Sample records for abnormal neuronal migration

  1. Mutations in α-Tubulin Cause Abnormal Neuronal Migration in Mice and Lissencephaly in Humans

    PubMed Central

    Keays, David A.; Tian, Guoling; Poirier, Karine; Huang, Guo-Jen; Siebold, Christian; Cleak, James; Oliver, Peter L.; Fray, Martin; Harvey, Robert J.; Molnár, Zoltán; Piñon, Maria C.; Dear, Neil; Valdar, William; Brown, Steve D.M.; Davies, Kay E.; Rawlins, J. Nicholas P.; Cowan, Nicholas J.; Nolan, Patrick; Chelly, Jamel; Flint, Jonathan

    2007-01-01

    Summary The development of the mammalian brain is dependent on extensive neuronal migration. Mutations in mice and humans that affect neuronal migration result in abnormal lamination of brain structures with associated behavioral deficits. Here, we report the identification of a hyperactive N-ethyl-N-nitrosourea (ENU)-induced mouse mutant with abnormalities in the laminar architecture of the hippocampus and cortex, accompanied by impaired neuronal migration. We show that the causative mutation lies in the guanosine triphosphate (GTP) binding pocket of α-1 tubulin (Tuba1) and affects tubulin heterodimer formation. Phenotypic similarity with existing mouse models of lissencephaly led us to screen a cohort of patients with developmental brain anomalies. We identified two patients with de novo mutations in TUBA3, the human homolog of Tuba1. This study demonstrates the utility of ENU mutagenesis in the mouse as a means to discover the basis of human neurodevelopmental disorders. PMID:17218254

  2. MACF1 regulates the migration of pyramidal neurons via microtubule dynamics and GSK-3 signaling

    PubMed Central

    Ka, Minhan; Jung, Eui-Man; Mueller, Ulrich; Kim, Woo-Yang

    2014-01-01

    Neuronal migration and subsequent differentiation play critical roles for establishing functional neural circuitry in the developing brain. However, the molecular mechanisms that regulate these processes are poorly understood. Here, we show that microtubule actin crosslinking factor 1 (MACF1) determines neuronal positioning by regulating microtubule dynamics and mediating GSK-3 signaling during brain development. First, using MACF1 floxed allele mice and in utero gene manipulation, we find that MACF1 deletion suppresses migration of cortical pyramidal neurons and results in aberrant neuronal positioning in the developing brain. The cell autonomous deficit in migration is associated with abnormal dynamics of leading processes and centrosomes. Furthermore, microtubule stability is severely damaged in neurons lacking MACF1, resulting in abnormal microtubule dynamics. Finally, MACF1 interacts with and mediates GSK-3 signaling in developing neurons. Our findings establish a cellular mechanism underlying neuronal migration and provide insights into the regulation of cytoskeleton dynamics in developing neurons. PMID:25224226

  3. MACF1 regulates the migration of pyramidal neurons via microtubule dynamics and GSK-3 signaling.

    PubMed

    Ka, Minhan; Jung, Eui-Man; Mueller, Ulrich; Kim, Woo-Yang

    2014-11-01

    Neuronal migration and subsequent differentiation play critical roles for establishing functional neural circuitry in the developing brain. However, the molecular mechanisms that regulate these processes are poorly understood. Here, we show that microtubule actin crosslinking factor 1 (MACF1) determines neuronal positioning by regulating microtubule dynamics and mediating GSK-3 signaling during brain development. First, using MACF1 floxed allele mice and in utero gene manipulation, we find that MACF1 deletion suppresses migration of cortical pyramidal neurons and results in aberrant neuronal positioning in the developing brain. The cell autonomous deficit in migration is associated with abnormal dynamics of leading processes and centrosomes. Furthermore, microtubule stability is severely damaged in neurons lacking MACF1, resulting in abnormal microtubule dynamics. Finally, MACF1 interacts with and mediates GSK-3 signaling in developing neurons. Our findings establish a cellular mechanism underlying neuronal migration and provide insights into the regulation of cytoskeleton dynamics in developing neurons. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Knockout Mice for Dyslexia Susceptibility Gene Homologs KIAA0319 and KIAA0319L have Unaffected Neuronal Migration but Display Abnormal Auditory Processing

    PubMed Central

    Guidi, Luiz G; Mattley, Jane; Martinez-Garay, Isabel; Monaco, Anthony P; Linden, Jennifer F; Velayos-Baeza, Antonio

    2017-01-01

    Abstract Developmental dyslexia is a neurodevelopmental disorder that affects reading ability caused by genetic and non-genetic factors. Amongst the susceptibility genes identified to date, KIAA0319 is a prime candidate. RNA-interference experiments in rats suggested its involvement in cortical migration but we could not confirm these findings in Kiaa0319-mutant mice. Given its homologous gene Kiaa0319L (AU040320) has also been proposed to play a role in neuronal migration, we interrogated whether absence of AU040320 alone or together with KIAA0319 affects migration in the developing brain. Analyses of AU040320 and double Kiaa0319;AU040320 knockouts (dKO) revealed no evidence for impaired cortical lamination, neuronal migration, neurogenesis or other anatomical abnormalities. However, dKO mice displayed an auditory deficit in a behavioral gap-in-noise detection task. In addition, recordings of click-evoked auditory brainstem responses revealed suprathreshold deficits in wave III amplitude in AU040320-KO mice, and more general deficits in dKOs. These findings suggest that absence of AU040320 disrupts firing and/or synchrony of activity in the auditory brainstem, while loss of both proteins might affect both peripheral and central auditory function. Overall, these results stand against the proposed role of KIAA0319 and AU040320 in neuronal migration and outline their relationship with deficits in the auditory system. PMID:29045729

  5. Neuronal migration on laminin in vitro.

    PubMed

    Liang, S; Crutcher, K A

    1992-03-20

    Chick sympathetic (E-9) or telencephalic (E-7) neurons were cultured at low density on poly-DL-ornithine (PORN), poly-L-lysine (POLS), laminin or laminin-covered PORN or POLS and monitored with time-lapse videomicroscopy. Neurons migrated on laminin, or laminin-covered PORN or POLS, but not on PORN or POLS alone. Neuronal migration did not involve interactions with other cells indicating that neurons are capable of independent migration when exposed to a laminin substrate.

  6. Neuronal Migration Dynamics in the Developing Ferret Cortex.

    PubMed

    Gertz, Caitlyn C; Kriegstein, Arnold R

    2015-10-21

    During mammalian neocortical development, newborn excitatory and inhibitory neurons must migrate over long distances to reach their final positions within the cortical plate. In the lissencephalic rodent brain, pyramidal neurons are born in the ventricular and subventricular zones of the pallium and migrate along radial glia fibers to reach the appropriate cortical layer. Although much less is known about neuronal migration in species with a gyrencephalic cortex, retroviral studies in the ferret and primate suggest that, unlike the rodent, pyramidal neurons do not follow strict radial pathways and instead can disperse horizontally. However, the means by which pyramidal neurons laterally disperse remain unknown. In this study, we identified a viral labeling technique for visualizing neuronal migration in the ferret, a gyrencephalic carnivore, and found that migration was predominantly radial at early postnatal ages. In contrast, neurons displayed more tortuous migration routes with a decreased frequency of cortical plate-directed migration at later stages of neurogenesis concomitant with the start of brain folding. This was accompanied by neurons migrating sequentially along several different radial glial fibers, suggesting a mode by which pyramidal neurons may laterally disperse in a folded cortex. These findings provide insight into the migratory behavior of neurons in gyrencephalic species and provide a framework for using nonrodent model systems for studying neuronal migration disorders. Elucidating neuronal migration dynamics in the gyrencephalic, or folded, cortex is important for understanding neurodevelopmental disorders. Similar to the rodent, we found that neuronal migration was predominantly radial at early postnatal ages in the gyrencephalic ferret cortex. Interestingly, ferret neurons displayed more tortuous migration routes and a decreased frequency of radial migration at later ages coincident with the start of cortical folding. We found that ferret

  7. GSK-3 signaling in developing cortical neurons is essential for radial migration and dendritic orientation.

    PubMed

    Morgan-Smith, Meghan; Wu, Yaohong; Zhu, Xiaoqin; Pringle, Julia; Snider, William D

    2014-07-29

    GSK-3 is an essential mediator of several signaling pathways that regulate cortical development. We therefore created conditional mouse mutants lacking both GSK-3α and GSK-3β in newly born cortical excitatory neurons. Gsk3-deleted neurons expressing upper layer markers exhibited striking migration failure in all areas of the cortex. Radial migration in hippocampus was similarly affected. In contrast, tangential migration was not grossly impaired after Gsk3 deletion in interneuron precursors. Gsk3-deleted neurons extended axons and developed dendritic arbors. However, the apical dendrite was frequently branched while basal dendrites exhibited abnormal orientation. GSK-3 regulation of migration in neurons was independent of Wnt/β-catenin signaling. Importantly, phosphorylation of the migration mediator, DCX, at ser327, and phosphorylation of the semaphorin signaling mediator, CRMP-2, at Thr514 were markedly decreased. Our data demonstrate that GSK-3 signaling is essential for radial migration and dendritic orientation and suggest that GSK-3 mediates these effects by phosphorylating key microtubule regulatory proteins.DOI: http://dx.doi.org/10.7554/eLife.02663.001. Copyright © 2014, Morgan-Smith et al.

  8. The Hem protein mediates neuronal migration by inhibiting WAVE degradation and functions opposite of Abelson tyrosine kinase

    PubMed Central

    Zhu, Zengrong; Bhat, Krishna Moorthi

    2011-01-01

    In the nervous system, neurons form in different regions, then they migrate and occupy specific positions. We have previously shown that RP2/sib, a well-studied neuronal pair in the Drosophila ventral nerve cord (VNC), has a complex migration route. Here, we show that the Hem protein, via the WAVE complex, regulates migration of GMC-1 and its progeny RP2 neuron. In Hem or WAVE mutants, RP2 neuron either abnormally migrates, crossing the midline from one hemisegment to the contralateral hemisegment, or does not migrate at al and fail to send out its axon projection. We report that Hem regulates neuronal migration through stabilizing WAVE. Since Hem and WAVE normally form a complex, our data argues that in the absence of Hem, WAVE, which is presumably no longer in a complex, becomes susceptible to degradation. We also find that Abelson Tyrosine kinase affects RP2 migration in a similar manner as Hem and WAVE, and appears to operate via WAVE. However, while Abl negatively regulates the levels of WAVE, it regulates migration via regulating the activity of WAVE. Our results also show that during the degradation of WAVE, Hem function is opposite to that of and downstream of Abl. PMID:21726548

  9. CDYL Deficiency Disrupts Neuronal Migration and Increases Susceptibility to Epilepsy.

    PubMed

    Qin, Rui; Cao, Shuai; Lyu, Tianjie; Qi, Cai; Zhang, Weiguang; Wang, Yun

    2017-01-10

    During brain development, the correct migration of newborn neurons is one of the determinants of circuit formation, and neuronal migration defects may lead to neurological and psychiatric disorders. The molecular mechanisms underlying neuronal migration and related disorders are poorly understood. Here, we report that Chromodomain Y-like (CDYL) is critical for neuronal migration in mice. Knocking down CDYL caused neuronal migration defects and disrupted both mobility and multipolar-to-bipolar transition of migrating neurons. We find that CDYL regulates neuronal migration by transcriptionally repressing RhoA. In addition, CDYL deficiency increased the excitability of cortical pyramidal neurons and the susceptibility of mice to convulsant-induced seizures. These results demonstrate that CDYL is a regulator of neuronal migration and shed light on the pathogenesis of seizure-related neurodevelopmental disorders. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. From migration to settlement: the pathways, migration modes and dynamics of neurons in the developing brain

    PubMed Central

    HATANAKA, Yumiko; ZHU, Yan; TORIGOE, Makio; KITA, Yoshiaki; MURAKAMI, Fujio

    2016-01-01

    Neuronal migration is crucial for the construction of the nervous system. To reach their correct destination, migrating neurons choose pathways using physical substrates and chemical cues of either diffusible or non-diffusible nature. Migrating neurons extend a leading and a trailing process. The leading process, which extends in the direction of migration, determines navigation, in particular when a neuron changes its direction of migration. While most neurons simply migrate radially, certain neurons switch their mode of migration between radial and tangential, with the latter allowing migration to destinations far from the neurons’ site of generation. Consequently, neurons with distinct origins are intermingled, which results in intricate neuronal architectures and connectivities and provides an important basis for higher brain function. The trailing process, in contrast, contributes to the late stage of development by turning into the axon, thus contributing to the formation of neuronal circuits. PMID:26755396

  11. Control of cortical neuronal migration by glutamate and GABA

    PubMed Central

    Luhmann, Heiko J.; Fukuda, A.; Kilb, W.

    2015-01-01

    Neuronal migration in the cortex is controlled by the paracrine action of the classical neurotransmitters glutamate and GABA. Glutamate controls radial migration of pyramidal neurons by acting primarily on NMDA receptors and regulates tangential migration of inhibitory interneurons by activating non-NMDA and NMDA receptors. GABA, acting on ionotropic GABAA-rho and GABAA receptors, has a dichotomic action on radially migrating neurons by acting as a GO signal in lower layers and as a STOP signal in upper cortical plate (CP), respectively. Metabotropic GABAB receptors promote radial migration into the CP and tangential migration of interneurons. Besides GABA, the endogenous GABAergic agonist taurine is a relevant agonist controlling radial migration. To a smaller extent glycine receptor activation can also influence radial and tangential migration. Activation of glutamate and GABA receptors causes increases in intracellular Ca2+ transients, which promote neuronal migration by acting on the cytoskeleton. Pharmacological or genetic manipulation of glutamate or GABA receptors during early corticogenesis induce heterotopic cell clusters in upper layers and loss of cortical lamination, i.e., neuronal migration disorders which can be associated with neurological or neuropsychiatric diseases. The pivotal role of NMDA and ionotropic GABA receptors in cortical neuronal migration is of major clinical relevance, since a number of drugs acting on these receptors (e.g., anti-epileptics, anesthetics, alcohol) may disturb the normal migration pattern when present during early corticogenesis. PMID:25688185

  12. Excessive activation of AhR signaling disrupts neuronal migration in the hippocampal CA1 region in the developing mouse.

    PubMed

    Kimura, Eiki; Kubo, Ken-Ichiro; Endo, Toshihiro; Nakajima, Kazunori; Kakeyama, Masaki; Tohyama, Chiharu

    2017-01-01

    The aryl hydrocarbon receptor (AhR) avidly binds dioxin, a ubiquitous environmental contaminant. Disruption of downstream AhR signaling has been reported to alter neuronal development, and rodent offspring exposed to dioxin during gestation and lactation showed abnormalities in learning and memory, emotion, and social behavior. However, the mechanism behind the disrupted AhR signaling and developmental neurotoxicity induced by xenobiotic ligands remains elusive. Therefore, we studied how excessive AhR activation affects neuronal migration in the hippocampal CA1 region of the developing mouse brain. We transfected constitutively active (CA)-AhR, AhR, or control vector plasmids into neurons via in utero electroporation on gestational day 14 and analyzed neuronal positioning in the hippocampal CA1 region of offspring on postnatal day 14. CA-AhR transfection affected neuronal positioning, whereas no change was observed in AhR-transfected or control hippocampus. These results suggest that constitutively activated AhR signaling disrupts neuronal migration during hippocampal development. Further studies are needed to investigate whether such developmental disruption in the hippocampus leads to the abnormal cognition and behavior of rodent offspring upon maternal exposure to AhR xenobiotic ligands.

  13. Fetal Alcohol Spectrum Disorders and Abnormal Neuronal Plasticity

    PubMed Central

    Medina, Alexandre E.

    2012-01-01

    The ingestion of alcohol during pregnancy can result in a group of neurobehavioral abnormalities collectively known as fetal alcohol spectrum disorders (FASD). During the past decade, studies using animal models indicated that early alcohol exposure can dramatically affect neuronal plasticity, an essential property of the central nervous system responsible for the normal wiring of the brain and involved in processes such as learning and memory. The abnormalities in neuronal plasticity caused by alcohol can explain many of the neurobehavioral deficits observed in FASD. Conversely, improving neuronal plasticity may have important therapeutic benefits. In this review, the author discuss the mechanisms that lead to these abnormalities and comment on recent pharmacological approaches that have been showing promising results in improving neuronal plasticity in FASD. PMID:21383101

  14. Integrative Mechanisms of Oriented Neuronal Migration in the Developing Brain

    PubMed Central

    Evsyukova, Irina; Plestant, Charlotte; Anton, E.S.

    2014-01-01

    The emergence of functional neuronal connectivity in the developing cerebral cortex depends on neuronal migration. This process enables appropriate positioning of neurons and the emergence of neuronal identity so that the correct patterns of functional synaptic connectivity between the right types and numbers of neurons can emerge. Delineating the complexities of neuronal migration is critical to our understanding of normal cerebral cortical formation and neurodevelopmental disorders resulting from neuronal migration defects. For the most part, the integrated cell biological basis of the complex behavior of oriented neuronal migration within the developing mammalian cerebral cortex remains an enigma. This review aims to analyze the integrative mechanisms that enable neurons to sense environmental guidance cues and translate them into oriented patterns of migration toward defined areas of the cerebral cortex. We discuss how signals emanating from different domains of neurons get integrated to control distinct aspects of migratory behavior and how different types of cortical neurons coordinate their migratory activities within the developing cerebral cortex to produce functionally critical laminar organization. PMID:23937349

  15. Ablation of the 14-3-3gamma Protein Results in Neuronal Migration Delay and Morphological Defects in the Developing Cerebral Cortex.

    PubMed

    Wachi, Tomoka; Cornell, Brett; Marshall, Courtney; Zhukarev, Vladimir; Baas, Peter W; Toyo-oka, Kazuhito

    2016-06-01

    14-3-3 proteins are ubiquitously-expressed and multifunctional proteins. There are seven isoforms in mammals with a high level of homology, suggesting potential functional redundancy. We previously found that two of seven isoforms, 14-3-3epsilon and 14-3-3zeta, are important for brain development, in particular, radial migration of pyramidal neurons in the developing cerebral cortex. In this work, we analyzed the function of another isoform, the protein 14-3-3gamma, with respect to neuronal migration in the developing cortex. We found that in utero 14-3-3gamma-deficiency resulted in delays in neuronal migration as well as morphological defects. Migrating neurons deficient in 14-3-3gamma displayed a thicker leading process stem, and the basal ends of neurons were not able to reach the boundary between the cortical plate and the marginal zone. Consistent with the results obtained from in utero electroporation, time-lapse live imaging of brain slices revealed that the ablation of the 14-3-3gamma proteins in pyramidal neurons slowed down their migration. In addition, the 14-3-3gamma deficient neurons showed morphological abnormalities, including increased multipolar neurons with a thicker leading processes stem during migration. These results indicate that the 14-3-3gamma proteins play an important role in radial migration by regulating the morphology of migrating neurons in the cerebral cortex. The findings underscore the pathological phenotypes of brain development associated with the disruption of different 14-3-3 proteins and will advance the preclinical data regarding disorders caused by neuronal migration defects. © 2015 Wiley Periodicals, Inc.

  16. Contralateral migration of oculomotor neurons is regulated by Slit/Robo signaling.

    PubMed

    Bjorke, Brielle; Shoja-Taheri, Farnaz; Kim, Minkyung; Robinson, G Eric; Fontelonga, Tatiana; Kim, Kyung-Tai; Song, Mi-Ryoung; Mastick, Grant S

    2016-10-22

    Oculomotor neurons develop initially like typical motor neurons, projecting axons out of the ventral midbrain to their ipsilateral targets, the extraocular muscles. However, in all vertebrates, after the oculomotor nerve (nIII) has reached the extraocular muscle primordia, the cell bodies that innervate the superior rectus migrate to join the contralateral nucleus. This motor neuron migration represents a unique strategy to form a contralateral motor projection. Whether migration is guided by diffusible cues remains unknown. We examined the role of Slit chemorepellent signals in contralateral oculomotor migration by analyzing mutant mouse embryos. We found that the ventral midbrain expresses high levels of both Slit1 and 2, and that oculomotor neurons express the repellent Slit receptors Robo1 and Robo2. Therefore, Slit signals are in a position to influence the migration of oculomotor neurons. In Slit 1/2 or Robo1/2 double mutant embryos, motor neuron cell bodies migrated into the ventral midbrain on E10.5, three days prior to normal migration. These early migrating neurons had leading projections into and across the floor plate. In contrast to the double mutants, embryos which were mutant for single Slit or Robo genes did not have premature migration or outgrowth on E10.5, demonstrating a cooperative requirement of Slit1 and 2, as well as Robo1 and 2. To test how Slit/Robo midline repulsion is modulated, we found that the normal migration did not require the receptors Robo3 and CXCR4, or the chemoattractant, Netrin 1. The signal to initiate contralateral migration is likely autonomous to the midbrain because oculomotor neurons migrate in embryos that lack either nerve outgrowth or extraocular muscles, or in cultured midbrains that lacked peripheral tissue. Overall, our results demonstrate that a migratory subset of motor neurons respond to floor plate-derived Slit repulsion to properly control the timing of contralateral migration.

  17. Rapamycin prevents, but does not reverse, aberrant migration in Pten knockout neurons.

    PubMed

    Getz, Stephanie A; DeSpenza, Tyrone; Li, Meijie; Luikart, Bryan W

    2016-09-01

    Phosphatase and tensin homolog (PTEN) is a major negative regulator of the Akt/mammalian target of rapamycin (MTOR) pathway. Mutations in PTEN have been found in a subset of individuals with autism and macrocephaly. Further, focal cortical dysplasia (FCD) has been observed in patients with PTEN mutations prompting us to examine the role of Pten in neuronal migration. The dentate gyrus of Pten(Flox/Flox) mice was injected with Cre- and non-Cre-expressing retroviral particles, which integrate into the dividing genome to birthdate cells. Control and Pten knockout (KO) cell position in the granule cell layer was quantified over time to reveal that Pten KO neurons exhibit an aberrant migratory phenotype beginning at 7.5days-post retroviral injection (DPI). We then assessed whether rapamycin, a mTor inhibitor, could prevent or reverse aberrant migration of granule cells. The preventative group received daily intraperitoneal (IP) injections of rapamycin from 3 to 14 DPI, before discrepancies in cell position have been established, while the reversal group received rapamycin afterward, from 14 to 24 DPI. We found that rapamycin prevented and reversed somal hypertrophy. However, rapamycin prevented, but did not reverse aberrant migration in Pten KO cells. We also find that altered migration occurs through mTorC1 and not mTorC2 activity. Together, these findings suggest a temporal window by which rapamycin can treat aberrant migration, and may have implications for the use of rapamycin to treat PTEN-mutation associated disorders. Mutations in phosphatase and tensin homolog (PTEN) have been linked to a subset of individuals with autism and macrocephaly, as well as Cowden Syndrome and focal cortical dysplasia. Pten loss leads to neuronal hypertrophy, but the role of Pten in neuronal migration is unclear. Here we have shown that loss of Pten leads to aberrant migration, which can be prevented but not reversed by treatment with rapamycin, a mTor inhibitor. These results are

  18. Cadherin-2 Is Required Cell Autonomously for Collective Migration of Facial Branchiomotor Neurons.

    PubMed

    Rebman, Jane K; Kirchoff, Kathryn E; Walsh, Gregory S

    2016-01-01

    Collective migration depends on cell-cell interactions between neighbors that contribute to their overall directionality, yet the mechanisms that control the coordinated migration of neurons remains to be elucidated. During hindbrain development, facial branchiomotor neurons (FBMNs) undergo a stereotypic tangential caudal migration from their place of birth in rhombomere (r)4 to their final location in r6/7. FBMNs engage in collective cell migration that depends on neuron-to-neuron interactions to facilitate caudal directionality. Here, we demonstrate that Cadherin-2-mediated neuron-to-neuron adhesion is necessary for directional and collective migration of FBMNs. We generated stable transgenic zebrafish expressing dominant-negative Cadherin-2 (Cdh2ΔEC) driven by the islet1 promoter. Cell-autonomous inactivation of Cadherin-2 function led to non-directional migration of FBMNs and a defect in caudal tangential migration. Additionally, mosaic analysis revealed that Cdh2ΔEC-expressing FBMNs are not influenced to migrate caudally by neighboring wild-type FBMNs due to a defect in collective cell migration. Taken together, our data suggest that Cadherin-2 plays an essential cell-autonomous role in mediating the collective migration of FBMNs.

  19. The autism susceptibility gene met regulates zebrafish cerebellar development and facial motor neuron migration

    PubMed Central

    Elsen, Gina E.; Choi, Louis Y.; Prince, Victoria E.; Ho, Robert K.

    2009-01-01

    During development, Met signaling regulates a range of cellular processes including growth, differentiation, survival and migration. The Met gene encodes a tyrosine kinase receptor, which is activated by Hgf (hepatocyte growth factor) ligand. Altered regulation of human MET expression has been implicated in autism. In mouse, Met signaling has been shown to regulate cerebellum development. Since abnormalities in cerebellar structure have been reported in some autistic patients, we have used the zebrafish to address the role of Met signaling during cerebellar development and thus further our understanding of the molecular basis of autism. We find that zebrafish met is expressed in the cerebellar primordium, later localizing to the ventricular zone (VZ), with the hgf1 and hgf2 ligand genes expressed in surrounding tissues. Morpholino knockdown of either Met or its Hgf ligands leads to a significant reduction in the size of the cerebellum, primarily as a consequence of reduced proliferation. Met signaling knockdown disrupts specification of VZ-derived cell types, and also reduces granule cell numbers, due to an early effect on cerebellar proliferation and/or as an indirect consequence of loss of signals from VZ-derived cells later in development. These patterning defects preclude analysis of cerebellar neuronal migration, but we have found that Met signaling is necessary for migration of hindbrain facial motor neurons. In summary, we have described roles for Met signaling in coordinating growth and cell type specification within the developing cerebellum, and in migration of hindbrain neurons. These functions may underlie the correlation between altered MET regulation and Autism Spectrum Disorders. PMID:19732764

  20. Netrin1/DCC signaling promotes neuronal migration in the dorsal spinal cord.

    PubMed

    Junge, Harald J; Yung, Andrea R; Goodrich, Lisa V; Chen, Zhe

    2016-10-26

    Newborn neurons often migrate before undergoing final differentiation, extending neurites, and forming synaptic connections. Therefore, neuronal migration is crucial for establishing neural circuitry during development. In the developing spinal cord, neuroprogenitors first undergo radial migration within the ventricular zone. Differentiated neurons continue to migrate tangentially before reaching the final positions. The molecular pathways that regulate these migration processes remain largely unknown. Our previous study suggests that the DCC receptor is important for the migration of the dorsal spinal cord progenitors and interneurons. In this study, we determined the involvement of the Netrin1 ligand and the ROBO3 coreceptor in the migration. By pulse labeling neuroprogenitors with electroporation, we examined their radial migration in Netrin1 (Ntn1), Dcc, and Robo3 knockout mice. We found that all three mutants exhibit delayed migration. Furthermore, using immunohistochemistry of the BARHL2 interneuron marker, we found that the mediolateral and dorsoventral migration of differentiated dorsal interneurons is also delayed. Together, our results suggest that Netrin1/DCC signaling induce neuronal migration in the dorsal spinal cord. Netrin1, DCC, and ROBO3 have been extensively studied for their functions in regulating axon guidance in the spinal commissural interneurons. We reveal that during earlier development of dorsal interneurons including commissural neurons, these molecules play an important role in promoting cell migration.

  1. Conserved pattern of tangential neuronal migration during forebrain development.

    PubMed

    Métin, Christine; Alvarez, Chantal; Moudoux, David; Vitalis, Tania; Pieau, Claude; Molnár, Zoltán

    2007-08-01

    Origin, timing and direction of neuronal migration during brain development determine the distinct organization of adult structures. Changes in these processes might have driven the evolution of the forebrain in vertebrates. GABAergic neurons originate from the ganglionic eminence in mammals and migrate tangentially to the cortex. We are interested in differences and similarities in tangential migration patterns across corresponding telencephalic territories in mammals and reptiles. Using morphological criteria and expression patterns of Darpp-32, Tbr1, Nkx2.1 and Pax6 genes, we show in slice cultures of turtle embryos that early cohorts of tangentially migrating cells are released from the medial ganglionic eminence between stages 14 and 18. Additional populations migrate tangentially from the dorsal subpallium. Large cohorts of tangentially migrating neurons originate ventral to the dorsal ventricular ridge at stage 14 and from the lateral ganglionic eminence from stage 15. Release of GABAergic cells from these regions was investigated further in explant cultures. Tangential migration in turtle proceeds in a fashion similar to mammals. In chimeric slice culture and in ovo graft experiments, the tangentially migrating cells behaved according to the host environment - turtle cells responded to the available cues in mouse slices and mouse cells assumed characteristic migratory routes in turtle brains, indicating highly conserved embryonic signals between these distant species. Our study contributes to the evaluation of theories on the origin of the dorsal cortex and indicates that tangential migration is universal in mammals and sauropsids.

  2. Defective neuronal migration and inhibition of bipolar to multipolar transition of migrating neural cells by Mesoderm-Specific Transcript, Mest, in the developing mouse neocortex.

    PubMed

    Ji, Liting; Bishayee, Kausik; Sadra, Ali; Choi, Seunghyuk; Choi, Wooyul; Moon, Sungho; Jho, Eek-Hoon; Huh, Sung-Oh

    2017-07-04

    Brain developmental disorders such as lissencephaly can result from faulty neuronal migration and differentiation during the formation of the mammalian neocortex. The cerebral cortex is a modular structure, where developmentally, newborn neurons are generated as a neuro-epithelial sheet and subsequently differentiate, migrate and organize into their final positions in the cerebral cortical plate via a process involving both tangential and radial migration. The specific role of Mest, an imprinted gene, in neuronal migration has not been previously studied. In this work, we reduced expression of Mest with in utero electroporation of neuronal progenitors in the developing embryonic mouse neocortex. Reduction of Mest levels by shRNA significantly reduced the number of neurons migrating to the cortical plate. Also, Mest-knockdown disrupted the transition of bipolar neurons into multipolar neurons migrating out of the sub-ventricular zone region. The migrating neurons also adopted a more tangential migration pattern upon knockdown of the Mest message, losing their potential to attach to radial glia cells, required for radial migration. The differentiation and migration properties of neurons via Wnt-Akt signaling were affected by Mest changes. In addition, miR-335, encoded in a Mest gene intron, was identified as being responsible for blocking the default tangential migration of the neurons. Our results suggest that Mest and its intron product, miR-335, play important roles in neuronal migration with Mest regulating the morphological transition of primary neurons required in the formation of the mammalian neocortex. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Visualization of migration of human cortical neurons generated from induced pluripotent stem cells.

    PubMed

    Bamba, Yohei; Kanemura, Yonehiro; Okano, Hideyuki; Yamasaki, Mami

    2017-09-01

    Neuronal migration is considered a key process in human brain development. However, direct observation of migrating human cortical neurons in the fetal brain is accompanied by ethical concerns and is a major obstacle in investigating human cortical neuronal migration. We established a novel system that enables direct visualization of migrating cortical neurons generated from human induced pluripotent stem cells (hiPSCs). We observed the migration of cortical neurons generated from hiPSCs derived from a control and from a patient with lissencephaly. Our system needs no viable brain tissue, which is usually used in slice culture. Migratory behavior of human cortical neuron can be observed more easily and more vividly by its fluorescence and glial scaffold than that by earlier methods. Our in vitro experimental system provides a new platform for investigating development of the human central nervous system and brain malformation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. ApoER2 Controls Not Only Neuronal Migration in the Intermediate Zone But Also Termination of Migration in the Developing Cerebral Cortex.

    PubMed

    Hirota, Yuki; Kubo, Ken-Ichiro; Fujino, Takahiro; Yamamoto, Tokuo T; Nakajima, Kazunori

    2018-01-01

    Neuronal migration contributes to the establishment of mammalian brain. The extracellular protein Reelin sends signals to various downstream molecules by binding to its receptors, the apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor and exerts essential roles in the neuronal migration and formation of the layered neocortex. However, the cellular and molecular functions of Reelin signaling in the cortical development are not yet fully understood. Here, to gain insight into the role of Reelin signaling during cortical development, we examined the migratory behavior of Apoer2-deficient neurons in the developing brain. Stage-specific labeling of newborn neurons revealed that the neurons ectopically invaded the marginal zone (MZ) and that neuronal migration of both early- and late-born neurons was disrupted in the intermediate zone (IZ) in the Apoer2 KO mice. Rescue experiments showed that ApoER2 functions both in cell-autonomous and noncell-autonomous manners, that Rap1, integrin, and Akt are involved in the termination of migration beneath the MZ, and that Akt also controls neuronal migration in the IZ downstream of ApoER2. These data indicate that ApoER2 controls multiple processes in neuronal migration, including the early stage of radial migration and termination of migration beneath the MZ in the developing neocortex. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human-Induced Pluripotent Cells

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-15-1-0433 TITLE: Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human -Induced Pluripotent Cells...2015 - 31 Aug 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human -Induced...functions to normal in neurons derived from human pluripotent cells exposed to Gulf War toxins. 15. SUBJECT TERMS microtubule, neuron, Gulf War Illness

  6. Neuronal migration, apoptosis and bipolar disorder.

    PubMed

    Uribe, Ezequiel; Wix, Richard

    2012-01-01

    Bipolar disorder, like the majority of psychiatric disorders, is considered a neurodevelopment disease of neurodevelopment. There is an increased rate of neuronal birth and death during this development period. In the particular case of the processes that determine neuronal death, it is known that those neurons that establish connections have to be removed from the central nervous system. There is a deficit of GABAergic interneurons in the cerebral cortex in bipolar disorder, accompanied by overexpression of proapoptic genes. There is also an alteration in the expression of molecules that mediate in the migration of these neurons and their inclusion in functional synapsis during the foetal stage. The role of these molecules in the neuronal death pathways by apoptosis will be reviewed here in an attempt to establish biological hypotheses of the genesis of bipolar disorder. Copyright © 2011 SEP y SEPB. Published by Elsevier Espana. All rights reserved.

  7. Differential regulation of microtubule severing by APC underlies distinct patterns of projection neuron and interneuron migration

    PubMed Central

    Eom, Tae-Yeon; Stanco, Amelia; Guo, Jiami; Wilkins, Gary; Deslauriers, Danielle; Yan, Jessica; Monckton, Chase; Blair, Josh; Oon, Eesim; Perez, Abby; Salas, Eduardo; Oh, Adrianna; Ghukasyan, Vladimir; Snider, William D.; Rubenstein, John L. R.; Anton, E. S.

    2014-01-01

    Coordinated migration of distinct classes of neurons to appropriate positions leads to the formation of functional neuronal circuitry in the cerebral cortex. Two major classes of cortical neurons, interneurons and projection neurons, utilize distinctly different modes (radial vs. tangential) and routes of migration to arrive at their final positions in the cerebral cortex. Here, we show that adenomatous polyposis coli (APC) modulates microtubule (MT) severing in interneurons to facilitate tangential mode of interneuron migration, but not the glial-guided, radial migration of projection neurons. APC regulates the stability and activity of the MT severing protein p60-katanin in interneurons to promote the rapid remodeling of neuronal processes necessary for interneuron migration. These findings reveal how severing and restructuring of MTs facilitate distinct modes of neuronal migration necessary for laminar organization of neurons in the developing cerebral cortex. PMID:25535916

  8. Prenatal stress delays inhibitory neuron progenitor migration in the developing neocortex

    PubMed Central

    Stevens, Hanna E.; Su, Tina; Yanagawa, Yuchio; Vaccarino, Flora M.

    2012-01-01

    Summary Prenatal stress has been widely demonstrated to have links with behavioral problems in clinical populations and animal models, however, few investigations have examined the immediate developmental events that are affected by prenatal stress. Here, we utilize GAD67GFP transgenic mice in which GABAergic progenitors express green fluorescent protein (GFP) to examine the impact of prenatal stress on the development of these precursors to inhibitory neurons. Pregnant female mice were exposed to restraint stress three times daily from embryonic day 12 (E12) onwards. Their offspring demonstrated changes in the distribution of GFP-positive (GFP+) GABAergic progenitors in the telencephalon as early as E13 and persisting until postnatal day 0. Changes in distribution reflected alterations in tangential migration and radial integration of GFP+ cells into the developing cortical plate. Fate mapping of GAD67GFP+progenitors with bromodeoxyuridine injected at E13 demonstrated a significant increase of these cells at P0 in anterior white matter. An overall decrease in GAD67GFP+ progenitors at P0 in medial frontal cortex could not be attributed to a reduction in cell proliferation. Significant changes in dlx2, nkx2.1 and their downstream target erbb4, transcription factors which regulate interneuron migration, were found within the prenatally-stressed developing forebrain, while no differences were seen in mash1, a determinant of interneuron fate, bdnf, a maturation factor for GABAergic cells or fgf2, an early growth/differentiation factor. These results demonstrate that early disruption in GABAergic progenitor migration caused by prenatal stress may be responsible for neuronal defects in disorders with GABAergic abnormalities like schizophrenia. PMID:22910687

  9. Profilin1 activity in cerebellar granule neurons is required for radial migration in vivo

    PubMed Central

    Kullmann, Jan A; Wickertsheim, Ines; Minnerup, Lara; Costell, Mercedes; Friauf, Eckhard; Rust, Marco B

    2015-01-01

    Neuron migration defects are an important aspect of human neuropathies. The underlying molecular mechanisms of such migration defects are largely unknown. Actin dynamics has been recognized as an important determinant of neuronal migration, and we recently found that the actin-binding protein profilin1 is relevant for radial migration of cerebellar granule neurons (CGN). As the exploited brain-specific mutants lacked profilin1 in both neurons and glial cells, it remained unknown whether profilin1 activity in CGN is relevant for CGN migration in vivo. To test this, we capitalized on a transgenic mouse line that expresses a tamoxifen-inducible Cre variant in CGN, but no other cerebellar cell type. In these profilin1 mutants, the cell density was elevated in the molecular layer, and ectopic CGN occurred. Moreover, 5-bromo-2′-deoxyuridine tracing experiments revealed impaired CGN radial migration. Hence, our data demonstrate the cell autonomous role of profilin1 activity in CGN for radial migration. PMID:25495756

  10. Serotonin Neuron Abnormalities in the BTBR Mouse Model of Autism

    PubMed Central

    Guo, Yue-Ping; Commons, Kathryn G.

    2017-01-01

    The inbred mouse strain BTBR T+ Itpr3tf/J (BTBR) i studied as a model of idiopathic autism because they are less social and more resistant to change than other strains. Forebrain serotonin receptors and the response to serotonin drugs are altered in BTBR mice, yet it remains unknown if serotonin neurons themselves are abnormal. In this study, we found that serotonin tissue content and the density of serotonin axons is reduced in the hippocampus of BTBR mice in comparison to C57BL/6J (C57) mice. This was accompanied by possible compensatory changes in serotonin neurons that were most pronounced in regions known to provide innervation to the hippocampus: the caudal dorsal raphe (B6) and the median raphe. These changes included increased numbers of serotonin neurons and hyperactivation of Fos expression. Metrics of serotonin neurons in the rostral 2/3 of the dorsal raphe and serotonin content of the prefrontal cortex were less impacted. Thus, serotonin neurons exhibit region-dependent abnormalities in the BTBR mouse that may contribute to their altered behavioral profile. PMID:27478061

  11. Riding the glial monorail: a common mechanism for glial-guided neuronal migration in different regions of the developing mammalian brain.

    PubMed

    Hatten, M E

    1990-05-01

    In vitro studies from our laboratory indicate that granule neurons, purified from early postnatal mouse cerebellum, migrate on astroglial fibers by forming a 'migration junction' with the glial fiber along the length of the neuronal soma and extending a motile 'leading process' in the direction of migration. Similar dynamics are seen for hippocampal neurons migrating along hippocampal astroglial fibers in vitro. In heterotypic recombinations of neurons and glia from mouse cerebellum and rat hippocampus, neurons migrate on astroglial processes with a cytology and neuron-glia relationship identical to that of homotypic neuronal migration in vitro. In all four cases, the migrating neuron presents a stereotyped posture, speed and mode of movement, suggesting that glial fibers provide a generic pathway for neuronal migration in developing brain. Studies on the molecular basis of glial-guided migration suggest that astrotactin, a neuronal antigen that functions as a neuron-glia ligand, is likely to play a crucial role in the locomotion of the neuron along glial fibers. The navigation of neurons from glial fibers into cortical layers, in turn, is likely to involve neuron-neuron adhesion ligands.

  12. Asymmetry of Radial and Symmetry of Tangential Neuronal Migration Pathways in Developing Human Fetal Brains

    PubMed Central

    Miyazaki, Yuta; Song, Jae W.; Takahashi, Emi

    2016-01-01

    The radial and tangential neural migration pathways are two major neuronal migration streams in humans that are critical during corticogenesis. Corticogenesis is a complex process of neuronal proliferation that is followed by neuronal migration and the formation of axonal connections. Existing histological assessments of these two neuronal migration pathways have limitations inherent to microscopic studies and are confined to small anatomic regions of interest (ROIs). Thus, little evidence is available about their three-dimensional (3-D) fiber pathways and development throughout the entire brain. In this study, we imaged and analyzed radial and tangential migration pathways in the whole human brain using high-angular resolution diffusion MR imaging (HARDI) tractography. We imaged ten fixed, postmortem fetal (17 gestational weeks (GW), 18 GW, 19 GW, three 20 GW, three 21 GW and 22 GW) and eight in vivo newborn (two 30 GW, 34 GW, 35 GW and four 40 GW) brains with no neurological/pathological conditions. We statistically compared the volume of the left and right radial and tangential migration pathways, and the volume of the radial migration pathways of the anterior and posterior regions of the brain. In specimens 22 GW or younger, the volume of radial migration pathways of the left hemisphere was significantly larger than that of the right hemisphere. The volume of posterior radial migration pathways was also larger when compared to the anterior pathways in specimens 22 GW or younger. In contrast, no significant differences were observed in the radial migration pathways of brains older than 22 GW. Moreover, our study did not identify any significant differences in volumetric laterality in the tangential migration pathways. These results suggest that these two neuronal migration pathways develop and regress differently, and radial neuronal migration varies regionally based on hemispheric and anterior-posterior laterality, potentially explaining regional differences in

  13. The atypical cadherin Celsr1 functions non-cell autonomously to block rostral migration of facial branchiomotor neurons in mice.

    PubMed

    Glasco, Derrick M; Pike, Whitney; Qu, Yibo; Reustle, Lindsay; Misra, Kamana; Di Bonito, Maria; Studer, Michele; Fritzsch, Bernd; Goffinet, André M; Tissir, Fadel; Chandrasekhar, Anand

    2016-09-01

    The caudal migration of facial branchiomotor (FBM) neurons from rhombomere (r) 4 to r6 in the hindbrain is an excellent model to study neuronal migration mechanisms. Although several Wnt/Planar Cell Polarity (PCP) components are required for FBM neuron migration, only Celsr1, an atypical cadherin, regulates the direction of migration in mice. In Celsr1 mutants, a subset of FBM neurons migrates rostrally instead of caudally. Interestingly, Celsr1 is not expressed in the migrating FBM neurons, but rather in the adjacent floor plate and adjoining ventricular zone. To evaluate the contribution of different expression domains to neuronal migration, we conditionally inactivated Celsr1 in specific cell types. Intriguingly, inactivation of Celsr1 in the ventricular zone of r3-r5, but not in the floor plate, leads to rostral migration of FBM neurons, greatly resembling the migration defect of Celsr1 mutants. Dye fill experiments indicate that the rostrally-migrated FBM neurons in Celsr1 mutants originate from the anterior margin of r4. These data suggest strongly that Celsr1 ensures that FBM neurons migrate caudally by suppressing molecular cues in the rostral hindbrain that can attract FBM neurons. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Proteoglycans and neuronal migration in the cerebral cortex during development and disease

    PubMed Central

    Maeda, Nobuaki

    2015-01-01

    Chondroitin sulfate proteoglycans and heparan sulfate proteoglycans are major constituents of the extracellular matrix and the cell surface in the brain. Proteoglycans bind with many proteins including growth factors, chemokines, axon guidance molecules, and cell adhesion molecules through both the glycosaminoglycan and the core protein portions. The functions of proteoglycans are flexibly regulated due to the structural variability of glycosaminoglycans, which are generated by multiple glycosaminoglycan synthesis and modifying enzymes. Neuronal cell surface proteoglycans such as PTPζ, neuroglycan C and syndecan-3 function as direct receptors for heparin-binding growth factors that induce neuronal migration. The lectican family, secreted chondroitin sulfate proteoglycans, forms large aggregates with hyaluronic acid and tenascins, in which many signaling molecules and enzymes including matrix proteases are preserved. In the developing cerebrum, secreted chondroitin sulfate proteoglycans such as neurocan, versican and phosphacan are richly expressed in the areas that are strategically important for neuronal migration such as the striatum, marginal zone, subplate and subventricular zone in the neocortex. These proteoglycans may anchor various attractive and/or repulsive cues, regulating the migration routes of inhibitory neurons. Recent studies demonstrated that the genes encoding proteoglycan core proteins and glycosaminoglycan synthesis and modifying enzymes are associated with various psychiatric and intellectual disorders, which may be related to the defects of neuronal migration. PMID:25852466

  15. In Vitro, Ex Vivo and In Vivo Techniques to Study Neuronal Migration in the Developing Cerebral Cortex

    PubMed Central

    Azzarelli, Roberta; Oleari, Roberto; Lettieri, Antonella; Andre', Valentina; Cariboni, Anna

    2017-01-01

    Neuronal migration is a fundamental biological process that underlies proper brain development and neuronal circuit formation. In the developing cerebral cortex, distinct neuronal populations, producing excitatory, inhibitory and modulatory neurotransmitters, are generated in different germinative areas and migrate along various routes to reach their final positions within the cortex. Different technical approaches and experimental models have been adopted to study the mechanisms regulating neuronal migration in the cortex. In this review, we will discuss the most common in vitro, ex vivo and in vivo techniques to visualize and study cortical neuronal migration. PMID:28448448

  16. Planar polarity pathway and Nance-Horan syndrome-like 1b have essential cell-autonomous functions in neuronal migration.

    PubMed

    Walsh, Gregory S; Grant, Paul K; Morgan, John A; Moens, Cecilia B

    2011-07-01

    Components of the planar cell polarity (PCP) pathway are required for the caudal tangential migration of facial branchiomotor (FBM) neurons, but how PCP signaling regulates this migration is not understood. In a forward genetic screen, we identified a new gene, nhsl1b, required for FBM neuron migration. nhsl1b encodes a WAVE-homology domain-containing protein related to human Nance-Horan syndrome (NHS) protein and Drosophila GUK-holder (Gukh), which have been shown to interact with components of the WAVE regulatory complex that controls cytoskeletal dynamics and with the polarity protein Scribble, respectively. Nhsl1b localizes to FBM neuron membrane protrusions and interacts physically and genetically with Scrib to control FBM neuron migration. Using chimeric analysis, we show that FBM neurons have two modes of migration: one involving interactions between the neurons and their planar-polarized environment, and an alternative, collective mode involving interactions between the neurons themselves. We demonstrate that the first mode of migration requires the cell-autonomous functions of Nhsl1b and the PCP components Scrib and Vangl2 in addition to the non-autonomous functions of Scrib and Vangl2, which serve to polarize the epithelial cells in the environment of the migrating neurons. These results define a role for Nhsl1b as a neuronal effector of PCP signaling and indicate that proper FBM neuron migration is directly controlled by PCP signaling between the epithelium and the migrating neurons.

  17. Planar polarity pathway and Nance-Horan syndrome-like 1b have essential cell-autonomous functions in neuronal migration

    PubMed Central

    Walsh, Gregory S.; Grant, Paul K.; Morgan, John A.; Moens, Cecilia B.

    2011-01-01

    Components of the planar cell polarity (PCP) pathway are required for the caudal tangential migration of facial branchiomotor (FBM) neurons, but how PCP signaling regulates this migration is not understood. In a forward genetic screen, we identified a new gene, nhsl1b, required for FBM neuron migration. nhsl1b encodes a WAVE-homology domain-containing protein related to human Nance-Horan syndrome (NHS) protein and Drosophila GUK-holder (Gukh), which have been shown to interact with components of the WAVE regulatory complex that controls cytoskeletal dynamics and with the polarity protein Scribble, respectively. Nhsl1b localizes to FBM neuron membrane protrusions and interacts physically and genetically with Scrib to control FBM neuron migration. Using chimeric analysis, we show that FBM neurons have two modes of migration: one involving interactions between the neurons and their planar-polarized environment, and an alternative, collective mode involving interactions between the neurons themselves. We demonstrate that the first mode of migration requires the cell-autonomous functions of Nhsl1b and the PCP components Scrib and Vangl2 in addition to the non-autonomous functions of Scrib and Vangl2, which serve to polarize the epithelial cells in the environment of the migrating neurons. These results define a role for Nhsl1b as a neuronal effector of PCP signaling and indicate that proper FBM neuron migration is directly controlled by PCP signaling between the epithelium and the migrating neurons. PMID:21693519

  18. Drebrin-mediated microtubule–actomyosin coupling steers cerebellar granule neuron nucleokinesis and migration pathway selection

    PubMed Central

    Trivedi, Niraj; Stabley, Daniel R.; Cain, Blake; Howell, Danielle; Laumonnerie, Christophe; Ramahi, Joseph S.; Temirov, Jamshid; Kerekes, Ryan A.; Gordon-Weeks, Phillip R.; Solecki, David J.

    2017-01-01

    Neuronal migration from a germinal zone to a final laminar position is essential for the morphogenesis of neuronal circuits. While it is hypothesized that microtubule–actomyosin crosstalk is required for a neuron's ‘two-stroke' nucleokinesis cycle, the molecular mechanisms controlling such crosstalk are not defined. By using the drebrin microtubule–actin crosslinking protein as an entry point into the cerebellar granule neuron system in combination with super-resolution microscopy, we investigate how these cytoskeletal systems interface during migration. Lattice light-sheet and structured illumination microscopy reveal a proximal leading process nanoscale architecture wherein f-actin and drebrin intervene between microtubules and the plasma membrane. Functional perturbations of drebrin demonstrate that proximal leading process microtubule–actomyosin coupling steers the direction of centrosome and somal migration, as well as the switch from tangential to radial migration. Finally, the Siah2 E3 ubiquitin ligase antagonizes drebrin function, suggesting a model for control of the microtubule–actomyosin interfaces during neuronal differentiation. PMID:28230156

  19. Corridors of migrating neurons in the human brain and their decline during infancy.

    PubMed

    Sanai, Nader; Nguyen, Thuhien; Ihrie, Rebecca A; Mirzadeh, Zaman; Tsai, Hui-Hsin; Wong, Michael; Gupta, Nalin; Berger, Mitchel S; Huang, Eric; Garcia-Verdugo, Jose-Manuel; Rowitch, David H; Alvarez-Buylla, Arturo

    2011-09-28

    The subventricular zone of many adult non-human mammals generates large numbers of new neurons destined for the olfactory bulb. Along the walls of the lateral ventricles, immature neuronal progeny migrate in tangentially oriented chains that coalesce into a rostral migratory stream (RMS) connecting the subventricular zone to the olfactory bulb. The adult human subventricular zone, in contrast, contains a hypocellular gap layer separating the ependymal lining from a periventricular ribbon of astrocytes. Some of these subventricular zone astrocytes can function as neural stem cells in vitro, but their function in vivo remains controversial. An initial report found few subventricular zone proliferating cells and rare migrating immature neurons in the RMS of adult humans. In contrast, a subsequent study indicated robust proliferation and migration in the human subventricular zone and RMS. Here we find that the infant human subventricular zone and RMS contain an extensive corridor of migrating immature neurons before 18 months of age but, contrary to previous reports, this germinal activity subsides in older children and is nearly extinct by adulthood. Surprisingly, during this limited window of neurogenesis, not all new neurons in the human subventricular zone are destined for the olfactory bulb--we describe a major migratory pathway that targets the prefrontal cortex in humans. Together, these findings reveal robust streams of tangentially migrating immature neurons in human early postnatal subventricular zone and cortex. These pathways represent potential targets of neurological injuries affecting neonates.

  20. Kinesin-5, a mitotic microtubule-associated motor protein, modulates neuronal migration

    PubMed Central

    Falnikar, Aditi; Tole, Shubha; Baas, Peter W.

    2011-01-01

    Kinesin-5 (also called Eg5 or kif11) is a homotetrameric motor protein that functions by modulating microtubule (MT)–MT interactions. In the case of mitosis, kinesin-5 slows the rate of separation of the half-spindles. In the case of the axon, kinesin-5 limits the frequency of transport of short MTs, and also limits the rate of axonal growth. Here we show that experimental inhibition of kinesin-5 in cultured migratory neurons results in a faster but more randomly moving neuron with a shorter leading process. As is the case with axons of stationary neurons, short MT transport frequency is notably enhanced in the leading process of the migratory neuron when kinesin-5 is inhibited. Conversely, overexpression of kinesin-5, both in culture and in developing cerebral cortex, causes migration to slow and even cease. Regions of anti-parallel MT organization behind the centrosome were shown to be especially rich in kinesin-5, implicating these regions as potential sites where kinesin-5 forces may be especially relevant. We posit that kinesin-5 acts as a “brake” on MT–MT interactions that modulates the advance of the entire MT apparatus. In so doing, kinesin-5 regulates the rate and directionality of neuronal migration and possibly the cessation of migration when the neuron reaches its destination. PMID:21411631

  1. JIP3 regulates neuronal radial migration by mediating TrkB axonal anterograde transport in the developing cerebral cortex.

    PubMed

    Ma, Huixian; Yu, Hui; Li, Ting; Zhao, Yan; Hou, Ming; Chen, Zheyu; Wang, Yue; Sun, Tao

    2017-04-15

    Radial migration is essential for the precise lamination and the coordinated function of the cerebral cortex. However, the molecular mechanisms for neuronal radial migration are not clear. Here, we report that c-Jun NH2-terminal kinase (JNK)-interacting protein-3 (JIP3) is highly expressed in the brain of embryonic mice and essential for radial migration. Knocking down JIP3 by in utero electroporation specifically perturbs the radial migration of cortical neurons but has no effect on neurogenesis and neuronal differentiation. Furthermore, we illustrate that JIP3 knockdown delays but does not block the migration of cortical neurons by investigating the distribution of neurons with JIP3 knocked down in the embryo and postnatal mouse. Finally, we find that JIP3 regulates cortical neuronal migration by mediating TrkB axonal anterograde transport during brain development. These findings deepen our understanding of the regulation of neuronal development by JIP3 and provide us a novel view on the regulating mechanisms of neuronal radial migration. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. β1 integrin signaling promotes neuronal migration along vascular scaffolds in the post-stroke brain.

    PubMed

    Fujioka, Teppei; Kaneko, Naoko; Ajioka, Itsuki; Nakaguchi, Kanako; Omata, Taichi; Ohba, Honoka; Fässler, Reinhard; García-Verdugo, José Manuel; Sekiguchi, Kiyotoshi; Matsukawa, Noriyuki; Sawamoto, Kazunobu

    2017-02-01

    Cerebral ischemic stroke is a main cause of chronic disability. However, there is currently no effective treatment to promote recovery from stroke-induced neurological symptoms. Recent studies suggest that after stroke, immature neurons, referred to as neuroblasts, generated in a neurogenic niche, the ventricular-subventricular zone, migrate toward the injured area, where they differentiate into mature neurons. Interventions that increase the number of neuroblasts distributed at and around the lesion facilitate neuronal repair in rodent models for ischemic stroke, suggesting that promoting neuroblast migration in the post-stroke brain could improve efficient neuronal regeneration. To move toward the lesion, neuroblasts form chain-like aggregates and migrate along blood vessels, which are thought to increase their migration efficiency. However, the molecular mechanisms regulating these migration processes are largely unknown. Here we studied the role of β1-class integrins, transmembrane receptors for extracellular matrix proteins, in these migrating neuroblasts. We found that the neuroblast chain formation and blood vessel-guided migration critically depend on β1 integrin signaling. β1 integrin facilitated the adhesion of neuroblasts to laminin and the efficient translocation of their soma during migration. Moreover, artificial laminin-containing scaffolds promoted neuroblast chain formation and migration toward the injured area. These data suggest that laminin signaling via β1 integrin supports vasculature-guided neuronal migration to efficiently supply neuroblasts to injured areas. This study also highlights the importance of vascular scaffolds for cell migration in development and regeneration. Copyright © 2017 3-V Biosciences. Published by Elsevier B.V. All rights reserved.

  3. Serotonin neuron abnormalities in the BTBR mouse model of autism.

    PubMed

    Guo, Yue-Ping; Commons, Kathryn G

    2017-01-01

    The inbred mouse strain BTBR T + Itpr3 tf /J (BTBR) is studied as a model of idiopathic autism because they are less social and more resistant to change than other strains. Forebrain serotonin receptors and the response to serotonin drugs are altered in BTBR mice, yet it remains unknown if serotonin neurons themselves are abnormal. In this study, we found that serotonin tissue content and the density of serotonin axons is reduced in the hippocampus of BTBR mice in comparison to C57BL/6J (C57) mice. This was accompanied by possible compensatory changes in serotonin neurons that were most pronounced in regions known to provide innervation to the hippocampus: the caudal dorsal raphe (B6) and the median raphe. These changes included increased numbers of serotonin neurons and hyperactivation of Fos expression. Metrics of serotonin neurons in the rostral 2/3 of the dorsal raphe and serotonin content of the prefrontal cortex were less impacted. Thus, serotonin neurons exhibit region-dependent abnormalities in the BTBR mouse that may contribute to their altered behavioral profile. Autism Res 2017, 10: 66-77. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  4. Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior

    PubMed Central

    Li, Suyan; Kumar T, Peeyush; Joshee, Sampada; Kirschstein, Timo; Subburaju, Sivan; Khalili, Jahan S; Kloepper, Jonas; Du, Chuang; Elkhal, Abdallah; Szabó, Gábor; Jain, Rakesh K; Köhling, Rüdiger; Vasudevan, Anju

    2018-01-01

    The cerebral cortex is essential for integration and processing of information that is required for most behaviors. The exquisitely precise laminar organization of the cerebral cortex arises during embryonic development when neurons migrate successively from ventricular zones to coalesce into specific cortical layers. While radial glia act as guide rails for projection neuron migration, pre-formed vascular networks provide support and guidance cues for GABAergic interneuron migration. This study provides novel conceptual and mechanistic insights into this paradigm of vascular-neuronal interactions, revealing new mechanisms of GABA and its receptor-mediated signaling via embryonic forebrain endothelial cells. With the use of two new endothelial cell specific conditional mouse models of the GABA pathway (Gabrb3ΔTie2-Cre and VgatΔTie2-Cre), we show that partial or complete loss of GABA release from endothelial cells during embryogenesis results in vascular defects and impairs long-distance migration and positioning of cortical interneurons. The downstream effects of perturbed endothelial cell-derived GABA signaling are critical, leading to lasting changes to cortical circuits and persistent behavioral deficits. Furthermore, we illustrate new mechanisms of activation of GABA signaling in forebrain endothelial cells that promotes their migration, angiogenesis and acquisition of blood-brain barrier properties. Our findings uncover and elucidate a novel endothelial GABA signaling pathway in the CNS that is distinct from the classical neuronal GABA signaling pathway and shed new light on the etiology and pathophysiology of neuropsychiatric diseases, such as autism spectrum disorders, epilepsy, anxiety, depression and schizophrenia. PMID:29086765

  5. Drebrin-mediated microtubule–actomyosin coupling steers cerebellar granule neuron nucleokinesis and migration pathway selection

    DOE PAGES

    Trivedi, Niraj; Stabley, Daniel R.; Cain, Blake; ...

    2017-02-23

    Neuronal migration from a germinal zone to a final laminar position is essential for the morphogenesis of neuronal circuits. While it is hypothesized that microtubule–actomyosin crosstalk is required for a neuron’s ‘two-stroke’ nucleokinesis cycle, the molecular mechanisms controlling such crosstalk are not defined. By using the drebrin microtubule–actin crosslinking protein as an entry point into the cerebellar granule neuron system in combination with super-resolution microscopy, we investigate how these cytoskeletal systems interface during migration. Lattice light-sheet and structured illumination microscopy reveal a proximal leading process nanoscale architecture wherein f-actin and drebrin intervene between microtubules and the plasma membrane. Functional perturbationsmore » of drebrin demonstrate that proximal leading process microtubule–actomyosin coupling steers the direction of centrosome and somal migration, as well as the switch from tangential to radial migration. Finally, the Siah2 E3 ubiquitin ligase antagonizes drebrin function, suggesting a model for control of the microtubule–actomyosin interfaces during neuronal differentiation.« less

  6. Prickle1b mediates interpretation of migratory cues during zebrafish facial branchiomotor neuron migration

    PubMed Central

    Mapp, Oni M.; Wanner, Sarah J.; Rohrschneider, Monica R.; Prince, Victoria E.

    2011-01-01

    The facial branchiomotor neurons undergo a characteristic tangential migration in the vertebrate hindbrain. Several signaling mechanisms have been implicated in this process, including the non-canonical Wnt/planar cell polarity (PCP) pathway. However, the role of this signaling pathway in controlling the dynamics of these neurons is unclear. Here, we describe the cellular dynamics of the facial neurons as they migrate, focusing on the speed and direction of migration, extension of protrusions, cell shape and orientation. Furthermore, we show that the PET/LIM domain protein Prickle1b (Pk1b) is required for several aspects of these migratory behaviors, including cell orientation. However, we find that centrosome localization is not significantly affected by disruption of Pk1b function, suggesting that polarization of the neurons is not completely lost. Together, our data suggest that Pk1b function may be required to integrate the multiple migratory cues received by the neurons into polarization instructions for proper posterior movement. PMID:20503357

  7. 5-Mehtyltetrahydrofolate rescues alcohol-induced neural crest cell migration abnormalities.

    PubMed

    Shi, Yu; Li, Jiejing; Chen, Chunjiang; Gong, Manzi; Chen, Yuan; Liu, Youxue; Chen, Jie; Li, Tingyu; Song, Weihong

    2014-09-16

    Alcohol is detrimental to early development. Fetal alcohol spectrum disorders (FASD) due to maternal alcohol abuse results in a series of developmental abnormalities including cranial facial dysmorphology, ocular anomalies, congenital heart defects, microcephaly and intellectual disabilities. Previous studies have been shown that ethanol exposure causes neural crest (NC) apoptosis and perturbation of neural crest migration. However, the underlying mechanism remains elusive. In this report we investigated the fetal effect of alcohol on the process of neural crest development in the Xenopus leavis. Pre-gastrulation exposure of 2-4% alcohol induces apoptosis in Xenopus embryo whereas 1% alcohol specifically impairs neural crest migration without observing discernible apoptosis. Additionally, 1% alcohol treatment considerably increased the phenotype of small head (43.4% ± 4.4%, total embryo n = 234), and 1.5% and 2.0% dramatically augment the deformation to 81.2% ± 6.5% (n = 205) and 91.6% ± 3.0% (n = 235), respectively (P < 0.05). Significant accumulation of Homocysteine was caused by alcohol treatment in embryos and 5-mehtyltetrahydrofolate restores neural crest migration and alleviates homocysteine accumulation, resulting in inhibition of the alcohol-induced neurocristopathies. Our study demonstrates that prenatal alcohol exposure causes neural crest cell migration abnormality and 5-mehtyltetrahydrofolate could be beneficial for treating FASD.

  8. Dcx Re-expression Reduces Subcortical Band Heterotopia and Seizure Threshold in an Animal Model of Neuronal Migration Disorder

    PubMed Central

    Manent, Jean-Bernard; Wang, Yu; Chang, YoonJeung; Paramasivam, Murugan; LoTurco, Joseph J

    2009-01-01

    Disorders of neuronal migration can lead to malformations of the cerebral neocortex that greatly increase the risk of seizures. It remains untested whether malformations caused by disorders in neuronal migration can be reduced by reactivating cellular migration, and whether such repair can decrease seizure risk. Here we show, in a rat model of subcortical band heterotopia (SBH) generated by in utero RNAi of Dcx, that aberrantly positioned neurons can be stimulated to migrate by re-expressing Dcx after birth. Re-starting migration in this way both reduces neocortical malformations and restores neuronal patterning. We find further that the capacity to reduce SBH has a critical period in early postnatal development. Moreover, intervention after birth reduces convulsant-induced seizure threshold to levels similar to that of malformation-free controls. These results suggest that disorders of neuronal migration may be eventually treatable by re-engaging developmental programs both to reduce the size of cortical malformations and to reduce seizure risk. PMID:19098909

  9. Foxp1 Regulates Cortical Radial Migration and Neuronal Morphogenesis in Developing Cerebral Cortex

    PubMed Central

    Li, Xue; Xiao, Jian; Fröhlich, Henning; Tu, Xiaomeng; Li, Lianlian; Xu, Yue; Cao, Huateng; Qu, Jia; Rappold, Gudrun A.; Chen, Jie-Guang

    2015-01-01

    FOXP1 is a member of FOXP subfamily transcription factors. Mutations in FOXP1 gene have been found in various development-related cognitive disorders. However, little is known about the etiology of these symptoms, and specifically the function of FOXP1 in neuronal development. Here, we report that suppression of Foxp1 expression in mouse cerebral cortex led to a neuronal migration defect, which was rescued by overexpression of Foxp1. Mice with Foxp1 knockdown exhibited ectopic neurons in deep layers of the cortex postnatally. The neuronal differentiation of Foxp1-downregulated cells was normal. However, morphological analysis showed that the neurons with Foxp1 deficiency had an inhibited axonal growth in vitro and a weakened transition from multipolar to bipolar in vivo. Moreover, we found that the expression of Foxp1 modulated the dendritic maturation of neurons at a late postnatal date. Our results demonstrate critical roles of Foxp1 in the radial migration and morphogenesis of cortical neurons during development. This study may shed light on the complex relationship between neuronal development and the related cognitive disorders. PMID:26010426

  10. Manduca Contactin Regulates Amyloid Precursor Protein-Dependent Neuronal Migration

    PubMed Central

    Ramaker, Jenna M.; Swanson, Tracy L.

    2016-01-01

    Amyloid precursor protein (APP) was originally identified as the source of β-amyloid peptides that accumulate in Alzheimer's disease (AD), but it also has been implicated in the control of multiple aspects of neuronal motility. APP belongs to an evolutionarily conserved family of transmembrane proteins that can interact with a variety of adapter and signaling molecules. Recently, we showed that both APP and its insect ortholog [APPL (APP-Like)] directly bind the heterotrimeric G-protein Goα, supporting the model that APP can function as an unconventional Goα-coupled receptor. We also adapted a well characterized assay of neuronal migration in the hawkmoth, Manduca sexta, to show that APPL–Goα signaling restricts ectopic growth within the developing nervous system, analogous to the role postulated for APP family proteins in controlling migration within the mammalian cortex. Using this assay, we have now identified Manduca Contactin (MsContactin) as an endogenous ligand for APPL, consistent with previous work showing that Contactins interact with APP family proteins in other systems. Using antisense-based knockdown protocols and fusion proteins targeting both proteins, we have shown that MsContactin is selectively expressed by glial cells that ensheath the migratory neurons (expressing APPL), and that MsContactin–APPL interactions normally prevent inappropriate migration and outgrowth. These results provide new evidence that Contactins can function as authentic ligands for APP family proteins that regulate APP-dependent responses in the developing nervous system. They also support the model that misregulated Contactin–APP interactions might provoke aberrant activation of Goα and its effectors, thereby contributing to the neurodegenerative sequelae that typify AD. SIGNIFICANCE STATEMENT Members of the amyloid precursor protein (APP) family participate in many aspects of neuronal development, but the ligands that normally activate APP signaling have remained

  11. Tangential migration of glutamatergic neurons and cortical patterning during development: Lessons from Cajal-Retzius cells.

    PubMed

    Barber, Melissa; Pierani, Alessandra

    2016-08-01

    Tangential migration is a mode of cell movement, which in the developing cerebral cortex, is defined by displacement parallel to the ventricular surface and orthogonal to the radial glial fibers. This mode of long-range migration is a strategy by which distinct neuronal classes generated from spatially and molecularly distinct origins can integrate to form appropriate neural circuits within the cortical plate. While it was previously believed that only GABAergic cortical interneurons migrate tangentially from their origins in the subpallial ganglionic eminences to integrate in the cortical plate, it is now known that transient populations of glutamatergic neurons also adopt this mode of migration. These include Cajal-Retzius cells (CRs), subplate neurons (SPs), and cortical plate transient neurons (CPTs), which have crucial roles in orchestrating the radial and tangential development of the embryonic cerebral cortex in a noncell-autonomous manner. While CRs have been extensively studied, it is only in the last decade that the molecular mechanisms governing their tangential migration have begun to be elucidated. To date, the mechanisms of SPs and CPTs tangential migration remain unknown. We therefore review the known signaling pathways, which regulate parameters of CRs migration including their motility, contact-redistribution and adhesion to the pial surface, and discuss this in the context of how CR migration may regulate their signaling activity in a spatial and temporal manner. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 847-881, 2016. © 2015 Wiley Periodicals, Inc.

  12. Tangential migration of corridor guidepost neurons contributes to anxiety circuits.

    PubMed

    Tinterri, Andrea; Deck, Marie; Keita, Maryama; Mailhes, Caroline; Rubin, Anna Noren; Kessaris, Nicoletta; Lokmane, Ludmilla; Bielle, Franck; Garel, Sonia

    2018-02-15

    In mammals, thalamic axons are guided internally toward their neocortical target by corridor (Co) neurons that act as axonal guideposts. The existence of Co-like neurons in non-mammalian species, in which thalamic axons do not grow internally, raised the possibility that Co cells might have an ancestral role. Here, we investigated the contribution of corridor (Co) cells to mature brain circuits using a combination of genetic fate-mapping and assays in mice. We unexpectedly found that Co neurons contribute to striatal-like projection neurons in the central extended amygdala. In particular, Co-like neurons participate in specific nuclei of the bed nucleus of the stria terminalis, which plays essential roles in anxiety circuits. Our study shows that Co neurons possess an evolutionary conserved role in anxiety circuits independently from an acquired guidepost function. It furthermore highlights that neurons can have multiple sequential functions during brain wiring and supports a general role of tangential migration in the building of subpallial circuits. © 2017 Wiley Periodicals, Inc.

  13. Mutations in DYNC1H1 cause severe intellectual disability with neuronal migration defects.

    PubMed

    Willemsen, Marjolein H; Vissers, Lisenka E L; Willemsen, Michèl A A P; van Bon, Bregje W M; Kroes, Thessa; de Ligt, Joep; de Vries, Bert B; Schoots, Jeroen; Lugtenberg, Dorien; Hamel, Ben C J; van Bokhoven, Hans; Brunner, Han G; Veltman, Joris A; Kleefstra, Tjitske

    2012-03-01

    DYNC1H1 encodes the heavy chain protein of the cytoplasmic dynein 1 motor protein complex that plays a key role in retrograde axonal transport in neurons. Furthermore, it interacts with the LIS1 gene of which haploinsufficiency causes a severe neuronal migration disorder in humans, known as classical lissencephaly or Miller-Dieker syndrome. To describe the clinical spectrum and molecular characteristics of DYNC1H1 mutations. A family based exome sequencing approach was used to identify de novo mutations in patients with severe intellectual disability. In this report the identification of two de novo missense mutations in DYNC1H1 (p.Glu1518Lys and p.His3822Pro) in two patients with severe intellectual disability and variable neuronal migration defects is described. Since an autosomal dominant mutation in DYNC1H1 was previously identified in a family with the axonal (type 2) form of Charcot- Marie-Tooth (CMT2) disease and mutations in Dync1h1 in mice also cause impaired neuronal migration in addition to neuropathy, these data together suggest that mutations in DYNC1H1 can lead to a broad phenotypic spectrum and confirm the importance of DYNC1H1 in both central and peripheral neuronal functions.

  14. Involvement of Receptor-like Protein Tyrosine Phosphatase ζ/RPTPβ and Its Ligand Pleiotrophin/Heparin-binding Growth-associated Molecule (HB-GAM) in Neuronal Migration

    PubMed Central

    Maeda, Nobuaki; Noda, Masaharu

    1998-01-01

    Pleiotrophin/heparin-binding growth-associated molecule (HB-GAM) is a specific ligand of protein tyrosine phosphatase ζ (PTPζ)/receptor-like protein tyrosine phosphatase β (RPTPβ) expressed in the brain as a chondroitin sulfate proteoglycan. Pleiotrophin and PTPζ isoforms are localized along the radial glial fibers, a scaffold for neuronal migration, suggesting that these molecules are involved in migratory processes of neurons during brain development. In this study, we examined the roles of pleiotrophin-PTPζ interaction in the neuronal migration using cell migration assay systems with glass fibers and Boyden chambers. Pleiotrophin and poly-l-lysine coated on the substratums stimulated cell migration of cortical neurons, while laminin, fibronectin, and tenascin exerted almost no effect. Pleiotrophin-induced and poly-l-lysine–induced neuronal migrations showed significant differences in sensitivity to various molecules and reagents. Polyclonal antibodies against the extracellular domain of PTPζ, PTPζ-S, an extracellular secreted form of PTPζ, and sodium vanadate, a protein tyrosine phosphatase inhibitor, added into the culture medium strongly suppressed specifically the pleiotrophin-induced neuronal migration. Furthermore, chondroitin sulfate C but not chondroitin sulfate A inhibited pleiotrophin-induced neuronal migration, in good accordance with our previous findings that chondroitin sulfate constitutes a part of the pleiotrophin-binding site of PTPζ, and PTPζ-pleiotrophin binding is inhibited by chondroitin sulfate C but not by chondroitin sulfate A. Immunocytochemical analysis indicated that the transmembrane forms of PTPζ are expressed on the migrating neurons especially at the lamellipodia along the leading processes. These results suggest that PTPζ is involved in the neuronal migration as a neuronal receptor of pleiotrophin distributed along radial glial fibers. PMID:9660874

  15. BAG3 is involved in neuronal differentiation and migration.

    PubMed

    Santoro, Antonietta; Nicolin, Vanessa; Florenzano, Fulvio; Rosati, Alessandra; Capunzo, Mario; Nori, Stefania L

    2017-05-01

    Bcl2-associated athanogene 3 (BAG3) protein belongs to the family of co-chaperones interacting with several heat shock proteins. It plays a key role in protein quality control and mediates the clearance of misfolded proteins. Little is known about the expression and cellular localization of BAG3 during nervous system development and differentiation. Therefore, we analyze the subcellular distribution and expression of BAG3 in nerve-growth-factor-induced neurite outgrowth in PC12 cells and in developing and adult cortex of mouse brain. In differentiated PC12 cells, BAG3 was localized mainly in the neuritic domain rather than the cell body, whereas in control cells, it appeared to be confined to the cytoplasm near the nuclear membrane. Interestingly, the change of BAG3 localization during neuronal differentiation was associated only with a slight increase in total BAG3 expression. These data were coroborated by transmission electron microscopy showing that BAG3 was confined mainly within large dense-core vesicles of the axon in differentiated PC12 cells. In mouse developing cortex, BAG3 appeared to be intensely expressed in cellular processes of migrating cells, whereas in adult brain, a diffuse expression of low to medium intensity was detected in neuronal cell bodies. These findings suggest that BAG3 expression is required for neuronal differentiation and migration and that its role is linked to a change in its distribution pattern rather than to an increase in its protein expression levels.

  16. The development of behavioral abnormalities in the motor neuron degeneration (mnd) mouse.

    PubMed

    Bolivar, Valerie J; Scott Ganus, J; Messer, Anne

    2002-05-24

    The motor neuron degeneration (mnd) mouse, which has widespread abnormal accumulating lipoprotein and neuronal degeneration, has a mutation in CLN8, the gene for human progressive epilepsy with mental retardation (EPMR). EPMR is one of the neuronal ceroid lipofuscinoses (NCLs), a group of neurological disorders characterized by autofluorescent lipopigment accumulation, blindness, seizures, motor deterioration, and dementia. The human phenotype of EPMR suggests that, in addition to the motor symptoms previously categorized, various types of progressive behavioral abnormalities would be expected in mnd mice. We have therefore examined exploratory behavior, fear conditioning, and aggression in 2-3 month and 4-5 month old male mnd mice and age-matched C57BL/6 (B6) controls. The mnd mice displayed increased activity with decreased habituation in the activity monitor, poor contextual and cued memory, and heightened aggression relative to B6 controls. These behavioral deficits were most prominent at 4-5 months of age, which is prior to the onset of gross motor symptoms at 6 months. Our results provide a link from the mutation via pathology to a quantifiable multidimensional behavioral phenotype of this naturally occurring mouse model of NCL.

  17. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons

    DOE PAGES

    Trivedi, Niraj; Ramahi, Joseph S.; Karakaya, Mahmut; ...

    2014-12-02

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. Our results show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia aremore » motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. In conclusion, we propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.« less

  18. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trivedi, Niraj; Ramahi, Joseph S.; Karakaya, Mahmut

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. Our results show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia aremore » motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. In conclusion, we propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.« less

  19. The Role of Astrocytes in the Generation, Migration, and Integration of New Neurons in the Adult Olfactory Bulb

    PubMed Central

    Gengatharan, Archana; Bammann, Rodrigo R.; Saghatelyan, Armen

    2016-01-01

    In mammals, new neurons in the adult olfactory bulb originate from a pool of neural stem cells in the subventricular zone of the lateral ventricles. Adult-born cells play an important role in odor information processing by adjusting the neuronal network to changing environmental conditions. Olfactory bulb neurogenesis is supported by several non-neuronal cells. In this review, we focus on the role of astroglial cells in the generation, migration, integration, and survival of new neurons in the adult forebrain. In the subventricular zone, neural stem cells with astrocytic properties display regional and temporal specificity when generating different neuronal subtypes. Non-neurogenic astrocytes contribute to the establishment and maintenance of the neurogenic niche. Neuroblast chains migrate through the rostral migratory stream ensheathed by astrocytic processes. Astrocytes play an important regulatory role in neuroblast migration and also assist in the development of a vasculature scaffold in the migratory stream that is essential for neuroblast migration in the postnatal brain. In the olfactory bulb, astrocytes help to modulate the network through a complex release of cytokines, regulate blood flow, and provide metabolic support, which may promote the integration and survival of new neurons. Astrocytes thus play a pivotal role in various processes of adult olfactory bulb neurogenesis, and it is likely that many other functions of these glial cells will emerge in the near future. PMID:27092050

  20. Migration Pathways of Thalamic Neurons and Development of Thalamocortical Connections in Humans Revealed by Diffusion MR Tractography.

    PubMed

    Wilkinson, Molly; Kane, Tara; Wang, Rongpin; Takahashi, Emi

    2017-12-01

    The thalamus plays an important role in signal relays in the brain, with thalamocortical (TC) neuronal pathways linked to various sensory/cognitive functions. In this study, we aimed to see fetal and postnatal development of the thalamus including neuronal migration to the thalamus and the emergence/maturation of the TC pathways. Pathways from/to the thalami of human postmortem fetuses and in vivo subjects ranging from newborns to adults with no neurological histories were studied using high angular resolution diffusion MR imaging (HARDI) tractography. Pathways likely linked to neuronal migration from the ventricular zone and ganglionic eminence (GE) to the thalami were both successfully detected. Between the ventricular zone and thalami, more tractography pathways were found in anterior compared with posterior regions, which was well in agreement with postnatal observations that the anterior TC segment had more tract count and volume than the posterior segment. Three different pathways likely linked to neuronal migration from the GE to the thalami were detected. No hemispheric asymmetry of the TC pathways was quantitatively observed during development. These results suggest that HARDI tractography is useful to identify multiple differential neuronal migration pathways in human brains, and regional differences in brain development in fetal ages persisted in postnatal development. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Hox paralog group 2 genes control the migration of mouse pontine neurons through slit-robo signaling.

    PubMed

    Geisen, Marc J; Di Meglio, Thomas; Pasqualetti, Massimo; Ducret, Sebastien; Brunet, Jean-François; Chedotal, Alain; Rijli, Filippo M

    2008-06-10

    The pontine neurons (PN) represent a major source of mossy fiber projections to the cerebellum. During mouse hindbrain development, PN migrate tangentially and sequentially along both the anteroposterior (AP) and dorsoventral (DV) axes. Unlike DV migration, which is controlled by the Netrin-1/Dcc attractive pathway, little is known about the molecular mechanisms guiding PN migration along the AP axis. Here, we show that Hoxa2 and Hoxb2 are required both intrinsically and extrinsically to maintain normal AP migration of subsets of PN, by preventing their premature ventral attraction towards the midline. Moreover, the migration defects observed in Hoxa2 and Hoxb2 mutant mice were phenocopied in compound Robo1;Robo2, Slit1;Slit2, and Robo2;Slit2 knockout animals, indicating that these guidance molecules act downstream of Hox genes to control PN migration. Indeed, using chromatin immunoprecipitation assays, we further demonstrated that Robo2 is a direct target of Hoxa2 in vivo and that maintenance of high Robo and Slit expression levels was impaired in Hoxa2 mutant mice. Lastly, the analysis of Phox2b-deficient mice indicated that the facial motor nucleus is a major Slit signaling source required to prevent premature ventral migration of PN. These findings provide novel insights into the molecular control of neuronal migration from transcription factor to regulation of guidance receptor and ligand expression. Specifically, they address the question of how exposure to multiple guidance cues along the AP and DV axes is regulated at the transcriptional level and in turn translated into stereotyped migratory responses during tangential migration of neurons in the developing mammalian brain.

  2. Hox Paralog Group 2 Genes Control the Migration of Mouse Pontine Neurons through Slit-Robo Signaling

    PubMed Central

    Pasqualetti, Massimo; Ducret, Sebastien; Brunet, Jean-François; Chedotal, Alain; Rijli, Filippo M

    2008-01-01

    The pontine neurons (PN) represent a major source of mossy fiber projections to the cerebellum. During mouse hindbrain development, PN migrate tangentially and sequentially along both the anteroposterior (AP) and dorsoventral (DV) axes. Unlike DV migration, which is controlled by the Netrin-1/Dcc attractive pathway, little is known about the molecular mechanisms guiding PN migration along the AP axis. Here, we show that Hoxa2 and Hoxb2 are required both intrinsically and extrinsically to maintain normal AP migration of subsets of PN, by preventing their premature ventral attraction towards the midline. Moreover, the migration defects observed in Hoxa2 and Hoxb2 mutant mice were phenocopied in compound Robo1;Robo2, Slit1;Slit2, and Robo2;Slit2 knockout animals, indicating that these guidance molecules act downstream of Hox genes to control PN migration. Indeed, using chromatin immunoprecipitation assays, we further demonstrated that Robo2 is a direct target of Hoxa2 in vivo and that maintenance of high Robo and Slit expression levels was impaired in Hoxa2 mutant mice. Lastly, the analysis of Phox2b-deficient mice indicated that the facial motor nucleus is a major Slit signaling source required to prevent premature ventral migration of PN. These findings provide novel insights into the molecular control of neuronal migration from transcription factor to regulation of guidance receptor and ligand expression. Specifically, they address the question of how exposure to multiple guidance cues along the AP and DV axes is regulated at the transcriptional level and in turn translated into stereotyped migratory responses during tangential migration of neurons in the developing mammalian brain. PMID:18547144

  3. Morphological patterns in children with ganglion related enteric neuronal abnormalities.

    PubMed

    Henna, Nausheen; Nagi, Abdul H; Sheikh, Muhammad A; Shaukat, Mahmood

    2011-01-01

    Hirschsprung's Disease (HD) is a developmental disorder of enteric nervous system characterised by the absence of ganglion cells in submucosal (Meissner's) and myenteric (Aurbach's) plexuses of distal bowel. The purpose of the present study was to observe and report the morphological patterns of ganglion related enteric neuronal abnormalities in children presented with clinical features of (HD) in a Pakistani population. A total of 92 patients with clinical presentation of HD were enrolled between March 2009 and October 2009. Among them, 8 were excluded according to the exclusion criteria. After detailed history and physical examination, paraffin embedded H and E stained sections were prepared from the serial open biopsies from colorectum. The data was analysed using SPSS-17. Frequencies and percentages are given for qualitative variables. Non-parametric Binomial Chi-Square test was applied to observe within group associations and p<0.05 was considered statistically significant. Among 84 patients, 13 (15.5%) proved to be normally ganglionic whereas 71 (84.5%) showed ganglion related enteric neuronal abnormalities namely isolated hypoganglionosis 9 (12.7%), immaturity of ganglion cells 9 (12.7%), isolated hyperganglionosis (IND Type B) 2 (2.8%) and Hirschsprung's disease 51 (71.8%). Among HD group, 34 (66.7%) belonged to isolated form and 17 (33.3%) showed combined ganglion related abnormalities. Hirschsprung's disease is common in Pakistani population, followed by hypoganglionosis, immaturity of ganglion cells and IND type B. The presence of hypertrophic nerve fibres was significant in HD, hyperganglionosis and hypoganglionosis, whereas, no hypertrophic nerve fibres were appreciated in immaturity of ganglion cell group.

  4. Pericellular innervation of neurons expressing abnormally hyperphosphorylated tau in the hippocampal formation of Alzheimer's disease patients.

    PubMed

    Blazquez-Llorca, Lidia; Garcia-Marin, Virginia; Defelipe, Javier

    2010-01-01

    Neurofibrillary tangles (NFT) represent one of the main neuropathological features in the cerebral cortex associated with Alzheimer's disease (AD). This neurofibrillary lesion involves the accumulation of abnormally hyperphosphorylated or abnormally phosphorylated microtubule-associated protein tau into paired helical filaments (PHF-tau) within neurons. We have used immunocytochemical techniques and confocal microscopy reconstructions to examine the distribution of PHF-tau-immunoreactive (ir) cells, and their perisomatic GABAergic and glutamatergic innervations in the hippocampal formation and adjacent cortex of AD patients. Furthermore, correlative light and electron microscopy was employed to examine these neurons and the perisomatic synapses. We observed two patterns of staining in PHF-tau-ir neurons, pattern I (without NFT) and pattern II (with NFT), the distribution of which varies according to the cortical layer and area. Furthermore, the distribution of both GABAergic and glutamatergic terminals around the soma and proximal processes of PHF-tau-ir neurons does not seem to be altered as it is indistinguishable from both control cases and from adjacent neurons that did not contain PHF-tau. At the electron microscope level, a normal looking neuropil with typical symmetric and asymmetric synapses was observed around PHF-tau-ir neurons. These observations suggest that the synaptic connectivity around the perisomatic region of these PHF-tau-ir neurons was apparently unaltered.

  5. Rescue of neuronal migration deficits in a mouse model of fetal Minamata disease by increasing neuronal Ca2+ spike frequency.

    PubMed

    Fahrion, Jennifer K; Komuro, Yutaro; Li, Ying; Ohno, Nobuhiko; Littner, Yoav; Raoult, Emilie; Galas, Ludovic; Vaudry, David; Komuro, Hitoshi

    2012-03-27

    In the brains of patients with fetal Minamata disease (FMD), which is caused by exposure to methylmercury (MeHg) during development, many neurons are hypoplastic, ectopic, and disoriented, indicating disrupted migration, maturation, and growth. MeHg affects a myriad of signaling molecules, but little is known about which signals are primary targets for MeHg-induced deficits in neuronal development. In this study, using a mouse model of FMD, we examined how MeHg affects the migration of cerebellar granule cells during early postnatal development. The cerebellum is one of the most susceptible brain regions to MeHg exposure, and profound loss of cerebellar granule cells is detected in the brains of patients with FMD. We show that MeHg inhibits granule cell migration by reducing the frequency of somal Ca(2+) spikes through alterations in Ca(2+), cAMP, and insulin-like growth factor 1 (IGF1) signaling. First, MeHg slows the speed of granule cell migration in a dose-dependent manner, independent of the mode of migration. Second, MeHg reduces the frequency of spontaneous Ca(2+) spikes in granule cell somata in a dose-dependent manner. Third, a unique in vivo live-imaging system for cell migration reveals that reducing the inhibitory effects of MeHg on somal Ca(2+) spike frequency by stimulating internal Ca(2+) release and Ca(2+) influxes, inhibiting cAMP activity, or activating IGF1 receptors ameliorates the inhibitory effects of MeHg on granule cell migration. These results suggest that alteration of Ca(2+) spike frequency and Ca(2+), cAMP, and IGF1 signaling could be potential therapeutic targets for infants with MeHg intoxication.

