have been associated with brain structural abnormalities, although little is known about the effects of both in young adults. Participants included: those with a childhood diagnosis of ADHD who were CAN users (ADHD_CAN; n=37) and non-users (NU) (ADHD_NU; n=44) and a local normative comparison group (LNCG) who did (LNCG_CAN; n=18) and did not (LNCG_NU; n=21) use CAN regularly. Multiple regressions and MANCOVAs were used to examine the independent and interactive effects of a childhood ADHD diagnosis and CAN group status and age of onset (CUO) on subcortical volumes and cortical thickness. After controlling for age, gender, total brain volume, nicotine use, and past-year binge drinking, childhood ADHD diagnosis did not predict brain structure; however, persistence of ADHD was associated with smaller left precentral/postcentral cortical thickness. Compared to all non-users, CAN users had decreased cortical thickness in right hemisphere superior frontal sulcus, anterior cingulate, and isthmus of cingulate gyrus regions and left hemisphere superior frontal sulcus and precentral gyrus regions. Early cannabis use age of onset (CUO) in those with ADHD predicted greater right hemisphere superior frontal and postcentral cortical thickness. Young adults with persistent ADHD demonstrated brain structure abnormalities in regions underlying motor control, working memory and inhibitory control. Further, CAN use was linked with abnormal brain structure in regions with high concentrations of cannabinoid receptors. Additional large-scale longitudinal studies are needed to clarify how substance use impacts neurodevelopment in youth with and without ADHD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. The Impact of ADHD Persistence, Recent Cannabis Use, and Age of Regular Cannabis Use Onset on Subcortical Volume and Cortical Thickness in Young Adults

    PubMed Central

    Lisdahl, Krista M.; Tamm, Leanne; Epstein, Jeffery N.; Jernigan, Terry; Molina, Brooke S.G.; Hinshaw, Stephen P.; Swanson, James M.; Newman, Erik; Kelly, Clare; Bjork, James M.

    2017-01-01

    Background Both Attention Deficit Hyperactivity Disorder (ADHD) and chronic cannabis (CAN) use have been associated with brain structural abnormalities, although little is known about the effects of both in young adults. Methods Participants included: those with a childhood diagnosis of ADHD who were CAN users (ADHD_CAN; n=37) and non-users (NU) (ADHD_NU; n=44) and a local normative comparison group (LNCG) who did (LNCG_CAN; n=18) and did not (LNCG_NU; n=21) use CAN regularly. Multiple regressions and MANCOVAs were used to examine the independent and interactive effects of a childhood ADHD diagnosis and CAN group status and age of onset (CUO) on subcortical volumes and cortical thickness. Results After controlling for age, gender, total brain volume, nicotine use, and past-year binge drinking, childhood ADHD diagnosis did not predict brain structure; however, persistence of ADHD was associated with smaller left precentral/postcentral cortical thickness. Compared to all non-users, CAN users had decreased cortical thickness in right hemisphere superior frontal sulcus, anterior cingulate, and isthmus of cingulate gyrus regions and left hemisphere superior frontal sulcus and precentral gyrus regions. Early cannabis use age of onset (CUO) in those with ADHD predicted greater right hemisphere superior frontal and postcentral cortical thickness. Discussion Young adults with persistent ADHD demonstrated brain structure abnormalities in regions underlying motor control, working memory and inhibitory control. Further, CAN use was linked with abnormal brain structure in regions with high concentrations of cannabinoid receptors. Additional large-scale longitudinal studies are needed to clarify how substance use impacts neurodevelopment in youth with and without ADHD. PMID:26897585

  4. Measures of Cortical Grey Matter Structure and Development in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Mak-Fan, Kathleen M.; Taylor, Margot J.; Roberts, Wendy; Lerch, Jason P.

    2012-01-01

    The current study examined group differences in cortical volume, surface area, and thickness with age, in a group of typically developing children and a group of children with ASD aged 6-15 years. Results showed evidence of age by group interactions, suggesting atypicalities in the relation between these measures and age in the ASD group.…

  5. Gestational lead exposure induces developmental abnormalities and up-regulates apoptosis of fetal cerebellar cells in rats.

    PubMed

    Mousa, Alyaa M; Al-Fadhli, Ameera S; Rao, Muddanna S; Kilarkaje, Narayana

    2015-01-01

    Lead (Pb), a known environmental toxicant, adversely affects almost all organ systems. In this study, we investigated the effects of maternal lead exposure on fetal rat cerebellum. Female Sprague-Dawley rats were given lead nitrate in drinking water (0, 0.5, and 1%) for two weeks before conception, and during pregnancy. Fetuses were collected by caesarian section on gestational day 21 and observed for developmental abnormalities. The fetal cerebellar sections from control and 1% lead group were stained with cresyl violet. Immunohistochemical expressions of p53, Bax, Bcl-2, and caspase 3 were quantified by AnalySIS image analyzer (Life Science, Germany). Lead exposure induced developmental abnormalities of eyes, ear, limbs, neck and ventral abdominal wall; however, these abnormalities were commonly seen in the 1% lead-treated group. In addition, lead also caused fetal mortality and reduced body growth in both dose groups and reduced brain weight in the 1% lead-treated group. The fetal cerebella from the 1% lead-treated group showed unorganized cerebellar cortical layers, and degenerative changes in granule and Purkinje cells such as the formation of clumps of Nissl granules. An increase in Bax and caspase 3, and a decrease in Bcl-2 (p < 0.05), but not in p53, showed apoptosis of the neurons. In conclusion, gestational lead exposure in rats induces fetal toxicity and developmental abnormalities. The lead exposure also impairs development of cerebellar layers, induces structural changes, and apoptosis in the fetal cerebellar cortex. These results suggest that lead exposure during gestation is extremely toxic to developing cerebellum in rats.

  6. Neonatal brain abnormalities and memory and learning outcomes at 7 years in children born very preterm.

    PubMed

    Omizzolo, Cristina; Scratch, Shannon E; Stargatt, Robyn; Kidokoro, Hiroyuki; Thompson, Deanne K; Lee, Katherine J; Cheong, Jeanie; Neil, Jeffrey; Inder, Terrie E; Doyle, Lex W; Anderson, Peter J

    2014-01-01

    Using prospective longitudinal data from 198 very preterm and 70 full term children, this study characterised the memory and learning abilities of very preterm children at 7 years of age in both verbal and visual domains. The relationship between the extent of brain abnormalities on neonatal magnetic resonance imaging (MRI) and memory and learning outcomes at 7 years of age in very preterm children was also investigated. Neonatal MRI scans were qualitatively assessed for global, white-matter, cortical grey-matter, deep grey-matter, and cerebellar abnormalities. Very preterm children performed less well on measures of immediate memory, working memory, long-term memory, and learning compared with term-born controls. Neonatal brain abnormalities, and in particular deep grey-matter abnormality, were associated with poorer memory and learning performance at 7 years in very preterm children. Findings support the importance of cerebral neonatal pathology for predicting later memory and learning function.

  7. Abnormal electroretinogram associated with developmental brain anomalies.

    PubMed Central

    Cibis, G W; Fitzgerald, K M

    1995-01-01

    PURPOSE: We have encountered abnormal ERGs associated with optic nerve hypoplasia, macular, optic nerve and chorioretinal colobomata and developmental brain anomalies. Brain anomalies include cortical dysgenesis, lissencephaly, porencephaly, cerebellar and corpus callosum hypoplasia. We describe six exemplar cases. METHODS: Scotopic and photopic ERGs adherent to international standards were performed as well as photopic ERGs to long-duration stimuli. CT or MRI studies were also done. The ERGs were compared to age-matched normal control subjects. RESULTS: ERG changes include reduced amplitude b-waves to blue and red stimuli under scotopic testing conditions. Implicit times were often delayed. The photopic responses also showed reduced amplitude a- and b-waves with implicit time delays. The long-duration photopic ERG done in one case shows attenuation of both ON- and OFF-responses. CONCLUSIONS: Common underlying developmental genetic or environmental unifying casualties are speculated to be at fault in causing these cases of associated retinal and brain abnormalities. No single etiology is expected. Multiple potential causes acting early in embryogenesis effecting neuronal induction, migration and differentiation are theorized. These occur at a time when brain and retinal cells are sufficiently undifferentiated to be similarly effected. We call these cases examples of Brain Retina Neuroembryodysgenesis (BRNED). Homeobox and PAX genes with global neuronal developmental influences are gene candidates to unify the observed disruption of brain and retinal cell development. The ERG can provide a valuable clinical addition in understanding and ultimately classifying these disorders. Images FIGURE 1 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 PMID:8719676

  8. Complement inhibition by hydroxychloroquine prevents placental and fetal brain abnormalities in antiphospholipid syndrome.

    PubMed

    Bertolaccini, Maria Laura; Contento, Gregorio; Lennen, Ross; Sanna, Giovanni; Blower, Philip J; Ma, Michelle T; Sunassee, Kavitha; Girardi, Guillermina

    2016-12-01

    Placental ischemic disease and adverse pregnancy outcomes are frequently observed in patients with antiphospholipid syndrome (APS). Despite the administration of conventional antithrombotic treatment a significant number of women continue to experience adverse pregnancy outcomes, with uncertain prevention and management. Efforts to develop effective pharmacological strategies for refractory obstetric APS cases will be of significant clinical benefit for both mothers and fetuses. Although the antimalarial drug, hydroxychloroquine (HCQ) is increasingly used to treat pregnant women with APS, little is known about its efficacy and mechanism of action of HCQ. Because complement activation plays a crucial and causative role in placental ischemia and abnormal fetal brain development in APS we hypothesised that HCQ prevents these pregnancy complications through inhibition of complement activation. Using a mouse model of obstetric APS that closely resembles the clinical condition, we found that HCQ prevented fetal death and the placental metabolic changes -measured by proton magnetic resonance spectroscopy in APS-mice. Using 111 In labelled antiphospholipid antibodies (aPL) we identified the placenta and the fetal brain as the main organ targets in APS-mice. Using this same method, we found that HCQ does not inhibit aPL binding to tissues as was previously suggested from in vitro studies. While HCQ did not affect aPL binding to fetal brain it prevented fetal brain abnormal cortical development. HCQ prevented complement activation in vivo and in vitro. Complement C5a levels in serum samples from APS patients and APS-mice were lower after treatment with HCQ while the antibodies titres remained unchanged. HCQ prevented not only placental insufficiency but also abnormal fetal brain development in APS. By inhibiting complement activation, HCQ might also be an effective antithrombotic therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Auditory Processing in Infancy: Do Early Abnormalities Predict Disorders of Language and Cognitive Development?

    ERIC Educational Resources Information Center

    Guzzetta, Francesco; Conti, Guido; Mercuri, Eugenio

    2011-01-01

    Increasing attention has been devoted to the maturation of sensory processing in the first year of life. While the development of cortical visual function has been thoroughly studied, much less information is available on auditory processing and its early disorders. The aim of this paper is to provide an overview of the assessment techniques for…

  10. Cortical tremor: a variant of cortical reflex myoclonus.

    PubMed

    Ikeda, A; Kakigi, R; Funai, N; Neshige, R; Kuroda, Y; Shibasaki, H

    1990-10-01

    Two patients with action tremor that was thought to originate in the cerebral cortex showed fine shivering-like finger twitching provoked mainly by action and posture. Surface EMG showed relatively rhythmic discharge at a rate of about 9 Hz, which resembled essential tremor. However, electrophysiologic studies revealed giant somatosensory evoked potentials (SEPs) with enhanced long-loop reflex and premovement cortical spike by the jerk-locked averaging method. Treatment with beta-blocker showed no effect, but anticonvulsants such as clonazepam, valproate, and primidone were effective to suppress the tremor and the amplitude of SEPs. We call this involuntary movement "cortical tremor," which is in fact a variant of cortical reflex myoclonus.

  11. Post-adolescent developmental changes in cortical complexity.

    PubMed

    Sandu, Anca-Larisa; Izard, Edouard; Specht, Karsten; Beneventi, Harald; Lundervold, Arvid; Ystad, Martin

    2014-11-27

    Post-adolescence is known to be a period of general maturation and development in the human brain. In brain imaging, volumetric and morphologic cortical grey-matter changes can easily be assessed, but the analysis of cortical complexity seems to have been broadly neglected for this age interval. Magnetic resonance imaging (MRI) was used to acquire structural brain images. The study involved 17 adolescents (mean age 14.1 ± 0.27, 11 girls) who were compared with 14 young adults (mean age 24.24 ± 2.76, 7 women) for measures of brain complexity (fractal dimension--FD), grey matter (GM) volume and surface-area of cortical ribbon. FD was calculated using box-counting and Minkowski-Bouligand methods; FD and GM volume were measured for the whole brain, each hemisphere and lobes: frontal, occipital, parietal and temporal. The results show that the adults have a lower cortical complexity than the adolescents, which was significant for whole brain, left and right hemisphere, frontal and parietal lobes for both genders; and only for males in left temporal lobe. The GM volume was smaller in men than in boys for almost all measurements, and smaller in women than in girls just for right parietal lobe. A significant Pearson correlation was found between FD and GM volume for whole brain and each hemisphere in both genders. The decrease of the GM surface-area was significant in post-adolescence for males, not for females. During post-adolescence there are common changes in cortical complexity in the same regions for both genders, but there are also gender specific changes in some cortical areas. The sex differences from different cortical measurements (FD, GM volume and surface-area of cortical ribbon) could suggest a maturation delay in specific brain regions for each gender in relation to the other and might be explained through the functional role of the corresponding regions reflected in gender difference of developed abilities.

  12. Altered cortical GABA neurotransmission in schizophrenia: insights into novel therapeutic strategies.

    PubMed

    Stan, Ana D; Lewis, David A

    2012-06-01

    Altered markers of cortical GABA neurotransmission are among the most consistently observed abnormalities in postmortem studies of schizophrenia. The altered markers are particularly evident between the chandelier class of GABA neurons and their synaptic targets, the axon initial segment (AIS) of pyramidal neurons. For example, in the dorsolateral prefrontal cortex of subjects with schizophrenia immunoreactivity for the GABA membrane transporter is decreased in presynaptic chandelier neuron axon terminals, whereas immunoreactivity for the GABAA receptor α2 subunit is increased in postsynaptic AIS. Both of these molecular changes appear to be compensatory responses to a presynaptic deficit in GABA synthesis, and thus could represent targets for novel therapeutic strategies intended to augment the brain's own compensatory mechanisms. Recent findings that GABA inputs from neocortical chandelier neurons can be powerfully excitatory provide new ideas about the role of these neurons in the pathophysiology of cortical dysfunction in schizophrenia, and consequently in the design of pharmacological interventions.

  13. Disruption of neurogenesis and cortical development in transgenic mice misexpressing Olig2, a gene in the Down syndrome critical region.

    PubMed

    Liu, Wei; Zhou, Hui; Liu, Lei; Zhao, Chuntao; Deng, Yaqi; Chen, Lina; Wu, Laiman; Mandrycky, Nicole; McNabb, Christopher T; Peng, Yuanbo; Fuchs, Perry N; Lu, Jie; Sheen, Volney; Qiu, Mengsheng; Mao, Meng; Lu, Q Richard

    2015-05-01

    The basic helix-loop-helix (bHLH) transcription factor Olig2 is crucial for mammalian central nervous system development. Human ortholog OLIG2 is located in the Down syndrome critical region in trisomy 21. To investigate the effect of Olig2 misexpression on brain development, we generated a developmentally regulated Olig2-overexpressing transgenic line with a Cre/loxP system. The transgenic mice with Olig2 misexpression in cortical neural stem/progenitor cells exhibited microcephaly, cortical dyslamination, hippocampus malformation, and profound motor deficits. Ectopic misexpression of Olig2 impaired cortical progenitor proliferation and caused precocious cell cycle exit. Massive neuronal cell death was detected in the developing cortex of Olig2-misexpressing mice. In addition, Olig2 misexpression led to a significant downregulation of neuronal specification factors including Ngn1, Ngn2 and Pax6, and a defect in cortical neurogenesis. Chromatin-immunoprecipitation and sequencing (ChIP-Seq) analysis indicates that Olig2 directly targets the promoter and/or enhancer regions of Nfatc4, Dscr1/Rcan1 and Dyrk1a, the critical neurogenic genes that contribute to Down syndrome phenotypes, and inhibits their expression. Together, our study suggests that Olig2 misexpression in neural stem cells elicits neurogenesis defects and neuronal cell death, which may contribute to developmental disorders including Down syndrome, where OLIG2 is triplicated on chromosomal 21. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Large-scale cortical volume correlation networks reveal disrupted small world patterns in Parkinson's disease.

    PubMed

    Wu, Qiong; Gao, Yang; Liu, Ai-Shi; Xie, Li-Zhi; Qian, Long; Yang, Xiao-Guang

    2018-01-01

    To date, the most frequently reported neuroimaging biomarkers in Parkinson's disease (PD) are direct brain imaging measurements focusing on local disrupted regions. However, the notion that PD is related to abnormal functional and structural connectivity has received support in the past few years. Here, we employed graph theory to analyze the structural co-variance networks derived from 50 PD patients and 48 normal controls (NC). Then, the small world properties of brain networks were assessed in the structural networks that were constructed based on cortical volume data. Our results showed that both the PD and NC groups had a small world architecture in brain structural networks. However, the PD patients had a higher characteristic path length and clustering coefficients compared with the NC group. With regard to the nodal centrality, 11 regions, including 3 association cortices, 5 paralimbic cortices, and 3 subcortical regions were identified as hubs in the PD group. In contrast, 10 regions, including 7 association cortical regions, 2 paralimbic cortical regions, and the primary motor cortex region, were identified as hubs. Moreover, the regional centrality was profoundly affected in PD patients, including decreased nodal centrality in the right inferior occipital gyrus and the middle temporal gyrus and increased nodal centrality in the right amygdala, the left caudate and the superior temporal gyrus. In addition, the structural cortical network of PD showed reduced topological stability for targeted attacks. Together, this study shows that the coordinated patterns of cortical volume network are widely altered in PD patients with a decrease in the efficiency of parallel information processing. These changes provide structural evidence to support the concept that the core pathophysiology of PD is associated with disruptive alterations in the coordination of large-scale brain networks that underlie high-level cognition. Copyright © 2017. Published by Elsevier B.V.

  15. Localizing gray matter deficits in late-onset depression using computational cortical pattern matching methods.

    PubMed

    Ballmaier, Martina; Kumar, Anand; Thompson, Paul M; Narr, Katherine L; Lavretsky, Helen; Estanol, Laverne; Deluca, Heather; Toga, Arthur W

    2004-11-01

    The authors used magnetic resonance imaging and an image analysis technique known as cortical pattern matching to map cortical gray matter deficits in elderly depressed patients with an illness onset after age 60 (late-onset depression). Seventeen patients with late-onset depression (11 women and six men; mean age=75.24, SD=8.52) and 17 group-matched comparison subjects (11 women and six men; mean age=73.88, SD=7.61) were included. Detailed spatial analyses of gray matter were conducted across the entire cortex by measuring local proportions of gray matter at thousands of homologous cortical surface locations in each subject, and these patterns were matched across subjects by using elastic transformations to align sulcal topography. To visualize regional changes, statistical differences were mapped at each cortical surface location in three dimensions. The late-onset depression group exhibited significant gray matter deficits in the right lateral temporal cortex and the right parietal cortex, where decreases were most pronounced in sensorimotor regions. The statistical maps also showed gray matter deficits in the same regions of the left hemisphere that approached significance after permutation testing. No significant group differences were detected in frontal cortices or any other anatomical region. Regionally specific decreases of gray matter occur in late-onset depression, supporting the hypothesis that this subset of elderly patients with major depression presents with certain unique neuroanatomical abnormalities that may differ from patients with an earlier onset of illness.

  16. Cortical thickness correlates of minor neurological signs in patients with first episode psychosis.

    PubMed

    Ciufolini, Simone; Ponteduro, Maria Francesca; Reis-Marques, Tiago; Taylor, Heather; Mondelli, Valeria; Pariante, Carmine M; Bonaccorso, Stefania; Chan, Raymond; Simmons, Andy; David, Anthony; Di Forti, Marta; Murray, Robin M; Dazzan, Paola

    2018-05-18

    Neurological soft signs (NSS) are subtle abnormalities of motor and sensory function that are present in the absence of localized brain pathological lesions. In psychoses they have been consistently associated with a distinct pattern of cortical and subcortical brain structural alterations at the level of the heteromodal cortex and basal ganglia. However, a more specific and accurate evaluation of the cytoarchitecture of the cortical mantle could further advance our understanding of the neurobiological substrate of psychosis. We investigated the relationship between brain structure and NSS in a sample of 66 patients at their first episode of psychosis. We used the Neurological Evaluation Scale for neurological assessment and high-resolution MRI and Freesurfer to explore cortical thickness and surface area. Higher rates of NSS were associated with a reduction of cortical thickness in the precentral and postcentral gyri, inferior-parietal, superior temporal, and fusiform gyri. Higher rates of NSS were also associated with smaller surface areas of superior temporal gyrus and frontal regions (including middle frontal, superior and orbito-frontal gyri). Finally, more sensory integration signs were also associated with larger surface area of the latero-occipital region. We conclude that the presence of NSS in psychosis is associated with distinct but widespread changes in cortical thickness and surface area, in areas crucial for sensory-motor integration and for the fluid execution of movement. Studying these morphological correlates with advanced neuroimaging techniques can continue to improve our knowledge on the neurobiological substrate of these important functional correlates of psychosis. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  17. Construction of 4D high-definition cortical surface atlases of infants: Methods and applications.

    PubMed

    Li, Gang; Wang, Li; Shi, Feng; Gilmore, John H; Lin, Weili; Shen, Dinggang

    2015-10-01

    In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, analysis, visualization, and comparison of results across individuals and different studies. However, existing cortical surface atlases created for adults are not suitable for infant brains during the first two postnatal years, which is the most dynamic period of postnatal structural and functional development of the highly-folded cerebral cortex. Therefore, spatiotemporal cortical surface atlases for infant brains are highly desired yet still lacking for accurate mapping of early dynamic brain development. To bridge this significant gap, leveraging our infant-dedicated computational pipeline for cortical surface-based analysis and the unique longitudinal infant MRI dataset acquired in our research center, in this paper, we construct the first spatiotemporal (4D) high-definition cortical surface atlases for the dynamic developing infant cortical structures at seven time points, including 1, 3, 6, 9, 12, 18, and 24 months of age, based on 202 serial MRI scans from 35 healthy infants. For this purpose, we develop a novel method to ensure the longitudinal consistency and unbiasedness to any specific subject and age in our 4D infant cortical surface atlases. Specifically, we first compute the within-subject mean cortical folding by unbiased groupwise registration of longitudinal cortical surfaces of each infant. Then we establish longitudinally-consistent and unbiased inter-subject cortical correspondences by groupwise registration of the geometric features of within-subject mean cortical folding across all infants. Our 4D surface atlases capture both longitudinally-consistent dynamic mean shape changes and the individual variability of cortical folding during early brain development. Experimental results on two independent infant MRI datasets show that using our 4D infant cortical surface atlases as templates leads to significantly improved accuracy for spatial normalization

  18. APC/C-Cdh1 coordinates neurogenesis and cortical size during development

    NASA Astrophysics Data System (ADS)

    Delgado-Esteban, Maria; García-Higuera, Irene; Maestre, Carolina; Moreno, Sergio; Almeida, Angeles

    2013-12-01

    The morphology of the adult brain is the result of a delicate balance between neural progenitor proliferation and the initiation of neurogenesis in the embryonic period. Here we assessed whether the anaphase-promoting complex/cyclosome (APC/C) cofactor, Cdh1—which regulates mitosis exit and G1-phase length in dividing cells—regulates neurogenesis in vivo. We use an embryo-restricted Cdh1 knockout mouse model and show that functional APC/C-Cdh1 ubiquitin ligase activity is required for both terminal differentiation of cortical neurons in vitro and neurogenesis in vivo. Further, genetic ablation of Cdh1 impairs the ability of APC/C to promote neurogenesis by delaying the exit of the progenitor cells from the cell cycle. This causes replicative stress and p53-mediated apoptotic death resulting in decreased number of cortical neurons and cortex size. These results demonstrate that APC/C-Cdh1 coordinates cortical neurogenesis and size, thus posing Cdh1 in the molecular pathogenesis of congenital neurodevelopmental disorders, such as microcephaly.

