Science.gov

Sample records for abnormal glow mode

  1. An example of abnormal glow curves identification in personnel thermoluminescent dosimetry.

    PubMed

    Osorio Piniella, V; Stadtmann, H; Lankmayr, E

    2002-01-01

    The personal Dosimetry Service Seibersdorf analyses monthly a large number of thermoluminescent dosimeters (TLD). The dosimeters consist of LiF chips, and the readout is carried out with an automated Harshaw 8800 reader system. In some cases, the luminescent glow curves of the routine analysis do not have the expected form as a result of external chemical contamination, hardware problems, poor heat transfer, etc. It is therefore necessary to investigate the reasons for the irregularity of these curves. An algorithm for the investigation of the routine curves was developed. It is based on the fact that the shape of an abnormal glow curve differs from the shape of a normal one. An interesting type of abnormal glow curves in the routine service was found. Some dosimeters of a certain client, a steel industry, exhibit glow curves with an atypical shape and very high signals. In those dosimeters, a possible chemical contamination in the form of a powder was discovered, which interferes with the dosimetric signal. A quantitative analysis of that powder was made by means of inductively coupled plasma emission spectroscopy (ICP-OES) after microwave dissolution. Elements like aluminium, barium, calcium and others were found. Such elements are used in different combinations as thermoluminescent materials. PMID:12406593

  2. Time-delayed transition of normal-to-abnormal glow in pin-to-water discharge

    NASA Astrophysics Data System (ADS)

    Yoon, S.-Y.; Byeon, Y.-S.; Yoo, S.; Hong, E. J.; Kim, S. B.; Yoo, S. J.; Ryu, S.

    2016-08-01

    Time-delayed transition of normal-to-abnormal glow was investigated in discharge between spoke-like pins and ultrapure water by applying AC-driven power at a frequency of 14.3 kHz at atmospheric pressure. The normal-to-abnormal transition can be recognized from the slope changes of current density, gas temperature, electrode temperature, and OH density. The slope changes took place in tens of minutes rather than just after discharge, in other words, the transition was delayed. The time-delay of the transition was caused by the interaction between the plasma and water. The plasma affected water properties, and then the water affected plasma properties.

  3. Development of a sintering methodology through abnormal glow discharge for manufacturing metal matrix composites

    NASA Astrophysics Data System (ADS)

    Pérez, S.; Pineda, Y.; Sarmiento, A.; López, A.

    2016-02-01

    In this study, a sintering methodology is presented by using abnormal glow discharge to metal matrix composites (MMC), consisting of 316 steel, reinforced with titanium carbide (TiC). The wear behaviour of these compounds was evaluated according to the standard ASTM G 99 in a tribometer pin-on-disk. The effect of the percentage of reinforcement (3, 6, and 9%), with 40 minutes of mixing in the planetary mill is analysed, using compaction pressure of 700MPa and sintering temperature of 1,100°C±5°C, gaseous atmosphere of H2 - N2, and sintering time of 30 minutes. As a result of the research, it shows that the best behaviour against wear is obtained when the MMC contains 6% TiC. Under this parameter the lowest percentage of pores and the lowest coefficient of friction are achieved, ensuring that the incorporation of ceramic particles (TiC) in 316 austenitic steel matrix significantly improves the wear resistance. Also, it is shown that it is possible to sinter such materials using the abnormal glow discharge, being a novel and effective method in which the working temperature is reached in a short time.

  4. Array of surface-confined glow discharges in atmospheric pressure helium: Modes and dynamics

    SciTech Connect

    Li, D.; Liu, D. X. E-mail: mglin5g@gmail.com; Nie, Q. Y.; Li, H. P.; Chen, H. L.; Kong, M. G. E-mail: mglin5g@gmail.com

    2014-05-19

    Array of atmospheric pressure surface discharges confined by a two-dimensional hexagon electrode mesh is studied for its discharge modes and temporal evolution so as to a theoretical underpinning to their growing applications in medicine, aerodynamic control, and environmental remediation. Helium plasma surface-confined by one hexagon-shaped rim electrode is shown to evolve from a Townsend mode to a normal and abnormal glow mode, and its evolution develops from the rim electrodes as six individual microdischarges merging in the middle of the hexagon mesh element. Within one hexagon element, microdischarges remain largely static with the mesh electrode being the instantaneous cathode, but move towards the hexagon center when the electrode is the instantaneous anode. On the entire array electrode surface, plasma ignition is found to beat an unspecific hexagon element and then spreads to ignite surrounding hexagon elements. The spreading of microdischarges is in the form of an expanding circle at a speed of about 3 × 10{sup 4} m/s, and their quenching starts in the location of the initial plasma ignition. Plasma modes influence how input electrical power is used to generate and accelerate electrons and as such the reaction chemistry, whereas plasma dynamics are central to understand and control plasma instabilities. The present study provides an important aspect of plasma physics of the atmospheric surface-confined discharge array and a theoretical underpinning to its future technological innovation.

  5. Radio frequency atmospheric pressure glow discharge in α and γ modes between two coaxial electrodes

    NASA Astrophysics Data System (ADS)

    Shang, Wanli; Wang, Dezhen; Zhang, Yuantao

    2008-09-01

    The discharge in pure helium and the influence of small nitrogen impurities at atmospheric pressure are investigated based on a one-dimensional self-consistent fluid model controlled by a dielectric barrier between two coaxial electrodes. The simulation of the radiofrequency (rf) discharge is based on the one-dimensional continuity equations for electrons, ions, metastable atoms, and molecules, with the much simpler current conservation law replacing the Poisson equation for electric field. Through a computational study of rf atmospheric glow discharges over a wide range of current density, this paper presents evidence of at least two glow discharge modes, namely the α mode and the γ mode. The simulation results show the asymmetry of the discharge set exercises great influence on the discharge mechanisms compared to that with parallel-plane electrodes. It is shown that the particle densities are not uniform in the discharge region but increase gradually from the outer to the inner electrode in both modes. The contrasting dynamic behaviors of the two glow modes are studied. Secondary electron emission strongly influences gas ionization in the γ mode yet matters little in the α mode.

  6. Synthesis of Polycrystalline Diamond Films in Abnormal Glow Discharge and their Properties

    NASA Astrophysics Data System (ADS)

    Gaydaychuk, A. V.; Linnik, S. A.; Kabyshev, A. V.; Konusov, F. V.; Remnev, G. E.

    2015-11-01

    The optical and electrophysical properties of polycrystalline diamond films (PDF) deposited from the abnormal glow discharge have been studied. The dominating mechanisms of absorption and charge carrier transfer and the energy spectrum of the localized states (LS) of defects which determine the properties of the films have been specified. The parameters of the interband absorption and electrical conductivity are determined by the continuous energy distribution in the band gap (BG) of the states of defects of different nature. The absorption edge of the crystalline phase of the films is separated from the absorption zone determined by the electron transitions between LS defects. The width of BG is narrowed to 0.2-0.5 eV from the quantity typical to the diamond. An additional film absorption edge is formed in the energy interval 1.2-3.3 eV, where Urbach rule is fulfilled and the interband absorption is realized at direct transitions through the optical gap 1.1-1.5 eV. The average width of BG is 2.6-3.24 eV estimated within semiclassical interband model. The interaction of the parameters of the interband and exponential absorption is determined by the crystal lattice static disorder. The dominating n-type of the activation component of the electrical conductivity is complemented by the hopping mechanism with the participation of the localized states of the defects distributed near the Fermi level with a density 5.6T017-2.1·1021 eV-1-cm-3.

  7. Irregular-regular-irregular mixed mode oscillations in a glow discharge plasma

    SciTech Connect

    Ghosh, Sabuj Shaw, Pankaj Kumar Saha, Debajyoti Janaki, M. S. Iyengar, A. N. Sekar

    2015-05-15

    Floating potential fluctuations of a glow discharge plasma are found to exhibit different kinds of mixed mode oscillations. Power spectrum analysis reveals that with change in the nature of the mixed mode oscillation (MMO), there occurs a transfer of power between the different harmonics and subharmonics. The variation in the chaoticity of different types of mmo was observed with the study of Lyapunov exponents. Estimates of correlation dimension and the Hurst exponent suggest that these MMOs are of low dimensional nature with an anti persistent character. Numerical modeling also reflects the experimentally found transitions between the different MMOs.

  8. Cathode fall thickness of abnormal glow discharges between parallel-plane electrodes in different radii at low pressure

    SciTech Connect

    Fu, Yangyang; Luo, Haiyun; Zou, Xiaobing; Wang, Xinxin

    2015-02-15

    In order to investigate the influence of electrode radius on the characteristics of cathode fall thickness, experiments of low-pressure (20 Pa ≤ p ≤ 30 Pa) abnormal glow discharge were carried out between parallel-plane electrodes in different radii keeping gap distance unchanged. Axial distributions of light intensity were obtained from the discharge images captured using a Charge Coupled Device camera. The assumption that the position of the negative glow peak coincides with the edge of cathode fall layer was verified based on a two-dimensional model, and the cathode fall thicknesses, d{sub c}, were calculated from the axial distributions of light intensity. It was observed that the position of peak emission shifts closer to the cathode as current or pressure grows. The dependence of cathode fall thickness on the gas pressure and normalized current J/p{sup 2} was presented, and it was found that for discharges between electrodes in large radius the curves of pd{sub c} against J/p{sup 2} were superimposed on each other, however, this phenomenon will not hold for discharges between the smaller electrodes. The reason for this phenomenon is that the transverse diffusions of charged particles are not the same in two gaps between electrodes with different radii.

  9. Study of nonlinear oscillations in a glow discharge plasma using empirical mode decomposition and Hilbert Huang transform

    SciTech Connect

    Wharton, A. M.; Sekar Iyengar, A. N.; Janaki, M. S.

    2013-02-15

    Hilbert Huang transform (HHT) based time series analysis was carried out on nonlinear floating potential fluctuations obtained from hollow cathode glow discharge plasma in the presence of anode glow. HHT was used to obtain contour plots and the presence of nonlinearity was studied. Frequency shift with time, which is a typical nonlinear behaviour, was detected from the contour plots. Various plasma parameters were measured and the concepts of correlation coefficients and the physical contribution of each intrinsic mode function have been discussed. Physically important quantities such as instantaneous energy and their uses in studying physical phenomena such as intermittency and non-stationary data have also been discussed.

  10. Electric field development in γ-mode radiofrequency atmospheric pressure glow discharge in helium

    NASA Astrophysics Data System (ADS)

    Navrátil, Zdeněk; Josepson, Raavo; Cvetanović, Nikola; Obradović, Bratislav; Dvořák, Pavel

    2016-06-01

    Time development of electric field strength during radio-frequency sheath formation was measured using Stark polarization spectroscopy in a helium γ-mode radio-frequency (RF, 13.56 MHz) atmospheric pressure glow discharge at high current density (3 A cm-2). A method of time-correlated single photon counting was applied to record the temporal development of spectral profile of He I 492.2 nm line with a sub-nanosecond temporal resolution. By fitting the measured profile of the line with a combination of pseudo-Voigt profiles for forbidden (2 1P-4 1F) and allowed (2 1P-4 1D) helium lines, instantaneous electric fields up to 32 kV cm-1 were measured in the RF sheath. The measured electric field is in agreement with the spatially averaged value of 40 kV cm-1 estimated from homogeneous charge density RF sheath model. The observed rectangular waveform of the electric field time development is attributed to increased sheath conductivity by the strong electron avalanches occurring in the γ-mode sheath at high current densities.

  11. Nitrogen Plasma Ion Implantation of Al and Ti alloys in the High Voltage Glow Discharge Mode

    NASA Astrophysics Data System (ADS)

    Oliveira, R. M.; Ueda, M.; Rossi, J. O.; Reuther, H.; Lepienski, C. M.; Beloto, A. F.

    2006-11-01

    Enhanced surface properties can be attained for aluminum and its alloys (mechanical and tribological) and Ti6Al4V (mainly tribological) by Plasma Immersion Ion Implantation (PIII) technique. The main problem here, more severe for Al case, is the rapid oxygen contamination even in low O partial pressure. High energy nitrogen ions during PIII are demanded for this situation, in order to enable the ions to pass through the formed oxide layer. We have developed a PIII system that can operate at energies in excess of 50keV, using a Stacked Blumlein (SB) pulser which can nominally provide up to 100 kV pulses. Initially, we are using this system in the High Voltage Glow Discharge (HVGD) mode, to implant nitrogen ions into Al5052 alloy with energies in the range of 30 to 50keV, with 1.5μs duration pulses at a repetition rate of 100Hz. AES, pin-on-disc, nanoindentation measurements are under way but x-ray diffraction results already indicated abundant formation of AlN in the surface for Al5052 treated with this HVGD mode. Our major aim in this PIII experiment is to achieve this difficult to produce stable and highly reliable AlN rich surface layer with high hardness, high corrosion resistance and very low wear rate.

  12. Canard and mixed mode oscillations in an excitable glow discharge plasma in the presence of inhomogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Shaw, Pankaj Kumar; Sekar Iyengar, A. N.; Nurujjaman, Md.

    2015-12-01

    We report on the experimental observation of canard orbit and mixed mode oscillations (MMOs) in an excitable glow discharge plasma induced by an external magnetic field perturbation using a bar magnet. At a small value of magnetic field, small amplitude quasiperiodic oscillations were excited, and with the increase in the magnetic field, large amplitude oscillations were excited. Analyzing the experimental results, it seems that the magnetic field could be playing the role of noise for such nonlinear phenomena. It is observed that the noise level increases with the increase in magnetic field strength. The experimental results have also been corroborated by a numerical simulation using a FitzHugh-Nagumo like macroscopic model derived from the basic plasma equations and phenomenology, where the noise has been included to represent the internal plasma noise. This macroscopic model shows MMO in the vicinity of the canard point when an external noise is added.

  13. Canard and mixed mode oscillations in an excitable glow discharge plasma in the presence of inhomogeneous magnetic field

    SciTech Connect

    Shaw, Pankaj Kumar Sekar Iyengar, A. N.

    2015-12-15

    We report on the experimental observation of canard orbit and mixed mode oscillations (MMOs) in an excitable glow discharge plasma induced by an external magnetic field perturbation using a bar magnet. At a small value of magnetic field, small amplitude quasiperiodic oscillations were excited, and with the increase in the magnetic field, large amplitude oscillations were excited. Analyzing the experimental results, it seems that the magnetic field could be playing the role of noise for such nonlinear phenomena. It is observed that the noise level increases with the increase in magnetic field strength. The experimental results have also been corroborated by a numerical simulation using a FitzHugh-Nagumo like macroscopic model derived from the basic plasma equations and phenomenology, where the noise has been included to represent the internal plasma noise. This macroscopic model shows MMO in the vicinity of the canard point when an external noise is added.

  14. A brush-shaped air plasma jet operated in glow discharge mode at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Bao, Wenting; Jia, Pengying; Di, Cong

    2014-07-01

    Using ambient air as working gas, a direct-current plasma jet is developed to generate a brush-shaped plasma plume with fairly large volume. Although a direct-current power supply is used, the discharge shows a pulsed characteristic. Based on the voltage-current curve and fast photography, the brush-shaped plume, like the gliding arc plasma, is in fact a temporal superposition of a moving discharge filament in an arched shape. During it moves away from the nozzle, the discharge evolves from a low-current arc into a normal glow in one discharge cycle. The emission profile is explained qualitatively based on the dynamics of the plasma brush.

  15. Glowing Veggies.

    ERIC Educational Resources Information Center

    Scharlin, Pirketta; And Others

    1996-01-01

    Extends the work of Weimer and Battino in electrical conductivity demonstrations creating "glowing" vegetables (see article this issue) to other vegetables and the spectra generated by other elements other than the sodium in pickle brines. Describes a study on the effect of concentration and voltage on glow intensity. (MKR)

  16. Abnormal high-Q modes of coupled stadium-shaped microcavities.

    PubMed

    Ryu, Jung-Wan; Lee, Soo-Young; Kim, Inbo; Choi, Muhan; Hentschel, Martina; Kim, Sang Wook

    2014-07-15

    It is well known that the strongly deformed microcavity with fully chaotic ray dynamics cannot support high-Q modes due to its fast chaotic diffusion to the critical line of refractive emission. Here, we investigate how the Q factor is modified when two chaotic cavities are coupled, and show that some modes, whose Q factor is about 10 times higher than that of the corresponding single cavity, can exist. These abnormal high-Q modes are the result of an optimal combination of coupling and cavity geometry. As an example, in the coupled stadium-shaped microcavities, the mode pattern extends over both cavities such that it follows a whispering-gallery-type mode at both ends, whereas a big coupling spot forms at the closest contact of the two microcavities. The pattern of such a "rounded bow tie" mode allows the mode to have a high-Q factor. This mode pattern minimizes the leakage of light at both ends of the microcavities as the pattern at both ends is similar to the whispering gallery mode. PMID:25121685

  17. Evaluation of drug-targetable genes by defining modes of abnormality in gene expression.

    PubMed

    Park, Junseong; Lee, Jungsul; Choi, Chulhee

    2015-01-01

    In the post-genomic era, many researchers have taken a systematic approach to identifying abnormal genes associated with various diseases. However, the gold standard has not been established, and most of these abnormalities are difficult to be rehabilitated in real clinical settings. In addition to identifying abnormal genes, for a practical purpose, it is necessary to investigate abnormality diversity. In this context, this study is aimed to demonstrate simply restorable genes as useful drug targets. We devised the concept of "drug targetability" to evaluate several different modes of abnormal genes by predicting events after drug treatment. As a representative example, we applied our method to breast cancer. Computationally, PTPRF, PRKAR2B, MAP4K3, and RICTOR were calculated as highly drug-targetable genes for breast cancer. After knockdown of these top-ranked genes (i.e., high drug targetability) using siRNA, our predictions were validated by cell death and migration assays. Moreover, inhibition of RICTOR or PTPRF was expected to prolong lifespan of breast cancer patients according to patient information annotated in microarray data. We anticipate that our method can be widely applied to elaborate selection of novel drug targets, and, ultimately, to improve the efficacy of disease treatment. PMID:26336805

  18. Does asymmetric charge transfer play an important role as an ionization mode in low power-low pressure glow discharge mass spectrometry?

    NASA Astrophysics Data System (ADS)

    Mushtaq, S.; Steers, E. B. M.; Churchill, G.; Barnhart, D.; Hoffmann, V.; Pickering, J. C.; Putyera, K.

    2016-04-01

    We report results of comprehensive studies using the Nu Instruments Astrum high-resolution glow discharge mass spectrometer (GD-MS) and optical emission spectrometry (OES) to investigate the relative importance of discharge mechanisms, such as Penning ionization (PI) and asymmetric charge transfer (ACT), at low-power/low-pressure discharge conditions. Comparison of the ratios of the ion signals of each constituent element to that of the plasma gas shows that for oxygen, the ratio in krypton is more than ten times higher than in argon (oxygen ground state ions are produced by Kr-ACT). For many elements, the ratios are very similar but that for tungsten is higher with krypton, while for iron, the reverse holds. These effects are linked to the arrangement of ionic energy levels of the elements concerned and the resulting relative importance of ACT and PI. The GD-MS and GD-OES results have shown that the ACT process can play an important role as the ionization mode in low-power/low-pressure discharges. However, OES results have shown that the magnitude of change in spectral intensities of elements studied are dependent on the discharge conditions.

  19. Beware Broken Glow Sticks

    MedlinePlus

    ... medlineplus.gov/news/fullstory_159698.html Beware Broken Glow Sticks Contents can irritate skin, eyes, mouth, poison-control ... 2016 (HealthDay News) -- Letting kids chew or cut glow sticks is a bad idea, health experts say. While ...

  20. Abnormal Default-Mode Network Homogeneity in First-Episode, Drug-Naive Major Depressive Disorder

    PubMed Central

    Guo, Wenbin; Liu, Feng; Zhang, Jian; Zhang, Zhikun; Yu, Liuyu; Liu, Jianrong; Chen, Huafu; Xiao, Changqing

    2014-01-01

    Background Default mode network (DMN) is one of the most commonly recognized resting-state networks in major depressive disorder (MDD). However, the homogeneity of this network in MDD is poorly understood. As such, this study was conducted to determine whether or not an abnormal network homogeneity (NH) of DMN is observed in patients with first-episode and drug-naive MDD. Methods Twenty-four first-episode drug-naive patients with MDD and twenty-four healthy control subjects participated in the study. NH and independent component analysis (ICA) methods were used to analyze data. Results Depressed patients exhibited a significantly increased NH in the left dorsal medial prefrontal cortex (MPFC) and decreased NH in the right inferior temporal gyrus (ITG) compared with the healthy control subjects. Receiver operating characteristic curves (ROC) were analyzed and results revealed that the NH values of MPFC and ITG could be applied as candidate markers with relatively high sensitivity and specificity to distinguish patients from healthy control subjects. No correlation was observed between the NH values of the two regions and clinical variables. Conclusions Our findings suggested that an abnormal DMN homogeneity could be observed in MDD, which highlight the importance of the DMN in the pathophysiology of MDD. PMID:24609111

  1. Phenomena of oscillations in atmospheric pressure direct current glow discharges

    SciTech Connect

    Liu, Fu-cheng; Yan, Wen; Wang, De-zhen

    2013-12-15

    Self-sustained oscillations in a dc glow discharge with a semiconductor layer at atmospheric pressure were investigated by means of a one-dimensional fluid model. It is found that the dc glow discharge initially becomes unstable in the subnormal glow region and gives rise to oscillations of plasma parameters. A variety of oscillations with one or more frequencies have been observed under different conditions. The discharge oscillates between the glow discharge mode and the Townsend discharge mode in the oscillations with large amplitude while operates in the subnormal glow discharge mode all the while in the oscillations with small amplitude. Fourier Transform spectra of oscillations reveal the transition mechanism between different oscillations. The effects of semiconductor conductivity on the oscillation frequency of the dominant mode, gas voltage, as well as the discharge current have also been analyzed.

  2. Abnormal electron-heating mode and formation of secondary-energetic electrons in pulsed microwave-frequency atmospheric microplasmas

    SciTech Connect

    Kwon, H. C.; Jung, S. Y.; Kim, H. Y.; Won, I. H.; Lee, J. K.

    2014-03-15

    The formation of secondary energetic electrons induced by an abnormal electron-heating mode in pulsed microwave-frequency atmospheric microplasmas was investigated using particle-in-cell simulation. We found that additional high electron heating only occurs during the first period of the ignition phase after the start of a second pulse at sub-millimeter dimensions. During this period, the electrons are unable to follow the abruptly retreating sheath through diffusion alone. Thus, a self-consistent electric field is induced to drive the electrons toward the electrode. These behaviors result in an abnormal electron-heating mode that produces high-energy electrons at the electrode with energies greater than 50 eV.

  3. Abnormal selection rules of interface modes in ultrathin GaAs/AlAs superlattice

    NASA Astrophysics Data System (ADS)

    Zhang, S. L.; Zhang, J.; Yang, C. L.; Li, L. Y.; Zhang, L.; Planel, R.

    2000-12-01

    We observed a violation of the normal Raman selection rule in the resonant Raman spectra of interface (IF) phonon modes of the ultrathin (GaAs)4/(AlAs)2 superlattice. Contrary to the prediction of conventional theories, all four IF modes were observed in both (XX) and (XY) geometries. The result can be interpreted as a consequence of the deep penetration of the electron wave function in the GaAs wells into the AlAs barriers and a lack of definite parity of the electron wave function. Furthermore, our result indicates that conventional theory for bulk (thicker) systems may need to be modified and further developed to be applicable to ultrathin systems.

  4. Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients.

    PubMed

    Assaf, Michal; Jagannathan, Kanchana; Calhoun, Vince D; Miller, Laura; Stevens, Michael C; Sahl, Robert; O'Boyle, Jacqueline G; Schultz, Robert T; Pearlson, Godfrey D

    2010-10-15

    Autism spectrum disorders (ASDs) are characterized by deficits in social and communication processes. Recent data suggest that altered functional connectivity (FC), i.e. synchronous brain activity, might contribute to these deficits. Of specific interest is the FC integrity of the default mode network (DMN), a network active during passive resting states and cognitive processes related to social deficits seen in ASD, e.g. Theory of Mind. We investigated the role of altered FC of default mode sub-networks (DM-SNs) in 16 patients with high-functioning ASD compared to 16 matched healthy controls of short resting fMRI scans using independent component analysis (ICA). ICA is a multivariate data-driven approach that identifies temporally coherent networks, providing a natural measure of FC. Results show that compared to controls, patients showed decreased FC between the precuneus and medial prefrontal cortex/anterior cingulate cortex, DMN core areas, and other DM-SNs areas. FC magnitude in these regions inversely correlated with the severity of patients' social and communication deficits as measured by the Autism Diagnostic Observational Schedule and the Social Responsiveness Scale. Importantly, supplemental analyses suggest that these results were independent of treatment status. These results support the hypothesis that DM-SNs under-connectivity contributes to the core deficits seen in ASD. Moreover, these data provide further support for the use of data-driven analysis with resting-state data for illuminating neural systems that differ between groups. This approach seems especially well suited for populations where compliance with and performance of active tasks might be a challenge, as it requires minimal cooperation. PMID:20621638

  5. Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients

    PubMed Central

    Assaf, Michal; Jagannathan, Kanchana; Calhoun, Vince D.; Miller, Laura; Stevens, Michael C.; Sahl, Robert; O'Boyle, Jacqueline G.; Schultz, Robert T.; Pearlson, Godfrey D.

    2011-01-01

    Autism spectrum disorders (ASDs) are characterized by deficits in social and communication processes. Recent data suggest that altered functional connectivity (FC), i.e. synchronous brain activity, might contribute to these deficits. Of specific interest is the FC integrity of the default mode network (DMN), a network active during passive resting states and cognitive processes related to social deficits seen in ASD, e.g. Theory of Mind. We investigated the role of altered FC of default mode sub-networks (DM-SNs) in 16 patients with high-functioning ASD compared to 16 matched healthy controls of short resting fMRI scans using independent component analysis (ICA). ICA is a multivariate data-driven approach that identifies temporally coherent networks, providing a natural measure of FC. Results show that compared to controls, patients showed decreased FC between the precuneus and medial prefrontal cortex/anterior cingulate cortex, DMN core areas, and other DM-SNs areas. FC magnitude in these regions inversely correlated with the severity of patients' social and communication deficits as measured by the Autism Diagnostic Observational Schedule and the Social Responsiveness Scale. Importantly, supplemental analyses suggest that these results were independent of treatment status. These results support the hypothesis that DM-SNs under-connectivity contributes to the core deficits seen in ASD. Moreover, these data provide further support for the use of data-driven analysis with resting-state data for illuminating neural systems that differ between groups. This approach seems especially well suited for populations where compliance with and performance of active tasks might be a challenge, as it requires minimal cooperation. PMID:20621638

  6. Three-dimensional volume-rendered imaging of normal and abnormal fetal fluid-filled structures using inversion mode.

    PubMed

    Hata, Toshiyuki; Mori, Nobuhiro; Tenkumo, Chiaki; Hanaoka, Uiko; Kanenishi, Kenji; Tanaka, Hirokazu

    2011-11-01

    A total of six normal and eight abnormal fetuses at 16-38 weeks of gestation were studied using transabdominal three-dimensional sonography with an inversion mode. In normal fetuses, the stomach, gallbladder and bladder could be depicted. In particular, peristalsis of the stomach was noted. In the case of holoprosencephaly, fused hemispheres were evident. In the case of hydrocephalus, the enlargement of ventricular cavities was noted. In the case of bilateral pleural effusion, the spatial relationship and size of the effusions were depicted. In the case of meconium peritonitis, the spatial relationship between the dilated intestines and ascites was depicted. In two cases of hydronephrosis, the dilated renal pelvis and calyces were clearly shown. In the case of multicystic dysplastic kidney, the number and size of cysts were clearly identified. In the case of left ovarian cyst, the anatomical relationships among the ovarian cyst, kidney, stomach and bladder could be easily understood. PMID:21790889

  7. Abnormal resting-state functional connectivity within the default mode network subregions in male patients with obstructive sleep apnea

    PubMed Central

    Li, Hai-Jun; Nie, Xiao; Gong, Hong-Han; Zhang, Wei; Nie, Si; Peng, De-Chang

    2016-01-01

    Background and objective Abnormal resting-state functional connectivity (rs-FC) between the central executive network and the default mode network (DMN) in patients with obstructive sleep apnea (OSA) has been reported. However, the effect of OSA on rs-FC within the DMN subregions remains uncertain. This study was designed to investigate whether the rs-FC within the DMN subregions was disrupted and determine its relationship with clinical symptoms in patients with OSA. Methods Forty male patients newly diagnosed with severe OSA and 40 male education- and age-matched good sleepers (GSs) underwent functional magnetic resonance imaging (fMRI) examinations and clinical and neuropsychologic assessments. Seed-based region of interest rs-FC method was used to analyze the connectivity between each pair of subregions within the DMN, including the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), hippocampus formation (HF), inferior parietal cortices (IPC), and medial temporal lobe (MTL). The abnormal rs-FC strength within the DMN subregions was correlated with clinical and neuropsychologic assessments using Pearson correlation analysis in patients with OSA. Results Compared with GSs, patients with OSA had significantly decreased rs-FC between the right HF and the PCC, MPFC, and left MTL. However, patients with OSA had significantly increased rs-FC between the MPFC and left and right IPC, and between the left IPC and right IPC. The rs-FC between the right HF and left MTL was positively correlated with rapid eye movement (r=0.335, P=0.035). The rs-FC between the PCC and right HF was negatively correlated with delayed memory (r=-0.338, P=0.033). Conclusion OSA selectively impairs the rs-FC between right HF and PCC, MPFC, and left MTL within the DMN subregions, and provides an imaging indicator for assessment of cognitive dysfunction in OSA patients. PMID:26855576

  8. Powerful glow discharge excilamp

    DOEpatents

    Tarasenko, Victor F.; Panchenko, Aleksey N.; Skakun, Victor S.; Sosnin, Edward A.; Wang, Francis T.; Myers, Booth R.; Adamson, Martyn G.