  6. Rescue of neuronal migration deficits in a mouse model of fetal Minamata disease by increasing neuronal Ca2+ spike frequency

    PubMed Central

    Fahrion, Jennifer K.; Ohno, Nobuhiko; Littner, Yoav; Raoult, Emilie; Galas, Ludovic; Vaudry, David; Komuro, Hitoshi

    2012-01-01

    In the brains of patients with fetal Minamata disease (FMD), which is caused by exposure to methylmercury (MeHg) during development, many neurons are hypoplastic, ectopic, and disoriented, indicating disrupted migration, maturation, and growth. MeHg affects a myriad of signaling molecules, but little is known about which signals are primary targets for MeHg-induced deficits in neuronal development. In this study, using a mouse model of FMD, we examined how MeHg affects the migration of cerebellar granule cells during early postnatal development. The cerebellum is one of the most susceptible brain regions to MeHg exposure, and profound loss of cerebellar granule cells is detected in the brains of patients with FMD. We show that MeHg inhibits granule cell migration by reducing the frequency of somal Ca2+ spikes through alterations in Ca2+, cAMP, and insulin-like growth factor 1 (IGF1) signaling. First, MeHg slows the speed of granule cell migration in a dose-dependent manner, independent of the mode of migration. Second, MeHg reduces the frequency of spontaneous Ca2+ spikes in granule cell somata in a dose-dependent manner. Third, a unique in vivo live-imaging system for cell migration reveals that reducing the inhibitory effects of MeHg on somal Ca2+ spike frequency by stimulating internal Ca2+ release and Ca2+ influxes, inhibiting cAMP activity, or activating IGF1 receptors ameliorates the inhibitory effects of MeHg on granule cell migration. These results suggest that alteration of Ca2+ spike frequency and Ca2+, cAMP, and IGF1 signaling could be potential therapeutic targets for infants with MeHg intoxication. PMID:22411806

  7. PCP Signaling between Migrating Neurons and their Planar-Polarized Neuroepithelial Environment Controls Filopodial Dynamics and Directional Migration

    PubMed Central

    Moens, Cecilia B.

    2016-01-01

    The planar cell polarity (PCP) pathway is a cell-contact mediated mechanism for transmitting polarity information between neighboring cells. PCP “core components” (Vangl, Fz, Pk, Dsh, and Celsr) are essential for a number of cell migratory events including the posterior migration of facial branchiomotor neurons (FBMNs) in the plane of the hindbrain neuroepithelium in zebrafish and mice. While the mechanism by which PCP signaling polarizes static epithelial cells is well understood, how PCP signaling controls highly dynamic processes like neuronal migration remains an important outstanding question given that PCP components have been implicated in a range of directed cell movements, particularly during vertebrate development. Here, by systematically disrupting PCP signaling in a rhombomere-restricted manner we show that PCP signaling is required both within FBMNs and the hindbrain rhombomere 4 environment at the time when they initiate their migration. Correspondingly, we demonstrate planar polarized localization of PCP core components Vangl2 and Fzd3a in the hindbrain neuroepithelium, and transient localization of Vangl2 at the tips of retracting FBMN filopodia. Using high-resolution timelapse imaging of FBMNs in genetic chimeras we uncover opposing cell-autonomous and non-cell-autonomous functions for Fzd3a and Vangl2 in regulating FBMN protrusive activity. Within FBMNs, Fzd3a is required to stabilize filopodia while Vangl2 has an antagonistic, destabilizing role. However, in the migratory environment Fzd3a acts to destabilize FBMN filopodia while Vangl2 has a stabilizing role. Together, our findings suggest a model in which PCP signaling between the planar polarized neuroepithelial environment and FBMNs directs migration by the selective stabilization of FBMN filopodia. PMID:26990447

  8. Neurogenic Radial Glia-like Cells in Meninges Migrate and Differentiate into Functionally Integrated Neurons in the Neonatal Cortex.

    PubMed

    Bifari, Francesco; Decimo, Ilaria; Pino, Annachiara; Llorens-Bobadilla, Enric; Zhao, Sheng; Lange, Christian; Panuccio, Gabriella; Boeckx, Bram; Thienpont, Bernard; Vinckier, Stefan; Wyns, Sabine; Bouché, Ann; Lambrechts, Diether; Giugliano, Michele; Dewerchin, Mieke; Martin-Villalba, Ana; Carmeliet, Peter

    2017-03-02

    Whether new neurons are added in the postnatal cerebral cortex is still debated. Here, we report that the meninges of perinatal mice contain a population of neurogenic progenitors formed during embryonic development that migrate to the caudal cortex and differentiate into Satb2 + neurons in cortical layers II-IV. The resulting neurons are electrically functional and integrated into local microcircuits. Single-cell RNA sequencing identified meningeal cells with distinct transcriptome signatures characteristic of (1) neurogenic radial glia-like cells (resembling neural stem cells in the SVZ), (2) neuronal cells, and (3) a cell type with an intermediate phenotype, possibly representing radial glia-like meningeal cells differentiating to neuronal cells. Thus, we have identified a pool of embryonically derived radial glia-like cells present in the meninges that migrate and differentiate into functional neurons in the neonatal cerebral cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Nasal embryonic LHRH factor plays a role in the developmental migration and projection of gonadotropin-releasing hormone 3 neurons in zebrafish.

    PubMed

    Palevitch, Ori; Abraham, Eytan; Borodovsky, Natalya; Levkowitz, Gil; Zohar, Yonathan; Gothilf, Yoav

    2009-01-01

    The initiation of puberty and the functioning of the reproductive system depend on proper development of the hypophysiotropic gonadotropin-releasing hormone (GnRH) system. One critical step in this process is the embryonic migration of GnRH neurons from the olfactory area to the hypothalamus. Using a transgenic zebrafish model, Tg(gnrh3:EGFP), in which GnRH3 neurons and axons are fluorescently labeled, we investigated whether zebrafish NELF is essential for the development of GnRH3 neurons. The zebrafish nelf cDNA was cloned and characterized. During embryonic development, nelf is expressed in GnRH3 neurons and in target sites of GnRH3 projections and perikarya, before the initiation of their migration. Nelf knockdown resulted in a disruption of the GnRH3 system which included absence or misguiding of GnRH3 axonal outgrowth and incorrect or arrested migration of GnRH3 perikarya. These results suggest that Nelf is an important factor in the developmental migration and projection of GnRH3 neurons in zebrafish. Copyright (c) 2008 Wiley-Liss, Inc.

  10. Brain-Derived Neurotrophic Factor Promotes Vasculature-Associated Migration of Neuronal Precursors toward the Ischemic Striatum

    PubMed Central

    Grade, Sofia; Weng, Yuan C.; Snapyan, Marina; Kriz, Jasna; Malva, João O.; Saghatelyan, Armen

    2013-01-01

    Stroke induces the recruitment of neuronal precursors from the subventricular zone (SVZ) into the ischemic striatum. In injured areas, de-routed neuroblasts use blood vessels as a physical scaffold to their migration, in a process that resembles the constitutive migration seen in the rostral migratory stream (RMS). The molecular mechanism underlying injury-induced vasculature-mediated migration of neuroblasts in the post-stroke striatum remains, however, elusive. Using adult mice we now demonstrate that endothelial cells in the ischemic striatum produce brain-derived neurotrophic factor (BDNF), a neurotrophin that promotes the vasculature-mediated migration of neuronal precursors in the RMS, and that recruited neuroblasts maintain expression of p75NTR, a low-affinity receptor for BDNF. Reactive astrocytes, which are widespread throughout the damaged area, ensheath blood vessels and express TrkB, a high-affinity receptor for BDNF. Despite the absence of BDNF mRNA, we observed strong BDNF immunolabeling in astrocytes, suggesting that these glial cells trap extracellular BDNF. Importantly, this pattern of expression is reminiscent of the adult RMS, where TrkB-expressing astrocytes bind and sequester vasculature-derived BDNF, leading to the entry of migrating cells into the stationary phase. Real-time imaging of cell migration in acute brain slices revealed a direct role for BDNF in promoting the migration of neuroblasts to ischemic areas. We also demonstrated that cells migrating in the ischemic striatum display higher exploratory behavior and longer stationary periods than cells migrating in the RMS. Our findings suggest that the mechanisms involved in the injury-induced vasculature-mediated migration of neuroblasts recapitulate, at least partially, those observed during constitutive migration in the RMS. PMID:23383048

  11. A Novel c-Jun N-terminal Kinase (JNK) Signaling Complex Involved in Neuronal Migration during Brain Development.

    PubMed

    Zhang, Feng; Yu, Jingwen; Yang, Tao; Xu, Dan; Chi, Zhixia; Xia, Yanheng; Xu, Zhiheng

    2016-05-27

    Disturbance of neuronal migration may cause various neurological disorders. Both the transforming growth factor-β (TGF-β) signaling and microcephaly-associated protein WDR62 are important for neuronal migration during brain development; however, the underlying molecular mechanisms involved remain unclear. We show here that knock-out or knockdown of Tak1 (TGFβ-activated kinase 1) and Jnk2 (c-Jun N-terminal kinase 2) perturbs neuronal migration during cortical development and that the migration defects incurred by knock-out and/or knockdown of Tβr2 (type II TGF-β receptor) or Tak1 can be partially rescued by expression of TAK1 and JNK2, respectively. Furthermore, TAK1 forms a protein complex with RAC1 and two scaffold proteins of the JNK pathway, the microcephaly-associated protein WDR62 and the RAC1-interacting protein POSH (plenty of Src homology). Components of the complex coordinate with each other in the regulation of TAK1 as well as JNK activities. We suggest that unique JNK protein complexes are involved in the diversified biological and pathological functions during brain development and pathogenesis of diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. SFPQ associates to LSD1 and regulates the migration of newborn pyramidal neurons in the developing cerebral cortex.

    PubMed

    Saud, K; Cánovas, J; Lopez, C I; Berndt, F A; López, E; Maass, J C; Barriga, A; Kukuljan, M

    2017-04-01

    The development of the cerebral cortex requires the coordination of multiple processes ranging from the proliferation of progenitors to the migration and establishment of connectivity of the newborn neurons. Epigenetic regulation carried out by the COREST/LSD1 complex has been identified as a mechanism that regulates the development of pyramidal neurons of the cerebral cortex. We now identify the association of the multifunctional RNA-binding protein SFPQ to LSD1 during the development of the cerebral cortex. In vivo reduction of SFPQ dosage by in utero electroporation of a shRNA results in impaired radial migration of newborn pyramidal neurons, in a similar way to that observed when COREST or LSD1 expressions are decreased. Diminished SFPQ expression also associates to decreased proliferation of progenitor cells, while it does not affect the acquisition of neuronal fate. These results are compatible with the idea that SFPQ, plays an important role regulating proliferation and migration during the development of the cerebral cortex. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.

  13. Cadherin 2/4 signaling via PTP1B and catenins is crucial for nucleokinesis during radial neuronal migration in the neocortex

    PubMed Central

    Martinez-Garay, Isabel; Gil-Sanz, Cristina; Franco, Santos J.; Espinosa, Ana; Molnár, Zoltán

    2016-01-01

    Cadherins are crucial for the radial migration of excitatory projection neurons into the developing neocortical wall. However, the specific cadherins and the signaling pathways that regulate radial migration are not well understood. Here, we show that cadherin 2 (CDH2) and CDH4 cooperate to regulate radial migration in mouse brain via the protein tyrosine phosphatase 1B (PTP1B) and α- and β-catenins. Surprisingly, perturbation of cadherin-mediated signaling does not affect the formation and extension of leading processes of migrating neocortical neurons. Instead, movement of the cell body and nucleus (nucleokinesis) is disrupted. This defect is partially rescued by overexpression of LIS1, a microtubule-associated protein that has previously been shown to regulate nucleokinesis. Taken together, our findings indicate that cadherin-mediated signaling to the cytoskeleton is crucial for nucleokinesis of neocortical projection neurons during their radial migration. PMID:27151949

  14. Cerebellar abnormalities typical of methylmercury poisoning in a fledged saltmarsh sparrow, Ammodramus caudacutus.

    PubMed

    Scoville, Sheila A; Lane, Oksana P

    2013-05-01

    A fledged, 12-15 day-old saltmarsh sparrow, Ammodramus caudacutus, was collected from an accidental kill on Cinder Island, Long Island, NY, USA. The sparrow was assessed for feather mercury levels and the brain analyzed for cerebellar abnormalities by microscopic examination. In humans, fetal Minamata disease is caused by maternal ingestion of mercury. It is characterized by disrupted and disordered cerebellar neuronal migration in the fetus or infant. Results from this sparrow show cerebellar abnormalities typical of Minamata disease. It is the first known avian or mammalian specimen taken from the wild to show the abnormalities typical of the human fetal syndrome.

  15. Cadherin 2/4 signaling via PTP1B and catenins is crucial for nucleokinesis during radial neuronal migration in the neocortex.

    PubMed

    Martinez-Garay, Isabel; Gil-Sanz, Cristina; Franco, Santos J; Espinosa, Ana; Molnár, Zoltán; Mueller, Ulrich

    2016-06-15

    Cadherins are crucial for the radial migration of excitatory projection neurons into the developing neocortical wall. However, the specific cadherins and the signaling pathways that regulate radial migration are not well understood. Here, we show that cadherin 2 (CDH2) and CDH4 cooperate to regulate radial migration in mouse brain via the protein tyrosine phosphatase 1B (PTP1B) and α- and β-catenins. Surprisingly, perturbation of cadherin-mediated signaling does not affect the formation and extension of leading processes of migrating neocortical neurons. Instead, movement of the cell body and nucleus (nucleokinesis) is disrupted. This defect is partially rescued by overexpression of LIS1, a microtubule-associated protein that has previously been shown to regulate nucleokinesis. Taken together, our findings indicate that cadherin-mediated signaling to the cytoskeleton is crucial for nucleokinesis of neocortical projection neurons during their radial migration. © 2016. Published by The Company of Biologists Ltd.

  16. Automated method for tracing leading and trailing processes of migrating neurons in confocal image sequences

    NASA Astrophysics Data System (ADS)

    Kerekes, Ryan A.; Gleason, Shaun S.; Trivedi, Niraj; Solecki, David J.

    2010-03-01

    Segmentation, tracking, and tracing of neurons in video imagery are important steps in many neuronal migration studies and can be inaccurate and time-consuming when performed manually. In this paper, we present an automated method for tracing the leading and trailing processes of migrating neurons in time-lapse image stacks acquired with a confocal fluorescence microscope. In our approach, we first locate and track the soma of the cell of interest by smoothing each frame and tracking the local maxima through the sequence. We then trace the leading process in each frame by starting at the center of the soma and stepping repeatedly in the most likely direction of the leading process. This direction is found at each step by examining second derivatives of fluorescent intensity along curves of constant radius around the current point. Tracing terminates after a fixed number of steps or when fluorescent intensity drops below a fixed threshold. We evolve the resulting trace to form an improved trace that more closely follows the approximate centerline of the leading process. We apply a similar algorithm to the trailing process of the cell by starting the trace in the opposite direction. We demonstrate our algorithm on two time-lapse confocal video sequences of migrating cerebellar granule neurons (CGNs). We show that the automated traces closely approximate ground truth traces to within 1 or 2 pixels on average. Additionally, we compute line intensity profiles of fluorescence along the automated traces and quantitatively demonstrate their similarity to manually generated profiles in terms of fluorescence peak locations.

  17. Developmental abnormalities of the posterior pituitary gland.

    PubMed

    di Iorgi, Natascia; Secco, Andrea; Napoli, Flavia; Calandra, Erika; Rossi, Andrea; Maghnie, Mohamad

    2009-01-01

    While the molecular mechanisms of anterior pituitary development are now better understood than in the past, both in animals and in humans, little is known about the mechanisms regulating posterior pituitary development. The posterior pituitary gland is formed by the evagination of neural tissue from the floor of the third ventricle. It consists of the distal axons of the hypothalamic magnocellular neurones that shape the neurohypophysis. After its downward migration, it is encapsulated together with the ascending ectodermal cells of Rathke's pouch which form the anterior pituitary. By the end of the first trimester, this development is completed and vasopressin and oxytocin can be detected in neurohypophyseal tissue. Abnormal posterior pituitary migration such as the ectopic posterior pituitary lobe appearing at the level of median eminence or along the pituitary stalk have been reported in idiopathic GH deficiency or in subjects with HESX1, LHX4 and SOX3 gene mutations. Another intriguing feature of abnormal posterior pituitary development involves genetic forms of posterior pituitary neurodegeneration that have been reported in autosomal-dominant central diabetes insipidus and Wolfram disease. Defining the phenotype of the posterior pituitary gland can have significant clinical implications for management and counseling, as well as providing considerable insight into normal and abnormal mechanisms of posterior pituitary development in humans.

  18. Reelin is essential for neuronal migration but not for radial glial elongation in neonatal ferret cortex.

    PubMed

    Schaefer, Alisa; Poluch, Sylvie; Juliano, Sharon

    2008-04-01

    Numerous functions related to neuronal migration are linked to the glycoprotein reelin. Reelin also elongates radial glia, which are disrupted in mutant reeler mice. Our lab developed a model of cortical dysplasia in ferrets that shares features with the reeler mouse, including impaired migration of neurons into the cerebral cortex and disrupted radial glia. Explants of normal ferret cortex in coculture with dysplastic ferret cortex restore the deficits in this model. To determine if reelin is integral to the repair, we used explants of P0 mouse cortex either of the wild type (WT) or heterozygous (het) for the reelin gene, as well as P0 reeler cortex (not containing reelin), in coculture with organotypic cultures of dysplastic ferret cortex. This arrangement revealed that all types of mouse cortical explants (WT, het, reeler) elongated radial glia in ferret cortical dysplasia, indicating that reelin is not required for proper radial glial morphology. Migration of cells into ferret neocortex, however, did not improve with explants of reeler cortex, but was almost normal after pairing with WT or het explants. We also placed an exogenous source of reelin in ferret cultures at the pial surface to reveal that migrating cells move toward the reelin source in dysplastic cortex; radial glia in these cultures were also improved toward normal. Our results demonstrate that the normotopic position of reelin is important for proper neuronal positioning, and that reelin is capable of elongating radial glial cells but is not the only radialization factor.

  19. Abnormal neuronal activity in Tourette syndrome and its modulation using deep brain stimulation

    PubMed Central

    Israelashvili, Michal; Loewenstern, Yocheved

    2015-01-01

    Tourette syndrome (TS) is a common childhood-onset disorder characterized by motor and vocal tics that are typically accompanied by a multitude of comorbid symptoms. Pharmacological treatment options are limited, which has led to the exploration of deep brain stimulation (DBS) as a possible treatment for severe cases. Multiple lines of evidence have linked TS with abnormalities in the motor and limbic cortico-basal ganglia (CBG) pathways. Neurophysiological data have only recently started to slowly accumulate from multiple sources: noninvasive imaging and electrophysiological techniques, invasive electrophysiological recordings in TS patients undergoing DBS implantation surgery, and animal models of the disorder. These converging sources point to system-level physiological changes throughout the CBG pathway, including both general altered baseline neuronal activity patterns and specific tic-related activity. DBS has been applied to different regions along the motor and limbic pathways, primarily to the globus pallidus internus, thalamic nuclei, and nucleus accumbens. In line with the findings that also draw on the more abundant application of DBS to Parkinson's disease, this stimulation is assumed to result in changes in the neuronal firing patterns and the passage of information through the stimulated nuclei. We present an overview of recent experimental findings on abnormal neuronal activity associated with TS and the changes in this activity following DBS. These findings are then discussed in the context of current models of CBG function in the normal state, during TS, and finally in the wider context of DBS in CBG-related disorders. PMID:25925326

  20. Soluble guanylate cyclase generation of cGMP regulates migration of MGE neurons.

    PubMed

    Mandal, Shyamali; Stanco, Amelia; Buys, Emmanuel S; Enikolopov, Grigori; Rubenstein, John L R

    2013-10-23

    Here we have provided evidence that nitric oxide-cyclic GMP (NO-cGMP) signaling regulates neurite length and migration of immature neurons derived from the medial ganglionic eminence (MGE). Dlx1/2(-/-) and Lhx6(-/-) mouse mutants, which exhibit MGE interneuron migration defects, have reduced expression of the gene encoding the α subunit of a soluble guanylate cyclase (Gucy1A3). Furthermore, Dlx1/2(-/-) mouse mutants have reduced expression of NO synthase 1 (NOS1). Gucy1A3(-/-) mice have a transient reduction in cortical interneuron number. Pharmacological inhibition of soluble guanylate cyclase and NOS activity rapidly induces neurite retraction of MGE cells in vitro and in slice culture and robustly inhibits cell migration from the MGE and caudal ganglionic eminence. We provide evidence that these cellular phenotypes are mediated by activation of the Rho signaling pathway and inhibition of myosin light chain phosphatase activity.

  1. Enhanced exosome secretion in Down syndrome brain - a protective mechanism to alleviate neuronal endosomal abnormalities.

    PubMed

    Gauthier, Sébastien A; Pérez-González, Rocío; Sharma, Ajay; Huang, Fang-Ke; Alldred, Melissa J; Pawlik, Monika; Kaur, Gurjinder; Ginsberg, Stephen D; Neubert, Thomas A; Levy, Efrat

    2017-08-29

    A dysfunctional endosomal pathway and abnormally enlarged early endosomes in neurons are an early characteristic of Down syndrome (DS) and Alzheimer's disease (AD). We have hypothesized that endosomal material can be released by endosomal multivesicular bodies (MVBs) into the extracellular space via exosomes to relieve neurons of accumulated endosomal contents when endosomal pathway function is compromised. Supporting this, we found that exosome secretion is enhanced in the brains of DS patients and a mouse model of the disease, and by DS fibroblasts. Furthermore, increased levels of the tetraspanin CD63, a regulator of exosome biogenesis, were observed in DS brains. Importantly, CD63 knockdown diminished exosome release and worsened endosomal pathology in DS fibroblasts. Taken together, these data suggest that increased CD63 expression enhances exosome release as an endogenous mechanism mitigating endosomal abnormalities in DS. Thus, the upregulation of exosome release represents a potential therapeutic goal for neurodegenerative disorders with endosomal pathology.

  2. Night-time neuronal activation of Cluster N in a day- and night-migrating songbird.

    PubMed

    Zapka, Manuela; Heyers, Dominik; Liedvogel, Miriam; Jarvis, Erich D; Mouritsen, Henrik

    2010-08-01

    Magnetic compass orientation in a night-migratory songbird requires that Cluster N, a cluster of forebrain regions, is functional. Cluster N, which receives input from the eyes via the thalamofugal pathway, shows high neuronal activity in night-migrants performing magnetic compass-guided behaviour at night, whereas no activation is observed during the day, and covering up the birds' eyes strongly reduces neuronal activation. These findings suggest that Cluster N processes light-dependent magnetic compass information in night-migrating songbirds. The aim of this study was to test if Cluster N is active during daytime migration. We used behavioural molecular mapping based on ZENK activation to investigate if Cluster N is active in the meadow pipit (Anthus pratensis), a day- and night-migratory species. We found that Cluster N of meadow pipits shows high neuronal activity under dim-light at night, but not under full room-light conditions during the day. These data suggest that, in day- and night-migratory meadow pipits, the light-dependent magnetic compass, which requires an active Cluster N, may only be used during night-time, whereas another magnetosensory mechanism and/or other reference system(s), like the sun or polarized light, may be used as primary orientation cues during the day.

  3. Normal radial migration and lamination are maintained in dyslexia-susceptibility candidate gene homolog Kiaa0319 knockout mice.

    PubMed

    Martinez-Garay, Isabel; Guidi, Luiz G; Holloway, Zoe G; Bailey, Melissa A G; Lyngholm, Daniel; Schneider, Tomasz; Donnison, Timothy; Butt, Simon J B; Monaco, Anthony P; Molnár, Zoltán; Velayos-Baeza, Antonio

    2017-04-01

    Developmental dyslexia is a common disorder with a strong genetic component, but the underlying molecular mechanisms are still unknown. Several candidate dyslexia-susceptibility genes, including KIAA0319, DYX1C1, and DCDC2, have been identified in humans. RNA interference experiments targeting these genes in rat embryos have shown impairments in neuronal migration, suggesting that defects in radial cortical migration could be involved in the disease mechanism of dyslexia. Here we present the first characterisation of a Kiaa0319 knockout mouse line. Animals lacking KIAA0319 protein do not show anatomical abnormalities in any of the layered structures of the brain. Neurogenesis and radial migration of cortical projection neurons are not altered, and the intrinsic electrophysiological properties of Kiaa0319-deficient neurons do not differ from those of wild-type neurons. Kiaa0319 overexpression in cortex delays radial migration, but does not affect final neuronal position. However, knockout animals show subtle differences suggesting possible alterations in anxiety-related behaviour and in sensorimotor gating. Our results do not reveal a migration disorder in the mouse model, adding to the body of evidence available for Dcdc2 and Dyx1c1 that, unlike in the rat in utero knockdown models, the dyslexia-susceptibility candidate mouse homolog genes do not play an evident role in neuronal migration. However, KIAA0319 protein expression seems to be restricted to the brain, not only in early developmental stages but also in adult mice, indicative of a role of this protein in brain function. The constitutive and conditional knockout lines reported here will be useful tools for further functional analyses of Kiaa0319.

  4. Molecular hierarchy in neurons differentiated from mouse ES cells containing a single human chromosome 21.

    PubMed

    Wang, Chi Chiu; Kadota, Mitsutaka; Nishigaki, Ryuichi; Kazuki, Yasuhiro; Shirayoshi, Yasuaki; Rogers, Michael Scott; Gojobori, Takashi; Ikeo, Kazuho; Oshimura, Mitsuo

    2004-02-06

    Defects in neurogenesis and neuronal differentiation in the fetal brain of Down syndrome (DS) patients lead to the apparent neuropathological abnormalities and contribute to the phenotypic characters of mental retardation, and premature development of Alzheimer's disease, those being the most common phenotype in DS. In order to understand the molecular mechanism underlying the cause of phenotypic abnormalities in the DS brain, we have utilized an in vitro model of TT2F mouse embryonic stem cells containing a single human chromosome 21 (hChr21) to study neuron development and neuronal differentiation by microarray containing 15K developmentally expressed cDNAs. Defective neuronal differentiation in the presence of extra hChr21 manifested primarily the post-transcriptional and translational modification, such as Mrpl10, SNAPC3, Srprb, SF3a60 in the early neuronal stem cell stage, and Mrps18a, Eef1g, and Ubce8 in the late differentiated stage. Hierarchical clustering patterned specific expression of hChr21 gene dosage effects on neuron outgrowth, migration, and differentiation, such as Syngr2, Dncic2, Eif3sf, and Peg3.

  5. Structural and temporal requirements of Wnt/PCP protein Vangl2 function for convergence and extension movements and facial branchiomotor neuron migration in zebrafish.

    PubMed

    Pan, Xiufang; Sittaramane, Vinoth; Gurung, Suman; Chandrasekhar, Anand

    2014-02-01

    Van gogh-like 2 (Vangl2), a core component of the Wnt/planar cell polarity (PCP) signaling pathway, is a four-pass transmembrane protein with N-terminal and C-terminal domains located in the cytosol, and is structurally conserved from flies to mammals. In vertebrates, Vangl2 plays an essential role in convergence and extension (CE) movements during gastrulation and in facial branchiomotor (FBM) neuron migration in the hindbrain. However, the roles of specific Vangl2 domains, of membrane association, and of specific extracellular and intracellular motifs have not been examined, especially in the context of FBM neuron migration. Through heat shock-inducible expression of various Vangl2 transgenes, we found that membrane associated functions of the N-terminal and C-terminal domains of Vangl2 are involved in regulating FBM neuron migration. Importantly, through temperature shift experiments, we found that the critical period for Vangl2 function coincides with the initial stages of FBM neuron migration out of rhombomere 4. Intriguingly, we have also uncovered a putative nuclear localization motif in the C-terminal domain that may play a role in regulating CE movements. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Axial level-specific regulation of neuronal development: lessons from PITX2.

    PubMed

    Waite, Mindy R; Martin, Donna M

    2015-02-01

    Transcriptional regulation of gene expression is vital for proper control of proliferation, migration, differentiation, and survival of developing neurons. Pitx2 encodes a homeodomain transcription factor that is highly expressed in the developing and adult mammalian brain. In humans, mutations in PITX2 result in Rieger syndrome, characterized by defects in the development of the eyes, umbilicus, and teeth and variable abnormalities in the brain, including hydrocephalus and cerebellar hypoplasia. Alternative splicing of Pitx2 in the mouse results in three isoforms, Pitx2a, Pitx2b, and Pitx2c, each of which is expressed symmetrically along the left-right axis of the brain throughout development. Here, we review recent evidence for axial and brain region-specific requirements for Pitx2 during neuronal migration and differentiation, highlighting known isoform contributions. © 2014 Wiley Periodicals, Inc.

  7. Myosin II Motors and F-Actin Dynamics Drive the Coordinated Movement of the Centrosome and Soma during CNS Glial-Guided Neuronal Migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solecki, Dr. David; Trivedi, Dr. Niraj; Govek, Eve-Ellen

    2009-01-01

    Lamination of cortical regions of the vertebrate brain depends on glial-guided neuronal migration. The conserved polarity protein Par6{alpha} localizes to the centrosome and coordinates forward movement of the centrosome and soma in migrating neurons. The cytoskeletal components that produce this unique form of cell polarity and their relationship to polarity signaling cascades are unknown. We show that F-actin and Myosin II motors are enriched in the neuronal leading process and that Myosin II activity is necessary for leading process actin dynamics. Inhibition of Myosin II decreased the speed of centrosome and somal movement, whereas Myosin II activation increased coordinated movement.more » Ectopic expression or silencing of Par6{alpha} inhibited Myosin II motors by decreasing Myosin light-chain phosphorylation. These findings suggest leading-process Myosin II may function to 'pull' the centrosome and soma forward during glial-guided migration by a mechanism involving the conserved polarity protein Par6{alpha}.« less

  8. Neuron-specific knockdown of Drosophila PDHB induces reduction of lifespan, deficient locomotive ability, abnormal morphology of motor neuron terminals and photoreceptor axon targeting.

    PubMed

    Dung, Vuu My; Suong, Dang Ngoc Anh; Okamaoto, Yuji; Hiramatsu, Yu; Thao, Dang Thi Phuong; Yoshida, Hideki; Takashima, Hiroshi; Yamaguchi, Masamitsu

    2018-05-15

    Pyruvate dehydrogenase complex deficiency (PDCD) is a common primary cause of defects in mitochondrial function and also can lead to peripheral neuropathy. Pyruvate dehydrogenase E1 component subunit beta (PDHB) is a subunit of pyruvate dehydrogenase E1, which is a well-known component of PDC. In Drosophila melanogaster, the CG11876 (dPDHB) gene is a homolog of human PDHB. In this study, we established a Drosophila model with neuron-specific knockdown of dPDHB to investigate its role in neuropathy pathogenesis. Knockdown of dPDHB in pan-neurons induced locomotor defects in both larval and adult stages, which were consistent with abnormal morphology of the motor neuron terminals at neuromuscular junctions and mitochondrial fragmentation in brains. Moreover, neuron-specific knockdown of dPDHB also shortened the lifespan of adult flies. In addition, flies with knockdown of dPDHB manifested a rough eye phenotype and aberrant photoreceptor axon targeting. These results with the Drosophila model suggest the involvement of PDHB in peripheral neuropathy. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Targeted Deletion of Sox10 by Wnt1-cre Defects Neuronal Migration and Projection in the Mouse Inner Ear

    PubMed Central

    Mao, YanYan; Reiprich, Simone; Wegner, Michael; Fritzsch, Bernd

    2014-01-01

    Sensory nerves of the brainstem are mostly composed of placode-derived neurons, neural crest-derived neurons and neural crest-derived Schwann cells. This mixed origin of cells has made it difficult to dissect interdependence for fiber guidance. Inner ear-derived neurons are known to connect to the brain after delayed loss of Schwann cells in ErbB2 mutants. However, the ErbB2 mutant related alterations in the ear and the brain compound interpretation of the data. We present here a new model to evaluate exclusively the effect of Schwann cell loss on inner ear innervation. Conditional deletion of the neural crest specific transcription factor, Sox10, using the rhombic lip/neural crest specific Wnt1-cre driver spares Sox10 expression in the ear. We confirm that neural crest-derived cells provide a stop signal for migrating spiral ganglion neurons. In the absence of Schwann cells, spiral ganglion neurons migrate into the center of the cochlea and even out of the ear toward the brain. Spiral ganglion neuron afferent processes reach the organ of Corti, but many afferent fibers bypass the organ of Corti to enter the lateral wall of the cochlea. In contrast to this peripheral disorganization, the central projection to cochlear nuclei is normal. Compared to ErbB2 mutants, conditional Sox10 mutants have limited cell death in spiral ganglion neurons, indicating that the absence of Schwann cells alone contributes little to the embryonic survival of neurons. These data suggest that neural crest-derived cells are dispensable for all central and some peripheral targeting of inner ear neurons. However, Schwann cells provide a stop signal for migratory spiral ganglion neurons and facilitate proper targeting of the organ of Corti by spiral ganglion afferents. PMID:24718611

  10. Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Ning; Freitas, Beatriz C.; Qian, Hao; Lux, Jacques; Acab, Allan; Trujillo, Cleber A.; Herai, Roberto H.; Nguyen Huu, Viet Anh; Wen, Jessica H.; Joshi-Barr, Shivanjali; Karpiak, Jerome V.; Engler, Adam J.; Fu, Xiang-Dong; Muotri, Alysson R.; Almutairi, Adah

    2016-03-01

    Probing a wide range of cellular phenotypes in neurodevelopmental disorders using patient-derived neural progenitor cells (NPCs) can be facilitated by 3D assays, as 2D systems cannot entirely recapitulate the arrangement of cells in the brain. Here, we developed a previously unidentified 3D migration and differentiation assay in layered hydrogels to examine how these processes are affected in neurodevelopmental disorders, such as Rett syndrome. Our soft 3D system mimics the brain environment and accelerates maturation of neurons from human induced pluripotent stem cell (iPSC)-derived NPCs, yielding electrophysiologically active neurons within just 3 wk. Using this platform, we revealed a genotype-specific effect of methyl-CpG-binding protein-2 (MeCP2) dysfunction on iPSC-derived neuronal migration and maturation (reduced neurite outgrowth and fewer synapses) in 3D layered hydrogels. Thus, this 3D system expands the range of neural phenotypes that can be studied in vitro to include those influenced by physical and mechanical stimuli or requiring specific arrangements of multiple cell types.

  11. Neuronal migration is regulated by endogenous RNAi and chromatin-binding factor ZFP-1/AF10 in Caenorhabditis elegans.

    PubMed

    Kennedy, Lisa M; Grishok, Alla

    2014-05-01

    Endogenous short RNAs and the conserved plant homeodomain (PHD) zinc-finger protein ZFP-1/AF10 regulate overlapping sets of genes in Caenorhabditis elegans, which suggests that they control common biological pathways. We have shown recently that the RNAi factor RDE-4 and ZFP-1 negatively modulate transcription of the insulin/PI3 signaling-dependent kinase PDK-1 to promote C. elegans fitness. Moreover, we have demonstrated that the insulin/IGF-1-PI3K-signaling pathway regulates the activity of the DAF-16/FOXO transcription factor in the hypodermis to nonautonomously promote the anterior migrations of the hermaphrodite-specific neurons (HSNs) during embryogenesis of C. elegans. In this study, we implicate the PHD-containing isoform of ZFP-1 and endogenous RNAi in the regulation of HSN migration. ZFP-1 affects HSN migration in part through its negative effect on pdk-1 transcription and modulation of downstream DAF-16 activity. We also identify a novel role for ZFP-1 and RNAi pathway components, including RDE-4, in the regulation of HSN migration in parallel with DAF-16. Therefore, the coordinated activities of DAF-16, ZFP-1, and endogenous RNAi contribute to gene regulation during development to ensure proper neuronal positioning.

  12. Neuronal Migration Is Regulated by Endogenous RNAi and Chromatin-Binding Factor ZFP-1/AF10 in Caenorhabditis elegans

    PubMed Central

    Kennedy, Lisa M.; Grishok, Alla

    2014-01-01

    Endogenous short RNAs and the conserved plant homeodomain (PHD) zinc-finger protein ZFP-1/AF10 regulate overlapping sets of genes in Caenorhabditis elegans, which suggests that they control common biological pathways. We have shown recently that the RNAi factor RDE-4 and ZFP-1 negatively modulate transcription of the insulin/PI3 signaling-dependent kinase PDK-1 to promote C. elegans fitness. Moreover, we have demonstrated that the insulin/IGF-1-PI3K-signaling pathway regulates the activity of the DAF-16/FOXO transcription factor in the hypodermis to nonautonomously promote the anterior migrations of the hermaphrodite-specific neurons (HSNs) during embryogenesis of C. elegans. In this study, we implicate the PHD-containing isoform of ZFP-1 and endogenous RNAi in the regulation of HSN migration. ZFP-1 affects HSN migration in part through its negative effect on pdk-1 transcription and modulation of downstream DAF-16 activity. We also identify a novel role for ZFP-1 and RNAi pathway components, including RDE-4, in the regulation of HSN migration in parallel with DAF-16. Therefore, the coordinated activities of DAF-16, ZFP-1, and endogenous RNAi contribute to gene regulation during development to ensure proper neuronal positioning. PMID:24558261

  13. Nonautonomous Roles of MAB-5/Hox and the Secreted Basement Membrane Molecule SPON-1/F-Spondin in Caenorhabditis elegans Neuronal Migration.

    PubMed

    Josephson, Matthew P; Miltner, Adam M; Lundquist, Erik A

    2016-08-01

    Nervous system development and circuit formation requires neurons to migrate from their birthplaces to specific destinations.Migrating neurons detect extracellular cues that provide guidance information. In Caenorhabditis elegans, the Q right (QR) and Q left (QL) neuroblast descendants migrate long distances in opposite directions. The Hox gene lin-39 cell autonomously promotes anterior QR descendant migration, and mab-5/Hox cell autonomously promotes posterior QL descendant migration. Here we describe a nonautonomous role of mab-5 in regulating both QR and QL descendant migrations, a role masked by redundancy with lin-39 A third Hox gene, egl-5/Abdominal-B, also likely nonautonomously regulates Q descendant migrations. In the lin-39 mab-5 egl-5 triple mutant, little if any QR and QL descendant migration occurs. In addition to well-described roles of lin-39 and mab-5 in the Q descendants, our results suggest that lin-39, mab-5, and egl-5 might also pattern the posterior region of the animal for Q descendant migration. Previous studies showed that the spon-1 gene might be a target of MAB-5 in Q descendant migration. spon-1 encodes a secreted basement membrane molecule similar to vertebrate F-spondin. Here we show that spon-1 acts nonautonomously to control Q descendant migration, and might function as a permissive rather than instructive signal for cell migration. We find that increased levels of MAB-5 in body wall muscle (BWM) can drive the spon-1 promoter adjacent to the Q cells, and loss of spon-1 suppresses mab-5 gain of function. Thus, MAB-5 might nonautonomously control Q descendant migrations by patterning the posterior region of the animal to which Q cells respond. spon-1 expression from BWMs might be part of the posterior patterning necessary for directed Q descendant migration. Copyright © 2016 by the Genetics Society of America.

  14. Nonautonomous Roles of MAB-5/Hox and the Secreted Basement Membrane Molecule SPON-1/F-Spondin in Caenorhabditis elegans Neuronal Migration

    PubMed Central

    Josephson, Matthew P.; Miltner, Adam M.; Lundquist, Erik A.

    2016-01-01

    Nervous system development and circuit formation requires neurons to migrate from their birthplaces to specific destinations.Migrating neurons detect extracellular cues that provide guidance information. In Caenorhabditis elegans, the Q right (QR) and Q left (QL) neuroblast descendants migrate long distances in opposite directions. The Hox gene lin-39 cell autonomously promotes anterior QR descendant migration, and mab-5/Hox cell autonomously promotes posterior QL descendant migration. Here we describe a nonautonomous role of mab-5 in regulating both QR and QL descendant migrations, a role masked by redundancy with lin-39. A third Hox gene, egl-5/Abdominal-B, also likely nonautonomously regulates Q descendant migrations. In the lin-39mab-5egl-5 triple mutant, little if any QR and QL descendant migration occurs. In addition to well-described roles of lin-39 and mab-5 in the Q descendants, our results suggest that lin-39, mab-5, and egl-5 might also pattern the posterior region of the animal for Q descendant migration. Previous studies showed that the spon-1 gene might be a target of MAB-5 in Q descendant migration. spon-1 encodes a secreted basement membrane molecule similar to vertebrate F-spondin. Here we show that spon-1 acts nonautonomously to control Q descendant migration, and might function as a permissive rather than instructive signal for cell migration. We find that increased levels of MAB-5 in body wall muscle (BWM) can drive the spon-1 promoter adjacent to the Q cells, and loss of spon-1 suppresses mab-5 gain of function. Thus, MAB-5 might nonautonomously control Q descendant migrations by patterning the posterior region of the animal to which Q cells respond. spon-1 expression from BWMs might be part of the posterior patterning necessary for directed Q descendant migration. PMID:27225683

  15. Activation of glial FGFRs is essential in glial migration, proliferation, and survival and in glia-neuron signaling during olfactory system development.

    PubMed

    Gibson, Nicholas J; Tolbert, Leslie P; Oland, Lynne A

    2012-01-01

    Development of the adult olfactory system of the moth Manduca sexta depends on reciprocal interactions between olfactory receptor neuron (ORN) axons growing in from the periphery and centrally-derived glial cells. Early-arriving ORN axons induce a subset of glial cells to proliferate and migrate to form an axon-sorting zone, in which later-arriving ORN axons will change their axonal neighbors and change their direction of outgrowth in order to travel with like axons to their target areas in the olfactory (antennal) lobe. These newly fasciculated axon bundles will terminate in protoglomeruli, the formation of which induces other glial cells to migrate to surround them. Glial cells do not migrate unless ORN axons are present, axons fail to fasciculate and target correctly without sufficient glial cells, and protoglomeruli are not maintained without a glial surround. We have shown previously that Epidermal Growth Factor receptors and the IgCAMs Neuroglian and Fasciclin II play a role in the ORN responses to glial cells. In the present work, we present evidence for the importance of glial Fibroblast Growth Factor receptors in glial migration, proliferation, and survival in this developing pathway. We also report changes in growth patterns of ORN axons and of the dendrites of olfactory (antennal lobe) neurons following blockade of glial FGFR activation that suggest that glial FGFR activation is important in reciprocal communication between neurons and glial cells.

  16. Interactions of UNC-34 Enabled With Rac GTPases and the NIK Kinase MIG-15 in Caenorhabditis elegans Axon Pathfinding and Neuronal Migration

    PubMed Central

    Shakir, M. Afaq; Gill, Jason S.; Lundquist, Erik A.

    2006-01-01

    Many genes that affect axon pathfinding and cell migration have been identified. Mechanisms by which these genes and the molecules they encode interact with one another in pathways and networks to control developmental events are unclear. Rac GTPases, the cytoskeletal signaling molecule Enabled, and NIK kinase have all been implicated in regulating axon pathfinding and cell migration. Here we present evidence that, in Caenorhabditis elegans, three Rac GTPases, CED-10, RAC-2, and MIG-2, define three redundant pathways that each control axon pathfinding, and that the NIK kinase MIG-15 acts in each Rac pathway. Furthermore, we show that the Enabled molecule UNC-34 defines a fourth partially redundant pathway that acts in parallel to Rac/MIG-15 signaling in axon pathfinding. Enabled and the three Racs also act redundantly to mediate AQR and PQR neuronal cell migration. The Racs and UNC-34 Ena might all control the formation of actin-based protrusive structures (lamellipodia and filopodia) that mediate growth cone outgrowth and cell migration. MIG-15 does not act with the three Racs in execution of cell migration. Rather, MIG-15 affects direction of PQR neuronal migration, similar to UNC-40 and DPY-19, which control initial Q cell polarity, and Wnt signaling, which acts later to control Q cell-directed migration. MIG-2 Rac, which acts with CED-10 Rac, RAC-2 Rac, and UNC-34 Ena in axon pathfinding and cell migration, also acts with MIG-15 in PQR directional migration. PMID:16204220

  17. Upregulation of CSPG3 accompanies neuronal progenitor proliferation and migration in EAE.

    PubMed

    Sajad, Mir; Zargan, Jamil; Chawla, Raman; Umar, Sadiq; Khan, Haider A

    2011-03-01

    The molecular identities of signals that regulate the CNS lesion remodeling remain unclear. Herein, we report for the first time that extracellular matrix chondroitin sulphate proteoglycan, CSPG3 (neurocan) is upregulated after primary inflammatory injury. EAE was induced using myelin oligodendrocyte glycoprotein (MOG) (35-55) which was characterized by massive polymorphonuclear cell infiltration and loss of myelin basic protein expression along with steep decrease of CNPase. Periventricular white matter (PVWM) and cortex presented with astrogliosis evidenced by increased Glial fibrillary acidic protein (GFAP) immunoreactivity 20 days post immunization (p.i). Neuronal progenitor cell (NPC) proliferation increased after first acute episode in the subventricular zone (SVZ), corpus callosum, and cortex, indicating migration of cells to structures other than rostral migration stream and olfactory bulb, which is indicative of cell recruitment for repair process and was confirmed by presence of thin myelin sheaths in the shadow plaques. Earlier CSPG3 has been demonstrated to impede regeneration. We observed neuroinflammation-induced up-regulation of the CSPG3 expression in two most affected regions viz. PVWM and cortex after proliferation and migration of NPCs. Our results show possible role of reactive astrogliosis in lesion remodeling and redefine the relation between inflammation and endogenous cellular repair which can aid in designing of newer therapeutic strategies.

  18. Activation of Glial FGFRs Is Essential in Glial Migration, Proliferation, and Survival and in Glia-Neuron Signaling during Olfactory System Development

    PubMed Central

    Gibson, Nicholas J.; Tolbert, Leslie P.; Oland, Lynne A.

    2012-01-01

    Development of the adult olfactory system of the moth Manduca sexta depends on reciprocal interactions between olfactory receptor neuron (ORN) axons growing in from the periphery and centrally-derived glial cells. Early-arriving ORN axons induce a subset of glial cells to proliferate and migrate to form an axon-sorting zone, in which later-arriving ORN axons will change their axonal neighbors and change their direction of outgrowth in order to travel with like axons to their target areas in the olfactory (antennal) lobe. These newly fasciculated axon bundles will terminate in protoglomeruli, the formation of which induces other glial cells to migrate to surround them. Glial cells do not migrate unless ORN axons are present, axons fail to fasciculate and target correctly without sufficient glial cells, and protoglomeruli are not maintained without a glial surround. We have shown previously that Epidermal Growth Factor receptors and the IgCAMs Neuroglian and Fasciclin II play a role in the ORN responses to glial cells. In the present work, we present evidence for the importance of glial Fibroblast Growth Factor receptors in glial migration, proliferation, and survival in this developing pathway. We also report changes in growth patterns of ORN axons and of the dendrites of olfactory (antennal lobe) neurons following blockade of glial FGFR activation that suggest that glial FGFR activation is important in reciprocal communication between neurons and glial cells. PMID:22493675

  19. Prenatal Ontogeny as a Susceptibility Period for Cortical GABA Neuron Disturbances in Schizophrenia

    PubMed Central

    Volk, David W.; Lewis, David A.

    2013-01-01

    Cognitive deficits in schizophrenia have been linked to disturbances in GABA neurons in the prefrontal cortex. Furthermore, cognitive deficits in schizophrenia appear well before the onset of psychosis and have been reported to be present during early childhood and even during the first year of life. Taken together, these data raise the following question: Does the disease process that produces abnormalities in prefrontal GABA neurons in schizophrenia begin prenatally and disrupt the ontogeny of cortical GABA neurons? Here, we address this question through a consideration of evidence that genetic and/or environmental insults that occur during gestation initiate a pathogenetic process that alters cortical GABA neuron ontogeny and produces the pattern of GABA neuron abnormalities, and consequently cognitive difficulties, seen in schizophrenia. First, we review available evidence from postmortem human brain tissue studies characterizing alterations in certain subpopulations of prefrontal GABA neuron that provide clues to a prenatal origin in schizophrenia. Second, we review recent discoveries of transcription factors, cytokine receptors, and other developmental regulators that govern the birth, migration, specification, maturation, and survival of different subpopulations of prefrontal GABA neurons. Third, we discuss recent studies demonstrating altered expression of these ontogenetic factors in the prefrontal cortex in schizophrenia. Fourth, we discuss the potential role of disturbances in the maternal-fetal environment such as maternal immune activation in the development of GABA neuron dysfunction. Finally, we propose critical questions that need to be answered in future research to further investigate the role of altered GABA neuron ontogeny in the pathogenesis of schizophrenia. PMID:23769891

  20. In vivo clonal overexpression of neuroligin 3 and neuroligin 2 in neurons of the rat cerebral cortex. Differential effects on GABAergic synapses and neuronal migration

    PubMed Central

    Fekete, Christopher D.; Chiou, Tzu-Ting; Miralles, Celia P.; Harris, Rachel S.; Fiondella, Christopher G.; LoTurco, Joseph J.; De Blas, Angel L.

    2015-01-01

    We have studied the effect of clonal overexpression of neuroligin 3 (NL3) or neuroligin 2 (NL2) in the adult rat cerebral cortex following in utero electroporation (IUEP) at embryonic stage E14. Overexpression of NL3 leads to a large increase in vGAT and GAD65 in the GABAergic contacts that the overexpressing neurons receive. Overexpression of NL2 produced a similar effect but to a lesser extent. In contrast, overexpression of NL3 or NL2 after IUEP, does not affect vGlut1 in the glutamatergic contacts that the NL3 or NL2 overexpressing neurons receive. The NL3 or NL2 overexpressing neurons do not show increased innervation by parvalbumin-containing GABAergic terminals or increased parvalbumin in the same terminals that show increased vGAT. These results indicate that the observed increase in vGAT and GAD65 is not due to increased GABAergic innervation but to increased expression of vGAT and GAD65 in the GABAergic contacts that NL3 or NL2 overexpressing neurons receive. The majority of bright vGAT puncta contacting the NL3 overexpressing neurons have no gephyrin juxtaposed to them indicating that many of these contacts are non-synaptic. This contrasts with the majority of the NL2 overexpressing neurons, which show plenty of synaptic gephyrin clusters juxtaposed to vGAT. Besides having an effect on GABAergic contacts, overexpression of NL3 interferes with the neuronal radial migration, in the cerebral cortex, of the neurons overexpressing NL3. PMID:25565602

  1. Fine-tuned SRF activity controls asymmetrical neuronal outgrowth: implications for cortical migration, neural tissue lamination and circuit assembly

    PubMed Central

    Scandaglia, Marilyn; Benito, Eva; Morenilla-Palao, Cruz; Fiorenza, Anna; del Blanco, Beatriz; Coca, Yaiza; Herrera, Eloísa; Barco, Angel

    2015-01-01

    The stimulus-regulated transcription factor Serum Response Factor (SRF) plays an important role in diverse neurodevelopmental processes related to structural plasticity and motile functions, although its precise mechanism of action has not yet been established. To further define the role of SRF in neural development and distinguish between cell-autonomous and non cell-autonomous effects, we bidirectionally manipulated SRF activity through gene transduction assays that allow the visualization of individual neurons and their comparison with neighboring control cells. In vitro assays showed that SRF promotes survival and filopodia formation and is required for normal asymmetric neurite outgrowth, indicating that its activation favors dendrite enlargement versus branching. In turn, in vivo experiments demonstrated that SRF-dependent regulation of neuronal morphology has important consequences in the developing cortex and retina, affecting neuronal migration, dendritic and axonal arborization and cell positioning in these laminated tissues. Overall, our results show that the controlled and timely activation of SRF is essential for the coordinated growth of neuronal processes, suggesting that this event regulates the switch between neuronal growth and branching during developmental processes. PMID:26638868

  2. GABAergic Neuron-Specific Loss of Ube3a Causes Angelman Syndrome-Like EEG Abnormalities and Enhances Seizure Susceptibility.

    PubMed

    Judson, Matthew C; Wallace, Michael L; Sidorov, Michael S; Burette, Alain C; Gu, Bin; van Woerden, Geeske M; King, Ian F; Han, Ji Eun; Zylka, Mark J; Elgersma, Ype; Weinberg, Richard J; Philpot, Benjamin D

    2016-04-06

    Loss of maternal UBE3A causes Angelman syndrome (AS), a neurodevelopmental disorder associated with severe epilepsy. We previously implicated GABAergic deficits onto layer (L) 2/3 pyramidal neurons in the pathogenesis of neocortical hyperexcitability, and perhaps epilepsy, in AS model mice. Here we investigate consequences of selective Ube3a loss from either GABAergic or glutamatergic neurons, focusing on the development of hyperexcitability within L2/3 neocortex and in broader circuit and behavioral contexts. We find that GABAergic Ube3a loss causes AS-like increases in neocortical EEG delta power, enhances seizure susceptibility, and leads to presynaptic accumulation of clathrin-coated vesicles (CCVs)-all without decreasing GABAergic inhibition onto L2/3 pyramidal neurons. Conversely, glutamatergic Ube3a loss fails to yield EEG abnormalities, seizures, or associated CCV phenotypes, despite impairing tonic inhibition onto L2/3 pyramidal neurons. These results substantiate GABAergic Ube3a loss as the principal cause of circuit hyperexcitability in AS mice, lending insight into ictogenic mechanisms in AS. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. GABAergic neuron-specific loss of Ube3a causes Angelman syndrome-like EEG abnormalities and enhances seizure susceptibility

    PubMed Central

    Judson, Matthew C.; Wallace, Michael L.; Sidorov, Michael S.; Burette, Alain C.; Gu, Bin; van Woerden, Geeske M.; King, Ian F.; Han, Ji Eun; Zylka, Mark J.; Elgersma, Ype; Weinberg, Richard J.; Philpot, Benjamin D.

    2016-01-01

    SUMMARY Loss of maternal UBE3A causes Angelman syndrome (AS), a neurodevelopmental disorder associated with severe epilepsy. We previously implicated GABAergic deficits onto layer (L) 2/3 pyramidal neurons in the pathogenesis of neocortical hyperexcitability, and perhaps epilepsy, in AS model mice. Here we investigate consequences of selective Ube3a loss from either GABAergic or glutamatergic neurons, focusing on the development of hyperexcitability within L2/3 neocortex and in broader circuit and behavioral contexts. We find that GABAergic Ube3a loss causes AS-like increases in neocortical EEG delta power, enhances seizure susceptibility, and leads to presynaptic accumulation of clathrin-coated vesicles (CCVs) – all without decreasing GABAergic inhibition onto L2/3 pyramidal neurons. Conversely, glutamatergic Ube3a loss fails to yield EEG abnormalities, seizures, or associated CCV phenotypes, despite impairing tonic inhibition onto L2/3 pyramidal neurons. These results substantiate GABAergic Ube3a loss as the principal cause of circuit hyperexcitability in AS mice, lending insight into ictogenic mechanisms in AS. PMID:27021170

  4. Transmembrane protein MIG-13 links the Wnt signaling and Hox genes to the cell polarity in neuronal migration

    PubMed Central

    Wang, Xiangming; Zhou, Fanli; Lv, Sijing; Yi, Peishan; Zhu, Zhiwen; Yang, Yihong; Feng, Guoxin; Li, Wei; Ou, Guangshuo

    2013-01-01

    Directional cell migration is a fundamental process in neural development. In Caenorhabditis elegans, Q neuroblasts on the left (QL) and right (QR) sides of the animal generate cells that migrate in opposite directions along the anteroposterior body axis. The homeobox (Hox) gene lin-39 promotes the anterior migration of QR descendants (QR.x), whereas the canonical Wnt signaling pathway activates another Hox gene, mab-5, to ensure the QL descendants’ (QL.x) posterior migration. However, the regulatory targets of LIN-39 and MAB-5 remain elusive. Here, we showed that MIG-13, an evolutionarily conserved transmembrane protein, cell-autonomously regulates the asymmetric distribution of the actin cytoskeleton in the leading migratory edge. We identified mig-13 as a cellular target of LIN-39 and MAB-5. LIN-39 establishes QR.x anterior polarity by binding to the mig-13 promoter and promoting mig-13 expression, whereas MAB-5 inhibits QL.x anterior polarity by associating with the lin-39 promoter and downregulating lin-39 and mig-13 expression. Thus, MIG-13 links the Wnt signaling and Hox genes that guide migrations, to the actin cytoskeleton, which executes the motility response in neuronal migration. PMID:23784779

  5. Neuronal defects in the hindbrain of Hoxa1, Hoxb1 and Hoxb2 mutants reflect regulatory interactions among these Hox genes.

    PubMed

    Gavalas, Anthony; Ruhrberg, Christiana; Livet, Jean; Henderson, Christopher E; Krumlauf, Robb

    2003-12-01

    Hox genes are instrumental in assigning segmental identity in the developing hindbrain. Auto-, cross- and para-regulatory interactions help establish and maintain their expression. To understand to what extent such regulatory interactions shape neuronal patterning in the hindbrain, we analysed neurogenesis, neuronal differentiation and motoneuron migration in Hoxa1, Hoxb1 and Hoxb2 mutant mice. This comparison revealed that neurogenesis and differentiation of specific neuronal subpopulations in r4 was impaired in a similar fashion in all three mutants, but with different degrees of severity. In the Hoxb1 mutants, neurons derived from the presumptive r4 territory were re-specified towards an r2-like identity. Motoneurons derived from that territory resembled trigeminal motoneurons in both their migration patterns and the expression of molecular markers. Both migrating motoneurons and the resident territory underwent changes consistent with a switch from an r4 to r2 identity. Abnormally migrating motoneurons initially formed ectopic nuclei that were subsequently cleared. Their survival could be prolonged through the introduction of a block in the apoptotic pathway. The Hoxa1 mutant phenotype is consistent with a partial misspecification of the presumptive r4 territory that results from partial Hoxb1 activation. The Hoxb2 mutant phenotype is a hypomorph of the Hoxb1 mutant phenotype, consistent with the overlapping roles of these genes in facial motoneuron specification. Therefore, we have delineated the functional requirements in hindbrain neuronal patterning that follow the establishment of the genetic regulatory hierarchy between Hoxa1, Hoxb1 and Hoxb2.

  6. Abnormal tau phosphorylation in the thorny excrescences of CA3 hippocampal neurons in patients with Alzheimer's disease.

    PubMed

    Blazquez-Llorca, Lidia; Garcia-Marin, Virginia; Merino-Serrais, Paula; Ávila, Jesús; DeFelipe, Javier

    2011-01-01

    A key symptom in the early stages of Alzheimer's disease (AD) is the loss of declarative memory. The anatomical substrate that supports this kind of memory involves the neural circuits of the medial temporal lobe, and in particular, of the hippocampal formation and adjacent cortex. A main feature of AD is the abnormal phosphorylation of the tau protein and the presence of tangles. The sequence of cellular changes related to tau phosphorylation and tangle formation has been studied with an antibody that binds to diffuse phosphotau (AT8). Moreover, another tau antibody (PHF-1) has been used to follow the pathway of neurofibrillary (tau aggregation) degeneration in AD. We have used a variety of quantitative immunocytochemical techniques and confocal microscopy to visualize and characterize neurons labeled with AT8 and PHF-1 antibodies. We present here the rather unexpected discovery that in AD, there is conspicuous abnormal phosphorylation of the tau protein in a selective subset of dendritic spines. We identified these spines as the typical thorny excrescences of hippocampal CA3 neurons in a pre-tangle state. Since thorny excrescences represent a major synaptic target of granule cell axons (mossy fibers), such aberrant phosphorylation may play an essential role in the memory impairment typical of AD patients.

  7. Life and Death of a Neuron

    MedlinePlus

    ... free mailed brochure Table of Contents Introduction The Architecture of the Neuron Birth Migration Differentiation Death Hope ... generated neurons in learning and memory. Neuron The Architecture of the Neuron The central nervous system (which ...

  8. Abnormal electroretinogram associated with developmental brain anomalies.

    PubMed Central

    Cibis, G W; Fitzgerald, K M

    1995-01-01

    PURPOSE: We have encountered abnormal ERGs associated with optic nerve hypoplasia, macular, optic nerve and chorioretinal colobomata and developmental brain anomalies. Brain anomalies include cortical dysgenesis, lissencephaly, porencephaly, cerebellar and corpus callosum hypoplasia. We describe six exemplar cases. METHODS: Scotopic and photopic ERGs adherent to international standards were performed as well as photopic ERGs to long-duration stimuli. CT or MRI studies were also done. The ERGs were compared to age-matched normal control subjects. RESULTS: ERG changes include reduced amplitude b-waves to blue and red stimuli under scotopic testing conditions. Implicit times were often delayed. The photopic responses also showed reduced amplitude a- and b-waves with implicit time delays. The long-duration photopic ERG done in one case shows attenuation of both ON- and OFF-responses. CONCLUSIONS: Common underlying developmental genetic or environmental unifying casualties are speculated to be at fault in causing these cases of associated retinal and brain abnormalities. No single etiology is expected. Multiple potential causes acting early in embryogenesis effecting neuronal induction, migration and differentiation are theorized. These occur at a time when brain and retinal cells are sufficiently undifferentiated to be similarly effected. We call these cases examples of Brain Retina Neuroembryodysgenesis (BRNED). Homeobox and PAX genes with global neuronal developmental influences are gene candidates to unify the observed disruption of brain and retinal cell development. The ERG can provide a valuable clinical addition in understanding and ultimately classifying these disorders. Images FIGURE 1 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 PMID:8719676

  9. Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans

    PubMed Central

    Vidal-Gadea, Andrés; Ward, Kristi; Beron, Celia; Ghorashian, Navid; Gokce, Sertan; Russell, Joshua; Truong, Nicholas; Parikh, Adhishri; Gadea, Otilia; Ben-Yakar, Adela; Pierce-Shimomura, Jonathan

    2015-01-01

    Many organisms spanning from bacteria to mammals orient to the earth's magnetic field. For a few animals, central neurons responsive to earth-strength magnetic fields have been identified; however, magnetosensory neurons have yet to be identified in any animal. We show that the nematode Caenorhabditis elegans orients to the earth's magnetic field during vertical burrowing migrations. Well-fed worms migrated up, while starved worms migrated down. Populations isolated from around the world, migrated at angles to the magnetic vector that would optimize vertical translation in their native soil, with northern- and southern-hemisphere worms displaying opposite migratory preferences. Magnetic orientation and vertical migrations required the TAX-4 cyclic nucleotide-gated ion channel in the AFD sensory neuron pair. Calcium imaging showed that these neurons respond to magnetic fields even without synaptic input. C. elegans may have adapted magnetic orientation to simplify their vertical burrowing migration by reducing the orientation task from three dimensions to one. DOI: http://dx.doi.org/10.7554/eLife.07493.001 PMID:26083711

  10. Layer-specific gene expression in epileptogenic type II focal cortical dysplasia: normal-looking neurons reveal the presence of a hidden laminar organization

    PubMed Central

    2014-01-01

    Background Type II focal cortical dysplasias (FCDs) are malformations of cortical development characterised by the disorganisation of the normal neocortical structure and the presence of dysmorphic neurons (DNs) and balloon cells (BCs). The pathogenesis of FCDs has not yet been clearly established, although a number of histopathological patterns and molecular findings suggest that they may be due to abnormal neuronal and glial proliferation and migration processes. In order to gain further insights into cortical layering disruption and investigate the origin of DNs and BCs, we used in situ RNA hybridisation of human surgical specimens with a neuropathologically definite diagnosis of Type IIa/b FCD and a panel of layer-specific genes (LSGs) whose expression covers all cortical layers. We also used anti-phospho-S6 ribosomal protein antibody to investigate mTOR pathway hyperactivation. Results LSGs were expressed in both normal and abnormal cells (BCs and DNs) but their distribution was different. Normal-looking neurons, which were visibly reduced in the core of the lesion, were apparently located in the appropriate cortical laminae thus indicating a partial laminar organisation. On the contrary, DNs and BCs, labelled with anti-phospho-S6 ribosomal protein antibody, were spread throughout the cortex without any apparent rule and showed a highly variable LSG expression pattern. Moreover, LSGs did not reveal any differences between Type IIa and IIb FCD. Conclusion These findings suggest the existence of hidden cortical lamination involving normal-looking neurons, which retain their ability to migrate correctly in the cortex, unlike DNs which, in addition to their morphological abnormalities and mTOR hyperactivation, show an altered migratory pattern. Taken together these data suggest that an external or environmental hit affecting selected precursor cells during the very early stages of cortical development may disrupt normal cortical development. PMID:24735483

  11. Human Cytomegalovirus IE2 Protein Disturbs Brain Development by the Dysregulation of Neural Stem Cell Maintenance and the Polarization of Migrating Neurons.

    PubMed

    Han, Dasol; Byun, Sung-Hyun; Kim, Juwan; Kwon, Mookwang; Pleasure, Samuel J; Ahn, Jin-Hyun; Yoon, Keejung

    2017-09-01

    Despite the high incidence of severe defects in the central nervous system caused by human cytomegalovirus (HCMV) congenital infection, the mechanism of HCMV neuropathogenesis and the roles of individual viral genes have not yet been fully determined. In this study, we show that the immediate-early 2 (IE2) protein may play a key role in HCMV-caused neurodevelopmental disorders. IE2-transduced neural progenitor cells gave rise to neurospheres with a lower frequency and produced smaller neurospheres than control cells in vitro , indicating reduction of self-renewal and expansion of neural progenitors by IE2. At 2 days after in utero electroporation into the ventricle of the developing brain, a dramatically lower percentage of IE2-expressing cells was detected in the ventricular zone (VZ) and cortical plate (CP) compared to control cells, suggesting that IE2 concurrently dysregulates neural stem cell maintenance in the VZ and neuronal migration to the CP. In addition, most IE2 + cells in the lower intermediate zone either showed multipolar morphology with short neurites or possessed nonradially oriented processes, whereas control cells had long, radially oriented monopolar or bipolar neurites. IE2 + callosal axons also failed to cross the midline to form the corpus callosum. Furthermore, we provide molecular evidence that the cell cycle arrest and DNA binding activities of IE2 appear to be responsible for the increased neural stem cell exit from the VZ and cortical migrational defects, respectively. Collectively, our results demonstrate that IE2 disrupts the orderly process of brain development in a stepwise manner to further our understanding of neurodevelopmental HCMV pathogenesis. IMPORTANCE HCMV brain pathogenesis has been studied in limited experimental settings, such as in vitro HCMV infection of neural progenitor cells or in vivo murine CMV infection of the mouse brain. Here, we show that IE2 is a pivotal factor that contributes to HCMV-induced abnormalities in

  12. Catenin-dependent cadherin function drives divisional segregation of spinal motor neurons.

    PubMed

    Bello, Sanusi M; Millo, Hadas; Rajebhosale, Manisha; Price, Stephen R

    2012-01-11

    Motor neurons that control limb movements are organized as a neuronal nucleus in the developing ventral horn of the spinal cord called the lateral motor column. Neuronal migration segregates motor neurons into distinct lateral and medial divisions within the lateral motor column that project axons to dorsal or ventral limb targets, respectively. This migratory phase is followed by an aggregation phase whereby motor neurons within a division that project to the same muscle cluster together. These later phases of motor neuron organization depend on limb-regulated differential cadherin expression within motor neurons. Initially, all motor neurons display the same cadherin expression profile, which coincides with the migratory phase of motor neuron segregation. Here, we show that this early, pan-motor neuron cadherin function drives the divisional segregation of spinal motor neurons in the chicken embryo by controlling motor neuron migration. We manipulated pan-motor neuron cadherin function through dissociation of cadherin binding to their intracellular partners. We found that of the major intracellular transducers of cadherin signaling, γ-catenin and α-catenin predominate in the lateral motor column. In vivo manipulations that uncouple cadherin-catenin binding disrupt divisional segregation via deficits in motor neuron migration. Additionally, reduction of the expression of cadherin-7, a cadherin predominantly expressed in motor neurons only during their migration, also perturbs divisional segregation. Our results show that γ-catenin-dependent cadherin function is required for spinal motor neuron migration and divisional segregation and suggest a prolonged role for cadherin expression in all phases of motor neuron organization.

  13. A proteomics study of hyperhomocysteinemia injury of the hippocampal neurons using iTRAQ.

    PubMed

    Fang, Min; Wang, Jing; Yan, Han; Zhao, Yan-Xin; Liu, Xue-Yuan

    2014-11-01

    High levels of homocysteine, caused by abnormal methionine metabolism, can induce degeneration of mouse hippocampal neurons. iTRAQ™ technology has been widely used in the field of proteomics research and through employing this technology, the present study identified that hyperhomocysteinemia induced the downregulation of 52 proteins and upregulation of 44 proteins in the mouse hippocampus. Through gene ontology and pathway analysis, the upregulation of components of the cytoskeleton, actin, regulators of focal adhesion, calcium signaling pathways, tight junctions, ErbB and gonadotrophin‑releasing hormone signaling, leukocyte, transendothelial migration, propanoate and pyruvate metabolism, valine, leucine and isoleucine biosynthesis, synthesis and degradation of ketone bodies and benzoate degradation via CoA ligation pathway, was identified. It was additionally verified that tau protein was highly expressed in the hyperhomocysteinemic neurons. Further analysis revealed that tau network proteins played functional roles in homocysteine‑induced neuronal damage.

  14. Neuronal connections, cell formation and cell migration in the perinatal human hippocampal dentate gyrus.

    PubMed

    Seress, L

    1998-06-01

    Jean Piaget's "stage theory" suggests that cognitive development proceeds in discrete steps, among which the first is the sensorimotor period that occupies the first two years. In recent years it became clear that an intact and mature hippocampus is necessary for memory formation both in experimental animals and in human. In the present experiments the perinatal morphological development of the human hippocampus was studied to describe structural changes that may correlate with the developmental changes of intellectual growth. Our results suggest that cell formation in the human hippocampus terminates several weeks before birth, but immature cells migrate to their final positions through the first six postnatal months. The newborn hippocampus contains all cell types and cell layers that are characteristic for the adult hippocampus. However, changes of the light microscopic features of the postsynaptic target neurons of hippocampal granule cells indicate that connections between granule cells and their target neurons are immature at birth and develop through an extended period of time that may last for three years. Since this neuronal connection is the first link in the chain of the main hippocampal synaptic circuitry, it may be suggested that human hippocampus is functionally impaired at birth. This period of light microscopic morphological maturation correlates well with the time period of Piaget's first stage of cognitive development. It can also be suggested that the prolonged postnatal development of some neuronal circuitries in the human hippocampus may be responsible for the psychological phenomenon of "infantile amnesia", that is the lack of memory traces from the early postnatal period.

  15. COUP-TFI mitotically regulates production and migration of dentate granule cells and modulates hippocampal Cxcr4 expression.

    PubMed

    Parisot, Joséphine; Flore, Gemma; Bertacchi, Michele; Studer, Michèle

    2017-06-01

    Development of the dentate gyrus (DG), the primary gateway for hippocampal inputs, spans embryonic and postnatal stages, and involves complex morphogenetic events. We have previously identified the nuclear receptor COUP-TFI as a novel transcriptional regulator in the postnatal organization and function of the hippocampus. Here, we dissect its role in DG morphogenesis by inactivating it in either granule cell progenitors or granule neurons. Loss of COUP-TFI function in progenitors leads to decreased granule cell proliferative activity, precocious differentiation and increased apoptosis, resulting in a severe DG growth defect in adult mice. COUP-TFI-deficient cells express high levels of the chemokine receptor Cxcr4 and migrate abnormally, forming heterotopic clusters of differentiated granule cells along their paths. Conversely, high COUP-TFI expression levels downregulate Cxcr4 expression, whereas increased Cxcr4 expression in wild-type hippocampal cells affects cell migration. Finally, loss of COUP-TFI in postmitotic cells leads to only minor and transient abnormalities, and to normal Cxcr4 expression. Together, our results indicate that COUP-TFI is required predominantly in DG progenitors for modulating expression of the Cxcr4 receptor during granule cell neurogenesis and migration. © 2017. Published by The Company of Biologists Ltd.

  16. In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons.

    PubMed

    Thomas, Elizabeth A; Coppola, Giovanni; Tang, Bin; Kuhn, Alexandre; Kim, SoongHo; Geschwind, Daniel H; Brown, Timothy B; Luthi-Carter, Ruth; Ehrlich, Michelle E

    2011-03-15

    Huntington's disease (HD), caused by a CAG repeat expansion in the huntingtin (HTT) gene, is characterized by abnormal protein aggregates and motor and cognitive dysfunction. Htt protein is ubiquitously expressed, but the striatal medium spiny neuron (MSN) is most susceptible to dysfunction and death. Abnormal gene expression represents a core pathogenic feature of HD, but the relative roles of cell-autonomous and non-cell-autonomous effects on transcription remain unclear. To determine the extent of cell-autonomous dysregulation in the striatum in vivo, we examined genome-wide RNA expression in symptomatic D9-N171-98Q (a.k.a. DE5) transgenic mice in which the forebrain expression of the first 171 amino acids of human Htt with a 98Q repeat expansion is limited to MSNs. Microarray data generated from these mice were compared with those generated on the identical array platform from a pan-neuronal HD mouse model, R6/2, carrying two different CAG repeat lengths, and a relatively high degree of overlap of changes in gene expression was revealed. We further focused on known canonical pathways associated with excitotoxicity, oxidative stress, mitochondrial dysfunction, dopamine signaling and trophic support. While genes related to excitotoxicity, dopamine signaling and trophic support were altered in both DE5 and R6/2 mice, which may be either cell autonomous or non-cell autonomous, genes related to mitochondrial dysfunction, oxidative stress and the peroxisome proliferator-activated receptor are primarily affected in DE5 transgenic mice, indicating cell-autonomous mechanisms. Overall, HD-induced dysregulation of the striatal transcriptome can be largely attributed to intrinsic effects of mutant Htt, in the absence of expression in cortical neurons.

  17. Leading Process Branch Instability in Lis1+/− Nonradially Migrating Interneurons

    PubMed Central

    Gopal, Pallavi P.; Simonet, Jacqueline C.; Shapiro, William

    2010-01-01

    Mammalian forebrain development requires extensive migration, yet the mechanisms through which migrating neurons sense and respond to guidance cues are not well understood. Similar to the axon growth cone, the leading process and branches of neurons may guide migration, but the cytoskeletal events that regulate branching are unknown. We have previously shown that loss of microtubule-associated protein Lis1 reduces branching during migration compared with wild-type neurons. Using time-lapse imaging of Lis1+/− and Lis1+/+ cells migrating from medial ganglionic eminence explant cultures, we show that the branching defect is not due to a failure to initiate branches but a defect in the stabilization of new branches. The leading processes of Lis1+/− neurons have reduced expression of stabilized, acetylated microtubules compared with Lis1+/+ neurons. To determine whether Lis1 modulates branch stability through its role as the noncatalytic β regulatory subunit of platelet-activating factor (PAF) acetylhydrolase 1b, exogenous PAF was applied to wild-type cells. Excess PAF added to wild-type neurons phenocopies the branch instability observed in Lis1+/− neurons, and a PAF antagonist rescues leading process branching in Lis1+/− neurons. These data highlight a role for Lis1, acting through the PAF pathway, in leading process branching and microtubule stabilization. PMID:19861636

  18. Neurons other than motor neurons in motor neuron disease.

    PubMed

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  19. Abnormal Glycogen Storage by Retinal Neurons in Diabetes.

    PubMed

    Gardiner, Tom A; Canning, Paul; Tipping, Nuala; Archer, Desmond B; Stitt, Alan W

    2015-12-01

    It is widely held that neurons of the central nervous system do not store glycogen and that accumulation of the polysaccharide may cause neurodegeneration. Since primary neural injury occurs in diabetic retinopathy, we examined neuronal glycogen status in the retina of streptozotocin-induced diabetic and control rats. Glycogen was localized in eyes of streptozotocin-induced diabetic and control rats using light microscopic histochemistry and electron microscopy, and correlated with immunohistochemical staining for glycogen phosphorylase and phosphorylated glycogen synthase (pGS). Electron microscopy of 2-month-old diabetic rats (n = 6) showed massive accumulations of glycogen in the perinuclear cytoplasm of many amacrine neurons. In 4-month-old diabetic rats (n = 11), quantification of glycogen-engorged amacrine cells showed a mean of 26 cells/mm of central retina (SD ± 5), compared to 0.5 (SD ± 0.2) in controls (n = 8). Immunohistochemical staining for glycogen phosphorylase revealed strong expression in amacrine and ganglion cells of control retina, and increased staining in cell processes of the inner plexiform layer in diabetic retina. In control retina, the inactive pGS was consistently sequestered within the cell nuclei of all retinal neurons and the retinal pigment epithelium (RPE), but in diabetics nuclear pGS was reduced or lost in all classes of retinal cell except the ganglion cells and cone photoreceptors. The present study identifies a large population of retinal neurons that normally utilize glycogen metabolism but show pathologic storage of the polysaccharide during uncontrolled diabetes.

  20. Possible linkage between neuronal recruitment and flight distance in migratory birds

    PubMed Central

    Barkan, Shay; Roll, Uri; Yom-Tov, Yoram; Wassenaar, Leonard I.; Barnea, Anat

    2016-01-01

    New neuronal recruitment in an adult animal’s brain is presumed to contribute to brain plasticity and increase the animal’s ability to contend with new and changing environments. During long-distance migration, birds migrating greater distances are exposed to more diverse spatial information. Thus, we hypothesized that greater migration distance in birds would correlate with the recruitment of new neurons into the brain regions involved with migratory navigation. We tested this hypothesis on two Palearctic migrants - reed warblers (Acrocephalus scirpaceus) and turtle doves (Streptopelia turtur), caught in Israel while returning from Africa in spring and summer. Birds were injected with a neuronal birth marker and later inspected for new neurons in brain regions known to play a role in navigation - the hippocampus and nidopallium caudolateral. We calculated the migration distance of each individual by matching feather isotopic values (δ2H and δ13C) to winter base-maps of these isotopes in Africa. Our findings suggest a positive correlation between migration distance and new neuronal recruitment in two brain regions - the hippocampus in reed warblers and nidopallium caudolateral in turtle doves. This multidisciplinary approach provides new insights into the ability of the avian brain to adapt to different migration challenges. PMID:26905978

  1. Inhibition of the proliferation and acceleration of migration of vascular endothelial cells by increased cysteine-rich motor neuron 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakashima, Yukiko; Morimoto, Mayuka; Toda, Ken-ichi

    2015-07-03

    Cysteine-rich motor neuron 1 (CRIM1) is upregulated only in extracellular matrix gels by angiogenic factors such as vascular endothelial growth factor (VEGF). It then plays a critical role in the tube formation of endothelial cells. In the present study, we investigated the effects of increased CRIM1 on other endothelial functions such as proliferation and migration. Knock down of CRIM1 had no effect on VEGF-induced proliferation or migration of human umbilical vein endothelial cells (HUVECs), indicating that basal CRIM1 is not involved in the proliferation or migration of endothelial cells. Stable CRIM1-overexpressing endothelial F-2 cells, termed CR1 and CR2, were constructed,more » because it was difficult to prepare monolayer HUVECs that expressed high levels of CRIM1. Proliferation was reduced and migration was accelerated in both CR1 and CR2 cells, compared with normal F-2 cells. Furthermore, the transient overexpression of CRIM1 resulted in decreased proliferation and increased migration of bovine aortic endothelial cells. In contrast, neither proliferation nor migration of COS-7 cells were changed by the overexpression of CRIM1. These results demonstrate that increased CRIM1 reduces the proliferation and accelerates the migration of endothelial cells. These CRIM1 effects might contribute to tube formation of endothelial cells. CRIM1 induced by angiogenic factors may serve as a regulator in endothelial cells to switch from proliferating cells to morphological differentiation. - Highlights: • CRIM1 was upregulated only in tubular endothelial cells, but not in monolayers. • Increased CRIM1 reduced the proliferation of endothelial cells. • Increased CRIM1 accelerated the migration of endothelial cells. • Increased CRIM1 had no effect on the proliferation or migration of COS-7 cells.« less

  2. Small reduction of neurokinin-1 receptor-expressing neurons in the pre-Bötzinger complex area induces abnormal breathing periods in awake goats.

    PubMed

    Wenninger, J M; Pan, L G; Klum, L; Leekley, T; Bastastic, J; Hodges, M R; Feroah, T; Davis, S; Forster, H V

    2004-11-01

    In awake rats, >80% bilateral reduction of neurokinin-1 receptor (NK1R)-expressing neurons in the pre-Bötzinger complex (pre-BötzC) resulted in hypoventilation and an "ataxic" breathing pattern (Gray PA, Rekling JC, Bocchiaro CM, Feldman JL, Science 286: 1566-1568, 1999). Accordingly, the present study was designed to gain further insight into the role of the pre-BötzC area NK1R-expressing neurons in the control of breathing during physiological conditions. Microtubules were chronically implanted bilaterally into the medulla of adult goats. After recovery from surgery, the neurotoxin saporin conjugated to substance P, specific for NK1R-expressing neurons, was bilaterally injected (50 pM in 10 microl) into the pre-BötzC area during the awake state (n = 8). In unoperated goats, 34 +/- 0.01% of the pre-BötzC area neurons are immunoreactive for the NK1R, but, in goats after bilateral injection of SP-SAP into the pre-BötzC area, NK1R immunoreactivity was reduced to 22.5 +/- 2.5% (29% decrease, P < 0.01). Ten to fourteen days after the injection, the frequency of abnormal breathing periods was sixfold greater than before injection (107.8 +/- 21.8/h, P < 0.001). Fifty-six percent of these periods were breaths of varying duration and volume with an altered respiratory muscle activation pattern, whereas the remaining were rapid, complete breaths with coordinated inspiratory-expiratory cycles. The rate of occurrence and characteristics of abnormal breathing periods were not altered during a CO2 inhalation-induced hyperpnea. Pathological breathing patterns were eliminated during non-rapid eye movement sleep in seven of eight goats, but they frequently occurred on arousal from non-rapid eye movement sleep. We conclude that a moderate reduction in pre-BötzC NK1R-expressing neurons results in state-dependent transient changes in respiratory rhythm and/or eupneic respiratory muscle activation patterns.

  3. Ectopic Expression of Nolz-1 in Neural Progenitors Promotes Cell Cycle Exit/Premature Neuronal Differentiation Accompanying with Abnormal Apoptosis in the Developing Mouse Telencephalon

    PubMed Central

    Chang, Sunny Li-Yun; Chen, Shih-Yun; Huang, Huai-Huei; Ko, Hsin-An; Liu, Pei-Tsen; Liu, Ya-Chi; Chen, Ping-Hau; Liu, Fu-Chin

    2013-01-01

    Nolz-1, as a murine member of the NET zinc-finger protein family, is expressed in post-mitotic differentiating neurons of striatum during development. To explore the function of Nolz-1 in regulating the neurogenesis of forebrain, we studied the effects of ectopic expression of Nolz-1 in neural progenitors. We generated the Cre-loxP dependent conditional transgenic mice in which Nolz-1 was ectopically expressed in proliferative neural progenitors. Ectopic expression of Nolz-1 in neural progenitors by intercrossing the Nolz-1 conditional transgenic mice with the nestin-Cre mice resulted in hypoplasia of telencephalon in double transgenic mice. Decreased proliferation of neural progenitor cells were found in the telencephalon, as evidenced by the reduction of BrdU−, Ki67− and phospho-histone 3-positive cells in E11.5–12.5 germinal zone of telencephalon. Transgenic Nolz-1 also promoted cell cycle exit and as a consequence might facilitate premature differentiation of progenitors, because TuJ1-positive neurons were ectopically found in the ventricular zone and there was a general increase of TuJ1 immunoreactivity in the telencephalon. Moreover, clusters of strong TuJ1-expressing neurons were present in E12.5 germinal zone. Some of these strong TuJ1-positive clusters, however, contained apoptotic condensed DNA, suggesting that inappropriate premature differentiation may lead to abnormal apoptosis in some progenitor cells. Consistent with the transgenic mouse analysis in vivo, similar effects of Nozl-1 over-expression in induction of apoptosis, inhibition of cell proliferation and promotion of neuronal differentiation were also observed in three different N18, ST14A and N2A neural cell lines in vitro. Taken together, our study indicates that ectopic expression of Nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation and induces abnormal apoptosis in the developing telencephalon. PMID:24073229

  4. Ectopic expression of nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation accompanying with abnormal apoptosis in the developing mouse telencephalon.

    PubMed

    Chang, Sunny Li-Yun; Chen, Shih-Yun; Huang, Huai-Huei; Ko, Hsin-An; Liu, Pei-Tsen; Liu, Ya-Chi; Chen, Ping-Hau; Liu, Fu-Chin

    2013-01-01

    Nolz-1, as a murine member of the NET zinc-finger protein family, is expressed in post-mitotic differentiating neurons of striatum during development. To explore the function of Nolz-1 in regulating the neurogenesis of forebrain, we studied the effects of ectopic expression of Nolz-1 in neural progenitors. We generated the Cre-loxP dependent conditional transgenic mice in which Nolz-1 was ectopically expressed in proliferative neural progenitors. Ectopic expression of Nolz-1 in neural progenitors by intercrossing the Nolz-1 conditional transgenic mice with the nestin-Cre mice resulted in hypoplasia of telencephalon in double transgenic mice. Decreased proliferation of neural progenitor cells were found in the telencephalon, as evidenced by the reduction of BrdU-, Ki67- and phospho-histone 3-positive cells in E11.5-12.5 germinal zone of telencephalon. Transgenic Nolz-1 also promoted cell cycle exit and as a consequence might facilitate premature differentiation of progenitors, because TuJ1-positive neurons were ectopically found in the ventricular zone and there was a general increase of TuJ1 immunoreactivity in the telencephalon. Moreover, clusters of strong TuJ1-expressing neurons were present in E12.5 germinal zone. Some of these strong TuJ1-positive clusters, however, contained apoptotic condensed DNA, suggesting that inappropriate premature differentiation may lead to abnormal apoptosis in some progenitor cells. Consistent with the transgenic mouse analysis in vivo, similar effects of Nozl-1 over-expression in induction of apoptosis, inhibition of cell proliferation and promotion of neuronal differentiation were also observed in three different N18, ST14A and N2A neural cell lines in vitro. Taken together, our study indicates that ectopic expression of Nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation and induces abnormal apoptosis in the developing telencephalon.

  5. Enhanced conversion of induced neuronal cells (iN cells) from human fibroblasts: utility in uncovering cellular deficits in mental illness-associated chromosomal abnormalities

    PubMed Central

    Passeri, Eleonora; Wilson, Ashley M.; Primerano, Amedeo; Kondo, Mari A.; Sengupta, Srona; Srivastava, Rupali; Koga, Minori; Obie, Cassandra; Zandi, Peter P.; Goes, Fernando S.; Valle, David; Rapoport, Judith L.; Sawa, Akira; Kano, Shin-ichi; Ishizuka, Koko

    2016-01-01

    The novel technology of induced neuronal cells (iN cells) is promising for translational neuroscience, as it allows the conversion of human fibroblasts into cells with postmitotic neuronal traits. However, a major technical barrier is the low conversion rate. To overcome this problem, we optimized the conversion media. Using our improved formulation, we studied how major mental illness-associated chromosomal abnormalities may impact the characteristics of iN cells. We demonstrated that our new iN cell culture protocol enabled us to obtain more precise measurement of neuronal cellular phenotypes than previous iN cell methods. Thus, this iN cell culture provides a platform to efficiently obtain possible cellular phenotypes caused by genetic differences, which can be more thoroughly studied in research using other human cell models such as induced pluripotent stem cells. PMID:26260244

  6. Trajectory Analysis Unveils Reelin's Role in the Directed Migration of Granule Cells in the Dentate Gyrus.

    PubMed

    Wang, Shaobo; Brunne, Bianka; Zhao, Shanting; Chai, Xuejun; Li, Jiawei; Lau, Jeremie; Failla, Antonio Virgilio; Zobiak, Bernd; Sibbe, Mirjam; Westbrook, Gary L; Lutz, David; Frotscher, Michael

    2018-01-03

    Reelin controls neuronal migration and layer formation. Previous studies in reeler mice deficient in Reelin focused on the result of the developmental process in fixed tissue sections. It has remained unclear whether Reelin affects the migratory process, migration directionality, or migrating neurons guided by the radial glial scaffold. Moreover, Reelin has been regarded as an attractive signal because newly generated neurons migrate toward the Reelin-containing marginal zone. Conversely, Reelin might be a stop signal because migrating neurons in reeler , but not in wild-type mice, invade the marginal zone. Here, we monitored the migration of newly generated proopiomelanocortin-EGFP -expressing dentate granule cells in slice cultures from reeler , reeler -like mutants and wild-type mice of either sex using real-time microscopy. We discovered that not the actual migratory process and migratory speed, but migration directionality of the granule cells is controlled by Reelin. While wild-type granule cells migrated toward the marginal zone of the dentate gyrus, neurons in cultures from reeler and reeler -like mutants migrated randomly in all directions as revealed by vector analyses of migratory trajectories. Moreover, live imaging of granule cells in reeler slices cocultured to wild-type dentate gyrus showed that the reeler neurons changed their directions and migrated toward the Reelin-containing marginal zone of the wild-type culture, thus forming a compact granule cell layer. In contrast, directed migration was not observed when Reelin was ubiquitously present in the medium of reeler slices. These results indicate that topographically administered Reelin controls the formation of a granule cell layer. SIGNIFICANCE STATEMENT Neuronal migration and the various factors controlling its onset, speed, directionality, and arrest are poorly understood. Slice cultures offer a unique model to study the migration of individual neurons in an almost natural environment. In the

  7. Cell death in neural precursor cells and neurons before neurite formation prevents the emergence of abnormal neural structures in the Drosophila optic lobe.