  19. Cortical neuroanatomic correlates of symptom severity in primary progressive aphasia

    PubMed Central

    Sapolsky, D.; Bakkour, A.; Negreira, A.; Nalipinski, P.; Weintraub, S.; Mesulam, M.-M.; Caplan, D.; Dickerson, B.C.

    2010-01-01

    Objective: To test the validity and reliability of a new measure of clinical impairment in primary progressive aphasia (PPA), the Progressive Aphasia Severity Scale (PASS), and to investigate relationships with MRI-based cortical thickness biomarkers for localizing and quantifying the severity of anatomic abnormalities. Methods: Patients with PPA were rated using the PASS and underwent performance-based language testing and MRI scans that were processed for cortical thickness measures. Results: The level of impairment in PASS fluency, syntax/grammar, and word comprehension showed strong specific correlations with performance-based measures of these domains of language, and demonstrated high interrater reliability. Left inferior frontal thinning correlated with impairment in fluency and grammar/syntax, while left temporopolar thinning correlated with impairment in word comprehension. Discriminant function analysis demonstrated that a combination of left inferior frontal, left temporopolar, and left superior temporal sulcal thickness separated the 3 PPA subtypes from each other with 100% accuracy (87% accuracy in a leave-one-out analysis). Conclusions: The PASS, a novel measure of the severity of clinical impairment within domains of language typically affected in PPA, demonstrates reliable and valid clinical-behavioral properties. Furthermore, the presence of impairment in individual PASS domains demonstrates specific relationships with focal abnormalities in particular brain regions and the severity of impairment is strongly related to the severity of anatomic abnormality within the relevant brain region. These anatomic imaging biomarkers perform well in classifying PPA subtypes. These data provide robust support for the value of this novel clinical measure and the new imaging measure as markers for potential use in clinical research and trials in PPA. GLOSSARY AD = Alzheimer disease; BDAE = Boston Diagnostic Aphasia Examination; CDR = Clinical Dementia Rating; CSB

  20. Cortical maturation and myelination in healthy toddlers and young children.

    PubMed

    Deoni, Sean C L; Dean, Douglas C; Remer, Justin; Dirks, Holly; O'Muircheartaigh, Jonathan

    2015-07-15

    The maturation of cortical structures, and the establishment of their connectivity, are critical neurodevelopmental processes that support and enable cognitive and behavioral functioning. Measures of cortical development, including thickness, curvature, and gyrification have been extensively studied in older children, adolescents, and adults, revealing regional associations with cognitive performance, and alterations with disease or pathology. In addition to these gross morphometric measures, increased attention has recently focused on quantifying more specific indices of cortical structure, in particular intracortical myelination, and their relationship to cognitive skills, including IQ, executive functioning, and language performance. Here we analyze the progression of cortical myelination across early childhood, from 1 to 6 years of age, in vivo for the first time. Using two quantitative imaging techniques, namely T1 relaxation time and myelin water fraction (MWF) imaging, we characterize myelination throughout the cortex, examine developmental trends, and investigate hemispheric and gender-based differences. We present a pattern of cortical myelination that broadly mirrors established histological timelines, with somatosensory, motor and visual cortices myelinating by 1 year of age; and frontal and temporal cortices exhibiting more protracted myelination. Developmental trajectories, defined by logarithmic functions (increasing for MWF, decreasing for T1), were characterized for each of 68 cortical regions. Comparisons of trajectories between hemispheres and gender revealed no significant differences. Results illustrate the ability to quantitatively map cortical myelination throughout early neurodevelopment, and may provide an important new tool for investigating typical and atypical development. Copyright © 2015. Published by Elsevier Inc.

  1. Automatic localization of cerebral cortical malformations using fractal analysis.

    PubMed

    De Luca, A; Arrigoni, F; Romaniello, R; Triulzi, F M; Peruzzo, D; Bertoldo, A

    2016-08-21

    Malformations of cortical development (MCDs) encompass a variety of brain disorders affecting the normal development and organization of the brain cortex. The relatively low incidence and the extreme heterogeneity of these disorders hamper the application of classical group level approaches for the detection of lesions. Here, we present a geometrical descriptor for a voxel level analysis based on fractal geometry, then define two similarity measures to detect the lesions at single subject level. The pipeline was applied to 15 normal children and nine pediatric patients affected by MCDs following two criteria, maximum accuracy (WACC) and minimization of false positives (FPR), and proved that our lesion detection algorithm is able to detect and locate abnormalities of the brain cortex with high specificity (WACC  =  85%, FPR  =  96%), sensitivity (WACC  =  83%, FPR  =  63%) and accuracy (WACC  =  85%, FPR  =  90%). The combination of global and local features proves to be effective, making the algorithm suitable for the detection of both focal and diffused malformations. Compared to other existing algorithms, this method shows higher accuracy and sensitivity.

  2. Automatic localization of cerebral cortical malformations using fractal analysis

    NASA Astrophysics Data System (ADS)

    De Luca, A.; Arrigoni, F.; Romaniello, R.; Triulzi, F. M.; Peruzzo, D.; Bertoldo, A.

    2016-08-01

    Malformations of cortical development (MCDs) encompass a variety of brain disorders affecting the normal development and organization of the brain cortex. The relatively low incidence and the extreme heterogeneity of these disorders hamper the application of classical group level approaches for the detection of lesions. Here, we present a geometrical descriptor for a voxel level analysis based on fractal geometry, then define two similarity measures to detect the lesions at single subject level. The pipeline was applied to 15 normal children and nine pediatric patients affected by MCDs following two criteria, maximum accuracy (WACC) and minimization of false positives (FPR), and proved that our lesion detection algorithm is able to detect and locate abnormalities of the brain cortex with high specificity (WACC  =  85%, FPR  =  96%), sensitivity (WACC  =  83%, FPR  =  63%) and accuracy (WACC  =  85%, FPR  =  90%). The combination of global and local features proves to be effective, making the algorithm suitable for the detection of both focal and diffused malformations. Compared to other existing algorithms, this method shows higher accuracy and sensitivity.

  3. Volumetric abnormalities in connectivity-based subregions of the thalamus in patients with chronic schizophrenia.

    PubMed

    Kim, Jae-Jin; Kim, Dae-Jin; Kim, Tae-Gyun; Seok, Jeong-Ho; Chun, Ji Won; Oh, Maeng-Keun; Park, Hae-Jeong

    2007-12-01

    The thalamus, which consists of multiple subnuclei, has been of particular interest in the study of schizophrenia. This study aimed to identify abnormalities in the connectivity-based subregions of the thalamus in patients with schizophrenia. Thalamic volume was measured by a manual tracing on superimposed images of T1-weighted and diffusion tensor images in 30 patients with schizophrenia and 22 normal volunteers. Cortical regional volumes automatically measured by a surface-based approach and thalamic subregional volumes measured by a connectivity-based technique were compared between the two groups and their correlations between the connected regions were calculated in each group. Volume reduction was observed in the bilateral orbitofrontal cortices and the left cingulate gyrus on the cortical side, whereas in subregions connected to the right orbitofrontal cortex and bilateral parietal cortices on the thalamic side. Significant volumetric correlations were identified between the right dorsal prefrontal cortex and its related thalamic subregion and between the left parietal cortex and its related thalamic subregion only in the normal group. Our results suggest that patients with schizophrenia have a structural deficit in the corticothalamic systems, especially in the orbitofrontal-thalamic system. Our findings may present evidence of corticothalamic connection problems in schizophrenia.

  4. V. Multi-level analysis of cortical neuroanatomy in Williams syndrome.

    PubMed

    Galaburda, A M; Bellugi, U

    2000-01-01

    The purpose of a neuroanatomical analysis of Williams Syndrome (WMS) brains is to help bridge the knowledge of the genetics of this disorder with the knowledge on behavior. Here, we outline findings of cortical neuroanatomy at multiple levels. We describe the gross anatomy with respect to brain shape, cortical folding, and asymmetry. This, as with most neuroanatomical information available in the literature on anatomical-functional correlations, links up best to the behavioral profile. Then, we describe the cytoarchitectonic appearance of the cortex. Further, we report on some histometric results. Finally, we present findings of immunocytochemistry that attempt to link up to the genomic deletion. The gross anatomical findings consist mainly of a small brain that shows curtailment in the posterior-parietal and occipital regions. There is also subtle dysmorphism of cortical folding. A consistent finding is a short central sulcus that does not become opercularized in the interhemispheric fissure, bringing attention to a possible developmental anomaly affecting the dorsal half of the hemispheres. There is also lack of asymmetry in the planum temporale. The cortical cytoarchitecture is relatively normal, with all sampled areas showing features typical of the region from which they are taken. Measurements in area 17 show increased cell size and decreased cell-packing density, which address the issue of possible abnormal connectivity. Immunostaining shows absence of elastin but normal staining for Lim-1 kinase, both of which are products of genes that are part of the deletion. Finally, one serially sectioned brain shows a fair amount of acquired pathology of microvascular origin related most likely to underlying hypertension and heart disease.

  5. COGNITIVELY NORMAL INDIVIDUALS WITH AD PARENTS MAY BE AT RISK FOR DEVELOPING AGING-RELATED CORTICAL THINNING PATTERNS CHARACTERISTIC OF AD

    PubMed Central

    Reiter, Katherine; Alpert, Kathryn I.; Cobia, Derin J.; Kwasny, Mary J.; Morris, John C.; Csernansky, John C.; Wang, Lei

    2012-01-01

    Children of Alzheimer's Disease (AD) patients are at heightened risk of developing AD due to genetic influences, including the apolipoprotein E4 (ApoE4) allele. In this study, we assessed the earliest cortical changes associated with AD in 71 cognitively healthy, adult children of AD patients (AD offspring) as compared with 69 with no family history of AD (non-AD offspring). Cortical thickness measures were obtained using FreeSurfer from 1.5T magnetic resonance (MR) scans. ApoE genotyping was obtained. Primary analyses examined family history and ApoeE4 effects on cortical thickness. Secondary analyses examined age effects within groups. All comparisons were adjusted using False Discovery Rate at a significance threshold of p < 0.05. There were no statistically significant differences between family history and ApoE4 groups. Within AD offspring, increasing age was related to reduced cortical thickness (atrophy) over large areas of the precuneus, superior frontal and superior temporal gyri, starting at around age 60. Further, these patterns existed within female and maternal AD offspring, but were absent in male and paternal AD offspring. Within non-AD offspring, negative correlations existed over small regions of the superior temporal, insula and lingual cortices. These results suggest that as AD offspring age, cortical atrophy is more prominent, particularly if the parent with AD is mother or if the AD offspring is female. PMID:22503937

  6. Reconstructing cortical current density by exploring sparseness in the transform domain

    NASA Astrophysics Data System (ADS)

    Ding, Lei

    2009-05-01

    In the present study, we have developed a novel electromagnetic source imaging approach to reconstruct extended cortical sources by means of cortical current density (CCD) modeling and a novel EEG imaging algorithm which explores sparseness in cortical source representations through the use of L1-norm in objective functions. The new sparse cortical current density (SCCD) imaging algorithm is unique since it reconstructs cortical sources by attaining sparseness in a transform domain (the variation map of cortical source distributions). While large variations are expected to occur along boundaries (sparseness) between active and inactive cortical regions, cortical sources can be reconstructed and their spatial extents can be estimated by locating these boundaries. We studied the SCCD algorithm using numerous simulations to investigate its capability in reconstructing cortical sources with different extents and in reconstructing multiple cortical sources with different extent contrasts. The SCCD algorithm was compared with two L2-norm solutions, i.e. weighted minimum norm estimate (wMNE) and cortical LORETA. Our simulation data from the comparison study show that the proposed sparse source imaging algorithm is able to accurately and efficiently recover extended cortical sources and is promising to provide high-accuracy estimation of cortical source extents.

  7. Dampened hippocampal oscillations and enhanced spindle activity in an asymptomatic model of developmental cortical malformations

    PubMed Central

    Cid, Elena; Gomez-Dominguez, Daniel; Martin-Lopez, David; Gal, Beatriz; Laurent, François; Ibarz, Jose M.; Francis, Fiona; Menendez de la Prida, Liset

    2014-01-01

    Developmental cortical malformations comprise a large spectrum of histopathological brain abnormalities and syndromes. Their genetic, developmental and clinical complexity suggests they should be better understood in terms of the complementary action of independently timed perturbations (i.e., the multiple-hit hypothesis). However, understanding the underlying biological processes remains puzzling. Here we induced developmental cortical malformations in offspring, after intraventricular injection of methylazoxymethanol (MAM) in utero in mice. We combined extensive histological and electrophysiological studies to characterize the model. We found that MAM injections at E14 and E15 induced a range of cortical and hippocampal malformations resembling histological alterations of specific genetic mutations and transplacental mitotoxic agent injections. However, in contrast to most of these models, intraventricularly MAM-injected mice remained asymptomatic and showed no clear epilepsy-related phenotype as tested in long-term chronic recordings and with pharmacological manipulations. Instead, they exhibited a non-specific reduction of hippocampal-related brain oscillations (mostly in CA1); including theta, gamma and HFOs; and enhanced thalamocortical spindle activity during non-REM sleep. These data suggest that developmental cortical malformations do not necessarily correlate with epileptiform activity. We propose that the intraventricular in utero MAM approach exhibiting a range of rhythmopathies is a suitable model for multiple-hit studies of associated neurological disorders. PMID:24782720

  8. Dampened hippocampal oscillations and enhanced spindle activity in an asymptomatic model of developmental cortical malformations.

    PubMed

    Cid, Elena; Gomez-Dominguez, Daniel; Martin-Lopez, David; Gal, Beatriz; Laurent, François; Ibarz, Jose M; Francis, Fiona; Menendez de la Prida, Liset

    2014-01-01

    Developmental cortical malformations comprise a large spectrum of histopathological brain abnormalities and syndromes. Their genetic, developmental and clinical complexity suggests they should be better understood in terms of the complementary action of independently timed perturbations (i.e., the multiple-hit hypothesis). However, understanding the underlying biological processes remains puzzling. Here we induced developmental cortical malformations in offspring, after intraventricular injection of methylazoxymethanol (MAM) in utero in mice. We combined extensive histological and electrophysiological studies to characterize the model. We found that MAM injections at E14 and E15 induced a range of cortical and hippocampal malformations resembling histological alterations of specific genetic mutations and transplacental mitotoxic agent injections. However, in contrast to most of these models, intraventricularly MAM-injected mice remained asymptomatic and showed no clear epilepsy-related phenotype as tested in long-term chronic recordings and with pharmacological manipulations. Instead, they exhibited a non-specific reduction of hippocampal-related brain oscillations (mostly in CA1); including theta, gamma and HFOs; and enhanced thalamocortical spindle activity during non-REM sleep. These data suggest that developmental cortical malformations do not necessarily correlate with epileptiform activity. We propose that the intraventricular in utero MAM approach exhibiting a range of rhythmopathies is a suitable model for multiple-hit studies of associated neurological disorders.

  9. Family history of psychosis moderates early auditory cortical response abnormalities in non-psychotic bipolar disorder

    PubMed Central

    Hamm, Jordan P; Ethridge, Lauren E; Shapiro, John R; Pearlson, Godfrey D; Tamminga, Carol A; Sweeney, John A; Keshavan, Matcheri S; Thaker, Gunvant K; Clementz, Brett A

    2017-01-01

    Objectives Bipolar I disorder is a disabling illness affecting 1% of people worldwide. Family and twin studies suggest that psychotic bipolar disorder (BDP) represents a homogenous subgroup with an etiology distinct from non-psychotic bipolar disorder (BDNP) and partially shared with schizophrenia. Studies of auditory electrophysiology [e.g., paired-stimulus and oddball measured with electroencephalography (EEG)] consistently report deviations in psychotic groups (schizophrenia, BDP), yet such studies comparing BDP and BDNP are sparse and, in some cases, conflicting. Auditory EEG responses are significantly reduced in unaffected relatives of psychosis patients, suggesting that they may relate to both psychosis liability and expression. Methods While 64-sensor EEGs were recorded, age- and gender-matched samples of 70 BDP, 35 BDNP {20 with a family history of psychosis [BDNP(+)]}, and 70 psychiatrically healthy subjects were presented typical auditory paired-stimuli and auditory oddball paradigms. Results Oddball P3b reductions were present and indistinguishable across all patient groups. P2s to paired-stimuli were abnormal only in BDP and BDNP(+). Conversely, N1 reductions to stimuli in both paradigms and P3a reductions were present in both BDP and BDNP(−) groups but were absent in BDNP(+). Conclusions While nearly all auditory neural response components studied were abnormal in BDP, BDNP abnormalities at early- and mid-latencies were moderated by family psychosis history. The relationship between psychosis expression, heritable psychosis risk, and neurophysiology within bipolar disorder, therefore, may be complex. Consideration of such clinical disease heterogeneity may be important for future investigations of the pathophysiology of major psychiatric disturbance. PMID:23941660

  10. The influence of brain abnormalities on psychosocial development, criminal history and paraphilias in sexual murderers.

    PubMed

    Briken, Peer; Habermann, Niels; Berner, Wolfgang; Hill, Andreas

    2005-09-01

    The aim of this study was to investigate the number and type of brain abnormalities and their influence on psychosocial development, criminal history and paraphilias in sexual murderers. We analyzed psychiatric court reports of 166 sexual murderers and compared a group with notable signs of brain abnormalities (N = 50) with those without any signs (N = 116). Sexual murderers with brain abnormalities suffered more from early behavior problems. They were less likely to cohabitate with the victim at the time of the homicide and had more victims at the age of six years or younger. Psychiatric diagnoses revealed a higher total number of paraphilias: Transvestic fetishism and paraphilias not otherwise specified were more frequent in offenders with brain abnormalities. A binary logistic regression identified five predictors that accounted for 46.8% of the variance explaining the presence of brain abnormalities. Our results suggest the importance of a comprehensive neurological and psychological examination of this special offender group.

  11. Mosaic parental germline mutations causing recurrent forms of malformations of cortical development

    PubMed Central

    Zillhardt, Julia Lauer; Poirier, Karine; Broix, Loïc; Lebrun, Nicolas; Elmorjani, Adrienne; Martinovic, Jelena; Saillour, Yoann; Muraca, Giuseppe; Nectoux, Juliette; Bessieres, Bettina; Fallet-Bianco, Catherine; Lyonnet, Stanislas; Dulac, Olivier; Odent, Sylvie; Rejeb, Imen; Jemaa, Lamia Ben; Rivier, Francois; Pinson, Lucile; Geneviève, David; Musizzano, Yuri; Bigi, Nicole; Leboucq, Nicolas; Giuliano, Fabienne; Philip, Nicole; Vilain, Catheline; Van Bogaert, Patrick; Maurey, Hélène; Beldjord, Cherif; Artiguenave, François; Boland, Anne; Olaso, Robert; Masson, Cécile; Nitschké, Patrick; Deleuze, Jean-François; Bahi-Buisson, Nadia; Chelly, Jamel

    2016-01-01

    To unravel missing genetic causes underlying monogenic disorders with recurrence in sibling, we explored the hypothesis of parental germline mosaic mutations in familial forms of malformation of cortical development (MCD). Interestingly, four families with parental germline variants, out of 18, were identified by whole-exome sequencing (WES), including a variant in a new candidate gene, syntaxin 7. In view of this high frequency, revision of diagnostic strategies and reoccurrence risk should be considered not only for the recurrent forms, but also for the sporadic cases of MCD. PMID:26395554

  12. Analysis of preplate splitting and early cortical development illuminates the biology of neurological disease.

    PubMed

    Olson, Eric C

    2014-01-01

    The development of the layered cerebral cortex starts with a process called preplate splitting. Preplate splitting involves the establishment of prospective cortical layer 6 (L6) neurons within a plexus of pioneer neurons called the preplate. The forming layer 6 splits the preplate into a superficial layer of pioneer neurons called the marginal zone and a deeper layer of pioneer neurons called the subplate. Disruptions of this early developmental event by toxin exposure or mutation are associated with neurological disease including severe intellectual disability. This review explores recent findings that reveal the dynamism of gene expression and morphological differentiation during this early developmental period. Over 1000 genes show expression increases of ≥2-fold during this period in differentiating mouse L6 neurons. Surprisingly, 88% of previously identified non-syndromic intellectual-disability (NS-ID) genes are expressed at this time and show an average expression increase of 1.6-fold in these differentiating L6 neurons. This changing genetic program must, in part, support the dramatic cellular reorganizations that occur during preplate splitting. While different models have been proposed for the formation of a layer of L6 cortical neurons within the preplate, original histological studies and more recent work exploiting transgenic mice suggest that the process is largely driven by the coordinated polarization and coalescence of L6 neurons rather than by cellular translocation or migration. The observation that genes associated with forms of NS-ID are expressed during very early cortical development raises the possibility of studying the relevant biological events at a time point when the cortex is small, contains relatively few cell types, and few functional circuits. This review then outlines how explant models may prove particularly useful in studying the consequence of toxin and mutation on the etiology of some forms of NS-ID.

  13. Cortical network reorganization guided by sensory input features.

    PubMed

    Kilgard, Michael P; Pandya, Pritesh K; Engineer, Navzer D; Moucha, Raluca

    2002-12-01

    Sensory experience alters the functional organization of cortical networks. Previous studies using behavioral training motivated by aversive or rewarding stimuli have demonstrated that cortical plasticity is specific to salient inputs in the sensory environment. Sensory experience associated with electrical activation of the basal forebrain (BasF) generates similar input specific plasticity. By directly engaging plasticity mechanisms and avoiding extensive behavioral training, BasF stimulation makes it possible to efficiently explore how specific sensory features contribute to cortical plasticity. This review summarizes our observations that cortical networks employ a variety of strategies to improve the representation of the sensory environment. Different combinations of receptive-field, temporal, and spectrotemporal plasticity were generated in primary auditory cortex neurons depending on the pitch, modulation rate, and order of sounds paired with BasF stimulation. Simple tones led to map expansion, while modulated tones altered the maximum cortical following rate. Exposure to complex acoustic sequences led to the development of combination-sensitive responses. This remodeling of cortical response characteristics may reflect changes in intrinsic cellular mechanisms, synaptic efficacy, and local neuronal connectivity. The intricate relationship between the pattern of sensory activation and cortical plasticity suggests that network-level rules alter the functional organization of the cortex to generate the most behaviorally useful representation of the sensory environment.

