Sample records for abnormal p53 expression

  1. p53 mutation and expression in lymphoma.

    PubMed Central

    Adamson, D. J.; Thompson, W. D.; Dawson, A. A.; Bennett, B.; Haites, N. E.

    1995-01-01

    Mutation and abnormal expression of p53 was studied in 38 lymphomas [five Hodgkin's disease and 33 non-Hodgkin's lymphoma (NHL)]. CM1 polyclonal antibody was used to detect overexpression of p53. Three missense mutations were characterised in three cases of NHL after screening exons 5-8 of p53 of all the tumours with single-strand conformation polymorphism (SSCP) analysis. Only two out of three tumours with a missense mutation showed abnormal expression of p53 as measured by CM1. Conversely, seven out of nine tumours with positive CM1 staining had no point mutation demonstrated. Overexpression of p53 in the cases of NHL occurred in three out of twenty four low-grade tumours and five out of nine high-grade tumours (Kiel classification). The results suggest that abnormalities of p53 are commoner in high-grade than low-grade NHL, and that positive immunocytochemistry cannot be used to determine which tumours have mutations of p53. Images Figure 1 Figure 2 PMID:7599045

  2. Prognostic Value of Abnormal p53 Expression in Locally Advanced Prostate Cancer Treated With Androgen Deprivation and Radiotherapy: A Study Based on RTOG 9202

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Che Mingxin; DeSilvio, Michelle; Pollack, Alan

    2007-11-15

    Purpose: The goal of this study was to verify the significance of p53 as a prognostic factor in Radiation Therapy Oncology Group 9202, which compared short-term androgen deprivation (STAD) with radiation therapy (RT) to long-term androgen deprivation + RT in men with locally advanced prostate cancer (Pca). Methods and Materials: Tumor tissue was sufficient for p53 analysis in 777 cases. p53 status was determined by immunohistochemistry. Abnormal p53 expression was defined as 20% or more tumor cells with positive nuclei. Univariate and multivariate Cox proportional hazards models were used to evaluate the relationships of p53 status to patient outcomes. Results:more » Abnormal p53 was detected in 168 of 777 (21.6%) cases, and was significantly associated with cause-specific mortality (adjusted hazard ratio [HR] = 1.89; 95% confidence interval (CI) 1.14 - 3.14; p = 0.014) and distant metastasis (adjusted HR = 1.72; 95% CI 1.13-2.62; p = 0.013). When patients were divided into subgroups according to assigned treatment, only the subgroup of patients who underwent STAD + RT showed significant correlation between p53 status and cause-specific mortality (adjusted HR = 2.43; 95% CI = 1.32-4.49; p = 0.0044). When patients were divided into subgroups according to p53 status, only the subgroup of patients with abnormal p53 showed significant association between assigned treatment and cause-specific mortality (adjusted HR = 3.81; 95% CI 1.40-10.37; p = 0.0087). Conclusions: Abnormal p53 is a significant prognostic factor for patients with prostate cancer who undergo short-term androgen deprivation and radiotherapy. Long-term androgen deprivation may significantly improve the cause-specific survival for those with abnormal p53.« less

  3. p53 AND MDM2 PROTEIN EXPRESSION IN ACTINIC CHEILITIS

    PubMed Central

    de Freitas, Maria da Conceição Andrade; Ramalho, Luciana Maria Pedreira; Xavier, Flávia Caló Aquino; Moreira, André Luis Gomes; Reis, Sílvia Regina Almeida

    2008-01-01

    Actinic cheilitis is a potentially malignant lip lesion caused by excessive and prolonged exposure to ultraviolet radiation, which can lead to histomorphological alterations indicative of abnormal cell differentiation. In this pathology, varying degrees of epithelial dysplasia may be found. There are few published studies regarding the p53 and MDM2 proteins in actinic cheilitis. Fifty-eight cases diagnosed with actinic cheilitis were histologically evaluated using Banóczy and Csiba (1976) parameters, and were subjected to immunohistochemical analysis using the streptavidin-biotin method in order to assess p53 and MDM2 protein expression. All studied cases expressed p53 proteins in basal and suprabasal layers. In the basal layer, the nuclei testing positive for p53 were stained intensely, while in the suprabasal layer, cells with slightly stained nuclei were predominant. All cases also tested positive for the MDM2 protein, but with varying degrees of nuclear expression and a predominance of slightly stained cells. A statistically significant correlation between the percentage of p53 and MDM2-positive cells was established, regardless of the degree of epithelial dysplasia. The expression of p53 and MDM2 proteins in actinic cheilitis can be an important indicator in lip carcinogenesis, regardless of the degree of epithelial dysplasia. PMID:19082401

  4. p53 and MDM2 protein expression in actinic cheilitis.

    PubMed

    de Freitas, Maria da Conceição Andrade; Ramalho, Luciana Maria Pedreira; Xavier, Flávia Caló Aquino; Moreira, André Luis Gomes; Reis, Sílvia Regina Almeida

    2008-01-01

    Actinic cheilitis is a potentially malignant lip lesion caused by excessive and prolonged exposure to ultraviolet radiation, which can lead to histomorphological alterations indicative of abnormal cell differentiation. In this pathology, varying degrees of epithelial dysplasia may be found. There are few published studies regarding the p53 and MDM2 proteins in actinic cheilitis. Fifty-eight cases diagnosed with actinic cheilitis were histologically evaluated using Banóczy and Csiba (1976) parameters, and were subjected to immunohistochemical analysis using the streptavidin-biotin method in order to assess p53 and MDM2 protein expression. All studied cases expressed p53 proteins in basal and suprabasal layers. In the basal layer, the nuclei testing positive for p53 were stained intensely, while in the suprabasal layer, cells with slightly stained nuclei were predominant. All cases also tested positive for the MDM2 protein, but with varying degrees of nuclear expression and a predominance of slightly stained cells. A statistically significant correlation between the percentage of p53 and MDM2-positive cells was established, regardless of the degree of epithelial dysplasia. The expression of p53 and MDM2 proteins in actinic cheilitis can be an important indicator in lip carcinogenesis, regardless of the degree of epithelial dysplasia.

  5. RITA (Reactivating p53 and Inducing Tumor Apoptosis) is efficient against TP53abnormal myeloma cells independently of the p53 pathway.

    PubMed

    Surget, Sylvanie; Descamps, Géraldine; Brosseau, Carole; Normant, Vincent; Maïga, Sophie; Gomez-Bougie, Patricia; Gouy-Colin, Nadège; Godon, Catherine; Béné, Marie C; Moreau, Philippe; Le Gouill, Steven; Amiot, Martine; Pellat-Deceunynck, Catherine

    2014-06-14

    The aim of this study was to evaluate the efficacy of the p53-reactivating drugs RITA and nutlin3a in killing myeloma cells. A large cohort of myeloma cell lines (n = 32) and primary cells (n = 21) was used for this study. This cohort contained cell lines with various TP53 statuses and primary cells with various incidences of deletion of chromosome 17. Apoptosis was evaluated using flow cytometry with Apo2.7 staining of the cell lines or via the loss of the myeloma-specific marker CD138 in primary cells. Apoptosis was further confirmed by the appearance of a subG1 peak and the activation of caspases 3 and 9. Activation of the p53 pathway was monitored using immunoblotting via the expression of the p53 target genes p21, Noxa, Bax and DR5. The involvement of p53 was further studied in 4 different p53-silenced cell lines. Both drugs induced the apoptosis of myeloma cells. The apoptosis that was induced by RITA was not related to the TP53 status of the cell lines or the del17p status of the primary samples (p = 0.52 and p = 0.80, respectively), and RITA did not commonly increase the expression level of p53 or p53 targets (Noxa, p21, Bax or DR5) in sensitive cells. Moreover, silencing of p53 in two TP53(mutated) cell lines failed to inhibit apoptosis that was induced by RITA, which confirmed that RITA-induced apoptosis in myeloma cells was p53 independent. In contrast, apoptosis induced by nutlin3a was directly linked to the TP53 status of the cell lines and primary samples (p < 0.001 and p = 0.034, respectively) and nutlin3a increased the level of p53 and p53 targets in a p53-dependent manner. Finally, we showed that a nutlin3a-induced DR5 increase (≥ 1.2-fold increase) was a specific and sensitive marker (p < 0.001) for a weak incidence of 17p deletion within the samples (≤ 19%). These data show that RITA, in contrast to nutlin3a, effectively induced apoptosis in a subset of MM cells independently of p53. The findings and could be of interest for patients with a

  6. RITA (Reactivating p53 and Inducing Tumor Apoptosis) is efficient against TP53abnormal myeloma cells independently of the p53 pathway

    PubMed Central

    2014-01-01

    Background The aim of this study was to evaluate the efficacy of the p53-reactivating drugs RITA and nutlin3a in killing myeloma cells. Methods A large cohort of myeloma cell lines (n = 32) and primary cells (n = 21) was used for this study. This cohort contained cell lines with various TP53 statuses and primary cells with various incidences of deletion of chromosome 17. Apoptosis was evaluated using flow cytometry with Apo2.7 staining of the cell lines or via the loss of the myeloma-specific marker CD138 in primary cells. Apoptosis was further confirmed by the appearance of a subG1 peak and the activation of caspases 3 and 9. Activation of the p53 pathway was monitored using immunoblotting via the expression of the p53 target genes p21, Noxa, Bax and DR5. The involvement of p53 was further studied in 4 different p53-silenced cell lines. Results Both drugs induced the apoptosis of myeloma cells. The apoptosis that was induced by RITA was not related to the TP53 status of the cell lines or the del17p status of the primary samples (p = 0.52 and p = 0.80, respectively), and RITA did not commonly increase the expression level of p53 or p53 targets (Noxa, p21, Bax or DR5) in sensitive cells. Moreover, silencing of p53 in two TP53mutated cell lines failed to inhibit apoptosis that was induced by RITA, which confirmed that RITA-induced apoptosis in myeloma cells was p53 independent. In contrast, apoptosis induced by nutlin3a was directly linked to the TP53 status of the cell lines and primary samples (p < 0.001 and p = 0.034, respectively) and nutlin3a increased the level of p53 and p53 targets in a p53-dependent manner. Finally, we showed that a nutlin3a-induced DR5 increase (≥1.2-fold increase) was a specific and sensitive marker (p < 0.001) for a weak incidence of 17p deletion within the samples (≤19%). Conclusion These data show that RITA, in contrast to nutlin3a, effectively induced apoptosis in a subset of MM cells independently of p53. The findings and could be

  7. Modulation of p53β and p53γ expression by regulating the alternative splicing of TP53 gene modifies cellular response

    PubMed Central

    Marcel, V; Fernandes, K; Terrier, O; Lane, D P; Bourdon, J-C

    2014-01-01

    In addition to the tumor suppressor p53 protein, also termed p53α, the TP53 gene produces p53β and p53γ through alternative splicing of exons 9β and 9γ located within TP53 intron 9. Here we report that both TG003, a specific inhibitor of Cdc2-like kinases (Clk) that regulates the alternative splicing pre-mRNA pathway, and knockdown of SFRS1 increase expression of endogenous p53β and p53γ at mRNA and protein levels. Development of a TP53 intron 9 minigene shows that TG003 treatment and knockdown of SFRS1 promote inclusion of TP53 exons 9β/9γ. In a series of 85 primary breast tumors, a significant association was observed between expression of SFRS1 and α variant, supporting our experimental data. Using siRNA specifically targeting exons 9β/9γ, we demonstrate that cell growth can be driven by modulating p53β and p53γ expression in an opposite manner, depending on the cellular context. In MCF7 cells, p53β and p53γ promote apoptosis, thus inhibiting cell growth. By transient transfection, we show that p53β enhanced p53α transcriptional activity on the p21 and Bax promoters, while p53γ increased p53α transcriptional activity on the Bax promoter only. Moreover, p53β and p53γ co-immunoprecipitate with p53α only in the presence of p53-responsive promoter. Interestingly, although p53β and p53γ promote apoptosis in MCF7 cells, p53β and p53γ maintain cell growth in response to TG003 in a p53α-dependent manner. The dual activities of p53β and p53γ isoforms observed in non-treated and TG003-treated cells may result from the impact of TG003 on both expression and activities of p53 isoforms. Overall, our data suggest that p53β and p53γ regulate cellular response to modulation of alternative splicing pre-mRNA pathway by a small drug inhibitor. The development of novel drugs targeting alternative splicing process could be used as a novel therapeutic approach in human cancers. PMID:24926616

  8. Expression of p53, p21 and cyclin D1 in penile cancer: p53 predicts poor prognosis.

    PubMed

    Gunia, Sven; Kakies, Christoph; Erbersdobler, Andreas; Hakenberg, Oliver W; Koch, Stefan; May, Matthias

    2012-03-01

    To evaluate the role of p53, p21 and cyclin D1 expression in patients with penile cancer (PC). Paraffin-embedded tissues from PC specimens from six pathology departments were subjected to a central histopathological review performed by one pathologist. The tissue microarray technique was used for immunostaining which was evaluated by two independent pathologists and correlated with cancer-specific survival (CSS). κ-statistics were used to assess interobserver variability. Uni- and multivariable Cox proportional hazards analysis was applied to assess the independent effects of several prognostic factors on CSS over a median of 32 months (IQR 6-66 months). Specimens and clinical data from 110 men treated surgically for primary PC were collected. p53 staining was positive in 30 and negative in 62 specimens. κ-statistics showed substantial interobserver reproducibility of p53 staining evaluation (κ=0.73; p<0.001). The 5-year CSS rate for the entire study cohort was 74%. Five-year CSS was 84% in p53-negative and 51% in p53-positive PC patients (p=0.003). Multivariable analysis showed p53 (HR=3.20; p=0.041) and pT-stage (HR=4.29; p<0.001) as independent significant prognostic factors for CSS. Cyclin D1 and p21 expression were not correlated with survival. However, incorporating p21 into a multivariable Cox model did contribute to improved model quality for predicting CSS. In patients with PC, the expression of p53 in the primary tumour specimen can be reproducibly assessed and is negatively associated with cancer specific survival.

  9. Abnormal expression and mutation of p53 in cervical cancer--a study at protein, RNA and DNA levels.

    PubMed

    Ngan, H Y; Tsao, S W; Liu, S S; Stanley, M

    1997-02-01

    The objectives of this study are to document the status of p53 expression and mutation in cervical cancer at protein, RNA and DNA levels and to relate this to the presence of HPV. Biopsy specimens from one hundred and three squamous cell carcinoma of the cervix and histologically normal ectocervix were analysed. Fresh tissues were extracted for protein, RNA and DNA and flash frozen tissue cryostat sectioned for immunohistochemical staining. HPV DNA status was determined by PCR using L1 consensus primers and typed for HPV 16 and 18 with E6 specific primers. p53 expression was determined at the protein level by Western blotting on protein extracts and at RNA level by Northern blotting. There was no p53 overexpression or mutation detectable in the protein extracts. Three of 65 (4.6%) of the carcinomas were positive for p53 by immunostaining with the polyclonal antibody CM1. Overexpression at the RNA level was detected in 2 of 32 (6.3%) carcinomas. p53 mutation was screened for by PCR/SSCP (single strand conformation polymorphism) followed by sequencing to define the site of mutation. Two of the cervical cancers (2.0%) showed mutation in p53 in exons 7 or 8. The mutation rate in HPV positive tumours was 1.2% (1/81) and in HPV negative tumours was 5.2% (1/19). p53 overexpression or mutation does not seem to play a significant role in cervical carcinomas.

  10. Heterogeneous distribution of P53 immunoreactivity in human lung adenocarcinoma correlates with MDM2 protein expression, rather than with P53 gene mutation.

    PubMed

    Koga, T; Hashimoto, S; Sugio, K; Yoshino, I; Nakagawa, K; Yonemitsu, Y; Sugimachi, K; Sueishi, K

    2001-07-20

    Although the tumor suppressor p53 protein (P53) immunoreactivity and its gene (p53) mutation were reported to be significant prognostic indicators for human lung adenocarcinomas, little is known regarding the relationship between the heterogeneous distribution of P53 and its genetic status in each tumor focus and the clinicopathological significance. To determine how P53 is heterogeneously stabilized in patients, we compared P53 expression to both the p53 allelic mutation in exon 2 approximately 9 by polymerase chain reaction-single strand conformation polymorphism using microdissected DNA fractions, and the immunohistochemical MDM2 expression. Of the 48 positive to P53 in 118 lung adenocarcinomas examined, 10 with heterogeneous P53 expression were closely examined. The higher P53 expression foci in 7 of 10 cases were less differentiated, histologically in respective cases, and were frequently associated with fibrous stroma. Two had genetic mutations in exon 7 of the p53 gene in both the high and low P53 expression foci of cancer tissue indicating no apparent correlation between heterogeneous P53 expression and the occurrence of gene mutation. Immunohistochemical expression of MDM2 was significantly lower in high P53 expression areas (p < 0.05, the mean labeling indices of high and low P53 expression areas being 4.2 +/- 5.4% and 13.6 +/- 12.2%, respectively). In addition, among all the 118 cases examined, MDM2 expression was significantly suppressed in cases of p53 gene mutation, simultaneously with P53 overexpression, as compared with cases without both the p53 mutation and expression (p < 0.001). These findings suggest that the heterogeneous stabilization of P53 in human lung adenocarcinomas could be partly due to suppressed MDM2 expression. The overexpression of non-mutated P53 may afford a protective mechanism in human lung adenocarcinomas. Copyright 2001 Wiley-Liss, Inc.

  11. Knockdown of p53 suppresses Nanog expression in embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelalim, Essam Mohamed, E-mail: emohamed@qf.org.qa; Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192; Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia

    2014-01-10

    Highlights: •We investigate the role of p53 in ESCs in the absence of DNA damage. •p53 knockdown suppresses ESC proliferation. •p53 knockdown downregulates Nanog expression. •p53 is essential for mouse ESC self-renewal. -- Abstract: Mouse embryonic stem cells (ESCs) express high levels of cytoplasmic p53. Exposure of mouse ESCs to DNA damage leads to activation of p53, inducing Nanog suppression. In contrast to earlier studies, we recently reported that chemical inhibition of p53 suppresses ESC proliferation. Here, we confirm that p53 signaling is involved in the maintenance of mouse ESC self-renewal. RNA interference-mediated knockdown of p53 induced downregulation of p21more » and defects in ESC proliferation. Furthermore, p53 knockdown resulted in a significant downregulation in Nanog expression at 24 and 48 h post-transfection. p53 knockdown also caused a reduction in Oct4 expression at 48 h post-transfection. Conversely, exposure of ESCs to DNA damage caused a higher reduction of Nanog expression in control siRNA-treated cells than in p53 siRNA-treated cells. These data show that in the absence of DNA damage, p53 is required for the maintenance of mouse ESC self-renewal by regulating Nanog expression.« less

  12. The Isoforms of the p53 Protein

    PubMed Central

    Khoury, Marie P.; Bourdon, Jean-Christophe

    2010-01-01

    p53 is a transcription factor with a key role in the maintenance of genetic stability and therefore preventing cancer formation. It belongs to a family of genes composed of p53, p63, and p73. The p63 and p73 genes have a dual gene structure with an internal promoter in intron-3 and together with alternative splicing, can express 6 and 29 mRNA variants, respectively. Such a complex expression pattern had not been previously described for the p53 gene, which was not consistent with our understanding of the evolution of the p53 gene family. Consequently, we revisited the human p53 gene structure and established that it encodes nine different p53 protein isoforms because of alternative splicing, alternative promoter usage, and alternative initiation sites of translation. Therefore, the human p53 gene family (p53, p63, and p73) has a dual gene structure. We determined that the dual gene structure is conserved in Drosophila and in zebrafish p53 genes. The conservation through evolution of the dual gene structure suggests that the p53 isoforms play an important role in p53 tumor-suppressor activity. We and others have established that the p53 isoforms can regulate cell-fate outcome in response to stress, by modulating p53 transcriptional activity in a promoter and stress-dependent manner. We have also shown that the p53 isoforms are abnormally expressed in several types of human cancers, suggesting that they play an important role in cancer formation. The determination of p53 isoforms' expression may help to link clinical outcome to p53 status and to improve cancer patient treatment. PMID:20300206

  13. Increased expression of p53 and p21 (Waf1/Cip1) in the lesional skin of bleomycin-induced scleroderma.

    PubMed

    Yamamoto, Toshiyuki; Nishioka, Kiyoshi

    2005-05-01

    Systemic sclerosis (SSc) is a connective tissue disorder characterized by excessive deposition of extracellular matrix in the affected skin as well as various internal organs, vascular injury and immune abnormality; however, the etiology of SSc remains still unknown. We previously established an experimental mouse model for scleroderma by repeated local injections of bleomycin, a DNA damaging agent. In this study, we examined the induction of apoptosis and the expression of p53, p21 (Waf1/Cip1), and proliferating cell nuclear antigen (PCNA) in the lesional skin following bleomycin exposure in this model. Dermal sclerosis was induced by alternate day's injections of bleomycin for 4 weeks. TUNEL assay showed that apoptotic cells began to appear at 1 week after bleomycin exposure, and were prominently detected at 3-4 weeks. Immunohistochemical examination showed increased expression of p53 and p21 mainly in the infiltrating mononuclear cells at 2 weeks after bleomycin treatment. Bleomycin treatment markedly enhanced PCNA expression at 1-2 weeks, mainly in mesenchyme, as compared with control phosphate buffered saline treatment. Reverse transcriptase-polymerase chain reaction analysis showed that the expression of p53 and p21 mRNA was concurrently upregulated at 1-2 weeks after bleomycin treatment. Taken together, coordinate increased levels of p53 and p21 preceded the maximal induction of apoptosis and dermal sclerosis. Our findings suggest that apoptotic processes are involved in the pathophysiology of bleomycin-induced scleroderma, which may be mediated, in part, by the upregulation of p53 and p21.

  14. Quantitative analysis of chromosomal CGH in human breast tumors associates copy number abnormalities with p53 status and patient survival

    PubMed Central

    Jain, Ajay N.; Chin, Koei; Børresen-Dale, Anne-Lise; Erikstein, Bjorn K.; Lonning, Per Eystein; Kaaresen, Rolf; Gray, Joe W.

    2001-01-01

    We present a general method for rigorously identifying correlations between variations in large-scale molecular profiles and outcomes and apply it to chromosomal comparative genomic hybridization data from a set of 52 breast tumors. We identify two loci where copy number abnormalities are correlated with poor survival outcome (gain at 8q24 and loss at 9q13). We also identify a relationship between abnormalities at two loci and the mutational status of p53. Gain at 8q24 and loss at 5q15-5q21 are linked with mutant p53. The 9q and 5q losses suggest the possibility of gene products involved in breast cancer progression. The analytical techniques are general and also are applicable to the analysis of array-based expression data. PMID:11438741

  15. The maternal genes Ci-p53/p73-a and Ci-p53/p73-b regulate zygotic ZicL expression and notochord differentiation in Ciona intestinalis embryos.

    PubMed

    Noda, Takeshi

    2011-12-01

    I isolated a Ciona intestinalis homolog of p53, Ci-p53/p73-a, in a microarray screen of rapidly degraded maternal mRNA by comparing the transcriptomes of unfertilized eggs and 32-cell stage embryos. Higher expression of the gene in eggs and lower expression in later embryonic stages were confirmed by whole-mount in situ hybridization (WISH) and quantitative reverse transcription-PCR (qRT-PCR); expression was ubiquitous in eggs and early embryos. Knockdown of Ci-p53/p73-a by injection of antisense morpholino oligonucleotides (MOs) severely perturbed gastrulation cell movements and expression of notochord marker genes. A key regulator of notochord differentiation in Ciona embryos is Brachyury (Ci-Bra), which is directly activated by a zic-like gene (Ci-ZicL). The expression of Ci-ZicL and Ci-Bra in A-line notochord precursors was downregulated in Ci-p53/p73-a knockdown embryos. Maternal expression of Ci-p53/p73-b, a homolog of Ci-p53/p73-a, was also detected. In Ci-p53/p73-b knockdown embryos, gastrulation cell movements, expression of Ci-ZicL and Ci-Bra in A-line notochord precursors, and expression of notochord marker gene at later stages were perturbed. The upstream region of Ci-ZicL contains putative p53-binding sites. Cis-regulatory analysis of Ci-ZicL showed that these sites are involved in expression of Ci-ZicL in A-line notochord precursors at the 32-cell and early gastrula stages. These results suggest that p53 genes are maternal factors that play a crucial role in A-line notochord differentiation in C. intestinalis embryos by regulating Ci-ZicL expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Expressions of p53 and p21 in primary gastric lymphomas.

    PubMed Central

    Go, J. H.; Yang, W. I.

    2001-01-01

    The p21 overexpression is thought to be a consequence of the p53 induced activation of the p21 gene. The immunohistochemical evaluation of p53 and p21 can be a valuable means of assessing the functional status of the p53 gene product. We examined the overexpression of p21 and p53 proteins in primary gastric lymphomas and the correlation with prognosis. A total of 32 cases of gastric lymphomas was classified into low-grade lymphomas of mucosa-associated lymphoid tissue type (n=16) and high-grade B-cell lymphomas (n=16). In low-grade lymphomas, only one case showed p53 positivity and all cases were p21-negative. In high-grade lymphomas, seven cases were p53+/p21- (44%), one case was p53+/p21+ (6%), and eight cases were p53-/p21- (50%). The p53+/p21- cases had a much lower percentage of patients sustaining a continuous complete remission state (3/7, 43%) compared with other cases (6/7, 86%). From these results, we concluded that p21 expression is rare in primary gastric lymphomas. Therefore, p53-positive lymphomas can be assumed as having p53 mutation. And combined studies of p53 and p21 may be used as a prognostic indicator in primary gastric high-grade lymphomas. PMID:11748353

  17. Development of an adenoviral vector with robust expression driven by p53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajgelman, Marcio C.; Biotechnology Program, Biomedical Sciences Institute, University of Sao Paulo; Millennium Institute-Gene Therapy Network, Ministry of Science and Technology

    2008-02-05

    Here we introduce a new adenoviral vector where transgene expression is driven by p53. We first developed a synthetic promoter, referred to as PGTx{beta}, containing a p53-responsive element, a minimal promoter and the first intron of the rabbit {beta}-globin gene. Initial assays using plasmid-based vectors indicated that expression was tightly controlled by p53 and was 5-fold stronger than the constitutive CMV immediate early promoter/enhancer. The adenoviral vector, AdPG, was also shown to offer p53-responsive expression in prostate carcinoma cells LNCaP (wt p53), DU-145 (temperature sensitive mutant of p53) and PC3 (p53-null, but engineered to express temperature-sensitive p53 mutants). AdPG servedmore » as a sensor of p53 activity in LNCaP cells treated with chemotherapeutic agents. Since p53 can be induced by radiotherapy and chemotherapy, this new vector could be further developed for use in combination with conventional therapies to bring about cooperation between the genetic and pharmacologic treatment modalities.« less

  18. The Prognostic Impact of p53 Expression on Sporadic Colorectal Cancer Is Dependent on p21 Status.

    PubMed

    Kruschewski, Martin; Mueller, Kathrin; Lipka, Sybille; Budczies, Jan; Noske, Aurelia; Buhr, Heinz Johannes; Elezkurtaj, Sefer

    2011-03-11

    The prognostic value of p53 and p21 expression in colorectal cancer is still under debate. We hypothesize that the prognostic impact of p53 expression is dependent on p21 status. The expression of p53 and p21 was immunohistochemically investigated in a prospective cohort of 116 patients with UICC stage II and III sporadic colorectal cancer. The results were correlated with overall and recurrence-free survival. The mean observation period was 51.8 ± 2.5 months. Expression of p53 was observed in 72 tumors (63%). Overall survival was significantly better in patients with p53-positive carcinomas than in those without p53 expression (p = 0.048). No differences were found in recurrence-free survival (p = 0.161). The p53+/p21- combination was seen in 68% (n = 49), the p53+/p21+ combination in 32% (n = 23). Patients with p53+/p21- carcinomas had significantly better overall and recurrence-free survival than those with p53+/p21+ (p < 0.0001 resp. p = 0.003). Our data suggest that the prognostic impact of p53 expression on sporadic colorectal cancer is dependent on p21 status.

  19. Rigor of cell fate decision by variable p53 pulses and roles of cooperative gene expression by p53

    PubMed Central

    Murakami, Yohei; Takada, Shoji

    2012-01-01

    Upon DNA damage, the cell fate decision between survival and apoptosis is largely regulated by p53-related networks. Recent experiments found a series of discrete p53 pulses in individual cells, which led to the hypothesis that the cell fate decision upon DNA damage is controlled by counting the number of p53 pulses. Under this hypothesis, Sun et al. (2009) modeled the Bax activation switch in the apoptosis signal transduction pathway that can rigorously “count” the number of uniform p53 pulses. Based on experimental evidence, here we use variable p53 pulses with Sun et al.’s model to investigate how the variability in p53 pulses affects the rigor of the cell fate decision by the pulse number. Our calculations showed that the experimentally anticipated variability in the pulse sizes reduces the rigor of the cell fate decision. In addition, we tested the roles of the cooperativity in PUMA expression by p53, finding that lower cooperativity is plausible for more rigorous cell fate decision. This is because the variability in the p53 pulse height is more amplified in PUMA expressions with more cooperative cases. PMID:27857606

  20. Expression of C-terminal deleted p53 isoforms in neuroblastoma

    PubMed Central

    Goldschneider, David; Horvilleur, Emilie; Plassa, Louis-François; Guillaud-Bataille, Marine; Million, Karine; Wittmer-Dupret, Evelyne; Danglot, Gisèle; de Thé, Hughes; Bénard, Jean; May, Evelyne; Douc-Rasy, Sétha

    2006-01-01

    The tumor suppressor gene, p53, is rarely mutated in neuroblastomas (NB) at the time of diagnosis, but its dysfunction could result from a nonfunctional conformation or cytoplasmic sequestration of the wild-type p53 protein. However, p53 mutation, when it occurs, is found in NB tumors with drug resistance acquired over the course of chemotherapy. As yet, no study has been devoted to the function of the specific p53 mutants identified in NB cells. This study includes characterization and functional analysis of p53 expressed in eight cell lines: three wild-type cell lines and five cell lines harboring mutations. We identified two transcription-inactive p53 variants truncated in the C-terminus, one of which corresponded to the p53β isoform recently identified in normal tissue by Bourdon et al. [J. C. Bourdon, K. Fernandes, F. Murray-Zmijewski, G. Liu, A. Diot, D. P. Xirodimas, M. K. Saville and D. P. Lane (2005) Genes Dev., 19, 2122–2137]. Our results show, for the first time, that the p53β isoform is the only p53 species to be endogenously expressed in the human NB cell line SK-N-AS, suggesting that the C-terminus truncated p53 isoforms may play an important role in NB tumor development. PMID:17028100

  1. Comparative Assessment of Vitamin-B12, Folic Acid and Homocysteine Levels in Relation to p53 Expression in Megaloblastic Anemia.

    PubMed

    Yadav, Manish K; Manoli, Nandini M; Madhunapantula, SubbaRao V

    2016-01-01

    Megaloblastic anemia (MBA), also known as macrocytic anemia, is a type of anemia characterized by decreased number of RBCs as well as the presence of unusually large, abnormal and poorly developed erythrocytes (megaloblasts), which fail to enter blood circulation due to their larger size. Lack of vitamin-B12 (VB12) and / or folate (Vitamin-B9, VB9) with elevated homocysteine is the key factor responsible for megaloblastic anemia. Prior studies have demonstrated the induction of apoptosis in these abnormal under-developed erythrocytes. However, it is not clear whether this apoptosis induction is due to elevated p53 level or due to any other mechanism. Furthermore, it is also not fully known whether decreased vitamin-B12 and / or folate are responsible for apoptosis induction mediated by p53 in pre-erythroblasts. Levels of serum VB9, VB12 and homocysteine in 50 patients suffering from MBA were compared with 50 non-megaloblastic anemia control subjects, who were referred by the clinicians for bone marrow examination for medical conditions other than MBA. Next, we have measured the p53 expression in the paraffin embedded blocks prepared from bone marrow biopsy, using immunohistochemistry, and the expression levels correlated with VB9 and VB12 levels. Out of 50 MBA patients 40 (80%) and 44 (88%) subjects had very low VB12 and VB9 levels respectively. In contrast, only 2 (4%) and 12 (24%) non-megaloblastic anemia controls, out of 50 subjects, had low VB12 and VB9 respectively. Correlating with low vitamin B9 and B12, the homocysteine levels were high in 80% cases. But, only 20% non-megaloblastic controls exhibited high homocysteine in plasma. Immunohistochemical analysis for p53 expression showed a significantly high level of expression in MBA cases and no-or very low-expression in control subjects. Our correlation studies comparing the VB12 and VB9 levels with p53 expression concludes unusually high p53 levels in patients suffering from VB12 and VB9 deficiency induced

  2. Comparative Assessment of Vitamin-B12, Folic Acid and Homocysteine Levels in Relation to p53 Expression in Megaloblastic Anemia

    PubMed Central

    Yadav, Manish K.; Manoli, Nandini M.

    2016-01-01

    Background Megaloblastic anemia (MBA), also known as macrocytic anemia, is a type of anemia characterized by decreased number of RBCs as well as the presence of unusually large, abnormal and poorly developed erythrocytes (megaloblasts), which fail to enter blood circulation due to their larger size. Lack of vitamin-B12 (VB12) and / or folate (Vitamin-B9, VB9) with elevated homocysteine is the key factor responsible for megaloblastic anemia. Prior studies have demonstrated the induction of apoptosis in these abnormal under-developed erythrocytes. However, it is not clear whether this apoptosis induction is due to elevated p53 level or due to any other mechanism. Furthermore, it is also not fully known whether decreased vitamin-B12 and / or folate are responsible for apoptosis induction mediated by p53 in pre-erythroblasts. Methods Levels of serum VB9, VB12 and homocysteine in 50 patients suffering from MBA were compared with 50 non-megaloblastic anemia control subjects, who were referred by the clinicians for bone marrow examination for medical conditions other than MBA. Next, we have measured the p53 expression in the paraffin embedded blocks prepared from bone marrow biopsy, using immunohistochemistry, and the expression levels correlated with VB9 and VB12 levels. Results Out of 50 MBA patients 40 (80%) and 44 (88%) subjects had very low VB12 and VB9 levels respectively. In contrast, only 2 (4%) and 12 (24%) non-megaloblastic anemia controls, out of 50 subjects, had low VB12 and VB9 respectively. Correlating with low vitamin B9 and B12, the homocysteine levels were high in 80% cases. But, only 20% non-megaloblastic controls exhibited high homocysteine in plasma. Immunohistochemical analysis for p53 expression showed a significantly high level of expression in MBA cases and no—or very low—expression in control subjects. Our correlation studies comparing the VB12 and VB9 levels with p53 expression concludes unusually high p53 levels in patients suffering from VB

  3. Distinct downstream targets manifest p53-dependent pathologies in mice.

    PubMed

    Pant, V; Xiong, S; Chau, G; Tsai, K; Shetty, G; Lozano, G

    2016-11-03

    Mdm2, the principal negative regulator of p53, is critical for survival, a fact clearly demonstrated by the p53-dependent death of germline or conditional mice following deletion of Mdm2. On the other hand, Mdm2 hypomorphic (Mdm2 Puro/Δ7-12 ) or heterozygous (Mdm2 +/- ) mice that express either 30 or 50% of normal Mdm2 levels, respectively, are viable but present distinct phenotypes because of increased p53 activity. Mdm2 levels are also transcriptionally regulated by p53. We evaluated the significance of this reciprocal relationship in a new hypomorphic mouse model inheriting an aberrant Mdm2 allele with insertion of the neomycin cassette and deletion of 184-bp sequence in intron 3. These mice also carry mutations in the Mdm2 P2-promoter and thus express suboptimal levels of Mdm2 entirely encoded from the P1-promoter. Resulting mice exhibit abnormalities in skin pigmentation and reproductive tissue architecture, and are subfertile. Notably, all these phenotypes are rescued on a p53-null background. Furthermore, these phenotypes depend on distinct p53 downstream activities as genetic ablation of the pro-apoptotic gene Puma reverts the reproductive abnormalities but not skin hyperpigmentation, whereas deletion of cell cycle arrest gene p21 does not rescue either phenotype. Moreover, p53-mediated upregulation of Kitl influences skin pigmentation. Altogether, these data emphasize tissue-specific p53 activities that regulate cell fate.

  4. AAVPG: A vigilant vector where transgene expression is induced by p53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajgelman, Marcio C.; Medrano, Ruan F.V.; Carvalho, Anna Carolina P.V.

    2013-12-15

    Using p53 to drive transgene expression from viral vectors may provide on demand expression in response to physiologic stress, such as hypoxia or DNA damage. Here we introduce AAVPG, an adeno-associated viral (AAV) vector where a p53-responsive promoter, termed PG, is used to control transgene expression. In vitro assays show that expression from the AAVPG-luc vector was induced specifically in the presence of functional p53 (1038±202 fold increase, p<0.001). The AAVPG-luc vector was an effective biosensor of p53 activation in response to hypoxia (4.48±0.6 fold increase in the presence of 250 µM CoCl{sub 2}, p<0.001) and biomechanical stress (2.53±0.4 foldmore » increase with stretching, p<0.05). In vivo, the vigilant nature of the AAVPG-luc vector was revealed after treatment of tumor-bearing mice with doxorubicin (pre-treatment, 3.4×10{sup 5}±0.43×10{sup 5} photons/s; post-treatment, 6.6×10{sup 5}±2.1×10{sup 5} photons/s, p<0.05). These results indicate that the AAVPG vector is an interesting option for detecting p53 activity both in vitro and in vivo. - Highlights: • AAV vector where transgene expression is controlled by the tumor suppressor p53. • The new vector, AAVPG, shown to function as a biosensor of p53 activity, in vitro and in vivo. • The p53 activity monitored by the AAVPG vector is relevant to cancer and other diseases. • AAVPG reporter gene expression was activated upon DNA damage, hypoxia and mechanical stress.« less

  5. Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells.

    PubMed

    Kuffer, Christian; Kuznetsova, Anastasia Yurievna; Storchová, Zuzana

    2013-08-01

    Erroneously arising tetraploid mammalian cells are chromosomally instable and may facilitate cell transformation. An increasing body of evidence shows that the propagation of mammalian tetraploid cells is limited by a p53-dependent arrest. The trigger of this arrest has not been identified so far. Here we show by live cell imaging of tetraploid cells generated by an induced cytokinesis failure that most tetraploids arrest and die in a p53-dependent manner after the first tetraploid mitosis. Furthermore, we found that the main trigger is a mitotic defect, in particular, chromosome missegregation during bipolar mitosis or spindle multipolarity. Both a transient multipolar spindle followed by efficient clustering in anaphase as well as a multipolar spindle followed by multipolar mitosis inhibited subsequent proliferation to a similar degree. We found that the tetraploid cells did not accumulate double-strand breaks that could cause the cell cycle arrest after tetraploid mitosis. In contrast, tetraploid cells showed increased levels of oxidative DNA damage coinciding with the p53 activation. To further elucidate the pathways involved in the proliferation control of tetraploid cells, we knocked down specific kinases that had been previously linked to the cell cycle arrest and p53 phosphorylation. Our results suggest that the checkpoint kinase ATM phosphorylates p53 in tetraploid cells after abnormal mitosis and thus contributes to proliferation control of human aberrantly arising tetraploids.

  6. Changes in p53 expression in mouse fibroblasts can modify motility and extracellular matrix organization.

    PubMed

    Alexandrova, A; Ivanov, A; Chumakov, P; Kopnin, B; Vasiliev, J

    2000-11-23

    Effects of p53 expression on cell morphology and motility were studied using the derivatives of p53-null 10(1) mouse fibroblasts with tetracycline-regulated expression of exogenous human p53. Induction of p53 expression was accompanied by significant decrease in extracellular matrix (fibronectin) and reduction of matrix fibrils, diminution of the number and size of focal contacts, decrease of cell areas, establishment of more elongated cell shape and alterations of actin cytoskeleton (actin bundles became thinner, their number and size decreased). Expression of His175 and Gln22/ Ser23 p53 mutants caused no such effects. To study the influence of p53 expression on cell motility we used wound technique and videomicroscopy observation of single living cells. It was found that induction of p53 expression led to increase of lamellar activity of cell edge. However, in spite of enhanced lamellar activity p53-expressing cells migrated to shorter distance and filled the narrow wound in longer time as compared with their p53-null counterparts. Possible mechanisms of the influence of p53 expression on cell morphology and motility are discussed.

  7. Enhanced radiosensitivity of malignant glioma cells after adenoviral p53 transduction.

    PubMed

    Broaddus, W C; Liu, Y; Steele, L L; Gillies, G T; Lin, P S; Loudon, W G; Valerie, K; Schmidt-Ullrich, R K; Fillmore, H L

    1999-12-01

    The goal of this study was to determine whether adenoviral vector-mediated expression of human wildtype p53 can enhance the radiosensitivity of malignant glioma cells that express native wild-type p53. The p53 gene is thought to function abnormally in the majority of malignant gliomas, although it has been demonstrated to be mutated in only approximately 30%. This has led to studies in which adenoviral transduction with wild-type human p53 has been investigated in an attempt to slow tumor cell growth. Recent studies suggest that reconstitution of wild-type p53 can render cells more susceptible to radiation-mediated death, primarily by p53-mediated apoptosis. Rat RT2 glioma cells were analyzed for native p53 status by reverse transcriptase-polymerase chain reaction and sequence analysis and for p53 expression by Western blot analysis. Clonogenic survival and the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay were used to characterize RT2 cell radiosensitivity and apoptosis, respectively, with and without prior transduction with p53-containing and control adenoviral vectors. Animal survival length was monitored after intracerebral implantation with transduced and nontransduced RT2 cells, with and without cranial radiation. The RT2 cells were demonstrated to express native rat wild-type p53 and to markedly overexpress human p53 following adenoviral p53 transduction. The combination of p53 transduction followed by radiation resulted in marked decreases in RT2 cell survival and increases in apoptosis at radiation doses from 2 to 6 Gy. Animals receiving cranial radiation after intracerebral implantation with RT2 cells previously transduced with p53 survived significantly longer than control animals (p<0.01). The ability to enhance the radiosensitivity of malignant glioma cells that express wild-type p53 by using adenoviral transduction to induce overexpression of p53 offers hope for this approach as a therapeutic strategy

  8. Mutant p53 expression in fallopian tube epithelium drives cell migration.

    PubMed

    Quartuccio, Suzanne M; Karthikeyan, Subbulakshmi; Eddie, Sharon L; Lantvit, Daniel D; Ó hAinmhire, Eoghainín; Modi, Dimple A; Wei, Jian-Jun; Burdette, Joanna E

    2015-10-01

    Ovarian cancer is the fifth leading cause of cancer death among US women. Evidence supports the hypothesis that high-grade serous ovarian cancers (HGSC) may originate in the distal end of the fallopian tube. Although a heterogeneous disease, 96% of HGSC contain mutations in p53. In addition, the "p53 signature," or overexpression of p53 protein (usually associated with mutation), is a potential precursor lesion of fallopian tube derived HGSC suggesting an essential role for p53 mutation in early serous tumorigenesis. To further clarify p53-mutation dependent effects on cells, murine oviductal epithelial cells (MOE) were stably transfected with a construct encoding for the R273H DNA binding domain mutation in p53, the most common mutation in HGSC. Mutation in p53 was not sufficient to transform MOE cells but did significantly increase cell migration. A similar p53 mutation in murine ovarian surface epithelium (MOSE), another potential progenitor cell for serous cancer, was not sufficient to transform the cells nor change migration suggesting tissue specific effects of p53 mutation. Microarray data confirmed expression changes of pro-migratory genes in p53(R273H) MOE compared to parental cells, which could be reversed by suppressing Slug expression. Combining p53(R273H) with KRAS(G12V) activation caused transformation of MOE into high-grade sarcomatoid carcinoma when xenografted into nude mice. Elucidating the specific role of p53(R273H) in the fallopian tube will improve understanding of changes at the earliest stage of transformation. This information can help develop chemopreventative strategies to prevent the accumulation of additional mutations and reverse progression of the "p53 signature" thereby, improving survival rates. © 2015 UICC.

  9. Expression of P53 protein after exposure to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Salazar, A. M.; Salvador, C.; Ruiz-Trejo, C.; Ostrosky, P.; Brandan, M. E.

    2001-10-01

    One of the most important tumor suppressor genes is p53 gene, which is involved in apoptotic cell death, cell differentiation and cell cycle arrest. The expression of p53 gene can be evaluated by determining the presence of P53 protein in cells using Western Blot assay with a chemiluminescent method. This technique has shown variabilities that are due to biological factors. Film developing process can influence the quality of the p53 bands obtained. We irradiated tumor cell lines and human peripheral lymphocytes with 137Cs and 60Co gamma rays to standardize irradiation conditions, to compare ionizing radiation with actinomycin D and to reduce the observed variability of P53 protein induction levels. We found that increasing radiation doses increase P53 protein induction while it decreases viability. We also conclude that ionizing radiation could serve as a positive control for Western Blot analysis of protein P53. In addition, our results show that the developing process may play an important role in the quality of P53 protein bands and data interpretation.

  10. Basal p53 expression is indispensable for mesenchymal stem cell integrity.

    PubMed

    Boregowda, Siddaraju V; Krishnappa, Veena; Strivelli, Jacqueline; Haga, Christopher L; Booker, Cori N; Phinney, Donald G

    2018-03-01

    Marrow-resident mesenchymal stem cells (MSCs) serve as a functional component of the perivascular niche that regulates hematopoiesis. They also represent the main source of bone formed in adult bone marrow, and their bifurcation to osteoblast and adipocyte lineages plays a key role in skeletal homeostasis and aging. Although the tumor suppressor p53 also functions in bone organogenesis, homeostasis, and neoplasia, its role in MSCs remains poorly described. Herein, we examined the normal physiological role of p53 in primary MSCs cultured under physiologic oxygen levels. Using knockout mice and gene silencing we show that p53 inactivation downregulates expression of TWIST2, which normally restrains cellular differentiation to maintain wild-type MSCs in a multipotent state, depletes mitochondrial reactive oxygen species (ROS) levels, and suppresses ROS generation and PPARG gene and protein induction in response to adipogenic stimuli. Mechanistically, this loss of adipogenic potential skews MSCs toward an osteogenic fate, which is further potentiated by TWIST2 downregulation, resulting in highly augmented osteogenic differentiation. We also show that p53 - /- MSCs are defective in supporting hematopoiesis as measured in standard colony assays because of decreased secretion of various cytokines including CXCL12 and CSF1. Lastly, we show that transient exposure of wild-type MSCs to 21% oxygen upregulates p53 protein expression, resulting in increased mitochondrial ROS production and enhanced adipogenic differentiation at the expense of osteogenesis, and that treatment of cells with FGF2 mitigates these effects by inducing TWIST2. Together, these findings indicate that basal p53 levels are necessary to maintain MSC bi-potency, and oxygen-induced increases in p53 expression modulate cell fate and survival decisions. Because of the critical function of basal p53 in MSCs, our findings question the use of p53 null cell lines as MSC surrogates, and also implicate dysfunctional

  11. Diagnostic value of progesterone receptor, p16, p53 and pHH3 expression in uterine atypical leiomyoma.

    PubMed

    Liang, Yun; Zhang, Xiaofei; Chen, Xiaoduan; Lü, Weiguo

    2015-01-01

    The differential diagnosis between atypical leiomyoma and leiomyosarcoma may be hard based on morphological criterion at times. It would be helpful to find out biomarkers that can be used to distinguish them. The aim of the study was to investigate the diagnostic value of progesterone receptor (PR), p16, p53 and pHH3 expression in a series of uterine smooth muscle tumors. Immunohistochemical expression of PR, p16, p53 and pHH3 was investigated on 32 atypical leiomyomas, 15 leiomyosarcomas and 15 usual leomyomas. The difference in expression was compared between atypical leiomyoma and other groups. The expression of PR, p16, and pHH3 was found significantly different between atypical leiomyomas and leiomyosarcomas, but lack of significant difference between atypical leiomyomas and usual leiomyomas. There was no significant difference with regard to p53 distribution among these uterine smooth muscle tumors. High p16, pHH3 expression and low PR expression preferred the diagnosis of leiomyosarcoma. The panel of antibodies used in this study is a useful complementary analysis in the assessment of problematic uterine smooth muscle tumors.