    PubMed

    Hara, Yusuke; Sudo, Tatsuya; Togane, Yu; Akagawa, Hiromi; Tsujimura, Hidenobu

    2018-04-01

    Programmed cell death is a conserved strategy for neural development both in vertebrates and invertebrates and is recognized at various developmental stages in the brain from neurogenesis to adulthood. To understand the development of the central nervous system, it is essential to reveal not only molecular mechanisms but also the role of neural cell death (Pinto-Teixeira et al., 2016). To understand the role of cell death in neural development, we investigated the effect of inhibition of cell death on optic lobe development. Our data demonstrate that, in the optic lobe of Drosophila, cell death occurs in neural precursor cells and neurons before neurite formation and functions to prevent various developmental abnormalities. When neuronal cell death was inhibited by an effector caspase inhibitor, p35, multiple abnormal neuropil structures arose during optic lobe development-e.g., enlarged or fused neuropils, misrouted neurons and abnormal neurite lumps. Inhibition of cell death also induced morphogenetic defects in the lamina and medulla development-e.g., failures in the separation of the lamina and medulla cortices and the medulla rotation. These defects were reproduced in the mutant of an initiator caspase, dronc. If cell death was a mechanism for removing the abnormal neuropil structures, we would also expect to observe them in mutants defective for corpse clearance. However, they were not observed in these mutants. When dead cell-membranes were visualized with Apoliner, they were observed only in cortices and not in neuropils. These results suggest that the cell death occurs before mature neurite formation. Moreover, we found that inhibition of cell death induced ectopic neuroepithelial cells, neuroblasts and ganglion mother cells in late pupal stages, at sites where the outer and inner proliferation centers were located at earlier developmental stages. Caspase-3 activation was observed in the neuroepithelial cells and neuroblasts in the proliferation centers

  8. PAK4 kinase is essential for embryonic viability and for proper neuronal development.

    PubMed

    Qu, Jian; Li, Xiaofan; Novitch, Bennet G; Zheng, Ye; Kohn, Matthew; Xie, Jian-Ming; Kozinn, Spencer; Bronson, Roderick; Beg, Amer A; Minden, Audrey

    2003-10-01

    The serine/threonine kinase PAK4 is a target for the Rho GTPase Cdc42 and has been shown to regulate cell morphology and cytoskeletal organization in mammalian cells. To examine the physiological and developmental functions of PAK4, we have disrupted the PAK4 gene in mice. The absence of PAK4 led to lethality by embryonic day 11.5, a result most likely due to a defect in the fetal heart. Striking abnormalities were also evident in the nervous systems of PAK4-deficient embryos. These embryos had dramatic defects in neuronal development and axonal outgrowth. In particular, spinal cord motor neurons and interneurons failed to differentiate and migrate to their proper positions. This is probably related to the role for PAK4 in the regulation of cytoskeletal organization and cell and/or extracellular matrix adhesion. PAK4-null embryos also had defects in proper folding of the caudal portion of the neural tube, suggesting an important role for PAK4 in neural tube development.

  9. Glial cell migration in the eye disc.

    PubMed

    Silies, Marion; Yuva, Yeliz; Engelen, Daniel; Aho, Annukka; Stork, Tobias; Klämbt, Christian

    2007-11-28

    Any complex nervous system is made out of two major cell types, neurons and glial cells. A hallmark of glial cells is their pronounced ability to migrate. En route to their final destinations, glial cells are generally guided by neuronal signals. Here we show that in the developing visual system of Drosophila glial cell migration is largely controlled by glial-glial interactions and occurs independently of axonal contact. Differentiation into wrapping glia is initiated close to the morphogenetic furrow. Using single cell labeling experiments we identified six distinct glial cell types in the eye disc. The migratory glial population is separated from the wrapping glial cells by the so-called carpet cells, extraordinary large glial cells, each covering a surface area of approximately 10,000 epithelial cells. Subsequent cell ablation experiments demonstrate that the carpet glia regulates glial migration in the eye disc epithelium and suggest a new model underlying glial migration and differentiation in the developing visual system.

  10. Dynamic transition of neuronal firing induced by abnormal astrocytic glutamate oscillation

    NASA Astrophysics Data System (ADS)

    Li, Jiajia; Tang, Jun; Ma, Jun; Du, Mengmeng; Wang, Rong; Wu, Ying

    2016-08-01

    The gliotransmitter glutamate released from astrocytes can modulate neuronal firing by activating neuronal N-methyl-D-aspartic acid (NMDA) receptors. This enables astrocytic glutamate(AG) to be involved in neuronal physiological and pathological functions. Based on empirical results and classical neuron-glial “tripartite synapse” model, we propose a practical model to describe extracellular AG oscillation, in which the fluctuation of AG depends on the threshold of calcium concentration, and the effect of AG degradation is considered as well. We predict the seizure-like discharges under the dysfunction of AG degradation duration. Consistent with our prediction, the suppression of AG uptake by astrocytic transporters, which operates by modulating the AG degradation process, can account for the emergence of epilepsy.

  11. Neuronal migration disorders in microcephalic osteodysplastic primordial dwarfism type I/III

    PubMed Central

    Juric-Sekhar, Gordana; Kapur, Raj P.; Glass, Ian A.; Murray, Mitzi L.; Parnell, Shawn E.

    2011-01-01

    Microcephalic osteodysplastic primordial dwarfism (MOPD) is a rare microlissencephaly syndrome, with at least two distinct phenotypic and genetic types. MOPD type II is caused by pericentrin mutations, while types I and III appear to represent a distinct entity (MOPD I/III) with variably penetrant phenotypes and unknown genetic basis. The neuropathology of MOPD I/III is little understood, especially in comparison to other forms of lissencephaly. Here, we report postmortem brain findings in an 11-month-old female infant with MOPD I/III. The cerebral cortex was diffusely pachygyric, with a right parietal porencephalic lesion. Histologically, the cortex was abnormally thick and disorganized. Distinct malformations were observed in different cerebral lobes, as characterized using layer-specific neuronal markers. Frontal cortex was severely disorganized and coated with extensive leptomeningeal glioneuronal heterotopia. Temporal cortex had a relatively normal 6-layered pattern, despite cortical thickening. Occipital cortex was variably affected. The corpus callosum was extremely hypoplastic. Brainstem and cerebellar malformations were also present, as well as old necrotic foci. Findings in this case suggest that the cortical malformation in MOPD I/III is distinct from other forms of pachygyria–lissencephaly. PMID:20857301

  12. Neuronal migration disorders in microcephalic osteodysplastic primordial dwarfism type I/III.

    PubMed

    Juric-Sekhar, Gordana; Kapur, Raj P; Glass, Ian A; Murray, Mitzi L; Parnell, Shawn E; Hevner, Robert F

    2011-04-01

    Microcephalic osteodysplastic primordial dwarfism (MOPD) is a rare microlissencephaly syndrome, with at least two distinct phenotypic and genetic types. MOPD type II is caused by pericentrin mutations, while types I and III appear to represent a distinct entity (MOPD I/III) with variably penetrant phenotypes and unknown genetic basis. The neuropathology of MOPD I/III is little understood, especially in comparison to other forms of lissencephaly. Here, we report postmortem brain findings in an 11-month-old female infant with MOPD I/III. The cerebral cortex was diffusely pachygyric, with a right parietal porencephalic lesion. Histologically, the cortex was abnormally thick and disorganized. Distinct malformations were observed in different cerebral lobes, as characterized using layer-specific neuronal markers. Frontal cortex was severely disorganized and coated with extensive leptomeningeal glioneuronal heterotopia. Temporal cortex had a relatively normal 6-layered pattern, despite cortical thickening. Occipital cortex was variably affected. The corpus callosum was extremely hypoplastic. Brainstem and cerebellar malformations were also present, as well as old necrotic foci. Findings in this case suggest that the cortical malformation in MOPD I/III is distinct from other forms of pachygyria-lissencephaly.

  13. Deletion of Otx2 in GnRH neurons results in a mouse model of hypogonadotropic hypogonadism.

    PubMed

    Diaczok, Daniel; DiVall, Sara; Matsuo, Isao; Wondisford, Fredric E; Wolfe, Andrew M; Radovick, Sally

    2011-05-01

    GnRH is the central regulator of reproductive function responding to central nervous system cues to control gonadotropin synthesis and secretion. GnRH neurons originate in the olfactory placode and migrate to the forebrain, in which they are found in a scattered distribution. Congenital idiopathic hypogonadotropic hypogonadism (CIHH) has been associated with mutations or deletions in a number of genes that participate in the development of GnRH neurons and expression of GnRH. Despite the critical role of GnRH in mammalian reproduction, a comprehensive understanding of the developmental factors that are responsible for regulating the establishment of mature GnRH neurons and the expression of GnRH is lacking. orthodenticle homeobox 2 (OTX2), a homeodomain protein required for the formation of the forebrain, has been shown to be expressed in GnRH neurons, up-regulated during GnRH neuronal development, and responsible for increased GnRH promoter activity in GnRH neuronal cell lines. Interestingly, mutations in Otx2 have been associated with human hypogonadotropic hypogonadism, but the mechanism by which Otx2 mutations cause CIHH is unknown. Here we show that deletion of Otx2 in GnRH neurons results in a significant decrease in GnRH neurons in the hypothalamus, a delay in pubertal onset, abnormal estrous cyclicity, and infertility. Taken together, these data provide in vivo evidence that Otx2 is critical for GnRH expression and reproductive competence.

  14. Property of Regenerating Serotonin Fibers in the Hippocampus of Human Migration Disorders Model

    NASA Astrophysics Data System (ADS)

    Ueda, Shuichi; Ehara, Ayuka; Ohmomo, Hideki

    Individual mood and mental conditions exert a great influence on one's own kansei. Abnormality or dysfunction of the 5-HT neuron system in the developing and/or adult brain is closely associated with their conditions. Thus, the 5-HT neuron system may play an important role in the neuronal mechanisms underlying kansei. Interestingly, previous studies have shown that heterotopic clusters in the hippocampus (hippocampal heterotopia), deriving from neocortical neurons, after prenatally treated with methylazoxymethanol acetate in rat (MAM rat), exhibit abundant 5-HT innervation. After neonatal intracisternal 5, 7-dihydroxytryptamine (DHT) injection, these 5-HT fibers degenerate and disappear throughout the forebrain, and then regenerating 5-HT fibers densely innervate in the hippocampal heterotopia. The 5-HT fiber system in the hippocampal heterotopia of MAM rat provides useful experimental models for study the plasticity of human migration disorder. In the present study, to evaluate the properties of regenerating 5-HT fibers in the hippocampal heterotopia of MAM rats, we examined the origin of these projections by combined retrograde transport and immunohistochemical methods. Prenatal exposure to MAM resulted in the formation of hippocampal heterotopia in the dorsal hippocampus. Regenerating 5-HT fibers formed a dense innervation within the hippocampal heterotopia after neonatal DHT injection. These projections appeared to arise mainly from 5-HT neurons in the median raphe nucleus, with a small portion from 5-HT neurons in the dorsal raphe nucleus. These findings suggest a specific profile of regenerating 5-HT fibers, providing the new insights for serotonergic plasticity.

  15. Control of Abnormal Synchronization in Neurological Disorders

    PubMed Central

    Popovych, Oleksandr V.; Tass, Peter A.

    2014-01-01

    In the nervous system, synchronization processes play an important role, e.g., in the context of information processing and motor control. However, pathological, excessive synchronization may strongly impair brain function and is a hallmark of several neurological disorders. This focused review addresses the question of how an abnormal neuronal synchronization can specifically be counteracted by invasive and non-invasive brain stimulation as, for instance, by deep brain stimulation for the treatment of Parkinson’s disease, or by acoustic stimulation for the treatment of tinnitus. On the example of coordinated reset (CR) neuromodulation, we illustrate how insights into the dynamics of complex systems contribute to successful model-based approaches, which use methods from synergetics, non-linear dynamics, and statistical physics, for the development of novel therapies for normalization of brain function and synaptic connectivity. Based on the intrinsic multistability of the neuronal populations induced by spike timing-dependent plasticity (STDP), CR neuromodulation utilizes the mutual interdependence between synaptic connectivity and dynamics of the neuronal networks in order to restore more physiological patterns of connectivity via desynchronization of neuronal activity. The very goal is to shift the neuronal population by stimulation from an abnormally coupled and synchronized state to a desynchronized regime with normalized synaptic connectivity, which significantly outlasts the stimulation cessation, so that long-lasting therapeutic effects can be achieved. PMID:25566174

  16. Developmental Patterns of Doublecortin Expression and White Matter Neuron Density in the Postnatal Primate Prefrontal Cortex and Schizophrenia

    PubMed Central

    Fung, Samantha J.; Joshi, Dipesh; Allen, Katherine M.; Sivagnanasundaram, Sinthuja; Rothmond, Debora A.; Saunders, Richard; Noble, Pamela L.; Webster, Maree J.; Shannon Weickert, Cynthia

    2011-01-01

    Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC). Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX), a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque) and density of white matter neurons (humans) during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n = 37) and matched controls (n = 37) and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in schizophrenia. PMID

  17. Potential Adverse Effects of Prolonged Sevoflurane Exposure on Developing Monkey Brain: From Abnormal Lipid Metabolism to Neuronal Damage.

    PubMed

    Liu, Fang; Rainosek, Shuo W; Frisch-Daiello, Jessica L; Patterson, Tucker A; Paule, Merle G; Slikker, William; Wang, Cheng; Han, Xianlin

    2015-10-01

    Sevoflurane is a volatile anesthetic that has been widely used in general anesthesia, yet its safety in pediatric use is a public concern. This study sought to evaluate whether prolonged exposure of infant monkeys to a clinically relevant concentration of sevoflurane is associated with any adverse effects on the developing brain. Infant monkeys were exposed to 2.5% sevoflurane for 9 h, and frontal cortical tissues were harvested for DNA microarray, lipidomics, Luminex protein, and histological assays. DNA microarray analysis showed that sevoflurane exposure resulted in a broad identification of differentially expressed genes (DEGs) in the monkey brain. In general, these genes were associated with nervous system development, function, and neural cell viability. Notably, a number of DEGs were closely related to lipid metabolism. Lipidomic analysis demonstrated that critical lipid components, (eg, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol) were significantly downregulated by prolonged exposure of sevoflurane. Luminex protein analysis indicated abnormal levels of cytokines in sevoflurane-exposed brains. Consistently, Fluoro-Jade C staining revealed more degenerating neurons after sevoflurane exposure. These data demonstrate that a clinically relevant concentration of sevoflurane (2.5%) is capable of inducing and maintaining an effective surgical plane of anesthesia in the developing nonhuman primate and that a prolonged exposure of 9 h resulted in profound changes in gene expression, cytokine levels, lipid metabolism, and subsequently, neuronal damage. Generally, sevoflurane-induced neuronal damage was also associated with changes in lipid content, composition, or both; and specific lipid changes could provide insights into the molecular mechanism(s) underlying anesthetic-induced neurotoxicity and may be sensitive biomarkers for the early detection of anesthetic-induced neuronal damage. Published by Oxford University Press on behalf of the

  18. Cerebellar microfolia and other abnormalities of neuronal growth, migration, and lamination in the Pit1dw-J homozygote mutant mouse

    NASA Technical Reports Server (NTRS)

    Sekiguchi, M.; Abe, H.; Moriya, M.; Tanaka, O.; Nowakowski, R. S.

    1998-01-01

    The Snell dwarf mouse (Pit1dw-J homozygote) has a mutation in the Pit1 gene that prevents the normal formation of the anterior pituitary. In neonates and adults there is almost complete absence of growth hormone (GH), prolactin (PRL), thyroxin (T4), and thyroid-stimulating hormone (TSH). Since these hormones have been suggested to play a role in normal development of the central nervous system (CNS), we have investigated the effects of the Pit1dw-J mutation on the cerebellum and hippocampal formation. In the cerebellum, there were abnormalities of both foliation and lamination. The major foliation anomalies were 1) changes in the relative size of specific folia and also the proportional sizes of the anterior vs posterior cerebellum; and 2) the presence of between one and three microfolia per half cerebellum. The microfolia were all in the medial portion of the hemisphere in the caudal part of the cerebellum. Each microfolium was just rostral to a normal fissure and interposed between the fissure and a normal gyrus. Lamination abnormalities included an increase in the number of single ectopic granule cells in the molecular layer in both cerebellar vermis (86%) and hemisphere (40%) in comparison with the wild-type mouse. In the hippocampus of the Pit1dw-J homozygote mouse, the number of pyramidal cells was decreased, although the width of the pyramidal cell layer throughout areas CA1-CA3 appeared to be normal, but less densely populated than in the wild-type mouse. Moreover, the number of granule cells that form the granule cell layer was decreased from the wild-type mouse and some ectopic granule cells (occurring both as single cells and as small clusters) were observed in the innermost portion of the molecular layer. The abnormalities observed in the Pit1dw-J homozygote mouse seem to be caused by both direct and indirect effects of the deficiency of TSH (or T4), PRL, or GH rather than by a direct effect of the deletion of Pit1.

  19. Abnormal Neural Progenitor Cells Differentiated from Induced Pluripotent Stem Cells Partially Mimicked Development of TSC2 Neurological Abnormalities.

    PubMed

    Li, Yaqin; Cao, Jiqing; Chen, Menglong; Li, Jing; Sun, Yiming; Zhang, Yu; Zhu, Yuling; Wang, Liang; Zhang, Cheng

    2017-04-11

    Tuberous sclerosis complex (TSC) is a disease featuring devastating and therapeutically challenging neurological abnormalities. However, there is a lack of specific neural progenitor cell models for TSC. Here, the pathology of TSC was studied using primitive neural stem cells (pNSCs) from a patient presenting a c.1444-2A>C mutation in TSC2. We found that TSC2 pNSCs had higher proliferative activity and increased PAX6 expression compared with those of control pNSCs. Neurons differentiated from TSC2 pNSCs showed enlargement of the soma, perturbed neurite outgrowth, and abnormal connections among cells. TSC2 astrocytes had increased saturation density and higher proliferative activity. Moreover, the activity of the mTOR pathway was enhanced in pNSCs and induced in neurons and astrocytes. Thus, our results suggested that TSC2 heterozygosity caused neurological malformations in pNSCs, indicating that its heterozygosity might be sufficient for the development of neurological abnormalities in patients. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Neuronal network models of epileptogenesis

    PubMed Central

    Abdullahi, Aminu T.; Adamu, Lawan H.

    2017-01-01

    Epilepsy is a chronic neurological condition, following some trigger, transforming a normal brain to one that produces recurrent unprovoked seizures. In the search for the mechanisms that best explain the epileptogenic process, there is a growing body of evidence suggesting that the epilepsies are network level disorders. In this review, we briefly describe the concept of neuronal networks and highlight 2 methods used to analyse such networks. The first method, graph theory, is used to describe general characteristics of a network to facilitate comparison between normal and abnormal networks. The second, dynamic causal modelling, is useful in the analysis of the pathways of seizure spread. We concluded that the end results of the epileptogenic process are best understood as abnormalities of neuronal circuitry and not simply as molecular or cellular abnormalities. The network approach promises to generate new understanding and more targeted treatment of epilepsy. PMID:28416779

  1. REVERSE SIGNALING BY GPI-LINKED MANDUCA EPHRIN REQUIRES A SRC FAMILY KINASE TO RESTRICT NEURONAL MIGRATION IN VIVO

    PubMed Central

    Coate, Thomas M.; Swanson, Tracy L.; Copenhaver, Philip F.

    2011-01-01

    Reverse signaling via GPI-linked Ephrins may help control cell proliferation and outgrowth within the nervous system, but the mechanisms underlying this process remain poorly understood. In the embryonic enteric nervous system (ENS) of the moth Manduca sexta, migratory neurons forming the enteric plexus (EP cells) express a single Ephrin ligand (GPI-linked MsEphrin), while adjacent midline cells that are inhibitory to migration express the cognate receptor (MsEph). Knocking down MsEph receptor expression in cultured embryos with antisense morpholino oligonucleotides allowed the EP cells to cross the midline inappropriately, consistent with the model that reverse signaling via MsEphrin mediates a repulsive response in the ENS. Src family kinases have been implicated in reverse signaling by type-A Ephrins in other contexts, and MsEphrin colocalizes with activated forms of endogenous Src in the leading processes of the EP cells. Pharmacological inhibition of Src within the developing ENS induced aberrant midline crossovers, similar to the effect of blocking MsEphrin reverse signaling. Hyperstimulating MsEphrin reverse signaling with MsEph-Fc fusion proteins induced the rapid activation of endogenous Src specifically within the EP cells, as assayed by Western blots of single embryonic gut explants and by whole-mount immunostaining of cultured embryos. In longer cultures, treatment with MsEph-Fc caused a global inhibition of EP cell migration and outgrowth, an effect that was prevented by inhibiting Src activation. These results support the model that MsEphrin reverse signaling induces the Src-dependent retraction of EP cell processes away from the enteric midline, thereby helping to confine the neurons to their appropriate pathways. PMID:19295147

  2. Excessive Astrocyte-Derived Neurotrophin-3 Contributes to the Abnormal Neuronal Dendritic Development in a Mouse Model of Fragile X Syndrome

    PubMed Central

    Guo, Yan-yan; Liu, Shui-bing; Wu, Yu-mei; Li, Xiao-qiang; Zhao, Ming-gao

    2012-01-01

    Fragile X syndrome (FXS) is a form of inherited mental retardation in humans that results from expansion of a CGG repeat in the Fmr1 gene. Recent studies suggest a role of astrocytes in neuronal development. However, the mechanisms involved in the regulation process of astrocytes from FXS remain unclear. In this study, we found that astrocytes derived from a Fragile X model, the Fmr1 knockout (KO) mouse which lacks FMRP expression, inhibited the proper elaboration of dendritic processes of neurons in vitro. Furthermore, astrocytic conditioned medium (ACM) from KO astrocytes inhibited proper dendritic growth of both wild-type (WT) and KO neurons. Inducing expression of FMRP by transfection of FMRP vectors in KO astrocytes restored dendritic morphology and levels of synaptic proteins. Further experiments revealed elevated levels of the neurotrophin-3 (NT-3) in KO ACM and the prefrontal cortex of Fmr1 KO mice. However, the levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), and ciliary neurotrophic factor (CNTF) were normal. FMRP has multiple RNA–binding motifs and is involved in translational regulation. RNA–binding protein immunoprecipitation (RIP) showed the NT-3 mRNA interacted with FMRP in WT astrocytes. Addition of high concentrations of exogenous NT-3 to culture medium reduced the dendrites of neurons and synaptic protein levels, whereas these measures were ameliorated by neutralizing antibody to NT-3 or knockdown of NT-3 expression in KO astrocytes through short hairpin RNAs (shRNAs). Prefrontal cortex microinjection of WT astrocytes or NT-3 shRNA infected KO astrocytes rescued the deficit of trace fear memory in KO mice, concomitantly decreased the NT-3 levels in the prefrontal cortex. This study indicates that excessive NT-3 from astrocytes contributes to the abnormal neuronal dendritic development and that astrocytes could be a potential therapeutic target for FXS. PMID:23300470

  3. Nuclear Migration During Retinal Development

    PubMed Central

    Baye, Lisa M.; Link, Brian A.

    2009-01-01

    In this review we focus on the mechanisms, regulation, and cellular consequences of nuclear migration in the developing retina. In the nervous system, nuclear migration is prominent during both proliferative and post-mitotic phases of development. Interkinetic nuclear migration is the process where the nucleus oscillates from the apical to basal surfaces in proliferative neuroepithelia. Proliferative nuclear movement occurs in step with the cell cycle, with M-phase being confined to the apical surface and G1-, S-, and G2-phases occurring at more basal locations. Later, following cell cycle exit, some neuron precursors migrate by nuclear translocation. In this mode of cellular migration, nuclear movement is the driving force for motility. Following discussion of the key components and important regulators for each of these processes, we present an emerging model where interkinetic nuclear migration functions to distinguish cell fates among retinal neuroepithelia. PMID:17560964

  4. Homeodomain interacting protein kinase 2 regulates postnatal development of enteric dopaminergic neurons and glia via BMP signaling.

    PubMed

    Chalazonitis, Alcmène; Tang, Amy A; Shang, Yulei; Pham, Tuan D; Hsieh, Ivy; Setlik, Wanda; Gershon, Michael D; Huang, Eric J

    2011-09-28

    Trophic factor signaling is important for the migration, differentiation, and survival of enteric neurons during development. The mechanisms that regulate the maturation of enteric neurons in postnatal life, however, are poorly understood. Here, we show that transcriptional cofactor HIPK2 (homeodomain interacting protein kinase 2) is required for the maturation of enteric neurons and for regulating gliogenesis during postnatal development. Mice lacking HIPK2 display a spectrum of gastrointestinal (GI) phenotypes, including distention of colon and slowed GI transit time. Although loss of HIPK2 does not affect the enteric neurons in prenatal development, a progressive loss of enteric neurons occurs during postnatal life in Hipk2(-/-) mutant mice that preferentially affects the dopaminergic population of neurons in the caudal region of the intestine. The mechanism by which HIPK2 regulates postnatal enteric neuron development appears to involve the response of enteric neurons to bone morphogenetic proteins (BMPs). Specifically, compared to wild type mice, a larger proportion of enteric neurons in Hipk2(-/-) mutants have an abnormally high level of phosphorylated Smad1/5/8. Consistent with the ability of BMP signaling to promote gliogenesis, Hipk2(-/-) mutants show a significant increase in glia in the enteric nervous system. In addition, numbers of autophagosomes are increased in enteric neurons in Hipk2(-/-) mutants, and synaptic maturation is arrested. These results reveal a new role for HIPK2 as an important transcriptional cofactor that regulates the BMP signaling pathway in the maintenance of enteric neurons and glia, and further suggest that HIPK2 and its associated signaling mechanisms may be therapeutically altered to promote postnatal neuronal maturation.

  5. TorsinA dysfunction causes persistent neuronal nuclear pore defects.

    PubMed

    Pappas, Samuel S; Liang, Chun-Chi; Kim, Sumin; Rivera, CheyAnne O; Dauer, William T

    2018-02-01

    A critical challenge to deciphering the pathophysiology of neurodevelopmental disease is identifying which of the myriad abnormalities that emerge during CNS maturation persist to contribute to long-term brain dysfunction. Childhood-onset dystonia caused by a loss-of-function mutation in the AAA+ protein torsinA exemplifies this challenge. Neurons lacking torsinA develop transient nuclear envelope (NE) malformations during CNS maturation, but no NE defects are described in mature torsinA null neurons. We find that during postnatal CNS maturation torsinA null neurons develop mislocalized and dysfunctional nuclear pore complexes (NPC) that lack NUP358, normally added late in NPC biogenesis. SUN1, a torsinA-related molecule implicated in interphase NPC biogenesis, also exhibits localization abnormalities. Whereas SUN1 and associated nuclear membrane abnormalities resolve in juvenile mice, NPC defects persist into adulthood. These findings support a role for torsinA function in NPC biogenesis during neuronal maturation and implicate altered NPC function in dystonia pathophysiology. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Characteristics of colonic migrating motor complexes in neuronal NOS (nNOS) knockout mice.

    PubMed

    Spencer, Nick J

    2013-01-01

    It is well established that the intrinsic pacemaker mechanism that generates cyclical colonic migrating motor complexes (CMMCs) does not require endogenous nitric oxide (NO). However, pharmacological blockade of endogenous NO production potently increases the frequency of CMMCs, suggesting that endogenous NO acts normally to inhibit the CMMC pacemaker mechanism. In this study, we investigated whether mice with a life long genetic deletion of the neuronal nitric oxide synthase (nNOS) gene would show similar CMMC characteristics as wild type mice that have endogenous NO production acutely inhibited. Intracellular electrophysiological and mechanical recordings were made from circular muscle cells of isolated whole mouse colon in wild type and nNOS knockout (KO) mice at 35°C. In wild type mice, the NOS inhibitor, L-NA (100 μM) caused a significant increase in CMMC frequency and a significant depolarization of the CM layer. However, unexpectedly, the frequency of CMMCs in nNOS KO mice was not significantly different from control mice. Also, the resting membrane potential of CM cells in nNOS KO mice was not depolarized compared to controls; and the amplitude of the slow depolarization phase underlying MCs was of similar amplitude between KO and wild type offspring. These findings show that in nNOS KO mice, the major characteristics of CMMCs and their electrical correlates are, at least in adult mice, indistinguishable from wild type control offspring. One possibility why the major characteristics of CMMCs were no different between both types of mice is that nNOS KO mice may compensate for their life long deletion of the nNOS gene, and their permanent loss of neuronal NO production. In this regard, we suggest caution should be exercised when assuming that data obtained from adult nNOS KO mice can be directly extrapolated to wild type mice, that have been acutely exposed to an inhibitor of NOS.

  7. APLP2 regulates neuronal stem cell differentiation during cortical development.

    PubMed

    Shariati, S Ali M; Lau, Pierre; Hassan, Bassem A; Müller, Ulrike; Dotti, Carlos G; De Strooper, Bart; Gärtner, Annette

    2013-03-01

    Expression of amyloid precursor protein (APP) and its two paralogues, APLP1 and APLP2 during brain development coincides with key cellular events such as neuronal differentiation and migration. However, genetic knockout and shRNA studies have led to contradictory conclusions about their role during embryonic brain development. To address this issue, we analysed in depth the role of APLP2 during neurogenesis by silencing APLP2 in vivo in an APP/APLP1 double knockout mouse background. We find that under these conditions cortical progenitors remain in their undifferentiated state much longer, displaying a higher number of mitotic cells. In addition, we show that neuron-specific APLP2 downregulation does not impact the speed or position of migrating excitatory cortical neurons. In summary, our data reveal that APLP2 is specifically required for proper cell cycle exit of neuronal progenitors, and thus has a distinct role in priming cortical progenitors for neuronal differentiation.

  8. Role of mechanical cues in shaping neuronal morphology and connectivity.

    PubMed

    Gangatharan, Girisaran; Schneider-Maunoury, Sylvie; Breau, Marie Anne

    2018-06-01

    Neuronal circuits, the functional building blocks of the nervous system, assemble during development through a series of dynamic processes including the migration of neurons to their final position, the growth and navigation of axons and their synaptic connection with target cells. While the role of chemical cues in guiding neuronal migration and axonal development has been extensively analysed, the contribution of mechanical inputs, such as forces and stiffness, has received far less attention. In this article, we review the in vitro and more recent in vivo studies supporting the notion that mechanical signals are critical for multiple aspects of neuronal circuit assembly, from the emergence of axons to the formation of functional synapses. By combining live imaging approaches with tools designed to measure and manipulate the mechanical environment of neurons, the emerging field of neuromechanics will add a new paradigm in our understanding of neuronal development and potentially inspire novel regenerative therapies. © 2018 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  9. An in silico agent-based model demonstrates Reelin function in directing lamination of neurons during cortical development.

    PubMed

    Caffrey, James R; Hughes, Barry D; Britto, Joanne M; Landman, Kerry A

    2014-01-01

    The characteristic six-layered appearance of the neocortex arises from the correct positioning of pyramidal neurons during development and alterations in this process can cause intellectual disabilities and developmental delay. Malformations in cortical development arise when neurons either fail to migrate properly from the germinal zones or fail to cease migration in the correct laminar position within the cortical plate. The Reelin signalling pathway is vital for correct neuronal positioning as loss of Reelin leads to a partially inverted cortex. The precise biological function of Reelin remains controversial and debate surrounds its role as a chemoattractant or stop signal for migrating neurons. To investigate this further we developed an in silico agent-based model of cortical layer formation. Using this model we tested four biologically plausible hypotheses for neuron motility and four biologically plausible hypotheses for the loss of neuron motility (conversion from migration). A matrix of 16 combinations of motility and conversion rules was applied against the known structure of mouse cortical layers in the wild-type cortex, the Reelin-null mutant, the Dab1-null mutant and a conditional Dab1 mutant. Using this approach, many combinations of motility and conversion mechanisms can be rejected. For example, the model does not support Reelin acting as a repelling or as a stopping signal. In contrast, the study lends very strong support to the notion that the glycoprotein Reelin acts as a chemoattractant for neurons. Furthermore, the most viable proposition for the conversion mechanism is one in which conversion is affected by a motile neuron sensing in the near vicinity neurons that have already converted. Therefore, this model helps elucidate the function of Reelin during neuronal migration and cortical development.

  10. Arginyltransferase ATE1 is targeted to the neuronal growth cones and regulates neurite outgrowth during brain development.

    PubMed

    Wang, Junling; Pavlyk, Iuliia; Vedula, Pavan; Sterling, Stephanie; Leu, N Adrian; Dong, Dawei W; Kashina, Anna

    2017-10-01

    Arginylation is an emerging protein modification mediated by arginyltransferase ATE1, shown to regulate embryogenesis and actin cytoskeleton, however its functions in different physiological systems are not well understood. Here we analyzed the role of ATE1 in brain development and neuronal growth by producing a conditional mouse knockout with Ate1 deletion in the nervous system driven by Nestin promoter (Nes-Ate1 mice). These mice were weaker than wild type, resulting in low postnatal survival rates, and had abnormalities in the brain that suggested defects in neuronal migration. Cultured Ate1 knockout neurons showed a reduction in the neurite outgrowth and the levels of doublecortin and F-actin in the growth cones. In wild type, ATE1 prominently localized to the growth cones, in addition to the cell bodies. Examination of the Ate1 mRNA sequence reveals the existence of putative zipcode-binding sequences involved in mRNA targeting to the cell periphery and local translation at the growth cones. Fluorescence in situ hybridization showed that Ate1 mRNA localized to the tips of the growth cones, likely due to zipcode-mediated targeting, and this localization coincided with spots of localization of arginylated β-actin, which disappeared in the presence of protein synthesis inhibitors. We propose that zipcode-mediated co-targeting of Ate1 and β-actin mRNA leads to localized co-translational arginylation of β-actin that drives the growth cone migration and neurite outgrowth. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Mirror neuron function, psychosis, and empathy in schizophrenia

    PubMed Central

    McCormick, Laurie M.; Brumm, Michael C.; Beadle, Janelle N.; Paradiso, Sergio; Yamada, Thoru; Andreasen, Nancy

    2013-01-01

    Processing of social and emotional information has been shown to be disturbed in schizophrenia. The biological underpinnings of these abnormalities may be explained by an abnormally functioning mirror neuron system. Yet the relationship between mirror neuron system activity in schizophrenia, as measured using an electroencephalography (EEG) paradigm, and socio-emotional functioning has not been assessed. The present research measured empathy and mirror neuron activity using an established EEG paradigm assessing the integrity of the Mu rhythm (8–13 Hz) suppression over the sensorimotor cortex during observed and actual hand movement in 16 schizophrenia-spectrum disorder (SSD) participants (n=8 actively psychotic and n=8 in residual illness phase) and 16 age- and gender-matched healthy comparison participants. Actively psychotic SSD participants showed significantly greater mu suppression over the sensorimotor cortex of the left hemisphere than residual phase SSD and healthy comparison individuals. The latter two groups showed similar levels of mu suppression. Greater left-sided mu suppression was positively correlated with psychotic symptoms (i.e., greater mu suppression/mirror neuron activity was highest among subjects with the greater severity of psychotic symptoms). SSD subjects tended to have significantly higher levels of Personal Distress (as measured by the Interpersonal Reactivity Index) than healthy participants. The present study suggests that abnormal mirror neuron activity may exist among patients with schizophrenia during the active (psychotic) phase of the illness, and correlates with severity of psychosis. PMID:22510432

  12. Hippocampal neuronal subtypes develop abnormal dendritic arbors in the presence of Fragile X astrocytes.

    PubMed

    Jacobs, S; Cheng, C; Doering, L C

    2016-06-02

    Astrocytes are now recognized as key players in the neurobiology of neurodevelopmental disorders such as Fragile X syndrome. However, the nature of Fragile X astrocyte-mediated control of dendrite development in subtypes of hippocampal neurons is not yet known. We used a co-culture procedure in which wildtype primary hippocampal neurons were cultured with astrocytes from either a wildtype or Fragile X mouse, for either 7, 14 or 21 days. The neurons were processed for immunocytochemistry with the dendritic marker MAP2, classified by morphological criteria into one of five neuronal subtypes, and subjected to Sholl analyses. Both linear and semi-log methods of Sholl analyses were applied to the neurons in order to provide an in depth analysis of the dendritic arborizations. We found that Fragile X astrocytes affect the development of dendritic arborization of all subtypes of wildtype hippocampal neurons. Furthermore, we show that hippocampal neurons with spiny stellate neuron morphology exhibit the most pervasive developmental delays, with significant dendritic arbor alterations persisting at 21 days in culture. The results further dictate the critical role astrocytes play in governing neuronal morphology including altered dendrite development in Fragile X. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Time-lapse imaging of neuroblast migration in acute slices of the adult mouse forebrain.

    PubMed

    Khlghatyan, Jivan; Saghatelyan, Armen

    2012-09-12

    There is a substantial body of evidence indicating that new functional neurons are constitutively generated from an endogenous pool of neural stem cells in restricted areas of the adult mammalian brain. Newborn neuroblasts from the subventricular zone (SVZ) migrate along the rostral migratory stream (RMS) to their final destination in the olfactory bulb (OB). In the RMS, neuroblasts migrate tangentially in chains ensheathed by astrocytic processes using blood vessels as a structural support and a source of molecular factors required for migration. In the OB, neuroblasts detach from the chains and migrate radially into the different bulbar layers where they differentiate into interneurons and integrate into the existing network. In this manuscript we describe the procedure for monitoring cell migration in acute slices of the rodent brain. The use of acute slices allows the assessment of cell migration in the microenvironment that closely resembling to in vivo conditions and in brain regions that are difficult to access for in vivo imaging. In addition, it avoids long culturing condition as in the case of organotypic and cell cultures that may eventually alter the migration properties of the cells. Neuronal precursors in acute slices can be visualized using DIC optics or fluorescent proteins. Viral labeling of neuronal precursors in the SVZ, grafting neuroblasts from reporter mice into the SVZ of wild-type mice, and using transgenic mice that express fluorescent protein in neuroblasts are all suitable methods for visualizing neuroblasts and following their migration. The later method, however, does not allow individual cells to be tracked for long periods of time because of the high density of labeled cells. We used a wide-field fluorescent upright microscope equipped with a CCD camera to achieve a relatively rapid acquisition interval (one image every 15 or 30 sec) to reliably identify the stationary and migratory phases. A precise identification of the duration of

  14. AgRP Neurons Can Increase Food Intake during Conditions of Appetite Suppression and Inhibit Anorexigenic Parabrachial Neurons.

    PubMed

    Essner, Rachel A; Smith, Alison G; Jamnik, Adam A; Ryba, Anna R; Trutner, Zoe D; Carter, Matthew E

    2017-09-06

    To maintain energy homeostasis, orexigenic (appetite-inducing) and anorexigenic (appetite suppressing) brain systems functionally interact to regulate food intake. Within the hypothalamus, neurons that express agouti-related protein (AgRP) sense orexigenic factors and orchestrate an increase in food-seeking behavior. In contrast, calcitonin gene-related peptide (CGRP)-expressing neurons in the parabrachial nucleus (PBN) suppress feeding. PBN CGRP neurons become active in response to anorexigenic hormones released following a meal, including amylin, secreted by the pancreas, and cholecystokinin (CCK), secreted by the small intestine. Additionally, exogenous compounds, such as lithium chloride (LiCl), a salt that creates gastric discomfort, and lipopolysaccharide (LPS), a bacterial cell wall component that induces inflammation, exert appetite-suppressing effects and activate PBN CGRP neurons. The effects of increasing the homeostatic drive to eat on feeding behavior during appetite suppressing conditions are unknown. Here, we show in mice that food deprivation or optogenetic activation of AgRP neurons induces feeding to overcome the appetite suppressing effects of amylin, CCK, and LiCl, but not LPS. AgRP neuron photostimulation can also increase feeding during chemogenetic-mediated stimulation of PBN CGRP neurons. AgRP neuron stimulation reduces Fos expression in PBN CGRP neurons across all conditions. Finally, stimulation of projections from AgRP neurons to the PBN increases feeding following administration of amylin, CCK, and LiCl, but not LPS. These results demonstrate that AgRP neurons are sufficient to increase feeding during noninflammatory-based appetite suppression and to decrease activity in anorexigenic PBN CGRP neurons, thereby increasing food intake during homeostatic need. SIGNIFICANCE STATEMENT The motivation to eat depends on the relative balance of activity in distinct brain regions that induce or suppress appetite. An abnormal amount of activity in

  15. Metabolic reprogramming during neuronal differentiation.

    PubMed

    Agostini, M; Romeo, F; Inoue, S; Niklison-Chirou, M V; Elia, A J; Dinsdale, D; Morone, N; Knight, R A; Mak, T W; Melino, G

    2016-09-01

    Newly generated neurons pass through a series of well-defined developmental stages, which allow them to integrate into existing neuronal circuits. After exit from the cell cycle, postmitotic neurons undergo neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. Lack of a global metabolic analysis during early cortical neuronal development led us to explore the role of cellular metabolism and mitochondrial biology during ex vivo differentiation of primary cortical neurons. Unexpectedly, we observed a huge increase in mitochondrial biogenesis. Changes in mitochondrial mass, morphology and function were correlated with the upregulation of the master regulators of mitochondrial biogenesis, TFAM and PGC-1α. Concomitant with mitochondrial biogenesis, we observed an increase in glucose metabolism during neuronal differentiation, which was linked to an increase in glucose uptake and enhanced GLUT3 mRNA expression and platelet isoform of phosphofructokinase 1 (PFKp) protein expression. In addition, glutamate-glutamine metabolism was also increased during the differentiation of cortical neurons. We identified PI3K-Akt-mTOR signalling as a critical regulator role of energy metabolism in neurons. Selective pharmacological inhibition of these metabolic pathways indicate existence of metabolic checkpoint that need to be satisfied in order to allow neuronal differentiation.

  16. Metabolic reprogramming during neuronal differentiation

    PubMed Central

    Agostini, M; Romeo, F; Inoue, S; Niklison-Chirou, M V; Elia, A J; Dinsdale, D; Morone, N; Knight, R A; Mak, T W; Melino, G

    2016-01-01

    Newly generated neurons pass through a series of well-defined developmental stages, which allow them to integrate into existing neuronal circuits. After exit from the cell cycle, postmitotic neurons undergo neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. Lack of a global metabolic analysis during early cortical neuronal development led us to explore the role of cellular metabolism and mitochondrial biology during ex vivo differentiation of primary cortical neurons. Unexpectedly, we observed a huge increase in mitochondrial biogenesis. Changes in mitochondrial mass, morphology and function were correlated with the upregulation of the master regulators of mitochondrial biogenesis, TFAM and PGC-1α. Concomitant with mitochondrial biogenesis, we observed an increase in glucose metabolism during neuronal differentiation, which was linked to an increase in glucose uptake and enhanced GLUT3 mRNA expression and platelet isoform of phosphofructokinase 1 (PFKp) protein expression. In addition, glutamate–glutamine metabolism was also increased during the differentiation of cortical neurons. We identified PI3K–Akt–mTOR signalling as a critical regulator role of energy metabolism in neurons. Selective pharmacological inhibition of these metabolic pathways indicate existence of metabolic checkpoint that need to be satisfied in order to allow neuronal differentiation. PMID:27058317

  17. KCa3.1 Modulates Neuroblast Migration Along the Rostral Migratory Stream (RMS) In Vivo

    PubMed Central

    Turner, Kathryn L.; Sontheimer, Harald

    2014-01-01

    From the subventricular zone (SVZ), neuronal precursor cells (NPCs), called neuroblasts, migrate through the rostral migratory stream (RMS) to become interneurons in the olfactory bulb (OB). Ion channels regulate neuronal migration during development, yet their role in migration through the adult RMS is unknown. To address this question, we utilized Nestin-CreERT2/R26R-YFP mice to fluorescently label neuroblasts in the adult. Patch-clamp recordings from neuroblasts reveal K+ currents that are sensitive to intracellular Ca2+ levels and blocked by clotrimazole and TRAM-34, inhibitors of intermediate conductance Ca2+-activated K+ (KCa3.1) channels. Immunolabeling and electrophysiology show KCa3.1 expression restricted to neuroblasts in the SVZ and RMS, but absent in OB neurons. Time-lapse confocal microscopy in situ showed inhibiting KCa3.1 prolonged the stationary phase of neuroblasts' saltatory migration, reducing migration speed by over 50%. Both migration and KCa3.1 currents could also be inhibited by blocking Ca2+ influx via transient receptor potential (TRP) channels, which, together with positive immunostaining for transient receptor potential canonical 1 (TRPC1), suggest that TRP channels are an important Ca2+ source modulating KCa3.1 activity. Finally, injecting TRAM-34 into Nestin-CreERT2/R26R-YFP mice significantly reduced the number of neuroblasts that reached the OB, suggesting an important role for KCa3.1 in vivo. These studies describe a previously unrecognized protein in migration of adult NPCs. PMID:23585521

  18. Hepatocyte growth factor/c-MET axis-mediated tropism of cord blood-derived unrestricted somatic stem cells for neuronal injury.

    PubMed

    Trapp, Thorsten; Kögler, Gesine; El-Khattouti, Abdelouahid; Sorg, Rüdiger V; Besselmann, Michael; Föcking, Melanie; Bührle, Christian P; Trompeter, Ingo; Fischer, Johannes C; Wernet, Peter

    2008-11-21

    An under-agarose chemotaxis assay was used to investigate whether unrestricted somatic stem cells (USSC) that were recently characterized in human cord blood are attracted by neuronal injury in vitro. USSC migrated toward extracts of post-ischemic brain tissue of mice in which stroke had been induced. Moreover, apoptotic neurons secrete factors that strongly attracted USSC, whereas necrotic and healthy neurons did not. Investigating the expression of growth factors and chemokines in lesioned brain tissue and neurons and of their respective receptors in USSC revealed expression of hepatocyte growth factor (HGF) in post-ischemic brain and in apoptotic but not in necrotic neurons and of the HGF receptor c-MET in USSC. Neuronal lesion-triggered migration was observed in vitro and in vivo only when c-MET was expressed at a high level in USSC. Neutralization of the bioactivity of HGF with an antibody inhibited migration of USSC toward neuronal injury. This, together with the finding that human recombinant HGF attracts USSC, document that HGF signaling is necessary for the tropism of USSC for neuronal injury. Our data demonstrate that USSC have the capacity to migrate toward apoptotic neurons and injured brain. Together with their neural differentiation potential, this suggests a neuroregenerative potential of USSC. Moreover, we provide evidence for a hitherto unrecognized pivotal role of the HGF/c-MET axis in guiding stem cells toward brain injury, which may partly account for the capability of HGF to improve function in the diseased central nervous system.

  19. Knockdown of sodium channel NaV1.6 blocks mechanical pain and abnormal bursting activity of afferent neurons in inflamed sensory ganglia

    PubMed Central

    Xie, Wenrui; Strong, Judith A.; Ye, Ling; Mao, Ju-Xian; Zhang, Jun-Ming

    2013-01-01

    Inflammatory processes in the sensory ganglia contribute to many forms of chronic pain. We previously showed that local inflammation of the lumbar sensory ganglia rapidly leads to prolonged mechanical pain behaviors and high levels of spontaneous bursting activity in myelinated cells. Abnormal spontaneous activity of sensory neurons occurs early in many preclinical pain models, and initiates many other pathological changes, but its molecular basis is not well understood. The sodium channel isoform NaV1.6 can underlie repetitive firing and excitatory persistent and resurgent currents. We used in vivo knockdown of this channel via local injection of siRNA to examine its role in chronic pain following local inflammation of the rat lumbar sensory ganglia. In normal DRG, quantitative PCR showed that cells capable of firing repetitively had significantly higher relative expression of NaV1.6. In inflamed DRG, spontaneously active bursting cells expressed high levels of NaV1.6′ immunoreactivity. In vivo knockdown of NaV1.6 locally in the lumbar DRG at the time of DRG inflammation completely blocked development of pain behaviors and abnormal spontaneous activity, while having only minor effects on unmyelinated C-cells. Current research on isoform-specific sodium channel blockers for chronic pain is largely focused on NaV1.8, because it is present primarily in unmyelinated C fiber nociceptors, or on NaV1.7, because lack of this channel causes congenital indifference to pain. However, the results suggest that NaV1.6 may be a useful therapeutic target for chronic pain, and that some pain conditions may be primarily mediated by myelinated A-fiber sensory neurons. PMID:23622763

  20. AP4M1 is abnormally expressed in oxygen-glucose deprived hippocampal neurons.

    PubMed

    Zhang, J; Cheng, X Y; Sheng, G Y

    2014-03-20

    AP4M1 mutations have been suggested to be associated with autosomal recessive cerebral palsy syndrome. But the pathogenic mechanism remains uncertain. The purpose of this study is to investigate whether and how AP4M1 expression is changed in injured neurons. Primary cultured hippocampal neurons were prepared for this experiment. They were subjected to oxygen-glucose deprivation (OGD) leading to apoptosis, mimicking brain ischemia. Neuron-specific enolase (NSE) was labeled immunofluorescently to confirm that the purity of neuron was higher than 90%. Real-time PCR and western blotting were performed to measure the gene expression. AP4M1 was labeled with MAP2 or Tau-1 to observe the distribution. We found that the AP4M1 protein levels immediately after the procedure were similar between the OGD group and the sham group. However, down-regulation was observed 12h after the reperfusion, and became more notable at 24h. The real-time PCR showed similar results, except that the down-regulation of mRNA was able to be detected immediately after the OGD. Immunofluorescent labeling revealed AP4M1 distributed in the dendrites of normal neurons, but it redistributed to the axons after the OGD procedure. In conclusion, AP4M1 is not only down-regulated at both the mRNA and protein levels, but also redistributed from dendrites to axons in oxygen-glucose deprived hippocampal neurons. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Changes in cell migration and survival in the olfactory bulb of the pcd/pcd mouse.

    PubMed

    Valero, J; Weruaga, E; Murias, A R; Recio, J S; Curto, G G; Gómez, C; Alonso, J R

    2007-06-01

    Postnatally, the Purkinje cell degeneration mutant mice lose the main projecting neurons of the main olfactory bulb (OB): mitral cells (MC). In adult animals, progenitor cells from the rostral migratory stream (RMS) differentiate into bulbar interneurons that modulate MC activity. In the present work, we studied changes in proliferation, tangential migration, radial migration patterns, and the survival of these newly generated neurons in this neurodegeneration animal model. The animals were injected with bromodeoxyuridine 2 weeks or 2 months before killing in order to label neuroblast incorporation into the OB and to analyze the survival of these cells after differentiation, respectively. Both the organization and cellular composition of the RMS and the differentiation of the newly generated neurons in the OB were studied using specific markers of glial cells, neuroblasts, and mature neurons. No changes were observed in the cell proliferation rate nor in their tangential migration through the RMS, indicating that migrating neuroblasts are only weakly responsive to the alteration in their target region, the OB. However, the absence of MC does elicit differences in the final destination of the newly generated interneurons. Moreover, the loss of MC also produces changes in the survival of the newly generated interneurons, in accordance with the dramatic decrease in the number of synaptic targets available.

  2. Mesodermal and neuronal retinoids regulate the induction and maintenance of limb innervating spinal motor neurons.

    PubMed

    Ji, Sheng-Jian; Zhuang, BinQuan; Falco, Crystal; Schneider, André; Schuster-Gossler, Karin; Gossler, Achim; Sockanathan, Shanthini

    2006-09-01

    During embryonic development, the generation, diversification and maintenance of spinal motor neurons depend upon extrinsic signals that are tightly regulated. Retinoic acid (RA) is necessary for specifying the fates of forelimb-innervating motor neurons of the Lateral Motor Column (LMC), and the specification of LMC neurons into medial and lateral subtypes. Previous studies implicate motor neurons as the relevant source of RA for specifying lateral LMC fates at forelimb levels. However, at the time of LMC diversification, a significant amount of retinoids in the spinal cord originates from the adjacent paraxial mesoderm. Here we employ mouse genetics to show that RA derived from the paraxial mesoderm is required for lateral LMC induction at forelimb and hindlimb levels, demonstrating that mesodermally synthesized RA functions as a second source of signals to specify lateral LMC identity. Furthermore, reduced RA levels in postmitotic motor neurons result in a decrease of medial and lateral LMC neurons, and abnormal axonal projections in the limb; invoking additional roles for neuronally synthesized RA in motor neuron maintenance and survival. These findings suggest that during embryogenesis, mesodermal and neuronal retinoids act coordinately to establish and maintain appropriate cohorts of spinal motor neurons that innervate target muscles in the limb.

  3. Light adaptation does not prevent early retinal abnormalities in diabetic rats

    PubMed Central

    Kur, Joanna; Burian, Michael A.; Newman, Eric A.

    2016-01-01

    The aetiology of diabetic retinopathy (DR), the leading cause of blindness in the developed world, remains controversial. One hypothesis holds that retinal hypoxia, exacerbated by the high O2 consumption of rod photoreceptors in the dark, is a primary cause of DR. Based on this prediction we investigated whether early retinal abnormalities in streptozotocin-induced diabetic rats are alleviated by preventing the rods from dark adapting. Diabetic rats and their non-diabetic littermates were housed in a 12:12 hour light-dim light photocycle (30 lux during the day and 3 lux at night). Progression of early retinal abnormalities in diabetic rats was assessed by monitoring the ERG b-wave and oscillatory potentials, Müller cell reactive gliosis, and neuronal cell death, as assayed by TUNEL staining and retinal thickness at 6 and 12 weeks after diabetes induction. Maintaining diabetic animals in a dim-adapting light did not slow the progression of these neuronal and glial changes when compared to diabetic rats maintained in a standard 12:12 hour light-dark photocycle (30 lux during the day and 0 lux at night). Our results indicate that neuronal and glial abnormalities in early stages of diabetes are not exacerbated by rod photoreceptor O2 consumption in the dark. PMID:26852722

  4. Inhibition or ablation of transglutaminase 2 impairs astrocyte migration.

    PubMed

    Monteagudo, Alina; Ji, Changyi; Akbar, Abdullah; Keillor, Jeffrey W; Johnson, Gail V W

    2017-01-22

    Astrocytes play numerous complex roles that support and facilitate the function of neurons. Further, when there is an injury to the central nervous system (CNS) they can both facilitate or ameliorate functional recovery depending on the location and severity of the injury. When a CNS injury is relatively severe a glial scar is formed, which is primarily composed of astrocytes. The glial scar can be both beneficial, by limiting inflammation, and detrimental, by preventing neuronal projections, to functional recovery. Thus, understanding the processes and proteins that regulate astrocyte migration in response to injury is still of fundamental importance. One protein that is likely involved in astrocyte migration is transglutaminase 2 (TG2); a multifunctional protein expressed ubiquitously throughout the brain. Its functions include transamidation and GTPase activity, among others, and previous studies have implicated TG2 as a regulator of migration. Therefore, we examined the role of TG2 in primary astrocyte migration subsequent to injury. Using wild type or TG2 -/- astrocytes, we manipulated the different functions and conformation of TG2 with novel irreversible inhibitors or mutant versions of the protein. Results showed that both inhibition and ablation of TG2 in primary astrocytes significantly inhibit migration. Additionally, we show that the deficiency in migration caused by deletion of TG2 can only be rescued with the native protein and not with mutants. Finally, the addition of TGFβ rescued the migration deficiency independent of TG2. Taken together, our study shows that transamidation and GTP/GDP-binding are necessary for inhibiting astrocyte migration and it is TGFβ independent. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Neuronal 3',3,5-triiodothyronine (T3) uptake and behavioral phenotype of mice deficient in Mct8, the neuronal T3 transporter mutated in Allan-Herndon-Dudley syndrome.

    PubMed

    Wirth, Eva K; Roth, Stephan; Blechschmidt, Cristiane; Hölter, Sabine M; Becker, Lore; Racz, Ildiko; Zimmer, Andreas; Klopstock, Thomas; Gailus-Durner, Valerie; Fuchs, Helmut; Wurst, Wolfgang; Naumann, Thomas; Bräuer, Anja; de Angelis, Martin Hrabé; Köhrle, Josef; Grüters, Annette; Schweizer, Ulrich

    2009-07-29

    Thyroid hormone transport into cells requires plasma membrane transport proteins. Mutations in one of these, monocarboxylate transporter 8 (MCT8), have been identified as underlying cause for the Allan-Herndon-Dudley syndrome, an X-linked mental retardation in which the patients also present with abnormally high 3',3,5-triiodothyronine (T(3)) plasma levels. Mice deficient in Mct8 replicate the thyroid hormone abnormalities observed in the human condition. However, no neurological deficits have been described in mice lacking Mct8. Therefore, we subjected Mct8-deficient mice to a comprehensive immunohistochemical, neurological, and behavioral screen. Several behavioral abnormalities were found in the mutants. Interestingly, some of these behavioral changes are compatible with hypothyroidism, whereas others rather indicate hyperthyroidism. We thus hypothesized that neurons exclusively dependent on Mct8 are in a hypothyroid state, whereas neurons expressing other T(3) transporters become hyperthyroid, if they are exposed directly to the high plasma T(3). The majority of T(3) uptake in primary cortical neurons is mediated by Mct8, but pharmacological inhibition suggested functional expression of additional T(3) transporter classes. mRNAs encoding six T(3) transporters, including L-type amino acid transporters (LATs), were coexpressed with Mct8 in isolated neurons. We then demonstrated Lat2 expression in cultured neurons and throughout murine brain development. In contrast, LAT2 is expressed in microglia in the developing human brain during gestation, but not in neurons. We suggest that lack of functional complementation by alternative thyroid hormone transporters in developing human neurons precipitates the devastating neurodevelopmental phenotype in MCT8-deficient patients, whereas Mct8-deficient mouse neurons are functionally complemented by other transporters, for possibly Lat2.

  6. WAVE2-Abi2 complex controls growth cone activity and regulates the multipolar-bipolar transition as well as the initiation of glia-guided migration.

    PubMed

    Xie, Min-Jue; Yagi, Hideshi; Kuroda, Kazuki; Wang, Chen-Chi; Komada, Munekazu; Zhao, Hong; Sakakibara, Akira; Miyata, Takaki; Nagata, Koh-Ichi; Oka, Yuichiro; Iguchi, Tokuichi; Sato, Makoto

    2013-06-01

    Glia-guided migration (glia-guided locomotion) during radial migration is a characteristic yet unique mode of migration. In this process, the directionality of migration is predetermined by glial processes and not by growth cones. Prior to the initiation of glia-guided migration, migrating neurons transform from multipolar to bipolar, but the molecular mechanisms underlying this multipolar-bipolar transition and the commencement of glia-guided migration are not fully understood. Here, we demonstrate that the multipolar-bipolar transition is not solely a cell autonomous event; instead, the interaction of growth cones with glial processes plays an essential role. Time-lapse imaging with lattice assays reveals the importance of vigorously active growth cones in searching for appropriate glial scaffolds, completing the transition, and initiating glia-guided migration. These growth cone activities are regulated by Abl kinase and Cdk5 via WAVE2-Abi2 through the phosphorylation of tyrosine 150 and serine 137 of WAVE2. Neurons that do not display such growth cone activities are mispositioned in a more superficial location in the neocortex, suggesting the significance of growth cones for the final location of the neurons. This process occurs in spite of the "inside-out" principle in which later-born neurons are situated more superficially.

  7. The effect of thyroid antigens on the in vitro migration of leucocytes from patients with Hashimoto thyroiditis

    PubMed Central

    Calder, Elizabeth A.; McLeman, Dena; Barnes, E. W.; Irvine, W. J.

    1972-01-01

    A total of fifty-two patients with Hashimoto thyroiditis were tested for delayed hypersensitivity to thyroid antigens using the leucocyte migration test. The percentage of patients showing abnormal migration in the presence of crude thyroid extract, thyroglobulin, thyroid mitochondria and thyroid microsomes was 75, 44, 54 and 34% respectively. Fifty-three control patients were studied concurrently with the same antigens and the percentage showing abnormal migration was 4, 6, 6 and 6% respectively. The antigenic activity of the mitochondrial fraction was not organ specific; both liver and kidney mitochondria interfered with the migration of leucocytes from patients with Hashimoto thyroiditis. PMID:4568149

  8. Synchronization in a chaotic neural network with time delay depending on the spatial distance between neurons

    NASA Astrophysics Data System (ADS)

    Tang, Guoning; Xu, Kesheng; Jiang, Luoluo

    2011-10-01

    The synchronization is investigated in a two-dimensional Hindmarsh-Rose neuronal network by introducing a global coupling scheme with time delay, where the length of time delay is proportional to the spatial distance between neurons. We find that the time delay always disturbs synchronization of the neuronal network. When both the coupling strength and length of time delay per unit distance (i.e., enlargement factor) are large enough, the time delay induces the abnormal membrane potential oscillations in neurons. Specifically, the abnormal membrane potential oscillations for the symmetrically placed neurons form an antiphase, so that the large coupling strength and enlargement factor lead to the desynchronization of the neuronal network. The complete and intermittently complete synchronization of the neuronal network are observed for the right choice of parameters. The physical mechanism underlying these phenomena is analyzed.

  9. RAGE-dependent potentiation of TRPV1 currents in sensory neurons exposed to high glucose.

    PubMed

    Lam, Doris; Momeni, Zeinab; Theaker, Michael; Jagadeeshan, Santosh; Yamamoto, Yasuhiko; Ianowski, Juan P; Campanucci, Verónica A

    2018-01-01

    Diabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) channel plays a central role in such sensory abnormalities and shows elevated expression levels in animal models of diabetes. Here, we investigated the function of TRPV1 channels in sensory neurons cultured from the dorsal root ganglion (DRG) of neonatal mice, under control (5mM) and high glucose (25mM) conditions. After maintaining DRG neurons in high glucose for 1 week, we observed a significant increase in capsaicin (CAP)-evoked currents and CAP-evoked depolarizations, independent of TRPV1 channel expression. These functional changes were largely dependent on the expression of the receptor for Advanced Glycation End-products (RAGE), calcium influx, cytoplasmic ROS accumulation, PKC, and Src kinase activity. Like cultured neurons from neonates, mature neurons from adult mice also displayed a similar potentiation of CAP-evoked currents in the high glucose condition. Taken together, our data demonstrate that under the diabetic condition, DRG neurons are directly affected by elevated levels of glucose, independent of vascular or glial signals, and dependent on RAGE expression. These early cellular and molecular changes to sensory neurons in vitro are potential mechanisms that might contribute to sensory abnormalities that can occur in the very early stages of diabetes.

  10. RAGE-dependent potentiation of TRPV1 currents in sensory neurons exposed to high glucose

    PubMed Central

    Lam, Doris; Momeni, Zeinab; Theaker, Michael; Jagadeeshan, Santosh; Yamamoto, Yasuhiko; Ianowski, Juan P.

    2018-01-01

    Diabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) channel plays a central role in such sensory abnormalities and shows elevated expression levels in animal models of diabetes. Here, we investigated the function of TRPV1 channels in sensory neurons cultured from the dorsal root ganglion (DRG) of neonatal mice, under control (5mM) and high glucose (25mM) conditions. After maintaining DRG neurons in high glucose for 1 week, we observed a significant increase in capsaicin (CAP)-evoked currents and CAP-evoked depolarizations, independent of TRPV1 channel expression. These functional changes were largely dependent on the expression of the receptor for Advanced Glycation End-products (RAGE), calcium influx, cytoplasmic ROS accumulation, PKC, and Src kinase activity. Like cultured neurons from neonates, mature neurons from adult mice also displayed a similar potentiation of CAP-evoked currents in the high glucose condition. Taken together, our data demonstrate that under the diabetic condition, DRG neurons are directly affected by elevated levels of glucose, independent of vascular or glial signals, and dependent on RAGE expression. These early cellular and molecular changes to sensory neurons in vitro are potential mechanisms that might contribute to sensory abnormalities that can occur in the very early stages of diabetes. PMID:29474476

  11. Secondary Abnormalities of Neurotransmitters in Infants with Neurological Disorders

    ERIC Educational Resources Information Center

    Garcia-Cazorla, A.; Serrano, M.; Perez-Duenas, B.; Gonzalez, V.; Ormazabal, A.; Pineda, M.; Fernandez-Alvarez, E.; Campistol, J. M. D.; Artuch, R. M. D.

    2007-01-01

    Neurotransmitters are essential in young children for differentiation and neuronal growth of the developing nervous system. We aimed to identify possible factors related to secondary neurotransmitter abnormalities in pediatric patients with neurological disorders. We analyzed cerebrospinal fluid (CSF) and biogenic amine metabolites in 56 infants…

  12. Energy Homeostasis and Abnormal RNA Metabolism in Amyotrophic Lateral Sclerosis

    PubMed Central

    Liu, Yu-Ju; Tsai, Po-Yi; Chern, Yijuang

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease that is clinically characterized by progressive muscle weakness and impaired voluntary movement due to the loss of motor neurons in the brain, brain stem and spinal cord. To date, no effective treatment is available. Ample evidence suggests that impaired RNA homeostasis and abnormal energy status are two major pathogenesis pathways in ALS. In the present review article, we focus on recent studies that report molecular insights of both pathways, and discuss the possibility that energy dysfunction might negatively regulate RNA homeostasis via the impairment of cytoplasmic-nuclear shuttling in motor neurons and subsequently contribute to the development of ALS. PMID:28522961

  13. Mitochondrial dynamics and bioenergetic dysfunction is associated with synaptic alterations in mutant SOD1 motor neurons

    PubMed Central

    Magrané, Jordi; Sahawneh, Mary Anne; Przedborski, Serge; Estévez, Álvaro G.; Manfredi, Giovanni

    2012-01-01

    Mutations in Cu,Zn superoxide dismutase (SOD1) cause familial amyotrophic lateral sclerosis (FALS), a rapidly fatal motor neuron disease. Mutant SOD1 has pleiotropic toxic effects on motor neurons, among which mitochondrial dysfunction has been proposed as one of the contributing factors in motor neuron demise. Mitochondria are highly dynamic in neurons; they are constantly reshaped by fusion and move along neurites to localize at sites of high-energy utilization, such as synapses. The finding of abnormal mitochondria accumulation in neuromuscular junctions, where the SOD1-FALS degenerative process is though to initiate, suggests that impaired mitochondrial dynamics in motor neurons may be involved in pathogenesis. We addressed this hypothesis by live imaging microscopy of photo-switchable fluorescent mitoDendra in transgenic rat motor neurons expressing mutant or wild type human SOD1. We demonstrate that mutant SOD1 motor neurons have impaired mitochondrial fusion in axons and cell bodies. Mitochondria also display selective impairment of retrograde axonal transport, with reduced frequency and velocity of movements. Fusion and transport defects are associated with smaller mitochondrial size, decreased mitochondrial density, and defective mitochondrial membrane potential. Furthermore, mislocalization of mitochondria at synapses among motor neurons, in vitro, correlates with abnormal synaptic number, structure, and function. Dynamics abnormalities are specific to mutant SOD1 motor neuron mitochondria, since they are absent in wild type SOD1 motor neurons, they do not involve other organelles, and they are not found in cortical neurons. Taken together, these results suggest that impaired mitochondrial dynamics may contribute to the selective degeneration of motor neurons in SOD1-FALS. PMID:22219285

  14. The Calcium-Sensing Receptor and Integrins in Cellular Differentiation and Migration

    PubMed Central

    Tharmalingam, Sujeenthar; Hampson, David R.

    2016-01-01

    The calcium-sensing receptor (CaSR) is a widely expressed homodimeric G-protein coupled receptor structurally related to the metabotropic glutamate receptors and GPRC6A. In addition to its well characterized role in maintaining calcium homeostasis and regulating parathyroid hormone release, evidence has accumulated linking the CaSR with cellular differentiation and migration, brain development, stem cell engraftment, wound healing, and tumor growth and metastasis. Elevated expression of the CaSR in aggressive metastatic tumors has been suggested as a potential novel prognostic marker for predicting metastasis, especially to bone tissue where extracellular calcium concentrations may be sufficiently high to activate the receptor. Recent evidence supports a model whereby CaSR-mediated activation of integrins promotes cellular migration. Integrins are single transmembrane spanning heterodimeric adhesion receptors that mediate cell migration by binding to extracellular matrix proteins. The CaSR has been shown to form signaling complexes with the integrins to facilitate both the movement and differentiation of cells, such as neurons during normal brain development and tumor cells under pathological circumstances. Thus, CaSR/integrin complexes may function as a universal cell migration or homing complex. Manipulation of this complex may be of potential interest for treating metastatic cancers, and for developmental disorders pertaining to aberrant neuronal migration. PMID:27303307

  15. Neuronal cell migration in C. elegans: regulation of Hox gene expression and cell position.

    PubMed

    Harris, J; Honigberg, L; Robinson, N; Kenyon, C

    1996-10-01

    In C. elegans, the Hox gene mab-5, which specifies the fates of cells in the posterior body region, has been shown to direct the migrations of certain cells within its domain of function. mab-5 expression switches on in the neuroblast QL as it migrates into the posterior body region. mab-5 activity is then required for the descendants of QL to migrate to posterior rather than anterior positions. What information activates Hox gene expression during this cell migration? How are these cells subsequently guided to their final positions? We address these questions by describing four genes, egl-20, mig-14, mig-1 and lin-17, that are required to activate expression of mab-5 during migration of the QL neuroblast. We find that two of these genes, egl-20 and mig-14, also act in a mab-5-independent way to determine the final stopping points of the migrating Q descendants. The Q descendants do not migrate toward any obvious physical targets in wild-type or mutant animals. Therefore, these genes appear to be part of a system that positions the migrating Q descendants along the anteroposterior axis.

  16. FOXP2 drives neuronal differentiation by interacting with retinoic acid signaling pathways.

    PubMed

    Devanna, Paolo; Middelbeek, Jeroen; Vernes, Sonja C

    2014-01-01

    FOXP2 was the first gene shown to cause a Mendelian form of speech and language disorder. Although developmentally expressed in many organs, loss of a single copy of FOXP2 leads to a phenotype that is largely restricted to orofacial impairment during articulation and linguistic processing deficits. Why perturbed FOXP2 function affects specific aspects of the developing brain remains elusive. We investigated the role of FOXP2 in neuronal differentiation and found that FOXP2 drives molecular changes consistent with neuronal differentiation in a human model system. We identified a network of FOXP2 regulated genes related to retinoic acid signaling and neuronal differentiation. FOXP2 also produced phenotypic changes associated with neuronal differentiation including increased neurite outgrowth and reduced migration. Crucially, cells expressing FOXP2 displayed increased sensitivity to retinoic acid exposure. This suggests a mechanism by which FOXP2 may be able to increase the cellular differentiation response to environmental retinoic acid cues for specific subsets of neurons in the brain. These data demonstrate that FOXP2 promotes neuronal differentiation by interacting with the retinoic acid signaling pathway and regulates key processes required for normal circuit formation such as neuronal migration and neurite outgrowth. In this way, FOXP2, which is found only in specific subpopulations of neurons in the brain, may drive precise neuronal differentiation patterns and/or control localization and connectivity of these FOXP2 positive cells.

  17. FOXP2 drives neuronal differentiation by interacting with retinoic acid signaling pathways

    PubMed Central

    Devanna, Paolo; Middelbeek, Jeroen; Vernes, Sonja C.

    2014-01-01

    FOXP2 was the first gene shown to cause a Mendelian form of speech and language disorder. Although developmentally expressed in many organs, loss of a single copy of FOXP2 leads to a phenotype that is largely restricted to orofacial impairment during articulation and linguistic processing deficits. Why perturbed FOXP2 function affects specific aspects of the developing brain remains elusive. We investigated the role of FOXP2 in neuronal differentiation and found that FOXP2 drives molecular changes consistent with neuronal differentiation in a human model system. We identified a network of FOXP2 regulated genes related to retinoic acid signaling and neuronal differentiation. FOXP2 also produced phenotypic changes associated with neuronal differentiation including increased neurite outgrowth and reduced migration. Crucially, cells expressing FOXP2 displayed increased sensitivity to retinoic acid exposure. This suggests a mechanism by which FOXP2 may be able to increase the cellular differentiation response to environmental retinoic acid cues for specific subsets of neurons in the brain. These data demonstrate that FOXP2 promotes neuronal differentiation by interacting with the retinoic acid signaling pathway and regulates key processes required for normal circuit formation such as neuronal migration and neurite outgrowth. In this way, FOXP2, which is found only in specific subpopulations of neurons in the brain, may drive precise neuronal differentiation patterns and/or control localization and connectivity of these FOXP2 positive cells. PMID:25309332

  18. Inhibition of swallowing reflex following phosphorylation of extracellular signal-regulated kinase in nucleus tractus solitarii neurons in rats with masseter muscle nociception.

    PubMed

    Tsujimura, Takanori; Kitagawa, Junichi; Ueda, Koichiro; Iwata, Koichi

    2009-02-06

    Pain is associated with swallowing abnormalities in dysphagic patients. Understanding neuronal mechanisms underlying the swallowing abnormalities associated with orofacial abnormal pain is crucial for developing new methods to treat dysphagic patients. However, how the orofacial abnormal pain is involved in the swallowing abnormalities is not known. In order to evaluate neuronal mechanisms of modulation of the swallows by masticatory muscle pain, here we first induced swallows by topical administration of distilled water to the pharyngolaryngeal region. The swallowing reflex was significantly inhibited after capsaicin (10, 30mM) injection into the masseter muscle compared to vehicle injection. Moreover the number of phosphorylated extracellular signal-regulated kinase-like immunoreactive (pERK-LI) neurons in the nucleus tractus solitarii (NTS) was significantly increased in the rats with capsaicin injection into the masseter muscle compared to that with vehicle injection. Rostro-caudal distribution of pERK-LI neurons in the NTS was peaked at the obex level. The capsaicin-induced inhibitory effect on swallowing reflex was reversed after intrathecal administration of mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor, PD98059. The present findings suggest that phosphorylation of ERK in NTS neurons may be involved in capsaicin-induced inhibition of swallowing reflex.

  19. Time-dependent photon migration imaging

    NASA Astrophysics Data System (ADS)

    Sevick, Eva M.; Wang, NaiGuang; Chance, Britton

    1992-02-01

    Recently, the application of both time- and frequency-resolved fluorescence techniques for the determination of photon migration characteristics in strongly scattering media has been used to characterize the optical properties in strongly scattering media. Specifically, Chance and coworkers have utilized measurement of photon migration characteristics to determine tissue hemoglobin absorbance and ultimately oxygenation status in homogeneous tissues. In this study, we present simulation results and experimental measurements for both techniques to show the capacity of time-dependent photon migration characteristics to image optically obscure absorbers located in strongly scattering media. The applications of time-dependent photon imaging in the biomedical community include imaging of light absorbing hematomas, tumors, hypoxic tissue volumes, and other tissue abnormalities. Herein, we show that the time-resolved parameter of mean photon path length, , and the frequency- resolved parameter of phase-shift, (theta) , can be used similarly to obtain three dimensional information of absorber position from two-dimensional measurements. Finally, we show that unlike imaging techniques that monitor the intensity of light without regard to the migration characteristics, the resolution of time-dependent photon migration measurements is enhanced by tissue scattering, further potentiating their use for biomedical imaging.

  20. Gamma band oscillations: a key to understanding schizophrenia symptoms and neural circuit abnormalities.

    PubMed

    McNally, James M; McCarley, Robert W

    2016-05-01

    We review our current understanding of abnormal γ band oscillations in schizophrenia, their association with symptoms and the underlying cortical circuit abnormality, with a particular focus on the role of fast-spiking parvalbumin gamma-aminobutyric acid (GABA) neurons in the disease state. Clinical electrophysiological studies of schizophrenia patients and pharmacological models of the disorder show an increase in spontaneous γ band activity (not stimulus-evoked) measures. These findings provide a crucial link between preclinical and clinical work examining the role of γ band activity in schizophrenia. MRI-based experiments measuring cortical GABA provides evidence supporting impaired GABAergic neurotransmission in schizophrenia patients, which is correlated with γ band activity level. Several studies suggest that stimulation of the cortical circuitry, directly or via subcortical structures, has the potential to modulate cortical γ activity, and improve cognitive function. Abnormal γ band activity is observed in patients with schizophrenia and disease models in animals, and is suggested to underlie the psychosis and cognitive/perceptual deficits. Convergent evidence from both clinical and preclinical studies suggest the central factor in γ band abnormalities is impaired GABAergic neurotransmission, particularly in a subclass of neurons which express parvalbumin. Rescue of γ band abnormalities presents an intriguing option for therapeutic intervention.

  1. Gamma band oscillations: a key to understanding schizophrenia symptoms and neural circuit abnormalities

    PubMed Central

    McNally, James M.; McCarley, Robert W.

    2016-01-01

    Purpose of review We review our current understanding of abnormal γ band oscillations in schizophrenia, their association with symptoms and the underlying cortical circuit abnormality, with a particular focus on the role of fast-spiking parvalbumin gamma-aminobutyric acid (GABA) neurons in the disease state. Recent findings Clinical electrophysiological studies of schizophrenia patients and pharmacological models of the disorder show an increase in spontaneous γ band activity (not stimulus-evoked) measures. These findings provide a crucial link between preclinical and clinical work examining the role of γ band activity in schizophrenia. MRI-based experiments measuring cortical GABA provides evidence supporting impaired GABAergic neurotransmission in schizophrenia patients, which is correlated with γ band activity level. Several studies suggest that stimulation of the cortical circuitry, directly or via subcortical structures, has the potential to modulate cortical γ activity, and improve cognitive function. Summary Abnormal γ band activity is observed in patients with schizophrenia and disease models in animals, and is suggested to underlie the psychosis and cognitive/perceptual deficits. Convergent evidence from both clinical and preclinical studies suggest the central factor in γ band abnormalities is impaired GABAergic neurotransmission, particularly in a subclass of neurons which express parvalbumin. Rescue of γ band abnormalities presents an intriguing option for therapeutic intervention. PMID:26900672

  2. Ontogeny and reversal of brain circuit abnormalities in a preclinical model of PCOS.

    PubMed

    Silva, Mauro Sb; Prescott, Melanie; Campbell, Rebecca E

    2018-04-05

    Androgen excess is a hallmark of polycystic ovary syndrome (PCOS), a prevalent yet poorly understood endocrine disorder. Evidence from women and preclinical animal models suggests that elevated perinatal androgens can elicit PCOS onset in adulthood, implying androgen actions in both PCOS ontogeny and adult pathophysiology. Prenatally androgenized (PNA) mice exhibit a robust increase of progesterone-sensitive GABAergic inputs to gonadotropin-releasing hormone (GnRH) neurons implicated in the pathogenesis of PCOS. It is unclear when altered GABAergic wiring develops in the brain, and whether these central abnormalities are dependent upon adult androgen excess. Using GnRH-GFP-transgenic mice, we determined that increased GABA input to GnRH neurons occurs prior to androgen excess and the manifestation of reproductive impairments in PNA mice. These data suggest that brain circuit abnormalities precede the postpubertal development of PCOS traits. Despite the apparent developmental programming of circuit abnormalities, long-term blockade of androgen receptor signaling from early adulthood rescued normal GABAergic wiring onto GnRH neurons, improved ovarian morphology, and restored reproductive cycles in PNA mice. Therefore, androgen excess maintains changes in female brain wiring linked to PCOS features and the blockade of androgen receptor signaling reverses both the central and peripheral PNA-induced PCOS phenotype.

  3. Ontogeny and reversal of brain circuit abnormalities in a preclinical model of PCOS

    PubMed Central

    Silva, Mauro S.B.; Prescott, Melanie; Campbell, Rebecca E.

    2018-01-01

    Androgen excess is a hallmark of polycystic ovary syndrome (PCOS), a prevalent yet poorly understood endocrine disorder. Evidence from women and preclinical animal models suggests that elevated perinatal androgens can elicit PCOS onset in adulthood, implying androgen actions in both PCOS ontogeny and adult pathophysiology. Prenatally androgenized (PNA) mice exhibit a robust increase of progesterone-sensitive GABAergic inputs to gonadotropin-releasing hormone (GnRH) neurons implicated in the pathogenesis of PCOS. It is unclear when altered GABAergic wiring develops in the brain, and whether these central abnormalities are dependent upon adult androgen excess. Using GnRH-GFP–transgenic mice, we determined that increased GABA input to GnRH neurons occurs prior to androgen excess and the manifestation of reproductive impairments in PNA mice. These data suggest that brain circuit abnormalities precede the postpubertal development of PCOS traits. Despite the apparent developmental programming of circuit abnormalities, long-term blockade of androgen receptor signaling from early adulthood rescued normal GABAergic wiring onto GnRH neurons, improved ovarian morphology, and restored reproductive cycles in PNA mice. Therefore, androgen excess maintains changes in female brain wiring linked to PCOS features and the blockade of androgen receptor signaling reverses both the central and peripheral PNA-induced PCOS phenotype. PMID:29618656

  4. Zebrafish embryos exposed to alcohol undergo abnormal development of motor neurons and muscle fibers.

    PubMed

    Sylvain, Nicole J; Brewster, Daniel L; Ali, Declan W

    2010-01-01

    Children exposed to alcohol in utero have significantly delayed gross and fine motor skills, as well as deficiencies in reflex development. The reasons that underlie the motor deficits caused by ethanol (EtOH) exposure remain to be fully elucidated. The present study was undertaken to investigate the effects of embryonic alcohol exposure (1.5%, 2% and 2.5% EtOH) on motor neuron and muscle fiber morphology in 3 days post fertilization (dpf) larval zebrafish. EtOH treated fish exhibited morphological deformities and fewer bouts of swimming in response to touch, compared with untreated fish. Immunolabelling with anti-acetylated tubulin indicated that fish exposed to 2.5% EtOH had significantly higher rates of motor neuron axon defects. Immunolabelling of primary and secondary motor neurons, using znp-1 and zn-8, revealed that fish exposed to 2% and 2.5% EtOH exhibited significantly higher rates of primary and secondary motor neuron axon defects compared to controls. Examination of red and white muscle fibers revealed that fish exposed to EtOH had significantly smaller fibers compared with controls. These findings indicate that motor neuron and muscle fiber morphology is affected by early alcohol exposure in zebrafish embryos, and that this may be related to deficits in locomotion. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Neuronal intranuclear inclusions are ultrastructurally and immunologically distinct from cytoplasmic inclusions of neuronal intermediate filament inclusion disease

    PubMed Central

    Mosaheb, Sabrina; Thorpe, Julian R.; Hashemzadeh-Bonehi, Lida; Bigio, Eileen H.; Gearing, Marla; Cairns, Nigel J.

    2006-01-01

    Abnormal neuronal cytoplasmic inclusions (NCIs) containing aggregates of α-internexin and the neurofilament (NF) subunits, NF-H, NF-M, and NF-L, are the signature lesions of neuronal intermediate filament (IF) inclusion disease (NIFID). The disease has a clinically heterogeneous phenotype, including fronto-temporal dementia, pyramidal and extrapyramidal signs presenting at a young age. NCIs are variably ubiquitinated and about half of cases also have neuronal intranuclear inclusions (NIIs), which are also ubiquitinated. NIIs have been described in polyglutamine-repeat expansion diseases, where they are strongly ubiquitin immunoreactive. The fine structure of NIIs of NIFID has not previously been described. Therefore, to determine the ultrastructure of NIIs, immunoelectron microscopy was undertaken on NIFID cases and normal aged control brains. Our results indicate that the NIIs of NIFID are strongly ubiquitin immunoreactive. However, unlike NCIs which contain ubiquitin, α-internexin and NF epitopes, NIIs contain neither epitopes of α-internexin nor NF subunits. Neither NIIs nor NCIs were recognised by antibodies to expanded polyglutamine repeats. The NII of NIFID lacks a limiting membrane and contains straight filaments of 20 nm mean width (range 11–35 nm), while NCIs contain filaments with a mean width of 10 nm (range 5–18 nm; t-test, P<0.001). Biochemistry revealed no differences in neuronal IF protein mobilities between NIFID and normal brain tissue. Therefore, NIIs of NIFID contain filaments morphologically and immunologically distinct from those of NCIs, and both types of inclusion lack expanded polyglutamine tracts of the triplet-repeat expansion diseases. These observations indicate that abnormal protein aggregation follows separate pathways in different neuronal compartments of NIFID. PMID:16025283

  6. MACF1 Controls Migration and Positioning of Cortical GABAergic Interneurons in Mice.

    PubMed

    Ka, Minhan; Moffat, Jeffrey J; Kim, Woo-Yang

    2017-12-01

    GABAergic interneurons develop in the ganglionic eminence in the ventral telencephalon and tangentially migrate into the cortical plate during development. However, key molecules controlling interneuron migration remain poorly identified. Here, we show that microtubule-actin cross-linking factor 1 (MACF1) regulates GABAergic interneuron migration and positioning in the developing mouse brain. To investigate the role of MACF1 in developing interneurons, we conditionally deleted the MACF1 gene in mouse interneuron progenitors and their progeny using Dlx5/6-Cre-IRES-EGFP and Nkx2.1-Cre drivers. We found that MACF1 deletion results in a marked reduction and defective positioning of interneurons in the mouse cerebral cortex and hippocampus, suggesting abnormal interneuron migration. Indeed, the speed and mode of interneuron migration were abnormal in the MACF1-mutant brain, compared with controls. Additionally, MACF1-deleted interneurons showed a significant reduction in the length of their leading processes and dendrites in the mouse brain. Finally, loss of MACF1 decreased microtubule stability in cortical interneurons. Our findings suggest that MACF1 plays a critical role in cortical interneuron migration and positioning in the developing mouse brain. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Abnormal expression of leiomyoma cytoskeletal proteins involved in cell migration.

    PubMed

    Ura, Blendi; Scrimin, Federica; Arrigoni, Giorgio; Athanasakis, Emmanouil; Aloisio, Michelangelo; Monasta, Lorenzo; Ricci, Giuseppe

    2016-05-01

    Uterine leiomyomas are monoclonal tumors. Several factors are involved in the neoplastic transformation of the myometrium. In our study we focused on dysregulated cytoskeletal proteins in the leiomyoma as compared to the myometrium. Paired tissue samples of ten leiomyomas and adjacent myometria were obtained and analyzed by two‑dimensional gel electrophoresis (2-DE). Mass spectrometry was used for protein identification, and western blotting for 2-DE data validation. The values of ten cytoskeletal proteins were found to be significantly different: eight proteins were upregulated in the leiomyoma and two proteins were downregulated. Three of the upregulated proteins (myosin regulatory light polypeptide 9, four and a half LIM domains protein 1 and LIM and SH3 domain protein 1) are involved in cell migration, while downregulated protein transgelin is involved in replicative senescence. Myosin regulatory light polypeptide 9 (MYL9) was further validated by western blotting because it is considered to be a cell migration marker in several cancers and could play a key role in leiomyoma development. Our data demonstrate significant alterations in the expression of cytoskeletal proteins involved in leiomyoma growth. A better understanding of the involvement of cytoskeletal proteins in leiomyoma pathogenesis may contribute to the identification of new therapeutic targets and the development of new pharmacological approaches.

  8. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee

    2013-08-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalizedmore » to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.« less

  9. Genetic Approaches to Reveal the Connectivity of Adult-Born Neurons

    PubMed Central

    Arenkiel, Benjamin R.