  14. Cortical thickness in symptomatic and asymptomatic bipolar offspring.

    PubMed

    Hanford, Lindsay C; Sassi, Roberto B; Minuzzi, Luciano; Hall, Geoffrey B

    2016-05-30

    Children of parents diagnosed with bipolar disorder are at greater risk for developing a variety of psychiatric disorders, however, the reasons remain unknown. The present study aimed to investigate gray matter integrity in high-risk bipolar offspring (HRO) and healthy offspring (HCO) using cortical thickness techniques. Here we examined healthy control offspring (HCO; n=20) and HRO with (n=17) or without (n=13) psychiatric symptoms. T1-weighted images were collected from all offspring, and cortical thickness and age-cortical thickness correlations were compared. HRO showed cortical thinning in superior and inferior temporal regions, supramarginal, and caudal and rostral middle frontal regions compared to HCO. When comparing HRO with and without psychiatric symptoms, we found cortical thinning in symptomatic offspring in the superior frontal and somatosensory related cortices. Age-thickness correlations showed a relatively consistent negative relationship in most regions in HCO, while the reverse was true for the HRO. These regions included parahippocampal, lateral orbitofrontal, and inferior temporal regions. Our study provides evidence of cortical thickness reductions among symptomatic and asymptomatic high-risk offspring during youth. Some of these alterations, found in regions of emotion processing and regulation, are evident only when associated with the presence of psychiatric symptoms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. From Cortical and Subcortical Grey Matter Abnormalities to Neurobehavioral Phenotype of Angelman Syndrome: A Voxel-Based Morphometry Study

    PubMed Central

    Aghakhanyan, Gayane; Bonanni, Paolo; Randazzo, Giovanna; Nappi, Sara; Tessarotto, Federica; De Martin, Lara; Frijia, Francesca; De Marchi, Daniele; De Masi, Francesco; Kuppers, Beate; Lombardo, Francesco; Caramella, Davide; Montanaro, Domenico

    2016-01-01

    Angelman syndrome (AS) is a rare neurogenetic disorder due to loss of expression of maternal ubiquitin-protein ligase E3A (UBE3A) gene. It is characterized by severe developmental delay, speech impairment, movement or balance disorder and typical behavioral uniqueness. Affected individuals show normal magnetic resonance imaging (MRI) findings, although mild dysmyelination may be observed. In this study, we adopted a quantitative MRI analysis with voxel-based morphometry (FSL-VBM) method to investigate disease-related changes in the cortical/subcortical grey matter (GM) structures. Since 2006 to 2013 twenty-six AS patients were assessed by our multidisciplinary team. From those, sixteen AS children with confirmed maternal 15q11-q13 deletions (mean age 7.7 ± 3.6 years) and twenty-one age-matched controls were recruited. The developmental delay and motor dysfunction were assessed using Bayley III and Gross Motor Function Measure (GMFM). Principal component analysis (PCA) was applied to the clinical and neuropsychological datasets. High-resolution T1-weighted images were acquired and FSL-VBM approach was applied to investigate differences in the local GM volume and to correlate clinical and neuropsychological changes in the regional distribution of GM. We found bilateral GM volume loss in AS compared to control children in the striatum, limbic structures, insular and orbitofrontal cortices. Voxel-wise correlation analysis with the principal components of the PCA output revealed a strong relationship with GM volume in the superior parietal lobule and precuneus on the left hemisphere. The anatomical distribution of cortical/subcortical GM changes plausibly related to several clinical features of the disease and may provide an important morphological underpinning for clinical and neurobehavioral symptoms in children with AS. PMID:27626634

  16. Prolonged cortical silent period but normal sensorimotor plasticity in spinocerebellar ataxia 6.

    PubMed

    Teo, James T H; Schneider, Susanne A; Cheeran, Binith J; Fernandez-del-Olmo, Miguel; Giunti, Paola; Rothwell, John C; Bhatia, Kailash P

    2008-02-15

    Spinocerebellar ataxia 6 (SCA6) is a hereditary disease characterized by a trinucleotide repeat expansion in the CACNA1A gene and late-onset bilateral cerebellar atrophy. It is unclear if there is significant pathology outside of the cerebellum. We used transcranial magnetic stimulation to assess sensorimotor cortical circuits and cortical plasticity in 8 SCA6 patients and 8 age-matched controls. Behavioral performance was assessed using a rhythmic tapping task. Neurophysiological measures of SCA6 patients showed a prolonged cortical silent period (CSP) but normal MEP recruitment curve, short-latency afferent inhibition, long-latency afferent inhibition and ipsilateral silent period. Paired-associative stimulation induction also increased motor-evoked potentials normally. SCA6 patients had greater variability with cued rhythmic tapping than normals and deteriorated when the cue was removed; in comparison, normal subjects had similar variability between cued and uncued rhythmic tapping. Analysis using a Wing-Kristofferson timing model indicated that both clock variance and motor delay variance were abnormal. Conclusion. In SCA6, the circuits for sensorimotor integration and the mechanisms for LTP-like plasticity in the sensorimotor cortex are unimpaired. A prolonged CSP in SCA6 just like in other cerebellar atrophies would suggest that this neurophysiological change typifies cerebellar dysfunction. 2007 Movement Disorder Society

  17. Cortical GABA markers identify a molecular subtype of psychotic and bipolar disorders.

    PubMed

    Volk, D W; Sampson, A R; Zhang, Y; Edelson, J R; Lewis, D A

    2016-09-01

    Deficits in gamma aminobutyric acid (GABA) neuron-related markers, including the GABA-synthesizing enzyme GAD67, the calcium-binding protein parvalbumin, the neuropeptide somatostatin, and the transcription factor Lhx6, are most pronounced in a subset of schizophrenia subjects identified as having a 'low GABA marker' (LGM) molecular phenotype. Furthermore, schizophrenia shares degrees of genetic liability, clinical features and cortical circuitry abnormalities with schizoaffective disorder and bipolar disorder. Therefore, we determined the extent to which a similar LGM molecular phenotype may also exist in subjects with these disorders. Transcript levels for GAD67, parvalbumin, somatostatin, and Lhx6 were quantified using quantitative PCR in prefrontal cortex area 9 of 184 subjects with a diagnosis of schizophrenia (n = 39), schizoaffective disorder (n = 23) or bipolar disorder (n = 35), or with a confirmed absence of any psychiatric diagnoses (n = 87). A blinded clustering approach was employed to determine the presence of a LGM molecular phenotype across all subjects. Approximately 49% of the subjects with schizophrenia, 48% of the subjects with schizoaffective disorder, and 29% of the subjects with bipolar disorder, but only 5% of unaffected subjects, clustered in the cortical LGM molecular phenotype. These findings support the characterization of psychotic and bipolar disorders by cortical molecular phenotype which may help elucidate more pathophysiologically informed and personalized medications.

  18. The Cortically Blind Infant: Educational Guidelines and Suggestions.

    ERIC Educational Resources Information Center

    Silverrain, Ann

    Cortical blindness is defined and its diagnosis is explained. Guidelines and sample activities are presented for use in a cognitive/visual/multi-sensory stimulation program to produce progress in cortically blind infants. The importance of using the eyes from birth through early development in order to form the nerve pathways responsible for…

  19. A preliminary transcranial magnetic stimulation study of cortical inhibition and excitability in high-functioning autism and Asperger disorder.

    PubMed

    Enticott, Peter G; Rinehart, Nicole J; Tonge, Bruce J; Bradshaw, John L; Fitzgerald, Paul B

    2010-08-01

    Controversy surrounds the distinction between high-functioning autism (HFA) and Asperger disorder, but motor abnormalities are associated features of both conditions. This study examined motor cortical inhibition and excitability in HFA and Asperger disorder using transcranial magnetic stimulation (TMS). Participants were diagnosed by experienced clinicians strictly according to DSM-IV criteria. Participants with HFA (nine males, two females; mean age 16y 8mo, SD 4y 5mo) or Asperger disorder (11 males, three females; mean age 19y 1mo, SD 4y 2mo) and neurotypical participants (eight males, three females; mean age 19y 0mo, SD 3y 1mo) were administered a paired-pulse TMS paradigm intended to assess motor cortical inhibition and excitability. Responses to TMS were recorded by electromyography. Cortical inhibition was significantly reduced in the HFA group compared with both the Asperger disorder (p<0.001) and neurotypical (p<0.001) groups, suggesting disruption of activity at gamma-aminobutyric acid A (GABA(A)) receptors. There was no group difference in cortical excitability. Cortical inhibition deficits may underlie motor dysfunction in autism, and perhaps even relate to specific clinical symptoms (e.g. repetitive behaviours). These findings provide novel evidence for a possible neurobiological dissociation between HFA and Asperger disorder based on GABAergic function.

  20. Assessing similarity to primary tissue and cortical layer identity in induced pluripotent stem cell-derived cortical neurons through single-cell transcriptomics

    PubMed Central

    Handel, Adam E.; Chintawar, Satyan; Lalic, Tatjana; Whiteley, Emma; Vowles, Jane; Giustacchini, Alice; Argoud, Karene; Sopp, Paul; Nakanishi, Mahito; Bowden, Rory; Cowley, Sally; Newey, Sarah; Akerman, Colin; Ponting, Chris P.; Cader, M. Zameel

    2016-01-01

    Induced pluripotent stem cell (iPSC)-derived cortical neurons potentially present a powerful new model to understand corticogenesis and neurological disease. Previous work has established that differentiation protocols can produce cortical neurons, but little has been done to characterize these at cellular resolution. In particular, it is unclear to what extent in vitro two-dimensional, relatively disordered culture conditions recapitulate the development of in vivo cortical layer identity. Single-cell multiplex reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) was used to interrogate the expression of genes previously implicated in cortical layer or phenotypic identity in individual cells. Totally, 93.6% of single cells derived from iPSCs expressed genes indicative of neuronal identity. High proportions of single neurons derived from iPSCs expressed glutamatergic receptors and synaptic genes. And, 68.4% of iPSC-derived neurons expressing at least one layer marker could be assigned to a laminar identity using canonical cortical layer marker genes. We compared single-cell RNA-seq of our iPSC-derived neurons to available single-cell RNA-seq data from human fetal and adult brain and found that iPSC-derived cortical neurons closely resembled primary fetal brain cells. Unexpectedly, a subpopulation of iPSC-derived neurons co-expressed canonical fetal deep and upper cortical layer markers. However, this appeared to be concordant with data from primary cells. Our results therefore provide reassurance that iPSC-derived cortical neurons are highly similar to primary cortical neurons at the level of single cells but suggest that current layer markers, although effective, may not be able to disambiguate cortical layer identity in all cells. PMID:26740550

  1. An Anterior-to-Posterior Shift in Midline Cortical Activity in Schizophrenia During Self-Reflection

    PubMed Central

    Holt, Daphne J.; Cassidy, Brittany S.; Andrews-Hanna, Jessica R.; Lee, Su Mei; Coombs, Garth; Goff, Donald C.; Gabrieli, John D.; Moran, Joseph M.

    2013-01-01

    Background Deficits in social cognition, including impairments in self-awareness, contribute to the overall functional disability associated with schizophrenia. Studies in healthy subjects have shown that social cognitive functions, including self-reflection, rely on the medial prefrontal cortex (mPFC) and posterior cingulate gyrus, and these regions exhibit highly correlated activity during “resting” states. In this study, we tested the hypothesis that patients with schizophrenia show dysfunction of this network during self-reflection and that this abnormal activity is associated with changes in the strength of resting-state correlations between these regions. Methods Activation during self-reflection and control tasks was measured with functional magnetic resonance imaging in 19 patients with schizophrenia and 20 demographically matched control subjects. In addition, the resting-state functional connectivity of midline cortical areas showing abnormal self-reflection-related activation in schizophrenia was measured. Results Compared with control subjects, the schizophrenia patients demonstrated lower activation of the right ventral mPFC and greater activation of the mid/posterior cingulate gyri bilaterally during self-reflection, relative to a control task. A similar pattern was seen during overall social reflection. In addition, functional connectivity between the portion of the left mid/posterior cingulate gyrus showing abnormally elevated activity during self-reflection in schizophrenia, and the dorsal anterior cingulate gyrus was lower in the schizophrenia patients compared with control subjects. Conclusions Schizophrenia is associated with an anterior-to-posterior shift in introspection-related activation, as well as changes in functional connectivity, of the midline cortex. These findings provide support for the hypothesis that aberrant midline cortical function contributes to social cognitive impairment in schizophrenia. PMID:21144498

  2. An anterior-to-posterior shift in midline cortical activity in schizophrenia during self-reflection.

    PubMed

    Holt, Daphne J; Cassidy, Brittany S; Andrews-Hanna, Jessica R; Lee, Su Mei; Coombs, Garth; Goff, Donald C; Gabrieli, John D; Moran, Joseph M

    2011-03-01

    Deficits in social cognition, including impairments in self-awareness, contribute to the overall functional disability associated with schizophrenia. Studies in healthy subjects have shown that social cognitive functions, including self-reflection, rely on the medial prefrontal cortex (mPFC) and posterior cingulate gyrus, and these regions exhibit highly correlated activity during "resting" states. In this study, we tested the hypothesis that patients with schizophrenia show dysfunction of this network during self-reflection and that this abnormal activity is associated with changes in the strength of resting-state correlations between these regions. Activation during self-reflection and control tasks was measured with functional magnetic resonance imaging in 19 patients with schizophrenia and 20 demographically matched control subjects. In addition, the resting-state functional connectivity of midline cortical areas showing abnormal self-reflection-related activation in schizophrenia was measured. Compared with control subjects, the schizophrenia patients demonstrated lower activation of the right ventral mPFC and greater activation of the mid/posterior cingulate gyri bilaterally during self-reflection, relative to a control task. A similar pattern was seen during overall social reflection. In addition, functional connectivity between the portion of the left mid/posterior cingulate gyrus showing abnormally elevated activity during self-reflection in schizophrenia, and the dorsal anterior cingulate gyrus was lower in the schizophrenia patients compared with control subjects. Schizophrenia is associated with an anterior-to-posterior shift in introspection-related activation, as well as changes in functional connectivity, of the midline cortex. These findings provide support for the hypothesis that aberrant midline cortical function contributes to social cognitive impairment in schizophrenia. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier

  3. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  4. Cognitively normal individuals with AD parents may be at risk for developing aging-related cortical thinning patterns characteristic of AD.

    PubMed

    Reiter, Katherine; Alpert, Kathryn I; Cobia, Derin J; Kwasny, Mary J; Morris, John C; Csernansky, John C; Wang, Lei

    2012-07-02

    Children of Alzheimer's disease (AD) patients are at heightened risk of developing AD due to genetic influences, including the apolipoprotein E4 (ApoE4) allele. In this study, we assessed the earliest cortical changes associated with AD in 71 cognitively healthy, adult children of AD patients (AD offspring) as compared with 69 with no family history of AD (non-AD offspring). Cortical thickness measures were obtained using FreeSurfer from 1.5T magnetic resonance (MR) scans. ApoE genotyping was obtained. Primary analyses examined family history and ApoeE4 effects on cortical thickness. Secondary analyses examined age effects within groups. All comparisons were adjusted using False Discovery Rate at a significance threshold of p<0.05. There were no statistically significant differences between family history and ApoE4 groups. Within AD offspring, increasing age was related to reduced cortical thickness (atrophy) over large areas of the precuneus, superior frontal and superior temporal gyri, starting at around age 60. Further, these patterns existed within female and maternal AD offspring, but were absent in male and paternal AD offspring. Within non-AD offspring, negative correlations existed over small regions of the superior temporal, insula and lingual cortices. These results suggest that as AD offspring age, cortical atrophy is more prominent, particularly if the parent with AD is mother or if the AD offspring is female. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Cortical Networks for Visual Self-Recognition

    NASA Astrophysics Data System (ADS)

    Sugiura, Motoaki

    This paper briefly reviews recent developments regarding the brain mechanisms of visual self-recognition. A special cognitive mechanism for visual self-recognition has been postulated based on behavioral and neuropsychological evidence, but its neural substrate remains controversial. Recent functional imaging studies suggest that multiple cortical mechanisms play self-specific roles during visual self-recognition, reconciling the existing controversy. Respective roles for the left occipitotemporal, right parietal, and frontal cortices in symbolic, visuospatial, and conceptual aspects of self-representation have been proposed.

  6. Sleep abnormalities in children with Dravet syndrome.

    PubMed

    Dhamija, Radhika; Erickson, Maia K; St Louis, Erik K; Wirrell, Elaine; Kotagal, Suresh

    2014-05-01

    Mutations in the voltage-gated sodium channel SCN1A gene are responsible for the majority of Dravet syndrome cases. There is evidence that the Nav1.1 channel coded by the SCN1A gene is involved in sleep regulation. We evaluated sleep abnormalities in children with Dravet syndrome using nocturnal polysomnography. We identified six children at our institution with genetically confirmed Dravet syndrome who had also undergone formal sleep consultation with nocturnal polysomnography. Indications for polysomnography were parental concern of daytime fatigue or sleepiness, hyperactivity, inattention, disruptive behavior, nighttime awakenings, or nocturnal seizures. Sleep studies were scored according to guidelines of the American Academy of Sleep Medicine and non-rapid eye movement cyclic alternating pattern was visually identified and scored according to established methods. The mean age of the subjects at the time of polysomnography was 6 years. Standard polysomnography did not show any consistent abnormalities in the obstructive or central apnea index, arousal index, sleep efficiency, or architecture. Cyclic alternating pattern analysis on five patients showed an increased mean rate of 50.3% (vs 31% to 34% in neurological normal children) with a mild increase in A1 subtype of 89.4% (vs 84.5%). A2/A3 subtype (5.3% vs 7.3%) and B phase duration (22.4 vs 24.7 seconds) were similar to previously reported findings in neurologically normal children. Despite parental concerns for sleep disturbance in patients with Dravet syndrome, we could not identify abnormalities in sleep macroarchitecture. Non-rapid eye movement sleep microarchitecture was, however, abnormal, with increased A1 subtype, somewhat resembling a tracé alternant pattern of neonates and possibly suggestive of cortical synaptic immaturity in Dravet syndrome. Larger studies are needed to replicate these results. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Comparing the influence of crestal cortical bone and sinus floor cortical bone in posterior maxilla bi-cortical dental implantation: a three-dimensional finite element analysis.

    PubMed

    Yan, Xu; Zhang, Xinwen; Chi, Weichao; Ai, Hongjun; Wu, Lin

    2015-05-01

    This study aimed to compare the influence of alveolar ridge cortical bone and sinus floor cortical bone in sinus areabi-cortical dental implantation by means of 3D finite element analysis. Three-dimensional finite element (FE) models in a posterior maxillary region with sinus membrane and the same height of alveolar ridge of 10 mm were generated according to the anatomical data of the sinus area. They were either with fixed thickness of crestal cortical bone and variable thickness of sinus floor cortical bone or vice versa. Ten models were assumed to be under immediate loading or conventional loading. The standard implant model based on the Nobel Biocare implant system was created via computer-aided design software. All materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied. Von Mises stress mainly concentrated on the surface of crestal cortical bone around the implant neck. For all the models, both the axial and buccolingual resonance frequencies of conventional loading were higher than those of immediate loading; however, the difference is less than 5%. The results showed that bi-cortical implant in sinus area increased the stability of the implant, especially for immediately loading implantation. The thickness of both crestal cortical bone and sinus floor cortical bone influenced implant micromotion and stress distribution; however, crestal cortical bone may be more important than sinus floor cortical bone.

  8. Increased Insular Cortical Thickness Associated With Symptom Severity in Male Youths With Internet Gaming Disorder: A Surface-Based Morphometric Study

    PubMed Central

    Wang, Shuai; Liu, Jing; Tian, Lin; Chen, Limin; Wang, Jun; Tang, Qunfeng; Zhang, Fuquan; Zhou, Zhenhe

    2018-01-01

    With the rising increase in Internet-usage, Internet gaming disorder (IGD) has gained massive attention worldwide. However, detailed cerebral morphological changes remain unclear in youths with IGD. In the current study, our aim was to investigate cortical morphology and further explore the relationship between the cortical morphology and symptom severity in male youths with IGD. Forty-eight male youths with IGD and 32 age- and education-matched normal controls received magnetic resonance imaging scans. We employed a recently proposed surface-based morphometric approach for the measurement of cortical thickness (CT). We found that youths with IGD showed increased CT in the bilateral insulae and the right inferior temporal gyrus. Moreover, significantly decreased CT were found in several brain areas in youths with IGD, including the bilateral banks of the superior temporal sulci, the right inferior parietal cortex, the right precuneus, the right precentral gyrus, and the left middle temporal gyrus. Additionally, youths with IGD demonstrated a significantly positive correlation between the left insular CT and symptom severity. Our data provide evidence for the finding of abnormal CT in distributed cerebral areas and support the notion that altered structural abnormalities observed in substance addiction are also manifested in IGD. Such information extends current knowledge about IGD-related brain reorganization and could help future efforts in identifying the role of insula in the disorder. PMID:29666588

  9. Cortical microtubules in sweet clover columella cells developed in microgravity

    NASA Technical Reports Server (NTRS)

    Hilaire, E.; Paulsen, A. Q.; Brown, C. S.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Electron micrographs of columella cells from sweet clover seedlings grown and fixed in microgravity revealed longitudinal and cross sectioned cortical microtubules. This is the first report demonstrating the presence and stability of this network in plants in microgravity.

  10. Astrocytes refine cortical connectivity at dendritic spines

    PubMed Central

    Risher, W Christopher; Patel, Sagar; Kim, Il Hwan; Uezu, Akiyoshi; Bhagat, Srishti; Wilton, Daniel K; Pilaz, Louis-Jan; Singh Alvarado, Jonnathan; Calhan, Osman Y; Silver, Debra L; Stevens, Beth; Calakos, Nicole; Soderling, Scott H; Eroglu, Cagla

    2014-01-01

    During cortical synaptic development, thalamic axons must establish synaptic connections despite the presence of the more abundant intracortical projections. How thalamocortical synapses are formed and maintained in this competitive environment is unknown. Here, we show that astrocyte-secreted protein hevin is required for normal thalamocortical synaptic connectivity in the mouse cortex. Absence of hevin results in a profound, long-lasting reduction in thalamocortical synapses accompanied by a transient increase in intracortical excitatory connections. Three-dimensional reconstructions of cortical neurons from serial section electron microscopy (ssEM) revealed that, during early postnatal development, dendritic spines often receive multiple excitatory inputs. Immuno-EM and confocal analyses revealed that majority of the spines with multiple excitatory contacts (SMECs) receive simultaneous thalamic and cortical inputs. Proportion of SMECs diminishes as the brain develops, but SMECs remain abundant in Hevin-null mice. These findings reveal that, through secretion of hevin, astrocytes control an important developmental synaptic refinement process at dendritic spines. DOI: http://dx.doi.org/10.7554/eLife.04047.001 PMID:25517933

  11. Acquired partial lipodystrophy is associated with increased risk for developing metabolic abnormalities.

    PubMed

    Akinci, Baris; Koseoglu, Fatos Dilan; Onay, Huseyin; Yavuz, Sevgi; Altay, Canan; Simsir, Ilgin Yildirim; Ozisik, Secil; Demir, Leyla; Korkut, Meltem; Yilmaz, Nusret; Ozen, Samim; Akinci, Gulcin; Atik, Tahir; Calan, Mehmet; Secil, Mustafa; Comlekci, Abdurrahman; Demir, Tevfik

    2015-09-01

    Acquired partial lipodystrophy (APL) is a rare disorder characterized by progressive selective fat loss. In previous studies, metabolic abnormalities were reported to be relatively rare in APL, whilst they were quite common in other types of lipodystrophy syndromes. In this nationwide cohort study, we evaluated 21 Turkish patients with APL who were enrolled in a prospective follow-up protocol. Subjects were investigated for metabolic abnormalities. Fat distribution was assessed by whole body MRI. Hepatic steatosis was evaluated by ultrasound, MRI and MR spectroscopy. Patients with diabetes underwent a mix meal stimulated C-peptide/insulin test to investigate pancreatic beta cell functions. Leptin and adiponectin levels were measured. Fifteen individuals (71.4%) had at least one metabolic abnormality. Six patients (28.6%) had diabetes, 12 (57.1%) hypertrigylceridemia, 10 (47.6%) low HDL cholesterol, and 11 (52.4%) hepatic steatosis. Steatohepatitis was further confirmed in 2 patients with liver biopsy. Anti-GAD was negative in all APL patients with diabetes. APL patients with diabetes had lower leptin and adiponectin levels compared to patients with type 2 diabetes and healthy controls. However, contrary to what we observed in patients with congenital generalized lipodystrophy (CGL), we did not detect consistently very low leptin levels in APL patients. The mix meal test suggested that APL patients with diabetes had a significant amount of functional pancreatic beta cells, and their diabetes was apparently associated with insulin resistance. Our results show that APL is associated with increased risk for developing metabolic abnormalities. We suggest that close long-term follow-up is required to identify and manage metabolic abnormalities in APL. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Ultrastructural and cellular basis for the development of abnormal myocardial mechanics during the transition from hypertension to heart failure.

