Sample records for abnormal joint torque

  1. Cerebellar ataxia: abnormal control of interaction torques across multiple joints.

    PubMed

    Bastian, A J; Martin, T A; Keating, J G; Thach, W T

    1996-07-01

    1. We studied seven subjects with cerebellar lesions and seven control subjects as they made reaching movements in the sagittal plane to a target directly in front of them. Reaches were made under three different conditions: 1) "slow-accurate," 2) "fast-accurate," and 3) "fast as possible." All subjects were videotaped moving in a sagittal plane with markers on the index finger, wrist, elbow, and shoulder. Marker positions were digitized and then used to calculate joint angles. For each of the shoulder, elbow and wrist joints, inverse dynamics equations based on a three-segment limb model were used to estimate the net torque (sum of components) and each of the component torques. The component torques consisted of the torque due to gravity, the dynamic interaction torques induced passively by the movement of the adjacent joint, and the torque produced by the muscles and passive tissue elements (sometimes called "residual" torque). 2. A kinematic analysis of the movement trajectory and the change in joint angles showed that the reaches of subjects with cerebellar lesions were abnormal compared with reaches of control subjects. In both the slow-accurate and fast-accurate conditions the cerebellar subjects made abnormally curved wrist paths; the curvature was greater in the slow-accurate condition. During the slow-accurate condition, cerebellar subjects showed target undershoot and tended to move one joint at a time (decomposition). During the fast-accurate reaches, the cerebellar subjects showed target overshoot. Additionally, in the fast-accurate condition, cerebellar subjects moved the joints at abnormal rates relative to one another, but the movements were less decomposed. Only three subjects were tested in the fast as possible condition; this condition was analyzed only to determine maximal reaching speeds of subjects with cerebellar lesions. Cerebellar subjects moved more slowly than controls in all three conditions. 3. A kinetic analysis of torques generated at

  2. Motor impairments related to brain injury timing in early hemiparesis. Part II: abnormal upper extremity joint torque synergies.

    PubMed

    Sukal-Moulton, Theresa; Krosschell, Kristin J; Gaebler-Spira, Deborah J; Dewald, Julius P A

    2014-01-01

    Extensive neuromotor development occurs early in human life, and the timing of brain injury may affect the resulting motor impairment. In Part I of this series, it was demonstrated that the distribution of weakness in the upper extremity depended on the timing of brain injury in individuals with childhood-onset hemiparesis. The goal of this study was to characterize how timing of brain injury affects joint torque synergies, or losses of independent joint control. Twenty-four individuals with hemiparesis were divided into 3 groups based on the timing of their injury: before birth (PRE-natal, n = 8), around the time of birth (PERI-natal, n = 8), and after 6 months of age (POST-natal, n = 8). Individuals with hemiparesis and 8 typically developing peers participated in maximal isometric shoulder, elbow, wrist, and finger torque generation tasks while their efforts were recorded by a multiple degree-of-freedom load cell. Motor output in 4 joints of the upper extremity was concurrently measured during 8 primary torque generation tasks to quantify joint torque synergies. There were a number of significant coupling patterns identified in individuals with hemiparesis that differed from the typically developing group. POST-natal differences were most noted in the coupling of shoulder abductors with elbow, wrist, and finger flexors, while the PRE-natal group demonstrated significant distal joint coupling with elbow flexion. The torque synergies measured provide indirect evidence for the use of bulbospinal pathways in the POST-natal group, while those with earlier injury may use relatively preserved ipsilateral corticospinal motor pathways.

  3. Influence of Joint Angle on EMG-Torque Model During Constant-Posture, Torque-Varying Contractions.

    PubMed

    Liu, Pu; Liu, Lukai; Clancy, Edward A

    2015-11-01

    Relating the electromyogram (EMG) to joint torque is useful in various application areas, including prosthesis control, ergonomics and clinical biomechanics. Limited study has related EMG to torque across varied joint angles, particularly when subjects performed force-varying contractions or when optimized modeling methods were utilized. We related the biceps-triceps surface EMG of 22 subjects to elbow torque at six joint angles (spanning 60° to 135°) during constant-posture, torque-varying contractions. Three nonlinear EMG σ -torque models, advanced EMG amplitude (EMG σ ) estimation processors (i.e., whitened, multiple-channel) and the duration of data used to train models were investigated. When EMG-torque models were formed separately for each of the six distinct joint angles, a minimum "gold standard" error of 4.01±1.2% MVC(F90) resulted (i.e., error relative to maximum voluntary contraction at 90° flexion). This model structure, however, did not directly facilitate interpolation across angles. The best model which did so achieved a statistically equivalent error of 4.06±1.2% MVC(F90). Results demonstrated that advanced EMG σ processors lead to improved joint torque estimation as do longer model training durations.

  4. Towards Scalable Strain Gauge-Based Joint Torque Sensors

    PubMed Central

    D’Imperio, Mariapaola; Cannella, Ferdinando; Caldwell, Darwin G.; Cuschieri, Alfred

    2017-01-01

    During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors pose difficulties during integration within the restricted space available in small joints. The problem is compounded by the need for a scalable geometric design to measure joint torque. In this communication, we describe a novel design of a strain gauge-based mono-axial torque sensor referred to as square-cut torque sensor (SCTS), the significant features of which are high degree of linearity, symmetry, and high scalability in terms of both size and measuring range. Most importantly, SCTS provides easy access for gluing and wiring of the strain gauges on sensor surface despite the limited available space. We demonstrated that the SCTS was better in terms of symmetry (clockwise and counterclockwise rotation) and more linear. These capabilities have been shown through finite element modeling (ANSYS) confirmed by observed data obtained by load testing experiments. The high performance of SCTS was confirmed by studies involving changes in size, material and/or wings width and thickness. Finally, we demonstrated that the SCTS can be successfully implementation inside the hip joints of miniaturized hydraulically actuated quadruped robot-MiniHyQ. This communication is based on work presented at the 18th International Conference on Climbing and Walking Robots (CLAWAR). PMID:28820446

  5. Towards Scalable Strain Gauge-Based Joint Torque Sensors.

    PubMed

    Khan, Hamza; D'Imperio, Mariapaola; Cannella, Ferdinando; Caldwell, Darwin G; Cuschieri, Alfred; Semini, Claudio

    2017-08-18

    During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors pose difficulties during integration within the restricted space available in small joints. The problem is compounded by the need for a scalable geometric design to measure joint torque. In this communication, we describe a novel design of a strain gauge-based mono-axial torque sensor referred to as square-cut torque sensor (SCTS) , the significant features of which are high degree of linearity, symmetry, and high scalability in terms of both size and measuring range. Most importantly, SCTS provides easy access for gluing and wiring of the strain gauges on sensor surface despite the limited available space. We demonstrated that the SCTS was better in terms of symmetry (clockwise and counterclockwise rotation) and more linear. These capabilities have been shown through finite element modeling (ANSYS) confirmed by observed data obtained by load testing experiments. The high performance of SCTS was confirmed by studies involving changes in size, material and/or wings width and thickness. Finally, we demonstrated that the SCTS can be successfully implementation inside the hip joints of miniaturized hydraulically actuated quadruped robot- MiniHyQ . This communication is based on work presented at the 18th International Conference on Climbing and Walking Robots (CLAWAR).

  6. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer

    2010-01-01

    A space suit's mobility is critical to an astronaut's ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. Mobility can be broken down into two parts: range of motion (ROM) and torque. These two measurements describe how the suit moves and how much force it takes to move. Two methods were chosen to define mobility requirements for the Constellation Space Suit Element (CSSE). One method focuses on range of motion and the second method centers on joint torque. A joint torque test was conducted to determine a baseline for current advanced space suit joint torques. This test utilized the following space suits: Extravehicular Mobility Unit (EMU), Advanced Crew Escape Suit (ACES), I-Suit, D-Suit, Enhanced Mobility (EM)- ACES, and Mark III (MK-III). Data was collected data from 16 different joint movements of each suit. The results were then reviewed and CSSE joint torque requirement values were selected. The focus of this paper is to discuss trends observed during data analysis.

  7. Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Valish, Dana J.

    2011-01-01

    In 2009 and early 2010, a test was performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design meets the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future space suits. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis and a variance in torque values for some of the tested joints was apparent. Potential variables that could have affected the data were identified and re-testing was conducted in an attempt to eliminate these variables. The results of the retest will be used to determine if further testing and modification is necessary before the method can be validated.

  8. Adaptive torque estimation of robot joint with harmonic drive transmission

    NASA Astrophysics Data System (ADS)

    Shi, Zhiguo; Li, Yuankai; Liu, Guangjun

    2017-11-01

    Robot joint torque estimation using input and output position measurements is a promising technique, but the result may be affected by the load variation of the joint. In this paper, a torque estimation method with adaptive robustness and optimality adjustment according to load variation is proposed for robot joint with harmonic drive transmission. Based on a harmonic drive model and a redundant adaptive robust Kalman filter (RARKF), the proposed approach can adapt torque estimation filtering optimality and robustness to the load variation by self-tuning the filtering gain and self-switching the filtering mode between optimal and robust. The redundant factor of RARKF is designed as a function of the motor current for tolerating the modeling error and load-dependent filtering mode switching. The proposed joint torque estimation method has been experimentally studied in comparison with a commercial torque sensor and two representative filtering methods. The results have demonstrated the effectiveness of the proposed torque estimation technique.

  9. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer

    2010-01-01

    This joint mobility KC lecture included information from two papers, "A Method for and Issues Associated with the Determination of Space Suit Joint Requirements" and "Results and Analysis from Space Suit Joint Torque Testing," as presented for the International Conference on Environmental Systems in 2009 and 2010, respectively. The first paper discusses historical joint torque testing methodologies and approaches that were tested in 2008 and 2009. The second paper discusses the testing that was completed in 2009 and 2010.

  10. How joint torques affect hamstring injury risk in sprinting swing-stance transition.

    PubMed

    Sun, Yuliang; Wei, Shutao; Zhong, Yunjian; Fu, Weijie; Li, Li; Liu, Yu

    2015-02-01

    The potential mechanisms of hamstring strain injuries in athletes are not well understood. The study, therefore, was aimed at understanding hamstring mechanics by studying loading conditions during maximum-effort overground sprinting. Three-dimensional kinematics and ground reaction force data were collected from eight elite male sprinters sprinting at their maximum effort. Maximal isometric torques of the hip and knee were also collected. Data from the sprinting gait cycle were analyzed via an intersegmental dynamics approach, and the different joint torque components were calculated. During the initial stance phase, the ground reaction force passed anteriorly to the knee and hip, producing an extension torque at the knee and a flexion torque at the hip joint. Thus, the active muscle torque functioned to produce flexion torque at the knee and extension torque at the hip. The maximal muscle torque at the knee joint was 1.4 times the maximal isometric knee flexion torque. During the late swing phase, the muscle torque counterbalanced the motion-dependent torque and acted to flex the knee joint and extend the hip joint. The loading conditions on the hamstring muscles were similar to those of the initial stance phase. During both the initial stance and late swing phases, the large passive torques at both the knee and hip joints acted to lengthen the hamstring muscles. The active muscle torques generated mainly by the hamstrings functioned to counteract those passive effects. As a result, during sprinting or high-speed locomotion, the hamstring muscles may be more susceptible to high risk of strain injury during these two phases.

  11. Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control

    PubMed Central

    2016-01-01

    Determining the mechanical output of limb joints is critical for understanding the control of complex motor behaviours such as walking. In the case of insect walking, the neural infrastructure for single-joint control is well described. However, a detailed description of the motor output in form of time-varying joint torques is lacking. Here, we determine joint torques in the stick insect to identify leg joint function in the control of body height and propulsion. Torques were determined by measuring whole-body kinematics and ground reaction forces in freely walking animals. We demonstrate that despite strong differences in morphology and posture, stick insects show a functional division of joints similar to other insect model systems. Propulsion was generated by strong depression torques about the coxa–trochanter joint, not by retraction or flexion/extension torques. Torques about the respective thorax–coxa and femur–tibia joints were often directed opposite to fore–aft forces and joint movements. This suggests a posture-dependent mechanism that counteracts collapse of the leg under body load and directs the resultant force vector such that strong depression torques can control both body height and propulsion. Our findings parallel propulsive mechanisms described in other walking, jumping and flying insects, and challenge current control models of insect walking. PMID:26791608

  12. Integrated High-Speed Torque Control System for a Robotic Joint

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Valvo, Michael C. (Inventor); Askew, R. Scott (Inventor)

    2013-01-01

    A control system for achieving high-speed torque for a joint of a robot includes a printed circuit board assembly (PCBA) having a collocated joint processor and high-speed communication bus. The PCBA may also include a power inverter module (PIM) and local sensor conditioning electronics (SCE) for processing sensor data from one or more motor position sensors. Torque control of a motor of the joint is provided via the PCBA as a high-speed torque loop. Each joint processor may be embedded within or collocated with the robotic joint being controlled. Collocation of the joint processor, PIM, and high-speed bus may increase noise immunity of the control system, and the localized processing of sensor data from the joint motor at the joint level may minimize bus cabling to and from each control node. The joint processor may include a field programmable gate array (FPGA).

  13. How Joint Torques Affect Hamstring Injury Risk in Sprinting Swing–Stance Transition

    PubMed Central

    SUN, YULIANG; WEI, SHUTAO; ZHONG, YUNJIAN; FU, WEIJIE; LI, LI; LIU, YU

    2015-01-01

    ABSTRACT Purpose The potential mechanisms of hamstring strain injuries in athletes are not well understood. The study, therefore, was aimed at understanding hamstring mechanics by studying loading conditions during maximum-effort overground sprinting. Methods Three-dimensional kinematics and ground reaction force data were collected from eight elite male sprinters sprinting at their maximum effort. Maximal isometric torques of the hip and knee were also collected. Data from the sprinting gait cycle were analyzed via an intersegmental dynamics approach, and the different joint torque components were calculated. Results During the initial stance phase, the ground reaction force passed anteriorly to the knee and hip, producing an extension torque at the knee and a flexion torque at the hip joint. Thus, the active muscle torque functioned to produce flexion torque at the knee and extension torque at the hip. The maximal muscle torque at the knee joint was 1.4 times the maximal isometric knee flexion torque. During the late swing phase, the muscle torque counterbalanced the motion-dependent torque and acted to flex the knee joint and extend the hip joint. The loading conditions on the hamstring muscles were similar to those of the initial stance phase. Conclusions During both the initial stance and late swing phases, the large passive torques at both the knee and hip joints acted to lengthen the hamstring muscles. The active muscle torques generated mainly by the hamstrings functioned to counteract those passive effects. As a result, during sprinting or high-speed locomotion, the hamstring muscles may be more susceptible to high risk of strain injury during these two phases. PMID:24911288

  14. Interdependence of torque, joint angle, angular velocity and muscle action during human multi-joint leg extension.

    PubMed

    Hahn, Daniel; Herzog, Walter; Schwirtz, Ansgar

    2014-08-01

    Force and torque production of human muscles depends upon their lengths and contraction velocity. However, these factors are widely assumed to be independent of each other and the few studies that dealt with interactions of torque, angle and angular velocity are based on isolated single-joint movements. Thus, the purpose of this study was to determine force/torque-angle and force/torque-angular velocity properties for multi-joint leg extensions. Human leg extension was investigated (n = 18) on a motor-driven leg press dynamometer while measuring external reaction forces at the feet. Extensor torque in the knee joint was calculated using inverse dynamics. Isometric contractions were performed at eight joint angle configurations of the lower limb corresponding to increments of 10° at the knee from 30 to 100° of knee flexion. Concentric and eccentric contractions were performed over the same range of motion at mean angular velocities of the knee from 30 to 240° s(-1). For contractions of increasing velocity, optimum knee angle shifted from 52 ± 7 to 64 ± 4° knee flexion. Furthermore, the curvature of the concentric force/torque-angular velocity relations varied with joint angles and maximum angular velocities increased from 866 ± 79 to 1,238 ± 132° s(-1) for 90-50° knee flexion. Normalised eccentric forces/torques ranged from 0.85 ± 0.12 to 1.32 ± 0.16 of their isometric reference, only showing significant increases above isometric and an effect of angular velocity for joint angles greater than optimum knee angle. The findings reveal that force/torque production during multi-joint leg extension depends on the combined effects of angle and angular velocity. This finding should be accounted for in modelling and optimisation of human movement.

  15. Ankle and hip postural strategies defined by joint torques

    NASA Technical Reports Server (NTRS)

    Runge, C. F.; Shupert, C. L.; Horak, F. B.; Zajac, F. E.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    Previous studies have identified two discrete strategies for the control of posture in the sagittal plane based on EMG activations, body kinematics, and ground reaction forces. The ankle strategy was characterized by body sway resembling a single-segment-inverted pendulum and was elicited on flat support surfaces. In contrast, the hip strategy was characterized by body sway resembling a double-segment inverted pendulum divided at the hip and was elicited on short or compliant support surfaces. However, biomechanical optimization models have suggested that hip strategy should be observed in response to fast translations on a flat surface also, provided the feet are constrained to remain in contact with the floor and the knee is constrained to remain straight. The purpose of this study was to examine the experimental evidence for hip strategy in postural responses to backward translations of a flat support surface and to determine whether analyses of joint torques would provide evidence for two separate postural strategies. Normal subjects standing on a flat support surface were translated backward with a range of velocities from fast (55 cm/s) to slow (5 cm/s). EMG activations and joint kinematics showed pattern changes consistent with previous experimental descriptions of mixed hip and ankle strategy with increasing platform velocity. Joint torque analyses revealed the addition of a hip flexor torque to the ankle plantarflexor torque during fast translations. This finding indicates the addition of hip strategy to ankle strategy to produce a continuum of postural responses. Hip torque without accompanying ankle torque (pure hip strategy) was not observed. Although postural control strategies have previously been defined by how the body moves, we conclude that joint torques, which indicate how body movements are produced, are useful in defining postural control strategies. These results also illustrate how the biomechanics of the body can transform discrete control

  16. Fatigue affects peak joint torque angle in hamstrings but not in quadriceps.

    PubMed

    Coratella, Giuseppe; Bellin, Giuseppe; Beato, Marco; Schena, Federico

    2015-01-01

    Primary aim of this study was to investigate peak joint torque angle (i.e. the angle of peak torque) changes recorded during an isokinetic test before and after a fatiguing soccer match simulation. Secondarily we want to investigate functional Hecc:Qconc and conventional Hconc:Qconc ratio changes due to fatigue. Before and after a standardised soccer match simulation, twenty-two healthy male amateur soccer players performed maximal isokinetic strength tests both for hamstrings and for quadriceps muscles at 1.05 rad · s(‒1), 3.14 rad · s(‒1) and 5.24 rad · s(‒1). Peak joint torque angle, peak torque and both functional Hecc:Qconc and conventional Hconc:Qconc ratios were examined. Both dominant and non-dominant limbs were tested. Peak joint torque angle significantly increased only in knee flexors. Both eccentric and concentric contractions resulted in such increment, which occurred in both limbs. No changes were found in quadriceps peak joint torque angle. Participants experienced a significant decrease in torque both in hamstrings and in quadriceps. Functional Hecc:Qconc ratio was lower only in dominant limb at higher velocities, while Hconc:Qconc did not change. This study showed after specific fatiguing task changes in hamstrings only torque/angle relationship. Hamstrings injury risk could depend on altered torque when knee is close to extension, coupled with a greater peak torque decrement compared to quadriceps. These results suggest the use eccentric based training to prevent hamstrings shift towards shorter length.

  17. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer E.; Aitchison, Lindsay

    2009-01-01

    A space suit s mobility is critical to an astronaut s ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. The term mobility, with respect to space suits, is defined in terms of two key components: joint range of motion and joint torque. Individually these measures describe the path which in which a joint travels and the force required to move it through that path. Previous space suits mobility requirements were defined as the collective result of these two measures and verified by the completion of discrete functional tasks. While a valid way to impose mobility requirements, such a method does necessitate a solid understanding of the operational scenarios in which the final suit will be performing. Because the Constellation space suit system requirements are being finalized with a relatively immature concept of operations, the Space Suit Element team elected to define mobility in terms of its constituent parts to increase the likelihood that the future pressure garment will be mobile enough to enable a broad scope of undefined exploration activities. The range of motion requirements were defined by measuring the ranges of motion test subjects achieved while performing a series of joint maximizing tasks in a variety of flight and prototype space suits. The definition of joint torque requirements has proved more elusive. NASA evaluated several different approaches to the problem before deciding to generate requirements based on unmanned joint torque evaluations of six different space suit configurations being articulated through 16 separate joint movements. This paper discusses the experiment design, data analysis and results, and the process used to determine the final values for the Constellation pressure garment joint torque requirements.

  18. Space Suit Joint Torque Measurement Method Validation

    NASA Technical Reports Server (NTRS)

    Valish, Dana; Eversley, Karina

    2012-01-01

    In 2009 and early 2010, a test method was developed and performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits. This was done in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design met the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future development programs. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis; the results indicated a significant variance in values reported for a subset of the re-tested joints. Potential variables that could have affected the data were identified and a third round of testing was conducted in an attempt to eliminate and/or quantify the effects of these variables. The results of the third test effort will be used to determine whether or not the proposed joint torque methodology can be applied to future space suit development contracts.

  19. Lumbar joint torque estimation based on simplified motion measurement using multiple inertial sensors.

    PubMed

    Miyajima, Saori; Tanaka, Takayuki; Imamura, Yumeko; Kusaka, Takashi

    2015-01-01

    We estimate lumbar torque based on motion measurement using only three inertial sensors. First, human motion is measured by a 6-axis motion tracking device that combines a 3-axis accelerometer and a 3-axis gyroscope placed on the shank, thigh, and back. Next, the lumbar joint torque during the motion is estimated by kinematic musculoskeletal simulation. The conventional method for estimating joint torque uses full body motion data measured by an optical motion capture system. However, in this research, joint torque is estimated by using only three link angles of the body, thigh, and shank. The utility of our method was verified by experiments. We measured motion of bendung knee and waist simultaneously. As the result, we were able to estimate the lumbar joint torque from measured motion.

  20. Reliability of metatarsophalangeal and ankle joint torque measurements by an innovative device.

    PubMed

    Man, Hok-Sum; Leung, Aaron Kam-Lun; Cheung, Jason Tak-Man; Sterzing, Thorsten

    2016-07-01

    The toe flexor muscles maintain body balance during standing and provide push-off force during walking, running, and jumping. Additionally, they are important contributing structures to maintain normal foot function. Thus, weakness of these muscles may cause poor balance, inefficient locomotion and foot deformities. The quantification of metatarsophalangeal joint (MPJ) stiffness is valuable as it is considered as a confounding factor in toe flexor muscles function. MPJ and ankle joint stiffness measurement is still largely depended on manual skills as current devices do not have good control on alignment, angular joint speed and displacement during measurement. Therefore, this study introduces an innovative dynamometer and protocol procedures for MPJ and ankle Joint torque measurement with precise and reliable foot alignment, angular joint speed and displacement control. Within-day and between-day test-retest experiments on MPJ and ankle joint torque measurement were conducted on ten and nine healthy male subjects respectively. The mean peak torques of MPJ and ankle joint of between-day and within-day measurement were 1.50±0.38Nm/deg and 1.19±0.34Nm/deg. The corresponding torques of the ankle joint were 8.24±2.20Nm/deg and 7.90±3.18Nm/deg respectively. Intraclass-correlation coefficients (ICC) of averaged peak torque of both joints of between-day and within-day test-retest experiments were ranging from 0.91 to 0.96, indicating the innovative device is systematic and reliable for the measurements and can be used for multiple scientific and clinical purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb.

    PubMed

    Anderson, Dennis E; Madigan, Michael L; Nussbaum, Maury A

    2007-01-01

    Measurements of human strength can be important during analyses of physical activities. Such measurements have often taken the form of the maximum voluntary torque at a single joint angle and angular velocity. However, the available strength varies substantially with joint position and velocity. When examining dynamic activities, strength measurements should account for these variations. A model is presented of maximum voluntary joint torque as a function of joint angle and angular velocity. The model is based on well-known physiological relationships between muscle force and length and between muscle force and velocity and was tested by fitting it to maximum voluntary joint torque data from six different exertions in the lower limb. Isometric, concentric and eccentric maximum voluntary contractions were collected during hip extension, hip flexion, knee extension, knee flexion, ankle plantar flexion and dorsiflexion. Model parameters are reported for each of these exertion directions by gender and age group. This model provides an efficient method by which strength variations with joint angle and angular velocity may be incorporated into comparisons between joint torques calculated by inverse dynamics and the maximum available joint torques.

  2. Adjustable-Torque Truss-Joint Mechanism

    NASA Technical Reports Server (NTRS)

    Bush, Harold G.; Wallsom, Richard E.

    1993-01-01

    Threaded pin tightened or loosened; tedious trial-and-error procedure shortened. Mechanism joining strut and node in truss structure preloaded to desired stress to ensure tight, compressive fit preventing motion of strut during loading or vibration. Preload stress on stack of Belleville spring washers adjusted by tightening or loosening threaded Belleville-washer-alignment pin. Pin turned, by use of allen wrench, to adjust compression preload on Belleville washers and adjusts joint-operating torque.

  3. Joint forces and torques when walking in shallow water.

    PubMed

    Orselli, Maria Isabel Veras; Duarte, Marcos

    2011-04-07

    This study reports for the first time an estimation of the internal net joint forces and torques on adults' lower limbs and pelvis when walking in shallow water, taking into account the drag forces generated by the movement of their bodies in the water and the equivalent data when they walk on land. A force plate and a video camera were used to perform a two-dimensional gait analysis at the sagittal plane of 10 healthy young adults walking at comfortable speeds on land and in water at a chest-high level. We estimated the drag force on each body segment and the joint forces and torques at the ankle, knee, and hip of the right side of their bodies using inverse dynamics. The observed subjects' apparent weight in water was about 35% of their weight on land and they were about 2.7 times slower when walking in water. When the subjects walked in water compared with walking on land, there were no differences in the angular displacements but there was a significant reduction in the joint torques which was related to the water's depth. The greatest reduction was observed for the ankle and then the knee and no reduction was observed for the hip. All joint powers were significantly reduced in water. The compressive and shear joint forces were on average about three times lower during walking in water than on land. These quantitative results substantiate the use of water as a safe environment for practicing low-impact exercises, particularly walking. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Experimental Robot Position Sensor Fault Tolerance Using Accelerometers and Joint Torque Sensors

    NASA Technical Reports Server (NTRS)

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    Robot systems in critical applications, such as those in space and nuclear environments, must be able to operate during component failure to complete important tasks. One failure mode that has received little attention is the failure of joint position sensors. Current fault tolerant designs require the addition of directly redundant position sensors which can affect joint design. The proposed method uses joint torque sensors found in most existing advanced robot designs along with easily locatable, lightweight accelerometers to provide a joint position sensor fault recovery mode. This mode uses the torque sensors along with a virtual passive control law for stability and accelerometers for joint position information. Two methods for conversion from Cartesian acceleration to joint position based on robot kinematics, not integration, are presented. The fault tolerant control method was tested on several joints of a laboratory robot. The controllers performed well with noisy, biased data and a model with uncertain parameters.

  5. Modelling the maximum voluntary joint torque/angular velocity relationship in human movement.

    PubMed

    Yeadon, Maurice R; King, Mark A; Wilson, Cassie

    2006-01-01

    The force exerted by a muscle is a function of the activation level and the maximum (tetanic) muscle force. In "maximum" voluntary knee extensions muscle activation is lower for eccentric muscle velocities than for concentric velocities. The aim of this study was to model this "differential activation" in order to calculate the maximum voluntary knee extensor torque as a function of knee angular velocity. Torque data were collected on two subjects during maximal eccentric-concentric knee extensions using an isovelocity dynamometer with crank angular velocities ranging from 50 to 450 degrees s(-1). The theoretical tetanic torque/angular velocity relationship was modelled using a four parameter function comprising two rectangular hyperbolas while the activation/angular velocity relationship was modelled using a three parameter function that rose from submaximal activation for eccentric velocities to full activation for high concentric velocities. The product of these two functions gave a seven parameter function which was fitted to the joint torque/angular velocity data, giving unbiased root mean square differences of 1.9% and 3.3% of the maximum torques achieved. Differential activation accounts for the non-hyperbolic behaviour of the torque/angular velocity data for low concentric velocities. The maximum voluntary knee extensor torque that can be exerted may be modelled accurately as the product of functions defining the maximum torque and the maximum voluntary activation level. Failure to include differential activation considerations when modelling maximal movements will lead to errors in the estimation of joint torque in the eccentric phase and low velocity concentric phase.

  6. Virtual Passive Controller for Robot Systems Using Joint Torque Sensors

    NASA Technical Reports Server (NTRS)

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    This paper presents a control method based on virtual passive dynamic control that will stabilize a robot manipulator using joint torque sensors and a simple joint model. The method does not require joint position or velocity feedback for stabilization. The proposed control method is stable in the sense of Lyaponov. The control method was implemented on several joints of a laboratory robot. The controller showed good stability robustness to system parameter error and to the exclusion of nonlinear dynamic effects on the joints. The controller enhanced position tracking performance and, in the absence of position control, dissipated joint energy.

  7. Constitutive Modeling of a Glass Fiber-Reinforced PTFE Gasketed-Joint Under a Re-torque

    NASA Astrophysics Data System (ADS)

    Williams, James; Gordon, Ali P.

    Joints gasketed with viscoelastic seals often receive an application of a secondary torque, i.e., retorque, in order to ensure joint tightness and proper sealing. The motivation of this study is to characterize and analytically model the load and deflection re-torque response of a single 25% glass-fiber reinforced polytetrafluorethylene (PTFE) gasket-bolted joint with serrated flange detail. The Burger-type viscoelastic modeling constants of the material are obtained through isolating the gasket from the bolt by performing a gasket creep test via a MTS electromechanical test frame. The re-load creep response is also investigated by re-loading the gasket after a period of initial creep to observe the response. The modeling constants obtained from the creep tests are used with a Burger-type viscoelastic model to predict the re-torque response of a single bolt-gasket test fixture in order to validate the ability of the model to simulate the re-torque response under various loading conditions and flange detail.

  8. Hip joint torques during the golf swing of young and senior healthy males.

    PubMed

    Foxworth, Judy L; Millar, Audrey L; Long, Benjamin L; Way, Michael; Vellucci, Matthew W; Vogler, Joshua D

    2013-09-01

    Descriptive, laboratory study. To compare the 3-D hip torques during a golf swing between young and senior healthy male amateur golfers. The secondary purpose was to compare the 3-D hip joint torques between the trail leg and lead leg. The generation of hip torques from the hip musculature is an important aspect of the golf swing. Golf is a very popular activity, and estimates of hip torques during the golf swing have not been reported. Twenty healthy male golfers were divided into a young group (mean ± SD age, 25.1 ± 3.1 years) and a senior group (age, 56.9 ± 4.7 years). All subjects completed 10 golf swings using their personal driver. A motion capture system and force plates were used to obtain kinematic and kinetic data. Inverse dynamic analyses were used to calculate 3-D hip joint torques of the trail and lead limbs. Two-way analyses of covariance (group by leg), with club-head velocity as a covariate, were used to compare peak hip torques between groups and limbs. Trail-limb hip external rotator torque was significantly greater in the younger group compared to the senior group, and greater in the trail leg versus the lead leg. When adjusting for club-head velocity, young and senior healthy male amateur golfers generated comparable hip torques during a golf swing, with the exception of the trail-limb hip external rotator torque. The largest hip torque found was the trail-limb hip extensor torque.

  9. Design of a telerobotic controller with joint torque sensors

    NASA Technical Reports Server (NTRS)

    Jansen, J. F.; Herndon, J. N.

    1990-01-01

    The purpose was to analytically show how to design a joint controller for a telerobotic system when joint torque sensors are available. Other sensors such as actuator position, actuator velocity, joint position, and joint velocity are assumed to be accessible; however, the results will also be useful when only partial measurements are available. The controller presented can be applied to either mode of operation of a manipulator (i.e., teleoperation or robotic). Mechanical manipulators with high levels of friction are assumed. The results are applied to a telerobotic system built for NASA. Very high levels of friction have been reduced using high-gain feedback while avoiding limit cycles.

  10. Evaluating the contribution of a neural component of ankle joint resistive torque in patients with stroke using a manual device.

    PubMed

    Kobayashi, Toshiki; Leung, Aaron K L; Akazawa, Yasushi; Hutchins, Stephen W

    2011-01-01

    To investigate the methodology using a manual ankle joint resistive torque measurement device to evaluate the contribution of the neural component of ankle joint resistive torque in patients with stroke. Within-subject comparison to compare the ankle joint resistive torque between fast and slow stretching conditions. Ten patients with stroke participated in this study. The incremental ratio of ankle joint resistive torque at the ankle angular position of 5degrees dorsiflexion under the fast stretching condition in comparison to the slow one was calculated in each patient. A significant increase (p<0.01) in the ankle joint resistive torque was demonstrated under the fast stretching condition in comparison to the slow one in all patients and the mean ankle joint resistive torque was 4.6 (SD=1.7) Nm under the slow stretching condition, while it was 8.4 (SD=4.1) Nm under the fast stretching condition at the ankle angular position of 5 degrees dorsiflexion. The incremental ratio ranged from 9.4-139.3% among the patients. The results of this study demonstrated the potential advantage of the device to evaluate the contribution of the neural component of ankle joint resistive torque.

  11. Joint torques and joint reaction forces during squatting with a forward or backward inclined Smith machine.

    PubMed

    Biscarini, Andrea; Botti, Fabio M; Pettorossi, Vito E

    2013-02-01

    We developed a biomechanical model to determine the joint torques and loadings during squatting with a backward/forward-inclined Smith machine. The Smith squat allows a large variety of body positioning (trunk tilt, foot placement, combinations of joint angles) and easy control of weight distribution between forefoot and heel. These distinctive aspects of the exercise can be managed concurrently with the equipment inclination selected to unload specific joint structures while activating specific muscle groups. A backward (forward) equipment inclination decreases (increases) knee torque, and compressive tibiofemoral and patellofemoral forces, while enhances (depresses) hip and lumbosacral torques. For small knee flexion angles, the strain-force on the posterior cruciate ligament increases (decreases) with a backward (forward) equipment inclination, whereas for large knee flexion angles, this behavior is reversed. In the 0 to 60 degree range of knee flexion angles, loads on both cruciate ligaments may be simultaneously suppressed by a 30 degree backward equipment inclination and selecting, for each value of the knee angle, specific pairs of ankle and hip angles. The anterior cruciate ligament is safely maintained unloaded by squatting with backward equipment inclination and uniform/forward foot weight distribution. The conditions for the development of anterior cruciate ligament strain forces are clearly explained.

  12. Dynamic modeling and optimal joint torque coordination of advanced robotic systems

    NASA Astrophysics Data System (ADS)

    Kang, Hee-Jun

    The development is documented of an efficient dynamic modeling algorithm and the subsequent optimal joint input load coordination of advanced robotic systems for industrial application. A closed-form dynamic modeling algorithm for the general closed-chain robotic linkage systems is presented. The algorithm is based on the transfer of system dependence from a set of open chain Lagrangian coordinates to any desired system generalized coordinate set of the closed-chain. Three different techniques for evaluation of the kinematic closed chain constraints allow the representation of the dynamic modeling parameters in terms of system generalized coordinates and have no restriction with regard to kinematic redundancy. The total computational requirement of the closed-chain system model is largely dependent on the computation required for the dynamic model of an open kinematic chain. In order to improve computational efficiency, modification of an existing open-chain KIC based dynamic formulation is made by the introduction of the generalized augmented body concept. This algorithm allows a 44 pct. computational saving over the current optimized one (O(N4), 5995 when N = 6). As means of resolving redundancies in advanced robotic systems, local joint torque optimization is applied for effectively using actuator power while avoiding joint torque limits. The stability problem in local joint torque optimization schemes is eliminated by using fictitious dissipating forces which act in the necessary null space. The performance index representing the global torque norm is shown to be satisfactory. In addition, the resulting joint motion trajectory becomes conservative, after a transient stage, for repetitive cyclic end-effector trajectories. The effectiveness of the null space damping method is shown. The modular robot, which is built of well defined structural modules from a finite-size inventory and is controlled by one general computer system, is another class of evolving

  13. Critical bending moment of implant-abutment screw joint interfaces: effect of torque levels and implant diameter.

    PubMed

    Tan, Ban Fui; Tan, Keson B; Nicholls, Jack I

    2004-01-01

    Critical bending moment (CBM), the moment at which the external nonaxial load applied overcomes screw joint preload and causes loss of contact between the mating surfaces of the implant screw joint components, was measured with 2 types of implants and 2 types of abutments. Using 4 test groups of 5 implant-abutment pairs, CBM at the implant-abutment screw joint was measured at 25%, 50%, 75%, and 100% of the manufacturer's recommended torque levels. Regular Platform (RP) Nobel Biocare implants (3.75 mm diameter), Wide Platform (WP) Nobel Biocare implants (5.0 mm diameter), CeraOne abutments, and Multiunit abutments were used. Microstrain was measured as loads were applied to the abutment at various distances from the implant-abutment interface. Strain instrumentation logged the strain data dynamically to determine the point of gap opening. All torque applications and strain measurements were repeated 5 times. For the CeraOne-RP group, the mean CBMs were 17.09 Ncm, 35.35 Ncm, 45.63 Ncm, and 62.64 Ncm at 25%, 50%, 75%, and 100% of the recommended torque level, respectively. For the CeraOne-WP group, mean CBMs were 28.29 Ncm, 62.97 Ncm, 92.20 Ncm, and 127.41 Ncm; for the Multiunit-RP group, 16.08 Ncm, 21.55 Ncm, 34.12 Ncm, and 39.46 Ncm; and for the Multiunit-WP group, 15.90 Ncm, 32.86 Ncm, 43.29 Ncm, and 61.55 Ncm at the 4 different torque levels. Two-way analysis of variance (ANOVA) (P < .001) revealed significant effects for the test groups (F = 2738.2) and torque levels (F = 2969.0). The methodology developed in this study allows confirmation of the gap opening of the screw joint for the test groups and determination of CBM at different torque levels. CBM was found to differ among abutment systems, implant diameters, and torque levels. The torque levels recommended by the manufacturer should followed to ensure screw joint integrity.

  14. A Multiple Degree of Freedom Lower Extremity Isometric Device to Simultaneously Quantify Hip, Knee and Ankle Torques

    PubMed Central

    Sánchez, Natalia; Acosta, Ana Maria; Stienen, Arno H.A.

    2015-01-01

    Characterization of the joint torque coupling strategies used in the lower extremity to generate maximal and submaximal levels of torque at either the hip, knee or ankle is lacking. Currently, there are no available isometric devices that quantify all concurrent joint torques in the hip, knee and ankle of a single leg during maximum voluntary torque generation. Thus, joint-torque coupling strategies in the hip, knee and concurrent torques at ankle and/or coupling patterns at the hip and knee driven by the ankle have yet to be quantified. This manuscript describes the design, implementation and validation of a multiple degree of freedom, lower extremity isometric device (the MultiLEIT) that accurately quantifies simultaneous torques at the hip, knee and ankle. The system was mechanically validated and then implemented with two healthy control individuals and two post-stroke individuals to test usability and patient acceptance. Data indicated different joint torque coupling strategies used by both healthy individuals. In contrast, data showed the same torque coupling patterns in both post-stroke individuals, comparable to those described in the clinic. Successful implementation of the MultiLEIT can contribute to the understanding of the underlying mechanisms responsible for abnormal movement patterns and aid in the design of therapeutic interventions. PMID:25163064

  15. Real-time estimation of FES-induced joint torque with evoked EMG : Application to spinal cord injured patients.

    PubMed

    Li, Zhan; Guiraud, David; Andreu, David; Benoussaad, Mourad; Fattal, Charles; Hayashibe, Mitsuhiro

    2016-06-22

    Functional electrical stimulation (FES) is a neuroprosthetic technique for restoring lost motor function of spinal cord injured (SCI) patients and motor-impaired subjects by delivering short electrical pulses to their paralyzed muscles or motor nerves. FES induces action potentials respectively on muscles or nerves so that muscle activity can be characterized by the synchronous recruitment of motor units with its compound electromyography (EMG) signal is called M-wave. The recorded evoked EMG (eEMG) can be employed to predict the resultant joint torque, and modeling of FES-induced joint torque based on eEMG is an essential step to provide necessary prediction of the expected muscle response before achieving accurate joint torque control by FES. Previous works on FES-induced torque tracking issues were mainly based on offline analysis. However, toward personalized clinical rehabilitation applications, real-time FES systems are essentially required considering the subject-specific muscle responses against electrical stimulation. This paper proposes a wireless portable stimulator used for estimating/predicting joint torque based on real time processing of eEMG. Kalman filter and recurrent neural network (RNN) are embedded into the real-time FES system for identification and estimation. Prediction results on 3 able-bodied subjects and 3 SCI patients demonstrate promising performances. As estimators, both Kalman filter and RNN approaches show clinically feasible results on estimation/prediction of joint torque with eEMG signals only, moreover RNN requires less computational requirement. The proposed real-time FES system establishes a platform for estimating and assessing the mechanical output, the electromyographic recordings and associated models. It will contribute to open a new modality for personalized portable neuroprosthetic control toward consolidated personal healthcare for motor-impaired patients.

  16. Isokinetic Identification of Knee Joint Torques before and after Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Czaplicki, Adam; Jarocka, Marta; Walawski, Jacek

    2015-01-01

    The aim of this study was to evaluate the serial change of isokinetic muscle strength of the knees before and after anterior cruciate ligament reconstruction (ACLR) in physically active males and to estimate the time of return to full physical fitness. Extension and flexion torques were measured for the injured and healthy limbs at two angular velocities approximately 1.5 months before the surgery and 3, 6, and 12 months after ACLR. Significant differences (p ≤ 0.05) in peak knee extension and flexion torques, hamstring/quadriceps (H/Q) strength ratios, uninvolved/involved limb peak torque ratios, and the normalized work of these muscles between the four stages of rehabilitation were identified. Significant differences between extension peak torques for the injured and healthy limbs were also detected at all stages. The obtained results showed that 12 months of rehabilitation were insufficient for the involved knee joint to recover its strength to the level of strength of the uninvolved knee joint. The results helped to evaluate the progress of the rehabilitation and to implement necessary modifications optimizing the rehabilitation training program. The results of the study may also be used as referential data for physically active males of similar age. PMID:26646385

  17. Removal Torque and Biofilm Accumulation at Two Dental Implant-Abutment Joints After Fatigue.

    PubMed

    Pereira, Jorge; Morsch, Carolina S; Henriques, Bruno; Nascimento, Rubens M; Benfatti, Cesar Am; Silva, Filipe S; López-López, José; Souza, Júlio Cm

    2016-01-01

    The aim of this study was to evaluate the removal torque and in vitro biofilm penetration at Morse taper and hexagonal implant-abutment joints after fatigue tests. Sixty dental implants were divided into two groups: (1) Morse taper and (2) external hexagon implant-abutment systems. Fatigue tests on the implant-abutment assemblies were performed at a normal force (FN) of 50 N at 1.2 Hz for 500,000 cycles in growth medium containing human saliva for 72 hours. Removal torque mean values (n = 10) were measured after fatigue tests. Abutments were then immersed in 1% protease solution in order to detach the biofilms for optical density and colony-forming unit (CFU/cm²) analyses. Groups of implant-abutment assemblies (n = 8) were cross-sectioned at 90 degrees relative to the plane of the implant-abutment joints for the microgap measurement by field-emission guns scanning electron microscopy. Mean values of removal torque on abutments were significantly lower for both Morse taper (22.1 ± 0.5 μm) and external hexagon (21.1 ± 0.7 μm) abutments after fatigue tests than those recorded without fatigue tests (respectively, 24 ± 0.5 μm and 24.8 ± 0.6 μm) in biofilm medium for 72 hours (P = .04). Mean values of microgap size for the Morse taper joints were statistically signicantly lower without fatigue tests (1.7 ± 0.4 μm) than those recorded after fatigue tests (3.2 ± 0.8 μm). Also, mean values of microgap size for external hexagon joints free of fatigue were statistically signicantly lower (1.5 ± 0.4 μm) than those recorded after fatigue tests (8.1 ± 1.7 μm) (P < .05). The optical density of biofilms and CFU mean values were lower on Morse taper abutments (Abs630nm at 0.06 and 2.9 × 10⁴ CFU/cm²) than that on external hexagon abutments (Abs630nm at 0.08 and 4.5 × 10⁴ CFU/cm²) (P = .01). The mean values of removal torque, microgap size, and biofilm density recorded at Morse taper joints were lower in comparison to those recorded at external hexagon

  18. Estimations of relative effort during sit-to-stand increase when accounting for variations in maximum voluntary torque with joint angle and angular velocity.

    PubMed

    Bieryla, Kathleen A; Anderson, Dennis E; Madigan, Michael L

    2009-02-01

    The main purpose of this study was to compare three methods of determining relative effort during sit-to-stand (STS). Fourteen young (mean 19.6+/-SD 1.2 years old) and 17 older (61.7+/-5.5 years old) adults completed six STS trials at three speeds: slow, normal, and fast. Sagittal plane joint torques at the hip, knee, and ankle were calculated through inverse dynamics. Isometric and isokinetic maximum voluntary contractions (MVC) for the hip, knee, and ankle were collected and used for model parameters to predict the participant-specific maximum voluntary joint torque. Three different measures of relative effort were determined by normalizing STS joint torques to three different estimates of maximum voluntary torque. Relative effort at the hip, knee, and ankle were higher when accounting for variations in maximum voluntary torque with joint angle and angular velocity (hip=26.3+/-13.5%, knee=78.4+/-32.2%, ankle=27.9+/-14.1%) compared to methods which do not account for these variations (hip=23.5+/-11.7%, knee=51.7+/-15.0%, ankle=20.7+/-10.4%). At higher velocities, the difference in calculating relative effort with respect to isometric MVC or incorporating joint angle and angular velocity became more evident. Estimates of relative effort that account for the variations in maximum voluntary torque with joint angle and angular velocity may provide higher levels of accuracy compared to methods based on measurements of maximal isometric torques.

  19. Comparison of regression models for estimation of isometric wrist joint torques using surface electromyography

    PubMed Central

    2011-01-01

    Background Several regression models have been proposed for estimation of isometric joint torque using surface electromyography (SEMG) signals. Common issues related to torque estimation models are degradation of model accuracy with passage of time, electrode displacement, and alteration of limb posture. This work compares the performance of the most commonly used regression models under these circumstances, in order to assist researchers with identifying the most appropriate model for a specific biomedical application. Methods Eleven healthy volunteers participated in this study. A custom-built rig, equipped with a torque sensor, was used to measure isometric torque as each volunteer flexed and extended his wrist. SEMG signals from eight forearm muscles, in addition to wrist joint torque data were gathered during the experiment. Additional data were gathered one hour and twenty-four hours following the completion of the first data gathering session, for the purpose of evaluating the effects of passage of time and electrode displacement on accuracy of models. Acquired SEMG signals were filtered, rectified, normalized and then fed to models for training. Results It was shown that mean adjusted coefficient of determination (Ra2) values decrease between 20%-35% for different models after one hour while altering arm posture decreased mean Ra2 values between 64% to 74% for different models. Conclusions Model estimation accuracy drops significantly with passage of time, electrode displacement, and alteration of limb posture. Therefore model retraining is crucial for preserving estimation accuracy. Data resampling can significantly reduce model training time without losing estimation accuracy. Among the models compared, ordinary least squares linear regression model (OLS) was shown to have high isometric torque estimation accuracy combined with very short training times. PMID:21943179

  20. Effects of hand grip exercise on shoulder joint internal rotation and external rotation peak torque.

    PubMed

    Lee, Dong-Rour; Jong-Soon Kim, Laurentius

    2016-08-10

    The goal of this study is to analyze the effects of hand grip training on shoulder joint internal rotation (IR)/external rotation (ER) peak torque for healthy people. The research was conducted on 23 healthy adults in their 20 s-30 s who volunteered to participate in the experiment. Hand grip power test was performed on both hands of the research subjects before/after the test to study changes in hand grip power. Isokinetic machine was used to measure the concentric IRPT (internal rotation peak torque) and concentric ERPT (external rotation peak torque) at the velocity of 60°/sec, 90°/sec, and 180°/sec before/after the test. Hand grip training was performed daily on the subject's right hand only for four weeks according to exercise program. Finally, hand grip power of both hands and the maximum torque values of shoulder joint IR/ER were measured before/after the test and analyzed. There was a statistically significant difference in the hand grip power of the right hand, which was subject to hand grip training, after the experiment. Also, statistically significant difference for shoulder ERPT was found at 60°/sec. Hand grip training has a positive effect on shoulder joint IRPT/ERPT and therefore can help strengthen muscles around the shoulder without using weight on the shoulder. Consequently, hand grip training would help maintain strengthen the muscles around the shoulder in the early phase of rehabilitation process after shoulder surgery.

  1. Torque of the shank rotating muscles in patients with knee joint injuries.

    PubMed

    Hrycyna, Mariusz; Zieliński, Jacek

    2011-01-01

    The aim of the study was to evaluate the torque of the shank rotating muscles in patients with reconstructed anterior cruciate ligament (ACL) and rehabilitation accomplished in comparison with a control group. The study was carried out on the group of 187 males. For the purpose of the study a prototype testing device for the shank rotating muscles' torque under static conditions was used. The study was based on the measurement of maximal torque at selected angles (-30°, 0°, 45°) of the shank rotation as well as on the angle (30°, 60°, 90°) of flexion of the knee joint. The results obtained in the group with reconstructed anterior cruciate ligament (ACL) and rehabilitation accomplished were comparable to those the control group and mostly of no statistical significance. Lack of significant differences between the values of shank rotating muscles' torque achieved in an injured limb compared to an uninjured one may testify to an effective rehabilitation process. The results of the research can serve as a diagnostic tool for the rehabilitation process development.

  2. Effects of individual strengthening exercises for the stabilization muscles on the nutation torque of the sacroiliac joint in a sedentary worker with nonspecific sacroiliac joint pain.

    PubMed

    Yoo, Won-Gyu

    2015-01-01

    [Purpose] We investigated the effects of individual strengthening exercises for the stabilization muscles on the nutation torque of the sacroiliac joint in a sedentary worker with nonspecific sacroiliac joint pain. [Subject] A 36-year-old female complained of pain in the sacroiliac joints. [Methods] The subject performed individual strengthening exercises for the stabilization muscles for nutation torque of the sacroiliac joint for 3 weeks. Pain-provocation tests and visual analog scale (VAS) scores were evaluated before and after the exercises. [Results] After performing the individual strengthening exercises for the erector spinae, rectus abdominis, and biceps femoris muscles for 3 weeks, the subject displayed no pain in the pain provocation tests, and the VAS score was 2/10. [Conclusion] The individual strengthening exercises for the stabilization muscles of the sacroiliac joint performed in the present study appear to be effective for sedentary workers with sacroiliac joint pain.

  3. Design of a lightweight, tethered, torque-controlled knee exoskeleton.

    PubMed

    Witte, Kirby Ann; Fatschel, Andreas M; Collins, Steven H

    2017-07-01

    Lower-limb exoskeletons show promise for improving gait rehabilitation for those with chronic gait abnormalities due to injury, stroke or other illness. We designed and built a tethered knee exoskeleton with a strong lightweight frame and comfortable, four-point contact with the leg. The device is structurally compliant in select directions, instrumented to measure joint angle and applied torque, and is lightweight (0.76 kg). The exoskeleton is actuated by two off-board motors. Closed loop torque control is achieved using classical proportional feedback control with damping injection in conjunction with iterative learning. We tested torque measurement accuracy and found root mean squared (RMS) error of 0.8 Nm with a max load of 62.2 Nm. Bandwidth was measured to be phase limited at 45 Hz when tested on a rigid test stand and 23 Hz when tested on a person's leg. During bandwidth tests peak extension torques were measured up to 50 Nm. Torque tracking was tested during walking on a treadmill at 1.25 m/s with peak flexion torques of 30 Nm. RMS torque tracking error averaged over a hundred steps was 0.91 Nm. We intend to use this knee exoskeleton to investigate robotic assistance strategies to improve gait rehabilitation and enhance human athletic ability.

  4. Mechanisms of quadriceps muscle weakness in knee joint osteoarthritis: the effects of prolonged vibration on torque and muscle activation in osteoarthritic and healthy control subjects.

    PubMed

    Rice, David A; McNair, Peter J; Lewis, Gwyn N

    2011-01-01

    A consequence of knee joint osteoarthritis (OA) is an inability to fully activate the quadriceps muscles, a problem termed arthrogenic muscle inhibition (AMI). AMI leads to marked quadriceps weakness that impairs physical function and may hasten disease progression. The purpose of the present study was to determine whether γ-loop dysfunction contributes to AMI in people with knee joint OA. Fifteen subjects with knee joint OA and 15 controls with no history of knee joint pathology participated in this study. Quadriceps and hamstrings peak isometric torque (Nm) and electromyography (EMG) amplitude were collected before and after 20 minutes of 50 Hz vibration applied to the infrapatellar tendon. Between-group differences in pre-vibration torque were analysed using a one-way analysis of covariance, with age, gender and body mass (kg) as the covariates. If the γ-loop is intact, vibration should decrease torque and EMG levels in the target muscle; if dysfunctional, then torque and EMG levels should not change following vibration. One-sample t tests were thus undertaken to analyse whether percentage changes in torque and EMG differed from zero after vibration in each group. In addition, analyses of covariance were utilised to analyse between-group differences in the percentage changes in torque and EMG following vibration. Pre-vibration quadriceps torque was significantly lower in the OA group compared with the control group (P = 0.005). Following tendon vibration, quadriceps torque (P < 0.001) and EMG amplitude (P ≤0.001) decreased significantly in the control group but did not change in the OA group (all P > 0.299). Hamstrings torque and EMG amplitude were unchanged in both groups (all P > 0.204). The vibration-induced changes in quadriceps torque and EMG were significantly different between the OA and control groups (all P < 0.011). No between-group differences were observed for the change in hamstrings torque or EMG (all P > 0.554). γ-loop dysfunction may

  5. Effect of head contact on the rim of the cup on the offset loading and torque in hip joint replacement.

    PubMed

    Liu, Feng; Williams, Sophie; Jin, Zhongmin; Fisher, John

    2013-11-01

    Head contact on the rim of the cup causes stress concentration and consequently increased wear. The head contact on the rim of the cup may in addition cause an offset load and torque on the cup. The head-rim contact resulting from microseparation or subluxation has been investigated. An analytical model has been developed to calculate the offset loading and resultant torque on the cup as a function of the translational displacement of the head under simplified loading condition of the hip joint at heel strike during a walking cycle. The magnitude of the torque on the cup was found to increase with the increasing translational displacement, larger diameter heads, eccentric cups, and the coefficient of friction of the contact. The effects of cup inclination, cup rim radius, and cup coverage angle on the magnitude of the torque were found to be relatively small with a maximum variation in the torque magnitude being lower than 20%. This study has shown an increased torque due to the head loading on the rim of the cup, and this may contribute to the incidence of cup loosening. Particularly, metal-on-metal hip joints with larger head diameters may produce the highest offset loading torque.

  6. The effect of 3 torque delivery systems on gold screw preload at the gold cylinder-abutment screw joint.

    PubMed

    Tan, Keson B; Nicholls, Jack I

    2002-01-01

    This study measured the gold screw preload at the gold cylinder-abutment screw joint interface obtained by 3 torque delivery systems. Using a precalibrated, strain-gauged standard abutment as the load cell, 3 torque delivery systems tested were shown to have significant differences in gold screw preload when a gold cylinder was attached. Mean preloads measured were 291.2 N for hand torque drivers set at 10 Ncm, 340.3 N for electronic torque controllers at low setting/10 Ncm, 384.4 N for electronic torque controllers at high setting/10 Ncm; and 140.8 N for hand-tightening with a prosthetic slot screwdriver. Significant differences in screw preload were also found between operators using a hand torque driver. Hand-tightening delivered insufficient preload and cannot be recommended for final gold screw tightening. Different electronic torque controller units set at 10 Ncm induced mean gold screw preloads that ranged from 264.1 N to as high as 501.2 N. Electronic torque controllers should be regularly recalibrated to ensure optimal output.

  7. Mechanisms of quadriceps muscle weakness in knee joint osteoarthritis: the effects of prolonged vibration on torque and muscle activation in osteoarthritic and healthy control subjects

    PubMed Central

    2011-01-01

    Introduction A consequence of knee joint osteoarthritis (OA) is an inability to fully activate the quadriceps muscles, a problem termed arthrogenic muscle inhibition (AMI). AMI leads to marked quadriceps weakness that impairs physical function and may hasten disease progression. The purpose of the present study was to determine whether γ-loop dysfunction contributes to AMI in people with knee joint OA. Methods Fifteen subjects with knee joint OA and 15 controls with no history of knee joint pathology participated in this study. Quadriceps and hamstrings peak isometric torque (Nm) and electromyography (EMG) amplitude were collected before and after 20 minutes of 50 Hz vibration applied to the infrapatellar tendon. Between-group differences in pre-vibration torque were analysed using a one-way analysis of covariance, with age, gender and body mass (kg) as the covariates. If the γ-loop is intact, vibration should decrease torque and EMG levels in the target muscle; if dysfunctional, then torque and EMG levels should not change following vibration. One-sample t tests were thus undertaken to analyse whether percentage changes in torque and EMG differed from zero after vibration in each group. In addition, analyses of covariance were utilised to analyse between-group differences in the percentage changes in torque and EMG following vibration. Results Pre-vibration quadriceps torque was significantly lower in the OA group compared with the control group (P = 0.005). Following tendon vibration, quadriceps torque (P < 0.001) and EMG amplitude (P ≤0.001) decreased significantly in the control group but did not change in the OA group (all P > 0.299). Hamstrings torque and EMG amplitude were unchanged in both groups (all P > 0.204). The vibration-induced changes in quadriceps torque and EMG were significantly different between the OA and control groups (all P < 0.011). No between-group differences were observed for the change in hamstrings torque or EMG (all P > 0

  8. A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors.

    PubMed

    Hwang, Beomsoo; Jeon, Doyoung

    2015-04-09

    In exoskeletal robots, the quantification of the user's muscular effort is important to recognize the user's motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users' muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user's limb accurately from the measured torque. The user's limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user's muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions.

  9. A Method to Accurately Estimate the Muscular Torques of Human Wearing Exoskeletons by Torque Sensors

    PubMed Central

    Hwang, Beomsoo; Jeon, Doyoung

    2015-01-01

    In exoskeletal robots, the quantification of the user’s muscular effort is important to recognize the user’s motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users’ muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user’s limb accurately from the measured torque. The user’s limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user’s muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions. PMID:25860074

  10. Applied Joint-Space Torque and Stiffness Control of Tendon-Driven Fingers

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E.; Platt, Robert, Jr.; Wampler, Charles W.; Hargrave, Brian

    2010-01-01

    Existing tendon-driven fingers have applied force control through independent tension controllers on each tendon, i.e. in the tendon-space. The coupled kinematics of the tendons, however, cause such controllers to exhibit a transient coupling in their response. This problem can be resolved by alternatively framing the controllers in the joint-space of the manipulator. This work presents a joint-space torque control law that demonstrates both a decoupled and significantly faster response than an equivalent tendon-space formulation. The law also demonstrates greater speed and robustness than comparable PI controllers. In addition, a tension distribution algorithm is presented here to allocate forces from the joints to the tendons. It allocates the tensions so that they satisfy both an upper and lower bound, and it does so without requiring linear programming or open-ended iterations. The control law and tension distribution algorithm are implemented on the robotic hand of Robonaut-2.

  11. Comparison of joint torque evoked with monopolar and tripolar-cuff electrodes.

    PubMed

    Tarler, Matthew D; Mortimer, J Thomas

    2003-09-01

    Using a self-sizing spiral-cuff electrode placed on the sciatic nerve of the cat, the joint torque evoked with stimulation applied to contacts in a monopolar configuration was judged to be the same as the torque evoked by stimulation applied to contacts in a tripolar configuration. Experiments were carried out in six acute cat preparations. In each experiment, a 12-contact electrode was placed on the sciatic nerve and used to effect both the monopolar and tripolar electrode configurations. The ankle torque produced by electrically evoked isometric muscle contraction was measured in three dimensions: plantar flexion, internal rotation, and inversion. Based on the recorded ankle torque, qualitative and quantitative comparisons were performed to determine if any significant difference existed in the pattern or order in which motor nerve fibers were recruited. No significant difference was found at a 98% confidence interval in either the recruitment properties or the repeatability of the monopolar and tripolar configurations. Further, isolated activation of single fascicles within the sciatic nerve was observed. Once nerve fibers in a fascicle were activated, recruitment of that fascicle was modulated over the full range before "spill-over" excitation occurred in neighboring fascicles. These results indicate that a four contact, monopolar nerve-cuff electrode is a viable substitute for a 12 contact, tripolar nerve-cuff electrode. The results of this study are also consistent with the hypothesis that multicontact self-sizing spiral-cuff electrodes can be used in motor prostheses to provide selective control of many muscles. These findings should also apply to other neuroprostheses employing-cuff electrodes on nerve trunks.

  12. Establishing a relationship between maximum torque production of isolated joints to simulate EVA ratchet push-pull maneuver: A case study

    NASA Technical Reports Server (NTRS)

    Pandya, Abhilash; Maida, James; Hasson, Scott; Greenisen, Michael; Woolford, Barbara

    1993-01-01

    As manned exploration of space continues, analytical evaluation of human strength characteristics is critical. These extraterrestrial environments will spawn issues of human performance which will impact the designs of tools, work spaces, and space vehicles. Computer modeling is an effective method of correlating human biomechanical and anthropometric data with models of space structures and human work spaces. The aim of this study is to provide biomechanical data from isolated joints to be utilized in a computer modeling system for calculating torque resulting from any upper extremity motions: in this study, the ratchet wrench push-pull operation (a typical extravehicular activity task). Established here are mathematical relationships used to calculate maximum torque production of isolated upper extremity joints. These relationships are a function of joint angle and joint velocity.

  13. Intramuscular Pressure of Tibialis Anterior Reflects Ankle Torque but Does Not Follow Joint Angle-Torque Relationship.

    PubMed

    Ateş, Filiz; Davies, Brenda L; Chopra, Swati; Coleman-Wood, Krista; Litchy, William J; Kaufman, Kenton R

    2018-01-01

    Intramuscular pressure (IMP) is the hydrostatic fluid pressure that is directly related to muscle force production. Electromechanical delay (EMD) provides a link between mechanical and electrophysiological quantities and IMP has potential to detect local electromechanical changes. The goal of this study was to assess the relationship of IMP with the mechanical and electrical characteristics of the tibialis anterior muscle (TA) activity at different ankle positions. We hypothesized that (1) the TA IMP and the surface EMG (sEMG) and fine-wire EMG (fwEMG) correlate to ankle joint torque, (2) the isometric force of TA increases at increased muscle lengths, which were imposed by a change in ankle angle and IMP follows the length-tension relationship characteristics, and (3) the electromechanical delay (EMD) is greater than the EMD of IMP during isometric contractions. Fourteen healthy adults [7 female; mean ( SD ) age = 26.9 (4.2) years old with 25.9 (5.5) kg/m 2 body mass index] performed (i) three isometric dorsiflexion (DF) maximum voluntary contraction (MVC) and (ii) three isometric DF ramp contractions from 0 to 80% MVC at rate of 15% MVC/second at DF, Neutral, and plantarflexion (PF) positions. Ankle torque, IMP, TA fwEMG, and TA sEMG were measured simultaneously. The IMP, fwEMG, and sEMG were significantly correlated to the ankle torque during ramp contractions at each ankle position tested. This suggests that IMP captures in vivo mechanical properties of active muscles. The ankle torque changed significantly at different ankle positions however, the IMP did not reflect the change. This is explained with the opposing effects of higher compartmental pressure at DF in contrast to the increased force at PF position. Additionally, the onset of IMP activity is found to be significantly earlier than the onset of force which indicates that IMP can be designed to detect muscular changes in the course of neuromuscular diseases impairing electromechanical transmission.

  14. Knee and Ankle Joint Angles Influence the Plantarflexion Torque of the Gastrocnemius.

    PubMed

    Landin, Dennis; Thompson, Melissa; Reid, Meghan

    2015-08-01

    The gastrocnemius (GA) is the lone bi-articular muscle of the leg, crossing both the knee and ankle. As with any bi-articular muscle, both joints affect its length/tension curve. The role of the GA as a plantarflexor is firmly established; however, no current research has investigated how changes in knee and ankle joint positions on its ability to generate a plantarflexion (PF) torque. This paper reports on the PF force generated by the GA at specific knee and ankle joint combinations. The right GA of 26 participants was electrically stimulated via surface electrodes following a standardized protocol at 24 knee and ankle joint combinations. Three stimulations were applied at each of the 24 positions. Data were recorded on three dependent measures: the passive moment, which was the PF moment created by the tissue without stimulation, the maximum moment, which was the highest PF moment during the stimulation and included the passive moment, and the stimulated moment, which reflected the PF moment during stimulation minus the passive moment. A straight knee and dorsiflexed ankle create the position in which the GA generates the greatest PF moment, but it is also the position of greatest length. This finding is in contrast to conclusions from previous research with bi-articular muscles, which has consistently shown that the greatest length is not a muscle's optimal length. The full ranges of motion for the knee and ankle apparently do not elongate the GA beyond its optimal length for producing a PF moment. Clinicians commonly evaluate GA status with the patient seated and the foot subject to gravity. The present results indicate that manual testing of the GA in isolation should be performed, whenever possible, with the knee extended and the ankle dorsiflexed to potentially elicit the maximum PF torque from the GA.

  15. Hex ball torque test

    NASA Technical Reports Server (NTRS)

    Robinson, B. A.; Foster, C. L.

    1986-01-01

    A series of torque tests were performed on four flight-type hex ball universal joints in order to characterize and determine the actual load-carrying capability of this device. The universal joint is a part of manual actuation rods for scientific instruments within the Hubble Space Telescope. It was found that the hex ball will bind slightly during the initial load application. This binding did not affect the function of the universal joint, and the units would wear-in after a few additional loading cycles. The torsional yield load was approximately 50 ft-lb, and was consistent among the four test specimens. Also, the torque required to cause complete failure exceeded 80 ft-lb. It is concluded that the hex ball universal joint is suitable for its intended applications.

  16. Development of an ankle torque measurement device for measuring ankle torque during walking.

    PubMed

    Tanino, Genichi; Tomita, Yutaka; Mizuno, Shiho; Maeda, Hirofumi; Miyasaka, Hiroyuki; Orand, Abbas; Takeda, Kotaro; Sonoda, Shigeru

    2015-05-01

    [Purpose] To develop a device for measuring the torque of an ankle joint during walking in order to quantify the characteristics of spasticity of the ankle and to verify the functionality of the device by testing it on the gait of an able-bodied individual and an equinovarus patient. [Subjects and Methods] An adjustable posterior strut (APS) ankle-foot orthosis (AFO) was used in which two torque sensors were mounted on the aluminum strut for measuring the anterior-posterior (AP) and medial-lateral (ML) directions. Two switches were also mounted at the heel and toe in order to detect the gait phase. An able-bodied individual and a left hemiplegic patient with equinovarus participated. They wore the device and walked on a treadmill to investigate the device's functionality. [Results] Linear relationships between the torques and the corresponding output of the torque sensors were observed. Upon the analyses of gait of an able-body subject and a hemiplegic patient, we observed toque matrices in both AP and ML directions during the gait of the both subjects. [Conclusion] We developed a device capable of measuring the torque in the AP and ML directions of ankle joints during gait.

  17. Pelvic rotation torque during fast-pitch softball hitting under three ball height conditions.

    PubMed

    Iino, Yoichi; Fukushima, Atsushi; Kojima, Takeji

    2014-08-01

    The purpose of this study was to investigate the relevance of hip joint angles to the production of the pelvic rotation torque in fast-pitch softball hitting and to examine the effect of ball height on this production. Thirteen advanced female softball players hit stationary balls at three different heights: high, middle, and low. The pelvic rotation torque, defined as the torque acting on the pelvis through the hip joints about the pelvic superior-inferior axis, was determined from the kinematic and force plate data using inverse dynamics. Irrespective of the ball heights, the rear hip extension, rear hip external rotation, front hip adduction, and front hip flexion torques contributed to the production of pelvic rotation torque. Although the contributions of the adduction and external rotation torques at each hip joint were significantly different among the ball heights, the contributions of the front and rear hip joint torques were similar among the three ball heights owing to cancelation of the two torque components. The timings of the peaks of the hip joint torque components were significantly different, suggesting that softball hitters may need to adjust the timings of the torque exertions fairly precisely to rotate the upper body effectively.

  18. Torque Limits for Fasteners in Composites

    NASA Technical Reports Server (NTRS)

    Zhao, Yi

    2002-01-01

    The two major classes of laminate joints are bonded and bolted. Often the two classes are combined as bonded-bolted joints. Several characteristics of fiber reinforced composite materials render them more susceptible to joint problems than conventional metals. These characteristics include weakness in in-plane shear, transverse tension/compression, interlaminar shear, and bearing strength relative to the strength and stiffness in the fiber direction. Studies on bolted joints of composite materials have been focused on joining assembly subject to in-plane loads. Modes of failure under these loading conditions are net-tension failure, cleavage tension failure, shear-out failure, bearing failure, etc. Although the studies of torque load can be found in literature, they mainly discussed the effect of the torque load on in-plane strength. Existing methods for calculating torque limit for a mechanical fastener do not consider connecting members. The concern that a composite member could be crushed by a preload inspired the initiation of this study. The purpose is to develop a fundamental knowledge base on how to determine a torque limit when a composite member is taken into account. Two simplified analytical models were used: a stress failure analysis model based on maximum stress criterion, and a strain failure analysis model based on maximum strain criterion.