  12. Diagnostic value of progesterone receptor, p16, p53 and pHH3 expression in uterine atypical leiomyoma

    PubMed Central

    Liang, Yun; Zhang, Xiaofei; Chen, Xiaoduan; Lü, Weiguo

    2015-01-01

    The differential diagnosis between atypical leiomyoma and leiomyosarcoma may be hard based on morphological criterion at times. It would be helpful to find out biomarkers that can be used to distinguish them. The aim of the study was to investigate the diagnostic value of progesterone receptor (PR), p16, p53 and pHH3 expression in a series of uterine smooth muscle tumors. Immunohistochemical expression of PR, p16, p53 and pHH3 was investigated on 32 atypical leiomyomas, 15 leiomyosarcomas and 15 usual leomyomas. The difference in expression was compared between atypical leiomyoma and other groups. The expression of PR, p16, and pHH3 was found significantly different between atypical leiomyomas and leiomyosarcomas, but lack of significant difference between atypical leiomyomas and usual leiomyomas. There was no significant difference with regard to p53 distribution among these uterine smooth muscle tumors. High p16, pHH3 expression and low PR expression preferred the diagnosis of leiomyosarcoma. The panel of antibodies used in this study is a useful complementary analysis in the assessment of problematic uterine smooth muscle tumors. PMID:26261614

  13. p53 and PCNA Expression in Keratocystic Odontogenic Tumors Compared with Selected Odontogenic Cysts

    PubMed Central

    Seyedmajidi, Maryam; Nafarzadeh, Shima; Siadati, Sepideh; Shafaee, Shahryar; Bijani, Ali; Keshmiri, Nazanin

    2013-01-01

    p53 and PCNA expression in keratocystic odontogenic tumors compared with selected odontogenic cysts Summary: The aim of this study was to evaluate p53 and PCNA expression in different odontogenic lesions regarding their different clinical behaviors. Slices prepared from 94 paraffin-embedded tissue blocks (25 radicular cysts (RC), 23 dentigerous cysts (DC), 23 keratocystic odontogenic tumors (KCOT) and 23 calcifying cystic odontogenic tumors (CCOT)) were stained with p53 and PCNA antibodies using immunohistochemistry procedure. The highest level of p53 expression was in the basal layer of RC, and the highest level of PCNA expression was in the suprabasal layer of KCOT. The differences of p53 expression in basal and suprabasal layers as well as PCNA expression in the suprabasal layer were significant but there was no significant difference in PCNA expression in the basal layer of these lesions. The expression of p53 in the basal layer of RC was higher than in other cysts. This may be due to intensive inflammatory infiltration. Also, the high level of PCNA expression in the suprabasal layer of KCOT may justify its neoplastic nature and tendency to recurrence. KCOT and calcifying cystic odontogenic tumors did not show similar expression of studied biomarkers. PMID:24551811

  14. PRL-3 promotes breast cancer progression by downregulating p14ARF-mediated p53 expression.

    PubMed

    Xie, Hua; Wang, Hao

    2018-03-01

    Prior studies have demonstrated that phosphatase of regenerating liver-3 (PRL-3) serves avital function in cell proliferation and metastasis in breast cancer. However, the molecular mechanisms underlying the function of PRL-3 in breast cancer remain unknown. PRL-3 expression was analyzed in 24 pairs of breast cancer and normal tissues using the reverse transcription-quantitative polymerase chain reaction assay. The results of the present study identified that the expression of PLR-3 in breast cancer tissues was increased 4.2-fold, compared with normal tissues. Notably, overexpression of PRL-3 significantly promoted the proliferation of cancer cells and inhibited endogenous p53 expression by downregulating the expression level of p14 alternate reading frame (p14 ARF ). In addition, decreased expression levels of PRL-3 resulted in decreased breast cancer cell proliferation and increased expression level of p14 ARF . These results suggested that PRL-3 enhances cell proliferation by downregulating p14 ARF expression, which results in decreased levels ofp53. The results of the present study demonstrated that PRL-3 promotes tumor proliferation by affecting the p14 ARF -p53 axis, and that it may serve as a prognostic marker for patients with breast cancer.

  15. Tumor Suppressor p53 Stimulates the Expression of Epstein-Barr Virus Latent Membrane Protein 1.

    PubMed

    Wang, Qianli; Lingel, Amy; Geiser, Vicki; Kwapnoski, Zachary; Zhang, Luwen

    2017-10-15

    Epstein-Barr virus (EBV) is associated with multiple human malignancies. EBV latent membrane protein 1 (LMP1) is required for the efficient transformation of primary B lymphocytes in vitro and possibly in vivo The tumor suppressor p53 plays a seminal role in cancer development. In some EBV-associated cancers, p53 tends to be wild type and overly expressed; however, the effects of p53 on LMP1 expression is not clear. We find LMP1 expression to be associated with p53 expression in EBV-transformed cells under physiological and DNA damaging conditions. DNA damage stimulates LMP1 expression, and p53 is required for the stimulation. Ectopic p53 stimulates endogenous LMP1 expression. Moreover, endogenous LMP1 blocks DNA damage-mediated apoptosis. Regarding the mechanism of p53-mediated LMP1 expression, we find that interferon regulatory factor 5 (IRF5), a direct target of p53, is associated with both p53 and LMP1. IRF5 binds to and activates a LMP1 promoter reporter construct. Ectopic IRF5 increases the expression of LMP1, while knockdown of IRF5 leads to reduction of LMP1. Furthermore, LMP1 blocks IRF5-mediated apoptosis in EBV-infected cells. All of the data suggest that cellular p53 stimulates viral LMP1 expression, and IRF5 may be one of the factors for p53-mediated LMP1 stimulation. LMP1 may subsequently block DNA damage- and IRF5-mediated apoptosis for the benefits of EBV. The mutual regulation between p53 and LMP1 may play an important role in EBV infection and latency and its related cancers. IMPORTANCE The tumor suppressor p53 is a critical cellular protein in response to various stresses and dictates cells for various responses, including apoptosis. This work suggests that an Epstein-Bar virus (EBV) principal viral oncogene is activated by cellular p53. The viral oncogene blocks p53-mediated adverse effects during viral infection and transformation. Therefore, the induction of the viral oncogene by p53 provides a means for the virus to cope with infection and

  16. P-Glycoprotein/MDR1 regulates pokemon gene transcription through p53 expression in human breast cancer cells.

    PubMed

    He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang

    2010-08-27

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  17. P-Glycoprotein/MDR1 Regulates Pokemon Gene Transcription Through p53 Expression in Human Breast Cancer Cells

    PubMed Central

    He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang

    2010-01-01

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy. PMID:20957096

  18. p53 expression and mutation analysis of odontogenic cysts with and without dysplasia.

    PubMed

    Cox, Darren P

    2012-01-01

    Overexpression of p53 protein is well described in odontogenic cystic lesions (OCLs), including those with epithelial dysplasia; however, most p53 antibodies stain both wild-type and mutated p53 protein and may not reflect genotype. Direct sequencing of the p53 gene has not identified mutations in OCLs with dysplasia. The purpose of this study was to determine the molecular basis of p53 expression in several types of OCLs with and without dysplasia. The study material comprised 13 OCLs: odontogenic keratocyst (n = 5), orthokeratinized odontogenic cyst (n = 5), dentigerous cyst (n = 2), lateral periodontal cyst (n = 1), and unspecified developmental odontogenic cyst (UDOC) (n = 1). Five of these had features of mild or moderate epithelial dysplasia. One intraosseous squamous cell carcinoma (SCC) that was believed to have arisen from an antecedent dysplastic orthokeratinized OC was also included. Immunohistochemistry was performed using the DO7 monoclonal antibody that recognizes wild-type and mutated p53. DNA was extracted from microdissected tissue for all samples and exons 4 to 8 of the p53 gene direct sequenced. In 4 of 5 OCLs with dysplasia there was strong nuclear staining of basal and suprabasal cells. In all cases without dysplasia, nuclear expression in basal cells was either negative or weak and was absent in suprabasal cell nuclei. A mutation in exon 6 of the p53 gene (E224D) was identified in both the dysplastic orthokeratinized OC and the subsequent intraosseous SCC. OCLs with features of dysplasia show increased expression of p53 protein that does not reflect p53 mutational status. One dysplastic OC shared the same p53 mutation with a subsequent intraosseous SCC, indicating that p53 mutation may be associated with malignant transformation in this case. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Mutant p53 establishes targetable tumor dependency by promoting unscheduled replication

    PubMed Central

    Singh, Shilpa; Vaughan, Catherine A.; Frum, Rebecca A.; Grossman, Steven R.; Deb, Sumitra

    2017-01-01

    Gain-of-function (GOF) p53 mutations are observed frequently in most intractable human cancers and establish dependency for tumor maintenance and progression. While some of the genes induced by GOF p53 have been implicated in more rapid cell proliferation compared with p53-null cancer cells, the mechanism for dependency of tumor growth on mutant p53 is unknown. This report reveals a therapeutically targetable mechanism for GOF p53 dependency. We have shown that GOF p53 increases DNA replication origin firing, stabilizes replication forks, and promotes micronuclei formation, thus facilitating the proliferation of cells with genomic abnormalities. In contrast, absence or depletion of GOF p53 leads to decreased origin firing and a higher frequency of fork collapse in isogenic cells, explaining their poorer proliferation rate. Following genome-wide analyses utilizing ChIP-Seq and RNA-Seq, GOF p53–induced origin firing, micronuclei formation, and fork protection were traced to the ability of GOF p53 to transactivate cyclin A and CHK1. Highlighting the therapeutic potential of CHK1’s role in GOF p53 dependency, experiments in cell culture and mouse xenografts demonstrated that inhibition of CHK1 selectively blocked proliferation of cells and tumors expressing GOF p53. Our data suggest the possibility that checkpoint inhibitors could efficiently and selectively target cancers expressing GOF p53 alleles. PMID:28394262

  20. Regulation of p53 Target Gene Expression by Peptidylarginine Deiminase 4 ▿ †

    PubMed Central

    Li, Pingxin; Yao, Hongjie; Zhang, Zhiqiang; Li, Ming; Luo, Yuan; Thompson, Paul R.; Gilmour, David S.; Wang, Yanming

    2008-01-01

    Histone Arg methylation has been correlated with transcriptional activation of p53 target genes. However, whether this modification is reversed to repress the expression of p53 target genes is unclear. Here, we report that peptidylarginine deiminase 4, a histone citrullination enzyme, is involved in the repression of p53 target genes. Inhibition or depletion of PAD4 elevated the expression of a subset of p53 target genes, including p21/CIP1/WAF1, leading to cell cycle arrest and apoptosis. Moreover, the induction of p21, cell cycle arrest, and apoptosis by PAD4 depletion is p53 dependent. Protein-protein interaction studies showed an interaction between p53 and PAD4. Chromatin immunoprecipitation assays showed that PAD4 is recruited to the p21 promoter in a p53-dependent manner. RNA polymerase II (Pol II) activities and the association of PAD4 are dynamically regulated at the p21 promoter during UV irradiation. Paused RNA Pol II and high levels of PAD4 were detected before UV treatment. At early time points after UV treatment, an increase of histone Arg methylation and a decrease of citrullination were correlated with a transient activation of p21. At later times after UV irradiation, a loss of RNA Pol II and an increase of PAD4 were detected at the p21 promoter. The dynamics of RNA Pol II activities after UV treatment were further corroborated by permanganate footprinting. Together, these results suggest a role of PAD4 in the regulation of p53 target gene expression. PMID:18505818

  1. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: Implications for therapy

    PubMed Central

    Tovar, Christian; Rosinski, James; Filipovic, Zoran; Higgins, Brian; Kolinsky, Kenneth; Hilton, Holly; Zhao, Xiaolan; Vu, Binh T.; Qing, Weiguo; Packman, Kathryn; Myklebost, Ola; Heimbrook, David C.; Vassilev, Lyubomir T.

    2006-01-01

    The p53 tumor suppressor retains its wild-type conformation and transcriptional activity in half of all human tumors, and its activation may offer a therapeutic benefit. However, p53 function could be compromised by defective signaling in the p53 pathway. Using a small-molecule MDM2 antagonist, nutlin-3, to probe downstream p53 signaling we find that the cell-cycle arrest function of the p53 pathway is preserved in multiple tumor-derived cell lines expressing wild-type p53, but many have a reduced ability to undergo p53-dependent apoptosis. Gene array analysis revealed attenuated expression of multiple apoptosis-related genes. Cancer cells with mdm2 gene amplification were most sensitive to nutlin-3 in vitro and in vivo, suggesting that MDM2 overexpression may be the only abnormality in the p53 pathway of these cells. Nutlin-3 also showed good efficacy against tumors with normal MDM2 expression, suggesting that many of the patients with wild-type p53 tumors may benefit from antagonists of the p53–MDM2 interaction. PMID:16443686

  2. The p53 Isoform Δ133p53β Promotes Cancer Stem Cell Potential

    PubMed Central

    Arsic, Nikola; Gadea, Gilles; Lagerqvist, E. Louise; Busson, Muriel; Cahuzac, Nathalie; Brock, Carsten; Hollande, Frederic; Gire, Veronique; Pannequin, Julie; Roux, Pierre

    2015-01-01

    Summary Cancer stem cells (CSC) are responsible for cancer chemoresistance and metastasis formation. Here we report that Δ133p53β, a TP53 splice variant, enhanced cancer cell stemness in MCF-7 breast cancer cells, while its depletion reduced it. Δ133p53β stimulated the expression of the key pluripotency factors SOX2, OCT3/4, and NANOG. Similarly, in highly metastatic breast cancer cells, aggressiveness was coupled with enhanced CSC potential and Δ133p53β expression. Like in MCF-7 cells, SOX2, OCT3/4, and NANOG expression were positively regulated by Δ133p53β in these cells. Finally, treatment of MCF-7 cells with etoposide, a cytotoxic anti-cancer drug, increased CSC formation and SOX2, OCT3/4, and NANOG expression via Δ133p53, thus potentially increasing the risk of cancer recurrence. Our findings show that Δ133p53β supports CSC potential. Moreover, they indicate that the TP53 gene, which is considered a major tumor suppressor gene, also acts as an oncogene via the Δ133p53β isoform. PMID:25754205

  3. p53 targets chromatin structure alteration to repress alpha-fetoprotein gene expression.

    PubMed

    Ogden, S K; Lee, K C; Wernke-Dollries, K; Stratton, S A; Aronow, B; Barton, M C

    2001-11-09

    Many of the functions ascribed to p53 tumor suppressor protein are mediated through transcription regulation. We have shown that p53 represses hepatic-specific alpha-fetoprotein (AFP) gene expression by direct interaction with a composite HNF-3/p53 DNA binding element. Using solid-phase, chromatin-assembled AFP DNA templates and analysis of chromatin structure and transcription in vitro, we find that p53 binds DNA and alters chromatin structure at the AFP core promoter to regulate transcription. Chromatin assembled in the presence of hepatoma extracts is activated for AFP transcription with an open, accessible core promoter structure. Distal (-850) binding of p53 during chromatin assembly, but not post-assembly, reverses transcription activation concomitant with promoter inaccessibility to restriction enzyme digestion. Inhibition of histone deacetylase activity by trichostatin-A (TSA) addition, prior to and during chromatin assembly, activated chromatin transcription in parallel with increased core promoter accessibility. Chromatin immunoprecipitation analyses showed increased H3 and H4 acetylated histones at the core promoter in the presence of TSA, while histone acetylation remained unchanged at the site of distal p53 binding. Our data reveal that p53 targets chromatin structure alteration at the core promoter, independently of effects on histone acetylation, to establish repressed AFP gene expression.

  4. p53 Dependent Centrosome Clustering Prevents Multipolar Mitosis in Tetraploid Cells

    PubMed Central

    Yi, Qiyi; Zhao, Xiaoyu; Huang, Yun; Ma, Tieliang; Zhang, Yingyin; Hou, Heli; Cooke, Howard J.; Yang, Da-Qing; Wu, Mian; Shi, Qinghua

    2011-01-01

    Background p53 abnormality and aneuploidy often coexist in human tumors, and tetraploidy is considered as an intermediate between normal diploidy and aneuploidy. The purpose of this study was to investigate whether and how p53 influences the transformation from tetraploidy to aneuploidy. Principal Findings Live cell imaging was performed to determine the fates and mitotic behaviors of several human and mouse tetraploid cells with different p53 status, and centrosome and spindle immunostaining was used to investigate centrosome behaviors. We found that p53 dominant-negative mutation, point mutation, or knockout led to a 2∼ 33-fold increase of multipolar mitosis in N/TERT1, 3T3 and mouse embryonic fibroblasts (MEFs), while mitotic entry and cell death were not significantly affected. In p53-/- tetraploid MEFs, the ability of centrosome clustering was compromised, while centrosome inactivation was not affected. Suppression of RhoA/ROCK activity by specific inhibitors in p53-/- tetraploid MEFs enhanced centrosome clustering, decreased multipolar mitosis from 38% to 20% and 16% for RhoA and ROCK, respectively, while expression of constitutively active RhoA in p53+/+ tetraploid 3T3 cells increased the frequency of multipolar mitosis from 15% to 35%. Conclusions p53 could not prevent tetraploid cells entering mitosis or induce tetraploid cell death. However, p53 abnormality impaired centrosome clustering and lead to multipolar mitosis in tetraploid cells by modulating the RhoA/ROCK signaling pathway. PMID:22076149

  5. Immunohistochemical expression of protein p53 in neoplasms of the mammary gland in bitches.

    PubMed

    Rodo, A; Malicka, E

    2008-01-01

    The aim of the study was to investigate the presence of protein p53 in correlation with other tumor traits: histological type, tumor grade and proliferative activity. Material for the investigation comprised mammary gland tumours collected from dogs, the patients of veterinary clinics, during surgical procedures, and archival samples. Alltogether 21 adenomas, 31 complex carcinomas, 35 simple carcinomas and 12 solid carcinomas were qualified for further investigation. No protein p53 expression was found in adenomas. Cancers show positive reaction in 32.5%. The highest percent of p53 positive neoplasms was observed in solid carcinomas and neoplasms with the highest degree of histological malignancy. The smallest number showing this expression was observed in adenomas and the highest was characteristic for solid carcinomas. Considering the tumour grading, it was found that an increase in neoplasm malignancy was positively correlated with the number of the cells showing the expression of protein p53. The differences were statistically significant. Statistically significant positive correlations were observed between the proliferative activity and protein p53 expression. Higher accumulation of protein p53 in more malignant neoplasms suggests that mutations of protein p53 can be responsible for higher proliferation in neoplasms with advanced progression of malignancy.

  6. Induction and persistence of abnormal testicular germ cells following gestational exposure to di-(n-butyl) phthalate in p53-null mice.

    PubMed

    Saffarini, Camelia M; Heger, Nicholas E; Yamasaki, Hideki; Liu, Tao; Hall, Susan J; Boekelheide, Kim

    2012-01-01

    Phthalate esters are commonly used plasticizers found in many household items, personal care products, and medical devices. Animal studies have shown that in utero exposure to di-(n-butyl) phthalate (DBP) within a critical window during gestation causes male reproductive tract abnormalities resembling testicular dysgenesis syndrome. Our studies utilized p53-deficient mice for their ability to display greater resistance to apoptosis during development. This model was chosen to determine whether multinucleated germ cells (MNG) induced by gestational DBP exposure could survive postnatally and evolve into testicular germ cell cancer. Pregnant dams were exposed to DBP (500 mg/kg/day) by oral gavage from gestational day 12 until birth. Perinatal effects were assessed on gestational day 19 and postnatal days 1, 4, 7, and 10 for the number of MNGs present in control and DBP-treated p53-heterozygous and null animals. As expected, DBP exposure induced MNGs, with greater numbers found in p53-null mice. Additionally, there was a time-dependent decrease in the incidence of MNGs during the early postnatal period. Histologic examination of adult mice exposed in utero to DBP revealed persistence of abnormal germ cells only in DBP-treated p53-null mice, not in p53-heterozygous or wild-type mice. Immunohistochemical staining of perinatal MNGs and adult abnormal germ cells was negative for both octamer-binding protein 3/4 and placental alkaline phosphatase. This unique model identified a role for p53 in the perinatal apoptosis of DBP-induced MNGs and provided insight into the long-term effects of gestational DBP exposure within a p53-null environment.

  7. Jmjd5 functions as a regulator of p53 signaling during mouse embryogenesis.

    PubMed

    Ishimura, Akihiko; Terashima, Minoru; Tange, Shoichiro; Suzuki, Takeshi

    2016-03-01

    Genetic studies have shown that aberrant activation of p53 signaling leads to embryonic lethality. Maintenance of a fine balance of the p53 protein level is critical for normal development. Previously, we have reported that Jmjd5, a member of the Jumonji C (JmjC) family, regulates embryonic cell proliferation through the control of Cdkn1a expression. Since Cdkn1a is the representative p53-regulated gene, we have examined whether the expression of other p53 target genes is coincidentally upregulated with Cdkn1a in Jmjd5-deficient embryos. The expression of a subset of p53-regulated genes was increased in both Jmjd5 hypomorphic mouse embryonic fibroblasts (MEFs) and Jmjd5-deficient embryos at embryonic day 8.25 without the induced expression of Trp53. Intercrossing of Jmjd5-deficient mice with Trp53 knockout mice showed that the growth defect of Jmjd5 mutant cells was significantly recovered under a Trp53 null genetic background. Chromatin immunoprecipitation analysis in Jmjd5 hypomorphic MEFs indicated the increased recruitment of p53 at several p53 target gene loci, such as Cdkn1a, Pmaip1, and Mdm2. These results suggest that Jmjd5 is involved in the transcriptional regulation of a subset of p53-regulated genes, possibly through the control of p53 recruitment at the gene loci. In Jmjd5-deficient embryos, the enhanced recruitment of p53 might result in the abnormal activation of p53 signaling leading to embryonic lethality.

  8. Immunohistochemical expression of p53 and its clinicopathological correlation with modified Anneroth's histological grading system.

    PubMed

    Dave, Kajal V; Chalishazar, Monali; Dave, Vishal R; Panja, Pritam; Singh, Manisha; Modi, Tapan G

    2016-01-01

    Oral squamous cell carcinoma (OSCC) is an epithelial neoplasm generally beginning as focal overgrowth of altered stem cells near the basement membrane, moving upward and laterally, replacing the normal epithelium. Histopathological grading has been used for many decades in an attempt to predict the clinical behavior of oral squamous cell carcinoma. In the present study, Forty biopsies were studied for histological grading and p53 expression. The p53 expression was studied in relation to clinical parameters such as age, sex of patient and site of tumors. Relation between histological grade of malignancy and p53 protein expression was analysed. All cases were classified according to Anneroth's histological malignancy grading system (1987). 40 cases of OSCC were assessed for clinical parameters, Anneroth's histological grading and immunohistochemically stained with p53 protien. The results obtained were analyzed using Spearman's Co-relation. The positive expression of p53 was found in 62% of carcinomas studied. Positivity of p53 showed correlation with histological grade of malignancy and with individual parameters like degree of keratinization, nuclear polymorphism, number of mitoses and lymphoplasmacytic infiltration while showed a negative correlation with pattern of invasion. Our study showed a significant correlation between parameters of tumor cell population, lymphoplasmacytic infiltration and p53 expression. A significant association between high grade of malignancy and p53 overexpression and insignificant correlation of p53 with age, sex of the patient and site of the tumor was found.

  9. Modulation of p53 and met expression by Krüppel-like factor 8 regulates zebrafish cerebellar development.

    PubMed

    Tsai, Ming-Yuan; Lu, Yu-Fen; Liu, Yu-Hsiu; Lien, Huang-Wei; Huang, Chang-Jen; Wu, Jen-Leih; Hwang, Sheng-Ping L

    2015-09-01

    Krüppel-like factor 8 (Klf8) is a zinc-finger transcription factor implicated in cell proliferation, and cancer cell survival and invasion; however, little is known about its role in normal embryonic development. Here, we show that Klf8 is required for normal cerebellar development in zebrafish embryos. Morpholino knockdown of klf8 resulted in abnormal cerebellar primordium morphology and the induction of p53 in the brain region at 24 hours post-fertilization (hpf). Both p53-dependent reduction of cell proliferation and augmentation of apoptosis were observed in the cerebellar anlage of 24 hpf-klf8 morphants. In klf8 morphants, expression of ptf1a in the ventricular zone was decreased from 48 to 72 hpf; on the other hand, expression of atohla in the upper rhombic lip was unaffected. Consistent with this finding, Purkinje cell development was perturbed and granule cell number was reduced in 72 hpf-klf8 morphants; co-injection of p53 MO(sp) or klf8 mRNA substantially rescued development of cerebellar Purkinje cells in klf8 morphants. Hepatocyte growth factor/Met signaling is known to regulate cerebellar development in zebrafish and mouse. We observed decreased met expression in the tectum and rhombomere 1 of 24 hpf-klf8 morphants, which was largely rescued by co-injection with klf8 mRNA. Moreover, co-injection of met mRNA substantially rescued formation of Purkinje cells in klf8 morphants at 72 hpf. Together, these results demonstrate that Klf8 modulates expression of p53 and met to maintain ptf1a-expressing neuronal progenitors, which are required for the appropriate development of cerebellar Purkinje and granule cells in zebrafish embryos. © 2014 Wiley Periodicals, Inc.

  10. Che-1 gene silencing induces osteosarcoma cell apoptosis by inhibiting mutant p53 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ming; Wang, Dan, E-mail: danwangwdd@163.com; Li, Ning

    2016-04-22

    The transcriptional cofactor Che-1 is an RNA polymerase II (Pol II) which is involved in tumorigenesis, such as breast cancer and multiple myeloma. Che-1 can also regulate mutant p53 expression, which plays roles in many types of cancer. In this study, we aimed to investigate the effects and specific mechanism of Che-1 in the regulation of osteosarcoma (OS) cell growth. We found that Che-1 is highly expressed in several kinds of OS cells compared with osteoblast hFOB1.19 cells. MTT and flow cytometry assays showed that Che-1 depletion by siRNA markedly suppressed MG-63 and U2OS cell proliferation and promoted apoptosis. The chromatinmore » immunoprecipitation (ChIP) assay verified the presence of Che-1 on the p53 promoter in MG-63 and U2OS cells carrying mutant p53. Further studies showed that Che-1 depletion inhibited mutant p53 expression. Notably, our study showed that the loss of Che-1 inhibits proliferation and promotes apoptosis in MG-63 cells by decreasing the level of mutant p53. Therefore, these findings open the possibility that silencing of Che-1 will have therapeutic benefit in OS. - Highlights: • Che-1 is highly expressed in several kinds of OS cells. • Che-1 depletion suppressed MG-63 and U2OS cell growth. • Che-1 is existed in the p53 promoter in MG-63 and U2OS cells. • Che-1 depletion inhibited mutant p53 expression. • Che-1 depletion inhibits cell growth by decreasing the level of mutant p53.« less

  11. p53 and PCNA expression in advanced colorectal cancer: response to chemotherapy and long-term prognosis.

    PubMed

    Paradiso, A; Rabinovich, M; Vallejo, C; Machiavelli, M; Romero, A; Perez, J; Lacava, J; Cuevas, M A; Rodriquez, R; Leone, B; Sapia, M G; Simone, G; De Lena, M

    1996-12-20

    In a series of 71 patients with advanced colorectal cancer treated with biochemically modulated 5-fluorouracil (5-FU) and methotrexate (MTX), we investigated the relationship between the proliferating-cell nuclear antigen (PCNA) (PC10) and p53 (Pab1801) primary-tumor immunohistochemical expression with respect to clinical response and long-term prognosis. Nuclear p53 expression was demonstrated in 44% of samples (any number of positive tumor cells) while all tumors showed a certain degree of PCNA immunostaining. PCNA immunostaining was correlated with histopathologic grade and p53 expression, while p53 was not correlated with any of the parameters considered. The probability of clinical response to biochemically modulated 5-FU was independent of p53 and PCNA expression. p53 expression (all cut-off values) was not associated with short- or long-term clinical prognosis, whereas patients with higher PCNA primary-tumor expression showed longer survival from treatment and survival from diagnosis, according to univariate and multivariate analysis, particularly in the sub-set of colon-cancer patients. We conclude that the clinical response of advanced-colorectal-cancer patients to biochemically modulated 5-FU and MTX cannot be predicted by PCNA and p53 primary-tumor expression, but high PCNA expression appears to be independently related to long-term prognosis.

  12. Knockdown of zebrafish Fancd2 causes developmental abnormalities via p53-dependent apoptosis.

    PubMed

    Liu, Ting Xi; Howlett, Niall G; Deng, Min; Langenau, David M; Hsu, Karl; Rhodes, Jennifer; Kanki, John P; D'Andrea, Alan D; Look, A Thomas

    2003-12-01

    Mechanisms underlying the multiple developmental defects observed in Fanconi anemia (FA) patients are not well defined. We have identified the zebrafish homolog of human FANCD2, which encodes a nuclear effector protein that is monoubiquitinated in response to DNA damage, targeting it to nuclear foci where it preserves chromosomal integrity. Fancd2-deficient zebrafish embryos develop defects similar to those found in children with FA, including shortened body length, microcephaly, and microophthalmia, which are due to extensive cellular apoptosis. Developmental defects and increased apoptosis in Fancd2-deficient zebrafish were corrected by injection of human FANCD2 or zebrafish bcl2 mRNA, or by knockdown of p53, indicating that in the absence of Fancd2, developing tissues spontaneously undergo p53-dependent apoptosis. Thus, Fancd2 is essential during embryogenesis to prevent inappropriate apoptosis in neural cells and other tissues undergoing high levels of proliferative expansion, implicating this mechanism in the congenital abnormalities observed in human infants with FA.

  13. Preeclampsia is associated with alterations in the p53-pathway in villous trophoblast.

    PubMed

    Sharp, Andrew N; Heazell, Alexander E P; Baczyk, Dora; Dunk, Caroline E; Lacey, Helen A; Jones, Carolyn J P; Perkins, Jonathan E; Kingdom, John C P; Baker, Philip N; Crocker, Ian P

    2014-01-01

    Preeclampsia (PE) is characterized by exaggerated apoptosis of the villous trophoblast of placental villi. Since p53 is a critical regulator of apoptosis we hypothesized that excessive apoptosis in PE is mediated by abnormal expression of proteins participating in the p53 pathway and that modulation of the p53 pathway alters trophoblast apoptosis in vitro. Fresh placental villous tissue was collected from normal pregnancies and pregnancies complicated by PE; Western blotting and real-time PCR were performed on tissue lysate for protein and mRNA expression of p53 and downstream effector proteins, p21, Bax and caspases 3 and 8. To further assess the ability of p53 to modulate apoptosis within trophoblast, BeWo cells and placental villous tissue were exposed to the p53-activator, Nutlin-3, alone or in combination with the p53-inhibitor, Pifithrin-α (PFT-α). Equally, Mdm2 was knocked-down with siRNA. Protein expression of p53, p21 and Bax was significantly increased in pregnancies complicated by PE. Conversely, Mdm2 protein levels were significantly depleted in PE; immunohistochemistry showed these changes to be confined to trophoblast. Reduction in the negative feedback of p53 by Mdm2, using siRNA and Nutlin-3, caused an imbalance between p53 and Mdm2 that triggered apoptosis in term villous explants. In the case of Nutlin, this was attenuated by Pifithrin-α. These data illustrate the potential for an imbalance in p53 and Mdm2 expression to promote excessive apoptosis in villous trophoblast. The upstream regulation of p53 and Mdm2, with regard to exaggerated apoptosis and autophagy in PE, merits further investigation.

  14. Expression of p53, Bcl-2, VEGF, Ki67 and PCNA and prognostic significance in hepatocellular carcinoma.

    PubMed

    Stroescu, Cezar; Dragnea, Adrian; Ivanov, Bogdan; Pechianu, Catalin; Herlea, Vlad; Sgarbura, Olivia; Popescu, Andra; Popescu, Irinel

    2008-12-01

    Hepatocellular carcinoma is one of the most common malignant tumors that carry a poor prognosis. To improve the long-term outlook for HCC, an accurate prognosis is important. To study the immunohistochemical expressions of p53, Ki67, Bcl-2, VEGF and PCNA and their potential role as prognostic factors in patients with radical resection of hepatocellular carcinoma. Forty-seven formalin-fixed paraffin-embedded tumor samples from patients with HCC receiving liver resection were investigated immunohistochemically for the expression of cellular proliferation markers PCNA, Ki67, p53, Bcl-2 and VEGF and their correlation with tumor characteristics and survival time after resection. p53 was expressed in a higher percentage (85.7 vs. 42.1%) in undifferentiated histological tumor grades (Edmondson Steiner G3/G4 vs. G1/G2). Patients with p53 accumulating tumors showed a worse survival than patients with p53 non-accumulating tumors (median 9.5 vs. 16.5 months). Over-expression of VEGF was found in 38.3% of all HCCs. VEGF expression was significantly correlated with p53 expression and recurrence rates. The results showed that the labeling index of PCNA and expression of p53 are correlated. The high labeling index of PCNA or over-expression of p53 resulted in high risk of tumor recurrence, more aggressive growth and poor survival. High labeling index of PCNA, p53 nuclear accumulation and VEGF high expression are associated with poor survival in patients with HCC.

  15. A combination of p53-activating APR-246 and phosphatidylserine-targeting antibody potently inhibits tumor development in hormone-dependent mutant p53-expressing breast cancer xenografts

    PubMed Central

    Liang, Yayun; Mafuvadze, Benford; Besch-Williford, Cynthia; Hyder, Salman M

    2018-01-01

    Background Between 30 and 40% of human breast cancers express a defective tumor suppressor p53 gene. Wild-type p53 tumor suppressor protein promotes cell-cycle arrest and apoptosis and inhibits vascular endothelial growth factor–dependent angiogenesis, whereas mutant p53 protein (mtp53) lacks these functions, resulting in tumor cell survival and metastasis. Restoration of p53 function is therefore a promising drug-targeted strategy for combating mtp53-expressing breast cancer. Methods In this study, we sought to determine whether administration of APR-246, a small-molecule drug that restores p53 function, in combination with 2aG4, an antibody that targets phosphatidylserine residues on tumor blood vessels and disrupts tumor vasculature, effectively inhibits advanced hormone-dependent breast cancer tumor growth. Results APR-246 reduced cell viability in mtp53-expressing BT-474 and T47-D human breast cancer cells in vitro, and significantly induced apoptosis in a dose-dependent manner. However, APR-246 did not reduce cell viability in MCF-7 breast cancer cells, which express wild-type p53. We next examined APR-246’s anti-tumor effects in vivo using BT-474 and T47-D tumor xenografts established in female nude mice. Tumor-bearing mice were treated with APR-246 and/or 2aG4 and tumor volume followed over time. Tumor growth was more effectively suppressed by combination treatment than by either agent alone, and combination therapy completely eradicated some tumors. Immunohistochemistry analysis of tumor tissue sections demonstrated that combination therapy more effectively induced apoptosis and reduced cell proliferation in tumor xenografts than either agent alone. Importantly, combination therapy dramatically reduced the density of blood vessels, which serve as the major route for tumor metastasis, in tumor xenografts compared with either agent alone. Conclusion Based on our findings, we contend that breast tumor growth might effectively be controlled by simultaneous

  16. [Expression of Ki-67 and P53 protein in oral squamous cell carcinoma and its clinical significance].

    PubMed

    He, Wei; Xiao, Yan; Chen, Wei-min

    2015-04-01

    To investigate the clinical and pathological features and its relationship with the expression of Ki-67 and p53 protein in oral squamous cell carcinoma. Immunohistochemical SP staining method was used to quantify the protein expression levels of Ki-67 and p53 protein in 10 cases of normal oral mucosa, 16 cases of oral leukoplakia (OLK) tissue, and 48 cases of oral squamous cell carcinoma. The relationship of the expression of Ki-67 and p53 protein to clinical and pathological data was analyzed, and SPSS17.0 software package was used for statistical analysis. The positive expression rate of Ki-67 protein in normal oral mucosa, oral leukoplakia and oral squamous cell carcinoma was 30%, 56.3% and 79.2%, respectively; The positive expression rate of p53 was 0%, 43.8%, and 70.8%, respectively; Ki-67 and p53 expression had significant difference among normal oral mucosa, oral leukoplakia and oral squamous cell carcinoma (P<0.05); The expression of Ki-67 protein was significantly elevated with tumor stage, differentiation and cervical lymph node metastasis (P<0.05); The expression of p53 protein was significantly related to the degree of tumor differentiation (P<0.05); The expression of Ki-67 and p53 was positively correlated in oral squamous cell carcinoma (P<0.05). The high expression of Ki-67 and p53 protein in oral squamous cell carcinoma tissues may play an important role in the development of oral squamous cell carcinoma.

  17. p53 expression in patients with ulcerative colitis - associated with dysplasia and carcinoma: a systematic meta-analysis.

    PubMed

    Lu, Xiaohong; Yu, Yuanjie; Tan, Shiyun

    2017-10-25

    Tumor suppressor gene p53 expression has been reported in patients with ulcerative colitis (UC). However, the correlation between p53 expression and UC remains controversial. The aim of this meta-analysis was to investigate the association between p53 expression and different pathological types of UC. Publications were searched in the PubMed, Embase, EBSCO, Wangfang, and CNKI databases. The overall odds ratios (ORs) and their corresponding 95% confidence intervals (95% CIs) were summarized in this study. Final 19 papers were identified in this meta-analysis, including 1068 patients with UC and 130 normal tissue samples. Immunohistochemical p53 expression was significantly higher in UC without dysplasia and carcinoma (UC group) compared to normal tissue samples (OR = 3.14, P = 0.001), higher in UC with dysplasia than in UC group (OR = 10.76, P < 0.001), and higher in UC with colorectal cancer (CRC) than in UC with dysplasia (OR = 1.69, P = 0.035). Subgroup analysis of ethnicity (UC group vs. normal tissues) showed that p53 expression was correlated with UC in Asians, but not in Caucasians. When UC with dysplasia was compared to UC group, p53 expression was linked to UC with dysplasia among both Asians and Caucasians. When UC-CRC was compared to UC with dysplasia, p53 expression was not associated with UC-CRC in both Caucasians and Asians. p53 expression was closely associated with UC-CRC development. p53 expression showed different ethnic characteristics among different pathological types of UC.

  18. Cell proliferation and p53 expression in pseudoepitheliomatous hyperplasia of oral paracoccidioidomycosis.

    PubMed

    Kaminagakura, E; Bonan, P R F; Lopes, M A; Almeida, O P

    2006-09-01

    Paracoccidioidomycosis (PCMycosis) is a systemic mycosis frequently found in many regions of Latin America. Microscopically, it is characterised by granulomatous inflammation and pseudoepitheliomatous hyperplasia (PEH). This work describes the proliferation index and p53 expression by immunohistochemistry in PEH of PCMycosis, normal oral mucosa (NOM) and mild oral epithelial dysplasia (ED). Ki67 positive cells were present in the basal and parabasal layers in NOM and PEH, while in ED it was also observed in the spinous layer. Percentage of ki67 positive cells was 7.7, 28.2 and 46.0 in NOM, PEH and ED respectively. p53 was negative in NOM and in PEH it was expressed by few cells in the basal layer of only three cases. However, it was expressed in all cases of ED, in basal and parabasal layers. Although histologically PEH mimics well-differentiated squamous cell carcinoma, its proliferative pattern and p53 expression are more similar to NOM than to dysplasia. These findings, confirm PEH as a reactive process probably associated with the underlying chronic inflammation.

  19. Immunohistochemical expression of p53 proteins in Wilms' tumour: a possible association with the histological prognostic parameter of anaplasia.

    PubMed

    Cheah, P L; Looi, L M; Chan, L L

    1996-01-01

    Wilms' tumour (nephroblastoma) has been associated with chromosomal abnormalities at the 11p13, 11p15 and 16q regions. A study into the possibility of mutations occurring within p53, the ubiquitous adult tumour suppressor gene, in Wilms' tumour was carried out. Thirty-eight cases were studied. Of these 36 were categorised into the favourable histology group and two into the unfavourable histology group based on the National Wilms' Tumour Study criteria. Archival formalin-fixed, paraffin-embedded tissue sections from each case were stained with a polyclonal (AB565:Chemicon) and a monoclonal (DO7:Dako) antibody raised against p53 protein using a peroxidase-labelled streptavidin biotin kit (Dako). 'Cure' (disease-free survival of 60 months or longer) was documented in 39% of cases with favourable histology tumours. Eleven percent in this group succumbed to the disease. Both cases with unfavourable histology died. Four out of 36 (11%) tumours with favourable histology demonstrated weak to moderate staining with both AB565 and DO7 in more than 75% of tumour cells. In contrast, p53 protein expression in unfavourable histology tumours was significantly increased compared with the favourable histology group (P = 0.021) with both cases demonstrating immunopositivity in > 75% of tumour cells when stained with AB565 and DO7. The intensity of staining ranged from moderate to strong in both cases. It appears from this preliminary study that the immunohistochemical expression of p53 protein in Wilms' tumour, presumably a result of mutation in the p53 tumour suppressor gene, correlates with histological classification, histological categorisation being one of the useful features in the prognostic assessment of Wilms' tumours.

  20. Preeclampsia Is Associated with Alterations in the p53-Pathway in Villous Trophoblast

    PubMed Central

    Sharp, Andrew N.; Heazell, Alexander E. P.; Baczyk, Dora; Dunk, Caroline E.; Lacey, Helen A.; Jones, Carolyn J. P.; Perkins, Jonathan E.; Kingdom, John C. P.; Baker, Philip N.; Crocker, Ian P.

    2014-01-01

    Background Preeclampsia (PE) is characterized by exaggerated apoptosis of the villous trophoblast of placental villi. Since p53 is a critical regulator of apoptosis we hypothesized that excessive apoptosis in PE is mediated by abnormal expression of proteins participating in the p53 pathway and that modulation of the p53 pathway alters trophoblast apoptosis in vitro. Methods Fresh placental villous tissue was collected from normal pregnancies and pregnancies complicated by PE; Western blotting and real-time PCR were performed on tissue lysate for protein and mRNA expression of p53 and downstream effector proteins, p21, Bax and caspases 3 and 8. To further assess the ability of p53 to modulate apoptosis within trophoblast, BeWo cells and placental villous tissue were exposed to the p53-activator, Nutlin-3, alone or in combination with the p53-inhibitor, Pifithrin-α (PFT- α). Equally, Mdm2 was knocked-down with siRNA. Results Protein expression of p53, p21 and Bax was significantly increased in pregnancies complicated by PE. Conversely, Mdm2 protein levels were significantly depleted in PE; immunohistochemistry showed these changes to be confined to trophoblast. Reduction in the negative feedback of p53 by Mdm2, using siRNA and Nutlin-3, caused an imbalance between p53 and Mdm2 that triggered apoptosis in term villous explants. In the case of Nutlin, this was attenuated by Pifithrin-α. Conclusions These data illustrate the potential for an imbalance in p53 and Mdm2 expression to promote excessive apoptosis in villous trophoblast. The upstream regulation of p53 and Mdm2, with regard to exaggerated apoptosis and autophagy in PE, merits further investigation. PMID:24498154

  1. Prognostic significance of p53 immunohistochemical expression in adenoid cystic carcinoma of the salivary glands: a meta-analysis

    PubMed Central

    Zheng, Chuanming; Wang, Jiafeng; Ge, Minghua

    2017-01-01

    Adenoid cystic carcinoma of salivary glands is a rare adenocarcinoma and has been placed in “high-risk” category as poor long-term prognosis. The purpose of this study was to investigate p53 protein expression in adenoid cystic carcinoma of salivary glands and its correlation with clinicopathological parameters and prognosis. Literatures were searched from PubMed, Embase, Cochrane Library and Web of Science, which investigated the relationships between p53 expression and pathological type, clinical stage, local recurrence, metastasis, nerve infiltration and overall survival. A total of 1,608 patients from 36 studies were included in the analysis. The results showed that p53-postive expression rate was 49% in adenoid cystic carcinoma of salivary glands (OR=10.34, 95%CI: 4.93-21.71, P < 0.0001). The p53-postive expression was closely related to tumor types (OR=0.30, 95%CI: 0.14-0.65, P < 0.0001). The tumor with solid histological subtype had a strong positive correlation with p53 expression. The combined analysis revealed that the p53-positive expression rate among patients in T1and T2 stage was 41.4%, compared to 53.2% among those in T3 and T4 stage. However, there was no significant correlation between tumor stage and p53 expression (OR=0.47, 95% CI: 0.17-1.29, P = 0.14). Besides, compared to patients with p53-negative expression, those with p53-positive expression had a greater chance of developing metastasis, local recurrence and nerve infiltration as well as poorer 5-year overall survival (P < 0.01). In conclusion, the p53 expression is related to the survival of adenoid cystic carcinoma of salivary glands. It can be considered as the auxiliary detection index in treatment and prognosis of adenoid cystic carcinoma of salivary glands. PMID:28206977

  2. Prognostic significance of p53 immunohistochemical expression in adenoid cystic carcinoma of the salivary glands: a meta-analysis.

    PubMed

    Li, Qinglin; Huang, Ping; Zheng, Chuanming; Wang, Jiafeng; Ge, Minghua

    2017-04-25

    Adenoid cystic carcinoma of salivary glands is a rare adenocarcinoma and has been placed in "high-risk" category as poor long-term prognosis. The purpose of this study was to investigate p53 protein expression in adenoid cystic carcinoma of salivary glands and its correlation with clinicopathological parameters and prognosis. Literatures were searched from PubMed, Embase, Cochrane Library and Web of Science, which investigated the relationships between p53 expression and pathological type, clinical stage, local recurrence, metastasis, nerve infiltration and overall survival. A total of 1,608 patients from 36 studies were included in the analysis. The results showed that p53-postive expression rate was 49% in adenoid cystic carcinoma of salivary glands (OR=10.34, 95%CI: 4.93-21.71, P < 0.0001). The p53-postive expression was closely related to tumor types (OR=0.30, 95%CI: 0.14-0.65, P < 0.0001). The tumor with solid histological subtype had a strong positive correlation with p53 expression. The combined analysis revealed that the p53-positive expression rate among patients in T1and T2 stage was 41.4%, compared to 53.2% among those in T3 and T4 stage. However, there was no significant correlation between tumor stage and p53 expression (OR=0.47, 95% CI: 0.17-1.29, P = 0.14). Besides, compared to patients with p53-negative expression, those with p53-positive expression had a greater chance of developing metastasis, local recurrence and nerve infiltration as well as poorer 5-year overall survival (P < 0.01).In conclusion, the p53 expression is related to the survival of adenoid cystic carcinoma of salivary glands. It can be considered as the auxiliary detection index in treatment and prognosis of adenoid cystic carcinoma of salivary glands.

  3. Expression of p53 protein in advanced head and neck squamous cell carcinoma before and after chemotherapy.

    PubMed

    Dunphy, C H; Dunphy, F R; Boyd, J H; Varvares, M A; Kim, H J; Lowe, V; Dunleavy, T L; Rodriguez, J; McDonough, E M; Minster, J

    1997-11-01

    The expression of p53 protein has been reported to be in the range of 35% to 67% in head and neck squamous cell carcinoma (HNSCC). Mutations of the gene for p53 protein have been associated with rapidly proliferating tumors, and p53 protein expression has been shown to be a significant predictor of worse survival in surgically resected HNSCC. To determine whether p53 protein expression in advanced (stages III and IV) HNSCC has any impact on tumor response to 2 to 3 courses of paclitaxel (Taxol) and carboplatin, we prospectively studied prechemotherapy specimens from patients with previously untreated, advanced-stage HNSCC. We also attempted to study residual tumors after chemotherapy to determine if the p53 status of the tumor changed. The expression of p53 protein was evaluated by immunohistochemical analysis (clone BP53-12-1; Bio-Genex, San Ramon, Calif). Tertiary university medical center. Two to 3 courses of chemotherapy with paclitaxel and carboplatin. Pathologic complete remission or residual tumor. The results of p53 immunostaining were positive in 24 (67%) of 36 HNSCC specimens before chemotherapy. After chemotherapy, 8 patients achieved pathologic complete remission. Before chemotherapy, the tumor was p53 negative in 2 patients and positive in 6 patients. No correlation of p53 protein expression with response to chemotherapy was noted. The expression of p53 protein converted from positive to negative in 5 (42%) of 12 specimens from patients with residual tumor after chemotherapy, with no impact on clinical outcome.

  4. Expression of autophagy-related protein LC3B, p62, and cytoplasmic p53 in human retinoblastoma tissues.

    PubMed

    Zhang, M; Zhou, Y-F; Gong, J-Y; Gao, C-B; Li, S-L

    2016-07-01

    Dysfunction of autophagy has been implicated in development and progression of diverse human cancers. However, the exact role and mechanism of autophagy have not been fully understood in human cancers, especially in retinoblastoma (Rb). We determined the autophagy activity in human Rb tissues by assessing the autophagy markers microtubule-associated protein light chain 3B (LC3) and p62 (SQSTM1) in formalin fixed and paraffin embedded human tissue by immunohistochemistry and then associated their expression with patient clinicopathological features. We further explored the correlation between the expression of LC3B and p62 and the expression of cytoplasmic p53, a newly identified autophagy suppressor, in Rb tissues. Our data revealed that the expression of LC3B and p62, was significantly associated with disease progression and tumor invasion of Rb. Furthermore, we also revealed that cytoplasmic expression of p53 was inversely associated with the behavior of tumor invasion. Finally, Spearman correlation analysis demonstrated that cytoplasmic expression of p53 was significantly and inversely correlated to the expression of both LC3B and p62. Autophagy might play an important role in human Rb progression, and LC3B and p62 may be useful predictors of disease progression in patients with Rb.