    PubMed

    Shah, Sanjiv J; Aistrup, Gary L; Gupta, Deepak K; O'Toole, Matthew J; Nahhas, Amanda F; Schuster, Daniel; Chirayil, Nimi; Bassi, Nikhil; Ramakrishna, Satvik; Beussink, Lauren; Misener, Sol; Kane, Bonnie; Wang, David; Randolph, Blake; Ito, Aiko; Wu, Megan; Akintilo, Lisa; Mongkolrattanothai, Thitipong; Reddy, Mahendra; Kumar, Manvinder; Arora, Rishi; Ng, Jason; Wasserstrom, J Andrew

    2014-01-01

    Although the development of abnormal myocardial mechanics represents a key step during the transition from hypertension to overt heart failure (HF), the underlying ultrastructural and cellular basis of abnormal myocardial mechanics remains unclear. We therefore investigated how changes in transverse (T)-tubule organization and the resulting altered intracellular Ca(2+) cycling in large cell populations underlie the development of abnormal myocardial mechanics in a model of chronic hypertension. Hearts from spontaneously hypertensive rats (SHRs; n = 72) were studied at different ages and stages of hypertensive heart disease and early HF and were compared with age-matched control (Wistar-Kyoto) rats (n = 34). Echocardiography, including tissue Doppler and speckle-tracking analysis, was performed just before euthanization, after which T-tubule organization and Ca(2+) transients were studied using confocal microscopy. In SHRs, abnormalities in myocardial mechanics occurred early in response to hypertension, before the development of overt systolic dysfunction and HF. Reduced longitudinal, circumferential, and radial strain as well as reduced tissue Doppler early diastolic tissue velocities occurred in concert with T-tubule disorganization and impaired Ca(2+) cycling, all of which preceded the development of cardiac fibrosis. The time to peak of intracellular Ca(2+) transients was slowed due to T-tubule disruption, providing a link between declining cell ultrastructure and abnormal myocardial mechanics. In conclusion, subclinical abnormalities in myocardial mechanics occur early in response to hypertension and coincide with the development of T-tubule disorganization and impaired intracellular Ca(2+) cycling. These changes occur before the development of significant cardiac fibrosis and precede the development of overt cardiac dysfunction and HF.

  13. Fiber-probe optical spectroscopy discriminates normal brain from focal cortical dysplasia in pediatric subjects

    NASA Astrophysics Data System (ADS)

    Anand, Suresh; Cicchi, Riccardo; Giordano, Flavio; Conti, Valerio; Buccoliero, Anna Maria; Guerrini, Renzo; Pavone, Francesco S.

    2017-02-01

    Focal cortical dysplasia (FCD) is an abnormality in the cerebral cortex that is caused by malformations during cortical development. Currently, magnetic resonance imaging (MRI) and electro-corticography (ECoG) are used for detecting FCD. On the downside, MRI is very much insensitive to small malformations in the brain, while ECoG is an invasive and time consuming procedure. Recently, optical techniques were widely exploited as a minimally invasive and quantitative approaches for disease diagnosis. These techniques include fluorescence and Raman spectroscopy. The aim of this investigation is to study the diagnostic performances of optical spectroscopy incorporating fluorescence (at 378 nm and 445 nm excitation wavelengths) and Raman spectroscopy (at 785 nm excitation) for the discrimination of FCD from normal brain in pediatric subjects. The study included 10 normal and 17 FCD tissue sites from 3 normal and 7 FCD samples. The emission spectra of FCD at 378 nm excitation wavelength presented a blue-shifted peak with respect to normal tissue. Prominent spectral differences between normal and FCD tissue were observed at 1298 cm-1, 1302 cm-1, 1445 cm-1 and 1660 cm-1 using Raman spectroscopy. Tissue classification models were developed using a multivariate statistical method, principal component analysis. This study demonstrates that a combined spectroscopic approach can provide a better diagnostic capability for classifying normal and FCD tissues. Further, the implementation of the technology within a fiber probe could open the way for in vivo diagnostics and intra-operative surgical guidance.

  14. A Circuit for Motor Cortical Modulation of Auditory Cortical Activity

    PubMed Central

    Nelson, Anders; Schneider, David M.; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan

    2013-01-01

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity. PMID:24005287

  15. Testosterone-related cortical maturation across childhood and adolescence.

    PubMed

    Nguyen, Tuong-Vi; McCracken, James; Ducharme, Simon; Botteron, Kelly N; Mahabir, Megan; Johnson, Wendy; Israel, Mimi; Evans, Alan C; Karama, Sherif

    2013-06-01

    Neuroendocrine theories of brain development hold testosterone as the predominant factor mediating sex-specific cortical growth and the ensuing lateralization of hemispheric function. However, studies to date have focussed on prenatal testosterone rather than pubertal changes in testosterone. Yet, animal studies have shown a high density of androgen-sensitive receptors in multiple key cortical areas, and puberty is known to coincide with both a significant rise in testosterone and the emergence of behavioral sex differences, suggesting peripubertal influences of testosterone on brain development. Here, we used linear mixed models to examine sex-specific cortical maturation associated with changes in testosterone levels in a longitudinal sample of developmentally healthy children and adolescents. A significant "sex by age by testosterone" interaction on cortical thickness (CTh) involving widespread areas of the developing brain was found. Testosterone levels were associated with CTh changes in regions of the left hemisphere in males and of the right hemisphere in females. In both sexes, the relationship between testosterone and CTh varied across the age span. These findings show the association between testosterone and CTh to be complex, highly dynamic, and to vary, depending on sex and age; they also suggest sex-related hemispheric lateralization effects of testosterone in humans.

  16. Abnormal development of floral meristem triggers defective morphogenesis of generative system in transgenic tomatoes.

    PubMed

    Chaban, Inna; Khaliluev, Marat; Baranova, Ekaterina; Kononenko, Neonila; Dolgov, Sergey; Smirnova, Elena

    2018-04-21

    Parthenocarpy and fruit malformations are common among independent transgenic tomato lines, expressing genes encoding different pathogenesis-related (PR) protein and antimicrobal peptides. Abnormal phenotype developed independently of the expression and type of target genes, but distinctive features during flower and fruit development were detected in each transgenic line. We analyzed the morphology, anatomy, and cytoembryology of abnormal flowers and fruits from these transgenic tomato lines and compared them with flowers and fruits of wild tomatoes, line YaLF used for transformation, and transgenic plants with normal phenotype. We confirmed that the main cause of abnormal flower and fruit development was the alterations of determinate growth of generative meristem. These alterations triggered different types of anomalous growth, affecting the number of growing ectopic shoots and formation of new flowers. Investigation of the ovule ontogenesis did not show anomalies in embryo sac development, but fertilization did not occur and embryo sac degenerated. Nevertheless, the ovule continued to differentiate due to proliferation of endothelium cells. The latter substituted embryo sac and formed pseudoembryonic tissue. This process imitated embryogenesis and stimulated ovary growth, leading to the development of parthenocarpic fruit. We demonstrated that failed fertilization occurred due to defective male gametophyte formation, which was manifested in blocked division of the nucleus in the microspore and arrest of vegetative and generative cell formation. Maturing pollen grains were overgrown microspores, not competent for fertilization but capable to induce proliferation of endothelium and development of parthenocarpic ovary. Thus, our study provided new data on the structural transformations of reproductive organs during development of parthenocarpic fruits in transgenic tomato.

  17. Zic deficiency in the cortical marginal zone and meninges results in cortical lamination defects resembling those in type II lissencephaly.

    PubMed

    Inoue, Takashi; Ogawa, Masaharu; Mikoshiba, Katsuhiko; Aruga, Jun

    2008-04-30

    The formation of the highly organized cortical structure depends on the production and correct placement of the appropriate number and types of neurons. The Zic family of zinc-finger transcription factors plays essential roles in regulating the proliferation and differentiation of neuronal progenitors in the medial forebrain and the cerebellum. Examination of the expression of Zic genes demonstrated that Zic1, Zic2, and Zic3 were expressed by the progenitor cells in the septum and cortical hem, the sites of generation of the Cajal-Retzius (CR) cells. Immunohistochemical studies have revealed that Zic proteins were abundantly expressed in the meningeal cells and that the majority of the CR cells distributed in the medial and dorsal cortex also expressed Zic proteins in the mid-late embryonic and postnatal cortical marginal zones. During embryonic cortical development, Zic1/Zic3 double-mutant and hypomorphic Zic2 mutant mice showed a reduction in the number of CR cells in the rostral cortex, whereas the cell number remained unaffected in the caudal cortex. These mutants also showed mislocalization of the CR cells and cortical lamination defects, resembling the changes noted in type II (cobblestone) lissencephaly, throughout the brain. In the Zic1/3 mutant, reduced proliferation of the meningeal cells was observed before the thinner and disrupted organization of the pial basement membrane (BM) with reduced expression of the BM components and the meningeal cell-derived secretory factor. These defects correlated with the changes in the end feet morphology of the radial glial cells. These findings indicate that the Zic genes play critical roles in cortical development through regulating the proliferation of meningeal cells and the pial BM assembly.

  18. Rab3A, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bello, Oscar Daniel; Cappa, Andrea Isabel; Paola, Matilde de

    Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blotmore » analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs. - Highlights: • Rab3A has a similar migration pattern to cortical granules in mouse oocytes. • Rab3A can be a

  19. Chd8 mediates cortical neurogenesis via transcriptional regulation of cell cycle and Wnt signaling

    PubMed Central

    Durak, Omer; Gao, Fan; Kaeser-Woo, Yea Jin; Rueda, Richard; Martorell, Anthony J.; Nott, Alexi; Liu, Carol Y.; Watson, L. Ashley; Tsai, Li-Huei

    2016-01-01

    De novo mutations in CHD8 are strongly associated with autism spectrum disorder (ASD), however the basic biology of CHD8 remains poor understood. Here we report that Chd8 knockdown during cortical development results in defective neural progenitor proliferation and differentiation that ultimately manifests in abnormal neuronal morphology and behaviors in adult mice. Transcriptome analysis revealed that while Chd8 stimulates the transcription of cell cycle genes, it also precludes the induction of neural specific genes by regulating the expression of PRC2 complex components. Furthermore, knockdown of Chd8 disrupts the expression of key transducers of Wnt signaling, and enhancing Wnt signaling rescues the transcriptional and behavioral deficits caused by Chd8 knockdown. We propose that these roles of Chd8 and the dynamics of Chd8 expression during development help negotiate the fine balance between neural progenitor proliferation and differentiation. Together, these observations provide new insights into the neurodevelopmental role of Chd8. PMID:27694995

  20. Central nervous system abnormalities in vaginismus.

    PubMed

    Frasson, Emma; Graziottin, Alessandra; Priori, Alberto; Dall'ora, Elisa; Didonè, Giuseppe; Garbin, Emilio Luigi; Vicentini, Silvana; Bertolasi, Laura

    2009-01-01

    To investigate possible altered CNS excitability in vaginismus. In 10 patients with primary idiopathic lifelong vaginismus, 10 with vulvar vestibulitis syndrome accompanied by vaginismus and healthy controls we recorded EMG activity from the levator ani (LA) and external anal sphincter (EAS) muscles and tested bulbocavernosus reflex (BCR). Pudendal-nerve somatosensory evoked potentials (SEPs) were tested after a single stimulus. Pudendal-nerve SEP recovery functions were assessed using a paired conditioning-test paradigm at interstimulus intervals (ISIs) of 5, 20 and 40ms. EMG in patients showed muscular hyperactivity at rest and reduced inhibition during straining. The BCR polysynaptic R2 had larger amplitude (p<0.01) and longer duration (p<0.01) in patients from both groups than in controls. In controls, paired-pulse SEPs were suppressed at the 5ms ISI for N35-P40 (p<0.05) and P40-N50 ms (p<0.001) and facilitated at the 20ms ISI for N35-P40 (p<0.05) and P40-N50 (p<0.05). No significant differences were found in the paired-pulse N35-P40 in patients and controls but the cortical P40-N50 at 20 ISI was facilitated in patients (p<0.05). EMG activity is enhanced and the cortical SEP recovery cycle and BCR are hyperexcitable in vaginismus. The neurophysiological abnormalities in patients with vaginismus indicate concomitant CNS changes in this disorder.

  1. Cerebrospinal fluid flow abnormalities in patients with neoplastic meningitis. An evaluation using /sup 111/In-DTPA ventriculography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossman, S.A.; Trump, D.L.; Chen, D.C.

    1982-11-01

    Cerebrospinal fluid flow dynamics were evaluated by /sup 111/In-diethylenetriamine pentaacetic acid (/sup 111/In-DTPA) ventriculography in 27 patients with neoplastic meningitis. Nineteen patients (70 percent) had evidence of cerebrospinal fluid flow disturbances. These occurred as ventricular outlet obstructions, abnormalities of flow in the spinal canal, or flow distrubances over the cortical convexities. Tumor histology, physical examination, cerebrospinal fluid analysis, myelograms, and computerized axial tomographic scans were not sufficient to predict cerebrospinal fluid flow patterns. These data indicate that cerebrospinal fluid flow abnormalities are common in patients with neoplastic meningitis and that /sup 111/In-DTPA cerebrospinal fluid flow imaging is useful in characterizingmore » these abnormalities. This technique provides insight into the distribution of intraventricularly administered chemotherapy and may provide explanations for treatment failure and drug-induced neurotoxicity in patients with neoplastic meningitis.« less

  2. Fluid-attenuated inversion recovery: correlations of hippocampal cell densities with signal abnormalities.

    PubMed

    Diehl, B; Najm, I; Mohamed, A; Wyllie, E; Babb, T; Ying, Z; Hilbig, A; Bingaman, W; Lüders, H O; Ruggieri, P

    2001-09-25

    Hippocampal sclerosis (HS) is characterized by hippocampal atrophy and increased signal on T2-weighted images and on fluid-attenuated inversion recovery (FLAIR) images. To quantitate cell loss and compare it with signal abnormalities on FLAIR images. Thirty-one patients with temporal lobe resection, pathologically proven HS, and Engel class I and II outcome were included: 20 with HS only and 11 with HS associated with pathologically proven cortical dysplasia (dual pathology). The signal intensity on FLAIR was rated as present or absent in the hippocampus and correlated with the neuronal losses in the hippocampus. FLAIR signal increases were present in 77% (24/31) of all patients studied. In patients with isolated HS, 90% (18/20) had ipsilateral signal increases, but in patients with dual pathology, only 55% (6/11; p < 0.02) showed FLAIR signal increase. Hippocampal cell losses were significantly higher in the isolated HS group. The average cell loss in patients with FLAIR signal abnormalities was 64.8 +/- 8.0% as compared with only 32.7 +/- 5.1% in patients with no FLAIR signal abnormalities. There was a significant positive correlation between the presence of signal abnormality and average hippocampal cell loss in both pathologic groups. Ipsilateral FLAIR signal abnormalities occur in the majority of patients with isolated HS but are less frequent in those with dual pathology. The presence of increased FLAIR signal is correlated with higher hippocampal cell loss.

  3. Sulcal depth-based cortical shape analysis in normal healthy control and schizophrenia groups

    NASA Astrophysics Data System (ADS)

    Lyu, Ilwoo; Kang, Hakmook; Woodward, Neil D.; Landman, Bennett A.

    2018-03-01

    Sulcal depth is an important marker of brain anatomy in neuroscience/neurological function. Previously, sulcal depth has been explored at the region-of-interest (ROI) level to increase statistical sensitivity to group differences. In this paper, we present a fully automated method that enables inferences of ROI properties from a sulcal region- focused perspective consisting of two main components: 1) sulcal depth computation and 2) sulcal curve-based refined ROIs. In conventional statistical analysis, the average sulcal depth measurements are employed in several ROIs of the cortical surface. However, taking the average sulcal depth over the full ROI blurs overall sulcal depth measurements which may result in reduced sensitivity to detect sulcal depth changes in neurological and psychiatric disorders. To overcome such a blurring effect, we focus on sulcal fundic regions in each ROI by filtering out other gyral regions. Consequently, the proposed method results in more sensitive to group differences than a traditional ROI approach. In the experiment, we focused on a cortical morphological analysis to sulcal depth reduction in schizophrenia with a comparison to the normal healthy control group. We show that the proposed method is more sensitivity to abnormalities of sulcal depth in schizophrenia; sulcal depth is significantly smaller in most cortical lobes in schizophrenia compared to healthy controls (p < 0.05).

  4. Abnormal Canine Bone Development Associated with Hypergravity Exposure

    NASA Technical Reports Server (NTRS)

    Morgan, J. P.; Fisher, G. L.; McNeill, K. L.; Oyama, J.

    1979-01-01

    Chronic centrifugation of 85- to 92-day-old Beagles at 2.0 x g and 2.6 x g for 26 weeks during the time of active skeletal growth caused skeletal abnormalities in the radius and the ulna of ten of 11 dogs. The pattern of change mimicked that found in naturally occurring and experimentally induced premature distal ulnar physeal closure or delayed growth at this physis. Minimal changes in bone density were detected by sensitive photon absorptiometric techniques. Skeletal abnormalities also were found in five of the six cage-control dogs, although the run-control dogs were radiographically normal.

  5. Delayed Development of Brain Connectivity in Adolescents With Schizophrenia and Their Unaffected Siblings.

    PubMed

    Zalesky, Andrew; Pantelis, Christos; Cropley, Vanessa; Fornito, Alex; Cocchi, Luca; McAdams, Harrison; Clasen, Liv; Greenstein, Deanna; Rapoport, Judith L; Gogtay, Nitin

    2015-09-01

    Abnormalities in structural brain connectivity have been observed in patients with schizophrenia. Mapping these abnormalities longitudinally and understanding their genetic risk via sibship studies will provide crucial insight into progressive developmental changes associated with schizophrenia. To identify corticocortical connections exhibiting an altered developmental trajectory in adolescents with childhood-onset schizophrenia (COS) and to determine whether similar alterations are found in patients' unaffected siblings. Using prospective structural brain magnetic resonance imaging, large-scale corticocortical connectivity was mapped from ages 12 to 24 years in 109 patients with COS (272 images), 86 of their unaffected siblings (184 images), and 102 healthy controls (262 images) over a 20-year period beginning January 1, 1991, through April 30, 2011, as part of the ongoing COS study at the National Institute of Mental Health. Structural connectivity between pairs of cortical regions was estimated using a validated technique based on across-subject covariation in magnetic resonance imaging-derived cortical thickness measurements. Compared with normally developing controls, significant left-hemisphere occipitotemporal deficits in cortical thickness correlations were found in patients with COS as well as their healthy siblings (P < .05). Deficits in siblings normalized by mid-adolescence, whereas patients with COS showed significantly longer maturational delays, with cortical thickness correlations between the left temporal lobe and left occipital cortex not showing evidence of development until early adulthood. The normalization of deficits with age in patients with COS correlated with improvement in symptoms. Compared with controls, left-hemisphere occipitotemporal thickness correlations in a subgroup of patients with high positive symptoms were significantly reduced from age 14 to 18 years (P < .05); however, other patients with low positive symptoms showed

  6. Dissociable effects of prefrontal and anterior temporal cortical lesions on stereotypical gender attitudes.

    PubMed

    Gozzi, Marta; Raymont, Vanessa; Solomon, Jeffrey; Koenigs, Michael; Grafman, Jordan

    2009-08-01

    Clinical observations of patients with ventral frontal and anterior temporal cortical lesions reveal marked abnormalities in social attitudes. A previous study in seven patients with ventral prefrontal lesions provided the first direct experimental evidence for abnormalities in social attitudes using a well-established measure of gender stereotypes, the Implicit Association Test (IAT). Here, we were able to test whether these first findings could be reproduced in a larger sample of 154 patients with penetrating head injuries, and to determine the differential effects of ventromedial prefrontal (vmPFC) and ventrolateral prefrontal (vlPFC) cortical lesions on IAT performance. In addition, we investigated the role of the superior anterior temporal lobe (aTL), recently shown to represent conceptual social knowledge. First, we used a linear regression model to identify the role of each of the three regions, while controlling for the extent of damage to other regions. We found that larger lesions in either the vmPFC or the superior aTL were associated with increased stereotypical attitudes, whereas larger lesions in the vlPFC were associated with decreased stereotypical attitudes. Second, in a confirmatory analysis, we grouped patients by lesion location and compared their performance on the IAT with that of healthy volunteers. Compared to controls, patients with lesions in either the vmPFC or the superior aTL showed increased stereotypical attitudes, whereas patients with lesions in the vlPFC showed decreased stereotypical attitudes. The functional contributions of these regions in social attitudes are discussed.

  7. The immediate large-scale dendritic plasticity of cortical pyramidal neurons subjected to acute epidural compression.

    PubMed

    Chen, J-R; Wang, T-J; Wang, Y-J; Tseng, G-F

    2010-05-05

    Head trauma and acute disorders often instantly compress the cerebral cortex and lead to functional abnormalities. Here we used rat epidural bead implantation model and investigated the immediate changes following acute compression. The dendritic arbors of affected cortical pyramidal neurons were filled with intracellular dye and reconstructed 3-dimensionally for analysis. Compression was found to shorten the apical, but not basal, dendrites of underlying layer III and V cortical pyramidal neurons and reduced dendritic spines on the entire dendritic arbor immediately. Dendrogram analysis showed that in addition to distal, proximal apical dendrites also quickly reconfigured. We then focused on apical dendritic trunks and explored how proximal dendrites were rapidly altered. Compression instantly twisted the microtubules and deformed the membrane contour of dendritic trunks likely a result of the elastic nature of dendrites as immediate decompression restored it and stabilization of microtubules failed to block it. Subsequent adaptive remodeling restored plasmalemma and microtubules to normal appearance in 3 days likely via active mechanisms as taxol blocked the restoration of microtubules and in addition partly affected plasmalemmal reorganization which presumably engaged recycling of excess membrane. In short, the structural dynamics and the associated mechanisms that we revealed demonstrate how compression quickly altered the morphology of cortical output neurons and hence cortical functions consequently. (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Effect of abnormal notochord delamination on hindgut development in the Adriamycin mouse model.

    PubMed

    Sato, Hideaki; Hajduk, Piotr; Furuta, Shigeyuki; Wakisaka, Munechika; Murphy, Paula; Puri, Prem; Kitagawa, Hiroaki

    2013-11-01

    Adriamycin mouse model (AMM) is a model of VACTERL anomalies. Sonic hedgehog (Shh) pathway, sourced by the notochord, is implicated of anorectal malformations. We hypothesized hindgut anomalies observed in the AMM are the result of abnormal effect of the notochord. Time-mated CBA/Ca mice received two intraperitoneal injections of Adriamycin (6 mg/kg) or saline as control on embryonic day (E) 7 and 8. Fetuses were harvested from E9 to E11, stained following whole mount in situ hybridization with labeled RNA probes to detect Shh and Fork head box F1(Foxf1) transcripts. Immunolocalization with endoderm marker Hnf3β was used to visualize morphology. Embryos were scanned by OPT to obtain 3D representations of expressions. In AMM, the notochord was abnormally displaced ventrally with attachment to the hindgut endoderm in 71 % of the specimens. In 32 % of the treated embryos abnormal hindgut ended blindly in a cystic structure, and both of types were remarked in 29 % of treated embryos. Endodermal Shh and mesenchymal Foxf1 genes expression were preserved around the hindgut cystic malformation. The delamination of the developing notochord in the AMM is disrupted, which may influence signaling mechanisms from the notochord to the hindgut resulting in abnormal patterning of the hindgut.