  19. Provocative mechanical tests of the peripheral nervous system affect the joint torque-angle during passive knee motion.

    PubMed

    Andrade, R J; Freitas, S R; Vaz, J R; Bruno, P M; Pezarat-Correia, P

    2015-06-01

    This study aimed to determine the influence of the head, upper trunk, and foot position on the passive knee extension (PKE) torque-angle response. PKE tests were performed in 10 healthy subjects using an isokinetic dynamometer at 2°/s. Subjects lay in the supine position with their hips flexed to 90°. The knee angle, passive torque, surface electromyography (EMG) of the semitendinosus and quadriceps vastus medialis, and stretch discomfort were recorded in six body positions during PKE. The different maximal active positions of the cervical spine (neutral; flexion; extension), thoracic spine (neutral; flexion), and ankle (neutral; dorsiflexion) were passively combined for the tests. Visual analog scale scores and EMG were unaffected by body segment positioning. An effect of the ankle joint was verified on the peak torque and knee maximum angle when the ankle was in the dorsiflexion position (P < 0.05). Upper trunk positioning had an effect on the knee submaximal torque (P < 0.05), observed as an increase in the knee passive submaximal torque when the cervical and thoracic spines were flexed (P < 0.05). In conclusion, other apparently mechanical unrelated body segments influence torque-angle response since different positions of head, upper trunk, and foot induce dissimilar knee mechanical responses during passive extension. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Quantifying anti-gravity torques for the design of a powered exoskeleton.

    PubMed

    Ragonesi, Daniel; Agrawal, Sunil K; Sample, Whitney; Rahman, Tariq

    2013-03-01

    Designing an upper extremity exoskeleton for people with arm weakness requires knowledge of the joint torques due to gravity and joint stiffness, as well as, active residual force capabilities of users. The objective of this research paper is to describe the characteristics of the upper limb of children with upper limb impairment. This paper describes the experimental measurements of the torque on the upper limb due to gravity and joint stiffness of three groups of subjects: able-bodied adults, able-bodied children, and children with neuromuscular disabilities. The experiment involves moving the arm to various positions in the sagittal plane and measuring the resultant force at the forearm. This force is then converted to torques at the elbow and shoulder. These data are compared to a two-link lumped mass model based on anthropomorphic data. Results show that the torques based on anthropometry deviate from experimentally measured torques as the arm goes through the range. Subjects with disabilities also maximally pushed and pulled against the force sensor to measure maximum strength as a function of arm orientation. For all subjects, the maximum voluntary applied torque at the shoulder and elbow in the sagittal plane was found to be lower than gravity torques throughout the disabled subjects' range of motion. This experiment informs designers of upper limb orthoses on the contribution of passive human joint torques due to gravity and joint stiffness and the strength capability of targeted users.

  1. Patients with triangular fibrocartilage complex injuries and distal radioulnar joint instability have reduced rotational torque in the forearm.

    PubMed

    Andersson, J K; Axelsson, P; Strömberg, J; Karlsson, J; Fridén, J

    2016-09-01

    A total of 20 patients scheduled for wrist arthroscopy, all with clinical signs of rupture to the triangular fibrocartilage complex and distal radioulnar joint instability, were tested pre-operatively by an independent observer for strength of forearm rotation. During surgery, the intra-articular pathology was documented by photography and also subsequently individually analysed by another independent hand surgeon. Arthroscopy revealed a type 1-B injury to the triangular fibrocartilage complex in 18 of 20 patients. Inter-rater reliability between the operating surgeon and the independent reviewer showed absolute agreement in all but one patient (95%) in terms of the injury to the triangular fibrocartilage complex and its classification. The average pre-operative torque strength was 71% of the strength of the non-injured contralateral side in pronation and supination. Distal radioulnar joint instability with an arthroscopically verified injury to the triangular fibrocartilage complex is associated with a significant loss of both pronation and supination torque. Case series, Level IV. © The Author(s) 2015.

  2. Acceleration and torque feedback for robotic control - Experimental results

    NASA Technical Reports Server (NTRS)

    Mclnroy, John E.; Saridis, George N.

    1990-01-01

    Gross motion control of robotic manipulators typically requires significant on-line computations to compensate for nonlinear dynamics due to gravity, Coriolis, centripetal, and friction nonlinearities. One controller proposed by Luo and Saridis avoids these computations by feeding back joint acceleration and torque. This study implements the controller on a Puma 600 robotic manipulator. Joint acceleration measurement is obtained by measuring linear accelerations of each joint, and deriving a computationally efficient transformation from the linear measurements to the angular accelerations. Torque feedback is obtained by using the previous torque sent to the joints. The implementation has stability problems on the Puma 600 due to the extremely high gains inherent in the feedback structure. Since these high gains excite frequency modes in the Puma 600, the algorithm is modified to decrease the gain inherent in the feedback structure. The resulting compensator is stable and insensitive to high frequency unmodeled dynamics. Moreover, a second compensator is proposed which uses acceleration and torque feedback, but still allows nonlinear terms to be fed forward. Thus, by feeding the increment in the easily calculated gravity terms forward, improved responses are obtained. Both proposed compensators are implemented, and the real time results are compared to those obtained with the computed torque algorithm.

  3. Preparatory Body State before Reacting to an Opponent: Short-Term Joint Torque Fluctuation in Real-Time Competitive Sports

    PubMed Central

    Fujii, Keisuke; Yamashita, Daichi; Kimura, Tetsuya; Isaka, Tadao; Kouzaki, Motoki

    2015-01-01

    In a competitive sport, the outcome of a game is determined by an athlete’s relationship with an unpredictable and uncontrolled opponent. We have previously analyzed the preparatory state of ground reaction forces (GRFs) dividing non-weighted and weighted states (i.e., vertical GRFs below and above 120% of body weight, respectively) in a competitive ballgame task and demonstrated that the non-weighted state prevented delay of the defensive step and promoted successful guarding. However, the associated kinetics of lower extremity joints during a competitive sports task remains unknown. The present study aims to investigate the kinetic characteristics of a real-time competitive sport before movement initiation. As a first kinetic study on a competitive sport, we initially compared the successful defensive kinetics with a relatively stable preparatory state and the choice-reaction sidestep as a control movement. Then, we investigated the kinetic cause of the outcome in a 1-on-1 dribble in terms of the preparatory states according to our previous study. The results demonstrated that in successful defensive motions in the non-weighted state guarding trial, the times required for the generation of hip abduction and three extension torques for the hip, knee, and ankle joints were significantly shortened compared with the choice-reaction sidestep, and hip abduction and hip extension torques were produced almost simultaneously. The sport-specific movement kinetics emerges only in a more-realistic interactive experimental setting. A comparison of the outcomes in the 1-on-1 dribble and preparatory GRF states showed that, in the non-weighted state, the defenders guarded successfully in 68.0% of the trials, and the defender’s initiation time was earlier than that in the weighted state (39.1%). In terms of kinetics, the root mean squares of the derivative of hip abduction and three extension torques in the non-weighted state were smaller than those in the weighted state

  4. Preparatory Body State before Reacting to an Opponent: Short-Term Joint Torque Fluctuation in Real-Time Competitive Sports.

    PubMed

    Fujii, Keisuke; Yamashita, Daichi; Kimura, Tetsuya; Isaka, Tadao; Kouzaki, Motoki

    2015-01-01

    In a competitive sport, the outcome of a game is determined by an athlete's relationship with an unpredictable and uncontrolled opponent. We have previously analyzed the preparatory state of ground reaction forces (GRFs) dividing non-weighted and weighted states (i.e., vertical GRFs below and above 120% of body weight, respectively) in a competitive ballgame task and demonstrated that the non-weighted state prevented delay of the defensive step and promoted successful guarding. However, the associated kinetics of lower extremity joints during a competitive sports task remains unknown. The present study aims to investigate the kinetic characteristics of a real-time competitive sport before movement initiation. As a first kinetic study on a competitive sport, we initially compared the successful defensive kinetics with a relatively stable preparatory state and the choice-reaction sidestep as a control movement. Then, we investigated the kinetic cause of the outcome in a 1-on-1 dribble in terms of the preparatory states according to our previous study. The results demonstrated that in successful defensive motions in the non-weighted state guarding trial, the times required for the generation of hip abduction and three extension torques for the hip, knee, and ankle joints were significantly shortened compared with the choice-reaction sidestep, and hip abduction and hip extension torques were produced almost simultaneously. The sport-specific movement kinetics emerges only in a more-realistic interactive experimental setting. A comparison of the outcomes in the 1-on-1 dribble and preparatory GRF states showed that, in the non-weighted state, the defenders guarded successfully in 68.0% of the trials, and the defender's initiation time was earlier than that in the weighted state (39.1%). In terms of kinetics, the root mean squares of the derivative of hip abduction and three extension torques in the non-weighted state were smaller than those in the weighted state

  5. Development of a Spoke Type Torque Sensor Using Painting Carbon Nanotube Strain Sensors.

    PubMed

    Kim, Sung Yong; Park, Se Hoon; Choi, Baek Gyu; Kang, In Hyuk; Park, Sang Wook; Shin, Jeong Woo; Kim, Jin Ho; Baek, Woon Kyung; Lim, Kwon Taek; Kim, Young-Ju; Song, Jae-Bok; Kang, Inpil

    2018-03-01

    This study reports a hub-spoke type joint torque sensor involving strain gauges made of multiwalled carbon nanotubes (MWCNT). We developed the novel joint torque sensor for robots by means of MWCNT/epoxy strain sensors (0.8 wt%, gauge factor 2) to overcome the limits of conventional foil strain gauges. Solution mixing process was hired to fabricate a liquid strain sensor that can easily be installed on any complicated surfaces. We painted the MWCNT/epoxy mixing liquid on the hub-spoke type joint torque sensor to form the piezoresistive strain gauges. The painted sensor converted its strain into torque by mean of the installed hub-spoke structure after signal processing. We acquired sufficient torque voltage responses from the painted MWCNT/epoxy strain sensor.

  6. Spacesuit mobility joints

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C. (Inventor)

    1978-01-01

    Joints for use in interconnecting adjacent segments of an hermetically sealed spacesuit which have low torques, low leakage and a high degree of reliability are described. Each of the joints is a special purpose joint characterized by substantially constant volume and low torque characteristics. Linkages which restrain the joint from longitudinal distension and a flexible, substantially impermeable diaphragm of tubular configuration spanning the distance between pivotally supported annuli are featured. The diaphragms of selected joints include rolling convolutions for balancing the joints, while various joints include wedge-shaped sections which enhance the range of motion for the joints.

  7. Torque Control of Underactuated Tendon-driven Robotic Fingers

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Wampler, Charles W. (Inventor); Abdallah, Muhammad E. (Inventor); Reiland, Matthew J. (Inventor); Diftler, Myron A. (Inventor); Bridgwater, Lyndon (Inventor); Platt, Robert (Inventor)

    2013-01-01

    A robotic system includes a robot having a total number of degrees of freedom (DOF) equal to at least n, an underactuated tendon-driven finger driven by n tendons and n DOF, the finger having at least two joints, being characterized by an asymmetrical joint radius in one embodiment. A controller is in communication with the robot, and controls actuation of the tendon-driven finger using force control. Operating the finger with force control on the tendons, rather than position control, eliminates the unconstrained slack-space that would have otherwise existed. The controller may utilize the asymmetrical joint radii to independently command joint torques. A method of controlling the finger includes commanding either independent or parameterized joint torques to the controller to actuate the fingers via force control on the tendons.

  8. Methodology for Determining Limit Torques for Threaded Fasteners

    NASA Technical Reports Server (NTRS)

    Hissam, Andy

    2011-01-01

    In aerospace design, where minimizing weight is always a priority, achieving the full capacity from fasteners is essential. To do so, the initial bolt preload must be maximized. The benefits of high preload are well documented and include improved fatigue resistance, a stiffer joint, and resistance to loosening. But many factors like elastic interactions and embedment tend to lower the initial preload placed on the bolt. These factors provide additional motivation to maximize the initial preload. But, to maximize bolt preload, you must determine what torque to apply. Determining this torque is greatly complicated by the large preload scatter generally seen with torque control. This paper presents a detailed methodology for generating limit torques for threaded fasteners. This methodology accounts for the large scatter in preload found with torque control, and therefore, addresses the statistical nature of the problem. It also addresses prevailing torque, a feature common in aerospace fasteners. Although prevailing torque provides a desired locking feature, it can also increase preload scatter. In addition, it can limit the amount of preload that can be generated due to the torsion it creates in the bolt. This paper discusses the complications of prevailing torque and how best to handle it. A wide range of torque-tension bolt testing was conducted in support of this research. The results from this research will benefit the design engineer as well as analyst involved in the design of bolted joints, leading to better, more optimized structural designs.

  9. Analysis of joint force and torque for the human and non-human ape foot during bipedal walking with implications for the evolution of the foot.

    PubMed

    Wang, Weijie; Abboud, Rami J; Günther, Michael M; Crompton, Robin H

    2014-08-01

    The feet of apes have a different morphology from those of humans. Until now, it has merely been assumed that the morphology seen in humans must be adaptive for habitual bipedal walking, as the habitual use of bipedal walking is generally regarded as one of the most clear-cut differences between humans and apes. This study asks simply whether human skeletal proportions do actually enhance foot performance during human-like bipedalism, by examining the influence of foot proportions on force, torque and work in the foot joints during simulated bipedal walking. Skeletons of the common chimpanzee, orangutan, gorilla and human were represented by multi-rigid-body models, where the components of the foot make external contact via finite element surfaces. The models were driven by identical joint motion functions collected from experiments on human walking. Simulated contact forces between the ground and the foot were found to be reasonably comparable with measurements made during human walking using pressure- and force-platforms. Joint force, torque and work in the foot were then predicted. Within the limitations of our model, the results show that during simulated human-like bipedal walking, (1) the human and non-human ape (NHA) feet carry similar joint forces, although the distributions of the forces differ; (2) the NHA foot incurs larger joint torques than does the human foot, although the human foot has higher values in the first tarso-metatarsal and metatarso-phalangeal joints, whereas the NHA foot incurs higher values in the lateral digits; and (3) total work in the metatarso-phalangeal joints is lower in the human foot than in the NHA foot. The results indicate that human foot proportions are indeed well suited to performance in normal human walking. © 2014 Anatomical Society.

  10. Analysis of joint force and torque for the human and non-human ape foot during bipedal walking with implications for the evolution of the foot

    PubMed Central

    Wang, Weijie; Abboud, Rami J; Günther, Michael M; Crompton, Robin H

    2014-01-01

    The feet of apes have a different morphology from those of humans. Until now, it has merely been assumed that the morphology seen in humans must be adaptive for habitual bipedal walking, as the habitual use of bipedal walking is generally regarded as one of the most clear-cut differences between humans and apes. This study asks simply whether human skeletal proportions do actually enhance foot performance during human-like bipedalism, by examining the influence of foot proportions on force, torque and work in the foot joints during simulated bipedal walking. Skeletons of the common chimpanzee, orangutan, gorilla and human were represented by multi-rigid-body models, where the components of the foot make external contact via finite element surfaces. The models were driven by identical joint motion functions collected from experiments on human walking. Simulated contact forces between the ground and the foot were found to be reasonably comparable with measurements made during human walking using pressure- and force-platforms. Joint force, torque and work in the foot were then predicted. Within the limitations of our model, the results show that during simulated human-like bipedal walking, (1) the human and non-human ape (NHA) feet carry similar joint forces, although the distributions of the forces differ; (2) the NHA foot incurs larger joint torques than does the human foot, although the human foot has higher values in the first tarso-metatarsal and metatarso-phalangeal joints, whereas the NHA foot incurs higher values in the lateral digits; and (3) total work in the metatarso-phalangeal joints is lower in the human foot than in the NHA foot. The results indicate that human foot proportions are indeed well suited to performance in normal human walking. PMID:24925580

  11. Changes in pennation with joint angle and muscle torque: in vivo measurements in human brachialis muscle.

    PubMed Central

    Herbert, R D; Gandevia, S C

    1995-01-01

    1. Estimates of pennation in human muscles are usually obtained from cadavers. In this study, pennation of human brachialis was measured in vivo using sonography. Effects of static and dynamic changes in elbow angle and torque were investigated. 2. Pennation was measured in eight subjects using an 80 mm, 5 MHz, linear-array ultrasound transducer to generate sagittal images of the brachialis during maximal and submaximal isometric contractions at various elbow angles. It was shown that estimates of pennation were reproducible, representative of measurements made throughout the belly of the muscle and not distorted by compression of the muscle with the transducer or rotation of the muscle out of the plane of the transducer. 3. Mean resting pennation was 9.0 +/- 2.0 deg (S.D., range 6.5-12.9 deg). When the muscle was relaxed there was no effect of elbow angle on pennation. However, during a maximal isometric contraction (MVC), with the elbow flexed to 90 deg, pennation increased non-linearly with elbow torque to between 22 and 30 deg (mean 24.7 +/- 2.4 deg). The effect of increasing torque was small when the elbow was fully extended. The relationship between elbow angle, elbow torque and brachialis pennation suggests that the relaxed brachialis muscle is slack over much of its physiological range of lengths. 4. There was no hysteresis in the relationship between torque and pennation during slow isometric contractions (0.2 MVC s-1), and the relationship between elbow angle and pennation was similar during slow shortening and lengthening contractions. 5. Two consequences follow from these findings. Firstly, intramuscular mechanics are complex and simple planar models of muscles underestimate the increases in pennation which occur during muscle contraction. Second, spindle afferents from relaxed muscles may not encode joint angle over the full range of movement. Images Figure 2 PMID:7602542

  12. Modelling the joint torques and loadings during squatting at the Smith machine.

    PubMed

    Biscarini, Andrea; Benvenuti, Paolo; Botti, Fabio; Mastrandrea, Francesco; Zanuso, Silvano

    2011-03-01

    An analytical biomechanical model was developed to establish the relevant properties of the Smith squat exercise, and the main differences from the free barbell squat. The Smith squat may be largely patterned to modulate the distributions of muscle activities and joint loadings. For a given value of the included knee angle (θ(knee)), bending the trunk forward, moving the feet forward in front of the knees, and displacing the weight distribution towards the forefoot emphasizes hip and lumbosacral torques, while also reducing knee torque and compressive tibiofemoral and patellofemoral forces (and vice versa). The tibiofemoral shear force φ(t) displays more complex trends that strongly depend on θ(knee). Notably, for 180° ≥ θ(knee) ≥ 130°, φ(t) and cruciate ligament strain forces can be suppressed by selecting proper pairs of ankle and hip angles. Loading of the posterior cruciate ligament increases (decreases) in the range 180° ≥ θ(knee) ≥ 150° (θ(knee) ≤ 130°) with knee extension, bending the trunk forward, and moving the feet forward in front of the knees. In the range 150° > θ(knee) > 130°, the behaviour changes depending on the foot weight distribution. The conditions for the development of anterior cruciate ligament strain forces are explained. This work enables careful use of the Smith squat in strengthening and rehabilitation programmes.

  13. Spacesuit mobility knee joints

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C. (Inventor)

    1979-01-01

    Pressure suit mobility joints are for use in interconnecting adjacent segments of an hermetically sealed spacesuit in which low torques, low leakage and a high degree of reliability are required. Each of the joints is a special purpose joint characterized by substantially constant volume and low torque characteristics and includes linkages which restrain the joint from longitudinal distension and includes a flexible, substantially impermeable diaphragm of tubular configuration spanning the distance between pivotally supported annuli. The diaphragms of selected joints include rolling convolutions for balancing the joints, while various joints include wedge-shaped sections which enhance the range of motion for the joints.

  14. Enhanced precision of ankle torque measure with an open-unit dynamometer mounted with a 3D force-torque sensor.

    PubMed

    Toumi, A; Leteneur, S; Gillet, C; Debril, J-F; Decoufour, N; Barbier, F; Jakobi, J M; Simoneau-Buessinger, Emilie

    2015-11-01

    Many studies have focused on maximum torque exerted by ankle joint muscles during plantar flexion. While strength parameters are typically measured with isokinetic or isolated ankle dynamometers, these devices often present substantial limitations for the measurement of torque because they account for force in only 1 dimension (1D), and the device often constrains the body in a position that augments torque through counter movements. The purposes of this study were to determine the contribution of body position to ankle plantar-flexion torque and to assess the use of 1D and 3D torque sensors. A custom designed 'Booted, Open-Unit, Three dimension, Transportable, Ergometer' (B.O.T.T.E.) was used to quantify plantar flexion in two conditions: (1) when the participant was restrained within the unit (locked-unit) and (2) when the participant's position was independent of the ankle dynamometer (open-unit). Ten young males performed maximal voluntary isometric plantar-flexion contractions using the B.O.T.T.E. in open and locked-unit mechanical configurations. The B.O.T.T.E. was reliable with ICC higher than 0.90, and CV lower than 7 %. The plantar-flexion maximal resultant torque was significantly higher in the locked-unit compared with open-unit configuration (P < 0.001; +61 to +157 %) due to the addition of forces from the body being constrained within the testing device. A 1D compared with 3D torque sensor significantly underestimated the proper capacity of plantar-flexion torque production (P < 0.001; -37 to -60 %). Assessment of plantar-flexion torque should be performed with an open-unit dynamometer mounted with a 3D sensor that is exclusive of accessory muscles but inclusive of all ankle joint movements.

  15. Torque Control of a Rehabilitation Teaching Robot Using Magneto-Rheological Fluid Clutches

    NASA Astrophysics Data System (ADS)

    Hakogi, Hokuto; Ohaba, Motoyoshi; Kuramochi, Naimu; Yano, Hidenori

    A new robot that makes use of MR-fluid clutches for simulating torque is proposed to provide an appropriate device for training physical therapy students in knee-joint rehabilitation. The feeling of torque provided by the robot is expected to correspond to the torque performance obtained by physical therapy experts in a clinical setting. The torque required for knee-joint rehabilitation, which is a function of the rotational angle and the rotational angular velocity of a knee movement, is modeled using a mechanical system composed of typical spring-mass-damper elements. The robot consists of two MR-fluid clutches, two induction motors, and a feedback control system. In the torque experiments, output torque is controlled using the spring and damper coefficients separately. The values of these coefficients are determined experimentally. The experimental results show that the robot would be suitable for training physical therapy students to experience similar torque feelings as needed in a clinical situation.

  16. Biomechanical design of escalading lower limb exoskeleton with novel linkage joints.

    PubMed

    Zhang, Guoan; Liu, Gangfeng; Ma, Sun; Wang, Tianshuo; Zhao, Jie; Zhu, Yanhe

    2017-07-20

    In this paper, an obstacle-surmounting-enabled lower limb exoskeleton with novel linkage joints that perfectly mimicked human motions was proposed. Currently, most lower exoskeletons that use linear actuators have a direct connection between the wearer and the controlled part. Compared to the existing joints, the novel linkage joint not only fitted better into compact chasis, but also provided greater torque when the joint was at a large bend angle. As a result, it extended the angle range of joint peak torque output. With any given power, torque was prioritized over rotational speed, because instead of rotational speed, sufficiency of torque is the premise for most joint actions. With insufficient torque, the exoskeleton will be a burden instead of enhancement to its wearer. With optimized distribution of torque among the joints, the novel linkage method may contribute to easier exoskeleton movements.

  17. Torque Limit for Bolted Joint for Composites. Part A; TTTC Properties of Laminated Composites

    NASA Technical Reports Server (NTRS)

    Zhao, Yi

    2003-01-01

    The existing design code for torque limit of bolted joints for composites at Marshall Space Flight Center is MSFC-STD-486B, which was originally developed in 1960s for metallic materials. The theoretical basis for this code was a simplified mechanics analysis, which takes into account only the bolt, nut and washers, but not the structural members to be connected. The assumption was that metallic materials would not fail due to the bearing stress at the contact area between washer and the mechanical member. This is true for metallic materials; but for composite materials the results could be completely different. Unlike most metallic materials, laminated composite materials have superior mechanical properties (such as modulus and strength) in the in-plane direction, but not in the out-of-plane, or through-the-thickness (TTT) direction. During the torquing, TTT properties (particularly compressive modulus and compressive strength) play a dominant role in composite failure. Because of this concern, structural design engineers at Marshall are currently using a compromised empirical approach: using 50% of the torque value for composite members. Companies like Boeing is using a similar approach. An initial study was conducted last summer on this topic to develop theoretical model(s) that takes into consideration of composite members. Two simplified models were developed based on stress failure criterion and strain failure criterion, respective. However, these models could not be used to predict the torque limit because of the unavailability of material data, specifically, through-the-thickness compression (TTTC) modulus and strength. Therefore, the task for this summer is to experimentally determine the TTTC properties. Due to the time limitation, only one material has been tested: IM7/8552 with [0 degrees,plus or minus 45 degrees, 90 degree ] configuration. This report focuses the test results and their significance, while the experimentation will be described in a

  18. Measurement of strain and tensile force of the supraspinatus tendon under conditions that simulates low angle isometric elevation of the gleno-humeral joint: Influence of adduction torque and joint positioning.

    PubMed

    Miyamoto, Hiroki; Aoki, Mitsuhiro; Hidaka, Egi; Fujimiya, Mineko; Uchiyama, Eiichi

    2017-12-01

    Recently, supraspinatus muscle exercise has been reported to treat rotator cuff disease and to recover shoulder function. However, there have been no report on the direct measurement of strain on the supraspinatus tendon during simulated isometric gleno-humeral joint elevation. Ten fresh-frozen shoulder specimens with the rotator cuff complex left intact were used as experimental models. Isometric gleno-humeral joint elevation in a sitting position was reproduced with low angle of step-by-step elevation in the scapular plane and strain was measured on the surface layer of the supraspinatus tendon. In isometric conditions, applied tensile force of the supraspinatus tendon increased significantly with increases in adduction torque on the gleno-humeral joint. Significant increases in the strain on the layer were observed by increase in adduction torque, which were recorded in isometric elevation at -10° and 0°, but little increase in the strain was observed at 10° or greater gleno-humeral elevation. Increased strain on the surface layer of the supraspinatus tendon was observed during isometric gleno-humeral elevation from -10 to 0°. These findings demonstrate a potential risk of inducing overstretching of the supraspinatus tendon during supraspinatus muscle exercise. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A Computational Model of Torque Generation: Neural, Contractile, Metabolic and Musculoskeletal Components

    PubMed Central

    Callahan, Damien M.; Umberger, Brian R.; Kent-Braun, Jane A.

    2013-01-01

    The pathway of voluntary joint torque production includes motor neuron recruitment and rate-coding, sarcolemmal depolarization and calcium release by the sarcoplasmic reticulum, force generation by motor proteins within skeletal muscle, and force transmission by tendon across the joint. The direct source of energetic support for this process is ATP hydrolysis. It is possible to examine portions of this physiologic pathway using various in vivo and in vitro techniques, but an integrated view of the multiple processes that ultimately impact joint torque remains elusive. To address this gap, we present a comprehensive computational model of the combined neuromuscular and musculoskeletal systems that includes novel components related to intracellular bioenergetics function. Components representing excitatory drive, muscle activation, force generation, metabolic perturbations, and torque production during voluntary human ankle dorsiflexion were constructed, using a combination of experimentally-derived data and literature values. Simulation results were validated by comparison with torque and metabolic data obtained in vivo. The model successfully predicted peak and submaximal voluntary and electrically-elicited torque output, and accurately simulated the metabolic perturbations associated with voluntary contractions. This novel, comprehensive model could be used to better understand impact of global effectors such as age and disease on various components of the neuromuscular system, and ultimately, voluntary torque output. PMID:23405245

  20. Oscillation of the human ankle joint in response to applied sinusoidal torque on the foot

    PubMed Central

    Agarwal, Gyan C.; Gottlieb, Gerald L.

    1977-01-01

    1. Low-frequency (3-30 Hz) oscillatory rotation of the ankle joint in plantarflexion—dorsiflexion was generated with a torque motor. Torque, rotation about the ankle and electromyograms (e.m.g.s) for the gastrocnemius—soleus and the anterior tibial muscles were recorded. 2. Fourier coefficients at each drive frequency were used to calculate the effective compliance (ratio of rotation and torque). The compliance has a sharp resonance when tonic, voluntary muscle activity is present. 3. The resonant frequency of compliance is between 3 and 8 Hz. The location of the resonant frequency and the magnitude of the compliance at resonance depend upon both the degree of tonic muscle activity and the amplitude of the driving torque. The resonant frequency increases with increasing tonic activity. 4. With tonic muscle activity, the compliance in the frequency range below resonance increases with increasing amplitudes of driving torque. 5. The e.m.g., when evoked by the rhythmic stretch, lags the start of stretching by between 50 and 70 msec. 6. When tonic muscle activity is present, the resonant frequency of the stretch reflex is between 5 and 6·5 Hz. 7. Following the start of driven oscillation at frequencies near resonance, slowly increasing amplitudes of angular rotation (to a limit) are observed. 8. Distortion (from the sinusoidal wave shape) of angular rotation is frequently observed with drive frequencies between 8 and 12 Hz during which there sometimes occur spontaneous recurrences of oscillation at the drive frequency. For the angular rotation, a significant portion of the power may be in subharmonic frequency components of the drive frequency when that frequency is between 8 and 12 Hz. 9. Self-sustaining oscillation (clonus) near the resonant frequency of the compliance is sometimes observed after the modulation signal to the motor is turned off. This is most often seen when the gastrocnemius—soleus muscles are fatigued. Clonus may be evoked by driven

  1. Torque Measurement of 3-DOF Haptic Master Operated by Controllable Electrorheological Fluid

    NASA Astrophysics Data System (ADS)

    Oh, Jong-Seok; Choi, Seung-Bok; Lee, Yang-Sub

    2015-02-01

    This work presents a torque measurement method of 3-degree-of-freedom (3-DOF) haptic master featuring controllable electrorheological (ER) fluid. In order to reflect the sense of an organ for a surgeon, the ER haptic master which can generate the repulsive torque of an organ is utilized as a remote controller for a surgery robot. Since accurate representation of organ feeling is essential for the success of the robot-assisted surgery, it is indispensable to develop a proper torque measurement method of 3-DOF ER haptic master. After describing the structural configuration of the haptic master, the torque models of ER spherical joint are mathematically derived based on the Bingham model of ER fluid. A new type of haptic device which has pitching, rolling, and yawing motions is then designed and manufactured using a spherical joint mechanism. Subsequently, the field-dependent parameters of the Bingham model are identified and generating repulsive torque according to applied electric field is measured. In addition, in order to verify the effectiveness of the proposed torque model, a comparative work between simulated and measured torques is undertaken.

  2. Estimation of Time-Varying, Intrinsic and Reflex Dynamic Joint Stiffness during Movement. Application to the Ankle Joint

    PubMed Central

    Guarín, Diego L.; Kearney, Robert E.

    2017-01-01

    Dynamic joint stiffness determines the relation between joint position and torque, and plays a vital role in the control of posture and movement. Dynamic joint stiffness can be quantified during quasi-stationary conditions using disturbance experiments, where small position perturbations are applied to the joint and the torque response is recorded. Dynamic joint stiffness is composed of intrinsic and reflex mechanisms that act and change together, so that nonlinear, mathematical models and specialized system identification techniques are necessary to estimate their relative contributions to overall joint stiffness. Quasi-stationary experiments have demonstrated that dynamic joint stiffness is heavily modulated by joint position and voluntary torque. Consequently, during movement, when joint position and torque change rapidly, dynamic joint stiffness will be Time-Varying (TV). This paper introduces a new method to quantify the TV intrinsic and reflex components of dynamic joint stiffness during movement. The algorithm combines ensemble and deterministic approaches for estimation of TV systems; and uses a TV, parallel-cascade, nonlinear system identification technique to separate overall dynamic joint stiffness into intrinsic and reflex components from position and torque records. Simulation studies of a stiffness model, whose parameters varied with time as is expected during walking, demonstrated that the new algorithm accurately tracked the changes in dynamic joint stiffness using as little as 40 gait cycles. The method was also used to estimate the intrinsic and reflex dynamic ankle stiffness from an experiment with a healthy subject during which ankle movements were imposed while the subject maintained a constant muscle contraction. The method identified TV stiffness model parameters that predicted the measured torque very well, accounting for more than 95% of its variance. Moreover, both intrinsic and reflex dynamic stiffness were heavily modulated through the

  3. Power Doppler Ultrasound Evaluation of Peripheral Joint, Entheses, Tendon, and Bursa Abnormalities in Psoriatic Patients: A Clinical Study.

    PubMed

    Tang, Yuanjiao; Yang, Yujia; Xiang, Xi; Wang, Liyun; Zhang, Lingyan; Qiu, Li

    2018-06-01

    To evaluate the prevalence rates of peripheral joint, enthesis, tendon, and bursa abnormalities by power Doppler (PD) ultrasonic examination in patients with psoriatic arthritis (PsA), psoriatic patients without clinical signs of arthritis (non-PsA psoriasis group), and healthy individuals, to detect subclinical PsA. A total of 253 healthy volunteers, 242 non-PsA psoriatic patients, and 86 patients with PsA were assessed by 2-dimensional and power Doppler (PD) ultrasound. Peripheral joint, enthesis, tendon, and bursa abnormalities were observed, characterizing abnormal PD. The affected patients and sites with abnormalities in various ages were compared among groups; PD signal grades for the abnormalities were also compared. In the PsA group, significantly higher percentages of sites showing joint effusion/synovitis, enthesitis, and tenosynovitis in all age groups, and markedly higher rates of sites with bursitis were found in young and middle age groups, compared with the non-PsA and control groups (all p < 0.01). Meanwhile, the non-PsA group showed significantly higher rates of joint effusion/synovitis and enthesitis sites, and elevated PD signal grades of synovitis, enthesitis, and tenosynovitis in comparison with the control group, both in young and middle age groups (all p < 0.01). Patients with PsA have high percentages and PD signal grades of peripheral joint, tendon, enthesis, and bursa involvement. Young and middle-aged non-PsA patients have high synovitis and enthesitis percentages, and elevated PD signal grades of synovitis, enthesitis, and tenosynovitis.

  4. Activation of plantar flexor muscles is constrained by multiple muscle synergies rather than joint torques

    PubMed Central

    Suzuki, Takahito; Kinugasa, Ryuta; Fukashiro, Senshi

    2017-01-01

    Behavioral evidence has suggested that a small number of muscle synergies may be responsible for activating a variety of muscles. Nevertheless, such dimensionality reduction may also be explained using the perspective of alternative hypotheses, such as predictions based on linear combinations of joint torques multiplied by corresponding coefficients. To compare the explanatory capacity of these hypotheses for describing muscle activation, we enrolled 12 male volunteers who performed isometric plantar flexor contractions at 10–100% of maximum effort. During each plantar flexor contraction, the knee extensor muscles were isometrically contracted at 0%, 50%, or 100% of maximum effort. Electromyographic activity was recorded from the vastus lateralis, medial gastrocnemius (MG), lateral gastrocnemius (LG), and soleus muscles and quantified using the average rectified value (ARV). At lower plantar flexion torque, regression analysis identified a clear linear relationship between the MG and soleus ARVs and between the MG and LG ARVs, suggesting the presence of muscle synergy (r2 > 0.65). The contraction of the knee extensor muscles induced a significant change in the slope of this relationship for both pairs of muscles (MG × soleus, P = 0.002; MG × LG, P = 0.006). Similarly, the slope of the linear relationship between the plantar flexion torque and the ARV of the MG or soleus changed significantly with knee extensor contraction (P = 0.031 and P = 0.041, respectively). These results suggest that muscle synergies characterized by non-mechanical constraints are selectively recruited according to whether contraction of the knee extensor muscles is performed simultaneously, which is relatively consistent with the muscle synergy hypothesis. PMID:29107958

  5. Torque-Limiting Infinitely-Variable CAM Release Mechanism for a Rotatable Joint

    NASA Technical Reports Server (NTRS)

    Moetteli, John B. (Inventor)

    1997-01-01

    The invention relates to a mechanism for permitting convenient manual or servo-powered control of a boom assembly, which is rotatably positionable about yaw and pitch axes by means of releasably locking, yaw and pitch torque-limiting mechanisms, each of which may be locked, unlocked, and positioned by respective yaw and pitch levers. The boom may be longitudinally projected and withdrawn by rotating a boom extension/retraction crank. Torque limiting is provided by spring loaded clutch mechanisms, whereby positioning forces applied to the handles are effective to move the boom unless overcome by greater opposing forces, sufficient to overcome the torque applied by the torque limiting clutch mechanisms. In operation, a structure positionable by the invention (e.g., and end-effector or robot arm) may be rotatably moved about yaw and pitch axes by moving a selected one of the three levers.

  6. Mechanics of Re-Torquing in Bolted Flange Connections

    NASA Technical Reports Server (NTRS)

    Gordon, Ali P.; Drilling Brian; Weichman, Kyle; Kammerer, Catherine; Baldwin, Frank

    2010-01-01

    It has been widely accepted that the phenomenon of time-dependent loosening of flange connections is a strong consequence of the viscous nature of the compression seal material. Characterizing the coupled interaction between gasket creep and elastic bolt stiffness has been useful in predicting conditions that facilitate leakage. Prior advances on this sub-class of bolted joints has lead to the development of (1) constitutive models for elastomerics, (2) initial tightening strategies, (3) etc. The effect of re-torque, which is a major consideration for typical bolted flange seals used on the Space Shuttle fleet, has not been fully characterized, however. The current study presents a systematic approach to characterizing bolted joint behavior as the consequence of sequentially applied torques. Based on exprimenta1 and numerical results, the optimal re-torquing parameters have been identified that allow for the negligible load loss after pre-load application

  7. Tracking control of time-varying knee exoskeleton disturbed by interaction torque.

    PubMed

    Li, Zhan; Ma, Wenhao; Yin, Ziguang; Guo, Hongliang

    2017-11-01

    Knee exoskeletons have been increasingly applied as assistive devices to help lower-extremity impaired people to make their knee joints move through providing external movement compensation. Tracking control of knee exoskeletons guided by human intentions often encounters time-varying (time-dependent) issues and the disturbance interaction torque, which may dramatically put an influence up on their dynamic behaviors. Inertial and viscous parameters of knee exoskeletons can be estimated to be time-varying due to unexpected mechanical vibrations and contact interactions. Moreover, the interaction torque produced from knee joint of wearers has an evident disturbance effect on regular motions of knee exoskeleton. All of these points can increase difficultly of accurate control of knee exoskeletons to follow desired joint angle trajectories. This paper proposes a novel control strategy for controlling knee exoskeleton with time-varying inertial and viscous coefficients disturbed by interaction torque. Such designed controller is able to make the tracking error of joint angle of knee exoskeletons exponentially converge to zero. Meanwhile, the proposed approach is robust to guarantee the tracking error bounded when the interaction torque exists. Illustrative simulation and experiment results are presented to show efficiency of the proposed controller. Additionally, comparisons with gradient dynamic (GD) approach and other methods are also presented to demonstrate efficiency and superiority of the proposed control strategy for tracking joint angle of knee exoskeleton. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. A structurally decoupled mechanism for measuring wrist torque in three degrees of freedom

    NASA Astrophysics Data System (ADS)

    Pan, Lizhi; Yang, Zhen; Zhang, Dingguo

    2015-10-01

    The wrist joint is a critical part of the human body for movement. Measuring the torque of the wrist with three degrees of freedom (DOFs) is important in some fields, including rehabilitation, biomechanics, ergonomics, and human-machine interfacing. However, the particular structure of the wrist joint makes it difficult to measure the torque in all three directions simultaneously. This work develops a structurally decoupled instrument for measuring and improving the measurement accuracy of 3-DOF wrist torque during isometric contraction. Three single-axis torque sensors were embedded in a customized mechanical structure. The dimensions and components of the instrument were designed based on requirement of manufacturability. A prototype of the instrument was machined, assembled, integrated, and tested. The results show that the structurally decoupled mechanism is feasible for acquiring wrist torque data in three directions either independently or simultaneously. As a case study, we use the device to measure wrist torques concurrently with electromyography signal acquisition in preparation for simultaneous and proportional myoelectric control of prostheses.

  9. A structurally decoupled mechanism for measuring wrist torque in three degrees of freedom.

    PubMed

    Pan, Lizhi; Yang, Zhen; Zhang, Dingguo

    2015-10-01

    The wrist joint is a critical part of the human body for movement. Measuring the torque of the wrist with three degrees of freedom (DOFs) is important in some fields, including rehabilitation, biomechanics, ergonomics, and human-machine interfacing. However, the particular structure of the wrist joint makes it difficult to measure the torque in all three directions simultaneously. This work develops a structurally decoupled instrument for measuring and improving the measurement accuracy of 3-DOF wrist torque during isometric contraction. Three single-axis torque sensors were embedded in a customized mechanical structure. The dimensions and components of the instrument were designed based on requirement of manufacturability. A prototype of the instrument was machined, assembled, integrated, and tested. The results show that the structurally decoupled mechanism is feasible for acquiring wrist torque data in three directions either independently or simultaneously. As a case study, we use the device to measure wrist torques concurrently with electromyography signal acquisition in preparation for simultaneous and proportional myoelectric control of prostheses.

  10. The Effect of Manipulating Subject Mass on Lower Extremity Torque Patterns During Locomotion

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Cromwell, Ronita L.; Hagan, R. Donald

    2007-01-01

    During locomotion, humans adapt their motor patterns to maintain coordination despite changing conditions (Reisman et al., 2005). Bernstein (1967) proposed that in addition to the present state of a given joint, other factors, including limb inertia and velocity, must be taken into account to allow proper motion to occur. During locomotion with added mass counterbalanced using vertical suspension to maintain body weight, vertical ground reaction forces (GRF's) increase during walking but decrease during running, suggesting that adaptation may be velocity-specific (De Witt et al., 2006). It is not known, however, how lower extremity joint torques adapt to changes in inertial forces. The purpose of this investigation was to examine the effects of increasing body mass while maintaining body weight upon lower-limb joint torque during walking and running. We hypothesized that adaptations in joint torque patterns would occur with the addition of body mass.

  11. Spinal circuits can accommodate interaction torques during multijoint limb movements.

    PubMed

    Buhrmann, Thomas; Di Paolo, Ezequiel A

    2014-01-01

    The dynamic interaction of limb segments during movements that involve multiple joints creates torques in one joint due to motion about another. Evidence shows that such interaction torques are taken into account during the planning or control of movement in humans. Two alternative hypotheses could explain the compensation of these dynamic torques. One involves the use of internal models to centrally compute predicted interaction torques and their explicit compensation through anticipatory adjustment of descending motor commands. The alternative, based on the equilibrium-point hypothesis, claims that descending signals can be simple and related to the desired movement kinematics only, while spinal feedback mechanisms are responsible for the appropriate creation and coordination of dynamic muscle forces. Partial supporting evidence exists in each case. However, until now no model has explicitly shown, in the case of the second hypothesis, whether peripheral feedback is really sufficient on its own for coordinating the motion of several joints while at the same time accommodating intersegmental interaction torques. Here we propose a minimal computational model to examine this question. Using a biomechanics simulation of a two-joint arm controlled by spinal neural circuitry, we show for the first time that it is indeed possible for the neuromusculoskeletal system to transform simple descending control signals into muscle activation patterns that accommodate interaction forces depending on their direction and magnitude. This is achieved without the aid of any central predictive signal. Even though the model makes various simplifications and abstractions compared to the complexities involved in the control of human arm movements, the finding lends plausibility to the hypothesis that some multijoint movements can in principle be controlled even in the absence of internal models of intersegmental dynamics or learned compensatory motor signals.

  12. Effect of Repeated Screw Joint Closing and Opening Cycles and Cyclic Loading on Abutment Screw Removal Torque and Screw Thread Morphology: Scanning Electron Microscopy Evaluation.

    PubMed

    Arshad, Mahnaz; Mahgoli, Hosseinali; Payaminia, Leila

    To evaluate the effect of repeated screw joint closing and opening cycles and cyclic loading on abutment screw removal torque and screw thread morphology using scanning electron microscopy (SEM). Three groups (n = 10 in each group) of implant-abutment-abutment screw assemblies were created. There were also 10 extra abutment screws as new screws in group 3. The abutment screws were tightened to 12 Ncm with an electronic torque meter; then they were removed and removal torque values were recorded. This sequence was repeated 5 times for group 1 and 15 times for groups 2 and 3. The same screws in groups 1 and 2 and the new screws in group 3 were then tightened to 12 Ncm; this was also followed by screw tightening to 30 Ncm and retightening to 30 Ncm 15 minutes later. Removal torque measurements were performed after screws were subjected to cyclic loading (0.5 × 10⁶ cycles; 1 Hz; 75 N). Moreover, the surface topography of one screw from each group before and after cyclic loading was evaluated with SEM and compared with an unused screw. All groups exhibited reduced removal torque values in comparison to insertion torque in each cycle. However, there was a steady trend of torque loss in each group. A comparison of the last cycle of the groups before loading showed significantly greater torque loss value in the 15th cycle of groups 2 and 3 compared with the fifth cycle of group 1 (P < .05). Nonetheless, torque loss values after loading were not shown to be significantly different from each other. Using a new screw could not significantly increase the value of removal torque. It was concluded that restricting the amount of screw tightening is more important than replacing the screw with a new one when an abutment is definitively placed.

  13. AX-5 space suit bearing torque investigation

    NASA Technical Reports Server (NTRS)

    Loewenthal, Stuart; Vykukal, Vic; Mackendrick, Robert; Culbertson, Philip, Jr.

    1990-01-01

    The symptoms and eventual resolution of a torque increase problem occurring with ball bearings in the joints of the AX-5 space suit are described. Starting torques that rose 5 to 10 times initial levels were observed in crew evaluation tests of the suit in a zero-g water tank. This bearing problem was identified as a blocking torque anomaly, observed previously in oscillatory gimbal bearings. A large matrix of lubricants, ball separator designs and materials were evaluated. None of these combinations showed sufficient tolerance to lubricant washout when repeatedly cycled in water. The problem was resolved by retrofitting a pressure compensated, water exclusion seal to the outboard side of the bearing cavity. The symptoms and possible remedies to blocking are discussed.

  14. Relation between Peak Power Output in Sprint Cycling and Maximum Voluntary Isometric Torque Production.

    PubMed

    Kordi, Mehdi; Goodall, Stuart; Barratt, Paul; Rowley, Nicola; Leeder, Jonathan; Howatson, Glyn

    2017-08-01

    From a cycling paradigm, little has been done to understand the relationships between maximal isometric strength of different single joint lower body muscle groups and their relation with, and ability to predict PPO and how they compare to an isometric cycling specific task. The aim of this study was to establish relationships between maximal voluntary torque production from isometric single-joint and cycling specific tasks and assess their ability to predict PPO. Twenty male trained cyclists participated in this study. Peak torque was measured by performing maximum voluntary contractions (MVC) of knee extensors, knee flexors, dorsi flexors and hip extensors whilst instrumented cranks measured isometric peak torque from MVC when participants were in their cycling specific position (ISOCYC). A stepwise regression showed that peak torque of the knee extensors was the only significant predictor of PPO when using SJD and accounted for 47% of the variance. However, when compared to ISOCYC, the only significant predictor of PPO was ISOCYC, which accounted for 77% of the variance. This suggests that peak torque of the knee extensors was the best single-joint predictor of PPO in sprint cycling. Furthermore, a stronger prediction can be made from a task specific isometric task. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Orion - Super Koropon(Registered Trademark) Torque/Tension Report

    NASA Technical Reports Server (NTRS)

    Hemminger, Edgar G.; McLeod, Christopher; Peil, John

    2012-01-01

    The primary objective of this testing was to obtain torque tension data for the use of Super Koropon Primer Base which was proposed for use on the Orion project. This compound is a corrosion inhibitor/sealer used on threaded fasteners and inserts as specified per NASA/JSC PRC-4004, Sealing of Joints and Faying Surfaces. Some secondary objectives of this testing, were to identify the effect on torque coefficient of several variables. This document contains the outcome of the testing.

  16. Modelling grain alignment by radiative torques and hydrogen formation torques in reflection nebula

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem; Lazarian, A.; Andersson, B.-G.

    2015-04-01

    Reflection nebulae - dense cores - illuminated by surrounding stars offer a unique opportunity to directly test our quantitative model of grain alignment based on radiative torques (RATs) and to explore new effects arising from additional torques. In this paper, we first perform detailed modelling of grain alignment by RATs for the IC 63 reflection nebula illuminated both by a nearby γ Cas star and the diffuse interstellar radiation field. We calculate linear polarization pλ of background stars by radiatively aligned grains and explore the variation of fractional polarization (pλ/AV) with visual extinction AV across the cloud. Our results show that the variation of pV/AV versus AV from the dayside of IC 63 to its centre can be represented by a power law (p_V/A_V∝ A_V^{η }) with different slopes depending on AV. We find a shallow slope η ˜ -0.1 for AV < 3 and a very steep slope η ˜ -2 for AV > 4. We then consider the effects of additional torques due to H2 formation and model grain alignment by joint action of RATs and H2 torques. We find that pV/AV tends to increase with an increasing magnitude of H2 torques. In particular, the theoretical predictions obtained for pV/AV and peak wavelength λmax in this case show an improved agreement with the observational data. Our results reinforce the predictive power of the RAT alignment mechanism in a broad range of environmental conditions and show the effect of pinwheel torques in environments with efficient H2 formation. Physical parameters involved in H2 formation may be constrained using detailed modelling of grain alignment combined with observational data. In addition, we discuss implications of our modelling for interpreting latest observational data by Planck and other ground-based instruments.

  17. Estimation of Electrically-Evoked Knee Torque from Mechanomyography Using Support Vector Regression.

    PubMed

    Ibitoye, Morufu Olusola; Hamzaid, Nur Azah; Abdul Wahab, Ahmad Khairi; Hasnan, Nazirah; Olatunji, Sunday Olusanya; Davis, Glen M

    2016-07-19

    The difficulty of real-time muscle force or joint torque estimation during neuromuscular electrical stimulation (NMES) in physical therapy and exercise science has motivated recent research interest in torque estimation from other muscle characteristics. This study investigated the accuracy of a computational intelligence technique for estimating NMES-evoked knee extension torque based on the Mechanomyographic signals (MMG) of contracting muscles that were recorded from eight healthy males. Simulation of the knee torque was modelled via Support Vector Regression (SVR) due to its good generalization ability in related fields. Inputs to the proposed model were MMG amplitude characteristics, the level of electrical stimulation or contraction intensity, and knee angle. Gaussian kernel function, as well as its optimal parameters were identified with the best performance measure and were applied as the SVR kernel function to build an effective knee torque estimation model. To train and test the model, the data were partitioned into training (70%) and testing (30%) subsets, respectively. The SVR estimation accuracy, based on the coefficient of determination (R²) between the actual and the estimated torque values was up to 94% and 89% during the training and testing cases, with root mean square errors (RMSE) of 9.48 and 12.95, respectively. The knee torque estimations obtained using SVR modelling agreed well with the experimental data from an isokinetic dynamometer. These findings support the realization of a closed-loop NMES system for functional tasks using MMG as the feedback signal source and an SVR algorithm for joint torque estimation.

  18. Effect of Preactivation on Torque Enhancement by the Stretch-Shortening Cycle in Knee Extensors

    PubMed Central

    Fukutani, Atsuki; Misaki, Jun; Isaka, Tadao

    2016-01-01

    The stretch-shortening cycle is one of the most interesting topics in the field of sport sciences, because the performance of human movement is enhanced by the stretch-shortening cycle (eccentric contraction). The purpose of the present study was to examine whether the influence of preactivation on the torque enhancement by stretch-shortening cycle in knee extensors. Twelve men participated in this study. The following three conditions were conducted for knee extensors: (1) concentric contraction without preactivation (CON), (2) concentric contraction with eccentric preactivation (ECC), and (3) concentric contraction with isometric preactivation (ISO). Muscle contractions were evoked by electrical stimulation to discard the influence of neural activity. The range of motion of the knee joint was set from 80 to 140 degrees (full extension = 180 degrees). Angular velocities of the concentric and eccentric contractions were set at 180 and 90 degrees/s, respectively. In the concentric contraction phase, joint torques were recorded at 85, 95, and 105 degrees, and they were compared among the three conditions. In the early phase (85 degrees) of concentric contraction, the joint torque was larger in the ECC and ISO conditions than in the CON condition. However, these clear differences disappeared in the later phase (105 degrees) of concentric contraction. The results showed that joint torque was clearly different among the three conditions in the early phase whereas this difference disappeared in the later phase. Thus, preactivation, which is prominent in the early phase of contractions, plays an important role in torque enhancement by the stretch-shortening cycle in knee extensors. PMID:27414804

  19. Dynamic Analysis of the Abnormal Isometric Strength Movement Pattern between Shoulder and Elbow Joint in Patients with Hemiplegia.

    PubMed

    Liu, Yali; Hong, Yuezhen; Ji, Linhong

    2018-01-01

    Patients with hemiplegia usually have weak muscle selectivity and usually perform strength at a secondary joint (secondary strength) during performing a strength at one joint (primary strength). The abnormal strength pattern between shoulder and elbow joint has been analyzed by the maximum value while the performing process with strength changing from 0 to maximum then to 0 was a dynamic process. The objective of this study was to develop a method to dynamically analyze the strength changing process. Ten patients were asked to perform four group asks (maximum and 50% maximum voluntary strength in shoulder abduction, shoulder adduction, elbow flexion, and elbow extension). Strength and activities from seven muscles were measured. The changes of secondary strength had significant correlation with those of primary strength in all tasks ( R > 0.76, p < 0.01). The antagonistic muscles were moderately influenced by the primary strength ( R > 0.4, p < 0.01). Deltoid muscles, biceps brachii, triceps brachii, and brachioradialis had significant influences on the abnormal strength pattern (all p < 0.01). The dynamic method was proved to be efficient to analyze the different influences of muscles on the abnormal strength pattern. The muscles, deltoid muscles, biceps brachii, triceps brachii, and brachioradialis, much influenced the stereotyped movement pattern between shoulder and elbow joint.

  20. Dynamic Analysis of the Abnormal Isometric Strength Movement Pattern between Shoulder and Elbow Joint in Patients with Hemiplegia

    PubMed Central

    2018-01-01

    Patients with hemiplegia usually have weak muscle selectivity and usually perform strength at a secondary joint (secondary strength) during performing a strength at one joint (primary strength). The abnormal strength pattern between shoulder and elbow joint has been analyzed by the maximum value while the performing process with strength changing from 0 to maximum then to 0 was a dynamic process. The objective of this study was to develop a method to dynamically analyze the strength changing process. Ten patients were asked to perform four group asks (maximum and 50% maximum voluntary strength in shoulder abduction, shoulder adduction, elbow flexion, and elbow extension). Strength and activities from seven muscles were measured. The changes of secondary strength had significant correlation with those of primary strength in all tasks (R > 0.76, p < 0.01). The antagonistic muscles were moderately influenced by the primary strength (R > 0.4, p < 0.01). Deltoid muscles, biceps brachii, triceps brachii, and brachioradialis had significant influences on the abnormal strength pattern (all p < 0.01). The dynamic method was proved to be efficient to analyze the different influences of muscles on the abnormal strength pattern. The muscles, deltoid muscles, biceps brachii, triceps brachii, and brachioradialis, much influenced the stereotyped movement pattern between shoulder and elbow joint. PMID:29610654

  1. EMG-Torque correction on Human Upper extremity using Evolutionary Computation

    NASA Astrophysics Data System (ADS)

    JL, Veronica; Parasuraman, S.; Khan, M. K. A. Ahamed; Jeba DSingh, Kingsly

    2016-09-01

    There have been many studies indicating that control system of rehabilitative robot plays an important role in determining the outcome of the therapy process. Existing works have done the prediction of feedback signal in the controller based on the kinematics parameters and EMG readings of upper limb's skeletal system. Kinematics and kinetics based control signal system is developed by reading the output of the sensors such as position sensor, orientation sensor and F/T (Force/Torque) sensor and there readings are to be compared with the preceding measurement to decide on the amount of assistive force. There are also other works that incorporated the kinematics parameters to calculate the kinetics parameters via formulation and pre-defined assumptions. Nevertheless, these types of control signals analyze the movement of the upper limb only based on the movement of the upper joints. They do not anticipate the possibility of muscle plasticity. The focus of the paper is to make use of the kinematics parameters and EMG readings of skeletal system to predict the individual torque of upper extremity's joints. The surface EMG signals are fed into different mathematical models so that these data can be trained through Genetic Algorithm (GA) to find the best correlation between EMG signals and torques acting on the upper limb's joints. The estimated torque attained from the mathematical models is called simulated output. The simulated output will then be compared with the actual individual joint which is calculated based on the real time kinematics parameters of the upper movement of the skeleton when the muscle cells are activated. The findings from this contribution are extended into the development of the active control signal based controller for rehabilitation robot.

  2. The Influence of Task Complexity on Knee Joint Kinetics Following ACL Reconstruction

    PubMed Central

    Schroeder, Megan J.; Krishnan, Chandramouli; Dhaher, Yasin Y.

    2015-01-01

    Background Previous research indicates that subjects with anterior cruciate ligament reconstruction exhibit abnormal knee joint movement patterns during functional activities like walking. While the sagittal plane mechanics have been studied extensively, less is known about the secondary planes, specifically with regard to more demanding tasks. This study explored the influence of task complexity on functional joint mechanics in the context of graft-specific surgeries. Methods In 25 participants (10 hamstring tendon graft, 6 patellar tendon graft, 9 matched controls), three-dimensional joint torques were calculated using a standard inverse dynamics approach during level walking and stair descent. The stair descent task was separated into two functionally different sub-tasks—step-to-floor and step-to-step. The differences in external knee moment profiles were compared between groups; paired differences between the reconstructed and non-reconstructed knees were also assessed. Findings The reconstructed knees, irrespective of graft type, typically exhibited significantly lower peak knee flexion moments compared to control knees during stair descent, with the differences more pronounced in the step-to-step task. Frontal plane adduction torque deficits were graft-specific and limited to the hamstring tendon knees during the step-to-step task. Internal rotation torque deficits were also primarily limited to the hamstring tendon graft group during stair descent. Collectively, these results suggest that task complexity was a primary driver of differences in joint mechanics between anterior cruciate ligament reconstructed individuals and controls, and such differences were more pronounced in individuals with hamstring tendon grafts. Interpretation The mechanical environment experienced in the cartilage during repetitive, cyclical tasks such as walking and other activities of daily living has been argued to contribute to the development of degenerative changes to the joint

  3. Quantifying anti-gravity torques in the design of a powered exoskeleton.

    PubMed

    Ragonesi, Daniel; Agrawal, Sunil; Sample, Whitney; Rahman, Tariq

    2011-01-01

    Designing an upper extremity exoskeleton for people with arm weakness requires knowledge of the passive and active residual force capabilities of users. This paper experimentally measures the passive gravitational torques of 3 groups of subjects: able-bodied adults, able bodied children, and children with neurological disabilities. The experiment involves moving the arm to various positions in the sagittal plane and measuring the gravitational force at the wrist. This force is then converted to static gravitational torques at the elbow and shoulder. Data are compared between look-up table data based on anthropometry and empirical data. Results show that the look-up torques deviate from experimentally measured torques as the arm reaches up and down. This experiment informs designers of Upper Limb orthoses on the contribution of passive human joint torques.

  4. Ankle rehabilitation device with two degrees of freedom and compliant joint

    NASA Astrophysics Data System (ADS)

    Racu (Cazacu, C.-M.; Doroftei, I.

    2015-11-01

    We propose a rehabilitation device that we intend to be low cost and easy to manufacture. The system will ensure functionality but also have a small dimensions and low mass, considering the physiological dimensions of the foot and lower leg. To avoid injure of the ankle joint, this device is equipped with a compliant joint between the motor and mechanical transmission. The torque of this joint is intended to be adjustable, according to the degree of ankle joint damage. To choose the material and the dimensions of this compliant joint, in this paper we perform the first stress simulation. The minimum torque is calculated, while the maximum torque is given by the preliminary chosen actuator.

  5. Influence of the implant-abutment connection design and diameter on the screw joint stability.

    PubMed

    Shin, Hyon-Mo; Huh, Jung-Bo; Yun, Mi-Jeong; Jeon, Young-Chan; Chang, Brian Myung; Jeong, Chang-Mo

    2014-04-01

    This study was conducted to evaluate the influence of the implant-abutment connection design and diameter on the screw joint stability. Regular and wide-diameter implant systems with three different joint connection designs: an external butt joint, a one-stage internal cone, and a two-stage internal cone were divided into seven groups (n=5, in each group). The initial removal torque values of the abutment screw were measured with a digital torque gauge. The postload removal torque values were measured after 100,000 cycles of a 150 N and a 10 Hz cyclic load had been applied. Subsequently, the rates of the initial and postload removal torque losses were calculated to evaluate the effect of the joint connection design and diameter on the screw joint stability. Each group was compared using Kruskal-Wallis test and Mann-Whitney U test as post-hoc test (α=0.05). THE POSTLOAD REMOVAL TORQUE VALUE WAS HIGH IN THE FOLLOWING ORDER WITH REGARD TO MAGNITUDE: two-stage internal cone, one-stage internal cone, and external butt joint systems. In the regular-diameter group, the external butt joint and one-stage internal cone systems showed lower postload removal torque loss rates than the two-stage internal cone system. In the wide-diameter group, the external butt joint system showed a lower loss rate than the one-stage internal cone and two-stage internal cone systems. In the two-stage internal cone system, the wide-diameter group showed a significantly lower loss rate than the regular-diameter group (P<.05). The results of this study showed that the external butt joint was more advantageous than the internal cone in terms of the postload removal torque loss. For the difference in the implant diameter, a wide diameter was more advantageous in terms of the torque loss rate.

  6. Influence of the implant-abutment connection design and diameter on the screw joint stability

    PubMed Central

    Shin, Hyon-Mo; Huh, Jung-Bo; Yun, Mi-Jeong; Jeon, Young-Chan; Chang, Brian Myung

    2014-01-01

    PURPOSE This study was conducted to evaluate the influence of the implant-abutment connection design and diameter on the screw joint stability. MATERIALS AND METHODS Regular and wide-diameter implant systems with three different joint connection designs: an external butt joint, a one-stage internal cone, and a two-stage internal cone were divided into seven groups (n=5, in each group). The initial removal torque values of the abutment screw were measured with a digital torque gauge. The postload removal torque values were measured after 100,000 cycles of a 150 N and a 10 Hz cyclic load had been applied. Subsequently, the rates of the initial and postload removal torque losses were calculated to evaluate the effect of the joint connection design and diameter on the screw joint stability. Each group was compared using Kruskal-Wallis test and Mann-Whitney U test as post-hoc test (α=0.05). RESULTS The postload removal torque value was high in the following order with regard to magnitude: two-stage internal cone, one-stage internal cone, and external butt joint systems. In the regular-diameter group, the external butt joint and one-stage internal cone systems showed lower postload removal torque loss rates than the two-stage internal cone system. In the wide-diameter group, the external butt joint system showed a lower loss rate than the one-stage internal cone and two-stage internal cone systems. In the two-stage internal cone system, the wide-diameter group showed a significantly lower loss rate than the regular-diameter group (P<.05). CONCLUSION The results of this study showed that the external butt joint was more advantageous than the internal cone in terms of the postload removal torque loss. For the difference in the implant diameter, a wide diameter was more advantageous in terms of the torque loss rate. PMID:24843398

  7. Torque Splitting by a Concentric Face Gear Transmission

    NASA Technical Reports Server (NTRS)

    Filler, Robert R.; Heath, Gregory F.; Slaughter, Stephen C.; Lewicki, David G.

    2002-01-01

    Tests of a 167 Kilowatt (224 Horsepower) split torque face gearbox were performed by the Boeing Company in Mesa, Arizona, while working under a Defense Advanced Research Projects Agency (DARPA) Technology Reinvestment Program (TRP). This paper provides a summary of these cooperative tests, which were jointly funded by Boeing and DARPA. Design, manufacture and testing of the scaled-power TRP proof-of-concept (POC) split torque gearbox followed preliminary evaluations of the concept performed early in the program. The split torque tests were run using 200 N-m (1767 in-lbs) torque input to each side of the transmission. During tests, two input pinions were slow rolled while in mesh with the two face gears. Two idler gears were also used in the configuration to recombine torque near the output. Resistance was applied at the output face gear to create the required loading conditions in the gear teeth. A system of weights, pulleys and cables were used in the test rig to provide both the input and output loading. Strain gages applied in the tooth root fillets provided strain indication used to determine torque splitting conditions at the input pinions. The final two pinion-two idler tests indicated 52% to 48% average torque split capabilities for the two pinions. During the same tests, a 57% to 43% average distribution of the torque being recombined to the upper face gear from the lower face gear was measured between the two idlers. The POC split torque tests demonstrated that face gears can be applied effectively in split torque rotorcraft transmissions, yielding good potential for significant weight, cost and reliability improvements over existing equipment using spiral bevel gearing.

  8. Do changes in neuromuscular activation contribute to the knee extensor angle-torque relationship?

    PubMed

    Lanza, Marcel B; Balshaw, Thomas G; Folland, Jonathan P

    2017-08-01

    What is the central question of the study? Do changes in neuromuscular activation contribute to the knee extensor angle-torque relationship? What is the main finding and its importance? Both agonist (quadriceps) and antagonist coactivation (hamstrings) differed with knee joint angle during maximal isometric knee extensions and thus both are likely to contribute to the angle-torque relationship. Specifically, two independent measurement techniques showed quadriceps activation to be lower at more extended positions. These effects might influence the capacity for neural changes in response to training and rehabilitation at different knee joint angles. The influence of joint angle on knee extensor neuromuscular activation is unclear, owing in part to the diversity of surface electromyography (sEMG) and/or interpolated twitch technique (ITT) methods used. The aim of the study was to compare neuromuscular activation, using rigorous contemporary sEMG and ITT procedures, during isometric maximal voluntary contractions (iMVCs) of the quadriceps femoris at different knee joint angles and examine whether activation contributes to the angle-torque relationship. Sixteen healthy active men completed two familiarization sessions and two experimental sessions of isometric knee extension and knee flexion contractions. The experimental sessions included the following at each of four joint angles (25, 50, 80 and 106 deg): iMVCs (with and without superimposed evoked doublets); submaximal contractions with superimposed doublets; and evoked twitch and doublet contractions whilst voluntarily passive, and knee flexion iMVC at the same knee joint positions. The absolute quadriceps femoris EMG was normalized to the peak-to-peak amplitude of an evoked maximal M-wave, and the doublet-voluntary torque relationship was used to calculate activation with the ITT. Agonist activation, assessed with both normalized EMG and the ITT, was reduced at the more extended compared with the more flexed

  9. Diagnostic reliability of 3.0-T MRI for detecting osseous abnormalities of the temporomandibular joint.

    PubMed

    Sawada, Kunihiko; Amemiya, Toshihiko; Hirai, Shigenori; Hayashi, Yusuke; Suzuki, Toshihiro; Honda, Masahiko; Sisounthone, Johnny; Matsumoto, Kunihito; Honda, Kazuya

    2018-01-01

    We compared the diagnostic reliability of 3.0-T magnetic resonance imaging (MRI) for detection of osseous abnormalities of the temporomandibular joint (TMJ) with that of the gold standard, cone-beam computed tomography (CBCT). Fifty-six TMJs were imaged with CBCT and MRI, and images of condyles and fossae were independently assessed for the presence of osseous abnormalities. The accuracy, sensitivity, and specificity of 3.0-T MRI were 0.88, 1.0, and 0.73, respectively, in condyle evaluation and 0.91, 0.75, and 0.95 in fossa evaluation. The McNemar test showed no significant difference (P > 0.05) between MRI and CBCT in the evaluation of osseous abnormalities in condyles and fossae. The present results indicate that 3.0-T MRI is equal to CBCT in the diagnostic evaluation of osseous abnormalities of the mandibular condyle.

  10. Compensating for intersegmental dynamics across the shoulder, elbow, and wrist joints during feedforward and feedback control.

    PubMed

    Maeda, Rodrigo S; Cluff, Tyler; Gribble, Paul L; Pruszynski, J Andrew

    2017-10-01

    Moving the arm is complicated by mechanical interactions that arise between limb segments. Such intersegmental dynamics cause torques applied at one joint to produce movement at multiple joints, and in turn, the only way to create single joint movement is by applying torques at multiple joints. We investigated whether the nervous system accounts for intersegmental limb dynamics across the shoulder, elbow, and wrist joints during self-initiated planar reaching and when countering external mechanical perturbations. Our first experiment tested whether the timing and amplitude of shoulder muscle activity account for interaction torques produced during single-joint elbow movements from different elbow initial orientations and over a range of movement speeds. We found that shoulder muscle activity reliably preceded movement onset and elbow agonist activity, and was scaled to compensate for the magnitude of interaction torques arising because of forearm rotation. Our second experiment tested whether elbow muscles compensate for interaction torques introduced by single-joint wrist movements. We found that elbow muscle activity preceded movement onset and wrist agonist muscle activity, and thus the nervous system predicted interaction torques arising because of hand rotation. Our third and fourth experiments tested whether shoulder muscles compensate for interaction torques introduced by different hand orientations during self-initiated elbow movements and to counter mechanical perturbations that caused pure elbow motion. We found that the nervous system predicted the amplitude and direction of interaction torques, appropriately scaling the amplitude of shoulder muscle activity during self-initiated elbow movements and rapid feedback control. Taken together, our results demonstrate that the nervous system robustly accounts for intersegmental dynamics and that the process is similar across the proximal to distal musculature of the arm as well as between feedforward (i

  11. Correlation and prediction of dynamic human isolated joint strength from lean body mass

    NASA Technical Reports Server (NTRS)

    Pandya, Abhilash K.; Hasson, Scott M.; Aldridge, Ann M.; Maida, James C.; Woolford, Barbara J.