    2011-01-01

    Much has been learned about the environmental and molecular factors that influence the division, migration, and programmed cell death of adult-born neurons in the mammalian brain. However, detailed knowledge of the mechanisms that govern the formation and maintenance of functional circuit connectivity via adult neurogenesis remains elusive. Recent advances in genetic technologies now afford the ability to precisely target discrete brain tissues, neuronal subtypes, and even single neurons for vital reporter expression and controlled activity manipulations. Here, I review current viral tracing methods, heterologous receptor expression systems, and optogenetic technologies that hold promise toward elucidating the wiring diagrams and circuit properties of adult-born neurons. PMID:21519388

  10. Dynamical analysis of Parkinsonian state emulated by hybrid Izhikevich neuron models

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Li, Huiyan; Loparo, Kenneth A.; Fietkiewicz, Chris

    2015-11-01

    Computational models play a significant role in exploring novel theories to complement the findings of physiological experiments. Various computational models have been developed to reveal the mechanisms underlying brain functions. Particularly, in the development of therapies to modulate behavioral and pathological abnormalities, computational models provide the basic foundations to exhibit transitions between physiological and pathological conditions. Considering the significant roles of the intrinsic properties of the globus pallidus and the coupling connections between neurons in determining the firing patterns and the dynamical activities of the basal ganglia neuronal network, we propose a hypothesis that pathological behaviors under the Parkinsonian state may originate from combined effects of intrinsic properties of globus pallidus neurons and synaptic conductances in the whole neuronal network. In order to establish a computational efficient network model, hybrid Izhikevich neuron model is used due to its capacity of capturing the dynamical characteristics of the biological neuronal activities. Detailed analysis of the individual Izhikevich neuron model can assist in understanding the roles of model parameters, which then facilitates the establishment of the basal ganglia-thalamic network model, and contributes to a further exploration of the underlying mechanisms of the Parkinsonian state. Simulation results show that the hybrid Izhikevich neuron model is capable of capturing many of the dynamical properties of the basal ganglia-thalamic neuronal network, such as variations of the firing rates and emergence of synchronous oscillations under the Parkinsonian condition, despite the simplicity of the two-dimensional neuronal model. It may suggest that the computational efficient hybrid Izhikevich neuron model can be used to explore basal ganglia normal and abnormal functions. Especially it provides an efficient way of emulating the large-scale neuron network

  11. Spousal migration and human papillomavirus infection among women in rural western Nepal.

    PubMed

    Johnson, Derek C; Lhaki, Pema; Bhatta, Madhav P; Kempf, Mirjam-Colette; Smith, Jennifer S; Bhattarai, Pankaj; Aryal, Shilu; Chamot, Eric; Regmi, Kiran; Vermund, Sten H; Shrestha, Sadeep

    2016-07-01

    In April 2014 we investigated the association of migration of a woman's husband with her high-risk human papillomavirus (HR-HPV) infection status and her abnormal cervical cytology status in the Achham district of rural Far-Western Nepal. Women were surveyed and screened for HR-HPV during a health camp conducted by the Nepal Fertility Care Center. Univariate and multivariable statistical tests were performed to determine the association of a husband's migration status with HR-HPV infection and cervical cytology status. In 265 women, the prevalence of HR-HPV was 7.5% (20/265), while the prevalence of abnormal cervical cytology, defined using the Bethesda system as atypical glandular cells of undetermined significance or worse, was 7.6% (19/251). Half of the study participants (50.8%, 130/256) had husbands who had reported migrating for work at least once. Women aged ≤34 years were significantly less likely to test positive for HR-HPV than women aged >34 years (OR 0.22, 95% CI 0.07 to 0.71). HR-HPV infection and abnormal cervical cytology status were not directly associated with a husband's migration. Older women were found to have a higher prevalence of HPV than younger women. It is possible that a husband's migration for work could be delaying HR-HPV infections in married women until an older age. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Diffusion Tensor Imaging of Heterotopia: Changes of Fractional Anisotropy during Radial Migration of Neurons

    PubMed Central

    Kim, Jinna

    2010-01-01

    Purpose Diffusion tensor imaging provides better understanding of pathophysiology of congenital anomalies, involving central nervous system. This study was aimed to specify the pathogenetic mechanism of heterotopia, proved by diffusion tensor imaging, and establish new findings of heterotopia on fractional anisotropy maps. Materials and Methods Diffusion-weighted imaging data from 11 patients (M : F = 7 : 4, aged from 1 to 22 years, mean = 12.3 years) who visited the epilepsy clinic and received a routine seizure protocol MRI exam were retrospectively analyzed. Fractional anisotropy (FA) maps were generated from diffusion tensor imaging of 11 patients with heterotopia. Regions of interests (ROI) were placed in cerebral cortex, heterotopic gray matter and deep gray matter, including putamen. ANOVA analysis was performed for comparison of different gray matter tissues. Results Heterotopic gray matter showed signal intensities similar to normal gray matter on T1 and T2 weighted MRI. The measured FA of heterotopic gray matter was higher than that of cortical gray matter (0.236 ± 0.011 vs. 0.169 ± 0.015, p < 0.01, one way ANOVA), and slightly lower than that of deep gray matter (0.236 ± 0.011 vs. 0.259 ± 0.016, p < 0.01). Conclusion Increased FA of heterotopic gray matter suggests arrested neuron during radial migration and provides better understanding of neurodevelopment. PMID:20499428

  13. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells

    NASA Astrophysics Data System (ADS)

    Wei, Hongying; Liang, Fan; Meng, Ge; Nie, Zhiqing; Zhou, Ren; Cheng, Wei; Wu, Xiaomeng; Feng, Yan; Wang, Yan

    2016-09-01

    Fine particulate matter (PM2.5) has been implicated as a risk factor for neurodevelopmental disorders including autism in children. However, the underlying biological mechanism remains unclear. DNA methylation is suggested to be a fundamental mechanism for the neuronal responses to environmental cues. We prepared whole particle of PM2.5 (PM2.5), water-soluble extracts (Pw), organic extracts (Po) and carbon core component (Pc) and characterized their chemical constitutes. We found that PM2.5 induced significant redox imbalance, decreased the levels of intercellular methyl donor S-adenosylmethionine and caused global DNA hypomethylation. Furthermore, PM2.5 exposure triggered gene-specific promoter DNA hypo- or hypermethylation and abnormal mRNA expression of autism candidate genes. PM2.5-induced DNA hypermethylation in promoter regions of synapse related genes were associated with the decreases in their mRNA and protein expression. The inhibiting effects of antioxidative reagents, a methylation-supporting agent and a DNA methyltransferase inhibitor demonstrated the involvement of redox/methylation mechanism in PM2.5-induced abnormal DNA methylation patterns and synaptic protein expression. The biological effects above generally followed a sequence of PM2.5 ≥ Pwo > Po > Pw > Pc. Our results implicated a novel epigenetic mechanism for the neurodevelopmental toxicity of particulate air pollution, and that eliminating the chemical components could mitigate the neurotoxicity of PM2.5.

  14. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells.

    PubMed

    Wei, Hongying; Liang, Fan; Meng, Ge; Nie, Zhiqing; Zhou, Ren; Cheng, Wei; Wu, Xiaomeng; Feng, Yan; Wang, Yan

    2016-09-14

    Fine particulate matter (PM2.5) has been implicated as a risk factor for neurodevelopmental disorders including autism in children. However, the underlying biological mechanism remains unclear. DNA methylation is suggested to be a fundamental mechanism for the neuronal responses to environmental cues. We prepared whole particle of PM2.5 (PM2.5), water-soluble extracts (Pw), organic extracts (Po) and carbon core component (Pc) and characterized their chemical constitutes. We found that PM2.5 induced significant redox imbalance, decreased the levels of intercellular methyl donor S-adenosylmethionine and caused global DNA hypomethylation. Furthermore, PM2.5 exposure triggered gene-specific promoter DNA hypo- or hypermethylation and abnormal mRNA expression of autism candidate genes. PM2.5-induced DNA hypermethylation in promoter regions of synapse related genes were associated with the decreases in their mRNA and protein expression. The inhibiting effects of antioxidative reagents, a methylation-supporting agent and a DNA methyltransferase inhibitor demonstrated the involvement of redox/methylation mechanism in PM2.5-induced abnormal DNA methylation patterns and synaptic protein expression. The biological effects above generally followed a sequence of PM2.5 ≥ Pwo > Po > Pw > Pc. Our results implicated a novel epigenetic mechanism for the neurodevelopmental toxicity of particulate air pollution, and that eliminating the chemical components could mitigate the neurotoxicity of PM2.5.

  15. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells

    PubMed Central

    Wei, Hongying; Liang, Fan; Meng, Ge; Nie, Zhiqing; Zhou, Ren; Cheng, Wei; Wu, Xiaomeng; Feng, Yan; Wang, Yan

    2016-01-01

    Fine particulate matter (PM2.5) has been implicated as a risk factor for neurodevelopmental disorders including autism in children. However, the underlying biological mechanism remains unclear. DNA methylation is suggested to be a fundamental mechanism for the neuronal responses to environmental cues. We prepared whole particle of PM2.5 (PM2.5), water-soluble extracts (Pw), organic extracts (Po) and carbon core component (Pc) and characterized their chemical constitutes. We found that PM2.5 induced significant redox imbalance, decreased the levels of intercellular methyl donor S-adenosylmethionine and caused global DNA hypomethylation. Furthermore, PM2.5 exposure triggered gene-specific promoter DNA hypo- or hypermethylation and abnormal mRNA expression of autism candidate genes. PM2.5-induced DNA hypermethylation in promoter regions of synapse related genes were associated with the decreases in their mRNA and protein expression. The inhibiting effects of antioxidative reagents, a methylation-supporting agent and a DNA methyltransferase inhibitor demonstrated the involvement of redox/methylation mechanism in PM2.5-induced abnormal DNA methylation patterns and synaptic protein expression. The biological effects above generally followed a sequence of PM2.5 ≥ Pwo > Po > Pw > Pc. Our results implicated a novel epigenetic mechanism for the neurodevelopmental toxicity of particulate air pollution, and that eliminating the chemical components could mitigate the neurotoxicity of PM2.5. PMID:27624276

  16. E2f1 mediates high glucose-induced neuronal death in cultured mouse retinal explants.

    PubMed

    Wang, Yujiao; Zhou, Yi; Xiao, Lirong; Zheng, Shijie; Yan, Naihong; Chen, Danian

    2017-10-02

    Diabetic retinopathy (DR) is the most common complication of diabetes and remains one of the major causes of blindness in the world; infants born to diabetic mothers have higher risk of developing retinopathy of prematurity (ROP). While hyperglycemia is a major risk factor, the molecular and cellular mechanisms underlying DR and diabetic ROP are poorly understood. To explore the consequences of retinal cells under high glucose, we cultured wild type or E2f1 -/- mouse retinal explants from postnatal day 8 with normal glucose, high osmotic or high glucose media. Explants were also incubated with cobalt chloride (CoCl 2 ) to mimic the hypoxic condition. We showed that, at 7 days post exposure to high glucose, retinal explants displayed elevated cell death, ectopic cell division and intact retinal vascular plexus. Cell death mainly occurred in excitatory neurons, such as ganglion and bipolar cells, which were also ectopically dividing. Many Müller glial cells reentered the cell cycle; some had irregular morphology or migrated to other layers. High glucose inhibited the hyperoxia-induced blood vessel regression of retinal explants. Moreover, inactivation of E2f1 rescued high glucose-induced ectopic division and cell death of retinal neurons, but not ectopic cell division of Müller glial cells and vascular phenotypes. This suggests that high glucose has direct but distinct effects on retinal neurons, glial cells and blood vessels, and that E2f1 mediates its effects on retinal neurons. These findings shed new light onto mechanisms of DR and the fetal retinal abnormalities associated with maternal diabetes, and suggest possible new therapeutic strategies.

  17. Hippocampal neurogenesis and volume in migrating and wintering semipalmated sandpipers (Calidris pusilla)

    PubMed Central

    de Morais Magalhães, Nara Gyzely; Guerreiro Diniz, Daniel; Pereira Henrique, Ediely; Corrêa Pereira, Patrick Douglas; Matos Moraes, Isis Ananda; Damasceno de Melo, Mauro André; Sherry, David Francis; Wanderley Picanço Diniz, Cristovam

    2017-01-01

    Long distance migratory birds find their way by sensing and integrating information from a large number of cues in their environment. These cues are essential to navigate over thousands of kilometers and reach the same breeding, stopover, and wintering sites every year. The semipalmated sandpiper (Calidris pusilla) is a long-distance migrant that breeds in the arctic tundra of Canada and Alaska and winters on the northeast coast of South America. Its fall migration includes a 5,300-kilometer nonstop flight over the Atlantic Ocean. The avian hippocampus has been proposed to play a central role in the integration of multisensory spatial information for navigation. Hippocampal neurogenesis may contribute to hippocampal function and a variety of factors including cognitive activity, exercise, enrichment, diet and stress influence neurogenesis in the hippocampus. We quantified hippocampal neurogenesis and volume in adult migrating and wintering semipalmated sandpipers using stereological counts of doublecortin (DCX) immunolabeled immature neurons. We found that birds captured in the coastal region of Bragança, Brazil during the wintering period had more DCX positive neurons and larger volume in the hippocampus than individuals captured in the Bay of Fundy, Canada during fall migration. We also estimate the number of NeuN immunolabeled cells in migrating and wintering birds and found no significant differences between them. These findings suggest that, at this time window, neurogenesis just replaced neurons that might be lost during the transatlantic flight. Our findings also show that in active fall migrating birds, a lower level of adult hippocampal neurogenesis is associated with a smaller hippocampal formation. High levels of adult hippocampal neurogenesis and a larger hippocampal formation found in wintering birds may be late occurring effects of long distance migratory flight or the result of conditions the birds experienced while wintering. PMID:28591201

  18. Hippocampal neurogenesis and volume in migrating and wintering semipalmated sandpipers (Calidris pusilla).

    PubMed

    de Morais Magalhães, Nara Gyzely; Guerreiro Diniz, Cristovam; Guerreiro Diniz, Daniel; Pereira Henrique, Ediely; Corrêa Pereira, Patrick Douglas; Matos Moraes, Isis Ananda; Damasceno de Melo, Mauro André; Sherry, David Francis; Wanderley Picanço Diniz, Cristovam

    2017-01-01

    Long distance migratory birds find their way by sensing and integrating information from a large number of cues in their environment. These cues are essential to navigate over thousands of kilometers and reach the same breeding, stopover, and wintering sites every year. The semipalmated sandpiper (Calidris pusilla) is a long-distance migrant that breeds in the arctic tundra of Canada and Alaska and winters on the northeast coast of South America. Its fall migration includes a 5,300-kilometer nonstop flight over the Atlantic Ocean. The avian hippocampus has been proposed to play a central role in the integration of multisensory spatial information for navigation. Hippocampal neurogenesis may contribute to hippocampal function and a variety of factors including cognitive activity, exercise, enrichment, diet and stress influence neurogenesis in the hippocampus. We quantified hippocampal neurogenesis and volume in adult migrating and wintering semipalmated sandpipers using stereological counts of doublecortin (DCX) immunolabeled immature neurons. We found that birds captured in the coastal region of Bragança, Brazil during the wintering period had more DCX positive neurons and larger volume in the hippocampus than individuals captured in the Bay of Fundy, Canada during fall migration. We also estimate the number of NeuN immunolabeled cells in migrating and wintering birds and found no significant differences between them. These findings suggest that, at this time window, neurogenesis just replaced neurons that might be lost during the transatlantic flight. Our findings also show that in active fall migrating birds, a lower level of adult hippocampal neurogenesis is associated with a smaller hippocampal formation. High levels of adult hippocampal neurogenesis and a larger hippocampal formation found in wintering birds may be late occurring effects of long distance migratory flight or the result of conditions the birds experienced while wintering.

  19. Transcriptional regulation of neuronal polarity and morphogenesis in the mammalian brain

    PubMed Central

    de la Torre-Ubieta, Luis; Bonni, Azad

    2012-01-01

    The highly specialized morphology of a neuron, typically consisting of a long axon and multiple branching dendrites, lies at the core of the principle of dynamic polarization, whereby information flows from dendrites toward the soma and to the axon. For more than a century neuroscientists have been fascinated by how shape is important for neuronal function and how neurons acquire their characteristic morphology. During the past decade, substantial progress has been made in our understanding of the molecular underpinnings of neuronal polarity and morphogenesis. In these studies, transcription factors have emerged as key players governing multiple aspects of neuronal morphogenesis from neuronal polarization and migration to axon growth and pathfinding to dendrite growth and branching to synaptogenesis. In this review, we will highlight the role of transcription factors in shaping neuronal morphology with emphasis on recent literature in mammalian systems. PMID:21982366

  20. Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles.

    PubMed

    Cui, Xiangshui; Cheng, Yao; Lin, Hang; Huang, Feng; Wu, Qingping; Wang, Yuansheng

    2017-09-21

    Thermal quenching above 300 K is widely expected in photoluminescence. Luminescence quenching is usually ascribed to the non-radiative relaxation of excited electrons to the ground state of the activators, during which a high temperature always plays a role in pushing the excited electrons towards the quenching channels, leading to thermal quenching. For the lanthanide-doped nanoparticles, however, there is a special luminescence quenching channel that does not exist in their bulk counterparts, i.e., energy migration-induced surface quenching. Herein, a size-dependent abnormal thermal enhancement of luminescence in the temperature range of 300 K to 423 K in the ytterbium-doped fluoride nanoparticles is presented for the first time. Importantly, in this work, we originally demonstrate that the energy migration-induced surface quenching can be suppressed by increasing temperature, which results in the abnormal thermal enhancement of luminescence. According to the temperature-dependent X-ray diffraction and lifetime analyses, an underlying mechanism based on the effect of thermal lattice expansion on ytterbium-mediated energy migration is proposed. This new finding adds new insights to the size effect on the luminescent characteristics of nanoparticles, which could be utilized to construct some unique nanostructures, especially for many important temperature-related purposes, such as thermal sensing technology.

  1. Abnormal tuning of saccade-related cells in pontine reticular formation of strabismic monkeys.

    PubMed

    Walton, Mark M G; Mustari, Michael J

    2015-08-01

    Strabismus is a common disorder, characterized by a chronic misalignment of the eyes and numerous visual and oculomotor abnormalities. For example, saccades are often highly disconjugate. For humans with pattern strabismus, the horizontal and vertical disconjugacies vary with eye position. In monkeys, manipulations that disturb binocular vision during the first several weeks of life result in a chronic strabismus with characteristics that closely match those in human patients. Early onset strabismus is associated with altered binocular sensitivity of neurons in visual cortex. Here we test the hypothesis that brain stem circuits specific to saccadic eye movements are abnormal. We targeted the pontine paramedian reticular formation, a structure that directly projects to the ipsilateral abducens nucleus. In normal animals, neurons in this structure are characterized by a high-frequency burst of spikes associated with ipsiversive saccades. We recorded single-unit activity from 84 neurons from four monkeys (two normal, one exotrope, and one esotrope), while they made saccades to a visual target on a tangent screen. All 24 neurons recorded from the normal animals had preferred directions within 30° of pure horizontal. For the strabismic animals, the distribution of preferred directions was normal on one side of the brain, but highly variable on the other. In fact, 12/60 neurons recorded from the strabismic animals preferred vertical saccades. Many also had unusually weak or strong bursts. These data suggest that the loss of corresponding binocular vision during infancy impairs the development of normal tuning characteristics for saccade-related neurons in brain stem. Copyright © 2015 the American Physiological Society.

  2. Regulation of Dipeptidyl Peptidase IV in the Post-stroke Rat Brain and In Vitro Ischemia: Implications for Chemokine-Mediated Neural Progenitor Cell Migration and Angiogenesis.

    PubMed

    Wesley, Umadevi V; Hatcher, James F; Ayvaci, Emine R; Klemp, Abby; Dempsey, Robert J

    2017-09-01

    Cerebral ischemia evokes abnormal release of proteases in the brain microenvironment that spatiotemporally impact angio-neurogenesis. Dipeptidyl peptidase IV (DPPIV), a cell surface and secreted protease, has been implicated in extracellular matrix remodeling by regulating cell adhesion, migration, and angiogenesis through modifying the functions of the major chemokine stromal-derived factor, SDF1. To elucidate the possible association of DPPIV in ischemic brain, we examined the expression of DPPIV in the post-stroke rat brain and under in vitro ischemia by oxygen glucose deprivation (OGD). We further investigated the effects of DPPIV on SDF1 mediated in vitro chemotactic and angiogenic functions. DPPIV protein and mRNA levels were significantly upregulated during repair phase in the ischemic cortex of the rat brain, specifically in neurons, astrocytes, and endothelial cells. In vitro exposure of Neuro-2a neuronal cells and rat brain endothelial cells to OGD resulted in upregulation of DPPIV. In vitro functional analysis showed that DPPIV decreases the SDF1-mediated angiogenic potential of rat brain endothelial cells and inhibits the migration of Neuro-2a and neural progenitor cells. Western blot analyses revealed decreased levels of phosphorylated ERK1/2 and AKT in the presence of DPPIV. DPPIV inhibitor restored the effects of SDF1. Proteome profile array screening further revealed that DPPIV decreases matrix metalloproteinase-9, a key downstream effector of ERK-AKT signaling pathways. Overall, delayed induction of DPPIV in response to ischemia/reperfusion suggests that DPPIV may play an important role in endogenous brain tissue remodeling and repair processes. This may be mediated through modulation of SDF1-mediated cell migration and angiogenesis.

  3. Motor Control Abnormalities in Parkinson’s Disease

    PubMed Central

    Mazzoni, Pietro; Shabbott, Britne; Cortés, Juan Camilo

    2012-01-01

    The primary manifestations of Parkinson’s disease are abnormalities of movement, including movement slowness, difficulties with gait and balance, and tremor. We know a considerable amount about the abnormalities of neuronal and muscle activity that correlate with these symptoms. Motor symptoms can also be described in terms of motor control, a level of description that explains how movement variables, such as a limb’s position and speed, are controlled and coordinated. Understanding motor symptoms as motor control abnormalities means to identify how the disease disrupts normal control processes. In the case of Parkinson’s disease, movement slowness, for example, would be explained by a disruption of the control processes that determine normal movement speed. Two long-term benefits of understanding the motor control basis of motor symptoms include the future design of neural prostheses to replace the function of damaged basal ganglia circuits, and the rational design of rehabilitation strategies. This type of understanding, however, remains limited, partly because of limitations in our knowledge of normal motor control. In this article, we review the concept of motor control and describe a few motor symptoms that illustrate the challenges in understanding such symptoms as motor control abnormalities. PMID:22675667

  4. Otx genes in neurogenesis of mesencephalic dopaminergic neurons.

    PubMed

    Simeone, Antonio; Puelles, Eduardo; Omodei, Daniela; Acampora, Dario; Di Giovannantonio, Luca Giovanni; Di Salvio, Michela; Mancuso, Pietro; Tomasetti, Carmine

    2011-08-01

    Mesencephalic-diencephalic dopaminergic (mdDA) neurons play a relevant role in the control of movement, behavior, and cognition. Indeed loss and/or abnormal functioning of mdDA neurons are responsible for Parkinson's disease as well as for addictive and psychiatric disorders. In the last years a wealth of information has been provided on gene functions controlling identity, fate, and proliferation of mdDA progenitors. This review will focus on the role exerted by Otx genes in early decisions regulating sequential steps required for the neurogenesis of mesencephalic dopaminergic (mesDA) neurons. In this context, the regulatory network involving Otx functional interactions with signaling molecules and transcription factors required to promote or prevent the development of mesDA neurons will be analyzed in detail. Copyright © 2011 Wiley Periodicals, Inc.

  5. A Sympathetic Neuron Autonomous Role for Egr3-Mediated Gene Regulation in Dendrite Morphogenesis and Target Tissue Innervation

    PubMed Central

    Quach, David H.; Oliveira-Fernandes, Michelle; Gruner, Katherine A.; Tourtellotte, Warren G.

    2013-01-01

    Egr3 is a nerve growth factor (NGF)-induced transcriptional regulator that is essential for normal sympathetic nervous system development. Mice lacking Egr3 in the germline have sympathetic target tissue innervation abnormalities and physiologic sympathetic dysfunction similar to humans with dysautonomia. However, since Egr3 is widely expressed and has pleiotropic function, it has not been clear whether it has a role within sympathetic neurons and if so, what target genes it regulates to facilitate target tissue innervation. Here, we show that Egr3 expression within sympathetic neurons is required for their normal innervation since isolated sympathetic neurons lacking Egr3 have neurite outgrowth abnormalities when treated with NGF and mice with sympathetic neuron-restricted Egr3 ablation have target tissue innervation abnormalities similar to mice lacking Egr3 in all tissues. Microarray analysis performed on sympathetic neurons identified many target genes deregulated in the absence of Egr3, with some of the most significantly deregulated genes having roles in axonogenesis, dendritogenesis, and axon guidance. Using a novel genetic technique to visualize axons and dendrites in a subpopulation of randomly labeled sympathetic neurons, we found that Egr3 has an essential role in regulating sympathetic neuron dendrite morphology and terminal axon branching, but not in regulating sympathetic axon guidance to their targets. Together, these results indicate that Egr3 has a sympathetic neuron autonomous role in sympathetic nervous system development that involves modulating downstream target genes affecting the outgrowth and branching of sympathetic neuron dendrites and axons. PMID:23467373

  6. Associative and sensorimotor learning for parenting involves mirror neurons under the influence of oxytocin.

    PubMed

    Ho, S Shaun; Macdonald, Adam; Swain, James E

    2014-04-01

    Mirror neuron-based associative learning may be understood according to associative learning theories, in addition to sensorimotor learning theories. This is important for a comprehensive understanding of the role of mirror neurons and related hormone modulators, such as oxytocin, in complex social interactions such as among parent-infant dyads and in examples of mirror neuron function that involve abnormal motor systems such as depression.

  7. Reciprocal interactions between neurons and glia are required for Drosophila peripheral nervous system development.

    PubMed

    Sepp, Katharine J; Auld, Vanessa J

    2003-09-10

    A major developmental role of peripheral glia is to mediate sensory axon guidance; however, it is not known whether sensory neurons influence peripheral glial development. To determine whether glia and neurons reciprocally interact during embryonic development, we ablated each cell type by overexpressing the apoptosis gene, grim, and observed the effects on peripheral nervous system (PNS) development. When neurons are ablated, glial defects occur as a secondary effect, and vice versa. Therefore glia and neurons are codependent during embryogenesis. To further explore glial-neuronal interactions, we genetically disrupted glial migration or differentiation and observed the secondary effects on sensory neuron development. Glial migration and ensheathment of PNS axons was blocked by overexpression of activated Rho GTPase, a regulator of actin dynamics. Here, sensory axons extended to the CNS without exhibiting gross pathfinding errors. In contrast, disrupting differentiation by expression of dominant-negative Ras GTPase in glia resulted in major sensory axon pathfinding errors, similar to those seen in glial ablations. Glial overexpression of transgenic components of the epidermal growth factor receptor (EGFR) signaling pathway yielded similar sensory neuron defects and also downregulated the expression of the glial marker Neuroglian. Mutant analysis also suggested that the EGFR ligands Spitz and Vein play roles in peripheral glial development. The observations support a model in which glia express genes necessary for sensory neuron development, and these genes are potentially under the control of the EGFR/Ras signaling pathway.

  8. Oligodendrocyte-Neuron Interactions: Impact on Myelination and Brain Function.

    PubMed

    Shimizu, Takeshi; Osanai, Yasuyuki; Ikenaka, Kazuhiro

    2018-01-01

    In the past, glial cells were considered to be 'glue' cells whose primary role was thought to be merely filling gaps in neural circuits. However, a growing number of reports have indicated the role of glial cells in higher brain function through their interaction with neurons. Myelin was originally thought to be just a sheath structure surrounding neuronal axons, but recently it has been shown that myelin exerts effects on the conduction velocity of neuronal axons even after myelin formation. Therefore, the investigation of glial cell properties and the neuron-glial interactions is important for understanding higher brain function. Moreover, since there are many neurological disorders caused by glial abnormalities, further understanding of glial cell-related diseases and the development of effective therapeutic strategies are warranted. In this review, we focused on oligodendrocyte-neuron interactions, with particular attention on (1) axonal signals underlying oligodendrocyte differentiation and myelination, (2) neuronal activity-dependent myelination and (3) the effects of myelination on higher brain function.

  9. Müller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish

    PubMed Central

    Lenkowski, Jenny R.; Raymond, Pamela A.

    2014-01-01

    Adult zebrafish generate new neurons in the brain and retina throughout life. Growth-related neurogenesis allows a vigorous regenerative response to damage, and fish can regenerate retinal neurons, including photoreceptors, and restore functional vision following photic, chemical, or mechanical destruction of the retina. Müller glial cells in fish function as radial-glial-like neural stem cells. During adult growth, Müller glial nuclei undergo sporadic, asymmetric, self-renewing mitotic divisions in the inner nuclear layer to generate a rod progenitor that migrates along the radial fiber of the Müller glia into the outer nuclear layer, proliferates, and differentiates exclusively into rod photoreceptors. When retinal neurons are destroyed, Müller glia in the immediate vicinity of the damage partially and transiently dedifferentiate, re-express retinal progenitor and stem cell markers, re-enter the cell cycle, undergo interkinetic nuclear migration (characteristic of neuroepithelial cells), and divide once in an asymmetric, self-renewing division to generate a retinal progenitor. This daughter cell proliferates rapidly to form a compact neurogenic cluster surrounding the Müller glia; these multipotent retinal progenitors then migrate along the radial fiber to the appropriate lamina to replace missing retinal neurons. Some aspects of the injury-response in fish Müller glia resemble gliosis as observed in mammals, and mammalian Müller glia exhibit some neurogenic properties, indicative of a latent ability to regenerate retinal neurons. Understanding the specific properties of fish Müller glia that facilitate their robust capacity to generate retinal neurons will inform and inspire new clinical approaches for treating blindness and visual loss with regenerative medicine. PMID:24412518

  10. Chemoattraction and chemorepulsion of Strongyloides stercoralis infective larvae on a sodium chloride gradient is mediated by amphidial neuron pairs ASE and ASH, respectively.

    PubMed

    Forbes, W M; Ashton, F T; Boston, R; Zhu, X; Schad, G A

    2004-03-25

    Depending on its concentration, sodium chloride acts as either an attractant or a repellant to the infective larvae (L3i) of Strongyloides stercoralis. On a concentration gradient, L3i are attracted to 0.05 M NaCl, but repelled by 2.8M. To test the hypothesis that amphidial neurons ASE and ASH might mediate attraction and repulsion, respectively, these neurons, and control neurons as well, were ablated in hatchling larvae with a laser microbeam. After the larvae attained infectivity (L3i), they were tested on a NaCl gradient. When placed at low salinity, 73.5% of normal controls migrated "up" the gradient, while 26.4% crawled randomly. In contrast, only 20.6% of ASE-ablated L3i migrated "up" the gradient, while 79.4% migrated randomly. Ablation-control ASK-ablated L3i (58.8%) migrated "up" the gradient while 41.1% crawled randomly. When placed at a region of high salinity, 100% of normal control L3i migrated "down" the gradient, whereas 62.5% of ASH-ablated L3i migrated randomly, the remaining 37.5% migrating "down" the gradient. In sharp contrast with ASH-ablated L3i, 94.1% of ablation-control larvae, i.e. ASK-ablated L3i, migrated "down" the gradient. Migration behavior of ASE- and ASH-ablated L3i was significantly different (P < 0.001) from that of ASK-ablated L3i and normal controls. It is noteworthy that 87.5% of ASE-ablated L3i that failed to exhibit chemoattractive behavior were actively chemorepelled from high salinity. Also, 70.0% of ASH-ablated L3i that failed to be chemorepelled from high salinity were capable of chemoattractive behavior, indicating that the worms had retained their behavioral responses except for those associated with the targeted neurons.

  11. BIG1 is required for the survival of deep layer neurons, neuronal polarity, and the formation of axonal tracts between the thalamus and neocortex in developing brain

    PubMed Central

    Teoh, Jia-Jie; Iwano, Tomohiko; Kunii, Masataka; Atik, Nur; Avriyanti, Erda; Yoshimura, Shin-ichiro; Moriwaki, Kenta

    2017-01-01

    BIG1, an activator protein of the small GTPase, Arf, and encoded by the Arfgef1 gene, is one of candidate genes for epileptic encephalopathy. To know the involvement of BIG1 in epileptic encephalopathy, we analyzed BIG1-deficient mice and found that BIG1 regulates neurite outgrowth and brain development in vitro and in vivo. The loss of BIG1 decreased the size of the neocortex and hippocampus. In BIG1-deficient mice, the neuronal progenitor cells (NPCs) and the interneurons were unaffected. However, Tbr1+ and Ctip2+ deep layer (DL) neurons showed spatial-temporal dependent apoptosis. This apoptosis gradually progressed from the piriform cortex (PIR), peaked in the neocortex, and then progressed into the hippocampus from embryonic day 13.5 (E13.5) to E17.5. The upper layer (UL) and DL order in the neocortex was maintained in BIG1-deficient mice, but the excitatory neurons tended to accumulate before their destination layers. Further pulse-chase migration assay showed that the migration defect was non-cell autonomous and secondary to the progression of apoptosis into the BIG1-deficient neocortex after E15.5. In BIG1-deficient mice, we observed an ectopic projection of corticothalamic axons from the primary somatosensory cortex (S1) into the dorsal lateral geniculate nucleus (dLGN). The thalamocortical axons were unable to cross the diencephalon–telencephalon boundary (DTB). In vitro, BIG1-deficient neurons showed a delay in neuronal polarization. BIG1-deficient neurons were also hypersensitive to low dose glutamate (5 μM), and died via apoptosis. This study showed the role of BIG1 in the survival of DL neurons in developing embryonic brain and in the generation of neuronal polarity. PMID:28414797

  12. Disrupted kisspeptin signaling in GnRH neurons leads to hypogonadotrophic hypogonadism.

    PubMed

    Novaira, Horacio J; Sonko, Momodou L; Hoffman, Gloria; Koo, Yongbum; Ko, Chemyong; Wolfe, Andrew; Radovick, Sally

    2014-02-01

    Landmark studies have shown that mutations in kisspeptin and the kisspeptin receptor (Kiss1r) result in reproductive dysfunction in humans and genetically altered mouse models. However, because kisspeptin and its receptor are present in target cells of the central and peripheral reproductive axis, the precise location(s) for the pathogenic signal is unknown. The study described herein shows that the kisspeptin-Kiss1r signaling pathway in the GnRH neuron is singularly critical for both the onset of puberty as well as the attainment of normal reproductive function. In this study, we directly test the hypothesis that kisspeptin neurons regulate GnRH secretion through the activation of Kiss1r on the plasma membrane of GnRH neurons. A GnRH neuron-specific Kiss1r knockout mouse model (GKirKO) was generated, and reproductive development and phenotype were assessed. Both female and male GKirKO mice were infertile, having low serum LH and FSH levels. External abnormalities such as microphallus and decreased anogenital distance associated with failure of preputial gland separation were present in GKirKO males. A delay in pubertal onset and abnormal estrous cyclicity were observed in female GKirKO mice. Taken together, these data provide in vivo evidence that Kiss1r in GnRH neurons is critical for reproductive development and fertility.

  13. High level of reactive oxygen species impaired mesenchymal stem cell migration via overpolymerization of F-actin cytoskeleton in systemic lupus erythematosus.

    PubMed

    Shi, D; Li, X; Chen, H; Che, N; Zhou, S; Lu, Z; Shi, S; Sun, L

    2014-12-01

    Some lines of evidence have demonstrated abnormalities of bone marrow mesenchymal stem cells (MSCs) in systemic lupus erythematosus (SLE) patients, characterized by defective phenotype of MSCs and slower growth with enhanced apoptosis and senescence. However, whether SLE MSCs demonstrate aberrant migration capacity or abnormalities in cytoskeleton are issues that remain poorly understood. In this study, we found that MSCs from SLE patients did show impairment in migration capacity as well as abnormalities in F-actin cytoskeleton, accompanied by a high level of intracellular reactive oxygen species (ROS). When normal MSCs were treated in vitro with H2O2, which increases intracellular ROS level as an oxidant, both reorganization of F-actin cytoskeleton and impairment of migration capability were observed. On the other hand, treatment with N-acetylcysteine (NAC), as an exogenous antioxidant, made F-actin more orderly and increased migration ratio in SLE MSCs. In addition, oral administration of NAC markedly reduced serum autoantibody levels and ameliorated lupus nephritis (LN) in MRL/lpr mice, partially reversing the abnormalities of MSCs. These results indicate that overpolymerization of F-actin cytoskeleton, which may be associated with high levels of ROS, causes impairment in the migration capacity of SLE MSCs and that oral administration of NAC may have potential therapeutic effects on MRL/lpr mice. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Local traction force in the proximal leading process triggers nuclear translocation during neuronal migration.

    PubMed

    Umeshima, Hiroki; Nomura, Ken-Ichi; Yoshikawa, Shuhei; Hörning, Marcel; Tanaka, Motomu; Sakuma, Shinya; Arai, Fumihito; Kaneko, Makoto; Kengaku, Mineko

    2018-04-05

    Somal translocation in long bipolar neurons is regulated by actomyosin contractile forces, yet the precise spatiotemporal sites of force generation are unknown. Here we investigate the force dynamics generated during somal translocation using traction force microscopy. Neurons with a short leading process generated a traction force in the growth cone and counteracting forces in the leading and trailing processes. In contrast, neurons with a long leading process generated a force dipole with opposing traction forces in the proximal leading process during nuclear translocation. Transient accumulation of actin filaments was observed at the dipole center of the two opposing forces, which was abolished by inhibition of myosin II activity. A swelling in the leading process emerged and generated a traction force that pulled the nucleus when nuclear translocation was physically hampered. The traction force in the leading process swelling was uncoupled from somal translocation in neurons expressing a dominant negative mutant of the KASH protein, which disrupts the interaction between cytoskeletal components and the nuclear envelope. Our results suggest that the leading process is the site of generation of actomyosin-dependent traction force in long bipolar neurons, and that the traction force is transmitted to the nucleus via KASH proteins. Copyright © 2018 Elsevier B.V. and Japan Neuroscience Society. All rights reserved.

  15. Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders.

    PubMed

    Dapretto, Mirella; Davies, Mari S; Pfeifer, Jennifer H; Scott, Ashley A; Sigman, Marian; Bookheimer, Susan Y; Iacoboni, Marco

    2006-01-01

    To examine mirror neuron abnormalities in autism, high-functioning children with autism and matched controls underwent fMRI while imitating and observing emotional expressions. Although both groups performed the tasks equally well, children with autism showed no mirror neuron activity in the inferior frontal gyrus (pars opercularis). Notably, activity in this area was inversely related to symptom severity in the social domain, suggesting that a dysfunctional 'mirror neuron system' may underlie the social deficits observed in autism.

  16. Neuron number and size in prefrontal cortex of children with autism.

    PubMed

    Courchesne, Eric; Mouton, Peter R; Calhoun, Michael E; Semendeferi, Katerina; Ahrens-Barbeau, Clelia; Hallet, Melodie J; Barnes, Cynthia Carter; Pierce, Karen

    2011-11-09

    Autism often involves early brain overgrowth, including the prefrontal cortex (PFC). Although prefrontal abnormality has been theorized to underlie some autistic symptoms, the cellular defects that cause abnormal overgrowth remain unknown. To investigate whether early brain overgrowth in children with autism involves excess neuron numbers in the PFC. DESIGN, SETTING, AND CASES: Postmortem prefrontal tissue from 7 autistic and 6 control male children aged 2 to 16 years was examined by expert anatomists who were blinded to diagnostic status. Number and size of neurons were quantified using stereological methods within the dorsolateral (DL-PFC) and mesial (M-PFC) subdivisions of the PFC. Cases were from the eastern and southeastern United States and died between 2000 and 2006. Mean neuron number and size in the DL-PFC and M-PFC were compared between autistic and control postmortem cases. Correlations of neuron number with deviation in brain weight from normative values for age were also performed. Children with autism had 67% more neurons in the PFC (mean, 1.94 billion; 95% CI, 1.57-2.31) compared with control children (1.16 billion; 95% CI, 0.90-1.42; P = .002), including 79% more in DL-PFC (1.57 billion; 95% CI, 1.20-1.94 in autism cases vs 0.88 billion; 95% CI, 0.66-1.10 in controls; P = .003) and 29% more in M-PFC (0.36 billion; 95% CI, 0.33-0.40 in autism cases vs 0.28 billion; 95% CI, 0.23-0.34 in controls; P = .009). Brain weight in the autistic cases differed from normative mean weight for age by a mean of 17.6% (95% CI, 10.2%-25.0%; P = .001), while brains in controls differed by a mean of 0.2% (95% CI, -8.7% to 9.1%; P = .96). Plots of counts by weight showed autistic children had both greater total prefrontal neuron counts and brain weight for age than control children. In this small preliminary study, brain overgrowth in males with autism involved an abnormal excess number of neurons in the PFC.

  17. Pleiotrophin antagonizes Brd2 during neuronal differentiation

    PubMed Central

    Garcia-Gutierrez, Pablo; Juarez-Vicente, Francisco; Wolgemuth, Debra J.; Garcia-Dominguez, Mario

    2014-01-01

    ABSTRACT Bromodomain-containing protein 2 (Brd2) is a BET family chromatin adaptor required for expression of cell-cycle-associated genes and therefore involved in cell cycle progression. Brd2 is expressed in proliferating neuronal progenitors, displays cell-cycle-stimulating activity and, when overexpressed, impairs neuronal differentiation. Paradoxically, Brd2 is also detected in differentiating neurons. To shed light on the role of Brd2 in the transition from cell proliferation to differentiation, we had previously looked for proteins that interacted with Brd2 upon induction of neuronal differentiation. Surprisingly, we identified the growth factor pleiotrophin (Ptn). Here, we show that Ptn antagonized the cell-cycle-stimulating activity associated with Brd2, thus enhancing induced neuronal differentiation. Moreover, Ptn knockdown reduced neuronal differentiation. We analyzed Ptn-mediated antagonism of Brd2 in a cell differentiation model and in two embryonic processes associated with the neural tube: spinal cord neurogenesis and neural crest migration. Finally, we investigated the mechanisms of Ptn-mediated antagonism and determined that Ptn destabilizes the association of Brd2 with chromatin. Thus, Ptn-mediated Brd2 antagonism emerges as a modulation system accounting for the balance between cell proliferation and differentiation in the vertebrate nervous system. PMID:24695857

  18. The Caenorhabditis elegans NF2/Merlin Molecule NFM-1 Nonautonomously Regulates Neuroblast Migration and Interacts Genetically with the Guidance Cue SLT-1/Slit

    PubMed Central

    Josephson, Matthew P.; Aliani, Rana; Norris, Megan L.; Ochs, Matthew E.; Gujar, Mahekta; Lundquist, Erik A.

    2017-01-01

    During nervous system development, neurons and their progenitors migrate to their final destinations. In Caenorhabditis elegans, the bilateral Q neuroblasts and their descendants migrate long distances in opposite directions, despite being born in the same posterior region. QR on the right migrates anteriorly and generates the AQR neuron positioned near the head, and QL on the left migrates posteriorly, giving rise to the PQR neuron positioned near the tail. In a screen for genes required for AQR and PQR migration, we identified an allele of nfm-1, which encodes a molecule similar to vertebrate NF2/Merlin, an important tumor suppressor in humans. Mutations in NF2 lead to neurofibromatosis type II, characterized by benign tumors of glial tissues. Here we demonstrate that in C. elegans, nfm-1 is required for the ability of Q cells and their descendants to extend protrusions and to migrate, but is not required for direction of migration. Using a combination of mosaic analysis and cell-specific expression, we show that NFM-1 is required nonautonomously, possibly in muscles, to promote Q lineage migrations. We also show a genetic interaction between nfm-1 and the C. elegans Slit homolog slt-1, which encodes a conserved secreted guidance cue. Our results suggest that NFM-1 might be involved in the generation of an extracellular cue that promotes Q neuroblast protrusion and migration that acts with or in parallel to SLT-1. In vertebrates, NF2 and Slit2 interact in axon pathfinding, suggesting a conserved interaction of NF2 and Slit2 in regulating migratory events. PMID:27913619

  19. Abnormal expression of ephrin-A5 affects brain development of congenital hypothyroidism rats.

    PubMed

    Suo, Guihai; Shen, Feifei; Sun, Baolan; Song, Honghua; Xu, Meiyu; Wu, Youjia

    2018-05-14

    EphA5 and its ligand ephrin-A5 interaction can trigger synaptogenesis during early hippocampus development. We have previously reported that abnormal EphA5 expression can result in synaptogenesis disorder in congenital hypothyroidism (CH) rats. To better understand its precise molecular mechanism, we further analyzed the characteristics of ephrin-A5 expression in the hippocampus of CH rats. Our study revealed that ephrin-A5 expression was downregulated by thyroid hormone deficiency in the developing hippocampus and hippocampal neurons in rats. Thyroxine treatment for hypothyroid hippocampus and triiodothyronine treatment for hypothyroid hippocampal neurons significantly improved ephrin-A5 expression but could not restore its expression to control levels. Hypothyroid hippocampal neurons in-vitro showed synaptogenesis disorder characterized by a reduction in the number and length of neurites. Furthermore, the synaptogenesis-associated molecular expressions of NMDAR-1 (NR1), PSD95 and CaMKII were all downregulated correspondingly. These results suggest that ephrin-A5 expression may be decreased in CH, and abnormal activation of ephrin-A5/EphA5 signaling affects synaptogenesis during brain development. Such findings provide an important basis for exploring the pathogenesis of CH genetically.

  20. Effects of oxaliplatin on mouse myenteric neurons and colonic motility

    PubMed Central

    Wafai, Linah; Taher, Mohammadali; Jovanovska, Valentina; Bornstein, Joel C.; Dass, Crispin R.; Nurgali, Kulmira

    2013-01-01

    Oxaliplatin, an anti-cancer chemotherapeutic agent used for the treatment of colorectal cancer, commonly causes gastrointestinal side-effects such as constipation, diarrhoea, nausea, and vomiting. Damage to enteric neurons may underlie some of these gastrointestinal side-effects, as the enteric nervous system (ENS) controls functions of the bowel. In this study, neuronal loss and changes to the structure and immunoreactivity of myenteric neuronal nitric oxide synthase (nNOS) neurons were examined in colonic segments from mice following exposure to oxaliplatin ex vivo and following repeated intraperitoneal injections of oxaliplatin over 3 weeks in vivo, using immunohistochemistry and confocal microscopy. Significant morphological alterations and increases in the proportion of NOS-immunoreactive (IR) neurons were associated with both short-term oxaliplatin exposure and long-term oxaliplatin administration, confirming that oxaliplatin causes changes to the myenteric neurons. Long-term oxaliplatin administration induced substantial neuronal loss that was correlated with a reduction in both the frequency and propagation speed of colonic migrating motor complexes (CMMCs) in vitro. Similar changes probably produce some symptoms experienced by patients undergoing oxaliplatin treatment. PMID:23486839

  1. Zinc Promotes Adipose-Derived Mesenchymal Stem Cell Proliferation and Differentiation towards a Neuronal Fate.

    PubMed

    Moon, Mi-Young; Kim, Hyun Jung; Choi, Bo Young; Sohn, Min; Chung, Tae Nyoung; Suh, Sang Won

    2018-01-01

    Zinc is an essential element required for cell division, migration, and proliferation. Under zinc-deficient conditions, proliferation and differentiation of neural progenitors are significantly impaired. Adipose-derived mesenchymal stem cells (AD-MSCs) are multipotent stem cells that can differentiate into neurons. The aim of this study was to evaluate the effect of zinc on AD-MSC proliferation and differentiation. We initially examined the effect of zinc on stem cell proliferation at the undifferentiated stage. AD-MSCs showed high proliferation rates on day 6 in 30  μ M and 100  μ M of ZnCl 2 . Zinc chelation inhibited AD-MSC proliferation via downregulation of ERK1/2 activity. We then assessed whether zinc was involved in cell migration and neurite outgrowth during differentiation. After three days of neuronal differentiation, TUJ-1-positive cells were observed, implying that AD-MSCs had differentiated into early neuron or neuron-like cells. Neurite outgrowth was increased in the zinc-treated group, while the CaEDTA-treated group showed diminished, shrunken neurites. Furthermore, we showed that zinc promoted neurite outgrowth via the inactivation of RhoA and led to the induction of neuronal gene expression (MAP2 and nestin) in differentiated stem cells. Taken together, zinc promoted AD-MSC proliferation and affected neuronal differentiation, mainly by increasing neurite outgrowth.

  2. Zinc Promotes Adipose-Derived Mesenchymal Stem Cell Proliferation and Differentiation towards a Neuronal Fate

    PubMed Central

    Moon, Mi-Young; Kim, Hyun Jung; Choi, Bo Young; Sohn, Min

    2018-01-01

    Zinc is an essential element required for cell division, migration, and proliferation. Under zinc-deficient conditions, proliferation and differentiation of neural progenitors are significantly impaired. Adipose-derived mesenchymal stem cells (AD-MSCs) are multipotent stem cells that can differentiate into neurons. The aim of this study was to evaluate the effect of zinc on AD-MSC proliferation and differentiation. We initially examined the effect of zinc on stem cell proliferation at the undifferentiated stage. AD-MSCs showed high proliferation rates on day 6 in 30 μM and 100 μM of ZnCl2. Zinc chelation inhibited AD-MSC proliferation via downregulation of ERK1/2 activity. We then assessed whether zinc was involved in cell migration and neurite outgrowth during differentiation. After three days of neuronal differentiation, TUJ-1-positive cells were observed, implying that AD-MSCs had differentiated into early neuron or neuron-like cells. Neurite outgrowth was increased in the zinc-treated group, while the CaEDTA-treated group showed diminished, shrunken neurites. Furthermore, we showed that zinc promoted neurite outgrowth via the inactivation of RhoA and led to the induction of neuronal gene expression (MAP2 and nestin) in differentiated stem cells. Taken together, zinc promoted AD-MSC proliferation and affected neuronal differentiation, mainly by increasing neurite outgrowth. PMID:29765417

  3. Designing a deep brain stimulator to suppress pathological neuronal synchrony.

    PubMed

    Montaseri, Ghazal; Yazdanpanah, Mohammad Javad; Bahrami, Fariba

    2015-03-01

    Some of neuropathologies are believed to be related to abnormal synchronization of neurons. In the line of therapy, designing effective deep brain stimulators to suppress the pathological synchrony among neuronal ensembles is a challenge of high clinical relevance. The stimulation should be able to disrupt the synchrony in the presence of latencies due to imperfect knowledge about parameters of a neuronal ensemble and stimulation impacts on the ensemble. We propose an adaptive desynchronizing deep brain stimulator capable of dealing with these uncertainties. We analyze the collective behavior of the stimulated neuronal ensemble and show that, using the designed stimulator, the resulting asynchronous state is stable. Simulation results reveal the efficiency of the proposed technique. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Murine neural crest stem cells and embryonic stem cell-derived neuron precursors survive and differentiate after transplantation in a model of dorsal root avulsion.

    PubMed

    Konig, Niclas; Trolle, Carl; Kapuralin, Katarina; Adameyko, Igor; Mitrecic, Dinko; Aldskogius, Hakan; Shortland, Peter J; Kozlova, Elena N

    2017-01-01

    Spinal root avulsion results in paralysis and sensory loss, and is commonly associated with chronic pain. In addition to the failure of avulsed dorsal root axons to regenerate into the spinal cord, avulsion injury leads to extensive neuroinflammation and degeneration of second-order neurons in the dorsal horn. The ultimate objective in the treatment of this condition is to counteract degeneration of spinal cord neurons and to achieve functionally useful regeneration/reconnection of sensory neurons with spinal cord neurons. Here we compare survival and migration of murine boundary cap neural crest stem cells (bNCSCs) and embryonic stem cells (ESCs)-derived, predifferentiated neuron precursors after their implantation acutely at the junction between avulsed dorsal roots L3-L6 and the spinal cord. Both types of cells survived transplantation, but showed distinctly different modes of migration. Thus, bNCSCs migrated into the spinal cord, expressed glial markers and formed elongated tubes in the peripheral nervous system (PNS) compartment of the avulsed dorsal root transitional zone (DRTZ) area. In contrast, the ESC transplants remained at the site of implantation and differentiated to motor neurons and interneurons. These data show that both stem cell types successfully survived implantation to the acutely injured spinal cord and maintained their differentiation and migration potential. These data suggest that, depending on the source of neural stem cells, they can play different beneficial roles for recovery after dorsal root avulsion. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Cerebral Developmental Abnormalities in a Mouse with Systemic Pyruvate Dehydrogenase Deficiency

    PubMed Central

    Pliss, Lioudmila; Hausknecht, Kathryn A.; Stachowiak, Michal K.; Dlugos, Cynthia A.; Richards, Jerry B.; Patel, Mulchand S.

    2013-01-01

    Pyruvate dehydrogenase (PDH) complex (PDC) deficiency is an inborn error of pyruvate metabolism causing a variety of neurologic manifestations. Systematic analyses of development of affected brain structures and the cellular processes responsible for their impairment have not been performed due to the lack of an animal model for PDC deficiency. METHODS: In the present study we investigated a murine model of systemic PDC deficiency by interrupting the X-linked Pdha1 gene encoding the α subunit of PDH to study its role on brain development and behavioral studies. RESULTS: Male embryos died prenatally but heterozygous females were born. PDC activity was reduced in the brain and other tissues in female progeny compared to age-matched control females. Immunohistochemical analysis of several brain regions showed that approximately 40% of cells were PDH−. The oxidation of glucose to CO2 and incorporation of glucose-carbon into fatty acids were reduced in brain slices from 15 day-old PDC-deficient females. Histological analyses showed alterations in several structures in white and gray matters in 35 day-old PDC-deficient females. Reduction in total cell number and reduced dendritic arbors in Purkinje neurons were observed in PDC-deficient females. Furthermore, cell proliferation, migration and differentiation into neurons by newly generated cells were reduced in the affected females during pre- and postnatal periods. PDC-deficient mice had normal locomotor activity in a novel environment but displayed decreased startle responses to loud noises and there was evidence of abnormal pre-pulse inhibition of the startle reflex. CONCLUSIONS: The results show that a reduction in glucose metabolism resulting in deficit in energy production and fatty acid biosynthesis impairs cellular differentiation and brain development in PDC-deficient mice. PMID:23840713

  6. Modeling schizophrenia using hiPSC neurons

    PubMed Central

    Brennand, Kristen; Simone, Anthony; Jou, Jessica; Gelboin-Burkhart, Chelsea; Tran, Ngoc; Sangar, Sarah; Li, Yan; Mu, Yangling; Chen, Gong; Yu, Diana; McCarthy, Shane; Sebat, Jonathan; Gage, Fred H.

    2012-01-01

    SUMMARY Schizophrenia (SCZD) is a debilitating neurological disorder with a world-wide prevalence of 1%; there is a strong genetic component, with an estimated heritability of 80–85%1. Though postmortem studies have revealed reduced brain volume, cell size, spine density and abnormal neural distribution in the prefrontal cortex and hippocampus of SCZD brain tissue2 and neuropharmacological studies have implicated dopaminergic, glutamatergic and GABAergic activity in SCZD3, the cell types affected in SCZD and the molecular mechanisms underlying the disease state remain unclear. To elucidate the cellular and molecular defects of SCZD, we directly reprogrammed fibroblasts from SCZD patients into human induced pluripotent stem cells (hiPSCs) and subsequently differentiated these disorder-specific hiPSCs into neurons (SI Fig. 1). SCZD hiPSC neurons showed diminished neuronal connectivity in conjunction with decreased neurite number, PSD95-protein levels and glutamate receptor expression. Gene expression profiles of SCZD hiPSC neurons identified altered expression of many components of the cAMP and WNT signaling pathways. Key cellular and molecular elements of the SCZD phenotype were ameliorated following treatment of SCZD hiPSC neurons with the antipsychotic Loxapine. To date, hiPSC neuronal pathology has only been demonstrated in diseases characterized by both the loss of function of a single gene product and rapid disease progression in early childhood4–6. We now report hiPSC neuronal phenotypes and gene expression changes associated with SCZD, a complex genetic psychiatric disorder (SI Table 1). PMID:21490598

  7. Cell Cycle Deregulation in the Neurons of Alzheimer’s Disease

    PubMed Central

    Moh, Calvin; Kubiak, Jacek Z.; Bajic, Vladan P.; Zhu, Xiongwei; Smith, Mark A.

    2018-01-01

    The cell cycle consists of four main phases: G1, S, G2, and M. Most cells undergo these cycles up to 40–60 times in their life. However, neurons remain in a nondividing, nonreplicating phase, G0. Neurons initiate but do not complete cell division, eventually entering apoptosis. Research has suggested that like cancer, Alzheimer’s disease (AD) involves dysfunction in neuronal cell cycle reentry, leading to the development of the two-hit hypothesis of AD. The first hit is abnormal cell cycle reentry, which typically results in neuronal apoptosis and prevention of AD. However, with the second hit of chronic oxidative damage preventing apoptosis, neurons gain “immortality” analogous to tumor cells. Once both of these hits are activated, AD can develop and produce senile plaques and neurofibrillary tangles throughout brain tissue. In this review, we propose a mechanism for neuronal cell cycle reentry and the development of AD. PMID:21630160

  8. Multi-Cellular Logistics of Collective Cell Migration

    PubMed Central

    Yamao, Masataka; Naoki, Honda; Ishii, Shin

    2011-01-01

    During development, the formation of biological networks (such as organs and neuronal networks) is controlled by multicellular transportation phenomena based on cell migration. In multi-cellular systems, cellular locomotion is restricted by physical interactions with other cells in a crowded space, similar to passengers pushing others out of their way on a packed train. The motion of individual cells is intrinsically stochastic and may be viewed as a type of random walk. However, this walk takes place in a noisy environment because the cell interacts with its randomly moving neighbors. Despite this randomness and complexity, development is highly orchestrated and precisely regulated, following genetic (and even epigenetic) blueprints. Although individual cell migration has long been studied, the manner in which stochasticity affects multi-cellular transportation within the precisely controlled process of development remains largely unknown. To explore the general principles underlying multicellular migration, we focus on the migration of neural crest cells, which migrate collectively and form streams. We introduce a mechanical model of multi-cellular migration. Simulations based on the model show that the migration mode depends on the relative strengths of the noise from migratory and non-migratory cells. Strong noise from migratory cells and weak noise from surrounding cells causes “collective migration,” whereas strong noise from non-migratory cells causes “dispersive migration.” Moreover, our theoretical analyses reveal that migratory cells attract each other over long distances, even without direct mechanical contacts. This effective interaction depends on the stochasticity of the migratory and non-migratory cells. On the basis of these findings, we propose that stochastic behavior at the single-cell level works effectively and precisely to achieve collective migration in multi-cellular systems. PMID:22205934

  9. The Caenorhabditis elegans NF2/Merlin Molecule NFM-1 Nonautonomously Regulates Neuroblast Migration and Interacts Genetically with the Guidance Cue SLT-1/Slit.

    PubMed

    Josephson, Matthew P; Aliani, Rana; Norris, Megan L; Ochs, Matthew E; Gujar, Mahekta; Lundquist, Erik A

    2017-02-01

    During nervous system development, neurons and their progenitors migrate to their final destinations. In Caenorhabditis elegans, the bilateral Q neuroblasts and their descendants migrate long distances in opposite directions, despite being born in the same posterior region. QR on the right migrates anteriorly and generates the AQR neuron positioned near the head, and QL on the left migrates posteriorly, giving rise to the PQR neuron positioned near the tail. In a screen for genes required for AQR and PQR migration, we identified an allele of nfm-1, which encodes a molecule similar to vertebrate NF2/Merlin, an important tumor suppressor in humans. Mutations in NF2 lead to neurofibromatosis type II, characterized by benign tumors of glial tissues. Here we demonstrate that in C. elegans, nfm-1 is required for the ability of Q cells and their descendants to extend protrusions and to migrate, but is not required for direction of migration. Using a combination of mosaic analysis and cell-specific expression, we show that NFM-1 is required nonautonomously, possibly in muscles, to promote Q lineage migrations. We also show a genetic interaction between nfm-1 and the C. elegans Slit homolog slt-1, which encodes a conserved secreted guidance cue. Our results suggest that NFM-1 might be involved in the generation of an extracellular cue that promotes Q neuroblast protrusion and migration that acts with or in parallel to SLT-1 In vertebrates, NF2 and Slit2 interact in axon pathfinding, suggesting a conserved interaction of NF2 and Slit2 in regulating migratory events. Copyright © 2017 by the Genetics Society of America.

  10. Neuronal glucose transporter isoform 3 deficient mice demonstrate features of autism spectrum disorders.

    PubMed

    Zhao, Y; Fung, C; Shin, D; Shin, B-C; Thamotharan, S; Sankar, R; Ehninger, D; Silva, A; Devaskar, S U

    2010-03-01

    Neuronal glucose transporter (GLUT) isoform 3 deficiency in null heterozygous mice led to abnormal spatial learning and working memory but normal acquisition and retrieval during contextual conditioning, abnormal cognitive flexibility with intact gross motor ability, electroencephalographic seizures, perturbed social behavior with reduced vocalization and stereotypies at low frequency. This phenotypic expression is unique as it combines the neurobehavioral with the epileptiform characteristics of autism spectrum disorders. This clinical presentation occurred despite metabolic adaptations consisting of an increase in microvascular/glial GLUT1, neuronal GLUT8 and monocarboxylate transporter isoform 2 concentrations, with minimal to no change in brain glucose uptake but an increase in lactate uptake. Neuron-specific glucose deficiency has a negative impact on neurodevelopment interfering with functional competence. This is the first description of GLUT3 deficiency that forms a possible novel genetic mechanism for pervasive developmental disorders, such as the neuropsychiatric autism spectrum disorders, requiring further investigation in humans.

  11. Reelin Promotes Neuronal Orientation and Dendritogenesis during Preplate Splitting

    PubMed Central

    Nichols, Anna J.

    2010-01-01

    The secreted ligand Reelin is thought to regulate the translocation and positioning of prospective layer 6 (L6) neurons into the preplate, a plexus of neurons overlying the ventricular zone. We examined wild type and Reelin-deficient cortices and found that L6 neurons were equivalently positioned beneath the pia during the period of preplate splitting and initial cortical plate (CP) formation. The absence of detectable L6 ectopia in “reeler” cortices at this developmental time point indicates that Reelin-signaling might not regulate L6 neuron migration or gross positioning during preplate splitting. To explore the acute response of L6 neurons to Reelin, subpial injections of Reelin were made into Reelin-deficient explants. Reelin injection caused L6 neurons to orient their nuclei and polarize their Golgi toward the pia while initiating exuberant dendritic (MAP2+) outgrowth within 4 h. This rapid Reelin-dependent neuronal orientation and alignment created CP-like histology without any significant change in the mean position of the population of L6 neurons. Conversely, subplate cells and chondroitin sulfate proteoglycan immunoreactivity were found at significantly deeper positions from the pial surface after injection, suggesting that Reelin partially rescues preplate splitting within 4 h. Thus, Reelin has a direct role in promoting rapid morphological differentation and orientation of L6 neurons during preplate splitting. PMID:20064940

  12. Light and melatonin schedule neuronal differentiation in the habenular nuclei

    PubMed Central

    de Borsetti, Nancy Hernandez; Dean, Benjamin J.; Bain, Emily J.; Clanton, Joshua A.; Taylor, Robert W.; Gamse, Joshua T.

    2011-01-01

    The formation of the embryonic brain requires the production, migration, and differentiation of neurons to be timely and coordinated. Coupling to the photoperiod could synchronize the development of neurons in the embryo. Here, we consider the effect of light and melatonin on the differentiation of embryonic neurons in zebrafish. We examine the formation of neurons in the habenular nuclei, a paired structure found near the dorsal surface of the brain adjacent to the pineal organ. Keeping embryos in constant darkness causes a temporary accumulation of habenular precursor cells, resulting in late differentiation and a long-lasting reduction in neuronal processes (neuropil). Because constant darkness delays the accumulation of the neurendocrine hormone melatonin in embryos, we looked for a link between melatonin signaling and habenular neurogenesis. A pharmacological block of melatonin receptors delays neurogenesis and reduces neuropil similarly to constant darkness, while addition of melatonin to embryos in constant darkness restores timely neurogenesis and neuropil. We conclude that light and melatonin schedule the differentiation of neurons and the formation of neural processes in the habenular nuclei. PMID:21840306

  13. Olfactory and cortical projections to bulbar and hippocampal adult-born neurons

    PubMed Central

    De La Rosa-Prieto, Carlos; De Moya-Pinilla, Miguel; Saiz-Sanchez, Daniel; Ubeda-banon, Isabel; Arzate, Dulce M.; Flores-Cuadrado, Alicia; Liberia, Teresa; Crespo, Carlos; Martinez-Marcos, Alino

    2015-01-01

    New neurons are continually generated in the subependymal layer of the lateral ventricles and the subgranular zone of dentate gyrus during adulthood. In the subventricular zone, neuroblasts migrate a long distance to the olfactory bulb where they differentiate into granule or periglomerular interneurons. In the hippocampus, neuroblasts migrate a short distance from the subgranular zone to the granule cell layer of the dentate gyrus to become granule neurons. In addition to the short-distance inputs, bulbar interneurons receive long-distance centrifugal afferents from olfactory-recipient structures. Similarly, dentate granule cells receive differential inputs from the medial and lateral entorhinal cortices through the perforant pathway. Little is known concerning these new inputs on the adult-born cells. In this work, we have characterized afferent inputs to 21-day old newly-born neurons. Mice were intraperitoneally injected with bromodeoxyuridine. Two weeks later, rhodamine-labeled dextran-amine was injected into the anterior olfactory nucleus, olfactory tubercle, piriform cortex and lateral and medial entorhinal cortices. One week later, animals were perfused and immunofluorescences were carried out. The data show that projection neurons from the mentioned structures, establish putative synaptic contacts onto 21-day-old neurons in the olfactory bulb and dentate gyrus, in some cases even before they start to express specific subpopulation proteins. Long-distance afferents reach middle and outer one-third portions of the molecular layer of the dentate gyrus and granule and, interestingly, periglomerular layers of the olfactory bulb. In the olfactory bulb, these fibers appear to establish presumptive axo-somatic contacts onto newly-born granule and periglomerular cells. PMID:25698936

  14. Neuronal Atrophy Early in Degenerative Ataxia Is a Compensatory Mechanism to Regulate Membrane Excitability

    PubMed Central

    Dell'Orco, James M.; Wasserman, Aaron H.; Chopra, Ravi; Ingram, Melissa A. C.; Hu, Yuan-Shih; Singh, Vikrant; Wulff, Heike; Opal, Puneet; Orr, Harry T.

    2015-01-01

    Neuronal atrophy in neurodegenerative diseases is commonly viewed as an early event in a continuum that ultimately results in neuronal loss. In a mouse model of the polyglutamine disorder spinocerebellar ataxia type 1 (SCA1), we tested the hypothesis that cerebellar Purkinje neuron atrophy serves an adaptive role rather than being simply a nonspecific response to injury. In acute cerebellar slices from SCA1 mice, we find that Purkinje neuron pacemaker firing is initially normal but, with the onset of motor dysfunction, becomes disrupted, accompanied by abnormal depolarization. Remarkably, subsequent Purkinje cell atrophy is associated with a restoration of pacemaker firing. The early inability of Purkinje neurons to support repetitive spiking is due to unopposed calcium currents resulting from a reduction in large-conductance calcium-activated potassium (BK) and subthreshold-activated potassium channels. The subsequent restoration of SCA1 Purkinje neuron firing correlates with the recovery of the density of these potassium channels that accompanies cell atrophy. Supporting a critical role for BK channels, viral-mediated increases in BK channel expression in SCA1 Purkinje neurons improves motor dysfunction and partially restores Purkinje neuron morphology. Cerebellar perfusion of flufenamic acid, an agent that restores the depolarized membrane potential of SCA1 Purkinje neurons by activating potassium channels, prevents Purkinje neuron dendritic atrophy. These results suggest that Purkinje neuron dendritic remodeling in ataxia is an adaptive response to increases in intrinsic membrane excitability. Similar adaptive remodeling could apply to other vulnerable neuronal populations in neurodegenerative disease. SIGNIFICANCE STATEMENT In neurodegenerative disease, neuronal atrophy has long been assumed to be an early nonspecific event preceding neuronal loss. However, in a mouse model of spinocerebellar ataxia type 1 (SCA1), we identify a previously unappreciated

  15. Dietary Micronutrients Promote Neuronal Differentiation by Modulating the Mitochondrial-Nuclear Dialogue.

    PubMed

    Xie, Kui; Sheppard, Allan

    2018-07-01

    The metabolic requirements of differentiated neurons are significantly different from that of neuronal precursor and neural stem cells. While a re-programming of metabolism is tightly coupled to the neuronal differentiation process, whether shifts in mitochondrial mass, glycolysis, and oxidative phosphorylation are required (or merely consequential) in differentiation is not yet certain. In addition to providing more energy, enhanced metabolism facilitates differentiation by supporting increased neurotransmitter signaling and underpinning epigenetic regulation of gene expression. Both epidemiological and animal studies demonstrate that micronutrients (MNs) significantly influence many aspects of neonatal brain development, particularly neural migration and survival, neurite outgrowth, and process maturation. Here we review recent insights into the importance of metabolic reprogramming in neuronal differentiation, before considering evidence that micronutrient signaling may be key to regulating these processes. © 2018 WILEY Periodicals, Inc.

  16. Developmental time windows for axon growth influence neuronal network topology.

    PubMed

    Lim, Sol; Kaiser, Marcus

    2015-04-01

    Early brain connectivity development consists of multiple stages: birth of neurons, their migration and the subsequent growth of axons and dendrites. Each stage occurs within a certain period of time depending on types of neurons and cortical layers. Forming synapses between neurons either by growing axons starting at similar times for all neurons (much-overlapped time windows) or at different time points (less-overlapped) may affect the topological and spatial properties of neuronal networks. Here, we explore the extreme cases of axon formation during early development, either starting at the same time for all neurons (parallel, i.e., maximally overlapped time windows) or occurring for each neuron separately one neuron after another (serial, i.e., no overlaps in time windows). For both cases, the number of potential and established synapses remained comparable. Topological and spatial properties, however, differed: Neurons that started axon growth early on in serial growth achieved higher out-degrees, higher local efficiency and longer axon lengths while neurons demonstrated more homogeneous connectivity patterns for parallel growth. Second, connection probability decreased more rapidly with distance between neurons for parallel growth than for serial growth. Third, bidirectional connections were more numerous for parallel growth. Finally, we tested our predictions with C. elegans data. Together, this indicates that time windows for axon growth influence the topological and spatial properties of neuronal networks opening up the possibility to a posteriori estimate developmental mechanisms based on network properties of a developed network.

  17. A mouse model of DEPDC5-related epilepsy: Neuronal loss of Depdc5 causes dysplastic and ectopic neurons, increased mTOR signaling, and seizure susceptibility.

    PubMed

    Yuskaitis, Christopher J; Jones, Brandon M; Wolfson, Rachel L; Super, Chloe E; Dhamne, Sameer C; Rotenberg, Alexander; Sabatini, David M; Sahin, Mustafa; Poduri, Annapurna

    2018-03-01

    DEPDC5 is a newly identified epilepsy-related gene implicated in focal epilepsy, brain malformations, and Sudden Unexplained Death in Epilepsy (SUDEP). In vitro, DEPDC5 negatively regulates amino acid sensing by the mTOR complex 1 (mTORC1) pathway, but the role of DEPDC5 in neurodevelopment and epilepsy has not been described. No animal model of DEPDC5-related epilepsy has recapitulated the neurological phenotypes seen in patients, and germline knockout rodent models are embryonic lethal. Here, we establish a neuron-specific Depdc5 conditional knockout mouse by cre-recombination under the Synapsin1 promotor. Depdc5 flox/flox -Syn1 Cre (Depdc5cc+) mice survive to adulthood with a progressive neurologic phenotype that includes motor abnormalities (i.e., hind limb clasping) and reduced survival compared to littermate control mice. Depdc5cc+ mice have larger brains with increased cortical neuron size and dysplastic neurons throughout the cortex, comparable to the abnormal neurons seen in human focal cortical dysplasia specimens. Depdc5 results in constitutive mTORC1 hyperactivation exclusively in neurons as measured by the increased phosphorylation of the downstream ribosomal protein S6. Despite a lack of increased mTORC1 signaling within astrocytes, Depdc5cc+ brains show reactive astrogliosis. We observed two Depdc5cc+ mice to have spontaneous seizures, including a terminal seizure. We demonstrate that as a group Depdc5cc+ mice have lowered seizure thresholds, as evidenced by decreased latency to seizures after chemoconvulsant injection and increased mortality from pentylenetetrazole-induced seizures. In summary, our neuron-specific Depdc5 knockout mouse model recapitulates clinical, pathological, and biochemical features of human DEPDC5-related epilepsy and brain malformations. We thereby present an important model in which to study targeted therapeutic strategies for DEPDC5-related conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Novel transcriptional networks regulated by CLOCK in human neurons.

    PubMed

    Fontenot, Miles R; Berto, Stefano; Liu, Yuxiang; Werthmann, Gordon; Douglas, Connor; Usui, Noriyoshi; Gleason, Kelly; Tamminga, Carol A; Takahashi, Joseph S; Konopka, Genevieve

    2017-11-01

    The molecular mechanisms underlying human brain evolution are not fully understood; however, previous work suggested that expression of the transcription factor CLOCK in the human cortex might be relevant to human cognition and disease. In this study, we investigated this novel transcriptional role for CLOCK in human neurons by performing chromatin immunoprecipitation sequencing for endogenous CLOCK in adult neocortices and RNA sequencing following CLOCK knockdown in differentiated human neurons in vitro. These data suggested that CLOCK regulates the expression of genes involved in neuronal migration, and a functional assay showed that CLOCK knockdown increased neuronal migratory distance. Furthermore, dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. These data support a role for CLOCK-regulated transcriptional cascades involved in human brain evolution and function. © 2017 Fontenot et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Neuronal Entropy-Rate Feature of Entopeduncular Nucleus in Rat Model of Parkinson's Disease.

    PubMed

    Darbin, Olivier; Jin, Xingxing; Von Wrangel, Christof; Schwabe, Kerstin; Nambu, Atsushi; Naritoku, Dean K; Krauss, Joachim K; Alam, Mesbah

    2016-03-01

    The function of the nigro-striatal pathway on neuronal entropy in the basal ganglia (BG) output nucleus, i.e. the entopeduncular nucleus (EPN) was investigated in the unilaterally 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD). In both control subjects and subjects with 6-OHDA lesion of dopamine (DA) the nigro-striatal pathway, a histological hallmark for parkinsonism, neuronal entropy in EPN was maximal in neurons with firing rates ranging between 15 and 25 Hz. In 6-OHDA lesioned rats, neuronal entropy in the EPN was specifically higher in neurons with firing rates above 25 Hz. Our data establishes that the nigro-striatal pathway controls neuronal entropy in motor circuitry and that the parkinsonian condition is associated with abnormal relationship between firing rate and neuronal entropy in BG output nuclei. The neuronal firing rates and entropy relationship provide putative relevant electrophysiological information to investigate the sensory-motor processing in normal condition and conditions such as movement disorders.

  20. Drugs of abuse that cause developing neurons to commit suicide.

    PubMed

    Farber, Nuri B; Olney, John W

    2003-12-30

    When neuronal activity is abnormally suppressed during the developmental period of synaptogenesis, the timing and sequence of synaptic connections is disrupted, and this causes nerve cells to receive an internal signal to commit suicide, a form of cell death known as "apoptosis". By altering glutamate and GABA transmission alcohol suppresses neuronal activity, causing millions of nerve cells to commit suicide in the developing brain. This proapoptotic effect of alcohol provides a likely explanation for the diminished brain size and lifelong neurobehavioral disturbances associated with the human fetal alcohol syndrome. These findings have public health significance, not only in relation to fetal alcohol syndrome, but also in relation to several other drugs of abuse and various drugs used in obstetric and pediatric medicine, because these additional drugs (e.g. phencyclidine, ketamine, benzodiazepines, barbiturates) also suppress neuronal activity and drive developing neurons to commit suicide.

  1. Inherited Paediatric Motor Neuron Disorders: Beyond Spinal Muscular Atrophy

    PubMed Central

    Sampaio, Hugo; Mowat, David; Roscioli, Tony

    2017-01-01

    Paediatric motor neuron diseases encompass a group of neurodegenerative diseases characterised by the onset of muscle weakness and atrophy before the age of 18 years, attributable to motor neuron loss across various neuronal networks in the brain and spinal cord. While the genetic underpinnings are diverse, advances in next generation sequencing have transformed diagnostic paradigms. This has reinforced the clinical phenotyping and molecular genetic expertise required to navigate the complexities of such diagnoses. In turn, improved genetic technology and subsequent gene identification have enabled further insights into the mechanisms of motor neuron degeneration and how these diseases form part of a neurodegenerative disorder spectrum. Common pathophysiologies include abnormalities in axonal architecture and function, RNA processing, and protein quality control. This review incorporates an overview of the clinical manifestations, genetics, and pathophysiology of inherited paediatric motor neuron disorders beyond classic SMN1-related spinal muscular atrophy and describes recent advances in next generation sequencing and its clinical application. Specific disease-modifying treatment is becoming a clinical reality in some disorders of the motor neuron highlighting the importance of a timely and specific diagnosis. PMID:28634552

  2. αB-crystallin negative astrocytic inclusions.

    PubMed

    Barnett, Brad P; Bressler, Joseph; Chen, Terina; Hutchins, Grover M; Crain, Barbara J; Kaufmann, Walter E

    2011-04-01

    We report on an unusual pathological finding of astrocytes, observed in the brain of a 16-year-old African-American male with severe intellectual disability and spastic quadriplegia. The brain showed bilateral pericentral, perisylvian polymicrogyria and pachygyria, in conjunction with a large number of hypertrophic astrocytes with eosinophilic granular cytoplasmic inclusions. The astrocytic abnormality was more severe in the dysgenetic area but present throughout the cerebral cortex. Astrocytic inclusions stained with acid fuchsin, azocarmine and Holzer's stain, and were immunoreactive for GFAP, S-100, and ubiquitin, but not for αB-crystallin, filamin, vimentin, nestin, tau or α-synuclein. Based on the case and a review of the literature, the authors postulate that these astrocytic inclusions in the cerebral cortex reflect abnormalities in radial glial developmental processes, such as migration, differentiation, or glial-neuronal interaction function during neuronal migration. Copyright © 2010 The Japanese Society of Child Neurology. All rights reserved.

  3. The functional significance of newly born neurons integrated into olfactory bulb circuits.

    PubMed

    Sakamoto, Masayuki; Kageyama, Ryoichiro; Imayoshi, Itaru

    2014-01-01

    The olfactory bulb (OB) is the first central processing center for olfactory information connecting with higher areas in the brain, and this neuronal circuitry mediates a variety of odor-evoked behavioral responses. In the adult mammalian brain, continuous neurogenesis occurs in two restricted regions, the subventricular zone (SVZ) of the lateral ventricle and the hippocampal dentate gyrus. New neurons born in the SVZ migrate through the rostral migratory stream and are integrated into the neuronal circuits of the OB throughout life. The significance of this continuous supply of new neurons in the OB has been implicated in plasticity and memory regulation. Two decades of huge investigation in adult neurogenesis revealed the biological importance of integration of new neurons into the olfactory circuits. In this review, we highlight the recent findings about the physiological functions of newly generated neurons in rodent OB circuits and then discuss the contribution of neurogenesis in the brain function. Finally, we introduce cutting edge technologies to monitor and manipulate the activity of new neurons.

  4. The functional significance of newly born neurons integrated into olfactory bulb circuits

    PubMed Central

    Sakamoto, Masayuki; Kageyama, Ryoichiro; Imayoshi, Itaru

    2014-01-01

    The olfactory bulb (OB) is the first central processing center for olfactory information connecting with higher areas in the brain, and this neuronal circuitry mediates a variety of odor-evoked behavioral responses. In the adult mammalian brain, continuous neurogenesis occurs in two restricted regions, the subventricular zone (SVZ) of the lateral ventricle and the hippocampal dentate gyrus. New neurons born in the SVZ migrate through the rostral migratory stream and are integrated into the neuronal circuits of the OB throughout life. The significance of this continuous supply of new neurons in the OB has been implicated in plasticity and memory regulation. Two decades of huge investigation in adult neurogenesis revealed the biological importance of integration of new neurons into the olfactory circuits. In this review, we highlight the recent findings about the physiological functions of newly generated neurons in rodent OB circuits and then discuss the contribution of neurogenesis in the brain function. Finally, we introduce cutting edge technologies to monitor and manipulate the activity of new neurons. PMID:24904263

  5. Schizophrenia-Like Dopamine Release Abnormalities in a Mouse Model of NMDA Receptor Hypofunction.

    PubMed

    Nakao, Kazuhito; Jeevakumar, Vivek; Jiang, Sunny Zhihong; Fujita, Yuko; Diaz, Noelia B; Pretell Annan, Carlos A; Eskow Jaunarajs, Karen L; Hashimoto, Kenji; Belforte, Juan E; Nakazawa, Kazu

    2018-01-31

    Amphetamine-induced augmentation of striatal dopamine and its blunted release in prefrontal cortex (PFC) is a hallmark of schizophrenia pathophysiology. Although N-methyl-D-aspartate receptor (NMDAR) hypofunction is also implicated in schizophrenia, it remains unclear whether NMDAR hypofunction leads to dopamine release abnormalities. We previously demonstrated schizophrenia-like phenotypes in GABAergic neuron-specific NMDAR hypofunctional mutant mice, in which Ppp1r2-Cre dependent deletion of indispensable NMDAR channel subunit Grin1 is induced in corticolimbic GABAergic neurons including parvalbumin (PV)-positive neurons, in postnatal development, but not in adulthood. Here, we report enhanced dopaminomimetic-induced locomotor activity in these mutants, along with bidirectional, site-specific changes in in vivo amphetamine-induced dopamine release: nucleus accumbens (NAc) dopamine release was enhanced by amphetamine in postnatal Ppp1r2-Cre/Grin1 knockout (KO) mice, whereas dopamine release was dramatically reduced in the medial PFC (mPFC) compared to controls. Basal tissue dopamine levels in both the NAc and mPFC were unaffected. Interestingly, the magnitude and distribution of amphetamine-induced c-Fos expression in dopamine neurons was comparable between genotypes across dopaminergic input subregions in the ventral tegmental area (VTA). These effects appear to be both developmentally and cell-type specifically modulated, since PV-specific Grin1 KO mice could induce the same effects as seen in postnatal-onset Ppp1r2-Cre/Grin1 KO mice, but no such abnormalities were observed in somatostatin-Cre/Grin1 KO mice or adult-onset Ppp1r2-Cre/Grin1 KO mice. These results suggest that PV GABAergic neuron-NMDAR hypofunction in postnatal development confers bidirectional NAc hyper- and mPFC hypo-sensitivity to amphetamine-induced dopamine release, similar to that classically observed in schizophrenia pathophysiology. © The Author(s) 2018. Published by Oxford University

  6. Cytoplasmic mislocalization of RNA splicing factors and aberrant neuronal gene splicing in TDP-43 transgenic pig brain.

    PubMed

    Wang, Guohao; Yang, Huaqiang; Yan, Sen; Wang, Chuan-En; Liu, Xudong; Zhao, Bentian; Ouyang, Zhen; Yin, Peng; Liu, Zhaoming; Zhao, Yu; Liu, Tao; Fan, Nana; Guo, Lin; Li, Shihua; Li, Xiao-Jiang; Lai, Liangxue

    2015-09-03

    TAR DNA-binding protein 43 (TDP-43) is a nuclear protein, but it is redistributed in the neuronal cytoplasm in both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Because small transgenic animal models often lack cytoplasmic TDP-43, how the cytoplasmic accumulation of TDP-43 contributes to these diseases remains unclear. The current study is aimed at studying the mechanism of cytoplasmic pathology of TDP-43. We established transgenic pigs expressing mutant TDP-43 (M337V). This pig model shows severe phenotypes and early death. We found that transgenic TDP-43 is also distributed in the cytoplasm of neuronal cells in the spinal cord and brain. Transgenic TDP-43 interacts with PSF, an RNA splicing factor that associates with NeuN to regulate neuronal RNA splicing. The interaction of TDP-43, PSF and NeuN causes PSF and NeuN mislocalize into the neuronal cytoplasm in transgenic pigs. Consistently, abnormal PSF-related neuronal RNA splicing is seen in TDP-43 transgenic pigs. The cytoplasmic localization of PSF and NeuN as well as abnormal PSF-related neuronal RNA splicing was also found in ALS patient brains. Our findings from a large mammalian model suggest that cytoplasmic mutant TDP-43 could reduce the nuclear function of RNA splicing factors, contributing to neuropathology.

  7. Optimising parameters for the differentiation of SH-SY5Y cells to study cell adhesion and cell migration.

    PubMed

    Dwane, Susan; Durack, Edel; Kiely, Patrick A

    2013-09-11

    Cell migration is a fundamental biological process and has an important role in the developing brain by regulating a highly specific pattern of connections between nerve cells. Cell migration is required for axonal guidance and neurite outgrowth and involves a series of highly co-ordinated and overlapping signalling pathways. The non-receptor tyrosine kinase, Focal Adhesion Kinase (FAK) has an essential role in development and is the most highly expressed kinase in the developing CNS. FAK activity is essential for neuronal cell adhesion and migration. The objective of this study was to optimise a protocol for the differentiation of the neuroblastoma cell line, SH-SY5Y. We determined the optimal extracellular matrix proteins and growth factor combinations required for the optimal differentiation of SH-SY5Y cells into neuronal-like cells and determined those conditions that induce the expression of FAK. It was confirmed that the cells were morphologically and biochemically differentiated when compared to undifferentiated cells. This is in direct contrast to commonly used differentiation methods that induce morphological differentiation but not biochemical differentiation. We conclude that we have optimised a protocol for the differentiation of SH-SY5Y cells that results in a cell population that is both morphologically and biochemically distinct from undifferentiated SH-SY5Y cells and has a distinct adhesion and spreading pattern and display extensive neurite outgrowth. This protocol will provide a neuronal model system for studying FAK activity during cell adhesion and migration events.

  8. Thyroid Hormone in the CNS: Contribution of Neuron-Glia Interaction.

    PubMed

    Noda, Mami

    2018-01-01

    The endocrine system and the central nervous system (CNS) are intimately linked. Among hormones closely related to the nervous system, thyroid hormones (THs) are critical for the regulation of development and differentiation of neurons and neuroglia and hence for development and function of the CNS. T3 (3,3',5-triiodothyronine), an active form of TH, is important not only for neuronal development but also for differentiation of astrocytes and oligodendrocytes, and for microglial development. In adult brain, T3 affects glial morphology with sex- and age-dependent manner and therefore may affect their function, leading to influence on neuron-glia interaction. T3 is an important signaling factor that affects microglial functions such as migration and phagocytosis via complex mechanisms. Therefore, dysfunction of THs may impair glial function as well as neuronal function and thus disturb the brain, which may cause mental disorders. Investigations on molecular and cellular basis of hyperthyroidism and hypothyroidism will help us to understand changes in neuron-glia interaction and therefore consequent psychiatric symptoms. © 2018 Elsevier Inc. All rights reserved.

  9. CLASP2 Links Reelin to the Cytoskeleton during Neocortical Development.

    PubMed

    Dillon, Gregory M; Tyler, William A; Omuro, Kerilyn C; Kambouris, John; Tyminski, Camila; Henry, Shawna; Haydar, Tarik F; Beffert, Uwe; Ho, Angela

    2017-03-22

    The Reelin signaling pathway plays a crucial role in regulating neocortical development. However, little is known about how Reelin controls the cytoskeleton during neuronal migration. Here, we identify CLASP2 as a key cytoskeletal effector in the Reelin signaling pathway. We demonstrate that CLASP2 has distinct roles during neocortical development regulating neuron production and controlling neuron migration, polarity, and morphogenesis. We found downregulation of CLASP2 in migrating neurons leads to mislocalized cells in deeper cortical layers, abnormal positioning of the centrosome-Golgi complex, and aberrant length/orientation of the leading process. We discovered that Reelin regulates several phosphorylation sites within the positively charged serine/arginine-rich region that constitute consensus GSK3β phosphorylation motifs of CLASP2. Furthermore, phosphorylation of CLASP2 regulates its interaction with the Reelin adaptor Dab1 and this association is required for CLASP2 effects on neurite extension and motility. Together, our data reveal that CLASP2 is an essential Reelin effector orchestrating cytoskeleton dynamics during brain development. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Early White-Matter Abnormalities of the Ventral Frontostriatal Pathway in Fragile X Syndrome

    ERIC Educational Resources Information Center

    Haas, Brian W.; Barnea-Goraly, Naama; Lightbody, Amy A.; Patnaik, Swetapadma S.; Hoeft, Fumiko; Hazlett, Heather; Piven, Joseph; Reiss, Allan L.

    2009-01-01

    Aim: Fragile X syndrome is associated with cognitive deficits in inhibitory control and with abnormal neuronal morphology and development. Method: In this study, we used a diffusion tensor imaging (DTI) tractography approach to reconstruct white-matter fibers in the ventral frontostriatal pathway in young males with fragile X syndrome (n = 17;…

  11. Genetic Causes of Microcephaly and Lessons for Neuronal Development

    PubMed Central

    Gilmore, Edward C.; Walsh, Christopher A.

    2012-01-01

    The study of human developmental microcephaly is providing important insights into brain development. It has become clear that developmental microcephalies are associated with abnormalities in cellular production, and that the pathophysiology of microcephaly provides remarkable insights into how the brain generates the proper number of neurons that determine brain size. Most of the genetic causes of ‘primary’ developmental microcephaly (i.e., not associated with other syndromic features) are associated with centrosomal abnormalities. In addition to other functions, centrosomal proteins control the mitotic spindle, which is essential for normal cell proliferation during mitosis. However, the brain is often uniquely affected when microcephaly genes are mutated implying special centrosomal related functions in neuronal production. Although models explaining how this could occur have some compelling data, they are not without controversy. Interestingly, some of the microcephaly genes show evidence that they were targets of evolutionary selection in primates and human ancestors, suggesting potential evolutionary roles in controlling neuronal number and brain volume across species. Mutations in DNA repair pathway genes also lead to microcephaly. Double stranded DNA breaks appear to be a prominent type of damage that needs to be repaired during brain development, yet why defects in DNA repair affect the brain preferentially and if DNA repair relates to centrosome function, are not clearly understood. PMID:24014418

  12. Automated Tracing of Horizontal Neuron Processes During Retinal Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerekes, Ryan A; Martins, Rodrigo; Dyer, Michael A

    2011-01-01

    In the developing mammalian retina, horizontal neurons undergo a dramatic reorganization oftheir processes shortly after they migrate to their appropriate laminar position. This is an importantprocess because it is now understood that the apical processes are important for establishing theregular mosaic of horizontal cells in the retina and proper reorganization during lamination isrequired for synaptogenesis with photoreceptors and bipolar neurons. However, this process isdifficult to study because the analysis of horizontal neuron anatomy is labor intensive and time-consuming. In this paper, we present a computational method for automatically tracing the three-dimensional (3-D) dendritic structure of horizontal retinal neurons in two-photonmore » laser scanningmicroscope (TPLSM) imagery. Our method is based on 3-D skeletonization and is thus able topreserve the complex structure of the dendritic arbor of these cells. We demonstrate theeffectiveness of our approach by comparing our tracing results against two sets of semi-automatedtraces over a set of 10 horizontal neurons ranging in age from P1 to P5. We observe an averageagreement level of 81% between our automated trace and the manual traces. This automatedmethod will serve as an important starting point for further refinement and optimization.« less

  13. Shp2 Acts Downstream of SDF-1α/CXCR4 in Guiding Granule Cell Migration During Cerebellar Development

    PubMed Central

    Hagihara, Kazuki; Zhang, Eric E.; Ke, Yue-Hai; Liu, Guofa; Liu, Jan-Jan; Rao, Yi; Feng, Gen-Sheng

    2009-01-01

    Shp2 is a non-receptor protein tyrosine phosphatase containing two Src homology 2 (SH2) domains that is implicated in intracellular signaling events controlling cell proliferation, differentiation and migration. To examine the role of Shp2 in brain development, we created mice with Shp2 selectively deleted in neural stem/progenitor cells. Homozygous mutant mice exhibited early postnatal lethality with defects in neural stem cell self-renewal and neuronal/glial cell fate specification. Here we report a critical role of Shp2 in guiding neuronal cell migration in the cerebellum. In homozygous mutants, we observed reduced and less foliated cerebellum, ectopic presence of external granule cells and mispositioned Purkinje cells, a phenotype very similar to that of mutant mice lacking either SDF-1α or CXCR4. Consistently, Shp2-deficient granule cells failed to migrate toward SDF-1α in an in vitro cell migration assay, and SDF-1α treatment triggered a robust induction of tyrosyl phosphorylation on Shp2. Together, these results suggest that although Shp2 is involved in multiple signaling events during brain development, a prominent role of the phosphatase is to mediate SDF-1α/CXCR4 signal in guiding cerebellar granule cell migration. PMID:19635473

  14. Brain-Derived Neurotrophic Factor Induces Cell Survival and the Migration of Murine Adult Hippocampal Precursor Cells During Differentiation In Vitro.