  9. Polε Instability Drives Replication Stress, Abnormal Development, and Tumorigenesis.

    PubMed

    Bellelli, Roberto; Borel, Valerie; Logan, Clare; Svendsen, Jennifer; Cox, Danielle E; Nye, Emma; Metcalfe, Kay; O'Connell, Susan M; Stamp, Gordon; Flynn, Helen R; Snijders, Ambrosius P; Lassailly, François; Jackson, Andrew; Boulton, Simon J

    2018-05-17

    DNA polymerase ε (POLE) is a four-subunit complex and the major leading strand polymerase in eukaryotes. Budding yeast orthologs of POLE3 and POLE4 promote Polε processivity in vitro but are dispensable for viability in vivo. Here, we report that POLE4 deficiency in mice destabilizes the entire Polε complex, leading to embryonic lethality in inbred strains and extensive developmental abnormalities, leukopenia, and tumor predisposition in outbred strains. Comparable phenotypes of growth retardation and immunodeficiency are also observed in human patients harboring destabilizing mutations in POLE1. In both Pole4 -/- mouse and POLE1 mutant human cells, Polε hypomorphy is associated with replication stress and p53 activation, which we attribute to inefficient replication origin firing. Strikingly, removing p53 is sufficient to rescue embryonic lethality and all developmental abnormalities in Pole4 null mice. However, Pole4 -/- p53 +/- mice exhibit accelerated tumorigenesis, revealing an important role for controlled CMG and origin activation in normal development and tumor prevention. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Regulation of cerebral cortical neurogenesis by the Pax6 transcription factor

    PubMed Central

    Manuel, Martine N.; Mi, Da; Mason, John O.; Price, David J.

    2015-01-01

    Understanding brain development remains a major challenge at the heart of understanding what makes us human. The neocortex, in evolutionary terms the newest part of the cerebral cortex, is the seat of higher cognitive functions. Its normal development requires the production, positioning, and appropriate interconnection of very large numbers of both excitatory and inhibitory neurons. Pax6 is one of a relatively small group of transcription factors that exert high-level control of cortical development, and whose mutation or deletion from developing embryos causes major brain defects and a wide range of neurodevelopmental disorders. Pax6 is very highly conserved between primate and non-primate species, is expressed in a gradient throughout the developing cortex and is essential for normal corticogenesis. Our understanding of Pax6’s functions and the cellular processes that it regulates during mammalian cortical development has significantly advanced in the last decade, owing to the combined application of genetic and biochemical analyses. Here, we review the functional importance of Pax6 in regulating cortical progenitor proliferation, neurogenesis, and formation of cortical layers and highlight important differences between rodents and primates. We also review the pathological effects of PAX6 mutations in human neurodevelopmental disorders. We discuss some aspects of Pax6’s molecular actions including its own complex transcriptional regulation, the distinct molecular functions of its splice variants and some of Pax6’s known direct targets which mediate its actions during cortical development. PMID:25805971

  11. Progressive Brain Structural Changes Mapped as Psychosis Develops in ‘At Risk’ Individuals

    PubMed Central

    Sun, Daqiang; Phillips, Lisa; Velakoulis, Dennis; Yung, Alison; McGorry, Patrick D.; Wood, Stephen J.; van Erp, Theo G. M.; Thompson, Paul M.; Toga, Arthur W.; Cannon, Tyrone D.; Pantelis, Christos

    2009-01-01

    Background Schizophrenia and related psychoses are associated with brain structural abnormalities. Recent findings in ‘at risk’ populations have identified progressive changes in various brain regions preceding illness onset, while changes especially in prefrontal and superior temporal regions have been demonstrated in first-episode schizophrenia patients. However, the timing of the cortical changes and their regional extent, relative to the emergence of psychosis, has not been clarified. We followed individuals at high-risk for psychosis to determine whether structural changes in the cerebral cortex occur with the onset of psychosis. We hypothesized that progressive volume loss occurs in prefrontal regions during the transition to psychosis. Methods 35 individuals at ultra-high risk (UHR) for developing psychosis, of whom 12 experienced psychotic onset by 1-year follow-up (‘converters’), participated in a longitudinal structural MRI study. Baseline and follow-up T1-weighted MR images were acquired and longitudinal brain surface contractions were assessed using Cortical Pattern Matching. Results Significantly greater brain contraction was found in the right prefrontal region in the ‘converters’ compared with UHR cases who did not develop psychosis (‘non-converters’). Conclusions These findings show cortical volume loss is associated with the onset of psychosis, indicating ongoing pathological processes during the transition stage to illness. The prefrontal volume loss is in line with structural and functional abnormalities in schizophrenia, suggesting a critical role for this change in the development of psychosis. PMID:19138834

  12. Clozapine-induced EEG abnormalities and clinical response to clozapine.

    PubMed

    Risby, E D; Epstein, C M; Jewart, R D; Nguyen, B V; Morgan, W N; Risch, S C; Thrivikraman, K V; Lewine, R L

    1995-01-01

    The authors hypothesized that patients who develop gross EEG abnormalities during clozapine treatment would have a less favorable outcome than patients who did not develop abnormal EEGs. The clinical EEGs and the Brief Psychiatric Rating Scale (BPRS) scores of 12 patients with schizophrenia and 4 patients with schizoaffective disorder were compared before and during treatment with clozapine. Eight patients developed significant EEG abnormalities on clozapine; 1 showed worsening of an abnormal pre-clozapine EEG; none of these subjects had clinical seizures. BPRS scores improved significantly in the group of patients who developed abnormal EEGs but not in the group who did not. Findings are consistent with previous reports of a high incidence of clozapine-induced EEG abnormalities and a positive association between these abnormalities and clinical improvement.

  13. Decreased Regional Cortical Thickness and Thinning Rate Are Associated with Inattention Symptoms in Healthy Children

    ERIC Educational Resources Information Center

    Ducharme, Simon; Hudziak, James J.; Botteron, Kelly N.; Albaugh, Matthew D.; Nguyen, Tuong-Vi; Karama, Sherif; Evans, Alan C.

    2012-01-01

    Objective: Children with attention-deficit/hyperactivity disorder (ADHD) have delayed cortical maturation, evidenced by regionally specific slower cortical thinning. However, the relationship between cortical maturation and attention capacities in typically developing children is unknown. This study examines cortical thickness correlates of…

  14. A Brief History of the Development of Abnormal Psychology: A Training Guide. Final Report.

    ERIC Educational Resources Information Center

    Phelps, William R.

    Presented for practitioners is a history of the development of abnormal psychology. Areas covered include the following: Early medical concepts, ideas carried over from literature, early treatment of the mentally ill, development of the psychological viewpoint, Freud's psychoanalytic theory, Jung's analytic theory, the individual psychology of…

  15. Advanced Microscopic Imaging Methods to Investigate Cortical Development and the Etiology of Mental Retardation

    ERIC Educational Resources Information Center

    Haydar, Tarik F.

    2005-01-01

    Studies on human patients and animal models of disease have shown that disruptions in prenatal and early postnatal brain development are a root cause of mental retardation. Since proper brain development is achieved by a strict spatiotemporal control of neurogenesis, cell migration, and patterning of synapses, abnormalities in one or more of these…

  16. Cortical functional anatomy of voluntary saccades in Parkinson disease.

    PubMed

    Rieger, Jochem W; Kim, Aleander; Argyelan, Miklos; Farber, Mark; Glazman, Sofya; Liebeskind, Marc; Meyer, Thomas; Bodis-Wollner, Ivan

    2008-10-01

    In Parkinson Disease (PD) several aspects of saccades are affected. The saccade-generating brainstem neurons are spared, however, the signals they receive may be flawed. In particular voluntary saccades suffer, but the functional anatomy of the impairment of saccade-related cortical control is unknown. We measured blood-oxygenation-level-dependent (BOLD) activation with functional Magnetic Resonance Imaging (fMRI) while healthy participants and patients with PD performed horizontal voluntary saccades between peripheral visual targets or fixated centrally. We compared saccade-related BOLD-activity vs. fixation in patients with PD and in healthy controls and correlated perisaccadic BOLD-activity in PD patients with saccade kinetics (multistep saccades). Saccade related BOLD-activation was found in both PD and healthy participants in the superior parietal cortex (PEF) and the occipital cortex. Our results suggest remarkable hypoactivity of the frontal and supplementary eye fields (FEF and SEF) in PD patients. On the other hand, PD patients showed a statistically more reliable BOLD modulation than healthy participants in the posterior cingulate gyrus, the parahippocampal gyrus, inferior parietal lobule, precuneus and in the middle temporal gyrus. Given abnormal frontal and normal PEF responses, our results suggest that in PD a frontal cortical circuitry, known to be associated with saccade planning, selection, and predicting a metric error of the saccade, is deficient.

  17. Increased Functional Connectivity Between Subcortical and Cortical Resting-State Networks in Autism Spectrum Disorder

    PubMed Central

    Cerliani, Leonardo; Mennes, Maarten; Thomas, Rajat M.; Di Martino, Adriana; Thioux, Marc; Keysers, Christian

    2016-01-01

    such connections was associated with the severity of autistic traits in the ASD group (all r ≥ 0.21, P < .0067 corrected). In addition, subcortico-cortical interaction decreased with age in the entire sample (all r ≤ −0.09, P < .012 corrected), although this association was significant only in typically developing participants (all r ≤ −0.13, P < .009 corrected). Conclusions and Relevance Our results showing ASD-related impairment in the interaction between primary sensory cortices and subcortical regions suggest that the sensory processes they subserve abnormally influence brain information processing in individuals with ASD. This might contribute to the occurrence of hyposensitivity or hypersensitivity and of difficulties in top-down regulation of behavior. PMID:26061743

  18. Temporal lobe developmental malformations and epilepsy: dual pathology and bilateral hippocampal abnormalities.

    PubMed

    Ho, S S; Kuzniecky, R I; Gilliam, F; Faught, E; Morawetz, R

    1998-03-01

    Temporal lobe developmental malformations (TLDM) with focal cortical dysplasia and balloon cells may coexist with mesial temporal sclerosis. The true incidence of this dual pathology is unknown. Our aim was to assess the frequency of amygdala (AM)-hippocampal abnormality in a homogeneous population with this specific developmental malformation. MRI-based volumetry of the AM and hippocampal formation (HF) in 30 patients with unilateral TLDM and intractable partial epilepsy was performed. A volume normalization process defined a normal range of HF and AM volumes in control subjects, and enabled the detection of bilateral volume loss. Normalized volumes detected HF atrophy in 26 patients (nine unilateral and 17 bilateral) and AM atrophy in 18 patients (three unilateral and 15 bilateral). Visual analysis detected unilateral HF abnormality in 21 patients and bilateral abnormality in two. When compared with a group of patients with temporal lobe epilepsy and pure hippocampal sclerosis (N = 92), where volumetry revealed bilateral HF atrophy in 18%, a significant difference in the frequency of bilateral HF atrophy was found (p < 0.0001). Dual pathology is frequent in patients with TLDM (87%), and the AM-HF abnormality is often bilateral (57%). Our data suggest that more widespread and potentially epileptogenic lesions coexist with visibly detectable unilateral TLDM. This has implications for the selection of patients for temporal lobe surgery and may influence surgical strategies.

  19. Structural abnormalities of corpus callosum and cortical axonal tracts accompanied by decreased anxiety-like behavior and lowered sociability in spock3- mutant mice.

    PubMed

    Yamamoto, Ayako; Uchiyama, Koji; Nara, Tomoka; Nishimura, Naomichi; Hayasaka, Michiko; Hanaoka, Kazunori; Yamamoto, Tatsuro

    2014-01-01

    Spock3/Testican-3 is a nervous system-expressed heparan sulfate proteoglycan belonging to a subgroup of the BM-40/SPARC/osteonectin family, the role of which in brain development is unclear. Because Spock1, a member of the Spock family, inhibits their attachment to substrates and the neurite outgrowth of cultured neuronal cells, Spock3 is also thought to be similarly involved in the neuronal development. In the present study, we established a Spock3-mutant mouse harboring a deletion extending from the presumptive upstream regulatory region to exon 4 of the Spock3 locus and performed histological and behavioral studies on these mutant mice. In wild-type (WT) mice, all Spock members were clearly expressed during brain development. In adults, intense Spock1 and Spock2 expressions were observed throughout the entire brain; whereas, Spock3 expression was no longer visible except in the thalamic nuclei. Thus, Spock3 expression is mostly confined to the developmental stage of the brain. In adult mutant mice, the cells of all cortical layers were swollen. The corpus callosum was narrowed around the central region along the rostral-caudal axis and many small spaces were observed without myelin sheaths throughout the entire corpus callosum. In addition, the cortical input and output fibers did not form into thick bundled fibers as well as the WT counterparts did. Moreover, a subpopulation of corticospinal axonal fibers penetrated into the dorsal striatum with moderately altered orientations. Consistent with these modifications of brain structures, the mutant mice exhibited decreased anxiety-like behavior and lowered sociability. Together, these results demonstrate that Spock3 plays an important role in the formation or maintenance of major neuronal structures in the brain. © 2014 S. Karger AG, Basel.

  20. Potential Adverse Effects of Prolonged Sevoflurane Exposure on Developing Monkey Brain: From Abnormal Lipid Metabolism to Neuronal Damage.

    PubMed

    Liu, Fang; Rainosek, Shuo W; Frisch-Daiello, Jessica L; Patterson, Tucker A; Paule, Merle G; Slikker, William; Wang, Cheng; Han, Xianlin

    2015-10-01

    Sevoflurane is a volatile anesthetic that has been widely used in general anesthesia, yet its safety in pediatric use is a public concern. This study sought to evaluate whether prolonged exposure of infant monkeys to a clinically relevant concentration of sevoflurane is associated with any adverse effects on the developing brain. Infant monkeys were exposed to 2.5% sevoflurane for 9 h, and frontal cortical tissues were harvested for DNA microarray, lipidomics, Luminex protein, and histological assays. DNA microarray analysis showed that sevoflurane exposure resulted in a broad identification of differentially expressed genes (DEGs) in the monkey brain. In general, these genes were associated with nervous system development, function, and neural cell viability. Notably, a number of DEGs were closely related to lipid metabolism. Lipidomic analysis demonstrated that critical lipid components, (eg, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol) were significantly downregulated by prolonged exposure of sevoflurane. Luminex protein analysis indicated abnormal levels of cytokines in sevoflurane-exposed brains. Consistently, Fluoro-Jade C staining revealed more degenerating neurons after sevoflurane exposure. These data demonstrate that a clinically relevant concentration of sevoflurane (2.5%) is capable of inducing and maintaining an effective surgical plane of anesthesia in the developing nonhuman primate and that a prolonged exposure of 9 h resulted in profound changes in gene expression, cytokine levels, lipid metabolism, and subsequently, neuronal damage. Generally, sevoflurane-induced neuronal damage was also associated with changes in lipid content, composition, or both; and specific lipid changes could provide insights into the molecular mechanism(s) underlying anesthetic-induced neurotoxicity and may be sensitive biomarkers for the early detection of anesthetic-induced neuronal damage. Published by Oxford University Press on behalf of the

  1. Abnormal brain development in newborns with congenital heart disease.

    PubMed

    Miller, Steven P; McQuillen, Patrick S; Hamrick, Shannon; Xu, Duan; Glidden, David V; Charlton, Natalie; Karl, Tom; Azakie, Anthony; Ferriero, Donna M; Barkovich, A James; Vigneron, Daniel B

    2007-11-08

    Congenital heart disease in newborns is associated with global impairment in development. We characterized brain metabolism and microstructure, as measures of brain maturation, in newborns with congenital heart disease before they underwent heart surgery. We studied 41 term newborns with congenital heart disease--29 who had transposition of the great arteries and 12 who had single-ventricle physiology--with the use of magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and diffusion tensor imaging (DTI) before cardiac surgery. We calculated the ratio of N-acetylaspartate to choline (which increases with brain maturation), the ratio of lactate to choline (which decreases with maturation), average diffusivity (which decreases with maturation), and fractional anisotropy of white-matter tracts (which increases with maturation). We compared these findings with those in 16 control newborns of a similar gestational age. As compared with control newborns, those with congenital heart disease had a decrease of 10% in the ratio of N-acetylaspartate to choline (P=0.003), an increase of 28% in the ratio of lactate to choline (P=0.08), an increase of 4% in average diffusivity (P<0.001), and a decrease of 12% in white-matter fractional anisotropy (P<0.001). Preoperative brain injury, as seen on MRI, was not significantly associated with findings on MRS or DTI. White-matter injury was observed in 13 newborns with congenital heart disease (32%) and in no control newborns. Term newborns with congenital heart disease have widespread brain abnormalities before they undergo cardiac surgery. The imaging findings in such newborns are similar to those in premature newborns and may reflect abnormal brain development in utero. Copyright 2007 Massachusetts Medical Society.

  2. Dysregulated expression of neuregulin-1 by cortical pyramidal neurons disrupts synaptic plasticity.

    PubMed

    Agarwal, Amit; Zhang, Mingyue; Trembak-Duff, Irina; Unterbarnscheidt, Tilmann; Radyushkin, Konstantin; Dibaj, Payam; Martins de Souza, Daniel; Boretius, Susann; Brzózka, Magdalena M; Steffens, Heinz; Berning, Sebastian; Teng, Zenghui; Gummert, Maike N; Tantra, Martesa; Guest, Peter C; Willig, Katrin I; Frahm, Jens; Hell, Stefan W; Bahn, Sabine; Rossner, Moritz J; Nave, Klaus-Armin; Ehrenreich, Hannelore; Zhang, Weiqi; Schwab, Markus H

    2014-08-21

    Neuregulin-1 (NRG1) gene variants are associated with increased genetic risk for schizophrenia. It is unclear whether risk haplotypes cause elevated or decreased expression of NRG1 in the brains of schizophrenia patients, given that both findings have been reported from autopsy studies. To study NRG1 functions in vivo, we generated mouse mutants with reduced and elevated NRG1 levels and analyzed the impact on cortical functions. Loss of NRG1 from cortical projection neurons resulted in increased inhibitory neurotransmission, reduced synaptic plasticity, and hypoactivity. Neuronal overexpression of cysteine-rich domain (CRD)-NRG1, the major brain isoform, caused unbalanced excitatory-inhibitory neurotransmission, reduced synaptic plasticity, abnormal spine growth, altered steady-state levels of synaptic plasticity-related proteins, and impaired sensorimotor gating. We conclude that an "optimal" level of NRG1 signaling balances excitatory and inhibitory neurotransmission in the cortex. Our data provide a potential pathomechanism for impaired synaptic plasticity and suggest that human NRG1 risk haplotypes exert a gain-of-function effect. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Normative morphometric data for cerebral cortical areas over the lifetime of the adult human brain.

    PubMed

    Potvin, Olivier; Dieumegarde, Louis; Duchesne, Simon

    2017-08-01

    Proper normative data of anatomical measurements of cortical regions, allowing to quantify brain abnormalities, are lacking. We developed norms for regional cortical surface areas, thicknesses, and volumes based on cross-sectional MRI scans from 2713 healthy individuals aged 18 to 94 years using 23 samples provided by 21 independent research groups. The segmentation was conducted using FreeSurfer, a widely used and freely available automated segmentation software. Models predicting regional cortical estimates of each hemisphere were produced using age, sex, estimated total intracranial volume (eTIV), scanner manufacturer, magnetic field strength, and interactions as predictors. The explained variance for the left/right cortex was 76%/76% for surface area, 43%/42% for thickness, and 80%/80% for volume. The mean explained variance for all regions was 41% for surface areas, 27% for thicknesses, and 46% for volumes. Age, sex and eTIV predicted most of the explained variance for surface areas and volumes while age was the main predictors for thicknesses. Scanner characteristics generally predicted a limited amount of variance, but this effect was stronger for thicknesses than surface areas and volumes. For new individuals, estimates of their expected surface area, thickness and volume based on their characteristics and the scanner characteristics can be obtained using the derived formulas, as well as Z score effect sizes denoting the extent of the deviation from the normative sample. Models predicting normative values were validated in independent samples of healthy adults, showing satisfactory validation R 2 . Deviations from the normative sample were measured in individuals with mild Alzheimer's disease and schizophrenia and expected patterns of deviations were observed. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  4. Morphostructural MRI abnormalities related to neuropsychiatric disorders associated to multiple sclerosis.

    PubMed

    Bonavita, Simona; Tedeschi, Gioacchino; Gallo, Antonio

    2013-01-01

    Multiple Sclerosis associated neuropsychiatric disorders include major depression (MD), obsessive-compulsive disorder (OCD), bipolar affective disorder, euphoria, pseudobulbar affect, psychosis, and personality change. Magnetic Resonance Imaging (MRI) studies focused mainly on identifying morphostructural correlates of MD; only a few anecdotal cases on OCD associated to MS (OCD-MS), euphoria, pseudobulbar affect, psychosis, personality change, and one research article on MRI abnormalities in OCD-MS have been published. Therefore, in the present review we will report mainly on neuroimaging abnormalities found in MS patients with MD and OCD. All together, the studies on MD associated to MS suggest that, in this disease, depression is linked to a damage involving mainly frontotemporal regions either with discrete lesions (with those visible in T1 weighted images playing a more significant role) or subtle normal appearing white matter abnormalities. Hippocampal atrophy, as well, seems to be involved in MS related depression. It is conceivable that grey matter pathology (i.e., global and regional atrophy, cortical lesions), which occurs early in the course of disease, may involve several areas including the dorsolateral prefrontal cortex, the orbitofrontal cortex, and the anterior cingulate cortex whose disruption is currently thought to explain late-life depression. Further MRI studies are necessary to better elucidate OCD pathogenesis in MS.

  5. Morphostructural MRI Abnormalities Related to Neuropsychiatric Disorders Associated to Multiple Sclerosis

    PubMed Central

    Bonavita, Simona; Tedeschi, Gioacchino; Gallo, Antonio

    2013-01-01

    Multiple Sclerosis associated neuropsychiatric disorders include major depression (MD), obsessive-compulsive disorder (OCD), bipolar affective disorder, euphoria, pseudobulbar affect, psychosis, and personality change. Magnetic Resonance Imaging (MRI) studies focused mainly on identifying morphostructural correlates of MD; only a few anecdotal cases on OCD associated to MS (OCD-MS), euphoria, pseudobulbar affect, psychosis, personality change, and one research article on MRI abnormalities in OCD-MS have been published. Therefore, in the present review we will report mainly on neuroimaging abnormalities found in MS patients with MD and OCD. All together, the studies on MD associated to MS suggest that, in this disease, depression is linked to a damage involving mainly frontotemporal regions either with discrete lesions (with those visible in T1 weighted images playing a more significant role) or subtle normal appearing white matter abnormalities. Hippocampal atrophy, as well, seems to be involved in MS related depression. It is conceivable that grey matter pathology (i.e., global and regional atrophy, cortical lesions), which occurs early in the course of disease, may involve several areas including the dorsolateral prefrontal cortex, the orbitofrontal cortex, and the anterior cingulate cortex whose disruption is currently thought to explain late-life depression. Further MRI studies are necessary to better elucidate OCD pathogenesis in MS. PMID:23691320

  6. Statistical shape analysis of clavicular cortical bone with applications to the development of mean and boundary shape models.

    PubMed

    Lu, Yuan-Chiao; Untaroiu, Costin D

    2013-09-01

    During car collisions, the shoulder belt exposes the occupant's clavicle to large loading conditions which often leads to a bone fracture. To better understand the geometric variability of clavicular cortical bone which may influence its injury tolerance, twenty human clavicles were evaluated using statistical shape analysis. The interior and exterior clavicular cortical bone surfaces were reconstructed from CT-scan images. Registration between one selected template and the remaining 19 clavicle models was conducted to remove translation and rotation differences. The correspondences of landmarks between the models were then established using coordinates and surface normals. Three registration methods were compared: the LM-ICP method; the global method; and the SHREC method. The LM-ICP registration method showed better performance than the global and SHREC registration methods, in terms of compactness, generalization, and specificity. The first four principal components obtained by using the LM-ICP registration method account for 61% and 67% of the overall anatomical variation for the exterior and interior cortical bone shapes, respectively. The length was found to be the most significant variation mode of the human clavicle. The mean and two boundary shape models were created using the four most significant principal components to investigate the size and shape variation of clavicular cortical bone. In the future, boundary shape models could be used to develop probabilistic finite element models which may help to better understand the variability in biomechanical responses and injuries to the clavicle. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. CHRONIC PERCHLORATE EXPOSURE CAUSES MORPHOLOGICAL ABNORMALITIES IN DEVELOPING STICKLEBACK

    PubMed Central

    Bernhardt, Richard R.; Von Hippel, Frank A.; O’Hara, Todd M.