    1992-01-01

    A relationship between a person's lean body mass and the amount of maximum torque that can be produced with each isolated joint of the upper extremity was investigated. The maximum dynamic isolated joint torque (upper extremity) on 14 subjects was collected using a dynamometer multi-joint testing unit. These data were reduced to a table of coefficients of second degree polynomials, computed using a least squares regression method. All the coefficients were then organized into look-up tables, a compact and convenient storage/retrieval mechanism for the data set. Data from each joint, direction and velocity, were normalized with respect to that joint's average and merged into files (one for each curve for a particular joint). Regression was performed on each one of these files to derive a table of normalized population curve coefficients for each joint axis, direction, and velocity. In addition, a regression table which included all upper extremity joints was built which related average torque to lean body mass for an individual. These two tables are the basis of the regression model which allows the prediction of dynamic isolated joint torques from an individual's lean body mass.

  12. Shoulder torques resulting from luggage handling tasks in non-inertial frames.

    PubMed

    Shippen, James; May, Barbara

    2018-05-18

    This paper reports on the torques developed in the shoulder joint experienced by occupants of moving vehicles during manual handling tasks. Handling heavy weights can cause musculoskeletal injuries, especially if handling is done with arms extended or at high levels. The aim of the study was to measure the longitudinal and lateral accelerations in a variety of passenger vehicles together with the postures of subjects lifting luggage onto storage shelves. This data enabled the application of inverse dynamics methods in a non-inertial reference frame to calculate the shoulder joint torques. The subjects lifted 3 pieces of luggage of masses of 5 kg, 10 kg and 14 kg onto shelving which were at heights of 1.2 m, 1.6 m and 1.8 m. The movement of subjects was measured using a 12 camera, 3-dimensional optical tracking system. The subjects stood on force plates to measure the ground reaction forces. Sixty-three trials were completed, although 9 trials were aborted because subjects felt unable to complete the task. It was found that the shoulder torques exceeded the levels recommend by the UK Health and Safety Executive for manual handling. A lift assistance device is suggested to reduce the shoulder torques required for luggage handling.

  13. Design and Performance Analysis of a new Rotary Hydraulic Joint

    NASA Astrophysics Data System (ADS)

    Feng, Yong; Yang, Junhong; Shang, Jianzhong; Wang, Zhuo; Fang, Delei

    2017-07-01

    To improve the driving torque of the robots joint, a wobble plate hydraulic joint is proposed, and the structure and working principle are described. Then mathematical models of kinematics and dynamics was established. On the basis of this, dynamic simulation and characteristic analysis are carried out. Results show that the motion curve of the joint is continuous and the impact is small. Moreover the output torque of the joint characterized by simple structure and easy processing is large and can be rotated continuously.

  14. Shoulder Joint For Protective Suit

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; Smallcombe, Richard D.

    1994-01-01

    Shoulder joint allows full range of natural motion: wearer senses little or no resisting force or torque. Developed for space suit, joint offers advantages in protective garments for underwater work, firefighting, or cleanup of hazardous materials.

  15. Comparison of different passive knee extension torque-angle assessments.

    PubMed

    Freitas, Sandro R; Vaz, João R; Bruno, Paula M; Valamatos, Maria J; Mil-Homens, Pedro

    2013-11-01

    Previous studies have used isokinetic dynamometry to assess joint torques and angles during passive extension of the knee, often without reporting upon methodological errors and reliability outcomes. In addition, the reliability of the techniques used to measure passive knee extension torque-angle and the extent to which reliability may be affected by the position of the subjects is also unclear. Therefore, we conducted an analysis of the intra- and inter-session reliability of two methods of assessing passive knee extension: (A) a 2D kinematic analysis coupled to a custom-made device that enabled the direct measurement of resistance to stretch and (B) an isokinetic dynamometer used in two testing positions (with the non-tested thigh either flexed at 45° or in the neutral position). The intra-class correlation coefficients (ICCs) of torque, the slope of the torque-angle curve, and the parameters of the mathematical model that were fit to the torque-angle data for the above conditions were measured in sixteen healthy male subjects (age: 21.4 ± 2.1 yr; BMI: 22.6 ± 3.3 kg m(-2); tibial length: 37.4 ± 3.4 cm). The results found were: (1) methods A and B led to distinctly different torque-angle responses; (2) passive torque-angle relationship and stretch tolerance were influenced by the position of the non-tested thigh; and (3) ICCs obtained for torque were higher than for the slope and for the mathematical parameters that were fit to the torque-angle curve. In conclusion, the measurement method that is used and the positioning of subjects can influence the passive knee extension torque-angle outcome.

  16. Hand-handle interface force and torque measurement system for pneumatic assembly tool operations: suggested enhancement to ISO 6544.

    PubMed

    Lin, Jia-Hua; McGorry, Raymond W; Chang, Chien-Chi

    2007-05-01

    A hand-handle interface force and torque measurement system is introduced to fill the void acknowledged in the international standard ISO 6544, which governs pneumatic, assembly tool reaction torque and force measurement. This system consists of an instrumented handle with a sensor capable of measuring grip force and reaction hand moment when threaded, fastener-driving tools are used by operators. The handle is rigidly affixed to the tool in parallel to the original tool handle allowing normal fastener-driving operations with minimal interference. Demonstration of this proposed system was made with tools of three different shapes: pistol grip, right angle, and in-line. During tool torque buildup, the proposed system measured operators exerting greater grip force on the soft joint than on the hard joint. The system also demonstrated that the soft joint demanded greater hand moment impulse than the hard joint. The results demonstrate that the measurement system can provide supplemental data useful in exposure assessment with power hand tools as proposed in ISO 6544.

  17. Assessment of the Breakaway Torque at the Posterior Pelvic Ring in Human Cadavers.

    PubMed

    Bastian, Johannes Dominik; Bergmann, Mathias; Schwyn, Ronald; Keel, Marius Johann Baptist; Benneker, Lorin Michael

    2015-01-01

    To enhance the diminished screw purchase in cancellous, osteoporotic bone following the fixation of posterior pelvic ring injuries by iliosacral screws an increased bone-implant contact area using modificated screws, techniques or bone cement may become necessary. The aim of the study was to identify sites within the pathway of iliosacral screws requiring modifications of the local bone or the design of instrumentations placed at this site. The breakaway torque was measured mechanically at the iliosacral joint ("ISJ"), the sacral lateral mass ("SLM") and the center of the S1 ("CS1"), at a superior and an inferior site under fluoroscopic control on five human cadaveric specimens (3 female; mean age 87 years, range: 76-99) using the DensiProbe™Spine device. The measured median (range) breakaway torque was 0.63 Nm (0.31-2.52) at the "iliosacral joint", 0.14 Nm (0.05-1.22) at the "sacral lateral mass", 0.57 Nm (0.05-1.42) at the "S1 center." The "sacral lateral mass" breakaway torque was lower than compared to that at the "iliosacral joint" (p < .001) or "S1 center" (p < .001). The median (range) breakaway torque measured at all superior measurement points was 0.52 Nm (0.10-2.52), and 0.48 Nm (0.05-1.18) at all inferior sites. The observed difference was statistically significant (p < .05). The lateral mass of the sacrum provides the lowest bone quality for implant anchorage. Iliosacral screws should be placed as superior as safely possible, should bridge the iliosacral joint and may allow for cement application at the lateral mass of the sacrum through perforations.

  18. Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis.

    PubMed

    Moltedo, Marta; Bacek, Tomislav; Langlois, Kevin; Junius, Karen; Vanderborght, Bram; Lefeber, Dirk

    2017-07-01

    The human ankle joint plays a crucial role during walking. At the push-off phase the ankle plantarflexors generate the highest torque among the lower limb joints during this activity. The potential of the ankle plantarflexors is affected by numerous pathologies and injuries, which cause a decrease in the ability of the subject to achieve a natural gait pattern. Active orthoses have shown to have potential in assisting these subjects. The design of such robots is very challenging due to the contrasting design requirements of wearability (light weight and compact) and high torques capacity. This paper presents the development of a high-torque ankle actuator to assist the ankle joint in both dorsiflexion and plantarflexion. The compliant actuator is a spindle-driven MACCEPA (Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator). The design of the actuator was made to keep its weight as low as possible, while being able to provide high torques. As a result of this novel design, the actuator weighs 1.18kg. Some static characterization tests were perfomed on the actuator and their results are shown in the paper.

  19. Bevel gear driver and method having torque limit selection

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    This invention comprises a torque drive mechanism utilizing axially translatable, mutually engageable transmission members having mating crown gears, driven and driving members with a three-element drive train being biased together by resilient means or by a fluid actuator system, the apparatus being operable to transmit a precisely controlled degree of torque to a driven member. The apparatus is applicable for use in hand tools and as a replacement for impact torque drivers, torque wrenches, motorized screw drivers, or the like, wherein the applied torque must be precisely controlled or limited. The bevel torque drive includes a drive gear which is axially displaceable and rotatable within cylindrical driver housing, a rotatable intermediate gear, and an output gear. Key rotationally secures displaceable gear with respect to input shaft but permits axial movement therebetween. A thrust bearing is preferably connected to the lower end of shaft for support to reduce play and friction between shaft and a transmission joint disc during rotation of the gear train. Coaxially mounted coiled spring is footed against displaceable gear for biasing the displaceable gear toward and into engagement with the intermediate gear for driving intermediate gear and output gear. Torque control is achieved by the use of straight or spiral beveled gears which are of configurations adapted to withdraw from mutual engagement upon the torque exceeding a predetermined limit. The novel, advantageous features of the invention include the configuration of the mating, crown gear sets and the axially translatable, slidable drive gear. The mechanism is capable of transmitting a high degree of torque within a narrow, compact transmission housing. The compact size and narrow, elongated configuration of the housing is particularly applicable for use in hand tools and in multiple torque driver mechanisms in which it is necessary to drive multiple fasteners which are located in close proximity. Prior

  20. Effect of gravity-like torque on goal-directed arm movements in microgravity.

    PubMed

    Bringoux, L; Blouin, J; Coyle, T; Ruget, H; Mouchnino, L

    2012-05-01

    Gravitational force level is well-known to influence arm motor control. Specifically, hyper- or microgravity environments drastically change pointing accuracy and kinematics, particularly during initial exposure. These modifications are thought to partly reflect impairment in arm position sense. Here we investigated whether applying normogravitational constraints at joint level during microgravity episodes of parabolic flights could restore movement accuracy equivalent to that observed on Earth. Subjects with eyes closed performed arm reaching movements toward predefined sagittal angular positions in four environment conditions: normogravity, hypergravity, microgravity, and microgravity with elastic bands attached to the arm to mimic gravity-like torque at the shoulder joint. We found that subjects overshot and undershot the target orientations in hypergravity and microgravity, respectively, relative to a normogravity baseline. Strikingly, adding gravity-like torque prior to and during movements performed in microgravity allowed subjects to be as accurate as in normogravity. In the former condition, arm movement kinematics, as notably illustrated by the relative time to peak velocity, were also unchanged relative to normogravity, whereas significant modifications were found in hyper- and microgravity. Overall, these results suggest that arm motor planning and control are tuned with respect to gravitational information issued from joint torque, which presumably enhances arm position sense and activates internal models optimally adapted to the gravitoinertial environment.

  1. Model-Based Estimation of Ankle Joint Stiffness

    PubMed Central

    Misgeld, Berno J. E.; Zhang, Tony; Lüken, Markus J.; Leonhardt, Steffen

    2017-01-01

    We address the estimation of biomechanical parameters with wearable measurement technologies. In particular, we focus on the estimation of sagittal plane ankle joint stiffness in dorsiflexion/plantar flexion. For this estimation, a novel nonlinear biomechanical model of the lower leg was formulated that is driven by electromyographic signals. The model incorporates a two-dimensional kinematic description in the sagittal plane for the calculation of muscle lever arms and torques. To reduce estimation errors due to model uncertainties, a filtering algorithm is necessary that employs segmental orientation sensor measurements. Because of the model’s inherent nonlinearities and nonsmooth dynamics, a square-root cubature Kalman filter was developed. The performance of the novel estimation approach was evaluated in silico and in an experimental procedure. The experimental study was conducted with body-worn sensors and a test-bench that was specifically designed to obtain reference angle and torque measurements for a single joint. Results show that the filter is able to reconstruct joint angle positions, velocities and torque, as well as, joint stiffness during experimental test bench movements. PMID:28353683

  2. Subspace methods for identification of human ankle joint stiffness.

    PubMed

    Zhao, Y; Westwick, D T; Kearney, R E

    2011-11-01

    Joint stiffness, the dynamic relationship between the angular position of a joint and the torque acting about it, describes the dynamic, mechanical behavior of a joint during posture and movement. Joint stiffness arises from both intrinsic and reflex mechanisms, but the torques due to these mechanisms cannot be measured separately experimentally, since they appear and change together. Therefore, the direct estimation of the intrinsic and reflex stiffnesses is difficult. In this paper, we present a new, two-step procedure to estimate the intrinsic and reflex components of ankle stiffness. In the first step, a discrete-time, subspace-based method is used to estimate a state-space model for overall stiffness from the measured overall torque and then predict the intrinsic and reflex torques. In the second step, continuous-time models for the intrinsic and reflex stiffnesses are estimated from the predicted intrinsic and reflex torques. Simulations and experimental results demonstrate that the algorithm estimates the intrinsic and reflex stiffnesses accurately. The new subspace-based algorithm has three advantages over previous algorithms: 1) It does not require iteration, and therefore, will always converge to an optimal solution; 2) it provides better estimates for data with high noise or short sample lengths; and 3) it provides much more accurate results for data acquired under the closed-loop conditions, that prevail when subjects interact with compliant loads.

  3. The comparison of measurement between ultrasound and computed tomography for abnormal degenerative facet joints: A STROBE-compliant article.

    PubMed

    Shi, Wen; Tian, Dan; Liu, Da; Yin, Jing; Huang, Ying

    2017-08-01

    Besides the study on examining facet joints of lumbar spine by ultrasound in normal population, there has not been any related report about examining normal facet joints of lumbar spine by ultrasound so far. This study was aimed to explore the feasibility of ultrasound assessment of lumber spine facet joints by comparing ultrasound measure values of normal and degenerative lumber spine facet joints, and by comparing measure values of ultrasound and computed tomography (CT) of degenerative lumber spine facet joints.This study included 15 patients who had chronic low back pain because of degenerative change in lumbar vertebrae, and 19 volunteers who did not have low back pain or pain in the lower limb. The ultrasound measure values (height [H] and width [W]) of normal and degenerative lumber spine facet joints were compared. And the differentiation between measure values (H and W) of ultrasound and CT of degenerative lumber spine facet joints was also analyzed.The ultrasound clearly showed abnormal facet joints lesion, which was characterized by hyperostosis on the edge of joints, bone destruction under joints, and thinner or thicker articular cartilage. There were significant differences between the ultrasound measure values of the normal (H: 1.26 ± 0.03 cm, W: 0.18 ± 0.01 cm) and abnormal facet joints (H: 1.43 ± 0.05 cm, W: 0.15 ± 0.02 cm) (all P < .05). However, there were no significant differences between the measure values of the ultrasound (H: 1.43 ± 0.17 cm, W: 0.15 ± 0.03 cm) and CT (H: 1.42 ± 0.16, W: 0.14 ± 0.03) of the degenerative lumber spine facet joints (all P > .05).Ultrasound can clearly show the structure of facet joints of lumbar spine. It is precise and feasible to assess facet joints of lumbar spine by ultrasound. This study has important significance for the diagnosis of lumbar facet joint degeneration.

  4. The value of HEAD-US system in detecting subclinical abnormalities in joints of patients with hemophilia.

    PubMed

    De la Corte-Rodriguez, Hortensia; Rodriguez-Merchan, E Carlos; Alvarez-Roman, M Teresa; Martin-Salces, Mónica; Martinoli, Carlo; Jimenez-Yuste, Víctor

    2018-03-01

    Prevention of hemarthrosis is the key factor in the adequate management of people with hemophilia (PWH). If hemarthrosis occurs, early diagnosis of joint damage is essential to make personalized treatments. This study is aimed at gaining an understanding of the ability of point-of-care ultrasound (US) using the `Hemophilia Early Arthropathy Detection with Ultrasound´ (HEAD-US) protocol to detect abnormalities in joints without history of hemarthrosis and clinically asymptomatic joints of PWH. The sample included 976 joints from 167 PWH (mean age 24.86 years). Data were collected from routine practice over a 3-year period and analyzed based on history of hemarthrosis and results of clinical (HJHS 2.1) and HEAD-US examinations. In our series, 14% of patients exhibited HEAD-US signs of incipient arthropathy in joints with no history of bleeding and with a HJHS 2.1 score of 0. The most severely involved joint was the right ankle. Synovitis, articular cartilage and subchondral bone damage scores in joints with subclinical findings were slower than in joints with previous hemarthroses or HJHS 2.1 > 1 Conclusions: Our study demonstrates that HEAD-US is better than hemarthrosis records and the HJHS 2.1 scale in detecting the early signs of joint damage in PWH.

  5. Active Joint Mechanism Driven by Multiple Actuators Made of Flexible Bags: A Proposal of Dual Structural Actuator

    PubMed Central

    Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input. PMID:24385868

  6. Active joint mechanism driven by multiple actuators made of flexible bags: a proposal of dual structural actuator.

    PubMed

    Kimura, Hitoshi; Matsuzaki, Takuya; Kataoka, Mokutaro; Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input.

  7. Hip joint kinetics in the table tennis topspin forehand: relationship to racket velocity.

    PubMed

    Iino, Yoichi

    2018-04-01

    The purpose of this study was to determine hip joint kinetics during a table tennis topspin forehand, and to investigate the relationship between the relevant kinematic and kinetic variables and the racket horizontal and vertical velocities at ball impact. Eighteen male advanced table tennis players hit cross-court topspin forehands against backspin balls. The hip joint torque and force components around the pelvis coordinate system were determined using inverse dynamics. Furthermore, the work done on the pelvis by these components was also determined. The peak pelvis axial rotation velocity and the work done by the playing side hip pelvis axial rotation torque were positively related to the racket horizontal velocity at impact. The sum of the work done on the pelvis by the backward tilt torques and the upward joint forces was positively related to the racket vertical velocity at impact. The results suggest that the playing side hip pelvis axial rotation torque exertion is important for acquiring a high racket horizontal velocity at impact. The pelvis backward tilt torques and upward joint forces at both hip joints collectively contribute to the generation of the racket vertical velocity, and the mechanism for acquiring the vertical velocity may vary among players.

  8. Analysis of elbow-joints misalignment in upper-limb exoskeleton.

    PubMed

    Malosio, Matteo; Pedrocchi, Nicola; Vicentini, Federico; Tosatti, Lorenzo Molinari

    2011-01-01

    This paper presents advantages of introducing elbow-joints misalignments in an exoskeleton for upper limb rehabilitation. Typical exoskeletons are characterized by axes of the device as much as possible aligned to the rotational axes of human articulations. This approach leads to advantages in terms of movements and torques decoupling, but can lead to limitations nearby the elbow singular configuration. A proper elbow axes misalignment between the exoskeleton and the human can improve the quality of collaborative rehabilitation therapies, in which a correct torque transmission from human articulations to mechanical joints of the device is required to react to torques generated by the patient. © 2011 IEEE

  9. The effect of the use of a counter-torque device on the abutment-implant complex.

    PubMed

    Lang, L A; May, K B; Wang, R F

    1999-04-01

    Little is known about the condition of the abutment-screw joint before loading, after the development of the preload. This study examined the tightening force transmitted to the implant with and without the use of a counter-torque device during the tightening of the abutment screw. Forty Brânemark implants and 10 CeraOne, Estheticone, Procera, and AurAdapt abutments formed the experimental populations. Samples in each group were further divided into 2 groups, 1 group was tightened with a torque controller without the use of a counter-torque device, whereas the other used the counter-torque device. Samples were positioned in a special holder within the grips of a Tohnichi BTG-6 torque gauge for measuring transmitted forces. There were significant differences (P =. 0001) in the tightening forces transmitted to the implant with and without the use of a counter-torque device when tightening the abutment screws. An average of 91% of the recommended preload tightening torque was transmitted to the implant-bone interface in the absence of a counter-torque device. In all abutment systems, less than 10% of the recommended preload tightening torque was transmitted to the implant when the counter-torque device was used.

  10. Reusable Solid Rocket Motor Nozzle Joint 5 Redesign

    NASA Technical Reports Server (NTRS)

    Lui, R. C.; Stratton, T. C.; LaMont, D. T.

    2003-01-01

    Torque tension testing of a newly designed Reusable Solid Rocket Motor nozzle bolted assembly was successfully completed. Test results showed that the 3-sigma preload variation was as expected at the required input torque level and the preload relaxation were within the engineering limits. A shim installation technique was demonstrated as a simple process to fill a shear lip gap between nozzle housings in the joint region. A new automated torque system was successfully demonstrated in this test. This torque control tool was found to be very precise and accurate. The bolted assembly performance was further evaluated using the Nozzle Structural Test Bed. Both current socket head cap screw and proposed multiphase alloy bolt configurations were tested. Results indicated that joint skip and bolt bending were significantly reduced with the new multiphase alloy bolt design. This paper summarizes all the test results completed to date.

  11. Analysis and testing of a space crane articulating joint testbed

    NASA Technical Reports Server (NTRS)

    Sutter, Thomas R.; Wu, K. Chauncey

    1992-01-01

    The topics are presented in viewgraph form and include: space crane concept with mobile base; mechanical versus structural articulating joint; articulating joint test bed and reference truss; static and dynamic characterization completed for space crane reference truss configuration; improved linear actuators reduce articulating joint test bed backlash; 1-DOF space crane slew maneuver; boom 2 tip transient response finite element dynamic model; boom 2 tip transient response shear-corrected component modes torque driver profile; peak root member force vs. slew time torque driver profile; and open loop control of space crane motion.

  12. Intramuscular pressure and torque during isometric, concentric and eccentric muscular activity

    NASA Technical Reports Server (NTRS)

    Styf, J.; Ballard, R.; Aratow, M.; Crenshaw, A.; Watenpaugh, D.; Hargens, A. R.

    1995-01-01

    Intramuscular pressures, electromyography (EMG) and torque generation during isometric, concentric and eccentric maximal isokinetic muscle activity were recorded in 10 healthy volunteers. Pressure and EMG activity were continuously and simultaneously measured side by side in the tibialis anterior and soleus muscles. Ankle joint torque and position were monitored continuously by an isokinetic dynamometer during plantar flexion and dorsiflexion of the foot. The increased force generation during eccentric muscular activity, compared with other muscular activity, was not accompanied by higher intramuscular pressure. Thus, this study demonstrated that eccentric muscular activity generated higher torque values for each increment of intramuscular pressure. Intramuscular pressures during antagonistic co-activation were significantly higher in the tibilis anterior muscle (42-46% of maximal agonistic activity) compared with the soleus muscle (12-29% of maximal agonistic activity) and was largely due to active recruitment of muscle fibers. In summary, eccentric muscular activity creates higher torque values with no additional increase of the intramuscular pressure compared with concentric and isometric muscular activity.

  13. A Method for and Issues Associated with the Determination of Space Suit Joint Requirements

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer E.; Aitchison, Lindsay

    2010-01-01

    This joint mobility KC lecture included information from two papers, "A Method for and Issues Associated with the Determination of Space Suit Joint Requirements" and "Results and Analysis from Space Suit Joint Torque Testing," as presented for the International Conference on Environmental Systems in 2009 and 2010, respectively. The first paper discusses historical joint torque testing methodologies and approaches that were tested in 2008 and 2009. The second paper discusses the testing that was completed in 2009 and 2010.

  14. A mechanical jig for measuring ankle supination and pronation torque in vitro and in vivo.

    PubMed

    Fong, Daniel Tik-Pui; Chung, Mandy Man-Ling; Chan, Yue-Yan; Chan, Kai-Ming

    2012-07-01

    This study presents the design of a mechanical jig for evaluating the ankle joint torque on both cadaver and human ankles. Previous study showed that ankle sprain motion was a combination of plantarflexion and inversion. The device allows measurement of ankle supination and pronation torque with one simple axis in a single step motion. More importantly, the ankle orientation allows rotation starting from an anatomical position. Six cadaveric specimens and six human subjects were tested with simulated and voluntary rotation respectively. The presented mechanical jig makes possible the determination of supination torque for studying ankle sprain injury and the estimation of pronation torque for examining peroneal muscle response. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Torque Limit for Bolted Joint For Composites. Part B; Experimentation

    NASA Technical Reports Server (NTRS)

    Kostreva, Kristian M.

    2003-01-01

    Today, aerospace quality composite parts are generally made from either a unidirectional tape or a fabric prepreg form depending on the application. The matrix material, typically epoxy because of it dimensional stability, is pre-impregnated onto the fibers to ensure uniform distribution. Both of these composite forms are finding themselves used in applications where a joint is required. Two widely used joint methods are the classic mechanically fastened joint, and the contemporary bonded joint; however, the mechanically fastened joint is most commonly used by design engineers. A major portion of the research up-to-date about bolted composite joints has dealt with the inplane static load capacity. This work has helped to spawn standards dealing with filled-hole static joint strength. Other research has clearly shown that the clamp-up load in the mechanical fastener significantly affects the joint strength in a beneficial manner by reducing the bearing strength dependence of the composite laminate. One author reported a maximum increase in joint strength of 28%. This finding has helped to improve the reliability and efficiency of the joint in a composite structure.

  16. Joint imaging in polymyalgia rheumatica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Duffy, J.D.; Wahner, H.W.; Hunder, G.G.

    1976-08-01

    Technetium pertechnetate joint scintigrams were abnormal in 24 of 25 patients with polymyalgia rheumatica, in all 16 with rheumatoid arthritis, in 4 of 13 with nonarticular rheumatism, but in none of 26 control patients. Abnormal uptake in polymyalgia patients was commonest in shoulders and was less likely to be symmetric than in patients with rheumatoid arthritis, in whom distal joint abnormalities predominated. The pattern of abnormal uptake in polymyalgia rheumatica was not different in those with biopsy-proved giant cell arteritis. Correlation between symptoms and abnormal scintigrams was 72%, and abnormal uptake was present in 81% of joints of patients havingmore » physical abnormalities. Biopsy showed lymphocytic synovitis in the knee of one patient. After treatment the number of abnormal joints declined. These findings suggest that synovitis is common in polymyalgia rheumatica, and that it may account for some or most of the symptoms in this condition.« less

  17. The influence of aging on the isometric torque sharing patterns among the plantar flexor muscles.

    PubMed

    Oliveira, Liliam F; Verneque, Debora; Menegaldo, Luciano L

    2017-01-01

    Physiological cross-sectional area (PCSA) reduction of the triceps surae (TS) muscles during aging suggests a proportional loss of torque among its components: soleus, medial and lateral gastrocnemii. However, direct measurements of muscle forces in vivo are not feasible. The purpose of this paper was to compare, between older and young women, isometric ankle joint torque sharing patterns among TS muscles and tibialis anterior (TA). An EMG-driven model was used for estimating individual muscle torque contributions to the total plantar flexor torque, during sustained contractions of 10% and 40% of maximum voluntary contraction (MVC). Relative individual muscle contributions to the total plantar flexion torque were similar between older and young women groups, for both intensities, increasing from LG, MG to SOL. Muscle strength (muscle torque/body mass) was significantly greater for all TS components in 40% MVC contractions. Increased TA activation was observed in 10% of MVC for older people. Despite the reduced maximum isometric torque and muscle strength, the results suggest small variations of ankle muscle synergies during the aging process.

  18. Design of driving control strategy of torque distribution for two - wheel independent drive electric vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanwei; Zhang, Dongsheng; Wen, Jianping

    2018-02-01

    In order to coordinately control the torque distribution of existing two-wheel independent drive electric vehicle, and improve the energy efficiency and control stability of the whole vehicle, the control strategies based on fuzzy control were designed which adopt the direct yaw moment control as the main line. For realizing the torque coordination simulation of the two-wheel independent drive vehicle, the vehicle model, motor model and tire model were built, including the vehicle 7 - DOF dynamics model, motion equation, torque equation. Finally, in the Carsim - Simulink joint simulation platform, the feasibility of the drive control strategy was verified.

  19. Changes in Muscle and Joint Coordination in Learning to Direct Forces

    PubMed Central

    Hasson, Christopher J.; Caldwell, Graham E.; van Emmerik, Richard E.A.

    2008-01-01

    While it has been suggested that biarticular muscles have a specialized role in directing external reaction forces, it is unclear how humans learn to coordinate mono- and bi-articular muscles to perform force-directing tasks. Subjects were asked to direct pedal forces in a specified target direction during one-legged cycling. We expected that with practice, performance improvement would be associated with specific changes in joint torque patterns and mono- and bi-articular muscular coordination. Nine male subjects practiced pedaling an ergometer with only their left leg, and were instructed to always direct their applied pedal force perpendicular to the crank arm (target direction) and to maintain a constant pedaling speed. After a single practice session, the mean error between the applied and target pedal force directions decreased significantly. This improved performance was accompanied by a significant decrease in the amount of ankle angular motion and a smaller increase in knee and hip angular motion. This coincided with a re-organization of lower extremity joint torques, with a decrease in ankle plantarflexor torque and an increase in knee and hip flexor torques. Changes were seen in both mono- and bi-articular muscle activity patterns. The monoarticular muscles exhibited greater alterations, and appeared to contribute to both mechanical work and force directing. With practice, a loosening of the coupling between biarticular thigh muscle activation and joint torque co-regulation was observed. The results demonstrated that subjects were able to learn a complex and dynamic force-directing task by changing the direction of their applied pedal forces through re-organization of joint torque patterns and mono- and bi-articular muscle coordination. PMID:18405988

  20. Changes in muscle and joint coordination in learning to direct forces.

    PubMed

    Hasson, Christopher J; Caldwell, Graham E; van Emmerik, Richard E A

    2008-08-01

    While it has been suggested that bi-articular muscles have a specialized role in directing external reaction forces, it is unclear how humans learn to coordinate mono- and bi-articular muscles to perform force-directing tasks. Participants were asked to direct pedal forces in a specified target direction during one-legged cycling. We expected that with practice, performance improvement would be associated with specific changes in joint torque patterns and mono- and bi-articular muscular coordination. Nine male participants practiced pedaling an ergometer with only their left leg, and were instructed to always direct their applied pedal force perpendicular to the crank arm (target direction) and to maintain a constant pedaling speed. After a single practice session, the mean error between the applied and target pedal force directions decreased significantly. This improved performance was accompanied by a significant decrease in the amount of ankle angular motion and a smaller increase in knee and hip angular motion. This coincided with a re-organization of lower extremity joint torques, with a decrease in ankle plantarflexor torque and an increase in knee and hip flexor torques. Changes were seen in both mono- and bi-articular muscle activity patterns. The mono-articular muscles exhibited greater alterations, and appeared to contribute to both mechanical work and force-directing. With practice, a loosening of the coupling between bi-articular thigh muscle activation and joint torque co-regulation was observed. The results demonstrated that participants were able to learn a complex and dynamic force-directing task by changing the direction of their applied pedal forces through re-organization of joint torque patterns and mono- and bi-articular muscle coordination.

  1. Alignment of Irregular Grains by Mechanical Torques

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem; Cho, Jungyeon; Lazarian, A.

    2018-01-01

    We study the alignment of irregular dust grains by mechanical torques due to the drift of grains through the ambient gas. We first calculate mechanical alignment torques (MATs) resulting from specular reflection of gas atoms for seven irregular shapes: one shape of mirror symmetry, three highly irregular shapes (HIS), and three weakly irregular shapes (WIS). We find that the grain with mirror symmetry experiences negligible MATs due to its mirror-symmetry geometry. Three HIS can produce strong MATs, which exhibit some generic properties as radiative torques (RATs), while three WIS produce less efficient MATs. We then study grain alignment by MATs for the different angles between the drift velocity and the ambient magnetic field, for paramagnetic and superparamagnetic grains assuming efficient internal relaxation. We find that for HIS grains, MATs can align subsonically drifting grains in the same way as RATs, with low-J and high-J attractors. For supersonic drift, MATs can align grains with low-J and high-J attractors, analogous to RAT alignment by anisotropic radiation. We also show that the joint action of MATs and magnetic torques in grains with iron inclusions can lead to perfect MAT alignment. Our results point out the potential importance of MAT alignment for HIS grains predicted by the analytical model of Lazarian & Hoang, although more theoretical and observational studies are required due to uncertainty in the shape of interstellar grains. We outline astrophysical environments where MAT alignment is potentially important.

  2. Independent control of joint stiffness in the framework of the equilibrium-point hypothesis.

    PubMed

    Latash, M L

    1992-01-01

    In the framework of the equilibrium-point hypothesis, virtual trajectories and joint stiffness patterns have been reconstructed during two motor tasks practiced against a constant bias torque. One task required a voluntary increase in joint stiffness while preserving the original joint position. The other task involved fast elbow flexions over 36 degrees. Joint stiffness gradually subsided after the termination of fast movements. In both tasks, the external torque could slowly and unexpectedly change. The subjects were required not to change their motor commands if the torque changed, i.e. "to do the same no matter what the motor did". In both tasks, changes in joint stiffness were accompanied by unchanged virtual trajectories that were also independent of the absolute value of the bias torque. By contrast, the intercept of the joint compliant characteristic with the angle axis, r(t)-function, has demonstrated a clear dependence upon both the level of coactivation and external load. We assume that a template virtual trajectory is generated at a certain level of the motor hierarchy and is later scaled taking into account some commonly changing dynamic factors of the movement execution, for example, external load. The scaling leads to the generation of commands to the segmental structures that can be expressed, according to the equilibrium-point hypothesis, as changes in the thresholds of the tonic stretch reflex for corresponding muscles.

  3. Development and evaluation of a musculoskeletal model of the elbow joint complex

    NASA Technical Reports Server (NTRS)

    Gonzalez, Roger V.; Hutchins, E. L.; Barr, Ronald E.; Abraham, Lawrence D.

    1993-01-01

    This paper describes the development and evaluation of a musculoskeletal model that represents human elbow flexion-extension and forearm pronation-supination. The length, velocity, and moment arm for each of the eight musculotendon actuators were based on skeletal anatomy and position. Musculotendon parameters were determined for each actuator and verified by comparing analytical torque-angle curves with experimental joint torque data. The parameters and skeletal geometry were also utilized in the musculoskeletal model for the analysis of ballistic elbow joint complex movements. The key objective was to develop a computational model, guided by parameterized optimal control, to investigate the relationship among patterns of muscle excitation, individual muscle forces, and movement kinematics. The model was verified using experimental kinematic, torque, and electromyographic data from volunteer subjects performing ballistic elbow joint complex movements.

  4. [Joint effect of birth weight and obesity measures on abnormal glucose metabolism at adulthood].

    PubMed

    Xi, Bo; Cheng, Hong; Chen, Fangfang; Zhao, Xiaoyuan; Mi, Jie

    2016-01-01

    To investigate the joint effect of birth weight and each of obesity measures (body mass index (BMI) and waist circumference (WC)) on abnormal glucose metabolism (including diabetes) at adulthood. Using the historical cohort study design and the convenience sampling method, 1 921 infants who were born in Beijing Union Medical College Hospital from June 1948 to December 1954 were selected to do the follow-up in 1995 and 2001 respectively. Through Beijing Household Registration and Management System, they were invited to participate in this study. A total of 972 subjects (627 were followed up in 1995 and 345 were followed up in 2001) with complete information on genders, age, birth weight, family history of diabetes, BMI, WC, fasting plasma glucose (FPG) and 2-hour plasma glucose (2 h PG) met the study inclusion criteria at the follow-up visits. In the data analysis, they were divided into low, normal, and high birth weight, respectively. The ANOVA and Chi-squared tests were used to compare the differences in their characteristics by birth weight group. In addition, multiple binary Logistic regression model was used to investigate the single effect of birth weight, BMI, and waist circumference on abnormal glucose metabolism at adulthood. Stratification analysis was used to investigate the joint effect of birth weight and each of obesity measures (BMI and WC) on abnormal glucose metabolism. There were 972 subjects (males: 50.7%, mean age: (46.0±2.2) years) included in the final data analysis. The 2 h PG in low birth weight group was (7.6±3.2) mmol/L , which was higher than that in normal birth weight group (6.9±2.1) mmol/L and high birth weight group (6.4±1.3) mmol/L (F=3.88, P=0.021). After adjustment for genders, age, body length, gestation age, family history of diabetes, physical activity, smoking and alcohol consumption, and duration of follow-up, subjects with overweight and obesity at adulthood had 2.73 (95% confidence interval (CI) =2.06- 3.62) times risk

  5. Determination of torque-limits for human and cat lumbar spine specimens during displacement-controlled physiological motions.

    PubMed

    Ianuzzi, Allyson; Pickar, Joel G; Khalsa, Partap S

    2009-01-01

    Quadruped animal models have been validated and used as biomechanical models for the lumbar spine. The biomechanics of the cat lumbar spine has not been well characterized, even though it is a common model used in neuromechanical studies. Compare the physiological ranges of motion and determine torque-limits for cat and human lumbar spine specimens during physiological motions. Biomechanics study. Cat and human lumbar spine specimens. Intervertebral angle (IVA), joint moment, yield point, torque-limit, and correlation coefficients. Cat (L2-sacrum) and human (T12-sacrum) lumbar spine specimens were mechanically tested to failure during displacement-controlled extension (E), lateral bending (LB), and axial rotation (AR). Single trials consisted of 10 cycles (10mm/s or 5 degrees /s) to a target displacement where the magnitude of the target displacement was increased for subsequent trials until failure occurred. Whole-lumbar stiffness, torque at yield point, and joint stiffness were determined. Scaling relationships were established using equations analogous to those that describe the load response of elliptically shaped beams. IVA magnitudes for cat and human lumbar spines were similar during physiological motions. Human whole-lumbar and joint stiffness magnitudes were significantly greater than those for cat spine specimens (p<.05). Torque-limits were also greater for humans compared with cats. Scaling relationships with high correlation (R(2) greater than 0.77) were established during later LB and AR. The current study defined "physiological ranges of movement" for human and cat lumbar spine specimens during displacement-controlled testing, and should be observed in future biomechanical studies conducted under displacement control.

  6. Uncontrolled Manifold Reference Feedback Control of Multi-Joint Robot Arms

    PubMed Central

    Togo, Shunta; Kagawa, Takahiro; Uno, Yoji

    2016-01-01

    The brain must coordinate with redundant bodies to perform motion tasks. The aim of the present study is to propose a novel control model that predicts the characteristics of human joint coordination at a behavioral level. To evaluate the joint coordination, an uncontrolled manifold (UCM) analysis that focuses on the trial-to-trial variance of joints has been proposed. The UCM is a nonlinear manifold associated with redundant kinematics. In this study, we directly applied the notion of the UCM to our proposed control model called the “UCM reference feedback control.” To simplify the problem, the present study considered how the redundant joints were controlled to regulate a given target hand position. We considered a conventional method that pre-determined a unique target joint trajectory by inverse kinematics or any other optimization method. In contrast, our proposed control method generates a UCM as a control target at each time step. The target UCM is a subspace of joint angles whose variability does not affect the hand position. The joint combination in the target UCM is then selected so as to minimize the cost function, which consisted of the joint torque and torque change. To examine whether the proposed method could reproduce human-like joint coordination, we conducted simulation and measurement experiments. In the simulation experiments, a three-link arm with a shoulder, elbow, and wrist regulates a one-dimensional target of a hand through proposed method. In the measurement experiments, subjects performed a one-dimensional target-tracking task. The kinematics, dynamics, and joint coordination were quantitatively compared with the simulation data of the proposed method. As a result, the UCM reference feedback control could quantitatively reproduce the difference of the mean value for the end hand position between the initial postures, the peaks of the bell-shape tangential hand velocity, the sum of the squared torque, the mean value for the torque

  7. Amount of torque and duration of stretching affects correction of knee contracture in a rat model of spinal cord injury.

    PubMed

    Moriyama, Hideki; Tobimatsu, Yoshiko; Ozawa, Junya; Kito, Nobuhiro; Tanaka, Ryo

    2013-11-01

    Joint contractures are a common complication of many neurologic conditions, and stretching often is advocated to prevent and treat these contractures. However, the magnitude and duration of the stretching done in practice usually are guided by subjective clinical impressions. Using an established T8 spinal cord injury rat model of knee contracture, we sought to determine what combination of static or intermittent stretching, varied by magnitude (high or low) and duration (long or short), leads to the best (1) improvement in the limitation in ROM; (2) restoration of the muscular and articular factors leading to contractures; and (3) prevention and treatment of contracture-associated histologic alterations of joint capsule and articular cartilage. Using a rat animal model, the spinal cord was transected completely at the level of T8. The rats were randomly assigned to seven treatment groups (n = 4 per group), which were composed of static or intermittent stretching in combination with different amounts of applied torque magnitude and duration. We assessed the effect of stretching by measuring the ROM and evaluating the histologic alteration of the capsule and cartilage. Contractures improved in all treated groups except for the low-torque and short-duration static stretching conditions. High-torque stretching was effective against shortening of the synovial membrane and adhesions in the posterosuperior regions. Collagen Type II and VEGF in the cartilage were increased by stretching. High-torque and long-duration static stretching led to greater restoration of ROM than the other torque and duration treatment groups. Stretching was more effective in improving articular components of contractures compared with the muscular components. Stretching in this rat model prevented shortening and adhesion of the joint capsule, and affected biochemical composition, but did not change morphologic features of the cartilage. This animal study tends to support the ideas that static

  8. A magneto-rheological fluid-based torque sensor for smart torque wrench application

    NASA Astrophysics Data System (ADS)

    Ahmadkhanlou, Farzad; Washington, Gregory N.

    2013-04-01

    In this paper, the authors have developed a new application where MR fluid is being used as a sensor. An MR-fluid based torque wrench has been developed with a rotary MR fluid-based damper. The desired set torque ranges from 1 to 6 N.m. Having continuously controllable yield strength, the MR fluid-based torque wrench presents a great advantage over the regular available torque wrenches in the market. This design is capable of providing continuous set toque from the lower limit to the upper limit while regular torque wrenches provide discrete set torques only at some limited points. This feature will be especially important in high fidelity systems where tightening torque is very critical and the tolerances are low.

  9. Common Bolted Joint Analysis Tool

    NASA Technical Reports Server (NTRS)

    Imtiaz, Kauser

    2011-01-01

    Common Bolted Joint Analysis Tool (comBAT) is an Excel/VB-based bolted joint analysis/optimization program that lays out a systematic foundation for an inexperienced or seasoned analyst to determine fastener size, material, and assembly torque for a given design. Analysts are able to perform numerous what-if scenarios within minutes to arrive at an optimal solution. The program evaluates input design parameters, performs joint assembly checks, and steps through numerous calculations to arrive at several key margins of safety for each member in a joint. It also checks for joint gapping, provides fatigue calculations, and generates joint diagrams for a visual reference. Optimum fastener size and material, as well as correct torque, can then be provided. Analysis methodology, equations, and guidelines are provided throughout the solution sequence so that this program does not become a "black box:" for the analyst. There are built-in databases that reduce the legwork required by the analyst. Each step is clearly identified and results are provided in number format, as well as color-coded spelled-out words to draw user attention. The three key features of the software are robust technical content, innovative and user friendly I/O, and a large database. The program addresses every aspect of bolted joint analysis and proves to be an instructional tool at the same time. It saves analysis time, has intelligent messaging features, and catches operator errors in real time.

  10. Reconstruction of shifting elbow joint compliant characteristics during fast and slow movements.

    PubMed

    Latash, M L; Gottlieb, G L

    1991-01-01

    The purpose of this study was to experimentally investigate the applicability of the equilibrium-point hypothesis to the dynamics of single-joint movements. Subjects were trained to perform relatively slow (movement time 600-1000 ms) or fast (movement time 200-300 ms) single-joint elbow flexion movements against a constant extending torque bias. They were instructed to reproduce the same time pattern of central motor command for a series of movements when the external torque could slowly and unpredictably increase, decrease, or remain constant. For fast movements, the total muscle torque was calculated as a sum of external and inertial components. Analysis of the data allowed reconstruction of the elbow joint compliant characteristics at different times during execution of the learned motor command. "Virtual" trajectories of the movements, representing time-varying changes in a central control parameter, were reconstructed and compared with the "actual" trajectories. For slow movements, the actual trajectories lagged behind the virtual ones. There were no consistent changes in the joint stiffness during slow movements. Similar analysis of experiments without voluntary movements demonstrated a lack of changes in the central parameters, supporting the assumption that the subjects were able to keep the same central motor command in spite of externally imposed unexpected torque perturbations. For the fast movements, the virtual trajectories were N-shaped, and the joint stiffness demonstrated a considerable increase near the middle of the movement. These findings contradict an hypothesis of monotonic joint compliant characteristic translation at a nearly constant rate during such movements.

  11. Immediate effects of whole body vibration on patellar tendon properties and knee extension torque.

    PubMed

    Rieder, F; Wiesinger, H-P; Kösters, A; Müller, E; Seynnes, O R

    2016-03-01

    Reports about the immediate effects of whole body vibration (WBV) exposure upon torque production capacity are inconsistent. However, the changes in the torque-angle relationship observed by some authors after WBV may hinder the measurement of torque changes at a given angle. Acute changes in tendon mechanical properties do occur after certain types of exercise but this hypothesis has never been tested after a bout of WBV. The purpose of the present study was to investigate whether tendon compliance is altered immediately after WBV, effectively shifting the optimal angle of peak torque towards longer muscle length. Twenty-eight subjects were randomly assigned to either a WBV (n = 14) or a squatting control group (n = 14). Patellar tendon CSA, stiffness and Young's modulus and knee extension torque-angle relationship were measured using ultrasonography and dynamometry 1 day before and directly after the intervention. Tendon CSA was additionally measured 24 h after the intervention to check for possible delayed onset of swelling. The vibration intervention had no effects on patellar tendon CSA, stiffness and Young's modulus or the torque-angle relationship. Peak torque was produced at ~70° knee angle in both groups at pre- and post-test. Additionally, the knee extension torque globally remained unaffected with the exception of a small (-6%) reduction in isometric torque at a joint angle of 60°. The present results indicate that a single bout of vibration exposure does not substantially alter patellar tendon properties or the torque-angle relationship of knee extensors.

  12. A Robot-Driven Computational Model for Estimating Passive Ankle Torque With Subject-Specific Adaptation.

    PubMed

    Zhang, Mingming; Meng, Wei; Davies, T Claire; Zhang, Yanxin; Xie, Sheng Q

    2016-04-01

    Robot-assisted ankle assessment could potentially be conducted using sensor-based and model-based methods. Existing ankle rehabilitation robots usually use torquemeters and multiaxis load cells for measuring joint dynamics. These measurements are accurate, but the contribution as a result of muscles and ligaments is not taken into account. Some computational ankle models have been developed to evaluate ligament strain and joint torque. These models do not include muscles and, thus, are not suitable for an overall ankle assessment in robot-assisted therapy. This study proposed a computational ankle model for use in robot-assisted therapy with three rotational degrees of freedom, 12 muscles, and seven ligaments. This model is driven by robotics, uses three independent position variables as inputs, and outputs an overall ankle assessment. Subject-specific adaptations by geometric and strength scaling were also made to allow for a universal model. This model was evaluated using published results and experimental data from 11 participants. Results show a high accuracy in the evaluation of ligament neutral length and passive joint torque. The subject-specific adaptation performance is high, with each normalized root-mean-square deviation value less than 10%. This model could be used for ankle assessment, especially in evaluating passive ankle torque, for a specific individual. The characteristic that is unique to this model is the use of three independent position variables that can be measured in real time as inputs, which makes it advantageous over other models when combined with robot-assisted therapy.

  13. The association between reduced knee joint proprioception and medial meniscal abnormalities using MRI in knee osteoarthritis: results from the Amsterdam osteoarthritis cohort.

    PubMed

    van der Esch, M; Knoop, J; Hunter, D J; Klein, J-P; van der Leeden, M; Knol, D L; Reiding, D; Voorneman, R E; Gerritsen, M; Roorda, L D; Lems, W F; Dekker, J

    2013-05-01

    Osteoarthritis (OA) of the knee is characterized by pain and activity limitations. In knee OA, proprioceptive accuracy is reduced and might be associated with pain and activity limitations. Although causes of reduced proprioceptive accuracy are divergent, medial meniscal abnormalities, which are highly prevalent in knee OA, have been suggested to play an important role. No study has focussed on the association between proprioceptive accuracy and meniscal abnormalities in knee OA. To explore the association between reduced proprioceptive accuracy and medial meniscal abnormalities in a clinical sample of knee OA subjects. Cross-sectional study in 105 subjects with knee OA. Knee proprioceptive accuracy was assessed by determining the joint motion detection threshold in the knee extension direction. The knee was imaged with a 3.0 T magnetic resonance (MR) scanner. Number of regions with medial meniscal abnormalities and the extent of abnormality in the anterior and posterior horn and body were scored according to the Boston-Leeds Osteoarthritis Knee Score (BLOKS) method. Multiple regression analyzes were used to examine whether reduced proprioceptive accuracy was associated with medial meniscal abnormalities in knee OA subjects. Mean proprioceptive accuracy was 2.9° ± 1.9°. Magnetic resonance imaging (MRI)-detected medial meniscal abnormalities were found in the anterior horn (78%), body (80%) and posterior horn (90%). Reduced proprioceptive accuracy was associated with both the number of regions with meniscal abnormalities (P < 0.01) and the extent of abnormality (P = 0.02). These associations were not confounded by muscle strength, joint laxity, pain, age, gender, body mass index (BMI) and duration of knee complaints. This is the first study showing that reduced proprioceptive accuracy is associated with medial meniscal abnormalities in knee OA. The study highlights the importance of meniscal abnormalities in understanding reduced proprioceptive accuracy in

  14. Estimating net joint torques from kinesiological data using optimal linear system theory.

    PubMed

    Runge, C F; Zajac, F E; Allum, J H; Risher, D W; Bryson, A E; Honegger, F

    1995-12-01

    Net joint torques (NJT) are frequently computed to provide insights into the motor control of dynamic biomechanical systems. An inverse dynamics approach is almost always used, whereby the NJT are computed from 1) kinematic measurements (e.g., position of the segments), 2) kinetic measurements (e.g., ground reaction forces) that are, in effect, constraints defining unmeasured kinematic quantities based on a dynamic segmental model, and 3) numerical differentiation of the measured kinematics to estimate velocities and accelerations that are, in effect, additional constraints. Due to errors in the measurements, the segmental model, and the differentiation process, estimated NJT rarely produce the observed movement in a forward simulation when the dynamics of the segmental system are inherently unstable (e.g., human walking). Forward dynamic simulations are, however, essential to studies of muscle coordination. We have developed an alternative approach, using the linear quadratic follower (LQF) algorithm, which computes the NJT such that a stable simulation of the observed movement is produced and the measurements are replicated as well as possible. The LQF algorithm does not employ constraints depending on explicit differentiation of the kinematic data, but rather employs those depending on specification of a cost function, based on quantitative assumptions about data confidence. We illustrate the usefulness of the LQF approach by using it to estimate NJT exerted by standing humans perturbed by support-surface movements. We show that unless the number of kinematic and force variables recorded is sufficiently high, the confidence that can be placed in the estimates of the NJT, obtained by any method (e.g., LQF, or the inverse dynamics approach), may be unsatisfactorily low.

  15. Self-oscillation in spin torque oscillator stabilized by field-like torque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi

    2014-04-14

    The effect of the field-like torque on the self-oscillation of the magnetization in spin torque oscillator with a perpendicularly magnetized free layer was studied theoretically. A stable self-oscillation at zero field is excited for negative β while the magnetization dynamics stops for β = 0 or β > 0, where β is the ratio between the spin torque and the field-like torque. The reason why only the negative β induces the self-oscillation was explained from the view point of the energy balance between the spin torque and the damping. The oscillation power and frequency for various β were also studied by numerical simulation.

  16. Wrist torque estimation during simultaneous and continuously changing movements: surface vs. untargeted intramuscular EMG.

    PubMed

    Kamavuako, Ernest N; Scheme, Erik J; Englehart, Kevin B

    2013-06-01

    In this paper, the predictive capability of surface and untargeted intramuscular electromyography (EMG) was compared with respect to wrist-joint torque to quantify which type of measurement better represents joint torque during multiple degrees-of-freedom (DoF) movements for possible application in prosthetic control. Ten able-bodied subjects participated in the study. Surface and intramuscular EMG was recorded concurrently from the right forearm. The subjects were instructed to track continuous contraction profiles using single and combined DoF in two trials. The association between torque and EMG was assessed using an artificial neural network. Results showed a significant difference between the two types of EMG (P < 0.007) for all performance metrics: coefficient of determination (R(2)), Pearson correlation coefficient (PCC), and root mean square error (RMSE). The performance of surface EMG (R(2) = 0.93 ± 0.03; PCC = 0.98 ± 0.01; RMSE = 8.7 ± 2.1%) was found to be superior compared with intramuscular EMG (R(2) = 0.80 ± 0.07; PCC = 0.93 ± 0.03; RMSE = 14.5 ± 2.9%). The higher values of PCC compared with R(2) indicate that both methods are able to track the torque profile well but have some trouble (particularly intramuscular EMG) in estimating the exact amplitude. The possible cause for the difference, thus the low performance of intramuscular EMG, may be attributed to the very high selectivity of the recordings used in this study.

  17. Space suit glove design with advanced metacarpal phalangeal joints and robotic hand evaluation.

    PubMed

    Southern, Theodore; Roberts, Dustyn P; Moiseev, Nikolay; Ross, Amy; Kim, Joo H

    2013-06-01

    One area of space suits that is ripe for innovation is the glove. Existing models allow for some fine motor control, but the power grip--the act of grasping a bar--is cumbersome due to high torque requirements at the knuckle or metacarpal phalangeal joint (MCP). This area in particular is also a major source of complaints of pain and injury as reported by astronauts. This paper explores a novel fabrication and patterning technique that allows for more freedom of movement and less pain at this crucial joint in the manned space suit glove. The improvements are evaluated through unmanned testing, manned testing while depressurized in a vacuum glove box, and pressurized testing with a robotic hand. MCP joint flex score improved from 6 to 6.75 (out of 10) in the final glove relative to the baseline glove, and torque required for flexion decreased an average of 17% across all fingers. Qualitative assessments during unpressurized and depressurized manned testing also indicated the final glove was more comfortable than the baseline glove. The quantitative results from both human subject questionnaires and robotic torque evaluation suggest that the final iteration of the glove design enables flexion at the MCP joint with less torque and more comfort than the baseline glove.

  18. Muscle torque and its relation to technique, tactics, sports level and age group in judo contestants.

    PubMed

    Lech, Grzegorz; Chwała, Wiesław; Ambroży, Tadeusz; Sterkowicz, Stanisław

    2015-03-29

    The aim of this study was to perform a comparative analysis of maximal muscle torques at individual stages of development of athletes and to determine the relationship between muscle torques, fighting methods and the level of sports performance. The activity of 25 judo contestants during judo combats and the effectiveness of actions were evaluated. Maximum muscle torques in flexors/extensors of the body trunk, shoulder, elbow, hip and knee joints were measured. The level of significance was set at p≤0.05; for multiple comparisons the Mann-Whitney U test, p≤0.016, was used. Intergroup differences in relative torques in five muscle groups studied (elbow extensors, shoulder flexors, knee flexors, knee extensors, hip flexors) were not significant. In cadets, relative maximum muscle torques in hip extensors correlated with the activity index (Spearman's r=0.756). In juniors, maximum relative torques in elbow flexors and knee flexors correlated with the activity index (r=0.73 and r=0.76, respectively). The effectiveness of actions correlated with relative maximum torque in elbow extensors (r=0.67). In seniors, the relative maximum muscle torque in shoulder flexors correlated with the activity index during the second part of the combat (r=0.821).

  19. Muscle Torque and its Relation to Technique, Tactics, Sports Level and Age Group in Judo Contestants

    PubMed Central

    Lech, Grzegorz; Chwała, Wiesław; Ambroży, Tadeusz; Sterkowicz, Stanisław

    2015-01-01

    The aim of this study was to perform a comparative analysis of maximal muscle torques at individual stages of development of athletes and to determine the relationship between muscle torques, fighting methods and the level of sports performance. The activity of 25 judo contestants during judo combats and the effectiveness of actions were evaluated. Maximum muscle torques in flexors/extensors of the body trunk, shoulder, elbow, hip and knee joints were measured. The level of significance was set at p≤0.05; for multiple comparisons the Mann-Whitney U test, p≤0.016, was used. Intergroup differences in relative torques in five muscle groups studied (elbow extensors, shoulder flexors, knee flexors, knee extensors, hip flexors) were not significant. In cadets, relative maximum muscle torques in hip extensors correlated with the activity index (Spearman’s r=0.756). In juniors, maximum relative torques in elbow flexors and knee flexors correlated with the activity index (r=0.73 and r=0.76, respectively). The effectiveness of actions correlated with relative maximum torque in elbow extensors (r=0.67). In seniors, the relative maximum muscle torque in shoulder flexors correlated with the activity index during the second part of the combat (r=0.821). PMID:25964820

  20. Electromagnetic torque tweezers: a versatile approach for measurement of single-molecule twist and torque.

    PubMed

    Janssen, Xander J A; Lipfert, Jan; Jager, Tessa; Daudey, Renier; Beekman, Jaap; Dekker, Nynke H

    2012-07-11

    The well-established single-molecule force-spectroscopy techniques have recently been complemented by methods that can measure torque and twist directly, notably magnetic torque tweezers and the optical torque wrench. A limitation of the current torque measurement schemes is the intrinsic coupling between the force and torque degrees of freedom. Here we present electromagnetic torque tweezers (eMTT) that combine permanent and electromagnets to enable independent control of the force and torsional trap stiffness for sensitive measurements of single molecule torque and twist. Using the eMTT, we demonstrate sensitive torque measurements on tethered DNA molecules from simple tracking of the beads' (x,y)-position, obviating the need for any angular tracking algorithms or markers. Employing the eMTT for high-resolution torque measurements, we experimentally confirm the theoretically predicted torque overshoot at the DNA buckling transition in high salt conditions. We envision that the flexibility and control afforded by the eMTT will enable a range of new torque and twist measurement schemes from single-molecules to living cells.

  1. Robust Control of a Cable-Driven Soft Exoskeleton Joint for Intrinsic Human-Robot Interaction.

    PubMed

    Jarrett, C; McDaid, A J

    2017-07-01

    A novel, cable-driven soft joint is presented for use in robotic rehabilitation exoskeletons to provide intrinsic, comfortable human-robot interaction. The torque-displacement characteristics of the soft elastomeric core contained within the joint are modeled. This knowledge is used in conjunction with a dynamic system model to derive a sliding mode controller (SMC) to implement low-level torque control of the joint. The SMC controller is experimentally compared with a baseline feedback-linearised proportional-derivative controller across a range of conditions and shown to be robust to un-modeled disturbances. The torque controller is then tested with six healthy subjects while they perform a selection of activities of daily living, which has validated its range of performance. Finally, a case study with a participant with spastic cerebral palsy is presented to illustrate the potential of both the joint and controller to be used in a physiotherapy setting to assist clinical populations.

  2. Sexually dimorphic white matter geometry abnormalities in adolescent onset schizophrenia.

    PubMed

    Savadjiev, P; Whitford, T J; Hough, M E; Clemm von Hohenberg, C; Bouix, S; Westin, C-F; Shenton, M E; Crow, T J; James, A C; Kubicki, M

    2014-05-01

    The normal human brain is characterized by a pattern of gross anatomical asymmetry. This pattern, known as the "torque", is associated with a sexual dimorphism: The male brain tends to be more asymmetric than that of the female. This fact, along with well-known sex differences in brain development (faster in females) and onset of psychosis (earlier with worse outcome in males), has led to the theory that schizophrenia is a disorder in which sex-dependent abnormalities in the development of brain torque, the correlate of the capacity for language, cause alterations in interhemispheric connectivity, which are causally related to psychosis (Crow TJ, Paez P, Chance SE. 2007. Callosal misconnectivity and the sex difference in psychosis. Int Rev Psychiatry. 19(4):449-457.). To provide evidence toward this theory, we analyze the geometry of interhemispheric white matter connections in adolescent-onset schizophrenia, with a particular focus on sex, using a recently introduced framework for white matter geometry computation in diffusion tensor imaging data (Savadjiev P, Kindlmann GL, Bouix S, Shenton ME, Westin CF. 2010. Local white geometry from diffusion tensor gradients. Neuroimage. 49(4):3175-3186.). Our results reveal a pattern of sex-dependent white matter geometry abnormalities that conform to the predictions of Crow's torque theory and correlate with the severity of patients' symptoms. To the best of our knowledge, this is the first study to associate geometrical differences in white matter connectivity with torque in schizophrenia.

  3. Some aspects of frictional measurements in hip joint simulators.

    PubMed

    Unsworth, Anthony

    2016-05-01

    The measurement of friction in artificial hip joints can lead to the knowledge of the lubrication mechanisms occurring in the joints. However, the measurement of friction, particularly in spherical contacts, is not always straightforward. The important loading and kinematic features must be appropriate and the friction must be measured in the correct plane. Even defining a coefficient of friction is difficult with spherical contacts as friction acts at different moment arms throughout the contact area. Thus, the generated frictional torques depend on the pressure distribution of the contact and the moment arms at which this pressure acts. The pressure distribution depends on the material properties, the surface entraining velocities, the joint diameters, and the clearance between the two surfaces of the ball and socket joint. Equally measuring friction is very taxing for machines which are applying very high loads. Slight misalignments of the application of these loads can produce torques which are very much greater than the frictional torques that we are trying to measure. This article attempts to share the thoughts behind over 40 years of measuring friction in artificial joints using the Durham Friction Simulators. This has led to accrued consistency of measurement and a robust scientific design rationale to understand the nature of friction in these spherical contacts. It also impacts on how to obtain accurate measurements as well as on the understanding of where the difficult issues lie and how to overcome them. © IMechE 2016.

  4. Simulation and Experiment Research on Fatigue Life of High Pressure Air Pipeline Joint

    NASA Astrophysics Data System (ADS)

    Shang, Jin; Xie, Jianghui; Yu, Jian; Zhang, Deman

    2017-12-01

    High pressure air pipeline joint is important part of high pressure air system, whose reliability is related to the safety and stability of the system. This thesis developed a new type-high pressure air pipeline joint, carried out dynamics research on CB316-1995 and new type-high pressure air pipeline joint with finite element method, deeply analysed the join forms of different design schemes and effect of materials on stress, tightening torque and fatigue life of joint. Research team set up vibration/pulse test bench, carried out joint fatigue life contrast test. The result shows: the maximum stress of the joint is inverted in the inner side of the outer sleeve nut, which is consistent with the failure mode of the crack on the outer sleeve nut in practice. Simulation and experiment of fatigue life and tightening torque of new type-high pressure air pipeline joint are better than CB316-1995 joint.

  5. Influence of Prosthetic Screw Material on Joint Stability in Passive and Non-Passive Implant-Supported Dentures

    PubMed Central

    Spazzin, Aloísio Oro; Henriques, Guilherme Elias Pessanha; de Arruda Nóbilo, Mauro Antônio; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço; Mesquita, Marcelo Ferraz

    2009-01-01

    Objectives: This study evaluated the influence of prosthetic screw material on joint stability in implantsupported dentures at two levels of fit. Methods: Ten mandibular implant-supported dentures were fabricated. Twenty cast models were fabricated using these dentures. Four groups (n=10) were tested, according to the vertical fit of the dentures [passive and non-passive] and prosthetic screw materials [titanium (Ti) or gold (Au) alloy]. The one-screw test was performed to quantify the vertical misfits using an optic microscope. The loosening torque for the prosthetic screws was measured 24 hours after the tightening torque (10 Ncm) using a digital torque meter. Data were analyzed by two-way ANOVA and Tukey’s test (α=0.05). Results: Overall, dentures with passive fit and Ti screws resulted in significantly higher loosening torque of the prosthetic screws (p<0.05). No significant interaction was found between fit level and screw material (p=0.199). The prosthetic screw material and fit of implant-supported dentures have an influence on screw joint stability. Ti screws presented higher joint stability than Au screws and minimum of misfit should be found clinically to improve the mechanical behavior of the screw joint. PMID:20148135

  6. Displaceable Gear Torque Controlled Driver

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1997-01-01

    Methods and apparatus are provided for a torque driver including a displaceable gear to limit torque transfer to a fastener at a precisely controlled torque limit. A biasing assembly biases a first gear into engagement with a second gear for torque transfer between the first and second gear. The biasing assembly includes a pressurized cylinder controlled at a constant pressure that corresponds to a torque limit. A calibrated gage and valve is used to set the desired torque limit. One or more coiled output linkages connect the first gear with the fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. The torque limit is adjustable and may be different for fasteners within the same fastener configuration.

  7. Accuracy of dental torque wrenches.

    PubMed

    Wood, James S; Marlow, Nicole M; Cayouette, Monica J

    2015-01-01

    The aim of this in vitro study was to compare the actual torque of 2 manual wrench systems to their stated (target) torque. New spring- (Nobel Biocare USA, LLC) and friction-style (Zimmer Dental, Inc.) manual dental torque wrenches, as well as spring torque wrenches that had undergone sterilization and clinical use, were tested. A calibrated torque gauge was used to compare actual torque to target torque values of 15 and 35 N/cm. Data were statistically analyzed via mixed-effects regression model with Bonferroni correction. At a target torque of 15 N/cm, the mean torque of new spring wrenches (13.97 N/cm; SE, 0.07 N/cm) was significantly different from that of used spring wrenches (14.94 N/cm; SE, 0.06 N/cm; P < 0.0001). However, the mean torques of new spring and new friction wrenches (14.10 N/cm; SE, 0.07 N/cm; P = 0.21) were not significantly different. For torque measurements calibrated at 35 N/cm, the mean torque of new spring wrenches (35.29 N/cm; SE, 0.10 N/cm) was significantly different (P < 0.0001) from the means of new friction wrenches (36.20 N/cm; SE, 0.08 N/cm) and used spring wrenches (36.45 N/cm; SE, 0.08 N/cm). Discrepancies in torque could impact the clinical success of screw-retained dental implants. It is recommended that torque wrenches be checked regularly to ensure that they are performing to target values.

  8. Twin-enhanced magnetic torque

    NASA Astrophysics Data System (ADS)

    Hobza, Anthony; García-Cervera, Carlos J.; Müllner, Peter

    2018-07-01

    Magnetic shape memory alloys experience magnetic-field-induced torque due to magnetocrystalline anisotropy and shape anisotropy. In a homogeneous magnetic field, torque results in bending of long samples. This study investigates the torque on a single crystal of Ni-Mn-Ga magnetic shape memory alloy constrained with respect to bending in an external magnetic field. The dependence of the torque on external magnetic field magnitude, strain, and twin boundary structure was studied experimentally and with computer simulations. With increasing magnetic field, the torque increased until it reached a maximum near 700 mT. Above 200 mT, the torque was not symmetric about the equilibrium orientation for a sample with one twin boundary. The torque on two specimen with equal strain but different twin boundary structures varied systematically with the spatial arrangement of crystallographic twins. Numerical simulations show that twin boundaries suppress the formation of 180° domains if the direction of easy magnetization between two twin boundaries is parallel to a free surface and the magnetic field is perpendicular to that surface. For a particular twin microstructure, the torque decreases with increasing strain by a factor of six due to the mutual compensation of magnetocrystalline and shape anisotropy. When free rotation is suppressed such as in transducers of magneto-mechanical actuators, magnetic-field-induced torque creates strong bending forces, which may cause friction and failure under cyclic loading.

  9. Reproducibility of the time to peak torque and the joint angle at peak torque on knee of young sportsmen on the isokinetic dynamometer.