  5. The presence of p53 influences the expression of multiple human cytomegalovirus genes at early times postinfection.

    PubMed

    Hannemann, Holger; Rosenke, Kyle; O'Dowd, John M; Fortunato, Elizabeth A

    2009-05-01

    Human cytomegalovirus (HCMV) is a common cause of morbidity and mortality in immunocompromised and immunosuppressed individuals. During infection, HCMV is known to employ host transcription factors to facilitate viral gene expression. To further understand the previously observed delay in viral replication and protein expression in p53 knockout cells, we conducted microarray analyses of p53(+/+) and p53(-/-) immortalized fibroblast cell lines. At a multiplicity of infection (MOI) of 1 at 24 h postinfection (p.i.), the expression of 22 viral genes was affected by the absence of p53. Eleven of these 22 genes (group 1) were examined by real-time reverse transcriptase, or quantitative, PCR (q-PCR). Additionally, five genes previously determined to have p53 bound to their nearest p53-responsive elements (group 2) and three control genes without p53 binding sites in their upstream sequences (group 3) were also examined. At an MOI of 1, >3-fold regulation was found for five group 1 genes. The expression of group 2 and 3 genes was not changed. At an MOI of 5, all genes from group 1 and four of five genes from group 2 were found to be regulated. The expression of control genes from group 3 remained unchanged. A q-PCR time course of four genes revealed that p53 influences viral gene expression most at immediate-early and early times p.i., suggesting a mechanism for the reduced and delayed production of virions in p53(-/-) cells.

  6. Stress Hormone Cortisol Enhances Bcl2 Like-12 Expression to Inhibit p53 in Hepatocellular Carcinoma Cells.

    PubMed

    Wu, Weizhong; Liu, Sanguang; Liang, Yunfei; Zhou, Zegao; Bian, Wei; Liu, Xueqing

    2017-12-01

    The pathogenesis of hepatocellular carcinoma (HC) is unclear. It is suggested that psychological stress associates with the pathogenesis of liver cancer. Bcl2-like protein 12 (Bcl2L12) suppresses p53 protein. This study tests a hypothesis that the major stress hormone, cortisol, inhibits the expression of p53 in HC cells (HCC) via up regulating the expression of Bcl2L12. Peripheral blood samples were collected from patients with HC to be analyzed for the levels of cortisol. HCC were cultured to assess the role of cortisol in the regulation of the expression of Bcl2L12 and p53 in HCC. We observed that the serum cortisol levels were higher in HC patients. Expression of Bcl2L12 in HCC was correlated with serum cortisol. Cortisol enhanced the Bcl2L12 expression in HCC. Bcl2L12 binding to the TP53 promoter was correlated with p53 expression in HCC. Cortisol increased the Bcl2L12 expression in HCC to inhibit p53 expression. Stress hormone cortisol suppresses p53 in HCC via enhancing Bcl2L12 expression in HCC. The results suggest that cortisol may be a therapeutic target for the treatment of HC.

  7. Regulation of p53 expression and apoptosis by vault RNA2-1-5p in cervical cancer cells.

    PubMed

    Kong, Lu; Hao, Qi; Wang, Ying; Zhou, Ping; Zou, Binbin; Zhang, Yu-xiang

    2015-09-29

    nc886 or VRNA2-1 has recently been identified as a noncoding RNA instead of a vault RNA or a pre-microRNA. Several studies have reported that pre-miR-886 plays a tumor-suppressive role in a wide range of cancer cells through its activity as a cellular protein kinase RNA-activated (PKR) ligand and repressor. However, by sequencing stem-PCR products, we found that a microRNA originating from this precursor, vault RNA2-1-5p (VTRNA2-1-5p), occurs in cervical cancer cells. The expression levels of the predicted targets of VTRNA2-1-5p are negatively correlated with VTRNA2-1-5p levels by quantitative reversion transcription PCR (qRT-PCR). Previous results have shown that VTRNA2-1-5p is overexpressed in human cervical squamous cell carcinomas (CSCCs) compared with adjacent healthy tissues. Inhibition of VTRNA2-1-5p increases Bax protein expression and apoptotic cell death in cervical cancer cells. Our findings suggest that VTRNA2-1-5p has oncogenic activity related to the progression of cervical cancer. Here, we report that VTRNA2-1-5p directly targeted p53 expression and functioned as an oncomir in cervical cancer. VTRNA2-1-5p inhibition decreased cervical cancer cell invasion, proliferation, and tumorigenicity while increasing apoptosis and p53 expression. Interestingly, VTRNA2-1-5p inhibition also increased cisplatin-induced apoptosis of HeLa and SiHa cells. In human clinical cervical cancer specimens, low p53 expression and high VTRNA2-1-5p expression were positively associated.In addition, VTRNA2-1-5p was found to directly target the 5' and 3' untranslated regions (UTRs) of p53. We propose that VTRNA2-1-5p is a direct regulator of p53 and suggest that it plays an essential role in the apoptosis and proliferation of cervical cancer cells.

  8. RT-PCR amplification of RNA extracted from formalin-fixed, paraffin-embedded oral cancer sections: analysis of p53 pathway.

    PubMed

    Tachibana, Masatsugu; Shinagawa, Yasuhiro; Kawamata, Hitoshi; Omotehara, Fumie; Horiuchi, Hideki; Ohkura, Yasuo; Kubota, Keiichi; Imai, Yutaka; Fujibayashi, Takashi; Fujimori, Takahiro

    2003-01-01

    We present a new approach towards the detection of the mRNAs in formalin-fixed, paraffin-embedded samples using a reverse transcriptase (RT)-polymerase chain reaction (PCR). The total RNAs were extracted from 10-micron-thick sections and were reverse-transcribed, then the RT-products were subjected to PCR amplification of GAPDH mRNA for screening the mRNA degradation. Next, nested PCR was performed for examining the expression of p53-related genes, p21WAF1, MDM2, p33ING1 and p14ARF. GAPDH mRNA expression was detectable in 12 out of 21 oral squamous cell carcinoma (SCC) samples. p21WAF1 mRNA expression was detectable in 5 out of 12 SCC samples, MDM2 mRNA expression was detectable in 5 our of 12 SCC samples and p33ING1 mRNA expression was detectable in 6 out of 12 SCC samples. However, the expression of p14ARF mRNA was not detectable in any of the samples. Seven out of 12 oral SCC samples showed abnormal nuclear accumulation of p53 protein by immunohistochemical staining, whereas 5 out of 12 oral SCCs showed negative staining for p53 protein. Of of p33ING1 mRNA. One of these was a verrucous carcinoma in which the p53 gene products might be inactivated by the oncoprotein E6 of human papilloma virus. Thus, the p53 tumor suppressor pathway was disrupted in most oral SCCs at the cellular levels, due to either an abnormality in p53 itself or loss of expression of p53 regulatory factors. This method would assist in making diagnosis, determining therapeutic strategy and predicting the prognosis of various cancers including oral SCCs.

  9. [6]-Gingerol Induces Cell Cycle Arrest and Cell Death of Mutant p53-expressing Pancreatic Cancer Cells

    PubMed Central

    Park, Yon Jung; Wen, Jing; Bang, Seungmin; Park, Seung Woo

    2006-01-01

    [6]-Gingerol, a major phenolic compound derived from ginger, has anti-bacterial, anti-inflammatory and anti-tumor activities. While several molecular mechanisms have been described to underlie its effects on cells in vitro and in vivo, the underlying mechanisms by which [6]-gingerol exerts anti-tumorigenic effects are largely unknown. The purpose of this study was to investigate the action of [6]-gingerol on two human pancreatic cancer cell lines, HPAC expressing wild-type (wt) p53 and BxPC-3 expressing mutated p53. We found that [6]-gingerol inhibited the cell growth through cell cycle arrest at G1 phase in both cell lines. Western blot analyses indicated that [6]-gingerol decreased both Cyclin A and Cyclin-dependent kinase (Cdk) expression. These events led to reduction in Rb phosphorylation followed by blocking of S phase entry. p53 expression was decreased by [6]-gingerol treatment in both cell lines suggesting that the induction of Cyclin-dependent kinase inhibitor, p21cip1, was p53-independent. [6]-Gingerol induced mostly apoptotic death in the mutant p53-expressing cells, while no signs of early apoptosis were detected in wild type p53-expressing cells and this was related to the increased phosphorylation of AKT. These results suggest that [6]-gingerol can circumvent the resistance of mutant p53-expressing cells towards chemotherapy by inducing apoptotic cell death while it exerts cytostatic effect on wild type p53-expressing cells by inducing temporal growth arrest. PMID:17066513

  10. Thymidilate synthase and p53 primary tumour expression as predictive factors for advanced colorectal cancer patients.

    PubMed

    Paradiso, A; Simone, G; Petroni, S; Leone, B; Vallejo, C; Lacava, J; Romero, A; Machiavelli, M; De Lena, M; Allegra, C J; Johnston, P G

    2000-02-01

    The purpose of this work was to analyse the ability of p53 and thymidilate synthase (TS) primary tumour expression to retrospectively predict clinical response to chemotherapy and long-term prognosis in patients with advanced colorectal cancers homogeneously treated by methotrexate (MTX)-modulated-5-fluorouracil (5-FU-FA). A total of 108 advanced colorectal cancer patients entered the present retrospective study. Immunohistochemical p53 (pAb 1801 mAb) and TS (TS106 mAb) expression on formalin-fixed paraffin-embedded primary tumour specimens was related to probability of clinical response to chemotherapy, time to progression and overall survival. p53 was expressed in 53/108 (49%) tumours, while 54/108 (50%) showed TS immunostaining. No relationship was demonstrated between p53 positivity and clinical response to chemotherapy (objective response (OR): 20% vs 23%, in p53+ and p53- cases respectively) or overall survival. Percent of OR was significantly higher in TS-negative with respect to TS-positive tumours (30% vs 15% respectively; P < 0.04); simultaneous analysis of TS and p53 indicated 7% OR for p53-positive/TS-positive tumours vs 46% for p53-positive/TS-negative tumours (P < 0.03). Logistic regression analysis confirmed a significant association between TS tumour status and clinical response to chemotherapy (hazard ratio (HR): 2.91; 95% confidence interval (CI) 8.34-1.01; two-sided P < 0.05). A multivariate analysis of overall survival showed that only a small number of metastatic sites was statistically relevant (HR 1.89; 95% CI 2.85-1.26; two-sided P < 0.03). Our study suggests that immunohistochemical expression of p53 and TS could assist the clinician in predicting response of colorectal cancer patients to modulated MTX-5-FU therapy.

  11. Thymidilate synthase and p53 primary tumour expression as predictive factors for advanced colorectal cancer patients

    PubMed Central

    Paradiso, A; Simone, G; Petroni, S; Leone, B; Vallejo, C; Lacava, J; Romero, A; Machiavelli, M; Lena, M De; Allegra, C J; Johnston, P G

    2000-01-01

    The purpose of this work was to analyse the ability of p53 and thymidilate synthase (TS) primary tumour expression to retrospectively predict clinical response to chemotherapy and long-term prognosis in patients with advanced colorectal cancers homogeneously treated by methotrexate (MTX)-modulated–5-fluorouracil (5-FU-FA). A total of 108 advanced colorectal cancer patients entered the present retrospective study. Immunohistochemical p53 (pAb 1801 mAb) and TS (TS106 mAb) expression on formalin-fixed paraffin-embedded primary tumour specimens was related to probability of clinical response to chemotherapy, time to progression and overall survival. p53 was expressed in 53/108 (49%) tumours, while 54/108 (50%) showed TS immunostaining. No relationship was demonstrated between p53 positivity and clinical response to chemotherapy (objective response (OR): 20% vs 23%, in p53+ and p53– cases respectively) or overall survival. Percent of OR was significantly higher in TS-negative with respect to TS-positive tumours (30% vs 15% respectively;P< 0.04); simultaneous analysis of TS and p53 indicated 7% OR for p53-positive/TS-positive tumours vs 46% for p53-positive/TS-negative tumours (P< 0.03). Logistic regression analysis confirmed a significant association between TS tumour status and clinical response to chemotherapy (hazard ratio (HR): 2.91; 95% confidence interval (CI) 8.34–1.01; two-sided P< 0.05). A multivariate analysis of overall survival showed that only a small number of metastatic sites was statistically relevant (HR 1.89; 95% CI 2.85–1.26; two-sided P< 0.03). Our study suggests that immunohistochemical expression of p53 and TS could assist the clinician in predicting response of colorectal cancer patients to modulated MTX-5-FU therapy. © 2000 Cancer Research Campaign PMID:10682666

  12. Actual Proliferating Index and p53 protein expression as prognostic marker in odontogenic cysts.

    PubMed

    Gadbail, A R; Chaudhary, M; Patil, S; Gawande, M

    2009-10-01

    The purpose of this study was to evaluate the biological aggressiveness of odontogenic keratocyst/keratocystic odontogenic tumour (KCOT), radicular cyst (RC) and dentigerous cyst (DC) by observing the actual proliferative activity of epithelium, and p53 protein expression. The actual proliferative activity was measured by Ki-67 Labelling Index and argyrophilic nucleolar organizing regions (AgNOR) count per nucleus. The p53 protein expression was also evaluated. Ki-67 positive cells were observed higher in suprabasal cell layers of KCOT with uniform distribution, a few of them were predominantly observed in basal cell layer in RC and DC. The AgNOR count was significantly higher in suprabasal cell layers of KCOT. The actual proliferative activity was noted to be higher in suprabasal cell layers of KCOT. The p53 immunolabelling was dense and scattered in basal and suprabasal cell layers in KCOT. The weakly stained p53 positive cells were observed diffusely distributed in KCOT, whereas they were mainly seen in basal cell layer of RC and DC. The quantitative and qualitative differences of the proliferative activity and the p53 protein expression in sporadic KCOT may be associated with intrinsic growth potential that could play a role in its development and explain locally aggressive biological behaviour. AgNOR count and p53 protein detection in odontogenic lesions can be of great consequence to predict the biological behaviour and prognosis.

  13. Relationship between p53 dysfunction, CD38 expression, and IgV(H) mutation in chronic lymphocytic leukemia.

    PubMed

    Lin, Ke; Sherrington, Paul D; Dennis, Michael; Matrai, Zoltan; Cawley, John C; Pettitt, Andrew R

    2002-08-15

    Established adverse prognostic factors in chronic lymphocytic leukemia (CLL) include CD38 expression, relative lack of IgV(H) mutation, and defects of the TP53 gene. However, disruption of the p53 pathway can occur through mechanisms other than TP53 mutation, and we have recently developed a simple screening test that detects p53 dysfunction due to mutation of the genes encoding either p53 or ATM, a kinase that regulates p53. The present study was conducted to examine the predictive value of this test and to establish the relationship between p53 dysfunction, CD38 expression, and IgV(H) mutation. CLL cells from 71 patients were examined for IgV(H) mutation, CD38 expression, and p53 dysfunction (detected as an impaired p53/p21 response to ionizing radiation). Survival data obtained from 69 patients were analyzed according to each of these parameters. Relative lack of IgV(H) mutation (less than 5%; n = 45), CD38 positivity (antigen expressed on more than 20% of malignant cells; n = 19), and p53 dysfunction (n = 19) were independently confirmed as adverse prognostic factors. Intriguingly, all p53-dysfunctional patients and all but one of the CD38(+) patients had less [corrected] than 5% IgV(H) mutation. Moreover, patients with p53 dysfunction and/or CD38 positivity (n = 31) accounted for the short survival of the less mutated group. These findings indicate that the poor outcome associated with having less than 5% IgV(H) mutation may be due to the overrepresentation of high-risk patients with p53 dysfunction and/or CD38 positivity within this group, and that CD38(-) patients with functionally intact p53 may have a prolonged survival regardless of the extent of IgV(H) mutation.

  14. Interferons alpha and gamma induce p53-dependent and p53-independent apoptosis, respectively.

    PubMed

    Porta, Chiara; Hadj-Slimane, Reda; Nejmeddine, Mohamed; Pampin, Mathieu; Tovey, Michael G; Espert, Lucile; Alvarez, Sandra; Chelbi-Alix, Mounira K

    2005-01-20

    Type I interferon (IFN) enhances the transcription of the tumor suppressor gene p53. To elucidate the molecular mechanism mediating IFN-induced apoptosis, we analysed programmed cell death in response to type I (IFNalpha) or type II (IFNgamma) treatment in relation to p53 status. In two cell lines (MCF-7, SKNSH), IFNalpha, but not IFNgamma, enhanced apoptosis in a p53-dependent manner. Furthermore, only IFNalpha upregulated p53 as well as p53 target genes (Noxa, Mdm2 and CD95). The apoptotic response to IFNalpha decreased in the presence of ZB4, an anti-CD95 antibody, suggesting that CD95 is involved in this process. When p53 was inactivated by the E6 viral protein or the expression of a p53 mutant, IFNalpha-induced apoptosis and p53 target genes upregulation were abrogated. Altogether these results demonstrate that p53 plays a pivotal role in the IFNalpha-induced apoptotic response. IFNalpha-induced PML was unable to recruit p53 into nuclear bodies and its downregulation by siRNA did not alter CD95 expression. In contrast, IFNgamma-induced apoptosis is p53-independent. CD95 and IFN-regulatory factor 1 (IRF1) are directly upregulated by this cytokine. Apoptotic response to IFNgamma is decreased in the presence of ZB4 and strongly diminished by IRF1 siRNA, implicating both CD95 and IRF1 in IFNgamma-induced apoptotic response. Taken together, these results show that in two different cell lines, IFNalpha and IFNgamma, induce p53-dependent -independent apoptosis, respectively.

  15. Bcl-2 protein expression associated with resistance to apoptosis in clear cell adenocarcinomas of the vagina and cervix expressing wild-type p53.

    PubMed

    Waggoner, S E; Baunoch, D A; Anderson, S A; Leigh, F; Zagaja, V G

    1998-09-01

    Clear cell adenocarcinomas (CCAs) of the vagina and cervix are rare tumors that often overexpress wild-type p53. In vitro, expression of protooncogene bcl-2 can block p53-mediated apoptosis. The objective of this study was to determine if bcl-2 is expressed in CCAs and whether this expression is associated with inhibition of apoptosis. Twenty-one paraffin-embedded clear cell adenocarcinomas were immunohistochemically stained for bcl-2 (antibody M 887, Dako, Carpinteria, CA) and DNA fragmentation (ApopTag, Oncor, Gaithersburg, MD), a marker for apoptosis. Fifteen tumors were associated with in utero exposure to diethylstilbestrol (DES). Prior p53 gene analysis had indicated the presence of wild-type p53 in each tumor. Human lymphoid tissue containing bcl-2-expressing lymphocytes and DNase I-exposed CCA tissue sections were used as positive controls for the bcl-2 and apoptosis assays, respectively. Expression of bcl-2 and DNA fragmentation was classified (0 to 3+) according to percentage of positive cells and intensity of staining. Expression of bcl-2 was identified in each CCA examined, and was strongly positive (2+ to 3+) in 18 of 21 samples. Despite the presence of wild-type p53, only 4 of 21 tumors showed evidence of apoptosis as assessed through DNA fragmentation. DNA damage leads to increased intracellular p53 levels. Overexpression of p53 induces apoptosis as a means of protecting organisms from the development of malignancy. CCAs of the vagina and cervix, which contain wild-type p53 genes and often overexpress p53 protein, presumably have evolved mechanisms to avoid p53-induced apoptosis. Our observations are consistent with the hypothesis that overexpression of bcl-2 can inhibit p53-mediated apoptosis and suggest a mechanism by which these rare tumors can arise without mutation of the p53 gene.

  16. Interplay between PTB and miR-1285 at the p53 3'UTR modulates the levels of p53 and its isoform Δ40p53α.

    PubMed

    Katoch, Aanchal; George, Biju; Iyyappan, Amrutha; Khan, Debjit; Das, Saumitra

    2017-09-29

    p53 and its translational isoform Δ40p53 are involved in many important cellular functions like cell cycle, cell proliferation, differentiation and metabolism. Expression of both the isoforms can be regulated at different steps. In this study, we explored the role of 3'UTR in regulating the expression of these two translational isoforms. We report that the trans acting factor, Polypyrimidine Tract Binding protein (PTB), also interacts specifically with 3'UTR of p53 mRNA and positively regulates expression of p53 isoforms. Our results suggest that there is interplay between miRNAs and PTB at the 3'UTR under normal and stress conditions like DNA damage. Interestingly, PTB showed some overlapping binding regions in the p53 3'UTR with miR-1285. In fact, knockdown of miR-1285 as well as expression of p53 3'UTR with mutated miR-1285 binding sites resulted in enhanced association of PTB with the 3'UTR, which provides mechanistic insights of this interplay. Taken together, the results provide a plausible molecular basis of how the interplay between miRNAs and the PTB protein at the 3'UTR can play pivotal role in fine tuning the expression of the two p53 isoforms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. The roles of p53R2 in cancer progression based on the new function of mutant p53 and cytoplasmic p21.

    PubMed

    Yousefi, Bahman; Rahmati, Mohammad; Ahmadi, Yasin

    2014-03-18

    Although the deregulated expression of p53R2, a p53-inducible protein and homologue of the R2 subunit of ribonucleotide reductase, has been detected in several human cancers, p53R2 roles in cancer progression and malignancy still remains controversial. In this article, we present a viable hypothesis about the roles of p53R2 in cancer progression and therapy resistance based on the roles of cytoplasmic p21 and mutant p53. Since p53R2 can up-regulate p21 and p21, it in turn has a dual role in cell cycle. Hence, p53R2 can play a dual role in cell cycle progression. In addition, because p53 is the main regulator of p53R2, the mutant p53 may induce the expression of p53R2 in some cancer cells based on the "keep of function" phenomenon. Therefore, depending on the locations of p21 and the new abilities of mutant p53, p53R2 has dual role in cell cycle progression. Since the DNA damaging therapies induce p53R2 expression through the induction of p53, p53R2 can be the main therapy resistance mediator in cancers with cytoplasmic p21. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Arsenite promotes centrosome abnormalities under a p53 compromised status induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, W.-T.; Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan

    2010-02-15

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus an interaction between arsenite and cigarette smoking in lung carcinogenesis was suspected. In the present study, we investigated the interactions of a tobacco-specific carcinogen 4- (methylnitrosamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosamine ketone, NNK) and arsenite on lung cell transformation. BEAS-2B, an immortalized human lung epithelial cell line, was selected to test the centrosomal abnormalities and colony formation by NNK and arsenite. We found that NNK, alone, could enhance BEAS-2B cell growth at 1-5 muM. Under NNK exposure, arsenite wasmore » able to increase centrosomal abnormality as compared with NNK or arsenite treatment alone. NNK treatment could also reduce arsenite-induced G2/M cell cycle arrest and apoptosis, these cellular effects were found to be correlated with p53 dysfunction. Increased anchorage-independent growth (colony formation) of BEAS-2B cells cotreated with NNK and arsenite was also observed in soft agar. Our present investigation demonstrated that NNK could provide a p53 compromised status. Arsenite would act specifically on this p53 compromised status to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenite under tobacco-specific carcinogen co-exposure.« less

  19. Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma.

    PubMed

    Köbel, Martin; Piskorz, Anna M; Lee, Sandra; Lui, Shuhong; LePage, Cecile; Marass, Francesco; Rosenfeld, Nitzan; Mes Masson, Anne-Marie; Brenton, James D

    2016-10-01

    TP53 mutations are ubiquitous in high-grade serous ovarian carcinomas (HGSOC), and the presence of TP53 mutation discriminates between high and low-grade serous carcinomas and is now an important biomarker for clinical trials targeting mutant p53. p53 immunohistochemistry (IHC) is widely used as a surrogate for TP53 mutation but its accuracy has not been established. The objective of this study was to test whether improved methods for p53 IHC could reliably predict TP53 mutations independently identified by next generation sequencing (NGS). Four clinical p53 IHC assays and tagged-amplicon NGS for TP53 were performed on 171 HGSOC and 80 endometrioid carcinomas (EC). p53 expression was scored as overexpression (OE), complete absence (CA), cytoplasmic (CY) or wild type (WT). p53 IHC was evaluated as a binary classifier where any abnormal staining predicted deleterious TP53 mutation and as a ternary classifier where OE, CA or WT staining predicted gain-of-function (GOF or nonsynonymous), loss-of-function (LOF including stopgain, indel, splicing) or no detectable TP53 mutations (NDM), respectively. Deleterious TP53 mutations were detected in 169/171 (99%) HGSOC and 7/80 (8.8%) EC. The overall accuracy for the best performing IHC assay for binary and ternary prediction was 0.94 and 0.91 respectively, which improved to 0.97 (sensitivity 0.96, specificity 1.00) and 0.95 after secondary analysis of discordant cases. The sensitivity for predicting LOF mutations was lower at 0.76 because p53 IHC detected mutant p53 protein in 13 HGSOC with LOF mutations. CY staining associated with LOF was seen in 4 (2.3%) of HGSOC. Optimized p53 IHC can approach 100% specificity for the presence of TP53 mutation and its high negative predictive value is clinically useful as it can exclude the possibility of a low-grade serous tumour. 4.1% of HGSOC cases have detectable WT staining while harboring a TP53 LOF mutation, which limits sensitivity for binary prediction of mutation to 96%.

  20. Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma

    PubMed Central

    Köbel, Martin; Piskorz, Anna M; Lee, Sandra; Lui, Shuhong; LePage, Cecile; Marass, Francesco; Rosenfeld, Nitzan; Mes Masson, Anne‐Marie

    2016-01-01

    Abstract TP53 mutations are ubiquitous in high‐grade serous ovarian carcinomas (HGSOC), and the presence of TP53 mutation discriminates between high and low‐grade serous carcinomas and is now an important biomarker for clinical trials targeting mutant p53. p53 immunohistochemistry (IHC) is widely used as a surrogate for TP53 mutation but its accuracy has not been established. The objective of this study was to test whether improved methods for p53 IHC could reliably predict TP53 mutations independently identified by next generation sequencing (NGS). Four clinical p53 IHC assays and tagged‐amplicon NGS for TP53 were performed on 171 HGSOC and 80 endometrioid carcinomas (EC). p53 expression was scored as overexpression (OE), complete absence (CA), cytoplasmic (CY) or wild type (WT). p53 IHC was evaluated as a binary classifier where any abnormal staining predicted deleterious TP53 mutation and as a ternary classifier where OE, CA or WT staining predicted gain‐of‐function (GOF or nonsynonymous), loss‐of‐function (LOF including stopgain, indel, splicing) or no detectable TP53 mutations (NDM), respectively. Deleterious TP53 mutations were detected in 169/171 (99%) HGSOC and 7/80 (8.8%) EC. The overall accuracy for the best performing IHC assay for binary and ternary prediction was 0.94 and 0.91 respectively, which improved to 0.97 (sensitivity 0.96, specificity 1.00) and 0.95 after secondary analysis of discordant cases. The sensitivity for predicting LOF mutations was lower at 0.76 because p53 IHC detected mutant p53 protein in 13 HGSOC with LOF mutations. CY staining associated with LOF was seen in 4 (2.3%) of HGSOC. Optimized p53 IHC can approach 100% specificity for the presence of TP53 mutation and its high negative predictive value is clinically useful as it can exclude the possibility of a low‐grade serous tumour. 4.1% of HGSOC cases have detectable WT staining while harboring a TP53 LOF mutation, which limits sensitivity for binary prediction of

  1. Overexpression of p53 mRNA in colorectal cancer and its relationship to p53 gene mutation.

    PubMed Central

    el-Mahdani, N.; Vaillant, J. C.; Guiguet, M.; Prévot, S.; Bertrand, V.; Bernard, C.; Parc, R.; Béréziat, G.; Hermelin, B.

    1997-01-01

    We analysed the frequency of p53 mRNA overexpression in a series of 109 primary colorectal carcinomas and its association with p53 gene mutation, which has been correlated with short survival. Sixty-nine of the 109 cases (63%) demonstrated p53 mRNA overexpression, without any correlation with stage or site of disease. Comparison with p53 gene mutation indicated that, besides cases in which p53 gene mutation and p53 mRNA overexpression were either both present (40 cases) or both absent (36 cases), there were also cases in which p53 mRNA was overexpressed in the absence of any mutation (29 cases) and those with a mutant gene in which the mRNA was not overexpressed (four cases). Moreover, the mutant p53 tumours exhibited an increase of p53 mRNA expression, which was significantly higher in tumours expressing the mutated allele alone than in tumours expressing both wild- and mutated-type alleles. These data (1) show that p53 mRNA overexpression is a frequent event in colorectal tumours and is not predictive of the status of the gene, i.e. whether or not a mutation is present; (2) provide further evidence that p53 protein overexpression does not only result from an increase in the half-life of mutated p53 and suggest that inactivation of the p53 function in colorectal cancers involves at least two distinct mechanisms, including p53 overexpression and/or mutation; and (3) suggest that p53 mRNA overexpression is an early event, since it is not correlated with Dukes stage. PMID:9052405

  2. Nutlin-3 induces HO-1 expression by activating JNK in a transcription-independent manner of p53.

    PubMed

    Choe, Yun-Jeong; Lee, Sun-Young; Ko, Kyung Won; Shin, Seok Joon; Kim, Ho-Shik

    2014-03-01

    A recent study reported that p53 can induce HO-1 by directly binding to the putative p53 responsive element in the HO-1 promoter. In this study, we report that nutlin-3, a small molecule antagonist of HDM2, induces the transcription of HO-1 in a transcription-independent manner of p53. Nutlin-3 induced HO-1 expression at the level of transcription in human cancer cells such as U2OS and RKO cells. This induction of HO-1 did not occur in SAOS cells in which p53 was mutated and was prevented by knocking down the p53 protein using p53 siRNA transfection, but not by PFT-α, an inhibitor of the transcriptional activity of p53. Accompanying HO-1 expression, nutlin-3 stimulated the accumulation of ROS and the phosphorylation of MAPKs such as JNK, p38 MAPK and ERK1/2. Nutlin-3-induced HO-1 expression was suppressed by TEMPO, a ROS scavenger, and chemical inhibitors of JNK and p38 MAPK but not ERK1/2. In addition, nutlin‑3-induced phosphorylation of JNK but not p38 MAPK was inhibited by TEMPO. Notably, the levels of nutlin-3-induced ROS were correlated with the mitochondrial translocation of p53 and this induction was prevented by PFT-μ, an inhibitor of the mitochondrial translocation of p53. Consistent with the effect of the ROS scavenger and MAPK inhibitors, PFT-μ reduced HO-1 expression and the phosphorylation of JNK induced by nutlin-3. In the experiments of analyzing cell death, the knockdown of HO-1 augmented nutlin-3-induced apoptosis. Collectively, these results suggest that nutlin-3 induces HO-1 expression via the activation of both JNK which is dependent on ROS generated by p53 translocated to the mitochondria and p38 MAPK which appears to be stimulated by a ROS-independent mechanism, and this HO-1 induction may inhibit nutlin-3-induced apoptosis, constituting a negative feedback loop of p53-induced apoptosis.

  3. Mutant p53 expression in kidney tubules adjacent to renal cell carcinoma: evidence of a precursor lesion.

    PubMed

    Lai, R; el Dabbagh, L; Mourad, W A

    1996-06-01

    Neoplastic transformation can be associated with mutations of the p53 gene. This leads to stabilization of its protein product and to its accumulation, which allows immunohistochemical detection. Mutant p53 expression has been seen in many neoplasms, including renal cell carcinoma (RCC). We recently described putative precursor lesions of RCC. The lesions were defined as intratubular epithelial dysplasia (IED) of kidney tubules adjacent to RCC. They were seen in one-third of the cases studied. The findings were based only on light microscopic analysis. We hypothesized that neoplastic transformation would be manifested by mutant p53 expression in the kidney tubules adjacent to RCC and not in nonneoplastic kidneys. Immunohistochemical staining for p53 in 24 cases of RCC with adjacent kidneys was performed. We used the DO-7 monoclonal antibody reactive for the N-terminal of the p53 protein on formalin-fixed paraffin-embedded tissue. Sections from 14 kidneys resected for nonneoplastic conditions were used as controls. Twenty-one (87%) of the 24 cases of RCC had nuclear p53 expression in the tumor cells. This included 14 cases (58%) with intense reactivity and 7 cases (29%) with weaker p53 immunoreactivity. Of the 24 cases of RCC, IED was identified in 13 cases (54%). Immunoreactivity for p53 was focally seen in tubules of all the lesions, as well as in the nonlesional areas. Six of the lesions exhibited intense nuclear staining. The kidneys adjacent to the RCC, with no evidence of IED, showed focally intense positive p53 nuclear staining in four cases. None of the control specimens showed p53 expression. Our findings provide supportive evidence that previously described IED in kidneys adjacent to RCC are most likely precursor lesions of the neoplasm. Aberrant expression of p53 in areas without evidence of IED may suggest that neoplastic transformation manifested by p53 mutation in kidney tubules may be seen before the development of the morphologic features of

  4. Transcriptional analysis of immune-related gene expression in p53-deficient mice with increased susceptibility to influenza A virus infection.

    PubMed

    Yan, Wenjun; Wei, Jianchao; Deng, Xufang; Shi, Zixue; Zhu, Zixiang; Shao, Donghua; Li, Beibei; Wang, Shaohui; Tong, Guangzhi; Ma, Zhiyong

    2015-08-18

    p53 is a tumor suppressor that contributes to the host immune response against viral infections in addition to its well-established protective role against cancer development. In response to influenza A virus (IAV) infection, p53 is activated and plays an essential role in inhibiting IAV replication. As a transcription factor, p53 regulates the expression of a range of downstream responsive genes either directly or indirectly in response to viral infection. We compared the expression profiles of immune-related genes between IAV-infected wild-type p53 (p53WT) and p53-deficient (p53KO) mice to gain an insight into the basis of p53-mediated antiviral response. p53KO and p53WT mice were infected with influenza A/Puerto Rico/8/1934 (PR8) strain. Clinical symptoms and body weight changes were monitored daily. Lung specimens of IAV-infected mice were collected for analysis of virus titers and gene expression profiles. The difference in immune-related gene expression levels between IAV-infected p53KO and p53WT mice was comparatively determined using microarray analysis and confirmed by quantitative real-time reverse transcription polymerase chain reaction. p53KO mice showed an increased susceptibility to IAV infection compared to p53WT mice. Microarray analysis of gene expression profiles in the lungs of IAV-infected mice indicated that the increased susceptibility was associated with significantly changed expression levels in a range of immune-related genes in IAV-infected p53KO mice. A significantly attenuated expression of Ifng (encoding interferon (IFN)-gamma), Irf7 (encoding IFN regulator factor 7), and antiviral genes, such as Mx2 and Eif2ak2 (encoding PKR), were observed in IAV-infected p53KO mice, suggesting an impaired IFN-mediated immune response against IAV infection in the absence of p53. In addition, dysregulated expression levels of proinflammatory cytokines and chemokines, such as Ccl2 (encoding MCP-1), Cxcl9, Cxcl10 (encoding IP-10), and Tnf, were detected

  5. The absence of p53 during Human Cytomegalovirus infection leads to decreased UL53 expression, disrupting UL50 localization to the inner nuclear membrane, and thereby inhibiting capsid nuclear egress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuan, Man I; O’Dowd, John M.; Fortunato, Elizabeth

    Our electron microscopy study (Kuan et al., 2016) found HCMV nuclear capsid egress was significantly reduced in p53 knockout cells (p53KOs), correlating with inhibited formation of infoldings of the inner nuclear membrane (IINMs). Molecular examination of these phenomena has found p53KOs expressed UL97 and phosphorylated lamins, however the lamina failed to remodel. The nuclear egress complex (NEC) protein UL50 was expressed in almost all cells. UL50 re-localized to the inner nuclear membrane (INM) in ~90% of wt cells, but only ~35% of p53KOs. UL53 expression was significantly reduced in p53KOs, and cells lacking UL50 nuclear staining, expressed no UL53. Re-introductionmore » of p53 into p53KOs largely recovered UL53 positivity and UL50 nuclear re-localization. Nuclear rim located UL50/53 puncta, which co-localized with the major capsid protein, were largely absent in p53KOs. We believe these puncta were IINMs. In the absence of p53, UL53 expression was inhibited, disrupting formation of the NEC/IINMs, and reducing functional virion secretion. -- Highlights: •Phosphorylated nuclear lamins were inefficiently remodeled in p53KO cells. •p53KO cells expressed UL50, but it was not efficiently targeted to the nuclear rim. •UL53 was not expressed in the large majority of p53KO cells. •Cells failing to express UL53 did not localize UL50 to the nucleus. •NEC puncta/infoldings of the inner nuclear membrane were scarce in p53KO cells.« less

  6. Interplay between PTB and miR-1285 at the p53 3′UTR modulates the levels of p53 and its isoform Δ40p53α

    PubMed Central

    Katoch, Aanchal; George, Biju; Iyyappan, Amrutha; Khan, Debjit

    2017-01-01

    Abstract p53 and its translational isoform Δ40p53 are involved in many important cellular functions like cell cycle, cell proliferation, differentiation and metabolism. Expression of both the isoforms can be regulated at different steps. In this study, we explored the role of 3′UTR in regulating the expression of these two translational isoforms. We report that the trans acting factor, Polypyrimidine Tract Binding protein (PTB), also interacts specifically with 3′UTR of p53 mRNA and positively regulates expression of p53 isoforms. Our results suggest that there is interplay between miRNAs and PTB at the 3′UTR under normal and stress conditions like DNA damage. Interestingly, PTB showed some overlapping binding regions in the p53 3′UTR with miR-1285. In fact, knockdown of miR-1285 as well as expression of p53 3′UTR with mutated miR-1285 binding sites resulted in enhanced association of PTB with the 3′UTR, which provides mechanistic insights of this interplay. Taken together, the results provide a plausible molecular basis of how the interplay between miRNAs and the PTB protein at the 3′UTR can play pivotal role in fine tuning the expression of the two p53 isoforms. PMID:28973454

  7. p53 elevation in human cells halt SV40 infection by inhibiting T-ag expression

    PubMed Central

    Drayman, Nir; Ben-nun-Shaul, Orly; Butin-Israeli, Veronika; Srivastava, Rohit; Rubinstein, Ariel M.; Mock, Caroline S.; Elyada, Ela; Ben-Neriah, Yinon; Lahav, Galit; Oppenheim, Ariella

    2016-01-01

    SV40 large T-antigen (T-ag) has been known for decades to inactivate the tumor suppressor p53 by sequestration and additional mechanisms. Our present study revealed that the struggle between p53 and T-ag begins very early in the infection cycle. We found that p53 is activated early after SV40 infection and defends the host against the infection. Using live cell imaging and single cell analyses we found that p53 dynamics are variable among individual cells, with only a subset of cells activating p53 immediately after SV40 infection. This cell-to-cell variabilty had clear consequences on the outcome of the infection. None of the cells with elevated p53 at the beginning of the infection proceeded to express T-ag, suggesting a p53-dependent decision between abortive and productive infection. In addition, we show that artificial elevation of p53 levels prior to the infection reduces infection efficiency, supporting a role for p53 in defending against SV40. We further found that the p53-mediated host defense mechanism against SV40 is not facilitated by apoptosis nor via interferon-stimulated genes. Instead p53 binds to the viral DNA at the T-ag promoter region, prevents its transcriptional activation by Sp1, and halts the progress of the infection. These findings shed new light on the long studied struggle between SV40 T-ag and p53, as developed during virus-host coevolution. Our studies indicate that the fate of SV40 infection is determined as soon as the viral DNA enters the nucleus, before the onset of viral gene expression. PMID:27462916

  8. Association of abnormal morphology and altered gene expression in human preimplantation embryos.

    PubMed

    Wells, Dagan; Bermúdez, Mercedes G; Steuerwald, Nury; Malter, Henry E; Thornhill, Alan R; Cohen, Jacques

    2005-08-01

    We set out to characterize the expression of nine genes in human preimplantation embryos and determine whether abnormal morphology is associated with altered gene activity. Reverse transcription and real-time polymerase chain reaction were used to quantify the expression of multiple genes in each embryo. The genes studied have various important cellular roles (e.g., cell cycle regulation, DNA repair, and apoptosis). Research laboratory working closely with a clinical IVF practice. Over 50 embryos were donated by infertile patients (various etiologies). Among these, all major stages of preimplantation development and a variety of common morphologic abnormalities were represented. None. Quantification of mRNA transcripts. We detected an association between certain forms of abnormal morphology and disturbances of gene activity. Cellular fragmentation was associated with altered expression of several genes, including TP53, suggesting that fragmenting blastomeres are suffering stress of a type monitored by p53, possibly as a consequence of suboptimal culture conditions. Appropriate gene expression is vital for the regulation of metabolic pathways and key developmental events. Our data indicates a possible causal relationship between changes in gene expression and the formation of clinically relevant abnormal embryo morphologies. We hypothesize that embryos with expression profiles characteristic of good morphology and appropriate for their developmental stage have the greatest potential for implantation. If confirmed, this could lead to a new generation of preimplantation genetic diagnosis (PGD) tests for assessing embryo viability and predicting implantation potential.

  9. Expression of p53 and Bcl-xL as predictive markers for larynx preservation in advanced laryngeal cancer

    PubMed Central

    Kumar, Bhavna; Cordell, Kitrina G.; D’Silva, Nisha; Prince, Mark E.; Adams, Meredith E.; Fisher, Susan G.; Wolf, Gregory T.; Carey, Thomas E.; Bradford, Carol R.

    2012-01-01

    Objective To assess tumor markers in advanced laryngeal cancer. Design Marker expression and clinical outcome. Setting Laboratory. Patients Pretreatment tumor biopsies were analyzed from patients enrolled in the Department of Veterans Affairs laryngeal cancer trial. Main Outcome Measures Expression of p53 and Bcl-xL in pretreatment biopsies was assessed for correlation with chemotherapy response, laryngeal preservation, and survival. Results Higher rates of larynx preservation were observed in patients whose tumors expressed p53 versus those that did not (73% versus 53%, p = 0.0304). Higher rates of larynx preservation were also observed in patients whose tumors expressed low levels of Bcl-xL versus those that expressed high levels (90% versus 60%, p = 0.02). Patients were then categorized into 3 risk groups (low, intermediate and high risk) based on their tumor p53 and Bcl-xL expression status. We observed that patients whose tumors had the high risk biomarker profile (low p53 and high Bcl-xL) were less likely to preserve their larynx than patients whose tumors had the intermediate risk (high p53 and low or high Bcl-xL) or low risk (low p53 and low Bcl-xL) biomarker profile. The larynx preservation rates were 100%, 76% and 54% for the low, intermediate and high risk groups respectively (Fisher exact 0.039). Conclusions Tumor expression of p53 and Bcl-xL is a strong predictor of successful organ preservation in patients treated with induction chemotherapy followed by radiation in responding tumors. PMID:18427001

  10. A study on the effect of Helicobacter pylori infection on p53 expression in gastric cancer and gastritis tissues.

    PubMed

    Salih, Barik A; Gucin, Zuhal; Bayyurt, Nizamettin

    2013-09-16

    Helicobacter pylori cause damage to gastric epithelial cells and alterations in the p53 gene that lead to cancer development. This study aimed to determine the correlation of p53 expression with H. pylori using immunohistochemistry, RFLP-PCR, and histopathology. Gastric biopsy samples from gastric cancer (GC) (n = 54) and gastritis (n = 31) patients were examined for histopathological changes and expression of p53 protein by immunohistochemistry. Immunohistochemical analysis of p53 protein expression in H. pylori-positive GC sections showed an average of 44.3% positive cells in tumors and 6.9% in normal tissues, as compared to 16.4% and 4.4% in H. pylori-negative sections. P53 expression showed significant association with H. pylori (P = 0.005), invasion depth (P = 0.029) and inflammation reaction (P = 0.008). In gastritis sections, no difference in the average p53 staining in H. pylori-positive or -negative sections was seen. PCR-RFLP results also showed no difference in genotype frequencies of p53 in H. pylori-positive or -negative gastritis sections. Histopathology study of H. pylori-positive GC sections showed that 97.2% were the intestinal type and 2.8% the diffuse type, while in H. pylori-negative sections 35.2% were the intestinal type and 64.8% the diffuse type. Biopsy sections from H. pylori-positive gastritis patients revealed more severe inflammation than those of H. pylori-negative patients. Our results show that H. pylori infection affects p53 expression in GC. The average p53 expression was significantly higher in tumor than in normal tissues. In gastritis sections p53 expression was significantly associated with H. pylori.

  11. A new invertebrate member of the p53 gene family is developmentally expressed and responds to polychlorinated biphenyls.

    PubMed Central

    Jessen-Eller, Kathryn; Kreiling, Jill A; Begley, Gail S; Steele, Marjorie E; Walker, Charles W; Stephens, Raymond E; Reinisch, Carol L

    2002-01-01

    The cell-cycle checkpoint protein p53 both directs terminal differentiation and protects embryos from DNA damage. To study invertebrate p53 during early development, we identified three differentially expressed p53 family members (p53, p97, p120) in the surf clam, Spisula solidissima. In these mollusks, p53 and p97 occur in both embryonic and adult tissue, whereas p120 is exclusively embryonic. We sequenced, cloned, and characterized p120 cDNA. The predicted protein, p120, resembles p53 across all evolutionarily conserved regions and contains a C-terminal extension with a sterile alpha motif (SAM) as in p63 and p73. These vertebrate forms of p53 are required for normal inflammatory, epithelial, and neuronal development. Unlike clam p53 and p97, p120 mRNA and protein levels are temporally expressed in embryos, with mRNA levels decreasing with increasing p120 protein (R(2) = 0.97). Highest surf clam p120 mRNA levels coincide with the onset of neuronal growth. In earlier work we have shown that neuronal development is altered by exposure to polychlorinated biphenyls (PCBs), a neurotoxic environmental contaminant. In this study we show that PCBs differentially affect expression of the three surf clam p53 family members. p120 mRNA and protein are reduced the most and earliest in development, p97 protein shows a smaller and later reduction, and p53 protein levels do not change. For the first time we report that unlike p53 and p97, p120 is specifically embryonic and expressed in a time-dependent manner. Furthermore, p120 responds to PCBs by 48 hr when PCB-induced suppression of the serotonergic nervous system occurs. PMID:11940455

  12. Immunohistochemical analysis of P53 protein in odontogenic cysts

    PubMed Central

    Gaballah, Essam Taher M.A.; Tawfik, Mohamed A.

    2010-01-01

    The p53 is a well-known tumor suppressor gene, the mutations of which are closely related to the decreased differentiation of cells. Findings of studies on immunohistochemical P53 expression in odontogenic cysts are controversial. The present study was carried-out to investigate the immunohistochemical expression of P53 protein in odontogenic cysts. Thirty paraffin blocks of diagnosed odontogenic cysts were processed to determine the immunohistochemical expression of P53 protein. Nine of the 11 odontogenic keratocysts (81.8%) expressed P53, one of three dentigerous cyst cases expressed P53, while none of the 16 radicular cysts expressed P53 protein. The findings of the present work supported the reclassification of OKC as keratocystic odontogenic tumor. PMID:23960493

  13. p53 in pure epithelioid PEComa: an immunohistochemistry study and gene mutation analysis.

    PubMed

    Bing, Zhanyong; Yao, Yuan; Pasha, Theresa; Tomaszewski, John E; Zhang, Paul J

    2012-04-01

    Pure epithelioid PEComa (PEP; so-called epithelioid angiomyolipoma) is rare and is more often associated with aggressive behaviors. The pathogenesis of PEP has been poorly understood. The authors studied p53 expression and gene mutation in PEPs by immunohistochemistry, single-strand conformation polymorphism, and direct sequencing in paraffin material from 8 PEPs. A group of classic angiomyolipomas (AMLs) were also analyzed for comparison. Five PEPs were from kidneys and 1 each from the heart, the liver, and the uterus. PEPs showed much stronger p53 nuclear staining (Allred score 6.4 ± 2.5) than the classic AML (2.3 ± 2.9) (P < .01). There was no p53 single-strand conformation polymorphism identified in either the PEPs or the 8 classic AMLs. p53 mutation analyses by direct sequencing of exons 5 to 9 showed 4 mutations in 3 of 8 PEPs but none in any of the 8 classic AMLs. The mutations included 2 missense mutations in a hepatic PEComa and 2 silent mutations in 2 renal PEPs. Both the missense mutations in the hepatic PEComa involved the exon 5, one involving codon 165, with change from CAG to CAC (coding amino acid changed from glutamine to histidine), and the other involving codon 182, with change from TGC to TAC (coding amino acid changed from cysteine to tyrosine). The finding of stronger p53 expression and mutations in epithelioid angiomyolipomas might have contributed to their less predictable behavior. However, the abnormal p53 expression cannot be entirely explained by p53 mutations in the exons examined in the PEPs.