    2011-01-01

    Few studies have examined the effects of chronic perchlorate exposure during growth and development, and fewer still have analyzed the effects of perchlorate over multiple generations. We describe morphological and developmental characteristics for threespine stickleback (Gasterosteus aculeatus) that were spawned and raised to sexual maturity in perchlorate-treated water (G1,2003) and for their offspring (G2,2004) that were not directly treated with perchlorate. The G1,2003 displayed a variety of abnormalities, including impaired formation of calcified traits, slower growth rates, aberrant sexual development, poor survivorship, and reduced pigmentation that allowed internal organs to be visible. Yet these conditions were absent when the offspring of contaminated fish (G2,2004) were raised in untreated water, suggesting a lack of transgenerational effects and that surviving populations may be able to recover following remediation of perchlorate-contaminated sites PMID:21465539

  8. Cholinergic systems are essential for late-stage maturation and refinement of motor cortical circuits

    PubMed Central

    Ramanathan, Dhakshin S.; Conner, James M.; Anilkumar, Arjun A.

    2014-01-01

    Previous studies reported that early postnatal cholinergic lesions severely perturb early cortical development, impairing neuronal cortical migration and the formation of cortical dendrites and synapses. These severe effects of early postnatal cholinergic lesions preclude our ability to understand the contribution of cholinergic systems to the later-stage maturation of topographic cortical representations. To study cholinergic mechanisms contributing to the later maturation of motor cortical circuits, we first characterized the temporal course of cortical motor map development and maturation in rats. In this study, we focused our attention on the maturation of cortical motor representations after postnatal day 25 (PND 25), a time after neuronal migration has been accomplished and cortical volume has reached adult size. We found significant maturation of cortical motor representations after this time, including both an expansion of forelimb representations in motor cortex and a shift from proximal to distal forelimb representations to an extent unexplainable by simple volume enlargement of the neocortex. Specific cholinergic lesions placed at PND 24 impaired enlargement of distal forelimb representations in particular and markedly reduced the ability to learn skilled motor tasks as adults. These results identify a novel and essential role for cholinergic systems in the late refinement and maturation of cortical circuits. Dysfunctions in this system may constitute a mechanism of late-onset neurodevelopmental disorders such as Rett syndrome and schizophrenia. PMID:25505106

  9. Abnormalities in hemispheric specialization of caudate nucleus connectivity in schizophrenia

    PubMed Central

    Mueller, Sophia; Wang, Danhong; Pan, Ruiqi; Holt, Daphne J.; Liu, Hesheng

    2015-01-01

    Importance Hemispheric specialization of the human brain is a marker of successful neurodevelopment. Altered brain asymmetry that has been repeatedly reported in schizophrenia may represent consequences of disrupted neurodevelopment in the disorder. However, a complete picture of functional specialization in the schizophrenic brain and its connectional substrates are yet to be unveiled. Objective We aimed to quantify intrinsic hemispheric specialization at a cortical and subcortical level and to reveal potential disease effects in schizophrenia. Design/Participants Resting-state functional connectivity MRI has been previously used to quantitatively measure hemispheric specialization in healthy subjects, in a reliable manner. Here we quantified the intrinsic hemispheric specialization at the whole brain level in 31 patients with schizophrenia and 37 demographically matched healthy control subjects using resting-state functional connectivity MRI. Results The caudate nucleus, and cortical regions with connections to the caudate nucleus, showed markedly abnormal hemispheric specialization in schizophrenia. Compared to healthy controls, patients exhibited weaker specialization in the left, but the opposite pattern in the right, caudate nucleus. Schizophrenia patients also displayed a disruption of the inter-hemispheric coordination among the cortical regions with connections to the caudate nucleus. A linear classifier based on the specialization of the caudate nucleus distinguished patients from controls with a classification accuracy of 74%. Conclusions and Relevance These data suggested that hemispheric specialization could serve as a potential imaging biomarker of schizophrenia that, compared to task-based fMRI measures, is less prone to the confounding effects of variation in task compliance, cognitive ability, and command of language. PMID:25830688

  10. Abnormalities of the axial and proximal appendicular skeleton in adults with Laron syndrome (growth hormone insensitivity).

    PubMed

    Kornreich, L; Konen, O; Schwarz, M; Siegel, Y; Horev, G; Hershkovitz, I; Laron, Z

    2008-02-01

    To investigate abnormalities in the skeleton (with the exclusion of the skull, cervical spine, hands and feet) in patients with Laron syndrome, who have an inborn growth hormone resistance and congenital insulin-like growth factor-1 (IGF-1) deficiency. The study group was composed of 15 untreated patients with Laron syndrome (seven male and eight female) aged 21-68 years. Plain films of the axial and appendicular skeleton were evaluated retrospectively for abnormalities in structure and shape. The cortical width of the long bones was evaluated qualitatively and quantitatively (in the upper humerus and mid-femur), and the cortical index was calculated and compared with published references. Measurements were taken of the mid-anteroposterior and cranio-caudal diameters of the vertebral body and spinous process at L3, the interpedicular distance at L1 and L5, and the sacral slope. Thoracic and lumbar osteophytes were graded on a 5-point scale. Values were compared with a control group of 20 healthy persons matched for age. The skeleton appeared small in all patients. No signs of osteopenia were visible. The cortex of the long bones appeared thick in the upper limbs in 11 patients and in the lower limbs in four. Compared with the reference values, the cortical width was thicker than average in the humerus and thinner in the femur. The vertebral diameters at L3 and the interpedicular distances at L1 and L5 were significantly smaller in the patients than in the control subjects (P<0.001); however, at L5 the canal was wider, relative to the vertebral body. The study group had a higher rate of anterior osteophytes in the lumbar spine than the controls had, and their osteophytes were also significantly larger. In the six patients for whom radiographs of the upper extremity in its entirety were available on one film, the ulna appeared to be rotated. In one 22-year-old man, multiple epiphyses were still open. Congenital IGF-1 deficiency leads to skeletal abnormalities

  11. Neural progenitor fate decision defects, cortical hypoplasia and behavioral impairment in Celsr1-deficient mice.

    PubMed

    Boucherie, C; Boutin, C; Jossin, Y; Schakman, O; Goffinet, A M; Ris, L; Gailly, P; Tissir, F

    2018-03-01

    The development of the cerebral cortex is a tightly regulated process that relies on exquisitely coordinated actions of intrinsic and extrinsic cues. Here, we show that the communication between forebrain meninges and apical neural progenitor cells (aNPC) is essential to cortical development, and that the basal compartment of aNPC is key to this communication process. We found that Celsr1, a cadherin of the adhesion G protein coupled receptor family, controls branching of aNPC basal processes abutting the meninges and thereby regulates retinoic acid (RA)-dependent neurogenesis. Loss-of-function of Celsr1 results in a decreased number of endfeet, modifies RA-dependent transcriptional activity and biases aNPC commitment toward self-renewal at the expense of basal progenitor and neuron production. The mutant cortex has a reduced number of neurons, and Celsr1 mutant mice exhibit microcephaly and behavioral abnormalities. Our results uncover an important role for Celsr1 protein and for the basal compartment of neural progenitor cells in fate decision during the development of the cerebral cortex.

  12. Neural progenitor fate decision defects, cortical hypoplasia and behavioral impairment in Celsr1-deficient mice

    PubMed Central

    Boucherie, C; Boutin, C; Jossin, Y; Schakman, O; Goffinet, A M; Ris, L; Gailly, P; Tissir, F

    2018-01-01

    The development of the cerebral cortex is a tightly regulated process that relies on exquisitely coordinated actions of intrinsic and extrinsic cues. Here, we show that the communication between forebrain meninges and apical neural progenitor cells (aNPC) is essential to cortical development, and that the basal compartment of aNPC is key to this communication process. We found that Celsr1, a cadherin of the adhesion G protein coupled receptor family, controls branching of aNPC basal processes abutting the meninges and thereby regulates retinoic acid (RA)-dependent neurogenesis. Loss-of-function of Celsr1 results in a decreased number of endfeet, modifies RA-dependent transcriptional activity and biases aNPC commitment toward self-renewal at the expense of basal progenitor and neuron production. The mutant cortex has a reduced number of neurons, and Celsr1 mutant mice exhibit microcephaly and behavioral abnormalities. Our results uncover an important role for Celsr1 protein and for the basal compartment of neural progenitor cells in fate decision during the development of the cerebral cortex. PMID:29257130

  13. [Origin of cortical interneurons: basic concepts and clinical implications].

    PubMed

    Marín, O

    Introduction and development. GABAergic interneurons play a prominent role in the function of the cerebral cortex, since they allow the synchronization of pyramidal neurons and greatly influence their differentiation and maturation during development. Until recently it has been thought that cortical interneurons and pyramidal neurons originate from progenitor cells located in the dorsal region of the telencephalon, the pallium. Recent studies, however, have demonstrated that a large number of cortical GABAergic neurons arise from progenitors located in the subpallium the region of the telencephalon that gives rise to the basal ganglia, and that they arise in the cerebral cortex after a long tangential migration. Aims. In this review I have summarized our current knowledge of the factors that control the specification of cortical interneurons, as well as the mechanisms that direct their migration to the cortex.

  14. Censoring distances based on labeled cortical distance maps in cortical morphometry.

    PubMed

    Ceyhan, Elvan; Nishino, Tomoyuki; Alexopolous, Dimitrios; Todd, Richard D; Botteron, Kelly N; Miller, Michael I; Ratnanather, J Tilak

    2013-01-01

    It has been demonstrated that shape differences in cortical structures may be manifested in neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM) which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM) voxels with respect to GM/white matter (WM) surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information contained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs) of subjects with major depressive disorder (MDD), subjects at high risk (HR) of MDD, and healthy control (Ctrl) subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface) for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  15. Cortical layers: Cyto-, myelo-, receptor- and synaptic architecture in human cortical areas.

    PubMed

    Palomero-Gallagher, Nicola; Zilles, Karl

    2017-08-12

    Cortical layers have classically been identified by their distinctive and prevailing cell types and sizes, as well as the packing densities of cell bodies or myelinated fibers. The densities of multiple receptors for classical neurotransmitters also vary across the depth of the cortical ribbon, and thus determine the neurochemical properties of cyto- and myeloarchitectonic layers. However, a systematic comparison of the correlations between these histologically definable layers and the laminar distribution of transmitter receptors is currently lacking. We here analyze the densities of 17 different receptors of various transmitter systems in the layers of eight cytoarchitectonically identified, functionally (motor, sensory, multimodal) and hierarchically (primary and secondary sensory, association) distinct areas of the human cerebral cortex. Maxima of receptor densities are found in different layers when comparing different cortical regions, i.e. laminar receptor densities demonstrate differences in receptorarchitecture between isocortical areas, notably between motor and primary sensory cortices, specifically the primary visual and somatosensory cortices, as well as between allocortical and isocortical areas. Moreover, considerable differences are found between cytoarchitectonical and receptor architectonical laminar patterns. Whereas the borders of cyto- and myeloarchitectonic layers are well comparable, the laminar profiles of receptor densities rarely coincide with the histologically defined borders of layers. Instead, highest densities of most receptors are found where the synaptic density is maximal, i.e. in the supragranular layers, particularly in layers II-III. The entorhinal cortex as an example of the allocortex shows a peculiar laminar organization, which largely deviates from that of all the other cortical areas analyzed here. Copyright © 2017. Published by Elsevier Inc.

  16. Developmental trajectories of abuse--an hypothesis for the effects of early childhood maltreatment on dorsolateral prefrontal cortical development.

    PubMed

    Burrus, Caley

    2013-11-01

    The United States has a high rate of child maltreatment, with nearly 12 in 1000 children being victims of abuse or neglect. Child abuse strongly predicts negative life outcomes, especially in areas of emotional and mental health. Abused children are also more likely than their peers to engage in violence and enter the juvenile justice system, as well as to become abusive parents themselves. Research has shown that child abuse and trauma can lead to decreased hippocampal volume, which could be indicative of abnormal hippocampal development. Hippocampal development appears to directly affect the development of the dorsolateral prefrontal cortex, a brain area responsible for emotion regulation, cognitive reappraisal, and general executive function. Therefore, I hypothesize that if child abuse results in abnormal hippocampal development, which leads to abnormal dorsolateral prefrontal cortex development, many of the correlated risk factors of child abuse, such as emotionally-laden parenting and unfavorable cognitive distortions regarding children's behaviors, may be in part caused by underdevelopment or abnormal functioning of the dorsolateral prefrontal cortex, as a function of the individual's own experiences with abuse during childhood. If this hypothesis is supported with future research, more targeted, successful, and cost-effective prevention and treatment protocols could ensue. For instance, programs that have been empirically shown to increase the activity of the dorsolateral prefrontal cortex, such as cognitive behavioral therapy, could be effective in decreasing the incidence of intergenerational transfer of abuse. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. What is the impact of child abuse on gray matter abnormalities in individuals with major depressive disorder: a case control study.

    PubMed

    Ahn, Sung Jun; Kyeong, Sunghyon; Suh, Sang Hyun; Kim, Jae-Jin; Chung, Tae-Sub; Seok, Jeong-Ho

    2016-11-14

    Patients with major depressive disorder (MDD) present heterogeneous clinical symptoms, and childhood abuse is associated with deepening of psychopathology. The aim of this study was to identify structural brain abnormalities in MDD and to assess further differences in gray matter density (GMD) associated with childhood abuse in MDD. Differences in regional GMD between 34 MDD patients and 26 healthy controls were assessed using magnetic resonance imaging and optimized voxel-based morphometry. Within the MDD group, further comparisons were performed focusing on the experience of maltreatment during childhood (23 MDD with child abuse vs 11 MDD without child abuse). Compared with healthy controls, the MDD patient group showed decreased GMD in the bilateral orbitofrontal cortices, right superior frontal gyrus, right posterior cingulate gyrus, bilateral middle occipital gyri, and left cuneus. In addition, the patient group showed increased GMD in bilateral postcentral gyri, parieto-occipital cortices, putamina, thalami, and hippocampi, and left cerebellar declive and tuber of vermis. Within the MDD patient group, the subgroup with abuse showed a tendency of decreased GMD in right orbitofrontal cortex, but showed increased GMD in the left postcentral gyrus compared to the subgroup without abuse. Our findings suggest a complicated dysfunction of networks between cortical-subcortical circuits in MDD. In addition, increased GMD in postcentral gyrus and a possible reduction of GMD in the orbitofrontal cortex of MDD patients with abuse subgroup may be associated with abnormalities of body perception and emotional dysregulation.

  18. Oxytocin mediates early experience-dependent cross-modal plasticity in the sensory cortices.

    PubMed

    Zheng, Jing-Jing; Li, Shu-Jing; Zhang, Xiao-Di; Miao, Wan-Ying; Zhang, Dinghong; Yao, Haishan; Yu, Xiang

    2014-03-01

    Sensory experience is critical to development and plasticity of neural circuits. Here we report a new form of plasticity in neonatal mice, where early sensory experience cross-modally regulates development of all sensory cortices via oxytocin signaling. Unimodal sensory deprivation from birth through whisker deprivation or dark rearing reduced excitatory synaptic transmission in the correspondent sensory cortex and cross-modally in other sensory cortices. Sensory experience regulated synthesis and secretion of the neuropeptide oxytocin as well as its level in the cortex. Both in vivo oxytocin injection and increased sensory experience elevated excitatory synaptic transmission in multiple sensory cortices and significantly rescued the effects of sensory deprivation. Together, these results identify a new function for oxytocin in promoting cross-modal, experience-dependent cortical development. This link between sensory experience and oxytocin is particularly relevant to autism, where hypersensitivity or hyposensitivity to sensory inputs is prevalent and oxytocin is a hotly debated potential therapy.

  19. The role of the first postmitotic cortical cells in the development of thalamocortical innervation in the reeler mouse.

    PubMed

    Molnár, Z; Adams, R; Goffinet, A M; Blakemore, C

    1998-08-01

    In the mutant mouse reeler, the tangential distribution of thalamocortical fibers is essentially normal, even though neurons of the cortical plate accumulate below the entire early-born preplate population (Caviness et al., 1998). This seems incompatible with the hypothesis that cells of the subplate (the lower component of the preplate in normal mammals) form an axonal scaffold that guides thalamic fibers and act as temporary targets for them (Blakemore and Molnár, 1990, Shatz et al., 1990). We used carbocyanine dyes to trace projections in wild-type and reeler mice between embryonic day 13 and postnatal day 3. Preplate formation and early extension of corticofugal fibers to form a topographic array are indistinguishable in the two phenotypes. So too are the emergence of thalamic axons in topographic order through the primitive internal capsule, their meeting with preplate axons, and their distribution over the preplate scaffold. Distinctive differences appear after the cortical plate begins to accumulate below the preplate of reeler, causing the preplate axons to form oblique fascicles, running through the cortical plate. Thalamic axons then pass through the plate within the same fascicles and accumulate in the "superplate" layer for approximately 2-3 d, before defasciculating and plunging down to terminate deep in the cortical plate, creating the curious "looping" pattern seen in the adult. Thus, thalamocortical innervation in reeler follows the same algorithm of development but in relation to the misplaced population of early-born neurons. Far from challenging the theory that preplate fibers guide thalamic axons, reeler provides strong evidence for it.

  20. Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates

    NASA Astrophysics Data System (ADS)

    Rajangam, Sankaranarayani; Tseng, Po-He; Yin, Allen; Lehew, Gary; Schwarz, David; Lebedev, Mikhail A.; Nicolelis, Miguel A. L.

    2016-03-01

    Several groups have developed brain-machine-interfaces (BMIs) that allow primates to use cortical activity to control artificial limbs. Yet, it remains unknown whether cortical ensembles could represent the kinematics of whole-body navigation and be used to operate a BMI that moves a wheelchair continuously in space. Here we show that rhesus monkeys can learn to navigate a robotic wheelchair, using their cortical activity as the main control signal. Two monkeys were chronically implanted with multichannel microelectrode arrays that allowed wireless recordings from ensembles of premotor and sensorimotor cortical neurons. Initially, while monkeys remained seated in the robotic wheelchair, passive navigation was employed to train a linear decoder to extract 2D wheelchair kinematics from cortical activity. Next, monkeys employed the wireless BMI to translate their cortical activity into the robotic wheelchair’s translational and rotational velocities. Over time, monkeys improved their ability to navigate the wheelchair toward the location of a grape reward. The navigation was enacted by populations of cortical neurons tuned to whole-body displacement. During practice with the apparatus, we also noticed the presence of a cortical representation of the distance to reward location. These results demonstrate that intracranial BMIs could restore whole-body mobility to severely paralyzed patients in the future.

  1. Abnormal expression of ephrin-A5 affects brain development of congenital hypothyroidism rats.

    PubMed

    Suo, Guihai; Shen, Feifei; Sun, Baolan; Song, Honghua; Xu, Meiyu; Wu, Youjia

    2018-05-14

    EphA5 and its ligand ephrin-A5 interaction can trigger synaptogenesis during early hippocampus development. We have previously reported that abnormal EphA5 expression can result in synaptogenesis disorder in congenital hypothyroidism (CH) rats. To better understand its precise molecular mechanism, we further analyzed the characteristics of ephrin-A5 expression in the hippocampus of CH rats. Our study revealed that ephrin-A5 expression was downregulated by thyroid hormone deficiency in the developing hippocampus and hippocampal neurons in rats. Thyroxine treatment for hypothyroid hippocampus and triiodothyronine treatment for hypothyroid hippocampal neurons significantly improved ephrin-A5 expression but could not restore its expression to control levels. Hypothyroid hippocampal neurons in-vitro showed synaptogenesis disorder characterized by a reduction in the number and length of neurites. Furthermore, the synaptogenesis-associated molecular expressions of NMDAR-1 (NR1), PSD95 and CaMKII were all downregulated correspondingly. These results suggest that ephrin-A5 expression may be decreased in CH, and abnormal activation of ephrin-A5/EphA5 signaling affects synaptogenesis during brain development. Such findings provide an important basis for exploring the pathogenesis of CH genetically.

  2. Changing picture of renal cortical necrosis in acute kidney injury in developing country

    PubMed Central

    Prakash, Jai; Singh, Vijay Pratap

    2015-01-01

    Renal cortical necrosis (RCN) is characterized by patchy or diffuse ischemic destruction of all the elements of renal cortex resulting from significantly diminished renal arterial perfusion due to vascular spasm and microvascular injury. In addition, direct endothelial injury particularly in setting of sepsis, eclampsia, haemolytic uremic syndrome (HUS) and snake bite may lead to endovascular thrombosis with subsequent renal ischemia. Progression to end stage renal disease is a rule in diffuse cortical necrosis. It is a rare cause of acute kidney injury (AKI) in developed countries with frequency of 1.9%-2% of all patients with AKI. In contrast, RCN incidence is higher in developing countries ranging between 6%-7% of all causes of AKI. Obstetric complications (septic abortion, puerperal sepsis, abruptio placentae, postpartum haemorrhage and eclampsia) are the main (60%-70%) causes of RCN in developing countries. The remaining 30%-40% cases of RCN are caused by non-obstetrical causes, mostly due to sepsis and HUS. The incidence of RCN ranges from 10% to 30% of all cases of obstetric AKI compared with only 5% in non-gravid patients. In the developed countries, RCN accounts for 2% of all cases of AKI in adults and more than 20% of AKI during the third trimester of pregnancy. The reported incidence of RCN in obstetrical AKI varies between 18%-42.8% in different Indian studies. However, the overall incidence of RCN in pregnancy related AKI has decreased from 20%-30% to 5% in the past two decades in India. Currently RCN accounts for 3% of all causes of AKI. The incidence of RCN in obstetrical AKI was 1.44% in our recent study. HUS is most common cause of RCN in non-obstetrical group, while puerperal sepsis is leading cause of RCN in obstetric group. Because of the catastrophic sequelae of RCN, its prevention and aggressive management should always be important for the better renal outcome and prognosis of the patients. PMID:26558184

  3. Visualization of migration of human cortical neurons generated from induced pluripotent stem cells.

    PubMed

    Bamba, Yohei; Kanemura, Yonehiro; Okano, Hideyuki; Yamasaki, Mami

    2017-09-01

    Neuronal migration is considered a key process in human brain development. However, direct observation of migrating human cortical neurons in the fetal brain is accompanied by ethical concerns and is a major obstacle in investigating human cortical neuronal migration. We established a novel system that enables direct visualization of migrating cortical neurons generated from human induced pluripotent stem cells (hiPSCs). We observed the migration of cortical neurons generated from hiPSCs derived from a control and from a patient with lissencephaly. Our system needs no viable brain tissue, which is usually used in slice culture. Migratory behavior of human cortical neuron can be observed more easily and more vividly by its fluorescence and glial scaffold than that by earlier methods. Our in vitro experimental system provides a new platform for investigating development of the human central nervous system and brain malformation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Combat veterans with PTSD after mild TBI exhibit greater ERPs from posterior-medial cortical areas while appraising facial features.

    PubMed

    Shu, I-Wei; Onton, Julie A; Prabhakar, Nitin; O'Connell, Ryan M; Simmons, Alan N; Matthews, Scott C

    2014-02-01

    Posttraumatic stress disorder (PTSD) worsens prognosis following mild traumatic brain injury (mTBI). Combat personnel with histories of mTBI exhibit abnormal activation of distributed brain networks-including emotion processing and default mode networks. How developing PTSD further affects these abnormalities has not been directly examined. We recorded electroencephalography in combat veterans with histories of mTBI, but without active PTSD (mTBI only, n=16) and combat veterans who developed PTSD after mTBI (mTBI+PTSD, n=16)-during the Reading the Mind in the Eyes Test (RMET), a validated test of empathy requiring emotional appraisal of facial features. Task-related event related potentials (ERPs) were identified, decomposed using independent component analysis (ICA) and localized anatomically using dipole modeling. We observed larger emotional face processing ERPs in veterans with mTBI+PTSD, including greater N300 negativity. Furthermore, greater N300 negativity correlated with greater PTSD severity, especially avoidance/numbing and hyperarousal symptom clusters. This correlation was dependent on contributions from the precuneus and posterior cingulate cortex (PCC). Our results support a model where, in combat veterans with histories of mTBI, larger ERPs from over-active posterior-medial cortical areas may be specific to PTSD, and is likely related to negative self-referential activity. © 2013 Published by Elsevier B.V.