    2002-01-01

    A powerful glow discharge lamp comprising two coaxial tubes, the outer tube being optically transparent, with a cathode and anode placed at opposite ends of the tubes, the space between the tubes being filled with working gas. The electrodes are made as cylindrical tumblers placed in line to one other in such a way that one end of the cathode is inserted into the inner tube, one end of the anode coaxially covers the end of the outer tube, the inner tube penetrating and extending through the anode. The increased electrodes' surface area increases glow discharge electron current and, correspondingly, average radiation power of discharge plasma. The inner tube contains at least one cooling liquid tube placed along the axis of the inner tube along the entire lamp length to provide cathode cooling. The anode has a circumferential heat extracting radiator which removes heat from the anode. The invention is related to lighting engineering and can be applied for realization of photostimulated processes under the action of powerful radiation in required spectral range.

  9. Detection of surface glow related to spacecraft glow phenomena

    NASA Technical Reports Server (NTRS)

    Langer, W. D.; Cohen, S. A.; Manos, D. M.; Motley, R. W.; Ono, M.

    1986-01-01

    A source of low energy neutral atoms and molecules has been developed by using a biased limiter to scrape off and reflect neutralized ions from a toroidal plasma. Beams of nitrogen and nitrogen-oxygen mixtures with energies of 1 to 15 eV and fluxes greater than about 10 to the 14 per centimeter per second were directed onto target surfaces consisting of Z-302 and Z-306 paints. With the nitrogen beams, a glow due to beam-surface interactions was successfully detected. In addition, a volume glow effect due to beam-gas interactions was observed which may play a role in spacecraft glow.

  10. Detection of surface glow related to spacecraft glow phenomenon

    SciTech Connect

    Langer, W.D.; Cohen, S.A.; Manos, D.M.; Motley, R.W.; Ono, M.; Paul, S.; Roberts, D.; Selberg, H.

    1986-02-01

    We have developed a high flux source of low energy neutral beams to study the spacecraft glow phenomena by using a biased limiter to neutralize plasma in ACT-1. Beams of nitrogen and nitrogen-oxygen mixtures with energies of 1 to 15 eV and fluxes greater than or equal to 10/sup 14//cm/sup 2//s were directed on target surfaces consisting of Z-302 and Z-306 paints. With the nitrogen beams we successfully detected a glow due to beam-surface interactions. In addition, we discovered a volume glow effect due to beam-gas interactions which may also play a role in spacecraft glow. 11 refs., 14 figs.

  11. Simulation of nonstationary phenomena in atmospheric-pressure glow discharge

    NASA Astrophysics Data System (ADS)

    Korolev, Yu. D.; Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas'yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.

    2016-06-01

    Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.

  12. Mechanistic investigations of shuttle glow

    NASA Technical Reports Server (NTRS)

    Caledonia, G. E.; Holtzclaw, K. W.; Krech, R. H.; Sonnenfroh, D. M.; Leone, A.; Blumberg, W. A. M.

    1993-01-01

    A series of laboratory measurements have been performed in order to provide a mechanistic interpretation for the visible shuttle glow. These studies involved interactions of an 8 km/s oxygen atom beam with both contaminant dosed surfaces and gaseous targets. We conclude that visible shuttle glow arises from surface mediated O + NO recombination via a Langmuir-Hinshelwood mechanism and that the gas-phase exchange reaction O + N2 - NO + N provides a viable source of precursor NO above surfaces oriented in the ram direction.

  13. Mechanistic investigations of shuttle glow

    SciTech Connect

    Caledonia, G.E.; Holtzclaw, K.W.; Krech, R.H.; Sonnenfroh, D.M. ); Leone, A. ); Blumber, W.A.M. )

    1993-03-01

    A series of laboratory measurements have been performed in order to provide a mechanistic interpretation for the visible shuttle glow. These studies involved interactions in an 8 km/s oxygen atom beam with both contaminant dosed surfaces and gaseous targets. The authors conclude that visible shuttle glow arises from surface mediated O + NO recombination via a Langmuir-Hinshelwood mechanism and that the gas-phase exchange reaction O + N[sub 2] [r arrow] NO + N provides a viable source of precursor NO above surfaces oriented in the ram direction. 35 refs., 4 figs.

  14. Power balance at cathode in glow discharges

    SciTech Connect

    Suraj, K.S.; Mukherjee, S.

    2005-11-15

    When an electrode is biased negatively ({approx} few hundred volts) with respect to a metallic chamber, maintained at a subatmospheric pressure ({approx} few millibars), glow discharge plasma is formed around the electrode (cathode). The plasma supplies ions and other species to the cathode, along with other events at the cathode, and its temperature also rises. From the measurement of temporal temperature profile, in the pressure range of 0.5-5 mbars, the thermal influx at the cathode has been determined. Various modes of power input to the cathode are estimated from the discharge parameters. The contribution of ions and neutrals to the total input power is obtained theoretically from respective velocity distributions at the cathode considering charge exchange as the dominant collision mechanism inside the sheath region. The comparison of experimental and theoretical results suggests that in the pressure range being considered, which is typical of glow discharges, the major contribution to the energy input at the cathode comes from energetic neutrals generated by the charge-exchange collision inside the collisional ion sheath.

  15. Second Workshop on Spacecraft Glow

    NASA Technical Reports Server (NTRS)

    Waite, J. H., Jr. (Editor); Moorehead, T. W. (Editor)

    1985-01-01

    Various aspects of space glow were considered. Results of a workshop held on May 6 to 7, 1985, at the Space Science Laboratory of NASA/Marshall Space Flight Center, Huntsville, Alabama are presented. The topics of discussion are divided as follows: (1) in situ observations; (2) theoretical calculations; (3) laboratory measurements; and (4) future experiments.

  16. Simulation of stationary glow patterns in dielectric barrier discharges at atmospheric pressure

    SciTech Connect

    Liu, Fucheng He, Yafeng; Dong, Lifang

    2014-12-15

    Self-organized stationary patterns in dielectric barrier discharges operating in glow regime at atmospheric pressure are investigated by a self-consistent two-dimensional fluid model. The simulation results show that two different modes, namely, the diffuse mode and the static patterned mode, can be formed in different ranges of the driving frequency. The discharge operates in Townsend regime in the diffuse mode, while it operates in a glow regime inside the filaments and in a Townsend regime outside the filaments in the stable pattered mode. The forming process of the stationary filaments can be divided into three stages, namely, destabilizing stage, self-assembling stage, and stable stage. The space charge associated with residual electron density and surface charge is responsible for the formation of these stationary glow patterns.

  17. MODE OF ACTION: NEUROTOXICITY INDUCED BY DEVELOPMENTAL THYROID HORMONE INSUFFICIENCY -- NEUROLOGICAL ABNORMALITIES RESULTING FROM EXPOSURE TO PROPYLTHIOURACIL.

    EPA Science Inventory

    A manuscript summarizes a workshop aimed at developing a framework to determine the relevancy of animal modes-of-action for extrapolation to humans. This specific report used animal data on neurodevelopmental effects of thyroid hormone disruption to test the framework. Polyhaloge...

  18. Abnormal Brain Activation in Neurofibromatosis Type 1: A Link between Visual Processing and the Default Mode Network

    PubMed Central

    Violante, Inês R.; Ribeiro, Maria J.; Cunha, Gil; Bernardino, Inês; Duarte, João V.; Ramos, Fabiana; Saraiva, Jorge; Silva, Eduardo; Castelo-Branco, Miguel

    2012-01-01

    Neurofibromatosis type 1 (NF1) is one of the most common single gene disorders affecting the human nervous system with a high incidence of cognitive deficits, particularly visuospatial. Nevertheless, neurophysiological alterations in low-level visual processing that could be relevant to explain the cognitive phenotype are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to study early cortical visual pathways in children and adults with NF1. We employed two distinct stimulus types differing in contrast and spatial and temporal frequencies to evoke relatively different activation of the magnocellular (M) and parvocellular (P) pathways. Hemodynamic responses were investigated in retinotopically-defined regions V1, V2 and V3 and then over the acquired cortical volume. Relative to matched control subjects, patients with NF1 showed deficient activation of the low-level visual cortex to both stimulus types. Importantly, this finding was observed for children and adults with NF1, indicating that low-level visual processing deficits do not ameliorate with age. Moreover, only during M-biased stimulation patients with NF1 failed to deactivate or even activated anterior and posterior midline regions of the default mode network. The observation that the magnocellular visual pathway is impaired in NF1 in early visual processing and is specifically associated with a deficient deactivation of the default mode network may provide a neural explanation for high-order cognitive deficits present in NF1, particularly visuospatial and attentional. A link between magnocellular and default mode network processing may generalize to neuropsychiatric disorders where such deficits have been separately identified. PMID:22723888

  19. Constricted glow discharge plasma source

    DOEpatents

    Anders, Andre; Anders, Simone; Dickinson, Michael; Rubin, Michael; Newman, Nathan

    2000-01-01

    A constricted glow discharge chamber and method are disclosed. The polarity and geometry of the constricted glow discharge plasma source is set so that the contamination and energy of the ions discharged from the source are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The source is suitable for applying films of nitrides such as gallium nitride and oxides such as tungsten oxide and for enriching other substances in material surfaces such as oxygen and water vapor, which are difficult process as plasma in any known devices and methods. The source can also be used to assist the deposition of films such as metal films by providing low-energy ions such as argon ions.

  20. Cocaine addiction related reproducible brain regions of abnormal default-mode network functional connectivity: a group ICA study with different model orders.

    PubMed

    Ding, Xiaoyu; Lee, Seong-Whan

    2013-08-26

    Model order selection in group independent component analysis (ICA) has a significant effect on the obtained components. This study investigated the reproducible brain regions of abnormal default-mode network (DMN) functional connectivity related with cocaine addiction through different model order settings in group ICA. Resting-state fMRI data from 24 cocaine addicts and 24 healthy controls were temporally concatenated and processed by group ICA using model orders of 10, 20, 30, 40, and 50, respectively. For each model order, the group ICA approach was repeated 100 times using the ICASSO toolbox and after clustering the obtained components, centrotype-based anterior and posterior DMN components were selected for further analysis. Individual DMN components were obtained through back-reconstruction and converted to z-score maps. A whole brain mixed effects factorial ANOVA was performed to explore the differences in resting-state DMN functional connectivity between cocaine addicts and healthy controls. The hippocampus, which showed decreased functional connectivity in cocaine addicts for all the tested model orders, might be considered as a reproducible abnormal region in DMN associated with cocaine addiction. This finding suggests that using group ICA to examine the functional connectivity of the hippocampus in the resting-state DMN may provide an additional insight potentially relevant for cocaine-related diagnoses and treatments. PMID:23707901

  1. Common Gamma-ray Glows above Thunderclouds

    NASA Astrophysics Data System (ADS)

    Kelley, Nicole; Smith, David; Dwyer, Joseph; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alex; Splitt, Michael; Lazarus, Steven; Rassoul, Hamid

    2013-04-01

    Gamma-ray glows are continuous, long duration gamma- and x-ray emission seen coming from thunderclouds. The Airborne for Energetic Lightning Emissions (ADELE) observed 12 gamma-ray glows during its summer 2009 flight campaign over the areas of Colorado and Florida in the United States. For these glows we shall present their spectra, relationship to lightning activity and how their duration and size changes as a function of distance. Gamma-ray glows follow the relativistic runaway electron avalanche (RREA) spectrum and have been previously measured from the ground and inside the cloud. ADELE measured most glows as it flew above the screening layer of the cloud. During the brightest glow on August 21, 2009, we can show that we are flying directly into a downward facing relativistic runaway avalanche, indicative of flying between the upper positive and negative screening layer of the cloud. In order to explain the brightness of this glow, RREA with an electric field approaching the limit for relativistic feedback must be occurring. Using all 12 glows, we show that lightning activity diminishes during the onset of the glow. Using this along with the fact that glows occur as the field approaches the level necessary for feedback, we attempt to distinguish between two possibilities: that glows are evidence that RREA with feedback, rather than lightning, is sometimes the primary channel for discharging the cloud, or else that the overall discharging is still controlled by lightning, with glows simply appearing during times when a subsidence of lightning allows the field to rise above the threshold for RREA.

  2. Glow Sticks: Spectra and Color Mixing

    NASA Astrophysics Data System (ADS)

    Birriel, Jennifer; Birriel, Ignacio

    2014-10-01

    Glow sticks are a popular Halloween staple familiar to most of our students. The production of light via a chemical reaction is called "chemiluminescence," and glow sticks are often used as demonstrations and experiments in the chemistry classroom to study reaction rates as a function of temperature.1-3 A black light can be used to illuminate glow sticks that have not been cracked or those that are "dead" in order to demonstrate fluorescence in liquid chemicals.4 In this article, we present the use of glow sticks as an inexpensive demonstration of spectra and color addition.

  3. ADELE's Common Gamma-Ray Glows

    NASA Astrophysics Data System (ADS)

    Kelley, N. A.; Smith, D. M.; Dwyer, J. R.; Hazelton, B. J.; Grefenstette, B. W.; Lowell, A.; Splitt, M. E.; Lazarus, S. M.; Rassoul, H. K.

    2012-12-01

    Gamma-ray glows have been observed for the first time as a common, long duration phenomenon from the tops of thunderclouds. The Airborne Detector for Energetic Lightning Emissions (ADELE) observed 12 gamma-ray glows during its Summer 2009 flight campaign. We present their spectra, their relationship to lightning activity and show how the duration and size of a glow changes with distance from the glow. Since glows have a very hard spectrum, with many counts above 5 MeV, they may be evidence of a continual relativistic runaway process with positron feedback. We compare our spectra with simulations of relativistic runaway in the atmosphere with all effects of feedback included. We show that the lightning activity diminishes during the onset of a glow. From our simulations we attempt to distinguish between the two possibilities for this decrease: the mechanism responsible for glows is only able to become significant when lightning activity subsides or glows are actually stifling the lightning activity and considerably limiting the charging of the cloud. Comparison of the data with our simulations will determine if runaway or feedback are necessary to explain the glow brightness and if these mechanisms have significant effects on the total charging of the cloud.

  4. Spacecraft ram glow and surface temperature

    NASA Technical Reports Server (NTRS)

    Swenson, G. R.; Mende, S. B.; Llewellyn, E. J.

    1987-01-01

    Space shuttle glow intensity measurements show large differences when the data from different missions are compared. In particular, on the 41-G mission the space shuttle ram glow was observed to display an unusually low intensity. Subsequent investigation of this measurement and earlier measurements suggest that there was a significant difference in temperature of the glow producing ram surfaces. The highly insulating properties coupled with the high emissivity of the shuttle tile results in surfaces that cool quickly when exposed to deep space on the night side of the orbit. The increased glow intensity is consistent with the hypothesis that the glow is emitted from excited NO2. The excited NO2 is likely formed through three body recombination (OI + NO + M = NO2*) where ramming of OI interacts with weakly surface bound NO. The NO is formed from atmospheric OI and NI which is scavenged by the spacecraft moving through the atmosphere. It is postulated that the colder surfaces retain a thicker layer of NO thereby increasing the probability of the reaction. It has been found from the glow intensity/temperature data that the bond energy of the surface bound precursor, leading to the chemical recombination producing the glow, is approximately 0.14 eV. A thermal analysis of material samples of STS-8 was made and the postulated temperature change of individual material samples prior to the time of glow measurements above respective samples are consistent with the thermal effect on glow found for the orbiter surface.

  5. APEX reveals glowing stellar nurseries

    NASA Astrophysics Data System (ADS)

    2008-11-01

    Illustrating the power of submillimetre-wavelength astronomy, an APEX image reveals how an expanding bubble of ionised gas about ten light-years across is causing the surrounding material to collapse into dense clumps that are the birthplaces of new stars. Submillimetre light is the key to revealing some of the coldest material in the Universe, such as these cold, dense clouds. Glowing Stellar Nurseries ESO PR Photo 40/08 Glowing Stellar Nurseries The region, called RCW120, is about 4200 light years from Earth, towards the constellation of Scorpius. A hot, massive star in its centre is emitting huge amounts of ultraviolet radiation, which ionises the surrounding gas, stripping the electrons from hydrogen atoms and producing the characteristic red glow of so-called H-alpha emission. As this ionised region expands into space, the associated shock wave sweeps up a layer of the surrounding cold interstellar gas and cosmic dust. This layer becomes unstable and collapses under its own gravity into dense clumps, forming cold, dense clouds of hydrogen where new stars are born. However, as the clouds are still very cold, with temperatures of around -250˚ Celsius, their faint heat glow can only be seen at submillimetre wavelengths. Submillimetre light is therefore vital in studying the earliest stages of the birth and life of stars. The submillimetre-wavelength data were taken with the LABOCA camera on the 12-m Atacama Pathfinder Experiment (APEX) telescope, located on the 5000 m high plateau of Chajnantor in the Chilean Atacama desert. Thanks to LABOCA's high sensitivity, astronomers were able to detect clumps of cold gas four times fainter than previously possible. Since the brightness of the clumps is a measure of their mass, this also means that astronomers can now study the formation of less massive stars than they could before. The plateau of Chajnantor is also where ESO, together with international partners, is building a next generation submillimetre telescope, ALMA

  6. Glow Sticks: Spectra and Color Mixing

    ERIC Educational Resources Information Center

    Birriel, Jennifer; Birriel, Ignacio

    2014-01-01

    Glow sticks are a popular Halloween staple familiar to most of our students. The production of light via a chemical reaction is called "chemiluminescence," and glow sticks are often used as demonstrations and experiments in the chemistry classroom to study reaction rates as a function of temperature. A black light can be used to…

  7. Atmospheric sampling glow discharge ionization source

    DOEpatents

    McLuckey, Scott A.; Glish, Gary L.

    1989-01-01

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above.

  8. Atmospheric sampling glow discharge ionization source

    DOEpatents

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  9. Is the negative glow plasma of a direct current glow discharge negatively charged?

    SciTech Connect

    Bogdanov, E. A.; Saifutdinov, A. I.; Demidov, V. I.; Kudryavtsev, A. A.

    2015-02-15

    A classic problem in gas discharge physics is discussed: what is the sign of charge density in the negative glow region of a glow discharge? It is shown that traditional interpretations in text-books on gas discharge physics that states a negative charge of the negative glow plasma are based on analogies with a simple one-dimensional model of discharge. Because the real glow discharges with a positive column are always two-dimensional, the transversal (radial) term in divergence with the electric field can provide a non-monotonic axial profile of charge density in the plasma, while maintaining a positive sign. The numerical calculation of glow discharge is presented, showing a positive space charge in the negative glow under conditions, where a one-dimensional model of the discharge would predict a negative space charge.

  10. Is the negative glow plasma of a direct current glow discharge negatively charged?

    NASA Astrophysics Data System (ADS)

    Bogdanov, E. A.; Demidov, V. I.; Kudryavtsev, A. A.; Saifutdinov, A. I.

    2015-02-01

    A classic problem in gas discharge physics is discussed: what is the sign of charge density in the negative glow region of a glow discharge? It is shown that traditional interpretations in text-books on gas discharge physics that states a negative charge of the negative glow plasma are based on analogies with a simple one-dimensional model of discharge. Because the real glow discharges with a positive column are always two-dimensional, the transversal (radial) term in divergence with the electric field can provide a non-monotonic axial profile of charge density in the plasma, while maintaining a positive sign. The numerical calculation of glow discharge is presented, showing a positive space charge in the negative glow under conditions, where a one-dimensional model of the discharge would predict a negative space charge.

  11. Characteristics of thermoluminescence glow curves for materials exhibiting more than one glow peak

    SciTech Connect

    Levy, P.W.

    1982-01-01

    The properties of thermoluminescence glow curves, containing one or more glow peaks, have been determined for situations where the assumptions invoked to obtain the usual first and second order kinetics do not apply. First order kinetics occurs only when retrapping is negligible. If more than one glow peak is present and retrapping occurs between different types of traps the glow peaks can be approximated, except in the wings, by the usual first and second order expressions; but often physically unrealistic parameters are obtained. These studies indicate that dating is best accomplished with minerals exhibiting first order kinetics. 6 figures, 1 table.

  12. Glow discharge plasma deposition of thin films

    DOEpatents

    Weakliem, Herbert A.; Vossen, Jr., John L.

    1984-05-29

    A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

  13. Orbiter glow observations at high spectral resolution

    NASA Technical Reports Server (NTRS)

    Kendall, D. J. W.; Mende, S. B.; Yn, E. J. ADMCDADE, I. C. AEMENDE, S. B.

    1985-01-01

    An experiment flow on mission STS 41-G as part of the Canadian complement of experiments was designed to obtain relatively high resolution spectra of the Orbiter glow phenomenon over limited spectral regions centered on prominent upper atmospheric emissions. Observations were carried out successfully at altitudes of 360 km and 230 km although those at the lower altitude were limited by degradation of the image intensifier. Definitive glow results were obtained at the end of a thruster firing which showed the spectrum to be a continuum at a resolution of approximately 0.4 nm centered at a wavelength of 360 nm. Results at other wavelengths in the absence of any firings strongly suggest that the Orbiter glow is a continuum throughout the spectral region 550 nm to 760 nm. A discussion is presented that considers the reaction NO + O2 as being a possible candidate for the mechanism producing the shuttle glow.

  14. Infrared spectral measurement of space shuttle glow

    SciTech Connect

    Ahmadijian, M.

    1992-01-01

    Infrared spectral measurements of the space shuttle glow were successfully conducted during the STS-39 space shuttle mission. Analysis indicates that NO, NO[sup +], OH, and CO are among the molecules associated with the infrared glow phenomenon. During orbiter thruster firings the glow intensities in the infrared are enhanced by factors of 10x to 100x with significant changes in spectral distribution. These measurements were obtained with the Spacecraft Kinetic Infrared Test (SKIRT) payload which included a cryogenic infrared circular variable filter (CVF) spectrometer (0.6 [mu]m to 5.4 [mu]) and a number of infrared, visible, and ultraviolet radiometers (0.2 [mu]m to 5.4 [mu]m and 9.9 [mu]m to 10.4 [mu]m). In addition, glow measurements were unsuccessfully attempted with the Cryogenic Infrared Radiance Instrumentation for Shuttle (CIRRIS-1A) with its 2.5 [mu]m to 25 [mu]m Fourier transform interferometer. SKIRT CVF obtained over 14,000 spectra of quiescent shuttle glow, thruster enhanced shuttle glow, upper atmosphere airglow, aurora, orbiter environment, and deep space non-glow backgrounds during its eight day mission. The SKIRT radiometers operated almost continuously throughout the mission to provide a detailed history of the IR/VIS/UV optical environment associated with the operation of large spacecraft structures in low earth orbit. This dissertation will primarily address those measurements conducted by the SKIRT spectrometer as they relate to space shuttle glow in the infrared. The STS-39 Space Shuttle Discovery was launched from the NASA Kennedy Space Center on 28 April 1991 into a 57 degree inclination circular orbit at an altitude of 260 km.

  15. Laboratory investigation of shuttle glow mechanisms

    NASA Astrophysics Data System (ADS)

    Caledonia, G. E.; Holtzclaw, K. W.; Green, B. D.; Krech, R. H.; Leone, A.; Swenson, G.

    1990-10-01

    A fast oxygen atom source was used to investigate the Shuttle glow phenomena in the laboratory. Both room temperature and cooled targets were dosed with NO and then irradiated by 8 km/s oxygen atoms. The observed fluorescence is spectrally similar to that seen on the Shuttle supporting previous suggestions that recombination of O with surface bound NO is the responsible mechanism for the visible Shuttle glow.

  16. Vehicle glow measurements on the space shuttle

    NASA Technical Reports Server (NTRS)

    Mende, S. B.; Swenson, G. R.

    1985-01-01

    From the combined data set of glow observations on shuttle flight STS-3, STS-4, STS-5, STS-8, STS-9, 41-E, and 41-G some of the properties of the shuttle glow are discussed. Comparison of the STS-3 and STS-5 (240 and 305 km altitude, respectively) photographs shows that the intensity of the glow is about a factor of 3.5 brighter on the low-altitude (STS-3) flight. In an experiment to observe the dependence of the intensity on the ram angle, the angle of incidence between the spacecraft surface normal and the velocity vector, the Orbiter was purposely rotated about the x axis on the STS-5 mission. For a relatively large angle between the velocity vector and the surface normal there is an appreciable glow, provided the surface is not shadowed by some other spacecraft structure. As the angle becomes less the glow intensifies. Material samples were also exposed in the ram direction during nightside orbits and the glow surrounding the samples was photographed.

  17. Survey of ultraviolet shuttle glow

    NASA Technical Reports Server (NTRS)

    Spear, K. A.; Uckler, G. J.; Tobiska, K.

    1985-01-01

    The University of Colorado Get Away Special (GAS) project utilizes the efforts of its students to place experiments on the shuttle. The objective of one experiment, the shuttle glow study, is to conduct a general survey of emissions in the ultraviolet near vehicle surfaces. An approximate wavelength range of 1900 to 3000 A will be scanned to observe predominant features. Special emphasis will be placed on studying the band structure of NO near 2000 A and the Mg+ line at 2800 A. The spectrometer, of Ebert-Faste 1/8-meter design, will perform the experiment during spacecraft night. It will be oriented such that the optical axis points to the cargo bay zenith. In order to direct the field-of-view of the instrument onto the shuttle vertical stabilizer (tail), a mirror assembly is employed. The mirror system has been designed to rotate through 7.5 degrees of arc using 10 positions resulting in a spatial resolution of 30 x 3 cm, with the larger dimension corresponding to the horizontal direction. Such a configuration can be attained from the forwardmost position in the cargo bay. Each spatial position will be subjected to a full spectral scan with a resolution on the order of 10 A.

  18. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  19. Io Glowing in the Dark

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Volcanic hot spots and auroral emissions glow on the darkside of Jupiter's moon Io in the image at left. The image was taken by the camera onboard NASA's Galileo spacecraft on 29 June, 1996 UT while Io was in Jupiter's shadow. It is the best and highest-resolution image ever acquired of hot spots or auroral features on Io. The mosaic at right of 1979 Voyager images is shown with an identical scale and projection to identify the locations of the hot spots seen in the Galileo image. The grid marks are at 30 degree intervals of latitude and longitude. North is to the top.

    In the nighttime Galileo image, small red ovals and perhaps some small green areas are from volcanic hot spots with temperatures of more than about 700 kelvin (about 1000 degrees Fahrenheit). Greenish areas seen near the limb, or edge of the moon, are probably the result of auroral or airglow emissions of neutral oxygen or sulfur atoms in volcanic plumes and in Io's patchy atmosphere. The image was taken from a range of 1,035,000 kilometers (about 643,000 miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  20. Mass dependency of turbulent parameters in stationary glow discharge plasmas

    SciTech Connect

    Titus, J. B.; Alexander, A. B.; Wiggins, D. L.; Johnson, J. A. III

    2013-05-15

    A direct current glow discharge tube is used to determine how mass changes the effects of certain turbulence characteristics in a weakly ionized gas. Helium, neon, argon, and krypton plasmas were created, and an axial magnetic field, varied from 0.0 to 550.0 Gauss, was used to enhance mass dependent properties of turbulence. From the power spectra of light emission variations associated with velocity fluctuations, determination of mass dependency on turbulent characteristic unstable modes, energy associated with turbulence, and the rate at which energy is transferred from scale to scale are measured. The magnetic field strength is found to be too weak to overcome particle diffusion to the walls to affect the turbulence in all four types of plasmas, though mass dependency is still detected. Though the total energy and the rate at which the energy moves between scales are mass invariant, the amplitude of the instability modes that characterize each plasma are dependent on mass.

  1. Craniofacial Abnormalities

    MedlinePlus

    ... of the skull and face. Craniofacial abnormalities are birth defects of the face or head. Some, like cleft ... palate, are among the most common of all birth defects. Others are very rare. Most of them affect ...