  14. Mutant p53-Expressing Cells Undergo Necroptosis via Cell Competition with the Neighboring Normal Epithelial Cells.

    PubMed

    Watanabe, Hirotaka; Ishibashi, Kojiro; Mano, Hiroki; Kitamoto, Sho; Sato, Nanami; Hoshiba, Kazuya; Kato, Mugihiko; Matsuzawa, Fumihiko; Takeuchi, Yasuto; Shirai, Takanobu; Ishikawa, Susumu; Morioka, Yuka; Imagawa, Toshiaki; Sakaguchi, Kazuyasu; Yonezawa, Suguru; Kon, Shunsuke; Fujita, Yasuyuki

    2018-06-26

    p53 is a tumor suppressor protein, and its missense mutations are frequently found in human cancers. During the multi-step progression of cancer, p53 mutations generally accumulate at the mid or late stage, but not in the early stage, and the underlying mechanism is still unclear. In this study, using mammalian cell culture and mouse ex vivo systems, we demonstrate that when p53R273H- or p53R175H-expressing cells are surrounded by normal epithelial cells, mutant p53 cells undergo necroptosis and are basally extruded from the epithelial monolayer. When mutant p53 cells alone are present, cell death does not occur, indicating that necroptosis results from cell competition with the surrounding normal cells. Furthermore, when p53R273H mutation occurs within RasV12-transformed epithelia, cell death is strongly suppressed and most of the p53R273H-expressing cells remain intact. These results suggest that the order of oncogenic mutations in cancer development could be dictated by cell competition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Concordant p53 and mdm-2 protein expression in vulvar squamous cell carcinoma and adjacent lichen sclerosus.

    PubMed

    Carlson, J A; Amin, S; Malfetano, J; Tien, A T; Selkin, B; Hou, J; Goncharuk, V; Wilson, V L; Rohwedder, A; Ambros, R; Ross, J S

    2001-06-01

    To determine if carcinogenic events in vulvar skin precede the onset of morphologic atypia, the authors investigated for derangements in DNA content, cell proliferation, and cell death in vulvar carcinomas and surrounding skin in 140 samples of tumor and surrounding skin collected from 35 consecutive vulvectomy specimen for squamous cell carcinoma (SCC) or vulvar intraepithelial neoplasia (VIN) 3. Vulvar non-cancer excisions were used as controls. Investigations consisted of histologic classification and measurement of 9 variables--epidermal thickness (acanthosis and rete ridge length), immunolabeling index (LI) for 3 proteins (p53 protein, Ki-67, and mdm-2), pattern of p53 expression (dispersed vs. compact), DNA content index, and presence of aneuploidy by image analysis and apoptotic rate by Apotag labeling. Significant positive correlations were found for all nine variables studied versus increasing histologic severity in two proposed histologic stepwise models of vulvar carcinogenesis (lichen sclerosus (LS) and VIN 3 undifferentiated associated SCC groups). High p53 LI (>25) and the compact pattern of p53 expression (suspected oncoprotein) significantly correlated with LS and its associated vulvar samples compared with samples not associated with LS (P < or = 0.001). Furthermore, p53 LI, mdm-2 LI, and pattern of p53 expression were concordant between patient matched samples of LS and SCC. In addition, mdm-2 LI significantly correlated with dispersed pattern p53 LI suggesting a response to wild-type p53 protein accumulation. These findings support the hypothesis that neoplastic transformation occurs in sequential steps and compromises proteins involved in the cell cycle control. Concordance of p53 and mdm-2 protein expression in LS and adjacent SCC provides evidence that LS can act as a precursor lesion in the absence of morphologic atypia. Overexpression of mdm-2 with stabilization and inactivation of p53 protein may provide an alternate pathway for vulvar

  16. p73 Protein Expression Correlates With Radiation-Induced Apoptosis in the Lack of p53 Response to Radiation Therapy for Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakatsuki, Masaru; Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba; Ohno, Tatsuya

    2008-03-15

    Purpose: p73 belongs to the p53 tumor suppressor family of genes and can inhibit cell growth in a p53-like manner by inducing apoptosis or cell cycle arrest. Here, we investigated whether p73 could compensate for impaired p53 function in apoptosis induced by radiation therapy (RT) for cervical cancer. Methods and Materials: Sixty-eight patients with squamous cell carcinoma of the cervix who received definitive RT combined with (n = 37) or without (n = 31) cisplatin were investigated. Biopsy specimens were excised from the cervical tumor before RT and after 9 Gy. Results: Mean apoptosis index (AI) was 0.93% before RTmore » and 1.97% after 9 Gy with a significant increase (p < 0.001). For all patients, there was a significant correlation between p73 expression positivity after 9 Gy and AI ratio (AI after 9 Gy/AI before RT) (p = 0.021). Forty-one patients were regarded as the p53-responding group according to the expression of p53 after 9 Gy, whereas the remaining 27 patients were regarded as the p53-nonresponding group. A significant correlation between p73 expression after 9 Gy and AI ratio was observed in the p53-non-responding group (p < 0.001) but not in the p53-responding group (p = 0.940). Conclusion: Our results suggest that p73 plays an important role in compensating for the lack of p53 function in radiation-induced apoptosis of cervical cancer.« less

  17. Accumulation of p53 in infectious mononucleosis tissues.

    PubMed

    Ehsan, A; Fan, H; Eagan, P A; Siddiqui, H A; Gulley, M L

    2000-11-01

    Epstein-Barr virus (EBV) infects lymphocytes, where it persists indefinitely for the life of the host; whether the virus interacts with p53 to maintain itself in these cells is unknown. Lymphoid biopsy samples from 10 patients with infectious mononucleosis (IM) were examined for expression of p53 by immunohistochemistry. Accumulation of p53 was detected in all 10 cases, primarily in large lymphocytes of the expanded paracortex. The presence of EBV was confirmed in all 10 cases by EBER1 (EBV-encoded RNA) in situ hybridization, whereas 11 non-IM control samples lacked significant EBER1 and did not express p53 in paracortical lymphocytes. Interestingly, EBV infection alone does not cause accumulation of intracellular p53, because many more cells expressed EBER1 than p53 in the IM tissues. To determine whether p53 was confined to the subset of infected cells in which viral replication was occurring, BZLF1 immunostains were performed. Viral BZLF1 was detected in 8 of 10 IM tissues; however, the paucity and small size of the BZLF1-expressing lymphocytes suggests that they are not the same cells overexpressing p53. To further examine the relationship between p53 and EBV gene expression, the tissues were studied for latent membrane protein 1 (LMP1) expression by immunohistochemistry. Viral LMP1 was observed in the large paracortical lymphocytes of all 10 cases of IM, indicating co-localization of p53 and LMP1 in these cells. Our findings confirm that p53 overexpression is not specific for nodal malignancy and that p53 accumulation is characteristic of IM. Because p53 was not coexpressed in the same cells as BZLF1, it appears that BZLF1 is not directly responsible for p53 accumulation. Nevertheless, co-localization of p53 and LMP1 in activated-appearing lymphocytes suggests that EBV infection is responsible for p53 accumulation. HUM PATHOL 31:1397-1403. Copyright 2000 by W.B. Saunders Company

  18. p21WAF1 immunohistochemical expression in breast carcinoma: correlations with clinicopathological data, oestrogen receptor status, MIB1 expression, p53 gene and protein alterations and relapse-free survival.

    PubMed Central

    Barbareschi, M.; Caffo, O.; Doglioni, C.; Fina, P.; Marchetti, A.; Buttitta, F.; Leek, R.; Morelli, L.; Leonardi, E.; Bevilacqua, G.; Dalla Palma, P.; Harris, A. L.

    1996-01-01

    p21 protein (p21) inhibitor of cyclin-dependent kinases is a critical downstream effector in the p53-specific pathway of growth control. p21 can also be induced by p53-independent pathways in relation to terminal differentiation. We investigated p21 immunoreactivity in normal breast and in 91 breast carcinomas [three in situ ductal carcinomas (DCIS) with microinfiltration and 88 infiltrating carcinomas, 17 of which with an associated DCIS; 57 node negative and 34 node positive] with long-term follow-up (median = 58 months). Seven additional breast carcinomas with known p53 gene mutations were investigated. In normal breast p21 expression was seen in the nuclei of rare luminal cells of acinar structures, and in occasional myoepithelial cells. Poorly differentiated DCIS showed high p21 expression, whereas well-differentiated DCIS tumours showed few p21-reactive cells. p21 was seen in 82 (90%) infiltrating tumours; staining was heterogeneous; the percentage of reactive nuclei ranged from 1% to 35%. High p21 expression (more than 10% of reactive cells) was seen in 24 (26%) cases, and was associated with high tumour grade (P = 0.032); no associations were seen with tumour size, metastases, oestrogen receptor status, MIB1 expression and p53 expression. p21 expression in cases with p53 gene mutations was low in six cases and high in one. High p21 expression was associated with short relapse-free survival (P = 0.003). Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8688323

  19. p14 expression differences in ovarian benign, borderline and malignant epithelial tumors.

    PubMed

    Cabral, Vinicius Duarte; Cerski, Marcelle Reesink; Sa Brito, Ivana Trindade; Kliemann, Lucia Maria

    2016-10-22

    Abnormalities in tumor suppressors p14, p16 and p53 are reported in several human cancers. In ovarian epithelial carcinogenesis, p16 and p53 show higher immunohistochemical staining frequencies in malignant tumors and are associated with poor prognoses. p14 was only analyzed in carcinomas, with conflicting results. There are no reports on its expression in benign and borderline tumors. This study aims to determine p14, p16 and p53 expression frequencies in ovarian benign, borderline and malignant tumors and their associations with clinical parameters. A cross-sectional study utilizing immunohistochemistry was performed on paraffin-embedded ovarian epithelial tumor samples. Clinical data were collected from medical records. Fisher's exact test and the Bonferroni correction were performed for frequency associations. Survival comparisons utilized Kaplan-Meier and log rank testing. Associations were considered significant when p < 0.05. p14 absent expression was associated with malignant tumors (60 % positive) (p = 0.000), while 93 % and 94 % of benign and borderline tumors, respectively, were positive. p16 was positive in 94.6 % of carcinomas, 75 % of borderline and 45.7 % of benign tumors (p = 0.000). p53 negative staining was associated with benign tumors (2.9 % positive) (p = 0.016) but no difference was observed between borderline (16.7 %) and malignant tumors (29.7 %) (p = 0.560). No associations were found between expression rates, disease-free survival times or clinical variables. Carcinoma subtypes showed no difference in expression. This is the first description of p14 expression in benign and borderline tumors. It remains stable in benign and borderline tumors, while carcinomas show a significant absence of staining. This may indicate that p14 abnormalities occur later in carcinogenesis. p16 and p53 frequencies increase from benign to borderline and malignant tumors, similarly to previous reports, possibly reflecting the

  20. Gain-of-function mutant p53 but not p53 deletion promotes head and neck cancer progression in response to oncogenic K-ras

    PubMed Central

    Acin, Sergio; Li, Zhongyou; Mejia, Olga; Roop, Dennis R; El-Naggar, Adel K; Caulin, Carlos

    2015-01-01

    Mutations in p53 occur in over 50% of the human head and neck squamous cell carcinomas (SCCHN). The majority of these mutations result in the expression of mutant forms of p53, rather than deletions in the p53 gene. Some p53 mutants are associated with poor prognosis in SCCHN patients. However, the molecular mechanisms that determine the poor outcome of cancers carrying p53 mutations are unknown. Here, we generated a mouse model for SCCHN and found that activation of the endogenous p53 gain-of-function mutation p53R172H, but not deletion of p53, cooperates with oncogenic K-ras during SCCHN initiation, accelerates oral tumour growth, and promotes progression to carcinoma. Mechanistically, expression profiling of the tumours that developed in these mice and studies using cell lines derived from these tumours determined that mutant p53 induces the expression of genes involved in mitosis, including cyclin B1 and cyclin A, and accelerates entry in mitosis. Additionally, we discovered that this oncogenic function of mutant p53 was dependent on K-ras because the expression of cyclin B1 and cyclin A decreased, and entry in mitosis was delayed, after suppressing K-ras expression in oral tumour cells that express p53R172H. The presence of double-strand breaks in the tumours suggests that oncogene-dependent DNA damage resulting from K-ras activation promotes the oncogenic function of mutant p53. Accordingly, DNA damage induced by doxorubicin also induced increased expression of cyclin B1 and cyclin A in cells that express p53R172H. These findings represent strong in vivo evidence for an oncogenic function of endogenous p53 gain-of-function mutations in SCCHN and provide a mechanistic explanation for the genetic interaction between oncogenic K-ras and mutant p53. PMID:21952947

  1. Immunohistochemical study of p53 and proliferating cell nuclear antigen expression in odontogenic keratocyst and periapical cyst.

    PubMed

    Sajeevan, Thara Purath; Saraswathi, Tillai Rajasekaran; Ranganathan, Kannan; Joshua, Elizabeth; Rao, Uma Devi K

    2014-07-01

    p53 protein is a product of p53 gene, which is now classified as a tumor suppressor gene. The gene is a frequent target for mutation, being seen as a common step in the pathogenesis of many human cancers. Proliferating cell nuclear antigen (PCNA) is an auxiliary protein of DNA polymerase delta and plays a critical role in initiation of cell proliferation. The aim of this study is to assess and compare the expression of p53 and PCNA in lining epithelium of odontogenic keratocyst (OKC) and periapical cyst (PA). A total of 20 cases comprising 10 OKC and 10 PA were included in retrospective study. Three paraffin section of 4 μm were cut, one was used for routine hematoxylin and eosin stain, while the other two were used for immunohistochemistry. Statistical analysis was performed using Chi-square test. The level of staining and intensity were assessed in all these cases. OKC showed PCNA expression in all cases (100%), whereas in perapical cyst only 60% of cases exhibited PCNA staining. (1) OKC showed p53 expression in 6 cases (60%) whereas in PA only 10% of the cases exhibited p53 staining. Chi-square test showed PCNA staining intensity was more significant than p53 in OKC. (2) The staining intensity of PA using p53, PCNA revealed that PCNA stating intensity was more significant than p53. OKC shows significant proliferative activity than PA using PCNA and p53. PCNA staining was more intense when compared with p53 in both OKC and PA.

  2. Comparison of the QuantiGene 2.0 Assay and Real-Time RT-PCR in the Detection of p53 Isoform mRNA Expression in Formalin-Fixed Paraffin-Embedded Tissues- A Preliminary Study

    PubMed Central

    Morten, Brianna C.; Scott, Rodney J.; Avery-Kiejda, Kelly A.

    2016-01-01

    p53 is expressed as multiple smaller isoforms whose functions in cancer are not well understood. The p53 isoforms demonstrate abnormal expression in different cancers, suggesting they are important in modulating the function of full-length p53 (FLp53). The quantification of relative mRNA expression has routinely been performed using real-time PCR (qPCR). However, there are serious limitations when detecting p53 isoforms using this method, particularly for formalin-fixed paraffin-embedded (FFPE) tissues. The use of FFPE tumours would be advantageous to correlate expression of p53 isoforms with important clinical features of cancer. One alternative method of RNA detection is the hybridization-based QuantiGene 2.0 Assay, which has been shown to be advantageous for the detection of RNA from FFPE tissues. In this pilot study, we compared the QuantiGene 2.0 Assay to qPCR for the detection of FLp53 and its isoform Δ40p53 in matched fresh frozen (FF) and FFPE breast tumours. FLp53 mRNA expression was detected using qPCR in FF and FFPE tissues, but Δ40p53 mRNA was only detectable in FF tissues. Similar results were obtained for the QuantiGene 2.0 Assay. FLp53 relative mRNA expression was shown to be strongly correlated between the two methods (R2 = 0.9927, p = 0.0031) in FF tissues, however Δ40p53 was not (R2 = 0.4429, p = 0.3345). When comparing the different methods for the detection of FLp53 mRNA from FFPE and FF samples, no correlation (R2 = 0.0002, p = 0.9863) was shown using the QuantiGene 2.0 Assay, and in contrast, the level of expression was highly correlated between the two tissues using qPCR (R2 = 0.8753, p = 0.0644). These results suggest that both the QuantiGene 2.0 Assay and qPCR methods are inadequate for the quantification of Δ40p53 mRNA in FFPE tissues. Therefore, alternative methods of RNA detection and quantification are required to study the relative expression of Δ40p53 in FFPE samples. PMID:27832134

  3. Regulation of monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors.

    PubMed

    Boidot, Romain; Végran, Frédérique; Meulle, Aline; Le Breton, Aude; Dessy, Chantal; Sonveaux, Pierre; Lizard-Nacol, Sarab; Feron, Olivier

    2012-02-15

    The monocarboxylate transporter (MCT) family member MCT1 can transport lactate into and out of tumor cells. Whereas most oxidative cancer cells import lactate through MCT1 to fuel mitochondrial respiration, the role of MCT1 in glycolysis-derived lactate efflux remains less clear. In this study, we identified a direct link between p53 function and MCT1 expression. Under hypoxic conditions, p53 loss promoted MCT1 expression and lactate export produced by elevated glycolytic flux, both in vitro and in vivo. p53 interacted directly with the MCT1 gene promoter and altered MCT1 mRNA stabilization. In hypoxic p53(-/-) tumor cells, NF-κB further supported expression of MCT1 to elevate its levels. Following glucose deprivation, upregulated MCT1 in p53(-/-) cells promoted lactate import and favored cell proliferation by fuelling mitochondrial respiration. We also found that MCT1 expression was increased in human breast tumors harboring p53 mutations and coincident features of hypoxia, with higher MCT1 levels associated with poorer clinical outcomes. Together, our findings identify MCT1 as a target for p53 repression and they suggest that MCT1 elevation in p53-deficient tumors allows them to adapt to metabolic needs by facilitating lactate export or import depending on the glucose availability.

  4. Human neuroblastoma cells with acquired resistance to the p53 activator RITA retain functional p53 and sensitivity to other p53 activating agents

    PubMed Central

    Michaelis, M; Rothweiler, F; Agha, B; Barth, S; Voges, Y; Löschmann, N; von Deimling, A; Breitling, R; Wilhelm Doerr, H; Rödel, F; Speidel, D; Cinatl, J

    2012-01-01

    Adaptation of wild-type p53 expressing UKF-NB-3 cancer cells to the murine double minute 2 inhibitor nutlin-3 causes de novo p53 mutations at high frequency (13/20) and multi-drug resistance. Here, we show that the same cells respond very differently when adapted to RITA, a drug that, like nutlin-3, also disrupts the p53/Mdm2 interaction. All of the 11 UKF-NB-3 sub-lines adapted to RITA that we established retained functional wild-type p53 although RITA induced a substantial p53 response. Moreover, all RITA-adapted cell lines remained sensitive to nutlin-3, whereas only five out of 10 nutlin-3-adapted cell lines retained their sensitivity to RITA. In addition, repeated adaptation of the RITA-adapted sub-line UKF-NB-3rRITA10 μM to nutlin-3 resulted in p53 mutations. The RITA-adapted UKF-NB-3 sub-lines displayed no or less pronounced resistance to vincristine, cisplatin, and irradiation than nutlin-3-adapted UKF-NB-3 sub-lines. Furthermore, adaptation to RITA was associated with fewer changes at the expression level of antiapoptotic factors than observed with adaptation to nutlin-3. Transcriptomic analyses indicated the RITA-adapted sub-lines to be more similar at the gene expression level to the parental UKF-NB-3 cells than nutlin-3-adapted UKF-NB-3 sub-lines, which correlates with the observed chemotherapy and irradiation sensitivity phenotypes. In conclusion, RITA-adapted cells retain functional p53, remain sensitive to nutlin-3, and display a less pronounced resistance phenotype than nutlin-3-adapted cells. PMID:22476102

  5. Human neuroblastoma cells with acquired resistance to the p53 activator RITA retain functional p53 and sensitivity to other p53 activating agents.

    PubMed

    Michaelis, M; Rothweiler, F; Agha, B; Barth, S; Voges, Y; Löschmann, N; von Deimling, A; Breitling, R; Doerr, H Wilhelm; Rödel, F; Speidel, D; Cinatl, J

    2012-04-05

    Adaptation of wild-type p53 expressing UKF-NB-3 cancer cells to the murine double minute 2 inhibitor nutlin-3 causes de novo p53 mutations at high frequency (13/20) and multi-drug resistance. Here, we show that the same cells respond very differently when adapted to RITA, a drug that, like nutlin-3, also disrupts the p53/Mdm2 interaction. All of the 11 UKF-NB-3 sub-lines adapted to RITA that we established retained functional wild-type p53 although RITA induced a substantial p53 response. Moreover, all RITA-adapted cell lines remained sensitive to nutlin-3, whereas only five out of 10 nutlin-3-adapted cell lines retained their sensitivity to RITA. In addition, repeated adaptation of the RITA-adapted sub-line UKF-NB-3(r)RITA(10 μM) to nutlin-3 resulted in p53 mutations. The RITA-adapted UKF-NB-3 sub-lines displayed no or less pronounced resistance to vincristine, cisplatin, and irradiation than nutlin-3-adapted UKF-NB-3 sub-lines. Furthermore, adaptation to RITA was associated with fewer changes at the expression level of antiapoptotic factors than observed with adaptation to nutlin-3. Transcriptomic analyses indicated the RITA-adapted sub-lines to be more similar at the gene expression level to the parental UKF-NB-3 cells than nutlin-3-adapted UKF-NB-3 sub-lines, which correlates with the observed chemotherapy and irradiation sensitivity phenotypes. In conclusion, RITA-adapted cells retain functional p53, remain sensitive to nutlin-3, and display a less pronounced resistance phenotype than nutlin-3-adapted cells.

  6. Nuclear inclusion bodies of mutant and wild-type p53 in cancer: a hallmark of p53 inactivation and proteostasis remodelling by p53 aggregation.

    PubMed

    De Smet, Frederik; Saiz Rubio, Mirian; Hompes, Daphne; Naus, Evelyne; De Baets, Greet; Langenberg, Tobias; Hipp, Mark S; Houben, Bert; Claes, Filip; Charbonneau, Sarah; Delgado Blanco, Javier; Plaisance, Stephane; Ramkissoon, Shakti; Ramkissoon, Lori; Simons, Colinda; van den Brandt, Piet; Weijenberg, Matty; Van England, Manon; Lambrechts, Sandrina; Amant, Frederic; D'Hoore, André; Ligon, Keith L; Sagaert, Xavier; Schymkowitz, Joost; Rousseau, Frederic

    2017-05-01

    Although p53 protein aggregates have been observed in cancer cell lines and tumour tissue, their impact in cancer remains largely unknown. Here, we extensively screened for p53 aggregation phenotypes in tumour biopsies, and identified nuclear inclusion bodies (nIBs) of transcriptionally inactive mutant or wild-type p53 as the most frequent aggregation-like phenotype across six different cancer types. p53-positive nIBs co-stained with nuclear aggregation markers, and shared molecular hallmarks of nIBs commonly found in neurodegenerative disorders. In cell culture, tumour-associated stress was a strong inducer of p53 aggregation and nIB formation. This was most prominent for mutant p53, but could also be observed in wild-type p53 cell lines, for which nIB formation correlated with the loss of p53's transcriptional activity. Importantly, protein aggregation also fuelled the dysregulation of the proteostasis network in the tumour cell by inducing a hyperactivated, oncogenic heat-shock response, to which tumours are commonly addicted, and by overloading the proteasomal degradation system, an observation that was most pronounced for structurally destabilized mutant p53. Patients showing tumours with p53-positive nIBs suffered from a poor clinical outcome, similar to those with loss of p53 expression, and tumour biopsies showed a differential proteostatic expression profile associated with p53-positive nIBs. p53-positive nIBs therefore highlight a malignant state of the tumour that results from the interplay between (1) the functional inactivation of p53 through mutation and/or aggregation, and (2) microenvironmental stress, a combination that catalyses proteostatic dysregulation. This study highlights several unexpected clinical, biological and therapeutically unexplored parallels between cancer and neurodegeneration. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great

  7. The Transcription Factor p53 Influences Microglial Activation Phenotype

    PubMed Central

    Jayadev, Suman; Nesser, Nicole K.; Hopkins, Stephanie; Myers, Scott J.; Case, Amanda; Lee, Rona J.; Seaburg, Luke A.; Uo, Takuma; Murphy, Sean P.; Morrison, Richard S.; Garden, Gwenn A.

    2011-01-01

    Several neurodegenerative diseases are influenced by the innate immune response in the central nervous system (CNS). Microglia, have pro-inflammatory and subsequently neurotoxic actions as well as anti-inflammatory functions that promote recovery and repair. Very little is known about the transcriptional control of these specific microglial behaviors. We have previously shown that in HIV associated neurocognitive disorders (HAND), the transcription factor p53 accumulates in microglia and that microglial p53 expression is required for the in vitro neurotoxicity of the HIV coat glycoprotein gp120. These findings suggested a novel function for p53 in regulating microglial activation. Here we report that in the absence of p53, microglia demonstrate a blunted response to interferon-γ, failing to increase expression of genes associated with classical macrophage activation or secrete pro-inflammatory cytokines. Microarray analysis of global gene expression profiles revealed increased expression of genes associated with anti-inflammatory functions, phagocytosis and tissue repair in p53 knockout (p53−/−) microglia compared with those cultured from strain matched p53 expressing (p53+/+) mice. We further observed that p53−/− microglia demonstrate increased phagocytic activity in vitro and expression of markers for alternative macrophage activation both in vitro and in vivo. In HAND brain tissue, the alternative activation marker CD163 was expressed in a separate subset of microglia than those demonstrating p53 accumulation. These data suggest that p53 influences microglial behavior, supporting the adoption of a pro-inflammatory phenotype, while p53 deficiency promotes phagocytosis and gene expression associated with alternative activation and anti-inflammatory functions. PMID:21598312

  8. Low p53 Binding Protein 1 (53BP1) Expression Is Associated With Increased Local Recurrence in Breast Cancer Patients Treated With Breast-Conserving Surgery and Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neboori, Hanmanth J.R.; Haffty, Bruce G., E-mail: hafftybg@umdnj.edu; Wu Hao

    2012-08-01

    Purpose: To investigate whether the expression of p53 binding protein 1 (53BP1) has prognostic significance in a cohort of early-stage breast cancer patients treated with breast-conserving surgery and radiotherapy (BCS+RT). Methods and Materials: A tissue microarray of early-stage breast cancer treated with BCS+RT from a cohort of 514 women was assayed for 53BP1, estrogen receptor, progesterone receptor, and HER2 expression by immunohistochemistry. Through log-rank tests and univariate and multivariate models, the staining profile of each tumor was correlated with clinical endpoints, including ipsilateral breast recurrence-free survival (IBRFS), distant metastasis-free survival (DMFS), cause-specific survival (CSS), recurrence-free survival (RFS), and overall survivalmore » (OS). Results: Of the 477 (93%) evaluable tumors, 63 (13%) were scored as low. Low expression of 53BP1 was associated with worse outcomes for all endpoints studied, including 10-year IBRFS (76.8% vs. 90.5%; P=.01), OS (66.4% vs. 81.7%; P=.02), CSS (66.0% vs. 87.4%; P<.01), DMFS (55.9% vs. 87.0%; P<.01), and RFS (45.2% vs. 80.6%; P<.01). Multivariate analysis incorporating various clinico-pathologic markers and 53BP1 expression found that 53BP1 expression was again an independent predictor of all endpoints (IBRFS: P=.0254; OS: P=.0094; CSS: P=.0033; DMFS: P=.0006; RFS: P=.0002). Low 53BP1 expression was also found to correlate with triple-negative (TN) phenotype (P<.01). Furthermore, in subset analysis of all TN breast cancer, negative 53BP1 expression trended for lower IBRFS (72.3% vs. 93.9%; P=.0361) and was significant for worse DMFS (48.2% vs. 86.8%; P=.0035) and RFS (37.8% vs. 83.7%; P=.0014). Conclusion: Our data indicate that low 53BP1 expression is an independent prognostic indicator for local relapse among other endpoints in early-stage breast cancer and TN breast cancer patients treated with BCS+RT. These results should be verified in larger cohorts of patients to validate their

  9. Expression of AID, P53, and Mlh1 proteins in endoscopically resected differentiated-type early gastric cancer

    PubMed Central

    Takeda, Yohei; Yashima, Kazuo; Hayashi, Akihiro; Sasaki, Shuji; Kawaguchi, Koichiro; Harada, Kenichi; Murawaki, Yoshikazu; Ito, Hisao

    2012-01-01

    AIM: To analyze the expression of the tumor-related proteins in differentiated-type early gastric carcinoma (DEGC) samples. METHODS: Tumor specimens were obtained from 102 patients (75 males and 27 females) who had received an endoscopic tumor resection at Tottori University Hospital between 2007 and 2009. Ninety-one cancer samples corresponded to noninvasive or intramucosal carcinoma according to the Vienna classification system, and 11 samples were submucosal invasive carcinomas. All of the EGCs were histologically differentiated carcinomas. All patients were classified as having Helicobacter pylori (H. pylori) infections by endoscopic atrophic changes or by testing seropositive for H. pylori IgG. All of the samples were histopathologically classified as either tubular or papillary adenocarcinoma according to their structure. The immunohistochemical staining was performed in a blinded manner with respect to the clinical information. Two independent observers evaluated protein expression. All data were statistically analyzed then. RESULTS: The rates of aberrant activation-induced cytidine deaminase (AID) expression and P53 overexpression were both 34.3% in DEGCs. The expression of Mlh1 was lost in 18.6% of DEGCs. Aberrant AID expression was not significantly associated with P53 overexpression in DEGCs. However, AID expression was associated with the severity of mononuclear cell activity in the non-cancerous mucosa adjacent to the tumor (P = 0.064). The rate of P53 expression was significantly greater in flat or depressed tumors than in elevated tumors. The frequency of Mlh1 loss was significantly increased in distal tumors, elevated gross-type tumors, papillary histological-type tumors, and tumors with a severe degree of endoscopic atrophic gastritis (P < 0.05). CONCLUSION: Aberrant AID expression, P53 overexpression, and the loss of Mlh1 were all associated with clinicopathological features and gastric mucosal alterations in DEGCs. The aberrant expression of AID

  10. Expression of p53/HGF/c-met/STAT3 signal in fetuses with neural tube defects.

    PubMed

    Trovato, Maria; D'Armiento, Maria; Lavra, Luca; Ulivieri, Alessandra; Dominici, Roberto; Vitarelli, Enrica; Grosso, Maddalena; Vecchione, Raffaella; Barresi, Gaetano; Sciacchitano, Salvatore

    2007-02-01

    Neural tube defects (NTD) are morphogenetic alterations due to a defective closure of neural tube. Hepatocyte growth factor (HGF)/c-met system plays a role in morphogenesis of nervous system, lung, and kidney. HGF/c-met morphogenetic effects are mediated by signal transducers and activators of transcription (STAT)3 and both HGF and c-met genes are regulated from p53. The aim of our study was to analyze mRNA and protein expressions of p53, HGF, c-met, and STAT3 in fetuses with NTD. By reverse transcriptase-polymerase chain reaction and immunohistochemistry, we analyzed neural tissues from four NTD fetuses and the corresponding non-malformed lungs, kidneys and placentas. We found a reduced mRNA expression of HGF/c-met/STAT3 pathway, in the malformed nervous systems and placentas. The reduced expression of this pathway correlated with the absence of p53 in all these samples. On the contrary, detectable expression levels of p53, HGF, c-met, and STAT3 were observed in non-malformed lungs and kidneys obtained from the same fetuses. Comparable results were obtained by immunohistochemistry, with the exception of p53, which was undetected in all fetal tissues. In conclusion, in NTD fetuses, both the defective neural tube tissue and the placenta have a reduction in all components of the p53/HGF/c-met/STAT3 cascade. This raises the possibility of using the suppression of these genes for early diagnosis of NTD especially on chorionic villus sampling.

  11. Rapamycin regulates the proliferation of Huh7, a hepatocellular carcinoma cell line, by up-regulating p53 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Sora; Jeon, Ji-Sook; Ahn, Curie

    Rapamycin, a specific inhibitor of mTOR used extensively as an immunosuppressant, has been expanded recently to cancer therapy, because the mTOR signal is known to be up-regulated in various cancer cells including hepatocellular carcinoma (HCC) cells. In spite of extensive efforts to employ mTOR inhibitors as anti-HCC therapy, they have not yet been approved by the FDA. Because of the heterogeneity and complexity of molecular signaling in HCC, suitable biomarkers should be identified or discovered to improve clinical efficacy of mTOR-specific inhibitors to HCC cells. In this study, the effect of rapamycin was investigated on two different HCC cell lines,more » Huh7 cells and HepG2 cells. Rapamycin was found to inhibit the proliferation of Huh7 cells but not of HepG2 cells. Moreover, it was found that rapamycin can up-regulate p53 at the protein level, but not affect its transcript. To understand the critical role of p53 in the rapamycin effect, knock-down experiments were performed using small-interfering RNAs (siRNAs). The anti-proliferative effect of rapamycin on Huh7 cells clearly disappeared after blocking p53 production with siRNA, which indicates that p53 is a critical factor in the anti-proliferative effect of rapamycin in HCC cells. The over-expression system of p53 was also employed to mimic the effect of rapamycin and found that cell proliferation was clearly down-regulated by p53 over-expression. Finally, we found that the extracellular signal-regulated kinase 1/2 (ERK1/2) signal was regulated by p53 whose expression was induced by rapamycin. Overall, this study demonstrates that rapamycin inhibited the proliferation of Huh7 cells by up-regulating the expression of p53 and down-regulating the ERK1/2 signal, indicating that p53 is a useful biomarker for anti-cancer therapy using the specific inhibitor of mTOR signal, rapamycin, against hepatocellular carcinoma cells. - Highlights: • Rapamycin inhibits the proliferation of hepatocellular carcinoma

  12. Analysis of TP53 gene expression and p53 level of human hypopharyngeal FaDu (HTB-43) head and neck cancer cell line after microRNA-181a inhibition.

    PubMed

    Cheah, Y K; Cheng, R W; Yeap, S K; Khoo, C H; See, H S

    2014-03-17

    The identification of new biomarkers for early detection of highly recurrent head and neck cancer is urgently needed. MicroRNAs (miRNAs) are small and non-coding RNAs that regulate cancer-related gene expression, such as tumor protein 53 (TP53) gene expression. This study was carried out to analyze TP53 gene expression using real-time PCR and to determine changes in intracellular p53 level by flow cytometry after downregulation of miRNA-181a miRNA inhibitor in the FaDu cell line. TP53 gene expression showed a 3-fold increment and the p53 protein level was also increased in the miRNA-181a-treated cells. In conclusion, miRNA-181a binds to the TP53 gene and inhibits its expression, decreasing the synthesis of p53.

  13. Chaperone-mediated autophagy degrades mutant p53

    PubMed Central

    Vakifahmetoglu-Norberg, Helin; Kim, Minsu; Xia, Hong-guang; Iwanicki, Marcin P.; Ofengeim, Dimitry; Coloff, Jonathan L.; Pan, Lifeng; Ince, Tan A.; Kroemer, Guido; Brugge, Joan S.; Yuan, Junying

    2013-01-01

    Missense mutations in the gene TP53, which encodes p53, one of the most important tumor suppressors, are common in human cancers. Accumulated mutant p53 proteins are known to actively contribute to tumor development and metastasis. Thus, promoting the removal of mutant p53 proteins in cancer cells may have therapeutic significance. Here we investigated the mechanisms that govern the turnover of mutant p53 in nonproliferating tumor cells using a combination of pharmacological and genetic approaches. We show that suppression of macroautophagy by multiple means promotes the degradation of mutant p53 through chaperone-mediated autophagy in a lysosome-dependent fashion. In addition, depletion of mutant p53 expression due to macroautophagy inhibition sensitizes the death of dormant cancer cells under nonproliferating conditions. Taken together, our results delineate a novel strategy for killing tumor cells that depend on mutant p53 expression by the activation of chaperone-mediated autophagy and potential pharmacological means to reduce the levels of accumulated mutant p53 without the restriction of mutant p53 conformation in quiescent tumor cells. PMID:23913924

  14. [The Expression of Pokemon in Endometrial Carcinoma Tissue and the Correlation with Mutant p53].

    PubMed

    Yi, Tian-jin; Wang, Ping

    2016-05-01

    To detect the expression of Pokemon in endometrial carcinoma (EC), to provide preliminary theoretical basis for clarifying pathogenesis and searching for effective targets. Ninety-eight cases of endometrial tissue paraffin specimens form July 2012 to July 2014 in West China Second University Hospital, Sichuan University, were collected, including: EC group, consisting of adenocarcinoma 23 cases, adenosquamous 12 cases, serous 3 cases, mucinous 11 cases and clear cell 9 cases, and control group, consisting of atypical hyperplasia endometrium 20 cases and normal endometrium 20 cases (secretory 10 cases, hyperplasia 10 cases). Immunohistochemistry was used to detect the expression of Pokemonin each section, analyzing the correlation of Pokemon expression with clinicopathologic characteristics and p53 expression. The positive rate of Pokemon in normal endometrium was 25% (5/20), significantly lower than that in atypical hyperplasia endometrium (60.0%, 12/20) and EC (93.1%, 54/58) (P < 0.05); the rate in type II was 97. 12% (34/35), significantly higher than that in type I (86.96%, 20/23) (P = 0.018). The positive rate of Pokemon in III-IV stage, type II and Ki-67 ≥ 50 EC tissue was much higher (P = 0.012, 0.023, 0.029). In type II EC tissue, the correlation index between Pokemon and p53 is 0.669 (P = 0.000). The over expression of Pokemon upregulates the expression of mutant p53, which may be one of the carcinogenesis modes in type II EC.

  15. Synergistic effect of p53 on TSA-induced stanniocalcin 1 expression in human nasopharyngeal carcinoma cells, CNE2.

    PubMed

    Ching, L Y; Yeung, Bonnie H Y; Wong, Chris K C

    2012-06-01

    Human stanniocalcin 1 (STC1) has recently been identified as a putative protein factor involved in cellular apoptosis. The use of histone deacetylase inhibitor (i.e. trichostatin A (TSA)) and doxorubicin (Dox) is one of the common treatment methods to induce apoptosis in human cancer cells. A study on TSA and Dox-mediated apoptosis may shed light on the regulation and function of STC1 in cancer treatment. In this study, TSA and Dox cotreatment in human nasopharyngeal carcinoma cells (CNE2) elicited synergistic effects on STC1 gene expression and cellular apoptosis. An activation of p53 (TP53) transcriptional activity in Dox- or Dox+TSA-treated cells was revealed by the increased expression levels of p53 mRNA/protein as well as p53-driven luciferase activities. To elucidate the possible involvement of p53 in STC1 gene transcription, a vector expressing wild-type or dominant negative (DN) p53 was transiently transfected into the cells. Both STC1 promoter luciferase constructs and chromatin immunoprecipitation assays did not support the direct role of p53 in STC1 gene transactivation. However, the synergistic effects of p53 on the induction of NF-κB phosphorylation and the recruitment of acetylated histone H3 in STC1 promoter were observed in TSA-cotreated cells. The overexpression of exogenous STC1 sensitized apoptosis in Dox-treated cells. Taken together, this study provides data to show the cross talk of NF-κB, p53, and histone protein in the regulation of STC1 expression and function.

  16. Inhibition of p53 acetylation by INHAT subunit SET/TAF-Iβ represses p53 activity

    PubMed Central

    Kim, Ji-Young; Lee, Kyu-Sun; Seol, Jin-Ee; Yu, Kweon; Chakravarti, Debabrata; Seo, Sang-Beom

    2012-01-01

    The tumor suppressor p53 responds to a wide variety of cellular stress signals. Among potential regulatory pathways, post-translational modifications such as acetylation by CBP/p300 and PCAF have been suggested for modulation of p53 activity. However, exactly how p53 acetylation is modulated remains poorly understood. Here, we found that SET/TAF-Iβ inhibited p300- and PCAF-mediated p53 acetylation in an INHAT (inhibitor of histone acetyltransferase) domain-dependent manner. SET/TAF-Iβ interacted with p53 and repressed transcription of p53 target genes. Consequently, SET/TAF-Iβ blocked both p53-mediated cell cycle arrest and apoptosis in response to cellular stress. Using different apoptosis analyses, including FACS, TUNEL and BrdU incorporation assays, we also found that SET/TAF-Iβ induced cellular proliferation via inhibition of p53 acetylation. Furthermore, we observed that apoptotic Drosophila eye phenotype induced by either dp53 overexpression or UV irradiation was rescued by expression of dSet. Inhibition of dp53 acetylation by dSet was observed in both cases. Our findings provide new insights into the regulation of stress-induced p53 activation by HAT-inhibiting histone chaperone SET/TAF-Iβ. PMID:21911363

  17. Inhibition of p53 acetylation by INHAT subunit SET/TAF-Iβ represses p53 activity.

    PubMed

    Kim, Ji-Young; Lee, Kyu-Sun; Seol, Jin-Ee; Yu, Kweon; Chakravarti, Debabrata; Seo, Sang-Beom

    2012-01-01

    The tumor suppressor p53 responds to a wide variety of cellular stress signals. Among potential regulatory pathways, post-translational modifications such as acetylation by CBP/p300 and PCAF have been suggested for modulation of p53 activity. However, exactly how p53 acetylation is modulated remains poorly understood. Here, we found that SET/TAF-Iβ inhibited p300- and PCAF-mediated p53 acetylation in an INHAT (inhibitor of histone acetyltransferase) domain-dependent manner. SET/TAF-Iβ interacted with p53 and repressed transcription of p53 target genes. Consequently, SET/TAF-Iβ blocked both p53-mediated cell cycle arrest and apoptosis in response to cellular stress. Using different apoptosis analyses, including FACS, TUNEL and BrdU incorporation assays, we also found that SET/TAF-Iβ induced cellular proliferation via inhibition of p53 acetylation. Furthermore, we observed that apoptotic Drosophila eye phenotype induced by either dp53 overexpression or UV irradiation was rescued by expression of dSet. Inhibition of dp53 acetylation by dSet was observed in both cases. Our findings provide new insights into the regulation of stress-induced p53 activation by HAT-inhibiting histone chaperone SET/TAF-Iβ.

  18. p53 isoform Δ113p53/Δ133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage.

    PubMed

    Gong, Lu; Gong, Hongjian; Pan, Xiao; Chang, Changqing; Ou, Zhao; Ye, Shengfan; Yin, Le; Yang, Lina; Tao, Ting; Zhang, Zhenhai; Liu, Cong; Lane, David P; Peng, Jinrong; Chen, Jun

    2015-03-01

    The inhibitory role of p53 in DNA double-strand break (DSB) repair seems contradictory to its tumor-suppressing property. The p53 isoform Δ113p53/Δ133p53 is a p53 target gene that antagonizes p53 apoptotic activity. However, information on its functions in DNA damage repair is lacking. Here we report that Δ113p53 expression is strongly induced by γ-irradiation, but not by UV-irradiation or heat shock treatment. Strikingly, Δ113p53 promotes DNA DSB repair pathways, including homologous recombination, non-homologous end joining and single-strand annealing. To study the biological significance of Δ113p53 in promoting DNA DSB repair, we generated a zebrafish Δ113p53(M/M) mutant via the transcription activator-like effector nuclease technique and found that the mutant is more sensitive to γ-irradiation. The human ortholog, Δ133p53, is also only induced by γ-irradiation and functions to promote DNA DSB repair. Δ133p53-knockdown cells were arrested at the G2 phase at the later stage in response to γ-irradiation due to a high level of unrepaired DNA DSBs, which finally led to cell senescence. Furthermore, Δ113p53/Δ133p53 promotes DNA DSB repair via upregulating the transcription of repair genes rad51, lig4 and rad52 by binding to a novel type of p53-responsive element in their promoters. Our results demonstrate that Δ113p53/Δ133p53 is an evolutionally conserved pro-survival factor for DNA damage stress by preventing apoptosis and promoting DNA DSB repair to inhibit cell senescence. Our data also suggest that the induction of Δ133p53 expression in normal cells or tissues provides an important tolerance marker for cancer patients to radiotherapy.

  19. Combined RAF1 protein expression and p53 mutational status provides a strong predictor of cellular radiosensitivity

    PubMed Central

    Warenius, H M; Jones, M; Gorman, T; McLeish, R; Seabra, L; Barraclough, R; Rudland, P

    2000-01-01

    The tumour suppressor gene, p53, and genes coding for positive signal transduction factors can influence transit through cell-cycle checkpoints and modulate radiosensitivity. Here we examine the effects of RAF1 protein on the rate of exit from a G2/M block induced by γ-irradiation in relation to intrinsic cellular radiosensitivity in human cell lines expressing wild-type p53 (wtp53) protein as compared to mutant p53 (mutp53) protein. Cell lines which expressed mutp53 protein were all relatively radioresistant and exhibited no relationship between RAF1 protein and cellular radiosensitivity. Cell lines expressing wtp53 protein, however, showed a strong relationship between RAF1 protein levels and the radiosensitivity parameter SF2. In addition, when post-irradiation perturbation of G2/M transit was compared using the parameter T50 (time after the peak of G2/M delay at which 50% of the cells had exited from a block induced by 2 Gy of irradiation), RAF1 was related to T50 in wtp53, but not mutp53, cell lines. Cell lines which expressed wtp53 protein and high levels of RAF1 had shorter T50s and were also more radiosensitive. These results suggest a cooperative role for wtp53 and RAF1 protein in determining cellular radiosensitivity in human cells, which involves control of the G2/M checkpoint. © 2000 Cancer Research Campaign PMID:10993658

  20. Elevated expression of ribosomal protein genes L37, RPP-1, and S2 in the presence of mutant p53.

    PubMed

    Loging, W T; Reisman, D

    1999-11-01

    The wild-type p53 protein is a DNA-binding transcription factor that activates genes such as p21, MDM2, GADD45, and Bax that are required for the regulation of cell cycle progression or apoptosis in response to DNA damage. Mutant forms of p53, which are transforming oncogenes and are expressed at high levels in tumor cells, generally have a reduced binding affinity for the consensus DNA sequence. Interestingly, some p53 mutants that are no longer effective at binding to the consensus DNA sequence and transactivating promoters containing this target site have acquired the ability to transform cells in culture, in part through their ability to transactivate promoters of a number of genes that are not targets of the wild-type protein. Certain p53 mutants are therefore considered to be gain-of-function mutants and appear to be promoting proliferation or transforming cells through their ability to alter the expression of novel sets of genes. Our goal is to identify genes that have altered expression in the presence of a specific mutant p53 (Arg to Trp mutation at codon 248) protein. Through examining differential gene expression in cells devoid of p53 expression and in cells that express high levels of mutant p53 protein, we have identified three ribosomal protein genes that have elevated expression in response to mutant p53. Consistent with these findings, the overexpression of a number of ribosomal protein genes in human tumors and evidence for their contribution to oncogenic transformation have been reported previously, although the mechanism leading to this overexpression has remained elusive. We show results that indicate that expression of these specific ribosomal protein genes is increased in the presence of the R248W p53 mutant, which provides a mechanism for their overexpression in human tumors.

  1. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis.

    PubMed

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-11-18

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment.

  2. Increased p53 immunopositivity in anaplastic medulloblastoma and supratentorial PNET is not caused by JC virus

    PubMed Central

    Eberhart, Charles G; Chaudhry, Aneeka; Daniel, Richard W; Khaki, Leila; Shah, Keerti V; Gravitt, Patti E

    2005-01-01

    Background p53 mutations are relatively uncommon in medulloblastoma, but abnormalities in this cell cycle pathway have been associated with anaplasia and worse clinical outcomes. We correlated p53 protein expression with pathological subtype and clinical outcome in 75 embryonal brain tumors. The presence of JC virus, which results in p53 protein accumulation, was also examined. Methods p53 protein levels were evaluated semi-quantitatively in 64 medulloblastomas, 3 atypical teratoid rhabdoid tumors (ATRT), and 8 supratentorial primitive neuroectodermal tumors (sPNET) using immunohistochemistry. JC viral sequences were analyzed in DNA extracted from 33 frozen medulloblastoma and PNET samples using quantitative polymerase chain reaction. Results p53 expression was detected in 18% of non-anaplastic medulloblastomas, 45% of anaplastic medulloblastomas, 67% of ATRT, and 88% of sPNET. The increased p53 immunoreactivity in anaplastic medulloblastoma, ATRT, and sPNET was statistically significant. Log rank analysis of clinical outcome revealed significantly shorter survival in patients with p53 immunopositive embryonal tumors. No JC virus was identified in the embryonal brain tumor samples, while an endogenous human retrovirus (ERV-3) was readily detected. Conclusion Immunoreactivity for p53 protein is more common in anaplastic medulloblastomas, ATRT and sPNET than in non-anaplastic tumors, and is associated with worse clinical outcomes. However, JC virus infection is not responsible for increased levels of p53 protein. PMID:15717928

  3. Inability of p53-reactivating compounds Nutlin-3 and RITA to overcome p53 resistance in tumor cells deficient in p53Ser46 phosphorylation.