    PubMed

    Bernard, P-L; Amato, M; Degache, F; Edouard, P; Ramdani, S; Blain, H; Calmels, P; Codine, P

    2012-05-01

    Although peak torque has shown acceptable reproducibility, this may not be the case with two other often used parameters: time to peak torque (TPT) and the angle of peak torque (APT). Those two parameters should be used for the characterization of muscular adaptations in athletes. The isokinetic performance of the knee extensors and flexors in both limbs was measured in 29 male athletes. The experimental protocol consisted of three consecutive identical paradigms separated by 45 min breaks. Each test consisted of four maximal concentric efforts performed at 60 and 180°/s. Reproducibility was quantified by the standard error measurement (SEM), the coefficient of variation (CV) and by means of intra-class correlation coefficients (ICCs) with the calculation of 6 forms of ICCs. Using ICC as the indicator of reproducibility, the correlations for TPT of both limbs showed a range of 0.51-0.65 in extension and 0.50-0.63 in flexion. For APT, the values were 0.46-0.60 and 0.51-0.81, respectively. In addition, the calculated standard error of measurement (SEM) and CV scores confirmed the low level of absolute reproducibility. Due to their low reproducibility, neither TPT nor APT can serve as independent isokinetic parameters of knee flexor and extensor performance. So, given its reproducibility level, TPT and APT should not be used for the characterization of muscular adaptations in athletes. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  10. Actuation of a robotic fish caudal fin for low reaction torque

    NASA Astrophysics Data System (ADS)

    Yun, Dongwon; Kim, Kyung-Soo; Kim, Soohyun; Kyung, Jinho; Lee, Sunghee

    2011-07-01

    In this paper, a novel caudal fin for actuating a robotic fish is presented. The proposed caudal fin waves in a vertical direction with a specific spatial shape, which is determined by a so-called shape factor. For a specific shape factor, a traveling wave with a vertical phase difference is formed on a caudal fin during fin motion. It will be shown by the analysis that the maximum reaction torque at the joint of a caudal fin varies depending on the shape factors. Compared with a conventional plate type caudal fin, the proposed fin with a shape factor of 2π can eliminate the reaction torque perfectly, while keeping the propulsion force unchanged. The benefits of the proposed fin will be demonstrated by experiments.

  11. The influence of muscle length on the fatigue-related reduction in joint range of motion of the human dorsiflexors.

    PubMed

    Cheng, Arthur J; Davidson, Andrew W; Rice, Charles L

    2010-06-01

    The fatigue-related reduction in joint range of motion (ROM) during dynamic contraction tasks may be related to muscle length-dependent alterations in torque and contractile kinetics, but this has not been systematically explored previously. Twelve young men performed a repetitive voluntary muscle shortening contraction task of the dorsiflexors at a contraction load of 30% of maximum voluntary isometric contraction (MVC) torque, until total 40 degrees ROM had decreased by 50% at task failure (POST) to 20 degrees ROM. At both a short (5 degrees dorsiflexion) and long muscle length (35 degrees plantar flexion joint angle relative to a 0 degrees neutral ankle joint position), voluntary activation, MVC torque, and evoked tibialis anterior contractile properties of a 52.8 Hz high-frequency isometric tetanus [peak evoked torque, maximum rate of torque development (MRTD), maximum rate of relaxation (MRR)] were evaluated at baseline (PRE), at POST, and up to 10 min of recovery. At POST, we measured similar fatigue-related reductions in torque (voluntary and evoked) and slowing of contractile kinetics (MRTD and MRR) at both the short and long muscle lengths. Thus, the fatigue-related reduction in ROM could not be explained by length-dependent fatigue. Although torque (voluntary and evoked) at both muscle lengths was depressed and remained blunted throughout the recovery period, this was not related to the rapid recovery of ROM at 0.5 min after task failure. The reduction in ROM, however, was strongly related to the reduction in joint angular velocity (R(2) = 0.80) during the fatiguing task, although additional factors cannot yet be overlooked.

  12. Joint ultrasound baseline abnormalities predict a specific long-term clinical outcome in systemic lupus erythematosus patients.

    PubMed

    Corzo, P; Salman-Monte, T C; Torrente-Segarra, V; Polino, L; Mojal, S; Carbonell-Abelló, J

    2017-06-01

    Objective To describe long-term clinical and serological outcome in all systemic lupus erythematosus (SLE) domains in SLE patients with hand arthralgia (HA) and joint ultrasound (JUS) inflammatory abnormalities, and to compare them with asymptomatic SLE patients with normal JUS. Methods SLE patients with HA who presented JUS inflammatory abnormalities ('cases') and SLE patients without HA who did not exhibit JUS abnormalities at baseline ('controls') were included. All SLE clinical and serological domain involvement data were collected. End follow-up clinical activity and damage scores (systemic lupus erythematosus disease activity index (SLEDAI), Systemic Lupus International Collaborating Clinics/American College of Rheumatology (SLICC/ACR)) were recorded. JUS inflammatory abnormalities were defined based on the Proceedings of the Seventh International Consensus Conference on Outcome Measures in Rheumatology Clinical Trials (OMERACT-7) definitions. Statistical analyses were carried out to compare 'cases' and 'controls'. Results A total of 35 patients were recruited. The 'cases', n = 18/35, had a higher incidence of musculoskeletal involvement (arthralgia and/or arthritis) through the follow-up period (38.9% vs 0%, p = 0.008) and received more hydroxychloroquine (61.1% vs 25.0%, p = 0.034) and methotrexate (27.8% vs 0%, p = 0.046) compared to 'controls', n = 17/35. Other comparisons did not reveal any statistical differences. Conclusions We found SLE patients with arthralgia who presented JUS inflammatory abnormalities received more hydroxychloroquine and methotrexate, mainly due to persistent musculoskeletal involvement over time. JUS appears to be a useful technique for predicting worse musculoskeletal outcome in SLE patients.

  13. Evaluation of the Accuracy and Related Factors of the Mechanical Torque-Limiting Device for Dental Implants

    PubMed Central

    Kazemi, Mahmood; Rohanian, Ahmad; Monzavi, Abbas; Nazari, Mohammad Sadegh

    2013-01-01

    Objective: Accurate delivery of torque to implant screws is critical to generate ideal preload in the screw joint and to offer protection against screw loosening. Mechanical torque-limiting devices (MTLDs) are available for this reason. In this study, the accuracy of one type of friction-style and two types of spring-style MTLDs at baseline, following fatigue conditions and sterilization processes were determined. Materials and Methods: Five unused MTLDs were selected from each of Straumann (ITI), Astra TECH and CWM systems. To measure the output of each MTLD, a digital torque gauge with a 3-jaw chuck was used to hold the driver. Force was applied to the MTLDs until either the friction styles released at a pre-calibrated torque value or the spring styles flexed to a pre-calibrated limit (target torque value). The peak torque value was recorded and the procedure was repeated 5 times for each MTLD. Then MTLDs were subjected to fatigue conditions at 500 and 1000 times and steam sterilization processes at 50 and 100 times and the peak torque value was recorded again at each stage. Results: Adjusted difference between measured torque values and target torque values differed significantly between stages for all 3 systems. Adjusted difference did not differ significantly between systems at all stages, but differed significantly between two different styles at baseline and 500 times fatigue stages. Conclusion: Straumann (ITI) devices differed minimally from target torque values at all stages. MTLDs with Spring-style were significantly more accurate than Friction-style device in achieving their target torque values at baseline and 500 times fatigue. PMID:23724209

  14. Computed torque control of a free-flying cooperat ing-arm robot

    NASA Technical Reports Server (NTRS)

    Koningstein, Ross; Ullman, Marc; Cannon, Robert H., Jr.

    1989-01-01

    The unified approach to solving free-floating space robot manipulator end-point control problems is presented using a control formulation based on an extension of computed torque. Once the desired end-point accelerations have been specified, the kinematic equations are used with momentum conservation equations to solve for the joint accelerations in any of the robot's possible configurations: fixed base or free-flying with open/closed chain grasp. The joint accelerations can then be used to calculate the arm control torques and internal forces using a recursive order N algorithm. Initial experimental verification of these techniques has been performed using a laboratory model of a two-armed space robot. This fully autonomous spacecraft system experiences the drag-free, zero G characteristics of space in two dimensions through the use of an air cushion support system. Results of these initial experiments are included which validate the correctness of the proposed methodology. The further problem of control in the large where not only the manipulator tip positions but the entire system consisting of base and arms must be controlled is also presented. The availability of a physical testbed has brought a keener insight into the subtleties of the problem at hand.

  15. Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque

    NASA Astrophysics Data System (ADS)

    Abert, Claas; Bruckner, Florian; Vogler, Christoph; Suess, Dieter

    2018-05-01

    While the spin-diffusion model is considered one of the most complete and accurate tools for the description of spin transport and spin torque, its solution in the context of dynamical micromagnetic simulations is numerically expensive. We propose a procedure to retrieve the free parameters of a simple macro-spin like spin-torque model through the spin-diffusion model. In case of spin-transfer torque the simplified model complies with the model of Slonczewski. A similar model can be established for the description of spin-orbit torque. In both cases the spin-diffusion model enables the retrieval of free model parameters from the geometry and the material parameters of the system. Since these parameters usually have to be determined phenomenologically through experiments, the proposed method combines the strength of the diffusion model to resolve material parameters and geometry with the high performance of simple torque models.

  16. van der Waals torque

    NASA Astrophysics Data System (ADS)

    Esquivel-Sirvent, Raul; Schatz, George

    2014-03-01

    The theory of generalized van der Waals forces by Lifshtz when applied to optically anisotropic media predicts the existence of a torque. In this work we present a theoretical calculation of the van der Waals torque for two systems. First we consider two isotropic parallel plates where the anisotropy is induced using an external magnetic field. The anisotropy will in turn induce a torque. As a case study we consider III-IV semiconductors such as InSb that can support magneto plasmons. The calculations of the torque are done in the Voigt configuration, that occurs when the magnetic field is parallel to the surface of the slabs. The change in the dielectric function as the magnetic field increases has the effect of decreasing the van der Waals force and increasing the torque. Thus, the external magnetic field is used to tune both the force and torque. The second example we present is the use of the torque in the non retarded regime to align arrays of nano particle slabs. The torque is calculated within Barash and Ginzburg formalism in the nonretarded limit, and is quantified by the introduction of a Hamaker torque constant. Calculations are conducted between anisotropic slabs of materials including BaTiO3 and arrays of Ag nano particles. Depending on the shape and arrangement of the Ag nano particles the effective dielectric function of the array can be tuned as to make it more or less anisotropic. We show how this torque can be used in self assembly of arrays of nano particles. ref. R. Esquivel-Sirvent, G. C. Schatz, Phys. Chem C, 117, 5492 (2013). partial support from DGAPA-UNAM.

  17. Muscle Torque Relative to Cross-Sectional Area and the Functional Muscle-Bone Unit in Children and Adolescents with Chronic Disease

    PubMed Central

    Lee, Dale Y.; Wetzsteon, Rachel J.; Zemel, Babette S.; Shults, Justine; Organ, Jason M.; Foster, Bethany J.; Herskovitz, Rita M.; Foerster, Debbie L.; Leonard, Mary B.

    2015-01-01

    Measures of muscle mass or size are often used as surrogates of forces acting on bone. However, chronic diseases may be associated with abnormal muscle force relative to muscle size. The muscle-bone unit was examined in 64 children and adolescents with new-onset Crohn’s disease (CD), 54 with chronic kidney disease (CKD), 51 treated with glucocorticoids for nephrotic syndrome (NS), and 264 healthy controls. Muscle torque was assessed by isometric ankle dynamometry. Calf muscle cross-sectional area (CSA) and tibia cortical section modulus (Zp) were assessed by quantitative CT. Log-linear regression was used to determine the relations among muscle CSA, muscle torque, and Zp, adjusted for tibia length, age, Tanner stage, sex, and race. Muscle CSA and muscle torque-relative-to-muscle CSA were significantly lower than controls in advanced CKD (CSA −8.7%, p = 0.01; torque −22.9%, p < 0.001) and moderate-to-severe CD (CSA −14.1%, p < 0.001; torque −7.6%, p = 0.05), but not in NS. Zp was 11.5% lower in advanced CKD (p = 0.005) compared to controls, and this deficit was attenuated to 6.7% (p = 0.05) with adjustment for muscle CSA. With additional adjustment for muscle torque and body weight, Zp was 5.9% lower and the difference with controls was no longer significant (p = 0.09). In participants with moderate-to-severe CD, Zp was 6.8% greater than predicted (p = 0.01) given muscle CSA and torque deficits (R2=0.92), likely due to acute muscle loss in newly diagnosed patients. Zp did not differ in NS, compared with controls. In conclusion, muscle torque relative to muscle CSA was significantly lower in CKD and CD, compared with controls, and was independently associated with Zp. Future studies are needed to determine if abnormal muscle strength contributes to progressive bone deficits in chronic disease, independent of muscle area. PMID:25264231

  18. Degenerative joint disease: multiple joint involvement in young and mature dogs.

    PubMed

    Olsewski, J M; Lust, G; Rendano, V T; Summers, B A

    1983-07-01

    Radiologic, pathologic, and ancillary methods were used to determine the occurrence of degenerative joint disease involving multiple joints of immature and adult dogs. Animals were selected for the development of hip joint dysplasia and chronic degenerative joint disease. Of disease-prone dogs, 82% (45 of 55 dogs) had radiologic changes, indicative of hip dysplasia, by 1 year of age. At necropsy, more abnormal joints were identified than by radiographic examination. Among 92 dogs between 3 to 11 months of age that had joint abnormalities, 71% had hip joint involvement; 38%, shoulder joint involvement; 22%, stifle joint involvement; and 40% had multiple joint involvement. Polyarthritis was asymptomatic and unexpected. Radiographic examination of older dogs also revealed evidence of degenerative joint disease in many joints. Multiple joint involvement was substantiated at necropsy of young and mature dogs. A similar pattern of polyarticular osteoarthritis was revealed in a survey (computer search) of necropsy reports from medical case records of 100 adult and elderly dogs. Usually, the joint disease was an incidental observation, unrelated to the clinical disease or to the cause of death. The frequent occurrence of degenerative changes in several joints of dogs aged 6 months to 17 years indicated that osteoarthritis may be progressive in these joints and raises the possibility that systemic factors are involved in the disease process.

  19. Torque Compensator for Mirror Mountings

    NASA Technical Reports Server (NTRS)

    Howe, S. D.

    1983-01-01

    Device nulls flexural distributions of pivotal torques. Magnetic compensator for flexing pivot torque consists of opposing fixed and movable magnet bars. Magnetic torque varies nonlinearly as function of angle of tilt of movable bar. Positions of fixed magnets changed to improve magnetic torque linearity.

  20. Strength and endurance training reduces the loss of eccentric hamstring torque observed after soccer specific fatigue.

    PubMed

    Matthews, Martyn J; Heron, Kate; Todd, Stefanie; Tomlinson, Andrew; Jones, Paul; Delextrat, Anne; Cohen, Daniel D

    2017-05-01

    To investigate the effect of two hamstring training protocols on eccentric peak torque before and after soccer specific fatigue. Twenty-two university male soccer players. Isokinetic strength tests were performed at 60°/s pre and post fatigue, before and after 2 different training interventions. A 45-min soccer specific fatigue modified BEAST protocol (M-BEAST) was used to induce fatigue. Players were randomly assigned to a 4 week hamstrings conditioning intervention with either a maximum strength (STR) or a muscle endurance (END) emphasis. The following parameters were evaluated: Eccentric peak torque (EccPT), angle of peak torque (APT), and angle specific torques at knee joint angles of 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80° and 90°. There was a significant effect of the M-BEAST on the Eccentric torque angle profile before training as well as significant improvements in post-fatigue torque angle profile following the effects of both strength and muscle endurance interventions. Forty-five minutes of simulated soccer activity leads to reduced eccentric hamstring torque at longer muscle lengths. Short-term conditioning programs (4-weeks) with either a maximum strength or a muscular endurance emphasis can equally reduce fatigue induced loss of strength over this time period. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Torque sensor

    NASA Astrophysics Data System (ADS)

    Fgeppert, E.

    1984-09-01

    Mechanical means for sensing turning torque generated by the load forces in a rotary drive system is described. The sensing means is designed to operate with minimal effect on normal operation of the drive system. The invention can be employed in various drive systems, e.g., automotive engine-transmission power plants, electric motor-operated tools, and metal cutting machines. In such drive systems, the torque-sensing feature may be useful for actuation of various control devices, such as electric switches, mechanical clutches, brake actuators, fluid control valves, or audible alarms. The torque-sensing function can be used for safety overload relief, motor de-energization, engine fuel control transmission clutch actuation, remote alarm signal, tool breakage signal, etc.

  2. The influence of arch supports on knee torques relevant to knee osteoarthritis.

    PubMed

    Franz, Jason R; Dicharry, Jay; Riley, Patrick O; Jackson, Keith; Wilder, Robert P; Kerrigan, D Casey

    2008-05-01

    Changes in footwear and foot orthotic devices have been shown to significantly alter knee joint torques thought to be relevant to the progression if not the development of knee osteoarthritis (OA) in the medial tibiofemoral compartment. The purpose of this study was to determine if commonly prescribed arch support cushions promote a medial force bias during gait similar to medial-wedged orthotics, thereby increasing knee varus torque during both walking and running. Twenty-two healthy, physically active young adults (age, 29.2 +/- 5.1 yr) were analyzed at their self-selected walking and running speeds in control shoes with and without arch support cushions. Three-dimensional motion capture data were collected in synchrony with ground reaction force (GRF) data collected from an instrumented treadmill. Peak external knee varus torque during walking and running were calculated through a full inverse dynamic model and compared. Peak knee varus torque was statistically significantly increased by 6% (0.01 +/- 0.02 N.m.(kg.m)(-1)) in late stance during walking and by 4% (0.03 +/- 0.03 N.m.(kg.m)(-1)) during running with the addition of arch support cushions. The addition of material under the medial aspect of the foot by way of a flexible arch support promotes a medial force bias during walking and running, significantly increasing knee varus torque. These findings suggest that discretion be employed with regard to the prescription of commonly available orthotic insoles like arch support cushions.

  3. Neuromuscular properties of different spastic human joints vary systematically.

    PubMed

    Mirbagheri, M M; Settle, K

    2010-01-01

    We quantified the mechanical abnormalities of the spastic wrist in chronic stroke survivors, and determined whether these findings were representative of those recorded at the elbow and ankle joints. System identification techniques were used to characterize the mechanical abnormalities of these joints and to identify the contribution of intrinsic and reflex stiffness to these abnormalities. Modulation of intrinsic and reflex stiffness with the joint angle was studied by applying PRBS perturbations to the joints at different joint angles over the range of motion. Age-matched healthy subjects were used as control.

  4. The tribological behaviour of different clearance MOM hip joints with lubricants of physiological viscosities.

    PubMed

    Hu, X Q; Wood, R J K; Taylor, A; Tuke, M A

    2011-11-01

    Clearance is one of the most influential parameters on the tribological performance of metal-on-metal (MOM) hip joints and its selection is a subject of considerable debate. The objective of this paper is to study the lubrication behaviour of different clearances for MOM hip joints within the range of human physiological and pathological fluid viscosities. The frictional torques developed by MOM hip joints with a 50 mm diameter were measured for both virgin surfaces and during a wear simulator test. Joints were manufactured with three different diametral clearances: 20, 100, and 200 microm. The fluid used for the friction measurements which contained different ratios of 25 percent newborn calf serum and carboxymethyl cellulose (CMC) with the obtained viscosities values ranging from 0.001 to 0.71 Pa s. The obtained results indicate that the frictional torque for the 20 microm clearance joint remains high over the whole range of the viscosity values. The frictional torque of the 100 microm clearance joint was low for the very low viscosity (0.001 Pa s) lubricant, but increased with increasing viscosity value. The frictional torque of the 200 microm clearance joint was high at very low viscosity levels, however, it reduced with increasing viscosity. It is concluded that a smaller clearance level can enhance the formation of an elastohydrodynamic lubrication (EHL) film, but this is at the cost of preventing fluid recovery between the bearing surfaces during the unloaded phase of walking. Larger clearance bearings allow a better recovery of lubricant during the unloaded phase, which is necessary for higher viscosity lubricants. The selection of the clearance value should therefore consider both the formation of the EHL film and the fluid recovery as a function of the physiological viscosity in order to get an optimal tribological performance for MOM hip joints. The application of either 25 per cent bovine serum or water in existing in vitro tribological study should

  5. Low mass planet migration in magnetically torqued dead zones - I. Static migration torque

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan; Gressel, Oliver; Lyra, Wladimir

    2017-12-01

    Motivated by models suggesting that the inner planet forming regions of protoplanetary discs are predominantly lacking in viscosity-inducing turbulence, and are possibly threaded by Hall-effect generated large-scale horizontal magnetic fields, we examine the dynamics of the corotation region of a low-mass planet in such an environment. The corotation torque in an inviscid, isothermal, dead zone ought to saturate, with the libration region becoming both symmetrical and of a uniform vortensity, leading to fast inward migration driven by the Lindblad torques alone. However, in such a low viscosity situation, the material on librating streamlines essentially preserves its vortensity. If there is relative radial motion between the disc gas and the planet, the librating streamlines will no longer be symmetrical. Hence, if the gas is torqued by a large-scale magnetic field so that it undergoes a net inflow or outflow past the planet, driving evolution of the vortensity and inducing asymmetry of the corotation region, the corotation torque can grow, leading to a positive torque. In this paper, we treat this effect by applying a symmetry argument to the previously studied case of a migrating planet in an inviscid disc. Our results show that the corotation torque due to a laminar Hall-induced magnetic field in a dead zone behaves quite differently from that studied previously for a viscous disc. Furthermore, the magnetic field induced corotation torque and the dynamical corotation torque in a low viscosity disc can be regarded as one unified effect.

  6. Comparison of Extravehicular Mobility Unit (EMU) suited and unsuited isolated joint strength measurements

    NASA Technical Reports Server (NTRS)

    Maida, James C.; Demel, Kenneth J.; Morgan, David A.; Wilmington, Robert P.; Pandya, Abhilash K.

    1996-01-01

    In this study the strength of subjects suited in extravehicular mobility units (EMU's) - or Space Shuttle suits - was compared to the strength of unsuited subjects. The authors devised a systematic and complete data set that characterizes isolated joint torques for all major joints of EMU-suited subjects. Six joint motions were included in the data set. The joint conditions of six subjects were compared to increase our understanding of the strength capabilities of suited subjects. Data were gathered on suited and unsuited subjects. Suited subjects wore Class 3 or Class 1 suits, with and without thermal micrometeoroid garments (TMG's). Suited and unsuited conditions for each joint motion were compared. From this the authors found, for example, that shoulder abduction suited conditions differ from each other and from the unsuited condition. A second-order polynomial regression model was also provided. This model, which allows the prediction of suited strength when given unsuited strength information, relates the torques of unsuited conditions to the torques of all suited conditions. Data obtained will enable computer modeling of EMU strength, conversion from unsuited to suited data, and isolated joint strength comparisons between suited and unsuited conditions at any measured angle. From these data mission planners and human factors engineers may gain a better understanding of crew posture, and mobility and strength capabilities. This study also may help suit designers optimize suit strength, and provide a foundation for EMU strength modeling systems.

  7. Kinetics of throwing arm joints and the trunk motion during an overarm distance throw by skilled Japanese elementary school boys.

    PubMed

    Kobayashi, Yasuto; Ae, Michiyoshi; Miyazaki, Akiyo; Fujii, Norihisa; Iiboshi, Akira; Nakatani, Hideki

    2016-09-01

    The purpose of this study was to investigate joint kinetics of the throwing arms and role of trunk motion in skilled elementary school boys during an overarm distance throw. Throwing motions of 42 boys from second, fourth, and sixth grade were videotaped with three high-speed cameras operating at 300 fps. Seven skilled boys from each grade were selected on the basis of throwing distance for three-dimensional kinetic analysis. Joint forces, torques, and torque powers of the throwing arm joints were calculated from reconstructed three-dimensional coordinate data smoothed at cut-off frequencies of 10.5-15 Hz and by the inverse dynamics method. Throwing distance and ball velocity significantly increased with school grade. The angular velocity of elbow extension before ball release increased with school grade, although no significant increase between the grades was observed in peak extension torque of elbow joint. The joint torque power of shoulder internal/external rotation tended to increase with school grade. When teaching the overarm throw, elementary school teachers should observe large backward twisting of trunk during the striding phase and should keep in mind that young children, such as second graders (age 8 years), will be unable to effectively utilise shoulder external/internal rotation during the throwing phase.

  8. Contraction type influences the human ability to use the available torque capacity of skeletal muscle during explosive efforts

    PubMed Central

    Tillin, Neale A.; Pain, Matthew T. G.; Folland, Jonathan P.

    2012-01-01

    The influence of contraction type on the human ability to use the torque capacity of skeletal muscle during explosive efforts has not been documented. Fourteen male participants completed explosive voluntary contractions of the knee extensors in four separate conditions: concentric (CON) and eccentric (ECC); and isometric at two knee angles (101°, ISO101 and 155°, ISO155). In each condition, torque was measured at 25 ms intervals up to 150 ms from torque onset, and then normalized to the maximum voluntary torque (MVT) specific to that joint angle and angular velocity. Explosive voluntary torque after 50 ms in each condition was also expressed as a percentage of torque generated after 50 ms during a supramaximal 300 Hz electrically evoked octet in the same condition. Explosive voluntary torque normalized to MVT was more than 60 per cent larger in CON than any other condition after the initial 25 ms. The percentage of evoked torque expressed after 50 ms of the explosive voluntary contractions was also greatest in CON (ANOVA; p < 0.001), suggesting higher concentric volitional activation. This was confirmed by greater agonist electromyography normalized to Mmax (recorded during the explosive voluntary contractions) in CON. These results provide novel evidence that the ability to use the muscle's torque capacity explosively is influenced by contraction type, with concentric contractions being more conducive to explosive performance due to a more effective neural strategy. PMID:22258636

  9. The validation of a human force model to predict dynamic forces resulting from multi-joint motions

    NASA Technical Reports Server (NTRS)

    Pandya, Abhilash K.; Maida, James C.; Aldridge, Ann M.; Hasson, Scott M.; Woolford, Barbara J.

    1992-01-01

    The development and validation is examined of a dynamic strength model for humans. This model is based on empirical data. The shoulder, elbow, and wrist joints were characterized in terms of maximum isolated torque, or position and velocity, in all rotational planes. This data was reduced by a least squares regression technique into a table of single variable second degree polynomial equations determining torque as a function of position and velocity. The isolated joint torque equations were then used to compute forces resulting from a composite motion, in this case, a ratchet wrench push and pull operation. A comparison of the predicted results of the model with the actual measured values for the composite motion indicates that forces derived from a composite motion of joints (ratcheting) can be predicted from isolated joint measures. Calculated T values comparing model versus measured values for 14 subjects were well within the statistically acceptable limits and regression analysis revealed coefficient of variation between actual and measured to be within 0.72 and 0.80.

  10. Virtual trajectories of single-joint movements performed under two basic strategies.

    PubMed

    Latash, M L; Gottlieb, G L

    1992-01-01

    The framework of the equilibrium point hypothesis has been used to analyse motor control processes for single-joint movements. Virtual trajectories and joint stiffness were reconstructed for different movement speeds and distances when subjects were instructed either to move "as fast as possible" or to intentionally vary movement speed. These instructions are assumed to be associated with similar or different rates of change of hypothetical central control variables (corresponding to the speed-sensitive and speed-insensitive strategies). The subjects were trained to perform relatively slow, moderately fast and very fast (nominal movement times 800, 400 and 250 ms) single-joint elbow flexion movements against a constant extending torque bias. They were instructed to reproduce the motor command for a series of movements while ignoring possible changes in the external torque which could slowly and unpredictably increase, decrease, or remain constant. The total muscle torque was calculated as a sum of external and inertial components. Fast movements over different distances were made with the speed-insensitive strategy. They were characterized by an increase in joint stiffness near the midpoint of the movements which was relatively independent of movement amplitude. Their virtual trajectories had a non-monotonic N-shape. All three arms of the N-shape scaled with movement amplitude. Movements over one distance at different speeds were made with a speed-sensitive strategy. They demonstrated different patterns of virtual trajectories and joint stiffness that depended on movement speed. The N-shape became less apparent for moderately fast movements and virtually disappeared for the slow movements. Slow movements showed no visible increase in joint stiffness.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Muscle Strength Imbalance in the Hip Joint Caused by Fast Movements

    NASA Astrophysics Data System (ADS)

    Pontaga, I.

    2003-07-01

    Eleven male sportsmen at the age of 24.3 ± 4.5 were examined. Their hip joint flexors and extensors were tested by an "REV-9000" Technogym dynamometer system during isokinetic movements at angular velocities of 100 (low) and 200 (high) °/s. The range of hip joint movements was from 30 (in flexion) to 130° (in extension). Torque values and their ratios for hip flexors and extensors at different angular positions were obtained and compared. It is shown that, at high speeds, the flexion movement significantly raises ( p < 0.001) the torque ratios of flexors and extensors in flexion positions of the hip (50 and 60°). These ratios approximately twofold exceed their values at moderate velocities. The weakness of hip joint extensors in extreme flexion positions of the hip may cause injury of this group of muscles at fast movements.

  12. Unconventional superconductivity in CaFe0.85Co0.15AsF evidenced by torque measurements

    NASA Astrophysics Data System (ADS)

    Xiao, Hong; Li, X. J.; Mu, G.; Hu, T.

    Out-of-plane angular dependent torque measurements were performed on CaFe0.85Co0.15AsF single crystals. Abnormal superconducting fluctuation, featured by enhanced diamagnetism with magnetic field, is detected up to about 1.5 times superconducting transition temperature Tc. Compared to cuprate superconductors, the fluctuation effect in iron-based superconductor is less pronounced. Anisotropy parameter γ is obtained from the mixed state torque data and it is found that γ shows both magnetic field and temperature depenence, pointing to multiband superconductivity. The temperature dependence of penetration depth λ (T) suggests unconventional superconductivity in CaFe0.85Co0.15AsF.

  13. Comparing passive angle-torque curves recorded simultaneously with a load cell versus an isokinetic dynamometer during dorsiflexion stretch tolerance assessments.

    PubMed

    Buckner, Samuel L; Jenkins, Nathaniel D M; Costa, Pablo B; Ryan, Eric D; Herda, Trent J; Cramer, Joel T

    2015-05-01

    The purpose of the present study was to compare the passive angle-torque curves and the passive stiffness (PS, N m °(-)(1)) values recorded simultaneously from a load cell versus an isokinetic dynamometer during dorsiflexion stretch tolerance assessments in vivo. Nine healthy men (mean ± SD age = 21.4 ± 1.6 years) completed stretch tolerance assessments on a custom-built apparatus where passive torque was measured simultaneously from an isokinetic dynamometer and a load cell. Passive torque values that corresponded with the last 10° of dorsiflexion, verified by surface electromyographic amplitude, were analyzed for each device (θ1, θ2, θ3, …, θ10). Passive torque values measured with the load cell were greater (p ≤ 0.05) than the dynamometer torque values for θ4 through θ10. There were more statistical differentiations among joint angles for passive torque measured by the load cell, and the load cell measured a greater (p ≤ 0.01) increase in passive torque and PS than the isokinetic dynamometer. These findings suggested that when examining the angle-torque curves from passive dorsiflexion stretch tolerance tests, a load cell placed under the distal end of the foot may be more sensitive than the torque recorded from an isokinetic dynamometer. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Examination of the torque required to passively palmar abduct the thumb CMC joint in a pediatric population with hemiplegia and stroke.

    PubMed

    Stirling, Leia; Ahmad, Mona Qureshi; Kelty-Stephen, Damian; Correia, Annette

    2015-12-16

    Many activities of daily living involve precision grasping and bimanual manipulation, such as putting toothpaste on a toothbrush or feeding oneself. However, children afflicted by stroke, cerebral palsy, or traumatic brain injury may have lost or never had the ability to actively and accurately control the thumb. To translate insights from adult rehabilitation robotics to innovative therapies for hand rehabilitation in pediatric care, specifically for thumb deformities, an understanding of the torque needed to abduct the thumb to assist grasping tasks is required. Participants (n=16, 10 female, 13.2±3.1 years) had an upper extremity evaluation and measures were made of their passive range of motion, anthropometrics, and torques to abduct the thumb for both their affected and non-affected sides. Torque measures were made using a custom wrist orthosis that was adjusted for each participant. The torque to achieve maximum abduction was 1.47±0.61inlb for the non-affected side and 1.51±0.68inlb for the affected side, with a maximum recorded value of 4.87inlb. The overall maximum applied torque was observed during adduction and was 5.10inlb. We saw variation in the applied torque, which could have been due to the applied torques by the Occupational Therapist or the participant actively assisting or resisting the motion rather than remaining passive. We expect similar muscle and participant variation to exist with an assistive device. Thus, the data presented here can be used to inform the specifications for the development of an assistive thumb orthosis for children with "thumb-in-palm" deformity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effects of Series Elasticity on the Human Knee Extension Torque-Angle Relationship in Vivo

    ERIC Educational Resources Information Center

    Kubo, Keitaro; Ohgo, Kazuya; Takeishi, Ryuichi; Yoshinaga, Kazunari; Tsunoda, Naoya; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2006-01-01

    The purpose of this study was to investigate the effects of series elasticity on the torque-angle relationship of the knee extensors in vivo. Forty-two men volunteered to take part in the present study. The participants performed maximal voluntary isometric contractions at eight knee-joint angles (40, 50, 60, 70, 80, 90, 100, 110[degree]). The…

  16. Modeling and dynamic simulation of astronaut's upper limb motions considering counter torques generated by the space suit.

    PubMed

    Li, Jingwen; Ye, Qing; Ding, Li; Liao, Qianfang

    2017-07-01

    Extravehicular activity (EVA) is an inevitable task for astronauts to maintain proper functions of both the spacecraft and the space station. Both experimental research in a microgravity simulator (e.g. neutral buoyancy tank, zero-g aircraft or a drop tower/tube) and mathematical modeling were used to study EVA to provide guidance for the training on Earth and task design in space. Modeling has become more and more promising because of its efficiency. Based on the task analysis, almost 90% of EVA activity is accomplished through upper limb motions. Therefore, focusing on upper limb models of the body and space suit is valuable to this effort. In previous modeling studies, some multi-rigid-body systems were developed to simplify the human musculoskeletal system, and the space suit was mostly considered as a part of the astronaut body. With the aim to improve the reality of the models, we developed an astronauts' upper limb model, including a torque model and a muscle-force model, with the counter torques from the space suit being considered as a boundary condition. Inverse kinematics and the Maggi-Kane's method was applied to calculate the joint angles, joint torques and muscle force given that the terminal trajectory of upper limb motion was known. Also, we validated the muscle-force model using electromyogram (EMG) data collected in a validation experiment. Muscle force calculated from our model presented a similar trend with the EMG data, supporting the effectiveness and feasibility of the muscle-force model we established, and also, partially validating the joint model in kinematics aspect.

  17. Identification of the contribution of the ankle and hip joints to multi-segmental balance control

    PubMed Central

    2013-01-01

    Background Human stance involves multiple segments, including the legs and trunk, and requires coordinated actions of both. A novel method was developed that reliably estimates the contribution of the left and right leg (i.e., the ankle and hip joints) to the balance control of individual subjects. Methods The method was evaluated using simulations of a double-inverted pendulum model and the applicability was demonstrated with an experiment with seven healthy and one Parkinsonian participant. Model simulations indicated that two perturbations are required to reliably estimate the dynamics of a double-inverted pendulum balance control system. In the experiment, two multisine perturbation signals were applied simultaneously. The balance control system dynamic behaviour of the participants was estimated by Frequency Response Functions (FRFs), which relate ankle and hip joint angles to joint torques, using a multivariate closed-loop system identification technique. Results In the model simulations, the FRFs were reliably estimated, also in the presence of realistic levels of noise. In the experiment, the participants responded consistently to the perturbations, indicated by low noise-to-signal ratios of the ankle angle (0.24), hip angle (0.28), ankle torque (0.07), and hip torque (0.33). The developed method could detect that the Parkinson patient controlled his balance asymmetrically, that is, the right ankle and hip joints produced more corrective torque. Conclusion The method allows for a reliable estimate of the multisegmental feedback mechanism that stabilizes stance, of individual participants and of separate legs. PMID:23433148

  18. Propeller torque load and propeller shaft torque response correlation during ice-propeller interaction

    NASA Astrophysics Data System (ADS)

    Polić, Dražen; Ehlers, Sören; Æsøy, Vilmar

    2017-03-01

    Ships use propulsion machinery systems to create directional thrust. Sailing in ice-covered waters involves the breaking of ice pieces and their submergence as the ship hull advances. Sometimes, submerged ice pieces interact with the propeller and cause irregular fluctuations of the torque load. As a result, the propeller and engine dynamics become imbalanced, and energy propagates through the propulsion machinery system until equilibrium is reached. In such imbalanced situations, the measured propeller shaft torque response is not equal to the propeller torque. Therefore, in this work, the overall system response is simulated under the ice-related torque load using the Bond graph model. The energy difference between the propeller and propeller shaft is estimated and related to their corresponding mechanical energy. Additionally, the mechanical energy is distributed among modes. Based on the distribution, kinetic and potential energy are important for the correlation between propeller torque and propeller shaft response.

  19. Effect of strength and speed of torque development on balance recovery with the ankle strategy.

    PubMed

    Robinovitch, Stephen N; Heller, Britta; Lui, Andrew; Cortez, Jeffrey

    2002-08-01

    In the event of an unexpected disturbance to balance, the ability to recover a stable upright stance should depend not only on the magnitude of torque that can be generated by contraction of muscles spanning the lower extremity joints but also on how quickly these torques can be developed. In the present study, we used a combination of experimental and mathematical models of balance recovery by sway (feet in place responses) to test this hypothesis. Twenty-three young subjects participated in experiments in which they were supported in an inclined standing position by a horizontal tether and instructed to recover balance by contracting only their ankle muscles. The maximum lean angle where they could recover balance without release of the tether (static recovery limit) averaged 14.9 +/- 1.4 degrees (mean +/- SD). The maximum initial lean angle where they could recover balance after the tether was unexpectedly released and the ankles were initially relaxed (dynamic recovery limit) averaged 5.9 +/- 1.1 degrees, or 60 +/- 11% smaller than the static recovery limit. Peak ankle torque did not differ significantly between the two conditions (and averaged 116 +/- 32 Nm), indicating the strong effect on recovery ability of latencies in the onset and subsequent rates of torque generation (which averaged 99 +/- 13 ms and 372 +/- 267 N. m/s, respectively). Additional experiments indicated that dynamic recovery limits increased 11 +/- 14% with increases in the baseline ankle torques prior to release (from an average value of 31 +/- 18 to 54 +/- 24 N. m). These trends are in agreement with predictions from a computer simulation based on an inverted pendulum model, which illustrate the specific combinations of baseline ankle torque, rate of torque generation, and peak ankle torque that are required to attain target recovery limits.

  20. Installation Torque Tables for Noncritical Applications

    NASA Technical Reports Server (NTRS)

    Rivera-Rosario, Hazel T.; Powell, Joseph S.

    2017-01-01

    The objective of this project is to define torque values for bolts and screws when loading is not a concern. Fasteners require a certain torque to fulfill its function and prevent failure. NASA Glenn Research Center did not have a set of fastener torque tables for non-critical applications without loads, usually referring to hand-tight or wrench-tight torqueing. The project is based on two formulas, torque and pullout load. Torque values are calculated giving way to preliminary data tables. Testing is done to various bolts and metal plates, torqueing them until the point of failure. Around 640 torque tables were developed for UNC, UNF, and M fasteners. Different lengths of thread engagement were analyzed for the 5 most common materials used at GRC. The tables were put together in an Excel spreadsheet and then formatted into a Word document. The plan is to later convert this to an official technical publication or memorandum.

  1. Ankle Joint Angle and Lower Leg Musculotendinous Unit Responses to Cryotherapy.

    PubMed

    Akehi, Kazuma; Long, Blaine C; Warren, Aric J; Goad, Carla L

    2016-09-01

    Akehi, K, Long, BC, Warren, AJ, and Goad, CL. Ankle joint angle and lower leg musculotendinous unit responses to cryotherapy. J Strength Cond Res 30(9): 2482-2492, 2016-The use of cold application has been debated for its influence on joint range of motion (ROM) and stiffness. The purpose of this study was to determine whether a 30-minute ice bag application to the plantarflexor muscles or ankle influences passive ankle dorsiflexion ROM and lower leg musculotendinous stiffness (MTS). Thirty-five recreationally active college-aged individuals with no history of lower leg injury 6 months before data collection volunteered. On each testing day, we measured maximum passive ankle dorsiflexion ROM (°) and plantarflexor torque (N·m) on an isokinetic dynamometer to calculate the passive plantarflexor MTS (N·m per degree) at 4 joint angles before, during, and after a treatment. Surface electromyography amplitudes (μV), and skin surface and ambient air temperature (°C) were also measured. Subjects received an ice bag to the posterior lower leg, ankle joint, or nothing for 30 minutes in different days. Ice bag application to the lower leg and ankle did not influence passive ROM (F(12,396) = 0.67, p = 0.78). Passive torque increased after ice bag application to the lower leg (F(12,396) = 2.21, p = 0.011). Passive MTS at the initial joint angle increased after ice bag application to the lower leg (F(12,396) = 2.14, p = 0.014) but not at the other joint angles (p > 0.05). Surface electromyography amplitudes for gastrocnemius and soleus muscles increased after ice application to the lower leg (F(2,66) = 5.61, p = 0.006; F(12,396) = 3.60, p < 0.001). Ice bag application to the lower leg and ankle joint does not alter passive dorsiflexion ROM but increases passive ankle plantarflexor torque in addition to passive ankle plantarflexor MTS at the initial joint angle.

  2. 14 CFR 27.361 - Engine torque.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for maximum...

  3. 14 CFR 27.361 - Engine torque.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for maximum...

  4. 14 CFR 27.361 - Engine torque.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for maximum...

  5. 14 CFR 27.361 - Engine torque.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for maximum...

  6. 14 CFR 27.361 - Engine torque.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for maximum...

  7. Monitoring bolt torque levels through signal processing of full-field ultrasonic data

    NASA Astrophysics Data System (ADS)

    Haynes, Colin; Yeager, Michael; Todd, Michael; Lee, Jung-Ryul

    2014-03-01

    Using full-field ultrasonic guided wave data can provide a wealth of information on the state of a structure through a detailed characterization of its wave propagation properties. However, the need for appropriate feature selection and quantified metrics for making rigorous assessments of the structural state is in no way lessened by the density of information. In this study, a simple steel bolted connection with two bolts is monitored for bolt loosening. The full-field data were acquired using a scanning-laser-generated ultrasound system with a single surface-mounted sensor. Such laser systems have many advantages that make them attractive for nondestructive evaluation, including their high-speed, high spatial resolution, and the ability to scan large areas of in-service structures. In order to characterize the relationship between bolt torque and the resulting wavefield in this specimen, the bolt torque in each of the bolts is independently varied from fully tightened to fully loosened in several steps. First, qualitative observations about the changes in the wavefield are presented. Next, an approach to quantifying the wave transmission through the bolted joint is discussed. Finally, a method of monitoring the bolt torque using the ultrasonic data is demonstrated.

  8. Pressurized fluid torque driver control and method

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    Methods and apparatus are provided for a torque driver including a displaceable gear to limit torque transfer to a fastener at a precisely controlled torque limit. A biasing assembly biases a first gear into engagement with a second gear for torque transfer between the first and second gear. The biasing assembly includes a pressurized cylinder controlled at a constant pressure that corresponds to a torque limit. A calibrated gage and valve is used to set the desired torque limit. One or more coiled output linkages connect the first gear with the fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. The torque limit is adjustable and may be different for fasteners within the same fastener configuration.

  9. Torque, Cognitive Ability, and Schooling.

    ERIC Educational Resources Information Center

    Csapo, Marg

    1985-01-01

    West African Hausan Children (N=110) aged 5-6 were administered a torque test and relationshps between the torque task and visual spatial tasks were analyzed. Findings supported the assumption that educational experience related to circling accounts for decrease in torque, or that the educational experiences have potential influence on cortical…

  10. Investigation of Motorcycle Steering Torque Components

    NASA Astrophysics Data System (ADS)

    Cossalter, V.; Lot, R.; Massaro, M.; Peretto, M.

    2011-10-01

    When driving along a circular path, the rider controls a motorcycle mainly by the steering torque. This work addresses an in-depth analysis of the steady state cornering and in particular the decomposition of the motorcycle steering torque in its main components, such as road-tyre forces, gyroscopic torques, centrifugal and gravity effects. A detailed and experimentally validated multibody model of the motorcycle is used herein to analyze the steering torque components at different speeds and lateral accelerations. First the road tests are compared with the numerical results for three different vehicles and then a numerical investigation is carried out to decompose the steering torque. Finally, the effect of longitudinal acceleration and deceleration on steering torque components is presented.

  11. Measurement of Resistive Torques in Major Human Joints

    DTIC Science & Technology

    1979-04-01

    was assisted by the following graduate students whose names, in the order of the magnitude of their contributions, are: Richard D. Peindl, Manssour...acknowledged by the author, a considerable addi- tional time investment was made by the principal investigator and several graduate students to complete the...Conaill, M.A., "Joint Movement," Physiotherapy (50), 359, 1964. 17. Murphy, W.W., Garcia, D.H. and Bird, R.G., "Measurement of Body Motion," ASME

  12. Control of electro-rheological fluid-based torque generation components for use in active rehabilitation devices

    NASA Astrophysics Data System (ADS)

    Nikitczuk, Jason; Weinberg, Brian; Mavroidis, Constantinos

    2006-03-01

    In this paper we present the design and control algorithms for novel electro-rheological fluid based torque generation elements that will be used to drive the joint of a new type of portable and controllable Active Knee Rehabilitation Orthotic Device (AKROD) for gait retraining in stroke patients. The AKROD is composed of straps and rigid components for attachment to the leg, with a central hinge mechanism where a gear system is connected. The key features of AKROD include: a compact, lightweight design with highly tunable torque capabilities through a variable damper component, full portability with on board power, control circuitry, and sensors (encoder and torque), and real-time capabilities for closed loop computer control for optimizing gait retraining. The variable damper component is achieved through an electro-rheological fluid (ERF) element that connects to the output of the gear system. Using the electrically controlled rheological properties of ERFs, compact brakes capable of supplying high resistive and controllable torques, are developed. A preliminary prototype for AKROD v.2 has been developed and tested in our laboratory. AKROD's v.2 ERF resistive actuator was tested in laboratory experiments using our custom made ERF Testing Apparatus (ETA). ETA provides a computer controlled environment to test ERF brakes and actuators in various conditions and scenarios including emulating the interaction between human muscles involved with the knee and AKROD's ERF actuators / brakes. In our preliminary results, AKROD's ERF resistive actuator was tested in closed loop torque control experiments. A hybrid (non-linear, adaptive) Proportional-Integral (PI) torque controller was implemented to achieve this goal.

  13. Charge-induced spin torque in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Kurebayashi, Daichi; Nomura, Kentaro

    In this work, we present phenomenological and microscopic derivations of spin torques in magnetically doped Weyl semimetals. As a result, we obtain the analytical expression of the spin torque generated, without a flowing current, when the chemical potential is modulated. We also find that this spin torque is a direct consequence of the chiral anomaly. Therefore, observing this spin torque in magnetic Weyl semimetals might be an experimental evidence of the chiral anomaly. This spin torque has also a great advantage in application. In contrast to conventional current-induced spin torques such as the spin-transfer torques, this spin torque does not accompany a constant current flow. Thus, devices using this operating principle is free from the Joule heating and possibly have higher efficiency than devices using conventional current-induced spin torques. This work was supported by JSPS KAKENHI Grant Number JP15H05854 and JP26400308.

  14. The angle-torque-relationship of the subtalar pronators and supinators in male athletes: A comparative study of soccer and handball players.

    PubMed

    Hagen, Marco; Asholt, Johannes; Lemke, Martin; Lahner, Matthias

    2016-05-18

    It is currently unclear how participation in different sports affects the angle-specific subtalar pronator and supinator muscle strength and pronator-to-supinator strength ratio (PSR). Based on the hypothesis that both differences sport-related patterns of play and foot-ground interaction may lead to sport-specific muscle adaptations, this study compared the angle specific pronator and supinator strength capacity of handball and soccer players. Eighteen healthy male handball and 19 soccer players performed maximum isometric voluntary isometric contractions using a custom-made testing apparatus. Peak pronator (PPT) and supinator torques (PST), pronator and supinator strength curves (normalised to the peak torque across all joint angles) and PSR were measured in five anatomical joint angles across the active subtalar range of motion (ROM). All analysed parameters were dependent on the subtalar joint angle. The ANOVA revealed significant `joint angle' × `group' interactions on PPT, pronator strength curves and PSR. No group differences were found for active subtalar ROM. In previously uninjured handball and soccer athletes, there were intrinsic differences in angle-specific subtalar pronator muscle strength. The lower PSR, which was found in the most supinated angle, can be seen as a risk factor for sustaining an ankle sprain.

  15. Advantages and disadvantages of new torque-controlled endodontic motors and low-torque NiTi rotary instrumentation.

    PubMed

    Gambarini, G

    2001-12-01

    The main problem with the NiTi rotary instrumentation technique is instrument failure. During shaping procedures, rotary instruments might lock and/or screw into canals and, consequently, be subjected to high levels of stress. This may frequently lead to instrument separation or deformation. If a high-torque motor is used, the applied forces are usually very high and the instrument-fracture limit is often exceeded, thus increasing the risk of intracanal failure. A possible solution of this problem is to use a low-torque endodontic motor, which operates below the maximum permissible torque limit of each and every rotary instrument. During clinical instrumentation of root canals, if a torque-controlled motor is loaded right up to the instrument-specific torque, the motor stops momentarily and/or starts rotating counter-clockwise (auto-reverse function) to disengage the locked instrument. These safety mechanisms were developed to reduce the risk of instrument fracture. The author fully discusses the rationale for selecting lower torque values in everyday endodontic practice, and provides clinicians with useful information on the advantages and disadvantages of new endodontic motors with torque control.

  16. Rotational joint assembly for the prosthetic leg

    NASA Technical Reports Server (NTRS)

    Owens, L. J.; Jones, W. C. (Inventor)

    1977-01-01

    A rotational joint assembly for a prosthetic leg has been devised, which enables an artificial foot to rotate slightly when a person is walking, running or turning. The prosthetic leg includes upper and lower tubular members with the rotational joint assembly interposed between them. The assembly includes a restrainer mechanism which consists of a pivotably mounted paddle element. This device applies limiting force to control the rotation of the foot and also restores torque to return the foot back to its initial position.

  17. Comparison of neuromuscular abnormalities between upper and lower extremities in hemiparetic stroke.

    PubMed

    Mirbagheri, M M; AliBiglou, L; Thajchayapong, M; Lilaonitkul, T; Rymer, W Z

    2006-01-01

    We studied the neuromuscular mechanical properties of the elbow and ankle joints in chronic, hemiparetic stroke patients and healthy subjects. System identification techniques were used to characterize the mechanical abnormalities of these joints and to identify the contribution of intrinsic and reflex stiffness to these abnormalities. Modulation of intrinsic and reflex stiffness with the joint angle was studied by applying PRBS perturbations to the joint at different joint angles. The experiments were performed for both spastic (stroke) and contralateral (control) sides of stroke patients and one side of healthy (normal) subjects. We found reflex stiffness gain (GR) was significantly larger in the stroke than the control side for both elbow and ankle joints. GR was also strongly position dependent in both joints. However, the modulation of GR with position was slightly different in two joints. GR was also larger in the control than the normal joints but the differences were significant only for the ankle joint. Intrinsic stiffness gain (K) was also significantly larger in the stroke than the control joint at elbow extended positions and at ankle dorsiflexed positions. Modulation of K with the ankle angle was similar for stroke, control and normal groups. In contrast, the position dependency of the elbow was different. K was larger in the control than normal ankle whereas it was lower in the control than normal elbow. However, the differences were not significant for any joint. The findings demonstrate that both reflex and intrinsic stiffness gain increase abnormally in both upper and lower extremities. However, the major contribution of intrinsic and reflex stiffness to the abnormalities is at the end of ROM and at the middle ROM, respectively. The results also demonstrate that the neuromuscular properties of the contralateral limb are not normal suggesting that it may not be used as a suitable control at least for the ankle study.

  18. The effect of steam sterilization on the accuracy of spring-style mechanical torque devices for dental implants

    PubMed Central

    Mahshid, Minoo; Saboury, Aboulfazl; Fayaz, Ali; Sadr, Seyed Jalil; Lampert, Friedrich; Mir, Maziar

    2012-01-01

    Background Mechanical torque devices (MTDs) are one of the most commonly recommended devices used to deliver optimal torque to the screw of dental implants. Recently, high variability has been reported about the accuracy of spring-style mechanical torque devices (S-S MTDs). Joint stability and survival rate of fixed implant supported prosthesis depends on the accuracy of these devices. Currently, there is limited information on the steam sterilization influence on the accuracy of MTDs. The purpose of this study was to assess the effect of steam sterilization on the accuracy (±10% of the target torque) of spring-style mechanical torque devices for dental implants. Materials and methods Fifteen new S-S MTDs and their appropriate drivers from three different manufacturers (Nobel Biocare, Straumann [ITI], and Biomet 3i [3i]) were selected. Peak torque of devices (5 in each subgroup) was measured before and after autoclaving using a Tohnichi torque gauge. Descriptive statistical analysis was used and a repeated-measures ANOVA with type of device as a between-subject comparison was performed to assess the difference in accuracy among the three groups of spring-style mechanical torque devices after sterilization. A Bonferroni post hoc test was used to assess pairwise comparisons. Results Before steam sterilization, all the tested devices stayed within 10% of their target values. After 100 sterilization cycles, results didn’t show any significant difference between raw and absolute error values in the Nobel Biocare and ITI devices; however the results demonstrated an increase of error values in the 3i group (P < 0.05). Raw error values increased with a predictable pattern in 3i devices and showed more than a 10% difference from target torque values (maximum difference of 14% from target torque was seen in 17% of peak torque measurements). Conclusion Within the limitation of this study, steam sterilization did not affect the accuracy (±10% of the target torque) of the

  19. The influence of abutment screw tightening on screw joint configuration.

    PubMed

    Lang, Lisa A; Wang, Rui-Feng; May, Kenneth B

    2002-01-01

    Limiting abutment-to-implant hexagonal discrepancies and rotational movement of the abutment around the implant to less than 5 degrees would result in a more stable screw joint. However, the exact relationship after abutment screw tightening is unknown, as is the effect of a counter-torque device in limiting abutment movement during screw tightening. This study examined the orientation of the abutment hexagon to the implant hexagon after tightening of the abutment screw for several abutment systems with and without the use of a counter-torque device. Thirty conical self-tapping implants (3.75 x 10.0 mm) and 10 wide-platform Brånemark System implants (5.0 x 10.0 mm), along with 10 abutment specimens from the CeraOne, Estheticone, Procera, and AuraAdapt systems, were selected for this investigation. The implants were placed in a holding device prior to tightening of the abutments. When the tightening torque recommended for each abutment system was reached with the use of a torque controller, each implant abutment specimen was removed from the holding device and embedded in a hard resin medium. The specimens were sectioned in a horizontal direction at the level of the hexagons and cleansed of debris prior to examination. The hexagon orientations were assessed as the degree and direction of rotation of the abutment hexagon around the implant hexagon. The range of the maximum degrees of rotation for all 4 abutment groups tightened with or without the counter-torque device was slightly more than 3.53 degrees. The absolute degrees of rotation for all 4 abutment groups were less than 1.50 degrees with or without the use of the counter-torque device. The hexagon-to-hexagon orientation measured as rotational fit on all abutment systems was below the 5 degrees suggested as optimal for screw joint stability. The absolute degrees of rotation for all 4 abutment groups were less than 1.50 degrees regardless of whether the counter-torque device was used.

  20. Posterior Tibial Slope Angle Correlates With Peak Sagittal and Frontal Plane Knee Joint Loading During Robotic Simulations of Athletic Tasks.

    PubMed

    Bates, Nathaniel A; Nesbitt, Rebecca J; Shearn, Jason T; Myer, Gregory D; Hewett, Timothy E

    2016-07-01

    Tibial slope angle is a nonmodifiable risk factor for anterior cruciate ligament (ACL) injury. However, the mechanical role of varying tibial slopes during athletic tasks has yet to be clinically quantified. To examine the influence of posterior tibial slope on knee joint loading during controlled, in vitro simulation of the knee joint articulations during athletic tasks. Descriptive laboratory study. A 6 degree of freedom robotic manipulator positionally maneuvered cadaveric knee joints from 12 unique specimens with varying tibial slopes (range, -7.7° to 7.7°) through drop vertical jump and sidestep cutting tasks that were derived from 3-dimensional in vivo motion recordings. Internal knee joint torques and forces were recorded throughout simulation and were linearly correlated with tibial slope. The mean (±SD) posterior tibial slope angle was 2.2° ± 4.3° in the lateral compartment and 2.3° ± 3.3° in the medial compartment. For simulated drop vertical jumps, lateral compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee adduction (r = 0.60-0.65), flexion (r = 0.64-0.66), lateral (r = 0.57-0.69), and external rotation torques (r = 0.47-0.72) as well as inverse correlations with peak abduction (r = -0.42 to -0.61) and internal rotation torques (r = -0.39 to -0.79). Only frontal plane torques were correlated during sidestep cutting simulations. For simulated drop vertical jumps, medial compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee flexion torque (r = 0.64-0.69) and lateral knee force (r = 0.55-0.74) as well as inverse correlations with peak external torque (r = -0.34 to -0.67) and medial knee force (r = -0.58 to -0.59). These moderate correlations were also present during simulated sidestep cutting. The investigation supported the theory that increased posterior tibial slope would lead to greater magnitude knee joint moments, specifically

  1. Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy

    PubMed Central

    2013-01-01

    Background Spastic paresis in cerebral palsy (CP) is characterized by increased joint stiffness that may be of neural origin, i.e. improper muscle activation caused by e.g. hyperreflexia or non-neural origin, i.e. altered tissue viscoelastic properties (clinically: “spasticity” vs. “contracture”). Differentiation between these components is hard to achieve by common manual tests. We applied an assessment instrument to obtain quantitative measures of neural and non-neural contributions to ankle joint stiffness in CP. Methods Twenty-three adolescents with CP and eleven healthy subjects were seated with their foot fixated to an electrically powered single axis footplate. Passive ramp-and-hold rotations were applied over full ankle range of motion (RoM) at low and high velocities. Subject specific tissue stiffness, viscosity and reflexive torque were estimated from ankle angle, torque and triceps surae EMG activity using a neuromuscular model. Results In CP, triceps surae reflexive torque was on average 5.7 times larger (p = .002) and tissue stiffness 2.1 times larger (p = .018) compared to controls. High tissue stiffness was associated with reduced RoM (p < .001). Ratio between neural and non-neural contributors varied substantially within adolescents with CP. Significant associations of SPAT (spasticity test) score with both tissue stiffness and reflexive torque show agreement with clinical phenotype. Conclusions Using an instrumented and model based approach, increased joint stiffness in CP could be mainly attributed to higher reflexive torque compared to control subjects. Ratios between contributors varied substantially within adolescents with CP. Quantitative differentiation of neural and non-neural stiffness contributors in CP allows for assessment of individual patient characteristics and tailoring of therapy. PMID:23880287

  2. Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy.

    PubMed

    de Gooijer-van de Groep, Karin L; de Vlugt, Erwin; de Groot, Jurriaan H; van der Heijden-Maessen, Hélène C M; Wielheesen, Dennis H M; van Wijlen-Hempel, Rietje M S; Arendzen, J Hans; Meskers, Carel G M

    2013-07-23

    Spastic paresis in cerebral palsy (CP) is characterized by increased joint stiffness that may be of neural origin, i.e. improper muscle activation caused by e.g. hyperreflexia or non-neural origin, i.e. altered tissue viscoelastic properties (clinically: "spasticity" vs. "contracture"). Differentiation between these components is hard to achieve by common manual tests. We applied an assessment instrument to obtain quantitative measures of neural and non-neural contributions to ankle joint stiffness in CP. Twenty-three adolescents with CP and eleven healthy subjects were seated with their foot fixated to an electrically powered single axis footplate. Passive ramp-and-hold rotations were applied over full ankle range of motion (RoM) at low and high velocities. Subject specific tissue stiffness, viscosity and reflexive torque were estimated from ankle angle, torque and triceps surae EMG activity using a neuromuscular model. In CP, triceps surae reflexive torque was on average 5.7 times larger (p = .002) and tissue stiffness 2.1 times larger (p = .018) compared to controls. High tissue stiffness was associated with reduced RoM (p < .001). Ratio between neural and non-neural contributors varied substantially within adolescents with CP. Significant associations of SPAT (spasticity test) score with both tissue stiffness and reflexive torque show agreement with clinical phenotype. Using an instrumented and model based approach, increased joint stiffness in CP could be mainly attributed to higher reflexive torque compared to control subjects. Ratios between contributors varied substantially within adolescents with CP. Quantitative differentiation of neural and non-neural stiffness contributors in CP allows for assessment of individual patient characteristics and tailoring of therapy.

  3. EDITORIAL: Spin-transfer-torque-induced phenomena Spin-transfer-torque-induced phenomena

    NASA Astrophysics Data System (ADS)

    Hirohata, Atsufumi

    2011-09-01

    This cluster, consisting of five invited articles on spin-transfer torque, offers the very first review covering both magnetization reversal and domain-wall displacement induced by a spin-polarized current. Since the first theoretical proposal on spin-transfer torque—reported by Berger and Slonczewski independently—spin-transfer torque has been experimentally demonstrated in both vertical magnetoresistive nano-pillars and lateral ferromagnetic nano-wires. In the former structures, an electrical current flowing vertically in the nano-pillar exerts spin torque onto the thinner ferromagnetic layer and reverses its magnetization, i.e., current-induced magnetization switching. In the latter structures, an electrical current flowing laterally in the nano-wire exerts torque onto a domain wall and moves its position by rotating local magnetic moments within the wall, i.e., domain wall displacement. Even though both phenomena are induced by spin-transfer torque, each phenomenon has been investigated separately. In order to understand the physical meaning of spin torque in a broader context, this cluster overviews both cases from theoretical modellings to experimental demonstrations. The earlier articles in this cluster focus on current-induced magnetization switching. The magnetization dynamics during the reversal has been calculated by Kim et al using the conventional Landau--Lifshitz-Gilbert (LLG) equation, adding a spin-torque term. This model can explain the dynamics in both spin-valves and magnetic tunnel junctions in a nano-pillar form. This phenomenon has been experimentally measured in these junctions consisting of conventional ferromagnets. In the following experimental part, the nano-pillar junctions with perpendicularly magnetized FePt and half-metallic Heusler alloys are discussed from the viewpoint of efficient magnetization reversal due to a high degree of spin polarization of the current induced by the intrinsic nature of these alloys. Such switching can

  4. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.

    PubMed

    Schrade, Stefan O; Nager, Yannik; Wu, Amy R; Gassert, Roger; Ijspeert, Auke

    2017-07-01

    Robotic lower limb exoskeletons are becoming increasingly popular in therapy and recreational use. However, most exoskeletons are still rather limited in their locomotion speed and the activities of daily live they can perform. Furthermore, they typically do not allow for a dynamic adaptation to the environment, as they are often controlled with predefined reference trajectories. Inspired by human leg stiffness modulation during walking, variable stiffness actuators increase flexibility without the need for more complex controllers. Actuation with adaptable stiffness is inspired by the human leg stiffness modulation during walking. However, this actuation principle also introduces the stiffness setpoint as an additional degree of freedom that needs to be coordinated with the joint trajectories. As a potential solution to this issue a bio-inspired controller based on a central pattern generator (CPG) is presented in this work. It generates coordinated joint torques and knee stiffness modulations to produce flexible and dynamic gait patterns for an exoskeleton with variable knee stiffness actuation. The CPG controller is evaluated and optimized in simulation using a model of the exoskeleton. The CPG controller produced stable and smooth gait for walking speeds from 0.4 m/s up to 1.57 m/s with a torso stabilizing force that simulated the use of crutches, which are commonly needed by exoskeleton users. Through the CPG, the knee stiffness intrinsically adapted to the frequency and phase of the gait, when the speed was changed. Additionally, it adjusted to changes in the environment in the form of uneven terrain by reacting to ground contact forces. This could allow future exoskeletons to be more adaptive to various environments, thus making ambulation more robust.

  5. Immediate compensation for variations in self-generated Coriolis torques related to body dynamics and carried objects

    PubMed Central

    DiZio, Paul; Lackner, James R.

    2013-01-01

    shoulder and 34% at the elbow. In accordance with Sainburg's dynamic dominance hypothesis, the right arm exhibited an advantage for coordinating intersegmental dynamics, showing a more stable finger velocity in relation to the torso across targets, decreasing error variability with movement speed, and more synchronized peaks of finger relative and torso angular velocities in conditions with greater joint torque requirements. The arm used had little effect on the movement path and the magnitude of the joint torques in any of the conditions. These results indicate that compensations for forthcoming Coriolis torque variations take into account the dynamic properties of the body and of external objects, as well as the planned velocities of the torso and arm. PMID:23803330

  6. Immediate compensation for variations in self-generated Coriolis torques related to body dynamics and carried objects.

    PubMed

    Pigeon, Pascale; Dizio, Paul; Lackner, James R

    2013-09-01

    shoulder and 34% at the elbow. In accordance with Sainburg's dynamic dominance hypothesis, the right arm exhibited an advantage for coordinating intersegmental dynamics, showing a more stable finger velocity in relation to the torso across targets, decreasing error variability with movement speed, and more synchronized peaks of finger relative and torso angular velocities in conditions with greater joint torque requirements. The arm used had little effect on the movement path and the magnitude of the joint torques in any of the conditions. These results indicate that compensations for forthcoming Coriolis torque variations take into account the dynamic properties of the body and of external objects, as well as the planned velocities of the torso and arm.

  7. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.

    PubMed

    Jackson, Rachel W; Collins, Steven H

    2015-09-01

    Techniques proposed for assisting locomotion with exoskeletons have often included a combination of active work input and passive torque support, but the physiological effects of different assistance techniques remain unclear. We performed an experiment to study the independent effects of net exoskeleton work and average exoskeleton torque on human locomotion. Subjects wore a unilateral ankle exoskeleton and walked on a treadmill at 1.25 m·s(-1) while net exoskeleton work rate was systematically varied from -0.054 to 0.25 J·kg(-1)·s(-1), with constant (0.12 N·m·kg(-1)) average exoskeleton torque, and while average exoskeleton torque was systematically varied from approximately zero to 0.18 N·m·kg(-1), with approximately zero net exoskeleton work. We measured metabolic rate, center-of-mass mechanics, joint mechanics, and muscle activity. Both techniques reduced effort-related measures at the assisted ankle, but this form of work input reduced metabolic cost (-17% with maximum net work input) while this form of torque support increased metabolic cost (+13% with maximum average torque). Disparate effects on metabolic rate seem to be due to cascading effects on whole body coordination, particularly related to assisted ankle muscle dynamics and the effects of trailing ankle behavior on leading leg mechanics during double support. It would be difficult to predict these results using simple walking models without muscles or musculoskeletal models that assume fixed kinematics or kinetics. Data from this experiment can be used to improve predictive models of human neuromuscular adaptation and guide the design of assistive devices. Copyright © 2015 the American Physiological Society.

  8. The bending stiffness of shoes is beneficial to running energetics if it does not disturb the natural MTP joint flexion.

    PubMed

    Oh, Keonyoung; Park, Sukyung

    2017-02-28

    A local minimum for running energetics has been reported for a specific bending stiffness, implying that shoe stiffness assists in running propulsion. However, the determinant of the metabolic optimum remains unknown. Highly stiff shoes significantly increase the moment arm of the ground reaction force (GRF) and reduce the leverage effect of joint torque at ground push-off. Inspired by previous findings, we hypothesized that the restriction of the natural metatarsophalangeal (MTP) flexion caused by stiffened shoes and the corresponding joint torque changes may reduce the benefit of shoe bending stiffness to running energetics. We proposed the critical stiffness, k cr , which is defined as the ratio of the MTP joint (MTPJ) torque to the maximal MTPJ flexion angle, as a possible threshold of the elastic benefit of shoe stiffness. 19 subjects participated in a running test while wearing insoles with five different bending stiffness levels. Joint angles, GRFs, and metabolic costs were measured and analyzed as functions of the shoe stiffness. No significant changes were found in the take-off velocity of the center of mass (CoM), but the horizontal ground push-offs were significantly reduced at different shoe stiffness levels, indicating that complementary changes in the lower-limb joint torques were introduced to maintain steady running. Slight increases in the ankle, knee, and hip joint angular impulses were observed at stiffness levels exceeding the critical stiffness, whereas the angular impulse at the MTPJ was significantly reduced. These results indicate that the shoe bending stiffness is beneficial to running energetics if it does not disturb the natural MTPJ flexion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Fabricated torque shaft

    DOEpatents

    Mashey, Thomas Charles

    2002-01-01

    A fabricated torque shaft is provided that features a bolt-together design to allow vane schedule revisions with minimal hardware cost. The bolt-together design further facilitates on-site vane schedule revisions with parts that are comparatively small. The fabricated torque shaft also accommodates stage schedules that are different one from another in non-linear inter-relationships as well as non-linear schedules for a particular stage of vanes.

  10. Passive and active floating torque during swimming.

    PubMed

    Kjendlie, Per-Ludvik; Stallman, Robert Keig; Stray-Gundersen, James

    2004-10-01

    The purpose of this study was to examine the effect of passive underwater torque on active body angle with the horizontal during front crawl swimming and to assess the effect of body size on passive torque and active body angle. Additionally, the effects of passive torque, body angle and hydrostatic lift on maximal sprinting performance were addressed. Ten boys [aged 11.7 (0.8) years] and 12 male adult [aged 21.4 (3.7) years] swimmers volunteered to participate. Their body angle with the horizontal was measured at maximal velocity, and at two submaximal velocities using an underwater video camera system. Passive torque and hydrostatic lift were measured during an underwater weighing procedure, and the center of mass and center of volume were determined. The results showed that passive torque correlated significantly with the body angle at a velocity 63% of v(max) ( alpha(63) r=-0.57), and that size-normalized passive torque correlated significantly with the alpha(63) and alpha(77) (77% of v(max)) with r=-0.59 and r=-0.54 respectively. Hydrostatic lift correlated with alpha(63) with r=-0.45. The negative correlation coefficients are suggested to be due to the adults having learned to overcome passive torque when swimming at submaximal velocities by correcting their body angle. It is concluded that at higher velocities the passive torque and hydrostatic lift do not influence body angle during swimming. At a velocity of 63% of v(max), hydrostatic lift and passive torque influences body angle. Passive torque and size-normalized passive torque increases with body size. When corrected for body size, hydrostatic lift and passive torque did not influence the maximal sprinting velocity.