  2. Walking abnormalities

    MedlinePlus

    ... include: Arthritis of the leg or foot joints Conversion disorder (a psychological disorder) Foot problems (such as a ... injuries. For an abnormal gait that occurs with conversion disorder, counseling and support from family members are strongly ...

  3. Congenital Abnormalities

    MedlinePlus

    ... serious health problems (e.g. Down syndrome ). Single-Gene Abnormalities Sometimes the chromosomes are normal in number, ... blood flow to the fetus impair fetal growth. Alcohol consumption and certain drugs during pregnancy significantly increase ...

  4. Chromosome Abnormalities

    MedlinePlus

    ... decade, newer techniques have been developed that allow scientists and doctors to screen for chromosomal abnormalities without using a microscope. These newer methods compare the patient's DNA to a normal DNA ...

  5. Nail abnormalities

    MedlinePlus

    Nail abnormalities are problems with the color, shape, texture, or thickness of the fingernails or toenails. ... Fungus or yeast cause changes in the color, texture, and shape of the nails. Bacterial infection may ...

  6. Normal glow discharge in axial magnetic field

    NASA Astrophysics Data System (ADS)

    Surzhikov, S.; Shang, J.

    2014-10-01

    Theory and results of mathematical modeling of a glow discharge in a parallel-plate configuration with axial magnetic field is presented. The model consists of continuity equations for electron and ion fluids, the Poisson equation for the self-consistent electric field. Numerical simulation results are presented for two-dimensional glow discharge at various initial conditions. The results are obtained for molecular nitrogen at pressure 1-5 Torr, emf of power supply 1-2 kV, and magnetic field induction B = 0-0.5 T. It is shown that in the presence of the axial magnetic field the glow discharge is rotated around its axis of symmetry. Nevertheless it is shown that in the investigated range of discharge parameters in an axial magnetic field the law of the normal current density is retained.

  7. A GLOWING POOL OF LIGHT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NGC 3132 is a striking example of a planetary nebula. This expanding cloud of gas, surrounding a dying star, is known to amateur astronomers in the southern hemisphere as the 'Eight-Burst' or the 'Southern Ring' Nebula. The name 'planetary nebula' refers only to the round shape that many of these objects show when examined through a small visual telescope. In reality, these nebulae have little or nothing to do with planets, but are instead huge shells of gas ejected by stars as they near the ends of their lifetimes. NGC 3132 is nearly half a light year in diameter, and at a distance of about 2000 light years is one of the nearer known planetary nebulae. The gases are expanding away from the central star at a speed of 9 miles per second. This image, captured by NASA's Hubble Space Telescope, clearly shows two stars near the center of the nebula, a bright white one, and an adjacent, fainter companion to its upper right. (A third, unrelated star lies near the edge of the nebula.) The faint partner is actually the star that has ejected the nebula. This star is now smaller than our own Sun, but extremely hot. The flood of ultraviolet radiation from its surface makes the surrounding gases glow through fluorescence. The brighter star is in an earlier stage of stellar evolution, but in the future it will probably eject its own planetary nebula. In the Heritage Team's rendition of the Hubble image, the colors were chosen to represent the temperature of the gases. Blue represents the hottest gas, which is confined to the inner region of the nebula. Red represents the coolest gas, at the outer edge. The Hubble image also reveals a host of filaments, including one long one that resembles a waistband, made out of dust particles which have condensed out of the expanding gases. The dust particles are rich in elements such as carbon. Eons from now, these particles may be incorporated into new stars and planets when they form from interstellar gas and dust. Our own Sun may eject a

  8. Electrical properties of pulsed glow discharge Two new aspects

    NASA Astrophysics Data System (ADS)

    Efimova, V. V.; Voronov, M. V.; Hoffmann, V.; Eckert, J.

    2008-07-01

    At the application of pulsed glow discharge (PGD) a transient power of several kW can be reached. This leads to a significant increase of the excitation and ionization efficiency of the sputtered sample atoms. Moreover, with pulsed mode temporally resolved optical emission spectrometry (OES) and mass spectrometry (MS) deliver additional information about the chemical bonds (Harrison 1998, Bengtson et al. 2000, Hang et al. 1996, Klingler et al. 1990, Lewis et al. 2001, Jackson and King 2003). However, the practical application of pulsed glow discharge (PGD) requires an understanding of the processes taking place in the pulsed system. There are some publications, where attention was paid on the voltage current characteristics and the current signal shape of PGD (King and Pan 1993, Lewis et al. 2003). Nevertheless more attention should be paid on the electrical properties of the PGD. In this work the shapes of current, voltage and emission intensity signals, obtained with two different pulse generators are compared. For better understanding of processes, taking place in the discharge the knowledge of the gas temperature is very important. Several authors have mentioned that heating of the cathode leads to changes of the voltage current curve, mainly a decrease of the current at the same voltage. This can be explained by a lower gas density at the same pressure but at higher temperatures (Chenlong et al. 1999, Tian and Chu 2001, Kasik et al. 2002). This phenomenon gives an approach to estimate the gas temperature of the plasma.

  9. Striations in an ethyl alcohol glow discharge

    NASA Astrophysics Data System (ADS)

    Reyes, P. G.; Gómez, A.; Torres, C.; Martínez, H.; Castillo, F.; Vergara, J.

    2015-03-01

    This research shows the behavior of striations in glow discharge generated with high purity ethyl alcohol at a pressure of 0.6 Torr. This paper present the number of striations as a function of the of current and voltage discharge.

  10. Evolution of Striation in Pulsed Glow Discharges

    NASA Astrophysics Data System (ADS)

    Liu, Yuanye; He, Feng; Zhao, Xiaofei; Ouyang, Jiting

    2016-01-01

    In this work, striations in pulsed glow discharges are studied by experiments and Particle-In-Cell/Monte Carlo Collision (PIC/MCC) simulation. The spatio-temporal evolution of the potential and the electron energy during the discharge are analyzed. The processes of striation formation in pulsed glow discharges and dielectric barrier discharges (DBD) are compared. The results show that the mechanisms of striation in pulsed DC discharge and DBD are similar to each other. The evolution of electron energy distribution function before and after the striation formation indicates that the striation results from the potential well of the space charge. During a pulsed breakdown, the striations are formed one by one towards the anode in a weak field channel. This indicates that the formation of striations in a pulsed discharge depends on the flow of modulated electrons. supported by National Natural Science Foundation of China (Nos. 10875010 and 11175017)

  11. Use of glow discharge in fluidized beds

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Wood, P. C.; Ballou, E. V.; Spitze, L. A. (Inventor)

    1981-01-01

    Static charges and agglomerization of particles in a fluidized bed systems are minimized by maintaining in at least part of the bed a radio frequency glow discharge. This approach is eminently suitable for processes in which the conventional charge removing agents, i.e., moisture or conductive particle coatings, cannot be used. The technique is applied here to the disproportionation of calcium peroxide diperoxyhydrate to yield calcium superoxide, an exceptionally water and heat sensitive reaction.

  12. NASA CONNECT: 'Glow with the Flow'

    NASA Technical Reports Server (NTRS)

    1999-01-01

    'Geometry and Algebra: Glow with the Flow' is the second of five programs in the 2000-2001 NASA CONNECT series. Produced by NASA Langley Research Center's Office of Education, NASA CONNECT is an award-winning series of instructional programs designed to enhance the teaching of math, science and technology in grades 5-8. NASA CONNECT establishes teh 'connection' between the mathematics, science, and tehcnology concepts taught in the classroom and NASA research. NASA CONNECT is FREE and the programs in the series are in the public domain. Visit our web site adn register http://connect.larc.nasa.gov In 'Geometry and Algebra: Glow with the Flow', students will learn about the force of drag and how NASA engineers use models and glowing paints to see how air flows over vehicles in a wind tunnel. Students will also discover how the blended wing body(BWB), a concept super jumbo jet that resembles a flying wing, will affect air travelers of the future. Students will observe NASA engineers using geometry and algebra when they measure and design models to be tested in wind tunnels. By conducting classroom and on-line activities, students will make connections between NASA research and the mathematics, science and technology they learn in their classroom.

  13. Parametric Investigations of an Atmospheric pressure Uniform Glow Discharge in helium

    NASA Astrophysics Data System (ADS)

    Ben Gadri, Rami

    1997-11-01

    In the cold plasma processing field, applications of the atmospheric pressure uniform glow discharge are numerous. Among them one can mention the increase of the surface energy of materials, the cleaning and etching of surfaces, and the decontamination and sterilization. The development of the glow regime at atmospheric pressure permits to avoid the technical and economical drawbacks of low pressure glow discharge systems. It also increases the efficiency of the surface treatment as compared to the corona discharge. In these conditions, a glow regime is obtained and studied in particular experimental conditions. The working gas is helium, the frequency in the range 1-20 kHz, the gap distance of some mm and the metallic electrodes are covered by a dielectric layer. The current is characterized by one peak per half cycle and is typically in the range of a few tens of mA. Since this discharge involves complex nonlinear processes and is sensitive to the variation of its parameters, detailed experimental (Ph. Decomps (1996), PhD thesis, Universite Paul Sabatier Toulouse France, No d'ordre 2538.) and numerical studies, covering wide ranges of system parameters, were required. These investigations allowed the determination of the optimal operating conditions for which the discharge remains of the glow type, and therefore induces a better surface treatment. In this paper the detailed theory ( Ben Gadri R., Rabehi A., Massines F. and Segur P. (1994), XIIth Eur. Sect. Conf. on the At. & Mol. Phy. of Ionized Gases, The Netherlands, 23-26 August, pp. 228-229.) of the one dimensional f luid model and a parametric study of the discharge characteristics are presented. A particular attention will be given to the influence of the different system parameters on the operational mode of the discharge.

  14. Perceived three-dimensional shape toggles perceived glow.

    PubMed

    Kim, Minjung; Wilcox, Laurie M; Murray, Richard F

    2016-05-01

    Most surfaces reflect light from external sources, but others emit light: they glow. Glowing surfaces are often a sign of an important feature of the environment, such as a heat source or a bioluminescent life form, but we know little about how the human visual system identifies them. Previous work has shown that luminance and luminance gradients are important in glow perception [1,2]. While a link between glow and shape has been suggested in the literature [3], there has been no systematic investigation of this relationship. Here we show that perceived three-dimensional shape plays a decisive role in glow perception; vivid percepts of glow can be toggled on and off, simply by changing cues to three-dimensional shape while holding other image features constant. PMID:27166688

  15. Prediction of atmospheric pressure glow discharge in dielectric-barrier system

    NASA Astrophysics Data System (ADS)

    Duan, Xiaoxi; He, Feng; Ouyang, Jiting

    2010-06-01

    A one-dimensional fluid model was used to investigate the breakdown mechanism and discharge mode in dielectric-barrier system. The results show that the dielectric barrier discharge mode depends strongly on the gas property (i.e., the electron multiplication). The atmospheric pressure dielectric barrier glow discharge could only be achieved in a gas (e.g., noble gas) in which the first Townsend ionization coefficient is sufficiently small and the electron multiplication does not rise up rapidly with the electric field, while could not be sustained in the gas (e.g., N2 and O2) in which the electron multiplication is sensitive to the field.

  16. Experimental investigations of dust levitation in a DC glow discharge

    NASA Astrophysics Data System (ADS)

    Sheth, Niraj; Behrend, Christina; Jiang, Feng; Post-Zwicker, Andrew

    2003-10-01

    Dusty plasmas continue to be of considerable interest to both the astrophysical and plasma processing communities. We recently constructed a DC glow discharge source to investigate dust behavior and its effect on the plasma parameters. The system, roughly based upon one reported elsewhere(1) consists of a 4" stainless steel cross with two planar stainless steel electrodes. Both the anode and cathode are biased with respect to the chamber ground. Typical values are 100 V and -410 V, respectively with argon as the working gas and 1.5 cm electrode distance. The silica dust particles are 3 - 5 microns in diameter and rested on a stainless tray that could be electrically isolated, biased, or grounded. Clouds were observed by scattering light from a He-Ne laser into a CCD camera and the plasma diagnosed by a Langmuir probe. A variety of dust modes are observed, including dust acoustic and dust lattice modes. We report on our initial results investigating the charging of the dust grains and the sheath structure surrounding the dust cloud. (1)Thomas, E., Watson, M., Phys. Plasmas, 7, 3194 (2000)

  17. Cerenkov glow observations from spent fuel

    SciTech Connect

    Skalyo, J. Jr.

    1987-07-01

    The observation of Cerenkov glow from a fuel assembly is an attractive method of detecting the presence of radioactive material. The simple, hand-held instrumentation is very easy to use and does not require penetration of the water in the spent fuel pool. An obstacle to routine use of the instrument arises in that the standard night vision devices have a broad band wavelength response which required the pool area to be darkened. Various techniques used to limit the bandwidth of the devices for use in viewing the Cerenkov glow in the presence of facility illumination have furthered implementation. A properly specified, commercially available instrument has been used to make narrow band observations at two power reactors without interference from the facility illumination. Problems of interpretation of the observations persist. The technique has no useful role to play in the verification of an assembly at the rod level. As an item, the assembly can be verified as containing radioactive material in many instances; however some ambiguous situations were encountered.

  18. The Glowing Eye of NGC 6751

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Astronomers using NASA's Hubble Space Telescope have obtained images of the strikingly unusual planetary nebula, NGC 6751. Glowing in the constellation Aquila like a giant eye, the nebula is a cloud of gas ejected several thousand years ago from the hot star visible in its center. The Hubble observations were obtained in 1998 with the Wide Field and Planetary Camera 2 (WFPC2) by a team of astronomers led by Arsen Hajian of the U.S. Naval Observatory in Washington, DC. The Hubble Heritage team, working at the Space Telescope Science Institute in Baltimore, has prepared this color rendition by combining the Hajian team's WFPC2 images taken through three different color filters that isolate nebular gases of different temperatures. The nebula shows several remarkable and poorly understood features. Blue regions mark the hottest glowing gas, which forms a roughly circular ring around the central stellar remnant. Orange and red show the locations of cooler gas. The cool gas tends to lie in long streamers pointing away from the central star, and in a surrounding, tattered-looking ring at the outer edge of the nebula. The origin of these cooler clouds within the nebula is still uncertain, but the streamers are clear evidence that their shapes are affected by radiation and stellar winds from the hot star at the center.

  19. Glow discharge based device for solving mazes

    SciTech Connect

    Dubinov, Alexander E. Mironenko, Maxim S.; Selemir, Victor D.; Maksimov, Artem N.; Pylayev, Nikolay A.

    2014-09-15

    A glow discharge based device for solving mazes has been designed and tested. The device consists of a gas discharge chamber and maze-transformer of radial-azimuth type. It allows changing of the maze pattern in a short period of time (within several minutes). The device has been tested with low pressure air. Once switched on, a glow discharge has been shown to find the shortest way through the maze from the very first attempt, even if there is a section with potential barrier for electrons on the way. It has been found that ionization waves (striations) can be excited in the maze along the length of the plasma channel. The dependancy of discharge voltage on the length of the optimal path through the maze has been measured. A reduction in discharge voltage with one or two potential barriers present has been found and explained. The dependency of the magnitude of discharge ignition voltage on the length of the optimal path through the maze has been measured. The reduction of the ignition voltage with the presence of one or two potential barriers has been observed and explained.

  20. Acting green elicits a literal warm glow

    NASA Astrophysics Data System (ADS)

    Taufik, Danny; Bolderdijk, Jan Willem; Steg, Linda

    2015-01-01

    Environmental policies are often based on the assumption that people only act environmentally friendly if some extrinsic reward is implicated, usually money. We argue that people might also be motivated by intrinsic rewards: doing the right thing (such as acting environmentally friendly) elicits psychological rewards in the form of positive feelings, a phenomenon known as warm glow. Given the fact that people's psychological state may affect their thermal state, we expected that this warm glow could express itself quite literally: people who act environmentally friendly may perceive the temperature to be higher. In two studies, we found that people who learned they acted environmentally friendly perceived a higher temperature than people who learned they acted environmentally unfriendly. The underlying psychological mechanism pertains to the self-concept: learning you acted environmentally friendly signals to yourself that you are a good person. Together, our studies show that acting environmentally friendly can be psychologically rewarding, suggesting that appealing to intrinsic rewards can be an alternative way to encourage pro-environmental actions.

  1. The theory of positive glow corona

    NASA Astrophysics Data System (ADS)

    Morrow, R.

    1997-11-01

    A theory for the current and light pulses of positive glow corona from a point in air is presented; this phenomenon was first observed as an apparently continuous glow by Michael Faraday. Results are obtained, in concentric sphere geometry, for air at atmospheric pressure, by solving the continuity equations for electrons, positive ions, negative ions and metastable oxygen molecules, coupled with Poisson's equation. A series of `saw-toothed' current pulses of period about 0022-3727/30/22/008/img1 is predicted with a DC current level. Accompanying the current peaks are discrete pulses of light 30 ns wide. Successive `shells' of positive ions, from successive current pulses, carry 96% of the mean current. The mean current - voltage relationship has the classic square-law form. The seed electrons required for successive pulses are detached from negative ions by metastable oxygen molecules. Photo-ionization is crucial for the discharge at the anode and for the formation of negative ions throughout the gap. The pulse frequency varies with applied voltage and is found to be approximately proportional to the positive-ion mobility. The surface electric field at the central electrode remains close to Peek's onset field. The origin of onset streamers is explained and sub-microsecond voltage pulses are found to produce streamers. The results for concentric-cylinder electrodes are described briefly.

  2. Probiotic bacteria induce a 'glow of health'.

    PubMed

    Levkovich, Tatiana; Poutahidis, Theofilos; Smillie, Christopher; Varian, Bernard J; Ibrahim, Yassin M; Lakritz, Jessica R; Alm, Eric J; Erdman, Susan E

    2013-01-01

    Radiant skin and hair are universally recognized as indications of good health. However, this 'glow of health' display remains poorly understood. We found that feeding of probiotic bacteria to aged mice induced integumentary changes mimicking peak health and reproductive fitness characteristic of much younger animals. Eating probiotic yogurt triggered epithelial follicular anagen-phase shift with sebocytogenesis resulting in thick lustrous fur due to a bacteria-triggered interleukin-10-dependent mechanism. Aged male animals eating probiotics exhibited increased subcuticular folliculogenesis, when compared with matched controls, yielding luxuriant fur only in probiotic-fed subjects. Female animals displayed probiotic-induced hyperacidity coinciding with shinier hair, a feature that also aligns with fertility in human females. Together these data provide insights into mammalian evolution and novel strategies for integumentary health. PMID:23342023

  3. Shock wave propagation in glow discharges

    NASA Astrophysics Data System (ADS)

    Ganguly, B. N.

    1998-10-01

    The modification of acoustic shock wave propagation characteristics in a 25 cm long positive column low pressure (10 to 50 Torr), low current density (2 to 10 mA/cm^2) argon and N2 dc discharges have been measured by laser beam deflection technique. The simultaneous multi point shock velocity, dispersion and damping have been measured both inside and outside the glow discharge region. The local shock velocity is found to increase with the increased propagation path length through the discharge; for Mach number greater than 1.7 the upstream velocity exceeded the downstream velocity in contrast to the opposite behavior in neutral gas. The damping and dispersion are also dependent on the propagation distance. The recovery of the shock dispersion and damping in the post discharge region, for a given discharge condition, are functions of the initial Mach number. The optical measurement of the wall and the gas (rotational) temperatures suggest the observed shock features can not be solely explained by the gas heating in a self sustained discharge. The results are similar for both Ar and N2 discharges showing that vibrational excitation and relaxation are not essential^1. The explanation of the observed weak shock propagation properties in a glow discharge appears to require long range cooperative interactions that enhance heavy particle collisional energy transfer rates for the measured discharge conditions. Unlike collisional shock wave propagation in highly ionized plasmas^2,3, the exact energy coupling mechanism between the nonequilibrium weakly ionized plasma and shock is not understood. 1. A.I. Osipov and A.V. Uvarov, Sov. Phys. Usp. 35, 903 (1992) and other references there in. 2. M. Casanova, O. Larroche and J-P Matte, Phys. Rev. Lett. 67, 2143 (1991). 3. M.C.M. van de Sanden, R. van den Bercken and D.C. Schram, Plasma Sources Sci.Technol. 3, 511 (1994).

  4. Glow Discharge Characteristics in Transverse Supersonic Air Flow

    NASA Astrophysics Data System (ADS)

    Timerkaev, B. A.; Zalyaliev, B. R.; Saifutdinov, A. I.

    2014-11-01

    A low pressure glow discharge in a transverse supersonic gas flow of air at pressures of the order 1 torr has been experimentally studied for the case where the flow only partially fills the inter electrode gap. It is shown that the space region with supersonic gas flow has a higher concentration of gas particles and, therefore, works as a charged particle generator. The near electrode regions of glow discharge are concentrated specifically in this region. This structure of glow discharge is promising for plasma deposition of coatings under ultralow pressures

  5. Hydrogen in carbon foils made by DC glow discharge in ethylene

    NASA Astrophysics Data System (ADS)

    Bailey, P.; Armour, D. G.; England, J. B. A.; Tait, N. R. S.; Tolfree, D. W. L.

    1983-08-01

    Thermal desorption has been studied from thin films of carbon prepared by dc glow discharge in ethylene. The only gases released in significant quantities are hydrogen and methane. Both releases can be characterised by a continuum of activation energies but the methane release peaks at a lower temperature than that from hydrogen. The estimated total hydrogen release is compared with the hydrogen content determined by nuclear scattering experiments. Infra red studies suggest that the majority of CH 2 and CH 3 bonds can be ruptured by annealing at 300°C, a temperature well below the hydrogen and methane release rate maxima. Possible hydrogen bonding modes and desorption mechanisms are discussed.

  6. "Decoking" of a "coked" zeolite catalyst in a glow discharge.

    PubMed

    Khan, M A; Al-Jalal, A A; Bakhtiari, I A

    2003-09-01

    "Decoking" of a "coked" zeolite catalyst in a glow discharge in oxygen is investigated. The "decoking" process involves reactions of atomic oxygen (O atoms) with "coke" and yields gases such as CO, CO(2) as well as other gaseous products that could be easily pumped out. Three different modes of discharge were investigated including a static mode, a flowing-gas mode, and a periodic-purge mode where the oxygen and other gaseous products of the discharge were replaced by fresh O(2)gas after short but regular intervals of time. In some cases, additional heating was also used to provide base temperatures of the order of 100 degrees C to facilitate penetration of oxygen atoms into the inner layers and cages of the zeolite catalyst. This paper presents some results of spectroscopic analytical techniques used to monitor the atomization of oxygen, oxidation of "coke", and to confirm the process of "decoking". More specifically, radiation emission on the 3 s (5)S- 3p (5)P transitions of O around 777.2-777.5 nm were selected for monitoring the atomization of O(2). On the other hand, X-ray photo-electron spectroscopy (XPS) was used to determine the amount of residual carbon and extent of "decoking". Furthermore, evolution of CO and CO(2) gases as a function of time was systematically monitored in real time. For CO, the 451.1 nm band head belonging to the B(1) Sigma - A(1) Pi bands of the Angstrom system of the CO spectrum was used, while for CO(2), the band head at 353.4 nm belonging to the CO(2)(+) spectrum was used. The rates of evolution of CO and CO(2) were related to the rate of "decoking" of the catalyst. It is noted that in the periodic-purge mode, about 63% of the total yield of CO from a given sample of the catalyst appears in the first 3-min exposure to discharge whereas it takes up to 15 min to remove nearly 94% of the removable carbon under our experimental conditions. PMID:12861433

  7. Vehicle/Atmosphere Interaction Glows: Far Ultraviolet, Visible, and Infrared

    NASA Astrophysics Data System (ADS)

    Swenson, G.

    1999-10-01

    Spacecraft glow information has been gathered from a number of spacecraft including Atmospheric and Dynamic satellites, and Space Shuttles (numerous flights) with dedicated pallet flow observations on STS-39 (DOD) and STS-62 (NASA). In addition, a larger number of laboratory experiments with low energy oxygen beam studies have made important contributions to glow understanding. The following report provides information on three engineering models developed for spacecraft glow including the far ultraviolet to ultraviolet (1400-4000 A), and infrared (0.9-40 microns) spectral regions. The models include effects resulting from atmospheric density/altitude, spacecraft temperature, spacecraft material, and ram angle. Glow brightness would be predicted as a function of distance from surfaces for all wavelengths.

  8. Glow discharge techniques for conditioning high vacuum systems

    SciTech Connect

    Dylla, H.F.

    1988-03-01

    A review is given of glow discharge techniques which are useful for conditioning vacuum vessels for high vacuum applications. Substantial development of glow discharge techniques has been done for the purpose of in-situ conditioning of the large ultrahigh vacuum systems for particle accelerators and magnetic fusion devices. In these applications the glow discharge treatments remove impurities from vessel surfaces in order to minimize particle-induced desorption coefficients. Cleaning mechanisms involve a mixture of sputtering and ion- (or neutral) induced desorption effects depending on the gas mixture (ArO/sub 2/ vs. H/sub 2/) and excitation method (DC, RF, and ECR). The author will review the methodology of glow discharge conditioning, diagnostic measurements provided by residual gas and surface composition analysis, and applications to vessel conditioning and materials processing. 76 refs., 16 figs.

  9. Vehicle/Atmosphere Interaction Glows: Far Ultraviolet, Visible, and Infrared

    NASA Technical Reports Server (NTRS)

    Swenson, G.

    1999-01-01

    Spacecraft glow information has been gathered from a number of spacecraft including Atmospheric and Dynamic satellites, and Space Shuttles (numerous flights) with dedicated pallet flow observations on STS-39 (DOD) and STS-62 (NASA). In addition, a larger number of laboratory experiments with low energy oxygen beam studies have made important contributions to glow understanding. The following report provides information on three engineering models developed for spacecraft glow including the far ultraviolet to ultraviolet (1400-4000 A), and infrared (0.9-40 microns) spectral regions. The models include effects resulting from atmospheric density/altitude, spacecraft temperature, spacecraft material, and ram angle. Glow brightness would be predicted as a function of distance from surfaces for all wavelengths.

  10. On the transition from stable positive glow corona to streamers

    NASA Astrophysics Data System (ADS)

    Liu, Lipeng; Becerra, Marley

    2016-06-01

    A 2D numerical simulation of the transition from stable positive glow corona to streamers in coaxial cylindrical configuration is presented. The hydrodynamic model with several convection-dominated continuity equations together with Poisson equation are solved with consideration of the ionization layer. The transition from a stable positive glow corona produced under a DC voltage to streamers is investigated under a sudden change of the applied voltage. The critical rate of rise of voltage required for the transition from positive glow to streamer corona is evaluated with a voltage ramp. By introducing either physical or numerical instabilities into the model, streamers with filamentary structures are observed, which produce a sudden increase of the discharge current by more than two orders of magnitude. It is also found that the surface electric field of the corona-generating conductor deviates from the onset electric field, casting doubts about the validity of Kaptzov’s approximation to evaluate the transition from stable glow to streamers.

  11. Glow phenomenon surrounding the vertical stabilizer and OMS pods

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This 35mm frame, photographed as the Space Shuttle Columbia was orbiting Earth during a 'night' pass, documents the glow phenomenon surrounding the vertical stabilizer and the Orbital Maneuvering System (OMS) pods of the spacecraft.

  12. Examination of interior surfaces using glow-discharge illumination

    DOEpatents

    Lord, David E.; Petrini, Richard R.; Carter, Gary W.

    1978-01-01

    Endoscopic examination of the interior of a hollow structure through a light pipe that is inserted into the structure, the interior being illuminated by means of a glow discharge that is established with a high voltage applied between the structure wall as one electrode and a second electrode that is inserted into the structure, or establishing the glow with two electrodes inserted into the structure.

  13. The measurements of vehicle glow on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Mende, S. B.; Banks, P. M.; Nobles, R.; Garriott, O. K.; Hoffman, J.

    1983-01-01

    From the combined data set of glow observations on STS-3, STS-4 and STS-5 some of the properties of the shuttle glow were observed. Comparison of the STS-3 (240 km) and STS-5 (305 km) photographs show that the intensity of the glow is about a factor of 3.5 brighter on the low altitude (STS-3) flight. The orbiter was purposely rotated about the x axis in an experiment on STS-5 to observe the dependence of the intensity on the angle of incidence between the spacecraft surface normal and the velocity vector. For a relatively large angle between the velocity vector and the surface normal there is an appreciable glow, provided the surface is not shadowed by some other spacecraft structure. As the angle becomes less the glow intensifies. The grating experiments (STS-4 photography only, STS-5 image intensifier photography) provided a preliminary low resolution spectra of the spacecraft glow. Accurate wavelength calibrations of the STS-5 instrument permitted measuring of the spectrum and intensity of the Earth's airglow.