    PubMed

    Ma, Teng; Yamada, Shumpei; Ichwan, Solachuddin J A; Iseki, Sachiko; Ohtani, Kiyoshi; Otsu, Megumi; Ikeda, Masa-Aki

    2012-01-20

    The p53 tumor suppressor protein plays key roles in protecting cells from tumorigenesis. Phosphorylation of p53 at Ser46 (p53Ser46) is considered to be a crucial modification regulating p53-mediated apoptosis. Because the activity of p53 is impaired in most human cancers, restoration of wild-type p53 (wt-p53) function by its gene transfer or by p53-reactivating small molecules has been extensively investigated. The p53-reactivating compounds Nutlin-3 and RITA activate p53 in the absence of genotoxic stress by antagonizing the action of its negative regulator Mdm2. Although controversial, Nutlin-3 was shown to induce p53-mediated apoptosis in a manner independent of p53 phosphorylation. Recently, RITA was shown to induce apoptosis by promoting p53Ser46 phosphorylation. Here we examined whether Nutlin-3 or RITA can overcome resistance to p53-mediated apoptosis in p53-resistant tumor cell lines lacking the ability to phosphorylate p53Ser46. We show that Nutlin-3 did not rescue the apoptotic defect of a Ser46 phosphorylation-defective p53 mutant in p53-sensitive tumor cells, and that RITA neither restored p53Ser46 phosphorylation nor induced apoptosis in p53Ser46 phosphorylation-deficient cells retaining wt-p53. Furthermore, treatment with Nutlin-3 or RITA together with adenoviral p53 gene transfer also failed to induce apoptosis in p53Ser46 phosphorylation-deficient cells either expressing or lacking wt-p53. These results indicate that neither Nutlin-3 nor RITA in able to induce p53-mediated apoptosis in the absence of p53Ser46 phosphorylation. Thus, the dysregulation of this phosphorylation in tumor cells may be a critical factor that limits the efficacy of these p53-based cancer therapies. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. p53-independent p21 induction by MELK inhibition.

    PubMed

    Matsuda, Tatsuo; Kato, Taigo; Kiyotani, Kazuma; Tarhan, Yunus Emre; Saloura, Vassiliki; Chung, Suyoun; Ueda, Koji; Nakamura, Yusuke; Park, Jae-Hyun

    2017-08-29

    MELK play critical roles in human carcinogenesis through activation of cell proliferation, inhibition of apoptosis and maintenance of stemness. Therefore, MELK is a promising therapeutic target for a wide range of cancers. Although p21 is a well-known p53-downstream gene, we found that treatment with a potent MELK inhibitor, OTS167, could induce p21 protein expression in cancer cell lines harboring loss-of-function TP53 mutations. We also confirmed that MELK knockdown by siRNA induced the p21 expression in p53-deficient cancer cell lines and caused the cell cycle arrest at G1 phase. Further analysis indicated that FOXO1 and FOXO3, two known transcriptional regulators of p21, were phosphorylated by MELK and thus be involved in the induction of p21 after MELK inhibition. Collectively, our herein findings suggest that MELK inhibition may be effective for human cancers even if TP53 is mutated.

  5. p53-independent p21 induction by MELK inhibition

    PubMed Central

    Matsuda, Tatsuo; Kato, Taigo; Kiyotani, Kazuma; Tarhan, Yunus Emre; Saloura, Vassiliki; Chung, Suyoun; Ueda, Koji; Nakamura, Yusuke; Park, Jae-Hyun

    2017-01-01

    MELK play critical roles in human carcinogenesis through activation of cell proliferation, inhibition of apoptosis and maintenance of stemness. Therefore, MELK is a promising therapeutic target for a wide range of cancers. Although p21 is a well-known p53-downstream gene, we found that treatment with a potent MELK inhibitor, OTS167, could induce p21 protein expression in cancer cell lines harboring loss-of-function TP53 mutations. We also confirmed that MELK knockdown by siRNA induced the p21 expression in p53-deficient cancer cell lines and caused the cell cycle arrest at G1 phase. Further analysis indicated that FOXO1 and FOXO3, two known transcriptional regulators of p21, were phosphorylated by MELK and thus be involved in the induction of p21 after MELK inhibition. Collectively, our herein findings suggest that MELK inhibition may be effective for human cancers even if TP53 is mutated. PMID:28938528

  6. p53 Mediates Vast Gene Expression Changes That Contribute to Poor Chemotherapeutic Response in a Mouse Model of Breast Cancer.

    PubMed

    Tonnessen-Murray, Crystal; Ungerleider, Nathan A; Rao, Sonia G; Wasylishen, Amanda R; Frey, Wesley D; Jackson, James G

    2018-05-28

    p53 is a transcription factor that regulates expression of genes involved in cell cycle arrest, senescence, and apoptosis. TP53 harbors mutations that inactivate its transcriptional activity in roughly 30% of breast cancers, and these tumors are much more likely to undergo a pathological complete response to chemotherapy. Thus, the gene expression program activated by wild-type p53 contributes to a poor response. We used an in vivo genetic model system to comprehensively define the p53- and p21-dependent genes and pathways modulated in tumors following doxorubicin treatment. We identified genes differentially expressed in spontaneous mammary tumors harvested from treated MMTV-Wnt1 mice that respond poorly (Trp53+/+) or favorably (Trp53-null) and those that lack the critical senescence/arrest p53 target gene Cdkn1a. Trp53 wild-type tumors differentially expressed nearly 10-fold more genes than Trp53-null tumors after treatment. Pathway analyses showed that genes involved in cell cycle, senescence, and inflammation were enriched in treated Trp53 wild-type tumors; however, no genes/pathways were identified that adequately explain the superior cell death/tumor regression observed in Trp53-null tumors. Cdkn1a-null tumors that retained arrest capacity (responded poorly) and those that proliferated (responded well) after treatment had remarkably different gene regulation. For instance, Cdkn1a-null tumors that arrested upregulated Cdkn2a (p16), suggesting an alternative, p21-independent route to arrest. Live animal imaging of longitudinal gene expression of a senescence/inflammation gene reporter in Trp53+/+ tumors showed induction during and after chemotherapy treatment, while tumors were arrested, but expression rapidly diminished immediately upon relapse. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. p53 functional impairment and high p21waf1/cip1 expression in human T-cell lymphotropic/leukemia virus type I-transformed T cells.

    PubMed

    Cereseto, A; Diella, F; Mulloy, J C; Cara, A; Michieli, P; Grassmann, R; Franchini, G; Klotman, M E

    1996-09-01

    Human T-cell lymphotropic/leukemia virus type I (HTLV-I) is associated with T-cell transformation both in vivo and in vitro. Although some of the mechanisms responsible for transformation remain unknown, increasing evidence supports a direct role of viral as well as dysregulated cellular proteins in transformation. We investigated the potential role of the tumor suppressor gene p53 and of the p53-regulated gene, p21waf1/cip1 (wild-type p53 activated fragment 1/cycling dependent kinases [cdks] interacting protein 1), in HTLV-I-infected T cells. We have found that the majority of HTLV-I-infected T cells have the wild-type p53 gene. However, its function in HTLV-I-transformed cells appears to be impaired, as shown by the lack of appropriate p53-mediated responses to ionizing radiation (IR). Interestingly, the expression of the p53 inducible gene, p21waf1/cip1, is elevated at the messenger ribonucleic acid and protein levels in all HTLV-I-infected T-cell lines examined as well as in Taxl-1, a human T-cell line stably expressing Tax. Additionally, Tax induces upregulation of a p21waf1/cip1 promoter-driven luciferase gene in p53 null cells, and increases p21waf1/cip1 expression in Jurkat T cells. These findings suggest that the Tax protein is at least partially responsible for the p53-independent expression of p21waf1/cip1 in HTLV-I-infected cells. Dysregulation of p53 and p21waf1/cip1 proteins regulating cell-cycle progression, may represent an important step in HTLV-I-induced T-cell transformation.

  8. Reactivation of wild-type and mutant p53 by tryptophanolderived oxazoloisoindolinone SLMP53-1, a novel anticancer small-molecule

    PubMed Central

    Soares, Joana; Raimundo, Liliana; Pereira, Nuno A.L.; Monteiro, Ângelo; Gomes, Sara; Bessa, Cláudia; Pereira, Clara; Queiroz, Glória; Bisio, Alessandra; Fernandes, João; Gomes, Célia; Reis, Flávio; Gonçalves, Jorge; Inga, Alberto; Santos, Maria M.M.; Saraiva, Lucília

    2016-01-01

    Restoration of the p53 pathway, namely by reactivation of mutant (mut) p53, represents a valuable anticancer strategy. Herein, we report the identification of the enantiopure tryptophanol-derived oxazoloisoindolinone SLMP53-1 as a novel reactivator of wild-type (wt) and mut p53, using a yeast-based screening strategy. SLMP53-1 has a p53-dependent anti-proliferative activity in human wt and mut p53R280K-expressing tumor cells. Additionally, SLMP53-1 enhances p53 transcriptional activity and restores wt-like DNA binding ability to mut p53R280K. In wt/mut p53-expressing tumor cells, SLMP53-1 triggers p53 transcription-dependent and mitochondrial apoptotic pathways involving BAX, and wt/mut p53 mitochondrial translocation. SLMP53-1 inhibits the migration of wt/mut p53-expressing tumor cells, and it shows promising p53-dependent synergistic effects with conventional chemotherapeutics. In xenograft mice models, SLMP53-1 inhibits the growth of wt/mut p53-expressing tumors, but not of p53-null tumors, without apparent toxicity. Collectively, besides the potential use of SLMP53-1 as anticancer drug, the tryptophanol-derived oxazoloisoindolinone scaffold represents a promissing starting point for the development of effective p53-reactivating drugs. PMID:26735173

  9. Expression of survivin and p53 in oral lichen planus, lichenoid reaction and lichenoid dysplasia: An immunohistochemical study

    PubMed Central

    Basheer, Shaini; Shameena, PM; Sudha, S; Varma, Sujatha; Vidyanath, S; Varekar, Aniruddha

    2017-01-01

    Context: The malignant transformation potential of oral lichen planus (OLP) and related lesions is a subject of great controversy. Aim: The aim of this study was to compare the expression of proteins related to apoptosis and tumour suppressor gene processes in OLP, oral lichenoid reaction (OLR) and oral lichenoid dysplasia (OLD). Materials and Methods The immunohistochemical study was carried out to investigate the expressions of survivin and p53 in a total of 30 lesional biopsy specimens - 10 cases each of OLP, OLR and OLD. The expression rates were further compared with 10 control specimens of normal oral mucosa (NORM). Results: Immunoreactivity for p53 was seen in 7 cases (70%) of OLD, 4 cases (40%) of OLP and 2 cases (20%) of OLR and none of NORM. We obtained a significant difference (P = 0.01) in mean p53 expression between the different entities. The positive staining rate of survivin was found to be significantly different between OLD (50%), OLP (10%), OLR (0%), and normal mucosa (0%) (P = 0.004). There was a positive correlation between p53 and survivin expression in OLP and OLD using Pearson's correlation coefficient. Conclusion: Lichenoid dysplasia has shown p53 and survivin expression in the range of not OLP, but leukoplakia. On the other hand, OLR seems to be an innocuous lesion. The study results with OLP are inconclusive but points toward a small but important malignant potential in OLP. This kind of comparative study highlights the importance of biopsying OLP and related lesions for proper diagnosis and appropriate management. PMID:29391729

  10. A SENSITIVE IMMUNOFLUORESCENCE ASSAY FOR DETECTION OF P53 PROTEIN ACCUMULATION IN SPUTUM

    EPA Science Inventory

    p53 mutations are common genetic alterations in lung cancers and usually result in p53 protein accumulation in tumor cells. Sputum is noninvasive to collect and ideal for screening p53 abnormalities. This study was to determine the feasibility of detecting p53 protein accumulatio...

  11. [Bendamustine-rituximab therapy is effective for transformed follicular lymphoma with significant expression of p53].

    PubMed

    Kuroda, Hiroyuki; Jomen, Wataru; Miura, Shogo; Arihara, Yohei; Yamada, Michiko; Hirako, Tasuku; Abe, Tomoyuki; Sakurai, Tamaki; Fujii, Shigeyuki; Maeda, Masahiro; Fujita, Miri; Nagashima, Kazuo; Okagawa, Yutaka; Hoki, Toshifumi; Kato, Junji

    2013-08-01

    We describe a patient with transformed follicular lymphoma(FL), expressing p53 but remaining in complete remission(CR) due to bendamustine-rituximab(BR)therapy. She was a 64-year-old female diagnosed with stage IV FL(grade 3A)in July 2007 when she was admitted with right lower abdominal pain and body weight loss. Colonoscopy revealed Bauhin' valve lymphoma of the terminal ileum, and computed tomography(CT)scan showed lymphadenopathy, involving the cervical, mediastinal para-aortic lymph nodes and right tonsil. She received chemotherapy with eight courses of CHOP therapy with rituximab and achieved CR. Two and a half years later, mediastinal lymph node swelling relapsed, and ibritumomab tiuxetan therapy induced the second CR. After ten months, however, a third relapse occurred as a submucosal tumor(SMT)of the stomach. Gastric SMT biopsy showed diffuse large B cell lymphoma(DLBCL)transformation with immunohistochemical expression of p53. Although gastric SMT disappeared after radiotherapy, which achieved the third CR, lymph node swelling was detected again in the para-aortic and-iliac artery lymph nodes in September 2011. Subsequently, she was treated with five courses of BR therapy, because bendamustine had been reported to be effective for p53 gene-deficient B cell neoplasms. The therapy was successful and achieved the fourth CR, demonstrating that BR therapy was effective for p53-expressing DLBCL.

  12. Fluorescence in situ hybridization of TP53 for the detection of chromosome 17 abnormalities in myelodysplastic syndromes.

    PubMed

    Sánchez-Castro, Judit; Marco-Betés, Víctor; Gómez-Arbonés, Xavier; García-Cerecedo, Tomás; López, Ricard; Talavera, Elisabeth; Fernández-Ruiz, Sara; Ademà, Vera; Marugan, Isabel; Luño, Elisa; Sanzo, Carmen; Vallespí, Teresa; Arenillas, Leonor; Marco Buades, Josefa; Batlle, Ana; Buño, Ismael; Martín Ramos, María Luisa; Blázquez Rios, Beatriz; Collado Nieto, Rosa; Vargas, Ma Teresa; González Martínez, Teresa; Sanz, Guillermo; Solé, Francesc

    2015-01-01

    Conventional G-banding cytogenetics (CC) detects chromosome 17 (chr17) abnormalities in 2% of patients with de novo myelodysplastic syndromes (MDS). We used CC and fluorescence in situ hybridization (FISH) (LSI p53/17p13.1) to assess deletion of 17p in 531 patients with de novo MDS from the Spanish Group of Hematological Cytogenetics. FISH detected - 17 or 17p abnormalities in 13 cases (2.6%) in whom no 17p abnormalities were revealed by CC: 0.9% of patients with a normal karyotype, 0% in non-informative cytogenetics, 50% of patients with a chr17 abnormality without loss of 17p and 4.7% of cases with an abnormal karyotype not involving chr17. Our results suggest that applying FISH of 17p13 to identify the number of copies of the TP53 gene could be beneficial in patients with a complex karyotype. We recommend using FISH of 17p13 in young patients with a normal karyotype or non-informative cytogenetics, and always in isolated del(17p).

  13. Karyotypic complexity rather than chromosome 8 abnormalities aggravates the outcome of chronic lymphocytic leukemia patients with TP53 aberrations

    PubMed Central

    Blanco, Gonzalo; Puiggros, Anna; Baliakas, Panagiotis; Athanasiadou, Anastasia; García-Malo, MªDolores; Collado, Rosa; Xochelli, Aliki; Rodríguez-Rivera, María; Ortega, Margarita; Calasanz, Mª José; Luño, Elisa; Vargas, MªTeresa; Grau, Javier; Martínez-Laperche, Carolina; Valiente, Alberto; Cervera, José; Anagnostopoulos, Achilles; Gimeno, Eva; Abella, Eugènia; Stalika, Evangelia; Hernández-Rivas, Jesús Mª; Ortuño, Francisco José; Robles, Diego; Ferrer, Ana; Ivars, David; González, Marcos; Bosch, Francesc; Abrisqueta, Pau; Stamatopoulos, Kostas; Espinet, Blanca

    2016-01-01

    Patients with chronic lymphocytic leukemia (CLL) harboring TP53 aberrations (TP53abs; chromosome 17p deletion and/or TP53 mutation) exhibit an unfavorable clinical outcome. Chromosome 8 abnormalities, namely losses of 8p (8p−) and gains of 8q (8q+) have been suggested to aggravate the outcome of patients with TP53abs. However, the reported series were small, thus hindering definitive conclusions. To gain insight into this issue, we assessed a series of 101 CLL patients harboring TP53 disruption. The frequency of 8p− and 8q+ was 14.7% and 17.8% respectively. Both were associated with a significantly (P < 0.05) higher incidence of a complex karyotype (CK, ≥3 abnormalities) detected by chromosome banding analysis (CBA) compared to cases with normal 8p (N-8p) and 8q (N-8q), respectively. In univariate analysis for 10-year overall survival (OS), 8p− (P = 0.002), 8q+ (P = 0.012) and CK (P = 0.009) were associated with shorter OS. However, in multivariate analysis only CK (HR = 2.47, P = 0.027) maintained independent significance, being associated with a dismal outcome regardless of chromosome 8 abnormalities. In conclusion, our results highlight the association of chromosome 8 abnormalities with CK amongst CLL patients with TP53abs, while also revealing that CK can further aggravate the prognosis of this aggressive subgroup. PMID:27821812

  14. Simultaneous Analysis of P53 Protein Expression and Cell Proliferation in Irradiated Human Lymphocytes by Flow Cytometry

    PubMed Central

    de Freitas e Silva, Rafael; Gonçalves dos Santos, Neyliane Frassinetti; Pereira, Valéria Rěgo Alves; Amaral, Ademir

    2014-01-01

    P53 protein has an intrinsic role in modulating the cellular response against DNA radioinduced damages and has been pointed out as an indirect indicator of individual radiosensitivity. The rate of cell proliferation is also a parameter that has been related to tissue sensitivity to radiation. However, this feature is yet understudied. In this context, the aim of this work was to employ Flow Cytometry (FC) for simultaneously assessing of p53 protein expression levels together with cellular proliferation rate of irradiated human lymphocytes. From in vitro irradiated human blood samples, mononuclear cells were isolated and labeled with Carboxylfluorescein Diacetate Succinimidyl Ester (CFSE) prior to phytohaemagglutinin (PHA) stimulation in culture for 96 hours. Cells were also labeled with anti-p53 monoclonal antibody PE-conjugated in order to analyze either proliferation rate or p53 expression levels by FC. It was verified a reduction in the proliferation rate of irradiated lymphocytes and, in parallel, a rise in the p53 expression levels, similar for quiescent and proliferating lymphocytes. The results emphasize the importance of the use of CFSE-stained lymphocytes in assays associated to proliferation rate and the use of this methodology in several studies, such as for evaluating individual radiosensitivity. PMID:24659936

  15. Positive expression of p53, c-erbB2 and MRP proteins is correlated with survival rates of NSCLC patients.

    PubMed

    Xu, Yujin; Wang, Liancong; Zheng, Xiao; Liu, Guan; Wang, Yuezhen; Lai, Xiaojing; Li, Jianqiang

    2013-05-01

    The incidence of lung cancer is one of the leading causes of mortality. This study aimed to investigate the prognostic and predictive importance of p53, c-erbB2 and multidrug resistance proteins (MRP) expression and its correlation with clinicopathological characteristics of patients with non-small cell lung cancer (NSCLC). Expression of p53, c-erbB2 and MRP proteins in 152 tumor samples from resected primary NSCLCs was detected by immunohistochemical staining. The correlation of proteins, survival and clinicopathological characteristics was investigated in 152 patients undergoing potentially curative surgery. The positive rates of p53, c-erbB2 and MRP expression were 53.9 (82/152), 44.1 (67/152) and 43.4% (66/152), respectively. Overall survival rates of patients were markedly correlated with the overexpression of p53, c-erbB2 and MRP proteins. One, 2- and 3-year survival rates of patients exhibiting a positive expression of these proteins were 72.6, 54.8 and 32.2%, respectively. These rates were lower compared with those of patients with a negative expression of these proteins (92.1, 78.5 and 63.4%) (P=0.02, 0.01 or 0.00, respectively). Results of Cox's regression analysis showed that c-erbB2 expression and cell differentiation were independent prognostic factors in patients with NSCLC. These findings suggest that the positive expression of p53, c-erbB2 and MRP proteins is correlated with the survival rates of NSCLC patients. Detection of positive p53, c-erbB2 and MRP expression may be a useful predictive indicator of prognosis. Positive c-erbB2 expression is an independent prognostic factor, with a potential to be used as a predictive indicator of chemotherapy efficacy in NSCLC patients.

  16. Molecular markers in dysplasia of the larynx: expression of cyclin-dependent kinase inhibitors p21, p27 and p53 tumour suppressor gene in predicting cancer risk.

    PubMed

    Jeannon, J-P; Soames, J V; Aston, V; Stafford, F W; Wilson, J A

    2004-12-01

    Premalignant conditions affect the larynx. Dysplasia can progress in severity resulting in cancer depending on many clinical, pathological and molecular factors. The purpose of this study was to examine the expression of the p21 and p27 cyclin-dependent kinase inhibitors and p53 tumour suppressor gene in dysplasia of the larynx. A total of 114 cases of untreated dysplasia were selected from the archives of the University of Newcastle. p21, p27 and p53 immunohistochemistry was performed and the cases followed up. Twenty-eight dysplasias (24%) subsequently developed into cancers. Expression of the molecular factors studied was not associated with cancer progression. p53 expression was associated with smoking (P = 0.005). In contrast, grade of dysplasia was significantly associated with cancer risk (odds ratio 6.7; P = 0.0001). The majority (75%) of cancers were detected within 12 months of dysplasia being diagnosed.

  17. Immunohistochemical study of Ki67, CD34 and p53 expression in human tooth buds.

    PubMed

    Muica Nagy-Bota, Monica Cristina; Pap, Zsuzsanna; Denes, Lóránd; Ghizdavăţ, Alexandru; Brînzaniuc, Klara; Lup Coşarcă, Adina Simona; Chibelean Cireş-Mărginean, Manuela; Păcurar, Mariana; Pávai, Zoltán

    2014-01-01

    Establishment of Ki67, p53 and CD34 expression in human tooth buds of different stages of odontogenetic development. Tissue samples containing tooth buds were removed from the incisor areas of human fetuses in different stages of development (weeks 9-10, 12-13, 13-16, 21-24), and from the canine and molar areas of 21-24 weeks fetuses. The tissue fragments were fixed using formalin and were processed using common histological techniques with paraffin embedding. Immunostaining for Ki67, p53 and CD34 has been performed using the dextran method and moist heat antigen retrieval (except for CD34). The resulting slides were photographed and quantitatively evaluated. Ki67 immunoexpression decreases with advancement of the developmental stage of the tooth bud: in the inner enamel epithelium, between weeks 9 and 16 (IEE), in the preameloblasts (PB) between weeks 13 and 16, in the ameloblasts (AB) between weeks 21 and 24; outer enamel epithelium (OEE); stratum intermedium (SI); in the dental papilla: between weeks 9 and 10 in the dental papilla (DP), between weeks 13 and 16 in the outer layer of the dental papilla (DP1) and in the central layer of the dental papilla (DP2). Likewise, we noted Ki67 expression in the odontoblast layer (O) and pulp (P), between weeks 21 and 24. Concerning CD34 expression, we observed a decrease from weeks 9-10 until weeks 13-16, followed by an increase until weeks 21-24 of intrauterine life. From weeks 9-10, we observed a constant decrease of expression until weeks 13-16, followed by an increase during weeks 21-24. All Ki67, p53 and CD34 have been identified in the tooth bud. Ki67 expression gradually decreases with the embryonic development of the tooth, while p53 and CD34 expression decreases from weeks 9-10 to weeks 13-16 of intrauterine life, followed by an increase until weeks 21-24.

  18. Notch1 Signaling Sensitizes Tumor Necrosis Factor-related Apoptosis-inducing Ligand-induced Apoptosis in Human Hepatocellular Carcinoma Cells by Inhibiting Akt/Hdm2-mediated p53 Degradation and Up-regulating p53-dependent DR5 Expression*

    PubMed Central

    Wang, Chunmei; Qi, Runzi; Li, Nan; Wang, Zhengxin; An, Huazhang; Zhang, Qinghua; Yu, Yizhi; Cao, Xuetao

    2009-01-01

    Notch signaling plays a critical role in regulating cell proliferation, differentiation, and apoptosis. Our previous study showed that overexpression of Notch1 could inhibit human hepatocellular carcinoma (HCC) cell growth by arresting the cell cycle and inducing apoptosis. HCC cells are resistant to apoptotic induction by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), so new therapeutic approaches have been explored to sensitize HCC cells to TRAIL-induced apoptosis. We are wondering whether and how Notch1 signaling can enhance the sensitivity of HCC cells to TRAIL-induced apoptosis. In this study, we found that overexpression of ICN, the constitutive activated form of Notch1, up-regulated p53 protein expression in HCC cells by inhibiting proteasome degradation. p53 up-regulation was further observed in human primary hepatocellular carcinoma cells after activation of Notch signaling. Inhibition of the Akt/Hdm2 pathway by Notch1 signaling was responsible for the suppression of p53 proteasomal degradation, thus contributing to the Notch1 signaling-mediated up-regulation of p53 expression. Accordingly, Notch1 signaling could make HCC cells more sensitive to TRAIL-induced apoptosis, whereas Notch1 signaling lost the synergistic promotion of TRAIL-induced apoptosis in p53-silenced HepG2 HCC cells and p53-defective Hep3B HCC cells. The data suggest that enhancement of TRAIL-induced apoptosis by Notch1 signaling is dependent upon p53 up-regulation. Furthermore, Notch1 signaling could enhance DR5 expression in a p53-dependent manner. Taken together, Notch1 signaling sensitizes TRAIL-induced apoptosis in HCC cells by inhibiting Akt/Hdm2-mediated p53 degradation and up-regulating p53-dependent DR5 expression. Thus, our results suggest that activation of Notch1 signaling may be a promising approach to improve the therapeutic efficacy of TRAIL-resistant HCC. PMID:19376776

  19. [Interaction between p53 and MDM2 in human lung cancer cells].

    PubMed

    Rybárová, S; Hodorová, I; Vecanová, J; Muri, J; Mihalik, J

    2014-01-01

    The oncoprotein p53 protein induces cell growth arrest (apoptosis) in response to endo  or exogenous stimuli. Mutation of TP53 (gene encoding the p53 protein) is common in human malignancies and alters the conformation of p53. The result is a more stable protein which accumulates in nuclei of tumor cells with loss of function. Mutant p53 is stabilized, and it is possible to detect this form very clearly by immunohistochemistry (IHC). Expression of the MDM2 protein is used as a potential marker of p53 function. P53 levels in normal cells are highly determined by the MDM2 protein (murine double minute 2) -  mediated degradation of p53. MDM2 overexpression represents at least one mechanism by which p53 function can be abrogated during tumorigenesis. Lung carcinoma samples were obtained from patients, who underwent radical resection (lobectomy or pulmonectomy and lymphadectomy). Pathological dia-gnosis was based on the WHO criteria. In our study, we investigated the expression of p53 and MDM2 protein that might improve IHC as a marker for p53 status. Proteins were IHC detected in 136 samples of primary lung carcinoma. Immunostaining results of p53 positive samples were compared to IHC expression of MDM2 positive and MDM2 negative samples. Strong brown nuclear staining was visible in p53 and MDM2 positive cells. The most p53 positive cases were samples of squamocellular carcinoma (55%), then samples of large cell carcinoma (53%) and 26% adenocarcinoma samples showed the p53 immunoreactivity. No one sample of different types was p53 positive. When we compared the p53 expression and grade of tumor, we found that the p53 expression increased with the grade of tumor. For statistical evaluation, the chi square test was used. The relationship between p53 expression and type of tumor, also the p53 expression and grade of tumor was statistically significant (p = 0.000425; p = 0.00157). Regarding p53 and MDM2 expression, only nine samples (7%) were simultaneously p53 and

  20. Friend or Foe: MicroRNAs in the p53 network.

    PubMed

    Luo, Zhenghua; Cui, Ri; Tili, Esmerina; Croce, Carlo

    2018-04-10

    The critical tumor suppressor gene TP53 is either lost or mutated in more than half of human cancers. As an important transcriptional regulator, p53 modulates the expression of many microRNAs. While wild-type p53 uses microRNAs to suppress cancer development, microRNAs that are activated by gain-of-function mutant p53 confer oncogenic properties. On the other hand, the expression of p53 is tightly controlled by a fine-tune machinery including microRNAs. MicroRNAs can target the TP53 gene directly or other factors in the p53 network so that expression and function of either the wild-type or the mutant forms of p53 is downregulated. Therefore, depending on the wild-type or mutant p53 context, microRNAs contribute substantially to suppress or exacerbate tumor development. Copyright © 2018. Published by Elsevier B.V.

  1. DRAGO (KIAA0247), a new DNA damage-responsive, p53-inducible gene that cooperates with p53 as oncosuppressor. [Corrected].

    PubMed

    Polato, Federica; Rusconi, Paolo; Zangrossi, Stefano; Morelli, Federica; Boeri, Mattia; Musi, Alberto; Marchini, Sergio; Castiglioni, Vittoria; Scanziani, Eugenio; Torri, Valter; Broggini, Massimo

    2014-04-01

    p53 influences genomic stability, apoptosis, autophagy, response to stress, and DNA damage. New p53-target genes could elucidate mechanisms through which p53 controls cell integrity and response to damage. DRAGO (drug-activated gene overexpressed, KIAA0247) was characterized by bioinformatics methods as well as by real-time polymerase chain reaction, chromatin immunoprecipitation and luciferase assays, time-lapse microscopy, and cell viability assays. Transgenic mice (94 p53(-/-) and 107 p53(+/-) mice on a C57BL/6J background) were used to assess DRAGO activity in vivo. Survival analyses were performed using Kaplan-Meier curves and the Mantel-Haenszel test. All statistical tests were two-sided. We identified DRAGO as a new p53-responsive gene induced upon treatment with DNA-damaging agents. DRAGO is highly conserved, and its ectopic overexpression resulted in growth suppression and cell death. DRAGO(-/-) mice are viable without macroscopic alterations. However, in p53(-/-) or p53(+/-) mice, the deletion of both DRAGO alleles statistically significantly accelerated tumor development and shortened lifespan compared with p53(-/-) or p53(+/-) mice bearing wild-type DRAGO alleles (p53(-/-), DRAGO(-/-) mice: hazard ratio [HR] = 3.25, 95% confidence interval [CI] = 1.7 to 6.1, P < .001; p53(+/-), DRAGO(-/-) mice: HR = 2.35, 95% CI = 1.3 to 4.0, P < .001; both groups compared with DRAGO(+/+) counterparts). DRAGO mRNA levels were statistically significantly reduced in advanced-stage, compared with early-stage, ovarian tumors, but no mutations were found in several human tumors. We show that DRAGO expression is regulated both at transcriptional-through p53 (and p73) and methylation-dependent control-and post-transcriptional levels by miRNAs. DRAGO represents a new p53-dependent gene highly regulated in human cells and whose expression cooperates with p53 in tumor suppressor functions.

  2. DRAGO (KIAA0247), a New DNA Damage–Responsive, p53-Inducible Gene That Cooperates With p53 as Oncosupprossor

    PubMed Central

    Polato, Federica; Rusconi, Paolo

    2014-01-01

    Background p53 influences genomic stability, apoptosis, autophagy, response to stress, and DNA damage. New p53-target genes could elucidate mechanisms through which p53 controls cell integrity and response to damage. Methods DRAGO (drug-activated gene overexpressed, KIAA0247) was characterized by bioinformatics methods as well as by real-time polymerase chain reaction, chromatin immunoprecipitation and luciferase assays, time-lapse microscopy, and cell viability assays. Transgenic mice (94 p53−/− and 107 p53+/− mice on a C57BL/6J background) were used to assess DRAGO activity in vivo. Survival analyses were performed using Kaplan–Meier curves and the Mantel–Haenszel test. All statistical tests were two-sided. Results We identified DRAGO as a new p53-responsive gene induced upon treatment with DNA-damaging agents. DRAGO is highly conserved, and its ectopic overexpression resulted in growth suppression and cell death. DRAGO−/− mice are viable without macroscopic alterations. However, in p53−/− or p53+/− mice, the deletion of both DRAGO alleles statistically significantly accelerated tumor development and shortened lifespan compared with p53−/− or p53+/− mice bearing wild-type DRAGO alleles (p53−/−, DRAGO−/− mice: hazard ratio [HR] = 3.25, 95% confidence interval [CI] = 1.7 to 6.1, P < .001; p53+/−, DRAGO−/− mice: HR = 2.35, 95% CI = 1.3 to 4.0, P < .001; both groups compared with DRAGO+/+ counterparts). DRAGO mRNA levels were statistically significantly reduced in advanced-stage, compared with early-stage, ovarian tumors, but no mutations were found in several human tumors. We show that DRAGO expression is regulated both at transcriptional—through p53 (and p73) and methylation-dependent control—and post-transcriptional levels by miRNAs. Conclusions DRAGO represents a new p53-dependent gene highly regulated in human cells and whose expression cooperates with p53 in tumor suppressor functions. PMID:24652652

  3. Enhanced p53 gene transfer to human ovarian cancer cells using the cationic nonviral vector, DDC.

    PubMed

    Kim, Chong-Kook; Choi, Eun-Jeong; Choi, Sung-Hee; Park, Jeong-Sook; Haider, Khawaja Hasnain; Ahn, Woong Shick

    2003-08-01

    Previously we have formulated a new cationic liposome, DDC, composed of dioleoyltrimethylamino propane (DOTAP), 1,2-dioeoyl-3-phosphophatidylethanolamine (DOPE), and cholesterol (Chol), and it efficiently delivered plasmid DNA into ovarian cancer cells. Mutations in the p53 tumor suppressor gene are the most common molecular genetic abnormalities to be described in ovarian cancer. However, there has been so far no report of nonviral vector-mediated p53 gene deliveries in ovarian cancer. In this study, wild-type p53 DNA was transfected into the ovarian cancer cells, using the DDC as a nonviral vector and the expression and activity of p53 gene were evaluated both in vitro and in vivo. DDC liposomes were prepared by mixing DOTAP:DOPE:Chol in a 1:0.7:0.3 molar ratio using the extrusion method. Plasmid DNA (pp53-EGFP) and DDC complexes were transfected into ovarian carcinoma cells (OVCAR-3 cells) and gene expression was determined by reverse transcription-polymerase chain reaction and Western blot analysis. The cellular growth inhibition and apoptosis of DDC-mediated p53 transfection were assessed by trypan blue exclusion assay and annexin-V staining, respectively. The OVCAR-3 cells treated with DDC/pp53-EGFP complexes were inoculated into female balb/c nude mice and tumor growth was observed. The transfection of liposome-complexed p53 gene resulted in a high level of wild-type p53 mRNA and protein expressions in OVCAR-3 cells. In vitro cell growth assay showed growth inhibition of cancer cells transfected with DDC/pp53-EGFP complexes compared with the control cells. The reestablishment of wild-type p53 function in ovarian cancer cells restored the apoptotic pathway. Following the inoculation of DDC/pp53-EGFP complexes, the volumes of tumors in nude mice were significantly reduced more than 60% compared to the control group. The DDC-mediated p53 DNA delivery may have the potential for clinical application as nonviral vector-mediated ovarian cancer therapy due to its

  4. p53 nuclear accumulation and ERα expression in ductal hyperplasia of breast in a cohort of 215 Chinese women

    PubMed Central

    2010-01-01

    Introduction Women with ductal hyperplasia including usual ductal hyperplasia (UDH) and atypical ductal hyperplasia (ADH) have an increased risk of developing invasive ductal carcinoma (IDC) of breast. The importance of several molecular markers in breast cancer has been of considerable interest during recent years such as p53 and estrogen receptor alpha (ERα). However, p53 nuclear accumulation and ERα expression have not been assessed in ductal hyperplasia co-existing with ductal carcinoma in situ (DCIS) or IDC versus pure ductal hyperplasia without DCIS or IDC. Materials and methods We investigated p53 nuclear accumulation and ERα expression in breast ductal hyperplasia in a cohort of 215 Chinese women by immunohistochemistry (IHC), which included 129 cases of pure ductal hyperplasia, 86 cases of ductal hyperplasia co-existing with DCIS (41 cases) or IDC (45 cases). Results Nuclear p53 accumulation was identified in 22.8% of ADH (31/136), 41.5% of DCIS (17/41) and 42.2% of IDC (19/45), and no case of UDH (0/79). No difference in nuclear p53 accumulation was observed between pure ADH and ADH co-existing with DCIS (ADH/DCIS) or IDC (ADH/IDC) (P > 0.05). The positive rate of ERα expression was lower in ADH (118/136, 86.8%) than that in UDH (79/79, 100%) (P < 0.001), but higher than that in DCIS (28/41, 68.3%) or IDC (26/45, 57.8%) respectively (P < 0.001). The frequency of ERα expression was lower in ADH/DCIS (23/29, 79.31%) and ADH/IDC (23/30, 76.67%) than that in pure ADH (72/77, 93.51%) respectively (P < 0.05). There was a negative weak correlation between p53 nuclear accumulation and ERα expression as for ADH (coefficient correlation -0.51; P < 0.001). Conclusions Different pathological types of ductal hyperplasia of breast are accompanied by diversity in patterns of nuclear p53 accumulation and ERα expression. At least some pure ADH is molecularly distinct from ADH/CIS or ADH/IDC which indicated the two types of ADH are molecularly distinct entities

  5. Protective role of p53 in skin cancer: Carcinogenesis studies in mice lacking epidermal p53.

    PubMed

    Page, Angustias; Navarro, Manuel; Suarez-Cabrera, Cristian; Alameda, Josefa P; Casanova, M Llanos; Paramio, Jesús M; Bravo, Ana; Ramirez, Angel

    2016-04-12

    p53 is a protein that causes cell cycle arrest, apoptosis or senescence, being crucial in the process of tumor suppression in several cell types. Different in vitro and animal models have been designed for the study of p53 role in skin cancer. These models have revealed opposing results, as in some experimental settings it appears that p53 protects against skin cancer, but in others, the opposite conclusion emerges. We have generated cohorts of mice with efficient p53 deletion restricted to stratified epithelia and control littermates expressing wild type p53 and studied their sensitivity to both chemically-induced and spontaneous tumoral transformation, as well as the tumor types originated in each experimental group. Our results indicate that the absence of p53 in stratified epithelia leads to the appearance, in two-stage skin carcinogenesis experiments, of a higher number of tumors that grow faster and become malignant more frequently than tumors arisen in mice with wild type p53 genotype. In addition, the histological diversity of the tumor type is greater in mice with epidermal p53 loss, indicating the tumor suppressive role of p53 in different epidermal cell types. Aging mice with p53 inactivation in stratified epithelia developed spontaneous carcinomas in skin and other epithelia. Overall, these results highlight the truly protective nature of p53 functions in the development of cancer in skin and in other stratified epithelia.

  6. Apoptosis and cell proliferation in the development of gastric carcinomas: associations with c-myc and p53 protein expression.

    PubMed

    Ishii, Hideaki H; Gobé, Glenda C; Pan, Wenshen; Yoneyama, Juichi; Ebihara, Yoshiro

    2002-09-01

    Patients with gastric carcinomas have a poor prognosis and low survival rates. The aim of the present paper was to characterize cellular and molecular properties to provide insight into aspects of tumor progression in early compared with advanced gastric cancers. One hundred and nine graded gastric carcinomas (early or advanced stage, undifferentiated or differentiated type) with paired non-cancer tissue were studied to define the correlation between apoptosis (morphology, terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labeling), cell proliferation (Ki-67 expression, morphology) and expression and localization of two proteins frequently having altered expression in cancers, namely p53 and c-myc. Overall, apoptosis was lower in early stage, differentiated and undifferentiated gastric carcinomas compared with advanced-stage cancers. Cell proliferation was comparatively high in all stages. There was a high level of p53 positivity in all stages. Only the early- and advanced-stage undifferentiated cancers that were p53 positive had a significantly higher level of apoptosis (P < 0.05). Cell proliferation was significantly greater (P < 0.05) only in the early undifferentiated cancers that had either c-myc or p53-positivity. The results indicate that low apoptosis and high cell proliferation combine to drive gastric cancer development. The molecular controls for high cell proliferation of the early stage undifferentiated gastric cancers involve overexpression of both p53 and c-myc. Overexpression of p53 may also control cancer development in that its expression is associated with higher levels of apoptosis in early and late-stage undifferentiated, cancers. Copyright 2002 Blackwell Publishing Asia Pty Ltd

  7. Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo

    PubMed Central

    Bazzi, Hisham; Anderson, Kathryn V.

    2014-01-01

    Centrosomes are the microtubule-organizing centers of animal cells that organize interphase microtubules and mitotic spindles. Centrioles are the microtubule-based structures that organize centrosomes, and a defined set of proteins, including spindle assembly defective-4 (SAS4) (CPAP/CENPJ), is required for centriole biogenesis. The biological functions of centrioles and centrosomes vary among animals, and the functions of mammalian centrosomes have not been genetically defined. Here we use a null mutation in mouse Sas4 to define the cellular and developmental functions of mammalian centrioles in vivo. Sas4-null embryos lack centrosomes but survive until midgestation. As expected, Sas4−/− mutants lack primary cilia and therefore cannot respond to Hedgehog signals, but other developmental signaling pathways are normal in the mutants. Unlike mutants that lack cilia, Sas4−/− embryos show widespread apoptosis associated with global elevated expression of p53. Cell death is rescued in Sas4−/− p53−/− double-mutant embryos, demonstrating that mammalian centrioles prevent activation of a p53-dependent apoptotic pathway. Expression of p53 is not activated by abnormalities in bipolar spindle organization, chromosome segregation, cell-cycle profile, or DNA damage response, which are normal in Sas4−/− mutants. Instead, live imaging shows that the duration of prometaphase is prolonged in the mutants while two acentriolar spindle poles are assembled. Independent experiments show that prolonging spindle assembly is sufficient to trigger p53-dependent apoptosis. We conclude that a short delay in the prometaphase caused by the absence of centrioles activates a previously undescribed p53-dependent cell death pathway in the rapidly dividing cells of the mouse embryo. PMID:24706806

  8. TP53 mutations, expression and interaction networks in human cancers

    PubMed Central

    Wang, Xiaosheng; Sun, Qingrong

    2017-01-01

    Although the associations of p53 dysfunction, p53 interaction networks and oncogenesis have been widely explored, a systematic analysis of TP53 mutations and its related interaction networks in various types of human cancers is lacking. Our study explored the associations of TP53 mutations, gene expression, clinical outcomes, and TP53 interaction networks across 33 cancer types using data from The Cancer Genome Atlas (TCGA). We show that TP53 is the most frequently mutated gene in a number of cancers, and its mutations appear to be early events in cancer initiation. We identified genes potentially repressed by p53, and genes whose expression correlates significantly with TP53 expression. These gene products may be especially important nodes in p53 interaction networks in human cancers. This study shows that while TP53-truncating mutations often result in decreased TP53 expression, other non-truncating TP53 mutations result in increased TP53 expression in some cancers. Survival analyses in a number of cancers show that patients with TP53 mutations are more likely to have worse prognoses than TP53-wildtype patients, and that elevated TP53 expression often leads to poor clinical outcomes. We identified a set of candidate synthetic lethal (SL) genes for TP53, and validated some of these SL interactions using data from the Cancer Cell Line Project. These predicted SL genes are promising candidates for experimental validation and the development of personalized therapeutics for patients with TP53-mutated cancers. PMID:27880943

  9. TP53 mutations, expression and interaction networks in human cancers.

    PubMed

    Wang, Xiaosheng; Sun, Qingrong

    2017-01-03

    Although the associations of p53 dysfunction, p53 interaction networks and oncogenesis have been widely explored, a systematic analysis of TP53 mutations and its related interaction networks in various types of human cancers is lacking. Our study explored the associations of TP53 mutations, gene expression, clinical outcomes, and TP53 interaction networks across 33 cancer types using data from The Cancer Genome Atlas (TCGA). We show that TP53 is the most frequently mutated gene in a number of cancers, and its mutations appear to be early events in cancer initiation. We identified genes potentially repressed by p53, and genes whose expression correlates significantly with TP53 expression. These gene products may be especially important nodes in p53 interaction networks in human cancers. This study shows that while TP53-truncating mutations often result in decreased TP53 expression, other non-truncating TP53 mutations result in increased TP53 expression in some cancers. Survival analyses in a number of cancers show that patients with TP53 mutations are more likely to have worse prognoses than TP53-wildtype patients, and that elevated TP53 expression often leads to poor clinical outcomes. We identified a set of candidate synthetic lethal (SL) genes for TP53, and validated some of these SL interactions using data from the Cancer Cell Line Project. These predicted SL genes are promising candidates for experimental validation and the development of personalized therapeutics for patients with TP53-mutated cancers.

  10. Expression profiling of cutaneous squamous cell carcinoma with perineural invasion implicates the p53 pathway in the process.

    PubMed

    Warren, Timothy A; Broit, Natasa; Simmons, Jacinta L; Pierce, Carly J; Chawla, Sharad; Lambie, Duncan L J; Quagliotto, Gary; Brown, Ian S; Parsons, Peter G; Panizza, Benedict J; Boyle, Glen M

    2016-09-26

    Squamous cell carcinoma (SCC) is the second most common cancer worldwide and accounts for approximately 30% of all keratinocyte cancers. The vast majority of cutaneous SCCs of the head and neck (cSCCHN) are readily curable with surgery and/or radiotherapy unless high-risk features are present. Perineural invasion (PNI) is recognized as one of these high-risk features. The molecular changes during clinical PNI in cSCCHN have not been previously investigated. In this study, we assessed the global gene expression differences between cSCCHN with or without incidental or clinical PNI. The results of the analysis showed signatures of gene expression representative of activation of p53 in tumors with PNI compared to tumors without, amongst other alterations. Immunohistochemical staining of p53 showed cSCCHN with clinical PNI to be more likely to exhibit a diffuse over-expression pattern, with no tumors showing normal p53 staining. DNA sequencing of cSCCHN samples with clinical PNI showed no difference in mutation number or position with samples without PNI, however a significant difference was observed in regulators of p53 degradation, stability and activity. Our results therefore suggest that cSCCHN with clinical PNI may be more likely to contain alterations in the p53 pathway, compared to cSCCHN without PNI.

  11. N-methylpurine DNA glycosylase inhibits p53-mediated cell cycle arrest and coordinates with p53 to determine sensitivity to alkylating agents.

    PubMed

    Song, Shanshan; Xing, Guichun; Yuan, Lin; Wang, Jian; Wang, Shan; Yin, Yuxin; Tian, Chunyan; He, Fuchu; Zhang, Lingqiang

    2012-08-01

    Alkylating agents induce genome-wide base damage, which is repaired mainly by N-methylpurine DNA glycosylase (MPG). An elevated expression of MPG in certain types of tumor cells confers higher sensitivity to alkylation agents because MPG-induced apurinic/apyrimidic (AP) sites trigger more strand breaks. However, the determinant of drug sensitivity or insensitivity still remains unclear. Here, we report that the p53 status coordinates with MPG to play a pivotal role in such process. MPG expression is positive in breast, lung and colon cancers (38.7%, 43.4% and 25.3%, respectively) but negative in all adjacent normal tissues. MPG directly binds to the tumor suppressor p53 and represses p53 activity in unstressed cells. The overexpression of MPG reduced, whereas depletion of MPG increased, the expression levels of pro-arrest gene downstream of p53 including p21, 14-3-3σ and Gadd45 but not proapoptotic ones. The N-terminal region of MPG was specifically required for the interaction with the DNA binding domain of p53. Upon DNA alkylation stress, in p53 wild-type tumor cells, p53 dissociated from MPG and induced cell growth arrest. Then, AP sites were repaired efficiently, which led to insensitivity to alkylating agents. By contrast, in p53-mutated cells, the AP sites were repaired with low efficacy. To our knowledge, this is the first direct evidence to show that a DNA repair enzyme functions as a selective regulator of p53, and these findings provide new insights into the functional linkage between MPG and p53 in cancer therapy.

  12. Impact of the Ki-67 labeling index and p53 expression status on disease-free survival in pT1 urothelial carcinoma of the bladder.