  11. Improved Force-And-Torque Sensor Assembly

    NASA Technical Reports Server (NTRS)

    Bamford, Robert M.

    1991-01-01

    Improved sensor assembly measures forces and torques of interaction between supporting and supported object. Measures all three components of force and all three components of torque. Force measurements uncoupled from torque measurements. Price for improved measurement capability, complexity and flexibility, excessive in some applications.

  12. Self-healing bolted joint employing a shape memory actuator

    NASA Astrophysics Data System (ADS)

    Muntges, Daniel E.; Park, Gyuhae; Inman, Daniel J.

    2001-08-01

    This paper is a report of an initial investigation into the active control of preload in the joint using a shape memory actuator around the axis of the bolt shaft. Specifically, the actuator is a cylindrical Nitinol washer that expands axially when heated, according to the shape memory effect. The washer is actuated in response to an artificial decrease in torque. Upon actuation, the stress generated by its axial strain compresses the bolted members and creates a frictional force that has the effect of generating a preload and restoring lost torque. In addition to torque wrenches, the system in question was monitored in all stages of testing using piezoelectric impedance analysis. Impedance analysis drew upon research techniques developed at Center for Intelligent Material Systems and Structures, in which phase changes in the impedance of a self-sensing piezoceramic actuator correspond to changes in joint stiffness. Through experimentation, we have documented a successful actuation of the shape memory element. Due to complexity of constitutive modeling, qualitative analysis by the impedance method is used to illustrate the success. Additional considerations encountered in this initial investigation are made to guide further thorough research required for the successful commercial application of this promising technique.

  13. Comparison of joint space versus task force load distribution optimization for a multiarm manipulator system

    NASA Technical Reports Server (NTRS)

    Soloway, Donald I.; Alberts, Thomas E.

    1989-01-01

    It is often proposed that the redundancy in choosing a force distribution for multiple arms grasping a single object should be handled by minimizing a quadratic performance index. The performance index may be formulated in terms of joint torques or in terms of the Cartesian space force/torque applied to the body by the grippers. The former seeks to minimize power consumption while the latter minimizes body stresses. Because the cost functions are related to each other by a joint angle dependent transformation on the weight matrix, it might be argued that either method tends to reduce power consumption, but clearly the joint space minimization is optimal. A comparison of these two options is presented with consideration given to computational cost and power consumption. Simulation results using a two arm robot system are presented to show the savings realized by employing the joint space optimization. These savings are offset by additional complexity, computation time and in some cases processor power consumption.

  14. Analysis Method of Friction Torque and Weld Interface Temperature during Friction Process of Steel Friction Welding

    NASA Astrophysics Data System (ADS)

    Kimura, Masaaki; Inoue, Haruo; Kusaka, Masahiro; Kaizu, Koichi; Fuji, Akiyoshi

    This paper describes an analysis method of the friction torque and weld interface temperature during the friction process for steel friction welding. The joining mechanism model of the friction welding for the wear and seizure stages was constructed from the actual joining phenomena that were obtained by the experiment. The non-steady two-dimensional heat transfer analysis for the friction process was carried out by calculation with FEM code ANSYS. The contact pressure, heat generation quantity, and friction torque during the wear stage were calculated using the coefficient of friction, which was considered as the constant value. The thermal stress was included in the contact pressure. On the other hand, those values during the seizure stage were calculated by introducing the coefficient of seizure, which depended on the seizure temperature. The relationship between the seizure temperature and the relative speed at the weld interface in the seizure stage was determined using the experimental results. In addition, the contact pressure and heat generation quantity, which depended on the relative speed of the weld interface, were solved by taking the friction pressure, the relative speed and the yield strength of the base material into the computational conditions. The calculated friction torque and weld interface temperatures of a low carbon steel joint were equal to the experimental results when friction pressures were 30 and 90 MPa, friction speed was 27.5 s-1, and weld interface diameter was 12 mm. The calculation results of the initial peak torque and the elapsed time for initial peak torque were also equal to the experimental results under the same conditions. Furthermore, the calculation results of the initial peak torque and the elapsed time for initial peak torque at various friction pressures were equal to the experimental results.

  15. Triple-phase bone image abnormalities in Lyme arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, S.J.; Dadparvar, S.; Slizofski, W.J.

    1989-10-01

    Arthritis is a frequent manifestation of Lyme disease. Limited triple-phase Tc-99m MDP bone imaging of the wrists and hands with delayed whole-body images was performed in a patient with Lyme arthritis. This demonstrated abnormal joint uptake in the wrists and hands in all three phases, with increased activity seen in other affected joints on delayed whole-body images. These findings are nonspecific and have been previously described in a variety of rheumatologic conditions, but not in Lyme disease. Lyme disease should be considered in the differential diagnosis of articular and periarticular bone scan abnormalities.

  16. Calibration of the optical torque wrench.

    PubMed

    Pedaci, Francesco; Huang, Zhuangxiong; van Oene, Maarten; Dekker, Nynke H

    2012-02-13

    The optical torque wrench is a laser trapping technique that expands the capability of standard optical tweezers to torque manipulation and measurement, using the laser linear polarization to orient tailored microscopic birefringent particles. The ability to measure torque of the order of kBT (∼4 pN nm) is especially important in the study of biophysical systems at the molecular and cellular level. Quantitative torque measurements rely on an accurate calibration of the instrument. Here we describe and implement a set of calibration approaches for the optical torque wrench, including methods that have direct analogs in linear optical tweezers as well as introducing others that are specifically developed for the angular variables. We compare the different methods, analyze their differences, and make recommendations regarding their implementations.

  17. In-line rotating capacitive torque sensor

    DOEpatents

    Kronberg, James W.

    1991-01-01

    A method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources.

  18. Development of a Portable Torque Wrench Tester

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhang, Q.; Gou, C.; Su, D.

    2018-03-01

    A portable torque wrench tester (PTWT) with calibration range from 0.5 Nm to 60 Nm has been developed and evaluated for periodic or on-site calibration of setting type torque wrenches, indicating type torque wrenches and hand torque screwdrivers. The PTWT is easy to carry with weight about 10 kg, simple and efficient operation and energy saving with an automatic loading and calibrating system. The relative expanded uncertainty of torque realized by the PTWT was estimated to be 0.8%, with the coverage factor k=2. A comparison experiment has been done between the PTWT and a reference torque standard at our laboratory. The consistency between these two devices under the claimed uncertainties was verified.

  19. Zero torque gear head wrench

    NASA Technical Reports Server (NTRS)

    Mcdougal, A. R.; Norman, R. M. (Inventor)

    1976-01-01

    A gear head wrench particularly suited for use in applying torque to bolts without transferring torsional stress to bolt-receiving structures is introduced. The wrench is characterized by a coupling including a socket, for connecting a bolt head with a torque multiplying gear train, provided within a housing having an annulus concentrically related to the socket and adapted to be coupled with a spacer interposed between the bolt head and the juxtaposed surface of the bolt-receiving structure for applying a balancing counter-torque to the spacer as torque is applied to the bolt head whereby the bolt-receiving structure is substantially isolated from torsional stress. As a result of the foregoing, the operator of the wrench is substantially isolated from any forces which may be imposed.

  20. Torque limit of PM motors for field-weakening region operation

    DOEpatents

    Royak, Semyon [Beachwood, OH; Harbaugh, Mark M [Richfield, OH

    2012-02-14

    The invention includes a motor controller and technique for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by receiving a torque command, determining a physical torque limit based on a stator frequency, determining a theoretical torque limit based on a maximum available voltage and motor inductance ratio, and limiting the torque command to the smaller of the physical torque limit and the theoretical torque limit. Receiving the torque command may include normalizing the torque command to obtain a normalized torque command, determining the physical torque limit may include determining a normalized physical torque limit, determining a theoretical torque limit may include determining a normalized theoretical torque limit, and limiting the torque command may include limiting the normalized torque command to the smaller of the normalized physical torque limit and the normalized theoretical torque limit.

  1. Torque limited drive for manual valves

    DOEpatents

    Elliott, Philip G.; Underwood, Daniel E.

    1989-06-06

    The present invention is directed to a torque-limiting handwheel device for preventing manual valves from being damaged due to the application of excessive torque during the opening or closing operation of the valves. Torque can only be applied when ridges in the handwheel assembly engage in channels machined in the face of the baseplate. The amount of torque required for disengagement of the ridges from the channels is determined by the force exerted by various Bellville springs and the inclination of the side faces of the channels.

  2. Torque limited drive for manual valves

    DOEpatents

    Elliott, Philip G.; Underwood, Daniel E.

    1989-01-01

    The present invention is directed to a torque-limiting handwheel device for preventing manual valves from being damaged due to the application of excessive torque during the opening or closing operation of the valves. Torque can only be applied when ridges in the handwheel assembly engage in channels machined in the face of the baseplate. The amount of torque required for disengagement of the ridges from the channels is determined by the force exerted by various Bellville springs and the inclination of the side faces of the channels.

  3. Spin Transfer torques in Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Saidaoui, Hamed; Waintal, Xavier; Manchon, Aurelien; Spsms, Cea, Grenoble France Collaboration

    2013-03-01

    Spin Transfer Torque (STT) has attracted tremendously growing interest in the past two decades. Consisting on the transfer of spin angular momentum of a spin polarized current to local magnetic moments, the STT gives rise to a complex dynamics of the magnetization. Depending on the the structure, the STT shows a dominated In plane component for spin valves, whereas both components coexist for magnetic tunneling junctions (MTJ). For latter case the symmetry of the structure is considered to be decisive in identifying the nature and behavior of the torque. In the present study we are interested in magnetic structures where we substitute either one or both of the magnetic layers by antiferromagnets (AF). We use Non-equilibrium Green's function formalism applied on a tight-binding model to investigate the nature of the spin torque. We notice the presence of two types of torque exerted on (AF), a torque which tends to rotate the order parameter and another one that competes with the exchange interaction. We conclude by comparison with previous works.

  4. Split torque transmission load sharing

    NASA Technical Reports Server (NTRS)

    Krantz, T. L.; Rashidi, M.; Kish, J. G.

    1992-01-01

    Split torque transmissions are attractive alternatives to conventional planetary designs for helicopter transmissions. The split torque designs can offer lighter weight and fewer parts but have not been used extensively for lack of experience, especially with obtaining proper load sharing. Two split torque designs that use different load sharing methods have been studied. Precise indexing and alignment of the geartrain to produce acceptable load sharing has been demonstrated. An elastomeric torque splitter that has large torsional compliance and damping produces even better load sharing while reducing dynamic transmission error and noise. However, the elastomeric torque splitter as now configured is not capable over the full range of operating conditions of a fielded system. A thrust balancing load sharing device was evaluated. Friction forces that oppose the motion of the balance mechanism are significant. A static analysis suggests increasing the helix angle of the input pinion of the thrust balancing design. Also, dynamic analysis of this design predicts good load sharing and significant torsional response to accumulative pitch errors of the gears.

  5. In Vivo Talocrural Joint Contact Mechanics With Functional Ankle Instability.

    PubMed

    Kobayashi, Takumi; Suzuki, Eiichi; Yamazaki, Naohito; Suzukawa, Makoto; Akaike, Atsushi; Shimizu, Kuniaki; Gamada, Kazuyoshi

    2015-12-01

    Functional ankle instability (FAI) may involve abnormal kinematics and contact mechanics during ankle internal rotation. Understanding of these abnormalities is important to prevent secondary problems in patients with FAI. However, there are no in vivo studies that have investigated talocrural joint contact mechanics during weightbearing ankle internal rotation. The objective of this study to determine talocrural contact mechanics during weightbearing ankle internal rotation in patients with FAI. Twelve male subjects with unilateral FAI (age range, 18-26 years) were enrolled. Computed tomography and fluoroscopic imaging of both lower extremities were obtained during weightbearing passive ankle joint complex rotation. Three-dimensional bone models created from the computed tomographic images were matched to the fluoroscopic images to compute 6 degrees of freedom for talocrural joint kinematics. The closest contact area in the talocrural joint in ankle neutral rotation and maximum internal rotation during either dorsiflexion or plantar flexion was determined using geometric bone models and talocrural joint kinematics data. The closest contact area in the talus shifted anteromedially during ankle dorsiflexion-internal rotation, whereas it shifted posteromedially during ankle plantar flexion-internal rotation. The closest contact area in FAI joints was significantly more medial than that in healthy joints during maximum ankle internal rotation and was associated with excessive talocrural internal rotation or inversion. This study demonstrated abnormal talocrural kinematics and contact mechanics in FAI subjects. Such abnormal kinematics may contribute to abnormal contact mechanics and may increase cartilage stress in FAI joints. Therapeutic, Level IV: cross-sectional case-control study. © 2015 The Author(s).

  6. 14 CFR 29.361 - Engine torque.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1) The...

  7. 14 CFR 29.361 - Engine torque.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1) The...

  8. 14 CFR 29.361 - Engine torque.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1) The...

  9. 14 CFR 29.361 - Engine torque.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1) The...

  10. 14 CFR 29.361 - Engine torque.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1) The...

  11. Force, Torque and Stiffness: Interactions in Perceptual Discrimination

    PubMed Central

    Wu, Bing; Klatzky, Roberta L.; Hollis, Ralph L.

    2011-01-01

    Three experiments investigated whether force and torque cues interact in haptic discrimination of force, torque and stiffness, and if so, how. The statistical relation between force and torque was manipulated across four experimental conditions: Either one type of cue varied while the other was constant, or both varied so as to be positively correlated, negatively correlated, or uncorrelated. Experiment 1 showed that the subjects’ ability to discriminate force was improved by positively correlated torque but impaired with uncorrelated torque, as compared to the constant torque condition. Corresponding effects were found in Experiment 2 for the influence of force on torque discrimination. These findings indicate that force and torque are integrated in perception, rather than being processed as separate dimensions. A further experiment demonstrated facilitation of stiffness discrimination by correlated force and torque, whether the correlation was positive or negative. The findings suggest new means of augmenting haptic feedback to facilitate perception of the properties of soft objects. PMID:21359137

  12. In-line rotating capacitive torque sensor

    DOEpatents

    Kronberg, J.W.

    1991-09-10

    Disclosed are a method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources. 18 figures.

  13. Gravitational and Dynamic Components of Muscle Torque Underlie Tonic and Phasic Muscle Activity during Goal-Directed Reaching.

    PubMed

    Olesh, Erienne V; Pollard, Bradley S; Gritsenko, Valeriya

    2017-01-01

    Human reaching movements require complex muscle activations to produce the forces necessary to move the limb in a controlled manner. How gravity and the complex kinetic properties of the limb contribute to the generation of the muscle activation pattern by the central nervous system (CNS) is a long-standing and controversial question in neuroscience. To tackle this issue, muscle activity is often subdivided into static and phasic components. The former corresponds to posture maintenance and transitions between postures. The latter corresponds to active movement production and the compensation for the kinetic properties of the limb. In the present study, we improved the methodology for this subdivision of muscle activity into static and phasic components by relating them to joint torques. Ten healthy subjects pointed in virtual reality to visual targets arranged to create a standard center-out reaching task in three dimensions. Muscle activity and motion capture data were synchronously collected during the movements. The motion capture data were used to calculate postural and dynamic components of active muscle torques using a dynamic model of the arm with 5 degrees of freedom. Principal Component Analysis (PCA) was then applied to muscle activity and the torque components, separately, to reduce the dimensionality of the data. Muscle activity was also reconstructed from gravitational and dynamic torque components. Results show that the postural and dynamic components of muscle torque represent a significant amount of variance in muscle activity. This method could be used to define static and phasic components of muscle activity using muscle torques.

  14. Gravitational and Dynamic Components of Muscle Torque Underlie Tonic and Phasic Muscle Activity during Goal-Directed Reaching

    PubMed Central

    Olesh, Erienne V.; Pollard, Bradley S.; Gritsenko, Valeriya

    2017-01-01

    Human reaching movements require complex muscle activations to produce the forces necessary to move the limb in a controlled manner. How gravity and the complex kinetic properties of the limb contribute to the generation of the muscle activation pattern by the central nervous system (CNS) is a long-standing and controversial question in neuroscience. To tackle this issue, muscle activity is often subdivided into static and phasic components. The former corresponds to posture maintenance and transitions between postures. The latter corresponds to active movement production and the compensation for the kinetic properties of the limb. In the present study, we improved the methodology for this subdivision of muscle activity into static and phasic components by relating them to joint torques. Ten healthy subjects pointed in virtual reality to visual targets arranged to create a standard center-out reaching task in three dimensions. Muscle activity and motion capture data were synchronously collected during the movements. The motion capture data were used to calculate postural and dynamic components of active muscle torques using a dynamic model of the arm with 5 degrees of freedom. Principal Component Analysis (PCA) was then applied to muscle activity and the torque components, separately, to reduce the dimensionality of the data. Muscle activity was also reconstructed from gravitational and dynamic torque components. Results show that the postural and dynamic components of muscle torque represent a significant amount of variance in muscle activity. This method could be used to define static and phasic components of muscle activity using muscle torques. PMID:29018339

  15. The Spin Torque Lego - from spin torque nano-devices to advanced computing architectures

    NASA Astrophysics Data System (ADS)

    Grollier, Julie

    2013-03-01

    Spin transfer torque (STT), predicted in 1996, and first observed around 2000, brought spintronic devices to the realm of active elements. A whole class of new devices, based on the combined effects of STT for writing and Giant Magneto-Resistance or Tunnel Magneto-Resistance for reading has emerged. The second generation of MRAMs, based on spin torque writing : the STT-RAM, is under industrial development and should be out on the market in three years. But spin torque devices are not limited to binary memories. We will rapidly present how the spin torque effect also allows to implement non-linear nano-oscillators, spin-wave emitters, controlled stochastic devices and microwave nano-detectors. What is extremely interesting is that all these functionalities can be obtained using the same materials, the exact same stack, simply by changing the device geometry and its bias conditions. So these different devices can be seen as Lego bricks, each brick with its own functionality. During this talk, I will show how spin torque can be engineered to build new bricks, such as the Spintronic Memristor, an artificial magnetic nano-synapse. I will then give hints on how to assemble these bricks in order to build novel types of computing architectures, with a special focus on neuromorphic circuits. Financial support by the European Research Council Starting Grant NanoBrain (ERC 2010 Stg 259068) is acknowledged.

  16. A Subspace Approach to the Structural Decomposition and Identification of Ankle Joint Dynamic Stiffness.

    PubMed

    Jalaleddini, Kian; Tehrani, Ehsan Sobhani; Kearney, Robert E

    2017-06-01

    The purpose of this paper is to present a structural decomposition subspace (SDSS) method for decomposition of the joint torque to intrinsic, reflexive, and voluntary torques and identification of joint dynamic stiffness. First, it formulates a novel state-space representation for the joint dynamic stiffness modeled by a parallel-cascade structure with a concise parameter set that provides a direct link between the state-space representation matrices and the parallel-cascade parameters. Second, it presents a subspace method for the identification of the new state-space model that involves two steps: 1) the decomposition of the intrinsic and reflex pathways and 2) the identification of an impulse response model of the intrinsic pathway and a Hammerstein model of the reflex pathway. Extensive simulation studies demonstrate that SDSS has significant performance advantages over some other methods. Thus, SDSS was more robust under high noise conditions, converging where others failed; it was more accurate, giving estimates with lower bias and random errors. The method also worked well in practice and yielded high-quality estimates of intrinsic and reflex stiffnesses when applied to experimental data at three muscle activation levels. The simulation and experimental results demonstrate that SDSS accurately decomposes the intrinsic and reflex torques and provides accurate estimates of physiologically meaningful parameters. SDSS will be a valuable tool for studying joint stiffness under functionally important conditions. It has important clinical implications for the diagnosis, assessment, objective quantification, and monitoring of neuromuscular diseases that change the muscle tone.

  17. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  18. History dependence of the EMG-torque relationship.

    PubMed

    Paquin, James; Power, Geoffrey A

    2018-05-28

    The influence of active lengthening (residual force enhancement: RFE) and shortening (force depression: FD) on the electromyography (EMG)-torque relationship was investigated by matching torque and activation at 20%, 40%, 60%, 80% and 100% maximal voluntary contraction (MVC). Sixteen males performed lengthening and shortening contractions of the dorsiflexors over 25° into an isometric steady-state. There was 5% greater torque, with no change in agonist EMG during the RFE condition as compared to the isometric condition. Sub-maximally, in the force enhanced state, there was less agonist EMG during the torque clamp at all intensities relative to isometric, and greater torque during the activation clamps relative to isometric was observed across all intensities except 20% MVC. During the FD state compared to isometric, there was less torque produced during MVC (∼15%) with no change in agonist EMG. Sub-maximally, in the FD state, there was greater agonist EMG during the torque clamp and less torque during the activation clamp relative to the isometric condition across all intensities. The EMG-torque relationship was bilinear for all contraction types but was shifted to the left and right for FD and RFE, respectively as compared with isometric, indicating altered neuromuscular activation strategies in the history-dependent states of RFE and FD. Copyright © 2018. Published by Elsevier Ltd.

  19. EMG-Torque Dynamics Change With Contraction Bandwidth.

    PubMed

    Golkar, Mahsa A; Jalaleddini, Kian; Kearney, Robert E

    2018-04-01

    An accurate model for ElectroMyoGram (EMG)-torque dynamics has many uses. One of its applications which has gained high attention among researchers is its use, in estimating the muscle contraction level for the efficient control of prosthesis. In this paper, the dynamic relationship between the surface EMG and torque during isometric contractions at the human ankle was studied using system identification techniques. Subjects voluntarily modulated their ankle torque in dorsiflexion direction, by activating their tibialis anterior muscle, while tracking a pseudo-random binary sequence in a torque matching task. The effects of contraction bandwidth, described by torque spectrum, on EMG-torque dynamics were evaluated by varying the visual command switching time. Nonparametric impulse response functions (IRF) were estimated between the processed surface EMG and torque. It was demonstrated that: 1) at low contraction bandwidths, the identified IRFs had unphysiological anticipatory (i.e., non-causal) components, whose amplitude decreased as the contraction bandwidth increased. We hypothesized that this non-causal behavior arose, because the EMG input contained a component due to feedback from the output torque, i.e., it was recorded from within a closed-loop. Vision was not the feedback source since the non-causal behavior persisted when visual feedback was removed. Repeating the identification using a nonparametric closed-loop identification algorithm yielded causal IRFs at all bandwidths, supporting this hypothesis. 2) EMG-torque dynamics became faster and the bandwidth of system increased as contraction modulation rate increased. Thus, accurate prediction of torque from EMG signals must take into account the contraction bandwidth sensitivity of this system.

  20. Development Requirements for Spacesuit Elbow Joint

    NASA Technical Reports Server (NTRS)

    Peters, Benjamin

    2017-01-01

    Functional Requirements for spacesuit elbow joint:1) The system is a conformal, single-axis spacesuit pressurized joint that encloses the elbow joint of the suited user and uses a defined interface to connect to the suit systems on either side of the joint.2) The system shall be designed to bear the loads incurred from the internal pressure of the system, as well as the expected loads induced by the user while enabling the user move the joint through the required range of motion. The joint torque of the system experienced by the user shall remain at or below the required specification for the entire range of motion.3) The design shall be constructed, at a minimum, as a two-layer system. The internal, air-tight layer shall be referred to as the bladder, and the layer on the unpressurized side of the bladder shall be referred to as the restraint. The design of the system may include additional features or layers, such as axial webbing, to meet the overall requirements of the design.

  1. Early, asymptomatic stage of degenerative joint disease in canine hip joints.

    PubMed

    Lust, G; Summers, B A

    1981-11-01

    The early stages of degenerative joint disease were investigated in coxofemoral joints from dogs with a hereditary predisposition to hip dysplasia. Alterations observed included mild nonsuppurative synovitis, increased volume of both synovial fluid and the ligamentum teres, and focal degenerative articular cartilage lesions. On radiologic examination, subluxation of the femoral head was seen, but only in the most severely affected joints. Synovial inflammation with increased synovial fluid and ligament volumes were indicators of early degenerative joint disease in dogs. These changes seemed to coincide with, or perhaps to precede, microscopic evidence for articular cartilage degeneration and occurred before radiologic abnormalities were detected.

  2. Advances towards high performance low-torque qmin > 2 operations with large-radius ITB on DIII-D

    NASA Astrophysics Data System (ADS)

    Xu, G. S.; Solomon, W. M.; Garofalo, A. M.; Ferron, J. R.; Hyatt, A. W.; Wang, Q.; Yan, Z.; McKee, G. R.; Holcomb, C. T.; EAST Team

    2015-11-01

    A joint DIII-D/EAST experiment was performed aimed at extending a fully noninductive scenario with high βP and qmin > 2 to inductive operation at lower torque and higher Ip (0.6 --> 0.8 MA) for better performance. Extremely high confinement was obtained, i.e., H98y2 ~ 2.1 at βN ~ 3, which was associated with a strong ITB at large minor radius (ρ ~ 0.7). Alfvén Eigenmodes and broadband turbulence were significantly suppressed in the core, and fast-ion confinement was improved. ITB collapses at 0.8 MA were induced by ELM-triggered n = 1 MHD modes at the ITB location, which is different from the ``relaxation oscillations'' associated with the steady-state plasmas at lower current (0.6 MA). This successful joint experiment may open up a new avenue towards high performance low-torque qmin > 2 plasmas with large-radius ITBs, which will be demonstrated on EAST in the near future. Work supported by NMCFSP 2015GB102000, 2015GB110001 and the US DOE under DE-AC02-09CH11466, DE-FC02-04ER54698, DE-FG02-89ER53296 and DE-AC52-07NA27344.

  3. Improvement of the limit torque for the torque limiter with magnetic rheological fluid

    NASA Astrophysics Data System (ADS)

    Umehara, Noritsugu; Kita, Shizuo

    Robots are coming to support and help our life. The robots that work together with human need to avoid sever hitting and holding that force is more than the adequate and comfortable range. In order to keep the force to the safe level in the robot arms, t he limit torque should be controlled on the basis of the case the robot used. Magnetic rheological fluids were tried to be used for the clutch that transmission torque can be controlled continuously because MR fluids can be controlled its viscosity by magnetic field. However those clutch devices were too heavy and large to use for the robot arms. Therefore we tried to increase the sensitivity of magnetic field to viscosity of MR fluids. By applying rough surface for the mating surface, sensitivity of the magnetic field to the shearing torque increase drastically in the case of co-axial torque meter. On the other hand, the changing of the size of the orifice is effective to increase the sensitivity of the magnetic field on the flow resistance in the case of the orifice type equipment.

  4. Linear Parameter Varying Identification of Dynamic Joint Stiffness during Time-Varying Voluntary Contractions

    PubMed Central

    Golkar, Mahsa A.; Sobhani Tehrani, Ehsan; Kearney, Robert E.

    2017-01-01

    Dynamic joint stiffness is a dynamic, nonlinear relationship between the position of a joint and the torque acting about it, which can be used to describe the biomechanics of the joint and associated limb(s). This paper models and quantifies changes in ankle dynamic stiffness and its individual elements, intrinsic and reflex stiffness, in healthy human subjects during isometric, time-varying (TV) contractions of the ankle plantarflexor muscles. A subspace, linear parameter varying, parallel-cascade (LPV-PC) algorithm was used to identify the model from measured input position perturbations and output torque data using voluntary torque as the LPV scheduling variable (SV). Monte-Carlo simulations demonstrated that the algorithm is accurate, precise, and robust to colored measurement noise. The algorithm was then used to examine stiffness changes associated with TV isometric contractions. The SV was estimated from the Soleus EMG using a Hammerstein model of EMG-torque dynamics identified from unperturbed trials. The LPV-PC algorithm identified (i) a non-parametric LPV impulse response function (LPV IRF) for intrinsic stiffness and (ii) a LPV-Hammerstein model for reflex stiffness consisting of a LPV static nonlinearity followed by a time-invariant state-space model of reflex dynamics. The results demonstrated that: (a) intrinsic stiffness, in particular ankle elasticity, increased significantly and monotonically with activation level; (b) the gain of the reflex pathway increased from rest to around 10–20% of subject's MVC and then declined; and (c) the reflex dynamics were second order. These findings suggest that in healthy human ankle, reflex stiffness contributes most at low muscle contraction levels, whereas, intrinsic contributions monotonically increase with activation level. PMID:28579954

  5. Knee-Extension Torque Variability and Subjective Knee Function in Patients with a History of Anterior Cruciate Ligament Reconstruction.

    PubMed

    Goetschius, John; Hart, Joseph M

    2016-01-01

    When returning to physical activity, patients with a history of anterior cruciate ligament reconstruction (ACL-R) often experience limitations in knee-joint function that may be due to chronic impairments in quadriceps motor control. Assessment of knee-extension torque variability may demonstrate underlying impairments in quadriceps motor control in patients with a history of ACL-R. To identify differences in maximal isometric knee-extension torque variability between knees that have undergone ACL-R and healthy knees and to determine the relationship between knee-extension torque variability and self-reported knee function in patients with a history of ACL-R. Descriptive laboratory study. Laboratory. A total of 53 individuals with primary, unilateral ACL-R (age = 23.4 ± 4.9 years, height = 1.7 ± 0.1 m, mass = 74.6 ± 14.8 kg) and 50 individuals with no history of substantial lower extremity injury or surgery who served as controls (age = 23.3 ± 4.4 years, height = 1.7 ± 0.1 m, mass = 67.4 ± 13.2 kg). Torque variability, strength, and central activation ratio (CAR) were calculated from 3-second maximal knee-extension contraction trials (90° of flexion) with a superimposed electrical stimulus. All participants completed the International Knee Documentation Committee (IKDC) Subjective Knee Evaluation Form, and we determined the number of months after surgery. Group differences were assessed using independent-samples t tests. Correlation coefficients were calculated among torque variability, strength, CAR, months after surgery, and IKDC scores. Torque variability, strength, CAR, and months after surgery were regressed on IKDC scores using stepwise, multiple linear regression. Torque variability was greater and strength, CAR, and IKDC scores were lower in the ACL-R group than in the control group (P < .05). Torque variability and strength were correlated with IKDC scores (P < .05). Torque variability, strength, and CAR were correlated with each other (P < .05

  6. Magnetic resonance imaging changes of sacroiliac joints in patients with recent-onset inflammatory back pain: inter-reader reliability and prevalence of abnormalities.

    PubMed

    Heuft-Dorenbosch, Liesbeth; Weijers, René; Landewé, Robert; van der Linden, Sjef; van der Heijde, Désirée

    2006-01-01

    To study the inter-reader reliability of detecting abnormalities of sacroiliac (SI) joints in patients with recent-onset inflammatory back pain by magnetic resonance imaging (MRI), and to study the prevalence of inflammation and structural changes at various sites of the SI joints. Sixty-eight patients with inflammatory back pain (at least four of the five following criteria: symptom onset before age 40, insidious onset, morning stiffness, duration >3 months, improvement with exercise--or three out of five of these plus night pain) were included (38% male; mean age, 34.9 years [standard deviation 10.3]; 46% HLA-B27-positive; mean symptom duration, 18 months), with symptom duration <2 years. A MRI scan of the SI joints was made in the coronal plane with the following sequences: T1-weighted spin echo, short-tau inversion recovery, T2-weighted fast-spin echo with fat saturation, and T1-spin echo with fat saturation after the administration of gadolinium. Both SI joints were scored for inflammation (separately for subchondral bone and bone marrow, joint space, joint capsule, ligaments) as well as for structural changes (erosions, sclerosis, ankylosis), by two observers independently. Agreement between the two readers was analysed by concordance and discordance rates and by kappa statistics. Inflammation was present in 32 SI joints of 22 patients, most frequently located in bone marrow and/or subchondral bone (29 joints in 21 patients). Readers agreed on the presence of inflammation in 85% of the cases in the right SI joint and in 78% of the cases in the left SI joint. Structural changes on MRI were present in 11 patients. Ten of these 11 patients also showed signs of inflammation. Agreement on the presence or absence of inflammation and structural changes of SI joints by MRI was acceptable, and was sufficiently high to be useful in ascertaining inflammatory and structural changes due to sacroiliitis. About one-third of patients with recent-onset inflammatory back pain

  7. Ironless armature torque motor

    NASA Technical Reports Server (NTRS)

    Fisher, R. L.

    1972-01-01

    Four iron-less armature torque motors, four Hall device position sensor assemblies, and two test fixtures were fabricated. The design approach utilized samarium cobalt permanent magnets, a large airgap, and a three-phase winding in a stationary ironless armature. Hall devices were employed to sense rotor position. An ironless armature torque motor having an outer diameter of 4.25 inches was developed to produce a torque constant of 65 ounce-inches per ampere with a resistance of 20.5 ohms. The total weight, including structural elements, was 1.58 pounds. Test results indicated that all specifications were met except for generated voltage waveform. It is recommended that investigations be made concerning the generated voltage waveform to determine if it may be improved.

  8. Viscous Torques on a Levitating Body

    NASA Technical Reports Server (NTRS)

    Busse, F.; Wang, T.

    1982-01-01

    New analytical expressions for viscous torque generated by orthogonal sound waves agree well with experiment. It is possible to calculate torque on an object levitated in a fluid. Levitation has applications in containerless materials processing, coating, and fabrication of small precision parts. Sound waves cause fluid particles to move in elliptical paths and induce azimuthal circulation in boundary layer, giving rise to time-averaged torque.

  9. Torque and Learning and Behavior Problems in Children.

    ERIC Educational Resources Information Center

    Zendel, Ivan H.; Pihl, R. O.

    1980-01-01

    Findings indicate minimal differences, on diagnostic tests, between children who exhibited torque and those who did not. Torque is defined as the circling of any X in a clockwise direction. Torque is not associated with learning problems in school. Diagnostic utility of torque should be carefully considered. (Author)

  10. Electromagnetic Torque in Tokamaks with Toroidal Asymmetries

    NASA Astrophysics Data System (ADS)

    Logan, Nikolas Christopher

    Toroidal rotation and rotation shear strongly influences stability and confinement in tokamaks. Breaking of the toroidal symmetry by fields orders of magnitude smaller than the axisymmetric field can, however, produce electromagnetic torques that significantly affect the plasma rotation, stability and confinement. These electromagnetic torques are the study of this thesis. There are two typical types of electromagnetic torques in tokamaks: 1) "resonant torques" for which a plasma current defined by a single toroidal and single poloidal harmonic interact with external currents and 2) "nonresonant torques" for which the global plasma response to nonaxisymmetric fields is phase shifted by kinetic effects that drive the rotation towards a neoclassical offset. This work describes the diagnostics and analysis necessary to evaluate the torque by measuring the rate of momentum transfer per unit area in the vacuum region between the plasma and external currents using localized magnetic sensors to measure the Maxwell stress. These measurements provide model independent quantification of both the resonant and nonresonant electromagnetic torques, enabling direct verification of theoretical models. Measured values of the nonresonant torque are shown to agree well with the perturbed equilibrium nonambipolar transport (PENT) code calculation of torque from cross field transport in nonaxisymmetric equilibria. A combined neoclassical toroidal viscosity (NTV) theory, valid across a wide range of kinetic regimes, is fully implemented for the first time in general aspect ratio and shaped plasmas. The code captures pitch angle resonances, reproducing previously inaccessible collisionality limits in the model. The complete treatment of the model enables benchmarking to the hybrid kinetic MHD stability codes MARS-K and MISK, confirming the energy-torque equivalency principle in perturbed equilibria. Experimental validations of PENT results confirm the torque applied by nonaxisymmetric

  11. Muscle shear elastic modulus is linearly related to muscle torque over the entire range of isometric contraction intensity.

    PubMed

    Ateş, Filiz; Hug, François; Bouillard, Killian; Jubeau, Marc; Frappart, Thomas; Couade, Mathieu; Bercoff, Jeremy; Nordez, Antoine

    2015-08-01

    Muscle shear elastic modulus is linearly related to muscle torque during low-level contractions (<60% of Maximal Voluntary Contraction, MVC). This measurement can therefore be used to estimate changes in individual muscle force. However, it is not known if this relationship remains valid for higher intensities. The aim of this study was to determine: (i) the relationship between muscle shear elastic modulus and muscle torque over the entire range of isometric contraction and (ii) the influence of the size of the region of interest (ROI) used to average the shear modulus value. Ten healthy males performed two incremental isometric little finger abductions. The joint torque produced by Abductor Digiti Minimi was considered as an index of muscle torque and elastic modulus. A high coefficient of determination (R(2)) (range: 0.86-0.98) indicated that the relationship between elastic modulus and torque can be accurately modeled by a linear regression over the entire range (0% to 100% of MVC). The changes in shear elastic modulus as a function of torque were highly repeatable. Lower R(2) values (0.89±0.13 for 1/16 of ROI) and significantly increased absolute errors were observed when the shear elastic modulus was averaged over smaller ROI, half, 1/4 and 1/16 of the full ROI) than the full ROI (mean size: 1.18±0.24cm(2)). It suggests that the ROI should be as large as possible for accurate measurement of muscle shear modulus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Analysis of Knee Joint Line Obliquity after High Tibial Osteotomy.

    PubMed

    Oh, Kwang-Jun; Ko, Young Bong; Bae, Ji Hoon; Yoon, Suk Tae; Kim, Jae Gyoon

    2016-11-01

    The aim of this study was to evaluate which lower extremity alignment (knee and ankle joint) parameters affect knee joint line obliquity (KJLO) in the coronal plane after open wedge high tibial osteotomy (OWHTO). Overall, 69 knees of patients that underwent OWHTO were evaluated using radiographs obtained preoperatively and from 6 weeks to 3 months postoperatively. We measured multiple parameters of knee and ankle joint alignment (hip-knee-ankle angle [HKA], joint line height [JLH], posterior tibial slope [PS], femoral condyle-tibial plateau angle [FCTP], medial proximal tibial angle [MPTA], mechanical lateral distal femoral angle [mLDFA], KJLO, talar tilt angle [TTA], ankle joint obliquity [AJO], and the lateral distal tibial ground surface angle [LDTGA]; preoperative [-pre], postoperative [-post], and the difference between -pre and -post values [-Δ]). We categorized patients into two groups according to the KJLO-post value (the normal group [within ± 4 degrees, 56 knees] and the abnormal group [greater than ± 4 degrees, 13 knees]), and compared their -pre parameters. Multiple logistic regression analysis was used to examine the contribution of the -pre parameters to abnormal KJLO-post. The mean HKA-Δ (-9.4 ± 4.7 degrees) was larger than the mean KJLO-Δ (-2.1 ± 3.2 degrees). The knee joint alignment parameters (the HKA-pre, FCTP-pre) differed significantly between the two groups ( p  < 0.05). In addition, the HKA-pre (odds ratio [OR] = 1.27, p  = 0.006) and FCTP-pre (OR = 2.13, p  = 0.006) were significant predictors of abnormal KJLO-post. However, -pre ankle joint parameters (TTA, AJO, and LDTGA) did not differ significantly between the two groups and were not significantly associated with the abnormal KJLO-post. The -pre knee joint alignment and knee joint convergence angle evaluated by HKA-pre and FCTP-pre angle, respectively, were significant predictors of abnormal KJLO after OWHTO. However, -pre ankle joint

  13. Screw joint stability after the application of retorque in implant-supported dentures under simulated masticatory conditions.

    PubMed

    Farina, Ana Paula; Spazzin, Aloísio Oro; Consani, Rafael Leonardo Xediek; Mesquita, Marcelo Ferraz

    2014-06-01

    Screws can loosen through mechanisms that have not been clearly established. The purpose of this study was to evaluate the influence of the tightening technique (the application of torque and retorque on the joint stability of titanium and gold prosthetic screws) in implant-supported dentures under different fit levels after 1 year of simulated masticatory function by means of mechanical cycling. Ten mandibular implant-supported dentures were fabricated, and 20 cast models were prepared by using the dentures to create 2 fit levels: passive fit and created misfit. The tightening protocol was evaluated according to 4 distinct profiles: without retorque plus titanium screws, without retorque plus gold screws, retorque plus titanium screws, and retorque plus gold screws. In the retorque application, the screws were tightened to 10 Ncm and retightened to 10 Ncm after 10 minutes. The screw joint stability after 1 year of simulated clinical function was measured with a digital torque meter. Data were analyzed statistically by 2-way ANOVA and Tukey honestly significant difference (HSD) post hoc tests (α=.05). The factors of fit level and tightening technique as well as the interaction between the factors, were statistically significant. The misfit decreases the loosening torque. The retorque application increased joint stability independent of fit level or screw material, which suggests that this procedure should be performed routinely during the tightening of these devices. All tightening techniques revealed reduced loosening torque values that were significantly lower in misfit dentures than in passive fit dentures. However, the retorque application significantly increased the loosening torque when titanium and gold screws were used. Therefore, this procedure should be performed routinely during screw tightening. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. 40 CFR 1066.240 - Torque transducer verification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.240 Torque transducer verification. Verify torque-measurement systems by performing the verifications described in §§ 1066.270 and... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Torque transducer verification. 1066...

  15. Power tong torque control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buck, D.A.; James, R.N.

    1987-10-20

    Torque controlled powered pipe tongs, are described the apparatus comprises: (a) a power tong powered by a fluid motor; (b) a fluid power source connected to the motor; (c) a force conducting element attached to the power tong, situated to oppose reaction torque from the tongs when torque is applied to pipe; (d) force sensing means operatively associated with the force conducting element situated to sense at least part of the force experienced by the force conducting element, arranged to produce a pressure signal proportional to force sensed; and (e) a fluid by-pass valve, adjustably biased toward a closed position,more » responsive to the signal to tend to move toward an open position, the by-pass valve connected between the fluid power source and the motor.« less

  16. Knudsen torque on heated micro beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qi; Liang, Tengfei; Ye, Wenjing

    Thermally induced mechanical loading has been shown to have significant effects on micro/nano objects immersed in a gas with a non-uniform temperature field. While the majority of existing studies and related applications focus on forces, we investigate the torque, and thus the rotational motion, produced by such a mechanism. Using the asymptotic analysis in the near continuum regime, the Knudsen torque acting on an asymmetrically located uniformly heated microbeam in a cold enclosure is investigated. The existence of a non-zero net torque is demonstrated. In addition, it has been found that by manipulating the system configuration, the rotational direction ofmore » the torque can be changed. Two types of rotational motion of the microbeam have been identified: the pendulum motion of a rectangular beam, and the unidirectional rotation of a cylindrical beam. A rotational frequency of 4 rpm can be achieved for the cylindrical beam with a diameter of 3μm at Kn = 0.005. Illustrated by the simulations using the direct simulation of Monte Carlo, the Knudsen torque can be much increased in the transition regime, demonstrating the potential of Knudsen torque serving as a rotation engine for micro/nano objects.« less

  17. Fourth-order acoustic torque in intense sound fields

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Kanber, H.; Olli, E. E.

    1978-01-01

    The observation of a fourth-order acoustic torque in intense sound fields is reported. The torque was determined by measuring the acoustically induced angular deflection of a polished cylinder suspended by a torsion fiber. This torque was measured in a sound field of amplitude greater than that in which first-order acoustic torque has been observed.

  18. Torque equilibrium attitudes for the Space Station

    NASA Technical Reports Server (NTRS)

    Thompson, Roger C.

    1993-01-01

    All spacecraft orbiting in a low earth orbit (LEO) experience external torques due to environmental effects. Examples of these torques include those induced by aerodynamic, gravity-gradient, and solar forces. It is the gravity-gradient and aerodynamic torques that produce the greatest disturbances to the attitude of a spacecraft in LEO, and large asymmetric spacecraft, such as the space station, are affected to a greater degree because the magnitude of the torques will, in general, be larger in proportion to the moments of inertia. If left unchecked, these torques would cause the attitude of the space station to oscillate in a complex manner and the resulting motion would destroy the micro-gravity environment as well as prohibit the orbiter from docking. The application of control torques will maintain the proper attitude, but the controllers have limited momentum capacity. When any controller reaches its limit, propellant must then be used while the device is reset to a zero or negatively-biased momentum state. Consequently, the rate at which momentum is accumulated is a significant factor in the amount of propellant used and the frequency of resupply necessary to operate the station. A torque profile in which the area curve for a positive torque is not equal to the area under the curve for a negative torque is 'biased,' and the consequent momentum build-up about that axis is defined as secular momentum because it continues to grow with time. Conversely, when the areas are equal, the momentum is cyclic and bounded. A Torque Equilibrium Attitude (TEA) is thus defined as an attitude at which the external torques 'balance' each other as much as possible, and which will result in lower momentum growth in the controllers. Ideally, the positive and negative external moments experienced by a spacecraft at the TEA would exactly cancel each other out and small cyclic control torques would be required only for precise attitude control. Over time, the only momentum build

  19. Loss of knee extensor torque complexity during fatiguing isometric muscle contractions occurs exclusively above the critical torque.

    PubMed

    Pethick, Jamie; Winter, Samantha L; Burnley, Mark

    2016-06-01

    The complexity of knee extensor torque time series decreases during fatiguing isometric muscle contractions. We hypothesized that because of peripheral fatigue, this loss of torque complexity would occur exclusively during contractions above the critical torque (CT). Nine healthy participants performed isometric knee extension exercise (6 s of contraction, 4 s of rest) on six occasions for 30 min or to task failure, whichever occurred sooner. Four trials were performed above CT (trials S1-S4, S1 being the lowest intensity), and two were performed below CT (at 50% and 90% of CT). Global, central, and peripheral fatigue were quantified using maximal voluntary contractions (MVCs) with femoral nerve stimulation. The complexity of torque output was determined using approximate entropy (ApEn) and the detrended fluctuation analysis-α scaling exponent (DFA-α). The MVC torque was reduced in trials below CT [by 19 ± 4% (means ± SE) in 90%CT], but complexity did not decrease [ApEn for 90%CT: from 0.82 ± 0.03 to 0.75 ± 0.06, 95% paired-samples confidence intervals (CIs), 95% CI = -0.23, 0.10; DFA-α from 1.36 ± 0.01 to 1.32 ± 0.03, 95% CI -0.12, 0.04]. Above CT, substantial reductions in MVC torque occurred (of 49 ± 8% in S1), and torque complexity was reduced (ApEn for S1: from 0.67 ± 0.06 to 0.14 ± 0.01, 95% CI = -0.72, -0.33; DFA-α from 1.38 ± 0.03 to 1.58 ± 0.01, 95% CI 0.12, 0.29). Thus, in these experiments, the fatigue-induced loss of torque complexity occurred exclusively during contractions performed above the CT. Copyright © 2016 the American Physiological Society.

  20. Torque and mechanomyogram relationships during electrically-evoked isometric quadriceps contractions in persons with spinal cord injury.

    PubMed

    Ibitoye, Morufu Olusola; Hamzaid, Nur Azah; Hasnan, Nazirah; Abdul Wahab, Ahmad Khairi; Islam, Md Anamul; Kean, Victor S P; Davis, Glen M

    2016-08-01

    The interaction between muscle contractions and joint loading produces torques necessary for movements during activities of daily living. However, during neuromuscular electrical stimulation (NMES)-evoked contractions in persons with spinal cord injury (SCI), a simple and reliable proxy of torque at the muscle level has been minimally investigated. Thus, the purpose of this study was to investigate the relationships between muscle mechanomyographic (MMG) characteristics and NMES-evoked isometric quadriceps torques in persons with motor complete SCI. Six SCI participants with lesion levels below C4 [(mean (SD) age, 39.2 (7.9) year; stature, 1.71 (0.05) m; and body mass, 69.3 (12.9) kg)] performed randomly ordered NMES-evoked isometric leg muscle contractions at 30°, 60° and 90° knee flexion angles on an isokinetic dynamometer. MMG signals were detected by an accelerometer-based vibromyographic sensor placed over the belly of rectus femoris muscle. The relationship between MMG root mean square (MMG-RMS) and NMES-evoked torque revealed a very high association (R(2)=0.91 at 30°; R(2)=0.98 at 60°; and R(2)=0.97 at 90° knee angles; P<0.001). MMG peak-to-peak (MMG-PTP) and stimulation intensity were less well related (R(2)=0.63 at 30°; R(2)=0.67 at 60°; and R(2)=0.45 at 90° knee angles), although were still significantly associated (P≤0.006). Test-retest interclass correlation coefficients (ICC) for the dependent variables ranged from 0.82 to 0.97 for NMES-evoked torque, between 0.65 and 0.79 for MMG-RMS, and from 0.67 to 0.73 for MMG-PTP. Their standard error of measurements (SEM) ranged between 10.1% and 31.6% (of mean values) for torque, MMG-RMS and MMG-PTP. The MMG peak frequency (MMG-PF) of 30Hz approximated the stimulation frequency, indicating NMES-evoked motor unit firing rate. The results demonstrated knee angle differences in the MMG-RMS versus NMES-isometric torque relationship, but a similar torque related pattern for MMG-PF. These findings

  1. Computerized Torque Control for Large dc Motors

    NASA Technical Reports Server (NTRS)

    Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.

    1987-01-01

    Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.

  2. [Biomechanical testing of the new torque-segmented arch (TSA)].

    PubMed

    Wichelhaus, A; Sander, F G

    1995-07-01

    New torque-segmented arch wires are presented which consist of a superelastic anterior component with 30 degrees or 45 degrees torque and which are connected to 2 steel lateral components by means of a crimped connector. When using such torque-segmented arch wires, the crimped connector rests mesially to the canine bracket and the lateral components exhibit a torque of 0 degree. The use of the torque-segmented arch wires requires the practitioner to adjust the anterior tooth segment, to bend in first order bends in the steel lateral portion as well as to bend in a sweep to avoid an anterior tooth extrusion, and, if desired, to bend in third order bends to influence premolars and molars. In some cases the simultaneous application of palatal arches can become necessary, because each torque transfer results in a transversal enlargement in the molar area. Compared to conventional steel wires with dimensions of 0.016 x 0.022 in which an anterior tooth torque is bent, the torque segmented arch wires exhibit considerably fewer side effects, but there is a larger distally rotating moment for the molars. 1. When applying torque-segmented arch wires, the extrusive force transferred to the anterior teeth is considerably smaller. 2. The protrusive force acting on the anterior teeth is also considerably smaller, which results in a reduced demand being placed on the anchorage of the molars. 3. The torque transfer to the incisors rests in a quite moderate range, even in the case of a 50 degrees torque. For this reason, the practitioner can expect diminished or no resorptions at all compared to the aforementioned steel wires. 4. The Martensite plateau of the torque-segmented arch wires exhibit constant moments in large areas so that such arch wires can be used in almost every anterior tooth position. 5. The segmented wires presented here can be applied not only in the case of the standard edgewise technique but also in each case of the straight-wire technique. 6. These new arch

  3. A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton.

    PubMed

    Young, Aaron J; Gannon, Hannah; Ferris, Daniel P

    2017-01-01

    Despite a large increase in robotic exoskeleton research, there are few studies that have examined human performance with different control strategies on the same exoskeleton device. Direct comparison studies are needed to determine how users respond to different types of control. The purpose of this study was to compare user performance using a robotic hip exoskeleton with two different controllers: a controller that targeted a biological hip torque profile and a proportional myoelectric controller. We tested both control approaches on 10 able-bodied subjects using a pneumatically powered hip exoskeleton. The state machine controller targeted a biological hip torque profile. The myoelectric controller used electromyography (EMG) of lower limb muscles to produce a proportional control signal for the hip exoskeleton. Each subject performed two 30-min exoskeleton walking trials (1.0 m/s) using each controller and a 10-min trial with the exoskeleton unpowered. During each trial, we measured subjects' metabolic cost of walking, lower limb EMG profiles, and joint kinematics and kinetics (torques and powers) using a force treadmill and motion capture. Compared to unassisted walking in the exoskeleton, myoelectric control significantly reduced metabolic cost by 13% ( p  = 0.005) and biological hip torque control reduced metabolic cost by 7% ( p  = 0.261). Subjects reduced muscle activity relative to the unpowered condition for a greater number of lower limb muscles using myoelectric control compared to the biological hip torque control. More subjects subjectively preferred the myoelectric controller to the biological hip torque control. Myoelectric control had more advantages (metabolic cost and muscle activity reduction) compared to a controller that targeted a biological torque profile for walking with a robotic hip exoskeleton. However, these results were obtained with a single exoskeleton device with specific control configurations while level walking at a

  4. Special-Purpose High-Torque Permanent-Magnet Motors

    NASA Technical Reports Server (NTRS)

    Doane, George B., III

    1995-01-01

    Permanent-magnet brushless motors that must provide high commanded torques and satisfy unusual heat-removal requirement are developed. Intended for use as thrust-vector-control actuators in large rocket engines. Techniques and concepts used to design improved motors for special terrestrial applications. Conceptual motor design calls for use of rotor containing latest high-energy-product rare-earth permanent magnets so that motor produces required torque while drawing smallest possible currents from power supply. Torque generated by electromagnetic interaction between stator and permanent magnets in rotor when associated electronic circuits applied appropriately temporally and spatially phased currents to stator windings. Phase relationships needed to produce commanded torque computed in response to torque command and to electronically sensed angular position of rotor relative to stator.

  5. Heat-driven spin torques in antiferromagnets

    NASA Astrophysics Data System (ADS)

    Białek, Marcin; Bréchet, Sylvain; Ansermet, Jean-Philippe

    2018-04-01

    Heat-driven magnetization damping, which is a linear function of a temperature gradient, is predicted in antiferromagnets by considering the sublattice dynamics subjected to a heat-driven spin torque. This points to the possibility of achieving spin torque oscillator behavior. The model is based on the magnetic Seebeck effect acting on sublattices which are exchange coupled. The heat-driven spin torque is estimated and the feasibility of detecting this effect is discussed.

  6. Turbine Windage Torque Tests.

    DTIC Science & Technology

    1981-01-01

    chamber, with a 0-60,000 RPM, 300 HP dynamometer, was selected as the test facility. A rotary transformer ( brushless ) torque sensor, using air /oil... brushless ) of 100 and 500 in-lb torque ranges were selected from Lebow Associates, Inc. of Troy, Michigan. Special air / oil mist lubrication for the...period August 1979 - October 1980 I Approved for public release; distribution unlimited. _ DTIC AERO PROPULSION LABORATORY AIR FORCE WRIGHT AERONAUTICAL

  7. Torque-Summing Brushless Motor

    NASA Technical Reports Server (NTRS)

    Vaidya, J. G.

    1986-01-01

    Torque channels function cooperatively but electrically independent for reliability. Brushless, electronically-commutated dc motor sums electromagnetic torques on four channels and applies them to single shaft. Motor operates with any combination of channels and continues if one or more of channels fail electrically. Motor employs single stator and rotor and mechanically simple; however, each of channels electrically isolated from other so that failure of one does not adversely affect others.

  8. Design of a simple, lightweight, passive-elastic ankle exoskeleton supporting ankle joint stiffness

    NASA Astrophysics Data System (ADS)

    Kim, Seyoung; Son, Youngsu; Choi, Sangkyu; Ham, Sangyong; Park, Cheolhoon

    2015-09-01

    In this study, a passive-elastic ankle exoskeleton (PEAX) with a one-way clutch mechanism was developed and then pilot-tested with vertical jumping to determine whether the PEAX is sufficiently lightweight and comfortable to be used in further biomechanical studies. The PEAX was designed to supplement the function of the Achilles tendon and ligaments as they passively support the ankle torque with their inherent stiffness. The main frame of the PEAX consists of upper and lower parts connected to each other by tension springs (N = 3) and lubricated hinge joints. The upper part has an offset angle of 5° with respect to the vertical line when the springs are in their resting state. Each spring has a slack length of 8 cm and connects the upper part to the tailrod of the lower part in the neutral position. The tailrod freely rotates with low friction but has a limited range of motion due to the stop pin working as a one-way clutch. Because of the one-way clutch system, the tension springs store the elastic energy only due to an ankle dorsiflexion when triggered by the stop pin. This clutch mechanism also has the advantage of preventing any inconvenience during ankle plantarflexion because it does not limit the ankle joint motion during the plantarflexion phase. In pilot jumping tests, all of the subjects reported that the PEAX was comfortable for jumping due to its lightweight (approximately 1 kg) and compact (firmly integrated with shoes) design, and subjects were able to nearly reach their maximum vertical jump heights while wearing the PEAX. During the countermovement jump, elastic energy was stored during dorsiflexion by spring extension and released during plantarflexion by spring restoration, indicating that the passive spring torque (i.e., supportive torque) generated by the ankle exoskeleton partially supported the ankle joint torque throughout the process.

  9. Design of a simple, lightweight, passive-elastic ankle exoskeleton supporting ankle joint stiffness.

    PubMed

    Kim, Seyoung; Son, Youngsu; Choi, Sangkyu; Ham, Sangyong; Park, Cheolhoon

    2015-09-01

    In this study, a passive-elastic ankle exoskeleton (PEAX) with a one-way clutch mechanism was developed and then pilot-tested with vertical jumping to determine whether the PEAX is sufficiently lightweight and comfortable to be used in further biomechanical studies. The PEAX was designed to supplement the function of the Achilles tendon and ligaments as they passively support the ankle torque with their inherent stiffness. The main frame of the PEAX consists of upper and lower parts connected to each other by tension springs (N = 3) and lubricated hinge joints. The upper part has an offset angle of 5° with respect to the vertical line when the springs are in their resting state. Each spring has a slack length of 8 cm and connects the upper part to the tailrod of the lower part in the neutral position. The tailrod freely rotates with low friction but has a limited range of motion due to the stop pin working as a one-way clutch. Because of the one-way clutch system, the tension springs store the elastic energy only due to an ankle dorsiflexion when triggered by the stop pin. This clutch mechanism also has the advantage of preventing any inconvenience during ankle plantarflexion because it does not limit the ankle joint motion during the plantarflexion phase. In pilot jumping tests, all of the subjects reported that the PEAX was comfortable for jumping due to its lightweight (approximately 1 kg) and compact (firmly integrated with shoes) design, and subjects were able to nearly reach their maximum vertical jump heights while wearing the PEAX. During the countermovement jump, elastic energy was stored during dorsiflexion by spring extension and released during plantarflexion by spring restoration, indicating that the passive spring torque (i.e., supportive torque) generated by the ankle exoskeleton partially supported the ankle joint torque throughout the process.

  10. Accuracy of mechanical torque-limiting devices for dental implants.

    PubMed

    L'Homme-Langlois, Emilie; Yilmaz, Burak; Chien, Hua-Hong; McGlumphy, Edwin

    2015-10-01

    A common complication in implant dentistry is unintentional implant screw loosening. The critical factor in the prevention of screw loosening is the delivery of the appropriate target torque value. Mechanical torque-limiting devices (MTLDs) are the most frequently recommended devices by the implant manufacturers to deliver the target torque value to the screw. Two types of MTLDs are available: friction-style and spring-style. Limited information is available regarding the influence of device type on the accuracy of MTLDs. The purpose of this study was to determine and compare the accuracy of spring-style and friction-style MTLDs. Five MTLDs from 6 different dental implant manufacturers (Astra Tech/Dentsply, Zimmer Dental, Biohorizons, Biomet 3i, Straumann [ITI], and Nobel Biocare) (n=5 per manufacturer) were selected to determine their accuracy in delivering target torque values preset by their manufacturers. All torque-limiting devices were new and there were 3 manufacturers for the friction-style and 3 manufacturers for the spring-style. The procedure of target torque measurement was performed 10 times for each device and a digital torque gauge (Chatillon Model DFS2-R-ND; Ametek) was used to record the measurements. Statistical analysis used nonparametric tests to determine the accuracy of the MTLDs in delivering target torque values and Bonferroni post hoc tests were used to assess pairwise comparisons. Median absolute difference between delivered torque values and target torque values of friction-style and spring-style MTLDs were not significantly different (P>.05). Accuracy of Astra Tech and Zimmer Dental friction-style torque-limiting devices were significantly different than Biohorizons torque-limiting devices (P<.05). There is no difference between the accuracy of new friction-style MTLDs and new spring-style MTLDs. All MTLDs fell within ±10% of the target torque value. Astra Tech and Zimmer Dental friction-style torque-limiting devices were significantly

  11. Radiographic Abnormalities in the Feet of Diabetic Patients with Neuropathy and Foot Ulceration.

    PubMed

    Viswanathan, Vijay; Kumpatla, Satyavani; Rao, V Narayan

    2014-11-01

    People with diabetic neuropathy are frequently prone to several bone and joint abnormalities. Simple radiographic findings have been proven to be quite useful in the detection of such abnormalities, which might be helpful not only for early diagnosis but also in following the course of diabetes through stages of reconstruction of the ulcerated foot.The present study was designed to identify the common foot abnormalities in south Indian diabetic subjects with and without neuropathy using radiographic imaging. About 150 (M:F 94:56) subjects with type 2 diabetes were categorised into three groups: Group I (50 diabetic patients), Group II (50 patients with neuropathy), and Group III (50 diabetic patients with both neuropathy and foot ulceration). Demographic details, duration of diabetes and HbA1c values were recorded. Vibration perception threshold was measured for assessment of neuropathy. Bone and joint abnormalities in the feet and legs of the study subjects were identified using standardised dorsi-plantar and lateral weight-bearing radiographs. Radiographic findings of the study subjects revealed that those with both neuropathy and foot ulceration and a longer duration of diabetes had more number of bone and joint abnormalities. Subjects with neuropathy alone also showed presence of several abnormalities, including periosteal reaction, osteopenia, and Charcot changes. The present findings highlight the impact of neuropathy and duration of diabetes on the development of foot abnormalities in subjects with diabetes. Using radiographic imaging can help in early identification of abnormalities and better management of the diabetic foot.

  12. A self-calibrating multicomponent force/torque measuring system

    NASA Astrophysics Data System (ADS)

    Marangoni, Rafael R.; Schleichert, Jan; Rahneberg, Ilko; Hilbrunner, Falko; Fröhlich, Thomas

    2018-07-01

    A multicomponent self-calibrating force and torque sensor is presented. In this system, the principle of a Kibble balance is adapted for the traceable force and torque measurement in three orthogonal directions. The system has two operating modes: the velocity mode and the force/torque sensing mode. In the velocity mode, the calibration of the sensor is performed, while in the force/torque sensing mode, forces and torques are measured by using the principle of the electromagnetic force compensation. Details about the system are provided, with the main components of the sensor and a description of the operational procedure. A prototype of the system is currently being implemented for measuring forces and torques in a range of  ±2 N and  ±0.1 N · m respectively. A maximal relative expanded measurement uncertainty (k  =  2) of 1 · 10‑4 is expected for the force and torque measurements.

  13. Displaceable Spur Gear Torque Controlled Driver and Method

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1996-01-01

    Methods and apparatus are provided for a torque driver including a laterally displaceable gear support member to carry an output spur gear. A biasing assembly biases the output spur gear into engagement with a pinion to which is applied an input torque greater than a desired output torque limit for a threaded fastener such as a nut or screw. A coiled output linkage connects the output spur gear with a fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. A gauged selector mechanism is provided to laterally displace multiple driven members for fasteners arranged in differing configurations. The torque limit is selectably adjustable and may be different for fasteners within the same fastener configuration.

  14. Displaceable spur gear torque controlled driver and method

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    Methods and apparatus are provided for a torque driver including a laterally displaceable gear support member to carry an output spur gear. A biasing assembly biases the output spur gear into engagement with a pinion to which is applied an input torque greater than a desired output torque limit for a threaded fastener such as a nut or screw. A coiled output linkage connects the output spur gear with a fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. A gauged selector mechanism is provided to laterally displace multiple driver members for fasteners arranged in differing configurations. The torque limit is selectably adjustable and may be different for fasteners within the same fastener configuration.

  15. Torque shudder protection device and method

    DOEpatents

    King, Robert D.; De Doncker, Rik W. A. A.; Szczesny, Paul M.

    1997-01-01

    A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency.

  16. Torque shudder protection device and method

    DOEpatents

    King, R.D.; Doncker, R.W.A.A. De.; Szczesny, P.M.

    1997-03-11

    A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency. 5 figs.

  17. Functional disorders of the temporomandibular joints: Internal derangement of the temporomandibular joint.

    PubMed

    Chang, Chih-Ling; Wang, Ding-Han; Yang, Mu-Chen; Hsu, Wun-Eng; Hsu, Ming-Lun

    2018-04-01

    Temporomandibular joint (TMJ) is one of the most complex joints of the human body. Due to its unique movement, in terms of combination of rotation and translator movement, disc of the joint plays an important role to maintain its normal function. In order to sustain the normal function of the TMJ, disc must be kept in proper position as well as maintain normal shape in all circumstances. Once the disc is not any more in its normal position during function of the joint, disturbance of the joint can be occurred which will lead to subsequent distortion of the disc. Shape of the disc can be influenced by many factors i.e.: abnormal function or composition of the disc itself. Etiology of the internal derangement of the disc remains controversial. Multifactorial theory has been postulated in most of previous manuscripts. Disc is composed of mainly extracellular matrix. Abnormal proportion of collagen type I & III may also leads to joint hypermobility which may be also a predisposing factor of this disorder. Thus it can be recognized as local manifestation of a systemic disorder. Different treatment modalities with from conservative treatment to surgical intervention distinct success rate have been reported. Recently treatment with extracellular matrix injection becomes more and more popular to strengthen the joint itself. Since multifactorial in character, the best solution of the treatment modalities should be aimed to resolve possible etiology from different aspects. Team work may be indication to reach satisfied results. Copyright © 2018. Published by Elsevier Taiwan.

  18. Forearm Torque and Lifting Strength: Normative Data.

    PubMed

    Axelsson, Peter; Fredrikson, Per; Nilsson, Anders; Andersson, Jonny K; Kärrholm, Johan

    2018-02-10

    To establish reference values for new methods designed to quantitatively measure forearm torque and lifting strength and to compare these values with grip strength. A total of 499 volunteers, 262 males and 237 females, aged 15 to 85 (mean, 44) years, were tested for lifting strength and forearm torque with the Kern and Baseline dynamometers. These individuals were also tested for grip strength with a Jamar dynamometer. Standardized procedures were used and information about sex, height, weight, hand dominance, and whether their work involved high or low manual strain was collected. Men had approximately 70% higher forearm torque and lifting strength compared with females. Male subjects aged 26 to 35 years and female subjects aged 36 to 45 years showed highest strength values. In patients with dominant right side, 61% to 78% had a higher or equal strength on this side in the different tests performed. In patients with dominant left side, the corresponding proportions varied between 41% and 65%. There was a high correlation between grip strength and forearm torque and lifting strength. Sex, body height, body weight, and age showed a significant correlation to the strength measurements. In a multiple regression model sex, age (entered as linear and squared) could explain 51% to 63% of the total variances of forearm torque strength and 30% to 36% of lifting strength. Reference values for lifting strength and forearm torque to be used in clinical practice were acquired. Grip strength has a high correlation to forearm torque and lifting strength. Sex, age, and height can be used to predict forearm torque and lifting strength. Prediction equations using these variables were generated. Normative data of forearm torque and lifting strength might improve the quality of assessment of wrist and forearm disorders as well as their treatments. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  19. Accuracy of torque-limiting devices: A comparative evaluation.

    PubMed

    Albayrak, Haydar; Gumus, Hasan Onder; Tursun, Funda; Kocaagaoglu, Hasan Huseyin; Kilinc, Halil Ibrahim

    2017-01-01

    To prevent the loosening of implant screws, clinicians should be aware of the output torque values needed to achieve the desired preload. Accurate torque-control devices are crucial in this regard; however, little information is currently available comparing the accuracy of mechanical with that of electronic torque-control devices. The purpose of this in vitro study was to identify and compare the accuracy of different types of torque-control devices. Devices from 5 different dental implant manufacturers were evaluated, including 2 spring-type (Straumann, Implance) mechanical devices (MTLD), 2 friction-type (Biohorizons, Dyna) MTLDs, and 1 (Megagen) electronic torque-control device (ETLD). For each manufacturer, 5 devices were tested 5 times with a digital torque tester, and the average for each device was calculated and recorded. The percentage of absolute deviations from the target torque values (PERDEV) were calculated and compared by using 1-way ANOVA. A 1-sample t test was used to evaluate the ability of each device to achieve its target torque value within a 95% confidence interval for the true population mean of measured values (α=.05 for all statistical analyses). One-way ANOVAs revealed statistically significant differences among torque-control devices (P<.001). ETLD showed higher PERDEVs (28.33 ±9.53) than MTLDs (P<.05), whereas PERDEVS of friction-type (7.56 ±3.64) and spring-type (10.85 ±4.11) MTLDs did not differ significantly. In addition, devices produced by Megagen had a significantly higher (P<.05) PERDEV (28.33 ±9.53) other devices, whereas no differences were found in devices manufactured by Biohorizons (7.31 ±5.34), Dyna (7.82 ±1.08), Implance (8.43 ±4.77), and Straumann (13.26 ±0.79). However, 1-sample t tests showed none of the torque-control devices evaluated in this study were capable of achieving their target torque values (P<.05). Within the limitations of this in vitro study, MTLDs were shown to be significantly more accurate

  20. Neutron star dynamics under time dependent external torques

    NASA Astrophysics Data System (ADS)

    Alpar, M. A.; Gügercinoğlu, E.