    PubMed

    Ortiz-López, Leonardo; Vega-Rivera, Nelly Maritza; Babu, Harish; Ramírez-Rodríguez, Gerardo Bernabé

    2017-01-01

    The generation of new neurons during adulthood involves local precursor cell migration and terminal differentiation in the dentate gyrus. These events are influenced by the hippocampal microenvironment. Brain-derived neurotrophic factor (BDNF) is relevant for hippocampal neuronal development and behavior. Interestingly, studies that have been performed in controlled in vitro systems that involve isolated precursor cells that were derived from the dentate gyrus (AHPCs) have shown that BDNF induces the activation of the TrkB receptor and, consequentially, might activate signaling pathways that favor survival and neuronal differentiation. Based on the fact that the cellular events of AHPCs that are induced by single factors can be studied in this controlled in vitro system, we investigated the ability of BDNF and the involvement of protein kinase C (PKC), as one of the TrkB-downstream activated signaling proteins, in the regulation of migration, here reflected by motility, of AHPCs. Precursor cells were cultured following a concentration-response curve (1-640 ng/ml) for 24 or 96 h. We found that BDNF favored cell survival without altering the viability under culture proliferative conditions of the AHPCs. Concomitantly, glial- and neuronal-differentiated precursor cells increased as a consequence of survival promoted by BDNF. Additionally, pharmacological approaches showed that BDNF (40 ng/ml)-induced migration of AHPCs was blocked with the compounds K252a and GF109203x, which prevent the activation of TrkB and PKC, respectively. The results indicate that in the in vitro migration of differentiated AHPCs it is involved the BDNF and TrkB cascade. Our results provide additional information about the mechanism by which BDNF impacts adult neurogenesis in the hippocampus.

  15. Early physiological abnormalities after simian immunodeficiency virus infection.

    PubMed

    Horn, T F; Huitron-Resendiz, S; Weed, M R; Henriksen, S J; Fox, H S

    1998-12-08

    Central nervous system (CNS) damage and dysfunction are devastating consequences of HIV infection. Although the CNS is one of the initial targets for HIV infection, little is known about early viral-induced abnormalities that can affect CNS function. Here we report the detection of early physiological abnormalities in simian immunodeficiency virus-infected monkeys. The acute infection caused a disruption of the circadian rhythm manifested by rises in body temperature, observed in all five individuals between 1 and 2 weeks postinoculation (p.i.), accompanied by a reduction in daily motor activity to 50% of control levels. Animals remained hyperthermic at 1 and 2 months p.i. and returned to preinoculation temperatures at 3 months after viral inoculation. Although motor activity recovered to baseline values at 1 month p.i., activity levels then decreased to approximately 50% of preinoculation values over the next 2 months. Analysis of sensory-evoked responses 1 month p.i. revealed distinct infection-induced changes in auditory-evoked potential peak latencies that persisted at 3 months after viral inoculation. These early physiological abnormalities may precede the development of observable cognitive or motor deficiencies and can provide an assay to evaluate agents to prevent or alleviate neuronal dysfunction.

  16. Conversion of Fibroblasts to Parvalbumin Neurons by One Transcription Factor, Ascl1, and the Chemical Compound Forskolin*

    PubMed Central

    Shi, Zixiao; Zhang, Juan; Chen, Shuangquan; Li, Yanxin; Lei, Xuepei; Qiao, Huimin; Zhu, Qianwen; Hu, Baoyang; Zhou, Qi; Jiao, Jianwei

    2016-01-01

    Abnormalities in parvalbumin (PV)-expressing interneurons cause neurodevelopmental disorders such as epilepsy, autism, and schizophrenia. Unlike other types of neurons that can be efficiently differentiated from pluripotent stem cells, PV neurons were minimally generated using a conventional differentiation strategy. In this study we developed an adenovirus-based transdifferentiation strategy that incorporates an additional chemical compound for the efficient generation of induced PV (iPV) neurons. The chemical compound forskolin combined with Ascl1 induced ∼80% of mouse fibroblasts to iPV neurons. The iPV neurons generated by this procedure matured 5–7 days post infection and were characterized by electrophysiological properties and known neuronal markers, such as PV and GABA. Our studies, therefore, identified an efficient approach for generating PV neurons. PMID:27137935

  17. Spatial pattern analysis of nuclear migration in remodelled muscles during Drosophila metamorphosis.

    PubMed

    Kuleesha; Feng, Lin; Wasser, Martin

    2017-07-10

    Many human muscle wasting diseases are associated with abnormal nuclear localization. During metamorphosis in Drosophila melanogaster, multi-nucleated larval dorsal abdominal muscles either undergo cell death or are remodeled to temporary adult muscles. Muscle remodeling is associated with anti-polar nuclear migration and atrophy during early pupation followed by polar migration and muscle growth during late pupation. Muscle remodeling is a useful model to study genes involved in myonuclear migration. Previously, we showed that loss of Cathepsin-L inhibited anti-polar movements, while knockdown of autophagy-related genes affected nuclear positioning along the medial axis in late metamorphosis. To compare the phenotypic effects of gene perturbations on nuclear migration more objectively, we developed new descriptors of myonuclear distribution. To obtain nuclear pattern features, we designed an algorithm to detect and track nuclear regions inside live muscles. Nuclear tracks were used to distinguish between fast moving nuclei associated with fragments of dead muscles (sarcolytes) and slow-moving nuclei inside remodelled muscles. Nuclear spatial pattern features, such as longitudinal (lonNS) and lateral nuclear spread (latNS), allowed us to compare nuclear migration during muscle remodelling in different genetic backgrounds. Anti-polar migration leads to a lonNS decrease. As expected, lack of myonuclear migration caused by the loss of Cp1 was correlated with a significantly lower lonNS decrease. Unexpectedly, the decrease in lonNS was significantly enhanced by Atg9, Atg5 and Atg18 silencing, indicating that the loss of autophagy promotes the migration and clustering of nuclei. Loss of autophagy also caused a scattering of nuclei along the lateral axis, leading to a two-row as opposed to single row distribution in control muscles. Increased latNS resulting from knockdown of Atg9 and Atg18 was correlated with increased muscle diameter, suggesting that the wider muscle

  18. Trichloroethylene exposure aggravates behavioral abnormalities in mice that are deficient in superoxide dismutase.

    PubMed

    Otsuki, Noriyuki; Homma, Takujiro; Fujiwara, Hiroki; Kaneko, Kenya; Hozumi, Yasukazu; Shichiri, Mototada; Takashima, Mizuki; Ito, Junitsu; Konno, Tasuku; Kurahashi, Toshihiro; Yoshida, Yasukazu; Goto, Kaoru; Fujii, Satoshi; Fujii, Junichi

    2016-08-01

    Trichloroethylene (TCE) has been implicated as a causative agent for Parkinson's disease (PD). The administration of TCE to rodents induces neurotoxicity associated with dopaminergic neuron death, and evidence suggests that oxidative stress as a major player in the progression of PD. Here we report on TCE-induced behavioral abnormality in mice that are deficient in superoxide dismutase 1 (SOD1). Wild-type (WT) and SOD1-deficient (Sod1(-/-)) mice were intraperitoneally administered TCE (500 mg/kg) over a period of 4 weeks. Although the TCE-administrated Sod1(-/-) mice showed marked abnormal motor behavior, no significant differences were observed among the experimental groups by biochemical and histopathological analyses. However, treating mouse neuroblastoma-derived NB2a cells with TCE resulted in the down regulation of the SOD1 protein and elevated oxidative stress under conditions where SOD1 production was suppressed. Taken together, these data indicate that SOD1 plays a pivotal role in protecting motor neuron function against TCE toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Neuronal ceroid-lipofuscinosis in longhaired Chihuahuas: clinical, pathologic, and MRI findings.

    PubMed

    Nakamoto, Yuya; Yamato, Osamu; Uchida, Kazuyuki; Nibe, Kazumi; Tamura, Shinji; Ozawa, Tsuyoshi; Ueoka, Naotami; Nukaya, Aya; Yabuki, Akira; Nakaichi, Munekazu

    2011-01-01

    Neuronal ceroid-lipofuscinosis (NCL) is a rare group of inherited neurodegenerative lysosomal storage diseases characterized histopathologically by the abnormal accumulation of ceroid- or lipofuscin-like lipopigments in neurons and other cells throughout the body. The present article describes the clinical, pathologic, and magnetic resonance imaging (MRI) findings of the NCL in three longhaired Chihuahuas between 16 mo and 24 mo of age. Clinical signs, including visual defects and behavioral abnormalities, started between 16 mo and 18 mo of age. Cranial MRI findings in all the dogs were characterized by diffuse severe dilation of the cerebral sulci, dilated fissures of diencephalons, midbrain, and cerebellum, and lateral ventricular enlargement, suggesting atrophy of the forebrain. As the most unusual feature, diffuse meningeal thickening was observed over the entire cerebrum, which was strongly enhanced on contrast T1-weighted images. The dogs' conditions progressed until they each died subsequent to continued neurologic deterioration between 23 mo and 24 mo of age. Histopathologically, there was severe to moderate neuronal cell loss with diffuse astrogliosis throughout the brain. The remaining neuronal cells showed intracytoplasmic accumulation of pale to slightly yellow lipopigments mimicking ceroid or lipofuscin. The thickened meninges consisted of the proliferation of connective tissues with abundant collagen fibers and mild infiltration of inflammatory cells suggesting neuroimmune hyperactivity. Although the etiology of this neuroimmune hyperactivity is not currently known, MRI findings such as meningeal thickening may be a useful diagnostic marker of this variant form of canine NCL.

  20. Conditional induction of Math1 specifies embryonic stem cells to cerebellar granule neuron lineage and promotes differentiation into mature granule neurons.

    PubMed

    Srivastava, Rupali; Kumar, Manoj; Peineau, Stéphane; Csaba, Zsolt; Mani, Shyamala; Gressens, Pierre; El Ghouzzi, Vincent

    2013-04-01

    Directing differentiation of embryonic stem cells (ESCs) to specific neuronal subtype is critical for modeling disease pathology in vitro. An attractive means of action would be to combine regulatory differentiation factors and extrinsic inductive signals added to the culture medium. In this study, we have generated mature cerebellar granule neurons by combining a temporally controlled transient expression of Math1, a master gene in granule neuron differentiation, with inductive extrinsic factors involved in cerebellar development. Using a Tetracyclin-On transactivation system, we overexpressed Math1 at various stages of ESCs differentiation and found that the yield of progenitors was considerably increased when Math1 was induced during embryonic body stage. Math1 triggered expression of Mbh1 and Mbh2, two target genes directly involved in granule neuron precursor formation and strong expression of early cerebellar territory markers En1 and NeuroD1. Three weeks after induction, we observed a decrease in the number of glial cells and an increase in that of neurons albeit still immature. Combining Math1 induction with extrinsic factors specifically increased the number of neurons that expressed Pde1c, Zic1, and GABAα6R characteristic of mature granule neurons, formed "T-shaped" axons typical of granule neurons, and generated synaptic contacts and action potentials in vitro. Finally, in vivo implantation of Math1-induced progenitors into young adult mice resulted in cell migration and settling of newly generated neurons in the cerebellum. These results show that conditional induction of Math1 drives ESCs toward the cerebellar fate and indicate that acting on both intrinsic and extrinsic factors is a powerful means to modulate ESCs differentiation and maturation into a specific neuronal lineage. Copyright © 2012 AlphaMed Press.

  1. Accumulation of GABAergic neurons, causing a focal ambient GABA gradient, and downregulation of KCC2 are induced during microgyrus formation in a mouse model of polymicrogyria.

    PubMed

    Wang, Tianying; Kumada, Tatsuro; Morishima, Toshitaka; Iwata, Satomi; Kaneko, Takeshi; Yanagawa, Yuchio; Yoshida, Sachiko; Fukuda, Atsuo

    2014-04-01

    Although focal cortical malformations are considered neuronal migration disorders, their formation mechanisms remain unknown. We addressed how the γ-aminobutyric acid (GABA)ergic system affects the GABAergic and glutamatergic neuronal migration underlying such malformations. A focal freeze-lesion (FFL) of the postnatal day zero (P0) glutamic acid decarboxylase-green fluorescent protein knock-in mouse neocortex produced a 3- or 4-layered microgyrus at P7. GABAergic interneurons accumulated around the necrosis including the superficial region during microgyrus formation at P4, whereas E17.5-born, Cux1-positive pyramidal neurons outlined the GABAergic neurons and were absent from the superficial layer, forming cell-dense areas in layer 2 of the P7 microgyrus. GABA imaging showed that an extracellular GABA level temporally increased in the GABAergic neuron-positive area, including the necrotic center, at P4. The expression of the Cl(-) transporter KCC2 was downregulated in the microgyrus-forming GABAergic and E17.5-born glutamatergic neurons at P4; these cells may need a high intracellular Cl(-) concentration to induce depolarizing GABA effects. Bicuculline decreased the frequency of spontaneous Ca(2+) oscillations in these microgyrus-forming cells. Thus, neonatal FFL causes specific neuronal accumulation, preceded by an increase in ambient GABA during microgyrus formation. This GABA increase induces GABAA receptor-mediated Ca(2+) oscillation in KCC2-downregulated microgyrus-forming cells, as seen in migrating cells during early neocortical development.

  2. Intracellular iron concentration of neurons with and without perineuronal nets

    NASA Astrophysics Data System (ADS)

    Fiedler, Anja; Reinert, Tilo; Morawski, Markus; Brückner, Gert; Arendt, Thomas; Butz, Tilman

    2007-07-01

    Neurodegenerative diseases like Parkinson's disease, Alzheimer's disease and Huntington's disease are characterized by abnormally high concentrations of iron in the affected brain areas. Iron is believed to contribute to oxidative stress by catalysing radical generation and subsequently causing neuronal death. Interestingly, subpopulations of neurons are less vulnerable against degeneration. One of these subpopulations possesses a specialized extracellular matrix arranged as a perineuronal net (PN), a structure with poorly understood functions. In order to differentiate between neurons with and without PN according to their iron concentrations we have performed a μPIXE study at the Leipzig LIPSION laboratory. PN-ensheathed neurons in selected brain areas were detected by lectin-histochemical staining with Wisteria floribunda agglutinin (WFA). The staining was intensified by DAB- nickel by an established method enabling the visualisation of the PNs by nuclear microscopy. The cellular concentration of iron in the rat brain was about 1 mmol/l (ca. 30 μg/g dw). First results of subcellular analysis showed that the intracellular iron concentration of PN-ensheathed neurons tends to be slightly increased in comparison to neurons without PNs. The difference in intracellular iron concentrations could be an effect of the PNs.

  3. Selective disruption of acetylcholine synthesis in subsets of motor neurons: a new model of late-onset motor neuron disease.

    PubMed

    Lecomte, Marie-José; Bertolus, Chloé; Santamaria, Julie; Bauchet, Anne-Laure; Herbin, Marc; Saurini, Françoise; Misawa, Hidemi; Maisonobe, Thierry; Pradat, Pierre-François; Nosten-Bertrand, Marika; Mallet, Jacques; Berrard, Sylvie

    2014-05-01

    Motor neuron diseases are characterized by the selective chronic dysfunction of a subset of motor neurons and the subsequent impairment of neuromuscular function. To reproduce in the mouse these hallmarks of diseases affecting motor neurons, we generated a mouse line in which ~40% of motor neurons in the spinal cord and the brainstem become unable to sustain neuromuscular transmission. These mice were obtained by conditional knockout of the gene encoding choline acetyltransferase (ChAT), the biosynthetic enzyme for acetylcholine. The mutant mice are viable and spontaneously display abnormal phenotypes that worsen with age including hunched back, reduced lifespan, weight loss, as well as striking deficits in muscle strength and motor function. This slowly progressive neuromuscular dysfunction is accompanied by muscle fiber histopathological features characteristic of neurogenic diseases. Unexpectedly, most changes appeared with a 6-month delay relative to the onset of reduction in ChAT levels, suggesting that compensatory mechanisms preserve muscular function for several months and then are overwhelmed. Deterioration of mouse phenotype after ChAT gene disruption is a specific aging process reminiscent of human pathological situations, particularly among survivors of paralytic poliomyelitis. These mutant mice may represent an invaluable tool to determine the sequence of events that follow the loss of function of a motor neuron subset as the disease progresses, and to evaluate therapeutic strategies. They also offer the opportunity to explore fundamental issues of motor neuron biology. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Neuropsychological, Neurovirological and Neuroimmune Aspects of Abnormal GABAergic Transmission in HIV Infection.

    PubMed

    Buzhdygan, Tetyana; Lisinicchia, Joshua; Patel, Vipulkumar; Johnson, Kenneth; Neugebauer, Volker; Paessler, Slobodan; Jennings, Kristofer; Gelman, Benjamin

    2016-06-01

    The prevalence of HIV-associated neurocognitive disorders (HAND) remains high in patients with effective suppression of virus replication by combination antiretroviral therapy (cART). Several neurotransmitter systems were reported to be abnormal in HIV-infected patients, including the inhibitory GABAergic system, which mediates fine-tuning of neuronal processing and plays an essential role in cognitive functioning. To elucidate the role of abnormal GABAergic transmission in HAND, the expression of GABAergic markers was measured in 449 human brain specimens from HIV-infected patients with and without HAND. Using real-time polymerase chain reaction, immunoblotting and immunohistochemistry we found that the GABAergic markers were significantly decreased in most sectors of cerebral neocortex, the neostriatum, and the cerebellum of HIV-infected subjects. Low GABAergic expression in frontal neocortex was correlated significantly with high expression of endothelial cell markers, dopamine receptor type 2 (DRD2L), and preproenkephalin (PENK) mRNAs, and with worse performance on tasks of verbal fluency. Significant associations were not found between low GABAergic mRNAs and HIV-1 RNA concentration in the brain, the history of cART, or HIV encephalitis. Pathological evidence of neurodegeneration of the affected GABAergic neurons was not present. We conclude that abnormally low expression of GABAergic markers is prevalent in HIV-1 infected patients. Interrelationships with other neurotransmitter systems including dopaminergic transmission and with endothelial cell markers lend added support to suggestions that synaptic plasticity and cerebrovascular anomalies are involved with HAND in virally suppressed patients.

  5. Lis1 controls dynamics of neuronal filopodia and spines to impact synaptogenesis and social behaviour

    PubMed Central

    Sudarov, Anamaria; Gooden, Frank; Tseng, Debbie; Gan, Wen-Biao; Ross, Margaret Elizabeth

    2013-01-01

    LIS1 (PAFAH1B1) mutation can impair neuronal migration, causing lissencephaly in humans. LIS1 loss is associated with dynein protein motor dysfunction, and disrupts the actin cytoskeleton through disregulated RhoGTPases. Recently, LIS1 was implicated as an important protein-network interaction node with high-risk autism spectrum disorder genes expressed in the synapse. How LIS1 might participate in this disorder has not been investigated. We examined the role of LIS1 in synaptogenesis of post-migrational neurons and social behaviour in mice. Two-photon imaging of actin-rich dendritic filopodia and spines in vivo showed significant reductions in elimination and turnover rates of dendritic protrusions of layer V pyramidal neurons in adolescent Lis1+/− mice. Lis1+/− filopodia on immature hippocampal neurons in vitro exhibited reduced density, length and RhoA dependent impaired dynamics compared to Lis1+/+. Moreover, Lis1+/− adolescent mice exhibited deficits in social interaction. Lis1 inactivation restricted to the postnatal hippocampus resulted in similar deficits in dendritic protrusion density and social interactions. Thus, LIS1 plays prominently in dendritic filopodia dynamics and spine turnover implicating reduced dendritic spine plasticity as contributing to developmental autistic-like behaviour. PMID:23483716

  6. The Impact of Ultrasound on Developing Brain Neurons. Science Briefs

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2007

    2007-01-01

    "Science Briefs" summarize the findings and implications of a recent study in basic science or clinical research. This brief reports on the study. This Brief summarizes the findings and implications of "Prenatal Exposure to Ultrasound Waves Impacts Neuronal Migration in Mice" (E. S. B. C. Ang, Jr.; V. Gluncic; A. Duque; M. E. Schafer; and P.…

  7. Prenatal ketamine exposure causes abnormal development of prefrontal cortex in rat

    PubMed Central

    Zhao, Tianyun; Li, Chuanxiang; Wei, Wei; Zhang, Haixing; Ma, Daqing; Song, Xingrong; Zhou, Libing

    2016-01-01

    Ketamine is commonly used for anesthesia and as a recreational drug. In pregnant users, a potential neurotoxicity in offspring has been noted. Our previous work demonstrated that ketamine exposure of pregnant rats induces affective disorders and cognitive impairments in offspring. As the prefrontal cortex (PFC) is critically involved in emotional and cognitive processes, here we studied whether maternal ketamine exposure influences the development of the PFC in offspring. Pregnant rats on gestational day 14 were treated with ketamine at a sedative dose for 2 hrs, and pups were studied at postnatal day 0 (P0) or P30. We found that maternal ketamine exposure resulted in cell apoptosis and neuronal loss in fetal brain. Upon ketamine exposure in utero, PFC neurons at P30 showed more dendritic branching, while cultured neurons from P0 PFC extended shorter neurites than controls. In addition, maternal ketamine exposure postponed the switch of NR2B/2A expression, and perturbed pre- and postsynaptic protein expression in the PFC. These data suggest that prenatal ketamine exposure impairs neuronal development of the PFC, which may be associated with abnormal behavior in offsprings. PMID:27226073

  8. Development and characterization of NEX- Pten, a novel forebrain excitatory neuron-specific knockout mouse.

    PubMed

    Kazdoba, Tatiana M; Sunnen, C Nicole; Crowell, Beth; Lee, Gum Hwa; Anderson, Anne E; D'Arcangelo, Gabriella

    2012-01-01

    The phosphatase and tensin homolog located on chromosome 10 (PTEN) suppresses the activity of the phosphoinositide-3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway, a signaling cascade critically involved in the regulation of cell proliferation and growth. Human patients carrying germ line PTEN mutations have an increased predisposition to tumors, and also display a variety of neurological symptoms and increased risk of epilepsy and autism, implicating PTEN in neuronal development and function. Consistently, loss of Pten in mouse neural cells results in ataxia, seizures, cognitive abnormalities, increased soma size and synaptic abnormalities. To better understand how Pten regulates the excitability of principal forebrain neurons, a factor that is likely to be altered in cognitive disorders, epilepsy and autism, we generated a novel conditional knockout mouse line (NEX-Pten) in which Cre, under the control of the NEX promoter, drives the deletion of Pten specifically in early postmitotic, excitatory neurons of the developing forebrain. Homozygous mutant mice exhibited a massive enlargement of the forebrain, and died shortly after birth due to excessive mTOR activation. Analysis of the neonatal cerebral cortex further identified molecular defects resulting from Pten deletion that likely affect several aspects of neuronal development and excitability. Copyright © 2012 S. Karger AG, Basel.

  9. Defects formation and spiral waves in a network of neurons in presence of electromagnetic induction.

    PubMed

    Rostami, Zahra; Jafari, Sajad

    2018-04-01

    Complex anatomical and physiological structure of an excitable tissue (e.g., cardiac tissue) in the body can represent different electrical activities through normal or abnormal behavior. Abnormalities of the excitable tissue coming from different biological reasons can lead to formation of some defects. Such defects can cause some successive waves that may end up to some additional reorganizing beating behaviors like spiral waves or target waves. In this study, formation of defects and the resulting emitted waves in an excitable tissue are investigated. We have considered a square array network of neurons with nearest-neighbor connections to describe the excitable tissue. Fundamentally, electrophysiological properties of ion currents in the body are responsible for exhibition of electrical spatiotemporal patterns. More precisely, fluctuation of accumulated ions inside and outside of cell causes variable electrical and magnetic field. Considering undeniable mutual effects of electrical field and magnetic field, we have proposed the new Hindmarsh-Rose (HR) neuronal model for the local dynamics of each individual neuron in the network. In this new neuronal model, the influence of magnetic flow on membrane potential is defined. This improved model holds more bifurcation parameters. Moreover, the dynamical behavior of the tissue is investigated in different states of quiescent, spiking, bursting and even chaotic state. The resulting spatiotemporal patterns are represented and the time series of some sampled neurons are displayed, as well.

  10. Developmental origins of brain disorders: roles for dopamine

    PubMed Central

    Money, Kelli M.; Stanwood, Gregg D.

    2013-01-01

    Neurotransmitters and neuromodulators, such as dopamine, participate in a wide range of behavioral and cognitive functions in the adult brain, including movement, cognition, and reward. Dopamine-mediated signaling plays a fundamental neurodevelopmental role in forebrain differentiation and circuit formation. These developmental effects, such as modulation of neuronal migration and dendritic growth, occur before synaptogenesis and demonstrate novel roles for dopaminergic signaling beyond neuromodulation at the synapse. Pharmacologic and genetic disruptions demonstrate that these effects are brain region- and receptor subtype-specific. For example, the striatum and frontal cortex exhibit abnormal neuronal structure and function following prenatal disruption of dopamine receptor signaling. Alterations in these processes are implicated in the pathophysiology of neuropsychiatric disorders, and emerging studies of neurodevelopmental disruptions may shed light on the pathophysiology of abnormal neuronal circuitry in neuropsychiatric disorders. PMID:24391541

  11. Synaptic plasticity and levodopa-induced dyskinesia: electrophysiological and structural abnormalities.

    PubMed

    Picconi, Barbara; De Leonibus, Elvira; Calabresi, Paolo

    2018-02-28

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive degeneration of dopaminergic neurons located in the midbrain. The gold-standard therapy for PD is the restoration of dopamine (DA) levels through the chronic administration of the DA precursor levodopa (L-DOPA). Although levodopa therapy is the main therapeutic approach for PD, its use is limited by the development of very disabling dyskinetic movements, mainly due to the fluctuation of DA cerebral content. Experimental animal models of PD identified in DA D1/ERK-signaling pathway aberrant activation, occurring in striatal projection neurons, coupled with structural spines abnormalities, the molecular and neuronal basis of L-DOPA-induced dyskinesia (LIDs) occurrence. Different electrophysiological approaches allowed the identification of  the alteration of homeostatic structural and synaptic changes, the neuronal bases of LIDs either in vivo in parkinsonian patients or in vitro in experimental animals. Here, we report the most recent studies showing electrophysiological and morphological evidence of aberrant synaptic plasticity in parkinsonian patients during LIDs in different basal ganglia nuclei and also in cortical transmission, accounting for the complexity of the synaptic changes during dyskinesias. All together, these studies suggest that LIDs are associated with a loss of homeostatic synaptic mechanisms.

  12. Patterns of Weakness, Classification of Motor Neuron Disease & Clinical Diagnosis of Sporadic ALS

    PubMed Central

    Statland, Jeffrey M.; Barohn, Richard J.; McVey, April L.; Katz, Jonathan; Dimachkie, Mazen M.

    2015-01-01

    Synopsis When approaching the patient with suspected motor neuron disease (MND) the pattern of weakness on exam helps distinguish MND from other diseases of peripheral nerves, the neuromuscular junction, or muscle. MND is a clinical diagnosis supported by findings on electrodiagnostic testing, in the absence of other abnormalities on neuroimaging or serological testing. MNDs exist on a spectrum: from a pure lower motor neuron; to mixed upper and lower motor neuron; to a pure upper motor neuron variant in addition to regional variants restricted to the arms, legs or bulbar region. Amyotrophic lateral sclerosis (ALS) is a progressive mixed upper and lower motor neuron disorder, most commonly sporadic (~85%), which is invariably fatal. The only FDA approved treatments for ALS are riluzole, which prolongs life by about 3 months, and dextromethorphan/quinidine which provides symptomatic relief for pseudobulbar affect (inappropriate bouts of laughter or crying). Here we describe a pattern approach to identifying motor neuron disease, and clinical features of sporadic ALS. PMID:26515618

  13. Prion propagation and toxicity occur in vitro with two-phase kinetics specific to strain and neuronal type.

    PubMed

    Hannaoui, Samia; Maatouk, Layal; Privat, Nicolas; Levavasseur, Etienne; Faucheux, Baptiste A; Haïk, Stéphane

    2013-03-01

    Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative disorders that occur in humans and animals. The neuropathological hallmarks of TSEs are spongiosis, glial proliferation, and neuronal loss. The only known specific molecular marker of TSEs is the abnormal isoform (PrP(Sc)) of the host-encoded prion protein (PrP(C)), which accumulates in the brain of infected subjects and forms infectious prion particles. Although this transmissible agent lacks a specific nucleic acid component, several prion strains have been isolated. Prion strains are characterized by differences in disease outcome, PrP(Sc) distribution patterns, and brain lesion profiles at the terminal stage of the disease. The molecular factors and cellular mechanisms involved in strain-specific neuronal tropism and toxicity remain largely unknown. Currently, no cellular model exists to facilitate in vitro studies of these processes. A few cultured cell lines that maintain persistent scrapie infections have been developed, but only two of them have shown the cytotoxic effects associated with prion propagation. In this study, we have developed primary neuronal cultures to assess in vitro neuronal tropism and toxicity of different prion strains (scrapie strains 139A, ME7, and 22L). We have tested primary neuronal cultures enriched in cerebellar granular, striatal, or cortical neurons. Our results showed that (i) a strain-specific neuronal tropism operated in vitro; (ii) the cytotoxic effect varied among strains and neuronal cell types; (iii) prion propagation and toxicity occurred in two kinetic phases, a replicative phase followed by a toxic phase; and (iv) neurotoxicity peaked when abnormal PrP accumulation reached a plateau.

  14. Prion Propagation and Toxicity Occur In Vitro with Two-Phase Kinetics Specific to Strain and Neuronal Type

    PubMed Central

    Hannaoui, Samia; Maatouk, Layal; Privat, Nicolas; Levavasseur, Etienne; Faucheux, Baptiste A.

    2013-01-01

    Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative disorders that occur in humans and animals. The neuropathological hallmarks of TSEs are spongiosis, glial proliferation, and neuronal loss. The only known specific molecular marker of TSEs is the abnormal isoform (PrPSc) of the host-encoded prion protein (PrPC), which accumulates in the brain of infected subjects and forms infectious prion particles. Although this transmissible agent lacks a specific nucleic acid component, several prion strains have been isolated. Prion strains are characterized by differences in disease outcome, PrPSc distribution patterns, and brain lesion profiles at the terminal stage of the disease. The molecular factors and cellular mechanisms involved in strain-specific neuronal tropism and toxicity remain largely unknown. Currently, no cellular model exists to facilitate in vitro studies of these processes. A few cultured cell lines that maintain persistent scrapie infections have been developed, but only two of them have shown the cytotoxic effects associated with prion propagation. In this study, we have developed primary neuronal cultures to assess in vitro neuronal tropism and toxicity of different prion strains (scrapie strains 139A, ME7, and 22L). We have tested primary neuronal cultures enriched in cerebellar granular, striatal, or cortical neurons. Our results showed that (i) a strain-specific neuronal tropism operated in vitro; (ii) the cytotoxic effect varied among strains and neuronal cell types; (iii) prion propagation and toxicity occurred in two kinetic phases, a replicative phase followed by a toxic phase; and (iv) neurotoxicity peaked when abnormal PrP accumulation reached a plateau. PMID:23255799

  15. Deficiency of Lipoprotein Lipase in Neurons Decreases AMPA Receptor Phosphorylation and Leads to Neurobehavioral Abnormalities in Mice

    PubMed Central

    Yu, Tian; Taussig, Matthew D.; DiPatrizio, Nicholas V.; Astarita, Giuseppe; Piomelli, Daniele; Bergman, Bryan C.; Dell’Acqua, Mark L.; Eckel, Robert H.; Wang, Hong

    2015-01-01

    Alterations in lipid metabolism have been found in several neurodegenerative disorders, including Alzheimer’s disease. Lipoprotein lipase (LPL) hydrolyzes triacylglycerides in lipoproteins and regulates lipid metabolism in multiple organs and tissues, including the central nervous system (CNS). Though many brain regions express LPL, the functions of this lipase in the CNS remain largely unknown. We developed mice with neuron-specific LPL deficiency that became obese on chow by 16 wks in homozygous mutant mice (NEXLPL-/-) and 10 mo in heterozygous mice (NEXLPL+/-). In the present study, we show that 21 mo NEXLPL+/- mice display substantial cognitive function decline including poorer learning and memory, and increased anxiety with no difference in general motor activities and exploratory behavior. These neurobehavioral abnormalities are associated with a reduction in the 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid (AMPA) receptor subunit GluA1 and its phosphorylation, without any alterations in amyloid β accumulation. Importantly, a marked deficit in omega-3 and omega-6 polyunsaturated fatty acids (PUFA) in the hippocampus precedes the development of the neurobehavioral phenotype of NEXLPL+/- mice. And, a diet supplemented with n-3 PUFA can improve the learning and memory of NEXLPL+/- mice at both 10 mo and 21 mo of age. We interpret these findings to indicate that LPL regulates the availability of PUFA in the CNS and, this in turn, impacts the strength of synaptic plasticity in the brain of aging mice through the modification of AMPA receptor and its phosphorylation. PMID:26263173

  16. Planar cell polarity genes control the connectivity of enteric neurons

    PubMed Central

    Sasselli, Valentina; Boesmans, Werend; Vanden Berghe, Pieter; Tissir, Fadel; Goffinet, André M.; Pachnis, Vassilis

    2013-01-01

    A highly complex network of intrinsic enteric neurons is required for the digestive and homeostatic functions of the gut. Nevertheless, the genetic and molecular mechanisms that regulate their assembly into functional neuronal circuits are currently unknown. Here we report that the planar cell polarity (PCP) genes Celsr3 and Fzd3 are required during murine embryogenesis to specifically control the guidance and growth of enteric neuronal projections relative to the longitudinal and radial gut axes. Ablation of these genes disrupts the normal organization of nascent neuronal projections, leading to subtle changes of axonal tract configuration in the mature enteric nervous system (ENS), but profound abnormalities in gastrointestinal motility. Our data argue that PCP-dependent modules of connectivity established at early stages of enteric neurogenesis control gastrointestinal function in adult animals and provide the first evidence that developmental deficits in ENS wiring may contribute to the pathogenesis of idiopathic bowel disorders. PMID:23478408

  17. Optimising parameters for the differentiation of SH-SY5Y cells to study cell adhesion and cell migration

    PubMed Central

    2013-01-01

    Background Cell migration is a fundamental biological process and has an important role in the developing brain by regulating a highly specific pattern of connections between nerve cells. Cell migration is required for axonal guidance and neurite outgrowth and involves a series of highly co-ordinated and overlapping signalling pathways. The non-receptor tyrosine kinase, Focal Adhesion Kinase (FAK) has an essential role in development and is the most highly expressed kinase in the developing CNS. FAK activity is essential for neuronal cell adhesion and migration. Results The objective of this study was to optimise a protocol for the differentiation of the neuroblastoma cell line, SH-SY5Y. We determined the optimal extracellular matrix proteins and growth factor combinations required for the optimal differentiation of SH-SY5Y cells into neuronal-like cells and determined those conditions that induce the expression of FAK. It was confirmed that the cells were morphologically and biochemically differentiated when compared to undifferentiated cells. This is in direct contrast to commonly used differentiation methods that induce morphological differentiation but not biochemical differentiation. Conclusions We conclude that we have optimised a protocol for the differentiation of SH-SY5Y cells that results in a cell population that is both morphologically and biochemically distinct from undifferentiated SH-SY5Y cells and has a distinct adhesion and spreading pattern and display extensive neurite outgrowth. This protocol will provide a neuronal model system for studying FAK activity during cell adhesion and migration events. PMID:24025096

  18. Tinnitus Perception and Distress Is Related to Abnormal Spontaneous Brain Activity as Measured by Magnetoencephalography

    PubMed Central

    Weisz, Nathan; Moratti, Stephan; Meinzer, Marcus; Dohrmann, Katalin; Elbert, Thomas

    2005-01-01

    Background The neurophysiological mechanisms underlying tinnitus perception are not well understood. Surprisingly, there have been no group studies comparing abnormalities in ongoing, spontaneous neuronal activity in individuals with and without tinnitus perception. Methods and Findings Here, we show that the spontaneous neuronal activity of a group of individuals with tinnitus (n = 17) is characterised by a marked reduction in alpha (8–12 Hz) power together with an enhancement in delta (1.5–4 Hz) as compared to a normal hearing control group (n = 16). This pattern was especially pronounced for temporal regions. Moreover, correlations with tinnitus-related distress revealed strong associations with this abnormal spontaneous activity pattern, particularly in right temporal and left frontal areas. Overall, effects were stronger for the alpha than for the delta frequency band. A data stream of 5 min, recorded with a whole-head neuromagnetometer under a resting condition, was sufficient to extract the marked differences. Conclusions Despite some limitations, there are arguments that the regional pattern of abnormal spontaneous activity we found could reflect a tinnitus-related cortical network. This finding, which suggests that a neurofeedback approach could reduce the adverse effects of this disturbing condition, could have important implications for the treatment of tinnitus. PMID:15971936

  19. Conversion of Fibroblasts to Parvalbumin Neurons by One Transcription Factor, Ascl1, and the Chemical Compound Forskolin.

    PubMed

    Shi, Zixiao; Zhang, Juan; Chen, Shuangquan; Li, Yanxin; Lei, Xuepei; Qiao, Huimin; Zhu, Qianwen; Hu, Baoyang; Zhou, Qi; Jiao, Jianwei

    2016-06-24

    Abnormalities in parvalbumin (PV)-expressing interneurons cause neurodevelopmental disorders such as epilepsy, autism, and schizophrenia. Unlike other types of neurons that can be efficiently differentiated from pluripotent stem cells, PV neurons were minimally generated using a conventional differentiation strategy. In this study we developed an adenovirus-based transdifferentiation strategy that incorporates an additional chemical compound for the efficient generation of induced PV (iPV) neurons. The chemical compound forskolin combined with Ascl1 induced ∼80% of mouse fibroblasts to iPV neurons. The iPV neurons generated by this procedure matured 5-7 days post infection and were characterized by electrophysiological properties and known neuronal markers, such as PV and GABA. Our studies, therefore, identified an efficient approach for generating PV neurons. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. A structural abnormality associated with graded levels of thyroid hormone insufficiency: Dose dependent increases in heterotopia volume

    EPA Science Inventory

    A large number of environmental contaminants reduce circulating levels of thyroid hormone (TH), but clear markers of neurological insult associated with modest TH insufficiency are lacking. We have previously identified the presence of an abnormal cluster of misplaced neurons in ...

  1. Walk like me, talk like me. The connection between mirror neurons and autism spectrum disorder.

    PubMed

    Saffin, Jillian M; Tohid, Hassaan

    2016-04-01

    Understanding social cognition has become a hallmark in deciphering autism spectrum disorder. Neurobiological theories are taking precedence in causation studies as researchers look to abnormalities in brain development as the cause of deficits in social behavior, cognitive processes, and language. Following their discovery in the 1990s, mirror neurons have become a dominant theory for that the mirror neuron system may play a critical role in the pathophysiology of various symptoms of autism. Over the decades, the theory has evolved from the suggestion of a broken mirror neuron system to impairments in mirror neuron circuitry. The mirror neuron system has not gained total support due to inconsistent findings; a comprehensive analysis of the growing body of research could shed light on the benefits, or the disadvantage of continuing to study mirror neurons and their connection to autism.

  2. New Pharmacotherapy Targeting Cognitive Dysfunction of Schizophrenia via Modulation of GABA Neuronal Function

    PubMed Central

    Jeon, Won Je; Sumiyoshi, Tomiki; Kurachi, Masayoshi

    2015-01-01

    Schizophrenia is considered a neurodevelopmental and neurodegenerative disorder. Cognitive impairment is a core symptom in patients with the illness, and has been suggested a major predictor of functional outcomes. Reduction of parvalbumin (PV)-positive γ-aminobutyric acid (GABA) interneurons has been associated with the pathophysiology of schizophrenia, in view of the link between the abnormality of GABA neurons and cognitive impairments of the disease. It is assumed that an imbalance of excitatory and inhibitory (E-I) activity induced by low activity of glutamatergic projections and PV-positive GABA interneurons in the prefrontal cortex resulted in sustained neural firing and gamma oscillation, leading to impaired cognitive function. Therefore, it is important to develop novel pharmacotherapy targeting GABA neurons and their activities. Clinical evidence suggests serotonin (5-HT) 1A receptor agonist improves cognitive disturbances of schizophrenia, consistent with results from preclinical studies, through mechanism that corrects E-I imbalance via the suppression of GABA neural function. On the other hand, T-817MA, a novel neurotrophic agent, ameliorated loss of PV-positive GABA neurons in the medial prefrontal cortex and reduction of gamma-band activity, as well as cognitive dysfunction in animal model of schizophrenia. In conclusion, a pharmacotherapy to alleviate abnormalities in GABA neurons through 5-HT1A agonists and T-817MA is expected to prevent the onset and/or progression of schizophrenia. PMID:26630957

  3. New Pharmacotherapy Targeting Cognitive Dysfunction of Schizophrenia via Modulation of GABA Neuronal Function.

    PubMed

    Uehara, Takashi; Sumiyoshi, Tomiki; Kurachi, Masayoshi

    2015-01-01

    Schizophrenia is considered a neurodevelopmental and neurodegenerative disorder. Cognitive impairment is a core symptom in patients with the illness, and has been suggested a major predictor of functional outcomes. Reduction of parvalbumin (PV)-positive γ-aminobutyric acid (GABA) interneurons has been associated with the pathophysiology of schizophrenia, in view of the link between the abnormality of GABA neurons and cognitive impairments of the disease. It is assumed that an imbalance of excitatory and inhibitory (E-I) activity induced by low activity of glutamatergic projections and PV-positive GABA interneurons in the prefrontal cortex resulted in sustained neural firing and gamma oscillation, leading to impaired cognitive function. Therefore, it is important to develop novel pharmacotherapy targeting GABA neurons and their activities. Clinical evidence suggests serotonin (5-HT) 1A receptor agonist improves cognitive disturbances of schizophrenia, consistent with results from preclinical studies, through mechanism that corrects E-I imbalance via the suppression of GABA neural function. On the other hand, T-817MA, a novel neurotrophic agent, ameliorated loss of PV-positive GABA neurons in the medial prefrontal cortex and reduction of gamma-band activity, as well as cognitive dysfunction in animal model of schizophrenia. In conclusion, a pharmacotherapy to alleviate abnormalities in GABA neurons through 5-HT1A agonists and T-817MA is expected to prevent the onset and/or progression of schizophrenia.

  4. Cell death cascade and molecular therapy in ADAR2-deficient motor neurons of ALS.

    PubMed

    Yamashita, Takenari; Kwak, Shin

    2018-06-23

    TAR DNA-binding protein (TDP-43) pathology in the motor neurons is the most reliable pathological hallmark of amyotrophic lateral sclerosis (ALS), and motor neurons bearing TDP-43 pathology invariably exhibit failure in RNA editing at the GluA2 glutamine/arginine (Q/R) site due to down-regulation of adenosine deaminase acting on RNA 2 (ADAR2). Conditional ADAR2 knockout (AR2) mice display ALS-like phenotype, including progressive motor dysfunction due to loss of motor neurons. Motor neurons devoid of ADAR2 express Q/R site-unedited GluA2, and AMPA receptors with unedited GluA2 in their subunit assembly are abnormally permeable to Ca 2+ , which results in progressive neuronal death. Moreover, analysis of AR2 mice has demonstrated that exaggerated Ca 2+ influx through the abnormal AMPA receptors overactivates calpain, a Ca 2+ -dependent protease, that cleaves TDP-43 into aggregation-prone fragments, which serve as seeds for TDP-43 pathology. Activated calpain also disrupts nucleo-cytoplasmic transport and gene expression by cleaving molecules involved in nucleocytoplasmic transport, including nucleoporins. These lines of evidence prompted us to develop molecular targeting therapy for ALS by normalization of disrupted intracellular environment due to ADAR2 down-regulation. In this review, we have summarized the work from our group on the cell death cascade in sporadic ALS and discussed a potential therapeutic strategy for ALS. Copyright © 2018 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  5. Exposure to the cytokine EGF leads to abnormal hyperactivity of pallidal GABA neurons: implications for schizophrenia and its modeling.

    PubMed

    Sotoyama, Hidekazu; Namba, Hisaaki; Chiken, Satomi; Nambu, Atsushi; Nawa, Hiroyuki

    2013-08-01

    Previous studies on a cytokine model for schizophrenia reveal that the hyperdopaminergic innervation and neurotransmission in the globus pallidus (GP) is involved in its behavioral impairments. Here, we further explored the physiological consequences of the GP abnormality in the indirect pathway, using the same schizophrenia model established by perinatal exposure to epidermal growth factor (EGF). Single-unit recordings revealed that the neural activity from the lateral GP was elevated in EGF-treated rats in vivo and in vitro (i.e., slice preparations), whereas the central area of the GP exhibited no significant differences. The increase in the pallidal activity was normalized by subchronic treatment with risperidone, which is known to ameliorate their behavioral deficits. We also monitored extracellular GABA concentrations in the substantia nigra, one of the targets of pallidal efferents. There was a significant increase in basal GABA levels in EGF-treated rats, whereas high potassium-evoked GABA effluxes and glutamate levels were not affected. A neurotoxic lesion in the GP of EGF-treated rats normalized GABA concentrations to control levels. Corroborating our in vivo results, GABA release from GP slices was elevated in EGF-treated animals. These findings suggest that the hyperactivity and enhanced GABA release of GP neurons represent the key pathophysiological features of this cytokine-exposure model for schizophrenia. © 2013 International Society for Neurochemistry.

  6. The thalamic reticular nucleus in schizophrenia and bipolar disorder: role of parvalbumin-expressing neuron networks and oxidative stress.

    PubMed

    Steullet, P; Cabungcal, J-H; Bukhari, S A; Ardelt, M I; Pantazopoulos, H; Hamati, F; Salt, T E; Cuenod, M; Do, Kim Q; Berretta, S

    2017-11-28

    Growing evidence points to a disruption of cortico-thalamo-cortical circuits in schizophrenia (SZ) and bipolar disorder (BD). Clues for a specific involvement of the thalamic reticular nucleus (TRN) come from its unique neuronal characteristics and neural connectivity, allowing it to shape the thalamo-cortical information flow. A direct involvement of the TRN in SZ and BD has not been tested thus far. We used a combination of human postmortem and rodent studies to test the hypothesis that neurons expressing parvalbumin (PV neurons), a main TRN neuronal population, and associated Wisteria floribunda agglutinin-labeled perineuronal nets (WFA/PNNs) are altered in SZ and BD, and that these changes may occur early in the course of the disease as a consequence of oxidative stress. In both disease groups, marked decreases of PV neurons (immunoreactive for PV) and WFA/PNNs were observed in the TRN, with no effects of duration of illness or age at onset. Similarly, in transgenic mice with redox dysregulation, numbers of PV neurons and WFA/PNN+PV neurons were decreased in transgenic compared with wild-type mice; these changes were present at postnatal day (P) 20 for PV neurons and P40 for WFA/PNN+PV neurons, accompanied by alterations of their firing properties. These results show profound abnormalities of PV neurons in the TRN of subjects with SZ and BD, and offer support for the hypothesis that oxidative stress may play a key role in impacting TRN PV neurons at early stages of these disorders. We put forth that these TRN abnormalities may contribute to disruptions of sleep spindles, focused attention and emotion processing in these disorders.Molecular Psychiatry advance online publication, 28 November 2017; doi:10.1038/mp.2017.230.

  7. Contributions of 5-HT neurons to respiratory control: neuromodulatory and trophic effects.

    PubMed

    Hodges, Matthew R; Richerson, George B

    2008-12-10

    Serotonin (5-hydroxytryptamine; 5-HT) is a neurotransmitter produced by a small number of neurons in the midbrain, pons and medulla. These neurons project widely throughout the neuraxis, where they release 5-HT and co-localized neuropeptides such as substance P (SP) and thyrotropin-releasing hormone (TRH). Each of these chemicals produce effects largely through G protein-coupled receptors, second messenger systems and subsequent neuromodulatory effects on target neurons. Emerging evidence suggests that 5-HT has additional modes of action during development and in adult mammals, including trophic effects (neurogenesis, cell differentiation, proliferation, migration and maturation) and influences on synaptic plasticity. Here, we discuss some of the neuromodulatory and trophic roles of 5-HT in general and in the context of respiratory control, as well as the regulation of release of modulatory neurotransmitters from 5-HT neurons. Future directions of study are also discussed.

  8. The Role of Adult-Born Neurons in the Constantly Changing Olfactory Bulb Network

    PubMed Central

    Malvaut, Sarah; Saghatelyan, Armen

    2016-01-01

    The adult mammalian brain is remarkably plastic and constantly undergoes structurofunctional modifications in response to environmental stimuli. In many regions plasticity is manifested by modifications in the efficacy of existing synaptic connections or synapse formation and elimination. In a few regions, however, plasticity is brought by the addition of new neurons that integrate into established neuronal networks. This type of neuronal plasticity is particularly prominent in the olfactory bulb (OB) where thousands of neuronal progenitors are produced on a daily basis in the subventricular zone (SVZ) and migrate along the rostral migratory stream (RMS) towards the OB. In the OB, these neuronal precursors differentiate into local interneurons, mature, and functionally integrate into the bulbar network by establishing output synapses with principal neurons. Despite continuous progress, it is still not well understood how normal functioning of the OB is preserved in the constantly remodelling bulbar network and what role adult-born neurons play in odor behaviour. In this review we will discuss different levels of morphofunctional plasticity effected by adult-born neurons and their functional role in the adult OB and also highlight the possibility that different subpopulations of adult-born cells may fulfill distinct functions in the OB neuronal network and odor behaviour. PMID:26839709

  9. GABA transporter currents activated by protein kinase A excite midbrain neurons during opioid withdrawal.

    PubMed

    Bagley, Elena E; Gerke, Michelle B; Vaughan, Christopher W; Hack, Stephen P; Christie, MacDonald J

    2005-02-03

    Adaptations in neurons of the midbrain periaqueductal gray (PAG) induced by chronic morphine treatment mediate expression of many signs of opioid withdrawal. The abnormally elevated action potential rate of opioid-sensitive PAG neurons is a likely cellular mechanism for withdrawal expression. We report here that opioid withdrawal in vitro induced an opioid-sensitive cation current that was mediated by the GABA transporter-1 (GAT-1) and required activation of protein kinase A (PKA) for its expression. Inhibition of GAT-1 or PKA also prevented withdrawal-induced hyperexcitation of PAG neurons. Our findings indicate that GAT-1 currents can directly increase the action potential rates of neurons and that GAT-1 may be a target for therapy to alleviate opioid-withdrawal symptoms.

  10. Early Developmental Disturbances of Cortical Inhibitory Neurons: Contribution to Cognitive Deficits in Schizophrenia

    PubMed Central

    Volk, David W.; Lewis, David A.

    2014-01-01

    Cognitive dysfunction is a disabling and core feature of schizophrenia. Cognitive impairments have been linked to disturbances in inhibitory (gamma-aminobutyric acid [GABA]) neurons in the prefrontal cortex. Cognitive deficits are present well before the onset of psychotic symptoms and have been detected in early childhood with developmental delays reported during the first year of life. These data suggest that the pathogenetic process that produces dysfunction of prefrontal GABA neurons in schizophrenia may be related to altered prenatal development. Interestingly, adult postmortem schizophrenia brain tissue studies have provided evidence consistent with a disease process that affects different stages of prenatal development of specific subpopulations of prefrontal GABA neurons. Prenatal ontogeny (ie, birth, proliferation, migration, and phenotypic specification) of distinct subpopulations of cortical GABA neurons is differentially regulated by a host of transcription factors, chemokine receptors, and other molecular markers. In this review article, we propose a strategy to investigate how alterations in the expression of these developmental regulators of subpopulations of cortical GABA neurons may contribute to the pathogenesis of cortical GABA neuron dysfunction and consequently cognitive impairments in schizophrenia. PMID:25053651

  11. Role of motoneuron-derived neurotrophin 3 in survival and axonal projection of sensory neurons during neural circuit formation.

    PubMed

    Usui, Noriyoshi; Watanabe, Keisuke; Ono, Katsuhiko; Tomita, Koichi; Tamamaki, Nobuaki; Ikenaka, Kazuhiro; Takebayashi, Hirohide

    2012-03-01

    Sensory neurons possess the central and peripheral branches and they form unique spinal neural circuits with motoneurons during development. Peripheral branches of sensory axons fasciculate with the motor axons that extend toward the peripheral muscles from the central nervous system (CNS), whereas the central branches of proprioceptive sensory neurons directly innervate motoneurons. Although anatomically well documented, the molecular mechanism underlying sensory-motor interaction during neural circuit formation is not fully understood. To investigate the role of motoneuron on sensory neuron development, we analyzed sensory neuron phenotypes in the dorsal root ganglia (DRG) of Olig2 knockout (KO) mouse embryos, which lack motoneurons. We found an increased number of apoptotic cells in the DRG of Olig2 KO embryos at embryonic day (E) 10.5. Furthermore, abnormal axonal projections of sensory neurons were observed in both the peripheral branches at E10.5 and central branches at E15.5. To understand the motoneuron-derived factor that regulates sensory neuron development, we focused on neurotrophin 3 (Ntf3; NT-3), because Ntf3 and its receptors (Trk) are strongly expressed in motoneurons and sensory neurons, respectively. The significance of motoneuron-derived Ntf3 was analyzed using Ntf3 conditional knockout (cKO) embryos, in which we observed increased apoptosis and abnormal projection of the central branch innervating motoneuron, the phenotypes being apparently comparable with that of Olig2 KO embryos. Taken together, we show that the motoneuron is a functional source of Ntf3 and motoneuron-derived Ntf3 is an essential pre-target neurotrophin for survival and axonal projection of sensory neurons.

  12. Parallel changes in cortical neuron biochemistry and motor function in protein-energy malnourished adult rats.

    PubMed

    Alaverdashvili, Mariam; Hackett, Mark J; Caine, Sally; Paterson, Phyllis G

    2017-04-01

    While protein-energy malnutrition in the adult has been reported to induce motor abnormalities and exaggerate motor deficits caused by stroke, it is not known if alterations in mature cortical neurons contribute to the functional deficits. Therefore, we explored if PEM in adult rats provoked changes in the biochemical profile of neurons in the forelimb and hindlimb regions of the motor cortex. Fourier transform infrared spectroscopic imaging using a synchrotron generated light source revealed for the first time altered lipid composition in neurons and subcellular domains (cytosol and nuclei) in a cortical layer and region-specific manner. This change measured by the area under the curve of the δ(CH 2 ) band may indicate modifications in membrane fluidity. These PEM-induced biochemical changes were associated with the development of abnormalities in forelimb use and posture. The findings of this study provide a mechanism by which PEM, if not treated, could exacerbate the course of various neurological disorders and diminish treatment efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Netrin-1 guides inflammatory cell migration to control mucosal immune responses during intestinal inflammation

    PubMed Central

    Aherne, Carol M.; Collins, Colm B.; Eltzschig, Holger K.

    2013-01-01

    The intestinal epithelium is a dynamic barrier playing an active role in intestinal homeostasis and inflammation. Intestinal barrier function is dysregulated during inflammatory bowel disease (IBD), with epithelial cells playing a significant part in generating an inflammatory milieu through the release of signals that attract leukocytes to the intestinal lamina propria. However, it is increasingly appreciated that the intestinal epithelium mediates a counterbalancing response to drive resolution. Drawing analogies with neuronal development, where the balance of chemoattractive and chemorepellent signals is key to directed neuronal movement it has been postulated that such secreted cues play a role in leukocyte migration. Netrin-1 is one of the best-described neuronal guidance molecules, which has been shown to play a significant role in directed migration of leukocytes. Prior to our study the potential role of netrin-1 in IBD was poorly characterized. We defined netrin-1 as an intestinal epithelial-derived protein capable of limiting neutrophil recruitment to attenuate acute colitis. Our study highlights that the intestinal epithelium releases factors during acute inflammation that are responsible for fine-tuning the immune response. Exploration of these epithelial-mediated protective mechanisms will shed light on the complexity of the intestinal epithelial barrier in health and disease. PMID:24665394

  14. Early physiological abnormalities after simian immunodeficiency virus infection

    PubMed Central

    Horn, Thomas F. W.; Huitron-Resendiz, Salvador; Weed, Michael R.; Henriksen, Steven J.; Fox, Howard S.

    1998-01-01

    Central nervous system (CNS) damage and dysfunction are devastating consequences of HIV infection. Although the CNS is one of the initial targets for HIV infection, little is known about early viral-induced abnormalities that can affect CNS function. Here we report the detection of early physiological abnormalities in simian immunodeficiency virus-infected monkeys. The acute infection caused a disruption of the circadian rhythm manifested by rises in body temperature, observed in all five individuals between 1 and 2 weeks postinoculation (p.i.), accompanied by a reduction in daily motor activity to 50% of control levels. Animals remained hyperthermic at 1 and 2 months p.i. and returned to preinoculation temperatures at 3 months after viral inoculation. Although motor activity recovered to baseline values at 1 month p.i., activity levels then decreased to approximately 50% of preinoculation values over the next 2 months. Analysis of sensory-evoked responses 1 month p.i. revealed distinct infection-induced changes in auditory-evoked potential peak latencies that persisted at 3 months after viral inoculation. These early physiological abnormalities may precede the development of observable cognitive or motor deficiencies and can provide an assay to evaluate agents to prevent or alleviate neuronal dysfunction. PMID:9844017

  15. Varenicline and Abnormal Sleep Related Events

    PubMed Central

    Savage, Ruth L.; Zekarias, Alem; Caduff-Janosa, Pia

    2015-01-01

    Study Objectives: To assess adverse drug reaction reports of “abnormal sleep related events” associated with varenicline, a partial agonist to the α4β2 subtype of nicotinic acetylcholine receptors on neurones, indicated for smoking cessation. Design: Twenty-seven reports of “abnormal sleep related events” often associated with abnormal dreams, nightmares, or somnambulism, which are known to be associated with varenicline use, were identified in the World Health Organisation (WHO) Global Individual Case Safety Reports Database. Original anonymous reports were obtained from the four national pharmacovigilance centers that submitted these reports and assessed for reaction description and causality. Measurements and Results: These 27 reports include 10 of aggressive activity occurring during sleep and seven of other sleep related harmful or potentially harmful activities, such as apparently deliberate self-harm, moving a child or a car, or lighting a stove or a cigarette. Assessment of these 17 reports of aggression or other actual or potential harm showed that nine patients recovered or were recovering on varenicline withdrawal and there were no consistent alternative explanations. Thirteen patients experienced single events, and two had multiple events. Frequency was not stated for the remaining two patients. Conclusions: The descriptions of the reports of aggression during sleep with violent dreaming are similar to those of rapid eye movement sleep behavior disorder and also nonrapid eye movement (NREM) sleep parasomnias in some adults. Patients who experience somnambulism or dreams of a violent nature while taking varenicline should be advised to consult their health providers. Consideration should be given to clarifying the term sleep disorders in varenicline product information and including sleep related harmful and potentially harmful events. Citation: Savage RL, Zekarias A, Caduff-Janosa P. Varenicline and abnormal sleep related events. SLEEP 2015

  16. Social Isolation During Postweaning Development Causes Hypoactivity of Neurons in the Medial Nucleus of the Male Rat Amygdala.

    PubMed

    Adams, Thomas; Rosenkranz, J Amiel

    2016-06-01

    Children exposed to neglect or social deprivation are at heightened risk for psychiatric disorders and abnormal social patterns as adults. There is also evidence that prepubertal neglect in children causes abnormal metabolic activity in several brain regions, including the amygdala area. The medial nucleus of the amygdala (MeA) is a key region for performance of social behaviors and still undergoes maturation during the periadolescent period. As such, the normal development of this region may be disrupted by social deprivation. In rodents, postweaning social isolation causes a range of deficits in sexual and agonistic behaviors that normally rely on the posterior MeA (MeAp). However, little is known about the effects of social isolation on the function of MeA neurons. In this study, we tested whether postweaning social isolation caused abnormal activity of MeA neurons. We found that postweaning social isolation caused a decrease of in vivo firing activity of MeAp neurons, and reduced drive from excitatory afferents. In vitro electrophysiological studies found that postweaning social isolation caused a presynaptic impairment of excitatory input to the dorsal MeAp, but a progressive postsynaptic reduction of membrane excitability in the ventral MeAp. These results demonstrate discrete, subnucleus-specific effects of social deprivation on the physiology of MeAp neurons. This pathophysiology may contribute to the disruption of social behavior after developmental social deprivation, and may be a novel target to facilitate the treatment of social disorders.

  17. Social Isolation During Postweaning Development Causes Hypoactivity of Neurons in the Medial Nucleus of the Male Rat Amygdala

    PubMed Central

    Adams, Thomas; Rosenkranz, J Amiel

    2016-01-01

    Children exposed to neglect or social deprivation are at heightened risk for psychiatric disorders and abnormal social patterns as adults. There is also evidence that prepubertal neglect in children causes abnormal metabolic activity in several brain regions, including the amygdala area. The medial nucleus of the amygdala (MeA) is a key region for performance of social behaviors and still undergoes maturation during the periadolescent period. As such, the normal development of this region may be disrupted by social deprivation. In rodents, postweaning social isolation causes a range of deficits in sexual and agonistic behaviors that normally rely on the posterior MeA (MeAp). However, little is known about the effects of social isolation on the function of MeA neurons. In this study, we tested whether postweaning social isolation caused abnormal activity of MeA neurons. We found that postweaning social isolation caused a decrease of in vivo firing activity of MeAp neurons, and reduced drive from excitatory afferents. In vitro electrophysiological studies found that postweaning social isolation caused a presynaptic impairment of excitatory input to the dorsal MeAp, but a progressive postsynaptic reduction of membrane excitability in the ventral MeAp. These results demonstrate discrete, subnucleus-specific effects of social deprivation on the physiology of MeAp neurons. This pathophysiology may contribute to the disruption of social behavior after developmental social deprivation, and may be a novel target to facilitate the treatment of social disorders. PMID:26677945

  18. Mechanism of gastrointestinal abnormal motor activity induced by cisplatin in conscious dogs.

    PubMed

    Ando, Hiroyuki; Mochiki, Erito; Ohno, Tetsuro; Yanai, Mitsuhiro; Toyomasu, Yoshitaka; Ogata, Kyoichi; Tabe, Yuichi; Aihara, Ryuusuke; Nakabayashi, Toshihiro; Asao, Takayuki; Kuwano, Hiroyuki

    2014-11-14

    To investigate whether 5-hydroxytryptamine (serotonin; 5-HT) is involved in mediating abnormal motor activity in dogs after cisplatin administration. After the dogs had been given a 2-wk recovery period, all of them were administered cisplatin, and the motor activity was recorded using strain gauge force transducers. Blood and intestinal fluid samples were collected to measure 5-HT for 24 h. To determine whether 5-HT in plasma or that in intestinal fluids is more closely related to abnormal motor activity we injected 5-HT into the bloodstream and the intestinal tract of the dogs. Cisplatin given intravenously produced abnormal motor activity that lasted up to 5 h. From 3 to 4 h after cisplatin administration, normal intact dogs exhibited retropropagation of motor activity accompanied by emesis. The concentration of 5-HT in plasma reached the peak at 4 h, and that in intestinal fluids reached the peak at 3 h. In normal intact dogs with resection of the vagus nerve that were administered kytril, cisplatin given intravenously did not produce abnormal motor activity. Intestinal serotonin administration did not produce abnormal motor activity, but intravenous serotonin administration did. After the intravenous administration of cisplatin, abnormal motor activity was produced in the involved vagus nerve and in the involved serotonergic neurons via another pathway. This study was the first to determine the relationship between 5-HT and emesis-induced motor activity.

  19. EBF factors drive expression of multiple classes of target genes governing neuronal development.

    PubMed

    Green, Yangsook S; Vetter, Monica L

    2011-04-30

    Early B cell factor (EBF) family members are transcription factors known to have important roles in several aspects of vertebrate neurogenesis, including commitment, migration and differentiation. Knowledge of how EBF family members contribute to neurogenesis is limited by a lack of detailed understanding of genes that are transcriptionally regulated by these factors. We performed a microarray screen in Xenopus animal caps to search for targets of EBF transcriptional activity, and identified candidate targets with multiple roles, including transcription factors of several classes. We determined that, among the most upregulated candidate genes with expected neuronal functions, most require EBF activity for some or all of their expression, and most have overlapping expression with ebf genes. We also found that the candidate target genes that had the most strongly overlapping expression patterns with ebf genes were predicted to be direct transcriptional targets of EBF transcriptional activity. The identification of candidate targets that are transcription factor genes, including nscl-1, emx1 and aml1, improves our understanding of how EBF proteins participate in the hierarchy of transcription control during neuronal development, and suggests novel mechanisms by which EBF activity promotes migration and differentiation. Other candidate targets, including pcdh8 and kcnk5, expand our knowledge of the types of terminal differentiated neuronal functions that EBF proteins regulate.

  20. Prostaglandin E2 alters Wnt-dependent migration and proliferation in neuroectodermal stem cells: implications for autism spectrum disorders

    PubMed Central

    2014-01-01

    Prostaglandin E2 (PGE2) is a natural lipid-derived molecule that is involved in important physiological functions. Abnormal PGE2 signalling has been associated with pathologies of the nervous system. Previous studies provide evidence for the interaction of PGE2 and canonical Wnt signalling pathways in non-neuronal cells. Since the Wnt pathway is crucial in the development and organization of the brain, the main goal of this study is to determine whether collaboration between these pathways exists in neuronal cell types. We report that PGE2 interacts with canonical Wnt signalling through PKA and PI-3K in neuroectodermal (NE-4C) stem cells. We used time-lapse microscopy to determine that PGE2 increases the final distance from origin, path length travelled, and the average speed of migration in Wnt-activated cells. Furthermore, PGE2 alters distinct cellular phenotypes that are characteristic of Wnt-induced NE-4C cells, which corresponds to the modified splitting behaviour of the cells. We also found that in Wnt-induced cells the level of β-catenin protein was increased and the expression levels of Wnt-target genes (Ctnnb1, Ptgs2, Ccnd1, Mmp9) was significantly upregulated in response to PGE2 treatment. This confirms that PGE2 activated the canonical Wnt signalling pathway. Furthermore, the upregulated genes have been previously associated with ASD. Our findings show, for the first time, evidence for cross-talk between PGE2 and Wnt signalling in neuronal cells, where PKA and PI-3K might act as mediators between the two pathways. Given the importance of PGE2 and Wnt signalling in prenatal development of the nervous system, our study provides insight into how interaction between these two pathways may influence neurodevelopment. PMID:24656144

  1. Prostaglandin E2 alters Wnt-dependent migration and proliferation in neuroectodermal stem cells: implications for autism spectrum disorders.

    PubMed

    Wong, Christine T; Ahmad, Eizaaz; Li, Hongyan; Crawford, Dorota A

    2014-03-23

    Prostaglandin E2 (PGE2) is a natural lipid-derived molecule that is involved in important physiological functions. Abnormal PGE2 signalling has been associated with pathologies of the nervous system. Previous studies provide evidence for the interaction of PGE2 and canonical Wnt signalling pathways in non-neuronal cells. Since the Wnt pathway is crucial in the development and organization of the brain, the main goal of this study is to determine whether collaboration between these pathways exists in neuronal cell types. We report that PGE2 interacts with canonical Wnt signalling through PKA and PI-3K in neuroectodermal (NE-4C) stem cells. We used time-lapse microscopy to determine that PGE2 increases the final distance from origin, path length travelled, and the average speed of migration in Wnt-activated cells. Furthermore, PGE2 alters distinct cellular phenotypes that are characteristic of Wnt-induced NE-4C cells, which corresponds to the modified splitting behaviour of the cells. We also found that in Wnt-induced cells the level of β-catenin protein was increased and the expression levels of Wnt-target genes (Ctnnb1, Ptgs2, Ccnd1, Mmp9) was significantly upregulated in response to PGE2 treatment. This confirms that PGE2 activated the canonical Wnt signalling pathway. Furthermore, the upregulated genes have been previously associated with ASD. Our findings show, for the first time, evidence for cross-talk between PGE2 and Wnt signalling in neuronal cells, where PKA and PI-3K might act as mediators between the two pathways. Given the importance of PGE2 and Wnt signalling in prenatal development of the nervous system, our study provides insight into how interaction between these two pathways may influence neurodevelopment.

  2. Evidence of a Cell Surface Role for Hsp90 Complex Proteins Mediating Neuroblast Migration in the Subventricular Zone.

    PubMed

    Miyakoshi, Leo M; Marques-Coelho, Diego; De Souza, Luiz E R; Lima, Flavia R S; Martins, Vilma R; Zanata, Silvio M; Hedin-Pereira, Cecilia

    2017-01-01

    In most mammalian brains, the subventricular zone (SVZ) is a germinative layer that maintains neurogenic activity throughout adulthood. Neuronal precursors arising from this region migrate through the rostral migratory stream (RMS) and reach the olfactory bulbs where they differentiate and integrate into the local circuitry. Recently, studies have shown that heat shock proteins have an important role in cancer cell migration and blocking Hsp90 function was shown to hinder cell migration in the developing cerebellum. In this work, we hypothesize that chaperone complexes may have an important function regulating migration of neuronal precursors from the subventricular zone. Proteins from the Hsp90 complex are present in the postnatal SVZ as well as in the RMS. Using an in vitro SVZ explant model, we have demonstrated the expression of Hsp90 and Hop/STI1 by migrating neuroblasts. Treatment with antibodies against Hsp90 and co-chaperone Hop/STI1, as well as Hsp90 and Hsp70 inhibitors hinder neuroblast chain migration. Time-lapse videomicroscopy analysis revealed that cell motility and average migratory speed was decreased after exposure to both antibodies and inhibitors. Antibodies recognizing Hsp90, Hsp70, and Hop/STI1 were found bound to the membranes of cells from primary SVZ cultures and biotinylation assays demonstrated that Hsp70 and Hop/STI1 could be found on the external leaflet of neuroblast membranes. The latter could also be detected in conditioned medium samples obtained from cultivated SVZ cells. Our results suggest that chaperones Hsp90, Hsp70, and co-chaperone Hop/STI1, components of the Hsp90 complex, regulate SVZ neuroblast migration in a concerted manner through an extracellular mechanism.

  3. Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia.

    PubMed

    Kita, Hitoshi; Kita, Takako

    2011-07-13

    The motor cortex (MC) sends massive projections to the basal ganglia. Motor disabilities in patients and animal models of Parkinson's disease (PD) may be caused by dopamine (DA)-depleted basal ganglia that abnormally process the information originating from MC. To study how DA depletion alters signal transfer in the basal ganglia, MC stimulation-induced (MC-induced) unitary responses were recorded from the basal ganglia of control and 6-hydroxydopamine-treated hemi-parkinsonian rats anesthetized with isoflurane. This report describes new findings about how DA depletion alters MC-induced responses. MC stimulation evokes an excitation in normally quiescent striatal (Str) neurons projecting to the globus pallidus external segment (GPe). After DA-depletion, the spontaneous firing of Str-GPe neurons increases, and MC stimulation evokes a shorter latency excitation followed by a long-lasting inhibition that was invisible under normal conditions. The increased firing activity and the newly exposed long inhibition generate tonic inhibition and a disfacilitation in GPe. The disfacilitation in GPe is then amplified in basal ganglia circuitry and generates a powerful long inhibition in the basal ganglia output nucleus, the globus pallidus internal segment. Intra-Str injections of a behaviorally effective dose of DA precursor l-3,4-dihydroxyphenylalanine effectively reversed these changes. These newly observed mechanisms also support the generation of pauses and burst activity commonly observed in the basal ganglia of parkinsonian subjects. These results suggest that the generation of abnormal response sequences in the basal ganglia contributes to the development of motor disabilities in PD and that intra-Str DA supplements effectively suppress abnormal signal transfer.

  4. Characterization of neurons in the cortical white matter in human temporal lobe epilepsy.

    PubMed

    Richter, Zsófia; Janszky, József; Sétáló, György; Horváth, Réka; Horváth, Zsolt; Dóczi, Tamás; Seress, László; Ábrahám, Hajnalka

    2016-10-01

    The aim of the present work was to characterize neurons in the archi- and neocortical white matter, and to investigate their distribution in mesial temporal sclerosis. Immunohistochemistry and quantification of neurons were performed on surgically resected tissue sections of patients with therapy-resistant temporal lobe epilepsy. Temporal lobe tissues of patients with tumor but without epilepsy and that from autopsy were used as controls. Neurons were identified with immunohistochemistry using antibodies against NeuN, calcium-binding proteins, transcription factor Tbr1 and neurofilaments. We found significantly higher density of neurons in the archi- and neocortical white matter of patients with temporal lobe epilepsy than in that of controls. Based on their morphology and neurochemical content, both excitatory and inhibitory cells were present among these neurons. A subset of neurons in the white matter was Tbr-1-immunoreactive and these neurons coexpressed NeuN and neurofilament marker SMI311R. No colocalization of Tbr1 was observed with the inhibitory neuronal markers, calcium-binding proteins. We suggest that a large population of white matter neurons comprises remnants of the subplate. Furthermore, we propose that a subset of white matter neurons was arrested during migration, highlighting the role of cortical maldevelopment in epilepsy associated with mesial temporal sclerosis. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Familial Dysautonomia (FD) Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation

    PubMed Central

    Kantor, Gal; Cheishvili, David; Even, Aviel; Birger, Anastasya; Turetsky, Tikva; Gil, Yaniv; Even-Ram, Sharona; Aizenman, Einat; Bashir, Nibal; Maayan, Channa; Razin, Aharon; Reubinoff, Benjamim E.; Weil, Miguel

    2015-01-01

    A splicing mutation in the IKBKAP gene causes Familial Dysautonomia (FD), affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS). Here we found new molecular insights for the IKAP role and the impact of the FD mutation in the human PNS lineage by using a novel and unique human embryonic stem cell (hESC) line homozygous to the FD mutation originated by pre implantation genetic diagnosis (PGD) analysis. We found that IKBKAP downregulation during PNS differentiation affects normal migration in FD-hESC derived neural crest cells (NCC) while at later stages the PNS neurons show reduced intracellular colocalization between vesicular proteins and IKAP. Comparative wide transcriptome analysis of FD and WT hESC-derived neurons together with the analysis of human brains from FD and WT 12 weeks old embryos and experimental validation of the results confirmed that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation in FD neurons. Moreover we show that kinetin (a drug that corrects IKBKAP alternative splicing) promotes the recovery of IKAP expression and these IKAP functional associated genes identified in the study. Altogether, these results support the view that IKAP might be a vesicular like protein that might be involved in neuronal transport in hESC derived PNS neurons. This function seems to be mostly affected in FD-hESC derived PNS neurons probably reflecting some PNS neuronal dysfunction observed in FD. PMID:26437462

  6. Axonal degeneration in Alzheimer’s disease: When signaling abnormalities meet the axonal transport system

    PubMed Central

    Kanaan, Nicholas M.; Pigino, Gustavo F.; Brady, Scott T.; Lazarov, Orly; Binder, Lester I.; Morfini, Gerardo A.

    2012-01-01

    Alzheimer’s disease (AD) is characterized by progressive, age-dependent degeneration of neurons in the central nervous system. A large body of evidence indicates that neurons affected in AD follow a dying-back pattern of degeneration, where abnormalities in synaptic function and axonal connectivity long precede somatic cell death. Mechanisms underlying dying-back degeneration of neurons in AD remain elusive but several have been proposed, including deficits in fast axonal transport (FAT). Accordingly, genetic evidence linked alterations in FAT to dying-back degeneration of neurons, and FAT defects have been widely documented in various AD models. In light of these findings, we discuss experimental evidence linking several AD-related pathogenic polypeptides to aberrant activation of signaling pathways involved in the phosphoregulation of microtubule-based motor proteins. While each pathway appears to affect FAT in a unique manner, in the context of AD, many of these pathways might work synergistically to compromise the delivery of molecular components critical for the maintenance and function of synapses and axons. Therapeutic approaches aimed at preventing FAT deficits by normalizing the activity of specific protein kinases may help prevent degeneration of vulnerable neurons in AD. PMID:22721767

  7. Macrophage migration inhibitory factor acts as a neurotrophin in the developing inner ear.

    PubMed

    Bank, Lisa M; Bianchi, Lynne M; Ebisu, Fumi; Lerman-Sinkoff, Dov; Smiley, Elizabeth C; Shen, Yu-chi; Ramamurthy, Poornapriya; Thompson, Deborah L; Roth, Therese M; Beck, Christine R; Flynn, Matthew; Teller, Ryan S; Feng, Luming; Llewellyn, G Nicholas; Holmes, Brandon; Sharples, Cyrrene; Coutinho-Budd, Jaeda; Linn, Stephanie A; Chervenak, Andrew P; Dolan, David F; Benson, Jennifer; Kanicki, Ariane; Martin, Catherine A; Altschuler, Richard; Koch, Alisa E; Koch, Alicia E; Jewett, Ethan M; Germiller, John A; Barald, Kate F

    2012-12-01

    This study is the first to demonstrate that macrophage migration inhibitory factor (MIF), an immune system 'inflammatory' cytokine that is released by the developing otocyst, plays a role in regulating early innervation of the mouse and chick inner ear. We demonstrate that MIF is a major bioactive component of the previously uncharacterized otocyst-derived factor, which directs initial neurite outgrowth from the statoacoustic ganglion (SAG) to the developing inner ear. Recombinant MIF acts as a neurotrophin in promoting both SAG directional neurite outgrowth and neuronal survival and is expressed in both the developing and mature inner ear of chick and mouse. A MIF receptor, CD74, is found on both embryonic SAG neurons and adult mouse spiral ganglion neurons. Mif knockout mice are hearing impaired and demonstrate altered innervation to the organ of Corti, as well as fewer sensory hair cells. Furthermore, mouse embryonic stem cells become neuron-like when exposed to picomolar levels of MIF, suggesting the general importance of this cytokine in neural development.

  8. Xeroderma pigmentosum neurological abnormalities correlate with colony-forming ability after ultraviolet radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, A.D.; Barrett, S.F.; Robbins, J.H.

    1978-04-01

    Xeroderma pigmentosum is an autosomal recessive disease in which DNA repair processes are defective. All xeroderma pigmentosum patients develop premature aging of sun exposed skin, and some develop neurological abnormalities due to premature death of nerve cells. Sensitivity to ultraviolet radiation of 24 xeroderma pigmentosum fibroblast strains was studied in vitro by measuring each strain's ability to divide and form colonies after irradiation. The most sensitive strains were derived from patients who had an early onset of neurological abnormalities; less sensitive strains were from patients with a later onset; and the most resistant strains were from patients without neurological abnormalities.more » The uv sensitivities of strains from each member of a sibling pair with xeroderma pigmentosum were identical, indicating that uv sensitivity of xeroderma pigmentosum strains is determined by the patient's inherited DNA repair defect. The results suggest that effective DNA repair is required to maintain the functional integrity of the human nervous system by preventing premature death of neurons.« less

  9. Silencing of the Drosophila ortholog of SOX5 leads to abnormal neuronal development and behavioral impairment.

    PubMed

    Li, Airong; Hooli, Basavaraj; Mullin, Kristina; Tate, Rebecca E; Bubnys, Adele; Kirchner, Rory; Chapman, Brad; Hofmann, Oliver; Hide, Winston; Tanzi, Rudolph E

    2017-04-15

    SOX5 encodes a transcription factor that is expressed in multiple tissues including heart, lung and brain. Mutations in SOX5 have been previously found in patients with amyotrophic lateral sclerosis (ALS) and developmental delay, intellectual disability and dysmorphic features. To characterize the neuronal role of SOX5, we silenced the Drosophila ortholog of SOX5, Sox102F, by RNAi in various neuronal subtypes in Drosophila. Silencing of Sox102F led to misorientated and disorganized michrochaetes, neurons with shorter dendritic arborization (DA) and reduced complexity, diminished larval peristaltic contractions, loss of neuromuscular junction bouton structures, impaired olfactory perception, and severe neurodegeneration in brain. Silencing of SOX5 in human SH-SY5Y neuroblastoma cells resulted in a significant repression of WNT signaling activity and altered expression of WNT-related genes. Genetic association and meta-analyses of the results in several large family-based and case-control late-onset familial Alzheimer's disease (LOAD) samples of SOX5 variants revealed several variants that show significant association with AD disease status. In addition, analysis for rare and highly penetrate functional variants revealed four novel variants/mutations in SOX5, which taken together with functional prediction analysis, suggests a strong role of SOX5 causing AD in the carrier families. Collectively, these findings indicate that SOX5 is a novel candidate gene for LOAD with an important role in neuronal function. The genetic findings warrant further studies to identify and characterize SOX5 variants that confer risk for AD, ALS and intellectual disability. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Neuronal somata and extrasomal compartments play distinct roles during synapse formation between Lymnaea neurons.

    PubMed

    Xu, Fenglian; Luk, Collin C; Wiersma-Meems, Ryanne; Baehre, Kelly; Herman, Cameron; Zaidi, Wali; Wong, Noelle; Syed, Naweed I

    2014-08-20

    Proper synapse formation is pivotal for all nervous system functions. However, the precise mechanisms remain elusive. Moreover, compared with the neuromuscular junction, steps regulating the synaptogenic program at central cholinergic synapses remain poorly defined. In this study, we identified different roles of neuronal compartments (somal vs extrasomal) in chemical and electrical synaptogenesis. Specifically, the electrically synapsed Lymnaea pedal dorsal A cluster neurons were used to study electrical synapses, whereas chemical synaptic partners, visceral dorsal 4 (presynaptic, cholinergic), and left pedal dorsal 1 (LPeD1; postsynaptic) were explored for chemical synapse formation. Neurons were cultured in a soma-soma or soma-axon configuration and synapses explored electrophysiologically. We provide the first direct evidence that electrical synapses develop in a soma-soma, but not soma-axon (removal of soma) configuration, indicating the requirement of gene transcription regulation in the somata of both synaptic partners. In addition, the soma-soma electrical coupling was contingent upon trophic factors present in Lymnaea brain-conditioned medium. Further, we demonstrate that chemical (cholinergic) synapses between soma-soma and soma-axon pairs were indistinguishable, with both exhibiting a high degree of contact site and target cell type specificity. We also provide direct evidence that presynaptic cell contact-mediated, clustering of postsynaptic cholinergic receptors at the synaptic site requires transmitter-receptor interaction, receptor internalization, and a protein kinase C-dependent lateral migration toward the contact site. This study provides novel insights into synaptogenesis between central neurons revealing both distinct and synergistic roles of cell-cell signaling and extrinsic trophic factors in executing the synaptogenic program. Copyright © 2014 the authors 0270-6474/14/3411304-12$15.00/0.

  11. The Changing Roles of Neurons in the Cortical Subplate

    PubMed Central

    Friedlander, Michael J.; Torres-Reveron, Juan

    2009-01-01

    Neurons may serve different functions over the course of an organism's life. Recent evidence suggests that cortical subplate (SP) neurons including those that reside in the white matter may perform longitudinal multi-tasking at different stages of development. These cells play a key role in early cortical development in coordinating thalamocortical reciprocal innervation. At later stages of development, they become integrated within the cortical microcircuitry. This type of longitudinal multi-tasking can enhance the capacity for information processing by populations of cells serving different functions over the lifespan. Subplate cells are initially derived when cells from the ventricular zone underlying the cortex migrate to the cortical preplate that is subsequently split by the differentiating neurons of the cortical plate with some neurons locating in the marginal zone and others settling below in the SP. While the cortical plate neurons form most of the cortical layers (layers 2–6), the marginal zone neurons form layer 1 and the SP neurons become interstitial cells of the white matter as well as forming a compact sublayer along the bottom of layer 6. After serving as transient innervation targets for thalamocortical axons, most of these cells die and layer 4 neurons become innervated by thalamic axons. However, 10–20% survives, remaining into adulthood along the bottom of layer 6 and as a scattered population of interstitial neurons in the white matter. Surviving SP cells' axons project throughout the overlying laminae, reaching layer 1 and issuing axon collaterals within white matter and in lower layer 6. This suggests that they participate in local synaptic networks, as well. Moreover, they receive excitatory and inhibitory synaptic inputs, potentially monitoring outputs from axon collaterals of cortical efferents, from cortical afferents and/or from each other. We explore our understanding of the functional connectivity of these cells at different

  12. Primary cell culture of LHRH neurones from embryonic olfactory placode in the sheep (Ovis aries).

    PubMed

    Duittoz, A H; Batailler, M; Caldani, M

    1997-09-01

    The aim of this study was to establish an in vitro model of ovine luteinizing hormone-releasing hormone (LHRH) neurones. Olfactory placodes from 26 day-old sheep embryos (E26) were used for explant culture. Cultures were maintained successfully up to 35 days, but were usually used at 17 days for immunocytochemistry. LHRH and neuronal markers such as neurofilament (NF) were detected by immunocytochemistry within and/or outside the explant. Three main types of LHRH positive cells are described: (1) neuroblastic LHRH and NF immunoreactive cells with round cell body and very short neurites found mainly within the explant, (2) migrating LHRH bipolar neurones with an fusiform cell body, found outside the explant, (3) network LHRH neuron, bipolar or multipolar with long neurites connecting other LHRH neurons. Cell morphology was very similar to that which has been described in the adult sheep brain. These results strongly suggest that LHRH neurones in the sheep originate from the olfactory placode. This mode may represent a useful tool to study LHRH neurones directly in the sheep.

  13. GSK-3β-induced Tau pathology drives hippocampal neuronal cell death in Huntington's disease: involvement of astrocyte-neuron interactions.

    PubMed

    L'Episcopo, F; Drouin-Ouellet, J; Tirolo, C; Pulvirenti, A; Giugno, R; Testa, N; Caniglia, S; Serapide, M F; Cisbani, G; Barker, R A; Cicchetti, F; Marchetti, B

    2016-04-28

    Glycogen synthase kinase-3β (GSK-3β) has emerged as a critical factor in several pathways involved in hippocampal neuronal maintenance and function. In Huntington's disease (HD), there are early hippocampal deficits both in patients and transgenic mouse models, which prompted us to investigate whether disease-specific changes in GSK-3β expression may underlie these abnormalities. Thirty-three postmortem hippocampal samples from HD patients (neuropathological grades 2-4) and age- and sex-matched normal control cases were analyzed using real-time quantitative reverse transcription PCRs (qPCRs) and immunohistochemistry. In vitro and in vivo studies looking at hippocampal pathology and GSK-3β were also undertaken in transgenic R6/2 and wild-type mice. We identified a disease and stage-dependent upregulation of GSK-3β mRNA and protein levels in the HD hippocampus, with the active isoform pGSK-3β-Tyr(216) being strongly expressed in dentate gyrus (DG) neurons and astrocytes at a time when phosphorylation of Tau at the AT8 epitope was also present in these same neurons. This upregulation of pGSK-3β-Tyr(216) was also found in the R6/2 hippocampus in vivo and linked to the increased vulnerability of primary hippocampal neurons in vitro. In addition, the increased expression of GSK-3β in the astrocytes of R6/2 mice appeared to be the main driver of Tau phosphorylation and caspase3 activation-induced neuronal death, at least in part via an exacerbated production of major proinflammatory mediators. This stage-dependent overactivation of GSK-3β in HD-affected hippocampal neurons and astrocytes therefore points to GSK-3β as being a critical factor in the pathological development of this condition. As such, therapeutic targeting of this pathway may help ameliorate neuronal dysfunction in HD.