    PubMed

    Vetterlein, Malte W; Roschinski, Julia; Gild, Philipp; Marks, Phillip; Soave, Armin; Doh, Ousman; Isbarn, Hendrik; Höppner, Wolfgang; Wagner, Walter; Shariat, Shahrokh F; Brausi, Maurizio; Büscheck, Franziska; Sauter, Guido; Fisch, Margit; Rink, Michael

    2017-12-01

    The identification of protein biomarkers to guide treatment decisions regarding adjuvant therapies for high-risk non-muscle-invasive bladder cancer (NMIBC) has been of increasing interest. Evidence of the impact of tumor suppressor gene product p53 and cell proliferation marker Ki-67 on oncologic outcomes in bladder cancer patients at highest risk of recurrence and progression is partially contradictory. We sought to mirror contemporary expression patterns of p53 and Ki-67 in a select cohort of patients with pT1 bladder cancer. Patients from four Northern German institutions with a primary diagnosis of pT1 bladder cancer between 2009 and 2016 and complete data regarding p53 or Ki-67 expression status were included for final analyses. Baseline patient characteristics (age, gender, age-adjusted Charlson comorbidity index) and tumor characteristics [diagnostic sequence, tumor focality, concomitant carcinoma in situ, 1973 World Health Organization (WHO) grading, lymphovascular invasion, adjuvant instillation therapy] were abstracted by retrospective chart review. Immunohistochemistry for detection of p53 and Ki-67 expression was performed according to standardized protocols. Microscopic analyses were performed by central pathologic review. First, we compared patients with positive vs. negative p53 expression and Ki-67 labeling index [>40% vs. ≤40%; cutoffs based on best discriminative ability in univariable Cox regression analysis with disease-free survival (DFS) as endpoint] with regard to baseline and tumor characteristics. Second, we evaluated the effect of biomarker positivity on DFS by plotting univariable Kaplan-Meier curves and performing uni- and multivariable Cox regression analyses. Of 102 patients with complete information on p53 status, 44 (43.1%) were p53 positive, and they more often harbored concomitant carcinoma in situ (50.0% vs. 27.6%; P=0.032) and 1973 WHO grade 3 (97.7% vs. 69.0%; P=0.001) compared to their p53 negative counterparts. Of 79

  13. p53 downregulates the Fanconi anaemia DNA repair pathway.

    PubMed

    Jaber, Sara; Toufektchan, Eléonore; Lejour, Vincent; Bardot, Boris; Toledo, Franck

    2016-04-01

    Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53(Δ31), a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53(Δ31/Δ31) fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53(Δ31/Δ31) fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop.

  14. P53 Protein Expression in Dental Follicle, Dentigerous Cyst, Odontogenic Keratocyst, and Inflammatory Subtypes of Cysts: An Immunohistochemical Study

    PubMed Central

    Fatemeh, Mashhadiabbas; Sepideh, Arab; Sara, Bagheri Seyedeh; Nazanin, Mahdavi

    2017-01-01

    Objectives An odontogenic keratocyst (OKC) is a developmental odontogenic cyst with aggressive clinical behavior. This cyst shows a different growth mechanism from the more common dentigerous cyst and now has been renamed as a keratocystic odontogenic tumor (KCOT). Inflammation can assist tumor growth via different mechanisms including dysregulation of the p53 gene. This study aims to assess and compare the expression of tumor suppressor gene p53 in inflamed and non-inflamed types of OKC and dentigerous cyst. Methods Immunohistochemical expression of p53 was assessed in 14 cases of dental follicle, 34 cases of OKC (including 18 inflamed OKCs), and 31 cases of dentigerous cyst (including 16 inflamed cysts). Results The mean percentage of p53 positive cells was 0.7% in dental follicles, 5.4% in non-inflamed OKCs, 17.3% in inflamed OKCs, 1.2% in non-inflamed dentigerous cysts, and 2.2% in inflamed dentigerous cysts. The differences between the groups were statistically significant (p < 0.050) except for the difference between inflamed and non-inflamed dentigerous cysts, and between dental follicle and non-inflamed dentigerous cyst. Conclusions The difference in p53 expression in OKC and dentigerous cyst can explain their different growth mechanism and clinical behavior. Inflammation is responsible for the change in behavior of neoplastic epithelium of OKC via p53 overexpression. PMID:28584604

  15. P53 Protein Expression in Dental Follicle, Dentigerous Cyst, Odontogenic Keratocyst, and Inflammatory Subtypes of Cysts: An Immunohistochemical Study.

    PubMed

    Fatemeh, Mashhadiabbas; Sepideh, Arab; Sara, Bagheri Seyedeh; Nazanin, Mahdavi

    2017-05-01

    An odontogenic keratocyst (OKC) is a developmental odontogenic cyst with aggressive clinical behavior. This cyst shows a different growth mechanism from the more common dentigerous cyst and now has been renamed as a keratocystic odontogenic tumor (KCOT). Inflammation can assist tumor growth via different mechanisms including dysregulation of the p53 gene. This study aims to assess and compare the expression of tumor suppressor gene p53 in inflamed and non-inflamed types of OKC and dentigerous cyst. Immunohistochemical expression of p53 was assessed in 14 cases of dental follicle, 34 cases of OKC (including 18 inflamed OKCs), and 31 cases of dentigerous cyst (including 16 inflamed cysts). The mean percentage of p53 positive cells was 0.7% in dental follicles, 5.4% in non-inflamed OKCs, 17.3% in inflamed OKCs, 1.2% in non-inflamed dentigerous cysts, and 2.2% in inflamed dentigerous cysts. The differences between the groups were statistically significant ( p < 0.050) except for the difference between inflamed and non-inflamed dentigerous cysts, and between dental follicle and non-inflamed dentigerous cyst. The difference in p53 expression in OKC and dentigerous cyst can explain their different growth mechanism and clinical behavior. Inflammation is responsible for the change in behavior of neoplastic epithelium of OKC via p53 overexpression.

  16. Pattern of Expression of p53, Its Family Members, and Regulators during Early Ocular Development and in the Post-Mitotic Retina

    PubMed Central

    Vuong, Linda; Brobst, Daniel E.; Saadi, Anisse; Ivanovic, Ivana; Al-Ubaidi, Muayyad R.

    2012-01-01

    Purpose. Because of its role in cell cycle regulation and apoptosis, p53 may be involved in maintaining the post-mitotic state of the adult eye. To shed light on the role of p53 in retinal development and maintenance, this study investigated the pattern of expression of p53, its family members, and its regulators during the development of the mouse eye. Methods. Relative quantitative real-time PCR (qRT-PCR) was used to determine the steady-state levels of target transcripts in RNA extracted from wild-type mouse whole eyes or retinas between embryonic day (E) 15 and post-natal day (P) 30. Immunoblotting was used to compare the steady-state levels of the protein to that of the transcript. Results. Transcript and protein levels for p53 in the eye were highest at E17 and E18, respectively. However, both p53 transcript and protein levels dropped precipitously thereafter, and no protein was detected on immunoblots after P3. Expression patterns of p63, p73, Mdm2, Mdm4, and Yy1 did not follow that of p53. Immunohistochemistry analysis of the developing eye showed that both p53 and Mdm2 are abundantly expressed at E18 in all layers of the retinal neuroblast. Conclusions. Downregulation of p53 in the post-mitotic retina suggests that, although p53 may be involved in ocular and retinal development, it may play a minimal role in healthy adult retinal function. PMID:22714890

  17. The expanding universe of p53 targets.

    PubMed

    Menendez, Daniel; Inga, Alberto; Resnick, Michael A

    2009-10-01

    The p53 tumour suppressor is modified through mutation or changes in expression in most cancers, leading to the altered regulation of hundreds of genes that are directly influenced by this sequence-specific transcription factor. Central to the p53 master regulatory network are the target response element (RE) sequences. The extent of p53 transactivation and transcriptional repression is influenced by many factors, including p53 levels, cofactors and the specific RE sequences, all of which contribute to the role that p53 has in the aetiology of cancer. This Review describes the identification and functionality of REs and highlights the inclusion of non-canonical REs that expand the universe of genes and regulation mechanisms in the p53 tumour suppressor network.

  18. ATF3 activates Stat3 phosphorylation through inhibition of p53 expression in skin cancer cells.

    PubMed

    Hao, Zhen-Feng; Ao, Jun-Hong; Zhang, Jie; Su, You-Ming; Yang, Rong-Ya

    2013-01-01

    ATF3, a member of the ATF/CREB family of transcription factors, has been found to be selectively induced by calcineurin/NFAT inhibition and to enhance keratinocyte tumor formation, although the precise role of ATF3 in human skin cancer and possible mechanisms remain unknown. In this study, clinical analysis of 30 skin cancer patients and 30 normal donors revealed that ATF3 was accumulated in skin cancer tissues. Functional assays demonstrated that ATF3 significantly promoted skin cancer cell proliferation. Mechanically, ATF3 activated Stat3 phosphorylation in skin cancer cell through regulation of p53 expression. Moreover, the promotion effect of ATF3 on skin cancer cell proliferation was dependent on the p53-Stat3 signaling cascade. Together, the results indicate that ATF3 might promote skin cancer cell proliferation and enhance skin keratinocyte tumor development through inhibiting p53 expression and then activating Stat3 phosphorylation.

  19. Deregulated expression of p16INK4a and p53 pathway members in benign and malignant myoepithelial tumours of the salivary glands.

    PubMed

    Vékony, H; Röser, K; Löning, T; Raaphorst, F M; Leemans, C R; Van der Waal, I; Bloemena, E

    2008-12-01

    Myoepithelial salivary gland tumours are uncommon and follow an unpredictable biological course. The aim was to examine their molecular background to acquire a better understanding of their clinical behaviour. Expression of protein (E2F1, p16(INK4a), p53, cyclin D1, Ki67 and Polycomb group proteins BMI-1, MEL-18 and EZH2) was investigated in 49 benign and 30 primary malignant myoepithelial tumours and five histologically benign recurrences by immunohistochemistry and the findings correlated with histopathological characteristics. Benign tumours showed a higher percentage of cells with expression of p16(INK4a) pathway members [p16(INK4a) and E2F1 (both P < 0.001), and cyclin D1, P = 0.002] compared with normal salivary gland. Furthermore, malignant tumours expressed p53 (P = 0.003) and EZH2 (P = 0.09) in a higher percentage. Recurrences displayed more p53 + tumour cells (P = 0.02) than benign primaries. Amongst the benign tumours, the clear cell type had the highest proliferation fraction (P = 0.05) and a higher percentage of EZH2 was detected in the plasmacytoid cell type (P = 0.002). This study is the first to demonstrate that deregulation of the p16(INK4a) senescence pathway is involved in the development of myoepithelial tumours. We propose that additional inactivation of p53 in malignant primaries and benign recurrences contributes to myoepithelial neoplastic transformation and aggressive tumour growth.

  20. INGN 201: Ad-p53, Ad5CMV-p53, adenoviral p53, p53 gene therapy--introgen, RPR/INGN 201.

    PubMed

    2007-01-01

    former trial) followed by a combination of chemo- and radiotherapy. In September 2003, INGN 201 was granted designation as a Fast Track Drug Product development programme by the FDA for prolonging survival and delaying time to disease progression in patients with recurrent, unresectable squamous cell carcinoma of the head and neck. Previously, in February 2003, INGN 201 received orphan drug designation from the FDA for head and neck cancer. Phase I trials in the US for the treatment of non-small-cell lung cancer have been completed. Sanofi-aventis (formerly Rhône-Poulenc Rorer Gencell) initiated phase II trials in the US, Europe and Canada for non-small-cell lung cancer. Intratumoral injection of RPR/INGN 201 in patients with recurrent glioblastomas was safe and resulted in expression of the p53 protein. Direct administration of RPR/INGN 201 to the lower airways of patients with bronchioalveolar cell lung carcinoma resulted in symptomatic improvement and improved lung function in some patients. In November 2003, according to a Clinical Trials Agreement between the Division of Cancer Treatment and Diagnosis (DCTD) of the National Cancer Institute (NCI) and Introgen, a 6-month phase I/II study with p53 gene therapy administered in the form of an oral rinse or mouthwash for patients with oral premalignancies has been initiated. This is the first trial to investigate the effect of this treatment on oral lesions that are at high risk for developing into full blown cancers. In September 2006, the EMEA granted orphan drug status to INGN 201 for the treatment of LFS, following Gendux's application for the designation. The company intends to provide the therapy on a compassionate use basis to qualifying patients in Europe.INGN 201 has been successfully used in the treatment of a LFS patient on a compassionate use basis under a protocol authorised by the FDA. Based on these interim findings, Introgen has decided to continue making the therapy available through a compassionate use

  1. The Role of JMY in p53 Regulation.

    PubMed

    Adighibe, Omanma; Pezzella, Francesco

    2018-05-31

    Following the event of DNA damage, the level of tumour suppressor protein p53 increases inducing either cell cycle arrest or apoptosis. Junctional Mediating and Regulating Y protein (JMY) is a transcription co-factor involved in p53 regulation. In event of DNA damage, JMY levels also upregulate in the nucleus where JMY forms a co-activator complex with p300/CREB-binding protein (p300/CBP), Apoptosis-stimulating protein of p53 (ASPP) and Stress responsive activator of p53 (Strap). This co-activator complex then binds to and increases the ability of p53 to induce transcription of proteins triggering apoptosis but not cell cycle arrest. This then suggests that the increase of JMY levels due to DNA damage putatively "directs" p53 activity toward triggering apoptosis. JMY expression is also linked to increased cell motility as it: (1) downregulates the expression of adhesion molecules of the Cadherin family and (2) induces actin nucleation, making cells less adhesive and more mobile, favouring metastasis. All these characteristics taken together imply that JMY possesses both tumour suppressive and tumour metastasis promoting capabilities.

  2. Histone deacetylase inhibitors prevent p53-dependent and p53-independent Bax-mediated neuronal apoptosis through two distinct mechanisms.

    PubMed

    Uo, Takuma; Veenstra, Timothy D; Morrison, Richard S

    2009-03-04

    Pharmacological manipulation of protein acetylation levels by histone deacetylase (HDAC) inhibitors represents a novel therapeutic strategy to treat neurodegeneration as well as cancer. However, the molecular mechanisms that determine how HDAC inhibition exerts a protective effect in neurons as opposed to a cytotoxic action in tumor cells has not been elucidated. We addressed this issue in cultured postnatal mouse cortical neurons whose p53-dependent and p53-independent intrinsic apoptotic programs require the proapoptotic multidomain protein, Bax. Despite promoting nuclear p53 accumulation, Class I/II HDAC inhibitors (HDACIs) protected neurons from p53-dependent cell death induced by camptothecin, etoposide, heterologous p53 expression or the MDM2 inhibitor, nutlin-3a. HDACIs suppressed p53-dependent PUMA expression, a critical signaling intermediate linking p53 to Bax activation, thus preventing postmitochondrial events including cleavage of caspase-9 and caspase-3. In human SH-SY5Y neuroblastoma cells, however, HDACIs were not able to prevent p53-dependent cell death. Moreover, HDACIs also prevented caspase-3 cleavage in postnatal cortical neurons treated with staurosporine, 3-nitropropionic acid and a Bcl-2 inhibitor, all of which require the presence of Bax but not p53 to promote apoptosis. Although these three toxic agents displayed a requirement for Bax, they did not promote PUMA induction. These results demonstrate that HDACIs block Bax-dependent cell death by two distinct mechanisms to prevent neuronal apoptosis, thus identifying for the first time a defined molecular target for their neuroprotective actions.

  3. Aberrant p53 protein expression is associated with an increased risk of neoplastic progression in patients with Barrett's oesophagus.

    PubMed

    Kastelein, Florine; Biermann, Katharina; Steyerberg, Ewout W; Verheij, Joanne; Kalisvaart, Marit; Looijenga, Leendert H J; Stoop, Hans A; Walter, Laurens; Kuipers, Ernst J; Spaander, Manon C W; Bruno, Marco J

    2013-12-01

    The value of surveillance for patients with Barrett's oesophagus (BO) is under discussion given the overall low incidence of neoplastic progression and lack of discriminative tests for risk stratification. Histological diagnosis of low-grade dysplasia (LGD) is the only accepted predictor for progression to date, but has a low predictive value. The aim of this study was therefore to evaluate the value of p53 immunohistochemistry for predicting neoplastic progression in patients with BO. We conducted a case-control study within a prospective cohort of 720 patients with BO. Patients who developed high-grade dysplasia (HGD) or oesophageal adenocarcinoma (OAC) were classified as cases and patients without neoplastic progression were classified as controls. P53 protein expression was determined by immunohistochemistry in more than 12 000 biopsies from 635 patients and was scored independently by two expert pathologists who were blinded to long-term outcome. During follow-up, 49 (8%) patients developed HGD or OAC. P53 overexpression was associated with an increased risk of neoplastic progression in patients with BO after adjusting for age, gender, Barrett length and oesophagitis (adjusted relative risks (RR(a)) 5.6; 95% CI 3.1 to 10.3), but the risk was even higher with loss of p53 expression (RR(a) 14.0; 95% CI 5.3 to 37.2). The positive predictive value for neoplastic progression increased from 15% with histological diagnosis of LGD to 33% with LGD and concurrent aberrant p53 expression. Aberrant p53 protein expression is associated with an increased risk of neoplastic progression in patients with BO and appears to be a more powerful predictor of neoplastic progression than histological diagnosis of LGD.

  4. Assessment of p21, p53 expression, and Ki-67 proliferative activities in the gastric mucosa of children with Helicobacter pylori gastritis.

    PubMed

    Saf, Coskun; Gulcan, Enver Mahir; Ozkan, Ferda; Cobanoglu Saf, Seyhan Perihan; Vitrinel, Ayca

    2015-02-01

    Helicobacter pylori that is generally acquired in childhood and infects the gastric mucosa is considered to be responsible for many pathobiological changes that are linked to the pathogenesis of gastric cancer. Although the majority of studies on the subject have been carried out in adults, there are a limited number of studies on children that reflect the early period of infection and may be of greater significance. We aimed to determine the role of H. pylori infection and/or gastritis in several histopathological changes, p53, p21, and cell proliferation-associated Ki-67 antigen expression in the gastric mucosa. We studied 60 patients with a mean age of 7.5 ± 4.5 years at referral. On the basis of endoscopic appearance and the evaluation of the gastric antral specimens, the patients were divided into three groups: patients without gastritis, patients with H. pylori-positive gastritis, and patients with H. pylori-negative gastritis. To determine the expression of p53, Ki-67, and p21 in gastric biopsy specimens, immunohistochemical stains were performed. The incidence of neutrophil activity, which was one of our histopathologic parameters, was significantly higher in the H. pylori-positive gastritis group than the other two groups. The presence of lymphoid aggregate was more frequent in H. pylori ± gastritis groups than the nongastritis group. p53 expression was found to be significantly higher in the H. pylori-positive gastritis group than the nongastritis group. Ki-67 and p21 expressions were significantly more frequent in the H. pylori-positive gastritis group than the other two groups. When we evaluated the density of H. pylori, as the density of bacteria increases, we found that the expressions of p53, p21, and Ki-67 increased significantly. Expression of the studied precancerous markers in significant amounts indicates the importance of childhood H. pylori infection in the constitution of gastric cancer in adulthood.

  5. Negative feedback regulation of wild-type p53 biosynthesis.

    PubMed Central

    Mosner, J; Mummenbrauer, T; Bauer, C; Sczakiel, G; Grosse, F; Deppert, W

    1995-01-01

    When growth-arrested mouse fibroblasts re-entered the cell-cycle, the rise in tumour suppressor p53 mRNA level markedly preceded the rise in expression of the p53 protein. Furthermore, gamma-irradiation of such cells led to a rapid increase in p53 protein biosynthesis even in the presence of the transcription inhibitor actinomycin D. Both findings strongly suggest that p53 biosynthesis in these cells is regulated at the translational level. We present evidence for an autoregulatory control of p53 expression by a negative feed-back loop: p53 mRNA has a predicted tendency to form a stable stem-loop structure that involves the 5'-untranslated region (5'-UTR) plus some 280 nucleotides of the coding sequence. p53 binds tightly to the 5'-UTR region and inhibits the translation of its own mRNA, most likely mediated by the p53-intrinsic RNA re-annealing activity. The inhibition of p53 biosynthesis requires wild-type p53, as it is not observed with MethA mutant p53, p53-catalysed translational inhibition is selective; it might be restricted to p53 mRNA and a few other mRNAs that are able to form extensive stem-loop structures. Release from negative feed-back regulation of p53 biosynthesis, e.g. after damage-induced nuclear transport of p53, might provide a means for rapidly increasing p53 protein levels when p53 is required to act as a cell-cycle checkpoint determinant after DNA damage. Images PMID:7556087

  6. Training Performed Above Lactate Threshold Decreases p53 and Shelterin Expression in Mice.

    PubMed

    de Carvalho Cunha, Verusca Najara; Dos Santos Rosa, Thiago; Sales, Marcelo Magalhães; Sousa, Caio Victor; da Silva Aguiar, Samuel; Deus, Lysleine Alves; Simoes, Herbert Gustavo; de Andrade, Rosangela Vieira

    2018-06-26

    Telomere shortening is associated to sarcopenia leading to functional impairment during aging. There are mechanisms associated with telomere attrition, as well to its protection and repair. Physical training is a factor that attenuates telomere shortening, but little is known about the effects of different exercise intensities on telomere biology. Thus, we evaluated the effects of exercise intensity (moderate vs. high-intensity domain) on gene expression of senescence markers Checkpoint kinase 2 and tumor suppressor ( Chk2 and p53 , respectively), shelterin telomere repeat binding 1 and 2 ( Trf1 / Trf2 ), DNA repair ( Xrcc5 ), telomerase reverse transcriptase ( mTERT ) and telomere length in middle aged mice. Three groups were studied: a control group (CTL) and two groups submitted to swimming at intensities below the lactate threshold (LI group) and above the lactate threshold (HI group) for 40 and 20 min respectively, for 12 weeks. After training, the HI group showed reduction in p53 expression in the muscle, and decreased shelterin complex expression when compared to LI group. No differences were observed between groups for mTERT expression and telomere length. Thus, exercise training in high-intensity domain was more effective on reducing markers of senescence and apoptosis. The higher intensity exercise training also diminished shelterin expression, with no differences in telomere length and mTERT expression. Such results possibly indicate a more effective DNA protection for the higher-intensity exercise training. © Georg Thieme Verlag KG Stuttgart · New York.

  7. P16/p53 expression and telomerase activity in immortalized human dental pulp cells

    PubMed Central

    Egbuniwe, Obi; Idowu, Bernadine D; Funes, Juan M; Grant, Andrew D; Renton, Tara

    2011-01-01

    Introduction Residing within human dental pulp are cells of an ectomesenchymal origin that have the potential to differentiate into odontoblast-like cells. These cells have a limited growth potential owing to the effects of cell senescence. This study examines the effects of immortalizing odontoblast-like cells on cell proliferation and mineralization by comparing transformed dental pulp stem cells (tDPSCs) and non-transformed dental pulp stem cells (nDPSCs). Results With the exogenous expression of hTERT, tDPSCs maintained a continued expression of odontogenic markers for cell proliferation and mineralization (ALP, COL-1, DMP-1, DSPP, OCN and OPN), as did nDPSCs. Oncoprotein expression was seen in both groups except for a noted absence of p16 in the tDPSCs. nDPSCs also showed lower levels of total ALP and DNA activity in comparison to tDPSCs when assayed, as well as low telomerase activity readings. Methods Using a retroviral vector, exogenous human telomerase reverse transcriptase (hTERT) was expressed in tDPSCs. Both cell groups were cultured, and their telomerase activities were determined using a telomerase quantification assay. Also examined, were the expression of genes involved in proliferation and mineralization, such as human alkaline phosphatase (ALP), β-actin, collagen I (col-1), core binding factor (cbfa)-1, dentin matrix protein (DMP-1), dentin sialophosphoprotein (DSPP), GAPDH, hTERT, osteocalcin (OCN), osteopontin (OPN) as well as oncoproteins involved in senescence (p16, p21 and p53) using RT-PCR. DNA and alkaline phosphate activity was also assayed in both cell groups. Conclusion These results indicate maintenance of odontoblast-like differentiation characteristics after retroviral transformation with hTERT and suggest a possible link with a reduced p16 expression. PMID:22067611

  8. N-methylpurine DNA glycosylase inhibits p53-mediated cell cycle arrest and coordinates with p53 to determine sensitivity to alkylating agents

    PubMed Central

    Song, Shanshan; Xing, Guichun; Yuan, Lin; Wang, Jian; Wang, Shan; Yin, Yuxin; Tian, Chunyan; He, Fuchu; Zhang, Lingqiang

    2012-01-01

    Alkylating agents induce genome-wide base damage, which is repaired mainly by N-methylpurine DNA glycosylase (MPG). An elevated expression of MPG in certain types of tumor cells confers higher sensitivity to alkylation agents because MPG-induced apurinic/apyrimidic (AP) sites trigger more strand breaks. However, the determinant of drug sensitivity or insensitivity still remains unclear. Here, we report that the p53 status coordinates with MPG to play a pivotal role in such process. MPG expression is positive in breast, lung and colon cancers (38.7%, 43.4% and 25.3%, respectively) but negative in all adjacent normal tissues. MPG directly binds to the tumor suppressor p53 and represses p53 activity in unstressed cells. The overexpression of MPG reduced, whereas depletion of MPG increased, the expression levels of pro-arrest gene downstream of p53 including p21, 14-3-3σ and Gadd45 but not proapoptotic ones. The N-terminal region of MPG was specifically required for the interaction with the DNA binding domain of p53. Upon DNA alkylation stress, in p53 wild-type tumor cells, p53 dissociated from MPG and induced cell growth arrest. Then, AP sites were repaired efficiently, which led to insensitivity to alkylating agents. By contrast, in p53-mutated cells, the AP sites were repaired with low efficacy. To our knowledge, this is the first direct evidence to show that a DNA repair enzyme functions as a selective regulator of p53, and these findings provide new insights into the functional linkage between MPG and p53 in cancer therapy. PMID:22801474

  9. Combined p16 and p53 expression in cervical cancer of unknown primary and other prognostic parameters : A single-center analysis.

    PubMed

    Yildirim, Müjdat; Müller von der Grün, Jens; Winkelmann, Ria; Fokas, Emmanouil; Rödel, Franz; Ackermann, Hanns; Rödel, Claus; Balermpas, Panagiotis

    2017-04-01

    Cervical cancer of unknown primary (CUP) represents an uncommon and heterogeneous subentity of head and neck cancer. However, both optimal diagnostics and therapy remain unclear. An improved understanding of the underlying pathology is essential to enable future tailored therapies and optimized outcomes. We retrospectively analyzed 53 patients with head and neck CUP and 48 available cervical lymph node specimens. All patients have received radiotherapy between 2007 and 2015. Preradiotherapy involved lymph node specimens were analyzed for p16 and p53 immunoreactivity. The prognostic relevance of the combined p16 and p53 status and other clinical parameters were examined by univariate and multivariate analyses. Median patient age was 61.5 years and median irradiation dose to the involved nodal levels was 66 Gy. Of the 48 evaluated specimens, 13 (27%) were p16-positive and 31 (64.6%) p53-positive. After a median follow up of 32.9 months, patients with p16-negative and simultaneously p53-positive tumors showed a significantly inferior tumor-specific survival (TSS) compared to those with either p16+/p53-, p16+/p53+, or p16-/p53- (univariate: p = 0.055, multivariate: p = 0.038). Other factors with an adverse impact on TSS in the univariate analysis were smoking history (p = 0.032) and nodal stage (p = 0.038). The combined p16- and p53-expression status in cervical metastases of CUP may represent a simple method for risk stratification. Further validation of these biomarkers in large prospective trials is essential to design rational trials for CUP treatment optimization.

  10. p53 -Dependent and -Independent Nucleolar Stress Responses

    PubMed Central

    Olausson, Karl Holmberg; Nistér, Monica; Lindström, Mikael S.

    2012-01-01

    The nucleolus has emerged as a cellular stress sensor and key regulator of p53-dependent and -independent stress responses. A variety of abnormal metabolic conditions, cytotoxic compounds, and physical insults induce alterations in nucleolar structure and function, a situation known as nucleolar or ribosomal stress. Ribosomal proteins, including RPL11 and RPL5, become increasingly bound to the p53 regulatory protein MDM2 following nucleolar stress. Ribosomal protein binding to MDM2 blocks its E3 ligase function leading to stabilization and activation of p53. In this review we focus on a number of novel regulators of the RPL5/RPL11-MDM2-p53 complex including PICT1 (GLTSCR2), MYBBP1A, PML and NEDD8. p53-independent pathways mediating the nucleolar stress response are also emerging and in particular the negative control that RPL11 exerts on Myc oncoprotein is of importance, given the role of Myc as a master regulator of ribosome biogenesis. We also briefly discuss the potential of chemotherapeutic drugs that specifically target RNA polymerase I to induce nucleolar stress. PMID:24710530

  11. Inactivation of p53 in pterygium influence miR-200a expression resulting in ZEB1/ZEB2 up-regulation and EMT processing.

    PubMed

    Wu, Chueh-Wei; Peng, Mei-Ling; Yeh, Ken-Tu; Tsai, Yi-Yu; Chiang, Chun-Chi; Cheng, Ya-Wen

    2016-05-01

    Loss of p53 function has been linked to progression of pterygium. MiR-200a is known to be controlled by p53. Here, we hypothesize that expression of miR-200a and downstream ZEB1/ZEB2 genes are regulated epithelial-mesenchymal transition (EMT) involved in the pathogenesis and recurrence of pterygium. For this study, 120 primary pterygial samples were collected. Immunohistochemistry and real-time RT-PCR were performed to determine the expression of p53, p53 down-stream EMT associated protein and miR-200a. The molecular correlation of p53, miR-200a and downstream genes were confirmed using primary pterygium cells (PECs). Expression of miR-200a in pterygium tissues was significantly lower than in conjunctiva controls (p = 0.015). Up-regulated miR-200a levels were positively correlated with and p53 protein expression (p < 0.001). The miR-200a downstream ZEB1/ZEB1 protein expression were negative correlated with miR-200a expression. Cell model studies demonstrated that miR-200a controlled the EMT of PECs through up-regulated ZEB1, ZEB2 and Snail gene expression. Our study demonstrated that inactivation of p53 in pterygium may influence miR-200a, resulting in ZEB1/ZEB2 up-regulation and EMT processing of pterygium. Therefore, we suggest that expression of miR-200a play an important role in EMT processing and recurrence of pterygium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway

    PubMed Central

    Kravchenko, J. E.; Ilyinskaya, G. V.; Komarov, P. G.; Agapova, L. S.; Kochetkov, D. V.; Strom, E.; Frolova, E. I.; Kovriga, I.; Gudkov, A. V.; Feinstein, E.; Chumakov, P. M.

    2008-01-01

    Identification of unique features of cancer cells is important for defining specific and efficient therapeutic targets. Mutant p53 is present in nearly half of all cancer cases, forming a promising target for pharmacological reactivation. In addition to being defective for the tumor-suppressor function, mutant p53 contributes to malignancy by blocking a p53 family member p73. Here, we describe a small-molecule RETRA that activates a set of p53-regulated genes and specifically suppresses mutant p53-bearing tumor cells in vitro and in mouse xenografts. Although the effect is strictly limited to the cells expressing mutant p53, it is abrogated by inhibition with RNAi to p73. Treatment of mutant p53-expressing cancer cells with RETRA results in a substantial increase in the expression level of p73, and a release of p73 from the blocking complex with mutant p53, which produces tumor-suppressor effects similar to the functional reactivation of p53. RETRA is active against tumor cells expressing a variety of p53 mutants and does not affect normal cells. The results validate the mutant p53p73 complex as a promising and highly specific potential target for cancer therapy. PMID:18424558

  13. Interleukin 6 downregulates p53 expression and activity by stimulating ribosome biogenesis: a new pathway connecting inflammation to cancer

    PubMed Central

    Brighenti, E; Calabrese, C; Liguori, G; Giannone, F A; Trerè, D; Montanaro, L; Derenzini, M

    2014-01-01

    Chronic inflammation is an established risk factor for the onset of cancer, and the inflammatory cytokine IL-6 has a role in tumorigenesis by enhancing proliferation and hindering apoptosis. As factors stimulating proliferation also downregulate p53 expression by enhancing ribosome biogenesis, we hypothesized that IL-6 may cause similar changes in inflamed tissues, thus activating a mechanism that favors neoplastic transformation. Here, we showed that IL-6 downregulated the expression and activity of p53 in transformed and untransformed human cell lines. This was the consequence of IL-6-dependent stimulation of c-MYC mRNA translation, which was responsible for the upregulation of rRNA transcription. The enhanced rRNA transcription stimulated the MDM2-mediated proteasomal degradation of p53, by reducing the availability of ribosome proteins for MDM2 binding. The p53 downregulation induced the acquisition of cellular phenotypic changes characteristic of epithelial–mesenchymal transition, such as a reduced level of E-cadherin expression, increased cell invasiveness and a decreased response to cytotoxic stresses. We found that these changes also occurred in colon epithelial cells of patients with ulcerative colitis, a very representative example of chronic inflammation at high risk for tumor development. Histochemical and immunohistochemical analysis of colon biopsy samples showed an upregulation of ribosome biogenesis, a reduced expression of p53, together with a focal reduction or absence of E-cadherin expression in chronic colitis in comparison with normal mucosa samples. These changes disappeared after treatment with anti-inflammatory drugs. Taken together, the present results highlight a new mechanism that may link chronic inflammation to cancer, based on p53 downregulation, which is activated by the enhancement of rRNA transcription upon IL-6 exposure. PMID:24531714

  14. TRIM65 negatively regulates p53 through ubiquitination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Ma, Chengyuan; Zhou, Tong

    2016-04-22

    Tripartite-motif protein family member 65 (TRIM65) is an important protein involved in white matter lesion. However, the role of TRIM65 in human cancer remains less understood. Through the Cancer Genome Atlas (TCGA) gene alteration database, we found that TRIM65 is upregulated in a significant portion of non-small cell lung carcinoma (NSCLC) patients. Our cell growth assay revealed that TRIM65 overexpression promotes cell proliferation, while knockdown of TRIM65 displays opposite effect. Mechanistically, TRIM65 binds to p53, one of the most critical tumor suppressors, and serves as an E3 ligase toward p53. Consequently, TRIM65 inactivates p53 through facilitating p53 poly-ubiquitination and proteasome-mediatedmore » degradation. Notably, chemotherapeutic reagent cisplatin induction of p53 is markedly attenuated in response to ectopic expression of TRIM65. Cell growth inhibition by TRIM65 knockdown is more significant in p53 positive H460 than p53 negative H1299 cells, and knockdown of p53 in H460 cells also shows compromised cell growth inhibition by TRIM65 knockdown, indicating that p53 is required, at least in part, for TRIM65 function. Our findings demonstrate TRIM65 as a potential oncogenic protein, highly likely through p53 inactivation, and provide insight into development of novel approaches targeting TRIM65 for NSCLC treatment, and also overcoming chemotherapy resistance. - Highlights: • TRIM65 expression is elevated in NSCLC. • TRIM65 inactivates p53 through mediating p53 ubiquitination and degradation. • TRIM65 attenuates the response of NSCLC cells to cisplatin.« less

  15. p53 downregulates the Fanconi anaemia DNA repair pathway

    PubMed Central

    Jaber, Sara; Toufektchan, Eléonore; Lejour, Vincent; Bardot, Boris; Toledo, Franck

    2016-01-01

    Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53Δ31, a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53Δ31/Δ31 fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53Δ31/Δ31 fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop. PMID:27033104

  16. Loss of p21{sup Sdi1} expression in senescent cells after DNA damage accompanied with increase of miR-93 expression and reduced p53 interaction with p21{sup Sdi1} gene promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Ok Ran; Lim, In Kyoung, E-mail: iklim@ajou.ac.kr

    2011-04-08

    Highlights: {yields} Reduced p21 expression in senescent cells treated with DNA damaging agents. {yields} Increase of [{sup 3}H]thymidine and BrdU incorporations in DNA damaged-senescent cells. {yields} Upregulation of miR-93 expression in senescent cells in response to DSB. {yields} Failure of p53 binding to p21 promoter in senescent cells in response to DSB. {yields} Molecular mechanism of increased cancer development in aged than young individuals. -- Abstract: To answer what is a critical event for higher incidence of tumor development in old than young individuals, primary culture of human diploid fibroblasts were employed and DNA damage was induced by doxorubicin ormore » X-ray irradiation. Response to the damage was different between young and old cells; loss of p21{sup sdi1} expression in spite of p53{sup S15} activation in old cells along with [{sup 3}H]thymidine and BrdU incorporation, but not in young cells. The phenomenon was confirmed by other tissue fibroblasts obtained from different donor ages. Induction of miR-93 expression and reduced p53 binding to p21 gene promoter account for loss of p21{sup sdi1} expression in senescent cells after DNA damage, suggesting a mechanism of in vivo carcinogenesis in aged tissue without repair arrest.« less

  17. Silibinin induces hepatic stellate cell cycle arrest via enhancing p53/p27 and inhibiting Akt downstream signaling protein expression.

    PubMed

    Ezhilarasan, Devaraj; Evraerts, Jonathan; Sid, Brice; Calderon, Pedro Buc; Karthikeyan, Sivanesan; Sokal, Etienne; Najimi, Mustapha

    2017-02-01

    Proliferation of hepatic stellate cells (HSCs) plays a pivotal role in the progression of liver fibrosis consequent to chronic liver injury. Silibinin, a flavonoid compound, has been shown to possess anti-fibrogenic effects in animal models of liver fibrosis. This was attributed to an inhibition of cell proliferation of activated HSCs. The present study was to gain insight into the molecular pathways involved in silibinin anti-fibrogenic effect. The study was conducted on LX-2 human stellate cells treated with three concentrations of silibinin (10, 50 and 100 μmol/L) for 24 and 96 hours. At the end of the treatment cell viability and proliferation were evaluated. Protein expression of p27, p21, p53, Akt and phosphorylated-Akt was evaluated by Western blotting analysis and Ki-67 protein expression was by immunocytochemistry. Sirtuin activity was evaluated by chemiluminescence based assay. Silibinin inhibits LX-2 cell proliferation in dose- and time-dependent manner; we showed that silibinin upregulated the protein expressions of p27 and p53. Such regulation was correlated to an inhibition of both downstream Akt and phosphorylated-Akt protein signaling and Ki-67 protein expression. Sirtuin activity also was correlated to silibinin-inhibited proliferation of LX-2 cells. The anti-proliferative effect of silibinin on LX-2 human stellate cells is via the inhibition of the expressions of various cell cycle targets including p27, Akt and sirtuin signaling.

  18. Quercetin Enhances the Antitumor Activity of Trichostatin A through Upregulation of p53 Protein Expression In Vitro and In Vivo

    PubMed Central

    Chan, Shu-Ting; Yang, Nae-Cherng; Huang, Chin-Shiu; Liao, Jiunn-Wang; Yeh, Shu-Lan

    2013-01-01

    This study investigated the effects of quercetin on the anti-tumor effect of trichostatin A (TSA), a novel anticancer drug, in vitro and in vivo and the possible mechanisms of these effects in human lung cancer cells. We first showed that quercetin (5 µM) significantly increased the growth arrest and apoptosis in A549 cells (expressing wild-type p53) induced by 25 ng/mL of (82.5 nM) TSA at 48 h by about 25% and 101%, respectively. However, such enhancing effects of quercetin (5 µM) were not significant in TSA-exposed H1299 cells (a p53 null mutant) or were much lower than in A549 cells. In addition, quercetin significantly increased TSA-induced p53 expression in A549 cells. Transfection of p53 siRNA into A549 cells significantly but not completely diminished the enhancing effects of quercetin on TSA-induced apoptosis. Furthermore, we demonstrated that quercetin enhanced TSA-induced apoptosis through the mitochondrial pathway. Transfection of p53 siRNA abolished such enhancing effects of quercetin. However, quercetin increased the acetylation of histones H3 and H4 induced by TSA in A549 cells, even with p53 siRNA transfection as well as in H1299 cells. In a xenograft mouse model of lung cancer, quercetin enhanced the antitumor effect of TSA. Tumors from mice treated with TSA in combination with quercetin had higher p53 and apoptosis levels than did those from control and TSA-treated mice. These data indicate that regulation of the expression of p53 by quercetin plays an important role in enhancing TSA-induced apoptosis in A549 cells. However, p53-independent mechanisms may also contribute to the enhancing effect of quercetin. PMID:23342112

  19. TUMOR SUPPRESSER GENE P53 EXPRESSION IN PREMALIGNANT LESIONS AND GASTRIC CARCINOMA - PROGNOSTIC VALUE

    PubMed Central

    Vukobrat-Bijedić, Zora; Radović, Svjetlana; Husić-Selimović, Azra; Gornjaković, Srđan

    2007-01-01

    The aim of the study was to verify the presence of mutated tumor suppresser gene p53 in intestinal mucosa with histologically confirmed premalignant lesions and gastric carcinoma, and assess its prognostic value. The paper presents prospective study that included 50 patients with gastric adeno-carcinoma of intestinal type that were treated at Gastroenterohepa-tology Clinic, and 50 patients with histologically confirmed chronic atrophic H. pylori positive gastritis. In the mucosa biopsy samples, we analyzed presence, frequency and severity of inflammatory-regenerative, metaplastic and dysplastic changes. We typed intestinal metaplasia immunohistochemically and confirmed the presence of p53 onco-protein in antigen positive gastric carcinoma cells, and evaluated its prognostic value. Our results suggest that H. pylori acts as an initiator of inflammatory processes in gastric mucosa, which are followed by emergence of precancerous lesions. p53 is expressed late in carcinogenesis (14%) and as such, may be considered as an indicator of transformation of premalignant into malignant lesion. PMID:17489760

  20. Canine gastric carcinoma: immunohistochemical expression of cell cycle proteins (p53, p21, and p16) and heat shock proteins (Hsp27 and Hsp70).

    PubMed

    Carrasco, V; Canfrán, S; Rodríguez-Franco, F; Benito, A; Sáinz, A; Rodríguez-Bertos, A

    2011-01-01

    Immunohistochemical staining for cell cycle proteins and heat shock proteins was performed on 17 canine gastric carcinomas. The immunoexpression of p53, p21, p16, Hsp27, and Hsp70 was investigated. A study was conducted to determine the histological type and parameters related to tumor malignancy. Possible associations and trends were assessed between the immunoexpression of each protein and tumor type as well as specific parameters of malignancy. High intratumor frequency of cellular p53 immunostaining was observed (61.96% average), but lower frequencies of p21 and p16 expression were present (34.65% and 10.41%, respectively). The p53 overexpression was associated with tumor infiltration (P = .0258). Expression of p21 was lower in undifferentiated carcinomas, and the loss of expression was associated with histopathological parameters characteristic of a poor prognosis such as lymphatic vessel invasion (P = .0258). The lack of p16 immunoreactivity was related to histopathological characteristics of malignancy such as the presence of evident and multiple nucleoli (P = .0475). In contrast, deep tumor infiltration was observed in those carcinomas with a high p16 index (P = .0475). Hsp70 appeared to be overexpressed in all gastric neoplasms included in this study. This is in contrast to Hsp27, because a group of tumors showed complete lack of Hsp27 immunoexpression, whereas the others displayed extensive Hsp27 immunostaining. The differences in Hsp27 did not correlate with any of the histopathological parameters, but Hsp27 immunoexpression was higher in the undifferentiated carcinoma. No significant differences in the expression of the proteins were found in canine gastric carcinomas according to their histological type. These findings may be useful for establishing a prognosis for canine gastric carcinoma.

  1. Gene mutations and increased levels of p53 protein in human squamous cell carcinomas and their cell lines.

    PubMed Central

    Burns, J. E.; Baird, M. C.; Clark, L. J.; Burns, P. A.; Edington, K.; Chapman, C.; Mitchell, R.; Robertson, G.; Soutar, D.; Parkinson, E. K.

    1993-01-01

    Using immunocytochemical and Western blotting techniques we have demonstrated the presence of abnormally high levels of p53 protein in 8/24 (33%) of human squamous cell carcinomas (SCC) and 9/18 (50%) of SCC cell lines. There was a correlation between the immunocytochemical results obtained with eight SCC samples and their corresponding cell lines. Direct sequencing of PCR-amplified, reverse transcribed, p53 mRNA confirmed the expression of point mutations in six of the positive cell lines and detected in-frame deletions in two others. We also detected two stop mutations and three out-of-frame deletions in five lines which did not express elevated levels of p53 protein. Several of the mutations found in SCC of the tongue (3/7) were in a region (codons 144-166) previously identified as being a p53 mutational hot spot in non-small cell lung tumours (Mitsudomi et al., 1992). In 11/13 cases only the mutant alleles were expressed suggesting loss or reduced expression of the wild type alleles in these cases. Six of the mutations were also detected in the SCCs from which the lines were derived, strongly suggesting that the mutations occurred, and were selected, in vivo. The 12th mutation GTG-->GGG (valine-->glycine) at codon 216 was expressed in line SCC-12 clone B along with an apparently normal p53 allele and is to our knowledge a novel mutation. Line BICR-19 also expressed a normal p53 allele in addition to one where exon 10 was deleted. Additionally 15 of the SCC lines (including all of those which did not show elevated p53 protein levels) were screened for the presence of human papillomavirus types 16 and 18 and were found to be negative. These results are discussed in relation to the pathogenesis of SCC and the immortalisation of human keratinocytes in vitro. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8390283

  2. p73 coordinates with Δ133p53 to promote DNA double-strand break repair.

    PubMed

    Gong, Hongjian; Zhang, Yuxi; Jiang, Kunpeng; Ye, Shengfan; Chen, Shuming; Zhang, Qinghe; Peng, Jinrong; Chen, Jun

    2018-03-06

    Tumour repressor p53 isoform Δ133p53 is a target gene of p53 and an antagonist of p53-mediated apoptotic activity. We recently demonstrated that Δ133p53 promotes DNA double-strand break (DSB) repair by upregulating transcription of the repair genes RAD51, LIG4 and RAD52 in a p53-independent manner. However, Δ133p53 lacks the transactivation domain of full-length p53, and the mechanism by which it exerts transcriptional activity independently of full-length p53 remains unclear. In this report, we describe the accumulation of high levels of both Δ133p53 and p73 (a p53 family member) at 24 h post γ-irradiation (hpi). Δ133p53 can form a complex with p73 upon γ-irradiation. The co-expression of Δ133p53 and p73, but not either protein alone, can significantly promote DNA DSB repair mechanisms, including homologous recombination (HR), non-homologous end joining (NHEJ) and single-strand annealing (SSA). p73 and Δ133p53 act synergistically to promote the expression of RAD51, LIG4 and RAD52 by joining together to bind to region containing a Δ133p53-responsive element (RE) and a p73-RE in the promoters of all three repair genes. In addition to its accumulation at 24 hpi, p73 protein expression also peaks at 4 hpi. The depletion of p73 not only reduces early-stage apoptotic frequency (4-6 hpi), but also significantly increases later-stage DNA DSB accumulation (48 hpi), leading to cell cycle arrest in the G2 phase and, ultimately, cell senescence. In summary, the apoptotic regulator p73 also coordinates with Δ133p53 to promote DNA DSB repair, and the loss of function of p73 in DNA DSB repair may underlie spontaneous and carcinogen-induced tumorigenesis in p73 knockout mice.

  3. Silencing of p53 RNA through transarterial delivery ameliorates renal tubular injury and downregulates GSK-3β expression after ischemia-reperfusion injury.

    PubMed

    Fujino, Takayuki; Muhib, Sharifi; Sato, Nobuyuki; Hasebe, Naoyuki

    2013-12-01

    p53, a pivotal protein in the apoptotic pathway, has been identified as a mediator of transcriptional responses to ischemia-reperfusion (IR) injury. The characteristics and functional significance of the p53 response in vivo are largely unknown in IR-induced kidney injury. Therapeutic opportunities of delivering small interfering RNA (siRNA) via venous injection have gained recognition; however, systemic adverse effects of siRNA therapy should be considered. To prevent IR-induced kidney injury, we tested the efficacy of transarterial administration of siRNA targeting p53 (p53 siRNA). Female C57BL/6 mice underwent unilateral renal artery ischemia for 30 min, followed by reperfusion. siRNA experiments utilized short hairpin (sh) RNA plasmid-based approaches. Transfection of shRNA was performed using cationic polymer transfection reagent. Injection of synthetic p53 shRNA into the left renal artery just after ischemia improved tubular injury, apoptosis, and the swelling of mitochondria in cells of the thick ascending limb of Henle (mTALH) at the outer medullary regions. Staining of upregulated p53 was colocalized with the inducible expression of glycogen synthase kinase-3β (GSK-3β) at mTALH after IR injury. p53 shRNA inhibited GSK-3β expression and restored β-catenin expression at mTALH. For IR-induced kidney injury, transarterial delivery of p53 siRNA is an effective pharmacological intervention. Targeting siRNA to p53 leads to an attenuation of apoptosis and mitochondrial damage through the downregulation of GSK-3β expression and upregulation of β-catenin. Local delivery of vectors such as p53 siRNA through a transaortic catheter is clinically useful in reducing the adverse effect of siRNA-related therapy.