  14. Coaxial (tubular) glow discharge in electronegative gases

    NASA Astrophysics Data System (ADS)

    Golovitskii, A. P.

    2016-07-01

    The positive-column plasma of a low- and medium-pressure electronegative glow discharge initiated in the gap between two coaxial cylindrical tubes has been considered (the current is directed along the tube axis). It is assumed that the gas mixture contains halogens, and ion diffusion is not negligibly weak. It is found that the coaxial discharge is characterized by plasma separation into three coaxial regions with different compositions in the direction transverse to the current. It has been shown that the ionization and excitation frequencies of atoms are higher than in the purely cylindrical case, even for a small (0.05-0.15) ratio of the radii of the inner and outer walls. An asymptotic analysis of the continuity equations yields analytic expressions that make it possible to rapidly and easily estimate the geometrical parameters of the spatial distributions of charge particle concentrations, as well as energy parameters of the plasma for the radii ratio that exceed 0.3. The conditions for the applicability of analytic relations and their accuracy are established from a comparison of the results of analytic and numerical calculations.

  15. Lunar horizon glow and the Clementine mission

    NASA Technical Reports Server (NTRS)

    Zook, H. A.; Potter, A. E.

    1994-01-01

    The Clementine spacecraft is to be launched into Earth orbit in late January for subsequent insertion into lunar orbit in late February, 1994. There, its primary mission is to produce -- over a period of about two months -- a new photographic map of the entire surface of the Moon; this will be done, in a variety of wavelengths and spatial resolutions, in a manner greatly superior to that previously accomplished for the whole Moon. It will then go on to fly by and photograph the asteroid Geographos. A secondary goal that has been accepted for this mission is to take a series of photographs designed to capture images of, and determine the brightness and extent of, the Lunar Horizon Glow (LHG). One form of LHG is caused by the solar stimulation of emission from Na and K atoms in the lunar exosphere. The scale height of this exosphere is of the order of 100 km. There are also brighter LHG components, with much smaller scale heights, that appear to be caused by scattered off of an exospheric lunar dust cloud.

  16. Advances in the Remote Glow Discharge Experiment

    NASA Astrophysics Data System (ADS)

    Dominguez, Arturo; Zwicker, A.; Rusaits, L.; McNulty, M.; Sosa, Carl

    2014-10-01

    The Remote Glow Discharge Experiment (RGDX) is a DC discharge plasma with variable pressure, end-plate voltage and externally applied axial magnetic field. While the experiment is located at PPPL, a webcam displays the live video online. The parameters (voltage, magnetic field and pressure) can be controlled remotely in real-time by opening a URL which shows the streaming video, as well as a set of Labview controls. The RGDX is designed as an outreach tool that uses the attractive nature of a plasma in order to reach a wide audience and extend the presence of plasma physics and fusion around the world. In March 2014, the RGDX was made publically available and, as of early July, it has had approximately 3500 unique visits from 107 countries and almost all 50 US states. We present recent upgrades, including the ability to remotely control the distance between the electrodes. These changes give users the capability of measuring Paschen's Law remotely and provides a comprehensive introduction to plasma physics to those that do not have access to the necessary equipment.

  17. Borax as flux on sintering of iron Ancor Steel 1000® under glow discharge

    NASA Astrophysics Data System (ADS)

    Ariza Suarez, H. G.; Sarmiento Santos, A.; Ortiz Otálora, C. A.

    2016-02-01

    This work studies the flux effect of borax (di sodium tetraborate decahydrate) on sintering of iron Ancor Steel 1000® in abnormal glow discharge. The incidence of the percentage by weight of borax and the sintering temperature in the process were observed. Samples of powder metallurgical iron were prepared with proportions of 0.50%, 2.0%, 4.0% and 6.0% by weight of borax using the procedures of powder metallurgy. The samples were sintered at 800 and 1100°C for 30min, by glow discharge at low pressure in a reducing atmosphere composed of 20% H2+80% Ar. The samples in compact green-state were analyzed by TGA-DSC to determine the fusion process and mass loss during sintering. The analysis of microhardness and density, shows that at a sintering temperature of 800°C the sample density decreases and the sample microhardness increases with respect to sintered samples without borax. Sintered samples were analysed by DRX showing the absence of precipitates.

  18. Effect of glow discharge sintering in the properties of a composite material fabricated by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Cardenas, A.; Pineda, Y.; Sarmiento Santos, A.; Vera, E.

    2016-02-01

    Composite samples of 316 stainless steel and SiC were produced by powder metallurgy. Starting materials were mixed in different proportions and compacted to 700MPa. Sintering stage was performed by abnormal glow discharge plasma with direct current in an inert atmosphere of argon. The process was conducted at a temperature of 1200°C±5°C with a heating rate of 100°C/min. This work shows, the effectiveness of plasma sintering process to generate the first contacts between particles and to reduce vacancies. This fact is confirmed by comparing green and sintered density of the material. The results of porosity show a decrease after plasma sintering. Wear tests showed the wear mechanisms, noting that at higher SiC contents, the wear resistance decreases due to poor matrix-reinforcement interaction and by the porosity presence which causes matrix-reinforcement sliding.

  19. Influence of cathode material on generation of energetic hydrogen atoms in a glow discharge

    SciTech Connect

    Cvetanovic, N.; Obradovic, B. M.; Kuraica, M. M.

    2011-01-01

    In this paper influence of cathode material on formation of fast hydrogen atoms in an abnormal glow discharge is investigated using Balmer alpha emission spectroscopy. Energetic H atoms are generated in charge exchange reactions of hydrogen ions that are accelerated in the electric field, and also formed in the backscattering process at the cathode surface. Copper and graphite cathodes were used. Investigation was performed in two orthogonal directions of observation in pure hydrogen and argon-hydrogen mixture. The shapes of the profiles are examined together with the space intensity distribution of Balmer alpha line. Reduced atom reflection from graphite was manifested in the spectroscopic result, in accordance to the field acceleration model. The effect was evident only at high ion energies. This is explained by energy dependence of reflection coefficient for H atoms.

  20. Numerical investigation on operation mode influenced by external frequency in atmospheric pressure barrier discharge

    SciTech Connect

    Wang Qi; Sun Jizhong; Wang Dezhen

    2011-10-15

    The influence of external driving frequency on the discharge mode in the dielectric barrier discharge was investigated with a two-dimensional, self-consistent fluid model. The simulation results show that the helium discharge exhibits three operation modes: Townsend, homogeneous glow, and local glow discharges from the lower frequency (1 kHz) to the higher frequency (100 kHz) under discharge parameters specified in this work. The discharge operates in a Townsend mode when the driving frequency varies from 1 to about 7 kHz; while it exhibits homogenous glow characteristics in an approximate range from 7 to 65 kHz; when the external frequency exceeds 65 kHz, it turns into a local glow discharge. The effects of external driving frequency on the discharge mode were revealed and the physical reasons were discussed.

  1. Enhanced Glow Discharge Production of Oxygen

    NASA Technical Reports Server (NTRS)

    Ash, Robert; Zhong, Shi

    1998-01-01

    Studies starting in late seventies have shown Mars atmosphere can be used as a feedstock for oxygen production using simple chemical processing systems during early phases of the Mars exploration program. This approach has been recognized as one of the most important in-situ resource utilization (ISRU) concepts for enabling future round trip Mars missions. It was determined a decade ago that separation of oxygen can be accomplished efficiently by permeation through a silver membrane at temperatures well below 1000 K. This process involves adsorption of atomic oxygen on the surface and its subsequent diffusion through a silver lattice via an oxygen concentration gradient. We have determined recently that glow discharge can be used to liberate atomic oxygen from Mars atmosphere and that the oxygen can be collected through a silver permeation membrane. Recently, we demonstrated a substantial increase in energy efficiency of the process by applying a radio frequency discharge in combination with a silver permeation membrane. The experiments were performed using pure carbon dioxide in the pressure range equal to Mars surface conditions. Energy efficiency was defined as the ratio of the energy required to dissociate a unit mass of oxygen from carbon dioxide to the (electrical) energy consumed by the overall system during the dissociation and collection process. The research effort, started at NASA Langley Research Center, continued with this project. Oxygen production apparatus, built and operated under the research grant NAG1-1140 was relocated to the Atomic Beams Laboratory at ODU in July 1996, being since then in fall operation.

  2. Observation of the glow-to-arc transitions

    NASA Astrophysics Data System (ADS)

    Watanabe, Shigeru; Saito, Shigeki; Takahashi, Kunio; Onzawa, Tadao

    2002-10-01

    Researches of the glow-to-arc transitions have been required for a new development of the welding technology in low current. It is important to clarify the characteristics of plasma in the transitions because there have been few reports investigated the transitions in detail. The glow-to-arc transitions were observed in argon at atmospheric pressure. The Th-W electrodes of 1 mm in a diameter are used. Both of the electrodes are needle-shaped and set in a quartz tube coaxially. Plasma is generated between the electrodes with the gap spacing of 1 mm. A DC power supply has been applying constant voltage of 600 V during the discharge. A high-speed camera is used to record the images of plasma in the transitions with the measurement of voltage and current between the electrodes. As a result, two things were confirmed for the behavior of the glow-to-arc transition. First, plasma extended over the cathode surface in the transition from the glow to the arc. Second, temperature in the tip of the cathode would increase gradually during the glow and decrease during the arc.

  3. Research Into Characteristics of X-Ray Emission Laser Beams from Solid-State Cathode Medium of High-Current Glow Discharge

    NASA Astrophysics Data System (ADS)

    Karabut, Alexander B.

    2006-02-01

    X-ray emissions ranging 1.2-3.0 keV with dose rate up to 1.0 Gy/s have been registered in experiments with high-current Glow Discharge. The emissions energy and intensity depend on the cathode material, the kind of plasma-forming gas, and the discharge parameters. The experiments were carried out on the high-current glow discharge device using D2, H2, Kr, and Xe at pressure up to 10 Torr, as well as cathode samples made from Al, Sc, Ti, Ni, Nb, Zr, Mo, Pd, Ta, W, Pt, at current up to 500 mA, and discharge voltage of 500-2500 V. Two emission modes were revealed under the experiments: (1) Diffusion X-rays was observed as separate X-ray bursts (up to 5 × 105 bursts a second and up to 106 X-ray quanta in a burst), (2) X-rays in the form of laser microbeams (up to 104 beams a second and up to 1010 X-ray of quanta in a beam, angular divergence was up to 10-4, the duration of the separate laser beams must be τ = 3 × 10-13-3 × 10-14 s, the separate beam power must be 107-108 W). The emission of the X-ray laser beams occurred when the discharge occurred and within 100 ms after turning off the current. The results of experimental research into the characteristics of secondary penetrating radiation occurring when interacting primary X-ray beams from a solid-state cathode medium with targets made of various materials are reported. It was shown that the secondary radiation consisted of fast electrons. Secondary radiation of two types was observed: (1) The emission with a continuous temporal spectrum in the form of separate bursts with intensity up to 106 fast electrons a burst. (2) The emission with a discrete temporal spectrum and emission rate up to 1010 fast electrons a burst. A third type of the penetrating radiation was observed as well. This type was recorded directly by the photomultiplier placed behind of the target without the scintillator. The abnormal high penetrating ability of this radiation type requires additional research to explain. The obtained results

  4. Abnormal Head Position

    MedlinePlus

    ... cause. Can a longstanding head turn lead to any permanent problems? Yes, a significant abnormal head posture could cause permanent ... occipitocervical synostosis and unilateral hearing loss. Are there any ... postures? Yes. Abnormal head postures can usually be improved depending ...

  5. Urine - abnormal color

    MedlinePlus

    ... straw-yellow. Abnormally colored urine may be cloudy, dark, or blood-colored. Causes Abnormal urine color may ... red blood cells, or mucus in the urine. Dark brown but clear urine is a sign of ...

  6. Glow discharge conditioning of the PDX vacuum vessel

    SciTech Connect

    Dylla, H.F.; Cohen, S.A.; Rossnagel, S.M.; McCracken, G.M.; Staib, P.

    1980-03-01

    A glow discharge technique has been developed and applied to the conditioning of the large (38 m/sup 3/) Poloidal Divertor Experiment (PDX) vacuum vessel. The discharge parameters and working gas (H/sub 2/) were chosen to maximize C and O removal and minimize metal sputtering. The glow discharge was produced by biasing one or two internal anodes at 400 V to sustain a discharge current of 2 to 4 A per anode. Purified H/sub 2/ at a pressure of 3 x 10/sup -2/ torr was flowed through PDX at approx. 10 t-l/s. The effectiveness of the glow discharge conditioning was monitored by measuring impurity gas (CH/sub 4/, C/sub 2/H/sub 4/, and CO) exhaust rates by mass spectrometry and C and O surface removal rates by in-situ AES and XPS.

  7. Extension of spatiotemporal chaos in glow discharge-semiconductor systems

    SciTech Connect

    Akhmet, Marat Fen, Mehmet Onur; Rafatov, Ismail

    2014-12-15

    Generation of chaos in response systems is discovered numerically through specially designed unidirectional coupling of two glow discharge-semiconductor systems. By utilizing the auxiliary system approach, [H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E 53, 4528–4535 (1996)] it is verified that the phenomenon is not a chaos synchronization. Simulations demonstrate various aspects of the chaos appearance in both drive and response systems. Chaotic control is through the external circuit equation and governs the electrical potential on the boundary. The expandability of the theory to collectives of glow discharge systems is discussed, and this increases the potential of applications of the results. Moreover, the research completes the previous discussion of the chaos appearance in a glow discharge-semiconductor system [D. D. Šijačić U. Ebert, and I. Rafatov, Phys. Rev. E 70, 056220 (2004).].

  8. Data requirements for verification of ram glow chemistry

    NASA Technical Reports Server (NTRS)

    Swenson, G. R.; Mende, S. B.

    1985-01-01

    A set of questions is posed regarding the surface chemistry producing the ram glow on the space shuttle. The questions surround verification of the chemical cycle involved in the physical processes leading to the glow. The questions, and a matrix of measurements required for most answers, are presented. The measurements include knowledge of the flux composition to and from a ram surface as well as spectroscopic signatures from the U to visible to IR. A pallet set of experiments proposed to accomplish the measurements is discussed. An interim experiment involving an available infrared instrument to be operated from the shuttle Orbiter cabin is also be discussed.

  9. High-Energy Radiation from Thunderstorms with ADELE: TGFs, Steps, and Glows

    NASA Technical Reports Server (NTRS)

    Smith, David M.; Kelley, Nicole; Martinez-McKinney, Forest; Zhang, Zi Yan; Hazelton, Bryna; Grefenstette, Brian; Splitt, Michael; Lazarus, Steven; Ulrich, William; Levine, Steven; Dwyer, Joseph; Schaal, Meagan; Saleh, Ziad; Cramer, Eric; Rassoul, Hamid; Cummer, Steven; Lu, Gaopeng; Shao, Xuan-Min; Ho, Cheng; Blakeslee, Richard

    2011-01-01

    The biggest challenge in the study of high-energy processes in thunderstorms is getting a detector to the vicinity of the electrically active regions of a storm. The Airborne Detector for Energetic Lightning Emissions (ADELE) has been used to detect gamma rays from aircraft above storms and from a storm-chasing van on the ground. In August 2009, ADELE flew above Florida storms in a Gulfstream V jet, detecting the first terrestrial gamma-ray flash (TGF) seen from a plane and continuous glows of high-energy emission above thunderclouds. The presence of these glows suggests that a gradual process of relativistic runaway and feedback may help limit the total amount of charging in thunderstorms, in contrast to the traditional view that only lightning discharges compete with the charging process. The upper limits on TGF emission from intracloud and cloud-to-ground lightning from the ADELE flights demonstrated conclusively that a TGF of the sort seen from space is not associated with most lightning and not necessary to trigger it. In August 2010, observations from a van detected stepped-leader x-ray emission from at least four lightning strikes in ten days of operations. This mode of operation is therefore promising for future observations of the stepping process, although a more varied suite of instrumentation, in particular a flash-distance detector, would be useful. We will report on these results and on future possibilities for ADELE campaigns.

  10. Investigation of helium ion production in constricted direct current plasma ion source with layered-glows.

    PubMed

    Lee, Yuna; Chung, Kyoung-Jae; Park, Yeong-Shin; Hwang, Y S

    2014-02-01

    Generation of helium ions is experimentally investigated with a constricted direct current (DC) plasma ion source operated at layered-glow mode, in which electrons could be accelerated through multiple potential structures so as to generate helium ions including He(2+) by successive ionization collisions in front of an extraction aperture. The helium discharge is sustained with the formation of a couple of stable layers and the plasma ball with high density is created near the extraction aperture at the operational pressure down to 0.6 Torr with concave cathodes. The ion beam current extracted with an extraction voltage of 5 kV is observed to be proportional to the discharge current and inversely proportional to the operating pressure, showing high current density of 130 mA/cm(2) and power density of 0.52 mA/cm(2)/W. He(2+) ions, which were predicted to be able to exist due to multiple-layer potential structure, are not observed. Simple calculation on production of He(2+) ions inside the plasma ball reveals that reduced operating pressure and increased cathode area will help to generate He(2+) ions with the layered-glow DC discharge. PMID:24593635

  11. Investigation of helium ion production in constricted direct current plasma ion source with layered-glows

    SciTech Connect

    Lee, Yuna; Chung, Kyoung-Jae; Park, Yeong-Shin; Hwang, Y. S.

    2014-02-15

    Generation of helium ions is experimentally investigated with a constricted direct current (DC) plasma ion source operated at layered-glow mode, in which electrons could be accelerated through multiple potential structures so as to generate helium ions including He{sup 2+} by successive ionization collisions in front of an extraction aperture. The helium discharge is sustained with the formation of a couple of stable layers and the plasma ball with high density is created near the extraction aperture at the operational pressure down to 0.6 Torr with concave cathodes. The ion beam current extracted with an extraction voltage of 5 kV is observed to be proportional to the discharge current and inversely proportional to the operating pressure, showing high current density of 130 mA/cm{sup 2} and power density of 0.52 mA/cm{sup 2}/W. He{sup 2+} ions, which were predicted to be able to exist due to multiple-layer potential structure, are not observed. Simple calculation on production of He{sup 2+} ions inside the plasma ball reveals that reduced operating pressure and increased cathode area will help to generate He{sup 2+} ions with the layered-glow DC discharge.

  12. Laser-induced fluorescence monitoring of the gas phase in a glow discharge during reactive sputtering of vanadium

    NASA Astrophysics Data System (ADS)

    Khvostikov, V. A.; Grazhulene, S. S.; Burmii, Zh. P.; Marchenko, V. A.

    2011-11-01

    Processes in the gas phase of a glow discharge during diode and magnetron reactive sputtering of vanadium in an Ar-O2 atmosphere have been investigated by laser-induced fluorescence (LIF) as a function of the parameters of the glow discharge and the composition of the atmosphere. The intensity of the fluorescence spectra increased by 1.5-2.0 orders of magnitude in the magnetron sputtering process compared with that of diode sputtering. Under continuous sputtering conditions, the dependences of the intensities and relative compositions of the fluorescence spectra on the discharge parameters (discharge voltage and current) have been investigated. In pulsed mode of the glow discharge, the dynamics of changes in the spectra have been studied versus variations in the discharge duration and the lag time for recording the fluorescence signal. The dependence of the spectral line intensities on the partial pressure of oxygen has been found for vanadium and its oxide. The cathode surface at pressures of 0.03-0.04 Pa was shown to convert to the oxidized state.

  13. Immobilization of proteins on glow discharge treated polymers

    NASA Astrophysics Data System (ADS)

    Kiaei, D.; Safranj, A.; Chen, J. P.; Johnston, A. B.; Zavala, F.; Deelder, A.; Castelino, J. B.; Markovic, V.; Hoffman, A. S.

    Certain glow discharge-treated surfaces have been shown to enhance retention of adsorbed proteins. On the basis of this phenomenon, we have investigated the possibility of immobilizing (a) albumin for developing thromboresistant and non-fouling surfaces, (b) antibodies for immuno-diagnostic assays and (c) enzymes for various biosensors and industrial bioprocesses. Albumin retention was highest on surfaces treated with tetrafluoroethylene (TFE) compared to untreated surfaces or other glow discharge treatments studied. Preadsorption of albumin on TFE-treated surfaces resulted in low fibrinogen adsorption and platelet adhesion. IgG retention was also highest on TFE-treated surfaces. The lower detection limits of both malaria antigen and circulating anodic antigen of the schistosomiasis worm were enhanced following glow discharge treatment of the assay plates with TFE. Both TFE and tetrachloroethylene (TCE) glow discharge treated surfaces showed high retention of adsorbed horseradish peroxidase (HRP). However, the retained specific activity of HRP after adsorption on TCE-treated surfaces was remarkably higher than on TFE-treated surfaces.

  14. Mechanism of boriding from pastes in a glow discharge

    SciTech Connect

    Isakov, S.A.; Al'tshuler, S.A.

    1987-09-01

    The authors investigate the boridation of steel 45 from the standpoint of the glow-discharge dissociation of a borax paste and the plasma arc spraying of the resulting boron into the steel. The effects of process parameters on the impregnation of boron into the steel and its phase behavior in the boridation process are discussed.

  15. Metal Mesh Smear Sampling for Glow Discharge Analytical Spectroscopy

    SciTech Connect

    Shaw, R.W.; Barshick, C.M.; Ramsey, J.M.; Smith, D.H.

    2000-06-01

    Metal mesh smear sampling is being developed and evaluated for use in a number of glow discharge and other optical and mass spectrometric techniques. Sensitive elemental and isotopic analyses thus will be coupled with a convenient sampling scheme similar to one that is common for radiological surveys.

  16. Degradation of Organics in a Glow Discharge Under Martian Conditions

    NASA Technical Reports Server (NTRS)

    Hintze, P. E.; Calle, L. M.; Calle, C. I.; Buhler, C. R.; Trigwell, S.; Starnes, J. W.; Schuerger, A. C.

    2006-01-01

    The primary objective of this project is to understand the consequences of glow electrical discharges on the chemistry and biology of Mars. The possibility was raised some time ago that the absence of organic material and carbonaceous matter in the Martian soil samples studied by the VikinG Landers might be due in part to an intrinsic atmospheric mechanism such as glow discharge. The high probability for dust interactions during Martian dust storms and dust devils, combined with the cold, dry climate of Mars most likely results in airborne dust that is highly charged. Such high electrostatic potentials generated during dust storms on Earth are not permitted in the low-pressure CO2 environment on Mars; therefore electrostatic energy released in the form of glow discharges is a highly likely phenomenon. Since glow discharge methods are used for cleaning and sterilizing surfaces throughout industry, the idea that dust in the Martian atmosphere undergoes a cleaning action many times over geologic time scales appears to be a plausible one.

  17. Synchronization between two coupled direct current glow discharge plasma sources

    SciTech Connect

    Chaubey, Neeraj; Mukherjee, S.; Sen, A.; Sekar Iyengar, A. N.

    2015-02-15

    Experimental results on the nonlinear dynamics of two coupled glow discharge plasma sources are presented. A variety of nonlinear phenomena including frequency synchronization and frequency pulling are observed as the coupling strength is varied. Numerical solutions of a model representation of the experiment consisting of two coupled asymmetric Van der Pol type equations are found to be in good agreement with the observed results.

  18. SkyGlowNet as a Vehicle for STEM Education

    NASA Astrophysics Data System (ADS)

    Flurchick, K. M.; Craine, E. R.; Culver, R. B.; Deal, S.; Foster, C.

    2013-06-01

    SkyGlowNet is an emerging network of internet-enabled sky brightness meters (iSBM) that continuously record and log sky brightness at the zenith of each network node site. Also logged are time and weather information. These data are polled at a user-defined frequency, typically about every 45 seconds. The data are uploaded to the SkyGlowNet website, initially to a proprietary area where the data for each institution are embargoed for one or two semesters as students conduct research projects with their data. When released from embargo, the data are moved to another area where they can be accessed by all SkyGlowNet participants. Some of the data are periodically released to a public area on the website. In this presentation we describe the data formats and provide examples of both data content and the structure of the website. Early data from two nodes in the SkyGlowNet have been characterized, both quantitatively and qualitatively, by undergraduate students at NCAT. A summary of their work is presented here. These analyses are of utility in helping those new to looking at these data to understand how to interpret them. In particular, we demonstrate differences between effects on light at night and sky brightness due to astronomical cycles, atmospheric phenomena, and artificial lighting. Quantitative characterization of the data includes statistical analyses of parsed segments of the temporal data stream. An attempt is made to relate statistical metrics to specific types of phenomena.

  19. Camp GLOW (Girls Leading Our World): Handbook for Volunteers.

    ERIC Educational Resources Information Center

    Peace Corps, Washington, DC. Information Collection and Exchange Div.

    Camp GLOW (Girls Leading Our World) began in Romania in 1995 as a weeklong leadership camp with the purpose of encouraging young women to become active citizens by building their self-esteem and confidence, increasing their self-awareness, and developing their skills in goal-setting, assertiveness, and career and life planning. Since that first…

  20. Positive Streamers and Glows in Air and Exhaust Gases

    NASA Astrophysics Data System (ADS)

    Morrow, R.

    1998-10-01

    Theoretical and experimental studies have been made of the effects of sub-microsecond voltage pulses on the plasma chemistry of real flue gases in a test cell. Chemical analysis shows that, for real flue gases, the pulsed system can remove up to 90 % of NO, and 30 % of SO_2, if a residence time of ~ 30s is used. We also find that (i) water vapour is essential to the removal of SO_2, but not for the removal of NO or NO_2; and (ii) that small quantities of N_2O are produced. The removal of SO2 is primarily due to reactions with OH radicals from water vapour, producing sulphuric acid, whereas nitrogen oxides are reduced by N atoms. When a positive voltage is abruptly applied to a point in air at atmospheric pressure, positive streamers are produced. A theory is presented for the development of the first such streamer by solving the continuity equations for electrons, positive ions and negative ions, including the effects of ionisation, attachment, recombination, electron diffusion, and photoionisation, simultaneously with Poisson's equation. With an applied voltage of 20 kV across a 50 mm gap, the streamer does not reach the cathode. When the voltage is sustained in the presence of free electrons, the electric field at the anode starts to recover until positive glow pulses develop at the anode. The presence of the positive glow corona precludes any further streamer formation; this limits the number of chemical reactions stimulated by the discharge because the positive glow is confined close to the anode. Thus, a limit is set for the voltage pulse width. A theory is also presented for the current and light pulses of positive glow corona from a point in air; results are obtained by solving the continuity equations, described above, in concentric sphere geometry. A series of ``saw--toothed'' current pulses of period ~ 1 μs are predicted with a dc current level. Accompanying the current peaks are discrete 30 ns wide pulses of light. It is found that if, in the presence

  1. Tooth - abnormal shape

    MedlinePlus

    Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... from many different conditions. Specific diseases can affect tooth shape, tooth color, time of appearance, or absence ...

  2. Tooth - abnormal shape

    MedlinePlus

    Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... The appearance of normal teeth varies, especially the molars. ... conditions. Specific diseases can affect tooth shape, tooth ...

  3. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    SciTech Connect

    Sun Wenting; Li Guo; Li Heping; Bao Chengyu; Wang Huabo; Zeng Shi; Gao Xing; Luo Huiying

    2007-06-15

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure {alpha}-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  4. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Ting; Li, Guo; Li, He-Ping; Bao, Cheng-Yu; Wang, Hua-Bo; Zeng, Shi; Gao, Xing; Luo, Hui-Ying

    2007-06-01

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  5. A study of the glow discharge plasma jet of the novel Hamburger-electrode

    NASA Astrophysics Data System (ADS)

    Liu, Wenzheng; Ma, Chuanlong; Yang, Xiao; Cui, Weisheng; Chen, Xiuyang

    2016-08-01

    To generate atmospheric pressure glow discharge plasma jets (APGDPJs), a novel Hamburger-electrode was proposed. Through the study on electric field distributions, flow field distributions, and characteristics of the discharge and jet, we found that adopting the mode of dielectric barrier discharge with non-uniform thickness of dielectric, it was easy to form the strong electric field areas which were conducive to generate discharge and electric field distributions with large electric field intensity in the narrow gap and weak electric field intensity in the wide gap that were not inclined to form a filament discharge. Using the structure of evenly distributed inner electrodes, it was easy to weaken the pressure of strong electric field areas and form flow field distributions which is beneficial for taking out the high density charged particles and generating APGDPJs. Stable APGDPJs in nitrogen with 3.5 mm in diameter and 9 mm in length were formed by using the novel Hamburger-electrode.

  6. Stimulated Electromagnetic Emission Indicator of Glow Plasma Discharges from Ionospheric HF Wave Transmissions with HAARP

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Scales, W.; Briczinski, S. J.; Fu, H.; Mahmoudian, A.; Samimi, A.