  14. GSK-3β-induced Tau pathology drives hippocampal neuronal cell death in Huntington's disease: involvement of astrocyte–neuron interactions

    PubMed Central

    L'Episcopo, F; Drouin-Ouellet, J; Tirolo, C; Pulvirenti, A; Giugno, R; Testa, N; Caniglia, S; Serapide, M F; Cisbani, G; Barker, R A; Cicchetti, F; Marchetti, B

    2016-01-01

    Glycogen synthase kinase-3β (GSK-3β) has emerged as a critical factor in several pathways involved in hippocampal neuronal maintenance and function. In Huntington's disease (HD), there are early hippocampal deficits both in patients and transgenic mouse models, which prompted us to investigate whether disease-specific changes in GSK-3β expression may underlie these abnormalities. Thirty-three postmortem hippocampal samples from HD patients (neuropathological grades 2–4) and age- and sex-matched normal control cases were analyzed using real-time quantitative reverse transcription PCRs (qPCRs) and immunohistochemistry. In vitro and in vivo studies looking at hippocampal pathology and GSK-3β were also undertaken in transgenic R6/2 and wild-type mice. We identified a disease and stage-dependent upregulation of GSK-3β mRNA and protein levels in the HD hippocampus, with the active isoform pGSK-3β-Tyr216 being strongly expressed in dentate gyrus (DG) neurons and astrocytes at a time when phosphorylation of Tau at the AT8 epitope was also present in these same neurons. This upregulation of pGSK-3β-Tyr216 was also found in the R6/2 hippocampus in vivo and linked to the increased vulnerability of primary hippocampal neurons in vitro. In addition, the increased expression of GSK-3β in the astrocytes of R6/2 mice appeared to be the main driver of Tau phosphorylation and caspase3 activation-induced neuronal death, at least in part via an exacerbated production of major proinflammatory mediators. This stage-dependent overactivation of GSK-3β in HD-affected hippocampal neurons and astrocytes therefore points to GSK-3β as being a critical factor in the pathological development of this condition. As such, therapeutic targeting of this pathway may help ameliorate neuronal dysfunction in HD. PMID:27124580

  15. Matrix stiffness modulates formation and activity of neuronal networks of controlled architectures.

    PubMed

    Lantoine, Joséphine; Grevesse, Thomas; Villers, Agnès; Delhaye, Geoffrey; Mestdagh, Camille; Versaevel, Marie; Mohammed, Danahe; Bruyère, Céline; Alaimo, Laura; Lacour, Stéphanie P; Ris, Laurence; Gabriele, Sylvain

    2016-05-01

    The ability to construct easily in vitro networks of primary neurons organized with imposed topologies is required for neural tissue engineering as well as for the development of neuronal interfaces with desirable characteristics. However, accumulating evidence suggests that the mechanical properties of the culture matrix can modulate important neuronal functions such as growth, extension, branching and activity. Here we designed robust and reproducible laminin-polylysine grid micropatterns on cell culture substrates that have similar biochemical properties but a 100-fold difference in Young's modulus to investigate the role of the matrix rigidity on the formation and activity of cortical neuronal networks. We found that cell bodies of primary cortical neurons gradually accumulate in circular islands, whereas axonal extensions spread on linear tracks to connect circular islands. Our findings indicate that migration of cortical neurons is enhanced on soft substrates, leading to a faster formation of neuronal networks. Furthermore, the pre-synaptic density was two times higher on stiff substrates and consistently the number of action potentials and miniature synaptic currents was enhanced on stiff substrates. Taken together, our results provide compelling evidence to indicate that matrix stiffness is a key parameter to modulate the growth dynamics, synaptic density and electrophysiological activity of cortical neuronal networks, thus providing useful information on scaffold design for neural tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Neural stem cells rescue nervous purkinje neurons by restoring molecular homeostasis of tissue plasminogen activator and downstream targets.

    PubMed

    Li, Jianxue; Imitola, Jaime; Snyder, Evan Y; Sidman, Richard L

    2006-07-26

    Neural stem cells (NSCs) offer special therapeutic prospects because they can be isolated from the CNS, expanded ex vivo, and re-implanted into diseased CNS where they not only migrate and differentiate according to cues from host tissue but also appear to be capable of affecting host cells. In nervous (nr) mutant mice Purkinje neuron (PN) mitochondria become abnormal by the second postnatal week, and a majority of PNs die in the fourth to fifth weeks. We previously identified in nr cerebellum a 10-fold increase in tissue plasminogen activator (tPA) as a key component of the mechanism causing nr PN death. Here we report that undifferentiated wild-type murine NSCs, when transplanted into the newborn nr cerebellar cortex, do not replace host PNs but contact imperiled PNs and support their mitochondrial function, dendritic growth, and synaptogenesis, subsequently leading to the rescue of host PNs and restoration of motor coordination. This protection of nr PNs also is verified by an in vitro organotypic slice model in which nr cerebellar slices are cocultured with NSCs. Most importantly, the integrated NSCs in young nr cerebellum rectify excessive tPA mRNA and protein to close to normal levels and protect the mitochondrial voltage-dependent anion channel and neurotrophins, downstream targets of the tPA/plasmin proteolytic system. This report demonstrates for the first time that NSCs can rescue imperiled host neurons by rectifying their gene expression, elevating somatic stem cell therapeutic potential beyond solely cell replacement strategy.

  17. F-spondin inhibits migration and differentiation of osteoclastic precursors.

    PubMed

    Oka, Hiroko; Mori, Maya; Kihara, Hisae

    2011-12-01

    Clinically, severe cemental resorption is a rare consequence of periodontitis, although alveolar bone resorption by osteoclasts is one of the main pathologic changes. F-spondin is a secreted neuronal glycoprotein that localizes to the cementum. F-spondin is among the cementum-specific factors in periodontal tissue that have been reported. However, the effects of F-spondin on osteoclastogenesis have not yet been established. We examined the effects of F-spondin on stages of osteoclastogenesis, migration, and differentiation in a mouse osteoclastic precursor model, RAW 264 cells. RAW 264 cells were treated with recombinant F-spondin. Macrophage colony stimulating factor (M-CSF)-induced cell migration was examined by migration assay performed with cell culture inserts. Osteoclastic differentiation was measured by counting tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. In a transmigration assay, F-spondin significantly downregulated M-CSF-induced cell migration. Further, F-spondin significantly reduced the number of receptor activator of nuclear factor-kappa B ligand-induced TRAP-positive multinucleated cells. The receptor-associated protein, an antagonist of the low-density lipoprotein (LDL) receptor family, blocked the effects of F-spondin on M-CSF-induced migration. The suppressive effect of F-spondin on M-CSF-induced cell migration was blocked by knockdown of LDL receptor-related protein 8 (LRP8), a member of the LDL receptor family. Our findings suggest that F-spondin downregulates recruitment to the root side of periodontal tissue via LRP8 and inhibits differentiation of osteoclastic precursors. It is suggested that F-spondin is essential to protect the root surface from resorption.

  18. Live Imaging of Glial Cell Migration in the Drosophila Eye Imaginal Disc

    PubMed Central

    Cafferty, Patrick; Xie, Xiaojun; Browne, Kristen; Auld, Vanessa J.

    2009-01-01

    Glial cells of both vertebrate and invertebrate organisms must migrate to final target regions in order to ensheath and support associated neurons. While recent progress has been made to describe the live migration of glial cells in the developing pupal wing (1), studies of Drosophila glial cell migration have typically involved the examination of fixed tissue. Live microscopic analysis of motile cells offers the ability to examine cellular behavior throughout the migratory process, including determining the rate of and changes in direction of growth. Paired with use of genetic tools, live imaging can be used to determine more precise roles for specific genes in the process of development. Previous work by Silies et al. (2) has described the migration of glia originating from the optic stalk, a structure that connects the developing eye and brain, into the eye imaginal disc in fixed tissue. Here we outline a protocol for examining the live migration of glial cells into the Drosophila eye imaginal disc. We take advantage of a Drosophila line that expresses GFP in developing glia to follow glial cell progression in wild type and in mutant animals. PMID:19590493

  19. Long-term administration of scopolamine interferes with nerve cell proliferation, differentiation and migration in adult mouse hippocampal dentate gyrus, but it does not induce cell death

    PubMed Central

    Yan, Bing Chun; Park, Joon Ha; Chen, Bai Hui; Cho, Jeong-Hwi; Kim, In Hye; Ahn, Ji Hyeon; Lee, Jae-Chul; Hwang, In Koo; Cho, Jun Hwi; Lee, Yun Lyul; Kang, Il-Jun; Won, Moo-Ho

    2014-01-01

    Long-term administration of scopolamine, a muscarinic receptor antagonist, can inhibit the survival of newly generated cells, but its effect on the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus remain poorly understood. In this study, we used immunohistochemistry and western blot methods to weekly detect the biological behaviors of nerve cells in the hippocampal dentate gyrus of adult mice that received intraperitoneal administration of scopolamine for 4 weeks. Expression of neuronal nuclear antigen (NeuN; a neuronal marker) and Fluoro-Jade B (a marker for the localization of neuronal degeneration) was also detected. After scopolamine treatment, mouse hippocampal neurons did not die, and Ki-67 (a marker for proliferating cells)-immunoreactive cells were reduced in number and reached the lowest level at 4 weeks. Doublecortin (DCX; a marker for newly generated neurons)-immunoreactive cells were gradually shortened in length and reduced in number with time. After scopolamine treatment for 4 weeks, nearly all of the 5-bromo-2′-deoxyuridine (BrdU)-labeled newly generated cells were located in the subgranular zone of the dentate gyrus, but they did not migrate into the granule cell layer. Few mature BrdU/NeuN double-labeled cells were seen in the subgranular zone of the dentate gyrus. These findings suggest that long-term administration of scopolamine interferes with the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus, but it does not induce cell death. PMID:25422633

  20. Prenatal Exposure to DEHP Induces Neuronal Degeneration and Neurobehavioral Abnormalities in Adult Male Mice.

    PubMed

    Barakat, Radwa; Lin, Po-Ching; Park, Chan Jin; Best-Popescu, Catherine; Bakery, Hatem H; Abosalum, Mohamed E; Abdelaleem, Nabila M; Flaws, Jodi A; Ko, CheMyong

    2018-04-23

    Phthalates are a family of synthetic chemicals that are used in producing a variety of consumer products. Di-(2-ethylhexyl) phthalate (DEHP) is an widely used phthalate and poses a public health concern. Prenatal exposure to DEHP has been shown to induce premature reproductive senescence in animal studies. In this study, we tested the hypothesis that prenatal exposure to DEHP impairs neurobehavior and recognition memory in her male offspring and we investigated one possible mechanism-oxidative damage in the hippocampus. Pregnant CD-1 female mice were orally administered 200μg, 500mg, or 750mg/kg/day DEHP or vehicle from gestational day 11 until birth. The neurobehavioral impact of the prenatal DEHP exposure was assessed at the ages of 16 to 22 months. Elevated plus maze and open field tests were used to measure anxiety levels. Y-maze and novel object recognition tests were employed to measure memory function. The oxidative damage in the hippocampus was measured by the levels of oxidative DNA damage and by SLIM microscopic counting of hippocampal neurons. Adult male mice that were prenatally exposed to DEHP exhibited anxious behaviors and impaired spatial and short-term recognition memory. The number of hippocampal pyramidal neurons was significantly decreased in the DEHP mice. Furthermore, DEHP mice expressed remarkably high levels of cyclooxygenase-2, 8-hydroxyguanine, and thymidine glycol in their hippocampal neurons. DEHP mice also had lower circulating testosterone concentrations and displayed a weaker immunoreactivity than the control mice to androgen receptor expression in the brain. This study found that prenatal exposure to DEHP caused elevated anxiety behavior and impaired recognition memory. These behavioral changes may originate from neurodegeneration caused by oxidative damage and inflammation in the hippocampus. Decreased circulating testosterone concentrations and decreased expression of androgen receptor in the brain also may be factors contributing

  1. Alterations of cortical GABA neurons and network oscillations in schizophrenia.

    PubMed

    Gonzalez-Burgos, Guillermo; Hashimoto, Takanori; Lewis, David A

    2010-08-01

    The hypothesis that alterations of cortical inhibitory gamma-aminobutyric acid (GABA) neurons are a central element in the pathology of schizophrenia has emerged from a series of postmortem studies. How such abnormalities may contribute to the clinical features of schizophrenia has been substantially informed by a convergence with basic neuroscience studies revealing complex details of GABA neuron function in the healthy brain. Importantly, activity of the parvalbumin-containing class of GABA neurons has been linked to the production of cortical network oscillations. Furthermore, growing knowledge supports the concept that gamma band oscillations (30-80 Hz) are an essential mechanism for cortical information transmission and processing. Herein we review recent studies further indicating that inhibition from parvalbumin-positive GABA neurons is necessary to produce gamma oscillations in cortical circuits; provide an update on postmortem studies documenting that deficits in the expression of glutamic acid decarboxylase67, which accounts for most GABA synthesis in the cortex, are widely observed in schizophrenia; and describe studies using novel, noninvasive approaches directly assessing potential relations between alterations in GABA, oscillations, and cognitive function in schizophrenia.

  2. Anorexia and Impaired Glucose Metabolism in Mice With Hypothalamic Ablation of Glut4 Neurons

    PubMed Central

    Ren, Hongxia; Lu, Taylor Y.; McGraw, Timothy E.

    2015-01-01

    The central nervous system (CNS) uses glucose independent of insulin. Nonetheless, insulin receptors and insulin-responsive glucose transporters (Glut4) often colocalize in neurons (Glut4 neurons) in anatomically and functionally distinct areas of the CNS. The apparent heterogeneity of Glut4 neurons has thus far thwarted attempts to understand their function. To answer this question, we used Cre-dependent, diphtheria toxin–mediated cell ablation to selectively remove basal hypothalamic Glut4 neurons and investigate the resulting phenotypes. After Glut4 neuron ablation, mice demonstrate altered hormone and nutrient signaling in the CNS. Accordingly, they exhibit negative energy balance phenotype characterized by reduced food intake and increased energy expenditure, without locomotor deficits or gross neuronal abnormalities. Glut4 neuron ablation affects orexigenic melanin-concentrating hormone neurons but has limited effect on neuropeptide Y/agouti-related protein and proopiomelanocortin neurons. The food intake phenotype can be partially normalized by GABA administration, suggesting that it arises from defective GABAergic transmission. Glut4 neuron–ablated mice show peripheral metabolic defects, including fasting hyperglycemia and glucose intolerance, decreased insulin levels, and elevated hepatic gluconeogenic genes. We conclude that Glut4 neurons integrate hormonal and nutritional cues and mediate CNS actions of insulin on energy balance and peripheral metabolism. PMID:25187366

  3. Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington's disease

    PubMed Central

    Gomez-Pastor, Rocio; Burchfiel, Eileen T.; Neef, Daniel W.; Jaeger, Alex M.; Cabiscol, Elisa; McKinstry, Spencer U.; Doss, Argenia; Aballay, Alejandro; Lo, Donald C.; Akimov, Sergey S.; Ross, Christopher A.; Eroglu, Cagla; Thiele, Dennis J.

    2017-01-01

    Huntington's Disease (HD) is a neurodegenerative disease caused by poly-glutamine expansion in the Htt protein, resulting in Htt misfolding and cell death. Expression of the cellular protein folding and pro-survival machinery by heat shock transcription factor 1 (HSF1) ameliorates biochemical and neurobiological defects caused by protein misfolding. We report that HSF1 is degraded in cells and mice expressing mutant Htt, in medium spiny neurons derived from human HD iPSCs and in brain samples from patients with HD. Mutant Htt increases CK2α′ kinase and Fbxw7 E3 ligase levels, phosphorylating HSF1 and promoting its proteasomal degradation. An HD mouse model heterozygous for CK2α′ shows increased HSF1 and chaperone levels, maintenance of striatal excitatory synapses, clearance of Htt aggregates and preserves body mass compared with HD mice homozygous for CK2α′. These results reveal a pathway that could be modulated to prevent neuronal dysfunction and muscle wasting caused by protein misfolding in HD. PMID:28194040

  4. Differential distribution of neurons in the gyral white matter of the human cerebral cortex.

    PubMed

    García-Marín, V; Blazquez-Llorca, L; Rodriguez, J R; Gonzalez-Soriano, J; DeFelipe, J

    2010-12-01

    The neurons in the cortical white matter (WM neurons) originate from the first set of postmitotic neurons that migrates from the ventricular zone. In particular, they arise in the subplate that contains the earliest cells generated in the telencephalon, prior to the appearance of neurons in gray matter cortical layers. These cortical WM neurons are very numerous during development, when they are thought to participate in transient synaptic networks, although many of these cells later die, and relatively few cells survive as WM neurons in the adult. We used light and electron microscopy to analyze the distribution and density of WM neurons in various areas of the adult human cerebral cortex. Furthermore, we examined the perisomatic innervation of these neurons and estimated the density of synapses in the white matter. Finally, we examined the distribution and neurochemical nature of interneurons that putatively innervate the somata of WM neurons. From the data obtained, we can draw three main conclusions: first, the density of WM neurons varies depending on the cortical areas; second, calretinin-immunoreactive neurons represent the major subpopulation of GABAergic WM neurons; and, third, the somata of WM neurons are surrounded by both glutamatergic and GABAergic axon terminals, although only symmetric axosomatic synapses were found. By contrast, both symmetric and asymmetric axodendritic synapses were observed in the neuropil. We discuss the possible functional implications of these findings in terms of cortical circuits. © 2010 Wiley-Liss, Inc.

  5. Cortical Development Requires Mesodermal Expression of Tbx1, a Gene Haploinsufficient in 22q11.2 Deletion Syndrome.

    PubMed

    Flore, Gemma; Cioffi, Sara; Bilio, Marchesa; Illingworth, Elizabeth

    2017-03-01

    In mammals, proper temporal control of neurogenesis and neural migration during embryonic development ensures correct formation of the cerebral cortex. Changes in the distribution of cortical projection neurons and interneurons are associated with behavioral disorders and psychiatric diseases, including schizophrenia and autism, suggesting that disrupted cortical connectivity contributes to the brain pathology. TBX1 is the major candidate gene for 22q11.2 deletion syndrome (22q11.2DS), a chromosomal deletion disorder characterized by a greatly increased risk for schizophrenia. We have previously shown that Tbx1 heterozygous mice have reduced prepulse inhibition, a behavioral abnormality that is associated with 22q11.2DS and nonsyndromic schizophrenia. Here, we show that loss of Tbx1 disrupts corticogenesis in mice by promoting premature neuronal differentiation in the medio-lateral embryonic cortex, which gives rise to the somatosensory cortex (S1). In addition, we found altered polarity in both radially migrating excitatory neurons and tangentially migrating inhibitory interneurons. Together, these abnormalities lead to altered lamination in the S1 at the terminal stages of corticogenesis in Tbx1 null mice and similar anomalies in Tbx1 heterozygous adult mice. Finally, we show that mesoderm-specific inactivation of Tbx1 is sufficient to recapitulate the brain phenotype indicating that Tbx1 exerts a cell nonautonomous role in cortical development from the mesoderm. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Abnormally increased and incoherent resting-state activity is shared between patients with schizophrenia and their unaffected siblings.

    PubMed

    Liu, Chang; Xue, Zhimin; Palaniyappan, Lena; Zhou, Li; Liu, Haihong; Qi, Chang; Wu, Guowei; Mwansisya, Tumbwene E; Tao, Haojuan; Chen, Xudong; Huang, Xiaojun; Liu, Zhening; Pu, Weidan

    2016-03-01

    Several resting-state neuroimaging studies in schizophrenia indicate an excessive brain activity while others report an incoherent brain activity at rest. No direct evidence for the simultaneous presence of both excessive and incoherent brain activity has been established to date. Moreover, it is unclear whether unaffected siblings of schizophrenia patients who share half of the affected patient's genotype also exhibit the excessive and incoherent brain activity that may render them vulnerable to the development of schizophrenia. 27 pairs of schizophrenia patients and their unaffected siblings, as well as 27 healthy controls, were scanned using gradient-echo echo-planar imaging at rest. By using amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (Reho), we investigated the intensity and synchronization of local spontaneous neuronal activity in three groups. We observed that increased amplitude and reduced synchronization (coherence) of spontaneous neuronal activity were shared by patients and their unaffected siblings. The key brain regions with this abnormal neural pattern in both patients and siblings included the middle temporal, orbito-frontal, inferior occipital and fronto-insular gyrus. This abnormal neural pattern of excessive and incoherent neuronal activity shared by schizophrenia patients and their healthy siblings may improve our understanding of neuropathology and genetic predisposition in schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Redox Abnormalities as a Vulnerability Phenotype for Autism and Related Alterations in CNS Development

    DTIC Science & Technology

    2011-10-01

    the hypothesis that SJL mice would have impaired neuronal dendrite generation, as has been observed in autism . This was our prediction due to the...phenotype for Autism and related alterations in CNS development PRINCIPAL INVESTIGATOR: Mark D. Noble, Ph.D. CONTRACTING...SUBTITLE Redox abnormalities as a vulnerability phenotype for Autism 5a. CONTRACT NUMBER And related alterations in CNS development 5b. GRANT

  8. Ablation of neurons expressing melanin-concentrating hormone (MCH) in adult mice improves glucose tolerance independent of MCH signaling.

    PubMed

    Whiddon, Benjamin B; Palmiter, Richard D

    2013-01-30

    Melanin-concentrating hormone (MCH)-expressing neurons have been ascribed many roles based on studies of MCH-deficient mice. However, MCH neurons express other neurotransmitters, including GABA, nesfatin, and cocaine-amphetamine-regulated transcript. The importance of these other signaling molecules made by MCH neurons remains incompletely characterized. To determine the roles of MCH neurons in vivo, we targeted expression of the human diphtheria toxin receptor (DTR) to the gene for MCH (Pmch). Within 2 weeks of diphtheria toxin injection, heterozygous Pmch(DTR/+) mice lost 98% of their MCH neurons. These mice became lean but ate normally and were hyperactive, especially during a fast. They also responded abnormally to psychostimulants. For these phenotypes, ablation of MCH neurons recapitulated knock-out of MCH, so MCH appears to be the critical neuromodulator released by these neurons. In contrast, MCH-neuron-ablated mice showed improved glucose tolerance when compared with MCH-deficient mutant mice and wild-type mice. We conclude that MCH neurons regulate glucose tolerance through signaling molecules other than MCH.

  9. Mechanisms regulating neuronal excitability and seizure development following mTOR pathway hyperactivation.

    PubMed

    Lasarge, Candi L; Danzer, Steve C

    2014-01-01

    The phosphatidylinositol-3-kinase/phosphatase and tensin homolog (PTEN)-mammalian target of rapamycin (mTOR) pathway regulates a variety of neuronal functions, including cell proliferation, survival, growth, and plasticity. Dysregulation of the pathway is implicated in the development of both genetic and acquired epilepsies. Indeed, several causal mutations have been identified in patients with epilepsy, the most prominent of these being mutations in PTEN and tuberous sclerosis complexes 1 and 2 (TSC1, TSC2). These genes act as negative regulators of mTOR signaling, and mutations lead to hyperactivation of the pathway. Animal models deleting PTEN, TSC1, and TSC2 consistently produce epilepsy phenotypes, demonstrating that increased mTOR signaling can provoke neuronal hyperexcitability. Given the broad range of changes induced by altered mTOR signaling, however, the mechanisms underlying seizure development in these animals remain uncertain. In transgenic mice, cell populations with hyperactive mTOR have many structural abnormalities that support recurrent circuit formation, including somatic and dendritic hypertrophy, aberrant basal dendrites, and enlargement of axon tracts. At the functional level, mTOR hyperactivation is commonly, but not always, associated with enhanced synaptic transmission and plasticity. Moreover, these populations of abnormal neurons can affect the larger network, inducing secondary changes that may explain paradoxical findings reported between cell and network functioning in different models or at different developmental time points. Here, we review the animal literature examining the link between mTOR hyperactivation and epileptogenesis, emphasizing the impact of enhanced mTOR signaling on neuronal form and function.

  10. NEURONS COMPRISING A HETEROTOPIA INDUCED BY DEVELOPMENTAL HYPOTHYROIDISM ARE BORN LATE IN GESTATION.

    EPA Science Inventory

    We previously described an abnormal cluster of neurons, a heterotopia, located in the corpus callosum in rat pups born to dams exposed to the goitrogen, propylthiouracil (PTU, Goodman et al., SfN 2004). In this study we determined 1) whether the formation of the heterotopia was u...

  11. Studying neuronal biomechanics and its role in CNS development

    NASA Astrophysics Data System (ADS)

    Franze, Kristian; Svoboda, Hanno; da F. Costa, Luciano; Guck, Jochen; Holt, Christine

    2013-03-01

    During the development of the nervous system, neurons migrate and grow over great distances. Currently, our understanding of nervous tissue development is, in large part, based on studies of biochemical signaling. Despite the fact that forces are involved in any kind of cell motion, mechanical aspects have so far rarely been considered. Here we used deformable cell culture substrates, traction force microscopy and calcium imaging to investigate how neurons probe and respond to their mechanical environment. While the growth rate of retinal ganglion cell axons was increased on stiffer substrates, their tendency to grow in bundles, which they show in vivo, was significantly enhanced on more compliant substrates. Moreover, if grown on substrates incorporating linear stiffness gradients, neuronal axons were repelled by stiff substrates. Mechanosensing involved the application of forces driven by the interaction of actin and myosin II, and the activation of stretch-activated ion channels leading to calcium influxes into the cells. Applying a modified atomic force microscopy techniquein vivo, we found mechanical gradients in developing brain tissue along which neurons grow. The application of chondroitin sulfate, which is a major extracellular matrix component in the developing brain, changed tissue mechanics and disrupted axonal pathfinding. Hence, our data suggest that neuronal growth is not only guided by chemical signals - as it is currently assumed - but also by the nervous tissue's mechanical properties.

  12. [P21-activated kinases and their role in the nervous system].

    PubMed

    Qin, Yuan; Ding, Yue-Min; Xia, Qiang

    2012-12-25

    P21-activated kinases (PAK) participate in a variety of important cellular activities, such as cytoskeleton remodeling, cell migration, cell cycle regulation, and apoptosis or survival. PAK also has an important impact on brain development, neuronal differentiation, and regulation of synaptic plasticity in the nervous system. PAK abnormalities result in diseases including cancer, Parkinson's disease (PD), Alzheimer's disease (AD) and neural retardation. Therefore, it is of vital physiological significance to investigate the neuronal function of PAK. In this paper we review the advancement of research on the neuronal biological function and the underlying mechanisms of PAK.

  13. En1 is necessary for survival of neurons in the ventral nuclei of the lateral lemniscus.

    PubMed

    Altieri, Stefanie C; Zhao, Tianna; Jalabi, Walid; Romito-DiGiacomo, Rita R; Maricich, Stephen M

    2016-11-01

    The ventral nuclei of the lateral lemniscus (VNLL) are part of the central auditory system thought to participate in temporal sound processing. While the timing and location of VNLL neurogenesis have been determined, the genetic factors that regulate VNLL neuron development are unknown. Here, we use genetic fate-mapping techniques to demonstrate that all glycinergic and glycinergic/GABAergic VNLL neurons derive from a cellular lineage that expresses the homeobox transcription factor Engrailed 1 (En1). We also show that En1 deletion does not affect migration or adoption of a neuronal cell fate but does lead to VNLL neuron death during development. Furthermore, En1 deletion blocks expression of the transcription factor FoxP1 in a subset of VNLL neurons. Together, these data identify En1 as a gene important for VNLL neuron development and survival. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1266-1274, 2016. © 2016 Wiley Periodicals, Inc.

  14. Developing neurons use a putative pioneer's peripheral arbor to establish their terminal fields.

    PubMed

    Gan, W B; Macagno, E R

    1995-05-01

    Pioneer neurons are known to guide later developing neurons during the initial phases of axonal outgrowth. To determine whether they are also important in the formation of terminal fields by the follower cells, we studied the role of a putative leech pioneer neuron, the pressure-sensitive (PD) neuron, in the establishment of other neurons' peripheral arbors. The PD neuron has a major axon that exits from its segmental ganglion to grow along the dorsal-posterior (DP) nerve to the dorsal body wall, where it arborizes extensively mainly in its own segment. It also has two minor axons that project to the two adjacent segments but branch to a lesser degree. We found that the peripheral projections of several later developing neurons, including the AP motor neuron and the TD sensory neuron, followed, with great precision, the major axon and peripheral arbor of the consegmental PD neuron, up to its fourth-order branches. When a PD neuron was ablated before it had grown to the body wall, the AP and TD axons grew normally toward and reached the target area, but then formed terminal arbors that were greatly reduced in size and abnormal in morphology. Further, if the ablation of a PD neuron was accompanied by the induction, in the same segment, of greater outgrowth of the minor axon of a PD neuron from the adjacent segment, the arbors of the same AP neurons grew along these novel PD neuron branches. These results demonstrate that the peripheral arbor of a PD neuron is a both necessary and sufficient template for the formation of normal terminal fields by certain later growing follower neurons.

  15. Independent controls for neocortical neuron production and histogenetic cell death

    NASA Technical Reports Server (NTRS)

    Verney, C.; Takahashi, T.; Bhide, P. G.; Nowakowski, R. S.; Caviness, V. S. Jr

    2000-01-01

    We estimated the proportion of cells eliminated by histogenetic cell death during the first 2 postnatal weeks in areas 1, 3 and 40 of the mouse parietal neocortex. For each layer and for the subcortical white matter in each neocortical area, the number of dying cells per mm(2) was calculated and the proportionate cell death for each day of the 2-week interval was estimated. The data show that cell death proceeds essentially uniformly across the neocortical areas and layers and that it does not follow either the spatiotemporal gradient of cell cycle progression in the pseudostratified ventricular epithelium of the cerebral wall, the source of neocortical neurons, or the 'inside-out' neocortical neuronogenetic sequence. Therefore, we infer that the control mechanisms of neocortical histogenetic cell death are independent of mechanisms controlling neuronogenesis or neuronal migration but may be associated with the ingrowth, expansion and a system-wide matching of neuronal connectivity. Copyright 2000 S. Karger AG, Basel.

  16. MMP20 Overexpression Disrupts Molar Ameloblast Polarity and Migration.

    PubMed

    Shin, M; Chavez, M B; Ikeda, A; Foster, B L; Bartlett, J D

    2018-07-01

    Ameloblasts responsible for enamel formation express matrix metalloproteinase 20 (MMP20), an enzyme that cleaves enamel matrix proteins, including amelogenin (AMELX) and ameloblastin (AMBN). Previously, we showed that continuously erupting incisors from transgenic mice overexpressing active MMP20 had a massive cell infiltrate present within their enamel space, leading to enamel mineralization defects. However, effects of MMP20 overexpression on mouse molars were not analyzed, although these teeth more accurately represent human odontogenesis. Therefore, MMP20-overexpressing mice ( Mmp20 +/+ Tg + ) were assessed by multiscale analyses, combining several approaches from high-resolution micro-computed tomography to enamel organ immunoblots. During the secretory stage at postnatal day 6 (P6), Mmp20 +/+ Tg + mice had a discontinuous ameloblast layer and, unlike incisors, molar P12 maturation stage ameloblasts abnormally migrated away from the enamel layer into the stratum intermedium/stellate reticulum. TOPflash assays performed in vitro demonstrated that MMP20 expression promoted β-catenin nuclear localization and that MMP20 expression promoted invasion through Matrigel-coated filters. However, for both assays, significant differences were eliminated in the presence of the β-catenin inhibitor ICG-001. This suggests that MMP20 activity promotes cell migration via the Wnt pathway. In vivo, the unique molar migration of amelogenin-expressing ameloblasts was associated with abnormal deposition of ectopic calcified nodules surrounding the adherent enamel layer. Enamel content was assessed just prior to eruption at P15. Compared to wild-type, Mmp20 +/+ Tg + molars exhibited significant reductions in enamel thickness (70%), volume (60%), and mineral density (40%), and MMP20 overexpression resulted in premature cleavage of AMBN, which likely contributed to the severe defects in enamel mineralization. In addition, Mmp20 +/+ Tg + mouse molar enamel organs had increased levels

  17. Lesion-induced increase in survival and migration of human neural progenitor cells releasing GDNF

    PubMed Central

    Behrstock, Soshana; Ebert, Allison D.; Klein, Sandra; Schmitt, Melanie; Moore, Jeannette M.; Svendsen, Clive N.

    2009-01-01

    The use of human neural progenitor cells (hNPC) has been proposed to provide neuronal replacement or astrocytes delivering growth factors for brain disorders such as Parkinson’s and Huntington’s disease. Success in such studies likely requires migration from the site of transplantation and integration into host tissue in the face of ongoing damage. In the current study, hNPC modified to release glial cell line derived neurotrophic factor (hNPCGDNF) were transplanted into either intact or lesioned animals. GDNF release itself had no effect on the survival, migration or differentiation of the cells. The most robust migration and survival was found using a direct lesion of striatum (Huntington’s model) with indirect lesions of the dopamine system (Parkinson’s model) or intact animals showing successively less migration and survival. No lesion affected differentiation patterns. We conclude that the type of brain injury dictates migration and integration of hNPC which has important consequences when considering transplantation of these cells as a therapy for neurodegenerative diseases. PMID:19044202

  18. Ex Utero Electroporation and Organotypic Slice Cultures of Embryonic Mouse Brains for Live-Imaging of Migrating GABAergic Interneurons.

    PubMed

    Eid, Lara; Lachance, Mathieu; Hickson, Gilles; Rossignol, Elsa

    2018-04-20

    GABAergic interneurons (INs) are critical components of neuronal networks that drive cognition and behavior. INs destined to populate the cortex migrate tangentially from their place of origin in the ventral telencephalon (including from the medial and caudal ganglionic eminences (MGE, CGE)) to the dorsal cortical plate in response to a variety of intrinsic and extrinsic cues. Different methodologies have been developed over the years to genetically manipulate specific pathways and investigate how they regulate the dynamic cytoskeletal changes required for proper IN migration. In utero electroporation has been extensively used to study the effect of gene repression or overexpression in specific IN subtypes while assessing the impact on morphology and final position. However, while this approach is readily used to modify radially migrating pyramidal cells, it is more technically challenging when targeting INs. In utero electroporation generates a low yield given the decreased survival rates of pups when electroporation is conducted before e14.5, as is customary when studying MGE-derived INs. In an alternative approach, MGE explants provide easy access to the MGE and facilitate the imaging of genetically modified INs. However, in these explants, INs migrate into an artificial matrix, devoid of endogenous guidance cues and thalamic inputs. This prompted us to optimize a method where INs can migrate in a more naturalistic environment, while circumventing the technical challenges of in utero approaches. In this paper, we describe the combination of ex utero electroporation of embryonic mouse brains followed by organotypic slice cultures to readily track, image and reconstruct genetically modified INs migrating along their natural paths in response to endogenous cues. This approach allows for both the quantification of the dynamic aspects of IN migration with time-lapse confocal imaging, as well as the detailed analysis of various morphological parameters using neuronal

  19. Anatomical basis of sun compass navigation II: the neuronal composition of the central complex of the monarch butterfly.

    PubMed

    Heinze, Stanley; Florman, Jeremy; Asokaraj, Surainder; El Jundi, Basil; Reppert, Steven M

    2013-02-01

    Each fall, eastern North American monarch butterflies in their northern range undergo a long-distance migration south to their overwintering grounds in Mexico. Migrants use a time-compensated sun compass to determine directionality during the migration. This compass system uses information extracted from sun-derived skylight cues that is compensated for time of day and ultimately transformed into the appropriate motor commands. The central complex (CX) is likely the site of the actual sun compass, because neurons in this brain region are tuned to specific skylight cues. To help illuminate the neural basis of sun compass navigation, we examined the neuronal composition of the CX and its associated brain regions. We generated a standardized version of the sun compass neuropils, providing reference volumes, as well as a common frame of reference for the registration of neuron morphologies. Volumetric comparisons between migratory and nonmigratory monarchs substantiated the proposed involvement of the CX and related brain areas in migratory behavior. Through registration of more than 55 neurons of 34 cell types, we were able to delineate the major input pathways to the CX, output pathways, and intrinsic neurons. Comparison of these neural elements with those of other species, especially the desert locust, revealed a surprising degree of conservation. From these interspecies data, we have established key components of a conserved core network of the CX, likely complemented by species-specific neurons, which together may comprise the neural substrates underlying the computations performed by the CX. Copyright © 2012 Wiley Periodicals, Inc.

  20. Mechanism of gastrointestinal abnormal motor activity induced by cisplatin in conscious dogs

    PubMed Central

    Ando, Hiroyuki; Mochiki, Erito; Ohno, Tetsuro; Yanai, Mitsuhiro; Toyomasu, Yoshitaka; Ogata, Kyoichi; Tabe, Yuichi; Aihara, Ryuusuke; Nakabayashi, Toshihiro; Asao, Takayuki; Kuwano, Hiroyuki

    2014-01-01

    AIM: To investigate whether 5-hydroxytryptamine (serotonin; 5-HT) is involved in mediating abnormal motor activity in dogs after cisplatin administration. METHODS: After the dogs had been given a 2-wk recovery period, all of them were administered cisplatin, and the motor activity was recorded using strain gauge force transducers. Blood and intestinal fluid samples were collected to measure 5-HT for 24 h. To determine whether 5-HT in plasma or that in intestinal fluids is more closely related to abnormal motor activity we injected 5-HT into the bloodstream and the intestinal tract of the dogs. RESULTS: Cisplatin given intravenously produced abnormal motor activity that lasted up to 5 h. From 3 to 4 h after cisplatin administration, normal intact dogs exhibited retropropagation of motor activity accompanied by emesis. The concentration of 5-HT in plasma reached the peak at 4 h, and that in intestinal fluids reached the peak at 3 h. In normal intact dogs with resection of the vagus nerve that were administered kytril, cisplatin given intravenously did not produce abnormal motor activity. Intestinal serotonin administration did not produce abnormal motor activity, but intravenous serotonin administration did. CONCLUSION: After the intravenous administration of cisplatin, abnormal motor activity was produced in the involved vagus nerve and in the involved serotonergic neurons via another pathway. This study was the first to determine the relationship between 5-HT and emesis-induced motor activity. PMID:25400453

  1. [Neurobiology and neurogenetics of dyslexia].

    PubMed

    Benítez-Burraco, A

    2010-01-01

    Dyslexia is a learning disability in which reading (but not any other) impairment is the most prominent symptom. There seems to be a high comorbidity among dyslexia and other learning disabilities, such as SLI, SSD or ADHD. The nulear deficit in dyslexia appears to correspond to an impairment in phonological processing. Structural and functional studies in dyslexic readers converge to indicate the presence of malformations in the brain areas corresponding to the reading systems, but also a failure of these systems to function properly during reading. Genes linked (or associated) to dyslexia have been shown to be involved in neuronal migration and axon guidance during the formation of the cortex. In the developing cerebral neocortex of rats, local loss of function of most of these genes not only results in abnormal neuronal migration and neocortical and hippocampal malformations, but also in deficits related to auditory processing and learning. While the structural malformations resemble neuronal migration abnormalities observed in the brains of individuals with developmental dyslexia, processing/learning deficits also resemble deficits described in individuals affected by the disease. On the whole, dyslexia seems to be on a continuum with typical reading at different biological levels (genetic, biochemical, physiological, cognitive). Furthermore, certain elements belonging to some of these levels (mainly -some of the- genes linked or associated to the disease, but also -some of the- neuronal structures whose development is regulated by these genes) would simultaneously belong to those of other cognitive abilities, which give rise to diseases of a different nature (i.e. non- dyslexic impairments) when they are impaired. Copyright © 2009 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  2. Expression of ESR1 in Glutamatergic and GABAergic Neurons Is Essential for Normal Puberty Onset, Estrogen Feedback, and Fertility in Female Mice.

    PubMed

    Cheong, Rachel Y; Czieselsky, Katja; Porteous, Robert; Herbison, Allan E

    2015-10-28

    Circulating estradiol exerts a profound influence on the activity of the gonadotropin-releasing hormone (GnRH) neuronal network controlling fertility. Using genetic strategies enabling neuron-specific deletion of estrogen receptor α (Esr1), we examine here whether estradiol-modulated GABA and glutamate transmission are critical for the functioning of the GnRH neuron network in the female mouse. Using Vgat- and Vglut2-ires-Cre knock-in mice and ESR1 immunohistochemistry, we demonstrate that subpopulations of GABA and glutamate neurons throughout the limbic forebrain express ESR1, with ESR1-GABAergic neurons being more widespread and numerous than ESR1-glutamatergic neurons. We crossed Vgat- and Vglut2-ires-Cre mice with an Esr1(lox/lox) line to generate animals with GABA-neuron-specific or glutamate-neuron-specific deletion of Esr1. Vgat-ires-Cre;Esr1(lox/lox) mice were infertile, with abnormal estrous cycles, and exhibited a complete failure of the estrogen positive feedback mechanism responsible for the preovulatory GnRH surge. However, puberty onset and estrogen negative feedback were normal. Vglut2-ires-Cre;Esr1(lox/lox) mice were also infertile but displayed a wider range of deficits, including advanced puberty onset, abnormal negative feedback, and abolished positive feedback. Whereas <25% of preoptic kisspeptin neurons expressed Cre in Vgat- and Vglut2-ires-Cre lines, ∼70% of arcuate kisspeptin neurons were targeted in Vglut2-ires-Cre;Esr1(lox/lox) mice, possibly contributing to their advanced puberty phenotype. These observations show that, unexpectedly, ESR1-GABA neurons are only essential for the positive feedback mechanism. In contrast, we reveal the key importance of ESR1 in glutamatergic neurons for multiple estrogen feedback loops within the GnRH neuronal network required for fertility in the female mouse. Copyright © 2015 the authors 0270-6474/15/3514533-11$15.00/0.

  3. Pcdh19 Loss-of-Function Increases Neuronal Migration In Vitro but is Dispensable for Brain Development in Mice

    PubMed Central

    Pederick, Daniel T.; Homan, Claire C.; Jaehne, Emily J.; Piltz, Sandra G.; Haines, Bryan P.; Baune, Bernhard T.; Jolly, Lachlan A.; Hughes, James N.; Gecz, Jozef; Thomas, Paul Q.

    2016-01-01

    Protocadherin 19 (Pcdh19) is an X-linked gene belonging to the protocadherin superfamily, whose members are predominantly expressed in the central nervous system and have been implicated in cell-cell adhesion, axon guidance and dendrite self-avoidance. Heterozygous loss-of-function mutations in humans result in the childhood epilepsy disorder PCDH19 Girls Clustering Epilepsy (PCDH19 GCE) indicating that PCDH19 is required for brain development. However, understanding PCDH19 function in vivo has proven challenging and has not been studied in mammalian models. Here, we validate a murine Pcdh19 null allele in which a β-Geo reporter cassette is expressed under the control of the endogenous promoter. Analysis of β-Geo reporter activity revealed widespread but restricted expression of PCDH19 in embryonic, postnatal and adult brains. No gross morphological defects were identified in Pcdh19+/β-Geo and Pcdh19Y/β-Geo brains and the location of Pcdh19 null cells was normal. However, in vitro migration assays revealed that the motility of Pcdh19 null neurons was significantly elevated, potentially contributing to pathogenesis in patients with PCDH19 mutations. Overall our initial characterization of Pcdh19+/β-Geo, Pcdh19β-Geo/β-Geo and Pcdh19Y/β-Geomice reveals that despite widespread expression of Pcdh19 in the CNS, and its role in human epilepsy, its function in mice is not essential for brain development. PMID:27240640

  4. Choline metabolism as a basis for the selective vulnerability of cholinergic neurons

    NASA Technical Reports Server (NTRS)

    Wurtman, R. J.

    1992-01-01

    The unique propensity of cholinergic neurons to use choline for two purposes--ACh and membrane phosphatidylcholine synthesis--may contribute to their selective vulnerability in Alzheimer's disease and other cholinergic neurodegenerative disorders. When physiologically active, the neurons use free choline taken from the 'reservoir' in membrane phosphatidylcholine to synthesize ACh; this can lead to an actual decrease in the quantity of membrane per cell. Alzheimer's disease (but not Down's syndrome, or other neurodegenerative disorders) is associated with characteristic neurochemical lesions involving choline and ethanolamine: brain levels of these compounds are diminished, while those of glycerophosphocholine and glycerophosphoethanolamine (breakdown products of their respective membrane phosphatides) are increased, both in cholinergic and noncholinergic brain regions. Perhaps this metabolic disturbance and the tendency of cholinergic neurons to 'export' choline--in the form of ACh--underlie the selective vulnerability of the neurons. Resulting changes in membrane composition could abnormally expose intramembraneous proteins such as amyloid precursor protein to proteases.

  5. Olivocochlear neuron central anatomy is normal in alpha 9 knockout mice.

    PubMed

    Brown, M Christian; Vetter, Douglas E

    2009-03-01

    Olivocochlear (OC) neurons were studied in a transgenic mouse with deletion of the alpha 9 nicotinic acetylcholine receptor subunit. In this alpha 9 knockout mouse, the peripheral effects of OC stimulation are lacking and the peripheral terminals of OC neurons under outer hair cells have abnormal morphology. To account for this mouse's apparently normal hearing, it has been proposed to have central compensation via collateral branches to the cochlear nucleus. We tested this idea by staining OC neurons for acetylcholinesterase and examining their morphology in knockout mice, wild-type mice of the same background strain, and CBA/CaJ mice. Knockout mice had normal OC systems in terms of numbers of OC neurons, dendritic patterns, and numbers of branches to the cochlear nucleus. The branch terminations were mainly to edge regions and to a lesser extent the core of the cochlear nucleus, and were similar among the strains in terms of the distribution and staining density. These data demonstrate that there are no obvious changes in the central morphology of the OC neurons in alpha 9 knockout mice and make less attractive the idea that there is central compensation for deletion of the peripheral receptor in these mice.

  6. Alterations in the cholinergic system of brain stem neurons in a mouse model of Rett syndrome.

    PubMed

    Oginsky, Max F; Cui, Ningren; Zhong, Weiwei; Johnson, Christopher M; Jiang, Chun

    2014-09-15

    Rett syndrome is an autism-spectrum disorder resulting from mutations to the X-linked gene, methyl-CpG binding protein 2 (MeCP2), which causes abnormalities in many systems. It is possible that the body may develop certain compensatory mechanisms to alleviate the abnormalities. The norepinephrine system originating mainly in the locus coeruleus (LC) is defective in Rett syndrome and Mecp2-null mice. LC neurons are subject to modulation by GABA, glutamate, and acetylcholine (ACh), providing an ideal system to test the compensatory hypothesis. Here we show evidence for potential compensatory modulation of LC neurons by post- and presynaptic ACh inputs. We found that the postsynaptic currents of nicotinic ACh receptors (nAChR) were smaller in amplitude and longer in decay time in the Mecp2-null mice than in the wild type. Single-cell PCR analysis showed a decrease in the expression of α3-, α4-, α7-, and β3-subunits and an increase in the α5- and α6-subunits in the mutant mice. The α5-subunit was present in many of the LC neurons with slow-decay nAChR currents. The nicotinic modulation of spontaneous GABAA-ergic inhibitory postsynaptic currents in LC neurons was enhanced in Mecp2-null mice. In contrast, the nAChR manipulation of glutamatergic input to LC neurons was unaffected in both groups of mice. Our current-clamp studies showed that the modulation of LC neurons by ACh input was reduced moderately in Mecp2-null mice, despite the major decrease in nAChR currents, suggesting possible compensatory processes may take place, thus reducing the defects to a lesser extent in LC neurons. Copyright © 2014 the American Physiological Society.

  7. Developmental abnormalities and age-related neurodegeneration in a mouse model of Down syndrome

    PubMed Central

    Holtzman, David M.; Santucci, Daniela; Kilbridge, Joshua; Chua-Couzens, Jane; Fontana, David J.; Daniels, Scott E.; Johnson, Randolph M.; Chen, Karen; Sun, Yuling; Carlson, Elaine; Alleva, Enrico; Epstein, Charles J.; Mobley, William C.

    1996-01-01

    To study the pathogenesis of central nervous system abnormalities in Down syndrome (DS), we have analyzed a new genetic model of DS, the partial trisomy 16 (Ts65Dn) mouse. Ts65Dn mice have an extra copy of the distal aspect of mouse chromosome 16, a segment homologous to human chromosome 21 that contains much of the genetic material responsible for the DS phenotype. Ts65Dn mice show developmental delay during the postnatal period as well as abnormal behaviors in both young and adult animals that may be analogous to mental retardation. Though the Ts65Dn brain is normal on gross examination, there is age-related degeneration of septohippocampal cholinergic neurons and astrocytic hypertrophy, markers of the Alzheimer disease pathology that is present in elderly DS individuals. These findings suggest that Ts65Dn mice may be used to study certain developmental and degenerative abnormalities in the DS brain. PMID:8917591

  8. Abnormal pressure study in the Malay and Penyu Basins: A regional understanding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kader, M.S.; Leslie, W.

    1994-07-01

    A majority of wells drilled in the Malay and Penyu basins were terminated due to abnormal pressure. Blowouts and the subsequent loss of technical data have always been a concern during drilling operations. This study employs data from 94 exploratory wells spread throughout the Malay and Penyu basins. The postdrill abnormal pressure predictive method used is pressure vs. depth plots of data obtained from Repeat Formation tester (RFT) readings. The study results indicate that abnormal pressure occurs in a progressively older stratigraphic unit toward the basin margins. The margins of the Malay and the entire Penyu basins tend to bemore » normally pressured. The onset of abnormal pressure appears to be abrupt in the northern portion and more gradual in the southern part of the Malay Basin. Abnormal pressure in the Malay Basin is found to be neither depth dependent nor age related. Many factors can cause the abnormal formation pressures. In some areas, a combination of factors prevails. Rapid deposition of the middle to late Miocene siliciclastic sediments appears to be a dominant cause particularly in the center of the Malay Basin. A low sand:shale ratio coupled with a high geothermal gradient is also found to be a local cause near the axis of the basin. This phenomenon is crucial to the understanding of hydrocarbon migration and will enable the planning of safe and efficient drilling campaigns.« less

  9. Normalizing translation through 4E-BP prevents mTOR-driven cortical mislamination and ameliorates aberrant neuron integration.

    PubMed

    Lin, Tiffany V; Hsieh, Lawrence; Kimura, Tomoki; Malone, Taylor J; Bordey, Angélique

    2016-10-04

    Hyperactive mammalian target of rapamycin complex 1 (mTORC1) is a shared molecular hallmark in several neurodevelopmental disorders characterized by abnormal brain cytoarchitecture. The mechanisms downstream of mTORC1 that are responsible for these defects remain unclear. We show that focally increasing mTORC1 activity during late corticogenesis leads to ectopic placement of upper-layer cortical neurons that does not require altered signaling in radial glia and is accompanied by changes in layer-specific molecular identity. Importantly, we found that decreasing cap-dependent translation by expressing a constitutively active mutant of the translational repressor eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) prevents neuronal misplacement and soma enlargement, while partially rescuing dendritic hypertrophy induced by hyperactive mTORC1. Furthermore, overactivation of translation alone through knockdown of 4E-BP2 was sufficient to induce neuronal misplacement. These data show that many aspects of abnormal brain cytoarchitecture can be prevented by manipulating a single intracellular process downstream of mTORC1, cap-dependent translation.

  10. Abnormal neuronal response to rectal and anal stimuli in patients treated with primary radiotherapy for anal cancer.

    PubMed

    Haas, Susanne; Faaborg, Pia; Gram, Mikkel; Lundby, Lilli; Brock, Christina; Drewes, Anbjørn M; Laurberg, Søren; Krogh, Klaus; Christensen, Peter

    2018-04-26

    Sphincter-sparing radiotherapy or chemoradiation (RT/CRT) have become the standard treatments for most patients with anal cancer. Unfortunately, long-term survivors often suffer from severe bowel symptoms indicating sensory dysfunction. The aim of the present study was to characterize the sensory pathways of the brain-gut axis after radiotherapy for anal cancer. Cortical evoked potentials (CEPs) were recorded during repeated, rapid balloon distensions of the rectum and anal canal in 13 patients with anal cancer treated with radiotherapy or chemoradiation and in 17 healthy volunteers. Latencies and amplitudes of rectal CEPs were compared between the groups. CEPs from both rectal and anal distensions were examined using single sweep spectral band analysis to determine the relative amplitude of five spectral bands as a proxy of neuronal processing. Groups were comparable by age (62.4 ± 7.8 vs 58.9 ± 8.9, p < 0.32) and gender. Patients had a mean Wexner fecal incontinence score of 5.5 (±3.8) and median LARS Score of 29 (0-39). Rectal CEP latencies were prolonged in patients (F = 11.7; p < 0.001), whereas amplitudes were similar (F = 0.003; p = 0.96). Spectral analysis of CEPs from rectal distensions showed significant differences between groups in theta (4-8 Hz), alpha (8-12 Hz), beta (12-32 Hz) and gamma (32-70 Hz) bands (all p < 0.001) and CEPs from anal distensions showed significant differences in the alpha, beta and gamma bands (all p ≤ 0.002). Patients treated with RT/CRT for anal cancer have impaired ano-rectal sensory pathways and abnormal cortical processing. This may play a central role for the pathogenesis of late proctopathy. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. M- and T-tropic HIVs Promote Apoptosis in Rat Neurons

    PubMed Central

    Bachis, Alessia; Biggio, Francesca; Major, Eugene O.; Mocchetti, Italo

    2009-01-01

    Neuronal loss, reactive astrocytes, and other abnormalities are seen in the brain of individuals with acquired immune deficiency syndrome-associated Dementia Complex (ADC). Human immunodeficiency virus-1 (HIV-1) is believed to be the main agent causing ADC. However, little is known about the molecular and cellular mechanisms of HIV-1 neurotoxicity considering that HIV-1 does not infect post-mitotic neurons and that viral load does not necessarily correlate with ADC. Various viral proteins, such as the envelope protein gp120 and the transcription activator Tat, have been shown to induce neuronal apoptosis through direct and indirect mechanisms both in vitro and in vivo. Progeny HIV-1 virions can also cause neuronal death. However, it has not been fully established yet whether HIV-1 promotes neuronal apoptosis by a direct mechanism. To explore the neurotoxic effect of HIV-1, we exposed rat cerebellar granule cells and cortical neurons in culture to two different strains of HIV-1, IIIB and BaL, T- and M-tropic strains that utilize CXCR4 and CCR5 coreceptors, respectively, to infect cells. We observed that both viruses elicit a time-dependent apoptotic cell death in these cultures without inducing a productive infection as determined by the absence of the core protein of HIV-1, p24, in cell lysates. Instead, neurons were gp 120 positive, suggesting that the envelope protein is shed by the virus and then subsequently internalized by neurons. The CXCR4 receptor antagonist AMD3100 or the CCR5 receptor inhibitor D-Ala-peptide T-amide blocked HIV IIIB and HIV Bal neurotoxicity, respectively. In contrast, the N-methyl-D-aspartate receptor blocker MK801 failed to protect neurons from HIV-mediated apoptosis, suggesting that HIV-1 neurotoxicity can be initiated by the viral protein gp 120 binding to neuronal chemokine receptors. PMID:19034668

  12. Natural History of the Central Structural Abnormalities in Choroideremia: A Prospective Cross-Sectional Study.

    PubMed

    Aleman, Tomas S; Han, Grace; Serrano, Leona W; Fuerst, Nicole M; Charlson, Emily S; Pearson, Denise J; Chung, Daniel C; Traband, Anastasia; Pan, Wei; Ying, Gui-Shuang; Bennett, Jean; Maguire, Albert M; Morgan, Jessica I W

    2017-03-01

    To describe in detail the central retinal structure of a large group of patients with choroideremia (CHM). A prospective, cross-sectional, descriptive study. Patients (n = 97, age 6-71 years) with CHM and subjects with normal vision (n = 44; ages 10-50 years) were included. Subjects were examined with spectral-domain optical coherence tomography (SD OCT) and near-infrared reflectance imaging. Visual acuity (VA) was measured during their encounter or obtained from recent ophthalmic examinations. Visual thresholds were measured in a subset of patients (n = 24) with automated static perimetry within the central regions (±15°) examined with SD OCT. Visual acuity and visual thresholds; total nuclear layer, inner nuclear layer (INL), and outer nuclear layer (ONL) thicknesses; and horizontal extent of the ONL and the photoreceptor outer segment (POS) interdigitation zone (IZ). Earliest abnormalities in regions with normally appearing retinal pigment epithelium (RPE) were the loss of the POS and ellipsoid zone associated with rod dysfunction. Transition zones (TZs) from relatively preserved retina to severe ONL thinning and inner retinal thickening moved centripetally with age. Most patients (88%) retained VAs better than 20/40 until their fifth decade of life. The VA decline coincided with migration of the TZ near the foveal center. There were outer retinal tubulations in degenerated, nonatrophic retina in the majority (69%) of patients. In general, RPE abnormalities paralleled photoreceptor degeneration, although there were regions with detectable but abnormally thin ONL co-localizing with severe RPE depigmentation and choroidal thinning. Abnormalities of the POS and rod dysfunction are the earliest central abnormalities observed in CHM. Foveal function is relatively preserved until the fifth decade of life. Migration of the TZs to the foveal center with foveal thinning and structural disorganization heralded central VA loss. The relationships established may help

  13. Abnormal mTOR Activation in Autism.

    PubMed

    Winden, Kellen D; Ebrahimi-Fakhari, Darius; Sahin, Mustafa

    2018-01-25

    The mechanistic target of rapamycin (mTOR) is an important signaling hub that integrates environmental information regarding energy availability and stimulates anabolic molecular processes and cell growth. Abnormalities in this pathway have been identified in several syndromes in which autism spectrum disorder (ASD) is highly prevalent. Several studies have investigated mTOR signaling in developmental and neuronal processes that, when dysregulated, could contribute to the development of ASD. Although many potential mechanisms still remain to be fully understood, these associations are of great interest because of the clinical availability of mTOR inhibitors. Clinical trials evaluating the efficacy of mTOR Expected final online publication date for the Annual Review of Neuroscience Volume 41 is July 8, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  14. Role of Microglia Disturbances and Immune-Related Marker Abnormalities in Cortical Circuitry Dysfunction in Schizophrenia

    PubMed Central

    Volk, David W.

    2017-01-01

    Studies of genetics, serum cytokines, and autoimmune illnesses suggest that immune-related abnormalities are involved in the disease process of schizophrenia. Furthermore, direct evidence of cortical immune activation, including markedly elevated levels of many immune-related markers, have been reported in the prefrontal cortex in multiple cohorts of schizophrenia subjects. Within the prefrontal cortex in schizophrenia, deficits in the basilar dendritic spines of layer 3 pyramidal neurons and disturbances in inhibitory inputs to pyramidal neurons have also been commonly reported. Interestingly, microglia, the resident immune-related cells of the brain, also regulate excitatory and inhibitory input to pyramidal neurons. Consequently, in this review, we describe the cytological and molecular evidence of immune activation that has been reported in the brains of individuals with schizophrenia and the potential links between these immune-related disturbances with previously reported disturbances in pyramidal and inhibitory neurons in the disorder. Finally, we discuss the role that activated microglia may play in connecting these observations and as potential therapeutic treatment targets in schizophrenia. PMID:28007586

  15. CNTN6 mutations are risk factors for abnormal auditory sensory perception in autism spectrum disorders.

    PubMed

    Mercati, O; Huguet, G; Danckaert, A; André-Leroux, G; Maruani, A; Bellinzoni, M; Rolland, T; Gouder, L; Mathieu, A; Buratti, J; Amsellem, F; Benabou, M; Van-Gils, J; Beggiato, A; Konyukh, M; Bourgeois, J-P; Gazzellone, M J; Yuen, R K C; Walker, S; Delépine, M; Boland, A; Régnault, B; Francois, M; Van Den Abbeele, T; Mosca-Boidron, A L; Faivre, L; Shimoda, Y; Watanabe, K; Bonneau, D; Rastam, M; Leboyer, M; Scherer, S W; Gillberg, C; Delorme, R; Cloëz-Tayarani, I; Bourgeron, T

    2017-04-01

    Contactin genes CNTN5 and CNTN6 code for neuronal cell adhesion molecules that promote neurite outgrowth in sensory-motor neuronal pathways. Mutations of CNTN5 and CNTN6 have previously been reported in individuals with autism spectrum disorders (ASDs), but very little is known on their prevalence and clinical impact. In this study, we identified CNTN5 and CNTN6 deleterious variants in individuals with ASD. Among the carriers, a girl with ASD and attention-deficit/hyperactivity disorder was carrying five copies of CNTN5. For CNTN6, both deletions (6/1534 ASD vs 1/8936 controls; P=0.00006) and private coding sequence variants (18/501 ASD vs 535/33480 controls; P=0.0005) were enriched in individuals with ASD. Among the rare CNTN6 variants, two deletions were transmitted by fathers diagnosed with ASD, one stop mutation CNTN6 W923X was transmitted by a mother to her two sons with ASD and one variant CNTN6 P770L was found de novo in a boy with ASD. Clinical investigations of the patients carrying CNTN5 or CNTN6 variants showed that they were hypersensitive to sounds (a condition called hyperacusis) and displayed changes in wave latency within the auditory pathway. These results reinforce the hypothesis of abnormal neuronal connectivity in the pathophysiology of ASD and shed new light on the genes that increase risk for abnormal sensory perception in ASD.

  16. Continuity of neuropil threads with tangle-bearing and tangle-free neurons in Alzheimer disease cortex. A confocal laser scanning microscopy study.

    PubMed

    Schmidt, M L; Murray, J M; Trojanowski, J Q

    1993-04-01

    Neuropil threads (NTs) are abnormal processes that are associated with tangle-bearing neurons in gray matter areas of Alzheimer disease (AD) brains. Although NTs contain paired helical filaments (PHFs) and share multiple tau epitopes with neurobrillary tangles (NFTs), the relationship between NTs and tangle-bearing neurons is unclear. For this reason, we assessed the continuity of NTs with tangle-bearing and tangle-free neurons. Since astrocytes express low levels of tau and rarely have been shown to contain PHFs, we also examined the relationship of NTs to cortical astrocytes. This was done using histochemical and immunochemical methods in conjunction with confocal laser scanning microscopy to examine NTs in amygdala and entorhinal cortex of seven AD brains. Only a small fraction of NTs (< 1%) in 3.5 x 10(6) microns 3 of amygdala and entorhinal cortex could be traced to local neurons with NFTs or to neurons that did not contain NFTs, and no NTs were continuous with cortical astrocytes. These results indicate that only a very small percentage of NTs in entorhinal cortex and amygdala occur in the most proximal segments of processes that emanate from tangle-bearing or tangle-free neurons. This implies that the majority of NTs reside in the distal parts of dendrites and/or the terminal arborizations of axons or that NTs are discontinuous abnormalities. Taken together, these data suggest that NTs could disrupt local and long distance neuronal circuitry and thereby contribute to the cognitive impairments seen in AD patients.

  17. MND2: A new mouse model of inherited motor neuron disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, J.M.; Albin, R.L.; Feldman, E.L.

    1993-06-01

    The autosomal recessive mutation mnd2 results in early onset motor neuron disease with rapidly progressive paralysis, severe muscle wasting, regression of thymus and spleen, and death before 40 days of age. mnd2 has been mapped to mouse chromosome 6 with the gene order: centromere-Tcrb-Ly-2-Sftp-3-D6Mit4-mnd2-D6Mit6, D6Mit9-D6Rck132-Raf-1, D6Mit11-D6Mit12-D6Mit14. mnd2 is located within a conserved linkage group with homologs on human chromosome 2p12-p13. Spinal motor neurons of homozygous affected animals are swollen and stain weakly, and electromyography revealed spontaneous activity characteristic of muscle denervation. Myelin staining was normal throughout the neuraxis. The clinical observations are consistent with a primary abnormality of lower motormore » neuron function. This new animal model will be of value for identification of a genetic defect responsible for motor neuron disease and for evaluation of new therapies. 36 refs., 7 figs., 2 tabs.« less

  18. Migrated Essure permanent birth control device: sonographic findings.

    PubMed

    Khati, Nadia Juliet; Gorodenker, Joseph; Brindle, Kathleen Ann

    2014-05-01

    We report a case of a migrated Essure permanent birth control device. The correct diagnosis was made on conventional two-dimensional and three-dimensional pelvic sonography 7 years after placement of the device when the patient presented with persistent right-sided pain. The 3-month post placement hysterosalpingogram had shown an appropriately occluded right fallopian tube but had overlooked the abnormal position of the right Essure device, which was too proximal and extending slightly in the uterine cavity. Copyright © 2013 Wiley Periodicals, Inc.

  19. Using Human iPSC-Derived Neurons to Model TAU Aggregation

    PubMed Central

    Verheyen, An; Diels, Annick; Dijkmans, Joyce; Oyelami, Tutu; Meneghello, Giulia; Mertens, Liesbeth; Versweyveld, Sofie; Borgers, Marianne; Buist, Arjan; Peeters, Pieter; Cik, Miroslav

    2015-01-01

    Alzheimer’s disease and frontotemporal dementia are amongst the most common forms of dementia characterized by the formation and deposition of abnormal TAU in the brain. In order to develop a translational human TAU aggregation model suitable for screening, we transduced TAU harboring the pro-aggregating P301L mutation into control hiPSC-derived neural progenitor cells followed by differentiation into cortical neurons. TAU aggregation and phosphorylation was quantified using AlphaLISA technology. Although no spontaneous aggregation was observed upon expressing TAU-P301L in neurons, seeding with preformed aggregates consisting of the TAU-microtubule binding repeat domain triggered robust TAU aggregation and hyperphosphorylation already after 2 weeks, without affecting general cell health. To validate our model, activity of two autophagy inducers was tested. Both rapamycin and trehalose significantly reduced TAU aggregation levels suggesting that iPSC-derived neurons allow for the generation of a biologically relevant human Tauopathy model, highly suitable to screen for compounds that modulate TAU aggregation. PMID:26720731

  20. Muscle Mitochondrial Uncoupling Dismantles Neuromuscular Junction and Triggers Distal Degeneration of Motor Neurons

    PubMed Central

    Dupuis, Luc; Gonzalez de Aguilar, Jose-Luis; Echaniz-Laguna, Andoni; Eschbach, Judith; Rene, Frédérique; Oudart, Hugues; Halter, Benoit; Huze, Caroline; Schaeffer, Laurent; Bouillaud, Frédéric; Loeffler, Jean-Philippe

    2009-01-01

    Background Amyotrophic lateral sclerosis (ALS), the most frequent adult onset motor neuron disease, is associated with hypermetabolism linked to defects in muscle mitochondrial energy metabolism such as ATP depletion and increased oxygen consumption. It remains unknown whether muscle abnormalities in energy metabolism are causally involved in the destruction of neuromuscular junction (NMJ) and subsequent motor neuron degeneration during ALS. Methodology/Principal Findings We studied transgenic mice with muscular overexpression of uncoupling protein 1 (UCP1), a potent mitochondrial uncoupler, as a model of muscle restricted hypermetabolism. These animals displayed age-dependent deterioration of the NMJ that correlated with progressive signs of denervation and a mild late-onset motor neuron pathology. NMJ regeneration and functional recovery were profoundly delayed following injury of the sciatic nerve and muscle mitochondrial uncoupling exacerbated the pathology of an ALS animal model. Conclusions/Significance These findings provide the proof of principle that a muscle restricted mitochondrial defect is sufficient to generate motor neuron degeneration and suggest that therapeutic strategies targeted at muscle metabolism might prove useful for motor neuron diseases. PMID:19404401

  1. Varenicline and abnormal sleep related events.

    PubMed

    Savage, Ruth L; Zekarias, Alem; Caduff-Janosa, Pia

    2015-05-01

    To assess adverse drug reaction reports of "abnormal sleep related events" associated with varenicline, a partial agonist to the α4β2 subtype of nicotinic acetylcholine receptors on neurones, indicated for smoking cessation. Twenty-seven reports of "abnormal sleep related events" often associated with abnormal dreams, nightmares, or somnambulism, which are known to be associated with varenicline use, were identified in the World Health Organisation (WHO) Global Individual Case Safety Reports Database. Original anonymous reports were obtained from the four national pharmacovigilance centers that submitted these reports and assessed for reaction description and causality. These 27 reports include 10 of aggressive activity occurring during sleep and seven of other sleep related harmful or potentially harmful activities, such as apparently deliberate self-harm, moving a child or a car, or lighting a stove or a cigarette. Assessment of these 17 reports of aggression or other actual or potential harm showed that nine patients recovered or were recovering on varenicline withdrawal and there were no consistent alternative explanations. Thirteen patients experienced single events, and two had multiple events. Frequency was not stated for the remaining two patients. The descriptions of the reports of aggression during sleep with violent dreaming are similar to those of rapid eye movement sleep behavior disorder and also nonrapid eye movement (NREM) sleep parasomnias in some adults. Patients who experience somnambulism or dreams of a violent nature while taking varenicline should be advised to consult their health providers. Consideration should be given to clarifying the term sleep disorders in varenicline product information and including sleep related harmful and potentially harmful events. © 2015 Associated Professional Sleep Societies, LLC.

  2. Neurochemical abnormalities in premanifest and early spinocerebellar ataxias.

    PubMed

    Joers, James M; Deelchand, Dinesh K; Lyu, Tianmeng; Emir, Uzay E; Hutter, Diane; Gomez, Christopher M; Bushara, Khalaf O; Eberly, Lynn E; Öz, Gülin

    2018-04-01

    To investigate whether early neurochemical abnormalities are detectable by high-field magnetic resonance spectroscopy (MRS) in individuals with spinocerebellar ataxias (SCAs) 1, 2, 3, and 6, including patients without manifestation of ataxia. A cohort of 100 subjects (N = 18-21 in each SCA group, including premanifest mutation carriers; mean score on the Scale for the Assessment and Rating of Ataxia [SARA] <10 for all genotypes, and 22 matched controls) was scanned at 7 Tesla to obtain neurochemical profiles of the cerebellum and brainstem. A novel multivariate approach (distance-weighted discrimination) was used to combine regional profiles into an "MRS score." MRS scores robustly distinguished individuals with SCA from controls, with misclassification rates of 0% (SCA2), 2% (SCA3), 5% (SCA1), and 17% (SCA6). Premanifest mutation carriers with estimated disease onset within 10 years had MRS scores in the range of early-manifest SCA subjects. Levels of neuronal and glial markers significantly correlated with SARA and an Activities of Daily Living score in subjects with SCA. Regional neurochemical alterations were different between SCAs at comparable disease severity, with SCA2 displaying the most extensive neurochemical abnormalities, followed by SCA1, SCA3, and SCA6. Neurochemical abnormalities are detectable in individuals before manifest disease, which may allow premanifest enrollment in future SCA trials. Correlations with ataxia and quality-of-life scores show that neurochemical levels can serve as clinically meaningful endpoints in trials. Ranking of SCA types by degree of neurochemical abnormalities indicates that the neurochemistry may reflect synaptic function or density. Ann Neurol 2018;83:816-829. © 2018 American Neurological Association.

  3. Mitochondrial Dynamics Mediated by Mitofusin 1 Is Required for POMC Neuron Glucose-Sensing and Insulin Release Control.

    PubMed

    Ramírez, Sara; Gómez-Valadés, Alicia G; Schneeberger, Marc; Varela, Luis; Haddad-Tóvolli, Roberta; Altirriba, Jordi; Noguera, Eduard; Drougard, Anne; Flores-Martínez, Álvaro; Imbernón, Mónica; Chivite, Iñigo; Pozo, Macarena; Vidal-Itriago, Andrés; Garcia, Ainhoa; Cervantes, Sara; Gasa, Rosa; Nogueiras, Ruben; Gama-Pérez, Pau; Garcia-Roves, Pablo M; Cano, David A; Knauf, Claude; Servitja, Joan-Marc; Horvath, Tamas L; Gomis, Ramon; Zorzano, Antonio; Claret, Marc

    2017-06-06

    Proopiomelanocortin (POMC) neurons are critical sensors of nutrient availability implicated in energy balance and glucose metabolism control. However, the precise mechanisms underlying nutrient sensing in POMC neurons remain incompletely understood. We show that mitochondrial dynamics mediated by Mitofusin 1 (MFN1) in POMC neurons couple nutrient sensing with systemic glucose metabolism. Mice lacking MFN1 in POMC neurons exhibited defective mitochondrial architecture remodeling and attenuated hypothalamic gene expression programs during the fast-to-fed transition. This loss of mitochondrial flexibility in POMC neurons bidirectionally altered glucose sensing, causing abnormal glucose homeostasis due to defective insulin secretion by pancreatic β cells. Fed mice lacking MFN1 in POMC neurons displayed enhanced hypothalamic mitochondrial oxygen flux and reactive oxygen species generation. Central delivery of antioxidants was able to normalize the phenotype. Collectively, our data posit MFN1-mediated mitochondrial dynamics in POMC neurons as an intrinsic nutrient-sensing mechanism and unveil an unrecognized link between this subset of neurons and insulin release. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A small population of hypothalamic neurons govern fertility: the critical role of VAX1 in GnRH neuron development and fertility maintenance.

    PubMed

    Hoffmann, Hanne M; Mellon, Pamela L

    2016-01-01

    Fertility depends on the correct maturation and function of approximately 800 gonadotropin-releasing hormone (GnRH) neurons in the brain. GnRH neurons are at the apex of the hypothalamic-pituitary-gonadal axis that regulates fertility. In adulthood, GnRH neurons are scattered throughout the anterior hypothalamic area and project to the median eminence, where GnRH is released into the portal vasculature to stimulate release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the pituitary. LH and FSH then regulate gonadal steroidogenesis and gametogenesis. Absence of GnRH neurons or inappropriate GnRH release leads to infertility. Despite the critical role of GnRH neurons in fertility, we still have a limited understanding of the genes responsible for proper GnRH neuron development and function in adulthood. GnRH neurons originate in the olfactory placode then migrate into the brain. Homeodomain transcription factors expressed within GnRH neurons or along their migratory path are candidate genes for inherited infertility. Using a combined in vitro and in vivo approach, we have identified Ventral Anterior Homeobox 1 ( Vax1 ) as a novel homeodomain transcription factor responsible for GnRH neuron maturation and fertility. GnRH neuron counts in Vax1 knock-out embryos revealed Vax1 to be required for the presence of GnRH-expressing cells at embryonic day 17.5 (E17.5), but not at E13.5. To localize the effects of Vax1 on fertility, we generated Vax1 flox mice and crossed them with Gnrh cre mice to specifically delete Vax1 within GnRH neurons. GnRH staining in Vax1 flox/flox :GnRH cre mice show a total absence of GnRH expression in the adult. We performed lineage tracing in Vax1 flox/flox :GnRH cre :RosaLacZ mice which proved GnRH neurons to be alive, but incapable of expressing GnRH. The absence of GnRH leads to delayed puberty, hypogonadism and complete infertility in both sexes. Finally, using the immortalized model GnRH neuron cell lines, GN11 and

  5. Ablation of Neurons Expressing Melanin-Concentrating Hormone (MCH) in Adult Mice Improves Glucose Tolerance Independent of MCH Signaling

    PubMed Central

    Whiddon, Benjamin B.; Palmiter, Richard D.

    2013-01-01

    Melanin-concentrating hormone (MCH)-expressing neurons have been ascribed many roles based on tudies of MCH-deficient mice. However, MCH neurons express other neurotransmitters, including GABA, nesfatin, and cocaine–amphetamine-regulated transcript. The importance of these other signaling molecules made by MCH neurons remains incompletely characterized. To determine the roles of MCH neurons in vivo, we targeted expression of the human diphtheria toxin receptor (DTR) to the gene for MCH (Pmch). Within 2 weeks of diphtheria toxin injection, heterozygous PmchDTR/+ mice lost 98% of their MCH neurons. These mice became lean but ate normally and were hyperactive, especially during a fast. They also responded abnormally to psychostimulants. For these phenotypes, ablation of MCH neurons recapitulated knock-out of MCH, so MCH appears to be the critical neuromodulator released by these neurons. In contrast, MCH-neuron-ablated mice showed improved glucose tolerance when compared with MCH-deficient mutant mice and wild-type mice. We conclude that MCH neurons regulate glucose tolerance through signaling molecules other than MCH. PMID:23365238

  6. Monosodium glutamate-sensitive hypothalamic neurons contribute to the control of bone mass

    NASA Technical Reports Server (NTRS)

    Elefteriou, Florent; Takeda, Shu; Liu, Xiuyun; Armstrong, Dawna; Karsenty, Gerard

    2003-01-01

    Using chemical lesioning we previously identified hypothalamic neurons that are required for leptin antiosteogenic function. In the course of these studies we observed that destruction of neurons sensitive to monosodium glutamate (MSG) in arcuate nuclei did not affect bone mass. However MSG treatment leads to hypogonadism, a condition inducing bone loss. Therefore the normal bone mass of MSG-treated mice suggested that MSG-sensitive neurons may be implicated in the control of bone mass. To test this hypothesis we assessed bone resorption and bone formation parameters in MSG-treated mice. We show here that MSG-treated mice display the expected increase in bone resorption and that their normal bone mass is due to a concomitant increase in bone formation. Correction of MSG-induced hypogonadism by physiological doses of estradiol corrected the abnormal bone resorptive activity in MSG-treated mice and uncovered their high bone mass phenotype. Because neuropeptide Y (NPY) is highly expressed in MSG-sensitive neurons we tested whether NPY regulates bone formation. Surprisingly, NPY-deficient mice had a normal bone mass. This study reveals that distinct populations of hypothalamic neurons are involved in the control of bone mass and demonstrates that MSG-sensitive neurons control bone formation in a leptin-independent manner. It also indicates that NPY deficiency does not affect bone mass.

  7. Post-movement beta rebound abnormality as indicator of mirror neuron system dysfunction in autistic spectrum disorder: an MEG study.

    PubMed

    Honaga, Eiko; Ishii, Ryouhei; Kurimoto, Ryu; Canuet, Leonides; Ikezawa, Koji; Takahashi, Hidetoshi; Nakahachi, Takayuki; Iwase, Masao; Mizuta, Ichiro; Yoshimine, Toshiki; Takeda, Masatoshi

    2010-07-12

    The mu rhythm is regarded as a physiological indicator of the human mirror neuron system (MNS). The dysfunctional MNS hypothesis in patients with autistic spectrum disorder (ASD) has often been tested using EEG and MEG, targeting mu rhythm suppression during action observation/execution, although with controversial results. We explored neural activity related to the MNS in patients with ASD, focusing on power increase in the beta frequency band after observation and execution of movements, known as post-movement beta rebound (PMBR). Multiple source beamformer (MSBF) and BrainVoyager QX were used for MEG source imaging and statistical group analysis, respectively. Seven patients with ASD and ten normal subjects participated in this study. During the MEG recordings, the subjects were asked to observe and later execute object-related hand actions performed by an experimenter. We found that both groups exhibited pronounced PMBR exceeding 20% when observing and executing actions with a similar topographic distribution of maximal activity. However, significantly reduced PMBR was found only during the observation condition in the patients relative to controls in cortical regions within the MNS, namely the sensorimotor area, premotor cortex and superior temporal gyrus. Reduced PMBR during the observation condition was also found in the medial prefrontal cortex. These results support the notion of a dysfunctional execution/observation matching system related to MNS impairment in patients with ASD, and the feasibility of using MEG to detect neural activity, in particular PMBR abnormalities, as an index of MNS dysfunction during performance of motor or cognitive tasks. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Targeting neuronal dysfunction in schizophrenia with nicotine: Evidence from neurophysiology to neuroimaging

    PubMed Central

    Smucny, Jason; Tregellas, Jason R

    2018-01-01

    Patients with schizophrenia self-administer nicotine at rates higher than is self-administered for any other psychiatric illness. Although the reasons are unclear, one hypothesis suggests that nicotine is a form of ‘self-medication’ in order to restore normal levels of nicotinic signaling and target abnormalities in neuronal function associated with cognitive processes. This brief review discusses evidence from neurophysiological and neuroimaging studies in schizophrenia patients that nicotinic agonists may effectively target dysfunctional neuronal circuits in the illness. Evidence suggests that nicotine significantly modulates a number of these circuits, although relatively few studies have used modern neuroimaging techniques (e.g. functional magnetic resonance imaging (fMRI)) to examine the effects of nicotinic drugs on disease-related neurobiology. The neuronal effects of nicotine and other nicotinic agonists in schizophrenia remain a priority for psychiatry research. PMID:28441884

  9. Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy.

    PubMed

    Vilchez, David; Ros, Susana; Cifuentes, Daniel; Pujadas, Lluís; Vallès, Jordi; García-Fojeda, Belén; Criado-García, Olga; Fernández-Sánchez, Elena; Medraño-Fernández, Iria; Domínguez, Jorge; García-Rocha, Mar; Soriano, Eduardo; Rodríguez de Córdoba, Santiago; Guinovart, Joan J

    2007-11-01

    Glycogen synthesis is normally absent in neurons. However, inclusion bodies resembling abnormal glycogen accumulate in several neurological diseases, particularly in progressive myoclonus epilepsy or Lafora disease. We show here that mouse neurons have the enzymatic machinery for synthesizing glycogen, but that it is suppressed by retention of muscle glycogen synthase (MGS) in the phosphorylated, inactive state. This suppression was further ensured by a complex of laforin and malin, which are the two proteins whose mutations cause Lafora disease. The laforin-malin complex caused proteasome-dependent degradation both of the adaptor protein targeting to glycogen, PTG, which brings protein phosphatase 1 to MGS for activation, and of MGS itself. Enforced expression of PTG led to glycogen deposition in neurons and caused apoptosis. Therefore, the malin-laforin complex ensures a blockade of neuronal glycogen synthesis even under intense glycogenic conditions. Here we explain the formation of polyglucosan inclusions in Lafora disease by demonstrating a crucial role for laforin and malin in glycogen synthesis.

  10. Different requirements of functional telomeres in neural stem cells and terminally differentiated neurons.

    PubMed

    Lobanova, Anastasia; She, Robert; Pieraut, Simon; Clapp, Charlie; Maximov, Anton; Denchi, Eros Lazzerini

    2017-04-01

    Telomeres have been studied extensively in peripheral tissues, but their relevance in the nervous system remains poorly understood. Here, we examine the roles of telomeres at distinct stages of murine brain development by using lineage-specific genetic ablation of TRF2, an essential component of the shelterin complex that protects chromosome ends from the DNA damage response machinery. We found that functional telomeres are required for embryonic and adult neurogenesis, but their uncapping has surprisingly no detectable consequences on terminally differentiated neurons. Conditional knockout of TRF2 in post-mitotic immature neurons had virtually no detectable effect on circuit assembly, neuronal gene expression, and the behavior of adult animals despite triggering massive end-to-end chromosome fusions across the brain. These results suggest that telomeres are dispensable in terminally differentiated neurons and provide mechanistic insight into cognitive abnormalities associated with aberrant telomere length in humans. © 2017 Lobanova et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Anorexia and impaired glucose metabolism in mice with hypothalamic ablation of Glut4 neurons.

    PubMed

    Ren, Hongxia; Lu, Taylor Y; McGraw, Timothy E; Accili, Domenico

    2015-02-01

    The central nervous system (CNS) uses glucose independent of insulin. Nonetheless, insulin receptors and insulin-responsive glucose transporters (Glut4) often colocalize in neurons (Glut4 neurons) in anatomically and functionally distinct areas of the CNS. The apparent heterogeneity of Glut4 neurons has thus far thwarted attempts to understand their function. To answer this question, we used Cre-dependent, diphtheria toxin-mediated cell ablation to selectively remove basal hypothalamic Glut4 neurons and investigate the resulting phenotypes. After Glut4 neuron ablation, mice demonstrate altered hormone and nutrient signaling in the CNS. Accordingly, they exhibit negative energy balance phenotype characterized by reduced food intake and increased energy expenditure, without locomotor deficits or gross neuronal abnormalities. Glut4 neuron ablation affects orexigenic melanin-concentrating hormone neurons but has limited effect on neuropeptide Y/agouti-related protein and proopiomelanocortin neurons. The food intake phenotype can be partially normalized by GABA administration, suggesting that it arises from defective GABAergic transmission. Glut4 neuron-ablated mice show peripheral metabolic defects, including fasting hyperglycemia and glucose intolerance, decreased insulin levels, and elevated hepatic gluconeogenic genes. We conclude that Glut4 neurons integrate hormonal and nutritional cues and mediate CNS actions of insulin on energy balance and peripheral metabolism. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  12. Identification of distinct telencephalic progenitor pools for neuronal diversity in the amygdala

    PubMed Central

    Hirata, Tsutomu; Li, Peijun; Lanuza, Guillermo M.; Cocas, Laura A.; Huntsman, Molly M.; Corbin, Joshua G.

    2009-01-01

    Development of the amygdala, a central structure of the limbic system, remains poorly understood. Using mouse as a model, our studies reveal that two spatially distinct and early specified telencephalic progenitor pools marked by the homeodomain transcription factor Dbx1 are major sources of neuronal cell diversity in the mature amygdala. We find that Dbx1+ cells of the ventral pallium (VP) generate excitatory neurons of the basolateral complex and cortical amygdala nuclei. Moreover, Dbx1-derived cells comprise a novel migratory stream that emanates from the preoptic area (POA), a ventral telencephalic domain adjacent to the diencephalic border. The Dbx1+ POA-derived population migrates specifically to the amygdala, and as defined by both immunochemical and electrophysiological criteria, generates a unique subclass of inhibitory neurons in the medial amygdala nucleus. Thus, this POA-derived population represents a novel progenitor pool dedicated to the limbic system. PMID:19136974

  13. Identification of distinct telencephalic progenitor pools for neuronal diversity in the amygdala.

    PubMed

    Hirata, Tsutomu; Li, Peijun; Lanuza, Guillermo M; Cocas, Laura A; Huntsman, Molly M; Corbin, Joshua G

    2009-02-01

    The development of the amygdala, a central structure of the limbic system, remains poorly understood. We found that two spatially distinct and early-specified telencephalic progenitor pools marked by the homeodomain transcription factor Dbx1 are major sources of neuronal cell diversity in the mature mouse amygdala. We found that Dbx1-positive cells of the ventral pallium generate the excitatory neurons of the basolateral complex and cortical amygdala nuclei. Moreover, Dbx1-derived cells comprise a previously unknown migratory stream that emanates from the preoptic area (POA), a ventral telencephalic domain adjacent to the diencephalic border. The Dbx1-positive, POA-derived population migrated specifically to the amygdala and, as defined by both immunochemical and electrophysiological criteria, generated a unique subclass of inhibitory neurons in the medial amygdala nucleus. Thus, this POA-derived population represents a previously unknown progenitor pool dedicated to the limbic system.

  14. Steroid Treatment Reduces Allergic Airway Inflammation and Does Not Alter the Increased Numbers of Dendritic Cells and Calcitonin Gene-Related Peptide-Expressing Neurons in Airway Sensory Ganglia.

    PubMed

    Le, Duc Dung; Funck, Ulrike; Wronski, Sabine; Heck, Sebastian; Tschernig, Thomas; Bischoff, Markus; Sester, Martina; Herr, Christian; Bals, Robert; Welte, Tobias; Braun, Armin; Dinh, Quoc Thai

    2016-01-01

    Our previous data demonstrated that allergic airway inflammation induces migration of dendritic cells (DC) into airway sensory jugular and nodose ganglia (jugular-nodose ganglion complex; JNC). Here we investigated the effects of steroid treatment regarding the expression and migration of DC and calcitonin gene-related peptide (CGRP)-immunoreactive neurons of vagal sensory ganglia during allergic airway inflammation. A house dust mite (HDM) model for allergic airway inflammation was used. The mice received 0.3 mg fluticasone propionate per kilogram of body weight in the last 9 days. JNC slices were analyzed on MHC II, the neuronal marker PGP9.5, and the neuropeptide CGRP. Allergic airway inflammation increased the numbers of DC and CGRP-expressing neurons in the JNC significantly in comparison to the controls (DC/neurons: HDM 44.58 ± 1.6% vs. saline 33.29 ± 1.6%, p < 0.05; CGRP-positive neurons/total neurons: HDM 30.65 ± 1.9% vs. saline 19.49 ± 2.3%, p < 0.05). Steroid treatment did not have any effect on the numbers of DC and CGRP-expressing neurons in the JNC compared to HDM-treated mice. The present findings indicate an important role of DC and CGRP-containing neurons in the pathogenesis of allergic airway inflammation. However, steroid treatment did not have an effect on the population of DC and neurons displaying CGRP in the JNC, whereas steroid treatment was found to suppress allergic airway inflammation. © 2015 S. Karger AG, Basel.

  15. GPR56-Related Polymicrogyria: Clinicoradiologic Profile of 4 Patients.

    PubMed

    Desai, Neelu A; Udani, Vrajesh

    2015-11-01

    Bilateral frontoparietal polymicrogyria is an autosomal recessive cortical malformation associated with abnormalities of neuronal migration, white matter changes, and mild brainstem and cerebellar abnormalities. Affected patients present with delayed milestones, intellectual disability, epilepsy, ataxia, and eye movement abnormalities. The clinicoradiologic profile resembles congenital muscular dystrophy. However, no muscle disease or characteristic eye abnormalities of congenial muscular dystrophy are detected in these children. GPR56 is the only confirmed gene associated with bilateral frontoparietal polymicrogyria. Antenatal diagnosis is possible if the index case is genetically confirmed. Four patients from different Indian families with a distinct clinicoradiologic profile resembling congenital muscular dystrophy with mutations in the GPR56 gene are described. © The Author(s) 2015.

  16. A role for chemokine signaling in neural crest cell migration and craniofacial development

    PubMed Central

    Killian, Eugenia C. Olesnicky; Birkholz, Denise A.; Artinger, Kristin Bruk

    2009-01-01

    Neural crest cells (NCCs) are a unique population of multipotent cells that migrate along defined pathways throughout the embryo and give rise to many diverse cell types including pigment cells, craniofacial cartilage and the peripheral nervous system (PNS). Aberrant migration of NCCs results in a wide variety of congenital birth defects including craniofacial abnormalities. The chemokine Sdf1 and its receptors, Cxcr4 and Cxcr7, have been identified as key components in the regulation of cell migration in a variety of tissues. Here we describe a novel role for the zebrafish chemokine receptor Cxcr4a in the development and migration of cranial NCCs (CNCCs). We find that loss of Cxcr4a, but not Cxcr7b results in aberrant CNCC migration, defects in the neurocranium, as well as cranial ganglia dismorphogenesis. Moreover, overexpression of either Sdf1b or Cxcr4a causes aberrant CNCC migration and results in ectopic craniofacial cartilages. We propose a model in which Sdf1b signaling from the pharyngeal arch endoderm and optic stalk to Cxcr4a expressing CNCCs is important for both the proper condensation of the CNCCs into pharyngeal arches and the subsequent patterning and morphogenesis of the neural crest derived tissues. PMID:19576198

  17. Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function.