  5. Abnormal prefrontal cortex resting state functional connectivity and severity of internet gaming disorder.

    PubMed

    Jin, Chenwang; Zhang, Ting; Cai, Chenxi; Bi, Yanzhi; Li, Yangding; Yu, Dahua; Zhang, Ming; Yuan, Kai

    2016-09-01

    Internet Gaming Disorder (IGD) among adolescents has become an important public concern and gained more and more attention internationally. Recent studies focused on IGD and revealed brain abnormalities in the IGD group, especially the prefrontal cortex (PFC). However, the role of PFC-striatal circuits in pathology of IGD remains unknown. Twenty-five adolescents with IGD and 21 age- and gender-matched healthy controls were recruited in our study. Voxel-based morphometric (VBM) and functional connectivity analysis were employed to investigate the abnormal structural and resting-state properties of several frontal regions in individuals with online gaming addiction. Relative to healthy comparison subjects, IGD subjects showed significant decreased gray matter volume in PFC regions including the bilateral dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and the right supplementary motor area (SMA) after controlling for age and gender effects. We chose these regions as the seeding areas for the resting-state analysis and found that IGD subjects showed decreased functional connectivity between several cortical regions and our seeds, including the insula, and temporal and occipital cortices. Moreover, significant decreased functional connectivity between some important subcortical regions, i.e., dorsal striatum, pallidum, and thalamus, and our seeds were found in the IGD group and some of those changes were associated with the severity of IGD. Our results revealed the involvement of several PFC regions and related PFC-striatal circuits in the process of IGD and suggested IGD may share similar neural mechanisms with substance dependence at the circuit level.

  6. Transcriptome Analysis for Abnormal Spike Development of the Wheat Mutant dms

    PubMed Central

    Zhu, Xin-Xin; Li, Qiao-Yun; Shen, Chun-Cai; Duan, Zong-Biao; Yu, Dong-Yan; Niu, Ji-Shan; Ni, Yong-Jing; Jiang, Yu-Mei

    2016-01-01

    Background Wheat (Triticum aestivum L.) spike development is the foundation for grain yield. We obtained a novel wheat mutant, dms, characterized as dwarf, multi-pistil and sterility. Although the genetic changes are not clear, the heredity of traits suggests that a recessive gene locus controls the two traits of multi-pistil and sterility in self-pollinating populations of the medium plants (M), such that the dwarf genotype (D) and tall genotype (T) in the progeny of the mutant are ideal lines for studies regarding wheat spike development. The objective of this study was to explore the molecular basis for spike abnormalities of dwarf genotype. Results Four unigene libraries were assembled by sequencing the mRNAs of the super-bulked differentiating spikes and stem tips of the D and T plants. Using integrative analysis, we identified 419 genes highly expressed in spikes, including nine typical homeotic genes of the MADS-box family and the genes TaAP2, TaFL and TaDL. We also identified 143 genes that were significantly different between young spikes of T and D, and 26 genes that were putatively involved in spike differentiation. The result showed that the expression levels of TaAP1-2, TaAP2, and other genes involved in the majority of biological processes such as transcription, translation, cell division, photosynthesis, carbohydrate transport and metabolism, and energy production and conversion were significantly lower in D than in T. Conclusions We identified a set of genes related to wheat floral organ differentiation, including typical homeotic genes. Our results showed that the major causal factors resulting in the spike abnormalities of dms were the lower expression homeotic genes, hormonal imbalance, repressed biological processes, and deficiency of construction materials and energy. We performed a series of studies on the homeotic genes, however the other three causal factors for spike abnormal phenotype of dms need further study. PMID:26982202

  7. Redox Abnormalities as a Vulnerability Phenotype for Autism and Related Alterations in CNS Development

    DTIC Science & Technology

    2011-10-01

    the hypothesis that SJL mice would have impaired neuronal dendrite generation, as has been observed in autism . This was our prediction due to the...phenotype for Autism and related alterations in CNS development PRINCIPAL INVESTIGATOR: Mark D. Noble, Ph.D. CONTRACTING...SUBTITLE Redox abnormalities as a vulnerability phenotype for Autism 5a. CONTRACT NUMBER And related alterations in CNS development 5b. GRANT

  8. Spatial integration and cortical dynamics.

    PubMed

    Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G

    1996-01-23

    Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.

  9. Absence of the lysophosphatidic acid receptor LPA1 results in abnormal bone development and decreased bone mass☆,☆☆

    PubMed Central

    Gennero, Isabelle; Laurencin-Dalicieux, Sara; Conte-Auriol, Françoise; Briand-Mésange, Fabienne; Laurencin, Danielle; Rue, Jackie; Beton, Nicolas; Malet, Nicole; Mus, Marianne; Tokumura, Akira; Bourin, Philippe; Vico, Laurence; Brunel, Gérard; Oreffo, Richard O. C.; Chun, Jerold; Salles, Jean Pierre

    2013-01-01

    Lysophosphatidic acid (LPA) is a lipid mediator that acts in paracrine systems via interaction with a subset of G protein-coupled receptors (GPCRs). LPA promotes cell growth and differentiation, and has been shown to be implicated in a variety of developmental and pathophysiological processes. At least 6 LPA GPCRs have been identified to date: LPA1–LPA6. Several studies have suggested that local production of LPA by tissues and cells contributes to paracrine regulation, and a complex interplay between LPA and its receptors, LPA1 and LPA4, is believed to be involved in the regulation of bone cell activity. In particular, LPA1may activate both osteoblasts and osteoclasts. However, its role has not as yet been examined with regard to the overall status of bone in vivo. We attempted to clarify this role by defining the bone phenotype of LPA1(−/−) mice. These mice demonstrated significant bone defects and low bone mass, indicating that LPA1 plays an important role in osteogenesis. The LPA1(−/−) mice also presented growth and sternal and costal abnormalities, which highlights the specific roles of LPA1 during bone development. Microcomputed tomography and histological analysis demonstrated osteoporosis in the trabecular and cortical bone of LPA1(−/−) mice. Finally, bone marrow mesenchymal progenitors from these mice displayed decreased osteoblastic differentiation. These results suggest that LPA1 strongly influences bone development both qualitatively and quantitatively and that, in vivo, its absence results in decreased osteogenesis with no clear modification of osteoclasis. They open perspectives for a better understanding of the role of the LPA/LPA1 paracrine pathway in bone pathophysiology. PMID:21569876

  10. Disorganized cortical thickness covariance network in major depressive disorder implicated by aberrant hubs in large-scale networks

    PubMed Central

    Wang, Tao; Wang, Kangcheng; Qu, Hang; Zhou, Jingjing; Li, Qi; Deng, Zhou; Du, Xue; Lv, Fajin; Ren, Gaoping; Guo, Jing; Qiu, Jiang; Xie, Peng

    2016-01-01

    Major depressive disorder is associated with abnormal anatomical and functional connectivity, yet alterations in whole cortical thickness topology remain unknown. Here, we examined cortical thickness in medication-free adult depression patients (n = 76) and matched healthy controls (n = 116). Inter-regional correlation was performed to construct brain networks. By applying graph theory analysis, global (i.e., small-worldness) and regional (centrality) topology was compared between major depressive disorder patients and healthy controls. We found that in depression patients, topological organization of the cortical thickness network shifted towards randomness, and lower small-worldness was driven by a decreased clustering coefficient. Consistently, altered nodal centrality was identified in the isthmus of the cingulate cortex, insula, supra-marginal gyrus, middle temporal gyrus and inferior parietal gyrus, all of which are components within the default mode, salience and central executive networks. Disrupted nodes anchored in the default mode and executive networks were associated with depression severity. The brain systems involved sustain core symptoms in depression and implicate a structural basis for depression. Our results highlight the possibility that developmental and genetic factors are crucial to understand the neuropathology of depression. PMID:27302485

  11. Sensations of skin infestation linked to abnormal frontolimbic brain reactivity and differences in self-representation.

    PubMed

    Eccles, J A; Garfinkel, S N; Harrison, N A; Ward, J; Taylor, R E; Bewley, A P; Critchley, H D

    2015-10-01

    Some patients experience skin sensations of infestation and contamination that are elusive to proximate dermatological explanation. We undertook a functional magnetic resonance imaging study of the brain to demonstrate, for the first time, that central processing of infestation-relevant stimuli is altered in patients with such abnormal skin sensations. We show differences in neural activity within amygdala, insula, middle temporal lobe and frontal cortices. Patients also demonstrated altered measures of self-representation, with poorer sensitivity to internal bodily (interoceptive) signals and greater susceptibility to take on an illusion of body ownership: the rubber hand illusion. Together, these findings highlight a potential model for the maintenance of abnormal skin sensations, encompassing heightened threat processing within amygdala, increased salience of skin representations within insula and compromised prefrontal capacity for self-regulation and appraisal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Is cortical bone hip? What determines cortical bone properties?

    PubMed

    Epstein, Sol

    2007-07-01

    Increased bone turnover may produce a disturbance in bone structure which may result in fracture. In cortical bone, both reduction in turnover and increase in hip bone mineral density (BMD) may be necessary to decrease hip fracture risk and may require relatively greater proportionate changes than for trabecular bone. It should also be noted that increased porosity produces disproportionate reduction in bone strength, and studies have shown that increased cortical porosity and decreased cortical thickness are associated with hip fracture. Continued studies for determining the causes of bone strength and deterioration show distinct promise. Osteocyte viability has been observed to be an indicator of bone strength, with viability as the result of maintaining physiological levels of loading and osteocyte apoptosis as the result of a decrease in loading. Osteocyte apoptosis and decrease are major factors in the bone loss and fracture associated with aging. Both the osteocyte and periosteal cell layer are assuming greater importance in the process of maintaining skeletal integrity as our knowledge of these cells expand, as well being a target for pharmacological agents to reduce fracture especially in cortical bone. The bisphosphonate alendronate has been seen to have a positive effect on cortical bone by allowing customary periosteal growth, while reducing the rate of endocortical bone remodeling and slowing bone loss from the endocortical surface. Risedronate treatment effects were attributed to decrease in bone resorption and thus a decrease in fracture risk. Ibandronate has been seen to increase BMD as the spine and femur as well as a reduced incidence of new vertebral fractures and non vertebral on subset post hoc analysis. And treatment with the anabolic agent PTH(1-34) documented modeling and remodelling of quiescent and active bone surfaces. Receptor activator of nuclear factor kappa B ligand (RANKL) plays a key role in bone destruction, and the human monoclonal

  13. Multimodal Approach for Radical Excision of Focal Cortical Dysplasia by Combining Advanced Magnetic Resonance Imaging Data to Intraoperative Ultrasound, Electrocorticography, and Cortical Stimulation: A Preliminary Experience.

    PubMed

    Tringali, Giovanni; Bono, Beatrice; Dones, Ivano; Cordella, Roberto; Didato, Giuseppe; Villani, Flavio; Prada, Francesco

    2018-05-01

    Type II focal cortical dysplasia is the most common malformation of cortical development associated with drug resistant epilepsy and susceptible to surgical resection. Although, at present, advanced imaging modalities are capable of detecting most cortical disorders, it is still a challenge for the surgeon to visualize them intraoperatively. The lack of direct identification between normal brain and subtle dysplastic tissue may explain the poor results in terms of being seizure-free versus other forms of epilepsy. The aim of this study is to compare magnetic resonance imaging (MRI) and intraoperative ultrasound-guided neuronavigation, along with cortical stimulation and acute electrocorticography, as a multimodal surgical approach to cortical dysplasia's tailored resection. Six consecutive patients with type II cortical dysplasia underwent epilepsy surgery by means of MRI/intraoperative ultrasound-guided neuronavigation. Intraoperative cortical stimulation of sensory/motor cortex was performed to localize cortical eloquent areas. Acute electrocorticography was used to identify epileptogenic tissue. These findings were correlated to real-time ultrasound imaging to establish the extent of the resection. Intraoperative ultrasound depicted cortical dysplasias at a higher resolution and accuracy than MRI. Therefore it maximized the extent of the resection. Both postoperative MRIs and pathology documented the extent of the resection in all patients. Seizure-freedom was achieved in 5 cases (Engel class IA), and in 1 patient it was classified as Engel class IB. No postoperative neurological deficits were observed. These results strongly suggest feasibility of ultrasound-guided resection of focal cortical dysplasia. Providing high resolution and accuracy, it allows an easy, real-time discrimination between normal and dysplastic brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Abnormal Microstructure of the Atrophic Thalamus in Preterm Survivors with Periventricular Leukomalacia

    PubMed Central

    Nagasunder, A.C.; Kinney, H.C.; Blüml, S.; Tavaré, C.J.; Rosser, T.; Gilles, F.H.; Nelson, M.D.; Panigrahy, A.

    2012-01-01

    BACKGROUND AND PURPOSE The neuroanatomic substrate of cognitive deficits in long-term survivors of prematurity with PVL is poorly understood. The thalamus is critically involved in cognition via extensive interconnections with the cerebral cortex. We hypothesized that the thalamus is atrophic (reduced in volume) in childhood survivors of prematurity with neuroimaging evidence of PVL and that the atrophy is associated with selective microstructural abnormalities within its subdivisions. MATERIALS AND METHODS We performed quantitative volumetric and DTI measurements of the thalamus in 17 children with neuroimaging evidence of PVL (mean postconceptional age, 5.6 ± 4.0 years) who were born prematurely and compared these with 74 term control children (5.7 ± 3.4 years). RESULTS The major findings were the following: 1) a significant reduction in the overall volume of the thalamus in patients with PVL compared with controls (P < .0001), which also correlated with the severity of PVL (P = .001); 2) significantly decreased FA (P = .003) and increased λ⊥ (P = .02) in the thalamus overall and increased axial, radial, and mean diffusivities in the pulvinar (P < .03), suggesting injury to afferent and efferent myelinated axons; and 3) a positive correlation of pulvinar abnormalities with those of the parieto-occipital white matter in periventricular leukomalacia, suggesting that the pulvinar abnormalities reflect secondary effects of damaged interconnections between the pulvinar and parieto-occipital cortices in the cognitive visual network. CONCLUSIONS There are volumetric and microstructural abnormalities of the thalamus in preterm children with PVL, very likely reflecting neuronal loss and myelinated axonal injury. The selective microstructural damage in the pulvinar very likely contributes to abnormal cognitive visual processing known to occur in such survivors. PMID:20930003

  15. Development of Abnormality Detection System for Bathers using Ultrasonic Sensors

    NASA Astrophysics Data System (ADS)

    Ohnishi, Yosuke; Abe, Takehiko; Nambo, Hidetaka; Kimura, Haruhiko; Ogoshi, Yasuhiro

    This paper proposes an abnormality detection system for bather sitting in bathtub. Increasing number of in-bathtub drowning accidents in Japan draws attention. Behind this large number of bathing accidents, Japan's unique social and cultural background come surface. For majority of people in Japan, bathing serves purpose in deep warming up of body, relax and enjoyable time. Therefore it is the custom for the Japanese to soak in bathtub. However overexposure to hot water may cause dizziness or fainting, which is possible to cause in-bathtub drowning. For drowning prevention, the system detects bather's abnormal state using an ultrasonic sensor array. The array, which has many ultrasonic sensors, is installed on the ceiling of bathroom above bathtub. The abnormality detection system uses the following two methods: posture detection and behavior detection. The function of posture detection is to estimate the risk of drowning by monitoring bather's posture. Meanwhile, the function of behavior detection is to estimate the risk of drowning by monitoring bather's behavior. By using these methods, the system detects bathers' different state from normal. As a result of experiment with a subject in the bathtub, the system was possible to detect abnormal state using subject's posture and behavior. Therefore the system is useful for monitoring bather to prevent drowning in bathtub.

  16. Neural network models for spatial data mining, map production, and cortical direction selectivity

    NASA Astrophysics Data System (ADS)

    Parsons, Olga

    A family of ARTMAP neural networks for incremental supervised learning has been developed over the last decade. The Sensor Exploitation Group of MIT Lincoln Laboratory (LL) has incorporated an early version of this network as the recognition engine of a hierarchical system for fusion and data mining of multiple registered geospatial images. The LL system has been successfully fielded, but it is limited to target vs. non-target identifications and does not produce whole maps. This dissertation expands the capabilities of the LL system so that it learns to identify arbitrarily many target classes at once and can thus produce a whole map. This new spatial data mining system is designed particularly to cope with the highly skewed class distributions of typical mapping problems. Specification of a consistent procedure and a benchmark testbed has permitted the evaluation of candidate recognition networks as well as pre- and post-processing and feature extraction options. The resulting default ARTMAP network and mapping methodology set a standard for a variety of related mapping problems and application domains. The second part of the dissertation investigates the development of cortical direction selectivity. The possible role of visual experience and oculomotor behavior in the maturation of cells in the primary visual cortex is studied. The responses of neurons in the thalamus and cortex of the cat are modeled when natural scenes are scanned by several types of eye movements. Inspired by the Hebbian-like synaptic plasticity, which is based upon correlations between cell activations, the second-order statistical structure of thalamo-cortical activity is examined. In the simulations, patterns of neural activity that lead to a correct refinement of cell responses are observed during visual fixation, when small ocular movements occur, but are not observed in the presence of large saccades. Simulations also replicate experiments in which kittens are reared under stroboscopic

  17. Neurobehavioral development in Joubert syndrome.

    PubMed

    Gitten, J; Dede, D; Fennell, E; Quisling, R; Maria, B L

    1998-08-01

    Research on children with Joubert syndrome has focused on brain structural abnormalities and associated clinical symptoms. The degree of developmental delay has not been objectively reported. We investigated the neurobehavioral development of children with Joubert syndrome through neurobehavioral assessment in the largest sample to date. Thirty-two parents of children with Joubert syndrome completed the Child Development Inventory and magnetic resonance imaging (MRI) data was gathered on 17 of these children. Results indicate that 94% were severely impaired according to the Child Development Inventory, with age being positively correlated with degree of neurobehavioral impairment. The average developmental age of our sample was 19 months (63% below chronological age). Severity of illness as measured by the General Development scale of the Child Development Inventory and severity of illness as measured by MRI (overall severity rating) did not yield consistent data regarding severity of the midbrain and cerebellar malformations. Similarly, markers of abnormal cerebral development such as cortical atrophy and delayed myelination were independent of severity of illness ratings on the Child Development Inventory. The degree of developmental delay in Joubert syndrome and the severity of gross central nervous system malformations appear independent.

  18. Visual Dysfunction in Posterior Cortical Atrophy

    PubMed Central

    Maia da Silva, Mari N.; Millington, Rebecca S.; Bridge, Holly; James-Galton, Merle; Plant, Gordon T.

    2017-01-01

    Posterior cortical atrophy (PCA) is a syndromic diagnosis. It is characterized by progressive impairment of higher (cortical) visual function with imaging evidence of degeneration affecting the occipital, parietal, and posterior temporal lobes bilaterally. Most cases will prove to have Alzheimer pathology. The aim of this review is to summarize the development of the concept of this disorder since it was first introduced. A critical discussion of the evolving diagnostic criteria is presented and the differential diagnosis with regard to the underlying pathology is reviewed. Emphasis is given to the visual dysfunction that defines the disorder, and the classical deficits, such as simultanagnosia and visual agnosia, as well as the more recently recognized visual field defects, are reviewed, along with the evidence on their neural correlates. The latest developments on the imaging of PCA are summarized, with special attention to its role on the differential diagnosis with related conditions. PMID:28861031

  19. Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy

    PubMed Central

    Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J.; Yong, Keir X.X.; Paterson, Ross W.; Slattery, Catherine F.; Foulkes, Alexander J.M.; Rabinovici, Gil D.; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M.; Fox, Nick C.; Crutch, Sebastian J.

    2016-01-01

    Age at onset (AAO) has been shown to influence the phenotype of Alzheimer’s disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes. PMID:27318138

  20. Abnormal brain chemistry in chronic back pain: an in vivo proton magnetic resonance spectroscopy study.

    PubMed

    Grachev, I D; Fredrickson, B E; Apkarian, A V

    2000-12-15

    The neurobiology of chronic pain, including chronic back pain, is unknown. Structural imaging studies of the spine cannot explain all cases of chronic back pain. Functional brain imaging studies indicate that the brain activation patterns are different between chronic pain patients and normal subjects, and the thalamus, and prefrontal and cingulate cortices are involved in some types of chronic pain. Animal models of chronic pain suggest abnormal spinal cord chemistry. Does chronic pain cause brain chemistry changes? We examined brain chemistry changes in patients with chronic back pain using in vivo single- voxel proton magnetic resonance spectroscopy ((1)H-MRS). In vivo (1)H-MRS was used to measure relative concentrations of N-acetyl aspartate, creatine, choline, glutamate, glutamine, gamma-aminobutyric acid, inositol, glucose and lactate in relation to the concentration of creatine. These measurements were performed in six brain regions of nine chronic low back pain patients and 11 normal volunteers. All chronic back pain subjects underwent clinical evaluation and perceptual measures of pain and anxiety. We show that chronic back pain alters the human brain chemistry. Reductions of N-acetyl aspartate and glucose were demonstrated in the dorsolateral prefrontal cortex. Cingulate, sensorimotor, and other brain regions showed no chemical concentration differences. In chronic back pain, the interrelationship between chemicals within and across brain regions was abnormal, and there was a specific relationship between regional chemicals and perceptual measures of pain and anxiety. These findings provide direct evidence of abnormal brain chemistry in chronic back pain, which may be useful in diagnosis and future development of more effective pharmacological treatments.

  1. FoxP2 regulates neurogenesis during embryonic cortical development.

    PubMed

    Tsui, David; Vessey, John P; Tomita, Hideaki; Kaplan, David R; Miller, Freda D

    2013-01-02

    The transcription factor FoxP2 has been associated with the development of human speech but the underlying cellular function of FoxP2 is still unclear. Here we provide evidence that FoxP2 regulates genesis of some intermediate progenitors and neurons in the mammalian cortex, one of the key centers for human speech. Specifically, knockdown of FoxP2 in embryonic cortical precursors inhibits neurogenesis, at least in part by inhibiting the transition from radial glial precursors to neurogenic intermediate progenitors. Moreover, overexpression of human, but not mouse, FoxP2 enhances the genesis of intermediate progenitors and neurons. In contrast, expression of a human FoxP2 mutant that causes vocalization deficits decreases neurogenesis, suggesting that in the murine system human FoxP2 acts as a gain-of-function protein, while a human FoxP2 mutant acts as a dominant-inhibitory protein. These results support the idea that FoxP2 regulates the transition from neural precursors to transit-amplifying progenitors and ultimately neurons, and shed light upon the molecular changes that might contribute to evolution of the mammalian cortex.

  2. Cortical thickness differences between bipolar depression and major depressive disorder.

    PubMed

    Lan, Martin J; Chhetry, Binod Thapa; Oquendo, Maria A; Sublette, M Elizabeth; Sullivan, Gregory; Mann, J John; Parsey, Ramin V

    2014-06-01

    Bipolar disorder (BD) is a psychiatric disorder with high morbidity and mortality that cannot be distinguished from major depressive disorder (MDD) until the first manic episode. A biomarker able to differentiate BD and MDD could help clinicians avoid risks of treating BD with antidepressants without mood stabilizers. Cortical thickness differences were assessed using magnetic resonance imaging in BD depressed patients (n = 18), MDD depressed patients (n = 56), and healthy volunteers (HVs) (n = 54). A general linear model identified clusters of cortical thickness difference between diagnostic groups. Compared to the HV group, the BD group had decreased cortical thickness in six regions, after controlling for age and sex, located within the frontal and parietal lobes, and the posterior cingulate cortex. Mean cortical thickness changes in clusters ranged from 7.6 to 9.6% (cluster-wise p-values from 1.0 e-4 to 0.037). When compared to MDD, three clusters of lower cortical thickness in BD were identified that overlapped with clusters that differentiated the BD and HV groups. Mean cortical thickness changes in the clusters ranged from 7.5 to 8.2% (cluster-wise p-values from 1.0 e-4 to 0.023). The difference in cortical thickness was more pronounced when the subgroup of subjects with bipolar I disorder (BD-I) was compared to the MDD group. Cortical thickness patterns were distinct between BD and MDD. These results are a step toward developing an imaging test to differentiate the two disorders. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Abnormalities in hemispheric specialization of caudate nucleus connectivity in schizophrenia.