    2017-12-01

    The two component model of neutron star dynamics describing the behaviour of the observed crust coupled to the superfluid interior has so far been applied to radio pulsars for which the external torques are constant on dynamical timescales. We recently solved this problem under arbitrary time dependent external torques. Our solutions pertain to internal torques that are linear in the rotation rates, as well as to the extremely non-linear internal torques of the vortex creep model. Two-component models with linear or nonlinear internal torques can now be applied to magnetars and to neutron stars in binary systems, with strong variability and timing noise. Time dependent external torques can be obtained from the observed spin-down (or spin-up) time series, \\dot Ω ≤ft( t \\right).

  1. Solid Rocket Booster Hydraulic Pump Port Cap Joint Load Testing

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.; Murphy, N. C.

    2004-01-01

    The solid rocket booster uses hydraulic pumps fabricated from cast C355 aluminum alloy, with 17-4 PH stainless steel pump port caps. Corrosion-resistant steel, MS51830 CA204L self-locking screw thread inserts are installed into C355 pump housings, with A286 stainless steel fasteners installed into the insert to secure the pump port cap to the housing. In the past, pump port cap fasteners were installed to a torque of 33 Nm (300 in-lb). However, the structural analyses used a significantly higher nut factor than indicated during tests conducted by Boeing Space Systems. When the torque values were reassessed using Boeing's nut factor, the fastener preload had a factor of safety of less than 1, with potential for overloading the joint. This paper describes how behavior was determined for a preloaded joint with a steel bolt threaded into steel inserts in aluminum parts. Finite element models were compared with test results. For all initial bolt preloads, bolt loads increased as external applied loads increased. For higher initial bolt preloads, less load was transferred into the bolt, due to external applied loading. Lower torque limits were established for pump port cap fasteners and additional limits were placed on insert axial deformation under operating conditions after seating the insert with an initial preload.

  2. How Fo-ATPase generates rotary torque.

    PubMed

    Oster, G; Wang, H; Grabe, M

    2000-04-29

    The F-ATPases synthesize ATP using a transmembrane ionmotive force (IMF) established by the electron transport chain. This transduction involves first converting the IMF to a rotary torque in the transmembrane Fo portion. This torque is communicated from Fo to the F1 portion where the energy is used to release the newly synthesized ATP from the catalytic sites according to Boyer's binding change mechanism. Here we explain the principle by which an IMF generates this rotary torque in the Fo ion engine.

  3. Modular multimorphic kinematic arm structure and pitch and yaw joint for same

    DOEpatents

    Martin, H. Lee; Williams, Daniel M.; Holt, W. Eugene

    1989-01-01

    A multimorphic kinematic manipulator arm is provided with seven degrees of freedom and modular kinematic redundancy through identical pitch/yaw, shoulder, elbow and wrist joints and a wrist roll device at the wrist joint, which further provides to the manipulator arm an obstacle avoidance capability. The modular pitch/yaw joints are traction drive devices which provide backlash free operation with smooth torque transmission and enhanced rigidity. A dual input drive arrangement is provided for each joint resulting in a reduction of the load required to be assumed by each drive and providing selective pitch and yaw motions by control of the relative rotational directions of the input drive.

  4. Estimations of One Repetition Maximum and Isometric Peak Torque in Knee Extension Based on the Relationship Between Force and Velocity.

    PubMed

    Sugiura, Yoshito; Hatanaka, Yasuhiko; Arai, Tomoaki; Sakurai, Hiroaki; Kanada, Yoshikiyo

    2016-04-01

    We aimed to investigate whether a linear regression formula based on the relationship between joint torque and angular velocity measured using a high-speed video camera and image measurement software is effective for estimating 1 repetition maximum (1RM) and isometric peak torque in knee extension. Subjects comprised 20 healthy men (mean ± SD; age, 27.4 ± 4.9 years; height, 170.3 ± 4.4 cm; and body weight, 66.1 ± 10.9 kg). The exercise load ranged from 40% to 150% 1RM. Peak angular velocity (PAV) and peak torque were used to estimate 1RM and isometric peak torque. To elucidate the relationship between force and velocity in knee extension, the relationship between the relative proportion of 1RM (% 1RM) and PAV was examined using simple regression analysis. The concordance rate between the estimated value and actual measurement of 1RM and isometric peak torque was examined using intraclass correlation coefficients (ICCs). Reliability of the regression line of PAV and % 1RM was 0.95. The concordance rate between the actual measurement and estimated value of 1RM resulted in an ICC(2,1) of 0.93 and that of isometric peak torque had an ICC(2,1) of 0.87 and 0.86 for 6 and 3 levels of load, respectively. Our method for estimating 1RM was effective for decreasing the measurement time and reducing patients' burden. Additionally, isometric peak torque can be estimated using 3 levels of load, as we obtained the same results as those reported previously. We plan to expand the range of subjects and examine the generalizability of our results.

  5. A cable-driven wrist robotic rehabilitator using a novel torque-field controller for human motion training.

    PubMed

    Chen, Weihai; Cui, Xiang; Zhang, Jianbin; Wang, Jianhua

    2015-06-01

    Rehabilitation technologies have great potentials in assisted motion training for stroke patients. Considering that wrist motion plays an important role in arm dexterous manipulation of activities of daily living, this paper focuses on developing a cable-driven wrist robotic rehabilitator (CDWRR) for motion training or assistance to subjects with motor disabilities. The CDWRR utilizes the wrist skeletal joints and arm segments as the supporting structure and takes advantage of cable-driven parallel design to build the system, which brings the properties of flexibility, low-cost, and low-weight. The controller of the CDWRR is designed typically based on a virtual torque-field, which is to plan "assist-as-needed" torques for the spherical motion of wrist responding to the orientation deviation in wrist motion training. The torque-field controller can be customized to different levels of rehabilitation training requirements by tuning the field parameters. Additionally, a rapidly convergent parameter self-identification algorithm is developed to obtain the uncertain parameters automatically for the floating wearable structure of the CDWRR. Finally, experiments on a healthy subject are carried out to demonstrate the performance of the controller and the feasibility of the CDWRR on wrist motion training or assistance.

  6. A cable-driven wrist robotic rehabilitator using a novel torque-field controller for human motion training

    NASA Astrophysics Data System (ADS)

    Chen, Weihai; Cui, Xiang; Zhang, Jianbin; Wang, Jianhua

    2015-06-01

    Rehabilitation technologies have great potentials in assisted motion training for stroke patients. Considering that wrist motion plays an important role in arm dexterous manipulation of activities of daily living, this paper focuses on developing a cable-driven wrist robotic rehabilitator (CDWRR) for motion training or assistance to subjects with motor disabilities. The CDWRR utilizes the wrist skeletal joints and arm segments as the supporting structure and takes advantage of cable-driven parallel design to build the system, which brings the properties of flexibility, low-cost, and low-weight. The controller of the CDWRR is designed typically based on a virtual torque-field, which is to plan "assist-as-needed" torques for the spherical motion of wrist responding to the orientation deviation in wrist motion training. The torque-field controller can be customized to different levels of rehabilitation training requirements by tuning the field parameters. Additionally, a rapidly convergent parameter self-identification algorithm is developed to obtain the uncertain parameters automatically for the floating wearable structure of the CDWRR. Finally, experiments on a healthy subject are carried out to demonstrate the performance of the controller and the feasibility of the CDWRR on wrist motion training or assistance.

  7. Torque Sensor Based on Tunnel-Diode Oscillator

    NASA Technical Reports Server (NTRS)

    Chui, Talso; Young, Joseph

    2008-01-01

    A proposed torque sensor would be capable of operating over the temperature range from 1 to 400 K, whereas a typical commercially available torque sensor is limited to the narrower temperature range of 244 to 338 K. The design of this sensor would exploit the wide temperature range and other desirable attributes of differential transducers based on tunnel-diode oscillators as described in "Multiplexing Transducers Based on Tunnel-Diode Oscillators". The proposed torque sensor would include three flexural springs that would couple torque between a hollow outer drive shaft and a solid inner drive shaft. The torque would be deduced from the torsional relative deflection of the two shafts, which would be sensed via changes in capacitances of two capacitors defined by two electrodes attached to the inner shaft and a common middle electrode attached to the outer shaft.

  8. Timing of intermittent torque control with wire-driven gait training robot lifting toe trajectory for trip avoidance.

    PubMed

    Miyake, Tamon; Kobayashi, Yo; Fujie, Masakatsu G; Sugano, Shigeki

    2017-07-01

    Gait training robots are useful for changing gait patterns and decreasing risk of trip. Previous research has reported that decreasing duration of the assistance or guidance of the robot is beneficial for efficient gait training. Although robotic intermittent control method for assisting joint motion has been established, the effect of the robot intervention timing on change of toe clearance is unclear. In this paper, we tested different timings of applying torque to the knee, employing the intermittent control of a gait training robot to increase toe clearance throughout the swing phase. We focused on knee flexion motion and designed a gait training robot that can apply flexion torque to the knee with a wire-driven system. We used a method of timing detecting for the robot conducting torque control based on information from the hip, knee, and ankle angles to establish a non-time dependent parameter that can be used to adapt to gait change, such as gait speed. We carried out an experiment in which the conditions were four time points: starting the swing phase, lifting the foot, maintaining knee flexion, and finishing knee flexion. The results show that applying flexion torque to the knee at the time point when people start lifting their toe is effective for increasing toe clearance in the whole swing phase.

  9. Detecting Casimir torque with an optically levitated nanorod

    NASA Astrophysics Data System (ADS)

    Xu, Zhujing; Li, Tongcang

    2017-09-01

    The linear momentum and angular momentum of virtual photons of quantum vacuum fluctuations can induce the Casimir force and the Casimir torque, respectively. While the Casimir force has been measured extensively, the Casimir torque has not been observed experimentally though it was predicted over 40 years ago. Here we propose to detect the Casimir torque with an optically levitated nanorod near a birefringent plate in vacuum. The axis of the nanorod tends to align with the polarization direction of the linearly polarized optical tweezer. When its axis is not parallel or perpendicular to the optical axis of the birefringent crystal, it will experience a Casimir torque that shifts its orientation slightly. We calculate the Casimir torque and Casimir force acting on a levitated nanorod near a birefringent crystal. We also investigate the effects of thermal noise and photon recoils on the torque and force detection. We prove that a levitated nanorod in vacuum will be capable of detecting the Casimir torque under realistic conditions, and will be an important tool in precision measurements.

  10. Measurement of torque during mandibular distraction.

    PubMed

    Burstein, Fernando D; Lukas, Saylan; Forsthoffer, Dina

    2008-05-01

    In a prospective study, 26 patients aged 9 days to 12 years old underwent mandibular distraction. There were 18 bilateral and 8 unilateral distractions performed. Five patients had previous distraction. Torque measurements were performed during the distraction process. A modest linear increase in torque was noted during the distraction process. Older patients required more torque to achieve the same distraction length as younger patients. The results of this study suggest that distraction forces are relatively modest, which may allow for greater freedom of distractor design.

  11. Eccentric knee flexor torque following anterior cruciate ligament surgery.

    PubMed

    Osternig, L R; James, C R; Bercades, D T

    1996-10-01

    The purposes of this study were to compare eccentric knee flexor torque and muscle activation in the limbs of normal (NOR) subjects and in subjects who had undergone unilateral ACI, autograft surgical reconstruction (INJ) and to assess the effect of movement speed on EMG/ torque ratios and eccentric-concentric actions. Fourteen subjects (7 NOR and 7 INJ) were tested for knee eccentric flexor torque and EMG activity at four isokinetic speeds (15 degrees, 30 degrees, 45 degrees and 60 degrees.s-1). Results revealed that post-surgical limbs (ACL) produced significantly less (P < 0.05) eccentric torque and flexor EMG activity at 60 degrees.s-1 than uninjured (UNI) contralateral limbs. Eccentric torque rose significantly as speed increased from 45 degrees to 60 degrees.s-1 for surgical group uninjured limbs and NOR group left and right limbs. Eccentric flexor torque increased with speed for both groups and approximated equality with concentric extensor torque at 60 degrees.s-1 for INJ group ACL and UNI limbs. Concentric flexor muscle EMG/torque ratios were 30-191% greater than eccentric muscle actions across groups and speeds. The results suggest that ACL dysfunction may result in reduced eccentric flexor torque at rapid movement speeds, that eccentric flexor torque increases with movement speed and may have the capacity to counter forceful extensor concentric torque, and that eccentric muscle actions produce less muscle activation per unit force than concentric actions which may reflect reduced energy cost.

  12. Extraneous torque and compensation control on the electric load simulator

    NASA Astrophysics Data System (ADS)

    Jiao, Zongxia; Li, Chenggong; Ren, Zhiting

    2003-09-01

    In this paper a novel motor-drive load simulator based on compensation control strategy is proposed and designed. Through analyzing the torque control system consisting of DC torque motor, PWM module and torque sensor, it is shown that performance of the motor-drive load simulator is possible to be as good as that of the electro-hydraulic load simulator in the range of small torque. In the course of loading, the rotation of the actuator would cause a strong disturbance torque through the motor back-EMF, which produces extraneous torque similar as in electro-hydraulic load simulator. This paper analyzes the cause of extraneous torque inside the torque motor in detail and presents an appropriate compensation control with which the extraneous torque can be compensated and the good performance of the torque control system can be obtained. The results of simulation indicate that the compensation is very effective and the track performance is according with the request.

  13. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.

    PubMed

    Wu, Wen; Fong, Justin; Crocher, Vincent; Lee, Peter V S; Oetomo, Denny; Tan, Ying; Ackland, David C

    2018-04-27

    Robotic-assistive exoskeletons can enable frequent repetitive movements without the presence of a full-time therapist; however, human-machine interaction and the capacity of powered exoskeletons to attenuate shoulder muscle and joint loading is poorly understood. This study aimed to quantify shoulder muscle and joint force during assisted activities of daily living using a powered robotic upper limb exoskeleton (ArmeoPower, Hocoma). Six healthy male subjects performed abduction, flexion, horizontal flexion, reaching and nose touching activities. These tasks were repeated under two conditions: (i) the exoskeleton compensating only for its own weight, and (ii) the exoskeleton providing full upper limb gravity compensation (i.e., weightlessness). Muscle EMG, joint kinematics and joint torques were simultaneously recorded, and shoulder muscle and joint forces calculated using personalized musculoskeletal models of each subject's upper limb. The exoskeleton reduced peak joint torques, muscle forces and joint loading by up to 74.8% (0.113 Nm/kg), 88.8% (5.8%BW) and 68.4% (75.6%BW), respectively, with the degree of load attenuation strongly task dependent. The peak compressive, anterior and superior glenohumeral joint force during assisted nose touching was 36.4% (24.6%BW), 72.4% (13.1%BW) and 85.0% (17.2%BW) lower than that during unassisted nose touching, respectively. The present study showed that upper limb weight compensation using an assistive exoskeleton may increase glenohumeral joint stability, since deltoid muscle force, which is the primary contributor to superior glenohumeral joint shear, is attenuated; however, prominent exoskeleton interaction moments are required to position and control the upper limb in space, even under full gravity compensation conditions. The modeling framework and results may be useful in planning targeted upper limb robotic rehabilitation tasks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. [Fetal bone and joint disorders].

    PubMed

    Jakobovits, Akos

    2008-12-21

    The article discusses the physiology and pathology of fetal bone and joint development and functions. The bones provide static support for the body. The skull and the bones of spinal column encase the central and part of the peripheral nervous system. The ribs and the sternum shield the heart and the lungs, while the bones of the pelvis protect the intraabdominal organs. Pathological changes of these bony structures may impair the functions of the respective systems or internal organs. Movements of the bones are brought about by muscles. The deriving motions are facilitated by joints. Bony anomalies of the extremities limit their effective functions. Apart from skeletal and joint abnormalities, akinesia may also be caused by neurological, muscular and skin diseases that secondarily affect the functions of bones and joints. Such pathological changes may lead to various degrees of physical disability and even to death. Some of the mentioned anomalies are recognizable in utero by ultrasound. The diagnosis may serve as medical indication for abortion in those instances when the identified abnormality is incompatible with independent life.

  15. Temperature dependence of spin-orbit torques in Cu-Au alloys

    NASA Astrophysics Data System (ADS)

    Wen, Yan; Wu, Jun; Li, Peng; Zhang, Qiang; Zhao, Yuelei; Manchon, Aurelien; Xiao, John Q.; Zhang, Xixiang

    2017-03-01

    We investigated current driven spin-orbit torques in C u40A u60/N i80F e20/Ti layered structures with in-plane magnetization. We have demonstrated a reliable and convenient method to separate dampinglike torque and fieldlike torque by using the second harmonic technique. It is found that the dampinglike torque and fieldlike torque depend on temperature very differently. Dampinglike torque increases with temperature, while fieldlike torque decreases with temperature, which are different from results obtained previously in other material systems. We observed a nearly linear dependence between the spin Hall angle and longitudinal resistivity, suggesting that skew scattering may be the dominant mechanism of spin-orbit torques.

  16. Atmospheric Gravitational Torque Variations Based on Various Gravity Fields

    NASA Technical Reports Server (NTRS)

    Sanchez, Braulio V.; Rowlands, David; Smith, David E. (Technical Monitor)

    2001-01-01

    Advancements in the study of the Earth's variable rate of rotation and the motion of its rotation axis have given impetus to the analysis of the torques between the atmosphere, oceans and solid Earth. The output from global general circulation models of the atmosphere (pressure, surface stress) is being used as input to the torque computations. Gravitational torque between the atmosphere, oceans and solid Earth is an important component of the torque budget. Computation of the gravitational torque involves the adoption of a gravitational model from a wide variety available. The purpose of this investigation is to ascertain to what extent this choice might influence the results of gravitational torque computations.

  17. Perspective: Interface generation of spin-orbit torques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.

    We present that most of the modern spintronics developments rely on the manipulation of magnetization states via electric currents, which started with the discovery of spin transfer torque effects 20 years ago. By now, it has been realized that spin-orbit coupling provides a particularly efficient pathway for generating spin torques from charge currents. At the same time, spin-orbit effects can be enhanced at interfaces, which opens up novel device concepts. Here, we discuss two examples of such interfacial spin-orbit torques, namely, systems with inherently two-dimensional materials and metallic bilayers with strong Rashba spin-orbit coupling at their interfaces. We show howmore » ferromagnetic resonance excited by spin-orbit torques can provide information about the underlying mechanisms. In addition, this article provides a brief overview of recent developments with respect to interfacial spin-orbit torques and an outlook of still open questions.« less

  18. Perspective: Interface generation of spin-orbit torques

    DOE PAGES

    Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.; ...

    2016-11-14

    We present that most of the modern spintronics developments rely on the manipulation of magnetization states via electric currents, which started with the discovery of spin transfer torque effects 20 years ago. By now, it has been realized that spin-orbit coupling provides a particularly efficient pathway for generating spin torques from charge currents. At the same time, spin-orbit effects can be enhanced at interfaces, which opens up novel device concepts. Here, we discuss two examples of such interfacial spin-orbit torques, namely, systems with inherently two-dimensional materials and metallic bilayers with strong Rashba spin-orbit coupling at their interfaces. We show howmore » ferromagnetic resonance excited by spin-orbit torques can provide information about the underlying mechanisms. In addition, this article provides a brief overview of recent developments with respect to interfacial spin-orbit torques and an outlook of still open questions.« less

  19. Estimating Torque Imparted on Spacecraft Using Telemetry

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Wang, Eric K.; Macala, Glenn A.

    2013-01-01

    There have been a number of missions with spacecraft flying by planetary moons with atmospheres; there will be future missions with similar flybys. When a spacecraft such as Cassini flies by a moon with an atmosphere, the spacecraft will experience an atmospheric torque. This torque could be used to determine the density of the atmosphere. This is because the relation between the atmospheric torque vector and the atmosphere density could be established analytically using the mass properties of the spacecraft, known drag coefficient of objects in free-molecular flow, and the spacecraft velocity relative to the moon. The density estimated in this way could be used to check results measured by science instruments. Since the proposed methodology could estimate disturbance torque as small as 0.02 N-m, it could also be used to estimate disturbance torque imparted on the spacecraft during high-altitude flybys.

  20. Self-aligning exoskeleton hip joint: Kinematic design with five revolute, three prismatic and one ball joint.

    PubMed

    Beil, Jonas; Marquardt, Charlotte; Asfour, Tamim

    2017-07-01

    Kinematic compatibility is of paramount importance in wearable robotic and exoskeleton design. Misalignments between exoskeletons and anatomical joints of the human body result in interaction forces which make wearing the exoskeleton uncomfortable and even dangerous for the human. In this paper we present a kinematically compatible design of an exoskeleton hip to reduce kinematic incompatibilities, so called macro- and micro-misalignments, between the human's and exoskeleton's joint axes, which are caused by inter-subject variability and articulation. The resulting design consists of five revolute, three prismatic and one ball joint. Design parameters such as range of motion and joint velocities are calculated based on the analysis of human motion data acquired by motion capture systems. We show that the resulting design is capable of self-aligning to the human hip joint in all three anatomical planes during operation and can be adapted along the dorsoventral and mediolateral axis prior to operation. Calculation of the forward kinematics and FEM-simulation considering kinematic and musculoskeletal constraints proved sufficient mobility and stiffness of the system regarding the range of motion, angular velocity and torque admissibility needed to provide 50 % assistance for an 80 kg person.

  1. Torquing preload in a lubricated bolt

    NASA Technical Reports Server (NTRS)

    Seegmiller, H. L.

    1978-01-01

    The tension preload obtained by torquing a 7/8 in. diam UNC high strength bolt was determined for lubricated and dry conditions. Consistent preload with a variation of + or - 3% was obtained when the bolt head area was lubricated prior to each torque application. Preload tensions nearly 70% greater than the value predicted with the commonly used formula occurred with the lubricated bolt. A reduction to 39% of the initial preload was observed during 50 torque applications without relubrication. Little evidence of wear was noted after 203 cycles of tightening.

  2. Neutron star dynamics under time-dependent external torques

    NASA Astrophysics Data System (ADS)

    Gügercinoǧlu, Erbil; Alpar, M. Ali

    2017-11-01

    The two-component model describes neutron star dynamics incorporating the response of the superfluid interior. Conventional solutions and applications involve constant external torques, as appropriate for radio pulsars on dynamical time-scales. We present the general solution of two-component dynamics under arbitrary time-dependent external torques, with internal torques that are linear in the rotation rates, or with the extremely non-linear internal torques due to vortex creep. The two-component model incorporating the response of linear or non-linear internal torques can now be applied not only to radio pulsars but also to magnetars and to neutron stars in binary systems, with strong observed variability and noise in the spin-down or spin-up rates. Our results allow the extraction of the time-dependent external torques from the observed spin-down (or spin-up) time series, \\dot{Ω }(t). Applications are discussed.

  3. A reactive torque control law for gyroscopically controlled space vehicles

    NASA Technical Reports Server (NTRS)

    Farmer, J. E.

    1973-01-01

    A method of control is developed based on the reactive torques as seen by the individual CMG gimbals. The application of a torque to the gimbal of a CMG rotates the momentum vector and applies a torque to the spacecraft according to well-known laws. The response (rotation) of the vehicle produces a reverse or reaction torque opposing the torque producing the gimbal movement. The reactive torque and the pseudoinverse control schemes are contrasted in order to point out the simplicity of the first method. Simulation was performed only to the extent necessary to prove that reactive torque stabilization and control is feasible.

  4. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot.

    PubMed

    Li, Zhijun; Wang, Baocheng; Sun, Fuchun; Yang, Chenguang; Xie, Qing; Zhang, Weidong

    2014-05-01

    This paper investigates two surface electromyogram (sEMG)-based control strategies developed for a power-assist exoskeleton arm. Different from most of the existing position control approaches, this paper develops force control methods to make the exoskeleton robot behave like humans in order to provide better assistance. The exoskeleton robot is directly attached to a user's body and activated by the sEMG signals of the user's muscles, which reflect the user's motion intention. In the first proposed control method, the forces of agonist and antagonist muscles pair are estimated, and their difference is used to produce the torque of the corresponding joints. In the second method, linear discriminant analysis-based classifiers are introduced as the indicator of the motion type of the joints. Then, the classifier's outputs together with the estimated force of corresponding active muscle determine the torque control signals. Different from the conventional approaches, one classifier is assigned to each joint, which decreases the training time and largely simplifies the recognition process. Finally, the extensive experiments are conducted to illustrate the effectiveness of the proposed approaches.

  5. Some new evidence on human joint lubrication.

    PubMed Central

    Unsworth, A; Dowson, D; Wright, V

    1975-01-01

    Theoretical consideration has been given to the use of pendulum machines which are used to examine the frictional properties of human joints by incorporating them as fulcra. As a result, a new type of pendulum machine has been built which incorporates the facility to apply sudden loads to the joint on starting the swinging motion, and also the ability to measure directly the frictional torque experienced by the joint. The results obtained from natural hip joints indicate the presence of squeeze film lubrication under conditions of sudden loading of a joint. In addition, a self-generated fluid film process was observed at low loads while at higher loads boundary lubrication appeared to be important. These results have been used to describe the lubrication regimens occurring in a normal activity such as walking. A single experiment carried out on a hip from a patient suffering from severe rheumatoid arthritis has also been reported and the frictional resistance was seen to be increased fifteenfold compared to a normal hip. Images PMID:1190847

  6. Torque control for electric motors

    NASA Technical Reports Server (NTRS)

    Bernard, C. A.

    1980-01-01

    Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recoverd, relay restores starting circuit to its normal operating mode.

  7. Bevel Gear Driver and Method Having Torque Limit Selection

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1997-01-01

    Methods and apparatus are provided for a torque driver including an axially displaceable gear with a biasing assembly to bias the displaceable gear into an engagement position. A rotatable cap is provided with a micrometer dial to select a desired output torque. An intermediate bevel gear assembly is disposed between an input gear and an output gear. A gear tooth profile provides a separation force that overcomes the bias to limit torque at a desired torque limit. The torque limit is adjustable and may be adjusted manually or automatically depending on the type of biasing assembly provided. A clutch assembly automatically limits axial force applied to a fastener by the operator to avoid alteration of the desired torque limit.

  8. Expanding torque possibilities: A skeletally anchored torqued cantilever for uprighting "kissing molars".

    PubMed

    Barros, Sérgio Estelita; Janson, Guilherme; Chiqueto, Kelly; Ferreira, Eduardo; Rösing, Cassiano

    2018-04-01

    Several uprighting mechanics and devices have been used for repositioning tipped molars. "Kissing molars" (KMs) are an uncommon tooth impaction involving 2 severely tipped mandibular molars with their occlusal surfaces positioned crown to crown, with the roots pointing in opposite directions. Orthodontic uprighting of KMs has not been a usual treatment protocol, and it can be a challenging task due to the severe tipping and double impaction, requiring efficient and well-controlled uprighting mechanics. An innovative skeletally anchored cantilever, which uses the torque principle for uprighting tipped molars, is suggested. This torqued cantilever is easy to manufacture, install, and activate; it is a well-known torque that is effective for producing root movement. A successful treatment of symptomatic KMs, involving the first and second molars, was achieved with this cantilever. Thus, clinicians should consider the suggested uprighting mechanics and orthodontic device as a more conservative alternative to extraction of KMs, depending on the patient's age, involved teeth in KMs, tipping severity, and impaction positions. Copyright © 2018 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  9. Experimental analysis of mechanical joints strength by means of energy dissipation

    NASA Astrophysics Data System (ADS)

    Wolf, Alexander; Lafarge, Remi; Kühn, Tino; Brosius, Alexander

    2018-05-01

    Designing complex structures with the demand for weight reduction leads directly to a multi-material concept. This mixture has to be joined securely and welding, mechanical joining and the usage of adhesives are commonly used for that purpose. Sometimes also a mix of at least two materials is useful to combine the individual advantages. The challenge is the non-destructive testing of these connections because destructive testing requires a lot of preparation and expensive testing equipment. The authors show a testing method by measuring and analysing the energy dissipation in mechanical joints. Known methods are radiography, thermography and ultrasound testing. Unfortunately, the usage of these methods is difficult and often not usable in fibre-reinforced-plastics. The presented approach measures the propagation of the elastic strain wave through the joint. A defined impact strain is detected with by strain-gauges whereby the transmitter is located on one side of the joint and the receiver on the other, respectively. Because of different mechanisms, energy dissipates by passing the joint areas. Main reasons are damping caused by friction and material specific damping. Insufficient performed joints lead to an effect especially in the friction damping. By the measurement of the different strains and the resulting energy loss a statement to the connection quality is given. The possible defect during the execution of the joint can be identified by the energy loss and strain vs. time curve. After the description of the method, the authors present the results of energy dissipation measurements at a bolted assembly with different locking torques. By the adjustable tightening torques for the screw connections easily a variation of the contact pressure can be applied and analysed afterwards. The outlook will give a statement for the usability for other mechanical joints and fibre-reinforced-plastics.

  10. Active motion assisted by correlated stochastic torques.

    PubMed

    Weber, Christian; Radtke, Paul K; Schimansky-Geier, Lutz; Hänggi, Peter

    2011-07-01

    The stochastic dynamics of an active particle undergoing a constant speed and additionally driven by an overall fluctuating torque is investigated. The random torque forces are expressed by a stochastic differential equation for the angular dynamics of the particle determining the orientation of motion. In addition to a constant torque, the particle is supplemented by random torques, which are modeled as an Ornstein-Uhlenbeck process with given correlation time τ(c). These nonvanishing correlations cause a persistence of the particles' trajectories and a change of the effective spatial diffusion coefficient. We discuss the mean square displacement as a function of the correlation time and the noise intensity and detect a nonmonotonic dependence of the effective diffusion coefficient with respect to both correlation time and noise strength. A maximal diffusion behavior is obtained if the correlated angular noise straightens the curved trajectories, interrupted by small pirouettes, whereby the correlated noise amplifies a straightening of the curved trajectories caused by the constant torque.

  11. Torque Measurement at the Single Molecule Level

    PubMed Central

    Forth, Scott; Sheinin, Maxim Y.; Inman, James; Wang, Michelle D.

    2017-01-01

    Methods for exerting and measuring forces on single molecules have revolutionized the study of the physics of biology. However, it is often the case that biological processes involve rotation or torque generation, and these parameters have been more difficult to access experimentally. Recent advances in the single molecule field have led to the development of techniques which add the capability of torque measurement. By combining force, displacement, torque, and rotational data, a more comprehensive description of the mechanics of a biomolecule can be achieved. In this review, we highlight a number of biological processes for which torque plays a key mechanical role. We describe the various techniques that have been developed to directly probe the torque experienced by a single molecule, and detail a variety of measurements made to date using these new technologies. We conclude by discussing a number of open questions and propose systems of study which would be well suited for analysis with torsional measurement techniques. PMID:23541162

  12. Torque measurement at the single-molecule level.

    PubMed

    Forth, Scott; Sheinin, Maxim Y; Inman, James; Wang, Michelle D

    2013-01-01

    Methods for exerting and measuring forces on single molecules have revolutionized the study of the physics of biology. However, it is often the case that biological processes involve rotation or torque generation, and these parameters have been more difficult to access experimentally. Recent advances in the single-molecule field have led to the development of techniques that add the capability of torque measurement. By combining force, displacement, torque, and rotational data, a more comprehensive description of the mechanics of a biomolecule can be achieved. In this review, we highlight a number of biological processes for which torque plays a key mechanical role. We describe the various techniques that have been developed to directly probe the torque experienced by a single molecule, and detail a variety of measurements made to date using these new technologies. We conclude by discussing a number of open questions and propose systems of study that would be well suited for analysis with torsional measurement techniques.

  13. Accuracy of electronic implant torque controllers following time in clinical service.

    PubMed

    Mitrani, R; Nicholls, J I; Phillips, K M; Ma, T

    2001-01-01

    Tightening of the screws in implant-supported restorations has been reported to be problematic, in that if the applied torque is too low, screw loosening occurs. If the torque is too high, then screw fracture can take place. Thus, accuracy of the torque driver is of the utmost importance. This study evaluated 4 new electronic torque drivers (controls) and 10 test electronic torque drivers, which had been in clinical service for a minimum of 5 years. Torque values of the test drivers were measured and were compared with the control values using a 1-way analysis of variance. Torque delivery accuracy was measured using a technique that simulated the clinical situation. In vivo, the torque driver turns the screw until the selected tightening torque is reached. In this laboratory experiment, an implant, along with an attached abutment and abutment gold screw, was held firmly in a Tohnichi torque gauge. Calibration accuracy for the Tohnichi is +/- 3% of the scale value. During torque measurement, the gold screw turned a minimum of 180 degrees before contact was made between the screw and abutment. Three torque values (10, 20, and 32 N-cm) were evaluated, at both high- and low-speed settings. The recorded torque measurements indicated that the 10 test electronic torque drivers maintained a torque delivery accuracy equivalent to the 4 new (unused) units. Judging from the torque output values obtained from the 10 test units, the clinical use of the electronic torque driver suggests that accuracy did not change significantly over the 5-year period of clinical service.

  14. Angular dependence of spin-orbit spin-transfer torques

    NASA Astrophysics Data System (ADS)

    Lee, Ki-Seung; Go, Dongwook; Manchon, Aurélien; Haney, Paul M.; Stiles, M. D.; Lee, Hyun-Woo; Lee, Kyung-Jin

    2015-04-01

    In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.

  15. Magnetic Torque in Single Crystal Ni-Mn-Ga

    NASA Astrophysics Data System (ADS)

    Hobza, Anthony; Müllner, Peter

    2017-06-01

    Magnetic shape memory alloys deform in an external magnetic field in two distinct ways: by axial straining—known as magnetic-field-induced strain—and by bending when exposed to torque. Here, we examine the magnetic torque that a magnetic field exerts on a long Ni-Mn-Ga rod. A single crystal specimen of Ni-Mn-Ga was constrained with respect to bending and subjected to an external magnetic field. The torque required to rotate the specimen in the field was measured as a function of the orientation of the sample with the external magnetic field, strain, and the magnitude of the external magnetic field. The torque was analyzed based on the changes in the free energy with the angle between the field and the sample. The contributions of magnetocrystalline anisotropy and shape anisotropy to the Zeeman energy determine the net torque. The torque is large when magneotcrystalline and shape anisotropies act synergistically and small when these anisotropies act antagonistically.

  16. Intrinsic domain wall flexing from current-induced spin torque

    NASA Astrophysics Data System (ADS)

    Golovatski, Elizabeth; Flatté, Michael

    2012-02-01

    Spin torque generated by coherent carrier transport in domain walls [1] is a major component in the development of spintronic devices [2]. We model spin torque in N'eel walls [3] using a piecewise linear transfer-matrix method [4] to calculate spin torque on interior wall segments. For a π wall with a total positive torque (current left-to-right), we find the largest positive and negative spin torques left of the central region, 4-5 orders of magnitude larger than the center. The wall's rightward push comes from the back of the wall; all other significant regions pull to the left. Adding a second wall (both walls with positive total torque) changes the first wall little, but produces spin torques in the second wall with large canceling torques on the left, and the push rightward from a smaller torque on the right. The gradient of torque across the wall generates an intrinsic domain wall flexing (distinct from extrinsic wall flexing from pinning centers [5]). Work supported by an ARO MURI.[4pt] [1] M. Yamanouchi et al., Nature 428, 539 (2004).[0pt] [2] S. Parkin et al., Science 320, 190 (2008)[0pt] [3] G. Vignale and M. Flatt'e, Phys. Rev. Lett. 89, 098302 (2002)[0pt] [4] E. Golovatski and M. Flatt'e, Phys. Rev. B, 84, 115210 (2011)[0pt] [5] A. Balk et al., Phys. Rev. Lett. 107, 077205 (2011).

  17. Joint contact forces can be reduced by improving joint moment symmetry in below-knee amputee gait simulations.

    PubMed

    Koelewijn, Anne D; van den Bogert, Antonie J

    2016-09-01

    Despite having a fully functional knee and hip in both legs, asymmetries in joint moments of the knee and hip are often seen in gait of persons with a unilateral transtibial amputation (TTA), possibly resulting in excessive joint loading. We hypothesize that persons with a TTA can walk with more symmetric joint moments at the cost of increased effort or abnormal kinematics. The hypothesis was tested using predictive simulations of gait. Open loop controls of one gait cycle were found by solving an optimization problem that minimizes a combination of walking effort and tracking error in joint angles, ground reaction force and gait cycle duration. A second objective was added to penalize joint moment asymmetry, creating a multi-objective optimization problem. A Pareto front was constructed by changing the weights of the objectives and three solutions were analyzed to study the effect of increasing joint moment symmetry. When the optimization placed more weight on moment symmetry, walking effort increased and kinematics became less normal, confirming the hypothesis. TTA gait improved with a moderate increase in joint moment symmetry. At a small cost of effort and abnormal kinematics, the peak hip extension moment in the intact leg was decreased significantly, and so was the joint contact force in the knee and hip. Additional symmetry required a significant increase in walking effort and the joint contact forces in both hips became significantly higher than in able-bodied gait. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Modular multimorphic kinematic arm structure and pitch and yaw joint for same

    DOEpatents

    Martin, H.L.; Williams, D.M.; Holt, W.E.

    1987-04-21

    A multimorphic kinematic manipulator arm is provided with seven degrees of freedom and modular kinematic redundancy through identical pitch/yaw, shoulder, elbow and wrist joints and a wrist roll device at the wrist joint, which further provides to the manipulator arm an obstacle avoidance capability. The modular pitch/yaw joints are traction drive devices which provide backlash free operation with smooth torque transmission and enhanced rigidity. A dual input drive arrangement is provided for each joint resulting in a reduction of the load required to be assumed by each drive means and providing selective pitch and yaw motions by control of the relative rotational directions of the input drive means. 12 figs.

  19. Shortening-induced torque depression in old men: implications for age-related power loss.

    PubMed

    Power, Geoffrey A; Makrakos, Demetri P; Stevens, Daniel E; Herzog, Walter; Rice, Charles L; Vandervoort, Anthony A

    2014-09-01

    Following active muscle shortening, the steady-state isometric torque at the final muscle length is lower than the steady-state torque obtained for a purely isometric contraction at that same final muscle length. This well-documented property of skeletal muscle is termed shortening-induced torque depression (TD). Despite many investigations into the mechanisms of weakness and power loss in old age, the influence of muscle shortening on the history dependence of isometric torque production remains to be elucidated. Thus, it is unclear whether older adults are disadvantaged for torque and power production following a dynamic shortening contraction. The purpose of this study was to evaluate shortening-induced TD in older adults, and to determine whether shortening-induced TD is related to power loss. Maximal voluntary isometric dorsiflexion contractions (MVC; 10s) in 8 young (25.5±3.7years) and 9 old (76.1±5.4years) men were performed on a HUMAC NORM dynamometer as a reference, and then again following an active shortening of 40° joint excursion (40°PF-0°PF) at angular velocities of 15°/s and 120°/s. Work and instantaneous power were derived during shortening. Shortening-induced TD was calculated and expressed as a percentage by determining the mean torque value over 1s during the isometric steady state of the MVC following shortening, divided by the mean torque value for the same 1s time period during the isometric reference MVC. To assess muscle activation, electromyography (root mean square; EMGRMS) of the tibialis anterior (TA) and soleus (SOL) was calculated at identical time points used in assessing shortening-induced TD, and voluntary activation (VA) was assessed using the interpolated twitch technique. Old were 18% weaker than young for MVC, and ~40% less powerful for 15°/s and 120°/s of shortening. Old produced 37% and 21% less work for 15°/s and 120°/s than young, respectively. Furthermore, old experienced 60% and 70% greater shortening-induced TD

  20. The effect of frictional torque and bending moment on corrosion at the taper interface : an in vitro study.

    PubMed

    Panagiotidou, A; Meswania, J; Osman, K; Bolland, B; Latham, J; Skinner, J; Haddad, F S; Hart, A; Blunn, G

    2015-04-01

    The aim of this study was to assess the effect of frictional torque and bending moment on fretting corrosion at the taper interface of a modular femoral component and to investigate whether different combinations of material also had an effect. The combinations we examined were 1) cobalt-chromium (CoCr) heads on CoCr stems 2) CoCr heads on titanium alloy (Ti) stems and 3) ceramic heads on CoCr stems. In test 1 increasing torque was imposed by offsetting the stem in the anteroposterior plane in increments of 0 mm, 4 mm, 6 mm and 8 mm when the torque generated was equivalent to 0 Nm, 9 Nm, 14 Nm and 18 Nm. In test 2 we investigated the effect of increasing the bending moment by offsetting the application of axial load from the midline in the mediolateral plane. Increments of offset equivalent to head + 0 mm, head + 7 mm and head + 14 mm were used. Significantly higher currents and amplitudes were seen with increasing torque for all combinations of material. However, Ti stems showed the highest corrosion currents. Increased bending moments associated with using larger offset heads produced more corrosion: Ti stems generally performed worse than CoCr stems. Using ceramic heads did not prevent corrosion, but reduced it significantly in all loading configurations. ©2015 The British Editorial Society of Bone & Joint Surgery.

  1. Effect of insertion torque on bone screw pullout strength.

    PubMed

    Lawson, K J; Brems, J

    2001-05-01

    The effect of insertion torque on the holding strength of 4.5-mm ASIF/AO cortical bone screws was studied in vitro. Screw holding strength was determined using an Instron materials testing machine (Bristol, United Kingdom) on 55 lamb femora and 30 human tibiocortical bone sections. Holding strength was defined as tensile stress at pullout with rapid loading to construct failure. Different insertion torques were tested, normalizing to the thickness of cortical bone specimen engaged. These represented low, intermediate, high, and thread-damaging insertion torque. All screws inserted with thread-damaging torque and single cortex engaging screws inserted to high torque tightening moments showed diminished holding strength. This loss of strength amounted to 40%-50% less than screws inserted with less torque.

  2. Measurement of clinicians' ability to hand torque dental implant components.

    PubMed

    Kanawati, Ali; Richards, Mark W; Becker, Jeffery J; Monaco, Natalie E

    2009-01-01

    There is a varying degree of hand torque abilities using finger drivers among clinicians. Calibrating one's own abilities requires complicated instruments not readily available. This study evaluated a simple-to-use method that allows dental practitioners to have a quantifiable clinical assessment of relative torque ability using finger drivers to torque down dental implant components. A typodont that includes dental implants was mounted in a mannequin placed in a patient-reclined position. The subjects were asked to torque as tightly as they could a new healing abutment to an implant secured firmly in resin within the typodont. All participants wore moistened gloves when using a finger driver. The healing abutment was countertorqued using a certified precalibrated precision torque measurement device. The reading on the torque driver was recorded when the healing abutment disengaged. An average of torque values of dentists and dental students was calculated. Fifty subjects had an average maximum torque ability of 24 Ncm (male dentists: 28 Ncm; students: 22 Ncm; male students: 24 Ncm; female students: 19 Ncm). Maximum torque values for all participants ranged from 11 Ncm to 38 Ncm. There was no significant difference between groups. This study showed a varying degree of hand torquing abilities using a finger driver. Clinicians should regularly calibrate their ability to torque implant components to more predictably perform implant dentistry. Dental implant manufacturers should more precisely instruct clinicians as to maximum torque, as opposed to "finger tighten only".

  3. 40 CFR 90.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Dynamometer torque cell calibration... Emission Test Equipment Provisions § 90.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used...-cell or transfer standard may be used to verify the torque measurement system. (1) The master load-cell...

  4. 40 CFR 90.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Dynamometer torque cell calibration... Emission Test Equipment Provisions § 90.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used...-cell or transfer standard may be used to verify the torque measurement system. (1) The master load-cell...

  5. 40 CFR 90.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Dynamometer torque cell calibration... Emission Test Equipment Provisions § 90.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used...-cell or transfer standard may be used to verify the torque measurement system. (1) The master load-cell...

  6. 40 CFR 90.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Dynamometer torque cell calibration... Emission Test Equipment Provisions § 90.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used...-cell or transfer standard may be used to verify the torque measurement system. (1) The master load-cell...

  7. A musculoskeletal model of the elbow joint complex

    NASA Technical Reports Server (NTRS)

    Gonzalez, Roger V.; Barr, Ronald E.; Abraham, Lawrence D.

    1993-01-01

    This paper describes a musculoskeletal model that represents human elbow flexion-extension and forearm pronation-supination. Musculotendon parameters and the skeletal geometry were determined for the musculoskeletal model in the analysis of ballistic elbow joint complex movements. The key objective was to develop a computational model, guided by optimal control, to investigate the relationship among patterns of muscle excitation, individual muscle forces, and movement kinematics. The model was verified using experimental kinematic, torque, and electromyographic data from volunteer subjects performing both isometric and ballistic elbow joint complex movements. In general, the model predicted kinematic and muscle excitation patterns similar to what was experimentally measured.

  8. Accuracy and precision of as-received implant torque wrenches.

    PubMed

    Britton-Vidal, Eduardo; Baker, Philip; Mettenburg, Donald; Pannu, Darshanjit S; Looney, Stephen W; Londono, Jimmy; Rueggeberg, Frederick A

    2014-10-01

    Previous implant torque evaluation did not determine if the target value fell within a confidence interval for the population mean of the test groups, disallowing determination of whether a specific type of wrench met a standardized goal value. The purpose of this study was to measure both the accuracy and precision of 2 different configurations (spring style and peak break) of as-received implant torque wrenches and compare the measured values to manufacturer-stated values. Ten wrenches from 4 manufacturers, representing a variety of torque-limiting mechanisms and specificity of use (with either a specific brand or universally with any brand of implant product). Drivers were placed into the wrench, and tightening torque was applied to reach predetermined values using a NIST-calibrated digital torque wrench. Five replications of measurement were made for each wrench and averaged to provide a single value from that instrument. The target torque value for each wrench brand was compared to the 95% confidence interval for the true population mean of measured values to see if it fell within the measured range. Only 1 wrench brand (Nobel Biocare) demonstrated the target torque value falling within the 95% confidence interval for the true population mean. For others, the targeted torque value fell above the 95% confidence interval (Straumann and Imtec) or below (Salvin Torq). Neither type of torque-limiting mechanism nor designation of a wrench to be used as a dedicated brand-only product or to be used as a universal product on many brands affected the ability of a wrench to deliver torque values where the true population mean included the target torque level. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Manipulation of Spin-Torque Generation Using Ultrathin Au

    NASA Astrophysics Data System (ADS)

    An, Hongyu; Haku, Satoshi; Kanno, Yusuke; Nakayama, Hiroyasu; Maki, Hideyuki; Shi, Ji; Ando, Kazuya

    2018-06-01

    The generation and the manipulation of current-induced spin-orbit torques are of essential interest in spintronics. However, in spite of the vital progress in spin orbitronics, electric control of the spin-torque generation still remains elusive and challenging. We report on electric control of the spin-torque generation using ionic-liquid gating of ultrathin Au. We show that by simply depositing a SiO2 capping layer on an ultrathin-Au /Ni81Fe19 bilayer, the spin-torque generation efficiency is drastically enhanced by a maximum of 7 times. This enhancement is verified to be originated from the rough ultrathin-Au /Ni81Fe19 interface induced by the SiO2 deposition, which results in the enhancement of the interface spin-orbit scattering. We further show that the spin-torque generation efficiency from the ultrathin Au film can be reversibly manipulated by a factor of 2 using the ionic gating with an external electric field within a small range of 1 V. These results pave a way towards the efficient control of the spin-torque generation in spintronic applications.

  10. Experimental Observations for Determining the Maximum Torque Values to Apply to Composite Components Mechanically Joined With Fasteners (MSFC Center Director's Discretionary Fund Final Report, Proj. 03-13}

    NASA Technical Reports Server (NTRS)

    Thomas, F. P.

    2006-01-01

    Aerospace structures utilize innovative, lightweight composite materials for exploration activities. These structural components, due to various reasons including size limitations, manufacturing facilities, contractual obligations, or particular design requirements, will have to be joined. The common methodologies for joining composite components are the adhesively bonded and mechanically fastened joints and, in certain instances, both methods are simultaneously incorporated into the design. Guidelines and recommendations exist for engineers to develop design criteria and analyze and test composites. However, there are no guidelines or recommendations based on analysis or test data to specify a torque or torque range to apply to metallic mechanical fasteners used to join composite components. Utilizing the torque tension machine at NASA s Marshall Space Flight Center, an initial series of tests were conducted to determine the maximum torque that could be applied to a composite specimen. Acoustic emissions were used to nondestructively assess the specimens during the tests and thermographic imaging after the tests.

  11. Structural Abnormalities on Magnetic Resonance Imaging in Patients With Patellofemoral Pain: A Cross-sectional Case-Control Study.

    PubMed

    van der Heijden, Rianne A; de Kanter, Janneke L M; Bierma-Zeinstra, Sita M A; Verhaar, Jan A N; van Veldhoven, Peter L J; Krestin, Gabriel P; Oei, Edwin H G; van Middelkoop, Marienke

    2016-09-01

    Structural abnormalities of the patellofemoral joint might play a role in the pathogenesis of patellofemoral pain (PFP), a common knee problem among young and physically active individuals. No previous study has investigated if PFP is associated with structural abnormalities of the patellofemoral joint using high-resolution magnetic resonance imaging (MRI). To investigate the presence of structural abnormalities of the patellofemoral joint on high-resolution MRI in patients with PFP compared with healthy control subjects. Cross-sectional study; Level of evidence, 3. Patients with PFP and healthy control subjects between 14 and 40 years of age underwent high-resolution 3-T MRI. All images were scored using the Magnetic Resonance Imaging Osteoarthritis Knee Score with the addition of specific patellofemoral features. Associations between PFP and the presence of structural abnormalities were analyzed using logistic regression analyses adjusted for age, body mass index (BMI), sex, and sports participation. A total of 64 patients and 70 control subjects were included in the study. Mean ± SD age was 23.2 ± 6.4 years, mean BMI ± SD was 22.9 ± 3.4 kg/m(2), and 56.7% were female. Full-thickness cartilage loss was not present. Minor patellar cartilage defects, patellar bone marrow lesions, and high signal intensity of the Hoffa fat pad were frequently seen in both patients (23%, 53%, and 58%, respectively) and control subjects (21%, 51%, and 51%, respectively). After adjustment for age, BMI, sex, and sports participation, none of the structural abnormalities were statistically significantly associated with PFP. Structural abnormalities of the patellofemoral joint have been hypothesized as a factor in the pathogenesis of PFP, but the study findings suggest that structural abnormalities of the patellofemoral joint on MRI are not associated with PFP. © 2016 The Author(s).

  12. PREFACE: The Science of Making Torque from Wind 2014 (TORQUE 2014)

    NASA Astrophysics Data System (ADS)

    Mann, Jakob; Bak, Christian; Bechmann, Andreas; Bingöl, Ferhat; Dellwik, Ebba; Dimitrov, Nikolay; Giebel, Gregor; Hansen, Martin O. L.; Jensen, Dorte Juul; Larsen, Gunner; Aagaard Madsen, Helge; Natarajan, Anand; Rathmann, Ole; Sathe, Ameya; Nørkær Sørensen, Jens; Nørkær Sørensen, Niels

    2014-06-01

    The 186 papers in this volume constitute the proceedings of the fifth Science of Making Torque from Wind conference, which is organized by the European Academy of Wind Energy (EAWE, www.eawe.eu). The conference, also called Torque 2014, is held at the Technical University of Denmark (DTU) 17-20 June 2014. The EAWE conference series started in 2004 in Delft, the Netherlands. In 2007 it was held in Copenhagen, in 2010 in Heraklion, Greece, and then in 2012 in Oldenburg, Germany. The global yearly production of electrical energy by wind turbines has grown approximately by 25% annually over the last couple of decades and covers now 2-3% of the global electrical power consumption. In order to make a significant impact on one of the large challenges of our time, namely global warming, the growth has to continue for a decade or two yet. This in turn requires research and education in wind turbine aerodynamics and wind resources, the two topics which are the main subjects of this conference. Similar to the growth in electrical power production by wind is the growth in scientific papers about wind energy. Over the last decade the number of papers has also grown by about 25% annually, and many research based companies all over the world are founded. Hence, the wind energy research community is rapidly expanding and the Torque conference series offers a good opportunity to meet and exchange ideas. We hope that the Torque 2014 will heighten the quality of the wind energy research, while the participants will enjoy each others company in Copenhagen. Many people have been involved in producing the Torque 2014 proceedings. The work by more than two hundred reviewers ensuring the quality of the papers is greatly appreciated. The timely evaluation and coordination of the reviews would not have been possible without the work of sixteen ''section editors'' all from DTU Wind Energy: Christian Bak, Andreas Bechmann, Ferhat Bingöl, Ebba Dellwik, Nikolay Dimitrov, Gregor Giebel, Martin

  13. Design of a knee joint mechanism that adapts to individual physiology.

    PubMed

    Jiun-Yih Kuan; Pasch, Kenneth A; Herr, Hugh M

    2014-01-01

    This paper describes the design of a new knee joint mechanism, called the Adaptive Coupling Joint (ACJ). The new mechanism has an adaptive trajectory of the center of rotations (COR) that automatically matches those of the attached biological joint. The detailed design is presented as well as characterization results of the ACJ. Conventional exoskeleton and assistive devices usually consider limb joints as a one to three degrees of freedom (DOFs) joint synthesized by multiple one-DOF hinge joints in a single plane. However, the biological joints are complex and usually rotate with respect to a changing COR. As a result, the mismatch between limb joint motion and mechanical interface motion can lead to forces that cause undesired ligament and muscle length changes and internal mechanical changes. These undesired changes contribute to discomfort, as well as to the slippage and sluggish interaction between humans and devices. It is shown that the ACJ can transmit planetary torques from either active or passive devices to the limbs without altering the normal biological joint motion.

  14. Lunar and Solar Torques on the Oceanic Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Bills, Bruce G.; Chao, Benjamin F.

    1998-01-01

    Brosche and Seiler recently suggested that direct lunar and solar tidal torques on the oceanic tides play a significant role in the earth's short-period angular momentum balance ("short-period" here meaning daily and sub-daily). We reexamine that suggestion here, concentrating on axial torques and hence on variations in rotation rate. Only those spherical harmonic components of the ocean tide having the same degree and order as the tidal potential induce nonzero torques. Prograde components (those moving in the same direction as the tide-generating body) produce the familiar secular braking of the earth's rotation. Retrograde components, however, produce rapid variations in UTI at twice the tidal frequency. There also exist interaction torques between tidal constituents, e.g. solar torques on lunar tides. They generate UTI variations at frequencies equal to the sums and differences of the original tidal frequencies. We give estimates of the torques and angular momentum variations for each of the important regimes, secular to quarter-diurnal. For the M(sub 2) potential acting on the M(sub 2) ocean tide, we find an associated angular momentum variation of amplitude 3 x 10(exp 19) N m. This is 5 to 6 orders of magnitude smaller than the angular momentum variations associated with tidal currents. We conclude that these torques do not play a significant role in the short-period angular momentum balance.

  15. Work and Fatigue Characteristics of Unsuited and Suited Humans During Isolated, Isokinetic Joint Motions

    NASA Technical Reports Server (NTRS)

    Gonzalez, L. Javier; Maida, James C.; Miles, Erica H.; Rajulu, S. L.; Pandya, A. K.; Russo, Dane M. (Technical Monitor)

    2001-01-01

    The effects of a pressurized suit on human performance were investigated. The suit is known as an Extra-vehicular Mobility Unit (EMU) and is worn by astronauts while working outside of their space craft in low earth orbit. Isolated isokinetic joint torques of three female and three male subjects (all experienced users of the suit) were measured while working at 100% and 80% of their maximum voluntary torque (MVT). It was found that the average decrease in the total amount of work done when the subjects were wearing the EMU was 48% and 41% while working at 100% and 80% MVT, respectively. There is a clear relationship between the MVT and the time and amount of work done until fatigue. In general the stronger joints took longer to fatigue and did more work than the weaker joints. However, it is not clear which joints are most affected by the EMU suit in terms of the amount of work done. The average amount of total work done increased by 5.2% and 20.4% for the unsuited and suited cases, respectively, when the subject went from working at 100% to 80% MVT. Also, the average time to fatigue increased by 9.2% and 25.6% for the unsuited and suited cases, respectively, when the subjects went from working at 100% to 80% MVT. The EMU also decreased the joint range of motion. It was also found that the experimentally measured torque decay could be predicted by a logarithmic equation. The absolute average error in the predictions was found to be 18.3% and 18.9% for the unsuited and suited subject, respectively, working at 100% MVT, and 22.5% and 18.8% for the unsuited and suited subject, respectively, working at 80% MVT. These results could be very useful in the design of future EMU suits, and planning of Extra-Vehicular Activit). (EVA) for the upcoming International Space Station assembly operations.

  16. 14 CFR 25.361 - Engine torque.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 25.361 Section 25.361...

  17. 14 CFR 25.361 - Engine torque.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine torque. 25.361 Section 25.361...

  18. 14 CFR 25.361 - Engine torque.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine torque. 25.361 Section 25.361...

  19. 14 CFR 25.361 - Engine torque.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine torque. 25.361 Section 25.361...

  20. 14 CFR 25.361 - Engine torque.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine torque. 25.361 Section 25.361...

  1. Estimation of joint stiffness with a compliant load.

    PubMed

    Ludvig, Daniel; Kearney, Robert E

    2009-01-01

    Joint stiffness defines the dynamic relationship between the position of the joint and the torque acting about it. It consists of two components: intrinsic and reflex stiffness. Many previous studies have investigated joint stiffness in an open-loop environment, because the current algorithm in use is an open-loop algorithm. This paper explores issues related to the estimation of joint stiffness when subjects interact with compliant loads. First, we show analytically how the bias in closed-loop estimates of joint stiffness depends on the properties of the load, the noise power, and length of the estimated impulse response functions (IRF). We then demonstrate with simulations that the open-loop analysis will fail completely for an elastic load but may succeed for an inertial load. We further show that the open-loop analysis can yield unbiased results with an inertial load and document IRF length, signal-to-noise ratio needed, and minimum inertia needed for the analysis to succeed. Thus, by using a load with a properly selected inertia, open-loop analysis can be used under closed-loop conditions.

  2. Characterization of Nitinol Laser-Weld Joints by Nondestructive Testing

    NASA Astrophysics Data System (ADS)

    Wohlschlögel, Markus; Gläßel, Gunter; Sanchez, Daniela; Schüßler, Andreas; Dillenz, Alexander; Saal, David; Mayr, Peter

    2015-12-01

    Joining technology is an integral part of today's Nitinol medical device manufacturing. Besides crimping and riveting, laser welding is often applied to join components made from Nitinol to Nitinol, as well as Nitinol components to dissimilar materials. Other Nitinol joining techniques include adhesive bonding, soldering, and brazing. Typically, the performance of joints is assessed by destructive mechanical testing, on a process validation base. In this study, a nondestructive testing method—photothermal radiometry—is applied to characterize small Nitinol laser-weld joints used to connect two wire ends via a sleeve. Two different wire diameters are investigated. Effective joint connection cross sections are visualized using metallography techniques. Results of the nondestructive testing are correlated to data from destructive torsion testing, where the maximum torque at fracture is evaluated for the same joints and criteria for the differentiation of good and poor laser-welding quality by nondestructive testing are established.

  3. Chronic Plantarflexor Stretching During Ankle Immobilization Helps Preserve Calf Girth, Plantarflexion Peak Torque, and Ankle Dorsiflexion Motion.

    PubMed

    Wilson, Samantha; Christensen, Bryan; Gange, Kara; Todden, Christopher; Hatterman-Valenti, Harlene; Albrecht, Jay M

    2017-09-27

    Chronic plantarflexor (PF) stretching during ankle immobilization helps preserve calf girth, plantarflexion peak torque, and ankle dorsiflexion (DF) motion. Immobilization can lead to decreases in muscle peak torque, muscle size, and joint ROM. Recurrent static stretching during a period of immobilization may reduce the extent of these losses. To investigate the effects of chronic static stretching on PF peak torque, calf girth, and DF range of motion (ROM) after two weeks of ankle immobilization. Randomized controlled clinical trial. Athletic training facility. Thirty-six healthy college-aged (19.81±2.48) females. Subjects were randomly assigned to one of three groups: control group, immobilized group (IM), and immobilized plus stretching group (IM+S). Each group participated in a familiarization period, a pre-test, and, two weeks later, a post-test. The IM group and IM+S group wore the Aircast FP Walker for two weeks on the left leg. During this time, the IM+S group participated in a stretching program, which consisted of two 10-minute stretching procedures each day for the 14 days. One-way ANOVA was used to determine differences in the change of ankle girth, PF peak torque, and DF ROM between groups with an α level of < 0.05. A significant difference was noted between groups in girth (F 2,31 =5.64, P=0.009), DF ROM (F 2,31 =26.13, P<0.0001), and PF peak torque (F 2,31 =7.74, P=0.002). Post-hoc testing also showed a significance difference between change in calf girth of the control group compared to the IM group (P=0.007) and a significant difference in change of peak torque in the IM+S group and the IM group (P=0.001). Also, a significant difference was shown in DF ROM between the control group and IM+S group (P=0.006), the control group and the IM group (P<0.0001), and the IM+S group and the IM group (P<0.0001). Chronic static stretching during two weeks of immobilization may decrease the loss of calf girth, ankle PF peak torque, and ankle DF ROM.

  4. Torque and Muscle Activation Impairment Along With Insulin Resistance Are Associated With Falls in Women With Fibromyalgia.

    PubMed

    Góes, Suelen M; Stefanello, Joice M F; Homann, Diogo; Lodovico, Angélica; Hubley-Kozey, Cheryl L; Rodacki, André L F

    2016-11-01

    Góes, SM, Stefanello, JMF, Homann, D, Lodovico, A, Hubley-Kozey, CL, and Rodacki, ALF. Torque and muscle activation impairment along with insulin resistance are associated with falls in women with fibromyalgia. J Strength Cond Res 30(11): 3155-3164, 2016-Fibromyalgia (FM) is a chronic pain condition associated with reduced muscle strength, which can lead to functional incapacity and higher risk of falls. The purpose of the study was to compare maximal ankle joint torque, muscle activation, and metabolic changes between women with and without FM. In addition, the relationship between those aspects and retrospectively reported falls in women with FM was determined. Twenty-nine middle-aged women with FM and 30 controls were recruited. Fall history, pain intensity, and pain threshold were assessed. Plasma glucose levels and insulin resistance (IR) were determined. Peak torque and rate of torque development (RTD) were calculated, and muscle activation was assessed from maximum isometric voluntary ankle dorsiflexion and plantar flexion contractions. In addition, voluntary muscle activation failure of the anterior tibialis muscle during maximal dorsiflexion was calculated. When compared to controls, women with FM reported higher number of retrospectively reported falls, exhibited higher IR, showed reduced plantar flexion and dorsiflexion RTD, had lower plantar flexion peak torque, and demonstrated more antagonist coactivation and higher muscle activation failure (p ≤ 0.05). Higher muscle activation failure was explained by glucose level and pain intensity (adj R = 0.28; p ≤ 0.05). Reduced plantar flexion and dorsiflexion peak torque explained 80% of retrospectively reported falls variance; also, high antagonist coactivation (odds ratio [OR] = 1.6; p ≤ 0.05) and high IR (OR = 1.8; p ≤ 0.05) increased the chance of falls in the FM group. A combination of metabolic factors and muscle function increased the odds of retrospectively reporting a fall in FM. Both aspects

  5. 40 CFR 1066.240 - Torque transducer verification and calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.240 Torque transducer verification and calibration. Calibrate torque-measurement systems as described in 40 CFR 1065.310. ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Torque transducer verification and...

  6. 40 CFR 1066.240 - Torque transducer verification and calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.240 Torque transducer verification and calibration. Calibrate torque-measurement systems as described in 40 CFR 1065.310. ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Torque transducer verification and...

  7. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1... rational analysis, a factor of 1.6 must be used. (b) For turbine engine installations, the engine mounts... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine torque. 23.361 Section 23.361...

  8. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1... rational analysis, a factor of 1.6 must be used. (b) For turbine engine installations, the engine mounts... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine torque. 23.361 Section 23.361...

  9. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1... rational analysis, a factor of 1.6 must be used. (b) For turbine engine installations, the engine mounts... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine torque. 23.361 Section 23.361...

  10. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1... rational analysis, a factor of 1.6 must be used. (b) For turbine engine installations, the engine mounts... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine torque. 23.361 Section 23.361...

  11. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1... rational analysis, a factor of 1.6 must be used. (b) For turbine engine installations, the engine mounts... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 23.361 Section 23.361...

  12. Displacement of Implant Abutments Following Initial and Repeated Torqueing.

    PubMed

    Yilmaz, Burak; Gilbert, Andy B; Seidt, Jeremy D; McGlumphy, Edwin A; Clelland, Nancy L

    2015-01-01

    To measure and compare the three-dimensional (3D) position of nine different abutments manufactured by different manufacturers after repeated torqueing on an internal-hexagon implant. Nine tapered implants were placed into an acrylic resin block. Five specimens each of nine different abutments (n = 45) were placed into one of nine implants. The abutments were handtightened and then torqued to the manufacturer-recommended torque of 30 Ncm. After 10 minutes, 30 Ncm of torque was reapplied. Another 10 minutes elapsed before testing was completed. Images were recorded in 12-second intervals. The spatial relationship of the abutments to the resin block was determined using 3D digital image correlation. Commercial image correlation software was used to analyze the displacements. Mean displacements for the abutments were calculated in three dimensions and overall for both torque applications. Statistical comparisons were done with a t test and a step-down Bonferroni correction. The overall 3D displacement of the Atlantis Titanium abutment after the second applied torque was significantly greater than that of two of the eight other abutments. Displacement in all three dimensions for the Atlantis Titanium abutment changed direction between the first and second torque applications. All abutments moved further in the same direction except for the Atlantis Titanium abutment, which moved back toward its original hand-tightened position horizontally after the second torque application. Re-torqueing of abutments after a 10-minute interval leads to minor displacement of varying degrees between the abutment and a tapered implant. A potential effect of embedment relaxation and/or manufacturing errors should be taken into consideration when selecting an abutment for a cement-retained crown on a tapered implant. Accordingly, clinicians may benefit from adjusting cement-retained implant crowns after re-torqueing the abutments to prevent potential occlusal and interproximal contact

  13. Effect of long-term steam autoclaving on changes in torque delivery of spring- and friction-type torque wrenches.

    PubMed

    Yilmaz, Burak; L'Homme-Langlois, Emilie; Beck, Frank M; McGlumphy, Edwin

    2016-06-01

    Two types of mechanical torque-limiting devices (MTLD) are available: friction-style and spring-style. Limited information is available regarding the accuracy of different types of MTLDs after sterilization. The purpose of this in vitro study was to determine the accuracy of MTLDs after sterilization. Three new friction-style and 3 new spring-style MTLDs (Astra Tech/Dentsply, Zimmer Dental, Biohorizons, Biomet 3i, Straumann [ITI] and Nobel Biocare; n=5 per manufacturer; 30 total) were selected to evaluate their accuracy in delivering the target torque values preset by their manufacturers before and after sterilization. Target torque measurements were made with a digital torque gauge (model DFS2-R-ND; Chatillon) 10 times for each device. All MTLDs were sterilized following the manufacturers' recommendations. The sterilization procedure was repeated 100 times, and the accuracy of all MTLDs was retested. Absolute torque differences were analyzed using a repeated measures analysis of variance with instrument as the repeated factor. MTLD type (friction or spring) and MTLD status (new or autoclaved) were the independent variables. Post hoc testing was done using the Tukey method for balanced data. No significant difference was found between the spring-style and friction-style MTLDs or within the spring-style and friction-style MTLDs before and after sterilization (P>.05). After 100 cycles of steam autoclaving, the accuracy of spring-style and friction-style MTLDs was similar. All MTLDs fell within ±10% of the target torque value before and after sterilization. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Maximum Torque and Momentum Envelopes for Reaction Wheel Arrays

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Reynolds, Reid G.; Liu, Frank X.; Lebsock, Kenneth L.

    2009-01-01

    Spacecraft reaction wheel maneuvers are limited by the maximum torque and/or angular momentum that the wheels can provide. For an n-wheel configuration, the torque or momentum envelope can be obtained by projecting the n-dimensional hypercube, representing the domain boundary of individual wheel torques or momenta, into three dimensional space via the 3xn matrix of wheel axes. In this paper, the properties of the projected hypercube are discussed, and algorithms are proposed for determining this maximal torque or momentum envelope for general wheel configurations. Practical strategies for distributing a prescribed torque or momentum among the n wheels are presented, with special emphasis on configurations of four, five, and six wheels.

  15. Spin-Orbit Torques and Anisotropic Magnetization Damping in Skyrmion Crystals

    NASA Astrophysics Data System (ADS)

    Hals, Kjetil; Brataas, Arne

    2014-03-01

    We theoretically study the effects of reactive and dissipative homogeneous spin-orbit torques and anisotropic damping on the current-driven skyrmion dynamics in cubic chiral magnets. Our results demonstrate that spin-orbit torques play a significant role in the current-induced skyrmion velocity. The dissipative spin-orbit torque generates a relativistic Magnus force on the skyrmions, whereas the reactive spin-orbit torque yields a correction to both the drift velocity along the current direction and the transverse velocity associated with the Magnus force. The spin-orbit torque corrections to the velocity scale linearly with the skyrmion size, which is inversely proportional to the spin-orbit coupling. Consequently, the reactive spin-orbit torque correction can be the same order of magnitude as the non-relativistic contribution. More importantly, the dissipative spin-orbit torque can be the dominant force that causes a deflected motion of the skyrmions if the torque exhibits a linear or quadratic relationship with the spin-orbit coupling. In addition, we demonstrate that the skyrmion velocity is determined by anisotropic magnetization damping parameters governed by the skyrmion size.