    2012-12-01

    High power radio waves resonantly interact with to accelerate electrons for production of artificial aurora and plasma clouds. These plasma clouds are formed when the HF frequency is tuned near a harmonic of the electron cyclotron frequency. At a narrow band resonance, large electrostatic fields are produced below the F-layer and the neutral atmosphere breaks down with a glow plasma discharge. The conditions for this resonance are given by matching the pump wave frequency and wave-number with the sum of daughter frequencies and wave-numbers for several plasma modes. The most likely plasma mode that accelerates the electrons is the electron Bernstein wave in conjunction with an ion acoustic wave. Both upper hybrid and whistler mode waves are also possible sources of electron acceleration. To determine the plasma process for electron acceleration, stimulated electromagnetic emissions are measured using ground receivers in a north-south chain from the HAARP site. Recent observations have shown that broad band spectral lines downshifted from the HF pump frequency are observed when artificial plasma clouds are formed. For HF transmissions are the 2nd, 3rd, and 4th gyro harmonic, the downshifted indicators are found 500 Hz, 20 kHz, and 140 kHz, respectively, from the pump frequency. This Indicator Mode (IM) anticipates that a plasma layer will be formed before it is recorded with an ionosonde or optical imager.

  7. Structurally abnormal human autosomes

    SciTech Connect

    1993-12-31

    Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.

  8. Study of short atmospheric pressure dc glow microdischarge in air

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey

    2011-10-01

    The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen

  9. Sensitive glow discharge ion source for aerosol and gas analysis

    DOEpatents

    Reilly, Peter T. A.

    2007-08-14

    A high sensitivity glow discharge ion source system for analyzing particles includes an aerodynamic lens having a plurality of constrictions for receiving an aerosol including at least one analyte particle in a carrier gas and focusing the analyte particles into a collimated particle beam. A separator separates the carrier gas from the analyte particle beam, wherein the analyte particle beam or vapors derived from the analyte particle beam are selectively transmitted out of from the separator. A glow discharge ionization source includes a discharge chamber having an entrance orifice for receiving the analyte particle beam or analyte vapors, and a target electrode and discharge electrode therein. An electric field applied between the target electrode and discharge electrode generates an analyte ion stream from the analyte vapors, which is directed out of the discharge chamber through an exit orifice, such as to a mass spectrometer. High analyte sensitivity is obtained by pumping the discharge chamber exclusively through the exit orifice and the entrance orifice.

  10. Dust-void formation in a dc glow discharge.

    PubMed

    Fedoseev, A V; Sukhinin, G I; Dosbolayev, M K; Ramazanov, T S

    2015-08-01

    Experimental investigations of dusty plasma parameters of a dc glow discharge were performed in a vertically oriented discharge tube. Under certain conditions, dust-free regions (voids) were formed in the center of the dust particle clouds that levitated in the strong electric field of a stratified positive column. A model for radial distribution of dusty plasma parameters of a dc glow discharge in inert gases was developed. The behavior of void formation was investigated for different discharge conditions (type of gas, discharge pressure, and discharge current) and dust particle parameters (particle radii and particle total number). It was shown that it is the ion drag force radial component that leads to the formation of voids. Both experimental and calculated results show that the higher the discharge current the wider dust-free region (void). The calculations also show that more pronounced voids are formed for dust particles with larger radii and under lower gas pressures. PMID:26382534

  11. Radiation effects on ETFE polymer exposed to glow discharge

    NASA Astrophysics Data System (ADS)

    Minamisawa, Renato Amaral; Abidzina, Volha; de Almeida, Adelaide; Budak, Satilmis; Tereshko, I.; Elkin, I.; Ila, Daryush

    2007-08-01

    The polymer ethylenetetrafluoroethylene (ETFE) is composed of alternating ethylene and tetrafluoroethylene segments. Because it has applications in areas such as medical physics and industrial coatings, there is a great interest in surface modification studies of ETFE polymer. When this material is exposed to ionizing radiation it suffers damage that depends on the type, energy and intensity of the irradiation. In order to determine the radiation damage mechanism from exposure to low voltage plasma, ETFE films were exposed to residual gas plasma in glow discharge regime to a fluence of 2 × 1017 ions/cm2. Irradiated films were analyzed with optical absorption photospectrometry, Fourier transform infrared (FTIR) and Raman spectroscopy to determine the chemical nature of the structural changes caused by low energy glow discharge.

  12. Glow discharge electron impact ionization source for miniature mass spectrometers.

    PubMed

    Gao, Liang; Song, Qingyu; Noll, Robert J; Duncan, Jason; Cooks, R Graham; Ouyang, Zheng

    2007-05-01

    A glow discharge electron impact ionization (GDEI) source was developed for operation using air as the support gas. An alternative to the use of thermoemission from a resistively heated filament electron source for miniature mass spectrometers, the GDEI source is shown to have advantages of long lifetime under high-pressure operation and low power consumption. The GDEI source was characterized using our laboratory's handheld mass spectrometer, the Mini 10. The effects of the discharge voltage and pressure were investigated. Design considerations are illustrated with calculations. Performance is demonstrated in a set of experimental tests. The results show that the low power requirements, mechanical ruggedness, and quality of the data produced using the small glow discharge ion source make it well-suited for use with a portable handheld mass spectrometer. PMID:17441220

  13. Glow Discharge Induced Hydroxyl Radical Degradation of 2-Naphthylamine

    NASA Astrophysics Data System (ADS)

    Lu, Quanfang; Yu, Jie; Gao, Jinzhang; Yang, Wu

    2005-06-01

    In an aqueous solution, normal electrolysis at high voltages switches over spontaneously to glow discharge electrolysis and gives rise to hydroxyl radical, hydrogen peroxide, and aqueous electron, as well as several other active species. Hydroxyl radical directly attacks organic contaminants to make them oxidized. In the present paper, 2-naphthylamine is eventually degraded into hydrogen carbonate and carbon dioxide. The degradation process is analyzed by using an Ultraviolet (UV) absorption spectrum, high-performance liquid chromatography (HPLC) and chemical oxygen demand (COD). It is demonstrated that 2-naphthylamine (c0 =30 mg·l-1) is completely converted within 2h at 30°C and 600 V by glow discharge electrolysis, and the degradation is strongly dependent upon the presence of ferrous ions. COD is ascended in the absence of ferrous ions and descended in the presence of them.

  14. Electron concentration distribution in a glow discharge in air flow

    NASA Astrophysics Data System (ADS)

    Mukhamedzianov, R. B.; Gaisin, F. M.; Sabitov, R. A.

    1989-04-01

    Electron concentration distributions in a glow discharge in longitudinal and vortex air flows are determined from the attenuation of the electromagnetic wave passing through the plasma using microwave probes. An analysis of the distribution curves obtained indicates that electron concentration decreases in the direction of the anode. This can be explained by charge diffusion toward the chamber walls and electron recombination and sticking within the discharge.

  15. Positional glow curve simulation for thermoluminescent detector (TLD) system design

    NASA Astrophysics Data System (ADS)

    Branch, C. J.; Kearfott, K. J.

    1999-02-01

    Multi- and thin element dosimeters, variable heating rate schemes, and glow-curve analysis have been employed to improve environmental and personnel dosimetry using thermoluminescent detectors (TLDs). Detailed analysis of the effects of errors and optimization of techniques would be highly desirable. However, an understanding of the relationship between TL light production, light attenuation, and precise heating schemes is made difficult because of experimental challenges involved in measuring positional TL light production and temperature variations as a function of time. This work reports the development of a general-purpose computer code, thermoluminescent detector simulator, TLD-SIM, to simulate the heating of any TLD type using a variety of conventional and experimental heating methods including pulsed focused or unfocused lasers with Gaussian or uniform cross sections, planchet, hot gas, hot finger, optical, infrared, or electrical heating. TLD-SIM has been used to study the impact on the TL light production of varying the input parameters which include: detector composition, heat capacity, heat conductivity, physical size, and density; trapped electron density, the frequency factor of oscillation of electrons in the traps, and trap-conduction band potential energy difference; heating scheme source terms and heat transfer boundary conditions; and TL light scatter and attenuation coefficients. Temperature profiles and glow curves as a function of position time, as well as the corresponding temporally and/or spatially integrated glow values, may be plotted while varying any of the input parameters. Examples illustrating TLD system functions, including glow curve variability, will be presented. The flexible capabilities of TLD-SIM promises to enable improved TLD system design.

  16. The Use of DC Glow Discharges as Undergraduate Educational Tools

    SciTech Connect

    Stephanie A. Wissel and Andrew Zwicker, Jerry Ross, and Sophia Gershman

    2012-10-09

    Plasmas have a beguiling way of getting students excited and interested in physics. We argue that plasmas can and should be incorporated into the undergraduate curriculum as both demonstrations and advanced investigations of electromagnetism and quantum effects. Our device, based on a direct current (DC) glow discharge tube, allows for a number of experiments into topics such as electrical breakdown, spectroscopy, magnetism, and electron temperature.

  17. Zenith angle dependence of the geocoronal Lyman-alpha glow.

    NASA Technical Reports Server (NTRS)

    Paresce, F.; Kumar, S.; Bowyer, S.

    1972-01-01

    Review of the observations made on the zenith angle dependence and intensity of the geocoronal hydrogen Lyman-alpha glow by means of one of four extreme ultraviolet photometers flown to an altitude of 264 km on a Nike Tomahawk rocket launched from Thumba, India, in March 1970. The results obtained are compared with Meier and Mange's (1970) theoretical predictions. The possible causes for the discrepancies found are discussed.

  18. Effect of glow discharge air plasma on grain crops seed

    SciTech Connect

    Dubinov, A.E.; Lazarenko, E.M.; Selemir, V.D.

    2000-02-01

    Oat and barley seeds have been exposed to both continuous and pulsed glow discharge plasmas in air to investigate the effects on germination and sprout growth. Statistical analysis was used to evaluate the effect of plasma exposure on the percentage germination and length of sprout growth. A stimulating effect of plasma exposure was found together with a strong dependence on whether continuous or pulsed discharges were used.

  19. Inception of Snapover and Gas Induced Glow Discharges

    NASA Technical Reports Server (NTRS)

    Galofaro, J. T.; Vayner, B. V.; Degroot, W. A.; Ferguson, D. C.; Thomson, C. D.; Dennison, J. R.; Davies, R. E.

    2000-01-01

    Ground based experiments of the snapover phenomenon were conducted in the large vertical simulation chamber at the Glenn Research Center (GRC) Plasma Interaction Facility (PIF). Two Penning sources provided both argon and xenon plasmas for the experiments. The sources were used to simulate a variety of ionospheric densities pertaining to a spacecraft in a Low Earth Orbital (LEO) environment. Secondary electron emission is believed responsible for dielectric surface charging, and all subsequent snapover phenomena observed. Voltage sweeps of conductor potentials versus collected current were recorded in order to examine the specific charging history of each sample. The average time constant for sample charging was estimated between 25 and 50 seconds for all samples. It appears that current drops off by approximately a factor of 3 over the charging time of the sample. All samples charged in the forward and reverse bias directions, demonstrated hysteresis. Current jumps were only observed in the forward or positive swept voltage direction. There is large dispersion in tile critical snapover potential when repeating sweeps on any one sample. The current ratio for the first snapover region jumps between 2 and 4.6 times, with a standard deviation less than 1.6. Two of the samples showed even larger current ratios. It is believed the second large snapover region is due to sample outgassing. Under certain preset conditions, namely at the higher neutral gas background pressures, a perceptible blue-green glow was observed around the conductor. The glow is believed to be a result of secondary electrons undergoing collisions with an expelled tenuous cloud of gas, that is outgassed from the sample. Spectroscopic measurements of the glow discharge were made in an attempt to identify specific lines contributing to the observed glow.

  20. Plasma kinetics of ethanol conversion in a glow discharge

    NASA Astrophysics Data System (ADS)

    Levko, D. S.; Tsymbalyuk, A. N.; Shchedrin, A. I.

    2012-11-01

    The mechanism of ethanol conversion in a nonequilibrium glow discharge has been studied. It is shown that molecular hydrogen is produced in reactions between ethanol molecules and hydrogen atoms in the initial stage and in reactions involving active H, CH2OH, CH3CHOH, and formaldehyde in the final stage. Comparison with experimental data shows that the kinetic mechanism used in these calculations correctly predicts the concentrations of the main components of the gas mixture.

  1. Spacecraft Glow and the Eisg/skirt Experiment

    NASA Technical Reports Server (NTRS)

    Swenson, Gary R.; Ahmadjian, Mark; Jennings, Don; Visentine, Jim

    1992-01-01

    The objective of this experiment is to develop an understanding of the physical processes leading to spacecraft glow phenomena. The emphasis is to be on surface temperature and altitude effects. A complete understanding of the phenomena could be used to accomplish the following: (1) characterize optical instrument backgrounds; (2) provide guidelines for thermal insulations; (3) characterize material selection for flight optics and associated spacecraft; and (4) affect flight-operation altitude selection for relevant missions.

  2. Spectral identification/elimination of molecular species in spacecraft glow

    NASA Technical Reports Server (NTRS)

    Green, B. D.; Marinelli, W. J.; Rawlins, W. T.

    1985-01-01

    Computer models of molecular electronic and vibrational emission intensities were developed. Known radiative emission rates (Einstein coefficients) permit the determination of relative excited state densities from spectral intensities. These codes were applied to the published spectra of glow above shuttle surface and to the Spacelab 1 results of Torr and Torr. The theoretical high-resolution spectra were convolved with the appropriate instrumental slit functions to allow accurate comparison with data. The published spacelab spectrum is complex but N2+ Meinel emission can be clearly identified in the ram spectrum. M2 First Positive emission does not correlate well with observed features, nor does the CN Red System. Spectral overlay comparisons are presented. The spectrum of glow above shuttle surfaces, in contrast to the ISO data, is not highly structured. Diatomic molecular emission was matched to the observed spectral shape. Source excitation mechanisms such as (oxygen atom)-(surface species) reaction product chemiluminescence, surface recombination, or resonance fluorescent re-emission will be discussed for each tentative assignment. These assignments are the necessary first analytical step toward mechanism identification. Different glow mechanisms will occur above surfaces under different orbital conditions.

  3. The One Atmosphere Glow Discharge in Air: Phenomenology and Applications

    NASA Astrophysics Data System (ADS)

    Ben Gadri, Rami; Sherman, Daniel M.; Chen, Zhiyu; Karakaya, Fuat; Reece Roth, J.

    1999-10-01

    The existence of an atmospheric pressure RF glow plasma with the characteristics of a classical low pressure DC glow discharge has been experimentally and theoretically demonstrated [1, 2]. At the UTK Plasma Sciences Laboratory, the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) in air has been applied to a wide range of plasma processing applications. The technology is simple, technically attractive, and suitable for online treatment of webs and 3-dimensional workpieces. A parallel plate reactor and a Remote Exposure Reactor (RER) have been developed for direct plasma immersion and remote exposure, respectively. The RER is based on generating active species capable of sterilization and surface treatment in a uniform surface layer of the OAUGDP on planar panels [3], and convecting the active species to a remote chamber where the workpiece is located. A related surface plasma has been developed for indoor air filtration systems. In addition, the surface plasma on flat panels modified the boundary layer in wind tunnel tests to produce electrohydrodynamic (EHD) flow effects that can be used to increase or decrease aerodynamic drag [3]. [1] Massines et al., J. Appl. Phys., Vol. 83, N 6, pp 2950-2957, Mar. 1998. [2] J. R. Roth, "Industrial Plasma Engineering" Vol. I: Principles. Inst. Phys. Pub., Bristol and philadelphia, ISBN 0-7503-0318-2, 1995. [3] Roth et al., AIAA Paper 98-0328, 36th AIAA Meeting, Reno NV, 1998, Jan. 12-15.

  4. Development of blood compatible materials by glow discharge-treatment

    NASA Astrophysics Data System (ADS)

    Ishikawa, Y.; Sasakawa, S.

    Glow discharge-treatment was applied to preparation of blood compatible materials. Plasticized polyvinylchloride (PVC) which is used for blood bags was treated in the presence of various gases or monomers. Wettability of PVC was modified by the treatment over a wide range. And leakage of plasticizer, di-(2-ethylhexyl)phthalate (DEHP), was prevented. When platelet concentrates were stored in the treated PVC bags, impairment of platelet functions was suppressed by the prevention of DEHP leakage. But platelet adhesion to the surfaces increased by the treatments. Aldehyde groups were grafted on polyethylene film (PE) by glow discharge-treatment in the presence of formaldehyde gas. Although the aldehyde-grafted PE (HCHO-PE) had higher reactivity with platelet than PE after albumin coating, it exhibited excellent antithrombogenicity after blood plasma coating. HCHO-PE adsorbed proteins with almost the same composition as blood plasma, although non-treated PE adsorbed proteins with higher fibinogen/albumin ratio. Segmented-polyurethane which is well known to exhibit good antithrombogenicity, also formed the adsorption layer having composition like that of blood plasma. These results suggest that protein layer adsorbed with blood plasma composition is hardly recognized by platelets. Glow discharge-treatment is a simple and effective method for surface modification of medical polymers.

  5. Analysis of thermoluminescent glow peaks of zoisite under beta irradiations

    SciTech Connect

    Ccallata, Henry Javier; Watanabe, Shigueo

    2010-08-04

    In this study, the thermoluminescence (TL) properties of natural crystal of zoisite were investigated after beta ({sup 90}Sr) irradiation at room temperature (RT). Zoisite, of chemical formula Ca{sub 2}Al{sub 3}(SiO{sub 4})(Si{sub 2}O{sub 7})O(OH), is found in Minas Gerais State, Brazil as natural mineral of silicate, member of the epidote group. The glow curve of a natural sample submitted to a heat treatment at 600 deg. C is composed of two broad peaks, centered at about 110-130 deg. C and another one at about 205-210 deg. C. A heating rate of 4 deg. C s{sup -1} was used in the temperature range from RT to 300 deg. C. The additive dose, T{sub m}-T{sub STOP} thermal cleaning, initial rise, variable heating rate and computerized glow curve deconvolution methods have shown that the glow curve is a superposition of six peaks at 100, 130, 155, 175, 200 and 230 deg. C. The trapping parameters for the individual peaks have been calculated. The TL dose response of 130 and 200 deg. C peaks has a linear response. Zoisite is a candidate for a TL dosimeter because of its high sensitivity.

  6. Space shuttle ram glow: Implication of NO2 recombination continuum

    NASA Technical Reports Server (NTRS)

    Swenson, G. R.; Mende, S. B.; Clifton, S.

    1985-01-01

    The ram glow data gathered to data from imaging experiments on space shuttle suggest the glow is a continuum (within 34 angstrom resolution); the continuum shape is such that the peak is near 7000 angstroms decreasing to the blue and red, and the average molecular travel leading to emission after leaving the surface is 20 cm (assuming isotropic scattering from the surface). Emission continuum is rare in molecular systems but the measured spectrum does resemble the laboratory spectrum of NO2 (B) recombination continuum. The thickness of the observed emission is consistent with the NO2 hypothesis given an exit velocity of approx. 2.5 km/sec (1.3 eV) which leaves approx. 3.7 eV of ramming OI energy available for unbonding the recombined NO2 from the surface. The NO2 is formed in a 3-body recombination of OI + NO + m = NO2 + m where OI originates from the atmosphere and NO is chemically formed on the surface from atmospheric NI and OI. The spacecraft surface then acts as the n for the reaction: Evidence exists from orbital mass spectrometer data that the NO and NO2 chemistry described in this process does occur on surfaces of spectrometer orifices in orbit. Surface temperature effects are likely a factor in the NO sticking efficiency and, therefore, glow intensities.

  7. Space shuttle Ram glow: Implication of NO2 recombination continuum

    NASA Astrophysics Data System (ADS)

    Swenson, G. R.; Mende, S. B.; Clifton, S.

    1985-09-01

    The ram glow data gathered to data from imaging experiments on space shuttle suggest the glow is a continuum (within 34 angstrom resolution); the continuum shape is such that the peak is near 7000 angstroms decreasing to the blue and red, and the average molecular travel leading to emission after leaving the surface is 20 cm (assuming isotropic scattering from the surface). Emission continuum is rare in molecular systems but the measured spectrum does resemble the laboratory spectrum of NO2 (B) recombination continuum. The thickness of the observed emission is consistent with the NO2 hypothesis given an exit velocity of approx. 2.5 km/sec (1.3 eV) which leaves approx. 3.7 eV of ramming OI energy available for unbonding the recombined NO2 from the surface. The NO2 is formed in a 3-body recombination of OI + NO + m = NO2 + m where OI originates from the atmosphere and NO is chemically formed on the surface from atmospheric NI and OI. The spacecraft surface then acts as the n for the reaction: Evidence exists from orbital mass spectrometer data that the NO and NO2 chemistry described in this process does occur on surfaces of spectrometer orifices in orbit. Surface temperature effects are likely a factor in the NO sticking efficiency and, therefore, glow intensities.

  8. Glow discharge optical emission of plutonium and plutonium waste

    SciTech Connect

    Marcus, R.K.; Spencer, W.A.

    1995-11-09

    The application of glow discharges to the analysis of nonconducting materials such as glasses and ceramics is of great interest due to the number of advantages afforded by their direct solids capabilities. These types of samples, by their chemical nature, pose difficulties in dissolution for their subsequent analysis by common spectroscopic instrumental methods such as inductively coupled plasma atomic emission (ICP-AES). The ability of the glow discharge to sputter-atomize and excite solid nonconducting materials greatly reduces sample preparation time, cost, and complexity of an analysis. In comparison with x-ray spectroscopies, GD also provides the advantage of a relatively uniform sample atomization rate, resulting in a lowering of matrix effects. In a traditional direct current glow discharge (dc-GD), the material to be analyzed must first be ground and thoroughly mixed with a conductive host matrix and pressed into a solid pellet. Additionally, atmospheric gases which are often trapped in the sample upon pressing can degrade the quality of the plasma and obscure analytical results by reducing sputtering rates and affecting excitation conditions. Internal standardization has been carried out in both atomic absorption and emission dc-GD analyses in order to improve precision and accuracy which are affected by these problems.

  9. Spatial and temporal variability of SWIR air glow measurements

    NASA Astrophysics Data System (ADS)

    Dayton, David; Allen, Jeff; Gonglewski, John; Myers, Mike; Fertig, Gregory; Nolasco, Rudy; Maia, Francisco

    2010-10-01

    It is well known that luminance from photo-chemical reactions of hydroxyl ions in the upper atmosphere (~85 km altitude) produces a significant amount of night time radiation in the short wave infra-red (SWIR) band between 0.9 and 1.7 μm wave length. This has been demonstrated as an effective illumination source for night time imaging applications. It addition it has been shown that observation of the spatial and temporal variations of the illumination can be used to characterize atmospheric tidal wave actions in the air glow region. These spatiotemporal variations manifest themselves as traveling wave patterns whose period and velocity are related to the wind velocity at 85 km as well as the turbulence induced by atmospheric vertical instabilities. We are interested in studying these phenomena for a variety of reasons. First they can give an insight into upper atmospheric physics, second we would like to understand the variations in order to determine if air glow can be used as a reliable illumination source for night time terrestrial imaging. To that end we have been collecting data on ground irradiance from air glow over the past six months at a site on the island of Kauai. The purpose of this paper is to discuss some initial analysis of this data.

  10. Abnormal Uterine Bleeding

    MedlinePlus

    ... Abnormal uterine bleeding is any bleeding from the uterus (through your vagina) other than your normal monthly ... or fibroids (small and large growths) in the uterus can also cause bleeding. Rarely, a thyroid problem, ...

  11. "Jeopardy" in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Keutzer, Carolin S.

    1993-01-01

    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  12. Abnormal Uterine Bleeding FAQ

    MedlinePlus

    ... as cancer of the uterus, cervix, or vagina • Polycystic ovary syndrome How is abnormal bleeding diagnosed? Your health care ... before the fetus can survive outside the uterus. Polycystic Ovary Syndrome: A condition characterized by two of the following ...

  13. Planned investigation of infrared emissions associated with the induced spacecraft glow: A shuttle infrared glow experiment (SIRGE)

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; Jennings, D. E.

    1985-01-01

    The characteristics of infrared molecular emissions induced by energetic collisions between ambient atmospheric species and surfaces in Earth orbit are investigated, using a low-nitrogen-cooled filter wheel photometer covering the wavelength range 0.9-.5 microns with a resolving power Lambda/Delta Lambda of approximately 100. This resolving power is sufficient for identification of the molecular or atomic fluorescent spaces causing the glow.

  14. Chromosomal Abnormalities and Schizophrenia

    PubMed Central

    BASSETT, ANNE S.; CHOW, EVA W.C.; WEKSBERG, ROSANNA

    2011-01-01

    Schizophrenia is a common and serious psychiatric illness with strong evidence for genetic causation, but no specific loci yet identified. Chromosomal abnormalities associated with schizophrenia may help to understand the genetic complexity of the illness. This paper reviews the evidence for associations between chromosomal abnormalities and schizophrenia and related disorders. The results indicate that 22q11.2 microdeletions detected by fluorescence in-situ hybridization (FISH) are significantly associated with schizophrenia. Sex chromosome abnormalities seem to be increased in schizophrenia but insufficient data are available to indicate whether schizophrenia or related disorders are increased in patients with sex chromosome aneuploidies. Other reports of chromosomal abnormalities associated with schizophrenia have the potential to be important adjuncts to linkage studies in gene localization. Advances in molecular cytogenetic techniques (i.e., FISH) have produced significant increases in rates of identified abnormalities in schizophrenia, particularly in patients with very early age at onset, learning difficulties or mental retardation, or dysmorphic features. The results emphasize the importance of considering behavioral phenotypes, including adult onset psychiatric illnesses, in genetic syndromes and the need for clinicians to actively consider identifying chromosomal abnormalities and genetic syndromes in selected psychiatric patients. PMID:10813803

  15. The influence of resonance radiation transport on the contraction of a glow discharge in argon

    NASA Astrophysics Data System (ADS)

    Golubovskii, Yu B.; Maiorov, V. A.

    2015-04-01

    The role of resonance radiation transport in the contraction of a positive column in an argon glow discharge is studied numerically. The theory is based on the self-consistent solution of the ambipolar diffusion equation for electrons, the diffusion equation for metastable atoms and the Biberman-Holstein equation for resonance atoms. To calculate the ionization and excitation rates, the Boltzmann equation is solved in a local approximation taking into account elastic, inelastic and electron-electron collisions. A solution method for a boundary problem is developed which allows one to obtain a hysteresis of the parameters during a continuous transition from a diffuse mode to a contracted mode through an unstable branch. At small currents there is a diffuse discharge where the role of radiation transport is inessential because the radial distributions of electrons and excited atoms are close to the fundamental modes of the corresponding equations. Under these conditions, the traditional approximation of ‘effective lifetime’ is accurate enough. For a contracted discharge, this approximation is not applicable because the higher diffusion and radiation modes play a notable role and a more strict description of radiation transport is required. It is shown that, when radiation transport is taken into account, the width of a filament in a contracted discharge significantly exceeds that obtained in the traditional ‘effective lifetime’ approximation. The critical current, when the discharge abruptly turns into a contracted mode, is shifted towards higher current values. The results obtained in this paper can also relate to a discharge in other inert gases.

  16. Thermoluminescence glow curve analysis and CGCD method for erbium doped CaZrO3 phosphor

    NASA Astrophysics Data System (ADS)

    Tiwari, Ratnesh; Chopra, Seema

    2016-05-01

    The manuscript report the synthesis, thermoluminescence study at fixed concentration of Er3+ (1 mol%) doped CaZrO3 phosphor. The phosphors were prepared by modified solid state reaction method. The powder sample was characterized by thermoluminescence (TL) glow curve analysis. In TL glow curve the optimized concentration in 1mol% for UV irradiated sample. The kinetic parameters were calculated by computerized glow curve deconvolution (CGCD) techniaue. Trapping parameters gives the information of dosimetry loss in prepared phosphor and its usability in environmental monitoring and for personal monitoring. CGCD is the advance tool for analysis of complicated TL glow curves.

  17. Glow-to-arc transition in plasma-assisted combustion at 100 MPa

    NASA Astrophysics Data System (ADS)

    Larsson, A.; Andreasson, S.

    2015-04-01

    Electric energy can be added to the combustion of solid propellants in a gun in order to augment and to control parts of the internal ballistic cycle of the launch of a projectile. The pressure in the chamber and bore during launch is typically several hundred megapascal and the electric energy must be delivered to the flame at such a pressure level. To increase the understanding of the interaction between a flame and an electrical discharge at elevated pressure, experiments have been performed at 100 MPa in a combustion chamber where electric current has been conducted through the flame of a solid propellant. Pressure, voltage and current have been measured. The measured signals have been analysed and interpreted. The sequence of events has been interpreted as an initial formation of a glow-like discharge in the flame followed by a discharge mode transition to a filamentary arc discharge. The transition is shown to be dependent on the flame conductivity. For the test propellant used (Nzk5230 doped with 5% potassium nitrate), the flame conductivity is calculated to be 0.84 S m-1 and the discharge mode transition is found to occur after a dissipation of 0.2-0.4 kJ, or 11-22 kJ m-1 of electric energy, at an electric power of 0.1-0.5 MW.