  4. [Effect of tagalsin on p53 and Bcl-2 expression in hepatoma H(22) tumor-bearing mice].

    PubMed

    Song, Xiu-qi; Guo, Yun-liang; Wang, Bing-gao; Sun, Shao-jie; Yao, Ru-yong

    2011-07-01

    To explore the effect and mechanism of tagalsin on hepatoma cells. The animal models were established by transplanting H(22) mouse hepatoma cells to mouse liver, and ten days later the mice were randomly divided into five groups: blank group, carmofur positive group and tagalsin groups, including low-dose, middle-dose and high-dose groups. Then medicine or oil was given to the mice by gastric gavage in consecutive 5 days with a 2-days interval as a course of treatment, two courses in all. All mice were killed at 24 hours after medication, and the survival period, ascites conditions, aggressive conditions intra- or extra-liver, weight changes, tumor volume and spleen index of the tumor-bearing mice were observed. Pathological changes of the tumors were examined. Apoptotic factors p53 and Bcl-2 protien and mRNA were detected by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR). tagalsin inhibited the hepatoma growth effectively without influencing spleen index to some extent. The tumor inhibition rate of tagalsin low, middle and high dose groups were 17.9%, 63.1% and 71.8%, respectively. Immunohistochemical results showed that the p53 and Bcl-2 protein positive cell counts of the positive control and experimental groups were significantly lower than those of the blank group (P < 0.01). RT-PCR results showed that the p53 mRNA expression was significantly enhanced and Bcl-2 mRNA expression was decreased in the positive control groups and tagalsin treatment groups, especially in the high dose group, compared with those of the blank group (P < 0.05). tagalsin can inhibit the growth of mouse hepatoma cells significantly. The mechanism of its anti-tumor effect may work via up-regulating the wild type p53 gene expression and down-regulating Bcl-2 gene expression and thus regulating tumor cell apoptosis.

  5. TP53 Mutation Status of Tubo-ovarian and Peritoneal High-grade Serous Carcinoma with a Wild-type p53 Immunostaining Pattern.

    PubMed

    Na, Kiyong; Sung, Ji-Youn; Kim, Hyun-Soo

    2017-12-01

    Diffuse and strong nuclear p53 immunoreactivity and a complete lack of p53 expression are regarded as indicative of missense and nonsense mutations, respectively, of the TP53 gene. Tubo-ovarian and peritoneal high-grade serous carcinoma (HGSC) is characterized by aberrant p53 expression induced by a TP53 mutation. However, our experience with some HGSC cases with a wild-type p53 immunostaining pattern led us to comprehensively review previous cases and investigate the TP53 mutational status of the exceptional cases. We analyzed the immunophenotype of 153 cases of HGSC and performed TP53 gene sequencing analysis in those with a wild-type p53 immunostaining pattern. Immunostaining revealed that 109 (71.3%) cases displayed diffuse and strong p53 expression (missense mutation pattern), while 39 (25.5%) had no p53 expression (nonsense mutation pattern). The remaining five cases of HGSC showed a wild-type p53 immunostaining pattern. Direct sequencing analysis revealed that three of these cases harbored nonsense TP53 mutations and two had novel splice site deletions. TP53 mutation is almost invariably present in HGSC, and p53 immunostaining can be used as a surrogate marker of TP53 mutation. In cases with a wild-type p53 immunostaining pattern, direct sequencing for TP53 mutational status can be helpful to confirm the presence of a TP53 mutation. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. RITA can induce cell death in p53-defective cells independently of p53 function via activation of JNK/SAPK and p38

    PubMed Central

    Weilbacher, A; Gutekunst, M; Oren, M; Aulitzky, W E; van der Kuip, H

    2014-01-01

    Significant advances have been made in the development of small molecules blocking the p53/MDM2 interaction. The Mdm2 inhibitor Nutlin-3 is restricted to tumors carrying wtp53. In contrast, RITA, a compound that binds p53, has recently been shown also to restore transcriptional functions of mtp53. As more than 50% of solid tumors carry p53 mutations, RITA promises to be a more effective therapeutic strategy than Nutlin-3. We investigated effects of RITA on apoptosis, cell cycle and induction of 45 p53 target genes in a panel of 14 cell lines from different tumor entities with different p53 status as well as primary lymphocytes and fibroblasts. Nine cell strains expressed wtp53, four harbored mtp53, and three were characterized by the loss of p53 protein. A significant induction of cell death upon RITA was observed in 7 of 16 cell lines. The nonmalignant cells in our panel were substantially less sensitive. We found that in contrast to Nultin-3, RITA is capable to induce cell death not only in tumor cells harboring wtp53 and mtp53 but also in p53-null cells. Importantly, whereas p53 has a central role for RITA-mediated effects in wtp53 cells, neither p53 nor p63 or p73 were essential for the RITA response in mtp53 or p53-null cells in our panel demonstrating that besides the known p53-dependent action of RITA in wtp53 cells, RITA can induce cell death also independently of p53 in cells harboring defective p53. We identified an important role of both p38 and JNK/SAPK for sensitivity to RITA in these cells leading to a typical caspase- and BAX/BAK-dependent mitochondrial apoptosis. In conclusion, our data demonstrate that RITA can induce apoptosis through p38 and JNK/SAPK not only in tumor cells harboring wtp53 and mtp53 but also in p53-null cells, making RITA an interesting tumor-selective drug. PMID:25010984

  7. RITA can induce cell death in p53-defective cells independently of p53 function via activation of JNK/SAPK and p38.

    PubMed

    Weilbacher, A; Gutekunst, M; Oren, M; Aulitzky, W E; van der Kuip, H

    2014-07-10

    Significant advances have been made in the development of small molecules blocking the p53/MDM2 interaction. The Mdm2 inhibitor Nutlin-3 is restricted to tumors carrying wtp53. In contrast, RITA, a compound that binds p53, has recently been shown also to restore transcriptional functions of mtp53. As more than 50% of solid tumors carry p53 mutations, RITA promises to be a more effective therapeutic strategy than Nutlin-3. We investigated effects of RITA on apoptosis, cell cycle and induction of 45 p53 target genes in a panel of 14 cell lines from different tumor entities with different p53 status as well as primary lymphocytes and fibroblasts. Nine cell strains expressed wtp53, four harbored mtp53, and three were characterized by the loss of p53 protein. A significant induction of cell death upon RITA was observed in 7 of 16 cell lines. The nonmalignant cells in our panel were substantially less sensitive. We found that in contrast to Nultin-3, RITA is capable to induce cell death not only in tumor cells harboring wtp53 and mtp53 but also in p53-null cells. Importantly, whereas p53 has a central role for RITA-mediated effects in wtp53 cells, neither p53 nor p63 or p73 were essential for the RITA response in mtp53 or p53-null cells in our panel demonstrating that besides the known p53-dependent action of RITA in wtp53 cells, RITA can induce cell death also independently of p53 in cells harboring defective p53. We identified an important role of both p38 and JNK/SAPK for sensitivity to RITA in these cells leading to a typical caspase- and BAX/BAK-dependent mitochondrial apoptosis. In conclusion, our data demonstrate that RITA can induce apoptosis through p38 and JNK/SAPK not only in tumor cells harboring wtp53 and mtp53 but also in p53-null cells, making RITA an interesting tumor-selective drug.

  8. Combined radiation and p53 gene therapy of malignant glioma cells.

    PubMed

    Badie, B; Goh, C S; Klaver, J; Herweijer, H; Boothman, D A

    1999-01-01

    More than half of malignant gliomas reportedly have alterations in the p53 tumor suppressor gene. Because p53 plays a key role in the cellular response to DNA-damaging agents, we investigated the role of p53 gene therapy before ionizing radiation in cultured human glioma cells containing normal or mutated p53. Three established human glioma cell lines expressing the wild-type (U87 MG, p53wt) or mutant (A172 and U373 MG, p53mut) p53 gene were transduced by recombinant adenoviral vectors bearing human p53 (Adp53) and Escherichia coli beta-galactosidase genes (AdLacZ, control virus) before radiation (0-20 Gy). Changes in p53, p21, and Bax expression were studied by Western immunoblotting, whereas cell cycle alterations and apoptosis were investigated by flow cytometry and nuclear staining. Survival was assessed by clonogenic assays. Within 48 hours of Adp53 exposure, all three cell lines demonstrated p53 expression at a viral multiplicity of infection of 100. p21, which is a p53-inducible downstream effector gene, was overexpressed, and cells were arrested in the G1 phase. Bax expression, which is thought to play a role in p53-induced apoptosis, did not change with either radiation or Adp53. Apoptosis and survival after p53 gene therapy varied. U87 MG (p53wt) cells showed minimal apoptosis after Adp53, irradiation, or combined treatments. U373 MG (p53mut) cells underwent massive apoptosis and died within 48 hours of Adp53 treatment, independent of irradiation. Surprisingly, A172 (p53mut) cells demonstrated minimal apoptosis after Adp53 exposure; however, unlike U373 MG cells, apoptosis increased with radiation dose. Survival of all three cell lines was reduced dramatically after >10 Gy. Although Adp53 transduction significantly reduced the survival of U373 MG cells and inhibited A172 growth, it had no effect on the U87 MG cell line. Transduction with AdLacZ did not affect apoptosis or cell cycle progression and only minimally affected survival in all cell lines. We

  9. Radiation-Induced Salivary Gland Dysfunction Results From p53-Dependent Apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avila, Jennifer L.; Grundmann, Oliver; Burd, Randy

    2009-02-01

    Purpose: Radiotherapy for head-and-neck cancer causes adverse secondary side effects in the salivary glands and results in diminished quality of life for the patient. A previous in vivo study in parotid salivary glands demonstrated that targeted head-and-neck irradiation resulted in marked increases in phosphorylated p53 (serine{sup 18}) and apoptosis, which was suppressed in transgenic mice expressing a constitutively active mutant of Akt1 (myr-Akt1). Methods and Materials: Transgenic and knockout mouse models were exposed to irradiation, and p53-mediated transcription, apoptosis, and salivary gland dysfunction were analyzed. Results: The proapoptotic p53 target genes PUMA and Bax were induced in parotid salivary glandsmore » of mice at early time points after therapeutic radiation. This dose-dependent induction requires expression of p53 because no radiation-induced expression of PUMA and Bax was observed in p53-/- mice. Radiation also induced apoptosis in the parotid gland in a dose-dependent manner, which was p53 dependent. Furthermore, expression of p53 was required for the acute and chronic loss of salivary function after irradiation. In contrast, apoptosis was not induced in p53-/- mice, and their salivary function was preserved after radiation exposure. Conclusions: Apoptosis in the salivary glands after therapeutic head-and-neck irradiation is mediated by p53 and corresponds to salivary gland dysfunction in vivo.« less

  10. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells.

    PubMed

    Min, Kyoung-Jin; Nam, Ju-Ock; Kwon, Taeg Kyu

    2017-08-02

    Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki) cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose) polymerase (PARP), which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk) inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5) expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level.

  11. p53 adenoviral vector (Ad-CMV-p53) induced prostatic growth inhibition of primary cultures of human prostate and an experimental rat model.

    PubMed

    Shirakawa, T; Gotoh, A; Gardner, T A; Kao, C; Zhang, Z J; Matsubara, S; Wada, Y; Hinata, N; Fujisawa, M; Hanioka, K; Matsuo, M; Kamidono, S

    2000-01-01

    Benign prostatic hyperplasia (BPH) is the most common proliferative disease affecting men. Numerous minimally invasive technologies are being developed or are currently in use to obviate the need for transurethral surgery. The goal of the present study was to develop a novel molecular based approach for the treatment of BPH using recombinant p53 adenoviral vector. The over-expression of wt-p53 can cause cell apoptosis or cell growth arrest, thus preventing the uncontrolled cell proliferation underlying BPH pathophysiology. Ad-CMV-p53, a replication-deficient recombinant adenovirus containing cytomegalovirus promoter driving p53 gene, was used. Human prostate stromal (PS) cells were evaluated for apoptosis (TUNEL assay), mRNA levels of key cell cycle regulators influencing apoptosis (p-53, Bax and Bcl-2) using quantitative RT-PCR and cytotoxicity after Ad-CMV-p53. Ad-CMV-p53 was unilaterally injected into rat ventral prostates and growth inhibition was measured by prostate weight 3 weeks after injection. In vitro exposure to Ad-CMV-p53 significantly inhibited the proliferation of PS cells, induced mRNA over-expression of both wt-p53 and Bax, and increased the proportion of apoptotic cells. A 30% decrease in average prostate weight was demonstrated in rodents after Ad-CMV-p53 injection. The results suggest that further investigation of molecular gene therapy with recombinant wt-p53 adenovirus for the treatment of BPH is warranted.

  12. Prognostic value of the expression of tumor suppressor genes p53, p21, p16 and prb, and Ki-67 labelling in high grade astrocytomas treated with radiotherapy.

    PubMed

    Kirla, R; Salminen, E; Huhtala, S; Nuutinen, J; Talve, L; Haapasalo, H; Kalimo, H

    2000-01-01

    Cumulative inactivation of tumor suppressor genes and/or amplification of oncogenes lead to progressively more malignant astrocytic tumors. We have analyzed the significance of tumor suppressor genes p53, p21, p16 and retinoblastoma protein (pRb) and proliferative activity for survival in 77 high grade astrocytic tumors. After operation, the patients--25 anaplastic astrocytomas (AA) and 52 glioblastomas (GBs)--were treated with similar radiotherapy. The expression of the suppressor genes and the proliferative activity were analyzed immunohistochemically. p53 immunopositivity was found in 44% of AAs and 46% of GBs. Tumors with aberrant p53 expression had lower proliferation indices than p53 immunonegative tumors. Neither p53 expression nor p21 immunonegativity (52% of AAs and 48% of GBs) correlated with survival. p16 immunostaining was negative in 16% of AAs and in 44% of GBs, and it correlated inversely with survival in both uni- and multivariate analyses. pRb immunostaining was negative only in 8% of both AAs and GBs and the absence of p16 and pRb were mutually exclusive. Ki-67 labelling index (LI) was significantly higher in GBs (26.8%) than in AAs (20.3%), and in multivariate analysis it was an independent prognostic factor for survival. In 48% of AAs Ki-67 LI exceeded 20% and this subset of AAs had similar prognosis as GB. In high grade astrocytic tumors p16 immunonegativity was an independent indicator of poor prognosis in addition to the previously established patient's age, histopathology and Ki-67 LI. Furthermore, there was a subset of AAs with a high proliferation rate (> 20%) in which the histopathological hallmarks of GB were lacking, but which had similarly dismal prognosis as GB.

  13. Immunohistochemical co-expression status of cytokeratin 5/6, androgen receptor, and p53 as prognostic factors of adjuvant chemotherapy for triple negative breast cancer.

    PubMed

    Maeda, Tetsuyo; Nakanishi, Yoko; Hirotani, Yukari; Fuchinoue, Fumi; Enomoto, Katsuhisa; Sakurai, Kenichi; Amano, Sadao; Nemoto, Norimichi

    2016-03-01

    Triple negative breast cancer (TNBC) is immunohistochemically characterised by the lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor type 2 (HER2). TNBC is known for its poor prognosis and high recurrence probability. There is no effective targeted treatment for TNBC, but only adjuvant chemotherapies. There are two TNBC subtypes, basal-like and non-basal-like, which are defined based on positive cytokeratin (CK) 5/6 and/or epidermal growth factor receptor (EGFR) expression. In particular, CK5/6 expression is reported to correlate with TNBC recurrence. TNBC lacks ER-α expression, but some TNBCs are known to express the androgen receptor (AR). Moreover, although p53 accumulation is detected in various malignant tumors, its influence on adjuvant chemotherapy for patients with TNBC remains unclear. The aim of this study was to assess the combined immunohistochemical expression of CK 5/6, AR, and p53 as a potential prognostic marker of adjuvant chemotherapy for patients with TNBC. The expression of CK5/6, AR, and p53 in formalin-fixed and paraffin-embedded (FFPE) surgical sections from 52 patients with TNBC was analysed by immunohistochemistry (IHC) and the co-expression patterns in individual cells were investigated by immunofluorescent (IF) staining. Low AR expression was correlated with high clinical stage (P < 0.05) and low nuclear grade (P < 0.05). The expression of CK5/6 and p53 did not correlate with clinicopathological features. Patients who needed adjuvant chemotherapy presented the worst prognosis. In particular, when the IHC expression pattern was CK5/6 (-), AR (-), and p53 (+), the disease free survival (DFS) and overall survival (OS) were the worst. On the other hand, patients with AR (+) and p53 (-) TNBC presented a good prognosis. The analysis of the co-expression status of these three markers showed that no cells presented both AR and CK5/6 expression. Furthermore, TP53 m

  14. DUX4, a candidate gene for facioscapulohumeral muscular dystrophy, causes p53-dependent myopathy in vivo.

    PubMed

    Wallace, Lindsay M; Garwick, Sara E; Mei, Wenyan; Belayew, Alexandra; Coppee, Frederique; Ladner, Katherine J; Guttridge, Denis; Yang, Jing; Harper, Scott Q

    2011-03-01

    Facioscapulohumeral muscular dystrophy (FSHD) is associated with D4Z4 repeat contraction on human chromosome 4q35. This genetic lesion does not result in complete loss or mutation of any gene. Consequently, the pathogenic mechanisms underlying FSHD have been difficult to discern. In leading FSHD pathogenesis models, D4Z4 contractions are proposed to cause epigenetic changes, which ultimately increase expression of genes with myopathic potential. Although no gene has been conclusively linked to FSHD development, recent evidence supports a role for the D4Z4-encoded DUX4 gene in FSHD. In this study, our objective was to test the in vivo myopathic potential of DUX4. We delivered DUX4 to zebrafish and mouse muscle by transposon-mediated transgenesis and adeno-associated viral vectors, respectively. Overexpression of DUX4, which encodes a transcription factor, caused abnormalities associated with muscular dystrophy in zebrafish and mice. This toxicity required DNA binding, because a DUX4 DNA binding domain mutant produced no abnormalities. Importantly, we found the myopathic effects of DUX4 were p53 dependent, as p53 inhibition mitigated DUX4 toxicity in vitro, and muscles from p53 null mice were resistant to DUX4-induced damage. Our work demonstrates the myopathic potential of DUX4 in animal muscle. Considering previous studies showed DUX4 was elevated in FSHD patient muscles, our data support the hypothesis that DUX4 overexpression contributes to FSHD development. Moreover, we provide a p53-dependent mechanism for DUX4 toxicity that is consistent with previous studies showing p53 pathway activation in FSHD muscles. Our work justifies further investigation of DUX4 and the p53 pathway in FSHD pathogenesis. Copyright © 2010 American Neurological Association.

  15. DUX4, a Candidate Gene for Facioscapulohumeral Muscular Dystrophy, Causes p53-Dependent Myopathy In Vivo

    PubMed Central

    Wallace, Lindsay M.; Garwick, Sara E.; Mei, Wenyan; Belayew, Alexandra; Coppee, Frederique; Ladner, Katherine J.; Guttridge, Denis; Yang, Jing; Harper, Scott Q.

    2014-01-01

    Objective Facioscapulohumeral muscular dystrophy (FSHD) is associated with D4Z4 repeat contraction on human chromosome 4q35. This genetic lesion does not result in complete loss or mutation of any gene. Consequently, the pathogenic mechanisms underlying FSHD have been difficult to discern. In leading FSHD pathogenesis models, D4Z4 contractions are proposed to cause epigenetic changes, which ultimately increase expression of genes with myopathic potential. Although no gene has been conclusively linked to FSHD development, recent evidence supports a role for the D4Z4-encoded DUX4 gene in FSHD. In this study, our objective was to test the in vivo myopathic potential of DUX4. Methods We delivered DUX4 to zebrafish and mouse muscle by transposon-mediated transgenesis and adeno-associated viral vectors, respectively. Results Overexpression of DUX4, which encodes a transcription factor, caused abnormalities associated with muscular dystrophy in zebrafish and mice. This toxicity required DNA binding, because a DUX4 DNA binding domain mutant produced no abnormalities. Importantly, we found the myopathic effects of DUX4 were p53 dependent, as p53 inhibition mitigated DUX4 toxicity in vitro, and muscles from p53 null mice were resistant to DUX4-induced damage. Interpretation Our work demonstrates the myopathic potential of DUX4 in animal muscle. Considering previous studies showed DUX4 was elevated in FSHD patient muscles, our data support the hypothesis that DUX4 overexpression contributes to FSHD development. Moreover, we provide a p53-dependent mechanism for DUX4 toxicity that is consistent with previous studies showing p53 pathway activation in FSHD muscles. Our work justifies further investigation of DUX4 and the p53 pathway in FSHD pathogenesis. PMID:21446026

  16. p53 regulates the mevalonate pathway in human glioblastoma multiforme

    PubMed Central

    Laezza, C; D'Alessandro, A; Di Croce, L; Picardi, P; Ciaglia, E; Pisanti, S; Malfitano, A M; Comegna, M; Faraonio, R; Gazzerro, P; Bifulco, M

    2015-01-01

    The mevalonate (MVA) pathway is an important metabolic pathway implicated in multiple aspects of tumorigenesis. In this study, we provided evidence that p53 induces the expression of a group of enzymes of the MVA pathway including 3′-hydroxy-3′-methylglutaryl-coenzyme A reductase, MVA kinase, farnesyl diphosphate synthase and farnesyl diphosphate farnesyl transferase 1, in the human glioblastoma multiforme cell line, U343 cells, and in normal human astrocytes, NHAs. Genetic and pharmacologic perturbation of p53 directly influences the expression of these genes. Furthermore, p53 is recruited to the gene promoters in designated p53-responsive elements, thereby increasing their transcription. Such effect was abolished by site-directed mutagenesis in the p53-responsive element of promoter of the genes. These findings highlight another aspect of p53 functions unrelated to tumor suppression and suggest p53 as a novel regulator of the MVA pathway providing insight into the role of this pathway in cancer progression. PMID:26469958

  17. Evidence that expression of a mutated p53 gene attenuates apoptotic cell death in human gastric intestinal-type carcinomas in vivo.

    PubMed

    Ishida, M; Gomyo, Y; Ohfuji, S; Ikeda, M; Kawasaki, H; Ito, H

    1997-05-01

    To examine in vivo the validity of the results of experiments in vitro, we analyzed the relationship between p53 gene status and apoptotic cell death of human gastric intestinal-type adenocarcinomas. Surgical specimens were classified into two categories: 18 gastric cancers with nuclear p53 protein (A), and 17 gastric cancers without nuclear p53 protein (B). Polymerase chain reaction-single strand conformation polymorphism disclosed a shifted band that corresponded to a mutation in the p53 gene in 13 cases (72%) in category A and 3 cases (18%) in category B, the frequency being significantly higher in the former (P < 0.05). Apoptotic cells were identified from routinely stained sections and by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL). The TUNEL index [TI; (the number of TUNEL-positive apoptotic cells/the total number of tumor cells) x 100] was 3.8 +/- 1.4% in category A and 4.9 +/- 1.2% in category B, the value being significantly lower in the former (P < 0.05). The proliferating cell nuclear antigen index, defined similarly to the TI, was 56.4 +/- 16.3% in category A, and it was significantly higher than that in category B (P < 0.05). The immunohistochemically detected expression of p21CIP1/WAP1 did not differ between the two categories, while Bax-positive tumor cells were more frequently detected in category A. These results indicate that (1) expression of a mutated p53 gene attenuates apoptotic cell death of gastric cancer, in accordance with the previous in vitro finding that p53 gene mutation provides a possible selective advantage for tumor cell proliferation, and (2) apoptosis is related not only to expression of p53 and the stage of the cell cycle, but also to p53-independent and cell cycle-independent events.

  18. Expression of p53 and selected proliferative markers (Ki-67, MCM3, PCNA, and topoisomerase IIα) in borderline ovarian tumors: Correlation with clinicopathological features.

    PubMed

    Ciepliński, Klaudiusz; Jóźwik, Maciej; Semczuk-Sikora, Anna; Gogacz, Marek; Lewkowicz, Dorota; Ignatov, Atanas; Semczuk, Andrzej

    2018-02-01

    The expression of p53 has been studied not only in primary human ovarian carcinomas, but also in borderline ovarian tumors, however, the results were discordant. Expression patterns of proteins involved in cell proliferation and apoptosis have been investigated in various human neoplasms, including female genital tract neoplasms. The aim of this investigation was to assess the staining pattern and immunolocalization of p53 and selected proliferative markers (Ki-67, MCM3, PCNA, and topoisomerase IIα) in borderline ovarian tumors (BOTs). The study group consisted of 42 women who underwent pelvic surgery between 2006-2015. The median patients' age was 46 years. The immunoperoxidase technique was employed using antibodies against p53, Ki-67, MCM3, PCNA, and topoisomerase IIα. For p53, nuclear expression was observed in BOTs, however, cytoplasmatic immunoreactivity was also detected. Altogether, 25 (60%) tumors demonstrated positive p53 immunostaining, including overexpression found in 6 (14%). There were no significant differences in p53 expression between subgroups of clinicopathological variables. Immunoexpression of Ki-67, MCM3, PCNA, and topoisomerase IIα was nuclear. Ki-67 expression was positive in 12 (29%) cases and there was a trend towards a relationship between patients' age and Ki-67 staining (P=0.08). Interestingly, a significantly higher Ki-67 expression was found in tumors of ≥10 cm in diameter compared to smaller tumors (P=0.008). MCM3 expression was detected in 38 (90%) tumors, and PCNA expression in 28 (67%), yet none of clinicopathological factors was related to them. Topoisomerase IIα expression was present in 14 (33%) cases and, interestingly, its significantly higher expression was observed in BOTs of ≥10 cm in diameter compared to smaller tumors (P=0.008). Moreover, Spearman's correlation revealed highly significant positive associations between Ki-67 and topoisomerase IIα (R=0.403, P=0.008) and Ki-67 and MCM3 (R=0.469, P=0.001). We

  19. Transcriptional inhibition of p21{sup WAF1/CIP1} gene (CDKN1) expression by survivin is at least partially p53-dependent: Evidence for survivin acting as a transcription factor or co-factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Lei; Pre-Doctoral Chinese Fellowship Student, Second West China Hospital, Sichuan University, Sichuan; Ling, Xiang

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Survivin inhibits the expression of p21 protein, mRNA and promoter activity. Black-Right-Pointing-Pointer Survivin neutralizes p53-induced p21 expression and promoter activity. Black-Right-Pointing-Pointer Survivin physically interacts with p53 in cancer cells. Black-Right-Pointing-Pointer Genetic silencing of endogenous survivin upregulates p21 in p53 wild type cancer cells. Black-Right-Pointing-Pointer Both p53 and survivin interacts on the two p53-binding sites in the p21 promoter. -- Abstract: Growing evidence suggests a role for the antiapoptotic protein survivin in promotion of cancer cell G1/S transition and proliferation. However, the underlying mechanism is unclear. Further, although upregulation of p21{sup WAF1/CIP1} by p53 plays an important role inmore » p53-mediated cell G1 arrests in response to various distresses, it is unknown whether survivin plays a role in the regulation of p21{sup WAF1/CIP1} expression. Here, we report that exogenous expression of survivin in p53-wild type MCF-7 breast cancer cells inhibits the expression of p21{sup WAF1/CIP1} protein, mRNA and promoter activity, while the survivin C84A mutant and antisense failed to do so. Cotransfection experiments in the p53 mutant H1650 lung cancer cell line showed that survivin neutralizes p53-induced p21{sup WAF1/CIP1} expression and promoter activity. Importantly, genetically silencing of endogenous survivin using lentiviral survivin shRNA also enhances endogenous p21 in p53 wild type cancer cells, suggesting the physiological relevance of the fining. We further demonstrated that both p53 and survivin interacts on the two p53-binding sites in the p21{sup WAF1/CIP1} promoter (-2313 to -2212; -1452 to -1310), and survivin physically interacts with p53 in cancer cells. Together, we propose that survivin may act as a transcription factor or cofactor to interact with p53 on the p21{sup WAF1/CIP1} promoter leading to the inhibition of p21{sup WAF1/CIP1

  20. 40 Years of Research Put p53 in Translation

    PubMed Central

    Marcel, Virginie; Nguyen Van Long, Flora; Diaz, Jean-Jacques

    2018-01-01

    Since its discovery in 1979, p53 has shown multiple facets. Initially the tumor suppressor p53 protein was considered as a stress sensor able to maintain the genome integrity by regulating transcription of genes involved in cell cycle arrest, apoptosis and DNA repair. However, it rapidly came into light that p53 regulates gene expression to control a wider range of biological processes allowing rapid cell adaptation to environmental context. Among them, those related to cancer have been extensively documented. In addition to its role as transcription factor, scattered studies reported that p53 regulates miRNA processing, modulates protein activity by direct interaction or exhibits RNA-binding activity, thus suggesting a role of p53 in regulating several layers of gene expression not restricted to transcription. After 40 years of research, it appears more and more clearly that p53 is strongly implicated in translational regulation as well as in the control of the production and activity of the translational machinery. Translation control of specific mRNAs could provide yet unsuspected capabilities to this well-known guardian of the genome.

  1. Stabilisation of p53 enhances reovirus-induced apoptosis and virus spread through p53-dependent NF-κB activation.

    PubMed

    Pan, D; Pan, L-Z; Hill, R; Marcato, P; Shmulevitz, M; Vassilev, L T; Lee, P W K

    2011-09-27

    Naturally oncolytic reovirus preferentially kills cancer cells, making it a promising cancer therapeutic. Mutations in tumour suppressor p53 are prevalent in cancers, yet the role of p53 in reovirus oncolysis is relatively unexplored. Human cancer cell lines were exposed to Nutlin-3a, reovirus or a combination of the two and cells were processed for reovirus titration, western blot, real-time PCR and apoptosis assay using Annexin V and 7-AAD staining. Confocal microscopy was used to determine translocation of the NF-κB p65 subunit. We show that despite similar reovirus replication in p53(+/+) and p53(-/-) cells, stabilisation of p53 by Nutlin-3a significantly enhanced reovirus-induced apoptosis and hence virus release and dissemination while having no direct effect on virus replication. Enhanced apoptosis by Nutlin-3a was not observed in p53(-/-) or p53 knockdown cells; however, increased expression of Bax and p21 are required. Moreover, elevated NF-κB activation in reovirus-infected cells following Nutlin-3a treatment was necessary for enhanced reovirus-induced apoptosis, as synergistic cytotoxicity was overcome by specific NF-κB inhibitors. Nutlin-3a treatment enhances reovirus-induced apoptosis and virus spread through p53-dependent NF-κB activation, and combination of reovirus and Nutlin-3a might represent an improved therapy against cancers harbouring wild-type p53.

  2. p53 and metabolism: from mechanism to therapeutics

    PubMed Central

    Simabuco, Fernando M.; Morale, Mirian G.; Pavan, Isadora C.B.; Morelli, Ana P.; Silva, Fernando R.; Tamura, Rodrigo E.

    2018-01-01

    The tumor cell changes itself and its microenvironment to adapt to different situations, including action of drugs and other agents targeting tumor control. Therefore, metabolism plays an important role in the activation of survival mechanisms to keep the cell proliferative potential. The Warburg effect directs the cellular metabolism towards an aerobic glycolytic pathway, despite the fact that it generates less adenosine triphosphate than oxidative phosphorylation; because it creates the building blocks necessary for cell proliferation. The transcription factor p53 is the master tumor suppressor; it binds to more than 4,000 sites in the genome and regulates the expression of more than 500 genes. Among these genes are important regulators of metabolism, affecting glucose, lipids and amino acids metabolism, oxidative phosphorylation, reactive oxygen species (ROS) generation and growth factors signaling. Wild-type and mutant p53 may have opposing effects in the expression of these metabolic genes. Therefore, depending on the p53 status of the cell, drugs that target metabolism may have different outcomes and metabolism may modulate drug resistance. Conversely, induction of p53 expression may regulate differently the tumor cell metabolism, inducing senescence, autophagy and apoptosis, which are dependent on the regulation of the PI3K/AKT/mTOR pathway and/or ROS induction. The interplay between p53 and metabolism is essential in the decision of cell fate and for cancer therapeutics. PMID:29805774

  3. Abrogation of Gli3 expression suppresses the growth of colon cancer cells via activation of p53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Han Na; Oh, Sang Cheul; Kim, Jun Suk

    2012-03-10

    p53, the major human tumor suppressor, appears to be related to sonic hedgehog (Shh)-Gli-mediated tumorigenesis. However, the role of p53 in tumor progression by the Shh-Gli signaling pathway is poorly understood. Herein we investigated the critical regulation of Gli3-p53 in tumorigenesis of colon cancer cells and the molecular mechanisms underlying these effects. RT-PCR analysis indicated that the mRNA level of Shh and Gli3 in colon tumor tissues was significantly higher than corresponding normal tissues (P < 0.001). The inhibition of Gli3 by treatment with Gli3 siRNA resulted in a clear decrease in cell proliferation and enhanced the level of expressionmore » of p53 proteins compared to treatment with control siRNA. The half-life of p53 was dramatically increased by treatment with Gli3 siRNA. In addition, treatment with MG132 blocked MDM2-mediated p53 ubiquitination and degradation, and led to accumulation of p53 in Gli3 siRNA-overexpressing cells. Importantly, ectopic expression of p53 siRNA reduced the ability of Gli3 siRNA to suppress proliferation of those cells compared with the cells treated with Gli3 siRNA alone. Moreover, Gli3 siRNA sensitized colon cancer cells to treatment with anti-cancer agents (5-FU and bevacizumab). Taken together, our studies demonstrate that loss of Gli3 signaling leads to disruption of the MDM2-p53 interaction and strongly potentiate p53-dependent cell growth inhibition in colon cancer cells, indicating a basis for the rational use of Gli3 antagonists as a novel treatment option for colon cancer.« less

  4. Family matters: sibling rivalry and bonding between p53 and p63 in cancer.

    PubMed

    Romano, Rose-Anne; Sinha, Satrajit

    2014-04-01

    The p53 family (p53, p63 and p73) is intimately linked with an overwhelming number of cellular processes during normal physiological as well as pathological conditions including cancer. The fact that these proteins are expressed in myriad isoforms, each with unique biochemical properties and distinct effects on tumorigenesis, complicates their study. A case in point is Squamous Cell Carcinoma (SCC) where p53 is often mutated and the ΔNp63 isoform is overexpressed. Given that p53 and p63 can hetero-dimerize, bind to quite similar DNA elements and share common co-factors, any alterations in their individual expression levels, activity and/or mutation can severely disrupt the family equilibrium. The burgeoning genomics data sets and new additions to the experimental toolbox are offering crucial insights into the complex role of the p53 family in SCC, but more mechanistic studies are needed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Andrographolide induces degradation of mutant p53 via activation of Hsp70.

    PubMed

    Sato, Hirofumi; Hiraki, Masatsugu; Namba, Takushi; Egawa, Noriyuki; Baba, Koichi; Tanaka, Tomokazu; Noshiro, Hirokazu

    2018-05-22

    The tumor suppressor gene p53 encodes a transcription factor that regulates various cellular functions, including DNA repair, apoptosis and cell cycle progression. Approximately half of all human cancers carry mutations in p53 that lead to loss of tumor suppressor function or gain of functions that promote the cancer phenotype. Thus, targeting mutant p53 as an anticancer therapy has attracted considerable attention. In the current study, a small-molecule screen identified andrographlide (ANDRO) as a mutant p53 suppressor. The effects of ANDRO, a small molecule isolated from the Chinese herb Andrographis paniculata, on tumor cells carrying wild-type or mutant p53 were examined. ANDRO suppressed expression of mutant p53, induced expression of the cyclin-dependent kinase inhibitor p21 and pro-apoptotic proteins genes, and inhibited the growth of cancer cells harboring mutant p53. ANDRO also induced expression of the heat-shock protein (Hsp70) and increased binding between Hsp70 and mutant p53 protein, thus promoting proteasomal degradation of p53. These results provide novel insights into the mechanisms regulating the function of mutant p53 and suggest that activation of Hsp70 may be a new strategy for the treatment of cancers harboring mutant p53.

  6. Human papillomavirus oncogenic E6 protein regulates human β-defensin 3 (hBD3) expression via the tumor suppressor protein p53

    PubMed Central

    Yue, Hong; Wang, Liming; Jin, Jessica; Ghosh, Santosh K.; Kawsar, Hameem I.; Zender, Chad; Androphy, Elliot J.; Weinberg, Aaron; McCormick, Thomas S.; Jin, Ge

    2016-01-01

    Human β-defensin-3 (hBD3) is an epithelial cell-derived innate immune regulatory molecule overexpressed in oral dysplastic lesions and fosters a tumor-promoting microenvironment. Expression of hBD3 is induced by the epidermal growth factor receptor signaling pathway. Here we describe a novel pathway through which the high-risk human papillomavirus type-16 (HPV-16) oncoprotein E6 induces hBD3 expression in mucosal keratinocytes. Ablation of E6 by siRNA induces the tumor suppressor p53 and diminishes hBD3 in HPV-16 positive CaSki cervical cancer cells and UM-SCC-104 head and neck cancer cells. Malignant cells in HPV-16-associated oropharyngeal cancer overexpress hBD3. HPV-16 E6 induces hBD3 mRNA expression, peptide production and gene promoter activity in mucosal keratinocytes. Reduction of cellular levels of p53 stimulates hBD3 expression, while activation of p53 by doxorubicin inhibits its expression in primary oral keratinocytes and CaSki cells, suggesting that p53 represses hBD3 expression. A p53 binding site in the hBD3 gene promoter has been identified by using electrophoretic mobility shift assays and chromatin immunoprecipitation (ChIP). In addition, the p63 protein isoform ΔNp63α, but not TAp63, stimulated transactivation of the hBD3 gene and was co-expressed with hBD3 in head and neck cancer specimens. Therefore, high-risk HPV E6 oncoproteins may stimulate hBD3 expression in tumor cells to facilitate tumorigenesis of HPV-associated head and neck cancer. PMID:27034006

  7. Flow cytometric characterization of phenotype, DNA indices and p53 gene expression in 55 cases of acute leukemia.

    PubMed

    Powari, Manish; Varma, Neelam; Varma, Subhash; Marwaha, Ram Kumar; Sandhu, Harpreet; Ganguly, Nirmal Kumar

    2002-06-01

    To characterize the phenotype of acute leukemia cases using flow cytometry, to detect mixed lineage cases and to use DNA index determination, including S-phase fraction (SPF) and p53 detection, to find if there was any correlation of SPF and p53 expression with outcome. Fifty-five cases of acute leukemia were enrolled in this study. A complete hemogram and routine bone marrow examination, including cytochemistry, was done. Mycloperoxidase-negative cases were evaluated on a flow cytometer using monoclonal antibodies. DNA indices were determined by flow cytometry in all cases, and p53 was detected immunohistochemically using the alkaline phosphatase/antialkaline phosphatase technique. Acute myeloblastic leukemia (AML) was diagnosed in 32 cases; acute lymphoblastic leukemia (ALL) was diagnosed in 18 (14 B lineage and 4 T line age). Four cases showed mixed lineage leukemia, and undifferentiated acute leukemia was diagnosed in one case. The mean/range of SPF for these groups were 3.76/0.33-6.91, 6.25/0.15-21.4, 2.89/0.35-10.64, 2.60/0.72-6.94 and 7.34, respectively. Aneuploidy was detected in two cases of B-lineage ALL and tetraploidy in a case of AML-M7, while all others were diploid p53. Was detected in 6 of 55 cases (10.90%). Follow-up was available for 24 patients. Five patients relapsed, and four had B-cell type ALL and were diploid and expressed no p53 gene. SPF% did not show any correlation with outcome. These data suggest that within acute leukemia subtypes, there is a wide variation in SPF. SPF does not seem to correlate with outcome. Immunophenotyping is essential to determine the lineage in myeloperoxidase-negative cases. It is perhaps the only way to diagnose mixed lineage leukemia and aberrant expression of markers presently. The p53 gene was detected less frequently. However, more studies are required from different centers with longer follow-up to evaluate prognostic significance.

  8. Evaluation of nuclear unrest and p53 immunostaining in Wilms' tumor.

    PubMed

    Salama, Asmaa; Kamel, Ahmad

    2011-03-01

    Nuclear unrest is a term applied to Wilms' tumors (WT) that show nuclear abnormalities close to anaplasia but without abnormal mitoses. p53 is claimed to be associated with anaplasia and poor prognosis. This study was undertaken to evaluate the clinical significance of nuclear unrest and p53 immunostaining in Wilms' tumor. This is a retrospective study of 63 patients who presented at NCI with Wilms' tumors, and underwent preoperative chemotherapy followed by nephrectomy. Histopathologic assessment and p53 immunohistochemistry were done. WT with nuclear unrest grade III closely resembled anaplastic tumors and both of them (group 1) constituted 19% of cases. Group 1 constituted 29% of cases showing blastema dominant morphology compared to 9.4% of cases without blastema dominant morphology with significant statistical difference (p=0.047). Almost 83% of cases that achieved 1st complete remission were stages I, II and III, while 17% were stages IV and V with significant statistical difference (p<0.001). Stage affected the 3-year relapse-free-survival (RFS) significantly (p=0.014) as it was more in stages I, II and III than in stages IV and V (75.4% versus 50%). Blastema dominant morphology and high risk state significantly lowered the 3-year overall survival (OS) into 54.8% in comparison to 80.9% for cases with non-blastema dominant morphology (p=0.042). Regarding p53 immunohistochemistry, group 1 tumors showed positive p53 more than group 2 with significant statistical difference (p=0.014). p53 Positive immunostaining was significantly associated with high risk nephroblastoma (p=0.004). Tumor stage and blastema dominant morphology are potent prognostic factors. p53 is linked to blastema dominant morphology. WT with nuclear unrest grade III closely resembles anaplastic WT. It may be appropriate to group tumors with nuclear unrest grade III with anaplastic histology regarding treatment stratification. Copyright © 2011. Published by Elsevier B.V.

  9. KDM4B/JMJD2B is a p53 target gene that modulates the amplitude of p53 response after DNA damage

    PubMed Central

    Moon, Eui Jung; Razorenova, Olga V.; Krieg, Adam J.; von Eyben, Rie

    2017-01-01

    Abstract The p53 tumor suppressor protein plays a critical role in orchestrating the genomic response to various stress signals by acting as a master transcriptional regulator. Differential gene activity is controlled by transcription factors but also dependent on the underlying chromatin structure, especially on covalent histone modifications. After screening different histone lysine methyltransferases and demethylases, we identified JMJD2B/KDM4B as a p53-inducible gene in response to DNA damage. p53 directly regulates JMJD2B gene expression by binding to a canonical p53-consensus motif in the JMJD2B promoter. JMJD2B induction attenuates the transcription of key p53 transcriptional targets including p21, PIG3 and PUMA, and this modulation is dependent on the catalytic capacity of JMJD2B. Conversely, JMJD2B silencing led to an enhancement of the DNA-damage driven induction of p21 and PIG3. These findings indicate that JMJD2B acts in an auto-regulatory loop by which p53, through JMJD2B activation, is able to influence its own transcriptional program. Functionally, exogenous expression of JMJD2B enhanced subcutaneous tumor growth of colon cancer cells in a p53-dependent manner, and genetic inhibition of JMJD2B impaired tumor growth in vivo. These studies provide new insights into the regulatory effect exerted by JMJD2B on tumor growth through the modulation of p53 target genes. PMID:28073943

  10. Decreasing CNPY2 Expression Diminishes Colorectal Tumor Growth and Development through Activation of p53 Pathway.

    PubMed

    Yan, Ping; Gong, Hui; Zhai, Xiaoyan; Feng, Yi; Wu, Jun; He, Sheng; Guo, Jian; Wang, Xiaoxia; Guo, Rui; Xie, Jun; Li, Ren-Ke

    2016-04-01

    Neovascularization drives tumor development, and angiogenic factors are important neovascularization initiators. We recently identified the secreted angiogenic factor CNPY2, but its involvement in cancer has not been explored. Herein, we investigate CNPY2's role in human colorectal cancer (CRC) development. Tumor samples were obtained from CRC patients undergoing surgery. Canopy 2 (CNPY2) expression was analyzed in tumor and adjacent normal tissue. Stable lines of human HCT116 cells expressing CNPY2 shRNA or control shRNA were established. To determine CNPY2's effects on tumor xenografts in vivo, human CNPY2 shRNA HCT116 cells and controls were injected into nude mice, separately. Cellular apoptosis, growth, and angiogenesis in the xenografts were evaluated. CNPY2 expression was significantly higher in CRC tissues. CNPY2 knockdown in HCT116 cells inhibited growth and migration and promoted apoptosis. In xenografts, CNPY2 knockdown prevented tumor growth and angiogenesis and promoted apoptosis. Knockdown of CNPY2 in the HCT116 CRC cell line reversibly increased p53 activity. The p53 activation increased cyclin-dependent kinase inhibitor p21 and decreased cyclin-dependent kinase 2, thereby inhibiting tumor cell growth, inducing cell apoptosis, and reducing angiogenesis both in vitro and in vivo. CNPY2 may play a critical role in CRC development by enhancing cell proliferation, migration, and angiogenesis and by inhibiting apoptosis through negative regulation of the p53 pathway. Therefore, CNPY2 may represent a novel CRC therapeutic target and prognostic indicator. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. MG132 plus apoptosis antigen-1 (APO-1) antibody cooperate to restore p53 activity inducing autophagy and p53-dependent apoptosis in HPV16 E6-expressing keratinocytes.

    PubMed

    Lagunas-Martínez, Alfredo; García-Villa, Enrique; Arellano-Gaytán, Magaly; Contreras-Ochoa, Carla O; Dimas-González, Jisela; López-Arellano, María E; Madrid-Marina, Vicente; Gariglio, Patricio

    2017-01-01

    The E6 oncoprotein can interfere with the ability of infected cells to undergo programmed cell death through the proteolytic degradation of proapoptotic proteins such as p53, employing the proteasome pathway. Therefore, inactivation of the proteasome through MG132 should restore the activity of several proapoptotic proteins. We investigated whether in HPV16 E6-expressing keratinocytes (KE6 cells), the restoration of p53 levels mediated by MG132 and/or activation of the CD95 pathway through apoptosis antigen-1 (APO-1) antibody are responsible for the induction of apoptosis. We found that KE6 cells underwent apoptosis mainly after incubation for 24 h with MG132 alone or APO-1 plus MG132. Both treatments activated the extrinsic and intrinsic apoptosis pathways. Autophagy was also activated, principally by APO-1 plus MG132. Inhibition of E6-mediated p53 proteasomal degradation by MG132 resulted in the elevation of p53 protein levels and its phosphorylation in Ser46 and Ser20; the p53 protein was localized mainly at nucleus after treatment with MG132 or APO-1 plus MG132. In addition, induction of its transcriptional target genes such as p21, Bax and TP53INP was observed 3 and 6 h after treatment. Also, LC3 mRNA was induced after 3 and 6 h, which correlates with lipidation of LC3B protein and induction of autophagy. Finally, using pifithrin alpha we observed a decrease in apoptosis induced by MG132, and by APO-1 plus MG132, suggesting that restoration of APO-1 sensitivity occurs in part through an increase in both the levels and the activity of p53. The use of small molecules to inhibit the proteasome pathway might permit the activation of cell death, providing new opportunities for CC treatment.

  12. Histological spectrum of ependymomas and correlation of p53 and Ki-67 expression with ependymoma grade and subtype.

    PubMed

    Suri, Vaishali S; Tatke, Medha; Singh, Daljit; Sharma, Ajay

    2004-01-01

    Clinical and histological criteria for ependymoma prognosis are well recognized. Recently few studies have been done based on Immunohistochemistry for prognostication of these tumours. In this study we have correlated the histological spectrum with immmunoexpression of p53 and Ki67 in these tumors. To know the incidence of ependymomas; study their morphological spectrum and to evaluate expression of P53 and Ki 67 in different morphological subtypes. A retrospective study was preformed on 70 ependymomas received in a period between 1994 and 2001. Entire tissue received was processed for routine paraffin embedded H&E stained sections. Immunocytochemistry was performed using antibodies to GFAP, EMA, Pancytokeratin and synaptophysin, to differentiate papillary ependymoma from choroid plexus papilloma; clear cell ependymoma from oligodendroglioma and central neurocytoma; ependymoblastoma from other embryonal tumours. p53 and Ki-67 immunohistochemistry was performed to correlate their expression with various tumour grades and subtypes. There were 3 cases (4.2%) of Grade I ependymoma (2 cases of myxopapillary ependymoma and 1 case of subependymoma); 57 cases (81.5%) of ependymoma grade II (43 of these were of classical variety, 11 of clear cell ependymoma, 2 of papillary and 1 case of cellular ependymoma). There were 9 cases (12.8%) of anaplastic ependymoma (one of these was a clear cell ependymoma and 1 case (1.5%) of ependymoblastoma p53 and Ki67 indices can be used in routine diagnostic laboratories to supplement the tumor grade on histology and more studies with follow up should be performed to analyse the prognosis of different subtypes. The expression of Ki 67 and p53 was significantly higher in anaplastic ependymomas. 4 out of 11 cases of clear cell ependymomas showed higher Ki 67 indices as compared to classical grade II ependymomas, thus further highlighting the importance of differentiating the various subtypes.