    PubMed

    Gahl, Trevor J; Kunze, Anja

    2018-01-01

    Cellular processes like membrane deformation, cell migration, and transport of organelles are sensitive to mechanical forces. Technically, these cellular processes can be manipulated through operating forces at a spatial precision in the range of nanometers up to a few micrometers through chaperoning force-mediating nanoparticles in electrical, magnetic, or optical field gradients. But which force-mediating tool is more suitable to manipulate cell migration, and which, to manipulate cell signaling? We review here the differences in forces sensation to control and engineer cellular processes inside and outside the cell, with a special focus on neuronal cells. In addition, we discuss technical details and limitations of different force-mediating approaches and highlight recent advancements of nanomagnetics in cell organization, communication, signaling, and intracellular trafficking. Finally, we give suggestions about how force-mediating nanoparticles can be used to our advantage in next-generation neurotherapeutic devices.

  18. Restoring neuronal progranulin reverses deficits in a mouse model of frontotemporal dementia

    PubMed Central

    Arrant, Andrew E.; Filiano, Anthony J.; Unger, Daniel E.; Young, Allen H.

    2017-01-01

    Loss-of-function mutations in progranulin (GRN), a secreted glycoprotein expressed by neurons and microglia, are a common autosomal dominant cause of frontotemporal dementia, a neurodegenerative disease commonly characterized by disrupted social and emotional behaviour. GRN mutations are thought to cause frontotemporal dementia through progranulin haploinsufficiency, therefore, boosting progranulin expression from the intact allele is a rational treatment strategy. However, this approach has not been tested in an animal model of frontotemporal dementia and it is unclear if boosting progranulin could correct pre-existing deficits. Here, we show that adeno-associated virus-driven expression of progranulin in the medial prefrontal cortex reverses social dominance deficits in Grn+/– mice, an animal model of frontotemporal dementia due to GRN mutations. Adeno-associated virus-progranulin also corrected lysosomal abnormalities in Grn+/– mice. The adeno-associated virus-progranulin vector only transduced neurons, suggesting that restoring neuronal progranulin is sufficient to correct deficits in Grn+/– mice. To further test the role of neuronal progranulin in the development of frontotemporal dementia-related deficits, we generated two neuronal progranulin-deficient mouse lines using CaMKII-Cre and Nestin-Cre. Measuring progranulin levels in these lines indicated that most brain progranulin is derived from neurons. Both neuronal progranulin-deficient lines developed social dominance deficits similar to those in global Grn+/– mice, showing that neuronal progranulin deficiency is sufficient to disrupt social behaviour. These data support the concept of progranulin-boosting therapies for frontotemporal dementia and highlight an important role for neuron-derived progranulin in maintaining normal social function. PMID:28379303

  19. Ketamine induces toxicity in human neurons differentiated from embryonic stem cells via mitochondrial apoptosis pathway

    PubMed Central

    Bosnjak, Zeljko J.; Yan, Yasheng; Canfield, Scott; Muravyeva, Maria Y.; Kikuchi, Chika; Wells, Clive; Corbett, John; Bai, Xiaowen

    2013-01-01

    Ketamine is widely used for anesthesia in pediatric patients. Growing evidence indicates that ketamine causes neurotoxicity in a variety of developing animal models. Our understanding of anesthesia neurotoxicity in humans is currently limited by difficulties in obtaining neurons and performing developmental toxicity studies in fetal and pediatric populations. It may be possible to overcome these challenges by obtaining neurons from human embryonic stem cells (hESCs) in vitro. hESCs are able to replicate indefinitely and differentiate into every cell type. In this study, we investigated the toxic effect of ketamine on neurons differentiated from hESCs. Two-week-old neurons were treated with different doses and durations of ketamine with or without the reactive oxygen species (ROS) scavenger, Trolox. Cell viability, ultrastructure, mitochondrial membrane potential (ΔΨm), cytochrome c distribution within cells, apoptosis, and ROS production were evaluated. Here we show that ketamine induced ultrastructural abnormalities and dose- and time-dependently caused cell death. In addition, ketamine decreased ΔΨm and increased cytochrome c release from mitochondria. Ketamine also increased ROS production and induced differential expression of oxidative stress-related genes. Specifically, abnormal ultrastructural and ΔΨm changes occurred earlier than cell death in the ketamine-induced toxicity process. Furthermore, Trolox significantly decreased ROS generation and attenuated cell death caused by ketamine in a dose-dependent manner. In conclusion, this study illustrates that ketamine time- and dose-dependently induces human neurotoxicity via ROS-mediated mitochondrial apoptosis pathway and that these side effects can be prevented by the antioxidant agent Trolox. Thus, hESC-derived neurons might provide a promising tool for studying anesthetic-induced developmental neurotoxicity and prevention strategies. PMID:22873495

  20. FUS immunogold labelling TEM analysis of the neuronal cytoplasmic inclusions of neuronal intermediate filament inclusion disease: a frontotemporal lobar degeneration with FUS proteinopathy

    PubMed Central

    Page, Tristan; Gitcho, Michael A.; Mosaheb, Sabrina; Carter, Deborah; Chakraverty, Sumi; Perry, Robert H.; Bigio, Eileen H.; Gearing, Marla; Ferrer, Isidre; Goate, Alison M.; Cairns, Nigel J.; Thorpe, Julian R.

    2012-01-01

    Fused in sarcoma (FUS)-immunoreactive neuronal and glial inclusions define a novel molecular pathology called FUS proteinopathy. FUS has been shown to be a component of inclusions of familial amyotrophic lateral sclerosis with FUS mutation and three FTLD entities, including neuronal intermediate filament inclusion disease (NIFID). The pathogenic role of FUS is unknown. In addition to FUS, many neuronal cytoplasmic inclusions (NCI) of NIFID contain aggregates of α-internexin and neurofilament proteins. Herein, we have: (1) shown that FUS becomes relatively insoluble in NIFID and there are no post-translational modifications; (2) shown there are no pathogenic abnormalities in the FUS gene in NIFID; (3) performed an immunoelectron microscopy analysis of the precise localizations of FUS in NIFID, as this has not previously been described. FUS localized to euchromatin, and strongly with paraspeckles, in nuclei, consistent with its RNA/DNA-binding functions. NCI of varying morphologies were observed. Most frequent were the ‘loosely aggregated cytoplasmic inclusions’ (LACI), 81% of which had moderate or high levels of FUS-immunoreactivity. Much rarer ‘compact cytoplasmic inclusions’ (CCI) and ‘Tangled twine ball inclusions’ (TTBI) were FUS-immunoreactive at their granular peripheries, or heavily FUS-positive throughout, respectively. Thus FUS may aggregate in the cytoplasm and then admix with neuronal intermediate filament accumulations. PMID:21603978

  1. Effects of Two Commonly Found Strains of Influenza A Virus on Developing Dopaminergic Neurons, in Relation to the Pathophysiology of Schizophrenia

    PubMed Central

    Landreau, Fernando; Galeano, Pablo; Caltana, Laura R.; Masciotra, Luis; Chertcoff, Agustín; Pontoriero, A.; Baumeister, Elsa; Amoroso, Marcela; Brusco, Herminia A.; Tous, Mónica I.; Savy, Vilma L.; Lores Arnaiz, María del Rosario; de Erausquin, Gabriel A.

    2012-01-01

    Influenza virus (InfV) infection during pregnancy is a known risk factor for neurodevelopment abnormalities in the offspring, including the risk of schizophrenia, and has been shown to result in an abnormal behavioral phenotype in mice. However, previous reports have concentrated on neuroadapted influenza strains, whereas increased schizophrenia risk is associated with common respiratory InfV. In addition, no specific mechanism has been proposed for the actions of maternal infection on the developing brain that could account for schizophrenia risk. We identified two common isolates from the community with antigenic configurations H3N2 and H1N1 and compared their effects on developing brain with a mouse modified-strain A/WSN/33 specifically on the developing of dopaminergic neurons. We found that H1N1 InfV have high affinity for dopaminergic neurons in vitro, leading to nuclear factor kappa B activation and apoptosis. Furthermore, prenatal infection of mothers with the same strains results in loss of dopaminergic neurons in the offspring, and in an abnormal behavioral phenotype. We propose that the well-known contribution of InfV to risk of schizophrenia during development may involve a similar specific mechanism and discuss evidence from the literature in relation to this hypothesis. PMID:23251423

  2. Magnetic resonance imaging of neuronal ceroid lipofuscinosis in a border collie.

    PubMed

    Koie, Hiroshi; Shibuya, Hisashi; Sato, Tsuneo; Sato, Akane; Nawa, Koji; Nawa, Yuko; Kitagawa, Masato; Sakai, Manabu; Takahashi, Tomoko; Yamaya, Yoshiki; Yamato, Osamu; Watari, Toshihiro; Tokuriki, Mikihiko

    2004-11-01

    A castrated male border collie 23 months of age weighing 19.4 kg was referred to the Animal Medical Center of Nihon University with complaints of visual disturbance and behavioral abnormality, hyperacusis and morbid fear. The MRI examination revealed the slight dilated cerebral sulci and cerebellar fissures and left ventricular enlargement. This is the first report of MRI findings of canine neuronal ceroid lipofuscinosis.

  3. Analysis of Histone Deacetylase-Dependent Effects on Cell Migration Using the Stripe Assay.

    PubMed

    Mertsch, Sonja; Thanos, Solon

    2017-01-01

    For normal embryonic development/morphogenesis, cell migration and homing are well-orchestrated and important events requiring specific cellular mechanisms. In diseases such as cancer deregulated cell migration represents a major problem. Therefore, numerous efforts are under way to understand the molecular mechanisms of tumor cell migration and to generate more efficient tumor therapies. Cell migration assays are one of the most commonly used functional assays. The wound-healing assay or the Boyden chamber assay are variations of these assays. Nearly all of them are two-dimensional assays and the cells can only migrate on one substrate at a time. This is in contrast to the in vivo situation where the cells are faced simultaneously with different surfaces and interact with different cell types. To approach this in vivo situation we used a modified version of the stripe assay designed by Bonhoeffer and colleagues to examine mechanisms of axonal guidance. The design of this assay allows cells to decide between two different substrates offered at the same time. Utilizing alternating neuronal substrates for migration analyses we can partially mimic the complex in vivo situation for brain tumor cells. Here we describe the detailed protocol to perform a modified version of the stripe assay in order to observe substrate-dependent migration effects in vitro, to analyze the effect of Rho-dependent kinases (ROCKS), of histone deacetylases (HDACs) and of other molecules on glioma cells.

  4. Fluid-attenuated inversion recovery: correlations of hippocampal cell densities with signal abnormalities.

    PubMed

    Diehl, B; Najm, I; Mohamed, A; Wyllie, E; Babb, T; Ying, Z; Hilbig, A; Bingaman, W; Lüders, H O; Ruggieri, P

    2001-09-25

    Hippocampal sclerosis (HS) is characterized by hippocampal atrophy and increased signal on T2-weighted images and on fluid-attenuated inversion recovery (FLAIR) images. To quantitate cell loss and compare it with signal abnormalities on FLAIR images. Thirty-one patients with temporal lobe resection, pathologically proven HS, and Engel class I and II outcome were included: 20 with HS only and 11 with HS associated with pathologically proven cortical dysplasia (dual pathology). The signal intensity on FLAIR was rated as present or absent in the hippocampus and correlated with the neuronal losses in the hippocampus. FLAIR signal increases were present in 77% (24/31) of all patients studied. In patients with isolated HS, 90% (18/20) had ipsilateral signal increases, but in patients with dual pathology, only 55% (6/11; p < 0.02) showed FLAIR signal increase. Hippocampal cell losses were significantly higher in the isolated HS group. The average cell loss in patients with FLAIR signal abnormalities was 64.8 +/- 8.0% as compared with only 32.7 +/- 5.1% in patients with no FLAIR signal abnormalities. There was a significant positive correlation between the presence of signal abnormality and average hippocampal cell loss in both pathologic groups. Ipsilateral FLAIR signal abnormalities occur in the majority of patients with isolated HS but are less frequent in those with dual pathology. The presence of increased FLAIR signal is correlated with higher hippocampal cell loss.

  5. HIV-1 transgenic rats display mitochondrial abnormalities consistent with abnormal energy generation and distribution.

    PubMed

    Villeneuve, Lance M; Purnell, Phillip R; Stauch, Kelly L; Callen, Shannon E; Buch, Shilpa J; Fox, Howard S

    2016-10-01

    With the advent of the combination antiretroviral therapy era (cART), the development of AIDS has been largely limited in the USA. Unfortunately, despite the development of efficacious treatments, HIV-1-associated neurocognitive disorders (HAND) can still develop, and as many HIV-1 positive individuals age, the prevalence of HAND is likely to rise because HAND manifests in the brain with very low levels of virus. However, the mechanism producing this viral disorder is still debated. Interestingly, HIV-1 infection exposes neurons to proteins including Tat, Nef, and Vpr which can drastically alter mitochondrial properties. Mitochondrial dysfunction has been posited to be a cornerstone of the development of numerous neurodegenerative diseases. Therefore, we investigated mitochondria in an animal model of HAND. Using an HIV-1 transgenic rat model expressing seven of the nine HIV-1 viral proteins, mitochondrial functional and proteomic analysis were performed on a subset of mitochondria that are particularly sensitive to cellular changes, the neuronal synaptic mitochondria. Quantitative mass spectroscopic studies followed by statistical analysis revealed extensive proteome alteration in this model paralleling mitochondrial abnormalities identified in HIV-1 animal models and HIV-1-infected humans. Novel mitochondrial protein changes were discovered in the electron transport chain (ETC), the glycolytic pathways, mitochondrial trafficking proteins, and proteins involved in various energy pathways, and these findings correlated well with the function of the mitochondria as assessed by a mitochondrial coupling and flux assay. By targeting these proteins and proteins upstream in the same pathway, we may be able to limit the development of HAND.

  6. Shp2 in Forebrain Neurons Regulates Synaptic Plasticity, Locomotion, and Memory Formation in Mice

    PubMed Central

    Kusakari, Shinya; Saitow, Fumihito; Ago, Yukio; Shibasaki, Koji; Sato-Hashimoto, Miho; Matsuzaki, Yasunori; Kotani, Takenori; Murata, Yoji; Hirai, Hirokazu; Matsuda, Toshio; Suzuki, Hidenori

    2015-01-01

    Shp2 (Src homology 2 domain-containing protein tyrosine phosphatase 2) regulates neural cell differentiation. It is also expressed in postmitotic neurons, however, and mutations of Shp2 are associated with clinical syndromes characterized by mental retardation. Here we show that conditional-knockout (cKO) mice lacking Shp2 specifically in postmitotic forebrain neurons manifest abnormal behavior, including hyperactivity. Novelty-induced expression of immediate-early genes and activation of extracellular-signal-regulated kinase (Erk) were attenuated in the cerebral cortex and hippocampus of Shp2 cKO mice, suggestive of reduced neuronal activity. In contrast, ablation of Shp2 enhanced high-K+-induced Erk activation in both cultured cortical neurons and synaptosomes, whereas it inhibited that induced by brain-derived growth factor in cultured neurons. Posttetanic potentiation and paired-pulse facilitation were attenuated and enhanced, respectively, in hippocampal slices from Shp2 cKO mice. The mutant mice also manifested transient impairment of memory formation in the Morris water maze. Our data suggest that Shp2 contributes to regulation of Erk activation and synaptic plasticity in postmitotic forebrain neurons and thereby controls locomotor activity and memory formation. PMID:25713104

  7. Transient inhibition of the ERK pathway prevents cerebellar developmental defects and improves long-term motor functions in murine models of neurofibromatosis type 1.

    PubMed

    Kim, Edward; Wang, Yuan; Kim, Sun-Jung; Bornhorst, Miriam; Jecrois, Emmanuelle S; Anthony, Todd E; Wang, Chenran; Li, Yi E; Guan, Jun-Lin; Murphy, Geoffrey G; Zhu, Yuan

    2014-12-23

    Individuals with neurofibromatosis type 1 (NF1) frequently exhibit cognitive and motor impairments and characteristics of autism. The cerebellum plays a critical role in motor control, cognition, and social interaction, suggesting that cerebellar defects likely contribute to NF1-associated neurodevelopmental disorders. Here we show that Nf1 inactivation during early, but not late stages of cerebellar development, disrupts neuronal lamination, which is partially caused by overproduction of glia and subsequent disruption of the Bergmann glia (BG) scaffold. Specific Nf1 inactivation in glutamatergic neuronal precursors causes premature differentiation of granule cell (GC) precursors and ectopic production of unipolar brush cells (UBCs), indirectly disrupting neuronal migration. Transient MEK inhibition during a neonatal window prevents cerebellar developmental defects and improves long-term motor performance of Nf1-deficient mice. This study reveals essential roles of Nf1 in GC/UBC migration by generating correct numbers of glia and controlling GC/UBC fate-specification/differentiation, identifying a therapeutic prevention strategy for multiple NF1-associcated developmental abnormalities.

  8. Beadex Function in the Motor Neurons Is Essential for Female Reproduction in Drosophila melanogaster

    PubMed Central

    Kairamkonda, Subhash; Nongthomba, Upendra

    2014-01-01

    Drosophila melanogaster has served as an excellent model system for understanding the neuronal circuits and molecular mechanisms regulating complex behaviors. The Drosophila female reproductive circuits, in particular, are well studied and can be used as a tool to understand the role of novel genes in neuronal function in general and female reproduction in particular. In the present study, the role of Beadex, a transcription co-activator, in Drosophila female reproduction was assessed by generation of mutant and knock down studies. Null allele of Beadex was generated by transposase induced excision of P-element present within an intron of Beadex gene. The mutant showed highly compromised reproductive abilities as evaluated by reduced fecundity and fertility, abnormal oviposition and more importantly, the failure of sperm release from storage organs. However, no defect was found in the overall ovariole development. Tissue specific, targeted knock down of Beadex indicated that its function in neurons is important for efficient female reproduction, since its neuronal knock down led to compromised female reproductive abilities, similar to Beadex null females. Further, different neuronal class specific knock down studies revealed that Beadex function is required in motor neurons for normal fecundity and fertility of females. Thus, the present study attributes a novel and essential role for Beadex in female reproduction through neurons. PMID:25396431

  9. Abnormal nuclear envelopes in the striatum and motor deficits in DYT11 myoclonus-dystonia mouse models.

    PubMed

    Yokoi, Fumiaki; Dang, Mai T; Zhou, Tong; Li, Yuqing

    2012-02-15

    DYT11 myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonic symptoms and caused by mutations in paternally expressed SGCE, which codes for ε-sarcoglycan. Paternally inherited Sgce heterozygous knock-out (KO) mice exhibit motor deficits and spontaneous myoclonus. Abnormal nuclear envelopes have been reported in cellular and mouse models of early-onset DYT1 generalized torsion dystonia; however, the relationship between the abnormal nuclear envelopes and motor symptoms are not clear. Furthermore, it is not known whether abnormal nuclear envelope exists in non-DYT1 dystonia. In the present study, abnormal nuclear envelopes in the striatal medium spiny neurons (MSNs) were found in Sgce KO mice. To analyze whether the loss of ε-sarcoglycan in the striatum alone causes abnormal nuclear envelopes, motor deficits or myoclonus, we produced paternally inherited striatum-specific Sgce conditional KO (Sgce sKO) mice and analyzed their phenotypes. Sgce sKO mice exhibited motor deficits in both beam-walking and accelerated rotarod tests, while they did not exhibit abnormal nuclear envelopes, alteration in locomotion, or myoclonus. The results suggest that the loss of ε-sarcoglycan in the striatum contributes to motor deficits, while it alone does not produce abnormal nuclear envelopes or myoclonus. Development of therapies targeting the striatum to compensate for the loss of ε-sarcoglycan function may rescue the motor deficits in DYT11 M-D patients.

  10. [Infantile autism and mirror neurons].

    PubMed

    Cornelio-Nieto, J O

    2009-02-27

    Infantile autism is a disorder that is characterised by alterations affecting reciprocal social interactions, abnormal verbal and non-verbal communication, poor imaginative activity and a restricted repertoire of activities and interests. The causes of autism remain unknown, but there are a number of different approaches that attempt to explain the neurobiological causes of the syndrome. A recent theory that has been considered is that of a dysfunction in the mirror neuron system (MNS). The MNS is a neuronal complex, originally described in monkeys and also found in humans, that is related with our movements and which offers specific responses to the movements and intended movements of other subjects. This system is believed to underlie processes of imitation and our capacity to learn by imitation. It is also thought to play a role in language acquisition, in expressing the emotions, in understanding what is happening to others and in empathy. Because these functions are altered in children with autism, it has been suggested that there is some dysfunction present in the MNS of those with autism. Dysfunction of the MNS could account for the symptoms that are observed in children with autism.

  11. Prolonged Minocycline Treatment Impairs Motor Neuronal Survival and Glial Function in Organotypic Rat Spinal Cord Cultures

    PubMed Central

    Pinkernelle, Josephine; Fansa, Hisham; Ebmeyer, Uwe; Keilhoff, Gerburg

    2013-01-01

    Background Minocycline, a second-generation tetracycline antibiotic, exhibits anti-inflammatory and neuroprotective effects in various experimental models of neurological diseases, such as stroke, Alzheimer’s disease, amyotrophic lateral sclerosis and spinal cord injury. However, conflicting results have prompted a debate regarding the beneficial effects of minocycline. Methods In this study, we analyzed minocycline treatment in organotypic spinal cord cultures of neonatal rats as a model of motor neuron survival and regeneration after injury. Minocycline was administered in 2 different concentrations (10 and 100 µM) at various time points in culture and fixed after 1 week. Results Prolonged minocycline administration decreased the survival of motor neurons in the organotypic cultures. This effect was strongly enhanced with higher concentrations of minocycline. High concentrations of minocycline reduced the number of DAPI-positive cell nuclei in organotypic cultures and simultaneously inhibited microglial activation. Astrocytes, which covered the surface of the control organotypic cultures, revealed a peripheral distribution after early minocycline treatment. Thus, we further analyzed the effects of 100 µM minocycline on the viability and migration ability of dispersed primary glial cell cultures. We found that minocycline reduced cell viability, delayed wound closure in a scratch migration assay and increased connexin 43 protein levels in these cultures. Conclusions The administration of high doses of minocycline was deleterious for motor neuron survival. In addition, it inhibited microglial activation and impaired glial viability and migration. These data suggest that especially high doses of minocycline might have undesired affects in treatment of spinal cord injury. Further experiments are required to determine the conditions for the safe clinical administration of minocycline in spinal cord injured patients. PMID:23967343

  12. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture.

    PubMed

    Paşca, Anca M; Sloan, Steven A; Clarke, Laura E; Tian, Yuan; Makinson, Christopher D; Huber, Nina; Kim, Chul Hoon; Park, Jin-Young; O'Rourke, Nancy A; Nguyen, Khoa D; Smith, Stephen J; Huguenard, John R; Geschwind, Daniel H; Barres, Ben A; Paşca, Sergiu P

    2015-07-01

    The human cerebral cortex develops through an elaborate succession of cellular events that, when disrupted, can lead to neuropsychiatric disease. The ability to reprogram somatic cells into pluripotent cells that can be differentiated in vitro provides a unique opportunity to study normal and abnormal corticogenesis. Here, we present a simple and reproducible 3D culture approach for generating a laminated cerebral cortex-like structure, named human cortical spheroids (hCSs), from pluripotent stem cells. hCSs contain neurons from both deep and superficial cortical layers and map transcriptionally to in vivo fetal development. These neurons are electrophysiologically mature, display spontaneous activity, are surrounded by nonreactive astrocytes and form functional synapses. Experiments in acute hCS slices demonstrate that cortical neurons participate in network activity and produce complex synaptic events. These 3D cultures should allow a detailed interrogation of human cortical development, function and disease, and may prove a versatile platform for generating other neuronal and glial subtypes in vitro.

  13. Hyperactivity of newborn Pten knock-out neurons results from increased excitatory synaptic drive.

    PubMed

    Williams, Michael R; DeSpenza, Tyrone; Li, Meijie; Gulledge, Allan T; Luikart, Bryan W

    2015-01-21

    Developing neurons must regulate morphology, intrinsic excitability, and synaptogenesis to form neural circuits. When these processes go awry, disorders, including autism spectrum disorder (ASD) or epilepsy, may result. The phosphatase Pten is mutated in some patients having ASD and seizures, suggesting that its mutation disrupts neurological function in part through increasing neuronal activity. Supporting this idea, neuronal knock-out of Pten in mice can cause macrocephaly, behavioral changes similar to ASD, and seizures. However, the mechanisms through which excitability is enhanced following Pten depletion are unclear. Previous studies have separately shown that Pten-depleted neurons can drive seizures, receive elevated excitatory synaptic input, and have abnormal dendrites. We therefore tested the hypothesis that developing Pten-depleted neurons are hyperactive due to increased excitatory synaptogenesis using electrophysiology, calcium imaging, morphological analyses, and modeling. This was accomplished by coinjecting retroviruses to either "birthdate" or birthdate and knock-out Pten in granule neurons of the murine neonatal dentate gyrus. We found that Pten knock-out neurons, despite a rapid onset of hypertrophy, were more active in vivo. Pten knock-out neurons fired at more hyperpolarized membrane potentials, displayed greater peak spike rates, and were more sensitive to depolarizing synaptic input. The increased sensitivity of Pten knock-out neurons was due, in part, to a higher density of synapses located more proximal to the soma. We determined that increased synaptic drive was sufficient to drive hypertrophic Pten knock-out neurons beyond their altered action potential threshold. Thus, our work contributes a developmental mechanism for the increased activity of Pten-depleted neurons. Copyright © 2015 the authors 0270-6474/15/350943-17$15.00/0.

  14. Unbiased View of Synaptic and Neuronal Gene Complement in Ctenophores: Are There Pan-neuronal and Pan-synaptic Genes across Metazoa?

    PubMed Central

    Moroz, Leonid L.; Kohn, Andrea B.

    2015-01-01

    Hypotheses of origins and evolution of neurons and synapses are controversial, mostly due to limited comparative data. Here, we investigated the genome-wide distribution of the bilaterian “synaptic” and “neuronal” protein-coding genes in non-bilaterian basal metazoans (Ctenophora, Porifera, Placozoa, and Cnidaria). First, there are no recognized genes uniquely expressed in neurons across all metazoan lineages. None of the so-called pan-neuronal genes such as embryonic lethal abnormal vision (ELAV), Musashi, or Neuroglobin are expressed exclusively in neurons of the ctenophore Pleurobrachia. Second, our comparative analysis of about 200 genes encoding canonical presynaptic and postsynaptic proteins in bilaterians suggests that there are no true “pan-synaptic” genes or genes uniquely and specifically attributed to all classes of synapses. The majority of these genes encode receptive and secretory complexes in a broad spectrum of eukaryotes. Trichoplax (Placozoa) an organism without neurons and synapses has more orthologs of bilaterian synapse-related/neuron-related genes than do ctenophores—the group with well-developed neuronal and synaptic organization. Third, the majority of genes encoding ion channels and ionotropic receptors are broadly expressed in unicellular eukaryotes and non-neuronal tissues in metazoans. Therefore, they cannot be viewed as neuronal markers. Nevertheless, the co-expression of multiple types of ion channels and receptors does correlate with the presence of neural and synaptic organization. As an illustrative example, the ctenophore genomes encode a greater diversity of ion channels and ionotropic receptors compared with the genomes of the placozoan Trichoplax and the demosponge Amphimedon. Surprisingly, both placozoans and sponges have a similar number of orthologs of “synaptic” proteins as we identified in the genomes of two ctenophores. Ctenophores have a distinct synaptic organization compared with other animals. Our

  15. PPARbeta agonists trigger neuronal differentiation in the human neuroblastoma cell line SH-SY5Y.

    PubMed

    Di Loreto, S; D'Angelo, B; D'Amico, M A; Benedetti, E; Cristiano, L; Cinque, B; Cifone, M G; Cerù, M P; Festuccia, C; Cimini, A

    2007-06-01

    Neuroblastomas are pediatric tumors originating from immature neuroblasts in the developing peripheral nervous system. Differentiation therapies could help lowering the high mortality due to rapid tumor progression to advanced stages. Oleic acid has been demonstrated to promote neuronal differentiation in neuronal cultures. Herein we report on the effects of oleic acid and of a specific synthetic PPARbeta agonist on cell growth, expression of differentiation markers and on parameters responsible for the malignancy such as adhesion, migration, invasiveness, BDNF, and TrkB expression of SH-SY5Y neuroblastoma cells. The results obtained demonstrate that many, but not all, oleic acid effects are mediated by PPARbeta and support a role for PPARbeta in neuronal differentiation strongly pointing towards PPAR ligands as new therapeutic strategies against progression and recurrences of neuroblastoma.

  16. Cellular and Molecular Underpinnings of Neuronal Assembly in the Central Auditory System during Mouse Development

    PubMed Central

    Di Bonito, Maria; Studer, Michèle

    2017-01-01

    During development, the organization of the auditory system into distinct functional subcircuits depends on the spatially and temporally ordered sequence of neuronal specification, differentiation, migration and connectivity. Regional patterning along the antero-posterior axis and neuronal subtype specification along the dorso-ventral axis intersect to determine proper neuronal fate and assembly of rhombomere-specific auditory subcircuits. By taking advantage of the increasing number of transgenic mouse lines, recent studies have expanded the knowledge of developmental mechanisms involved in the formation and refinement of the auditory system. Here, we summarize several findings dealing with the molecular and cellular mechanisms that underlie the assembly of central auditory subcircuits during mouse development, focusing primarily on the rhombomeric and dorso-ventral origin of auditory nuclei and their associated molecular genetic pathways. PMID:28469562

  17. Neuronal Growth and Behavioral Alterations in Mice Deficient for the Psychiatric Disease-Associated Negr1 Gene

    PubMed Central

    Singh, Katyayani; Loreth, Desirée; Pöttker, Bruno; Hefti, Kyra; Innos, Jürgen; Schwald, Kathrin; Hengstler, Heidi; Menzel, Lutz; Sommer, Clemens J.; Radyushkin, Konstantin; Kretz, Oliver; Philips, Mari-Anne; Haas, Carola A.; Frauenknecht, Katrin; Lilleväli, Kersti; Heimrich, Bernd; Vasar, Eero; Schäfer, Michael K. E.

    2018-01-01

    Neuronal growth regulator 1 (NEGR1), a member of the immunoglobulin superfamily cell adhesion molecule subgroup IgLON, has been implicated in neuronal growth and connectivity. In addition, genetic variants in or near the NEGR1 locus have been associated with obesity and more recently with learning difficulties, intellectual disability and psychiatric disorders. However, experimental evidence is lacking to support a possible link between NEGR1, neuronal growth and behavioral abnormalities. Initial expression analysis of NEGR1 mRNA in C57Bl/6 wildtype (WT) mice by in situ hybridization demonstrated marked expression in the entorhinal cortex (EC) and dentate granule cells. In co-cultures of cortical neurons and NSC-34 cells overexpressing NEGR1, neurite growth of cortical neurons was enhanced and distal axons occupied an increased area of cells overexpressing NEGR1. Conversely, in organotypic slice co-cultures, Negr1-knockout (KO) hippocampus was less permissive for axons grown from EC of β-actin-enhanced green fluorescent protein (EGFP) mice compared to WT hippocampus. Neuroanatomical analysis revealed abnormalities of EC axons in the hippocampal dentate gyrus (DG) of Negr1-KO mice including increased numbers of axonal projections to the hilus. Neurotransmitter receptor ligand binding densities, a proxy of functional neurotransmitter receptor abundance, did not show differences in the DG of Negr1-KO mice but altered ligand binding densities to NMDA receptor and muscarinic acetylcholine receptors M1 and M2 were found in CA1 and CA3. Activity behavior, anxiety-like behavior and sensorimotor gating were not different between genotypes. However, Negr1-KO mice exhibited impaired social behavior compared to WT littermates. Moreover, Negr1-KO mice showed reversal learning deficits in the Morris water maze and increased susceptibility to pentylenetetrazol (PTZ)-induced seizures. Thus, our results from neuronal growth assays, neuroanatomical analyses and behavioral

  18. Loss of polyubiquitin gene Ubb leads to metabolic and sleep abnormalities in mice

    PubMed Central

    Ryu, K.-Y.; Fujiki, N.; Kazantzis, M.; Garza, J. C.; Bouley, D. M.; Stahl, A.; Lu, X.-Y.; Nishino, S.; Kopito, R. R.

    2010-01-01

    Aims Ubiquitin performs essential roles in a myriad of signalling pathways required for cellular function and survival. Recently, we reported that disruption of the stress-inducible ubiquitin-encoding gene Ubb reduces ubiquitin content in the hypothalamus and leads to adult-onset obesity coupled with a loss of arcuate nucleus neurones and disrupted energy homeostasis in mice. Neuropeptides expressed in the hypothalamus control both metabolic and sleep behaviours. In order to demonstrate that the loss of Ubb results in broad hypothalamic abnormalities, we attempted to determine whether metabolic and sleep behaviours were altered in Ubb knockout mice. Methods Metabolic rate and energy expenditure were measured in a metabolic chamber, and sleep stage was monitored via electroencephalographic/electromyographic recording. The presence of neurodegeneration and increased reactive gliosis in the hypothalamus were also evaluated. Results We found that Ubb disruption leads to early-onset reduced activity and metabolic rate. Additionally, we have demonstrated that sleep behaviour is altered and sleep homeostasis is disrupted in Ubb knockout mice. These early metabolic and sleep abnormalities are accompanied by persistent reactive gliosis and the loss of arcuate nucleus neurones, but are independent of neurodegeneration in the lateral hypothalamus. Conclusions Ubb knockout mice exhibit phenotypes consistent with hypothalamic dysfunction. Our data also indicate that Ubb is essential for the maintenance of the ubiquitin levels required for proper regulation of metabolic and sleep behaviours in mice. PMID:20002312

  19. Multiple zebrafish atoh1 genes specify a diversity of neuronal types in the zebrafish cerebellum.

    PubMed

    Kidwell, Chelsea U; Su, Chen-Ying; Hibi, Masahiko; Moens, Cecilia B

    2018-06-01

    A single Atoh1 basic-helix-loop-helix transcription factor specifies multiple neuron types in the mammalian cerebellum and anterior hindbrain. The zebrafish genome encodes three paralagous atoh1 genes whose functions in cerebellum and anterior hindbrain development we explore here. With use of a transgenic reporter, we report that zebrafish atoh1c-expressing cells are organized in two distinct domains that are separated both by space and developmental time. An early isthmic expression domain gives rise to an extracerebellar population in rhombomere 1 and an upper rhombic lip domain gives rise to granule cell progenitors that migrate to populate all four granule cell territories of the fish cerebellum. Using genetic mutants we find that of the three zebrafish atoh1 paralogs, atoh1c and atoh1a are required for the full complement of granule neurons. Surprisingly, the two genes are expressed in non-overlapping granule cell progenitor populations, indicating that fish use duplicate atoh1 genes to generate granule cell diversity that is not detected in mammals. Finally, live imaging of granule cell migration in wildtype and atoh1c mutant embryos reveals that while atoh1c is not required for granule cell specification per se, it is required for granule cells to delaminate and migrate away from the rhombic lip. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Morphoregulatory functions of the RNA-binding motif protein 3 in cell spreading, polarity and migration.

    PubMed

    Pilotte, J; Kiosses, W; Chan, S W; Makarenkova, H P; Dupont-Versteegden, E; Vanderklish, P W

    2018-05-09

    RNA-binding proteins are emerging as key regulators of transitions in cell morphology. The RNA-binding motif protein 3 (RBM3) is a cold-inducible RNA-binding protein with broadly relevant roles in cellular protection, and putative functions in cancer and development. Several findings suggest that RBM3 has morphoregulatory functions germane to its roles in these contexts. For example, RBM3 helps maintain the morphological integrity of cell protrusions during cell stress and disease. Moreover, it is highly expressed in migrating neurons of the developing brain and in cancer invadopodia, suggesting roles in migration. We here show that RBM3 regulates cell polarity, spreading and migration. RBM3 was present in spreading initiation centers, filopodia and blebs that formed during cell spreading in cell lines and primary myoblasts. Reducing RBM3 triggered exaggerated spreading, increased RhoA expression, and a loss of polarity that was rescued by Rho kinase inhibition and overexpression of CRMP2. High RBM3 expression enhanced the motility of cells migrating by a mesenchymal mode involving extension of long protrusions, whereas RBM3 knockdown slowed migration, greatly reducing the ability of cells to extend protrusions and impairing multiple processes that require directional migration. These data establish novel functions of RBM3 of potential significance to tissue repair, metastasis and development.

  1. Dnmt1 and Dnmt3a are required for the maintenance of DNA methylation and synaptic function in adult forebrain neurons

    PubMed Central

    Feng, Jian; Zhou, Yu; Campbell, Susan L.; Le, Thuc; Li, En; Sweatt, J. David; Silva, Alcino J.; Fan, Guoping

    2011-01-01

    Dnmt1 and Dnmt3a, two major DNA methyltransferases, are expressed in postmitotic neurons, but their function in the central nervous system (CNS) is unclear. We generated conditional mutant mice that lack either Dnmt1, or Dnmt3a, or both exclusively in forebrain excitatory neurons and found only double knockout (DKO) mice exhibited abnormal hippocampal CA1 long-term plasticity and deficits of learning and memory. While no neuronal loss was found, the size of hippocampal neurons in DKO was smaller; furthermore, DKO neurons showed a deregulation of gene expression including class I MHC and Stat1 that are known to play a role in synaptic plasticity. In addition, we observed a significant decrease in DNA methylation in DKO neurons. We conclude that Dnmt1 and Dnmt3a are required for synaptic plasticity, learning and memory through their overlapping roles in maintaining DNA methylation and modulating neuronal gene expression in adult CNS neurons. PMID:20228804

  2. Restoring neuronal progranulin reverses deficits in a mouse model of frontotemporal dementia.

    PubMed

    Arrant, Andrew E; Filiano, Anthony J; Unger, Daniel E; Young, Allen H; Roberson, Erik D

    2017-05-01

    Loss-of-function mutations in progranulin (GRN), a secreted glycoprotein expressed by neurons and microglia, are a common autosomal dominant cause of frontotemporal dementia, a neurodegenerative disease commonly characterized by disrupted social and emotional behaviour. GRN mutations are thought to cause frontotemporal dementia through progranulin haploinsufficiency, therefore, boosting progranulin expression from the intact allele is a rational treatment strategy. However, this approach has not been tested in an animal model of frontotemporal dementia and it is unclear if boosting progranulin could correct pre-existing deficits. Here, we show that adeno-associated virus-driven expression of progranulin in the medial prefrontal cortex reverses social dominance deficits in Grn+/- mice, an animal model of frontotemporal dementia due to GRN mutations. Adeno-associated virus-progranulin also corrected lysosomal abnormalities in Grn+/- mice. The adeno-associated virus-progranulin vector only transduced neurons, suggesting that restoring neuronal progranulin is sufficient to correct deficits in Grn+/- mice. To further test the role of neuronal progranulin in the development of frontotemporal dementia-related deficits, we generated two neuronal progranulin-deficient mouse lines using CaMKII-Cre and Nestin-Cre. Measuring progranulin levels in these lines indicated that most brain progranulin is derived from neurons. Both neuronal progranulin-deficient lines developed social dominance deficits similar to those in global Grn+/- mice, showing that neuronal progranulin deficiency is sufficient to disrupt social behaviour. These data support the concept of progranulin-boosting therapies for frontotemporal dementia and highlight an important role for neuron-derived progranulin in maintaining normal social function. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Lack of tryptophan hydroxylase-1 in mice results in gait abnormalities.

    PubMed

    Suidan, Georgette L; Duerschmied, Daniel; Dillon, Gregory M; Vanderhorst, Veronique; Hampton, Thomas G; Wong, Siu Ling; Voorhees, Jaymie R; Wagner, Denisa D

    2013-01-01

    The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (-/-) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system.

  4. Distal Predominance of Electrodiagnostic Abnormalities in Early Stage Amyotrophic Lateral Sclerosis.

    PubMed

    Shayya, Luay; Babu, Suma; Pioro, Erik P; Li, Jianbo; Li, Yuebing

    2018-05-09

    We compare the electrodiagnostic (EDX) yield of limb muscles in revealing lower motor neuron (LMN) dysfunction by electromyography (EMG) in early stage amyotrophic lateral sclerosis (ALS). Single-site retrospective review Results: This study includes 122 consecutive patients with possible ALS as defined by revised El Escorial Criteria. Distal limb muscles show more frequent EMG abnormalities than proximal muscles. EDX yield is higher in the limb where weakness begins and when clinical signs of LMN dysfunction are evident. Adoption of Awaji criteria increases the yield of EMG positive segments significantly in the cervical (p<0.0005) and lumbosacral regions (P<0.0001), and upgrades 19 patients into probable and 1 patient into definite categories. Electromyographic abnormalities are distal limb-predominant in early stage ALS. A redefinition of an EDX-positive cervical or lumbosacral segment, with an emphasis on distal limb muscles, may result in an earlier ALS diagnosis. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  5. Capping protein is essential for cell migration in vivo and for filopodial morphology and dynamics

    PubMed Central

    Sinnar, Shamim A.; Antoku, Susumu; Saffin, Jean-Michel; Cooper, Jon A.; Halpain, Shelley

    2014-01-01

    Capping protein (CP) binds to barbed ends of growing actin filaments and inhibits elongation. CP is essential for actin-based motility in cell-free systems and in Dictyostelium. Even though CP is believed to be critical for creating the lamellipodial actin structure necessary for protrusion and migration, CP's role in mammalian cell migration has not been directly tested. Moreover, recent studies have suggested that structures besides lamellipodia, including lamella and filopodia, may have unappreciated roles in cell migration. CP has been postulated to be absent from filopodia, and thus its role in filopodial activity has remained unexplored. We report that silencing CP in both cultured mammalian B16F10 cells and in neurons of developing neocortex impaired cell migration. Moreover, we unexpectedly observed that low levels of CP were detectable in the majority of filopodia. CP depletion decreased filopodial length, altered filopodial shape, and reduced filopodial dynamics. Our results support an expansion of the potential roles that CP plays in cell motility by implicating CP in filopodia as well as in lamellipodia, both of which are important for locomotion in many types of migrating cells. PMID:24829386

  6. Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function

    PubMed Central

    Gahl, Trevor J.; Kunze, Anja

    2018-01-01

    Cellular processes like membrane deformation, cell migration, and transport of organelles are sensitive to mechanical forces. Technically, these cellular processes can be manipulated through operating forces at a spatial precision in the range of nanometers up to a few micrometers through chaperoning force-mediating nanoparticles in electrical, magnetic, or optical field gradients. But which force-mediating tool is more suitable to manipulate cell migration, and which, to manipulate cell signaling? We review here the differences in forces sensation to control and engineer cellular processes inside and outside the cell, with a special focus on neuronal cells. In addition, we discuss technical details and limitations of different force-mediating approaches and highlight recent advancements of nanomagnetics in cell organization, communication, signaling, and intracellular trafficking. Finally, we give suggestions about how force-mediating nanoparticles can be used to our advantage in next-generation neurotherapeutic devices. PMID:29867315

  7. Caenorhabditis elegans flamingo cadherin fmi-1 regulates GABAergic neuronal development.

    PubMed

    Najarro, Elvis Huarcaya; Wong, Lianna; Zhen, Mei; Carpio, Edgar Pinedo; Goncharov, Alexandr; Garriga, Gian; Lundquist, Erik A; Jin, Yishi; Ackley, Brian D

    2012-03-21

    In a genetic screen for regulators of synaptic morphology, we identified the single Caenorhabditis elegans flamingo-like cadherin fmi-1. The fmi-1 mutants exhibit defective axon pathfinding, reduced synapse number, aberrant synapse size and morphology, as well as an abnormal accumulation of synaptic vesicles at nonsynaptic regions. Although FMI-1 is primarily expressed in the nervous system, it is not expressed in the ventral D-type (VD) GABAergic motorneurons, which are defective in fmi-1 mutants. The axon and synaptic defects of VD neurons could be rescued when fmi-1 was expressed exclusively in non-VD neighboring neurons, suggesting a cell nonautonomous action of FMI-1. FMI-1 protein that lacked its intracellular domain still retained its ability to rescue the vesicle accumulation defects of GABAergic motorneurons, indicating that the extracellular domain was sufficient for this function of FMI-1 in GABAergic neuromuscular junction development. Mutations in cdh-4, a Fat-like cadherin, cause similar defects in GABAergic motorneurons. The cdh-4 is expressed by the VD neurons and seems to function in the same genetic pathway as fmi-1 to regulate GABAergic neuron development. Thus, fmi-1 and cdh-4 cadherins might act together to regulate synapse development and axon pathfinding.

  8. Growth of primary motor neurons on horizontally aligned carbon nanotube thin films and striped patterns

    NASA Astrophysics Data System (ADS)

    Roberts, Megan J.; Leach, Michelle K.; Bedewy, Mostafa; Meshot, Eric R.; Copic, Davor; Corey, Joseph M.; Hart, A. John

    2014-06-01

    Objective. Carbon nanotubes (CNTs) are attractive for use in peripheral nerve interfaces because of their unique combination of strength, flexibility, electrical conductivity and nanoscale surface texture. Here we investigated the growth of motor neurons on thin films of horizontally aligned CNTs (HACNTs). Approach. We cultured primary embryonic rat motor neurons on HACNTs and performed statistical analysis of the length and orientation of neurites. We next presented motor neurons with substrates of alternating stripes of HACNTs and SiO2. Main results. The neurons survived on HACNT substrates for up to eight days, which was the full duration of our experiments. Statistical analysis of the length and orientation of neurites indicated that the longest neurites on HACNTs tended to align with the CNT direction, although the average neurite length was similar between HACNTs and glass control substrates. We observed that when motor neurons were presented with alternating stripes of HACNTs and SiO2, the proportion of neurons on HACNTs increases over time, suggesting that neurons selectively migrate toward and adhere to the HACNT surface. Significance. The behavior of motor neurons on CNTs has not been previously investigated, and we show that aligned CNTs could provide a viable interface material to motor neurons. Combined with emerging techniques to build complex hierarchical structures of CNTs, our results suggest that organised CNTs could be incorporated into nerve grafts that use physical and electrical cues to guide regenerating axons.

  9. Loss of thymidine kinase 2 alters neuronal bioenergetics and leads to neurodegeneration

    PubMed Central

    Bartesaghi, Stefano; Betts-Henderson, Joanne; Cain, Kelvin; Dinsdale, David; Zhou, Xiaoshan; Karlsson, Anna; Salomoni, Paolo; Nicotera, Pierluigi

    2010-01-01

    Mutations of thymidine kinase 2 (TK2), an essential component of the mitochondrial nucleotide salvage pathway, can give rise to mitochondrial DNA (mtDNA) depletion syndromes (MDS). These clinically heterogeneous disorders are characterized by severe reduction in mtDNA copy number in affected tissues and are associated with progressive myopathy, hepatopathy and/or encephalopathy, depending in part on the underlying nuclear genetic defect. Mutations of TK2 have previously been associated with an isolated myopathic form of MDS (OMIM 609560). However, more recently, neurological phenotypes have been demonstrated in patients carrying TK2 mutations, thus suggesting that loss of TK2 results in neuronal dysfunction. Here, we directly address the role of TK2 in neuronal homeostasis using a knockout mouse model. We demonstrate that in vivo loss of TK2 activity leads to a severe ataxic phenotype, accompanied by reduced mtDNA copy number and decreased steady-state levels of electron transport chain proteins in the brain. In TK2-deficient cerebellar neurons, these abnormalities are associated with impaired mitochondrial bioenergetic function, aberrant mitochondrial ultrastructure and degeneration of selected neuronal types. Overall, our findings demonstrate that TK2 deficiency leads to neuronal dysfunction in vivo, and have important implications for understanding the mechanisms of neurological impairment in MDS. PMID:20123860

  10. Loss of thymidine kinase 2 alters neuronal bioenergetics and leads to neurodegeneration.

    PubMed

    Bartesaghi, Stefano; Betts-Henderson, Joanne; Cain, Kelvin; Dinsdale, David; Zhou, Xiaoshan; Karlsson, Anna; Salomoni, Paolo; Nicotera, Pierluigi

    2010-05-01

    Mutations of thymidine kinase 2 (TK2), an essential component of the mitochondrial nucleotide salvage pathway, can give rise to mitochondrial DNA (mtDNA) depletion syndromes (MDS). These clinically heterogeneous disorders are characterized by severe reduction in mtDNA copy number in affected tissues and are associated with progressive myopathy, hepatopathy and/or encephalopathy, depending in part on the underlying nuclear genetic defect. Mutations of TK2 have previously been associated with an isolated myopathic form of MDS (OMIM 609560). However, more recently, neurological phenotypes have been demonstrated in patients carrying TK2 mutations, thus suggesting that loss of TK2 results in neuronal dysfunction. Here, we directly address the role of TK2 in neuronal homeostasis using a knockout mouse model. We demonstrate that in vivo loss of TK2 activity leads to a severe ataxic phenotype, accompanied by reduced mtDNA copy number and decreased steady-state levels of electron transport chain proteins in the brain. In TK2-deficient cerebellar neurons, these abnormalities are associated with impaired mitochondrial bioenergetic function, aberrant mitochondrial ultrastructure and degeneration of selected neuronal types. Overall, our findings demonstrate that TK2 deficiency leads to neuronal dysfunction in vivo, and have important implications for understanding the mechanisms of neurological impairment in MDS.

  11. MR Imaging Features of the Cerebellum in Adult-Onset Neuronal Intranuclear Inclusion Disease: 8 Cases.

    PubMed

    Sugiyama, A; Sato, N; Kimura, Y; Maekawa, T; Enokizono, M; Saito, Y; Takahashi, Y; Matsuda, H; Kuwabara, S

    2017-11-01

    Neuronal intranuclear inclusion disease is a neurodegenerative disorder pathologically characterized by eosinophilic hyaline intranuclear inclusions. A high-intensity signal along the corticomedullary junction on DWI has been described as a specific MR imaging finding of the cerebrum in neuronal intranuclear inclusion disease. However, MR imaging findings of the cerebellum in neuronal intranuclear inclusion disease have not been fully evaluated. Here, we review MR imaging findings of the cerebellum in a series of 8 patients with pathologically confirmed neuronal intranuclear inclusion disease. The MR imaging results showed cerebellar atrophy (8/8 patients) and high-intensity signal on FLAIR images in the medial part of the cerebellar hemisphere right beside the vermis (the "paravermal area") (6/8) and in the middle cerebellar peduncle (4/8). The paravermal abnormal signals had a characteristic distribution, and they could be an indicator of the diagnosis of neuronal intranuclear inclusion disease even when using the results of past MR imaging examinations in which DWI findings were not examined. © 2017 by American Journal of Neuroradiology.

  12. Changes in the Excitability of Neocortical Neurons in a Mouse Model of Amyotrophic Lateral Sclerosis Are Not Specific to Corticospinal Neurons and Are Modulated by Advancing Disease.

    PubMed

    Kim, Juhyun; Hughes, Ethan G; Shetty, Ashwin S; Arlotta, Paola; Goff, Loyal A; Bergles, Dwight E; Brown, Solange P

    2017-09-13

    monotonically with disease progression. Moreover, although all neuronal cell types tested exhibited abnormal functional properties, analysis of their gene expression demonstrated cell type-specific responses to the ALS-causing mutation. These findings suggest that therapies for ALS may need to be tailored for different cell types and stages of disease. Copyright © 2017 the authors 0270-6474/17/379038-17$15.00/0.

  13. Unbiased View of Synaptic and Neuronal Gene Complement in Ctenophores: Are There Pan-neuronal and Pan-synaptic Genes across Metazoa?

    PubMed

    Moroz, Leonid L; Kohn, Andrea B

    2015-12-01

    Hypotheses of origins and evolution of neurons and synapses are controversial, mostly due to limited comparative data. Here, we investigated the genome-wide distribution of the bilaterian "synaptic" and "neuronal" protein-coding genes in non-bilaterian basal metazoans (Ctenophora, Porifera, Placozoa, and Cnidaria). First, there are no recognized genes uniquely expressed in neurons across all metazoan lineages. None of the so-called pan-neuronal genes such as embryonic lethal abnormal vision (ELAV), Musashi, or Neuroglobin are expressed exclusively in neurons of the ctenophore Pleurobrachia. Second, our comparative analysis of about 200 genes encoding canonical presynaptic and postsynaptic proteins in bilaterians suggests that there are no true "pan-synaptic" genes or genes uniquely and specifically attributed to all classes of synapses. The majority of these genes encode receptive and secretory complexes in a broad spectrum of eukaryotes. Trichoplax (Placozoa) an organism without neurons and synapses has more orthologs of bilaterian synapse-related/neuron-related genes than do ctenophores-the group with well-developed neuronal and synaptic organization. Third, the majority of genes encoding ion channels and ionotropic receptors are broadly expressed in unicellular eukaryotes and non-neuronal tissues in metazoans. Therefore, they cannot be viewed as neuronal markers. Nevertheless, the co-expression of multiple types of ion channels and receptors does correlate with the presence of neural and synaptic organization. As an illustrative example, the ctenophore genomes encode a greater diversity of ion channels and ionotropic receptors compared with the genomes of the placozoan Trichoplax and the demosponge Amphimedon. Surprisingly, both placozoans and sponges have a similar number of orthologs of "synaptic" proteins as we identified in the genomes of two ctenophores. Ctenophores have a distinct synaptic organization compared with other animals. Our analysis of

  14. Selective Modulation of K+ Channel Kv7.4 Significantly Affects the Excitability of DRN 5-HT Neurons.

    PubMed

    Zhao, Chen; Su, Min; Wang, Yingzi; Li, Xinmeng; Zhang, Yongxue; Du, Xiaona; Zhang, Hailin

    2017-01-01

    The serotonin (5-HT) system originating in the dorsal raphe nucleus (DRN) is implicated in various mood- and emotion-related disorders, such as anxiety, fear and stress. Abnormal activity of DRN 5-HT neurons is the key factor in the development of these disorders. Here, we describe a crucial role for the Kv7.4 potassium channel in modulating DRN 5-HT neuronal excitability. We demonstrate that Kv7.4 is selectively expressed in 5-HT neurons of the DRN. Using selective Kv7.4 opener fasudil and Kv7.4 knock-out mice, we demonstrate that Kv7.4 is a potent modulator of DRN 5-HT neuronal excitability. Furthermore, we demonstrate that the cellular redox signaling mechanism is involved in this 5-HT activation of Kv7.4. The current study suggests a new strategy for treating psychiatric disorders related to altered activity of DRN 5-HT neurons using K + channel modulators.

  15. Selective Modulation of K+ Channel Kv7.4 Significantly Affects the Excitability of DRN 5-HT Neurons

    PubMed Central

    Zhao, Chen; Su, Min; Wang, Yingzi; Li, Xinmeng; Zhang, Yongxue; Du, Xiaona; Zhang, Hailin

    2017-01-01

    The serotonin (5-HT) system originating in the dorsal raphe nucleus (DRN) is implicated in various mood- and emotion-related disorders, such as anxiety, fear and stress. Abnormal activity of DRN 5-HT neurons is the key factor in the development of these disorders. Here, we describe a crucial role for the Kv7.4 potassium channel in modulating DRN 5-HT neuronal excitability. We demonstrate that Kv7.4 is selectively expressed in 5-HT neurons of the DRN. Using selective Kv7.4 opener fasudil and Kv7.4 knock-out mice, we demonstrate that Kv7.4 is a potent modulator of DRN 5-HT neuronal excitability. Furthermore, we demonstrate that the cellular redox signaling mechanism is involved in this 5-HT activation of Kv7.4. The current study suggests a new strategy for treating psychiatric disorders related to altered activity of DRN 5-HT neurons using K+ channel modulators. PMID:29311835

  16. Neuronal nicotinic acetylcholine receptor subunits in autism: an immunohistochemical investigation in the thalamus.

    PubMed

    Ray, M A; Graham, A J; Lee, M; Perry, R H; Court, J A; Perry, E K

    2005-08-01

    The cholinergic system has been implicated in the development of autism on the basis of neuronal nicotinic acetylcholine receptor (nAChR) losses in cerebral and cerebellar cortex. In the present study, the first to explore nAChRs in the thalamus in autism, alpha4, alpha7 and beta2 nAChR subunit expression in thalamic nuclei of adult individuals with autism (n=3) and age-matched control cases (n=3) was investigated using immunochemical methods. Loss of alpha7- and beta2- (but not alpha4-) immunoreactive neurons occurred in the paraventricular nucleus (PV) and nucleus reuniens in autism. Preliminary results indicated glutamic acid decarboxylase immunoreactivity occurred at a low level in PV, co-expressed with alpha7 in normal and autistic cases and was not reduced in autism. This suggested loss of neuronal alpha7 in autism is not caused by loss of GABAergic neurons. These findings indicate nicotinic abnormalities that occur in the thalamus in autism which may contribute to sensory or attentional deficits.

  17. Raf Kinase Inhibitory Protein protects cells against locostatin-mediated inhibition of migration.

    PubMed

    Shemon, Anne N; Eves, Eva M; Clark, Matthew C; Heil, Gary; Granovsky, Alexey; Zeng, Lingchun; Imamoto, Akira; Koide, Shohei; Rosner, Marsha Rich

    2009-06-24

    Raf Kinase Inhibitory Protein (RKIP, also PEBP1), a member of the Phosphatidylethanolamine Binding Protein family, negatively regulates growth factor signaling by the Raf/MAP kinase pathway. Since an organic compound, locostatin, was reported to bind RKIP and inhibit cell migration by a Raf-dependent mechanism, we addressed the role of RKIP in locostatin function. We analyzed locostatin interaction with RKIP and examined the biological consequences of locostatin binding on RKIP function. NMR studies show that a locostatin precursor binds to the conserved phosphatidylethanolamine binding pocket of RKIP. However, drug binding to the pocket does not prevent RKIP association with its inhibitory target, Raf-1, nor affect RKIP phosphorylation by Protein Kinase C at a regulatory site. Similarly, exposure of wild type, RKIP-depleted HeLa cells or RKIP-deficient (RKIP(-/-)) mouse embryonic fibroblasts (MEFs) to locostatin has no effect on MAP kinase activation. Locostatin treatment of wild type MEFs causes inhibition of cell migration following wounding. RKIP deficiency impairs migration further, indicating that RKIP protects cells against locostatin-mediated inhibition of migration. Locostatin treatment of depleted or RKIP(-/-) MEFs reveals cytoskeletal disruption and microtubule abnormalities in the spindle. These results suggest that locostatin's effects on cytoskeletal structure and migration are caused through mechanisms independent of its binding to RKIP and Raf/MAP kinase signaling. The protective effect of RKIP against drug inhibition of migration suggests a new role for RKIP in potentially sequestering toxic compounds that may have deleterious effects on cells.

  18. Glial degeneration with oxidative damage drives neuronal demise in MPSII disease

    PubMed Central

    Zalfa, Cristina; Verpelli, Chiara; D'Avanzo, Francesca; Tomanin, Rosella; Vicidomini, Cinzia; Cajola, Laura; Manara, Renzo; Sala, Carlo; Scarpa, Maurizio; Vescovi, Angelo Luigi; De Filippis, Lidia

    2016-01-01

    Mucopolysaccharidosis type II (MPSII) is a lysosomal storage disorder due to the deficit of the iduronate 2-sulfatase (IDS) enzyme, causing progressive neurodegeneration in patients. Neural stem cells (NSCs) derived from the IDS-ko mouse can recapitulate MPSII pathogenesis in vitro. In differentiating IDS-ko NSCs and in the aging IDS-ko mouse brain, glial degeneration precedes neuronal degeneration. Here we show that pure IDS-ko NSC-derived astrocytes are selectively able to drive neuronal degeneration when cocultured with healthy neurons. This phenotype suggests concurrent oxidative damage with metabolic dysfunction. Similar patterns were observed in murine IDS-ko animals and in human MPSII brains. Most importantly, the mutant phenotype of IDS-ko astrocytes was reversed by low oxygen conditions and treatment with vitamin E, which also reversed the toxic effect on cocultured neurons. Moreover, at very early stages of disease we detected in vivo the development of a neuroinflammatory background that precedes astroglial degeneration, thus suggesting a novel model of MPSII pathogenesis, with neuroinflammation preceding glial degeneration, which is finally followed by neuronal death. This hypothesis is also consistent with the progression of white matter abnormalities in MPSII patients. Our study represents a novel breakthrough in the elucidation of MPSII brain pathogenesis and suggests the antioxidant molecules as potential therapeutic tools to delay MPSII onset and progression. PMID:27512952

  19. Glial degeneration with oxidative damage drives neuronal demise in MPSII disease.

    PubMed

    Zalfa, Cristina; Verpelli, Chiara; D'Avanzo, Francesca; Tomanin, Rosella; Vicidomini, Cinzia; Cajola, Laura; Manara, Renzo; Sala, Carlo; Scarpa, Maurizio; Vescovi, Angelo Luigi; De Filippis, Lidia

    2016-08-11

    Mucopolysaccharidosis type II (MPSII) is a lysosomal storage disorder due to the deficit of the iduronate 2-sulfatase (IDS) enzyme, causing progressive neurodegeneration in patients. Neural stem cells (NSCs) derived from the IDS-ko mouse can recapitulate MPSII pathogenesis in vitro. In differentiating IDS-ko NSCs and in the aging IDS-ko mouse brain, glial degeneration precedes neuronal degeneration. Here we show that pure IDS-ko NSC-derived astrocytes are selectively able to drive neuronal degeneration when cocultured with healthy neurons. This phenotype suggests concurrent oxidative damage with metabolic dysfunction. Similar patterns were observed in murine IDS-ko animals and in human MPSII brains. Most importantly, the mutant phenotype of IDS-ko astrocytes was reversed by low oxygen conditions and treatment with vitamin E, which also reversed the toxic effect on cocultured neurons. Moreover, at very early stages of disease we detected in vivo the development of a neuroinflammatory background that precedes astroglial degeneration, thus suggesting a novel model of MPSII pathogenesis, with neuroinflammation preceding glial degeneration, which is finally followed by neuronal death. This hypothesis is also consistent with the progression of white matter abnormalities in MPSII patients. Our study represents a novel breakthrough in the elucidation of MPSII brain pathogenesis and suggests the antioxidant molecules as potential therapeutic tools to delay MPSII onset and progression.

  20. Abnormal expression of Nrf2 may play an important role in the pathogenesis and development of adenomyosis.

    PubMed

    Chen, Ning; Du, Baoying; Zhou, Hao; Shen, Fengxian; Li, Juan; Xie, Zhenwei

    2017-01-01

    To explore the expression level of Nrf2 in adenomyosis and study the mechanism of abnormal expression of Nrf2 in the pathogenesis of adenomyosis. Western blot, immunohistochemistry(IHC) and real time PCR were used to measure Nrf2 expression levels in tissue and cell samples. Knockdown and overexpression of Nrf2 were used to investigate the variation of migration ability of endometrial glandular cells as well as the regulatory mechanism. Nrf2 protein levels were significantly higher in the eutopic and ectopic endometrial glands when compared with control cases using IHC and western blot methods. (p< 0.05). However, there was no statistical difference in Nrf2 mRNA expression levels between the adenomyosis and control groups. Using an agonist and Nrf2 siRNA, we regulated the Nrf2 protein levels of primary cultured endometrial glandular cells. With increased expression of Nrf2, cell scratch assay showed that the agonist-treated group migrated significantly faster than the control group, with MMP9 protein level markedly elevated. In contrast, Nrf2 siRNA-treated group migrated slower than the control group, with decreased expression of MMP9 protein. All of the scratching healing spaces and protein levels between the treated and control groups were statistically significant (p< 0.05). Abnormal expression of Nrf2 may play an important role in the pathogenesis and development of adenomyosis. Specified reduction of Nrf2 expression could prove to be a new therapeutic target in the clinical treatment of adenomyosis.

  1. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models

    PubMed Central

    Barmada, Sami J.; Serio, Andrea; Arjun, Arpana; Bilican, Bilada; Daub, Aaron; Ando, D. Michael; Tsvetkov, Andrey; Pleiss, Michael; Li, Xingli; Peisach, Daniel; Shaw, Christopher; Chandran, Siddharthan; Finkbeiner, Steven

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have distinct clinical features but a common pathology—cytoplasmic inclusions rich in TDP43. Rare TDP43 mutations cause ALS or FTD, but abnormal TDP43 levels and localization may cause disease even if TDP43 lacks a mutation. Here we showed that individual neurons vary in their ability to clear TDP43 and are exquisitely sensitive to TDP43 levels. To measure TDP43 clearance, we developed and validated a single-cell optical method that overcomes the confounding effects of aggregation and toxicity, and discovered that pathogenic mutations significantly shorten TDP43 half-life. Novel compounds that stimulate autophagy improved TDP43 clearance and localization, and enhanced survival in primary murine neurons and in human stem cell–derived neurons and astrocytes harboring mutant TDP43. These findings indicate that the levels and localization of TDP43 critically determine neurotoxicity and show that autophagy induction mitigates neurodegeneration by acting directly on TDP43 clearance. PMID:24974230

  2. Brain-region–specific alterations of the trajectories of neuronal volume growth throughout the lifespan in autism

    PubMed Central

    2014-01-01

    Several morphometric studies have revealed smaller than normal neurons in the neocortex of autistic subjects. To test the hypothesis that abnormal neuronal growth is a marker of an autism-associated global encephalopathy, neuronal volumes were estimated in 16 brain regions, including various subcortical structures, Ammon’s horn, archicortex, cerebellum, and brainstem in 14 brains from individuals with autism 4 to 60 years of age and 14 age-matched control brains. This stereological study showed a significantly smaller volume of neuronal soma in 14 of 16 regions in the 4- to 8-year-old autistic brains than in the controls. Arbitrary classification revealed a very severe neuronal volume deficit in 14.3% of significantly altered structures, severe in 50%, moderate in 21.4%, and mild in 14.3% structures. This pattern suggests desynchronized neuronal growth in the interacting neuronal networks involved in the autistic phenotype. The comparative study of the autistic and control subject brains revealed that the number of structures with a significant volume deficit decreased from 14 in the 4- to 8-year-old autistic subjects to 4 in the 36- to 60-year-old. Neuronal volumes in 75% of the structures examined in the older adults with autism are comparable to neuronal volume in age-matched controls. This pattern suggests defects of neuronal growth in early childhood and delayed up-regulation of neuronal growth during adolescence and adulthood reducing neuron soma volume deficit in majority of examined regions. However, significant correction of neuron size but limited clinical improvements suggests that delayed correction does not restore functional deficits. PMID:24612906

  3. Morphological remodeling of C. elegans neurons during aging is modified by compromised protein homeostasis

    PubMed Central

    Vayndorf, Elena M; Scerbak, Courtney; Hunter, Skyler; Neuswanger, Jason R; Toth, Marton; Parker, J Alex; Neri, Christian; Driscoll, Monica; Taylor, Barbara E

    2016-01-01

    Understanding cellular outcomes, such as neuronal remodeling, that are common to both healthy and diseased aging brains is essential to the development of successful brain aging strategies. Here, we used Caenorhabdits elegans to investigate how the expression of proteotoxic triggers, such as polyglutamine (polyQ)-expanded huntingtin and silencing of proteostasis regulators, such as the ubiquitin–proteasome system (UPS) and protein clearance components, may impact the morphological remodeling of individual neurons as animals age. We examined the effects of disrupted proteostasis on the integrity of neuronal cytoarchitecture by imaging a transgenic C. elegans strain in which touch receptor neurons express the first 57 amino acids of the human huntingtin (Htt) gene with expanded polyQs (128Q) and by using neuron-targeted RNA interference in adult wild-type neurons to knockdown genes encoding proteins involved in proteostasis. We found that proteostatic challenges conferred by polyQ-expanded Htt and knockdown of specific genes involved in protein homeostasis can lead to morphological changes that are restricted to specific domains of specific neurons. The age-associated branching of PLM neurons is suppressed by N-ter polyQ-expanded Htt expression, whereas ALM neurons with polyQ-expanded Htt accumulate extended outgrowths and other soma abnormalities. Furthermore, knockdown of genes important for ubiquitin-mediated degradation, lysosomal function, and autophagy modulated these age-related morphological changes in otherwise normal neurons. Our results show that the expression of misfolded proteins in neurodegenerative disease such as Huntington’s disease modifies the morphological remodeling that is normally associated with neuronal aging. Our results also show that morphological remodeling of healthy neurons during aging can be regulated by the UPS and other proteostasis pathways. Collectively, our data highlight a model in which morphological remodeling during

  4. Abnormalities in Dynamic Brain Activity Caused by Mild Traumatic Brain Injury Are Partially Rescued by the Cannabinoid Type-2 Receptor Inverse Agonist SMM-189

    PubMed Central

    McAfee, Samuel S.; Guley, Natalie M.; Del Mar, Nobel; Bu, Wei; Heldt, Scott A.; Honig, Marcia G.; Moore, Bob M.

    2017-01-01

    Abstract Mild traumatic brain injury (mTBI) can cause severe long-term cognitive and emotional deficits, including impaired memory, depression, and persevering fear, but the neuropathological basis of these deficits is uncertain. As medial prefrontal cortex (mPFC) and hippocampus play important roles in memory and emotion, we used multi-site, multi-electrode recordings of oscillatory neuronal activity in local field potentials (LFPs) in awake, head-fixed mice to determine if the functioning of these regions was abnormal after mTBI, using a closed-skull focal cranial blast model. We evaluated mPFC, hippocampus CA1, and primary somatosensory/visual cortical areas (S1/V1). Although mTBI did not alter the power of oscillations, it did cause increased coherence of θ (4-10 Hz) and β (10-30 Hz) oscillations within mPFC and S1/V1, reduced CA1 sharp-wave ripple (SWR)-evoked LFP activity in mPFC, downshifted SWR frequencies in CA1, and enhanced θ-γ phase-amplitude coupling (PAC) within mPFC. These abnormalities might be linked to the impaired memory, depression, and persevering fear seen after mTBI. Treatment with the cannabinoid type-2 (CB2) receptor inverse agonist SMM-189 has been shown to mitigate functional deficits and neuronal injury after mTBI in mice. We found that SMM-189 also reversed most of the observed neurophysiological abnormalities. This neurophysiological rescue is likely to stem from the previously reported reduction in neuron loss and/or the preservation of neuronal function and connectivity resulting from SMM-189 treatment, which appears to stem from the biasing of microglia from the proinflammatory M1 state to the prohealing M2 state by SMM-189. PMID:28828401

  5. Abnormalities in Dynamic Brain Activity Caused by Mild Traumatic Brain Injury Are Partially Rescued by the Cannabinoid Type-2 Receptor Inverse Agonist SMM-189.

    PubMed

    Liu, Yu; McAfee, Samuel S; Guley, Natalie M; Del Mar, Nobel; Bu, Wei; Heldt, Scott A; Honig, Marcia G; Moore, Bob M; Reiner, Anton; Heck, Detlef H

    2017-01-01

    Mild traumatic brain injury (mTBI) can cause severe long-term cognitive and emotional deficits, including impaired memory, depression, and persevering fear, but the neuropathological basis of these deficits is uncertain. As medial prefrontal cortex (mPFC) and hippocampus play important roles in memory and emotion, we used multi-site, multi-electrode recordings of oscillatory neuronal activity in local field potentials (LFPs) in awake, head-fixed mice to determine if the functioning of these regions was abnormal after mTBI, using a closed-skull focal cranial blast model. We evaluated mPFC, hippocampus CA1, and primary somatosensory/visual cortical areas (S1/V1). Although mTBI did not alter the power of oscillations, it did cause increased coherence of θ (4-10 Hz) and β (10-30 Hz) oscillations within mPFC and S1/V1, reduced CA1 sharp-wave ripple (SWR)-evoked LFP activity in mPFC, downshifted SWR frequencies in CA1, and enhanced θ-γ phase-amplitude coupling (PAC) within mPFC. These abnormalities might be linked to the impaired memory, depression, and persevering fear seen after mTBI. Treatment with the cannabinoid type-2 (CB2) receptor inverse agonist SMM-189 has been shown to mitigate functional deficits and neuronal injury after mTBI in mice. We found that SMM-189 also reversed most of the observed neurophysiological abnormalities. This neurophysiological rescue is likely to stem from the previously reported reduction in neuron loss and/or the preservation of neuronal function and connectivity resulting from SMM-189 treatment, which appears to stem from the biasing of microglia from the proinflammatory M1 state to the prohealing M2 state by SMM-189.

  6. A Role for Hypocretin/Orexin in Metabolic and Sleep Abnormalities in a Mouse Model of Non-metastatic Breast Cancer.

    PubMed

    Borniger, Jeremy C; Walker Ii, William H; Surbhi; Emmer, Kathryn M; Zhang, Ning; Zalenski, Abigail A; Muscarella, Stevie L; Fitzgerald, Julie A; Smith, Alexandra N; Braam, Cornelius J; TinKai, Tial; Magalang, Ulysses J; Lustberg, Maryam B; Nelson, Randy J; DeVries, A Courtney

    2018-05-14

    We investigated relationships among immune, metabolic, and sleep abnormalities in mice with non-metastatic mammary cancer. Tumor-bearing mice displayed interleukin-6 (IL-6)-mediated peripheral inflammation, coincident with altered hepatic glucose processing and sleep. Tumor-bearing mice were hyperphagic, had reduced serum leptin concentrations, and enhanced sensitivity to exogenous ghrelin. We tested whether these phenotypes were driven by inflammation using neutralizing monoclonal antibodies against IL-6; despite the reduction in IL-6 signaling, metabolic and sleep abnormalities persisted. We next investigated neural populations coupling metabolism and sleep, and observed altered activity within lateral-hypothalamic hypocretin/orexin (HO) neurons. We used a dual HO-receptor antagonist to test whether increased HO signaling was causing metabolic abnormalities. This approach rescued metabolic abnormalities and enhanced sleep quality in tumor-bearing mice. Peripheral sympathetic denervation prevented tumor-induced increases in serum glucose. Our results link metabolic and sleep abnormalities via the HO system, and provide evidence that central neuromodulators contribute to tumor-induced changes in metabolism. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. RELATIONSHIP BETWEEN ENTROPY OF SPIKE TIMING AND FIRING RATE IN ENTOPEDUNCULAR NUCLEUS NEURONS IN ANESTHETIZED RATS: FUNCTION OF THE NIGRO-STRIATAL PATHWAY

    PubMed Central

    Darbin, Olivier; Jin, Xingxing; von Wrangel, Christof; Schwabe, Kerstin; Nambu, Atsushi; Naritoku, Dean K; Krauss, Joachim K.; Alam, Mesbah

    2016-01-01

    The function of the nigro-striatal pathway on neuronal entropy in the basal ganglia (BG) output nucleus (entopeduncular nucleus, EPN) was investigated in the unilaterally 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson’s disease (PD). In both control subjects and subjects with 6-OHDA lesion of the nigro-striatal pathway, a histological hallmark for parkinsonism, neuronal entropy in EPN was maximal in neurons with firing rates ranging between 15Hz and 25 Hz. In 6-OHDA lesioned rats, neuronal entropy in the EPN was specifically higher in neurons with firing rates above 25Hz. Our data establishes that nigro-striatal pathway controls neuronal entropy in motor circuitry and that the parkinsonian condition is associated with abnormal relationship between firing rate and neuronal entropy in BG output nuclei. The neuronal firing rates and entropy relationship provide putative relevant electrophysiological information to investigate the sensory-motor processing in normal condition and conditions with movement disorders. PMID:26711712

  8. Abnormal Mitochondrial Dynamics and Synaptic Degeneration as Early Events in Alzheimer’s Disease: Implications to Mitochondria-Targeted Antioxidant Therapeutics

    PubMed Central

    Reddy, P. Hemachandra; Tripathy, Raghav; Troung, Quang; Thirumala, Karuna; Reddy, Tejaswini P.; Anekonda, Vishwanath; Shirendeb, Ulziibat P.; Calkins, Marcus J.; Reddy, Arubala P.; Mao, Peizhong; Manczak, Maria

    2011-01-01

    Synaptic pathology and mitochondrial oxidative damage are early events in Alzheimer’s disease (AD) progression. Loss of synapses and synaptic damage are the best correlate of cognitive deficits found in AD patients. Recent research on amyloid bet (Aβ) and mitochondria in AD revealed that Aβ accumulates in synapses and synaptic mitochondria, leading to abnormal mitochondrial dynamics and synaptic degeneration in AD neurons. Further, recent studies using live-cell imaging and primary neurons from amyloid beta precursor protein (AβPP) transgenic mice revealed that reduced mitochondrial mass, defective axonal transport of mitochondria and synaptic degeneration, indicating that Aβ is responsible for mitochondrial and synaptic deficiencies. Tremendous progress has been made in studying antioxidant approaches in mouse models of AD and clinical trials of AD patients. This article highlights the recent developments made in Aβ-induced abnormal mitochondrial dynamics, defective mitochondrial biogenesis, impaired axonal transport and synaptic deficiencies in AD. This article also focuses on mitochondrial approaches in treating AD, and also discusses latest research on mitochondria-targeted antioxidants in AD. PMID:22037588

  9. Abnormal nuclear envelopes in the striatum and motor deficits in DYT11 myoclonus-dystonia mouse models

    PubMed Central

    Yokoi, Fumiaki; Dang, Mai T.; Zhou, Tong; Li, Yuqing

    2012-01-01

    DYT11 myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonic symptoms and caused by mutations in paternally expressed SGCE, which codes for ɛ-sarcoglycan. Paternally inherited Sgce heterozygous knock-out (KO) mice exhibit motor deficits and spontaneous myoclonus. Abnormal nuclear envelopes have been reported in cellular and mouse models of early-onset DYT1 generalized torsion dystonia; however, the relationship between the abnormal nuclear envelopes and motor symptoms are not clear. Furthermore, it is not known whether abnormal nuclear envelope exists in non-DYT1 dystonia. In the present study, abnormal nuclear envelopes in the striatal medium spiny neurons (MSNs) were found in Sgce KO mice. To analyze whether the loss of ɛ-sarcoglycan in the striatum alone causes abnormal nuclear envelopes, motor deficits or myoclonus, we produced paternally inherited striatum-specific Sgce conditional KO (Sgce sKO) mice and analyzed their phenotypes. Sgce sKO mice exhibited motor deficits in both beam-walking and accelerated rotarod tests, while they did not exhibit abnormal nuclear envelopes, alteration in locomotion, or myoclonus. The results suggest that the loss of ɛ-sarcoglycan in the striatum contributes to motor deficits, while it alone does not produce abnormal nuclear envelopes or myoclonus. Development of therapies targeting the striatum to compensate for the loss of ɛ-sarcoglycan function may rescue the motor deficits in DYT11 M-D patients. PMID:22080833

  10. Hemispheric comparisons of neuron density in the planum temporale of schizophrenia and nonpsychiatric brains

    PubMed Central

    Smiley, John F.; Rosoklija, Gorazd; Mancevski, Branislav; Pergolizzi, Denise; Figarsky, Khadija; Bleiwas, Cynthia; Duma, Aleksej; Mann, J. John; Javitt, Daniel C.; Dwork, Andrew J.

    2010-01-01

    Postmortem and in vivo studies of schizophrenia frequently reveal reduced cortical volume, but the underlying cellular abnormalities are incompletely defined. One influential hypothesis, especially investigated in Brodmann’s area 9 of prefrontal cortex, is that the number of neurons is normal, and the volume change is caused by reduction of the surrounding neuropil. However, studies have differed on whether the cortex has the increased neuron density that is predicted by this hypothesis. In a recent study of bilateral planum temporale (PT), we reported smaller volume and width of the outer cortex (layers I-III), especially in the left hemisphere, among subjects with schizophrenia. In the present study, we measured neuron density and size in the same PT samples, and also in prefrontal area 9 of the same brains. In the PT, separate stereological measurements were made in layers II, IIIc, and VI, whereas area 9 was sampled in layer IIIb-c. In both cortical regions, there was no significant effect of schizophrenia on neuronal density or size. There was, nevertheless, a trend-level right>left hemispheric asymmetry of neuron density in the PT, which may partially explain the previously reported left>right asymmetry of cortical width. In schizophrenia, our findings suggest that closer packing of neurons may not always explain reduced cortical volume, and subtly decreased neuron number may be a contributing factor. PMID:21377842

  11. Complexity in neuronal noise depends on network interconnectivity.

    PubMed

    Serletis, Demitre; Zalay, Osbert C; Valiante, Taufik A; Bardakjian, Berj L; Carlen, Peter L

    2011-06-01

    "Noise," or noise-like activity (NLA), defines background electrical membrane potential fluctuations at the cellular level of the nervous system, comprising an important aspect of brain dynamics. Using whole-cell voltage recordings from fast-spiking stratum oriens interneurons and stratum pyramidale neurons located in the CA3 region of the intact mouse hippocampus, we applied complexity measures from dynamical systems theory (i.e., 1/f(γ) noise and correlation dimension) and found evidence for complexity in neuronal NLA, ranging from high- to low-complexity dynamics. Importantly, these high- and low-complexity signal features were largely dependent on gap junction and chemical synaptic transmission. Progressive neuronal isolation from the surrounding local network via gap junction blockade (abolishing gap junction-dependent spikelets) and then chemical synaptic blockade (abolishing excitatory and inhibitory post-synaptic potentials), or the reverse order of these treatments, resulted in emergence of high-complexity NLA dynamics. Restoring local network interconnectivity via blockade washout resulted in resolution to low-complexity behavior. These results suggest that the observed increase in background NLA complexity is the result of reduced network interconnectivity, thereby highlighting the potential importance of the NLA signal to the study of network state transitions arising in normal and abnormal brain dynamics (such as in epilepsy, for example).

  12. DLP1-Dependent Mitochondrial Fragmentation Mediates 1-methyl-4-phenylpyridinium Toxicity in Neurons: Implications for Parkinson's Disease

    PubMed Central

    Wang, Xinglong; Su, Bo; Liu, Wanhong; He, Xiaohua; Gao, Yuan; Castellani, Rudy J.; Perry, George; Smith, Mark A.; Zhu, Xiongwei

    2011-01-01

    SUMMARY Selective degeneration of nigrostriatal dopaminergic neurons in Parkinson disease (PD) can be modeled by the administration of the neurotoxin 1-methyl-4-phenylpyridinium (MPP+). Since abnormal mitochondrial dynamics are increasingly implicated in the pathogenesis of PD, in this study, we investigated the effect of MPP+ on mitochondrial dynamics and assessed temporal and causal relationship with other toxic effects induced by MPP+ in neuronal cells. In SH-SY5Y cells, MPP+ causes a rapid increase in mitochondrial fragmentation followed by a second wave of increase in mitochondrial fragmentation, along with increased DLP1 expression and mitochondrial translocation. Genetic inactivation of DLP1 completely blocks MPP+-induced mitochondrial fragmentation. Notably, this approach partially rescues MPP+-induced decline in ATP levels and ATP/ADP ratio and increased [Ca2+]i and almost completely prevents increased reactive oxygen species production, loss of mitochondrial membrane potential, enhanced autophagy and cell death, suggesting that mitochondria fragmentation is an upstream event that mediates MPP+-induced toxicity. On the other hand, thiol antioxidant NAC or glutamate receptor antagonist D-AP5 also partially alleviate MPP+-induced mitochondrial fragmentation, suggesting a vicious spiral of events contributes to MPP+-induced toxicity. We further validated our findings in primary rat midbrain dopaminergic neurons that 0.5 μM MPP+ induced mitochondrial fragmentation only in TH-positive dopaminergic neurons in a similar pattern to that in SH-SY5Y cells but had no effects on these mitochondrial parameters in TH-negative neurons. Overall, these findings suggest that DLP1-dependent mitochondrial fragmentation plays a crucial role in mediating MPP+-induced mitochondria abnormalities and cellular dysfunction and may represent a novel therapeutic target for PD. PMID:21615675

  13. Molecular Memory of Morphologies by Septins during Neuron Generation Allows Early Polarity Inheritance.

    PubMed

    Boubakar, Leila; Falk, Julien; Ducuing, Hugo; Thoinet, Karine; Reynaud, Florie; Derrington, Edmund; Castellani, Valérie

    2017-08-16

    Transmission of polarity established early during cell lineage history is emerging as a key process guiding cell differentiation. Highly polarized neurons provide a fascinating model to study inheritance of polarity over cell generations and across morphological transitions. Neural crest cells (NCCs) migrate to the dorsal root ganglia to generate neurons directly or after cell divisions in situ. Using live imaging of vertebrate embryo slices, we found that bipolar NCC progenitors lose their polarity, retracting their processes to round for division, but generate neurons with bipolar morphology by emitting processes from the same locations as the progenitor. Monitoring the dynamics of Septins, which play key roles in yeast polarity, indicates that Septin 7 tags process sites for re-initiation of process growth following mitosis. Interfering with Septins blocks this mechanism. Thus, Septins store polarity features during mitotic rounding so that daughters can reconstitute the initial progenitor polarity. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Altered localization, abnormal modification and loss of function of Sigma receptor-1 in amyotrophic lateral sclerosis.

    PubMed

    Prause, J; Goswami, A; Katona, I; Roos, A; Schnizler, M; Bushuven, E; Dreier, A; Buchkremer, S; Johann, S; Beyer, C; Deschauer, M; Troost, D; Weis, J

    2013-04-15

    Intracellular accumulations of mutant, misfolded proteins are major pathological hallmarks of amyotrophic lateral sclerosis (ALS) and related disorders. Recently, mutations in Sigma receptor 1 (SigR1) have been found to cause a form of ALS and frontotemporal lobar degeneration (FTLD). Our goal was to pinpoint alterations and modifications of SigR1 in ALS and to determine how these changes contribute to the pathogenesis of ALS. In the present study, we found that levels of the SigR1 protein were reduced in lumbar ALS patient spinal cord. SigR1 was abnormally accumulated in enlarged C-terminals and endoplasmic reticulum (ER) structures of alpha motor neurons. These accumulations co-localized with the 20s proteasome subunit. SigR1 accumulations were also observed in SOD1 transgenic mice, cultured ALS-8 patient's fibroblasts with the P56S-VAPB mutation and in neuronal cell culture models. Along with the accumulation of SigR1 and several other proteins involved in protein quality control, severe disturbances in the unfolded protein response and impairment of protein degradation pathways were detected in the above-mentioned cell culture systems. Furthermore, shRNA knockdown of SigR1 lead to deranged calcium signaling and caused abnormalities in ER and Golgi structures in cultured NSC-34 cells. Finally, pharmacological activation of SigR1 induced the clearance of mutant protein aggregates in these cells. Our results support the notion that SigR1 is abnormally modified and contributes to the pathogenesis of ALS.

  15. Fluorescent diamond nanoparticle as a probe of intracellular traffic in primary neurons in culture

    NASA Astrophysics Data System (ADS)

    Le, Xuan Loc; Lepagnol-Bestel, Aude-Marie; Adam, Marie-Pierre; Thomas, Alice; Dantelle, Géraldine; Chang, Cheng-Chun; Mohan, Nitin; Chang, Huan-Cheng; Treussart, François; Simonneau, Michel

    2012-03-01

    Neurons display dendritic spines plasticity and morphology anomalies in numerous psychiatric and neurodegenerative diseases. These changes are associated to abnormal dendritic traffic that can be evidenced by fluorescence microscopy. As a fluorescent probe we propose to use fluorescent diamond nanoparticles with size of < 50 nm. Color centers embedded inside the diamond nanoparticles are perfectly photostable emitters allowing for long-term tracking. Nanodiamond carbon surface is also well suited for biomolecule functionalization to target specific cellular compartments. We show that fluorescent nanodiamonds can be spontaneously internalized in neurons in culture and imaged by confocal and Total Internal Reflection (TIRF) microscopy with a high signal over background ratio.

  16. Lysosomal storage disease upon disruption of the neuronal chloride transport protein ClC-6

    PubMed Central

    Poët, Mallorie; Kornak, Uwe; Schweizer, Michaela; Zdebik, Anselm A.; Scheel, Olaf; Hoelter, Sabine; Wurst, Wolfgang; Schmitt, Anja; Fuhrmann, Jens C.; Planells-Cases, Rosa; Mole, Sara E.; Hübner, Christian A.; Jentsch, Thomas J.