  18. Three spacecraft observe Jupiter's glowing polar regions

    NASA Astrophysics Data System (ADS)

    1996-09-01

    also privileged to be the last observer with IUE" says Rene Prang of Orsay, France, who was in charge of the Jupiter programme. "At the end it provided us wit 800 observations of Jupiter, so it was still doing important work at the leading edge of planetary astronomy and space research". Created jointly by NASA, the UK government and ESA, IUE was supposed to last for three years, when it was launched on 26 January 1978. Instead, the 700-kilogram spacecraft went on supplying astronomers with ultraviolet spectroscopic information available from no other spacecraft until the launch of the Hubble Space Telescope in 1990. As the only space observatory offering them a hands-on mode of operation, at ESA's ground station at Villafranca near Madrid, IUE was a favourite with astronomers. An astounding total of 114,000 individual observations of planets, stars, galaxies and quasars assures the spacecraft a cherished place in the history of astronomy. IUE supplied the bedrock ultraviolet data on top events during its lifetime. These included the apparition of Halley's Comet in 1986. At the comet's approach in September 1985, IUE detected the ultraviolet signature of water molecules, and regular observations thereafter showed that the comet shed 300 million tonnes of water during its visit to the Sun's vicinity. With the explosion of a star in the Large Magellan Cloud, as Supernova 1987A, IUE was trained instantly on the scene. Comparisons with previous IUE observations of the same region revealed exactly which star had blown up. The characteristic emissions of chemical elements flung into space by the explosion were also identified, IUE's detection of a delayed light echo, from a ring of dust surrounding the defunct star, later enabled the Hubble Space Telescope to measure the distance to Supernova 1987A precisely. Eruptions in the nuclei of active galaxies were a prominent theme in IUE's work throughout its lifetime. Intensive studies of selected galaxies, sometimes in concert

  19. Glow discharge assisted oxynitriding process of titanium for medical application

    NASA Astrophysics Data System (ADS)

    Wierzchoń, Tadeusz; Czarnowska, Elżbieta; Grzonka, Justyna; Sowińska, Agnieszka; Tarnowski, Michał; Kamiński, Janusz; Kulikowski, Krzysztof; Borowski, Tomasz; Kurzydłowski, Krzysztof J.

    2015-04-01

    The plasma oxynitriding process is a prospective method of producing titanium oxides as an integral part of a diffusive nitrided surface layer on titanium implants. This hybrid process, which combines glow discharge assisted nitriding and oxidizing, permits producing TiO2 + Ti2N + αTi(N)-type diffusive surface layers. The oxynitrided surface layers improve the corrosion and wear resistance of the substrate material. Additionally, the nanocrystalline titanium oxide TiO2 (rutile) improves the biological properties of titanium and its alloys when in contact with blood, whereas the TiN + Ti2N + αTi(N) zone eliminates the effect of metalosis.

  20. Persistence of phosphor glow in microchannel plate image intensifiers

    NASA Technical Reports Server (NTRS)

    Torr, M. R.

    1985-01-01

    Image intensifier tubes using microchannel plate amplification stages and phosphor output stages are being increasingly used in various detection applications. In this paper, measurements of the decay times of what are attributed to be the P20 phosphors in various image intensifiers are reported. It is found that the long tail on the decay curve of the phosphor following illumination can be a limitation for certain observations. In addition, the background level of phosphor glow (which is seen by the subsequent detection system as a light signal) continues to build with continuing illumination.

  1. Glow discharge lamp: A light source for optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Vishwanathan, K. S.; Srinivasan, V.; Nalini, S.; Mahalingam, T. R.

    A glow discharge lamp based on a modified version of the Grimm design has been fabricated. Its utility as a radiation source for optical emission spectrography by standardizing a method for the analysis of low alloy steels using a set of certified standards from DMRL, Hyderabad, has been demonstrated. A model has been proposed where the sputtering rates of different metals have been correlated with their heats of sublimation, metallic radii, and densities. Sputtering rates of ten different metals obtained from literature have been used to test this model, and the correlation appears to be excellent.

  2. Comparative Spectroscopic Temperature Measurements In Hydrogen Hollow Cathode Glow Discharge

    NASA Astrophysics Data System (ADS)

    Majstorovic, G. Lj.; Šišovic, N. M.; Konjevic, N.

    2010-07-01

    We report results of optical emission spectroscopy measurements of rotational Trot and translational temperature Ttr of hydrogen molecules. The light source was hollow cathode glow discharge with titanium cathode operated in hydrogen at low pressure. The rotational temperature of excited electronic states of H2 was determined either from relative line intensities of the R branch of the GK ? B band or from the Q branch of the Fulcher-a diagonal band. The population of excited energy levels, determined from relative line intensities, was used to derive ro-vibronic temperature of the ground state of hydrogen molecule.

  3. Dual-frequency glow discharges in atmospheric helium

    SciTech Connect

    Huang, Xiaojiang; Guo, Ying; Dai, Lu; Zhang, Jing; Shi, J. J.

    2015-10-15

    In this paper, the dual-frequency (DF) glow discharges in atmospheric helium were experimented by electrical and optical measurements in terms of current voltage characteristics and optical emission intensity. It is shown that the waveforms of applied voltages or discharge currents are the results of low frequency (LF) waveforms added to high frequency (HF) waveforms. The HF mainly influences discharge currents, and the LF mainly influences applied voltages. The gas temperatures of DF discharges are mainly affected by HF power rather than LF power.

  4. LANL Transfers Glowing Bio Technology to Sandia Biotech

    SciTech Connect

    Rorick, Kevin

    2012-01-01

    Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action. http://www.lanl.gov/news/stories/glowing-future-for-los-alamos-and-sandia-b iotech-partnership.html

  5. LANL Transfers Glowing Bio Technology to Sandia Biotech

    ScienceCinema

    Rorick, Kevin

    2012-08-02

    Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action. http://www.lanl.gov/news/stories/glowing-future-for-los-alamos-and-sandia-b iotech-partnership.html

  6. Diode laser excited optogalvanic spectroscopy of glow discharges

    SciTech Connect

    Barshick, C.M.; Shaw, R.W.; Post-Zwicker, A., Young, J.P.; Ramsey, J.M.

    1996-10-01

    The development of diode-laser-excited isotopically-selective optogalvanic spectroscopy (OGS) of uranium metal, oxide and fluoride in a glow discharge (GD) is presented. The technique is useful for determining isotopic ratios of {sup 235}U/({sup 235}U + {sup 238}U) in the above samples. The precision and accuracy of this determination is evaluated, and a study of experimental parameters pertaining to optimization of he measurement is discussed. Application of the GD-OGS to other f-transition elements is also described.

  7. Reproducing continuous radio blackout using glow discharge plasma

    SciTech Connect

    Xie, Kai; Li, Xiaoping; Liu, Donglin; Shao, Mingxu; Zhang, Hanlu

    2013-10-15

    A novel plasma generator is described that offers large-scale, continuous, non-magnetized plasma with a 30-cm-diameter hollow structure, which provides a path for an electromagnetic wave. The plasma is excited by a low-pressure glow discharge, with varying electron densities ranging from 10{sup 9} to 2.5 × 10{sup 11} cm{sup −3}. An electromagnetic wave propagation experiment reproduced a continuous radio blackout in UHF-, L-, and S-bands. The results are consistent with theoretical expectations. The proposed method is suitable in simulating a plasma sheath, and in researching communications, navigation, electromagnetic mitigations, and antenna compensation in plasma sheaths.

  8. Nitrogen Glow Discharge by a DC Virtual Cathode

    NASA Astrophysics Data System (ADS)

    Shager, Azza M.; Sroor, Amany T.; Tayeb, Hoda A. El; Gamal, Hoda A. El; Masoud, Mohamed M.

    2008-08-01

    A DC glow discharge operating with a virtual cathode is studied. The system consists of a solid disc cathode and mesh anode. The discharge occurs in nitrogen gas at the left-hand side of Paschen's curve. The plasma electron density in the axial direction has been found to be 0.2 · 108 cm-3 at 2 cm from the mesh. The electron temperature peak value has been found to be 3.5 eV at 6 cm from the mesh. The radial distribution of the plasma electron density and temperature are discussed. The variation of the plasma parameters are in good agreement with the experimental results.

  9. Radial Distributions of Dusty Plasma Parameters in a Glow Discharge

    SciTech Connect

    Fedoseev, A. V.; Sukhinin, G. I.

    2011-11-29

    A self-consistent model for radial distributions of dusty plasma parameters in a DC glow discharge based on the non-local Boltzmann equation for EEDF, the drift-diffusion equation for ions, and the Poisson equation for self-consistent electric field is presented. The results show that for the case of high dust particles density when the recombination of electrons and ions exceeds the ionization near the tube axis, radial electron and ion fluxes change their direction toward the center of the tube, and the radial electric field is reversed.

  10. Multiple solutions in the theory of dc glow discharges and cathodic part of arc discharges. Application of these solutions to the modeling of cathode spots and patterns: a review

    NASA Astrophysics Data System (ADS)

    Benilov, M. S.

    2014-10-01

    A new class of stationary solutions in the theory of glow discharges and plasma-cathode interaction in ambient-gas arc discharges has been found over the past 15 years. These solutions exist simultaneously with the solution given in textbooks, which describes a discharge mode with a uniform or smooth distribution of current over the cathode surface, and describes modes with various configurations of cathode spots: normal spots on glow cathodes, patterns of multiple spots recently observed on cathodes of glow microdischarges and spots on arc cathodes. In particular, these solutions show that cathode spots represent a manifestation of self-organization caused by basic mechanisms of the near-cathode space-charge sheath; another illustration of the richness of the gas discharge science. As far as arc cathodes are concerned, the new solutions have proved relevant for industrial applications. This work is dedicated to reviewing the multiple solutions obtained to date, their systematization, and analysis of their properties and physical meaning. The treatment is performed in the context of general trends of self-organization in bistable nonlinear dissipative systems, which allows one to consider glow discharges or arc-cathode interaction within a single physically transparent framework without going into mathematical details and offers a possibility of systematic computation of the multiple solutions. Relevant computational aspects and experimental data are discussed.

  11. LOX/Methane Main Engine Glow Plug Igniter Tests and Modeling

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin; Ajmani, Kumud

    2009-01-01

    Ignition data for tests with a LOX/methane igniter that utilized a glow plug as the ignition source are presented. The tests were conducted in a vacuum can with thermally conditioned (cold) hardware. Data showing the effects of glow plug geometry, type, and igniter operating conditions are discussed. Comparisons between experimental results and multidimensional, transient computer models are also made.

  12. Characteristics of a glow discharge maintained in the vapors of a liquid

    NASA Astrophysics Data System (ADS)

    Ramazanov, A. N.; Kostrin, D. K.; Goncharov, V. D.; Lisenkov, A. A.

    2016-07-01

    Glow discharge in atmospheric pressure air in the discharge cell with a liquid cathode is considered. Current-voltage characteristic of such a system at different distances between the electrodes and various electrode placements, different thickness of the liquid layer and the cathode surface area are shown. Spectral emission of the glow discharge plasma in the vapors of a liquid is demonstrated.

  13. Glow experiment documentation of OMS/RCS pod and vertical stabilizer

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Glow experiment documentation of one of the orbital maneuvering system (OMS) reaction control system (RCS) pods and a portion of the vertical stabilizer shows chemoluminescent effectresulting from atomic oxygen impacting the spacecraft and building to the point that the atomic oxygen atoms combine to form molecules of oxygen. The Image Intensifier on NIKON 35mm camera was used to record the glow.

  14. Glow experiment documentation of OMS/RCS pods and vertical stabilizer

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Glow experiment documentation of orbital maneuvering system (OMS) reaction control system (RCS) pods and vertical stabilizer shows chemoluminescent effect resulting from atomic oxygen impacting the spacecraft and building to the point that the atomic oxygen atoms combine to form molecules of oxygen. Image intensifier on NIKON 35mm camera used to record glow on vertical tail and OMS pods.

  15. Glow experiment documentation of OMS/RCS pods and vertical stabilizer

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Glow experiment documentation of orbital maneuvering system (OMS) reaction control system (RCS) pods and vertical stabilizer shows chemo-luminescent effect resulting from atomic oxygen impacting the spacecraft and building to the point that the atomic oxygen atoms combine to form molecules of oxygen. Image intensifier on NIKON 35mm camera was used to record glow on vertical tail and OMS pods.

  16. Assessing the Warm Glow Effect in Contingent Valuations for Public Libraries

    ERIC Educational Resources Information Center

    Lee, Soon-Jae; Chung, Hye-Kyung; Jung, Eun-Joo

    2010-01-01

    This article aims to present evidence of the warm glow effect in a public library setting. More specifically, it tests whether individual respondents with different values for the warm glow component report different values for their willingness to pay (WTP). The data come from a contingent valuation survey conducted on randomly selected citizens…

  17. Demonstration of Separation Control Using Glow-Discharge Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Ashpis, David E.

    2003-01-01

    Active flow control of boundary-layer separation using glow-discharge plasma actuators is studied experimentally. Separation is induced on a flat plate installed in a closed-circuit wind tunnel by a shaped insert on the opposite wall. The flow conditions represent flow over the suction surface of a modem low-pressure-turbine airfoil. The Reynolds number, based on wetted plate length and nominal exit velocity, is varied from 50,000 to 300,000, covering cruise to takeoff conditions. Low (0.2%) and high (2.5%) free-stream turbulence intensities are set using passive grids. A spanwise-oriented phased-plasma-array actuator, fabricated on a printed circuit board, is surface-flush-mounted upstream of the separation point and can provide forcing in a wide frequency range. Static surface pressure measurements and hot-wire anemometry of the base and controlled flows are performed and indicate that the glow-discharge plasma actuator is an effective device for separation control.

  18. Demonstration of Separation Delay with Glow-Discharge Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Ashpis, David E.

    2004-01-01

    Active flow control of boundary-layer separation using glow-discharge plasma actuators is studied experimentally. Separation is induced on a flat plate installed in a closed-circuit wind tunnel by a shaped insert on the opposite wall. The flow conditions represent flow over the suction surface of a modern low-pressure-turbine airfoil. The Reynolds number, based on wetted plate length and nominal exit velocity, is varied from 50,000 to 300,000, covering cruise to takeoff conditions. Low (0.2 percent) and high (2.5 percent) free-stream turbulence intensities are set using passive grids. A spanwise-oriented phased-plasma-array actuator, fabricated on a printed circuit board, is surface-flush-mounted upstream of the separation point and can provide forcing in a wide frequency range. Static surface pressure measurements and hot-wire anemometry of the base and controlled flows are performed and indicate that the glow-discharge plasma actuator is an effective device for separation control.

  19. Verification of the dual integral glow analysis dosimetry system

    NASA Astrophysics Data System (ADS)

    Wagner, Eric Christopher

    2000-10-01

    The Dual Integral Glow Analysis (DINGA) method is a unique approach to the determination of the low-LET dose deposited within a thermoluminescent personnel dosimeter. DINGA creates its estimate of the dose deposited by utilizing the integrals of a sub-section of the glow curves obtained from opposite sides of one or more thermoluminescent detectors (TLDs) and knowledge of the TLDs thermophysical parameters. The performance of DINGA is evaluated with computational simulations for a variety of heating methods and error tolerance is also examined by introducing errors into the inputs the DINGA code. It has been found that DINGA's dose estimates are off approximately, in the worst case, the same percentage as the input parameter was varied. Experimental measurements are performed using a hot-gas heating method for large personnel doses and a laser heating method for smaller personnel doses with LiF: Mg, Ti (TLD-100) dosimeters. The dosimeters are exposed to select radiation fields generated by either certified sources or fields characterized by certified equipment. The DINGA dosimetry system is found to correctly report shallow and deep dose well within the limits required for certification by the National Voluntary Accreditation Program. The worst performance quotient is 0.19, well below the strictest limit of 0.30.

  20. Interaction of a surface glow discharge with a gas flow

    SciTech Connect

    Aleksandrov, A. L. Schweigert, I. V.

    2010-05-15

    A surface glow discharge in a gas flow is of particular interest as a possible tool for controlling the flow past hypersonic aircrafts. Using a hydrodynamic model of glow discharge, two-dimensional calculations for a kilovolt surface discharge in nitrogen at a pressure of 0.5 Torr are carried out in a stationary gas, as well as in a flow with a velocity of 1000 m/s. The discharge structure and plasma parameters are investigated near a charged electrode. It is shown that the electron energy in a cathode layer reaches 250-300 eV. Discharge is sustained by secondary electron emission. The influence of a high-speed gas flow on the discharge is considered. It is shown that the cathode layer configuration is flow-resistant. The distributions of the electric field and electron energy, as well as the ionization rate profile in the cathode layer, do not change qualitatively under the action of the flow. The basic effect of the flow's influence is a sharp decrease in the region of the quasineutral plasma surrounding the cathode layer due to fast convective transport of ions.

  1. Ozone generation using atmospheric pressure glow discharge in air

    NASA Astrophysics Data System (ADS)

    Buntat, Z.; Smith, I. R.; Razali, N. A. M.

    2009-12-01

    This paper presents results from a study into the generation of ozone by a stable atmospheric glow discharge, using dry air as the feeding gas for ozone generation. The power supply is 50 Hz ac, with the use of a perforated aluminium sheet for the electrodes and soda lime glass as a dielectric layer in a parallel-plate configuration, stabilizing the generation process and enabling ozone to be produced. The stable glow discharge spreads uniformly at a gas breakdown voltage below 4.8 kV and requires only 330 mW discharge power, with a limitation of 3 mm on the maximum gap spacing for the dry air. With the technique providing a high collision rate between the electrons and gas molecules during the discharge process, a high ozone yield is obtained. An analysis of the effect on the production rate of parameters such as the input voltage, gas flow rate and reaction chamber dimensions resulted in a highest efficiency of production of almost 350 g kWh-1 and confirms its potential as an important ozone generation technology.

  2. Instrumentation for automated acquisition and analysis of TLD glow curves

    NASA Astrophysics Data System (ADS)

    Bostock, I. J.; Kennett, T. J.; Harvey, J. W.

    1991-04-01

    Instrumentation for the automated and complete acquisition of thermoluminescent dosimeter (TLD) data from a Panasonic UD-702E TLD reader is reported. The system that has been developed consists of both hardware and software components and is designed to operate with an IBM-type personal computer. Acquisition of glow curve, timing, and heating data has been integrated with elementary numerical analysis to permit real-time validity and diagnostic assessments to be made. This allows the optimization of critical parameters such as duration of the heating cycles and the time window for the integration of the dosimetry peak. The form of the Li 2B 4O 7:Cu TLD glow curve has been studied and a mathematical representation devised to assist in the implementation of automated analysis. Differences in the shape of the curve can be used to identify dosimetry peaks due to artifacts or to identify failing components. Examples of the use of this system for quality assurance in the TLD monitoring program at McMaster University are presented.

  3. On electron bunching and stratification of glow discharges

    SciTech Connect

    Golubovskii, Yuri B.; Kolobov, Vladimir I.; Nekuchaev, Vladimir O.

    2013-10-15

    Plasma stratification and excitation of ionization waves is one of the fundamental problems in gas discharge physics. Significant progress in this field is associated with the name of Lev Tsendin. He advocated the need for the kinetic approach to this problem contrary to the traditional hydrodynamic approach, introduced the idea of electron bunching in spatially periodic electric fields, and developed a theory of kinetic resonances for analysis of moving striations in rare gases. The present paper shows how Tsendin's ideas have been further developed and applied for understanding the nature of the well-known S-, P-, and R-striations observed in glow discharges of inert gases at low pressures and currents. We review numerical solutions of a Fokker-Planck kinetic equation in spatially periodic electric fields under the effects of elastic and inelastic collisions of electrons with atoms. We illustrate the formation of kinetic resonances at specific field periods for different shapes of injected Electron Distribution Functions (EDF). Computer simulations illustrate how self-organization of the EDFs occurs under nonlocal conditions and how Gaussian-like peaks moving along resonance trajectories are formed in a certain range of discharge conditions. The calculated EDFs agree well with the experimentally measured EDFs for the S, P, and R striations in noble gases. We discuss how kinetic resonances affect dispersion characteristics of moving striations and mention some non-linear effects associated with glow discharge stratification. We propose further studies of stratification phenomena combining physical kinetics and non-linear physics.

  4. GCAFIT—A new tool for glow curve analysis in thermoluminescence nanodosimetry

    NASA Astrophysics Data System (ADS)

    Abd El-Hafez, A. I.; Yasin, M. N.; Sadek, A. M.

    2011-05-01

    Glow curve analysis is widely used for dosimetric studies and applications. Therefore, a new computer program, GCAFIT, for deconvoluting first-order kinetics thermoluminescence (TL) glow curves and evaluating the activation energy for each glow peak in the glow curve has been developed using the MATLAB technical computing language. A non-linear function describing a single glow peak is fitted to experimental points using the Levenberg-Marquardt least-square method. The developed GCAFIT software was used to analyze the glow curves of TLD-100, TLD-600, and TLD-700 nanodosimeters. The activation energy E obtained by the developed GCAFIT software was compared with that obtained by the peak shape methods of Grossweiner, Lushchik, and Halperin-Braner. The frequency factor S for each glow peak was also calculated. The standard deviations are discussed in each case and compared with those of other investigators. The results show that GCAFIT is capable of accurately analyzing first-order TL glow curves. Unlike other software programs, the developed GCAFIT software does not require activation energy as an input datum; in contrast, activation energy for each glow peak is given in the output data. The resolution of the experimental glow curve influences the results obtained by the GCAFIT software; as the resolution increases, the results obtained by the GCAFIT software become more accurate. The values of activation energy obtained by the developed GCAFIT software a in good agreement with those obtained by the peak shape methods. The agreement with the Halperin-Braner and Lushchik methods is better than with that of Grossweiner. High E and S values for peak 5 were observed; we believe that these values are not real because peak 5 may in fact consist of two or three unresolved peaks. We therefore treated E and S for peak 5 as an effective activation energy, Eeff, and an effective frequency factor, Seff. The temperature value for peak 5 was also treated as an effective quantity

  5. Long duration gamma-ray glows observed from the tops of thunderstorms

    NASA Astrophysics Data System (ADS)

    Kelley, N.; Smith, D. M.; Dwyer, J. R.; Hazelton, B. J.; Grefenstette, B. W.; Lowell, A.; Splitt, M. E.; Lazarus, S. M.; Rassoul, H. K.

    2011-12-01

    The Airborne Detector for Energetic Lightning Emissions (ADELE) observed 12 γ-ray glows from thunderstorms near Montana and Florida during its Summer 2009 campaign. These glows have been observed from both the ground and air but this is the first evidence that they are a common, long duration occurrence at the tops of thunderclouds. Glows could be evidence that continuous relativistic runaway with feedback limits thunderstorm charging in a way that competes with lightning. We compare our observed glows to local lightning activity and find a slight but poor correlation, indicating that lightning and glows measure different aspects of cloud electrification. We have shown for all 11 of our observed glows in Florida that there is always an active cell nearby, but there were also many passes near active cells that had no observed glow. We will examine the meteorological differences between active lightning cells with and without glows. We have found the spectrum to be very hard for each glow, with a large fraction of the counts being above 5 MeV. Using a Monte Carlo simulation of relativistic runaway with positron feedback and a GEANT3 model of the atmosphere and instrument response from within a plane, we will distinguish between two different possibilities for a hard spectrum: an upward relativistic avalanche very deep in the atmosphere, so that most low energy photons have been removed via Compton scattering, and a downward relativistic avalanche between the upper positive and the screening layer, with the bremsstrahlung from the upward positron beam (a side-effect of feedback) producing the glow. If the latter model is correct, it demonstrates that positron feedback is indeed a common process in thunderclouds.

  6. Influence of driving frequency on discharge modes in a dielectric-barrier discharge with multiple current pulses

    SciTech Connect

    Jiang, Weiman; Tang, Jie; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2013-07-15

    A one-dimensional self-consistent fluid model was employed to investigate the effect of the driving frequency on the discharge modes in atmospheric-pressure argon discharge with multiple current pulses. The discharge mode was discussed in detail not only at current peaks but also between two adjacent peaks. The simulation results show that different transitions between the Townsend and glow modes during the discharge take place with the driving frequency increased. A complicated transition from the Townsend mode, through glow, Townsend, and glow, and finally back to the Townsend one is found in the discharge with the driving frequency of 8 kHz. There is a tendency of transition from the Townsend to glow mode for the discharge both at the current peaks and troughs with the increasing frequency. The discharge in the half period can all along operate in the glow mode with the driving frequency high enough. This is resulted from the preservation of more electrons in the gas gap and acquisition of more electron energy from the swiftly varying electric field with the increase in driving frequency. Comparison of the spatial and temporal evolutions of the electron density at different driving frequencies indicates that the increment of the driving frequency allows the plasma chemistry to be enhanced. This electrical characteristic is important for the applications, such as surface treatment and biomedical sterilization.

  7. Morphological abnormalities in elasmobranchs.

    PubMed

    Moore, A B M

    2015-08-01

    A total of 10 abnormal free-swimming (i.e., post-birth) elasmobranchs are reported from The (Persian-Arabian) Gulf, encompassing five species and including deformed heads, snouts, caudal fins and claspers. The complete absence of pelvic fins in a milk shark Rhizoprionodon acutus may be the first record in any elasmobranch. Possible causes, including the extreme environmental conditions and the high level of anthropogenic pollution particular to The Gulf, are briefly discussed. PMID:25903257

  8. Chromosome abnormalities in glioma

    SciTech Connect

    Li, Y.S.; Ramsay, D.A.; Fan, Y.S.

    1994-09-01

    Cytogenetic studies were performed in 25 patients with gliomas. An interesting finding was a seemingly identical abnormality, an extra band on the tip of the short arm of chromosome 1, add(1)(p36), in two cases. The abnormality was present in all cells from a patient with a glioblastoma and in 27% of the tumor cells from a patient with a recurrent irradiated anaplastic astrocytoma; in the latter case, 7 unrelated abnormal clones were identified except 4 of those clones shared a common change, -Y. Three similar cases have been described previously. In a patient with pleomorphic astrocytoma, the band 1q42 in both homologues of chromosome 1 was involved in two different rearrangements. A review of the literature revealed that deletion of the long arm of chromosome 1 including 1q42 often occurs in glioma. This may indicate a possible tumor suppressor gene in this region. Cytogenetic follow-up studies were carried out in two patients and emergence of unrelated clones were noted in both. A total of 124 clonal breakpoints were identified in the 25 patients. The breakpoints which occurred three times or more were: 1p36, 1p22, 1q21, 1q25, 3q21, 7q32, 8q22, 9q22, 16q22, and 22q13.

  9. [Congenital foot abnormalities].

    PubMed

    Delpont, M; Lafosse, T; Bachy, M; Mary, P; Alves, A; Vialle, R

    2015-03-01

    The foot may be the site of birth defects. These abnormalities are sometimes suspected prenatally. Final diagnosis depends on clinical examination at birth. These deformations can be simple malpositions: metatarsus adductus, talipes calcaneovalgus and pes supinatus. The prognosis is excellent spontaneously or with a simple orthopedic treatment. Surgery remains outstanding. The use of a pediatric orthopedist will be considered if malposition does not relax after several weeks. Malformations (clubfoot, vertical talus and skew foot) require specialized care early. Clubfoot is characterized by an equine and varus hindfoot, an adducted and supine forefoot, not reducible. Vertical talus combines equine hindfoot and dorsiflexion of the forefoot, which is performed in the midfoot instead of the ankle. Skew foot is suspected when a metatarsus adductus is resistant to conservative treatment. Early treatment is primarily orthopedic at birth. Surgical treatment begins to be considered after walking age. Keep in mind that an abnormality of the foot may be associated with other conditions: malposition with congenital hip, malformations with syndromes, neurological and genetic abnormalities. PMID:25524290

  10. Abnormal grain growth in AISI 304L stainless steel

    SciTech Connect

    Shirdel, M.; Mirzadeh, H.; Parsa, M.H.

    2014-11-15

    The microstructural evolution during abnormal grain growth (secondary recrystallization) in 304L stainless steel was studied in a wide range of annealing temperatures and times. At relatively low temperatures, the grain growth mode was identified as normal. However, at homologous temperatures between 0.65 (850 °C) and 0.7 (900 °C), the observed transition in grain growth mode from normal to abnormal, which was also evident from the bimodality in grain size distribution histograms, was detected to be caused by the dissolution/coarsening of carbides. The microstructural features such as dispersed carbides were characterized by optical metallography, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, and microhardness. Continued annealing to a long time led to the completion of secondary recrystallization and the subsequent reappearance of normal growth mode. Another instance of abnormal grain growth was observed at homologous temperatures higher than 0.8, which may be attributed to the grain boundary faceting/defaceting phenomenon. It was also found that when the size of abnormal grains reached a critical value, their size will not change too much and the grain growth behavior becomes practically stagnant. - Highlights: • Abnormal grain growth (secondary recrystallization) in AISI 304L stainless steel • Exaggerated grain growth due to dissolution/coarsening of carbides • The enrichment of carbide particles by titanium • Abnormal grain growth due to grain boundary faceting at very high temperatures • The stagnancy of abnormal grain growth by annealing beyond a critical time.