  16. Characteristic Magnetic Resonance Imaging Findings in Rheumatoid Arthritis of the Temporomandibular Joint: Focus on Abnormal Bone Marrow Signal of the Mandibular Condyle, Pannus, and Lymph Node Swelling in the Parotid Glands.

    PubMed

    Hirahara, Naohisa; Kaneda, Takashi; Muraoka, Hirotaka; Fukuda, Taiga; Ito, Kotaro; Kawashima, Yusuke

    2017-04-01

    The purpose of this study was to determine the characteristic magnetic resonance imaging (MRI) findings indicating bone and soft tissue involvement in patients with rheumatoid arthritis (RA) of the temporomandibular joints (TMJs). Twenty-one patients with RA and TMJ pain who underwent MRI examination of the TMJs at the authors' hospital from August 2006 to December 2014 were included in this study. Twenty-two patients with normal TMJs who underwent MRI examination at the authors' hospital from November to December 2014 were included as controls. MRI findings were compared between the 2 groups. MRI findings of RA in the TMJ included 1) abnormal disc position (95.2%), 2) abnormal disc morphology (83.3%), 3) joint effusion (30.9%), 4) osseous changes in the mandibular condyle (83.3%), 5) synovial proliferation (pannus; 85.7%), 6) erosion of the articular eminence and glenoid fossa (9.52%), 7) deformity of the articular eminence and glenoid fossa (16.6%), 8) abnormal bone marrow signal in the mandibular condyle (83.3%), and 9) swelling of lymph nodes in the parotid glands (78.5%). The abnormal bone marrow signal and pannus in the mandibular condyle and lymph node swelling in the parotid glands were markedly more common in patients with RA than in controls. MRI findings of RA of the TMJs were characterized by bone and soft tissue involvement, including abnormal bone marrow signal of the mandibular condyle, pannus, and swelling of lymph nodes in the parotid glands. These characteristic MRI findings could be useful in detecting RA in the TMJ in a clinical situation. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Torque during canal instrumentation using rotary nickel-titanium files.

    PubMed

    Sattapan, B; Palamara, J E; Messer, H H

    2000-03-01

    Nickel-titanium engine-driven rotary instruments are used increasingly in endodontic practice. One frequently mentioned problem is fracture of an instrument in the root canal. Very few studies have been conducted on torsional characteristics of these instruments, and none has been done under dynamic conditions. The purposes of this study were to measure the torque generated and the apical force applied during instrumentation with a commercial engine-driven nickel-titanium file system, and to relate torque generated during simulated clinical use to torsional failure of the instruments. Ten extracted human teeth (five with small-sized and five with medium-sized straight root canals) were instrumented with Quantec Series 2000 files, and the torque and apical force generated were measured. The applied apical force was generally low, not exceeding 150 g in either small or medium canals. The torque depended on the tip size and taper of each instrument, and on canal size. Instruments with 0.05 and 0.06 taper generated the highest torque, which was greater in small than in medium canals. The torque at failure was significantly (p < 0.001) higher than torque during instrumentation, but with considerable variation in the extent of the difference.

  18. Spin-orbit torques and anisotropic magnetization damping in skyrmion crystals

    NASA Astrophysics Data System (ADS)

    Hals, Kjetil M. D.; Brataas, Arne

    2014-02-01

    The length scale of the magnetization gradients in chiral magnets is determined by the relativistic Dzyaloshinskii-Moriya interaction. Thus, even conventional spin-transfer torques are controlled by the relativistic spin-orbit coupling in these systems, and additional relativistic corrections to the current-induced torques and magnetization damping become important for a complete understanding of the current-driven magnetization dynamics. We theoretically study the effects of reactive and dissipative homogeneous spin-orbit torques and anisotropic damping on the current-driven skyrmion dynamics in cubic chiral magnets. Our results demonstrate that spin-orbit torques play a significant role in the current-induced skyrmion velocity. The dissipative spin-orbit torque generates a relativistic Magnus force on the skyrmions, whereas the reactive spin-orbit torque yields a correction to both the drift velocity along the current direction and the transverse velocity associated with the Magnus force. The spin-orbit torque corrections to the velocity scale linearly with the skyrmion size, which is inversely proportional to the spin-orbit coupling. Consequently, the reactive spin-orbit torque correction can be the same order of magnitude as the nonrelativistic contribution. More importantly, the dissipative spin-orbit torque can be the dominant force that causes a deflected motion of the skyrmions if the torque exhibits a linear or quadratic relationship with the spin-orbit coupling. In addition, we demonstrate that the skyrmion velocity is determined by anisotropic magnetization damping parameters governed by the skyrmion size.

  19. Spin currents and spin-orbit torques in ferromagnetic trilayers.

    PubMed

    Baek, Seung-Heon C; Amin, Vivek P; Oh, Young-Wan; Go, Gyungchoon; Lee, Seung-Jae; Lee, Geun-Hee; Kim, Kab-Jin; Stiles, M D; Park, Byong-Guk; Lee, Kyung-Jin

    2018-06-01

    Magnetic torques generated through spin-orbit coupling 1-8 promise energy-efficient spintronic devices. For applications, it is important that these torques switch films with perpendicular magnetizations without an external magnetic field 9-14 . One suggested approach 15 to enable such switching uses magnetic trilayers in which the torque on the top magnetic layer can be manipulated by changing the magnetization of the bottom layer. Spin currents generated in the bottom magnetic layer or its interfaces transit the spacer layer and exert a torque on the top magnetization. Here we demonstrate field-free switching in such structures and show that its dependence on the bottom-layer magnetization is not consistent with the anticipated bulk effects 15 . We describe a mechanism for spin-current generation 16,17 at the interface between the bottom layer and the spacer layer, which gives torques that are consistent with the measured magnetization dependence. This other-layer-generated spin-orbit torque is relevant to energy-efficient control of spintronic devices.

  20. Optimization of the Robotic Joint Equipped with Epicyloidal Gear and Direct Drive for Space Applications

    NASA Astrophysics Data System (ADS)

    Seweryn, Karol; Grassmann, Kamil; Ciesielska, Monika; Rybus, Tomasz; Turek, Michal

    2013-09-01

    One of the most critical element in the orbital manipulators are kinematic joints. Joints must be adapted to work in tough conditions of space environment and must ensure the greatest efficiency and work without backlash. At the Space Mechatronics and Robotics Laboratory (LMRS) of the Space Research Centre, PAS our team designed and built a lightweight kinematic pair based on a new concept. The new concept is based on the epicycloid two-stage gearbox with torque motor. In this paper we have focused on optimization of the joint design for space application. The optimization was focused on the minimization of the mass and backlash effects and on maximizing the joint efficiency.

  1. Mechanical stability of the subtalar joint after lateral ligament sectioning and ankle brace application: a biomechanical experimental study.

    PubMed

    Kamiya, Tomoaki; Kura, Hideji; Suzuki, Daisuke; Uchiyama, Eiichi; Fujimiya, Mineko; Yamashita, Toshihiko

    2009-12-01

    The roles of each ligament supporting the subtalar joint have not been clarified despite several biomechanical studies. The effects of ankle braces on subtalar instability have not been shown. The ankle brace has a partial effect on restricting excessive motion of the subtalar joint. Controlled laboratory study. Ten normal fresh-frozen cadaveric specimens were used. The angular motions of the talus were measured via a magnetic tracking system. The specimens were tested while inversion and eversion forces, as well as internal and external rotation torques, were applied. The calcaneofibular ligament, cervical ligament, and interosseous talocalcaneal ligament were sectioned sequentially, and the roles of each ligament, as well as the stabilizing effects of the ankle brace, were examined. Complete sectioning of the ligaments increased the angle between the talus and calcaneus in the frontal plane to 51.7 degrees + or - 11.8 degrees compared with 35.7 degrees + or - 6.0 degrees in the intact state when inversion force was applied. There was a statistically significant difference in the angles between complete sectioning of the ligaments and after application of the brace (34.1 degrees + or - 7.3 degrees ) when inversion force was applied. On the other hand, significant differences in subtalar rotation were not found between complete sectioning of the ligaments and application of the brace when internal and external rotational torques were applied. The ankle brace limited inversion of the subtalar joint, but it did not restrict motion after application of internal or external rotational torques. In cases of severe ankle sprains involving the calcaneofibular ligament, cervical ligament, and interosseous talocalcaneal ligament injuries, application of an ankle brace might be less effective in limiting internal-external rotational instabilities than in cases of inversion instabilities in the subtalar joint. An improvement in the design of the brace is needed to restore

  2. Torque-onset determination: Unintended consequences of the threshold method.

    PubMed

    Dotan, Raffy; Jenkins, Glenn; O'Brien, Thomas D; Hansen, Steve; Falk, Bareket

    2016-12-01

    Compared with visual torque-onset-detection (TOD), threshold-based TOD produces onset bias, which increases with lower torques or rates of torque development (RTD). To compare the effects of differential TOD-bias on common contractile parameters in two torque-disparate groups. Fifteen boys and 12 men performed maximal, explosive, isometric knee-extensions. Torque and EMG were recorded for each contraction. Best contractions were selected by peak torque (MVC) and peak RTD. Visual-TOD-based torque-time traces, electromechanical delays (EMD), and times to peak RTD (tRTD) were compared with corresponding data derived from fixed 4-Nm- and relative 5%MVC-thresholds. The 5%MVC TOD-biases were similar for boys and men, but the corresponding 4-Nm-based biases were markedly different (40.3±14.1 vs. 18.4±7.1ms, respectively; p<0.001). Boys-men EMD differences were most affected, increasing from 5.0ms (visual) to 26.9ms (4Nm; p<0.01). Men's visually-based torque kinetics tended to be faster than the boys' (NS), but the 4-Nm-based kinetics erroneously depicted the boys as being much faster to any given %MVC (p<0.001). When comparing contractile properties of dissimilar groups, e.g., children vs. adults, threshold-based TOD methods can misrepresent reality and lead to erroneous conclusions. Relative-thresholds (e.g., 5% MVC) still introduce error, but group-comparisons are not confounded. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Magnetic torque on a rotating superconducting sphere

    NASA Technical Reports Server (NTRS)

    Holdeman, L. B.

    1975-01-01

    The London theory of superconductivity is used to calculate the torque on a superconducting sphere rotating in a uniform applied magnetic field. The London theory is combined with classical electrodynamics for a calculation of the direct effect of excess charge on a rotating superconducting sphere. Classical electrodynamics, with the assumption of a perfect Meissner effect, is used to calculate the torque on a superconducting sphere rotating in an arbitrary magnetic induction; this macroscopic approach yields results which are correct to first order. Using the same approach, the torque due to a current loop encircling the rotating sphere is calculated.

  4. Diffusion of torqued active particles

    NASA Astrophysics Data System (ADS)

    Sandoval, Mario; Lauga, Eric

    2012-11-01

    Motivated by swimming microorganisms whose trajectories are affected by the presence of an external torque, we calculate the diffusivity of an active particle subject to an external torque and in a fluctuating environment. The analytical results are compared with Brownian dynamics simulations showing excellent agreement between theory and numerical experiments. This work was funded in part by the Consejo Nacional de Ciencia y Tecnologia of Mexico (Conacyt postdoctoral fellowship to M. S.) and the US National Science Foundation (Grant CBET-0746285 to E.L.).

  5. Low mass planet migration in magnetically torqued dead zones - II. Flow-locked and runaway migration, and a torque prescription

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan

    2018-04-01

    We examine the migration of low mass planets in laminar protoplanetary discs, threaded by large scale magnetic fields in the dead zone that drive radial gas flows. As shown in Paper I, a dynamical corotation torque arises due to the flow-induced asymmetric distortion of the corotation region and the evolving vortensity contrast between the librating horseshoe material and background disc flow. Using simulations of laminar torqued discs containing migrating planets, we demonstrate the existence of the four distinct migration regimes predicted in Paper I. In two regimes, the migration is approximately locked to the inward or outward radial gas flow, and in the other regimes the planet undergoes outward runaway migration that eventually settles to fast steady migration. In addition, we demonstrate torque and migration reversals induced by midplane magnetic stresses, with a bifurcation dependent on the disc surface density. We develop a model for fast migration, and show why the outward runaway saturates to a steady speed, and examine phenomenologically its termination due to changing local disc conditions. We also develop an analytical model for the corotation torque at late times that includes viscosity, for application to discs that sustain modest turbulence. Finally, we use the simulation results to develop torque prescriptions for inclusion in population synthesis models of planet formation.

  6. Low-mass planet migration in magnetically torqued dead zones - II. Flow-locked and runaway migration, and a torque prescription

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan

    2018-07-01

    We examine the migration of low-mass planets in laminar protoplanetary discs, threaded by large-scale magnetic fields in the dead zone that drive radial gas flows. As shown in Paper I, a dynamical corotation torque arises due to the flow-induced asymmetric distortion of the corotation region and the evolving vortensity contrast between the librating horseshoe material and background disc flow. Using simulations of laminar torqued discs containing migrating planets, we demonstrate the existence of the four distinct migration regimes predicted in Paper I. In two regimes, the migration is approximately locked to the inward or outward radial gas flow, and in the other regimes the planet undergoes outward runaway migration that eventually settles to fast steady migration. In addition, we demonstrate torque and migration reversals induced by mid-plane magnetic stresses, with a bifurcation dependent on the disc surface density. We develop a model for fast migration, and show why the outward runaway saturates to a steady speed, and examine phenomenologically its termination due to changing local disc conditions. We also develop an analytical model for the corotation torque at late times that includes viscosity, for application to discs that sustain modest turbulence. Finally, we use the simulation results to develop torque prescriptions for inclusion in population synthesis models of planet formation.

  7. Eddy Current Sensing of Torque in Rotating Shafts

    NASA Astrophysics Data System (ADS)

    Varonis, Orestes J.; Ida, Nathan

    2013-12-01

    The noncontact torque sensing in machine shafts is addressed based on the stress induced in a press-fitted magnetoelastic sleeve on the shaft and eddy current sensing of the changes of electrical conductivity and magnetic permeability due to the presence of stress. The eddy current probe uses dual drive, dual sensing coils whose purpose is increased sensitivity to torque and decreased sensitivity to variations in distance between probe and shaft (liftoff). A mechanism of keeping the distance constant is also employed. Both the probe and the magnetoelastic sleeve are evaluated for performance using a standard eddy current instrument. An eddy current instrument is also used to drive the coils and analyze the torque data. The method and sensor described are general and adaptable to a variety of applications. The sensor is suitable for static and rotating shafts, is independent of shaft diameter and operational over a large range of torques. The torque sensor uses a differential eddy current measurement resulting in cancellation of common mode effects including temperature and vibrations.

  8. Cogging Torque Reduction Techniques for Spoke-type IPMSM

    NASA Astrophysics Data System (ADS)

    Bahrim, F. S.; Sulaiman, E.; Kumar, R.; Jusoh, L. I.

    2017-08-01

    A spoke-type interior permanent magnet synchronous motor (IPMSM) is extending its tentacles in industrial arena due to good flux-weakening capability and high power density. In many of the application, high strength of permanent magnet causes the undesirable effects of high cogging torque that can aggravate performance of the motor. High cogging torque is significantly produced by IPMSM due to the similar length and the effectiveness of the magnetic air-gap. The address of this study is to analyze and compare the cogging torque effect and performance of four common techniques for cogging torque reduction such as skewing, notching, pole pairing and rotor pole pairing. With the aid of 3-D finite element analysis (FEA) by JMAG software, a 6S-4P Spoke-type IPMSM with various rotor-PM configurations has been designed. As a result, the cogging torque effect reduced up to 69.5% for skewing technique, followed by 31.96%, 29.6%, and 17.53% by pole pairing, axial pole pairing and notching techniques respectively.

  9. Spin-transfer torque in spin filter tunnel junctions

    NASA Astrophysics Data System (ADS)

    Ortiz Pauyac, Christian; Kalitsov, Alan; Manchon, Aurelien; Chshiev, Mairbek

    2014-12-01

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green's function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  10. Maximum Torque and Momentum Envelopes for Reaction Wheel Arrays

    NASA Technical Reports Server (NTRS)

    Reynolds, R. G.; Markley, F. Landis

    2001-01-01

    Spacecraft reaction wheel maneuvers are limited by the maximum torque and/or angular momentum which the wheels can provide. For an n-wheel configuration, the torque or momentum envelope can be obtained by projecting the n-dimensional hypercube, representing the domain boundary of individual wheel torques or momenta, into three dimensional space via the 3xn matrix of wheel axes. In this paper, the properties of the projected hypercube are discussed, and algorithms are proposed for determining this maximal torque or momentum envelope for general wheel configurations. Practical implementation strategies for specific wheel configurations are also considered.

  11. Protection of the temporomandibular joint during syndromic neonatal mandibular distraction using condylar unloading.

    PubMed

    Fan, Kenneth; Andrews, Brian T; Liao, Eileen; Allam, Karam; Raposo Amaral, Cesar Augusto; Bradley, James P

    2012-05-01

    Neonatal distraction in severe micrognathia patients may alleviate the need for tracheostomy. The authors' objectives in evaluating syndromic neonatal distraction cases were to: (1) document preoperative temporomandibular joint pathology, (2) compare the incidence of postoperative temporomandibular joint ankylosis, and (3) determine whether "unloading" the condyle tended to prevent temporomandibular joint pathology. Syndromic versus nonsyndromic micrognathic (and normal) patient temporomandibular joint abnormalities were compared preoperatively based on computed tomography scans and incisor opening (n = 110). Patient temporomandibular joint outcomes after neonatal mandibular distraction were compared with regard to ankylosis (n = 59). Condylar-loaded versus condylar-unloaded (with class II intermaxillary elastics) temporomandibular joint outcomes were compared based on imaging and the need for joint reconstruction (n = 25). Preoperative abnormalities of neonatal temporomandibular joint pathology on computed tomography scans were not significant: syndromic, 15 percent; nonsyndromic, 5.9 percent; and normal joints, 4.2 percent. Syndromic patients had a significantly greater interincisor distance decrease postoperatively (48 percent; p < 0.05) and at 1-year follow-up (28 percent; p < 0.05) compared with nonsyndromic patients. Also, computed tomography scans revealed that 28 percent of syndromic patients developed temporomandibular joint abnormalities, whereas nonsyndromic patients were unchanged. Condylar-loaded patients had worse clinical outcomes compared with condylar-unloaded patients (80 percent versus 7 percent) and required temporomandibular joint reconstruction for bony ankylosis (40 percent versus 0 percent) after distraction. Neonatal syndromic, micrognathia patients have increased temporomandibular joint pathology preoperatively and bony ankylosis after distraction but are protected with partial unloading of the condyle during distraction. Risk, II

  12. Reconstruction of equilibrium trajectories and joint stiffness patterns during single-joint voluntary movements under different instructions.

    PubMed

    Latash, M L

    1994-01-01

    A method for reconstructing joint compliant characteristics during voluntary movements was applied to the analysis of oscillatory and unidirectional elbow flexion movements. In different series, the subjects were given one of the following instructions: (1) do not intervene voluntarily; (2) keep the trajectory; (3) in cases of perturbations, return back to the starting position as quickly as possible (only during unidirectional movements). Under the instruction 'keep trajectory', the apparent joint stiffness increased by 50% to 250%. During oscillatory movements, this was accompanied by a decrease in the maximal difference between the actual and equilibrium joint trajectories and, in several cases, led to a change in the phase relation between the two trajectories. The coefficients of correlation between joint torque and angle were very high (commonly, over 0.9) under the 'do not intervene' instruction. They dropped to about 0.6 under the 'keep trajectory' and to about 0.3 under the 'return back' instructions. Under these two instructions, the low values of the coefficients of correlation did not allow reconstruction of segments of equilibrium trajectories and joint stiffness values in all the subjects. The results provide further support for the lambda-version of the equilibrium-point hypothesis and for using the instruction 'do not intervene voluntarily' to obtain reproducible time patterns of the central motor command.

  13. Modeling of toroidal torques exerted by internal kink instability in a tokamak plasma

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Liu, Y. Q.; Yu, D. L.; Wang, S.; Xia, G. L.; Dong, G. Q.; Bai, X.

    2017-08-01

    Toroidal modeling efforts are initiated to systematically compute and compare various toroidal torques, exerted by an unstable internal kink in a tokamak plasma, using the MARS-F/K/Q suite of codes. The torques considered here include the resonant electromagnetic torque due to the Maxwell stress (the EM or JXB torque), the neoclassical toroidal viscous (NTV) torque, and the torque associated with the Reynolds stress. Numerical results show that the relative magnitude of the net resonant electromagnetic and the Reynolds stress torques increases with the equilibrium flow speed of the plasma, whilst the net NTV torque follows the opposite trend. The global flow shear sensitively affects the Reynolds stress torque, but not the electromagnetic and the NTV torques. Detailed examinations reveal dominant contributions to the Maxwell and Reynolds stress torques, in terms of the poloidal harmonic numbers of various perturbation fields, as well as their relative toroidal phasing.

  14. Tool for Coupling a Torque Wrench to a Round Cable Connector

    NASA Technical Reports Server (NTRS)

    Hacker, Scott C.; Dean, Richard J.; Burge, Scott W.

    2006-01-01

    A tool makes it possible to couple a torque wrench to an externally knurled, internally threaded, round cable connector. The purpose served by the tool is to facilitate the tightening of multiple such connectors (or the repeated tightening of the same connector) to repeatable torques. The design of a prior cable-connector/ torque-wrench coupling tool provided for application of the torque-wrench jaws to a location laterally offset from the axis of rotation of the cable connector, making it necessary to correct the torque reading for the offset. Unlike the design of the prior tool, the design of the present tool provides for application of the torque-wrench jaws to a location on the axis of rotation, obviating correction of the torque reading for offset. The present tool (see figure) consists of a split collet containing a slot that provides clearance for inserting and bending the cable, a collet-locking sleeve, a collet-locking nut, and a torque-wrench adaptor that is press-fit onto the collet. Once the collet is positioned on the cable connector, the collet-locking nut is turned to force the collet-locking sleeve over the collet, compressing the collet through engagement of tapered surfaces on the outside of the collet and the inside of the locking sleeve. Because the collet is split and therefore somewhat flexible, this compression forces the collet inward to grip the connector securely. The torque wrench is then applied to the torque-wrench adaptor in the usual manner for torquing a nut or a bolt.

  15. Radiation Forces and Torques without Stress (Tensors)

    ERIC Educational Resources Information Center

    Bohren, Craig F.

    2011-01-01

    To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce…

  16. Feasibility study for convertible engine torque converter

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The feasibility study has shown that a dump/fill type torque converter has excellent potential for the convertible fan/shaft engine. The torque converter space requirement permits internal housing within the normal flow path of a turbofan engine at acceptable engine weight. The unit permits operating the engine in the turboshaft mode by decoupling the fan. To convert to turbofan mode, the torque converter overdrive capability bring the fan speed up to the power turbine speed to permit engagement of a mechanical lockup device when the shaft speed are synchronized. The conversion to turbofan mode can be made without drop of power turbine speed in less than 10 sec. Total thrust delivered to the aircraft by the proprotor, fan, and engine during tansient can be controlled to prevent loss of air speed or altitude. Heat rejection to the oil is low, and additional oil cooling capacity is not required. The turbofan engine aerodynamic design is basically uncompromised by convertibility and allows proper fan design for quiet and efficient cruise operation. Although the results of the feasibility study are exceedingly encouraging, it must be noted that they are based on extrapolation of limited existing data on torque converters. A component test program with three trial torque converter designs and concurrent computer modeling for fluid flow, stress, and dynamics, updated with test results from each unit, is recommended.

  17. Laron syndrome abnormalities: spinal stenosis, os odontoideum, degenerative changes of the atlanto-odontoid joint, and small oropharynx.

    PubMed

    Kornreich, Liora; Horev, Gadi; Schwarz, Michael; Karmazyn, Boaz; Laron, Zvi

    2002-04-01

    Patients with Laron syndrome have an inborn growth hormone resistance. We investigated abnormalities in the upper airways and cervical spine in patients with Laron syndrome. We prospectively examined 11 patients (one child aged 9 years and 10 adults aged 36-68 years), 10 of whom underwent MR imaging of the spine or head; nine, radiography of the cervical spine; and four, CT of C1-C2. The width of the spinal canal was evaluated visually and quantitatively and compared with reference values. The smallest diameter of the oropharynx and the thickness of the palate were measured and compared with reference values. Nine age-matched female patients referred for MR imaging for unrelated reasons served as control subjects. Cervical spinal stenosis was present in seven of the adult patients, within a confidence interval of 95%. Anomaly of the dens compatible with os odontoideum was present in three patients, causing focal myelomalacia in two. The atlanto-odontoid joint showed osteoarthritic changes in six of the adult patients. The mediolateral diameter of the oropharynx was significantly smaller in the patients with Laron syndrome than in the control subjects (P <.005). There was no difference in the thickness of the soft palate. Patients with Laron syndrome develop significant narrowing of the cervical spinal canal and early degenerative changes of the atlanto-odontoid joint. Laron syndrome is associated with os odontoideum causing myelomalacia. The dimensions of the oropharynx are small. Patients may be prone to neurologic morbidity and sleep disturbances. Routine MR imaging of the cervical spine is recommended in these patients.

  18. Kinetic magnetic resonance imaging analysis of abnormal segmental motion of the functional spine unit.

    PubMed

    Kong, Min Ho; Hymanson, Henry J; Song, Kwan Young; Chin, Dong Kyu; Cho, Yong Eun; Yoon, Do Heum; Wang, Jeffrey C

    2009-04-01

    The authors conducted a retrospective observational study using kinetic MR imaging to investigate the relationship between instability, abnormal sagittal segmental motion, and radiographic variables consisting of intervertebral disc degeneration, facet joint osteoarthritis (FJO), degeneration of the interspinous ligaments, ligamentum flavum hypertrophy (LFH), and the status of the paraspinal muscles. Abnormal segmental motion, defined as > 10 degrees angulation and > 3 mm of translation in the sagittal plane, was investigated in 1575 functional spine units (315 patients) in flexion, neutral, and extension postures using kinetic MR imaging. Each segment was assessed based on the extent of disc degeneration (Grades I-V), FJO (Grades 1-4), interspinous ligament degeneration (Grades 1-4), presence of LFH, and paraspinal muscle fatty infiltration observed on kinetic MR imaging. These factors are often noted in patients with degenerative disease, and there are grading systems to describe these changes. For the first time, the authors attempted to address the relationship between these radiographic observations and the effects on the motion and instability of the functional spine unit. The prevalence of abnormal translational motion was significantly higher in patients with Grade IV degenerative discs and Grade 3 arthritic facet joints (p < 0.05). In patients with advanced disc degeneration and FJO, there was a lesser amount of motion in both segmental translation and angulation when compared with lower grades of degeneration, and this difference was statistically significant for angular motion (p < 0.05). Patients with advanced degenerative Grade 4 facet joint arthritis had a significantly lower percentage of abnormal angular motion compared to patients with normal facet joints (p < 0.001). The presence of LFH was strongly associated with abnormal translational and angular motion. Grade 4 interspinous ligament degeneration and the presence of paraspinal muscle fatty

  19. Driving magnetization dynamics with interfacial spin-orbit torques (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hoffmann, Axel F.; Zhang, Wei; Sklenar, Joseph; Jungfleisch, Matthias Benjamin; Jiang, Wanjun; Hsu, Bo; Xiao, Jiao; Pearson, John E.; Fradin, Frank Y.; Liu, Yaohua; Ketterson, John B.; Yang, Zheng

    2016-10-01

    Bulk spin Hall effects are well know to provide spin orbit torques, which can be used to drive magnetization dynamics [1]. But one of the reoccurring questions is to what extend spin orbit torques may also originate at the interface between materials with strong spin orbit coupling and the ferromagnets. Using spin torque driven ferromagnetic resonance we show for two systems, where interfacial torques dominate, that they can be large enough to be practically useful. First, we show spin transfer torque driven magnetization dynamics based on Rashba-Edelstein effects at the Bi/Ag interface [2]. Second, we will show that combining permalloy with monolayer MoS2 gives rise to sizable spin-orbit torques. Given the monolayer nature of MoS2 it is clear that bilk spin Hall effects are negligible and therefore the spin transfer torques are completely interfacial in nature. Interestingly the spin orbit torques with MoS2 show a distinct dependence on the orientation of the magnetization in the permalloy, and become strongly enhanced, when the magnetization is pointing perpendicular to the interfacial plane. This work was supported by the U.S. Department of Energy, Office of Science, Materials Science and Engineering Division. [1] A. Hoffmann, IEEE Trans. Mag. 49, 5172 (2013). [2] W. Zhang et al., J. Appl. Phys. 117, 17C727 (2015). [3] M. B. Jungfleisch et al., arXiv:1508.01410.

  20. Variable Torque Prescription: State of Art.

    PubMed Central

    Lacarbonara, Mariano; Accivile, Ettore; Abed, Maria R.; Dinoi, Maria Teresa; Monaco, Annalisa; Marzo, Giuseppe; Capogreco, Mario

    2015-01-01

    The variable prescription is widely described under the clinical aspect: the clinics is the result of the evolution of the state-of-the-art, aspect that is less considered in the daily literature. The state-of-the-art is the key to understand not only how we reach where we are but also to learn how to manage propely the torque, focusing on the technical and biomechanical purpos-es that led to the change of the torque values over time. The aim of this study is to update the clinicians on the aspects that affect the torque under the biomechanical sight, helping them to understand how to managing it, following the “timeline changes” in the different techniques so that the Variable Prescription Orthodontic (VPO) would be a suitable tool in every clinical case. PMID:25674173

  1. In-line rotating torque sensor with on-board amplifier

    DOEpatents

    Kronberg, James W.

    1990-01-01

    A rotating torque sensor apparatus and method for measuring small torques comprising a shaft, a platform having a circuit board and a first moment arm attached to the shaft, a rotatable wheel coaxial with the shaft and having a second moment arm spaced apart from the first moment arm with a load cell therebetween for generating an electric signal as the torque is applied to the shaft and transferred through the moment arms to the load cell. The electrical signal is conducted from the load cell to the circuit board for filtering and amplification before being extracted from the torque assembly through a slip ring.

  2. Prevailing Torque Locking Feature in Threaded Fasteners Using Anaerobic Adhesive

    NASA Technical Reports Server (NTRS)

    Hernandez, Alan; Hess, Daniel P.

    2016-01-01

    This paper presents results from tests to assess the use of anaerobic adhesive for providing a prevailing torque locking feature in threaded fasteners. Test procedures are developed and tests are performed on three fastener materials, four anaerobic adhesives, and both unseated assembly conditions. Five to ten samples are tested for each combination. Tests for initial use, reuse without additional adhesive, and reuse with additional adhesive are performed for all samples. A 48-hour cure time was used for all initial use and reuse tests. Test data are presented as removal torque versus removal angle with the specification required prevailing torque range added for performance assessment. Percent specification pass rates for the all combinations of fastener material, adhesive, and assembly condition are tabulated and reveal use of anaerobic adhesive as a prevailing torque locking feature is viable. Although not every possible fastener material and anaerobic adhesive combination provides prevailing torque values within specification, any combination can be assessed using the test procedures presented. Reuse without additional anaerobic adhesive generally provides some prevailing torque, and in some cases within specification. Reuse with additional adhesive often provides comparable removal torque data as in initial use.

  3. Gait abnormalities caused by selective anesthesia of the suprascapular nerve in horses.

    PubMed

    Devine, Dustin V; Jann, Henry W; Payton, Mark E

    2006-05-01

    To assess gait abnormalities associated with selective anesthesia of the suprascapular nerve (SSN) achieved by use of perineural catheterization and thereby determine the function of that nerve as it relates to gait in horses. 3 adult horses with no preexisting clinically apparent lameness at a walk. Each horse was anesthetized; the right SSN was exposed surgically for placement of a perineural catheter to permit delivery of 1 mL of 2% mepivacaine hydrochloride. Six hours after recovery from anesthesia, each horse was videotaped while walking (50-step data acquisition period) before and after administration of mepivacaine. Videotapes were reviewed and the proportion of abnormal steps before and after selective SSN anesthesia was assessed. A step was considered abnormal if a marked amount of scapulohumeral joint instability (ie, lateral luxation of the proximal portion of the humerus) was observed during the weight-bearing phase of the stride. Clinically apparent gait dysfunction was detected in all 3 horses following perineural administration of the local anesthetic agent. Anesthesia of the SSN resulted in scapulohumeral joint instability as evidenced by consistent lateral excursion of the shoulder region during the weight-bearing phase of gait at a walk. The proportion of abnormal steps before and after SSN anesthesia was significantly different in all 3 horses. These data support the role of the SSN in shoulder joint stability in horses and define SSN dysfunction as 1 mechanism by which the syndrome and gait dysfunction clinically referred to as sweeny may develop.

  4. Effect of capping layer on spin-orbit torques

    NASA Astrophysics Data System (ADS)

    Sun, Chi; Siu, Zhuo Bin; Tan, Seng Ghee; Yang, Hyunsoo; Jalil, Mansoor B. A.

    2018-04-01

    In order to enhance the magnitude of spin-orbit torque (SOT), considerable experimental works have been devoted to studying the thickness dependence of the different layers in multilayers consisting of heavy metal (HM), ferromagnet (FM), and capping layers. Here, we present a theoretical model based on the spin-drift-diffusion formalism to investigate the effect of the capping layer properties such as its thickness on the SOT observed in experiments. It is found that the spin Hall-induced SOT can be significantly enhanced by incorporating a capping layer with an opposite spin Hall angle to that of the HM layer. The spin Hall torque can be maximized by tuning the capping layer thickness. However, in the absence of the spin Hall effect (SHE) in the capping layer, the torque decreases monotonically with the capping layer thickness. Conversely, the spin Hall torque is found to decrease monotonically with the FM layer thickness, irrespective of the presence or absence of the SHE in the capping layer. All these trends are in correspondence with experimental observations. Finally, our model suggests that capping layers with a long spin diffusion length and high resistivity would also enhance the spin Hall torque.

  5. Reconstruction of Twist Torque in Main Parachute Risers

    NASA Technical Reports Server (NTRS)

    Day, Joshua D.

    2015-01-01

    The reconstruction of twist torque in the Main Parachute Risers of the Capsule Parachute Assembly System (CPAS) has been successfully used to validate CPAS Model Memo conservative twist torque equations. Reconstruction of basic, one degree of freedom drop tests was used to create a functional process for the evaluation of more complex, rigid body simulation. The roll, pitch, and yaw of the body, the fly-out angles of the parachutes, and the relative location of the parachutes to the body are inputs to the torque simulation. The data collected by the Inertial Measurement Unit (IMU) was used to calculate the true torque. The simulation then used photogrammetric and IMU data as inputs into the Model Memo equations. The results were then compared to the true torque results to validate the Model Memo equations. The Model Memo parameters were based off of steel risers and the parameters will need to be re-evaluated for different materials. Photogrammetric data was found to be more accurate than the inertial data in accounting for the relative rotation between payload and cluster. The Model Memo equations were generally a good match and when not matching were generally conservative.

  6. Hydrodynamic Torques and Rotations of Superparamagnetic Bead Dimers

    NASA Astrophysics Data System (ADS)

    Pease, Christopher; Etheridge, J.; Wijesinghe, H. S.; Pierce, C. J.; Prikockis, M. V.; Sooryakumar, R.

    Chains of micro-magnetic particles are often rotated with external magnetic fields for many lab-on-a-chip technologies such as transporting beads or mixing fluids. These applications benefit from faster responses of the actuated particles. In a rotating magnetic field, the magnetization of superparamagnetic beads, created from embedded magnetic nano-particles within a polymer matrix, is largely characterized by induced dipoles mip along the direction of the field. In addition there is often a weak dipole mop that orients out-of-phase with the external rotating field. On a two-bead dimer, the simplest chain of beads, mop contributes a torque Γm in addition to the torque from mip. For dimers with beads unbound to each other, mop rotates individual beads which generate an additional hydrodynamic torque on the dimer. Whereas, mop directly torques bound dimers. Our results show that Γm significantly alters the average frequency-dependent dimer rotation rate for both bound and unbound monomers and, when mop exceeds a critical value, increases the maximum dimer rotation frequency. Models that include magnetic and hydrodynamics torques provide good agreement with the experimental findings over a range of field frequencies.

  7. Estimation of muscle torque in various combat sports.

    PubMed

    Pędzich, Wioletta; Mastalerz, Andrzej; Sadowski, Jerzy

    2012-01-01

    The purpose of the research was to compare muscle torque of elite combat groups. Twelve taekwondo WTF athletes, twelve taekwondo ITF athletes and nine boxers participated in the study. Measurements of muscle torques were done under static conditions on a special stand which belonged to the Department of Biomechanics. The sum of muscle torque of lower right and left extremities of relative values was significantly higher for taekwondo WTF athletes than for boxers (16%, p < 0.001 for right and 10%, p < 0.05 for left extremities) and taekwondo ITF (10%, p < 0.05 for right and 8% for left extremities). Taekwondo ITF athletes attained significantly higher absolute muscle torque values than boxers for elbow flexors (20%, p < 0.05 for right and 11% for left extremities) and extensors (14% for right and 18%, p < 0.05 for left extremities) and shoulder flexors (10% for right and 12%, p < 0.05 for left extremities) and extensors (11% for right and 1% for left extremities). Taekwondo WTF and taekwondo ITF athletes obtained significantly different relative values of muscle torque of the hip flexors (16%, p < 0.05) and extensors (11%, p < 0.05) of the right extremities.

  8. [Correlations Between Joint Proprioception, Muscle Strength, and Functional Ability in Patients with Knee Osteoarthritis].

    PubMed

    Chen, Yoa; Yu, Yong; He, Cheng-qi

    2015-11-01

    To establish correlations between joint proprioception, muscle flexion and extension peak torque, and functional ability in patients with knee osteoarthritis (OA). Fifty-six patients with symptomatic knee OA were recruited in this study. Both proprioceptive acuity and muscle strength were measured using the isomed-2000 isokinetic dynamometer. Proprioceptive acuity was evaluated by establishing the joint motion detection threshold (JMDT). Muscle strength was evaluated by Max torque (Nm) and Max torque/weight (Nm/ kg). Functional ability was assessed by the Western Ontario and McMaster Universities Osteoarthritis Index physical function (WOMAC-PF) questionnaire. Correlational analyses were performed between proprioception, muscle strength, and functional ability. A multiple stepwise regression model was established, with WOMAC-PF as dependent variable and patient age, body mass index (BMI), visual analogue scale (VAS)-score, mean grade for Kellgren-Lawrance of both knees, mean strength for quadriceps and hamstring muscles of both knees, and mean JMDT of both knees as independent variables. Poor proprioception (high JMDT) was negatively correlated with muscle strength (P<0.05). There was no significant correlation between knee proprioception (high JMDT) and joint pain (WOMAC pain score), and between knee proprioception (high JMDT) and joint stiffness (WOMAC stiffness score). Poor proprioception (high JMDT) was correlated with limitation in functional ability (WOMAC physical function score r=0.659, P<0.05). WOMAC score was correlated with poor muscle strength (quadriceps muscle strength r = -0.511, P<0.05, hamstring muscle strength r = -0.408, P<0.05). The multiple stepwise regression model showed that high JMDT C standard partial regression coefficient (B) = 0.385, P<0.50 and high VAS-scale score (B=0.347, P<0.05) were significant predictors of WOMAC-PF score. Patients with poor proprioception is associated with poor muscle strength and limitation in functional

  9. An explorative, cross-sectional study into abnormal muscular coupling during reach in chronic stroke patients

    PubMed Central

    2010-01-01

    Background In many stroke patients arm function is limited, which can be related to an abnormal coupling between shoulder and elbow joints. The extent to which this can be translated to activities of daily life (ADL), in terms of muscle activation during ADL-like movements, is rather unknown. Therefore, the present study examined the occurrence of abnormal coupling on functional, ADL-like reaching movements of chronic stroke patients by comparison with healthy persons. Methods Upward multi-joint reaching movements (20 repetitions at a self-selected speed to resemble ADL) were compared in two conditions: once facilitated by arm weight compensation and once resisted to provoke a potential abnormal coupling. Changes in movement performance (joint angles) and muscle activation (amplitude of activity and co-activation) between conditions were compared between healthy persons and stroke patients using a repeated measures ANOVA. Results The present study showed slight changes in joint excursion and muscle activation of stroke patients due to shoulder elevation resistance during functional reach. Remarkably, in healthy persons similar changes were observed. Even the results of a sub-group of the more impaired stroke patients did not point to an abnormal coupling between shoulder elevation and elbow flexion during functional reach. Conclusions The present findings suggest that in mildly and moderately affected chronic stroke patients ADL-like arm movements are not substantially affected by abnormal synergistic coupling. In this case, it is implied that other major contributors to limitations in functional use of the arm should be identified and targeted individually in rehabilitation, to improve use of the arm in activities of daily living. PMID:20233402

  10. High torque DC motor fabrication and test program

    NASA Technical Reports Server (NTRS)

    Makus, P.

    1976-01-01

    The testing of a standard iron and standard alnico permanent magnet two-phase, brushless dc spin motor for potential application to the space telescope has been concluded. The purpose of this study was to determine spin motor power losses, magnetic drag, efficiency and torque speed characteristics of a high torque dc motor. The motor was designed and built to fit an existing reaction wheel as a test vehicle and to use existing brass-board commutation and torque command electronics. The results of the tests are included in this report.

  11. Isometric hip-rotator torque production at varying degrees of hip flexion.

    PubMed

    Johnson, Sam; Hoffman, Mark

    2010-02-01

    Hip torque production is associated with certain knee injuries. The hip rotators change function depending on hip angle. To compare hip-rotator torque production between 3 angles of hip flexion, limbs, and sexes. Descriptive. University sports medicine research laboratory. 15 men and 15 women, 19-39 y. Three 6-s maximal isometric contractions of the hip external and internal rotators at 10 degrees, 40 degrees, and 90 degrees of hip flexion on both legs. Average torque normalized to body mass. Internal-rotation torque was greatest at 90 degrees of hip flexion, followed by 40 degrees of hip flexion and finally 10 degrees of hip flexion. External-rotation torque was not different based on hip flexion. The nondominant leg's external rotators were stronger than the dominant leg's, but the reverse was true for internal rotators. Finally, the men had more overall rotator torque. Hip-rotation torque production varies between flexion angle, leg, and sex. Clinicians treating lower extremity problems need to be aware of these differences.

  12. Electrode position markedly affects knee torque in tetanic, stimulated contractions.

    PubMed

    Vieira, Taian M; Potenza, Paolo; Gastaldi, Laura; Botter, Alberto

    2016-02-01

    The purpose of this study was to investigate how much the distance between stimulation electrodes affects the knee extension torque in tetanic, electrically elicited contractions. Current pulses of progressively larger amplitude, from 0 mA to maximally tolerated intensities, were delivered at 20 pps to the vastus medialis, rectus femoris and vastus lateralis muscles of ten, healthy male subjects. Four inter-electrode distances were tested: 32.5% (L1), 45.0% (L2), 57.5% (L3) and 70% (L4) of the distance between the patella apex and the anterior superior iliac spine. The maximal knee extension torque and the current leading to the maximal torque were measured and compared between electrode configurations. The maximal current tolerated by each participant ranged from 60 to 100 mA and did not depend on the inter-electrode distance. The maximal knee extension torque elicited did not differ between L3 and L4 (P = 0.15) but, for both conditions, knee torque was significantly greater than for L1 and L2 (P < 0.024). On average, the extension torque elicited for L3 and L4 was two to three times greater than that obtained for L1 and L2. The current leading to maximal torque was not as sensitive to inter-electrode distance. Except for L1 current intensity did not change with electrode configuration (P > 0.16). Key results presented here revealed that for a given stimulation intensity, knee extension torque increased dramatically with the distance between electrodes. The distance between electrodes seems therefore to critically affect knee torque, with potential implication for optimising exercise protocols based on electrical stimulation.

  13. Towards measuring quantum electrodynamic torque with a levitated nanorod

    NASA Astrophysics Data System (ADS)

    Xu, Zhujing; Bang, Jaehoon; Ahn, Jonghoon; Hoang, Thai M.; Li, Tongcang

    2017-04-01

    According to quantum electrodynamics, quantum fluctuations of electromagnetic fields give rise to a zero-point energy that never vanishes, even in the absence of electromagnetic sources. The interaction energy will not only lead to the well-known Casimir force but will also contribute to the Casimir torque for anisotropic materials. We propose to use an optically levitated nanorod in vacuum and a birefringent substrate to experimentally investigate the QED torque. We have previously observed the libration of an optically levitated non-spherical nanoparticle in vacuum and found it to be an ultrasensitive torque sensor. A nanorod with a long axis of 300nm and a diameter of 60nm levitated in vacuum at 10 (- 8) torr will have a remarkable torque detection sensitivity on the order of 10 (- 28) Nm/ √Hz, which will be sufficient to detect the Casimir torque. This work is partially supported by the National Science Foundation under Grant No.1555035-PHY.

  14. Heat Control via Torque Control in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Venable, Richard; Colligan, Kevin; Knapp, Alan

    2004-01-01

    In a proposed advance in friction stir welding, the torque exerted on the workpiece by the friction stir pin would be measured and controlled in an effort to measure and control the total heat input to the workpiece. The total heat input to the workpiece is an important parameter of any welding process (fusion or friction stir welding). In fusion welding, measurement and control of heat input is a difficult problem. However, in friction stir welding, the basic principle of operation affords the potential of a straightforward solution: Neglecting thermal losses through the pin and the spindle that supports it, the rate of heat input to the workpiece is the product of the torque and the speed of rotation of the friction stir weld pin and, hence, of the spindle. Therefore, if one acquires and suitably processes data on torque and rotation and controls the torque, the rotation, or both, one should be able to control the heat input into the workpiece. In conventional practice in friction stir welding, one uses feedback control of the spindle motor to maintain a constant speed of rotation. According to the proposal, one would not maintain a constant speed of rotation: Instead, one would use feedback control to maintain a constant torque and would measure the speed of rotation while allowing it to vary. The torque exerted on the workpiece would be estimated as the product of (1) the torque-multiplication ratio of the spindle belt and/or gear drive, (2) the force measured by a load cell mechanically coupled to the spindle motor, and (3) the moment arm of the load cell. Hence, the output of the load cell would be used as a feedback signal for controlling the torque (see figure).

  15. Validity of trunk extensor and flexor torque measurements using isokinetic dynamometry.

    PubMed

    Guilhem, Gaël; Giroux, Caroline; Couturier, Antoine; Maffiuletti, Nicola A

    2014-12-01

    This study aimed to evaluate the validity and test-retest reliability of trunk muscle strength testing performed with a latest-generation isokinetic dynamometer. Eccentric, isometric, and concentric peak torque of the trunk flexor and extensor muscles was measured in 15 healthy subjects. Muscle cross sectional area (CSA) and surface electromyographic (EMG) activity were respectively correlated to peak torque and submaximal isometric torque for erector spinae and rectus abdominis muscles. Reliability of peak torque measurements was determined during test and retest sessions. Significant correlations were consistently observed between muscle CSA and peak torque for all contraction types (r=0.74-0.85; P<0.001) and between EMG activity and submaximal isometric torque (r ⩾ 0.99; P<0.05), for both extensor and flexor muscles. Intraclass correlation coefficients were comprised between 0.87 and 0.95, and standard errors of measurement were lower than 9% for all contraction modes. The mean difference in peak torque between test and retest ranged from -3.7% to 3.7% with no significant mean directional bias. Overall, our findings establish the validity of torque measurements using the tested trunk module. Also considering the excellent test-retest reliability of peak torque measurements, we conclude that this latest-generation isokinetic dynamometer could be used with confidence to evaluate trunk muscle function for clinical or athletic purposes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Ultrasonography and detection of subclinical joints and tendons involvements in Systemic Lupus erythematosus (SLE) patients: A cross-sectional multicenter study.

    PubMed

    Salliot, Carine; Denis, Amélie; Dernis, Emmanuelle; Andre, Vincent; Perdriger, Aleth; Albert, Jean-David; Mammou Mraghni, Saloua; Griffoul-Espitalier, Isabelle; Hamidou, Mohamed; Le Goff, Benoit; Joulin, Sandrine Jousse; Marhadour, Thierry; Richez, Christophe; Poursac, Nicolas; Lazaro, Estebaliz; Rist, Stéphanie; Corondan, Anca; Quinten, Clara; Martaillé, Virginie; Valéry, Antoine; Ducourau, Emilie

    2018-02-15

    The aims of this study in SLE population were (1) to describe ultrasonography (US) joint abnormalities, (2) to estimate the reliability of clinical swollen joint count (C-SJC) and SLEDAI (C-SLEDAI) versus US-SJC and US-SLEDAI scores, (3) to highlight specific patterns of lupus patients with Power Doppler (PD) abnormalities. For this cross-sectional multicenter study, 151 consecutive adult SLE patients were recruited. Evaluation included a clinical standardized joint assessment, B-mode and PD US of 40 joints and 26 tendons blinded for clinical examination. Reliability and agreement between clinical and B-mode US were calculated using the intraclass correlation coefficients (ICC [95% Confidence Interval]). We found a very high frequency of subclinical US abnormalities in asymptomatic patients: 85% of patients without joint symptoms had at least 1 US abnormality. Among them 46 patients (87%) had a history of joint involvement. The most frequent abnormalities were joint effusmaions (108 patients), synovial hypertrophy (SH, 109 patients) and synovitis (61 patients). Joint or tendon PD signal (grade>1) was found in 44% of patients (67/151). Synovitis were mainly located especially on MCPs and wrists. Even if reliability between clinical and grey-scale US SJC assessments was poor, reliability between clinical and US SLEDAI was good. Comparison between SLE patients with and without PD signal did not show any specific SLE pattern. US may be useful to assess joint involvement in SLE patients but did not significantly change SLEDAI score. Copyright © 2018. Published by Elsevier SAS.

  17. Work and fatigue characteristics of unsuited and suited humans during isolated isokinetic joint motions

    NASA Technical Reports Server (NTRS)

    Gonzalez, L. Javier; Maida, J. C.; Miles, E. H.; Rajulu, S. L.; Pandya, A. K.

    2002-01-01

    The effects of a pressurized suit on human performance were investigated. The suit is known as an Extra-Vehicular Mobility Unit (EMU) and is worn by astronauts while working outside their spacecraft in a low earth orbit. Isolated isokinetic joint torques of three female and three male subjects (all experienced users of the suit in 1G gravity) were measured while working at 100% and 80% of their maximum voluntary torque (MVT, which is synonymous with maximum voluntary contraction (MVC)). It was found that the average decrease in the total amount of work (the sum of the work in each repetition until fatigue) done when the subjects were wearing the EMU were 48% and 41% while working at 100% and 80% MVT, respectively. There is a clear relationship between the MVT and the time and amount of work done until fatigue. Here, the time to fatigue is defined as the ending time of the repetition for which the computed work done during that repetition dropped below 50% of the work done during the first repetition. In general the stronger joints took longer to fatigue and did more work than the weaker joints. It was found that the EMU decreases the work output at the wrist and shoulder joints the most, due to the EMU joint geometry. The EMU also decreased the joint range of motion. The average total amount of work done by the test subjects increased by 5.2% (20.4%) for the unsuited (suited) case, when the test subjects decreased the level of effort from 100% to 80% MVT. Also, the average time to fatigue increased by 9.2% (25.6%) for the unsuited (suited) case, when the test subjects decreased the level of effort from 100% to 80% MVT. It was also found that the experimentally measured torque decay could be predicted by a logarithmic equation. The absolute average errors in the predictions were found to be 18.3% and 18.9% for the unsuited and suited subjects, respectively, when working at 100% MVT, and 22.5% and 18.8% for the unsuited and suited subjects, respectively, when working

  18. Torque expression of 0.018 and 0.022 inch conventional brackets.

    PubMed

    Sifakakis, Iosif; Pandis, Nikolaos; Makou, Margarita; Eliades, Theodore; Katsaros, Christos; Bourauel, Christoph

    2013-10-01

    The aim of this study was to assess the effect of the moments generated with low- and high-torque brackets. Four different bracket prescription-slot combinations of the same bracket type (Mini Diamond® Twin) were evaluated: high-torque 0.018 and 0.022 inch and low-torque 0.018 and 0.022 inch. These brackets were bonded on identical maxillary acrylic resin models with levelled and aligned teeth and each model was mounted on the orthodontic measurement and simulation system (OMSS). Ten specimens of 0.017 × 0.025 inch and ten 0.019 × 0.025 inch stainless steel archwires (ORMCO) were evaluated in the low- and high-torque 0.018 inch and 0.022 inch brackets, respectively. The wires were ligated with elastomerics into the brackets and each measurement was repeated once after religation. Two-way analysis of variance and t-test were conducted to compare the generated moments between wires at low- and high-torque brackets separately. The maximum moment generated by the 0.017 × 0.025 inch stainless steel archwire in the 0.018 inch brackets at +15 degrees ranged from 14.33 and 12.95 Nmm for the high- and low-torque brackets, respectively. The measured torque in the 0.022 inch brackets with the 0.019 × 0.025 inch stainless steel archwire was 9.32 and 6.48 Nmm, respectively. The recorded differences of maximum moments between the high- and low-torque series were statistically significant. High-torque brackets produced higher moments compared with low-torque brackets. Additionally, in both high- and low-torque configurations, the thicker 0.019 × 0.025 inch steel archwire in the 0.022 inch slot system generated lower moments in comparison with the 0.017 × 0.025 inch steel archwire in the 0.018 inch slot system.

  19. Technical Errors May Affect Accuracy of Torque Limiter in Locking Plate Osteosynthesis.

    PubMed

    Savin, David D; Lee, Simon; Bohnenkamp, Frank C; Pastor, Andrew; Garapati, Rajeev; Goldberg, Benjamin A

    2016-01-01

    In locking plate osteosynthesis, proper surgical technique is crucial in reducing potential pitfalls, and use of a torque limiter makes it possible to control insertion torque. We conducted a study of the ways in which different techniques can alter the accuracy of torque limiters. We tested 22 torque limiters (1.5 Nm) for accuracy using hand and power tools under different rotational scenarios: hand power at low and high velocity and drill power at low and high velocity. We recorded the maximum torque reached after each torque-limiting event. Use of torque limiters under hand power at low velocity and high velocity resulted in significantly (P < .0001) different mean (SD) measurements: 1.49 (0.15) Nm and 3.73 (0.79) Nm. Use under drill power at controlled low velocity and at high velocity also resulted in significantly (P < .0001) different mean (SD) measurements: 1.47 (0.14) Nm and 5.37 (0.90) Nm. Maximum single measurement obtained was 9.0 Nm using drill power at high velocity. Locking screw insertion with improper technique may result in higher than expected torque and subsequent complications. For torque limiters, the most reliable technique involves hand power at slow velocity or drill power with careful control of insertion speed until 1 torque-limiting event occurs.

  20. Influence of joint angular velocity on electrically evoked concentric force potentiation induced by stretch-shortening cycle in young adults.

    PubMed

    Fukutani, Atsuki; Kurihara, Toshiyuki; Isaka, Tadao

    2015-01-01

    During a stretch- shortening cycle (SSC), muscle force attained during concentric contractions (shortening phase) is potentiated by the preceding eccentric contractions (lengthening phase). The purpose of this study was to examine the influence of joint angular velocity on force potentiation induced by SSC (SSC effect). Twelve healthy men (age, 24.2 ± 3.2 years; height, 1.73 ± 0.05 m; body mass, 68.1 ± 11.0 kg) participated in this study. Ankle joint angle was passively moved by a dynamometer, with range of motion from dorsiflexion (DF) 15° to plantarflexion (PF) 15°. Muscle contractions were evoked by tetanic electrical stimulation. Joint angular velocity of concentric contraction was set at 30°/s and 150°/s. Magnitude of SSC effect was calculated as the ratio of joint torque obtained by concentric contraction with preliminary eccentric contraction trial relative to that obtained by concentric contraction without preliminary eccentric contraction trial. As a result, magnitude of SSC effect calculated at three joint angles was significantly larger in the 150°/s condition than in the 30°/s condition (p < 0.05). These results indicate that the magnitude of SSC effect is affected by joint angular velocity, which is larger when joint angular velocity is larger. This phenomenon would be caused by insufficient duration to increase activation level in the large joint angular velocity condition. When the duration to increase activation level is insufficient due to short contraction duration, preactivation (one of the factors of SSC effect) leads to a significant increase in joint torque.

  1. Translational and rotational knee joint stability in anterior and posterior cruciate-retaining knee arthroplasty.

    PubMed

    Lo, JiaHsuan; Müller, Otto; Dilger, Torsten; Wülker, Nikolaus; Wünschel, Markus

    2011-12-01

    This study investigated passive translational and rotational stability properties of the intact knee joint, after bicruciate-retaining bi-compartmental knee arthroplasty (BKA) and after posterior cruciate retaining total knee arthroplasty (TKA). Fourteen human cadaveric knee specimens were used in this study, and a robotic manipulator with six-axis force/torque sensor was used to test the joint laxity in anterior-posterior translation, valgus-varus, and internal-external rotation. The results show the knee joint stability after bicruciate-retaining BKA is similar to that of the native knee. On the other hand, the PCL-retaining TKA results in inferior joint stability in valgus, varus, external rotation, anterior and, surprisingly, posterior directions. Our findings suggest that, provided functional ligamentous structures, bicruciate-retaining BKA is a biomechanically attractive treatment for joint degenerative disease. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes

    NASA Astrophysics Data System (ADS)

    Saidaoui, Hamed Ben Mohamed; Manchon, Aurelien; Waintal, Xavier

    2014-05-01

    Current-driven spin torques in metallic spin valves composed of antiferromagnets are theoretically studied using the nonequilibrium Green's function method implemented on a tight-binding model. We focus our attention on G-type and L-type antiferromagnets in both clean and disordered regimes. In such structures, spin torques can either rotate the magnetic order parameter coherently (coherent torque) or compete with the internal antiferromagnetic exchange (exchange torque). We show that, depending on the symmetry of the spin valve, the coherent and exchange torques can either be in the plane, ∝n×(q×n) or out of the plane ∝n×q, where q and n are the directions of the order parameter of the polarizer and the free antiferromagnetic layers, respectively. Although disorder conserves the symmetry of the torques, it strongly reduces the torque magnitude, pointing out the need for momentum conservation to ensure strong spin torque in antiferromagnetic spin valves.

  3. Electronic measurement of variable torques in precision work technology

    NASA Technical Reports Server (NTRS)

    Maehr, M.

    1978-01-01

    Approaches for the determination of torques on the basis of length measurements are discussed. Attention is given to torque determinations in which the deformation of a shaft is measured, an electric measurement of the torsion angle, and an approach proposed by Buschmann (1970). Methods for a torque determination conducted with the aid of force measurements make use of piezoelectric approaches. The components used by these methods include a quartz crystal and a charge amplifier.

  4. Design of digital load torque observer in hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Sun, Yukun; Zhang, Haoming; Wang, Yinghai

    2008-12-01

    In hybrid electric vehicle, engine begain to work only when motor was in high speed in order to decrease tail gas emission. However, permanent magnet motor was sensitive to its load, adding engine to the system always made its speed drop sharply, which caused engine to work in low efficiency again and produced much more environment pollution. Dynamic load torque model of permanent magnet synchronous motor is established on the basic of motor mechanical equation and permanent magnet synchronous motor vector control theory, Full- digital load torque observer and compensation control system is made based on TMS320F2407A. Experiment results prove load torque observer and compensation control system can detect and compensate torque disturbing effectively, which can solve load torque disturbing and decrease gas pollution of hybrid electric vehicle.

  5. Displaying Force and Torque of A Manipulator

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Dotson, R. S.; Primus, H. C.

    1984-01-01

    Display combines bar charts, vector diagrams, and numerical values to inform operator of forces and torques exerted by end effector of manipulator. On voice or keyboard command, eight-channel strip-chart recorder traces force and torque components and claw position of raw measurements from eight strain gage sensors in end effector. Especially helpful when operator's view of end effector is obscured.

  6. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT V, AUTOMATIC TRANSMISSIONS--TORQUE CONVERTER.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF TORQUE CONVERTERS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) FLUID COUPLINGS (LOCATION AND PURPOSE), (2) PRINCIPLES OF OPERATION, (3) TORQUE CONVERRS, (4) TORQMATIC CONVERTER, (5) THREE STAGE, THREE ELEMENT TORQUE CONVERTER, AND (6)…

  7. Evaluation Method for Fieldlike-Torque Efficiency by Modulation of the Resonance Field

    NASA Astrophysics Data System (ADS)

    Kim, Changsoo; Kim, Dongseuk; Chun, Byong Sun; Moon, Kyoung-Woong; Hwang, Chanyong

    2018-05-01

    The spin Hall effect has attracted a lot of interest in spintronics because it offers the possibility of a faster switching route with an electric current than with a spin-transfer-torque device. Recently, fieldlike spin-orbit torque has been shown to play an important role in the magnetization switching mechanism. However, there is no simple method for observing the fieldlike spin-orbit torque efficiency. We suggest a method for measuring fieldlike spin-orbit torque using a linear change in the resonance field in spectra of direct-current (dc)-tuned spin-torque ferromagnetic resonance. The fieldlike spin-orbit torque efficiency can be obtained in both a macrospin simulation and in experiments by simply subtracting the Oersted field from the shifted amount of resonance field. This method analyzes the effect of fieldlike torque using dc in a normal metal; therefore, only the dc resistivity and the dimensions of each layer are considered in estimating the fieldlike spin-torque efficiency. The evaluation of fieldlike-torque efficiency of a newly emerging material by modulation of the resonance field provides a shortcut in the development of an alternative magnetization switching device.

  8. Variation in the total lengths of abutment/implant assemblies generated with a function of applied tightening torque in external and internal implant-abutment connection.

    PubMed

    Kim, Ki-Seong; Lim, Young-Jun; Kim, Myung-Joo; Kwon, Ho-Beom; Yang, Jae-Ho; Lee, Jai-Bong; Yim, Soon-Ho

    2011-08-01

    Settling (embedment relaxation), which is the main cause for screw loosening, is developed by microroughness between implant and abutment metal surface. The objective of this study was to evaluate and compare the relationship between the level of applied torque and the settling of abutments into implants in external and internal implant-abutment connection. Five different implant-abutment connections were used (Ext, External butt joint + two-piece abutment; Int-H2, Internal hexagon + two-piece abutment; Int-H1, Internal hexagon + one-piece abutment; Int-O2, Internal octagon + two-piece abutment; Int-O1, Internal octagon + one-piece abutment). All abutments of each group were assembled and tightened with corresponding implants by a digital torque gauge. The total lengths of implant-abutment samples were measured at each torque (5, 10, 30 N cm and repeated 30 N cm with 10-min interval) by an electronic digital micrometer. The settling values were calculated by changes between the total lengths of implant-abutment samples. All groups developed settling with repeated tightening. The Int-H2 group showed markedly higher settling for all instances of tightening torque and the Ext group was the lowest. Statistically significant differences were found in settling values between the groups and statistically significant increases were observed within each group at different tightening torques (P<0.05). After the second tightening of 30 N cm, repeated tightening showed almost constant settling values. Results from the present study suggested that to minimize the settling effect, abutment screws should be retightened at least twice at 30 N cm torque at a 10-min interval in all laboratory and clinical procedures. © 2010 John Wiley & Sons A/S.

  9. Increase of economy of torque flow pump with high specific speed

    NASA Astrophysics Data System (ADS)

    Gusak, A. G.; Krishtop, I. V.; German, V. F.; Baga, V. N.

    2017-08-01

    Torque flow pumps are widely spread types of energy machines, which are used in majority of modern branches of industry for pumping of dirty media. The main task of researchers of torque flow pumps is increase of such pumps effectiveness for higher feed. Hydraulic losses for torque flow pumps are caused by working process of such pumps and are inevitable. Decrease of losses can be obtained by means of optimization of hydraulic flow part geometry. Modern approach to design of pump outlet introduces new constructive solutions which can increase economy of torque flow pumps. The aim of this research is increase of economy of torque flow pumps by means of application of spatial outlet and investigation of its geometry on pump characteristics. Analytical and numerical methods of liquid flow research for hydraulic flow part of torque flow pump were used in this paper. Moreover, influence of hydraulic flow part geometry of different designs of “Turo” type torque flow pumps outlets on pump characteristics was investigated. Numerical research enabled to study process of energy transfer of torque flow pump and evaluate influence of geometrical dimensions of spatial spiral outlet on its characteristics. Besides numerical research confirmed introduced regularity of peripheral velocity distribution in outlet. Velocity moment distribution in outlet was obtained during implementation of numerical research. Implemented bench tests of torque flow pump prototypes enabled to obtain real characteristics of pump and confirm effectiveness of spatial geometry of outlet application for such pump.

  10. Pictorial review: MRI of the sternum and sternoclavicular joints.

    PubMed

    Aslam, M; Rajesh, A; Entwisle, J; Jeyapalan, K

    2002-07-01

    The sternum and sternoclavicular joints are difficult to evaluate with plain radiographs. The value of CT in assessing lesions of the sternum and sternoclavicular joints has been well documented, but the potential role of MRI has not been emphasized. We present the MRI techniques, normal appearances and a spectrum of abnormalities, and emphasize the role of MRI as a useful radiological investigation for the sternum and sternoclavicular joints.

  11. Spin Transfer Torque in Graphene

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Ching; Chen, Zhihong

    2014-03-01

    Graphene is an idea channel material for spin transport due to its long spin diffusion length. To develop graphene based spin logic, it is important to demonstrate spin transfer torque in graphene. Here, we report the experimental measurement of spin transfer torque in graphene nonlocal spin valve devices. Assisted by a small external in-plane magnetic field, the magnetization reversal of the receiving magnet is induced by pure spin diffusion currents from the injector magnet. The magnetization switching is reversible between parallel and antiparallel configurations by controlling the polarity of the applied charged currents. Current induced heating and Oersted field from the nonlocal charge flow have also been excluded in this study. Next, we further enhance the spin angular momentum absorption at the interface of the receiving magnet and graphene channel by removing the tunneling barrier in the receiving magnet. The device with a tunneling barrier only at the injector magnet shows a comparable nonlocal spin valve signal but lower electrical noise. Moreover, in the same preset condition, the critical charge current density for spin torque in the single tunneling barrier device shows a substantial reduction if compared to the double tunneling barrier device.

  12. Discrete and continuous joint coupling relationships in uninjured recreational runners.

    PubMed

    Dierks, Tracy A; Davis, Irene

    2007-06-01

    Abnormal joint coupling is thought to be related to overuse injuries in runners. However, researchers do not yet know what constitutes normal joint coupling during running, which makes abnormal coupling difficult to define. Lower extremity kinematics were collected from 40 recreational runners during stance. Joint coupling methods were applied and, for each method, means and both within- and between-subject variability were calculated. The 95% confidence interval was used to compare differences across coupling relationships and periods of stance. Timing between rearfoot eversion, tibial internal rotation, and knee flexion were relatively synchronous while relationships involving knee internal rotation were more asynchronous. The excursion ratios showed that every 2 degrees of rearfoot eversion was coupled with 1 degrees of both tibial internal rotation and knee internal rotation. Vector coding results showed that just beyond maximum loading, all joint coupling relationships resulted in relatively equal amounts of motion, while the within-subject variability was similar throughout stance. The continuous relative phase results showed that the most out-of-phase coupling occurred in the periods around heel-strike and toe-off while the most in-phase coupling occurred in the period just beyond maximum loading of the leg. The continuous relative phase within-subject variability was greatest at the periods around heel-strike and toe-off and smallest just beyond maximum loading. With a better understanding of joint coupling in uninjured runners, these data will help to serve as a reference for future studies investigating the relationship between running injuries and abnormal joint coupling.

  13. The association between physical characteristics of the ankle joint and the mobility performance in elderly people with type 2 diabetes mellitus.

    PubMed

    Ng, Thomas Ka-Wai; Lo, Sing-Kai; Cheing, Gladys Lai-Ying

    2014-01-01

    Previous studies showed that older adults with diabetes have a worse mobility performance as compared with those without diabetes. Studies also demonstrated that older adults with diabetes have weakened ankle muscle strength, reduced joint range in ankle dorsiflexion and worsened ankle joint proprioception as compared with control population. The purpose of the present study was to examine the relationship between the physical characteristics of the ankle joint and the mobility performance in older adults with type 2 diabetes. Older adults with type 2 diabetes (n=85) were recruited, and Timed Up and Go test (TUG) for mobility assessment was performed. Active ankle joint repositioning test was used for assessing the ankle joint proprioception sense; peak torque of ankle dorsiflexors and plantar flexors were tested by using a Cybex Norm dynamometer, and weight-bearing lunge test (WBLT) was used for assessing the stiffness of ankle dorsiflexion. Our results showed that age, body mass index (BMI), normalized peak torque of plantar flexors and dorsiflexors, active ankle joint repositioning test errors and the WBLT distance were significantly correlated with the TUG (all p<0.001). These ankle characteristics, together with the demographic data of the subjects, contributed 59.9% of the variance in the TUG by multiple regression analysis. Body mass, ankle plantar flexors strength and ankle joint proprioception are important factors contributing to the physical mobility of the older adults with type 2 diabetes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Closed-loop torque feedback for a universal field-oriented controller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Doncker, Rik W. A. A.; King, Robert D.; Sanza, Peter C.