    2006-01-01

    Mammalian CLC proteins function as Cl− channels or as electrogenic Cl−/H+ exchangers and are present in the plasma membrane and intracellular vesicles. We now show that the ClC-6 protein is almost exclusively expressed in neurons of the central and peripheral nervous systems, with a particularly high expression in dorsal root ganglia. ClC-6 colocalized with markers for late endosomes in neuronal cell bodies. The disruption of ClC-6 in mice reduced their pain sensitivity and caused moderate behavioral abnormalities. Neuronal tissues showed autofluorescence at initial axon segments. At these sites, electron microscopy revealed electron-dense storage material that caused a pathological enlargement of proximal axons. These deposits were positive for several lysosomal proteins and other marker proteins typical for neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disease. However, the lysosomal pH of Clcn6−/− neurons appeared normal. CLCN6 is a candidate gene for mild forms of human NCL. Analysis of 75 NCL patients identified ClC-6 amino acid exchanges in two patients but failed to prove a causative role of CLCN6 in that disease. PMID:16950870

  17. Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiying; Rao, Qing, E-mail: raoqing@gmail.com; Wang, Min

    2009-09-04

    Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation,more » and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.« less

  18. Drosophila Atlastin in motor neurons is required for locomotion and presynaptic function.

    PubMed

    De Gregorio, Cristian; Delgado, Ricardo; Ibacache, Andrés; Sierralta, Jimena; Couve, Andrés

    2017-10-15

    Hereditary spastic paraplegias (HSPs) are characterized by spasticity and weakness of the lower limbs, resulting from length-dependent axonopathy of the corticospinal tracts. In humans, the HSP-related atlastin genes ATL1 - ATL3 catalyze homotypic membrane fusion of endoplasmic reticulum (ER) tubules. How defects in neuronal Atlastin contribute to axonal degeneration has not been explained satisfactorily. Using Drosophila , we demonstrate that downregulation or overexpression of Atlastin in motor neurons results in decreased crawling speed and contraction frequency in larvae, while adult flies show progressive decline in climbing ability. Broad expression in the nervous system is required to rescue the atlastin -null Drosophila mutant ( atl 2 ) phenotype. Importantly, both spontaneous release and the reserve pool of synaptic vesicles are affected. Additionally, axonal secretory organelles are abnormally distributed, whereas presynaptic proteins diminish at terminals and accumulate in distal axons, possibly in lysosomes. Our findings suggest that trafficking defects produced by Atlastin dysfunction in motor neurons result in redistribution of presynaptic components and aberrant mobilization of synaptic vesicles, stressing the importance of ER-shaping proteins and the susceptibility of motor neurons to their mutations or depletion. © 2017. Published by The Company of Biologists Ltd.

  19. Atypical PKC, PKCλ/ι, activates β-secretase and increases Aβ1-40/42 and phospho-tau in mouse brain and isolated neuronal cells, and may link hyperinsulinemia and other aPKC activators to development of pathological and memory abnormalities in Alzheimer's disease.

    PubMed

    Sajan, Mini P; Hansen, Barbara C; Higgs, Margaret G; Kahn, C Ron; Braun, Ursula; Leitges, Michael; Park, Collin R; Diamond, David M; Farese, Robert V

    2018-01-01

    Hyperinsulinemia activates brain Akt and PKC-λ/ι and increases Aβ 1-40/42 and phospho-tau in insulin-resistant animals. Here, we examined underlying mechanisms in mice, neuronal cells, and mouse hippocampal slices. Like Aβ 1-40/42 , β-secretase activity was increased in insulin-resistant mice and monkeys. In insulin-resistant mice, inhibition of hepatic PKC-λ/ι sufficient to correct hepatic abnormalities and hyperinsulinemia simultaneously reversed increases in Akt, atypical protein kinase C (aPKC), β-secretase, and Aβ 1-40/42 , and restored acute Akt activation. However, 2 aPKC inhibitors additionally blocked insulin's ability to activate brain PKC-λ/ι and thereby increase β-secretase and Aβ 1-40/42 . Furthermore, direct blockade of brain aPKC simultaneously corrected an impairment in novel object recognition in high-fat-fed insulin-resistant mice. In neuronal cells and/or mouse hippocampal slices, PKC-ι/λ activation by insulin, metformin, or expression of constitutive PKC-ι provoked increases in β-secretase, Aβ 1-40/42 , and phospho-thr-231-tau that were blocked by various PKC-λ/ι inhibitors, but not by an Akt inhibitor. PKC-λ/ι provokes increases in brain β-secretase, Aβ 1-40/42 , and phospho-thr-231-tau. Excessive signaling via PKC-λ/ι may link hyperinsulinemia and other PKC-λ/ι activators to pathological and functional abnormalities in Alzheimer's disease. Published by Elsevier Inc.

  20. Fragile X Mental Retardation Protein (FMRP) controls diacylglycerol kinase activity in neurons.

    PubMed

    Tabet, Ricardos; Moutin, Enora; Becker, Jérôme A J; Heintz, Dimitri; Fouillen, Laetitia; Flatter, Eric; Krężel, Wojciech; Alunni, Violaine; Koebel, Pascale; Dembélé, Doulaye; Tassone, Flora; Bardoni, Barbara; Mandel, Jean-Louis; Vitale, Nicolas; Muller, Dominique; Le Merrer, Julie; Moine, Hervé

    2016-06-28

    Fragile X syndrome (FXS) is caused by the absence of the Fragile X Mental Retardation Protein (FMRP) in neurons. In the mouse, the lack of FMRP is associated with an excessive translation of hundreds of neuronal proteins, notably including postsynaptic proteins. This local protein synthesis deregulation is proposed to underlie the observed defects of glutamatergic synapse maturation and function and to affect preferentially the hundreds of mRNA species that were reported to bind to FMRP. How FMRP impacts synaptic protein translation and which mRNAs are most important for the pathology remain unclear. Here we show by cross-linking immunoprecipitation in cortical neurons that FMRP is mostly associated with one unique mRNA: diacylglycerol kinase kappa (Dgkκ), a master regulator that controls the switch between diacylglycerol and phosphatidic acid signaling pathways. The absence of FMRP in neurons abolishes group 1 metabotropic glutamate receptor-dependent DGK activity combined with a loss of Dgkκ expression. The reduction of Dgkκ in neurons is sufficient to cause dendritic spine abnormalities, synaptic plasticity alterations, and behavior disorders similar to those observed in the FXS mouse model. Overexpression of Dgkκ in neurons is able to rescue the dendritic spine defects of the Fragile X Mental Retardation 1 gene KO neurons. Together, these data suggest that Dgkκ deregulation contributes to FXS pathology and support a model where FMRP, by controlling the translation of Dgkκ, indirectly controls synaptic proteins translation and membrane properties by impacting lipid signaling in dendritic spine.

  1. Antiviral treatment normalizes neurophysiological but not movement abnormalities in simian immunodeficiency virus–infected monkeys

    PubMed Central

    Fox, Howard S.; Weed, Michael R.; Huitron-Resendiz, Salvador; Baig, Jamal; Horn, Thomas F.W.; Dailey, Peter J.; Bischofberger, Norbert; Henriksen, Steven J.

    2000-01-01

    Simian immunodeficiency virus (SIV) infection of rhesus monkeys provides an excellent model of the central nervous system (CNS) consequences of HIV infection. To discern the relationship between viral load and abnormalities induced in the CNS by the virus, we infected animals with SIV and later instituted antiviral treatment to lower peripheral viral load. Measurement of sensory-evoked potentials, assessing CNS neuronal circuitry, revealed delayed latencies after infection that could be reversed by lowering viral load. Cessation of treatment led to the reappearance of these abnormalities. In contrast, the decline in general motor activity induced by SIV infection was unaffected by antiviral treatment. An acute increase in the level of the chemokine monocyte chemoattractant protein-1 (MCP-1) was found in the cerebrospinal fluid (CSF) relative to plasma in the infected animals at the peak of acute viremia, likely contributing to an early influx of immune cells into the CNS. Examination of the brains of the infected animals after return of the electrophysiological abnormalities revealed diverse viral and inflammatory findings. Although some of the physiological abnormalities resulting from SIV infection can be at least temporarily reversed by lowering viral load, the viral-host interactions initiated by infection may result in long-lasting changes in CNS-mediated functions. PMID:10880046

  2. Antiviral treatment normalizes neurophysiological but not movement abnormalities in simian immunodeficiency virus-infected monkeys.

    PubMed

    Fox, H S; Weed, M R; Huitron-Resendiz, S; Baig, J; Horn, T F; Dailey, P J; Bischofberger, N; Henriksen, S J

    2000-07-01

    Simian immunodeficiency virus (SIV) infection of rhesus monkeys provides an excellent model of the central nervous system (CNS) consequences of HIV infection. To discern the relationship between viral load and abnormalities induced in the CNS by the virus, we infected animals with SIV and later instituted antiviral treatment to lower peripheral viral load. Measurement of sensory-evoked potentials, assessing CNS neuronal circuitry, revealed delayed latencies after infection that could be reversed by lowering viral load. Cessation of treatment led to the reappearance of these abnormalities. In contrast, the decline in general motor activity induced by SIV infection was unaffected by antiviral treatment. An acute increase in the level of the chemokine monocyte chemoattractant protein-1 (MCP-1) was found in the cerebrospinal fluid (CSF) relative to plasma in the infected animals at the peak of acute viremia, likely contributing to an early influx of immune cells into the CNS. Examination of the brains of the infected animals after return of the electrophysiological abnormalities revealed diverse viral and inflammatory findings. Although some of the physiological abnormalities resulting from SIV infection can be at least temporarily reversed by lowering viral load, the viral-host interactions initiated by infection may result in long-lasting changes in CNS-mediated functions.

  3. Hereditary sensory neuropathy type 1-associated deoxysphingolipids cause neurotoxicity, acute calcium handling abnormalities and mitochondrial dysfunction in vitro.

    PubMed

    Wilson, Emma R; Kugathasan, Umaiyal; Abramov, Andrey Y; Clark, Alex J; Bennett, David L H; Reilly, Mary M; Greensmith, Linda; Kalmar, Bernadett

    2018-05-18

    Hereditary sensory neuropathy type 1 (HSN-1) is a peripheral neuropathy most frequently caused by mutations in the SPTLC1 or SPTLC2 genes, which code for two subunits of the enzyme serine palmitoyltransferase (SPT). SPT catalyzes the first step of de novo sphingolipid synthesis. Mutations in SPT result in a change in enzyme substrate specificity, which causes the production of atypical deoxysphinganine and deoxymethylsphinganine, rather than the normal enzyme product, sphinganine. Levels of these abnormal compounds are elevated in blood of HSN-1 patients and this is thought to cause the peripheral motor and sensory nerve damage that is characteristic of the disease, by a largely unresolved mechanism. In this study, we show that exogenous application of these deoxysphingoid bases causes dose- and time-dependent neurotoxicity in primary mammalian neurons, as determined by analysis of cell survival and neurite length. Acutely, deoxysphingoid base neurotoxicity manifests in abnormal Ca 2+ handling by the endoplasmic reticulum (ER) and mitochondria as well as dysregulation of cell membrane store-operated Ca 2+ channels. The changes in intracellular Ca 2+ handling are accompanied by an early loss of mitochondrial membrane potential in deoxysphingoid base-treated motor and sensory neurons. Thus, these results suggest that exogenous deoxysphingoid base application causes neuronal mitochondrial dysfunction and Ca 2+ handling deficits, which may play a critical role in the pathogenesis of HSN-1. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Electrophysiological characterization of spinal neurons in different models of diabetes type 1- and type 2-induced neuropathy in rats.

    PubMed

    Schuelert, N; Gorodetskaya, N; Just, S; Doods, H; Corradini, L

    2015-04-16

    Diabetic polyneuropathy (DPN) is a devastating complication of diabetes. The underlying pathogenesis of DPN is still elusive and an effective treatment devoid of side effects presents a challenge. There is evidence that in type-1 and -2 diabetes, metabolic and morphological changes lead to peripheral nerve damage and altered central nociceptive transmission, which may contribute to neuropathic pain symptoms. We characterized the electrophysiological response properties of spinal wide dynamic range (WDR) neurons in three diabetic models. The streptozotocin (STZ) model was used as a drug-induced model of type-1 diabetes, and the BioBreeding/Worcester (BB/Wor) and Zucker diabetic fatty (ZDF) rat models were used for genetic DPN models. Data were compared to the respective control group (BB/Wor diabetic-resistant, Zucker lean (ZL) and saline-injected Wistar rat). Response properties of WDR neurons to mechanical stimulation and spontaneous activity were assessed. We found abnormal response properties of spinal WDR neurons in all diabetic rats but not controls. Profound differences between models were observed. In BB/Wor diabetic rats evoked responses were increased, while in ZDF rats spontaneous activity was increased and in STZ rats mainly after discharges were increased. The abnormal response properties of neurons might indicate differential pathological, diabetes-induced, changes in spinal neuronal transmission. This study shows for the first time that specific electrophysiological response properties are characteristic for certain models of DPN and that these might reflect the diverse and complex symptomatology of DPN in the clinic. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. A Collapsin Response Mediator Protein 2 Isoform Controls Myosin II-Mediated Cell Migration and Matrix Assembly by Trapping ROCK II

    PubMed Central

    Morgan-Fisher, Marie; Wait, Robin; Couchman, John R.; Wewer, Ulla M.

    2012-01-01

    Collapsin response mediator protein 2 (CRMP-2) is known as a regulator of neuronal polarity and differentiation through microtubule assembly and trafficking. Here, we show that CRMP-2 is ubiquitously expressed and a splice variant (CRMP-2L), which is expressed mainly in epithelial cells among nonneuronal cells, regulates myosin II-mediated cellular functions, including cell migration. While the CRMP-2 short form (CRMP-2S) is recognized as a substrate of the Rho-GTP downstream kinase ROCK in neuronal cells, a CRMP-2 complex containing 2L not only bound the catalytic domain of ROCK II through two binding domains but also trapped and inhibited the kinase. CRMP-2L protein levels profoundly affected haptotactic migration and the actin-myosin cytoskeleton of carcinoma cells as well as nontransformed epithelial cell migration in a ROCK activity-dependent manner. Moreover, the ectopic expression of CRMP-2L but not -2S inhibited fibronectin matrix assembly in fibroblasts. Underlying these responses, CRMP-2L regulated the kinase activity of ROCK II but not ROCK I, independent of GTP-RhoA levels. This study provides a new insight into CRMP-2 as a controller of myosin II-mediated cellular functions through the inhibition of ROCK II in nonneuronal cells. PMID:22431514

  6. Abnormal dendritic maturation of neurons under the influence of a Tilorone analogue (R 10.874).

    PubMed

    Pfau, D; Westphal, S; Bossanyi, P V; Dietzmann, K

    1995-11-01

    Tilorone analogue (R 10.874) has a close affinity to the lysosomal compartment of cells and forms a non degradable carbohydrate-lipid-drug complex accumulated within digesting organelles. Resembling biochemical and structural changes are seen in hereditary mucopolysaccharidoses accompanied with abnormal dendritogenesis. On the other hand, developmental toxicity (TERRY et al. 1992), antiproliferative effects (ALGARRA et al. 1993) and interactions with DNA (GELLER et al. 1985) are generated by tilorone. Therefore it should be interesting to know whether the amphiphilic cationic compound is able to produce an abnormal dendritogenesis as in storage diseases or an impaired arborisation of dendrites and what could be the reason for the misdevelopment. We demonstrate that there was a fetal retardation in the development of dendritic network, even under influence of low dosis of the analogue R 10.874. The dendritic dismaturation was concomitant with an increased amount of fatty acids and a slightly disarranged metabolic pathway of gangliosides. The dendritic arborisation closed the gap of retarded development between intrauterine treated and untreated rats after 7 days of postnatal drug elimination. We suppose that a fetotoxic effect and not the lysosomopathy is responsible for the reduced dendritic network.

  7. Neuronal survival in the brain: neuron type-specific mechanisms.

    PubMed

    Pfisterer, Ulrich; Khodosevich, Konstantin

    2017-03-02

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation. Furthermore, pro-survival factors and intracellular responses depend on the type of neuron and region of the brain. Thus, in addition to some common neuronal pro-survival signaling, different types of neurons possess a variety of 'neuron type-specific' pro-survival constituents that might help them to adapt for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various types of immature neurons. Importantly, we mainly focus on in vivo data to describe neuronal survival specifically in the brain, without extrapolating data obtained in the PNS or spinal cord, and thus emphasize the influence of the complex brain environment on neuronal survival during development.

  8. Behavioral Abnormalities and Circuit Defects in the Basal Ganglia of a Mouse Model of 16p11.2 Deletion Syndrome

    PubMed Central

    Portmann, Thomas; Ellegood, Jacob; Dolen, Gul; Bader, Patrick L.; Grueter, Brad A.; Goold, Carleton; Fisher, Elaine; Clifford, Katherine; Rengarajan, Pavitra; Kalikhman, David; Loureiro, Darren; Saw, Nay L.; Zhengqui, Zhou; Miller, Michael A.; Lerch, Jason P.; Henkelman, Mark; Shamloo, Mehrdad; Malenka, Robert C.; Crawley, Jacqueline N.; Dolmetsch, Ricardo E.

    2014-01-01

    Summary A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11+/−). We found elevated numbers of striatal medium spiny neurons (MSNs) expressing the dopamine D2 receptor (Drd2+) and fewer dopamine-sensitive (Drd1+) neurons in deep layers of cortex. Electrophysiological recordings of Drd2+ MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11+/− mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11+/− mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism. PMID:24794428

  9. Amplitude of low frequency fluctuation abnormalities in adolescents with online gaming addiction.

    PubMed

    Yuan, Kai; Jin, Chenwang; Cheng, Ping; Yang, Xuejuan; Dong, Tao; Bi, Yanzhi; Xing, Lihong; von Deneen, Karen M; Yu, Dahua; Liu, Junyu; Liang, Jun; Cheng, Tingting; Qin, Wei; Tian, Jie

    2013-01-01

    The majority of previous neuroimaging studies have demonstrated both structural and task-related functional abnormalities in adolescents with online gaming addiction (OGA). However, few functional magnetic resonance imaging (fMRI) studies focused on the regional intensity of spontaneous fluctuations in blood oxygen level-dependent (BOLD) during the resting state and fewer studies investigated the relationship between the abnormal resting-state properties and the impaired cognitive control ability. In the present study, we employed the amplitude of low frequency fluctuation (ALFF) method to explore the local features of spontaneous brain activity in adolescents with OGA and healthy controls during resting-state. Eighteen adolescents with OGA and 18 age-, education- and gender-matched healthy volunteers participated in this study. Compared with healthy controls, adolescents with OGA showed a significant increase in ALFF values in the left medial orbitofrontal cortex (OFC), the left precuneus, the left supplementary motor area (SMA), the right parahippocampal gyrus (PHG) and the bilateral middle cingulate cortex (MCC). The abnormalities of these regions were also detected in previous addiction studies. More importantly, we found that ALFF values of the left medial OFC and left precuneus were positively correlated with the duration of OGA in adolescents with OGA. The ALFF values of the left medial OFC were also correlated with the color-word Stroop test performance. Our results suggested that the abnormal spontaneous neuronal activity of these regions may be implicated in the underlying pathophysiology of OGA.

  10. Gene therapy and editing: Novel potential treatments for neuronal channelopathies.

    PubMed

    Wykes, R C; Lignani, G

    2018-04-01

    Pharmaceutical treatment can be inadequate, non-effective, or intolerable for many people suffering from a neuronal channelopathy. Development of novel treatment options, particularly those with the potential to be curative is warranted. Gene therapy approaches can permit cell-specific modification of neuronal and circuit excitability and have been investigated experimentally as a therapy for numerous neurological disorders, with clinical trials for several neurodegenerative diseases ongoing. Channelopathies can arise from a wide array of gene mutations; however they usually result in periods of aberrant network excitability. Therefore gene therapy strategies based on up or downregulation of genes that modulate neuronal excitability may be effective therapy for a wide range of neuronal channelopathies. As many channelopathies are paroxysmal in nature, optogenetic or chemogenetic approaches may be well suited to treat the symptoms of these diseases. Recent advances in gene-editing technologies such as the CRISPR-Cas9 system could in the future result in entirely novel treatment for a channelopathy by repairing disease-causing channel mutations at the germline level. As the brain may develop and wire abnormally as a consequence of an inherited or de novo channelopathy, the choice of optimal gene therapy or gene editing strategy will depend on the time of intervention (germline, neonatal or adult). This article is part of the Special Issue entitled 'Channelopathies.' Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Raf Kinase Inhibitory Protein Protects Cells against Locostatin-Mediated Inhibition of Migration

    PubMed Central

    Shemon, Anne N.; Eves, Eva M.; Clark, Matthew C.; Heil, Gary; Granovsky, Alexey; Zeng, Lingchun; Imamoto, Akira

    2009-01-01

    Background Raf Kinase Inhibitory Protein (RKIP, also PEBP1), a member of the Phosphatidylethanolamine Binding Protein family, negatively regulates growth factor signaling by the Raf/MAP kinase pathway. Since an organic compound, locostatin, was reported to bind RKIP and inhibit cell migration by a Raf-dependent mechanism, we addressed the role of RKIP in locostatin function. Methods/Findings We analyzed locostatin interaction with RKIP and examined the biological consequences of locostatin binding on RKIP function. NMR studies show that a locostatin precursor binds to the conserved phosphatidylethanolamine binding pocket of RKIP. However, drug binding to the pocket does not prevent RKIP association with its inhibitory target, Raf-1, nor affect RKIP phosphorylation by Protein Kinase C at a regulatory site. Similarly, exposure of wild type, RKIP-depleted HeLa cells or RKIP-deficient (RKIP−/−) mouse embryonic fibroblasts (MEFs) to locostatin has no effect on MAP kinase activation. Locostatin treatment of wild type MEFs causes inhibition of cell migration following wounding. RKIP deficiency impairs migration further, indicating that RKIP protects cells against locostatin-mediated inhibition of migration. Locostatin treatment of depleted or RKIP−/− MEFs reveals cytoskeletal disruption and microtubule abnormalities in the spindle. Conclusions/Significance These results suggest that locostatin's effects on cytoskeletal structure and migration are caused through mechanisms independent of its binding to RKIP and Raf/MAP kinase signaling. The protective effect of RKIP against drug inhibition of migration suggests a new role for RKIP in potentially sequestering toxic compounds that may have deleterious effects on cells. PMID:19551145

  12. NG2 glial cells regulate neuroimmunological responses to maintain neuronal function and survival.

    PubMed

    Nakano, Masayuki; Tamura, Yasuhisa; Yamato, Masanori; Kume, Satoshi; Eguchi, Asami; Takata, Kumi; Watanabe, Yasuyoshi; Kataoka, Yosky

    2017-02-14

    NG2-expressing neural progenitor cells (i.e., NG2 glial cells) maintain their proliferative and migratory activities even in the adult mammalian central nervous system (CNS) and produce myelinating oligodendrocytes and astrocytes. Although NG2 glial cells have been observed in close proximity to neuronal cell bodies in order to receive synaptic inputs, substantive non-proliferative roles of NG2 glial cells in the adult CNS remain unclear. In the present study, we generated NG2-HSVtk transgenic rats and selectively ablated NG2 glial cells in the adult CNS. Ablation of NG2 glial cells produced defects in hippocampal neurons due to excessive neuroinflammation via activation of the interleukin-1 beta (IL-1β) pro-inflammatory pathway, resulting in hippocampal atrophy. Furthermore, we revealed that the loss of NG2 glial cell-derived hepatocyte growth factor (HGF) exacerbated these abnormalities. Our findings suggest that NG2 glial cells maintain neuronal function and survival via the control of neuroimmunological function.

  13. Abnormal Microstructure of the Atrophic Thalamus in Preterm Survivors with Periventricular Leukomalacia

    PubMed Central

    Nagasunder, A.C.; Kinney, H.C.; Blüml, S.; Tavaré, C.J.; Rosser, T.; Gilles, F.H.; Nelson, M.D.; Panigrahy, A.

    2012-01-01

    BACKGROUND AND PURPOSE The neuroanatomic substrate of cognitive deficits in long-term survivors of prematurity with PVL is poorly understood. The thalamus is critically involved in cognition via extensive interconnections with the cerebral cortex. We hypothesized that the thalamus is atrophic (reduced in volume) in childhood survivors of prematurity with neuroimaging evidence of PVL and that the atrophy is associated with selective microstructural abnormalities within its subdivisions. MATERIALS AND METHODS We performed quantitative volumetric and DTI measurements of the thalamus in 17 children with neuroimaging evidence of PVL (mean postconceptional age, 5.6 ± 4.0 years) who were born prematurely and compared these with 74 term control children (5.7 ± 3.4 years). RESULTS The major findings were the following: 1) a significant reduction in the overall volume of the thalamus in patients with PVL compared with controls (P < .0001), which also correlated with the severity of PVL (P = .001); 2) significantly decreased FA (P = .003) and increased λ⊥ (P = .02) in the thalamus overall and increased axial, radial, and mean diffusivities in the pulvinar (P < .03), suggesting injury to afferent and efferent myelinated axons; and 3) a positive correlation of pulvinar abnormalities with those of the parieto-occipital white matter in periventricular leukomalacia, suggesting that the pulvinar abnormalities reflect secondary effects of damaged interconnections between the pulvinar and parieto-occipital cortices in the cognitive visual network. CONCLUSIONS There are volumetric and microstructural abnormalities of the thalamus in preterm children with PVL, very likely reflecting neuronal loss and myelinated axonal injury. The selective microstructural damage in the pulvinar very likely contributes to abnormal cognitive visual processing known to occur in such survivors. PMID:20930003

  14. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function

    PubMed Central

    Sharma, Aarti; Lyashchenko, Alexander K.; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z.; Shneider, Neil A.

    2016-01-01

    Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations. PMID:26842965

  15. Extract of Ginkgo biloba promotes neuronal regeneration in the hippocampus after exposure to acrylamide.

    PubMed

    Huang, Wei-Ling; Ma, Yu-Xin; Fan, Yu-Bao; Lai, Sheng-Min; Liu, Hong-Qing; Liu, Jing; Luo, Li; Li, Guo-Ying; Tian, Su-Min

    2017-08-01

    Previous studies have demonstrated a neuroprotective effect of extract of Ginkgo biloba against neuronal damage, but have mainly focused on antioxidation of extract of Ginkgo biloba . To date, limited studies have determined whether extrasct of Ginkgo biloba has a protective effect on neuronal damage. In the present study, acrylamide and 30, 60, and 120 mg/kg extract of Ginkgo biloba were administered for 4 weeks by gavage to establish mouse models. Our results showed that 30, 60, and 120 mg/kg extract of Ginkgo biloba effectively alleviated the abnormal gait of poisoned mice, and up-regulated protein expression levels of doublecortin (DCX), brain-derived neurotrophic factor, and growth associated protein-43 (GAP-43) in the hippocampus. Simultaneously, DCX- and GAP-43-immunoreactive cells increased. These findings suggest that extract of Ginkgo biloba can mitigate neurotoxicity induced by acrylamide, and thereby promote neuronal regeneration in the hippocampus of acrylamide-treated mice.

  16. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function.

    PubMed

    Sharma, Aarti; Lyashchenko, Alexander K; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z; Shneider, Neil A

    2016-02-04

    Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations.

  17. Genetic mapping of Foxb1-cell lineage shows migration from caudal diencephalon to telencephalon and lateral hypothalamus

    PubMed Central

    Zhao, Tianyu; Szabó, Nora; Ma, Jun; Luo, Lingfei; Zhou, Xunlei; Alvarez-Bolado, Gonzalo

    2008-01-01

    The hypothalamus is a brain region with vital functions, and alterations in its development can cause human disease. However, we still do not have a complete description of how this complex structure is put together during embryonic and early postnatal stages. Radially oriented, outside-in migration of cells is prevalent in the developing hypothalamus. In spite of this, cell contingents from outside the hypothalamus as well as tangential hypothalamic migrations also have an important role. Here we study migrations in the hypothalamic primordium by genetically labeling the Foxb1 diencephalic lineage. Foxb1 is a transcription factor gene expressed in the neuroepithelium of the developing neural tube with a rostral expression boundary between caudal and rostral diencephalon, and therefore appropriate for marking migrations from caudal levels into the hypothalamus. We have found a large, longitudinally oriented migration stream apparently originating in the thalamic region and following an axonal bundle to end in the anterior portion of the lateral hypothalamic area. Additionally, we have mapped a specific expansion of the neuroepithelium into the rostral diencephalon. The expanded neuroepithelium generates abundant neurons for the medial hypothalamus at the tuberal level. Finally, we have uncovered novel diencephalon-to-telencephalon migrations into septum, piriform cortex and amygdala. PMID:19046377

  18. Calpastatin inhibits motor neuron death and increases survival of hSOD1(G93A) mice.

    PubMed

    Rao, Mala V; Campbell, Jabbar; Palaniappan, Arti; Kumar, Asok; Nixon, Ralph A

    2016-04-01

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease with a poorly understood cause and no effective treatment. Given that calpains mediate neurodegeneration in other pathological states and are abnormally activated in ALS, we investigated the possible ameliorative effects of inhibiting calpain over-activation in hSOD1(G93A) transgenic (Tg) mice in vivo by neuron-specific over-expression of calpastatin (CAST), the highly selective endogenous inhibitor of calpains. Our data indicate that over-expression of CAST in hSOD1(G93A) mice, which lowered calpain activation to levels comparable to wild-type mice, inhibited the abnormal breakdown of cytoskeletal proteins (spectrin, MAP2 and neurofilaments), and ameliorated motor axon loss. Disease onset in hSOD1(G93A) /CAST mice compared to littermate hSOD1(G93A) mice is delayed, which accounts for their longer time of survival. We also find that neuronal over-expression of CAST in hSOD1(G93A) transgenic mice inhibited production of putative neurotoxic caspase-cleaved tau and activation of Cdk5, which have been implicated in neurodegeneration in ALS models, and also reduced the formation of SOD1 oligomers. Our data indicate that inhibition of calpain with CAST is neuroprotective in an ALS mouse model. CAST (encoding calpastatin) inhibits hyperactivated calpain to prevent motor neuron disease operating through a cascade of events as indicated in the schematic, with relevance to amyotrophic lateral sclerosis (ALS). We propose that over-expression of CAST in motor neurons of hSOD1(G93A) mice inhibits activation of CDK5, breakdown of cytoskeletal proteins (NFs, MAP2 and Tau) and regulatory molecules (Cam Kinase IV, Calcineurin A), and disease-causing proteins (TDP-43, α-Synuclein and Huntingtin) to prevent neuronal loss and delay neurological deficits. In our experiments, CAST could also inhibit cleavage of Bid, Bax, AIF to prevent mitochondrial, ER and lysosome-mediated cell death mechanisms. Similarly, CAST

  19. Collagen 18 and agrin are secreted by neural crest cells to remodel their microenvironment and regulate their migration during enteric nervous system development.

    PubMed

    Nagy, Nandor; Barad, Csilla; Hotta, Ryo; Bhave, Sukhada; Arciero, Emily; Dora, David; Goldstein, Allan M

    2018-05-08

    The enteric nervous system (ENS) arises from neural crest cells that migrate, proliferate, and differentiate into enteric neurons and glia within the intestinal wall. Many extracellular matrix (ECM) components are present in the embryonic gut, but their role in regulating ENS development is largely unknown. Here, we identify heparan sulfate proteoglycan proteins, including collagen XVIII (Col18) and agrin, as important regulators of enteric neural crest-derived cell (ENCDC) development. In developing avian hindgut, Col18 is expressed at the ENCDC wavefront, while agrin expression occurs later. Both proteins are normally present around enteric ganglia, but are absent in aganglionic gut. Using chick-mouse intestinal chimeras and enteric neurospheres, we show that vagal- and sacral-derived ENCDCs from both species secrete Col18 and agrin. Whereas glia express Col18 and agrin, enteric neurons only express the latter. Functional studies demonstrate that Col18 is permissive whereas agrin is strongly inhibitory to ENCDC migration, consistent with the timing of their expression during ENS development. We conclude that ENCDCs govern their own migration by actively remodeling their microenvironment through secretion of ECM proteins. © 2018. Published by The Company of Biologists Ltd.

  20. Cell Migration

    PubMed Central

    Trepat, Xavier; Chen, Zaozao; Jacobson, Ken

    2015-01-01

    Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis. PMID:23720251

  1. METHAMPHETAMINE-INDUCED CELL DEATH: SELECTIVE VULNERABILITY IN NEURONAL SUBPOPULATIONS OF THE STRIATUM IN MICE

    PubMed Central

    ZHU, J. P. Q.; XU, W.; ANGULO, J. A.

    2010-01-01

    imbalance in the populations of striatal neurons may lead to functional abnormalities in the output and processing of neural information in this part of the brain. PMID:16650608

  2. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  3. Transmembrane proteins UNC-40/DCC, PTP-3/LAR, and MIG-21 control anterior-posterior neuroblast migration with left-right functional asymmetry in Caenorhabditis elegans.

    PubMed

    Sundararajan, Lakshmi; Lundquist, Erik A

    2012-12-01

    Migration of neurons and neural crest cells is of central importance to the development of nervous systems. In Caenorhabditis elegans, the QL neuroblast on the left migrates posteriorly, and QR on the right migrates anteriorly, despite similar lineages and birth positions with regard to the left-right axis. Initial migration is independent of a Wnt signal that controls later anterior-posterior Q descendant migration. Previous studies showed that the transmembrane proteins UNC-40/DCC and MIG-21, a novel thrombospondin type I repeat containing protein, act redundantly in left-side QL posterior migration. Here we show that the LAR receptor protein tyrosine phosphatase PTP-3 acts with MIG-21 in parallel to UNC-40 in QL posterior migration. We also show that in right-side QR, the UNC-40 and PTP-3/MIG-21 pathways mutually inhibit each other's role in posterior migration, allowing anterior QR migration. Finally, we present evidence that these proteins act autonomously in the Q neuroblasts. These studies indicate an inherent left-right asymmetry in the Q neuroblasts with regard to UNC-40, PTP-3, and MIG-21 function that results in posterior vs. anterior migration.

  4. Transmembrane Proteins UNC-40/DCC, PTP-3/LAR, and MIG-21 Control Anterior–Posterior Neuroblast Migration with Left–Right Functional Asymmetry in Caenorhabditis elegans

    PubMed Central

    Sundararajan, Lakshmi; Lundquist, Erik A.

    2012-01-01

    Migration of neurons and neural crest cells is of central importance to the development of nervous systems. In Caenorhabditis elegans, the QL neuroblast on the left migrates posteriorly, and QR on the right migrates anteriorly, despite similar lineages and birth positions with regard to the left–right axis. Initial migration is independent of a Wnt signal that controls later anterior–posterior Q descendant migration. Previous studies showed that the transmembrane proteins UNC-40/DCC and MIG-21, a novel thrombospondin type I repeat containing protein, act redundantly in left-side QL posterior migration. Here we show that the LAR receptor protein tyrosine phosphatase PTP-3 acts with MIG-21 in parallel to UNC-40 in QL posterior migration. We also show that in right-side QR, the UNC-40 and PTP-3/MIG-21 pathways mutually inhibit each other’s role in posterior migration, allowing anterior QR migration. Finally, we present evidence that these proteins act autonomously in the Q neuroblasts. These studies indicate an inherent left–right asymmetry in the Q neuroblasts with regard to UNC-40, PTP-3, and MIG-21 function that results in posterior vs. anterior migration. PMID:23051647

  5. Abnormal Uterine Bleeding

    MedlinePlus

    ... abnormal uterine bleeding? Abnormal uterine bleeding is any heavy or unusual bleeding from the uterus (through your ... one symptom of abnormal uterine bleeding. Having extremely heavy bleeding during your period can also be considered ...

  6. Genome-Wide Search Reveals the Existence of a Limited Number of Thyroid Hormone Receptor Alpha Target Genes in Cerebellar Neurons

    PubMed Central

    Chatonnet, Fabrice; Guyot, Romain; Picou, Frédéric; Bondesson, Maria; Flamant, Frederic

    2012-01-01

    Thyroid hormone (T3) has a major influence on cerebellum post-natal development. The major phenotypic landmark of exposure to low levels of T3 during development (hypothyroidism) in the cerebellum is the retarded inward migration of the most numerous cell type, granular neurons. In order to identify the direct genetic regulation exerted by T3 on cerebellar neurons and their precursors, we used microarray RNA hybridization to perform a time course analysis of T3 induced gene expression in primary cultures of cerebellar neuronal cell. These experiments suggest that we identified a small set of genes which are directly regulated, both in vivo and in vitro, during cerebellum post-natal development. These modest changes suggest that T3 does not acts directly on granular neurons and mainly indirectly influences the cellular interactions taking place during development. PMID:22586439

  7. Slit and semaphorin signaling governed by Islet transcription factors positions motor neuron somata within the neural tube

    PubMed Central

    Lee, Hojae; Kim, Minkyung; Kim, Namhee; Macfarlan, Todd; Pfaff, Samuel L.; Mastick, Grant S.; Song, Mi-Ryoung

    2015-01-01

    Motor neurons send out axons to peripheral muscles while their cell bodies remain in the ventral spinal cord. The unique configuration of motor neurons spanning the border between the CNS and PNS has been explained by structural barriers such as boundary cap (BC) cells, basal lamina and radial glia. However, mechanisms in motor neurons that retain their position have not been addressed yet. Here we demonstrate that the Islet1 (Isl1) and Islet2 (Isl2) transcription factors, which are essential for acquisition of motor neuron identity, also contribute to restrict motor neurons within the neural tube. In mice that lack both Isl1 and Isl2, large numbers of motor neurons exited the neural tube, even prior to the appearance of BC cells at the ventral exit points. Transcriptional profiling of motor neurons derived from Isl1 null embryonic stem cells revealed that transcripts of major genes involved in repulsive mechanisms were misregulated. Particularly, expression of Neuropilin1 (Npr1) and Slit2 mRNA was diminished in Islet mutant mice, and these could be target genes of the Islet proteins. Consistent with this mechanism, Robo and Slit mutations in mice and knockdown of Npr1 and Slit2 in chick embryos caused motor neurons to migrate to the periphery. Together, our study suggests that Islet genes engage Robo-Slit and Neuropilin-Semaphorin signaling in motor neurons to retain motor somata within the CNS. PMID:25843547

  8. Abnormal expression of Nrf2 may play an important role in the pathogenesis and development of adenomyosis

    PubMed Central

    Zhou, Hao; Shen, Fengxian; Li, Juan; Xie, Zhenwei

    2017-01-01

    Objective To explore the expression level of Nrf2 in adenomyosis and study the mechanism of abnormal expression of Nrf2 in the pathogenesis of adenomyosis. Methods Western blot, immunohistochemistry(IHC) and real time PCR were used to measure Nrf2 expression levels in tissue and cell samples. Knockdown and overexpression of Nrf2 were used to investigate the variation of migration ability of endometrial glandular cells as well as the regulatory mechanism. Results Nrf2 protein levels were significantly higher in the eutopic and ectopic endometrial glands when compared with control cases using IHC and western blot methods. (p< 0.05). However, there was no statistical difference in Nrf2 mRNA expression levels between the adenomyosis and control groups. Using an agonist and Nrf2 siRNA, we regulated the Nrf2 protein levels of primary cultured endometrial glandular cells. With increased expression of Nrf2, cell scratch assay showed that the agonist-treated group migrated significantly faster than the control group, with MMP9 protein level markedly elevated. In contrast, Nrf2 siRNA-treated group migrated slower than the control group, with decreased expression of MMP9 protein. All of the scratching healing spaces and protein levels between the treated and control groups were statistically significant (p< 0.05). Conclusions Abnormal expression of Nrf2 may play an important role in the pathogenesis and development of adenomyosis. Specified reduction of Nrf2 expression could prove to be a new therapeutic target in the clinical treatment of adenomyosis. PMID:28817677

  9. Lack of Tryptophan Hydroxylase-1 in Mice Results in Gait Abnormalities

    PubMed Central

    Suidan, Georgette L.; Vanderhorst, Veronique; Hampton, Thomas G.; Wong, Siu Ling; Voorhees, Jaymie R.; Wagner, Denisa D.

    2013-01-01

    The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (−/−) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system. PMID:23516593

  10. Attenuation of dichlorvos-induced microglial activation and neuronal apoptosis by 4-hydroxy TEMPO.

    PubMed

    Sunkaria, Aditya; Sharma, Deep Raj; Wani, Willayat Yousuf; Gill, Kiran Dip

    2014-02-01

    The neurotoxic consequences of acute high-level as well as chronic low-level organophosphates exposure are associated with a range of abnormalities in nerve functions. Previously, we have shown that after 24 h of dichlorvos exposure, microglia become activated and secrete pro-inflammatory molecules like nitric oxide, tumour necrosis factor-α and interleukin-1β. Here, we extended our findings and focused on the neuronal damage caused by dichlorvos via microglial activation. For this, neurons and microglia were isolated separately from 1-day-old Wistar rat pups. Microglia were treated with dichlorvos for 24 h and supernatant was collected (dichlorvos-induced conditioned medium, DCM). However, when 4-hydroxy TEMPO (4-HT) pretreatment was given, we observed significant attenuation of dichlorvos-induced microglial activation; we also collected the supernatant of this culture (4-HT + DCM, TDCM). Next, we checked the effects of DCM on neurons and found heavy loss in viability as evident from NF-H immunostaining and MTT results, whereas dichlorvos alone-treated neurons showed comparatively less damage. However, we observed significant increase in neuronal viability when cells were treated with TDCM. Semi-quantitative PCR and western blot results revealed significant increase in p53, Bax and cytochrome c levels along with caspase 3 activation after 24 h of DCM treatment. However, TDCM-treated neurons showed significant decrease in the expression of these pro-apoptotic molecules. Taken together, these findings suggest that 4-HT can significantly attenuate dichlorvos-induced microglial activation and prevent apoptotic neuronal cell death.

  11. Characterization of the of the Pathological and Biochemical Markers That Correlate to the Clinical Features of Autism. Subproject 2. Contribution of Significant Delay of Neuronal Development and Metabolic Shift of Neurons to Clinical Phenotype of Autism

    DTIC Science & Technology

    2013-04-01

    skills, (e) problems with generalization of previously acquired skills, (f) rigidity and resistance to change, (g) social and communication ...their known role in social behavior, communication , and stereotypic behavior results in identification of a structural component of functional deficits...neurons. These abnormalities may contribute to social and communication deficits, and restricted repetitive and stereotyped patterns of behavior. 3

  12. Cholinergic Neurons Excite Cortically Projecting Basal Forebrain GABAergic Neurons

    PubMed Central

    Yang, Chun; McKenna, James T.; Zant, Janneke C.; Winston, Stuart; Basheer, Radhika

    2014-01-01

    The basal forebrain (BF) plays an important role in the control of cortical activation and attention. Understanding the modulation of BF neuronal activity is a prerequisite to treat disorders of cortical activation involving BF dysfunction, such as Alzheimer's disease. Here we reveal the interaction between cholinergic neurons and cortically projecting BF GABAergic neurons using immunohistochemistry and whole-cell recordings in vitro. In GAD67-GFP knock-in mice, BF cholinergic (choline acetyltransferase-positive) neurons were intermingled with GABAergic (GFP+) neurons. Immunohistochemistry for the vesicular acetylcholine transporter showed that cholinergic fibers apposed putative cortically projecting GABAergic neurons containing parvalbumin (PV). In coronal BF slices from GAD67-GFP knock-in or PV-tdTomato mice, pharmacological activation of cholinergic receptors with bath application of carbachol increased the firing rate of large (>20 μm diameter) BF GFP+ and PV (tdTomato+) neurons, which exhibited the intrinsic membrane properties of cortically projecting neurons. The excitatory effect of carbachol was blocked by antagonists of M1 and M3 muscarinic receptors in two subpopulations of BF GABAergic neurons [large hyperpolarization-activated cation current (Ih) and small Ih, respectively]. Ion substitution experiments and reversal potential measurements suggested that the carbachol-induced inward current was mediated mainly by sodium-permeable cation channels. Carbachol also increased the frequency of spontaneous excitatory and inhibitory synaptic currents. Furthermore, optogenetic stimulation of cholinergic neurons/fibers caused a mecamylamine- and atropine-sensitive inward current in putative GABAergic neurons. Thus, cortically projecting, BF GABAergic/PV neurons are excited by neighboring BF and/or brainstem cholinergic neurons. Loss of cholinergic neurons in Alzheimer's disease may impair cortical activation, in part, through disfacilitation of BF cortically

  13. Control of axonal sprouting and dendrite branching by the Nrg-Ank complex at the neuron-glia interface.

    PubMed

    Yamamoto, Misato; Ueda, Ryu; Takahashi, Kuniaki; Saigo, Kaoru; Uemura, Tadashi

    2006-08-22

    Neurons are highly polarized cells with distinct subcellular compartments, including dendritic arbors and an axon. The proper function of the nervous system relies not only on correct targeting of axons, but also on development of neuronal-class-specific geometry of dendritic arbors [1-4]. To study the intercellular control of the shaping of dendritic trees in vivo, we searched for cell-surface proteins expressed by Drosophila dendritic arborization (da) neurons [5-7]. One of them was Neuroglian (Nrg), a member of the Ig superfamily ; Nrg and vertebrate L1-family molecules have been implicated in various aspects of neuronal wiring, such as axon guidance, axonal myelination, and synapse formation [9-12]. A subset of the da neurons in nrg mutant embryos exhibited deformed dendritic arbors and abnormal axonal sprouting. Our functional analysis in a cell-type-selective manner strongly suggested that those da neurons employed Nrg to interact with the peripheral glia for suppressing axonal sprouting and for forming second-order dendritic branches. At least for the former role, Nrg functioned in concert with the intracellular adaptor protein Ankyrin (Ank) [13]. Thus, the neuron-glia interaction that is mediated by Nrg, together with Ank under some situations, contributes to axonal and dendritic morphogenesis.

  14. Transient inhibition of the ERK pathway prevents cerebellar developmental defects and improves long-term motor functions in murine models of neurofibromatosis type 1

    PubMed Central

    Kim, Edward; Wang, Yuan; Kim, Sun-Jung; Bornhorst, Miriam; Jecrois, Emmanuelle S; Anthony, Todd E; Wang, Chenran; Li, Yi E; Guan, Jun-Lin; Murphy, Geoffrey G; Zhu, Yuan

    2014-01-01

    Individuals with neurofibromatosis type 1 (NF1) frequently exhibit cognitive and motor impairments and characteristics of autism. The cerebellum plays a critical role in motor control, cognition, and social interaction, suggesting that cerebellar defects likely contribute to NF1-associated neurodevelopmental disorders. Here we show that Nf1 inactivation during early, but not late stages of cerebellar development, disrupts neuronal lamination, which is partially caused by overproduction of glia and subsequent disruption of the Bergmann glia (BG) scaffold. Specific Nf1 inactivation in glutamatergic neuronal precursors causes premature differentiation of granule cell (GC) precursors and ectopic production of unipolar brush cells (UBCs), indirectly disrupting neuronal migration. Transient MEK inhibition during a neonatal window prevents cerebellar developmental defects and improves long-term motor performance of Nf1-deficient mice. This study reveals essential roles of Nf1 in GC/UBC migration by generating correct numbers of glia and controlling GC/UBC fate-specification/differentiation, identifying a therapeutic prevention strategy for multiple NF1-associcated developmental abnormalities. DOI: http://dx.doi.org/10.7554/eLife.05151.001 PMID:25535838

  15. Early Disruption of Extracellular Pleiotrophin Distribution Alters Cerebellar Neuronal Circuit Development and Function.

    PubMed

    Hamza, M M; Rey, S A; Hilber, P; Arabo, A; Collin, T; Vaudry, D; Burel, D

    2016-10-01

    The cerebellum is a structure of the central nervous system involved in balance, motor coordination, and voluntary movements. The elementary circuit implicated in the control of locomotion involves Purkinje cells, which receive excitatory inputs from parallel and climbing fibers, and are regulated by cerebellar interneurons. In mice as in human, the cerebellar cortex completes its development mainly after birth with the migration, differentiation, and synaptogenesis of granule cells. These cellular events are under the control of numerous extracellular matrix molecules including pleiotrophin (PTN). This cytokine has been shown to regulate the morphogenesis of Purkinje cells ex vivo and in vivo via its receptor PTPζ. Since Purkinje cells are the unique output of the cerebellar cortex, we explored the consequences of their PTN-induced atrophy on the function of the cerebellar neuronal circuit in mice. Behavioral experiments revealed that, despite a normal overall development, PTN-treated mice present a delay in the maturation of their flexion reflex. Moreover, patch clamp recording of Purkinje cells revealed a significant increase in the frequency of spontaneous excitatory postsynaptic currents in PTN-treated mice, associated with a decrease of climbing fiber innervations and an abnormal perisomatic localization of the parallel fiber contacts. At adulthood, PTN-treated mice exhibit coordination impairment on the rotarod test associated with an alteration of the synchronization gait. Altogether these histological, electrophysiological, and behavior data reveal that an early ECM disruption of PTN composition induces short- and long-term defaults in the establishment of proper functional cerebellar circuit.

  16. Neuronal DNA Methylation Profiling of Blast-Related Traumatic Brain Injury.

    PubMed

    Haghighi, Fatemeh; Ge, Yongchao; Chen, Sean; Xin, Yurong; Umali, Michelle U; De Gasperi, Rita; Gama Sosa, Miguel A; Ahlers, Stephen T; Elder, Gregory A

    2015-08-15

    Long-term molecular changes in the brain resulting from blast exposure may be mediated by epigenetic changes, such as deoxyribonucleic acid (DNA) methylation, that regulate gene expression. Aberrant regulation of gene expression is associated with behavioral abnormalities, where DNA methylation bridges environmental signals to sustained changes in gene expression. We assessed DNA methylation changes in the brains of rats exposed to three 74.5 kPa blast overpressure events, conditions that have been associated with long-term anxiogenic manifestations weeks or months following the initial exposures. Rat frontal cortex eight months post-exposure was used for cell sorting of whole brain tissue into neurons and glia. We interrogated DNA methylation profiles in these cells using Expanded Reduced Representation Bisulfite Sequencing. We obtained data for millions of cytosines, showing distinct methylation profiles for neurons and glia and an increase in global methylation in neuronal versus glial cells (p<10(-7)). We detected DNA methylation perturbations in blast overpressure-exposed animals, compared with sham blast controls, within 458 and 379 genes in neurons and glia, respectively. Differentially methylated neuronal genes showed enrichment in cell death and survival and nervous system development and function, including genes involved in transforming growth factor β and nitric oxide signaling. Functional validation via gene expression analysis of 30 differentially methylated neuronal and glial genes showed a 1.2 fold change in gene expression of the serotonin N-acetyltransferase gene (Aanat) in blast animals (p<0.05). These data provide the first genome-based evidence for changes in DNA methylation induced in response to multiple blast overpressure exposures. In particular, increased methylation and decreased gene expression were observed in the Aanat gene, which is involved in converting serotonin to the circadian hormone melatonin and is implicated in sleep

  17. Mitochondrial DNA Depletion in Respiratory Chain-Deficient Parkinson Disease Neurons.

    PubMed

    Grünewald, Anne; Rygiel, Karolina A; Hepplewhite, Philippa D; Morris, Christopher M; Picard, Martin; Turnbull, Doug M

    2016-03-01

    To determine the extent of respiratory chain abnormalities and investigate the contribution of mtDNA to the loss of respiratory chain complexes (CI-IV) in the substantia nigra (SN) of idiopathic Parkinson disease (IPD) patients at the single-neuron level. Multiple-label immunofluorescence was applied to postmortem sections of 10 IPD patients and 10 controls to quantify the abundance of CI-IV subunits (NDUFB8 or NDUFA13, SDHA, UQCRC2, and COXI) and mitochondrial transcription factors (TFAM and TFB2M) relative to mitochondrial mass (porin and GRP75) in dopaminergic neurons. To assess the involvement of mtDNA in respiratory chain deficiency in IPD, SN neurons, isolated with laser-capture microdissection, were assayed for mtDNA deletions, copy number, and presence of transcription/replication-associated 7S DNA employing a triplex real-time polymerase chain reaction (PCR) assay. Whereas mitochondrial mass was unchanged in single SN neurons from IPD patients, we observed a significant reduction in the abundances of CI and II subunits. At the single-cell level, CI and II deficiencies were correlated in patients. The CI deficiency concomitantly occurred with low abundances of the mtDNA transcription factors TFAM and TFB2M, which also initiate transcription-primed mtDNA replication. Consistent with this, real-time PCR analysis revealed fewer transcription/replication-associated mtDNA molecules and an overall reduction in mtDNA copy number in patients. This effect was more pronounced in single IPD neurons with severe CI deficiency. Respiratory chain dysfunction in IPD neurons not only involves CI, but also extends to CII. These deficiencies are possibly a consequence of the interplay between nDNA and mtDNA-encoded factors mechanistically connected via TFAM. © 2016 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.

  18. Mitochondrial DNA Depletion in Respiratory Chain–Deficient Parkinson Disease Neurons

    PubMed Central

    Rygiel, Karolina A.; Hepplewhite, Philippa D.; Morris, Christopher M.; Picard, Martin; Turnbull, Doug M.

    2016-01-01

    Objective To determine the extent of respiratory chain abnormalities and investigate the contribution of mtDNA to the loss of respiratory chain complexes (CI–IV) in the substantia nigra (SN) of idiopathic Parkinson disease (IPD) patients at the single‐neuron level. Methods Multiple‐label immunofluorescence was applied to postmortem sections of 10 IPD patients and 10 controls to quantify the abundance of CI–IV subunits (NDUFB8 or NDUFA13, SDHA, UQCRC2, and COXI) and mitochondrial transcription factors (TFAM and TFB2M) relative to mitochondrial mass (porin and GRP75) in dopaminergic neurons. To assess the involvement of mtDNA in respiratory chain deficiency in IPD, SN neurons, isolated with laser‐capture microdissection, were assayed for mtDNA deletions, copy number, and presence of transcription/replication‐associated 7S DNA employing a triplex real‐time polymerase chain reaction (PCR) assay. Results Whereas mitochondrial mass was unchanged in single SN neurons from IPD patients, we observed a significant reduction in the abundances of CI and II subunits. At the single‐cell level, CI and II deficiencies were correlated in patients. The CI deficiency concomitantly occurred with low abundances of the mtDNA transcription factors TFAM and TFB2M, which also initiate transcription‐primed mtDNA replication. Consistent with this, real‐time PCR analysis revealed fewer transcription/replication‐associated mtDNA molecules and an overall reduction in mtDNA copy number in patients. This effect was more pronounced in single IPD neurons with severe CI deficiency. Interpretation Respiratory chain dysfunction in IPD neurons not only involves CI, but also extends to CII. These deficiencies are possibly a consequence of the interplay between nDNA and mtDNA‐encoded factors mechanistically connected via TFAM. ANN NEUROL 2016;79:366–378 PMID:26605748

  19. EGL-20/Wnt and MAB-5/Hox Act Sequentially to Inhibit Anterior Migration of Neuroblasts in C. elegans

    PubMed Central

    Josephson, Matthew P.; Chai, Yongping; Ou, Guangshuo; Lundquist, Erik A.

    2016-01-01

    Directed neuroblast and neuronal migration is important in the proper development of nervous systems. In C. elegans the bilateral Q neuroblasts QR (on the right) and QL (on the left) undergo an identical pattern of cell division and differentiation but migrate in opposite directions (QR and descendants anteriorly and QL and descendants posteriorly). EGL-20/Wnt, via canonical Wnt signaling, drives the expression of MAB-5/Hox in QL but not QR. MAB-5 acts as a determinant of posterior migration, and mab-5 and egl-20 mutants display anterior QL descendant migrations. Here we analyze the behaviors of QR and QL descendants as they begin their anterior and posterior migrations, and the effects of EGL-20 and MAB-5 on these behaviors. The anterior and posterior daughters of QR (QR.a/p) after the first division immediately polarize and begin anterior migration, whereas QL.a/p remain rounded and non-migratory. After ~1 hour, QL.a migrates posteriorly over QL.p. We find that in egl-20/Wnt, bar-1/β-catenin, and mab-5/Hox mutants, QL.a/p polarize and migrate anteriorly, indicating that these molecules normally inhibit anterior migration of QL.a/p. In egl-20/Wnt mutants, QL.a/p immediately polarize and begin migration, whereas in bar-1/β-catenin and mab-5/Hox, the cells transiently retain a rounded, non-migratory morphology before anterior migration. Thus, EGL-20/Wnt mediates an acute inhibition of anterior migration independently of BAR-1/β-catenin and MAB-5/Hox, and a later, possible transcriptional response mediated by BAR-1/β-catenin and MAB-5/Hox. In addition to inhibiting anterior migration, MAB-5/Hox also cell-autonomously promotes posterior migration of QL.a (and QR.a in a mab-5 gain-of-function). PMID:26863303

  20. The Fat-like Cadherin CDH-4 Acts Cell-Non-Autonomously in Anterior-Posterior Neuroblast Migration

    PubMed Central

    Sundararajan, Lakshmi; Norris, Megan L.; Schöneich, Sebastian; Ackley, Brian D.; Lundquist, Erik A.

    2014-01-01

    Directed migration of neurons is critical in the normal and pathological development of the brain and central nervous system. In C. elegans, the bilateral Q neuroblasts, QR on the right and QL on the left, migrate anteriorly and posteriorly, respectively. Initial protrusion and migration of the Q neuroblasts is autonomously controlled by the transmembrane proteins UNC-40/DCC, PTP-3/LAR, and MIG-21. As QL migrates posteriorly, it encounters and EGL-20/Wnt signal that induces MAB-5/Hox expression that drives QL descendant posterior migration. QR migrates anteriorly away from EGL-20/Wnt and does not activate MAB-5/Hox, resulting in anterior QR descendant migration. A forward genetic screen for new mutations affecting initial Q migrations identified alleles of cdh-4, which caused defects in both QL and QR directional migration similar to unc-40, ptp-3, and mig-21. Previous studies showed that in QL, PTP-3/LAR and MIG-21 act in a pathway in parallel to UNC-40/DCC to drive posterior QL migration. Here we show genetic evidence that CDH-4 acts in the PTP-3/MIG-21 pathway in parallel to UNC-40/DCC to direct posterior QL migration. In QR, the PTP-3/MIG-21 and UNC-40/DCC pathways mutually inhibit each other, allowing anterior QR migration. We report here that CDH-4 acts in both the PTP-3/MIG-21 and UNC-40/DCC pathways in mutual inhibition in QR, and that CDH-4 acts cell-non-autonomously. Interaction of CDH-4 with UNC-40/DCC in QR but not QL represents an inherent left-right asymmetry in the Q cells, the nature of which is not understood. We conclude that CDH-4 might act as a permissive signal for each Q neuroblast to respond differently to anterior-posterior guidance information based upon inherent left-right asymmetries in the Q neuroblasts. PMID:24954154

  1. Failure to suppress low-frequency neuronal oscillatory activity underlies the reduced effectiveness of random patterns of deep brain stimulation.

    PubMed

    McConnell, George C; So, Rosa Q; Grill, Warren M

    2016-06-01

    Subthalamic nucleus (STN) deep brain stimulation (DBS) is an established treatment for the motor symptoms of Parkinson's disease (PD). However, the mechanisms of action of DBS are unknown. Random temporal patterns of DBS are less effective than regular DBS, but the neuronal basis for this dependence on temporal pattern of stimulation is unclear. Using a rat model of PD, we quantified the changes in behavior and single-unit activity in globus pallidus externa and substantia nigra pars reticulata during high-frequency STN DBS with different degrees of irregularity. Although all stimulus trains had the same average rate, 130-Hz regular DBS more effectively reversed motor symptoms, including circling and akinesia, than 130-Hz irregular DBS. A mixture of excitatory and inhibitory neuronal responses was present during all stimulation patterns, and mean firing rate did not change during DBS. Low-frequency (7-10 Hz) oscillations of single-unit firing times present in hemiparkinsonian rats were suppressed by regular DBS, and neuronal firing patterns were entrained to 130 Hz. Irregular patterns of DBS less effectively suppressed 7- to 10-Hz oscillations and did not regularize firing patterns. Random DBS resulted in a larger proportion of neuron pairs with increased coherence at 7-10 Hz compared with regular 130-Hz DBS, which suggested that long pauses (interpulse interval >50 ms) during random DBS facilitated abnormal low-frequency oscillations in the basal ganglia. These results suggest that the efficacy of high-frequency DBS stems from its ability to regularize patterns of neuronal firing and thereby suppress abnormal oscillatory neural activity within the basal ganglia. Copyright © 2016 the American Physiological Society.

  2. The C. elegans histone deacetylase HDA-1 is required for cell migration and axon pathfinding.

    PubMed

    Zinovyeva, Anna Y; Graham, Serena M; Cloud, Veronica J; Forrester, Wayne C

    2006-01-01

    Histone proteins play integral roles in chromatin structure and function. Histones are subject to several types of posttranslational modifications, including acetylation, which can produce transcriptional activation. The converse, histone deacetylation, is mediated by histone deacetylases (HDACs) and often is associated with transcriptional silencing. We identified a new mutation, cw2, in the Caenorhabditis elegans hda-1 gene, which encodes a histone deacetylase. Previous studies showed that a mutation in hda-1, e1795, or reduction of hda-1 RNA by RNAi causes defective vulval and gonadal development leading to sterility. The hda-1(cw2) mutation causes defective vulval development and reduced fertility, like hda-1(e1795), albeit with reduced severity. Unlike the previously reported hda-1 mutation, hda-1(cw2) mutants are viable as homozygotes, although many die as embryos or larvae, and are severely uncoordinated. Strikingly, in hda-1(cw2) mutants, axon pathfinding is defective; specific axons often appear to wander randomly or migrate in the wrong direction. In addition, the long range migrations of three neuron types and fasciculation of the ventral nerve cord are defective. Together, our studies define a new role for HDA-1 in nervous system development, and provide the first evidence for HDAC function in regulating neuronal axon guidance.

  3. Contact Kinematics Correlates to Tibial Component Migration Following Single Radius Posterior Stabilized Knee Replacement.

    PubMed

    Teeter, Matthew G; Perry, Kevin I; Yuan, Xunhua; Howard, James L; Lanting, Brent A

    2018-03-01

    Contact kinematics between total knee arthroplasty components is thought to affect implant migration; however, the interaction between kinematics and tibial component migration has not been thoroughly examined in a modern implant system. A total of 24 knees from 23 patients undergoing total knee arthroplasty with a single radius, posterior stabilized implant were examined. Patients underwent radiostereometric analysis at 2 and 6 weeks, 3 and 6 months, and 1 and 2 years to measure migration of the tibial component in all planes. At 1 year, patients also had standing radiostereometric analysis examinations acquired in 0°, 20°, 40°, and 60° of flexion, and the location of contact and magnitude of any condylar liftoff was measured for each flexion angle. Regression analysis was performed between kinematic variables and migration at 1 year. The average magnitude of maximum total point motion across all patients was 0.671 ± 0.270 mm at 1 year and 0.608 ± 0.359 mm at 2 years (P = .327). Four implants demonstrated continuous migration of >0.2 mm between the first and second year of implantation. There were correlations between the location of contact and tibial component anterior-posterior tilt, varus-valgus tilt, and anterior-posterior translation. The patients with continuous migration demonstrated atypical kinematics and condylar liftoff in some instances. Kinematics can influence tibial component migration, likely through alterations of force transmission. Abnormal kinematics may play a role in long-term implant loosening. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Resveratrol Treatment after Status Epilepticus Restrains Neurodegeneration and Abnormal Neurogenesis with Suppression of Oxidative Stress and Inflammation.

    PubMed

    Mishra, Vikas; Shuai, Bing; Kodali, Maheedhar; Shetty, Geetha A; Hattiangady, Bharathi; Rao, Xiaolan; Shetty, Ashok K

    2015-12-07

    Antiepileptic drug therapy, though beneficial for restraining seizures, cannot thwart status epilepticus (SE) induced neurodegeneration or down-stream detrimental changes. We investigated the efficacy of resveratrol (RESV) for preventing SE-induced neurodegeneration, abnormal neurogenesis, oxidative stress and inflammation in the hippocampus. We induced SE in young rats and treated with either vehicle or RESV, commencing an hour after SE induction and continuing every hour for three-hours on SE day and twice daily thereafter for 3 days. Seizures were terminated in both groups two-hours after SE with a diazepam injection. In contrast to the vehicle-treated group, the hippocampus of animals receiving RESV during and after SE presented no loss of glutamatergic neurons in hippocampal cell layers, diminished loss of inhibitory interneurons expressing parvalbumin, somatostatin and neuropeptide Y in the dentate gyrus, reduced aberrant neurogenesis with preservation of reelin + interneurons, lowered concentration of oxidative stress byproduct malondialdehyde and pro-inflammatory cytokine tumor necrosis factor-alpha, normalized expression of oxidative stress responsive genes and diminished numbers of activated microglia. Thus, 4 days of RESV treatment after SE is efficacious for thwarting glutamatergic neuron degeneration, alleviating interneuron loss and abnormal neurogenesis, and suppressing oxidative stress and inflammation. These results have implications for restraining SE-induced chronic temporal lobe epilepsy.

  5. Fascin1-Dependent Filopodia are Required for Directional Migration of a Subset of Neural Crest Cells

    PubMed Central

    Boer, Elena F.; Howell, Elizabeth D.; Schilling, Thomas F.; Jette, Cicely A.; Stewart, Rodney A.

    2015-01-01

    Directional migration of neural crest (NC) cells is essential for patterning the vertebrate embryo, including the craniofacial skeleton. Extensive filopodial protrusions in NC cells are thought to sense chemo-attractive/repulsive signals that provide directionality. To test this hypothesis, we generated null mutations in zebrafish fascin1a (fscn1a), which encodes an actin-bundling protein required for filopodia formation. Homozygous fscn1a zygotic null mutants have normal NC filopodia due to unexpected stability of maternal Fscn1a protein throughout NC development and into juvenile stages. In contrast, maternal/zygotic fscn1a null mutant embryos (fscn1a MZ) have severe loss of NC filopodia. However, only a subset of NC streams display migration defects, associated with selective loss of craniofacial elements and peripheral neurons. We also show that fscn1a-dependent NC migration functions through cxcr4a/cxcl12b chemokine signaling to ensure the fidelity of directional cell migration. These data show that fscn1a-dependent filopodia are required in a subset of NC cells to promote cell migration and NC derivative formation, and that perdurance of long-lived maternal proteins can mask essential zygotic gene functions during NC development. PMID:25607881

  6. DeepNeuron: an open deep learning toolbox for neuron tracing.

    PubMed

    Zhou, Zhi; Kuo, Hsien-Chi; Peng, Hanchuan; Long, Fuhui

    2018-06-06

    Reconstructing three-dimensional (3D) morphology of neurons is essential for understanding brain structures and functions. Over the past decades, a number of neuron tracing tools including manual, semiautomatic, and fully automatic approaches have been developed to extract and analyze 3D neuronal structures. Nevertheless, most of them were developed based on coding certain rules to extract and connect structural components of a neuron, showing limited performance on complicated neuron morphology. Recently, deep learning outperforms many other machine learning methods in a wide range of image analysis and computer vision tasks. Here we developed a new Open Source toolbox, DeepNeuron, which uses deep learning networks to learn features and rules from data and trace neuron morphology in light microscopy images. DeepNeuron provides a family of modules to solve basic yet challenging problems in neuron tracing. These problems include but not limited to: (1) detecting neuron signal under different image conditions, (2) connecting neuronal signals into tree(s), (3) pruning and refining tree morphology, (4) quantifying the quality of morphology, and (5) classifying dendrites and axons in real time. We have tested DeepNeuron using light microscopy images including bright-field and confocal images of human and mouse brain, on which DeepNeuron demonstrates robustness and accuracy in neuron tracing.

  7. Vasculo-Neuronal Coupling: Retrograde Vascular Communication to Brain Neurons.

    PubMed

    Kim, Ki Jung; Ramiro Diaz, Juan; Iddings, Jennifer A; Filosa, Jessica A

    2016-12-14

    Continuous cerebral blood flow is essential for neuronal survival, but whether vascular tone influences resting neuronal function is not known. Using a multidisciplinary approach in both rat and mice brain slices, we determined whether flow/pressure-evoked increases or decreases in parenchymal arteriole vascular tone, which result in arteriole constriction and dilation, respectively, altered resting cortical pyramidal neuron activity. We present evidence for intercellular communication in the brain involving a flow of information from vessel to astrocyte to neuron, a direction opposite to that of classic neurovascular coupling and referred to here as vasculo-neuronal coupling (VNC). Flow/pressure increases within parenchymal arterioles increased vascular tone and simultaneously decreased resting pyramidal neuron firing activity. On the other hand, flow/pressure decreases evoke parenchymal arteriole dilation and increased resting pyramidal neuron firing activity. In GLAST-CreERT2; R26-lsl-GCaMP3 mice, we demonstrate that increased parenchymal arteriole tone significantly increased intracellular calcium in perivascular astrocyte processes, the onset of astrocyte calcium changes preceded the inhibition of cortical pyramidal neuronal firing activity. During increases in parenchymal arteriole tone, the pyramidal neuron response was unaffected by blockers of nitric oxide, GABA A , glutamate, or ecto-ATPase. However, VNC was abrogated by TRPV4 channel, GABA B , as well as an adenosine A 1 receptor blocker. Differently to pyramidal neuron responses, increases in flow/pressure within parenchymal arterioles increased the firing activity of a subtype of interneuron. Together, these data suggest that VNC is a complex constitutive active process that enables neurons to efficiently adjust their resting activity according to brain perfusion levels, thus safeguarding cellular homeostasis by preventing mismatches between energy supply and demand. We present evidence for vessel-to-neuron

  8. Three-dimensional analysis of somatic mitochondrial dynamics in fission-deficient injured motor neurons using FIB/SEM.

    PubMed

    Tamada, Hiromi; Kiryu-Seo, Sumiko; Hosokawa, Hiroki; Ohta, Keisuke; Ishihara, Naotada; Nomura, Masatoshi; Mihara, Katsuyoshi; Nakamura, Kei-Ichiro; Kiyama, Hiroshi

    2017-08-01

    Mitochondria undergo morphological changes through fusion and fission for their quality control, which are vital for neuronal function. In this study, we examined three-dimensional morphologies of mitochondria in motor neurons under normal, nerve injured, and nerve injured plus fission-impaired conditions using the focused ion beam/scanning electron microscopy (FIB/SEM), because the FIB/SEM technology is a powerful tool to demonstrate both 3D images of whole organelle and the intra-organellar structure simultaneously. Crossing of dynamin-related protein 1 (Drp1) gene-floxed mice with neuronal injury-specific Cre driver mice, Atf3:BAC Tg mice, allowed for Drp1 ablation specifically in injured neurons. FIB/SEM analysis demonstrated that somatic mitochondrial morphologies in motor neurons were not altered before or after nerve injury. However, the fission impairment resulted in prominent somatic mitochondrial enlargement, which initially induced complex morphologies with round regions and long tubular processes, subsequently causing a decrease in the number of processes and further enlargement of the round regions, which eventually resulted in big spheroidal mitochondria without processes. The abnormal mitochondria exhibited several degradative morphologies: local or total cristae collapse, vacuolization, and mitophagy. These suggest that mitochondrial fission is crucial for maintaining mitochondrial integrity in injured motor neurons, and multiple forms of mitochondria degradation may accelerate neuronal degradation. © 2017 Wiley Periodicals, Inc.

  9. Equine protozoal myeloencephalitis due to Neospora hughesi and equine motor neuron disease in a mule.

    PubMed

    Finno, Carrie J; Eaton, Joshua Seth; Aleman, Monica; Hollingsworth, Steven R

    2010-07-01

    A 23-year-old female mule was presented for bilateral ocular abnormalities and an abnormal pelvic limb gait. Anisocoria, unilateral enophthalmos, medial strabismus, ptosis, pupillary light reflex deficits, and bilateral reticulated pigmentary retinopathy were observed on ophthalmic examination. Neurologic abnormalities included right-sided facial nerve paralysis, extensive symmetric muscle atrophy, and asymmetric pelvic limb ataxia with an abnormal pelvic limb gait. A positive titer (1:40) for equine protozoal myeloencephalitis (EPM) associated with Neospora hughesi was obtained from cerebrospinal fluid with minimal (<1 red blood cell/microL) blood contamination. Muscle biopsies of the sacrocaudalis dorsalis medialis muscle revealed predominantly type I neurogenic muscle atrophy, consistent with a diagnosis of equine motor neuron disease (EMND). Treatment included a 2-month course of ponazuril (5 mg/kg PO q24 h), vitamin E (8000 IU PO q24 h), and selenium (2 mg PO q24 h). Clinical improvement was not observed after 2 months although the mule remained stable. Clinical deterioration was reported upon discontinuation of the ponazuril after a 2-month course. Concurrent disease with EPM associated with N. hughesi and EMND should be considered in cases demonstrating cranial nerve abnormalities, pronounced symmetric muscle atrophy, unusual asymmetric gait abnormalities, and reticulated pigmentary retinopathy.

  10. Mouse maternal protein restriction during preimplantation alone permanently alters brain neuron proportion and adult short-term memory.

    PubMed

    Gould, Joanna M; Smith, Phoebe J; Airey, Chris J; Mort, Emily J; Airey, Lauren E; Warricker, Frazer D M; Pearson-Farr, Jennifer E; Weston, Eleanor C; Gould, Philippa J W; Semmence, Oliver G; Restall, Katie L; Watts, Jennifer A; McHugh, Patrick C; Smith, Stephanie J; Dewing, Jennifer M; Fleming, Tom P; Willaime-Morawek, Sandrine

    2018-06-25

    Maternal protein malnutrition throughout pregnancy and lactation compromises brain development in late gestation and after birth, affecting structural, biochemical, and pathway dynamics with lasting consequences for motor and cognitive function. However, the importance of nutrition during the preimplantation period for brain development is unknown. We have previously shown that maternal low-protein diet (LPD) confined to the preimplantation period (Emb-LPD) in mice, with normal nutrition thereafter, is sufficient to induce cardiometabolic and locomotory behavioral abnormalities in adult offspring. Here, using a range of in vivo and in vitro techniques, we report that Emb-LPD and sustained LPD reduce neural stem cell (NSC) and progenitor cell numbers at E12.5, E14.5, and E17.5 through suppressed proliferation rates in both ganglionic eminences and cortex of the fetal brain. Moreover, Emb-LPD causes remaining NSCs to up-regulate the neuronal differentiation rate beyond control levels, whereas in LPD, apoptosis increases to possibly temper neuron formation. Furthermore, Emb-LPD adult offspring maintain the increase in neuron proportion in the cortex, display increased cortex thickness, and exhibit short-term memory deficit analyzed by the novel-object recognition assay. Last, we identify altered expression of fragile X family genes as a potential molecular mechanism for adverse programming of brain development. Collectively, these data demonstrate that poor maternal nutrition from conception is sufficient to cause abnormal brain development and adult memory loss.

  11. Multimodal Imaging in Rat Model Recapitulates Alzheimer's Disease Biomarkers Abnormalities.

    PubMed

    Parent, Maxime J; Zimmer, Eduardo R; Shin, Monica; Kang, Min Su; Fonov, Vladimir S; Mathieu, Axel; Aliaga, Antonio; Kostikov, Alexey; Do Carmo, Sonia; Dea, Doris; Poirier, Judes; Soucy, Jean-Paul; Gauthier, Serge; Cuello, A Claudio; Rosa-Neto, Pedro

    2017-12-13

    Imaging biomarkers are frequently proposed as endpoints for clinical trials targeting brain amyloidosis in Alzheimer's disease (AD); however, the specific impact of amyloid-β (Aβ) aggregation on biomarker abnormalities remains elusive in AD. Using the McGill-R-Thy1-APP transgenic rat as a model of selective Aβ pathology, we characterized the longitudinal progression of abnormalities in biomarkers commonly used in AD research. Middle-aged (9-11 months) transgenic animals (both male and female) displayed mild spatial memory impairments and disrupted cingulate network connectivity measured by resting-state fMRI, even in the absence of hypometabolism (measured with PET [ 18 F]FDG) or detectable fibrillary amyloidosis (measured with PET [ 18 F]NAV4694). At more advanced ages (16-19 months), cognitive deficits progressed in conjunction with resting connectivity abnormalities; furthermore, hypometabolism, Aβ plaque accumulation, reduction of CSF Aβ 1-42 concentrations, and hippocampal atrophy (structural MRI) were detectable at this stage. The present results emphasize the early impact of Aβ on brain connectivity and support a framework in which persistent Aβ aggregation itself is sufficient to impose memory circuits dysfunction, which propagates to adjacent brain networks at later stages. SIGNIFICANCE STATEMENT The present study proposes a "back translation" of the Alzheimer pathological cascade concept from human to animals. We used the same set of Alzheimer imaging biomarkers typically used in large human cohorts and assessed their progression over time in a transgenic rat model, which allows for a finer spatial resolution not attainable with mice. Using this translational platform, we demonstrated that amyloid-β pathology recapitulates an Alzheimer-like profile of biomarker abnormalities even in the absence of other hallmarks of the disease such as neurofibrillary tangles and widespread neuronal losses. Copyright © 2017 Parent et al.

  12. Multimodal Imaging in Rat Model Recapitulates Alzheimer's Disease Biomarkers Abnormalities

    PubMed Central

    Parent, Maxime J.; Kang, Min Su; Mathieu, Axel; Aliaga, Antonio; Do Carmo, Sonia; Dea, Doris; Gauthier, Serge; Cuello, A. Claudio

    2017-01-01

    Imaging biomarkers are frequently proposed as endpoints for clinical trials targeting brain amyloidosis in Alzheimer's disease (AD); however, the specific impact of amyloid-β (Aβ) aggregation on biomarker abnormalities remains elusive in AD. Using the McGill-R-Thy1-APP transgenic rat as a model of selective Aβ pathology, we characterized the longitudinal progression of abnormalities in biomarkers commonly used in AD research. Middle-aged (9–11 months) transgenic animals (both male and female) displayed mild spatial memory impairments and disrupted cingulate network connectivity measured by resting-state fMRI, even in the absence of hypometabolism (measured with PET [18F]FDG) or detectable fibrillary amyloidosis (measured with PET [18F]NAV4694). At more advanced ages (16–19 months), cognitive deficits progressed in conjunction with resting connectivity abnormalities; furthermore, hypometabolism, Aβ plaque accumulation, reduction of CSF Aβ1-42 concentrations, and hippocampal atrophy (structural MRI) were detectable at this stage. The present results emphasize the early impact of Aβ on brain connectivity and support a framework in which persistent Aβ aggregation itself is sufficient to impose memory circuits dysfunction, which propagates to adjacent brain networks at later stages. SIGNIFICANCE STATEMENT The present study proposes a “back translation” of the Alzheimer pathological cascade concept from human to animals. We used the same set of Alzheimer imaging biomarkers typically used in large human cohorts and assessed their progression over time in a transgenic rat model, which allows for a finer spatial resolution not attainable with mice. Using this translational platform, we demonstrated that amyloid-β pathology recapitulates an Alzheimer-like profile of biomarker abnormalities even in the absence of other hallmarks of the disease such as neurofibrillary tangles and widespread neuronal losses. PMID:29097597

  13. Loss of MeCP2 in cholinergic neurons causes part of RTT-like phenotypes via α7 receptor in hippocampus.

    PubMed

    Zhang, Ying; Cao, Shu-Xia; Sun, Peng; He, Hai-Yang; Yang, Ci-Hang; Chen, Xiao-Juan; Shen, Chen-Jie; Wang, Xiao-Dong; Chen, Zhong; Berg, Darwin K; Duan, Shumin; Li, Xiao-Ming

    2016-06-01

    Mutations in the X-linked MECP2 gene cause Rett syndrome (RTT), an autism spectrum disorder characterized by impaired social interactions, motor abnormalities, cognitive defects and a high risk of epilepsy. Here, we showed that conditional deletion of Mecp2 in cholinergic neurons caused part of RTT-like phenotypes, which could be rescued by re-expressing Mecp2 in the basal forebrain (BF) cholinergic neurons rather than in the caudate putamen of conditional knockout (Chat-Mecp2(-/y)) mice. We found that choline acetyltransferase expression was decreased in the BF and that α7 nicotine acetylcholine receptor signaling was strongly impaired in the hippocampus of Chat-Mecp2(-/y) mice, which is sufficient to produce neuronal hyperexcitation and increase seizure susceptibility. Application of PNU282987 or nicotine in the hippocampus rescued these phenotypes in Chat-Mecp2(-/y) mice. Taken together, our findings suggest that MeCP2 is critical for normal function of cholinergic neurons and dysfunction of cholinergic neurons can contribute to numerous neuropsychiatric phenotypes.

  14. Rapid Morphological Brain Abnormalities during Acute Methamphetamine Intoxication in the Rat. An Experimental study using Light and Electron Microscopy

    PubMed Central

    Sharma, Hari S.; Kiyatkin, Eugene A.

    2009-01-01

    This study describes morphological abnormalities of brain cells during acute methamphetamine (METH) intoxication in the rat and demonstrates the role of hyperthermia, disruption of the blood-brain barrier (BBB) and edema in their development. Rats with chronically implanted brain, muscle and skin temperature probes and an intravenous (iv) catheter were exposed to METH (9 mg/kg) at standard (23°C) and warm (29°C) ambient temperatures, allowing for the observation of hyperthermia ranging from mild to pathological levels (38–42°C). When brain temperature peaked or reached a level suggestive of possible lethality (>41.5°C), rats were injected with Evans blue (EB), rapidly anesthetized, perfused, and their brains were taken for further analyses. Four brain areas (cortex, hippocampus, thalamus and hypothalamus) were analyzed for EB extravasation, water and electrolyte (Na+, K+, Cl−) contents, immunostained for albumin and glial fibrillary acidic protein, and examined for neuronal, glial and axonal alterations using standard light and electron microscopy. These examinations revealed profound abnormalities in neuronal, glial, and endothelial cells, which were stronger with METH administered at 29°C than 23°C and tightly correlated with brain and body hyperthermia. These changes had some structural specificity, but in each structure they tightly correlated with increases in EB levels, the numbers of albumin-positive cells, and water and ion contents, suggesting leakage of the BBB, acutely developing brain edema, and serious shifts in brain ion homeostasis as leading factors underlying brain abnormalities. While most of these acute structural and functional abnormalities appear to be reversible, they could trigger subsequent cellular alterations in the brain and accelerate neurodegeneration—the most dangerous complication of chronic amphetamine-like drug abuse. PMID:18773954

  15. Crumbs 2 prevents cortical abnormalities in mouse dorsal telencephalon.

    PubMed

    Dudok, Jacobus J; Murtaza, Mariyam; Henrique Alves, C; Rashbass, Pen; Wijnholds, Jan

    2016-07-01

    The formation of a functionally integrated nervous system is dependent on a highly organized sequence of events that includes timely division and differentiation of progenitors. Several apical polarity proteins have been shown to play crucial roles during neurogenesis, however, the role of Crumbs 2 (CRB2) in cortical development has not previously been reported. Here, we show that conditional ablation of Crb2 in the murine dorsal telencephalon leads to defects in the maintenance of the apical complex. Furthermore, within the mutant dorsal telencephalon there is premature expression of differentiation proteins. We examined the physiological function of Crb2 on wild type genetic background as well as on background lacking Crb1. Telencephalon lacking CRB2 resulted in reduced levels of PALS1 and CRB3 from the apical complex, an increased number of mitotic cells and expanded neuronal domain. These defects are transient and therefore only result in rather mild cortical abnormalities. We show that CRB2 is required for maintenance of the apical polarity complex during development of the cortex and regulation of cell division, and that loss of CRB2 results in cortical abnormalities. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  16. In vivo transgenic expression of collybistin in neurons of the rat cerebral cortex.

    PubMed

    Fekete, Christopher D; Goz, Roman U; Dinallo, Sean; Miralles, Celia P; Chiou, Tzu-Ting; Bear, John; Fiondella, Christopher G; LoTurco, Joseph J; De Blas, Angel L

    2017-04-01

    Collybistin (CB) is a guanine nucleotide exchange factor selectively localized to γ-aminobutyric acid (GABA)ergic and glycinergic postsynapses. Active CB interacts with gephyrin, inducing the submembranous clustering and the postsynaptic accumulation of gephyrin, which is a scaffold protein that recruits GABA A receptors (GABA A Rs) at the postsynapse. CB is expressed with or without a src homology 3 (SH3) domain. We have previously reported the effects on GABAergic synapses of the acute overexpression of CB SH3- or CB SH3+ in cultured hippocampal (HP) neurons. In the present communication, we are studying the effects on GABAergic synapses after chronic in vivo transgenic expression of CB2 SH3- or CB2 SH3+ in neurons of the adult rat cerebral cortex. The embryonic precursors of these cortical neurons were in utero electroporated with CB SH3- or CB SH3+ DNAs, migrated to the appropriate cortical layer, and became integrated in cortical circuits. The results show that: 1) the strength of inhibitory synapses in vivo can be enhanced by increasing the expression of CB in neurons; and 2) there are significant differences in the results between in vivo and in culture studies. J. Comp. Neurol. 525:1291-1311, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Molecules and mechanisms involved in the generation and migration of cortical interneurons

    PubMed Central

    Hernández-Miranda, Luis R; Parnavelas, John G; Chiara, Francesca

    2010-01-01

    The GABA (γ-aminobutyric acid)-containing interneurons of the neocortex are largely derived from the ganglionic eminences in the subpallium. Numerous studies have previously defined the migratory paths travelled by these neurons from their origins to their destinations in the cortex. We review here results of studies that have identified many of the genes expressed in the subpallium that are involved in the specification of the subtypes of cortical interneurons, and the numerous transcription factors, motogenic factors and guidance molecules that are involved in their migration. PMID:20360946

  18. Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities

    PubMed Central

    Dixon, Jill; Jones, Natalie C.; Sandell, Lisa L.; Jayasinghe, Sachintha M.; Crane, Jennifer; Rey, Jean-Philippe; Dixon, Michael J.; Trainor, Paul A.

    2006-01-01

    Neural crest cells are a migratory cell population that give rise to the majority of the cartilage, bone, connective tissue, and sensory ganglia in the head. Abnormalities in the formation, proliferation, migration, and differentiation phases of the neural crest cell life cycle can lead to craniofacial malformations, which constitute one-third of all congenital birth defects. Treacher Collins syndrome (TCS) is characterized by hypoplasia of the facial bones, cleft palate, and middle and external ear defects. Although TCS results from autosomal dominant mutations of the gene TCOF1, the mechanistic origins of the abnormalities observed in this condition are unknown, and the function of Treacle, the protein encoded by TCOF1, remains poorly understood. To investigate the developmental basis of TCS we generated a mouse model through germ-line mutation of Tcof1. Haploinsufficiency of Tcof1 leads to a deficiency in migrating neural crest cells, which results in severe craniofacial malformations. We demonstrate that Tcof1/Treacle is required cell-autonomously for the formation and proliferation of neural crest cells. Tcof1/Treacle regulates proliferation by controlling the production of mature ribosomes. Therefore, Tcof1/Treacle is a unique spatiotemporal regulator of ribosome biogenesis, a deficiency that disrupts neural crest cell formation and proliferation, causing the hypoplasia characteristic of TCS craniofacial anomalies. PMID:16938878

  19. Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities.

    PubMed

    Dixon, Jill; Jones, Natalie C; Sandell, Lisa L; Jayasinghe, Sachintha M; Crane, Jennifer; Rey, Jean-Philippe; Dixon, Michael J; Trainor, Paul A

    2006-09-05

    Neural crest cells are a migratory cell population that give rise to the majority of the cartilage, bone, connective tissue, and sensory ganglia in the head. Abnormalities in the formation, proliferation, migration, and differentiation phases of the neural crest cell life cycle can lead to craniofacial malformations, which constitute one-third of all congenital birth defects. Treacher Collins syndrome (TCS) is characterized by hypoplasia of the facial bones, cleft palate, and middle and external ear defects. Although TCS results from autosomal dominant mutations of the gene TCOF1, the mechanistic origins of the abnormalities observed in this condition are unknown, and the function of Treacle, the protein encoded by TCOF1, remains poorly understood. To investigate the developmental basis of TCS we generated a mouse model through germ-line mutation of Tcof1. Haploinsufficiency of Tcof1 leads to a deficiency in migrating neural crest cells, which results in severe craniofacial malformations. We demonstrate that Tcof1/Treacle is required cell-autonomously for the formation and proliferation of neural crest cells. Tcof1/Treacle regulates proliferation by controlling the production of mature ribosomes. Therefore, Tcof1/Treacle is a unique spatiotemporal regulator of ribosome biogenesis, a deficiency that disrupts neural crest cell formation and proliferation, causing the hypoplasia characteristic of TCS craniofacial anomalies.

  20. Desynchronization boost by non-uniform coordinated reset stimulation in ensembles of pulse-coupled neurons

    PubMed Central

    Lücken, Leonhard; Yanchuk, Serhiy; Popovych, Oleksandr V.; Tass, Peter A.

    2013-01-01

    Several brain diseases are characterized by abnormal neuronal synchronization. Desynchronization of abnormal neural synchrony is theoretically compelling because of the complex dynamical mechanisms involved. We here present a novel type of coordinated reset (CR) stimulation. CR means to deliver phase resetting stimuli at different neuronal sub-populations sequentially, i.e., at times equidistantly distributed in a stimulation cycle. This uniform timing pattern seems to be intuitive and actually applies to the neural network models used for the study of CR so far. CR resets the population to an unstable cluster state from where it passes through a desynchronized transient, eventually resynchronizing if left unperturbed. In contrast, we show that the optimal stimulation times are non-uniform. Using the model of weakly pulse-coupled neurons with phase response curves, we provide an approach that enables to determine optimal stimulation timing patterns that substantially maximize the desynchronized transient time following the application of CR stimulation. This approach includes an optimization search for clusters in a low-dimensional pulse coupled map. As a consequence, model-specific non-uniformly spaced cluster states cause considerably longer desynchronization transients. Intriguingly, such a desynchronization boost with non-uniform CR stimulation can already be achieved by only slight modifications of the uniform CR timing pattern. Our results suggest that the non-uniformness of the stimulation times can be a medically valuable parameter in the calibration procedure for CR stimulation, where the latter has successfully been used in clinical and pre-clinical studies for the treatment of Parkinson's disease and tinnitus. PMID:23750134