  11. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  12. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  13. Microfabricated glow discharge plasma (MFGDP) for ambient desorption/ionization mass spectrometry.

    PubMed

    Ding, Xuelu; Zhan, Xuefang; Yuan, Xin; Zhao, Zhongjun; Duan, Yixiang

    2013-10-01

    A novel ambient ionization technique for mass spectrometry, microfabricated glow discharge plasma (MFGDP), is reported. This device is made of a millimeter-sized ceramic cavity with two platinum electrodes positioned face-to-face. He or Ar plasma can be generated by a direct current voltage of several hundreds of volts requiring a total power below 4 W. The thermal plume temperature of the He plasma was measured and found to be between 25 and 80 °C at a normal discharge current. Gaseous, liquid, creamy, and solid samples with molecular weights up to 1.5 kDa could be examined in both positive and negative mode, giving limits of detection (LOD) at or below the fg/mm(2) level. The relative standard deviation (RSD) of manual sampling ranged from 10% to ~20%, while correlation coefficients of the working curve (R(2)) are all above 0.98 with the addition of internal standards. The ionization mechanisms are examed via both optical and mass spectrometry. Due to the low temperature characteristics of the microplasma, nonthermal momentum desorption is considered to dominate the desorption process. PMID:24000803

  14. Glow discharge deposition at high rates using disilane

    SciTech Connect

    Rajeswaran, G.; Corderman, R.R.; Kampas, F.J.; Vanier, P.E.

    1985-01-01

    The research program reported makes use of the fact that amorphous silicon films can be grown faster from disilane in a glow discharge than from the traditional silane. The goal is to find a method to grow films at a high rate and with sufficiently high quality to be used in an efficient solar cell. It must also be demonstrated that the appropriate device structure can be successfully fabricated under conditions which give high deposition rates. High quality intrinsic films have been deposited at 20 A/s. Efficiency of 5.6% on steel substrates and 5.3% on glass substrates were achieved using disilane i-layers deposited at 15 A/s in a basic structure, without wide-gap doped layers or light trapping. Wide gap p-layers were deposited using disilane. Results were compared with those obtained at Vactronic using high power discharges of silane-hydrogen mixtures. (LEW)

  15. Probiotic Bacteria Induce a ‘Glow of Health’

    PubMed Central

    Smillie, Christopher; Varian, Bernard J.; Ibrahim, Yassin M.; Lakritz, Jessica R.; Alm, Eric J.; Erdman, Susan E.

    2013-01-01

    Radiant skin and hair are universally recognized as indications of good health. However, this ‘glow of health’ display remains poorly understood. We found that feeding of probiotic bacteria to aged mice induced integumentary changes mimicking peak health and reproductive fitness characteristic of much younger animals. Eating probiotic yogurt triggered epithelial follicular anagen-phase shift with sebocytogenesis resulting in thick lustrous fur due to a bacteria-triggered interleukin-10-dependent mechanism. Aged male animals eating probiotics exhibited increased subcuticular folliculogenesis, when compared with matched controls, yielding luxuriant fur only in probiotic-fed subjects. Female animals displayed probiotic-induced hyperacidity coinciding with shinier hair, a feature that also aligns with fertility in human females. Together these data provide insights into mammalian evolution and novel strategies for integumentary health. PMID:23342023

  16. Flush-mounted probe diagnostics for argon glow discharge plasma

    SciTech Connect

    Xu, Liang Cao, Jinxiang; Liu, Yu; Wang, Jian; Du, Yinchang; Zheng, Zhe; Zhang, Xiao; Wang, Pi; Zhang, Jin; Li, Xiao; Qin, Yongqiang; Zhao, Liang

    2014-09-15

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges. These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.

  17. Measurement of temperature and emissivity of specularly reflecting glowing bodies

    NASA Technical Reports Server (NTRS)

    Hansen, G. P.; Hauge, R. H.; Margrave, J. L.; Krishnan, S.

    1988-01-01

    A new method of measuring the thermodynamic temperature of an object as well as the surface emissivity based on laser reflectivity has been developed. By using rotator analyzer ellipsometry, the light reflected from the sample at a specific angle of incidence can be analyzed for its ellipticity. The normal incidence reflectivity and emissivity are then extracted using standard relations. The thermodynamic temperature of the body is obtained simultaneously by measuring the intensity of emitted light at the same angle of incidence. Room temperature measurements are carried out on selected metals to test the system. Elevated temperature measurements on platinum foils show that this technique is reliable and accurate for monitoring and measuring the temperature and emissivity of specularly reflecting, glowing bodies.

  18. Xe isotopic fractionation in a cathodeless glow discharge

    NASA Astrophysics Data System (ADS)

    Bernatowicz, T. J.; Fahey, A. J.

    1986-03-01

    Results are reported on the isotopic composition of Xe processed in cathodeless glow discharges in rarefied air at pressures of 20-40 microns Hg, in the presence of activated charcoal and in empty pyrex containers. Residual gas phase Xe and trapped Xe were found to be fractionated, with the trapped Xe fractionated up to 1 percent per amu. A model is presented for the fractionating process in which Xe ions are simultaneously implanted and sputtered from substrate material, with a mass dependence favoring retention of the heavy isotopes in the substrate. Results of the investigation show that plasma synthesis of carbonaceous material is unnecessary for producing Xe fractionations, and that the fractionations observed in previous synthesis experiments are probably due to implantation of ions into the synthesized material.

  19. Similarities and differences between gliding glow and gliding arc discharges

    NASA Astrophysics Data System (ADS)

    Kolev, St.; Bogaerts, A.

    2015-12-01

    In this work we have analyzed the properties of a gliding dc discharge in argon at atmospheric pressure. Despite the usual designation of these discharges as ‘gliding arc discharges’, it was found previously that they operate in two different regimes—glow and arc. Here we analyze the differences in both regimes by means of two dimensional fluid modeling. In order to address different aspects of the discharge operation, we use two models—Cartesian and axisymmetric in a cylindrical coordinate system. The obtained results show that the two types of discharges produce a similar plasma column for a similar discharge current. However, the different mechanisms of plasma channel attachment to the cathode could produce certain differences in the plasma parameters (i.e. arc elongation), and this can affect gas treatments applications.

  20. High-pressure dc glow discharges in hollow diamond cathodes

    NASA Astrophysics Data System (ADS)

    Truscott, B. S.; Turner, C.; May, P. W.

    2016-04-01

    We report the generation and characterization of dc helium microdischarges at several times atmospheric pressure in monolithic diamond hollow-cathode devices having cavity diameters on the order of 100 μm. I-V characteristics indicated operation in the glow discharge regime even at nearly 10 atm, while spectroscopic measurements of the N2 C3Πu  →  B3Πg emission returned rotational temperatures always around 420 K, with a pressure-dependent vibrational population distribution. The variation of breakdown voltage with pressure closely followed Paschen’s law, but with offsets in both axes that we tentatively ascribe to strong diffusive loss and a partial thermalization of electron energies under the high pressures considered here.

  1. Glow discharge cleaning of carbon fiber composite and stainless steel

    NASA Astrophysics Data System (ADS)

    Airapetov, A.; Begrambekov, L.; Brémond, S.; Douai, D.; Kuzmin, A.; Sadovsky, Ya.; Shigin, P.; Vergasov, S.

    2011-08-01

    The paper experimentally investigates and analyses the features and mechanisms of both of oxygen removal by deuterium glow discharge from CFC, pyrolytic graphite and stainless steel subjected to irradiation in oxygen contaminated plasma. It is shown that oxygen implanted in pyrolytic graphite (PG) perpendicular to basal plates is removed after sputtering the layer slightly thicker than oxygen stopping zone (≈2 nm). Fast deuterium ions penetrating into CFC during GDC transfer the trapped oxygen atoms into the bulk. Thus, much thicker surface layer has to be removed (500-1000 nm) for oxygen release. Irradiation of stainless steel in plasma leads to formation of a barrier layer with thickness (2-4 nm) equal, or slightly higher than stopping range of oxygen ions. The layer accumulates the main fraction of implanted oxygen and prevents its penetration into the bulk. After barrier layer sputtering oxygen spreads into the bulk. Parameters and conditions of optimum GDC are discussed.

  2. Evolution of a vortex in glow discharge plasma

    SciTech Connect

    Soukhomlinov, V.S.; Sheverev, V.A.; Oetuegen, M.V.

    2005-05-01

    The evolution of a vortex in glow discharge plasma is studied analytically. Specifically, the mechanism of local energy deposition into the flow by the plasma is considered and its effect on the structure of an inviscid vortex is analyzed. The vortex is modeled by a set of Euler's equations while the energy transferred by the plasma into the gas is represented by Rayleigh mechanism. In this mechanism, the amount of heat addition is a function of local gas density. The analysis indicates that the plasma can have a considerable effect on the structure of a vortex. The inviscid calculations show that in a uniform discharge, a 1 cm vortex dies out in a fraction of a second.

  3. Fluorination of polymethylmethaacrylate with tetrafluoroethane using DC glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Guruvenket, S.; Iyer, Ganjigunte R. S.; Shestakova, Larisa; Morgen, Per; Larsen, N. B.; Mohan Rao, G.

    2008-07-01

    Fluorination of polymer surfaces has technological applications in various fields such as microelectronics, biomaterials, textile, packing, etc. In this study PMMA surfaces were fluorinated using DC glow discharge plasma. Tetrafluoroethane was used as the fluorinating agent. On the fluorinated PMMA surface, static water contact angle, surface energy, optical transmittance (UV-vis), XPS and AFM analyses were carried out. After the fluorination PMMA surface becomes hydrophobic with water contact angle of 107° without losing optical transparency. Surface energy of fluorine plasma-treated PMMA decreased from 35 mJ/cm 2 to 21.2 mJ/cm 2. RMS roughness of the fluorinated surface was 4.01 nm and XPS studies revealed the formation of C-CF x and CF 3 groups on the PMMA surface.

  4. Abnormal human sex chromosome constitutions

    SciTech Connect

    1993-12-31

    Chapter 22, discusses abnormal human sex chromosome constitution. Aneuploidy of X chromosomes with a female phenotype, sex chromosome aneuploidy with a male phenotype, and various abnormalities in X chromosome behavior are described. 31 refs., 2 figs.

  5. Exercises to Improve Gait Abnormalities

    MedlinePlus

    ... Home About iChip Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner ...

  6. Ion bombardment glow-discharge furnaces for atomic emission spectroscopy

    SciTech Connect

    Tanguay, S.L.

    1990-01-01

    Two glow discharge plasma devices for the atomic emission analysis of aqueous samples were investigated. The devices use thermal vaporization of samples from a graphite cathode coupled with glow-discharge excitation. Furnace heating of the cathode is accomplished by the positive ion bombardment of the cathode during plasma operation. The dc plasma operates in Ar at 0.5-5.0 torr, with currents up to 250 mA. A cw, axial magnetic field of up to 1.25 kG is applied to the cylindrical-post cathode system to reduce electron losses, thereby increasing plasma excitation and ionization efficiency. At higher currents, the cathodes heat to temperatures as high as 2,500{degree}C in the case of the cylindrical-post cathode. Hollow-cathode heating temperatures are lower under comparable conditions, due to the larger cathode surface area, greater cathode mass, and lower power dissipation. The peak furnace temperature using this configuration is approximately 2100{degree}C. The role of the emission of thermionic electrons from the hot cathodes in limiting the cathode heating and in regulating the cathode temperature are considered. Sample residues of up to 50 ng of the analyte are vaporized from the cylindrical-post cathode within a few seconds of the initiation of the discharge, resulting in a transient emission intensity profile. With the hollow-cathode furnace, vaporization may take several seconds. Although a lower rate of cathode heating and a lower sample vapor residence time results in limits of detection which are one to two orders of magnitude lower than those achieved using the cylindrical-post cathode system. For the hollow cathode, limits of detection are on the order of 10 pg to 1 ng.

  7. Physics and chemistry in glow dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Massines, Françoise

    2001-10-01

    Atmospheric pressure glow discharge (APGD) are of great interest for application in gas chemistry, sterilization, surface activation or thin film deposition. But the development of a new process based on this discharge needs a clear understanding of the discharge physics and chemistry. The aim of this work is to contribute to that goal. One difficulty is the large variety of discharges called APGD. Then the first point of this talk will consist on a quick description of the different APGD families. This overview will be limited to dielectric barrier glow discharges. Then, we will focussed on those due to a Townsend breakdown. The analysis of their working domain in helium and in nitrogen shows that a lot of seed electrons are necessary to turn on the discharge through a Townsend breakdown. The main mechanism leading to these seed electrons depends (i) on the life time of the gas metastables compared to the delay between two consecutive discharges (ii) on the maximum ionisation level which can be reached without transition to FD. In helium, the origin of the seed electrons is mainly the electrons created by direct ionisation and Penning ionisation during a discharge or at the end of it, trapped in the positive column and still present in the gas when the following discharge is turned on. In nitrogen, the seed electrons are created by Penning ionisation just before the breakdown. Then in helium, the time between two discharges has to be short enough and a positive column is necessary as well as the presence of helium metastables. In N2, metastable density just before the breakdown is a dominant parameter. Moreover, the density of N2 molecules and then the gas temperature, is also important in order to maintain a large contribution of Penning ionisation compared to direct electronic ionisation. In all the gases, the metastables control the discharge development and then play an important role in the gas chemistry.

  8. Measuring Anthropogenic Sky Glow Using a Natural Sky Brightness Model

    NASA Astrophysics Data System (ADS)

    Duriscoe, Dan M.

    2013-11-01

    Anthropogenic sky glow (a result of light pollution) combines with the natural background brightness of the night sky when viewed by an observer on the earth's surface. In order to measure the anthropogenic component accurately, the natural component must be identified and subtracted. A model of the moonless natural sky brightness in the V-band was constructed from existing data on the Zodiacal Light, an airglow model based on the van Rhijn function, and a model of integrated starlight (including diffuse galactic light) constructed from images made with the same equipment used for sky brightness observations. The model also incorporates effective extinction by the atmosphere and is improved at high zenith angles (>80°) by the addition of atmospheric diffuse light. The model may be projected onto local horizon coordinates for a given observation at a resolution of 0.05° over the hemisphere of the sky, allowing it to be accurately registered with data images obtained from any site. Zodiacal Light and integrated starlight models compare favorably with observations from remote dark sky sites, matching within ± 8 nL over 95% of the sky. The natural airglow may be only approximately modeled, errors of up to ± 25 nL are seen when the airglow is rapidly changing or has considerable character (banding); ± 8 nL precision may be expected under favorable conditions. When subtracted from all-sky brightness data images, the model significantly improves estimates of sky glow from anthropogenic sources, especially at sites that experience slight to moderate light pollution.

  9. Efficiency of surface cleaning by a glow discharge for plasma spraying coating

    NASA Astrophysics Data System (ADS)

    Kadyrmetov, A. M.; Kashapov, N. F.; Sharifullin, S. N.; Saifutdinov, A. I.; Fadeev, S. A.

    2016-06-01

    The article presents the results of experimental studies of the quality of cleaning steel surfaces by a glow discharge for plasma spraying. Shows the results of measurements of the angle of surface wetting and bond strength of the plasma coating to the surface treated. The dependence of the influence of the glow discharge power, chamber pressure, distance between the electrodes and the processing time of the surface on cleaning efficiency. Optimal fields of factors is found. It is shown increase joint strength coating and base by 30-80% as a result of cleaning the substrate surface by a glow discharge plasma spraying.

  10. Note: Rapid reduction of graphene oxide paper by glow discharge plasma

    SciTech Connect

    Bo, Zheng; Qian, Jiajing; Duan, Liangping; Qiu, Kunzan Yan, Jianhua; Cen, Kefa; Han, Zhao Jun; Ostrikov, Kostya

    2015-05-15

    This note reports on a novel method for the rapid reduction of graphene oxide (GO) paper using a glow discharge plasma reactor. Glow discharge is produced and sustained between two parallel-plate graphite electrodes at a pressure of 240 mTorr. By exposing GO paper at the junction of negative-glow and Faraday-dark area for 4 min, the oxygen-containing groups can be effectively removed (C/O ratio increases from 2.6 to 7.9), while the material integrality and flexibility are kept well. Electrochemical measurements demonstrate that the as-obtained reduced GO paper can be potentially used for supercapacitor application.

  11. Spirometric abnormalities among welders

    SciTech Connect

    Rastogi, S.K.; Gupta, B.N.; Husain, T.; Mathur, N.; Srivastava, S. )

    1991-10-01

    A group of manual welders age group 13-60 years having a mean exposure period of 12.4 {plus minus} 1.12 years were subjected to spirometry to evaluate the prevalence of spirometric abnormalities. The welders showed a significantly higher prevalence of respiratory impairment than that observed among the unexposed controls as a result of exposure to welding gases which comprised fine particles of lead, zinc, chromium, and manganese. This occurred despite the lower concentration of the pollutants at the work place. In the expose group, the smoking welders showed a prevalence of respiratory impairment significantly higher than that observed in the nonsmoking welders. The results of the pulmonary function tests showed a predominantly restrictive type of pulmonary impairment followed by a mixed ventilatory defect among the welders. The effect of age on pulmonary impairment was not discernible. Welders exposed for over 10 years showed a prevalence of respiratory abnormalities significantly higher than those exposed for less than 10 years. Smoking also had a contributory role.

  12. Influence of longitudinal argon flow on DC glow discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zhu, Sha; Jiang, Weiman; Tang, Jie; Xu, Yonggang; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2016-05-01

    A one-dimensional self-consistent fluid model was employed to investigate the influence of longitudinal argon flow on the DC glow discharge at atmospheric pressure. It is found that the charges exhibit distinct dynamic behaviors at different argon flow velocities, accompanied by a considerable change in the discharge structure. The positive argon flow allows for the reduction of charge densities in the positive column and negative glow regions, and even leads to the disappearance of negative glow. The negative argon flow gives rise to the enhancement of charge densities in the positive column and negative glow regions. These observations are attributed to the fact that the gas flow convection influences the transport of charges through different manners by comparing the argon flow velocity with the ion drift velocity. The findings are important for improving the chemical activity and work efficiency of the plasma source by controlling the gas flow in practical applications.

  13. Synthesis of Single-Walled Carbon Nanotubes in a Glow Discharge Fine Particle Plasma

    SciTech Connect

    Imazato, N.; Imano, M.; Hayashi, Y.

    2008-09-07

    Carbon fine particles were synthesized being negatively charged and confined in a glow discharge plasma. The deposited fine particles were analyzed by Raman spectroscopy and transmission electron microscopy (TEM) and were confirmed to include single-walled carbon nanotubes.

  14. Dynamics of multiple double layers in high pressure glow discharge in a simple torus

    SciTech Connect

    Kumar Paul, Manash; Sharma, P. K.; Thakur, A.; Kulkarni, S. V.; Bora, D.

    2014-06-15

    Parametric characterization of multiple double layers is done during high pressure glow discharge in a toroidal vessel of small aspect ratio. Although glow discharge (without magnetic field) is known to be independent of device geometry, but the toroidal boundary conditions are conducive to plasma growth and eventually the plasma occupy the toroidal volume partially. At higher anode potential, the visibly glowing spots on the body of spatially extended anode transform into multiple intensely luminous spherical plasma blob structures attached to the tip of the positive electrode. Dynamics of multiple double layers are observed in argon glow discharge plasma in presence of toroidal magnetic field. The radial profiles of plasma parameters measured at various toroidal locations show signatures of double layer formation in our system. Parametric dependence of double layer dynamics in presence of toroidal magnetic field is presented here.

  15. Eye movement abnormalities.

    PubMed

    Moncayo, Jorge; Bogousslavsky, Julien

    2012-01-01

    Generation and control of eye movements requires the participation of the cortex, basal ganglia, cerebellum and brainstem. The signals of this complex neural network finally converge on the ocular motoneurons of the brainstem. Infarct or hemorrhage at any level of the oculomotor system (though more frequent in the brain-stem) may give rise to a broad spectrum of eye movement abnormalities (EMAs). Consequently, neurologists and particularly stroke neurologists are routinely confronted with EMAs, some of which may be overlooked in the acute stroke setting and others that, when recognized, may have a high localizing value. The most complex EMAs are due to midbrain stroke. Horizontal gaze disorders, some of them manifesting unusual patterns, may occur in pontine stroke. Distinct varieties of nystagmus occur in cerebellar and medullary stroke. This review summarizes the most representative EMAs from the supratentorial level to the brainstem. PMID:22377853

  16. Binary and ternary gas mixtures for use in glow discharge closing switches

    DOEpatents

    Hunter, Scott R.; Christophorou, Loucas G.

    1990-01-01

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue of the combined physio-electric properties of the mixture components.

  17. 41-D crew briefings on use of camera for tail glow experiment

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Steve Mende briefs one of the 41-D mission specialists on the operation of a camera setup for tail glow observations (33844); Astronaut Steve A. Hawley, left is briefed by Mende on the 41-D tail glow experiment. Hawley is a mission specialist for the 41-D flight. They are examing the Nikon camera and other gear to be used in the experiment. The briefing was held in the mockup and integration lab (33845).

  18. Study of the glow curve structure of the minerals separated from black pepper (Piper nigrum L.)

    NASA Astrophysics Data System (ADS)

    Guzmán, S.; Ruiz Gurrola, B.; Cruz-Zaragoza, E.; Tufiño, A.; Furetta, C.; Favalli, A.; Brown, F.

    2011-04-01

    The inorganic mineral fraction extracted from black pepper (Piper nigrum L.) has been analysed using a thermoluminescence (TL) method, investigating the glow curve structure, including an evaluation of the kinetic parameters. Different grain sizes, i.e. 10, 74, and 149 μm, were selected from commercial black pepper. The X-ray diffraction of the inorganic fraction shows that quartz is the main mineral present in it. The samples were exposed to 1-25 kGy doses by gamma rays of 60Co in order to analyse the thermally stimulated luminescence response as a function of the delivered dose. The glow curves show a complex structure for different grain sizes of the pepper mineral samples. The fading of the TL signal at room temperature was obtained after irradiation, and it was observed that the maximum peaks of the glow curves shift towards higher values of the temperature when the elapsed time from irradiation increases. It seems that the fading characteristic may be related to a continuous trap distribution responsible for the complex structure of the glow curve. Similar glow curves structure behaviour was found under ultraviolet irradiation of the samples. The activation energy and the frequency factor were determined from the glow curves of different grain sizes using a deconvolution programme because of the evident complexity of the structure.

  19. Use of Atmospheric Glow Discharge Plasma to Modify Spaceport Materials

    NASA Technical Reports Server (NTRS)

    Trigwell, S.; Shuerger, A. C.; Buhler, C. R.; Calle, C. J.

    2006-01-01

    Numerous materials used in spaceport operations require stringent evaluation before they can be utilized. It is critical for insulative polymeric materials that any surface charge be dissipated as rapidly as possible to avoid Electrostatic Discharges (ESD) that could present a danger. All materials must pass the Kennedy Space Center (KSC) standard electrostatic test [1]; however several materials that are considered favorable for Space Shuttle and International Space Station use have failed. Moreover, to minimize contamination of Mars spacecraft, spacecraft are assembled under cleanroom conditions and specific cleaning and sterilizing procedures are required for all materials. However, surface characteristics of these materials may allow microbes to survive by protecting them from sterilization and cleaning techniques. In this study, an Atmospheric Pressure Glow Discharge Plasma (APGD) [2] was used to modify the surface of several materials. This allowed the materials surface to be modified in terms of hydrophilicity, roughness, and conductivity without affecting the bulk properties. The objectives of this study were to alter the surface properties of polymers for improved electrostatic dissipation characteristics, and to determine whether the consequent surface modification on spaceport materials enhanced or diminished microbial survival.

  20. Radio frequency glow discharge-induced acidification of fluoropolymers.

    PubMed

    Krawczyk, Benjamin M; Baltrusaitis, Jonas; Yoder, Colin M; Vargo, Terrence G; Bowden, Ned B; Kader, Khalid N

    2011-12-01

    Fluoropolymer surfaces are unique in view of the fact that they are quite inert, have low surface energies, and possess high thermal stabilities. Attempts to modify fluoropolymer surfaces have met with difficulties in that it is difficult to control the modification to maintain bulk characteristics of the polymer. In a previously described method, the replacement of a small fraction of surface fluorine by acid groups through radio frequency glow discharge created a surface with unexpected reactivity allowing for attachment of proteins in their active states. The present study demonstrates that 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) reacts with the acid groups on fluoropolymer surfaces in a novel reaction not previously described. This reaction yields an excellent leaving group in which a primary amine on proteins can substitute to form a covalent bond between a protein and these surfaces. In an earlier study, we demonstrated that collagen IV could be deposited on a modified PTFE surface using EDC as a linker. Once collagen IV is attached to the surface, it assembles to form a functional stratum resembling collagen IV in native basement membrane. In this study, we show data suggesting that the fluorine to carbon ratio determines the acidity of the fluoropolymer surfaces and how well collagen IV attaches to and assembles on four different fluoropolymer surfaces. PMID:21887736

  1. Ultrasonic nebulization atmospheric pressure glow discharge - Preliminary study

    NASA Astrophysics Data System (ADS)

    Greda, Krzysztof; Jamroz, Piotr; Pohl, Pawel

    2016-07-01

    Atmospheric pressure glow microdischarge (μAPGD) generated between a small-sized He nozzle jet anode and a flowing liquid cathode was coupled with ultrasonic nebulization (USN) for analytical optical emission spectrometry (OES). The spatial distributions of the emitted spectra from the novel coupled USN-μAPGD system and the conventional μAPGD system were compared. In the μAPGD, the maxima of the intensity distribution profiles of the atomic emission lines Ca, Cd, In, K, Li, Mg, Mn, Na and Sr were observed in the near cathode region, whereas, in the case of the USN-μAPGD, they were shifted towards the anode. In the novel system, the intensities of the analytical lines of the studied metals were boosted from several to 35 times. As compared to the conventional μAPGD-OES with the introduction of analytes through the sputtering and/or the electrospray-like nebulization of the flowing liquid cathode solution, the proposed method with the USN introduction of analytes in the form of a dry aerosol provides improved detectability of the studied metals. The detection limits of metals achieved with the USN-μAPGD-OES method were in the range from 0.08 μg L- 1 for Li to 52 μg L- 1 for Mn.

  2. Spatial and spectral characterization of laboratory shuttle glow simulations

    NASA Astrophysics Data System (ADS)

    Swenson, G. R.; Leone, A.; Holtzclaw, K. W.; Caledonia, G. E.

    1991-05-01

    Laboratory experiments designed to uncover mechanistic information about the spectral and spatial characteristics of shuttle glow were conducted. Pulsed oxygen atoms traveling at orbital velocities were directed toward a substrate which was previously dosed with NO molecules. Heterogeneous recombination of the O and NO species resulted in NO*2 exiting the surface of the sample, and an associated emission was found to extend from the sample plane. In the experiments the materials investigated were Z306 Chemglaze‰ (a common baffle black paint), aluminum, and nickel. The sample temperatures were varied from 300 to 77 K, and the oxygen atom velocity was varied from 5 to 10 km s-1. The experimental results include the measure of (1) an effective NO*2 lifetime of 185 μs, (2) complete surface thermal accommodation of the formed NO*2, (3) a large NO*2 emission brightness which was inversely related to surface temperature, and (4) a spectral shape which indicates a red shifting to distance from the sample as well as (5) a slight spectral shift which appears to be material related. The preliminary experimental data from this experiment were presented by Caledonia et al. (1990).

  3. Killing Microorganisms with the One Atmosphere Uniform Glow Discharge Plasma

    NASA Astrophysics Data System (ADS)

    South, Suzanne; Kelly-Wintenberg, Kimberly; Montie, T. C.; Reece Roth, J.; Sherman, Daniel; Morrison, Jim; Chen, Zhiyu; Karakaya, Fuat

    2000-10-01

    There is an urgent need for the development of new technologies for sterilization and decontamination in the fields of healthcare and industrial and food processing that are safe, cost-effective, broad-spectrum, and not deleterious to samples. One technology that meets these criteria is the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). The OAUGDP operates in air and produces uniform plasma without filamentary discharges at room temperature, making this technology advantageous for sterilization of heat sensitive materials. The OAUGDP operates in a frequency band determined by the ion trapping mechanisms provided that, for air, the electric field is above 8.5kV/cm. The OAUGDP efficiently generates plasma reactive oxygen species (ROS) including atomic oxygen and oxygen free radicals without the requirement of a vacuum system. We have demonstrated the efficacy of the OAUGDP in killing microorganisms including bacteria, yeast, viruses, and spores in seconds to minutes on a variety of surfaces such as glass, films and fabrics, stainless steel, paper, and agar.