    A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation.

  15. Comparison of design and torque measurements of various manual wrenches.

    PubMed

    Neugebauer, Jörg; Petermöller, Simone; Scheer, Martin; Happe, Arndt; Faber, Franz-Josef; Zoeller, Joachim E

    2015-01-01

    Accurate torque application and determination of the applied torque during surgical and prosthetic treatment is important to reduce complications. A study was performed to determine and compare the accuracy of manual wrenches, which are available in different designs with a large range of preset torques. Thirteen different wrench systems with a variety of preset torques ranging from 10 to 75 Ncm were evaluated. Three different designs were available, with a spring-in-coil or toggle design as an active mechanism or a beam as a passive mechanism, to select the preset torque. To provide a clinically relevant analysis, a total of 1,170 torque measurements in the range of 10 to 45 Ncm were made in vitro using an electronic torque measurement device. The absolute deviations in Ncm and percent deviations across all wrenches were small, with a mean of -0.24 ± 2.15 Ncm and -0.84% ± 11.72% as a shortfall relative to the preset value. The greatest overage was 8.2 Ncm (82.5%), and the greatest shortfall was 8.47 Ncm (46%). However, extreme values were rare, with 95th-percentile values of -1.5% (lower value) and -0.16% (upper value). A comparison with respect to wrench design revealed significantly higher deviations for coil and toggle-style wrenches than for beam wrenches. Beam wrenches were associated with a lower risk of rare extreme values thanks to their passive mechanism of achieving the selected preset torque, which minimizes the risk of harming screw connections.

  16. Quantifying the Precision of Single-Molecule Torque and Twist Measurements Using Allan Variance.

    PubMed

    van Oene, Maarten M; Ha, Seungkyu; Jager, Tessa; Lee, Mina; Pedaci, Francesco; Lipfert, Jan; Dekker, Nynke H

    2018-04-24

    Single-molecule manipulation techniques have provided unprecedented insights into the structure, function, interactions, and mechanical properties of biological macromolecules. Recently, the single-molecule toolbox has been expanded by techniques that enable measurements of rotation and torque, such as the optical torque wrench (OTW) and several different implementations of magnetic (torque) tweezers. Although systematic analyses of the position and force precision of single-molecule techniques have attracted considerable attention, their angle and torque precision have been treated in much less detail. Here, we propose Allan deviation as a tool to systematically quantitate angle and torque precision in single-molecule measurements. We apply the Allan variance method to experimental data from our implementations of (electro)magnetic torque tweezers and an OTW and find that both approaches can achieve a torque precision better than 1 pN · nm. The OTW, capable of measuring torque on (sub)millisecond timescales, provides the best torque precision for measurement times ≲10 s, after which drift becomes a limiting factor. For longer measurement times, magnetic torque tweezers with their superior stability provide the best torque precision. Use of the Allan deviation enables critical assessments of the torque precision as a function of measurement time across different measurement modalities and provides a tool to optimize measurement protocols for a given instrument and application. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Computing the motor torque of Escherichia coli.

    PubMed

    Das, Debasish; Lauga, Eric

    2018-06-13

    The rotary motor of bacteria is a natural nano-technological marvel that enables cell locomotion by powering the rotation of semi-rigid helical flagellar filaments in fluid environments. It is well known that the motor operates essentially at constant torque in counter-clockwise direction but past work have reported a large range of values of this torque. Focusing on Escherichia coli cells that are swimming and cells that are stuck on a glass surface for which all geometrical and environmental parameters are known (N. C. Darnton et al., J. Bacteriol., 2007, 189, 1756-1764), we use two validated numerical methods to compute the value of the motor torque consistent with experiments. Specifically, we use (and compare) a numerical method based on the boundary integral representation of Stokes flow and also develop a hybrid method combining boundary element and slender body theory to model the cell body and flagellar filament, respectively. Using measured rotation speed of the motor, our computations predict a value of the motor torque in the range 440 pN nm to 829 pN nm, depending critically on the distance between the flagellar filaments and the nearby surface.

  18. Evaluation of a high-torque backlash-free roller actuator

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Rohn, Douglas A.; Anderson, William

    1986-01-01

    The results are presented of a test program that evaluated the stiffness, accuracy, torque ripple, frictional losses, and torque holding capability of a 16:1 ratio, 430 N-m (320 ft-lb) planetary roller drive for a potential space vehicle actuator application. The drive's planet roller supporting structure and bearings were found to be the largest contributors to overall drive compliance, accounting for more than half of the total. In comparison, the traction roller contacts themselves contributed only 9 percent of the drive's compliance based on an experimentally verified stiffness model. The drive exhibited no backlash although 8 arc sec of hysteresis deflection were recorded due to microcreep within the contact under torque load. Because of these load-dependent displacements, some form of feedback control would be required for arc second positioning applications. Torque ripple tests showed the drive to be extremely smooth, actually providing some damping of input torsional oscillations. The drive also demonstrated the ability to hold static torque with drifts of 7 arc sec or less over a 24 hr period at 35 percent of full load.

  19. Operant learning of Drosophila at the torque meter.

    PubMed

    Brembs, Bjoern

    2008-06-16

    For experiments at the torque meter, flies are kept on standard fly medium at 25 degrees C and 60% humidity with a 12hr light/12hr dark regime. A standardized breeding regime assures proper larval density and age-matched cohorts. Cold-anesthetized flies are glued with head and thorax to a triangle-shaped hook the day before the experiment. Attached to the torque meter via a clamp, the fly's intended flight maneuvers are measured as the angular momentum around its vertical body axis. The fly is placed in the center of a cylindrical panorama to accomplish stationary flight. An analog to digital converter card feeds the yaw torque signal into a computer which stores the trace for later analysis. The computer also controls a variety of stimuli which can be brought under the fly's control by closing the feedback loop between these stimuli and the yaw torque trace. Punishment is achieved by applying heat from an adjustable infrared laser.

  20. Local nature of impurity induced spin-orbit torques

    NASA Astrophysics Data System (ADS)

    Nikolaev, Sergey; Kalitsov, Alan; Chshiev, Mairbec; Mryasov, Oleg

    Spin-orbit torques are of a great interest due to their potential applications for spin electronics. Generally, it originates from strong spin orbit coupling of heavy 4d/5d elements and its mechanism is usually attributed either to the Spin Hall effect or Rashba spin-orbit coupling. We have developed a quantum-mechanical approach based on the non-equilibrium Green's function formalism and tight binding Hamiltonian model to study spin-orbit torques and extended our theory for the case of extrinsic spin-orbit coupling induced by impurities. For the sake of simplicity, we consider a magnetic material on a two dimensional lattice with a single non-magnetic impurity. However, our model can be easily extended for three dimensional layered heterostructures. Based on our calculations, we present the detailed analysis of the origin of local spin-orbit torques and persistent charge currents around the impurity, that give rise to spin-orbit torques even in equilibrium and explain the existence of anisotropy.

  1. Investigation of torque generated by Test Blanket Module mock-up in DIII-D

    NASA Astrophysics Data System (ADS)

    Salmi, A.; Tala, T.; Lanctot, M.; Degrassie, J. S.; Paz-Soldan, C.; Logan, N.; Solomon, W. M.; Grierson, B. A.

    2015-11-01

    Experiments at DIII-D have investigated the scaling of Test Blanket Module (TBM) torque with plasma pressure and collisionality by performing dimensionless parameter scans. In each configuration, neutral beam torque modulation and TBM torque modulation were sequentially applied to allow experimental characterization of the TBM generated torque and the underlying transport. Calculations of the neoclassical toroidal viscosity (NTV) torque with PENT code of these plasmas find that TBM torque is strongly edge localized while the tentative experimental analysis indicates a more radially broad TBM torque profile. Both the experimental and PENT results will be elaborated and experimental TBM torque scaling with pressure and collisionality presented. Experimental validation of existing plasma response and NTV torque models is an important step toward understanding the impact of magnetic field ripple on plasma rotation, and for predicting the required compensation fields. Work supported by the US Department of Energy under DE-AC52-07NA27344, DE-FC02-04ER54698 and DE-AC02-09CH11466.

  2. Biomechanical Evaluation of Knee Joint Laxities and Graft Forces After Anterior Cruciate Ligament Reconstruction by Anteromedial Portal, Outside-In, and Transtibial Techniques

    PubMed Central

    Sim, Jae Ang; Gadikota, Hemanth R.; Li, Jing-Sheng; Li, Guoan; Gill, Thomas J.

    2013-01-01

    Background Recently, anatomic anterior cruciate ligament (ACL) reconstruction is emphasized to improve joint laxity and to potentially avert initiation of cartilage degeneration. There is a paucity of information on the efficacy of ACL reconstructions by currently practiced tunnel creation techniques in restoring normal joint laxity. Study Design Controlled laboratory study. Hypothesis Anterior cruciate ligament reconstruction by the anteromedial (AM) portal technique, outside-in (OI) technique, and modified transtibial (TT) technique can equally restore the normal knee joint laxity and ACL forces. Methods Eight fresh-frozen human cadaveric knee specimens were tested using a robotic testing system under an anterior tibial load (134 N) at 0°, 30°, 60°, and 90° of flexion and combined torques (10-N·m valgus and 5-N·m internal tibial torques) at 0° and 30° of flexion. Knee joint kinematics, ACL, and ACL graft forces were measured in each knee specimen under 5 different conditions (ACL-intact knee, ACL-deficient knee, ACL-reconstructed knee by AM portal technique, ACL-reconstructed knee by OI technique, and ACL-reconstructed knee by TT technique). Results Under anterior tibial load, no significant difference was observed between the 3 reconstructions in terms of restoring anterior tibial translation (P > .05). However, none of the 3 ACL reconstruction techniques could completely restore the normal anterior tibial translations (P <.05). Under combined tibial torques, both AM portal and OI techniques closely restored the normal knee anterior tibial translation (P > .05) at 0° of flexion but could not do so at 30° of flexion (P <.05). The ACL reconstruction by the TT technique was unable to restore normal anterior tibial translations at both 0° and 30° of flexion under combined tibial torques (P <.05). Forces experienced by the ACL grafts in the 3 reconstruction techniques were lower than those experienced by normal ACL under both the loading conditions

  3. Static Strength Characteristics of Mechanically Fastened Composite Joints

    NASA Technical Reports Server (NTRS)

    Fox, D. E.; Swaim, K. W.

    1999-01-01

    The analysis of mechanically fastened composite joints presents a great challenge to structural analysts because of the large number of parameters that influence strength. These parameters include edge distance, width, bolt diameter, laminate thickness, ply orientation, and bolt torque. The research presented in this report investigates the influence of some of these parameters through testing and analysis. A methodology is presented for estimating the strength of the bolt-hole based on classical lamination theory using the Tsai-Hill failure criteria and typical bolthole bearing analytical methods.

  4. Torque Generation of Enterococcus hirae V-ATPase*

    PubMed Central

    Ueno, Hiroshi; Minagawa, Yoshihiro; Hara, Mayu; Rahman, Suhaila; Yamato, Ichiro; Muneyuki, Eiro; Noji, Hiroyuki; Murata, Takeshi; Iino, Ryota

    2014-01-01

    V-ATPase (VoV1) converts the chemical free energy of ATP into an ion-motive force across the cell membrane via mechanical rotation. This energy conversion requires proper interactions between the rotor and stator in VoV1 for tight coupling among chemical reaction, torque generation, and ion transport. We developed an Escherichia coli expression system for Enterococcus hirae VoV1 (EhVoV1) and established a single-molecule rotation assay to measure the torque generated. Recombinant and native EhVoV1 exhibited almost identical dependence of ATP hydrolysis activity on sodium ion and ATP concentrations, indicating their functional equivalence. In a single-molecule rotation assay with a low load probe at high ATP concentration, EhVoV1 only showed the “clear” state without apparent backward steps, whereas EhV1 showed two states, “clear” and “unclear.” Furthermore, EhVoV1 showed slower rotation than EhV1 without the three distinct pauses separated by 120° that were observed in EhV1. When using a large probe, EhVoV1 showed faster rotation than EhV1, and the torque of EhVoV1 estimated from the continuous rotation was nearly double that of EhV1. On the other hand, stepping torque of EhV1 in the clear state was comparable with that of EhVoV1. These results indicate that rotor-stator interactions of the Vo moiety and/or sodium ion transport limit the rotation driven by the V1 moiety, and the rotor-stator interactions in EhVoV1 are stabilized by two peripheral stalks to generate a larger torque than that of isolated EhV1. However, the torque value was substantially lower than that of other rotary ATPases, implying the low energy conversion efficiency of EhVoV1. PMID:25258315

  5. Closed-loop torque feedback for a universal field-oriented controller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Doncker, R.W.A.A.; King, R.D.; Sanza, P.C.

    A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation. 1 figure.

  6. Closed-loop torque feedback for a universal field-oriented controller

    DOEpatents

    De Doncker, R.W.A.A.; King, R.D.; Sanza, P.C.; Haefner, K.B.

    1992-11-24

    A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation. 1 figure.

  7. Preparation Torque Limit for Composites Joined with Mechanical Fasteners

    NASA Technical Reports Server (NTRS)

    Thomas, Frank P.; Yi, Zhao

    2005-01-01

    Current design guidelines for determining torque ranges for composites are based on tests and analysis from isotropic materials. Properties of composites are not taken into account. No design criteria based upon a systematic analytical and test analyses is available. This paper is to study the maximum torque load a composite component could carry prior to any failure. Specifically, the torque-tension tests are conducted. NDT techniques including acoustic emission, thermography and photomicroscopy are also utilized to characterize the damage modes.

  8. Muscle activation and the isokinetic torque-velocity relationship of the human triceps surae.

    PubMed

    Harridge, S D; White, M J

    1993-01-01

    The influence of muscle activation and the time allowed for torque generation on the angle-specific torque-velocity relationship of the triceps surae was studied during plantar flexion using supramaximal electrical stimulation and a release technique on six male subjects [mean (SD) age 25 (4) years]. Torque-velocity data were obtained under different levels of constant muscle activation by varying the stimulus frequency and the time allowed for isometric torque generation prior to release and isokinetic shortening. To eliminate the effects of the frequency response on absolute torque the isokinetic data were normalized to the maximum isometric torque values at 0.44 rad. There were no significant differences in the normalized torques generated at any angular velocity using stimulus frequencies of 20, 50 or 80 Hz. When the muscle was stimulated at 50 Hz the torques obtained after a 400 ms and 1 s pre-release isometric contraction did not differ significantly. However, with no pre-release contraction significantly less torque was generated at all angular velocities beyond 1.05 rad.s-1 when compared with either the 200, 400 ms or 1 s condition. With a 200 ms pre-release contraction significantly less torque was generated at angular velocities beyond 1.05 rad.s-1 when compared with the 400 ms or 1 s conditions. It would seem that the major factor governing the shape of the torque-velocity curve at a constant level of muscle activation is the time allowed for torque generation.

  9. [Effects of exercise on joints.

    PubMed

    Moriyama, Hideki

    Joints are composed of several different tissues(cartilage, capsule, meniscus, and ligament), and articular cartilage plays an important role in maintaining mechanical competence during exercise. Weight-bearing exercise has several benefit, including improved blood and synovial fluid circulation in a given joint. Consistent moderate activities facilitate cycles of anabolism and catabolism. Mechanical stresses are crucial for the maintenance of the morphologic and functional integrity of articular cartilage. Healthy cartilage is exposed by hydrostatic pressure and tensile strain, when cartilage degeneration develops, abnormal cartilage is exposed by shear stress. Moderate(physiological)exercise is characterized by a range of equilibrium between matrix anabolic and catabolic processes, or anabolism beyond catabolism. Joints are susceptible to insufficient or excessive activities, leading to joint degeneration. Lack of exercise is known to induce joint contracture seen clinically as a consequence of disuse changes, and excess mechanical stresses induce joint destruction such as osteoarthritis. Joint diseases resulting from insufficient or excessive activities are new and major challenging issues with our aging population. Thus, it is highly desirable to have an effective and efficient treatment to improve and protect against these joint diseases, and thereby to solve these clearly unanswered issues.

  10. Auditory display of knee-joint vibration signals

    NASA Astrophysics Data System (ADS)

    Krishnan, Sridhar; Rangayyan, Rangaraj M.; Bell, G. Douglas; Frank, Cyril B.

    2001-12-01

    Sounds generated due to rubbing of knee-joint surfaces may lead to a potential tool for noninvasive assessment of articular cartilage degeneration. In the work reported in the present paper, an attempt is made to perform computer-assisted auscultation of knee joints by auditory display (AD) of vibration signals (also known as vibroarthrographic or VAG signals) emitted during active movement of the leg. Two types of AD methods are considered: audification and sonification. In audification, the VAG signals are scaled in time and frequency using a time-frequency distribution to facilitate aural analysis. In sonification, the instantaneous mean frequency and envelope of the VAG signals are derived and used to synthesize sounds that are expected to facilitate more accurate diagnosis than the original signals by improving their aural quality. Auditory classification experiments were performed by two orthopedic surgeons with 37 VAG signals including 19 normal and 18 abnormal cases. Sensitivity values (correct detection of abnormality) of 31%, 44%, and 83%, and overall classification accuracies of 53%, 40%, and 57% were obtained with the direct playback, audification, and sonification methods, respectively. The corresponding d' scores were estimated to be 1.10, -0.36, and 0.55. The high sensitivity of the sonification method indicates that the technique could lead to improved detection of knee-joint abnormalities; however, additional work is required to improve its specificity and achieve better overall performance.

  11. Experimental and theoretical study of friction torque from radial ball bearings

    NASA Astrophysics Data System (ADS)

    Geonea, Ionut; Dumitru, Nicolae; Dumitru, Ilie

    2017-10-01

    In this paper it is presented a numerical simulation and an experimental study of total friction torque from radial ball bearings. For this purpose it is conceived a virtual CAD model of the experimental test bench for bearing friction torque measurement. The virtual model it is used for numerical simulation in Adams software, that allows dynamic study of multi-body systems and in particularly with facility Adams Machinery of dynamic behavior of machine parts. It is manufactured an experimental prototype of the test bench for radial ball bearings friction torque measurement. In order to measure the friction torque of the tested bearings it is used an equal resistance elastic beam element, with strain gauge transducer to measure bending deformations. The actuation electric motor of the bench has the shaft mounted on two bearings and the motor housing is fixed to the free side of the elastic beam, which is bended by a force proportional with the total friction torque. The beam elastic element with strain gauge transducer is calibrated in order to measure the force occurred. Experimental determination of the friction torque is made for several progressive radial loads. It is established the correlation from the friction torque and bearing radial load. The bench allows testing of several types and dimensions of radial bearings, in order to establish the bearing durability and of total friction torque.

  12. New Cogging Torque Reduction Methods for Permanent Magnet Machine

    NASA Astrophysics Data System (ADS)

    Bahrim, F. S.; Sulaiman, E.; Kumar, R.; Jusoh, L. I.

    2017-08-01

    Permanent magnet type motors (PMs) especially permanent magnet synchronous motor (PMSM) are expanding its limbs in industrial application system and widely used in various applications. The key features of this machine include high power and torque density, extending speed range, high efficiency, better dynamic performance and good flux-weakening capability. Nevertheless, high in cogging torque, which may cause noise and vibration, is one of the threat of the machine performance. Therefore, with the aid of 3-D finite element analysis (FEA) and simulation using JMAG Designer, this paper proposed new method for cogging torque reduction. Based on the simulation, methods of combining the skewing with radial pole pairing method and skewing with axial pole pairing method reduces the cogging torque effect up to 71.86% and 65.69% simultaneously.

  13. Stress analysis of bolted joints under centrifugal force

    NASA Astrophysics Data System (ADS)

    Imura, Makoto; Iizuka, Motonobu; Nakae, Shigeki; Mori, Takeshi; Koyama, Takayuki

    2014-06-01

    Our objective is to develop a long-life rotary machine for synchronous generators and motors. To do this, it is necessary to design a high-strength bolted joint, which is responsible for fixing a salient pole on a rotor shaft. While the rotary machine is in operation, not only centrifugal force but also moment are loaded on a bolted joint, because a point of load is eccentric to a centre of a bolt. We tried to apply the theory proposed in VDI2230-Blatt1 to evaluate the bolted joint under eccentric force, estimate limited centrifugal force, which is the cause of partial separation between the pole and the rotor shaft, and then evaluate additional tension of a bolt after the partial separation has occurred. We analyzed the bolted joint by FEM, and defined load introduction factor in that case. Additionally, we investigated the effect of the variation of bolt preload on the partial separation. We did a full scale experiment with a prototype rotor to reveal the variation of bolt preload against tightening torque. After that, we verified limited centrifugal force and the strength of the bolted joint by the VDI2230-Blatt1 theory and FEM considering the variation of bolt preload. Finally, we could design a high-strength bolted joint verified by the theoretical study and FEM analysis.

  14. Proximal Versus Distal Control of Two-Joint Planar Reaching Movements in the Presence of Neuromuscular Noise

    PubMed Central

    Nguyen, Hung P.; Dingwell, Jonathan B.

    2012-01-01

    Determining how the human nervous system contends with neuro-motor noise is vital to understanding how humans achieve accurate goal-directed movements. Experimentally, people learning skilled tasks tend to reduce variability in distal joint movements more than in proximal joint movements. This suggests that they might be imposing greater control over distal joints than proximal joints. However, the reasons for this remain unclear, largely because it is not experimentally possible to directly manipulate either the noise or the control at each joint independently. Therefore, this study used a 2 degree-of-freedom torque driven arm model to determine how different combinations of noise and/or control independently applied at each joint affected the reaching accuracy and the total work required to make the movement. Signal-dependent noise was simultaneously and independently added to the shoulder and elbow torques to induce endpoint errors during planar reaching. Feedback control was then applied, independently and jointly, at each joint to reduce endpoint error due to the added neuromuscular noise. Movement direction and the inertia distribution along the arm were varied to quantify how these biomechanical variations affected the system performance. Endpoint error and total net work were computed as dependent measures. When each joint was independently subjected to noise in the absence of control, endpoint errors were more sensitive to distal (elbow) noise than to proximal (shoulder) noise for nearly all combinations of reaching direction and inertia ratio. The effects of distal noise on endpoint errors were more pronounced when inertia was distributed more toward the forearm. In contrast, the total net work decreased as mass was shifted to the upper arm for reaching movements in all directions. When noise was present at both joints and joint control was implemented, controlling the distal joint alone reduced endpoint errors more than controlling the proximal joint

  15. Proximal versus distal control of two-joint planar reaching movements in the presence of neuromuscular noise.

    PubMed

    Nguyen, Hung P; Dingwell, Jonathan B

    2012-06-01

    Determining how the human nervous system contends with neuro-motor noise is vital to understanding how humans achieve accurate goal-directed movements. Experimentally, people learning skilled tasks tend to reduce variability in distal joint movements more than in proximal joint movements. This suggests that they might be imposing greater control over distal joints than proximal joints. However, the reasons for this remain unclear, largely because it is not experimentally possible to directly manipulate either the noise or the control at each joint independently. Therefore, this study used a 2 degree-of-freedom torque driven arm model to determine how different combinations of noise and/or control independently applied at each joint affected the reaching accuracy and the total work required to make the movement. Signal-dependent noise was simultaneously and independently added to the shoulder and elbow torques to induce endpoint errors during planar reaching. Feedback control was then applied, independently and jointly, at each joint to reduce endpoint error due to the added neuromuscular noise. Movement direction and the inertia distribution along the arm were varied to quantify how these biomechanical variations affected the system performance. Endpoint error and total net work were computed as dependent measures. When each joint was independently subjected to noise in the absence of control, endpoint errors were more sensitive to distal (elbow) noise than to proximal (shoulder) noise for nearly all combinations of reaching direction and inertia ratio. The effects of distal noise on endpoint errors were more pronounced when inertia was distributed more toward the forearm. In contrast, the total net work decreased as mass was shifted to the upper arm for reaching movements in all directions. When noise was present at both joints and joint control was implemented, controlling the distal joint alone reduced endpoint errors more than controlling the proximal joint

  16. Atypical Brain Torque in Boys With Developmental Stuttering

    PubMed Central

    Mock, Jeffrey Ryan; Zadina, Janet N.; Corey, David M.; Cohen, Jeremy D.; Lemen, Lisa C.; Foundas, Anne L.

    2017-01-01

    The counterclockwise brain torque, defined as a larger right prefrontal and left parietal-occipital lobe, is a consistent brain asymmetry. Reduced or reversed lobar asymmetries are markers of atypical cerebral laterality and have been found in adults who stutter. It was hypothesized that atypical brain torque would be more common in children who stutter. MRI-based morphology measures were completed in boys who stutter (n=14) and controls (n=14), ages 8–13. The controls had the expected brain torque configurations whereas the boys who stutter were atypical. These results support the hypothesis that developmental stuttering is associated with atypical prefrontal and parietal-occipital lobe asymmetries. PMID:22799762

  17. Steam sterilization effect on the accuracy of friction-style mechanical torque limiting devices.

    PubMed

    Sadr, Seyed Jalil; Fayyaz, Ali; Mahshid, Minoo; Saboury, Aboulfazl; Ansari, Ghassem

    2014-01-01

    This study was aimed to evaluate the effect of steam sterilization on the accuracy (within 10%) of friction-style mechanical torque limiting devices (F-S MTLDs) to achieve their target torque values. Fifteen new F-S MTLDs were selected from Astra Tech (25 Ncm, Hader SA, La Chaux-de-Fonds, Switzerland), BioHorizons (30 Ncm, Dynatorq ITL, Irvine, California, USA), Dr. Idhe (15-60 Ncm, Dr. Idhe Dental, Eching/Munich, Germany). Every peak torque measurement was tested ten times before steam sterilization using Tohnichi torque gauge (6Tohnichi-BTG (-S), Japan). Steam sterilization was performed using a 100 cycle autoclave. Preparation steps were carried out for the devices before each autoclave sterilization cycle. Peak torque measurements were repeated after every sterilization cycle. Mean difference between the measured and the targeted torque values were evaluated before and after aging. Repeated-measures of ANOVA were used to compare the differences of accuracy between subjects. Bonferroni post-hoc test was used for pairwise comparison. Autoclaving resulted in an increase in the error values (the difference between peak torque and target torque values) in all the three groups studied (P < 0.05), with only Astra Tech devices showing >10% (maximum 12%) difference from their torque values in 5% of the measurements. Steam sterilization effect differs between target torque and measured peak values with an increase trend. The peak torque values showed a significant decrease for BioHorizons, while a significant increase was noted for Astra Tech and no significant change in Dr. Idhe group after sterilization. Within the limitation of this study the torque output of each individual device deviated in varying degrees from target torque values. However, the majority of the new frictional-style devices tested in this study, delivered fairly consistent torque output within 10% of their preset target values after sterilization. Astra Tech devices were the only one showing more

  18. Self-consistent perturbed equilibrium with neoclassical toroidal torque in tokamaks

    DOE PAGES

    Park, Jong-Kyu; Logan, Nikolas C.

    2017-03-01

    Toroidal torque is one of the most important consequences of non-axisymmetric fields in tokamaks. The well-known neoclassical toroidal viscosity (NTV) is due to the second-order toroidal force from anisotropic pressure tensor in the presence of these asymmetries. This work shows that the first-order toroidal force originating from the same anisotropic pressure tensor, despite having no flux surface average, can significantly modify the local perturbed force balance and thus must be included in perturbed equilibrium self-consistent with NTV. The force operator with an anisotropic pressure tensor is not self-adjoint when the NTV torque is finite and thus is solved directly formore » each component. This approach yields a modified, non-self-adjoint Euler-Lagrange equation that can be solved using a variety of common drift-kinetic models in generalized tokamak geometry. The resulting energy and torque integral provides a unique way to construct a torque response matrix, which contains all the information of self-consistent NTV torque profiles obtainable by applying non-axisymmetric fields to the plasma. This torque response matrix can then be used to systematically optimize non-axisymmetric field distributions for desired NTV profiles. Published by AIP Publishing.« less

  19. A theoretical model of speed-dependent steering torque for rolling tyres

    NASA Astrophysics Data System (ADS)

    Wei, Yintao; Oertel, Christian; Liu, Yahui; Li, Xuebing

    2016-04-01

    It is well known that the tyre steering torque is highly dependent on the tyre rolling speed. In limited cases, i.e. parking manoeuvre, the steering torque approaches the maximum. With the increasing tyre speed, the steering torque decreased rapidly. Accurate modelling of the speed-dependent behaviour for the tyre steering torque is a key factor to calibrate the electric power steering (EPS) system and tune the handling performance of vehicles. However, no satisfactory theoretical model can be found in the existing literature to explain this phenomenon. This paper proposes a new theoretical framework to model this important tyre behaviour, which includes three key factors: (1) tyre three-dimensional transient rolling kinematics with turn-slip; (2) dynamical force and moment generation; and (3) the mixed Lagrange-Euler method for contact deformation solving. A nonlinear finite-element code has been developed to implement the proposed approach. It can be found that the main mechanism for the speed-dependent steering torque is due to turn-slip-related kinematics. This paper provides a theory to explain the complex mechanism of the tyre steering torque generation, which helps to understand the speed-dependent tyre steering torque, tyre road feeling and EPS calibration.

  20. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques

    NASA Technical Reports Server (NTRS)

    Pigeon, Pascale; Bortolami, Simone B.; DiZio, Paul; Lackner, James R.

    2003-01-01

    When reaching movements involve simultaneous trunk rotation, additional interaction torques are generated on the arm that are absent when the trunk is stable. To explore whether the CNS compensates for such self-generated interaction torques, we recorded hand trajectories in reaching tasks involving various amplitudes and velocities of arm extension and trunk rotation. Subjects pointed to three targets on a surface slightly above waist level. Two of the target locations were chosen so that a similar arm configuration relative to the trunk would be required for reaching to them, one of these targets requiring substantial trunk rotation, the other very little. Significant trunk rotation was necessary to reach the third target, but the arm's radial distance to the body remained virtually unchanged. Subjects reached at two speeds-a natural pace (slow) and rapidly (fast)-under normal lighting and in total darkness. Trunk angular velocity and finger velocity relative to the trunk were higher in the fast conditions but were not affected by the presence or absence of vision. Peak trunk velocity increased with increasing trunk rotation up to a maximum of 200 degrees /s. In slow movements, peak finger velocity relative to the trunk was smaller when trunk rotation was necessary to reach the targets. In fast movements, peak finger velocity was approximately 1.7 m/s for all targets. Finger trajectories were more curved when reaching movements involved substantial trunk rotation; however, the terminal errors and the maximal deviation of the trajectory from a straight line were comparable in slow and fast movements. This pattern indicates that the larger Coriolis, centripetal, and inertial interaction torques generated during rapid reaches were compensated by additional joint torques. Trajectory characteristics did not vary with the presence or absence of vision, indicating that visual feedback was unnecessary for anticipatory compensations. In all reaches involving trunk

  1. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.

    PubMed

    Pigeon, Pascale; Bortolami, Simone B; DiZio, Paul; Lackner, James R

    2003-01-01

    When reaching movements involve simultaneous trunk rotation, additional interaction torques are generated on the arm that are absent when the trunk is stable. To explore whether the CNS compensates for such self-generated interaction torques, we recorded hand trajectories in reaching tasks involving various amplitudes and velocities of arm extension and trunk rotation. Subjects pointed to three targets on a surface slightly above waist level. Two of the target locations were chosen so that a similar arm configuration relative to the trunk would be required for reaching to them, one of these targets requiring substantial trunk rotation, the other very little. Significant trunk rotation was necessary to reach the third target, but the arm's radial distance to the body remained virtually unchanged. Subjects reached at two speeds-a natural pace (slow) and rapidly (fast)-under normal lighting and in total darkness. Trunk angular velocity and finger velocity relative to the trunk were higher in the fast conditions but were not affected by the presence or absence of vision. Peak trunk velocity increased with increasing trunk rotation up to a maximum of 200 degrees /s. In slow movements, peak finger velocity relative to the trunk was smaller when trunk rotation was necessary to reach the targets. In fast movements, peak finger velocity was approximately 1.7 m/s for all targets. Finger trajectories were more curved when reaching movements involved substantial trunk rotation; however, the terminal errors and the maximal deviation of the trajectory from a straight line were comparable in slow and fast movements. This pattern indicates that the larger Coriolis, centripetal, and inertial interaction torques generated during rapid reaches were compensated by additional joint torques. Trajectory characteristics did not vary with the presence or absence of vision, indicating that visual feedback was unnecessary for anticipatory compensations. In all reaches involving trunk

  2. Large Torque Variations in Two Soft Gamma Repeaters

    NASA Technical Reports Server (NTRS)

    Woods, Peter M.; Kouveliotou, Chryssa; Gogus, Ersin; Finger, Mark H.; Swank, Jean; Markwardt, Craig B.; Hurley, Kevin; vanderKlis, Michiel

    2002-01-01

    We have monitored the pulse frequencies of the two soft gamma repeaters SGR 1806-20 and SGR 1900+14 through the beginning of year 2001 using primarily Rossi X-Ray Timing Explorer Proportional Counter Array observations. In both sources, we observe large changes in the spin-down torque up to a factor of approximately 4, which persist for several months. Using long-baseline phase-connected timing solutions as well as the overall frequency histories, we construct torque noise power spectra for each SGR (Soft Gamma Repeater). The power spectrum of each source is very red (power-law slope is approximately -3.5). The torque noise power levels are consistent with some accreting systems on timescales of approximately 1 yr, yet the full power spectrum is much steeper in frequency than any known accreting source. To the best of our knowledge, torque noise power spectra with a comparably steep frequency dependence have been seen only in young, glitching radio pulsars (e.g., Vela). The observed changes in spin-down rate do not correlate with burst activity; therefore, the physical mechanisms behind each phenomenon are also likely unrelated. Within the context of the magnetar model, seismic activity can not account for both the bursts and the long-term torque changes unless the seismically active regions are decoupled from one another.

  3. Rotational and peak torque stiffness of rugby shoes.

    PubMed

    Ballal, Moez S; Usuelli, Federico Giuseppe; Montrasio, Umberto Alfieri; Molloy, Andy; La Barbera, Luigi; Villa, Tomaso; Banfi, Giuseppe

    2014-09-01

    Sports people always strive to avoid injury. Sports shoe designs in many sports have been shown to affect traction and injury rates. The aim of this study is to demonstrate the differing stiffness and torque in rugby boots that are designed for the same effect. Five different types of rugby shoes commonly worn by scrum forwards were laboratory tested for rotational stiffness and peak torque on a natural playing surface generating force patterns that would be consistent with a rugby scrum. The overall internal rotation peak torque was 57.75±6.26 Nm while that of external rotation was 56.55±4.36 Nm. The Peak internal and external rotational stiffness were 0.696±0.1 and 0.708±0.06 Nm/deg respectively. Our results, when compared to rotational stiffness and peak torques of football shoes published in the literature, show that shoes worn by rugby players exert higher rotational and peak torque stiffness compared to football shoes when tested on the same natural surfaces. There was significant difference between the tested rugby shoes brands. In our opinion, to maximize potential performance and lower the potential of non-contact injury, care should be taken in choosing boots with stiffness appropriate to the players main playing role. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Nonlocal Gilbert damping tensor within the torque-torque correlation model

    NASA Astrophysics Data System (ADS)

    Thonig, Danny; Kvashnin, Yaroslav; Eriksson, Olle; Pereiro, Manuel

    2018-01-01

    An essential property of magnetic devices is the relaxation rate in magnetic switching, which depends strongly on the damping in the magnetization dynamics. It was recently measured that damping depends on the magnetic texture and, consequently, is a nonlocal quantity. The damping enters the Landau-Lifshitz-Gilbert equation as the phenomenological Gilbert damping parameter α , which does not, in a straightforward formulation, account for nonlocality. Efforts were spent recently to obtain Gilbert damping from first principles for magnons of wave vector q . However, to the best of our knowledge, there is no report about real-space nonlocal Gilbert damping αi j. Here, a torque-torque correlation model based on a tight-binding approach is applied to the bulk elemental itinerant magnets and it predicts significant off-site Gilbert damping contributions, which could be also negative. Supported by atomistic magnetization dynamics simulations, we reveal the importance of the nonlocal Gilbert damping in atomistic magnetization dynamics. This study gives a deeper understanding of the dynamics of the magnetic moments and dissipation processes in real magnetic materials. Ways of manipulating nonlocal damping are explored, either by temperature, materials doping, or strain.

  5. Magnetic moment of inertia within the torque-torque correlation model.

    PubMed

    Thonig, Danny; Eriksson, Olle; Pereiro, Manuel

    2017-04-19

    An essential property of magnetic devices is the relaxation rate in magnetic switching which strongly depends on the energy dissipation. This is described by the Landau-Lifshitz-Gilbert equation and the well known damping parameter, which has been shown to be reproduced from quantum mechanical calculations. Recently the importance of inertia phenomena have been discussed for magnetisation dynamics. This magnetic counterpart to the well-known inertia of Newtonian mechanics, represents a research field that so far has received only limited attention. We present and elaborate here on a theoretical model for calculating the magnetic moment of inertia based on the torque-torque correlation model. Particularly, the method has been applied to bulk itinerant magnets and we show that numerical values are comparable with recent experimental measurements. The theoretical analysis shows that even though the moment of inertia and damping are produced by the spin-orbit coupling, and the expression for them have common features, they are caused by very different electronic structure mechanisms. We propose ways to utilise this in order to tune the inertia experimentally, and to find materials with significant inertia dynamics.

  6. Minimization of torque ripple in ferrite-assisted synchronous reluctance motors by using asymmetric stator

    NASA Astrophysics Data System (ADS)

    Xu, Meimei; Liu, Guohai; Zhao, Wenxiang; Aamir, Nazir

    2018-05-01

    Torque ripple is one of the important issues for ferrite assisted synchronous reluctance motors (FASRMs). In this paper, an asymmetrical stator is proposed for the FASRM to reduce its torque ripple. In the proposed FASRM, an asymmetrical stator is designed by appropriately choosing the angle of the slot-opening shift. Meanwhile, its analytical torque expressions are derived. The results show that the proposed FASRM has an effective reduction in the cogging torque, reluctance torque ripple and total torque ripple. Moreover, it is easy to implement while the average torque is not sacrificed.

  7. Spin torque and Nernst effects in Dzyaloshinskii-Moriya ferromagnets

    DOE PAGES

    Kovalev, Alexey A.; Zyuzin, Vladimir

    2016-04-11

    Here, we predict that a temperature gradient can induce a magnon-mediated intrinsic torque in systems with a nontrivial magnon Berry curvature. With the help of a microscopic linear response theory of nonequilibrium magnon-mediated torques and spin currents we identify the interband and intraband components that manifest in ferromagnets with Dzyaloshinskii-Moriya interactions and magnetic textures. To illustrate and assess the importance of such effects, we apply the linear response theory to the magnon-mediated spin Nernst and torque responses in a kagome lattice ferromagnet.

  8. Torque characteristics of a 122-centimeter butterfly valve with a hydro/pneumatic actuator

    NASA Technical Reports Server (NTRS)

    Lin, F. N.; Moore, W. I.; Lundy, F. E.

    1981-01-01

    Actuating torque data from field testing of a 122-centimeter (48 in.) butterfly valve with a hydro/pneumatic actuator is presented. The hydraulic cylinder functions as either a forward or a reverse brake. Its resistance torque increases when the valve speeds up and decreases when the valve slows down. A reduction of flow resistance in the hydraulic flow path from one end of the hydraulic cylinder to the other will effectively reduce the hydraulic resistance torque and hence increase the actuating torque. The sum of hydrodynamic and friction torques (combined resistance torque) of a butterfly valve is a function of valve opening time. An increase in the pneumatic actuating pressure will result in a decrease in both the combined resistance torque and the actuator opening torque; however, it does shorten the valve opening time. As the pneumatic pressure increases, the valve opening time for a given configuration approaches an asymptotical value.

  9. MUSCLE WEAKNESS, FATIGUE, AND TORQUE VARIABILITY: EFFECTS OF AGE AND MOBILITY STATUS

    PubMed Central

    KENT-BRAUN, JANE A.; CALLAHAN, DAMIEN M.; FAY, JESSICA L.; FOULIS, STEPHEN A.; BUONACCORSI, JOHN P.

    2013-01-01

    Introduction Whereas deficits in muscle function, particularly power production, develop in old age and are risk factors for mobility impairment, a complete understanding of muscle fatigue during dynamic contractions is lacking. We tested hypotheses related to torque-producing capacity, fatigue resistance, and variability of torque production during repeated maximal contractions in healthy older, mobility-impaired older, and young women. Methods Knee extensor fatigue (decline in torque) was measured during 4 min of dynamic contractions. Torque variability was characterized using a novel 4-component logistic regression model. Results Young women produced more torque at baseline and during the protocol than older women (P < 0.001). Although fatigue did not differ between groups (P = 0.53), torque variability differed by group (P = 0.022) and was greater in older impaired compared with young women (P = 0.010). Conclusions These results suggest that increased torque variability may combine with baseline muscle weakness to limit function, particularly in older adults with mobility impairments. PMID:23674266

  10. 40 CFR 90.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Dynamometer torque cell calibration. 90... Equipment Provisions § 90.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used to convert a... (a)(6) of this section with the adjusted or repaired system. (b) Option. A master load-cell or...

  11. 40 CFR 91.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Dynamometer torque cell calibration. 91....306 Dynamometer torque cell calibration. (a)(1) Any lever arm used to convert a weight or a force... with the adjusted or repaired system. (b) Option. A master load-cell or transfer standard may be used...

  12. A retrospective study of radiographic abnormalities in the repositories for Thoroughbreds at yearling sales in Japan.

    PubMed

    Miyakoshi, Daisuke; Senba, Hiroyuki; Shikichi, Mitsumori; Maeda, Masaya; Shibata, Ryo; Misumi, Kazuhiro

    2017-11-10

    This study aimed to evaluate whether radiographic abnormalities at yearling sales were associated with the failure to start racing at 2-3 years of age. Radiographic abnormalities in the carpal (n=852), tarsal (n=976), metacarpophalangeal (n=1,055), and metatarsophalangeal joints (n=1,031) from 1,082 horses, recorded at yearling sale, were reviewed. Eighty-two horses (7.6%) failed to start racing. Radiographic abnormalities such as wedged or collapsed tarsal bones, irregular lucency of a sagittal ridge at the distal aspect of the distal third metatarsal bone, and proximal dorsal fragmentation of the first phalanx in metatarsophalangeal joints were associated with failure to start racing in these horses. In the follow-up survey of 12 horses with one or more these radiographic abnormalities, the horses failed to start racing due to reasons unrelated to these radiographic abnormalities such as pelvic fractures (2 horses), fracture of a distal phalanx (1 horse), cervical stenotic myelopathy and proximal sesamoid fracture (1 horse), superficial digital flexor tendonitis (2 horses), laryngeal hemiplegia (1 horse), economic problems (2 horses) and unknown causes (3 horses). Although radiographic abnormalities at yearling sales can be associated with failure to start racing at 2-3 years of age, these radiographically detected abnormalities might not necessarily cause that failure.

  13. Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle

    DOEpatents

    Boberg, Evan S.; Gebby, Brian P.

    1999-09-28

    A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

  14. Influence of reverse torque values in abutments with or without internal hexagon indexes.

    PubMed

    Cerutti-Kopplin, Daiane; Rodrigues Neto, Dimas João; Lins do Valle, Accácio; Pereira, Jefferson Ricardo

    2014-10-01

    The mechanical stability of the implant-abutment connection is of fundamental importance for successful implant-supported restorations. Therefore, understanding removal torque values is essential. The purpose of this study was to evaluate the reverse torque values of indexed and nonindexed abutments of the Morse Taper system. Twelve Morse taper implants with their respective abutments were divided into 2 groups (n=6): group NI, nonindexed abutments; and group IN, indexed abutments. Each abutment received a sequence of 2 consecutive torques for insertion (15 Ncm) at an interval of 10 minutes, and 1 reverse torque, all measured with a digital torque wrench. The Student t test with a 5% significance level was used to evaluate the data. Statistical analysis showed no significant difference in reverse torque values between nonindexed and indexed abutments (P=.57). When comparing insertion torque and reverse torque values between the groups, group NI presented a mean torque loosening percentage of 8% (P=.013), whereas group IN presented a loosening of 15.33% (P<.001). The use of indexed abutments for the Morse taper system presented similar biomechanical stability when compared with nonindexed abutments, both with a significant reduction in reverse torque values. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Instantaneous flywheel torque of IC engine grey-box identification

    NASA Astrophysics Data System (ADS)

    Milašinović, A.; Knežević, D.; Milovanović, Z.; Škundrić, J.

    2018-01-01

    In this paper a mathematical model developed for the identification of excitation torque acting on the IC engine flywheel is presented. The excitation torque gained through internal combustion of the fuel in the IC engine is transmitted from the flywheel to the transmission. The torque is not constant but variable and is a function of the crank angle. The verification of the mathematical model was done on a 4-cylinder 4-stroke diesel engine for which the in-cylinder pressure was measured in one cylinder and the instantaneous angular speed of the crankshaft at its free end. The research was conducted on a hydraulic engine brake. Inertial forces of all rotational parts, from flywheel to the turbine wheel of the engine brake, are acting on the flywheel due to the nonuniform motion of the flywheel. It is known from the theory of turbomachinery that the torque on the hydraulic brake is a quadratic function of angular speed. Due to that and the variable angular speed of the turbine wheel of the engine brake, the torque during one engine cycle is also variable. The motivation for this research was the idea (intention) to determine the instantaneous torque acting on the flywheel as a function of the crank angle with a mathematical model without any measuring and based on this to determine the quality of work of specific cylinders of the multi-cylinder engine. The crankshaft was considered elastic and also its torsional vibrations were taken into account.

  16. Influence of patellofemoral bracing on pain, knee extensor torque, and gait function in females with patellofemoral pain.

    PubMed

    Powers, Christopher M; Doubleday, Kathryn L; Escudero, Carina

    2008-01-01

    Our purpose was to evaluate the effects of a patellofemoral brace on pain response, knee extensor torque production, and gait function in females with patellofemoral pain (PFP). Sixteen females between the ages of 14 and 46 with diagnosis of PFP participated. Knee extensor torque was measured by using a LIDO isokinetic dynamometer. Pain levels were documented by using the Visual Analog Pain Scale. Stride characteristics during the conditions of free walk, fast walk, ascend stairs, descend stairs, ascend ramp, and descend ramp were obtained with a stride analyzer unit. EMG activity of the vasti musculature was recorded by using indwelling, bipolar, wire electrodes. Knee joint motion was assessed by using a VICON motion analysis system. All testing was performed with and without the Bauerfeind Genutrain P3 patellofemoral brace. There were no significant differences in torque production, pain levels, and stride characteristics between braced and non-braced trials. In addition, there were no significant differences in mean vasti EMG between braced and non-braced trials. When averaged across all conditions, a small but statistically significant increase in knee flexion was found during the braced trials. Although the current study did not find significant improvements in the clinical measures evaluated, 8 of the 16 subjects did experience a decrease in knee pain. This finding suggests that certain patients with PFP may respond favorably to bracing, and criteria must be established to determine which patients would best benefit from such an intervention.

  17. Mechanics of torque generation in the bacterial flagellar motor.

    PubMed

    Mandadapu, Kranthi K; Nirody, Jasmine A; Berry, Richard M; Oster, George

    2015-08-11

    The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual "power stroke." Specifically, we propose that ion-induced conformational changes about a proline "hinge" residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque-speed and speed-ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator.

  18. Planetary Torque in 3D Isentropic Disks

    NASA Astrophysics Data System (ADS)

    Fung, Jeffrey; Masset, Frédéric; Lega, Elena; Velasco, David

    2017-03-01

    Planetary migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep resolution requirements. Using two different hydrodynamics codes, FARGO3D and PEnGUIn, we simulate disk-planet interaction for a one to five Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet’s potential (r s), and that it has a weak dependence on the adiabatic index of the gaseous disk (γ). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern around the planets that show active flow is present within the planet’s Hill sphere, and meridional vortices are shed downstream. The vertical flow speed near the planet is faster for a smaller r s or γ, up to supersonic speeds for the smallest r s and γ in our study.

  19. Experimental data on single-bolt joints in quasi isotropic graphite/polyimide laminates

    NASA Technical Reports Server (NTRS)

    Wichorek, G. R.

    1982-01-01

    Sixteen ply, quasi-isotropic laminates of Celanese Celion 6000/PMR-15 and Celion 6000/LARC-160 with a fiber orientation of (0/45/90/-45) sub 2S were evaluated. Tensile and open hole specimens were tested at room temperature to establish laminate tensile strength and net tensile strength at an unloaded bolt hole. Double lap joint specimens with a single 4.83-mm (0.19 in.) diameter bolt torqued to 1.7 N-m (15 lbf-in.) were tested in tension at temperatures of 116 K (-250F), 297 K (75F), and 589 K (600F). The joint ratios of w/d (specimen width to hole diameter) and e/d (edge distance to hole diameter) were varied from 4 to 6 and from 2 to 4, respectively. The effect of joint geometry and temperature on failure mode and joint stresses are shown. Joint stresses calculated at maximum load for each joint geometry and test temperature are reported. Joint strength in net tension, bearing, and shear out at 116 K (-250F), 297 K (75F), and 589 K (600F) are given for the Celion 6000/PMR-15 and Celion 6000/LARC-160 laminates.

  20. Evaluation of a high-torque backlash-free roller actuator

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    1988-01-01

    The results are presented of a test program that evaluated the stiffness, accuracy, torque ripple, frictional losses, and torque holding capability of a 16:1 ratio, 430 N-m (320 ft-lb) planetary roller drive for a potential space vehicle actuator application. The drive's planet roller supporting structure and bearings were found to be the largest contributors to overall drive compliance, accounting for more than half the total. In comparison, the traction roller contacts themselves contributed only 9 percent of the drive's compliance based on an experimentally verified stiffnesss model. Torque ripple tests showed the drive to be extremely smooth, actually providing some damping of input torsional oscillations. The drive also demonstrated the ability to hold static torque with drifts of 7 arc sec or less over a 24-hour period at 35 percent of full load.

  1. Resonance measurement of nonlocal spin torque in a three-terminal magnetic device.

    PubMed

    Xue, Lin; Wang, Chen; Cui, Yong-Tao; Liu, Luqiao; Swander, A; Sun, J Z; Buhrman, R A; Ralph, D C

    2012-04-06

    A pure spin current generated within a nonlocal spin valve can exert a spin-transfer torque on a nanomagnet. This nonlocal torque enables new design schemes for magnetic memory devices that do not require the application of large voltages across tunnel barriers that can suffer electrical breakdown. Here we report a quantitative measurement of this nonlocal spin torque using spin-torque-driven ferromagnetic resonance. Our measurement agrees well with the prediction of an effective circuit model for spin transport. Based on this model, we suggest strategies for optimizing the strength of nonlocal torque. © 2012 American Physical Society

  2. Cogging Torque Minimization in Transverse Flux Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz

    2017-02-16

    This paper presents the design considerations in cogging torque minimization in two types of transverse flux machines. The machines have a double stator-single rotor configuration with flux concentrating ferrite magnets. One of the machines has pole windings across each leg of an E-Core stator. Another machine has quasi-U-shaped stator cores and a ring winding. The flux in the stator back iron is transverse in both machines. Different methods of cogging torque minimization are investigated. Key methods of cogging torque minimization are identified and used as design variables for optimization using a design of experiments (DOE) based on the Taguchi method.more » A three-level DOE is performed to reach an optimum solution with minimum simulations. Finite element analysis is used to study the different effects. Two prototypes are being fabricated for experimental verification.« less

  3. Intended and Achieved Torque of Implant Abutment's Screw using Manual Wrenches in Simulated Clinical Setting.

    PubMed

    Al-Otaibi, Hanan N

    2016-11-01

    To measure the difference between the intended torque and the achieved torque by the operator using the spring-style mechanical torque-limiting device (MTLD). Inexperienced and experienced clinicians used one spring-type MTLD to torque two abutment screws of each anterior and posterior implants, which were attached to two digital torque meters through a jaw model. The jaw model was part of a preclinical bench manikin attached to a dental chair. The intended torque value was 35 N cm (recommended by manufacturer) and the technique of torquing was observed for all the participants (instantaneous and repeated). The mean torque value was calculated for each subject for the anterior and posterior implants independently; t-test was used to compare between the intended and achieved torque values and to compare between the experienced and inexperienced clinicians (p ≤ 0.05). Thirty-seven clinicians participated, with an overall mean torque value of 34.30 N cm. The mean torque value of the achieved torque (34.30 ± 4.13 N cm) was statistically significantly less than the intended torque (p = 0.041). The male clinicians produced more statistically significantly accurate torque value (34.54 ± 3.78 N cm) than the female clinicians (p = 0.034), and the experienced clinicians produced more accurate torque values (34.9 ± 5.13 N cm) than the inexperienced clinicians (p = 0.048). Within the limitation of this study, the use of MTLDs did not always produce consistent torque values and the technique by which the operators use the MTLD might affect the torque value.

  4. 40 CFR 91.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Dynamometer torque cell calibration... Provisions § 91.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used to convert a weight or a... with the adjusted or repaired system. (b) Option. A master load-cell or transfer standard may be used...

  5. 40 CFR 91.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Dynamometer torque cell calibration... Provisions § 91.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used to convert a weight or a... with the adjusted or repaired system. (b) Option. A master load-cell or transfer standard may be used...

  6. 40 CFR 91.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Dynamometer torque cell calibration... Provisions § 91.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used to convert a weight or a... with the adjusted or repaired system. (b) Option. A master load-cell or transfer standard may be used...

  7. 40 CFR 91.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Dynamometer torque cell calibration... Provisions § 91.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used to convert a weight or a... with the adjusted or repaired system. (b) Option. A master load-cell or transfer standard may be used...

  8. Design and Control of a Closed-Loop Brushless Torque Activator

    DTIC Science & Technology

    1990-05-01

    AD-A270 760 Technical Report 1244 Design and Control of a Closed-Loop Brushless Torque Activator Michael Dean Levi MIT Artificial Intelligence... Brushless N00014-86-K-0685 Torque Actuator 6. AUTHOR(S) Michael Dean Levin 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) B. PERFORMING...200 words) This’report explores the design and control issues associated with a brushless actuator capable of achieving extremely high torque

  9. Spin-orbit torques in high-resistivity-W/CoFeB/MgO

    NASA Astrophysics Data System (ADS)

    Takeuchi, Yutaro; Zhang, Chaoliang; Okada, Atsushi; Sato, Hideo; Fukami, Shunsuke; Ohno, Hideo

    2018-05-01

    Magnetic heterostructures consisting of high-resistivity (238 ± 5 µΩ cm)-W/CoFeB/MgO are prepared by sputtering and their spin-orbit torques are evaluated as a function of W thickness through an extended harmonic measurement. W thickness dependence of the spin-orbit torque with the Slonczewski-like symmetry is well described by the drift-diffusion model with an efficiency parameter, the so-called effective spin Hall angle, of -0.62 ± 0.03. In contrast, the field-like spin-orbit torque is one order of magnitude smaller than the Slonczewski-like torque and shows no appreciable dependence on the W thickness, suggesting a different origin from the Slonczewski-like torque. The results indicate that high-resistivity W is promising for low-current and reliable spin-orbit torque-controlled devices.

  10. Spin-Orbit Torques in ferrimagnetic GdFeCo

    NASA Astrophysics Data System (ADS)

    Roschewsky, Niklas; Lambert, Charles-Henri; Salahuddin, Sayeef

    Recently spin-orbit torques in antiferromagnets received a lot of attention due to intrinsic high frequency dynamics as well as robustness against perturbations from external magnetic fields. Here, we report on spin-orbit torque (SOT) switching in ferrimagnetic Gdx (Fe90Co10)100-x films on both sides of the magnetic compensation point. In addition to current driven switching experiments we performed harmonic Hall measurements of the effective SOT fields. We find that both the Slonczewski torque as well as the field-like torque diverge at the magnetization compensation point. However, the effective spin Hall angle ξ = (2 | e | / ℏ) MStFM (Heff / | jHM |) is found to be roughly constant across the investigated composition range. This provides important insight into the the angular momentum transfer process in ferrimagnets. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05-CH11231 within the NEMM program (KC2204).

  11. Optimal Spacecraft Attitude Control Using Aerodynamic Torques

    DTIC Science & Technology

    2007-03-01

    His design resembles a badminton shuttlecock and “uses passive aerodynamic drag torques to stabilize pitch and yaw” and active magnetic torque...Ravindran’s and Hughes’ ‘arrow-like’ design. Psiaki notes that “this arrow concept has been modified to become a badminton shuttlecock-type design...panels were placed to the rear of the center-of-mass, similar to a badminton shuttlecock, to provide passive stability about the pitch and yaw axes

  12. Peak Torque and Rate of Torque Development Influence on Repeated Maximal Exercise Performance: Contractile and Neural Contributions

    PubMed Central

    Morel, Baptiste; Rouffet, David M.; Saboul, Damien; Rota, Samuel; Clémençon, Michel; Hautier, Christophe A.

    2015-01-01

    Rapid force production is critical to improve performance and prevent injuries. However, changes in rate of force/torque development caused by the repetition of maximal contractions have received little attention. The aim of this study was to determine the relative influence of rate of torque development (RTD) and peak torque (Tpeak) on the overall performance (i.e. mean torque, Tmean) decrease during repeated maximal contractions and to investigate the contribution of contractile and neural mechanisms to the alteration of the various mechanical variables. Eleven well-trained men performed 20 sets of 6-s isokinetic maximal knee extensions at 240°·s-1, beginning every 30 seconds. RTD, Tpeak and Tmean as well as the Rate of EMG Rise (RER), peak EMG (EMGpeak) and mean EMG (EMGmean) of the vastus lateralis were monitored for each contraction. A wavelet transform was also performed on raw EMG signal for instant mean frequency (ifmean) calculation. A neuromuscular testing procedure was carried out before and immediately after the fatiguing protocol including evoked RTD (eRTD) and maximal evoked torque (eTpeak) induced by high frequency doublet (100 Hz). Tmean decrease was correlated to RTD and Tpeak decrease (R²=0.62; p<0.001; respectively β=0.62 and β=0.19). RER, eRTD and initial ifmean (0-225 ms) decreased after 20 sets (respectively -21.1±14.1, -25±13%, and ~20%). RTD decrease was correlated to RER decrease (R²=0.36; p<0.05). The eTpeak decreased significantly after 20 sets (24±5%; p<0.05) contrary to EMGpeak (-3.2±19.5 %; p=0.71). Our results show that reductions of RTD explained part of the alterations of the overall performance during repeated moderate velocity maximal exercise. The reductions of RTD were associated to an impairment of the ability of the central nervous system to maximally activate the muscle in the first milliseconds of the contraction. PMID:25901576

  13. Peak torque and rate of torque development influence on repeated maximal exercise performance: contractile and neural contributions.

    PubMed

    Morel, Baptiste; Rouffet, David M; Saboul, Damien; Rota, Samuel; Clémençon, Michel; Hautier, Christophe A

    2015-01-01

    Rapid force production is critical to improve performance and prevent injuries. However, changes in rate of force/torque development caused by the repetition of maximal contractions have received little attention. The aim of this study was to determine the relative influence of rate of torque development (RTD) and peak torque (T(peak)) on the overall performance (i.e. mean torque, T(mean)) decrease during repeated maximal contractions and to investigate the contribution of contractile and neural mechanisms to the alteration of the various mechanical variables. Eleven well-trained men performed 20 sets of 6-s isokinetic maximal knee extensions at 240° · s(-1), beginning every 30 seconds. RTD, T(peak) and T(mean) as well as the Rate of EMG Rise (RER), peak EMG (EMG(peak)) and mean EMG (EMG(mean)) of the vastus lateralis were monitored for each contraction. A wavelet transform was also performed on raw EMG signal for instant mean frequency (if(mean)) calculation. A neuromuscular testing procedure was carried out before and immediately after the fatiguing protocol including evoked RTD (eRTD) and maximal evoked torque (eT(peak)) induced by high frequency doublet (100 Hz). T(mean) decrease was correlated to RTD and T(peak) decrease (R(²) = 0.62; p<0.001; respectively β=0.62 and β=0.19). RER, eRTD and initial if(mean) (0-225 ms) decreased after 20 sets (respectively -21.1 ± 14.1, -25 ± 13%, and ~20%). RTD decrease was correlated to RER decrease (R(²) = 0.36; p<0.05). The eT(peak) decreased significantly after 20 sets (24 ± 5%; p<0.05) contrary to EMG(peak) (-3.2 ± 19.5 %; p=0.71). Our results show that reductions of RTD explained part of the alterations of the overall performance during repeated moderate velocity maximal exercise. The reductions of RTD were associated to an impairment of the ability of the central nervous system to maximally activate the muscle in the first milliseconds of the contraction.

  14. Torques on a nearly rigid body in a relativistic gravitational field

    NASA Technical Reports Server (NTRS)

    Caporali, A.

    1980-01-01

    The effect of post-Newtonian potentials on the rotation of a nearly rigid body is shown to consist of a precession and a torque. The frequency of the precession can be exactly represented by means of suitable differential operators. The relativistic torques in the quadrupole approximation depend on the instantaneous orientation of the principal axes of one body with respect to the position like the classical torque and velocity of the other. For a relatively low mass body, such as a gyroscope, these velocity-dependent torques have no observable consequences.

  15. Advanced torque converters for robotics and space applications

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This report describes the results of the evaluation of a novel torque converter concept. Features of the concept include: (1) automatic and rapid adjustment of effective gear ratio in response to changes in external torque (2) maintenance of output torque at zero output velocity without loading the input power source and (3) isolation of input power source from load. Two working models of the concept were fabricated and tested, and a theoretical analysis was performed to determine the limits of performance. It was found that the devices are apparently suited to certain types of tool driver applications, such as screwdrivers, nut drivers and valve actuators. However, quantiative information was insufficient to draw final conclusion as to robotic applications.

  16. In-field implementation of impedance-based structural health monitoring for insulated rail joints

    NASA Astrophysics Data System (ADS)

    Albakri, Mohammad I.; Malladi, V. V. N. Sriram; Woolard, Americo G.; Tarazaga, Pablo A.

    2017-04-01

    Track defects are a major safety concern for the railroad industry. Among different track components, insulated rail joints, which are widely used for signaling purposes, are considered a weak link in the railroad track. Several joint-related defects have been identified by the railroad community, including rail wear, torque loss, and joint bar breakage. Current track inspection techniques rely on manual and visual inspection or on specially equipped testing carts, which are costly, timeconsuming, traffic disturbing, and prone to human error. To overcome the aforementioned limitations, the feasibility of utilizing impedance-based structural health monitoring for insulated rail joints is investigated in this work. For this purpose, an insulated joint, provided by Koppers Inc., is instrumented with piezoelectric transducers and assembled with 136 AREA rail plugs. The instrumented joint is then installed and tested at the Facility for Accelerated Service Testing, Transportation Technology Center Inc. The effects of environmental and operating conditions on the measured impedance signatures are investigated through a set of experiments conducted at different temperatures and loading conditions. The capabilities of impedance-based SHM to detect several joint-related damage types are also studied by introducing reversible mechanical defects to different joint components.

  17. Biomechanical evaluation of macro and micro designed screw-type implants: an insertion torque and removal torque study in rabbits.

    PubMed

    Chowdhary, Ramesh; Jimbo, Ryo; Thomsen, Christian; Carlsson, Lennart; Wennerberg, Ann

    2013-03-01

    To investigate the combined effect of macro and pitch shortened threads on primary and secondary stability during healing, but before dynamic loading. Two sets of turned implants with different macro geometry were prepared. The test group possessed pitch shortened threads in between the large threads and the control group did not have thread alterations. The two implant groups were placed in both femur and tibiae of 10 lop-eared rabbits, and at the time of implant insertion, insertion torques were recorded. After 4 weeks, all implants were subjected to removal torque tests. The insertion torque values for the control and test groups for the tibia were 15.7 and 20.6 Ncm, respectively, and for the femur, 11.8, and 12.8 Ncm respectively. The removal torque values for the control and test groups in the tibia were 7.9 and 9.1 Ncm, respectively, and for the femur, 7.9 and 7.7 Ncm respectively. There was no statistically significant difference between the control and test groups. Under limited dynamic load, the addition of pitch shortened threads did not significantly improve either the primary or the secondary stability of the implants in bone. © 2011 John Wiley & Sons A/S.

  18. Does the nervous system use equilibrium-point control to guide single and multiple joint movements?

    PubMed

    Bizzi, E; Hogan, N; Mussa-Ivaldi, F A; Giszter, S

    1992-12-01

    The hypothesis that the central nervous system (CNS) generates movement as a shift of the limb's equilibrium posture has been corroborated experimentally in studies involving single- and multijoint motions. Posture may be controlled through the choice of muscle length-tension curve that set agonist-antagonist torque-angle curves determining an equilibrium position for the limb and the stiffness about the joints. Arm trajectories seem to be generated through a control signal defining a series of equilibrium postures. The equilibrium-point hypothesis drastically simplifies the requisite computations for multijoint movements and mechanical interactions with complex dynamic objects in the environment. Because the neuromuscular system is springlike, the instantaneous difference between the arm's actual position and the equilibrium position specified by the neural activity can generate the requisite torques, avoiding the complex "inverse dynamic" problem of computing the torques at the joints. The hypothesis provides a simple, unified description of posture and movement as well as contact control task performance, in which the limb must exert force stably and do work on objects in the environment. The latter is a surprisingly difficult problem, as robotic experience has shown. The prior evidence for the hypothesis came mainly from psychophysical and behavioral experiments. Our recent work has shown that microstimulation of the frog spinal cord's premotoneural network produces leg movements to various positions in the frog's motor space. The hypothesis can now be investigated in the neurophysiological machinery of the spinal cord.

  19. Direct mechanical torque sensor for model wind turbines

    NASA Astrophysics Data System (ADS)

    Kang, Hyung Suk; Meneveau, Charles

    2010-10-01

    A torque sensor is developed to measure the mechanical power extracted by model wind turbines. The torque is measured by mounting the model generator (a small dc motor) through ball bearings to the hub and by preventing its rotation by the deflection of a strain-gauge-instrumented plate. By multiplying the measured torque and rotor angular velocity, a direct measurement of the fluid mechanical power extracted from the flow is obtained. Such a measurement is more advantageous compared to measuring the electrical power generated by the model generator (dc motor), since the electrical power is largely affected by internal frictional, electric and magnetic losses. Calibration experiments are performed, and during testing, the torque sensor is mounted on a model wind turbine in a 3 rows × 3 columns array of wind turbines in a wind tunnel experiment. The resulting electrical and mechanical powers are quantified and compared over a range of applied loads, for three different incoming wind velocities. Also, the power coefficients are obtained as a function of the tip speed ratio. Significant differences between the electrical and mechanical powers are observed, which highlights the importance of using the direct mechanical power measurement for fluid dynamically meaningful results. A direct calibration with the measured current is also explored. The new torque sensor is expected to contribute to more accurate model wind tunnel tests which should provide added flexibility in model studies of the power that can be harvested from wind turbines and wind-turbine farms.

  20. Relationship between quadriceps strength and patellofemoral joint chondral lesions after anterior cruciate ligament reconstruction.

    PubMed

    Wang, Hai-Jun; Ao, Ying-Fang; Jiang, Dong; Gong, Xi; Wang, Yong-Jian; Wang, Jian; Yu, Jia-Kuo

    2015-09-01

    The incidence of the patellofemoral joint chondral lesions after anterior cruciate ligament reconstruction (ACLR) is disturbingly high. Few studies have assessed the factors affecting patellofemoral joint chondral lesions postoperatively. The recovery of quadriceps strength after ACLR could be associated with patellofemoral joint cartilage damage. Cohort study; Level of evidence, 3. A total of 88 patients who underwent arthroscopic anatomic double-bundle ACLR with hamstring autografts received second-look arthroscopy at the time of metal staple removal at an average of 24.1 months (range, 12-51 months) postoperatively. All patients underwent standardized isokinetic strength testing for bilateral quadriceps and hamstrings 1 to 2 days before second-look arthroscopy. The patients were divided into 2 groups: Patients in group 1 had a ≥20% deficit on the peak torque measures for quadriceps compared with that of the contralateral knee, whereas those in group 2 had a <20% deficit on peak torque. Cartilage status at the patellofemoral joint and tibiofemoral joint were evaluated by second-look arthroscopy and the Outerbridge classification. Other assessments included the International Knee Documentation Committee (IKDC) score, Tegner and Lysholm scores, side-to-side difference on KT-2000 arthrometer, and range of motion. There were 42 patients included in group 1 and 46 patients in group 2. The mean postoperative quadriceps peak torque of the involved knee compared with the contralateral knee was 70% (range, 57%-80%) in group 1 and 95% (range, 81%-116%) in group 2. For all patients, a significant worsening was seen in the patellar and trochlear cartilage (P = .030 and <.001, respectively) but not at the medial or lateral tibiofemoral joint after ACLR. A significant worsening in the status of both patellar and trochlear cartilage was seen after ACLR in group 1 (P = .013 and =.011, respectively) and of trochlear cartilage in group 2 (P = .006). Significantly fewer severe