    PubMed

    Mueller, Sophia; Wang, Danhong; Pan, Ruiqi; Holt, Daphne J; Liu, Hesheng

    2015-06-01

    Hemispheric specialization of the human brain is a marker of successful neurodevelopment. Altered brain asymmetry that has been repeatedly reported in schizophrenia may represent consequences of disrupted neurodevelopment in the disorder. However, a complete picture of functional specialization in the schizophrenic brain and its connectional substrates is yet to be unveiled. To quantify intrinsic hemispheric specialization at cortical and subcortical levels and to reveal potential disease effects in schizophrenia. Resting-state functional connectivity magnetic resonance imaging has been previously used to quantitatively measure hemispheric specialization in healthy individuals in a reliable manner. We quantified the intrinsic hemispheric specialization at the whole brain level in 31 patients with schizophrenia and 37 demographically matched healthy controls from November 28, 2007, through June 29, 2010, using resting-state functional magnetic resonance imaging. The caudate nucleus and cortical regions with connections to the caudate nucleus had markedly abnormal hemispheric specialization in schizophrenia. Compared with healthy controls, patients exhibited weaker specialization in the left, but the opposite pattern in the right, caudate nucleus (P < .001). Patients with schizophrenia also had a disruption of the interhemispheric coordination among the cortical regions with connections to the caudate nucleus. A linear classifier based on the specialization of the caudate nucleus distinguished patients from controls with a classification accuracy of 74% (with a sensitivity of 68% and a specificity of 78%). These data suggest that hemispheric specialization could serve as a potential imaging biomarker of schizophrenia that, compared with task-based functional magnetic resonance imaging measures, is less prone to the confounding effects of variation in task compliance, cognitive ability, and command of language.

  4. Visual cortical activity reflects faster accumulation of information from cortically blind fields

    PubMed Central

    Martin, Tim; Das, Anasuya; Huxlin, Krystel R.

    2012-01-01

    Brain responses (from functional magnetic resonance imaging) and components of information processing were investigated in nine cortically blind observers performing a global direction discrimination task. Three of these subjects had responses in perilesional cortex in response to blind field stimulation, whereas the others did not. We used the EZ-diffusion model of decision making to understand how cortically blind subjects make a perceptual decision on stimuli presented within their blind field. We found that these subjects had slower accumulation of information in their blind fields as compared with their good fields and to intact controls. Within cortically blind subjects, activity in perilesional tissue, V3A and hMT+ was associated with a faster accumulation of information for deciding direction of motion of stimuli presented in the blind field. This result suggests that the rate of information accumulation is a critical factor in the degree of impairment in cortical blindness and varies greatly among affected individuals. Retraining paradigms that seek to restore visual functions might benefit from focusing on increasing the rate of information accumulation. PMID:23169923

  5. The Convallis Rule for Unsupervised Learning in Cortical Networks

    PubMed Central

    Yger, Pierre; Harris, Kenneth D.

    2013-01-01

    The phenomenology and cellular mechanisms of cortical synaptic plasticity are becoming known in increasing detail, but the computational principles by which cortical plasticity enables the development of sensory representations are unclear. Here we describe a framework for cortical synaptic plasticity termed the “Convallis rule”, mathematically derived from a principle of unsupervised learning via constrained optimization. Implementation of the rule caused a recurrent cortex-like network of simulated spiking neurons to develop rate representations of real-world speech stimuli, enabling classification by a downstream linear decoder. Applied to spike patterns used in in vitro plasticity experiments, the rule reproduced multiple results including and beyond STDP. However STDP alone produced poorer learning performance. The mathematical form of the rule is consistent with a dual coincidence detector mechanism that has been suggested by experiments in several synaptic classes of juvenile neocortex. Based on this confluence of normative, phenomenological, and mechanistic evidence, we suggest that the rule may approximate a fundamental computational principle of the neocortex. PMID:24204224

  6. Cortical and Subcortical Brain Morphometry Differences Between Patients With Autism Spectrum Disorder and Healthy Individuals Across the Lifespan: Results From the ENIGMA ASD Working Group.

    PubMed

    van Rooij, Daan; Anagnostou, Evdokia; Arango, Celso; Auzias, Guillaume; Behrmann, Marlene; Busatto, Geraldo F; Calderoni, Sara; Daly, Eileen; Deruelle, Christine; Di Martino, Adriana; Dinstein, Ilan; Duran, Fabio Luis Souza; Durston, Sarah; Ecker, Christine; Fair, Damien; Fedor, Jennifer; Fitzgerald, Jackie; Freitag, Christine M; Gallagher, Louise; Gori, Ilaria; Haar, Shlomi; Hoekstra, Liesbeth; Jahanshad, Neda; Jalbrzikowski, Maria; Janssen, Joost; Lerch, Jason; Luna, Beatriz; Martinho, Mauricio Moller; McGrath, Jane; Muratori, Filippo; Murphy, Clodagh M; Murphy, Declan G M; O'Hearn, Kirsten; Oranje, Bob; Parellada, Mara; Retico, Alessandra; Rosa, Pedro; Rubia, Katya; Shook, Devon; Taylor, Margot; Thompson, Paul M; Tosetti, Michela; Wallace, Gregory L; Zhou, Fengfeng; Buitelaar, Jan K

    2018-04-01

    Neuroimaging studies show structural differences in both cortical and subcortical brain regions in children and adults with autism spectrum disorder (ASD) compared with healthy subjects. Findings are inconsistent, however, and it is unclear how differences develop across the lifespan. The authors investigated brain morphometry differences between individuals with ASD and healthy subjects, cross-sectionally across the lifespan, in a large multinational sample from the Enhancing Neuroimaging Genetics Through Meta-Analysis (ENIGMA) ASD working group. The sample comprised 1,571 patients with ASD and 1,651 healthy control subjects (age range, 2-64 years) from 49 participating sites. MRI scans were preprocessed at individual sites with a harmonized protocol based on a validated automated-segmentation software program. Mega-analyses were used to test for case-control differences in subcortical volumes, cortical thickness, and surface area. Development of brain morphometry over the lifespan was modeled using a fractional polynomial approach. The case-control mega-analysis demonstrated that ASD was associated with smaller subcortical volumes of the pallidum, putamen, amygdala, and nucleus accumbens (effect sizes [Cohen's d], 0.13 to -0.13), as well as increased cortical thickness in the frontal cortex and decreased thickness in the temporal cortex (effect sizes, -0.21 to 0.20). Analyses of age effects indicate that the development of cortical thickness is altered in ASD, with the largest differences occurring around adolescence. No age-by-ASD interactions were observed in the subcortical partitions. The ENIGMA ASD working group provides the largest study of brain morphometry differences in ASD to date, using a well-established, validated, publicly available analysis pipeline. ASD patients showed altered morphometry in the cognitive and affective parts of the striatum, frontal cortex, and temporal cortex. Complex developmental trajectories were observed for the different

  7. Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation.

    PubMed

    Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M; Lenarz, Thomas; Lim, Hubert H

    2015-01-01

    Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus.

  8. Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation

    PubMed Central

    Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J.; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M.; Lenarz, Thomas; Lim, Hubert H.

    2015-01-01

    Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus. PMID:26046763

  9. Development of hypersynchrony in the cortical network during chemoconvulsant-induced epileptic seizures in vivo.

    PubMed

    Cymerblit-Sabba, Adi; Schiller, Yitzhak

    2012-03-01

    The prevailing view of epileptic seizures is that they are caused by increased hypersynchronous activity in the cortical network. However, this view is based mostly on electroencephalography (EEG) recordings that do not directly monitor neuronal synchronization of action potential firing. In this study, we used multielectrode single-unit recordings from the hippocampus to investigate firing of individual CA1 neurons and directly monitor synchronization of action potential firing between neurons during the different ictal phases of chemoconvulsant-induced epileptic seizures in vivo. During the early phase of seizures manifesting as low-amplitude rhythmic β-electrocorticography (ECoG) activity, the firing frequency of most neurons markedly increased. To our surprise, the average overall neuronal synchronization as measured by the cross-correlation function was reduced compared with control conditions with ~60% of neuronal pairs showing no significant correlated firing. However, correlated firing was not uniform and a minority of neuronal pairs showed a high degree of correlated firing. Moreover, during the early phase of seizures, correlated firing between 9.8 ± 5.1% of all stably recorded pairs increased compared with control conditions. As seizures progressed and high-frequency ECoG polyspikes developed, the firing frequency of neurons further increased and enhanced correlated firing was observed between virtually all neuronal pairs. These findings indicated that epileptic seizures represented a hyperactive state with widespread increase in action potential firing. Hypersynchrony also characterized seizures. However, it initially developed in a small subset of neurons and gradually spread to involve the entire cortical network only in the later more intense ictal phases.

  10. Cortical ionotropic glutamate receptor antagonism protects against methamphetamine-induced striatal neurotoxicity.

    PubMed

    Gross, N B; Duncker, P C; Marshall, J F

    2011-12-29

    Binge administration of the psychostimulant drug, methamphetamine (mAMPH), produces long-lasting structural and functional abnormalities in the striatum. mAMPH binges produce nonexocytotic release of dopamine (DA), and mAMPH-induced activation of excitatory afferent inputs to cortex and striatum is evidenced by elevated extracellular glutamate (GLU) in both regions. The mAMPH-induced increases in DA and GLU neurotransmission are thought to combine to injure striatal DA nerve terminals of mAMPH-exposed brains. Systemic pretreatment with either competitive or noncompetitive N-methyl-D-aspartic acid (NMDA) antagonists protects against mAMPH-induced striatal DA terminal damage, but the locus of these antagonists' effects has not been determined. Here, we applied either the NMDA receptor antagonist, (dl)-amino-5-phosphonovaleric acid (AP5), or the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, dinitroquinoxaline-2,3-dione (DNQX), directly to the dura mater over frontoparietal cortex to assess their effects on mAMPH-induced cortical and striatal immediate-early gene (c-fos) expression. In a separate experiment we applied AP5 or DNQX epidurally in the same cortical location of rats during a binge regimen of mAMPH and assessed mAMPH-induced striatal dopamine transporter (DAT) depletions 1 week later. Our results indicate that both ionotropic glutamate receptor antagonists reduced the mAMPH-induced Fos expression in cerebral cortex regions near the site of epidural application and reduced Fos immunoreactivity in striatal regions innervated by the affected cortical regions. Also, epidural application of the same concentration of either antagonist during a binge mAMPH regimen blunted the mAMPH-induced striatal DAT depletions with a topography similar to its effects on Fos expression. These findings demonstrate that mAMPH-induced dopaminergic injury depends upon cortical NMDA and AMPA receptor activation and suggest the involvement of the

  11. Quantifying cortical surface harmonic deformation with stereovision during open cranial neurosurgery

    NASA Astrophysics Data System (ADS)

    Ji, Songbai; Fan, Xiaoyao; Roberts, David W.; Paulsen, Keith D.

    2012-02-01

    Cortical surface harmonic motion during open cranial neurosurgery is well observed in image-guided neurosurgery. Recently, we quantified cortical surface deformation noninvasively with synchronized blood pressure pulsation (BPP) from a sequence of stereo image pairs using optical flow motion tracking. With three subjects, we found the average cortical surface displacement can reach more than 1 mm and in-plane principal strains of up to 7% relative to the first image pair. In addition, the temporal changes in deformation and strain were in concert with BPP and patient respiration [1]. However, because deformation was essentially computed relative to an arbitrary reference, comparing cortical surface deformation at different times was not possible. In this study, we extend the technique developed earlier by establishing a more reliable reference profile of the cortical surface for each sequence of stereo image acquisitions. Specifically, fast Fourier transform (FFT) was applied to the dynamic cortical surface deformation, and the fundamental frequencies corresponding to patient respiration and BPP were identified, which were used to determine the number of image acquisitions for use in averaging cortical surface images. This technique is important because it potentially allows in vivo characterization of soft tissue biomechanical properties using intraoperative stereovision and motion tracking.

  12. Plasticity in the Developing Auditory Cortex: Evidence from Children with Sensorineural Hearing Loss and Auditory Neuropathy Spectrum Disorder

    PubMed Central

    Cardon, Garrett; Campbell, Julia; Sharma, Anu

    2013-01-01

    The developing auditory cortex is highly plastic. As such, the cortex is both primed to mature normally and at risk for re-organizing abnormally, depending upon numerous factors that determine central maturation. From a clinical perspective, at least two major components of development can be manipulated: 1) input to the cortex and 2) the timing of cortical input. Children with sensorineural hearing loss (SNHL) and auditory neuropathy spectrum disorder (ANSD) have provided a model of early deprivation of sensory input to the cortex, and demonstrated the resulting plasticity and development that can occur upon introduction of stimulation. In this article, we review several fundamental principles of cortical development and plasticity and discuss the clinical applications in children with SNHL and ANSD who receive intervention with hearing aids and/or cochlear implants. PMID:22668761

  13. Changes in basal ganglia processing of cortical input following magnetic stimulation in Parkinsonism.

    PubMed

    Tischler, Hadass; Moran, Anan; Belelovsky, Katya; Bronfeld, Maya; Korngreen, Alon; Bar-Gad, Izhar

    2012-12-01

    Parkinsonism is associated with major changes in neuronal activity throughout the cortico-basal ganglia loop. Current measures quantify changes in baseline neuronal and network activity but do not capture alterations in information propagation throughout the system. Here, we applied a novel non-invasive magnetic stimulation approach using a custom-made mini-coil that enabled us to study transmission of neuronal activity throughout the cortico-basal ganglia loop in both normal and parkinsonian primates. By magnetically perturbing cortical activity while simultaneously recording neuronal responses along the cortico-basal ganglia loop, we were able to directly investigate modifications in descending cortical activity transmission. We found that in both the normal and parkinsonian states, cortical neurons displayed similar multi-phase firing rate modulations in response to magnetic stimulation. However, in the basal ganglia, large synaptically driven stereotypic neuronal modulation was present in the parkinsonian state that was mostly absent in the normal state. The stimulation-induced neuronal activity pattern highlights the change in information propagation along the cortico-basal ganglia loop. Our findings thus point to the role of abnormal dynamic activity transmission rather than changes in baseline activity as a major component in parkinsonian pathophysiology. Moreover, our results hint that the application of transcranial magnetic stimulation (TMS) in human patients of different disorders may result in different neuronal effects than the one induced in normal subjects. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Functional connectivity and dynamics of cortical-thalamic networks co-cultured in a dual compartment device

    NASA Astrophysics Data System (ADS)

    Kanagasabapathi, Thirukumaran T.; Massobrio, Paolo; Barone, Rocco Andrea; Tedesco, Mariateresa; Martinoia, Sergio; Wadman, Wytse J.; Decré, Michel M. J.

    2012-06-01

    Co-cultures containing dissociated cortical and thalamic cells may provide a unique model for understanding the pathophysiology in the respective neuronal sub-circuitry. In addition, developing an in vitro dissociated co-culture model offers the possibility of studying the system without influence from other neuronal sub-populations. Here we demonstrate a dual compartment system coupled to microelectrode arrays (MEAs) for co-culturing and recording spontaneous activities from neuronal sub-populations. Propagation of electrical activities between cortical and thalamic regions and their interdependence in connectivity is verified by means of a cross-correlation algorithm. We found that burst events originate in the cortical region and drive the entire cortical-thalamic network bursting behavior while mutually weak thalamic connections play a relevant role in sustaining longer burst events in cortical cells. To support these experimental findings, a neuronal network model was developed and used to investigate the interplay between network dynamics and connectivity in the cortical-thalamic system.

  15. Communication and wiring in the cortical connectome

    PubMed Central

    Budd, Julian M. L.; Kisvárday, Zoltán F.

    2012-01-01

    In cerebral cortex, the huge mass of axonal wiring that carries information between near and distant neurons is thought to provide the neural substrate for cognitive and perceptual function. The goal of mapping the connectivity of cortical axons at different spatial scales, the cortical connectome, is to trace the paths of information flow in cerebral cortex. To appreciate the relationship between the connectome and cortical function, we need to discover the nature and purpose of the wiring principles underlying cortical connectivity. A popular explanation has been that axonal length is strictly minimized both within and between cortical regions. In contrast, we have hypothesized the existence of a multi-scale principle of cortical wiring where to optimize communication there is a trade-off between spatial (construction) and temporal (routing) costs. Here, using recent evidence concerning cortical spatial networks we critically evaluate this hypothesis at neuron, local circuit, and pathway scales. We report three main conclusions. First, the axonal and dendritic arbor morphology of single neocortical neurons may be governed by a similar wiring principle, one that balances the conservation of cellular material and conduction delay. Second, the same principle may be observed for fiber tracts connecting cortical regions. Third, the absence of sufficient local circuit data currently prohibits any meaningful assessment of the hypothesis at this scale of cortical organization. To avoid neglecting neuron and microcircuit levels of cortical organization, the connectome framework should incorporate more morphological description. In addition, structural analyses of temporal cost for cortical circuits should take account of both axonal conduction and neuronal integration delays, which appear mostly of the same order of magnitude. We conclude the hypothesized trade-off between spatial and temporal costs may potentially offer a powerful explanation for cortical wiring patterns

  16. Resting-state synchrony between the retrosplenial cortex and anterior medial cortical structures relates to memory complaints in subjective cognitive impairment.

    PubMed

    Yasuno, Fumihiko; Kazui, Hiroaki; Yamamoto, Akihide; Morita, Naomi; Kajimoto, Katsufumi; Ihara, Masafumi; Taguchi, Akihiko; Matsuoka, Kiwamu; Kosaka, Jun; Tanaka, Toshihisa; Kudo, Takashi; Takeda, Masatoshi; Nagatsuka, Kazuyuki; Iida, Hidehiro; Kishimoto, Toshifumi

    2015-06-01

    Subjective cognitive impairment (SCI) is a clinical state characterized by subjective cognitive deficits without cognitive impairment. To test the hypothesis that this state might involve dysfunction of self-referential processing mediated by cortical midline structures, we investigated abnormalities of functional connectivity in these structures in individuals with SCI using resting-state functional magnetic resonance imaging. We performed functional connectivity analysis for 23 individuals with SCI and 30 individuals without SCI. To reveal the pathophysiological basis of the functional connectivity change, we performed magnetic resonance-diffusion tensor imaging. Positron emission tomography-amyloid imaging was conducted in 13 SCI and 15 nonSCI subjects. Individuals with SCI showed reduced functional connectivity in cortical midline structures. Reduction in white matter connections was related to reduced functional connectivity, but we found no amyloid deposition in individuals with SCI. The results do not necessarily contradict the possibility that SCI indicates initial cognitive decrements, but imply that reduced functional connectivity in cortical midline structures contributes to overestimation of the experience of forgetfulness. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Perceptual learning and adult cortical plasticity.

    PubMed

    Gilbert, Charles D; Li, Wu; Piech, Valentin

    2009-06-15

    The visual cortex retains the capacity for experience-dependent changes, or plasticity, of cortical function and cortical circuitry, throughout life. These changes constitute the mechanism of perceptual learning in normal visual experience and in recovery of function after CNS damage. Such plasticity can be seen at multiple stages in the visual pathway, including primary visual cortex. The manifestation of the functional changes associated with perceptual learning involve both long term modification of cortical circuits during the course of learning, and short term dynamics in the functional properties of cortical neurons. These dynamics are subject to top-down influences of attention, expectation and perceptual task. As a consequence, each cortical area is an adaptive processor, altering its function in accordance to immediate perceptual demands.

  18. Basic visual function and cortical thickness patterns in posterior cortical atrophy.

    PubMed

    Lehmann, Manja; Barnes, Josephine; Ridgway, Gerard R; Wattam-Bell, John; Warrington, Elizabeth K; Fox, Nick C; Crutch, Sebastian J

    2011-09-01

    Posterior cortical atrophy (PCA) is characterized by a progressive decline in higher-visual object and space processing, but the extent to which these deficits are underpinned by basic visual impairments is unknown. This study aimed to assess basic and higher-order visual deficits in 21 PCA patients. Basic visual skills including form detection and discrimination, color discrimination, motion coherence, and point localization were measured, and associations and dissociations between specific basic visual functions and measures of higher-order object and space perception were identified. All participants showed impairment in at least one aspect of basic visual processing. However, a number of dissociations between basic visual skills indicated a heterogeneous pattern of visual impairment among the PCA patients. Furthermore, basic visual impairments were associated with particular higher-order object and space perception deficits, but not with nonvisual parietal tasks, suggesting the specific involvement of visual networks in PCA. Cortical thickness analysis revealed trends toward lower cortical thickness in occipitotemporal (ventral) and occipitoparietal (dorsal) regions in patients with visuoperceptual and visuospatial deficits, respectively. However, there was also a lot of overlap in their patterns of cortical thinning. These findings suggest that different presentations of PCA represent points in a continuum of phenotypical variation.

  19. Auditory hallucinations and the temporal cortical response to speech in schizophrenia: a functional magnetic resonance imaging study.

    PubMed

    Woodruff, P W; Wright, I C; Bullmore, E T; Brammer, M; Howard, R J; Williams, S C; Shapleske, J; Rossell, S; David, A S; McGuire, P K; Murray, R M

    1997-12-01

    The authors explored whether abnormal functional lateralization of temporal cortical language areas in schizophrenia was associated with a predisposition to auditory hallucinations and whether the auditory hallucinatory state would reduce the temporal cortical response to external speech. Functional magnetic resonance imaging was used to measure the blood-oxygenation-level-dependent signal induced by auditory perception of speech in three groups of male subjects: eight schizophrenic patients with a history of auditory hallucinations (trait-positive), none of whom was currently hallucinating; seven schizophrenic patients without such a history (trait-negative); and eight healthy volunteers. Seven schizophrenic patients were also examined while they were actually experiencing severe auditory verbal hallucinations and again after their hallucinations had diminished. Voxel-by-voxel comparison of the median power of subjects' responses to periodic external speech revealed that this measure was reduced in the left superior temporal gyrus but increased in the right middle temporal gyrus in the combined schizophrenic groups relative to the healthy comparison group. Comparison of the trait-positive and trait-negative patients revealed no clear difference in the power of temporal cortical activation. Comparison of patients when experiencing severe hallucinations and when hallucinations were mild revealed reduced responsivity of the temporal cortex, especially the right middle temporal gyrus, to external speech during the former state. These results suggest that schizophrenia is associated with a reduced left and increased right temporal cortical response to auditory perception of speech, with little distinction between patients who differ in their vulnerability to hallucinations. The auditory hallucinatory state is associated with reduced activity in temporal cortical regions that overlap with those that normally process external speech, possibly because of competition for

  20. Cortical response variability as a developmental index of selective auditory attention

    PubMed Central

    Strait, Dana L.; Slater, Jessica; Abecassis, Victor; Kraus, Nina

    2014-01-01

    Attention induces synchronicity in neuronal firing for the encoding of a given stimulus at the exclusion of others. Recently, we reported decreased variability in scalp-recorded cortical evoked potentials to attended compared with ignored speech in adults. Here we aimed to determine the developmental time course for this neural index of auditory attention. We compared cortical auditory-evoked variability with attention across three age groups: preschoolers, school-aged children and young adults. Results reveal an increased impact of selective auditory attention on cortical response variability with development. Although all three age groups have equivalent response variability to attended speech, only school-aged children and adults have a distinction between attend and ignore conditions. Preschoolers, on the other hand, demonstrate no impact of attention on cortical responses, which we argue reflects the gradual emergence of attention within this age range. Outcomes are interpreted in the context of the behavioral relevance of cortical response variability and its potential to serve as a developmental index of cognitive skill. PMID:24267508