  4. Study on Glow Discharge Plasma Used in Polyester Surface Modification

    NASA Astrophysics Data System (ADS)

    Liu, Wenzheng; Lei, Xiao; Zhao, Qiang

    2016-01-01

    To achieve an atmospheric pressure glow discharge (APGD) in air and modify the surface of polyester thread using plasma, the electric field distribution and discharge characteristics under different conditions were studied. We found that the region with a strong electric field, which was formed in a tiny gap between two electrodes constituting a line-line contact electrode structure, provided the initial electron for the entire discharge process. Thus, the discharge voltage was reduced. The dielectric barrier of the line-line contact electrodes can inhibit the generation of secondary electrons. Thus, the transient current pulse discharge was reduced significantly, and an APGD in air was achieved. We designed double layer line-line contact electrodes, which can generate the APGD on the surface of a material under treatment directly. A noticeable change in the surface morphology of polyester fiber was visualized with the aid of a scanning electron microscope (SEM). Two electrode structures - the multi-row line-line and double-helix line-line contact electrodes - were designed. A large area of the APGD plasma with flat and curved surfaces can be formed in air using these contact electrodes. This can improve the efficiency of surface treatment and is significant for the application of the APGD plasma in industries.

  5. Glow-Discharge Production of Oxygen from the Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    Hughes, Caleb; Outlaw, Ronald

    One of the most crucial aspects of any mission to Mars is a continual supply of oxygen for astronaut respiration on site. The most popular approach to this problem favors in-situ oxygen production on Mars, utilizing the CO2 Martian atmosphere. However, this requires a large energy budget. NASA's current plans for Mars include sending a system called MOXIE, which produces oxygen through solid oxide electrolysis at high temperatures. An alternative approach utilizes the 6 Torr Martian atmosphere to provide a continual source of oxygen by breaking down the molecule into CO and O using a glow-discharge. After dissociation, a thin film Agmembrane uniquely permeates the atomic oxygen which then recombines to O2 on the downstream side, where it is subsequently stored. By taking advantage of recent advances in thin film technology to reduce the thickness of the film to many orders of magnitude less than used in the initial study, a corresponding increase in O2 flux can be realized. The Ag thin film requires the support of a porous ceramic substructure. With this system, it is shown that this method produces a viable energy efficient alternative to MOXIE.

  6. Ictal Cardiac Ryhthym Abnormalities

    PubMed Central

    Ali, Rushna

    2016-01-01

    Cardiac rhythm abnormalities in the context of epilepsy are a well-known phenomenon. However, they are under-recognized and often missed. The pathophysiology of these events is unclear. Bradycardia and asystole are preceded by seizure onset suggesting ictal propagation into the cortex impacting cardiac autonomic function, and the insula and amygdala being possible culprits. Sudden unexpected death in epilepsy (SUDEP) refers to the unanticipated death of a patient with epilepsy not related to status epilepticus, trauma, drowning, or suicide. Frequent refractory generalized tonic-clonic seizures, anti-epileptic polytherapy, and prolonged duration of epilepsy are some of the commonly identified risk factors for SUDEP. However, the most consistent risk factor out of these is an increased frequency of generalized tonic–clonic seizures (GTC). Prevention of SUDEP is extremely important in patients with chronic, generalized epilepsy. Since increased frequency of GTCS is the most consistently reported risk factor for SUDEP, effective seizure control is the most important preventive strategy. PMID:27347227

  7. Abnormal uterine bleeding.

    PubMed

    Whitaker, Lucy; Critchley, Hilary O D

    2016-07-01

    Abnormal uterine bleeding (AUB) is a common and debilitating condition with high direct and indirect costs. AUB frequently co-exists with fibroids, but the relationship between the two remains incompletely understood and in many women the identification of fibroids may be incidental to a menstrual bleeding complaint. A structured approach for establishing the cause using the Fédération International de Gynécologie et d'Obstétrique (FIGO) PALM-COEIN (Polyp, Adenomyosis, Leiomyoma, Malignancy (and hyperplasia), Coagulopathy, Ovulatory disorders, Endometrial, Iatrogenic and Not otherwise classified) classification system will facilitate accurate diagnosis and inform treatment options. Office hysteroscopy and increasing sophisticated imaging will assist provision of robust evidence for the underlying cause. Increased availability of medical options has expanded the choice for women and many will no longer need to recourse to potentially complicated surgery. Treatment must remain individualised and encompass the impact of pressure symptoms, desire for retention of fertility and contraceptive needs, as well as address the management of AUB in order to achieve improved quality of life. PMID:26803558

  8. Haem degradation in abnormal haemoglobins.

    PubMed Central

    Brown, S B; Docherty, J C

    1978-01-01

    The coupled oxidation of certain abnormal haemoglobins leads to different bile-pigment isomer distributions from that of normal haemoglobin. The isomer pattern may be correlated with the structure of the abnormal haemoglobin in the neighbourhood of the haem pocket. This is support for haem degradation by an intramolecular reaction. PMID:708385

  9. Electrocardiograph abnormalities revealed during laparoscopy

    PubMed Central

    Nijjer, Sukhjinder; Dubrey, Simon William

    2010-01-01

    This brief case presents a well patient in whom an electrocardiograph abnormality consistent with an accessory pathway was found during a routine procedure. We present the electrocardiographs, explain the underlying condition, and consider why the abnormality was revealed in this manner. PMID:22419949

  10. Abnormal pressure in hydrocarbon environments

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  11. The deconvolution of thermoluminescence glow-curves using general expressions derived from the one trap-one recombination (OTOR) level model.

    PubMed

    Sadek, A M; Eissa, H M; Basha, A M; Carinou, E; Askounis, P; Kitis, G

    2014-11-11

    The new developed thermoluminescence (TL) glow-peak expressions derived from the one trap-one recombination (OTOR) level model were used to analyze the TL glow-curves recorded with linear and exponential heating function profiles under various experimental conditions. The results showed that these expressions can, accurately, analyze the TL glow-curves even with the overlapped glow-peaks. Low values of R=An/Am were reported for glow-peaks in different TL materials. A glow-peak with the possibility of An>Am was also pointed out. PMID:25464201

  12. Glow plasma trigger for electron cyclotron resonance ion sources

    SciTech Connect

    Vodopianov, A. V.; Golubev, S. V.; Izotov, I. V.; Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Yushkov, G. Yu.

    2010-02-15

    Electron cyclotron resonance ion sources (ECRISs) are particularly useful for nuclear, atomic, and high energy physics, as unique high current generators of multicharged ion beams. Plasmas of gas discharges in an open magnetic trap heated by pulsed (100 {mu}s and longer) high power (100 kW and higher) high-frequency (greater than 37.5 GHz) microwaves of gyrotrons is promising in the field of research in the development of electron cyclotron resonance sources for high charge state ion beams. Reaching high ion charge states requires a decrease in gas pressure in the magnetic trap, but this method leads to increases in time, in which the microwave discharge develops. The gas breakdown and microwave discharge duration becomes greater than or equal to the microwave pulse duration when the pressure is decreased. This makes reaching the critical plasma density initiate an electron cyclotron resonance (ECR) discharge during pulse of microwave gyrotron radiation with gas pressure lower than a certain threshold. In order to reduce losses of microwave power, it is necessary to shorten the time of development of the ECR discharge. For fast triggering of ECR discharge under low pressure in an ECRIS, we initially propose to fill the magnetic trap with the plasmas of auxiliary pulsed discharges in crossed ExB fields. The glow plasma trigger of ECR based on a Penning or magnetron discharge has made it possible not only to fill the trap with plasma with density of 10{sup 12} cm{sup -3}, required for a rapid increase in plasma density and finally for ECR discharge ignition, but also to initially heat the plasma electrons to T{sub e}{approx_equal}20 eV.

  13. Glow plasma trigger for electron cyclotron resonance ion sources.

    PubMed

    Vodopianov, A V; Golubev, S V; Izotov, I V; Nikolaev, A G; Oks, E M; Savkin, K P; Yushkov, G Yu

    2010-02-01

    Electron cyclotron resonance ion sources (ECRISs) are particularly useful for nuclear, atomic, and high energy physics, as unique high current generators of multicharged ion beams. Plasmas of gas discharges in an open magnetic trap heated by pulsed (100 micros and longer) high power (100 kW and higher) high-frequency (greater than 37.5 GHz) microwaves of gyrotrons is promising in the field of research in the development of electron cyclotron resonance sources for high charge state ion beams. Reaching high ion charge states requires a decrease in gas pressure in the magnetic trap, but this method leads to increases in time, in which the microwave discharge develops. The gas breakdown and microwave discharge duration becomes greater than or equal to the microwave pulse duration when the pressure is decreased. This makes reaching the critical plasma density initiate an electron cyclotron resonance (ECR) discharge during pulse of microwave gyrotron radiation with gas pressure lower than a certain threshold. In order to reduce losses of microwave power, it is necessary to shorten the time of development of the ECR discharge. For fast triggering of ECR discharge under low pressure in an ECRIS, we initially propose to fill the magnetic trap with the plasmas of auxiliary pulsed discharges in crossed ExB fields. The glow plasma trigger of ECR based on a Penning or magnetron discharge has made it possible not only to fill the trap with plasma with density of 10(12) cm(-3), required for a rapid increase in plasma density and finally for ECR discharge ignition, but also to initially heat the plasma electrons to T(e) approximately = 20 eV. PMID:20192326

  14. SWIR Hemispherical Air-Glow Plotting System SHAPS

    NASA Astrophysics Data System (ADS)

    Gonglewski, John D.; Myers, Michael M.; Dayton, David C.; Fertig, Gregory; Allen, Jeffrey; Nolasco, Rudolph; Maia, Franscisco

    2010-10-01

    It is well known that luminance from photo-chemical reactions of hydroxyl ions in the upper atmosphere (~85 km altitude) produces a significant amount of night time radiation in the short wave infra-red (SWIR) band of wave length 0.9 to 1.7 μm. Numerous studies of these phenomena have demonstrated that the irradiance shows significant temporal and spatial variations in the night sky. Changes in weather patterns, seasons, sun angle, moonlight, etc have the propensity to alter the SWIR air glow irradiance pattern. By performing multiple SWIR measurements a mosaic representation of the celestial hemisphere was constructed and used to investigate these variations over time and space. The experimental setup consisted of two sensors, an InGaAs SWIR detector and a visible astronomical camera, co-located and bore sighted on an AZ-EL gimbal. This gimbal was programmed to view most of the sky using forty five discrete azimuth and elevation locations. The dwell time at each location was 30 seconds with a total cycle time of less than 30 minutes. The visible astronomical camera collected image data simultaneous with the SWIR camera in order to distinguish SWIR patterns from clouds. Data was reduced through batch processing producing polar representations of the sky irradiance as a function of azimuth, elevation, and time. These spatiotemporal variations in the irradiance, both short and long term, can be used to validate and calibrate physical models of atmospheric chemistry and turbulence. In this paper we describe our experimental setup and present some results of our measurements made over several months in a rural marine environment on the Island of Kauai Hawaii.

  15. SWIR air glow mapping of the night sky

    NASA Astrophysics Data System (ADS)

    Myers, Michael M.; Dayton, David C.; Gonglewski, John D.; Fertig, Gregory; Allen, Jeff; Nolasco, Rudolf; Burns, Dennis; Mons, Ishan

    2010-08-01

    It is well known that luminance from photo-chemical reactions of hydroxyl ions in the upper atmosphere (~85 km altitude) produces a significant amount of night time radiation in the short wave infra-red (SWIR) band of wave length 0.9 to 1.7 μm. Numerous studies of these phenomena have demonstrated that the irradiance shows significant temporal and spatial variations in the night sky. Changes in weather patterns, seasons, sun angle, moonlight, etc have the propensity to alter the SWIR air glow irradiance pattern. By performing multiple SWIR measurements a mosaic representation of the celestial hemisphere was constructed and used to investigate these variations over time and space. The experimental setup consisted of two sensors, an InGaAs SWIR detector and a visible astronomical camera, co-located and bore sighted on an AZ-EL gimbal. This gimbal was programmed to view most of the sky using forty five discrete azimuth and elevation locations. The dwell time at each location was 30 seconds with a total cycle time of less than 30 minutes. The visible astronomical camera collected image data simultaneous with the SWIR camera in order to distinguish SWIR patterns from clouds. Data was reduced through batch processing producing polar representations of the sky irradiance as a function of azimuth, elevation, and time. These spatiotemporal variations in the irradiance, both short and long term, can be used to validate and calibrate physical models of atmospheric chemistry and turbulence. In this paper we describe our experimental setup and present some results of our measurements made over several months in a rural marine environment on the Islands of Kauai and Maui Hawaii.

  16. Effects of Cloud on Goddard Lidar Observatory for Wind (GLOW) Performance and Analysis of Associated Errors

    NASA Astrophysics Data System (ADS)

    Bacha, Tulu

    The Goddard Lidar Observatory for Wind (GLOW), a mobile direct detection Doppler LIDAR based on molecular backscattering for measurement of wind in the troposphere and lower stratosphere region of atmosphere is operated and its errors characterized. It was operated at Howard University Beltsville Center for Climate Observation System (BCCOS) side by side with other operating instruments: the NASA/Langely Research Center Validation Lidar (VALIDAR), Leosphere WLS70, and other standard wind sensing instruments. The performance of Goddard Lidar Observatory for Wind (GLOW) is presented for various optical thicknesses of cloud conditions. It was also compared to VALIDAR under various conditions. These conditions include clear and cloudy sky regions. The performance degradation due to the presence of cirrus clouds is quantified by comparing the wind speed error to cloud thickness. The cloud thickness is quantified in terms of aerosol backscatter ratio (ASR) and cloud optical depth (COD). ASR and COD are determined from Howard University Raman Lidar (HURL) operating at the same station as GLOW. The wind speed error of GLOW was correlated with COD and aerosol backscatter ratio (ASR) which are determined from HURL data. The correlation related in a weak linear relationship. Finally, the wind speed measurements of GLOW were corrected using the quantitative relation from the correlation relations. Using ASR reduced the GLOW wind error from 19% to 8% in a thin cirrus cloud and from 58% to 28% in a relatively thick cloud. After correcting for cloud induced error, the remaining error is due to shot noise and atmospheric variability. Shot-noise error is the statistical random error of backscattered photons detected by photon multiplier tube (PMT) can only be minimized by averaging large number of data recorded. The atmospheric backscatter measured by GLOW along its line-of-sight direction is also used to analyze error due to atmospheric variability within the volume of measurement

  17. Columnar discharge mode between parallel dielectric barrier electrodes in atmospheric pressure helium

    SciTech Connect

    Hao, Yanpeng; Zheng, Bin; Liu, Yaoge

    2014-01-15

    Using a fast-gated intensified charge-coupled device, end- and side-view photographs were taken of columnar discharge between parallel dielectric barrier electrodes in atmospheric pressure helium. Based on three-dimensional images generated from end-view photographs, the number of discharge columns increased, whereas the diameter of each column decreased as the applied voltage was increased. Side-view photographs indicate that columnar discharges exhibited a mode transition ranging from Townsend to glow discharges generated by the same discharge physics as atmospheric pressure glow discharge.

  18. Non-Thermal Equilibrium Atmospheric Pressure Glow-Like Discharge Plasma Jet

    NASA Astrophysics Data System (ADS)

    Chang, Zhengshi; Yao, Congwei; Zhang, Guanjun

    2016-01-01

    Non-thermal equilibrium atmospheric pressure plasma jet (APPJ) is a cold plasma source that promises various innovative applications, and the uniform APPJ is more favored. Glow discharge is one of the most effective methods to obtain the uniform discharge. Compared with the glow dielectric barrier discharge (DBD) in atmospheric pressure, pure helium APPJ shows partial characteristics of both the glow discharge and the streamer. In this paper, considering the influence of the Penning effect, the electrical and optical properties of He APPJ and Ar/NH3 APPJ were researched. A word “Glow-like APPJ” is used to characterize the uniformity of APPJ, and it was obtained that the basic characteristics of the glow-like APPJ are driven by the kHz AC high voltage. The results can provide a support for generating uniform APPJ, and lay a foundation for its applications. supported by National Natural Science Foundation of China (Nos. 51307133, 51125029, 51221005) and the Fundamental Research Funds for the Central Universities of China (Nos. xjj2012132, xkjc2013004)

  19. Thermoluminescence systems with two or more glow peaks described by anomalous kinetic parameters

    SciTech Connect

    Levy, P.W.

    1983-01-01

    The usual first and second order TL kinetic expressions are based on a number of assumptions, including the usually unstated assumption that charges released from one type of trap, giving rise to one glow peak, are not retrapped on other types of traps, associated with other glow peaks. Equations have been developed describing TL systems in which charges released from one type of trap may be retrapped in other types of traps. Called interactive kinetic equations, they are quite simple but have been studied by numerical methods. In particular, glow curves computed from the interactive kinetic equations have been regarded as data and analyzed by fitting them to the usual first and second order kinetic expressions. All of the anomalous features described above are reproduced. For example, usually the computed glow peaks are well fitted by the first and second order expressions over their upper 60 to 80% but not in the wings. This explains why the usual analysis methods, especially those utilizing peak temperature, full width, etc. appear to describe such peaks. Often unrealistic kinetic parameters are often obtained. Furthermore, the computed glow curves often reproduce the observed dependence on dose.

  20. Conceptual Demonstration of Ambient Desorption-Optical Emission Spectroscopy Using a Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Source.

    PubMed

    Marcus, R Kenneth; Paing, Htoo W; Zhang, Lynn X

    2016-06-01

    The concept of ambient desorption-optical emission spectroscopy (AD-OES) is demonstrated using a liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma as the desorption/excitation source. The LS-APGD has previously been employed for elemental analysis of solution samples and particulates introduced via laser ablation in both the optical emission and mass spectrometries (OES, MS) modes. In addition, the device has been shown to be effective for the analysis of elemental and molecular species operating in an ambient desorption/ionization mass spectrometry (ADI-MS) mode. Proof-of-concept is presented here in the use of the LS-APGD to volatilize three very diverse sample forms (metallic thin films, dry solution residues, and bulk materials), with the liberated material excited within the microplasma and detected via OES, i.e., AD-OES. While the demonstration is principally qualitative at this point, it is believed that the basic approach may find application across a broad spectrum of analytical challenges requiring elemental analysis, including metals, soils, and volume-limited solutions, analogous to what has been seen in the development of the field of ADI-MS for molecular species determinations. PMID:27175512

  1. Chromosomal abnormalities in human sperm

    SciTech Connect

    Martin, R.H.

    1985-01-01

    The ability to analyze human sperm chromosome complements after penetration of zona pellucida-free hamster eggs provides the first opportunity to study the frequency and type of chromosomal abnormalities in human gametes. Two large-scale studies have provided information on normal men. We have studied 1,426 sperm complements from 45 normal men and found an abnormality rate of 8.9%. Brandriff et al. (5) found 8.1% abnormal complements in 909 sperm from 4 men. The distribution of numerical and structural abnormalities was markedly dissimilar in the 2 studies. The frequency of aneuploidy was 5% in our sample and only 1.6% in Brandriff's, perhaps reflecting individual variability among donors. The frequency of 24,YY sperm was low: 0/1,426 and 1/909. This suggests that the estimates of nondisjunction based on fluorescent Y body data (1% to 5%) are not accurate. We have also studied men at increased risk of sperm chromosomal abnormalities. The frequency of chromosomally unbalanced sperm in 6 men heterozygous for structural abnormalities varied dramatically: 77% for t11;22, 32% for t6;14, 19% for t5;18, 13% for t14;21, and 0% for inv 3 and 7. We have also studied 13 cancer patients before and after radiotherapy and demonstrated a significant dose-dependent increase of sperm chromosome abnormalities (numerical and structural) 36 months after radiation treatment.

  2. Haematological abnormalities in mitochondrial disorders

    PubMed Central

    Finsterer, Josef; Frank, Marlies

    2015-01-01

    INTRODUCTION This study aimed to assess the kind of haematological abnormalities that are present in patients with mitochondrial disorders (MIDs) and the frequency of their occurrence. METHODS The blood cell counts of a cohort of patients with syndromic and non-syndromic MIDs were retrospectively reviewed. MIDs were classified as ‘definite’, ‘probable’ or ‘possible’ according to clinical presentation, instrumental findings, immunohistological findings on muscle biopsy, biochemical abnormalities of the respiratory chain and/or the results of genetic studies. Patients who had medical conditions other than MID that account for the haematological abnormalities were excluded. RESULTS A total of 46 patients (‘definite’ = 5; ‘probable’ = 9; ‘possible’ = 32) had haematological abnormalities attributable to MIDs. The most frequent haematological abnormality in patients with MIDs was anaemia. 27 patients had anaemia as their sole haematological problem. Anaemia was associated with thrombopenia (n = 4), thrombocytosis (n = 2), leucopenia (n = 2), and eosinophilia (n = 1). Anaemia was hypochromic and normocytic in 27 patients, hypochromic and microcytic in six patients, hyperchromic and macrocytic in two patients, and normochromic and microcytic in one patient. Among the 46 patients with a mitochondrial haematological abnormality, 78.3% had anaemia, 13.0% had thrombopenia, 8.7% had leucopenia and 8.7% had eosinophilia, alone or in combination with other haematological abnormalities. CONCLUSION MID should be considered if a patient’s abnormal blood cell counts (particularly those associated with anaemia, thrombopenia, leucopenia or eosinophilia) cannot be explained by established causes. Abnormal blood cell counts may be the sole manifestation of MID or a collateral feature of a multisystem problem. PMID:26243978

  3. Gas Breakdown of Radio Frequency Glow Discharges in Helium at near Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Liu, Xinkun; Xu, Jinzhou; Cui, Tongfei; Guo, Ying; Zhang, Jing; Shi, Jianjun

    2013-07-01

    A one-dimensional self-consistent fluid model was developed for radio frequency glow discharge in helium at near atmospheric pressure, and was employed to study the gas breakdown characteristics in terms of breakdown voltage. The effective secondary electron emission coefficient and the effective electric field for ions were demonstrated to be important for determining the breakdown voltage of radio frequency glow discharge at near atmospheric pressure. The constant of A was estimated to be 64±4 cm-1Torr-1, which was proportional to the first Townsend coefficient and could be employed to evaluate the gas breakdown voltage. The reduction in the breakdown voltage of radio frequency glow discharge with excitation frequency was studied and attributed to the electron trapping effect in the discharge gap.

  4. Decomposition Characteristics of an Artificial Biogas in a Low-Pressure DC Glow Discharge

    NASA Astrophysics Data System (ADS)

    Itoh, Yasuhiro; Oshita, Takamasa; Satoh, Kohki; Itoh, Hidenori

    The decomposition characteristics of an artificial biogas, which is a mixture of CH4, CO2 and H2S, using a low pressure DC glow discharge have been investigated. It is found that H2, CO, C2H2, H2O, CS2 and COS are produced from the artificial biogas in the glow discharge. About 65 % of hydrogen atoms in CH4 are converted into H2 at the input energy of 800 J, at which CH4 is completely decomposed, and the decomposition characteristics of the artificial biogas has little dependency on H2S additive. Farther, H2S has a tendency to be decomposed earlier than the other components of the artificial biogas. When the glow discharge is generated in the artificial biogas with H2S, some of carbon atoms are found to deposit on electrodes and the wall of a discharge chamber.

  5. Physics of self-sustained oscillations in the positive glow corona

    SciTech Connect

    Cho, Sung Nae

    2012-07-15

    The physics of self-sustained oscillations in the phenomenon of positive glow corona is presented. The dynamics of charged-particle oscillation under static electric field has been briefly outlined; and, the resulting self-sustained current oscillations in the electrodes have been compared with the measurements from the positive glow corona experiments. The profile of self-sustained electrode current oscillations predicted by the presented theory qualitatively agrees with the experimental measurements. For instance, the experimentally observed saw-tooth shaped electrode current pulses are reproduced by the presented theory. Further, the theory correctly predicts the pulses of radiation accompanying the abrupt rises in the saw-tooth shaped current oscillations, as verified from the various glow corona experiments.

  6. Requirements of the glow discharge techniques to the fundamentals - an exemplary approach.

    PubMed

    Broekaert, J A

    1996-07-01

    The importance of gaining knowledge on the fundamental processes in glow discharges in the field of the signal generation, the sputtering phenomena taking place in the case of solids and the analyte breakdown in the excitation of gases is treated. For gaining more knowledge on the plasma processes diagnostics including temperature and electron number density as well as gas and analyte atom and ion densities are required. For the sputtering process, it is shown at the hand of measurements with gas-jet enhanced sputtering and magnetically enhanced sputtering that selective sputtering may occur and that the influence of the analyte loading of the glow discharge plasma needs further study. For the case of the introduction of gaseous samples, the analyte distribution as well as the break-down mechanisms and kinetics in the case of molecular species ask for further study as shown by experiments with gas-sampling glow discharges. PMID:15045277

  7. Computerized glow curve deconvolution of thermoluminescent emission from polyminerals of Jamaica Mexican flower

    NASA Astrophysics Data System (ADS)

    Favalli, A.; Furetta, C.; Zaragoza, E. Cruz; Reyes, A.

    The aim of this work is to study the main thermoluminescence (TL) characteristics of the inorganic polyminerals extracted from dehydrated Jamaica flower or roselle (Hibiscus sabdariffa L.) belonging to Malvaceae family of Mexican origin. TL emission properties of the polymineral fraction in powder were studied using the initial rise (IR) method. The complex structure and kinetic parameters of the glow curves have been analysed accurately using the computerized glow curve deconvolution (CGCD) assuming an exponential distribution of trapping levels. The extension of the IR method to the case of a continuous and exponential distribution of traps is reported, such as the derivation of the TL glow curve deconvolution functions for continuous trap distribution. CGCD is performed both in the case of frequency factor, s, temperature independent, and in the case with the s function of temperature.

  8. Signature of fast H atoms from cathode glow region of a dc discharge

    SciTech Connect

    Bharathi, P.; Suraj, K. S.; Prahlad, V.; Mukherjee, S.; Vasu, P.

    2009-05-15

    Asymmetric broadening of H{sub {alpha}} line from cathode glow region has been studied. In the cathode glow, mean energy and fractional population of very fast hydrogen atoms were found to be {approx}130 eV and {approx}55%, respectively. These values reduced to {approx}90 eV and {approx}20% when measured at negative glow region. The observed asymmetry was attributed to the presence of the fast hydrogen atoms near the cathode surface. The mean energy and number density of excited fast hydrogen atoms were estimated from the velocity distribution of H{sup +}, H{sub 2}{sup +}, and H{sub 3}{sup +} considering collisions inside the cathode sheath. The reduction in the mean energy and number density of the excited fast hydrogen atoms, at the other locations of the discharge, was explained by energy relaxation and thermalization of the neutrals with the background gas.

  9. Tropospheric Wind Measurements Obtained with the Goddard Lidar Observatory for Winds (GLOW): Validation and Performance

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The Goddard Lidar Observatory for Winds (GLOW) is a mobile Doppler lidar system which uses direct detection Doppler lidar techniques to measure wind profiles from the surface into the lower stratosphere. GLOW is intended to be used as a field deployable system for studying atmospheric dynamics and transport and can also serve as a testbed to evaluate candidate technologies developed for use in future spaceborne systems. In September of 2000 GLOW participated in a three week intercomparison experiment at the GroundWinds facility in North Glen, NE. More than 50 hours of line-of-sight wind profile data was obtained in a wide variety of conditions including both day and night operation. Typical clear air lidar wind profiles extended to altitudes of 20 km with a 1 Ian vertical resolution and I minute averaging. A description of the mobile system is presented along with the examples of lidar wind profiles obtained with the Goddard system during the New Hampshire experiment.

  10. Tropospheric Wind Measurements Obtained with the Goddard Lidar Observatory for Winds (GLOW): Validation and Performance

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huai-Lin; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The Goddard Lidar Observatory for Winds (GLOW) is a mobile Doppler lidar system which uses direct detection Doppler lidar techniques to measure wind profiles from the surface into the lower stratosphere. GLOW is intended to be used as a field deployable system for studying atmospheric dynamics and transport and can also serve as a testbed to evaluate candidate technologies developed for use in future spaceborne systems. In September of 2000 GLOW participated in a three week intercomparison experiment at the GroundWinds facility in North Glen, NH. More than 50 hours of line-of-sight wind profile data were obtained in a wide variety of conditions including both day and night operation. Typical clear air lidar wind profiles extended to altitudes of 20 kin with a 1 km vertical resolution and 1 minute averaging. A description of the mobile system is presented along with the examples of lidar wind profiles obtained with the Goddard system during the New Hampshire experiment.