  13. Transcriptional specificity in various p53-mutant cells.

    PubMed

    Okaichi, Kumio; Izumi, Nanaka; Takamura, Yuma; Fukui, Shoichi; Kudo, Takashi

    2013-03-01

    Mutation of the tumor suppressor gene p53 is the most common genetic alteration observed in human tumors. However, the relationship between the mutation point of p53 and the transcriptional specificity is not so obvious. We prepared Saos-2 cells with various mutations of p53 that are found in human tumors, and examined the resulting transcriptional alterations in the cells. Loss of function and gain of function were observed in all p53 mutants. Hot-spot mutations of p53 are frequently found in tumor cells. We compared hot-spot mutations and other mutations of p53 and found that a more than 2-fold transcription of CADPS2, PIWIL4 and TRIM9 was induced by hot spot mutations, but not by other mutations. As PIWIL4 suppresses the p16(INK4A) and ARF pathway, restraining cell growth and genomic instability, induction of PIWIL4 expression may be one reason why hot-spot mutations are frequently found in tumor cells.

  14. Loss of p53 protein during radiation transformation of primary human mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wazer, D.E.; Chu, Qiuming; Liu, Xiao Long

    1994-04-01

    The causative factors leading to breast cancer are largely unknown. Increased incidence of breast cancer following diagnostic or therapeutic radiation suggests that radiation may contribute to mammary oncogenesis. This report describes the in vitro neoplastic transformation of a normal human mammary epithelial cell strain, 76N, by fractionated [gamma]-irradiation at a clinically used dose (30 Gy). The transformed cells (76R-30) were immortal, had reduced growth factor requirements, and produced tumors in nude mice. Remarkably, the 76R-30 cells completely lacked the p53 tumor suppressor protein. Loss of p53 was due to deletion of the gene on one allele and a 26-bp deletionmore » within the third intron on the second allele which resulted in abnormal splicing out of either the third or fourth exon from the mRNA. PCR with a mutation-specific primer showed that intron 3 mutation was present in irradiated cells before selection for immortal phenotype. 76R-30 cells did not exhibit G[sub 1] arrest in response to radiation, indicating a loss of p53-mediated function. Expression of the wild-type p53 gene in 76R-30 cells led to their growth inhibition. Thus, loss of p53 protein appears to have contributed to neoplastic transformation of these cells. This unique model should facilitate analyses of molecular mechanisms of radiation-induced breast cancer and allow identification of p53-regulated cellular genes in breast cells. 44 refs., 8 figs., 1 tab.« less

  15. An analysis of microvessel density, androgen receptor, p53 and HER-2/neu expression and Gleason score in prostate cancer . preliminary results and therapeutic implications.

    PubMed

    Mydlo, J H; Kral, J G; Volpe, M; Axotis, C; Macchia, R J; Pertschuk, L P

    1998-01-01

    To investigate relationships between microvessel density (MVD), androgen receptors (AR), mutant p53 and HER-2/neu expression and Gleason score (GS) to further understand the tumor biology of prostate cancer (CAP). Slides of CAP from patients who underwent radical prostatectomy or channel transurethral resection of the prostate (TURP) were tested for androgen receptors by immunocytochemical assay and MVD was analyzed by staining with antibodies to the endothelial cell membrane molecule PECAM-1/CD-31. The p53 monoclonal antibody D07 and HER-2 9G6 mouse monoclonal antibody were used to assess p53 and HER-2/neu expression, respectively. The results were correlated with GS and clinical stage by multivariate analysis. We found a fourfold greater expression of MVD in prostate cancer specimens compared to neighboring normal prostate tissue. We observed a greater concentration of MVD in the higher Gleason scores (r = 0.40, p = 0. 06), and a correlation of Gleason score with mutant p53 expression (r = 0.57, p <0.05). We did not observe any associations between AR or HER-2/neu to Gleason score. More than half of the patients with specimens with 50% or greater expression of mutant p53 were in stage D2 (T4NxM1b) at the time of biopsy. We observed a correlation between mutant p53 and GS, and a greater concentration of MVD in the higher GS. Since the neovascularity of prostate tumors can be attenuated by radiation and hormones, while mutant p53 may confer resistance to such treatment, it appears that p53 expression may also play an important role in addition to angiogenesis in the virulence of prostate cancer. These data may aid in allocating patients to different treatment modalities.

  16. Co-expression of p53 and MDM2 in human atherosclerosis: implications for the regulation of cellularity of atherosclerotic lesions.

    PubMed

    Ihling, C; Haendeler, J; Menzel, G; Hess, R D; Fraedrich, G; Schaefer, H E; Zeiher, A M

    1998-07-01

    . Thus, the fate of cells with p53 accumulation may depend on the interaction and the stoichiometry of the p53 and MDM2 proteins. Cells were indeed found with strong p53 accumulation and nuclear morphology typical for apoptosis and there were a few MIB1/Ki-67-positive cells with co-expression of MDM2, indicating a possible role for MDM2 in reversing the negative regulatory effects of p53 for cell cycle progression. The nuclear co-localization of p53 IR with MDM2 IR and the co-immunoprecipitation assay indicate the presence of p53-MDM2 complex formation in vivo in human atherosclerotic tissue. The destiny of individual p53 and MDM2-co-expressing cells either to undergo p53-dependent apoptosis or to re-enter the cycle of cell proliferation may depend on the relative ratios of the two proteins. p53 and MDM2 may therefore play an important role in regulating cellularity and inflammatory activity in human atherosclerotic plaques.

  17. A stapled p53 helix overcomes HDMX-mediated suppression of p53.

    PubMed

    Bernal, Federico; Wade, Mark; Godes, Marina; Davis, Tina N; Whitehead, David G; Kung, Andrew L; Wahl, Geoffrey M; Walensky, Loren D

    2010-11-16

    Cancer cells neutralize p53 by deletion, mutation, proteasomal degradation, or sequestration to achieve a pathologic survival advantage. Targeting the E3 ubiquitin ligase HDM2 can lead to a therapeutic surge in p53 levels. However, the efficacy of HDM2 inhibition can be compromised by overexpression of HDMX, an HDM2 homolog that binds and sequesters p53. Here, we report that a stapled p53 helix preferentially targets HDMX, blocks the formation of inhibitory p53-HDMX complexes, induces p53-dependent transcriptional upregulation, and thereby overcomes HDMX-mediated cancer resistance in vitro and in vivo. Importantly, our analysis of p53 interaction dynamics provides a blueprint for reactivating the p53 pathway in cancer by matching HDM2, HDMX, or dual inhibitors to the appropriate cellular context. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Immunohistochemistry Study of P53 and C-erbB-2 Expression in Trophoblastic Tissue and Their Predictive Values in Diagnosing Malignant Progression of Simple Molar Pregnancy

    PubMed Central

    Hasanzadeh, Malihe; Sharifi, Norrie; Farazestanian, Marjaneh; Nazemian, Seyed Saman; Madani Sani, Faezeh

    2016-01-01

    Background Finding a tumor marker to predict the aggressive behavior of molar pregnancy in early stages has yet been a topic for studies. Objectives In this survey we planned to study patients with molar pregnancy to 1) assess the p53 and c-erbB-2 expression in trophoblastic tissue, 2) to study the relationship between their expression intensity and progression of a molar pregnancy to gestational trophoblastic neoplasia, and 3) to determine a cut off value for the amount of p53 and c-erbB-2 expression which might correlate with aggressive behavior of molar pregnancy. Patients and Methods In a prospective cross sectional study by using a high accuracy technique EnVision Tm system for immunohistochemistry staining of molar pregnancy samples, we evaluated p53 and c-erbB-2 expression in cytotrophoblast and syncytiotrophoblast and the correlation of their expression with progression of molar pregnancy to gestational trophoblastic neoplasia (GTN). Normal prostatic tissue and Breast cancer tissue were used as positive controls. Results We studied 28 patients with simple molar pregnancy (SMP) and 30 with GTN. Cytotrophobalst had significantly higher expression of p53 and c-erbB-2 and syncytiotrophoblast had greater expression of p53 in GTN group as compared to SMP group. The cut off values for percentage of p53 positive immunostained cytotrophoblast and syncytiotrophoblast were 5.5% and 2.5%. In c-erbB-2 positive membranous stained cytotrophoblast the cut off was 12.5%. Conclusions Our data suggests that over expression of p53 and c-erbB-2 is associated with malignant progression of molar pregnancy. We encountered that high expression of p53 and c-erbB-2 in trophoblastic cells could predict gestational trophoblastic neoplasia during the early stages. PMID:27703642

  19. Hydroquinone-induced malignant transformation of TK6 cells by facilitating SIRT1-mediated p53 degradation and up-regulating KRAS.

    PubMed

    Chen, Yuting; Chen, Jiajia; Yun, Lin; Xu, Longmei; Liu, Jiaxian; Xu, Yongchun; Yang, Hui; Liang, Hairong; Tang, Huanwen

    2016-09-30

    Hydroquinone (HQ), known as one of the metabolic products of benzene, causes a number of hematologic malignancies. The study evaluated the potential mechanism of Sirtuin 1 (SIRT1) in HQ-induced TK6 cell malignant transformation. The data of our study show that short term exposure of TK6 cells to HQ led to a decrease expression of SIRT1. Knockdown of SIRT1 sensitized to the HQ-induced apoptosis in vitro and increased the expression of p53, p21 and γ-H2AX. Furthermore, chronic HQ-treated (20μM once a week for 19 weeks) caused carcinogenic transformation and was confirmed by abnormal cell proliferation, matrix metalloproteinase 9(MMP9) and subcutaneous tumor formation in nude mice. SIRT1 increased KRAS expression, and decreased H3K9 and H3K18 acetylation, inhibited p53 signaling and the level of caspase-3 in HQ-induced transformation cells. Taken together, these data suggest that SIRT1 is involved in HQ-induced malignant transformation associated with suppressing p53 signaling and activation of KRAS. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. p53 shapes genome-wide and cell type-specific changes in microRNA expression during the human DNA damage response.

    PubMed

    Hattori, Hiroyoshi; Janky, Rekin's; Nietfeld, Wilfried; Aerts, Stein; Madan Babu, M; Venkitaraman, Ashok R

    2014-01-01

    The human DNA damage response (DDR) triggers profound changes in gene expression, whose nature and regulation remain uncertain. Although certain micro-(mi)RNA species including miR34, miR-18, miR-16 and miR-143 have been implicated in the DDR, there is as yet no comprehensive description of genome-wide changes in the expression of miRNAs triggered by DNA breakage in human cells. We have used next-generation sequencing (NGS), combined with rigorous integrative computational analyses, to describe genome-wide changes in the expression of miRNAs during the human DDR. The changes affect 150 of 1523 miRNAs known in miRBase v18 from 4-24 h after the induction of DNA breakage, in cell-type dependent patterns. The regulatory regions of the most-highly regulated miRNA species are enriched in conserved binding sites for p53. Indeed, genome-wide changes in miRNA expression during the DDR are markedly altered in TP53-/- cells compared to otherwise isogenic controls. The expression levels of certain damage-induced, p53-regulated miRNAs in cancer samples correlate with patient survival. Our work reveals genome-wide and cell type-specific alterations in miRNA expression during the human DDR, which are regulated by the tumor suppressor protein p53. These findings provide a genomic resource to identify new molecules and mechanisms involved in the DDR, and to examine their role in tumor suppression and the clinical outcome of cancer patients.

  1. The p53 breast cancer tissue biomarker in Indian women

    PubMed Central

    Patil, Vinayak W; Tayade, Mukund B; Pingale, Sangeeta A; Dalvi, Shubhangi M; Rajekar, Rajesh B; Deshmukh, Hemkant M; Patil, Shital D; Singhai, Rajeev

    2011-01-01

    Background Combination chemotherapy is highly effective in locally advanced breast cancer. A negative expression of biomarker p53 indicates a higher chance of responding to this regimen. Patients’ p53 status may be used as a biological cancer marker to identify those who would benefit from more aggressive treatments. Aims The role of p53 in modulating apoptosis has suggested that it may affect the efficacy of anticancer agents. p53 alterations in 80 patients with locally advanced breast cancer IIIB undergoing neoadjuvant chemotherapy were prospectively evaluated. Materials and methods Patients received three cycles of paclitaxel (175 mg/m2) and doxorubicin (60 mg/m2) every 21 days. Tumor sections were analyzed before treatment for altered patterns of p53 expression, using immunohistochemistry and DNA sequencing. Results An overall response rate of 83.5% was obtained, including 15.1% complete pathological responses. The regimen was well tolerated with 17.7% grade 2/3 nausea and 12.8% grade 3/4 leukopenia. There was a statistically significant correlation between response and expression of p53. Of 25 patients who obtained a complete clinical response, only two were classified as p53-positive (P = 0.004, χ2). Of 11 patients who obtained a complete pathological remission, one was positive (P = 0.099, χ2). Conclusion Immunohistochemical (IHC) analysis has been shown to be a prognostic factor for patients with breast cancer in India. Paclitaxel is one of the most promising anticancer agents for the therapy of breast cancer, where it has also shown activity in tumors resistant to doxorubicin. PMID:24367177

  2. Lung cancer incidence and survival in chromium exposed individuals with respect to expression of anti-apoptotic protein survivin and tumor suppressor P53 protein

    PubMed Central

    2010-01-01

    Objective Workers chronically exposed to hexavalent chromium have elevated risk of lung cancer. Our study investigates the incidence of lung cancer types, age at onset of the disease, and survival time among chromium exposed workers with respect to the expression of anti-apoptotic p53 and pro-apoptotic survivin proteins. Materials and methods 67 chromium exposed workers and 104 male controls diagnosed with lung cancer were analyzed. The mean exposure time among workers was 16.7 ± 10.0(SD) years (range 1- 41 years). To investigate the possible regulation of survivin by p53 we examined the expression of both proteins using immohistochemical visualization. Results Chromium exposure significantly decreases the age of onset of the disease by 3.5 years (62.2 ± 9.1 in the exposed group vs. 65.7 ± 10.5 years in controls; P = 0.018). Small cell lung carcinoma (SCLC) amounted for 25.4% of all cases in chromium exposed workers and for 16.3% in non-exposed individuals. The mean survival time in the exposed group was 9.0 ± 12.7 vs. 12.1 ± 21.9 months in controls, but this difference was not significant. Survivin was predominantly expressed in both cell nucleus and cytoplasm, whereas p53 was expressed in the nucleus. There was a negative correlation between survivin and p53 expression. A decreased intensity of expression and fewer cells positive for survivin was detected in SCLC compared with other types of lung cancer. P53 was expressed in 94.1% and survivin in 79.6% of the samples analyzed. Conclusion The study calls attention to decreased expression of survivin, as opposed to p53, in small cell lung carcinoma. PMID:21147621

  3. EBNA3C regulates p53 through induction of Aurora kinase B

    PubMed Central

    Jha, Hem C.; Yang, Karren; El-Naccache, Darine W.; Sun, Zhiguo; Robertson, Erle S.

    2015-01-01

    In multicellular organisms p53 maintains genomic integrity through activation of DNA repair, and apoptosis. EBNA3C can down regulate p53 transcriptional activity. Aurora kinase (AK) B phosphorylates p53, which leads to degradation of p53. Aberrant expression of AK-B is a hallmark of numerous human cancers. Therefore changes in the activities of p53 due to AK-B and EBNA3C expression is important for understanding EBV-mediated cell transformation. Here we show that the activities of p53 and its homolog p73 are dysregulated in EBV infected primary cells which can contribute to increased cell transformation. Further, we showed that the ETS-1 binding site is crucial for EBNA3C-mediated up-regulation of AK-B transcription. Further, we determined the Ser 215 residue of p53 is critical for functional regulation by AK-B and EBNA3C and that the kinase domain of AK-B which includes amino acid residues 106, 111 and 205 was important for p53 regulation. AK-B with a mutation at residue 207 was functionally similar to wild type AK-B in terms of its kinase activities and knockdown of AK-B led to enhanced p73 expression independent of p53. This study explores an additional mechanism by which p53 is regulated by AK-B and EBNA3C contributing to EBV-induced B-cell transformation. PMID:25691063

  4. IP-10, p53, and Foxp3 Expression in Hepatocytes of Chronic Hepatitis B Patients with Cirrhosis and Hepatocellular Carcinoma.

    PubMed

    Shahera, Umme; Munshi, Saifullah; Jahan, Munira; Nessa, Afzalun; Alam, Shahinul; Tabassum, Shahina

    2016-01-01

    Elucidating differences in gene expression may be useful in understanding the molecular pathogenesis and for developing specific markers for the outcome of hepatitis B virus (HBV) infection. In the present study, expressions of host gene interferon gamma-inducible protein (IP-10), p53, and Foxp3 were studied in hepatocytes of patients with chronic HBV infection to determine a possible link between selected host gene expression and the outcome of HBV infection. The study was conducted in 60 patients with chronic HBV infection and they were divided into four groups: HBV-positive cirrhosis (n = 15), HBV-negative cirrhosis (n = 15), HBV-positive hepatocellular carcinoma (HCC) (n = 15) and HBV-negative HCC (n = 15). Total messenger ribonucleic acid (mRNA) extraction was done followed by complementary deoxyribonucleic acid (cDNA) synthesis, and finally gene expression was performed using real-time polymerase chain reaction (PCR) technique. IP-10 and p53 gene expressions were lower in HBV-positive cirrhosis, and Foxp3 gene expression was upregulated in HBV-positive cirrhosis in comparison to HBV-negative cirrhosis. The expressions of all the three genes were upregulated among HBV-positive HCC in comparison to HBV-negative HCC. The expression of IP-10, p53, and Foxp3 genes was upregulated in HBV-positive HCC in comparison to HBV-positive cirrhosis. This study indicates that there are variations in the expression of the selected genes among cirrhosis and HCC patients with or without HBV. All the three selected genes were more or less upregulated in HBV-positive HCC patients, but only Foxp3 expression was upregulated in HBV-positive cirrhosis. These three particular genes may have a role in the molecular pathogenesis and clinical outcome of HBV-positive cirrhosis and HCC patients. These aspects need further evaluation by studies with larger numbers of cirrhosis and HCC patients. Shahera U, Munshi S, Jahan M, Nessa A, Alam S, Tabassum S. IP-10, p53, and Foxp3 Expression in

  5. Bcl-2/Bax protein ratio predicts 5-fluorouracil sensitivity independently of p53 status

    PubMed Central

    Mirjolet, J-F; Barberi-Heyob, M; Didelot, C; Peyrat, J-P; Abecassis, J; Millon, R; Merlin, J-L

    2000-01-01

    p53 tumour-suppressor gene is involved in cell growth control, arrest and apoptosis. Nevertheless cell cycle arrest and apoptosis induction can be observed in p53-defective cells after exposure to DNA-damaging agents such as 5-fluorouracil (5-FU) suggesting the importance of alternative pathways via p53-independent mechanisms. In order to establish relationship between p53 status, cell cycle arrest, Bcl-2/Bax regulation and 5-FU sensitivity, we examined p53 mRNA and protein expression and p53 protein functionality in wild-type (wt) and mutant (mt) p53 cell lines. p53 mRNA and p53 protein expression were determined before and after exposure to equitoxic 5-FU concentration in six human carcinoma cell lines differing in p53 status and displaying marked differences in 5-FU sensitivity, with IC 50 values ranging from 0.2–22.6 mM. 5-FU induced a rise in p53 mRNA expression in mt p53 cell lines and in human papilloma virus positive wt p53 cell line, whereas significant decrease in p53 mRNA expression was found in wt p53 cell line. Whatever p53 status, 5-FU altered p53 transcriptional and translational regulation leading to up-regulation of p53 protein. In relation with p53 functionality, but independently of p53 mutational status, after exposure to 5-FU equitoxic concentration, all cell lines were able to arrest in G1. No relationship was evidenced between G1 accumulation ability and 5-FU sensitivity. Moreover, after 5-FU exposure, Bax and Bcl-2 proteins regulation was under p53 protein control and a statistically significant relationship (r= 0.880,P= 0.0097) was observed between Bcl-2/Bax ratio and 5-FU sensitivity. In conclusion, whatever p53 status, Bcl-2 or Bax induction and Bcl-2/Bax protein ratio were correlated to 5-FU sensitivity. © 2000 Cancer Research Campaign PMID:11044365

  6. Aflatoxin B1-induced DNA adduct formation and p53 mutations in CYP450-expressing human liver cell lines.

    PubMed

    Macé, K; Aguilar, F; Wang, J S; Vautravers, P; Gómez-Lechón, M; Gonzalez, F J; Groopman, J; Harris, C C; Pfeifer, A M

    1997-07-01

    Epidemiological evidence has been supporting a relationship between dietary aflatoxin B1 (AFB1) exposure, development of human primary hepatocellular carcinoma (HCC) and mutations in the p53 tumor suppressor gene. However, the correlation between the observed p53 mutations, the AFB1 DNA adducts and their activation pathways has not been elucidated. Development of relevant cellular in vitro models, taking into account species and tissue specificity, could significantly contribute to the knowledge of cytotoxicity and genotoxicity mechanisms of chemical procarcinogens, such as AFB1, in humans. For this purpose a non-tumorigenic SV40-immortalized human liver epithelial cell line (THLE cells) which retained most of the phase II enzymes, but had markedly reduced phase I activities was used for stable expression of the human CYP1A2, CYP2A6, CYP2B6 and CYP3A4 cDNA. The four genetically engineered cell lines (T5-1A2, T5-2A6, T5-2B6 and T5-3A4) produced high levels of the specific CYP450 proteins and showed comparable or higher catalytic activities related to the CYP450 expression when compared to human hepatocytes. The T5-1A2, T5-2A6, T5-2B6 and T5-3A4 cell lines exhibited a very high sensitivity to the cytotoxic effects of AFB1 and were approximately 125-, 2-, 2- and 15-fold, respectively, more sensitive than the control T5-neo cells, transfected with an expressing vector which does not contain CYP450 cDNA. In the CYP450-expressing cells, nanomolar doses of AFB1-induced DNA adduct formation including AFB1-N7-guanine, -pyrimidyl and -diol adducts. In addition, the T5-1A2 cells showed AFM1-DNA adducts. At similar levels of total DNA adducts, both the T5-1A2 and T5-3A4 cells showed, at codon 249 of the p53 gene, AGG to AGT transversions at a relative frequency of 15x10(-6). In contrast, only the T5-3A4 cells showed CCC to ACC transversion at codon 250 at a high frequency, whereas the second most frequent mutations found in the T5-1A2 cells were C to T transitions at the first

  7. In vivo studies of altered expression patterns of p53 and proliferative control genes in chronic vitamin A deficiency and hypervitaminosis.

    PubMed

    Borrás, Elisa; Zaragozá, Rosa; Morante, María; García, Concha; Gimeno, Amparo; López-Rodas, Gerardo; Barber, Teresa; Miralles, Vicente J; Viña, Juan R; Torres, Luis

    2003-04-01

    Several clinical trials have revealed that individuals who were given beta-carotene and vitamin A did not have a reduced risk of cancer compared to those given placebo; rather, vitamin A could actually have caused an adverse effect in the lungs of smokers [Omenn, G.S., Goodman, G.E., Thornquist, M.D., Balmes, J., Cullen, M.R., Glass, A., Keogh, J.P., Meyskens, F.L., Valanis, B., Williams, J.H., Barnhart, S. & Hammar, S. N. Engl. J. Med (1996) 334, 1150-1155; Hennekens, C.H., Buring, J.E., Manson, J.E., Stampfer, M., Rosner, B., Cook, N.R., Belanger, C., LaMotte, F., Gaziano, J.M., Ridker, P.M., Willet, W. & Peto, R. (1996) N. Engl. J. Med. 334, 1145-1149]. Using differential display techniques, an initial survey using rats showed that liver RNA expression of c-H-Ras was decreased and p53 increased in rats with chronic vitamin A deficiency. These findings prompted us to evaluate the expression of c-Jun, p53 and p21WAF1/CIF1 (by RT-PCR) in liver and lung of rats. This study showed that c-Jun levels were lower and that p53 and p21WAF1/CIF1 levels were higher in chronic vitamin A deficiency. Vitamin A supplementation increased expression of c-Jun, while decreasing the expression of p53 and p21WAF1/CIF1. Western-blot analysis demonstrated that c-Jun and p53 showed a similar pattern to that found in the RT-PCR analyses. Binding of retinoic acid receptors (RAR) to the c-Jun promoter was decreased in chronic vitamin A deficiency when compared to control hepatocytes, but contrasting results were found with acute vitamin A supplementated cells. DNA fragmentation and cytochrome c release from mitochondria were analyzed and no changes were found. In lung, an increase in the expression of c-Jun produced a significant increase in cyclin D1 expression. These results may explain, at least in part, the conflicting results found in patients supplemented with vitamin A and illustrate that the changes are not restricted to lung. Furthermore, these results suggest that pharmacological

  8. Molecular and immunohistochemical analysis of P53 in phaeochromocytoma.

    PubMed Central

    Dahia, P. L.; Aguiar, R. C.; Tsanaclis, A. M.; Bendit, I.; Bydlowski, S. P.; Abelin, N. M.; Toledo, S. P.

    1995-01-01

    We searched for mutations of the p53 gene in 25 phaeochromocytomas using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis of the entire conserved region of the gene, encompassing exons 4-8; expression of the p53 protein was assessed by immunohistochemistry. No mutations were found, while a polymorphism in codon 72 was observed. Immunohistochemistry revealed nuclear p53 overexpression in one tumour sample. We conclude that mutations of the 'hotspot' region of the p53 gene do not seem to play a role in the pathogenesis of phaeochromocytoma. Images Figure 1 Figure 2 Figure 3 PMID:7577469

  9. Dynamic expression of the p53 family members p63 and p73 in the mouse and human telencephalon during development and in adulthood.

    PubMed

    Hernández-Acosta, N Carolina; Cabrera-Socorro, Alfredo; Morlans, Mercedes Pueyo; Delgado, Francisco J González; Suárez-Solá, M Luisa; Sottocornola, Roberta; Lu, Xin; González-Gómez, Miriam; Meyer, Gundela

    2011-02-04

    p63 and p73, family members of the tumor suppressor p53, are critically involved in the life and death of mammalian cells. They display high homology and may act in concert. The p73 gene is relevant for brain development, and p73-deficient mice display important malformations of the telencephalon. In turn, p63 is essential for the development of stratified epithelia and may also play a part in neuronal survival and aging. We show here that p63 and p73 are dynamically expressed in the embryonic and adult mouse and human telencephalon. During embryonic stages, Cajal-Retzius cells derived from the cortical hem co-express p73 and p63. Comparison of the brain phenotypes of p63- and p73- deficient mice shows that only the loss of p73 function leads to the loss of Cajal-Retzius cells, whereas p63 is apparently not essential for brain development and Cajal-Retzius cell formation. In postnatal mice, p53, p63, and p73 are present in cells of the subventricular zone (SVZ) of the lateral ventricle, a site of continued neurogenesis. The neurogenetic niche is reduced in size in p73-deficient mice, and the numbers of young neurons near the ventricular wall, marked with doublecortin, Tbr1 and calretinin, are dramatically decreased, suggesting that p73 is important for SVZ proliferation. In contrast to their restricted expression during brain development, p73 and p63 are widely detected in pyramidal neurons of the adult human cortex and hippocampus at protein and mRNA levels, pointing to a role of both genes in neuronal maintenance in adulthood. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Loss of p53-inducible long non-coding RNA LINC01021 increases chemosensitivity

    PubMed Central

    Kaller, Markus; Götz, Ursula; Hermeking, Heiko

    2017-01-01

    We have previously identified the long non-coding RNA LINC01021 as a direct p53 target (Hünten et al. Mol Cell Proteomics. 2015; 14:2609-2629). Here, we show that LINC01021 is up-regulated in colorectal cancer (CRC) cell lines upon various p53-activating treatments. The LINC01021 promoter and the p53 binding site lie within a MER61C LTR, which originated from insertion of endogenous retrovirus 1 (ERV1) sequences. Deletion of this MER61C element by a CRISPR/Cas9 approach, as well as siRNA-mediated knockdown of LINC01021 RNA significantly enhanced the sensitivity of the CRC cell line HCT116 towards the chemotherapeutic drugs doxorubicin and 5-FU, suggesting that LINC01021 is an integral part of the p53-mediated response to DNA damage. Inactivation of LINC01021 and also its ectopic expression did not affect p53 protein expression and transcriptional activity, implying that LINC01021 does not feedback to p53. Furthermore, in CRC patient samples LINC01021 expression positively correlated with a wild-type p53-associated gene expression signature. LINC01021 expression was increased in primary colorectal tumors and displayed a bimodal distribution that was particularly pronounced in the mesenchymal CMS4 consensus molecular subtype of CRCs. CMS4 tumors with low LINC01021 expression were associated with poor patient survival. Our results suggest that the genomic redistribution of ERV1-derived p53 response elements and generation of novel p53-inducible lncRNA-encoding genes was selected for during primate evolution as integral part of the cellular response to various forms of genotoxic stress. PMID:29262524

  11. Expression of p53 Breast Cancer in Kurdish Women in the West of Iran: a Reverse Correlation with Lymph Node Metastasis.

    PubMed

    Payandeh, Mehrdad; Sadeghi, Masoud; Sadeghi, Edris; Madani, Seyed-Hamid

    2016-01-01

    In breast cancer (BC), it has been suggested that nuclear overexpression of p53 protein might be an indicator of poor prognosis. The aim of the current study was to evaluate the expression of p53 BC in Kurdish women from the West of Iran and its correlation with other clinicopathology figures. In the present retrospective study, 231 patients were investigated for estrogen receptor (ER) and progesterone receptor (PR) positivity, defined as ≥10% positive tumor cells with nuclear staining. A binary logistic regression model was selected using Akaike Information Criteria (AIC) in stepwise selection for determination of important factors. ER, PR, the human epidermal growth factor receptor 2 (HER2) and p53 were positive in 58.4%, 55.4%, 59.7% and 45% of cases, respectively. Ki67 index was divided into two groups: 54.5% had Ki67<20% and 45.5% had Ki67 ≥20%. Of 214 patients, 137(64%) had lymph node metastasis and of 186 patients, 122(65.6%) had vascular invasion. Binary logistic regression analysis showed that there was inverse significant correlation between lymph node metastasis (P=0.008, OR 0.120 and 95%CI 0.025-0.574), ER status (P=0.006, OR 0.080, 95%CI 0.014-0.477) and a direct correlation between HER2 (P=005, OR 3.047, 95%CI 1.407-6.599) with the expression of p53. As in a number of studies, expression of p53 had a inverse correlation with lymph node metastasis and ER status and also a direct correlation with HER2 status. Also, p53-positivity is more likely in triple negative BC compared to other subtypes.

  12. The antagonism between MCT-1 and p53 affects the tumorigenic outcomes

    PubMed Central

    2010-01-01

    Background MCT-1 oncoprotein accelerates p53 protein degradation via a proteosome pathway. Synergistic promotion of the xenograft tumorigenicity has been demonstrated in circumstance of p53 loss alongside MCT-1 overexpression. However, the molecular regulation between MCT-1 and p53 in tumor development remains ambiguous. We speculate that MCT-1 may counteract p53 through the diverse mechanisms that determine the tumorigenic outcomes. Results MCT-1 has now identified as a novel target gene of p53 transcriptional regulation. MCT-1 promoter region contains the response elements reactive with wild-type p53 but not mutant p53. Functional p53 suppresses MCT-1 promoter activity and MCT-1 mRNA stability. In a negative feedback regulation, constitutively expressed MCT-1 decreases p53 promoter function and p53 mRNA stability. The apoptotic events are also significantly prevented by oncogenic MCT-1 in a p53-dependent or a p53-independent fashion, according to the genotoxic mechanism. Moreover, oncogenic MCT-1 promotes the tumorigenicity in mice xenografts of p53-null and p53-positive lung cancer cells. In support of the tumor growth are irrepressible by p53 reactivation in vivo, the inhibitors of p53 (MDM2, Pirh2, and Cop1) are constantly stimulated by MCT-1 oncoprotein. Conclusions The oppositions between MCT-1 and p53 are firstly confirmed at multistage processes that include transcription control, mRNA metabolism, and protein expression. MCT-1 oncogenicity can overcome p53 function that persistently advances the tumor development. PMID:21138557

  13. p53 Involvement in the Control of Murine Hair Follicle Regression

    PubMed Central

    Botchkarev, Vladimir A.; Komarova, Elena A.; Siebenhaar, Frank; Botchkareva, Natalia V.; Sharov, Andrei A.; Komarov, Pavel G.; Maurer, Marcus; Gudkov, Andrei V.; Gilchrest, Barbara A.

    2001-01-01

    p53 is a transcription factor mediating a variety of biological responses including apoptotic cell death. p53 was recently shown to control apoptosis in the hair follicle induced by ionizing radiation and chemotherapy, but its role in the apoptosis-driven physiological hair follicle regression (catagen) remains to be elucidated. Here, we show that p53 protein is strongly expressed and co-localized with apoptotic markers in the regressing hair follicle compartments during catagen. In contrast to wild-type mice, p53 knockout mice show significant retardation of catagen accompanied by significant decrease in the number of apoptotic cells in the hair matrix. Furthermore, p53 null hair follicles are characterized by alterations in the expression of markers that are encoded by p53 target genes and are implicated in the control of catagen (Bax, Bcl-2, insulin-like growth factor binding protein-3). These data suggest that p53 is involved in the control of apoptosis in the hair follicle during physiological regression and imply that p53 antagonists may be useful for the management of hair growth disorders characterized by premature entry into catagen, such as androgenetic alopecia, alopecia areata, and telogen effluvium. PMID:11395365

  14. p53-dependent cell death/apoptosis is required for a productive adenovirus infection.

    PubMed

    Hall, A R; Dix, B R; O'Carroll, S J; Braithwaite, A W

    1998-09-01

    The p53 tumor suppressor protein binds to both cellular and viral proteins, which influence its biological activity. One such protein is the large E1b tumor antigen (E1b58kDa) from adenoviruses (Ads), which abrogates the ability of p53 to transactivate various promoters. This inactivation of p53 function is believed to be the mechanism by which E1b58kDa contributes to the cell transformation process. Although the p53-E1b58kDa complex occurs during infection and is conserved among different serotypes, there are limited data demonstrating that it has a role in virus replication. However, loss of p53 expression occurs after adenovirus infection of human cells and an E1b58kDa deletion mutant (Onyx-015, also called dl 1520) selectively replicates in p53-defective cells. These (and other) data indicate a plausible hypothesis is that loss of p53 function may be conducive to efficient adenovirus replication. However, wild-type (wt) Ad5 grows more efficiently in cells expressing a wt p53 protein. These studies indicate that the hypothesis may be an oversimplification. Here, we show that cells expressing wt p53, as well as p53-defective cells, allow adenovirus replication, but only cells expressing wt p53 show evidence of virus-induced cytopathic effect. This correlates with the ability of adenovirus to induce cell death. Our data indicate that p53 plays a necessary part in mediating cellular destruction to allow a productive adenovirus infection. In contrast, p53-deficient cells are less sensitive to the cytolytic effects of adenovirus and as such raise questions about the use of E1b58kDa-deficient adenoviruses in tumor therapy.

  15. Loss of Parkin reduces inflammatory arthritis by inhibiting p53 degradation.

    PubMed

    Jung, Yu Yeon; Son, Dong Ju; Lee, Hye Lim; Kim, Dae Hwan; Song, Min Jong; Ham, Young Wan; Kim, Youngsoo; Han, Sang Bae; Park, Mi Hee; Hong, Jin Tae

    2017-08-01

    Parkin is associated with various inflammatory diseases, including Parkinson's disease (PD) and rheumatoid arthritis (RA). However, the precise role of Parkin in RA is unclear. The present study addressed this issue by comparing the development of RA between non-transgenic (non-Tg) mice and PARK2 knockout (KO) mice. We found that cyclooxygenase-2 and inducible nitric oxide synthase expression and nuclear factor-κB activity were reduced but p53 activation was increased in PARK2 KO as compared to non-Tg mice. These effects were associated with reduced p53 degradation. Parkin was found to interact with p53; however, this was abolished in Parkin KO mice, which prevented p53 degradation. Treatment of PARK2 KO mice with p53 inhibitor increased Parkin expression as well as inflammation and RA development while decreasing nuclear p53 translocation, demonstrating that PARK2 deficiency inhibits inflammation in RA via suppression of p53 degradation. These results suggest that RA development may be reduced in PD patients. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Expression of apoptosis-regulatory genes in lung tumour cell lines: relationship to p53 expression and relevance to acquired drug resistance.

    PubMed Central

    Reeve, J. G.; Xiong, J.; Morgan, J.; Bleehen, N. M.

    1996-01-01

    As a first step towards elucidating the potential role(s) of bcl-2 and bcl-2-related genes in lung tumorigenesis and therapeutic responsiveness, the expression of these genes has been examined in a panel of lung cancer cell lines derived from untreated and treated patients, and in cell lines selected in vitro for multidrug resistance. Bcl-2 was hyperexpressed in 15 of 16 small-cell lung cancer (SCLC) cell lines and two of five non-small-cell lung cancer (NSCLC) lines compared with normal lung and brain, and hyperexpression was not chemotherapy related. Bcl-x was hyperexpressed in the majority of SCLC and NSCLC cell lines as compared with normal tissues, and all lung tumour lines preferentially expressed bcl-x1-mRNA, the splice variant form that inhibits apoptosis. Bax gene transcripts were hyperexpressed in most SCLC and NSCLC cell lines examined compared with normal adult tissues. Mutant p53 gene expression was detected in the majority of the cell lines and no relationship between p53 gene expression and the expression of either bcl-2, bcl-x or bax was observed. No changes in bcl-2, bcl-x and bax gene expression were observed in multidrug-resistant cell lines compared with their drug-sensitive counterparts. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8630278

  17. MicroRNA-125b is a novel negative regulator of p53.

    PubMed

    Le, Minh T N; Teh, Cathleen; Shyh-Chang, Ng; Xie, Huangming; Zhou, Beiyan; Korzh, Vladimir; Lodish, Harvey F; Lim, Bing

    2009-04-01

    The p53 transcription factor is a key tumor suppressor and a central regulator of the stress response. To ensure a robust and precise response to cellular signals, p53 gene expression must be tightly regulated from the transcriptional to the post-translational levels. Computational predictions suggest that several microRNAs are involved in the post-transcriptional regulation of p53. Here we demonstrate that miR-125b, a brain-enriched microRNA, is a bona fide negative regulator of p53 in both zebrafish and humans. miR-125b-mediated down-regulation of p53 is strictly dependent on the binding of miR-125b to a microRNA response element in the 3' untranslated region of p53 mRNA. Overexpression of miR-125b represses the endogenous level of p53 protein and suppresses apoptosis in human neuroblastoma cells and human lung fibroblast cells. In contrast, knockdown of miR-125b elevates the level of p53 protein and induces apoptosis in human lung fibroblasts and in the zebrafish brain. This phenotype can be rescued significantly by either an ablation of endogenous p53 function or ectopic expression of miR-125b in zebrafish. Interestingly, miR-125b is down-regulated when zebrafish embryos are treated with gamma-irradiation or camptothecin, corresponding to the rapid increase in p53 protein in response to DNA damage. Ectopic expression of miR-125b suppresses the increase of p53 and stress-induced apoptosis. Together, our study demonstrates that miR-125b is an important negative regulator of p53 and p53-induced apoptosis during development and during the stress response.

  18. MicroRNA-125b is a novel negative regulator of p53

    PubMed Central

    Le, Minh T.N.; Teh, Cathleen; Shyh-Chang, Ng; Xie, Huangming; Zhou, Beiyan; Korzh, Vladimir; Lodish, Harvey F.; Lim, Bing

    2009-01-01

    The p53 transcription factor is a key tumor suppressor and a central regulator of the stress response. To ensure a robust and precise response to cellular signals, p53 gene expression must be tightly regulated from the transcriptional to the post-translational levels. Computational predictions suggest that several microRNAs are involved in the post-transcriptional regulation of p53. Here we demonstrate that miR-125b, a brain-enriched microRNA, is a bona fide negative regulator of p53 in both zebrafish and humans. miR-125b-mediated down-regulation of p53 is strictly dependent on the binding of miR-125b to a microRNA response element in the 3′ untranslated region of p53 mRNA. Overexpression of miR-125b represses the endogenous level of p53 protein and suppresses apoptosis in human neuroblastoma cells and human lung fibroblast cells. In contrast, knockdown of miR-125b elevates the level of p53 protein and induces apoptosis in human lung fibroblasts and in the zebrafish brain. This phenotype can be rescued significantly by either an ablation of endogenous p53 function or ectopic expression of miR-125b in zebrafish. Interestingly, miR-125b is down-regulated when zebrafish embryos are treated with γ-irradiation or camptothecin, corresponding to the rapid increase in p53 protein in response to DNA damage. Ectopic expression of miR-125b suppresses the increase of p53 and stress-induced apoptosis. Together, our study demonstrates that miR-125b is an important negative regulator of p53 and p53-induced apoptosis during development and during the stress response. PMID:19293287

  19. Space experiment "Rad Gene"-report 1; p53-Dependent gene expression in human cultured cells exposed to space environment

    NASA Astrophysics Data System (ADS)

    Takahashi, Akihisa; Ohnishi, Takeo; Suzuki, Hiromi; Omori, Katsunori; Seki, Masaya; Hashizume, Toko; Shimazu, Toru; Ishioka, Noriaki

    The space environment contains two major biologically significant influences: space radiations and microgravity. A p53 tumor suppressor protein plays a role as a guardian of the genome through the activity of p53-centered signal transduction pathways. The aim of this study was to clarify the biological effects of space radiations, microgravity and a space environment on the gene and protein expression of p53-dependent regulated genes. Space experiments were performed with two human cultured lymphoblastoid cell lines: one cells line (TSCE5) bears a wild-type p53 gene status, and another cells line (WTK1) bears a mutated p53 gene status. Un-der one gravity or microgravity condition, the cells were grown in the cell biology experimental facility (CBEF) of the International Space Station (ISS) for 8 days without experiencing the stress during launching and landing because the cells were frozen during these periods. Ground control samples also were cultured for 8 days in the CBEF on the ground during the same periods as space flight. Gene and protein expression was analyzed by using DNA chip (a 44k whole human genome microarray, Agilent Technologies Inc.) and protein chip (PanoramaTM Ab MicroArray, Sigma-Aldrich Co.), respectively. In addition, we analyzed the gene expression in cultured cells after space flight during 133 days with frozen condition. We report the results and discussion from the viewpoint of the functions of the up-regulated and down-regulated genes after an exposure to space radiations and/or microgravity. The initial goal of this space experiment was completely achieved. It is expected that data from this type of work will be helpful in designing physical protection from the deleterious effects of space radiations during long term stays in space.

  20. P53 protein in proliferation, repair and apoptosis of cells.

    PubMed

    Wawryk-Gawda, Ewelina; Chylińska-Wrzos, Patrycja; Lis-Sochocka, Marta; Chłapek, Katarzyna; Bulak, Kamila; Jędrych, Marian; Jodłowska-Jędrych, Barbara

    2014-05-01

    The p53 protein is an important factor of many intra- and extracellular processes. This protein regulates the repair of cellular DNA and induces apoptosis. It is also responsible for the regulation of the senescence and the cell entering the subsequent stages of the cellular cycle. The protein p53 is also involved in inhibiting angiogenesis and the induction of oxidative shock. In our study, we examined the activity of p53 protein in the uterine epithelial cells in rats treated with cladribine. Its action is mainly based on apoptosis induction. We compared the activity of p53 protein in cells with a high apoptosis index and in cells with active repair mechanisms and high proliferation index. We observed stronger p53 protein expression in the epithelial cells of the materials taken 24 h after the last dose of 2-CdA associated with the active process of apoptosis and inhibition of proliferation. After 4 weeks from the last dose of cladribine, the stronger expression of p53 protein was associated with both the existing changes in the cell's genome, the effects of the ongoing repair mechanisms, as well as the high proliferation activity.

  1. Expression screening using a Medaka cDNA library identifies evolutionarily conserved regulators of the p53/Mdm2 pathway.

    PubMed

    Zhang, Ping; Kratz, Anne Sophie; Salama, Mohammed; Elabd, Seham; Heinrich, Thorsten; Wittbrodt, Joachim; Blattner, Christine; Davidson, Gary

    2015-10-08

    The p53 tumor suppressor protein is mainly regulated by alterations in the half-life of the protein, resulting in significant differences in p53 protein levels in cells. The major regulator of this process is Mdm2, which ubiquitinates p53 and targets it for proteasomal degradation. This process can be enhanced or reduced by proteins that associate with p53 or Mdm2 and several proteins have been identified with such an activity. Furthermore, additional ubiquitin ligases for p53 have been identified in recent years. Nevertheless, our understanding of how p53 abundance and Mdm2 activity are regulated remains incomplete. Here we describe a cell culture based overexpression screen to identify evolutionarily conserved regulators of the p53/Mdm2 circuit. The results from this large-scale screening method will contribute to a better understanding of the regulation of these important proteins. Expression screening was based on co-transfection of H1299 cells with pools of cDNA's from a Medaka library together with p53, Mdm2 and, as internal control, Ror2. After cell lysis, SDS-PAGE/WB analysis was used to detect alterations in these proteins. More than one hundred hits that altered the abundance of either p53, Mdm2, or both were identified in the primary screen. Subscreening of the library pools that were identified in the primary screen identified several potential novel regulators of p53 and/or Mdm2. We also tested whether the human orthologues of the Medaka genes regulate p53 and/or Mdm2 abundance. All human orthologues regulated p53 and/or Mdm2 abundance in the same manner as the proteins from Medaka, which underscores the suitability of this screening methodology for the identification of new modifiers of p53 and Mdm2. Despite enormous efforts in the last two decades, many unknown regulators for p53 and Mdm2 abundance are predicted to exist. This cross-species approach to identify evolutionarily conserved regulators demonstrates that our Medaka unigene cDNA library

  2. Preliminary report on the effect of brachytherapy on expression of p53, bc1-2 and apoptosis in squamous cell carcinoma of the oesophagus.

    PubMed

    Sur, Monalisa; Sur, Ranjan K; Cooper, Kum; Bizos, Damon

    2003-02-01

    Pre-brachytherapy biopsies and post-brachytherapy oesophagectomy specimens of 10 patients with early squamous cell carcinoma of the middle third of the oesophagus were examined for the expression of p53, bcl-2 and apoptosis using immunohistochemical markers. There was no expression of p53 in one patient in both pre- and post-brachytherapy specimens. In 8 patients, p53 staining was strongly positive (3+) with approximately 50% or more cells, and with diffuse and no specific pattern in the pre-brachytherapy biopsies. The tumour areas of the post-brachytherapy specimens of this group showed strong 3+ positivity with p53 (10-50% positive cell count), with the pattern being focal and peripheral in the tumour islands. The centre of the tumour islands showed necrosis and/or keratinisation. In one patient, the pre-brachytherapy biopsy showed expression of p53 while the post-brachytherapy specimen was negative. bcl-2 expression in both pre- and post-brachytherapy was equivocal and inconclusive in both the pre- and post-brachytherapy specimens. Apoptosis was negative in all the pre- and post-brachytherapy tissue sections in the presence of positive controls. Brachytherapy does not cause cell death by apoptosis but by necrosis and maturation of the cells into better differentiated cells, which is caused by OH free radical, and induction of the keratin gene respectively. It is possible that brachytherapy may cause destruction of cells containing wild-type p53, while mutant p53 in cells located at the tumour periphery escape the effect of brachytherapy. This may be responsible for the high incidence of local recurrence and distant metastasis in oesophageal cancer treated with radiotherapy. There is no effect of brachytherapy on bcl-2 expression in oesophageal cancer.

  3. Induction of differentiation in human promyelocytic HL-60 leukemia cells activates p21, WAF1/CIP1, expression in the absence of p53.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, H.; Lin, J.; Su, Z.-Z.

    The melanoma differentiation associated gene, mda-6, which is identical to the P53-inducible gene WAF1/CIP1, encodes an M(r) 21,000 protein (p21) that can directly inhibit cell growth by repressing cyclin dependent kinases. mda-6 was identified using subtraction hybridization by virtue of its enhanced expression in human melanoma cells induced to terminally differentiate by treatment with human fibroblast interferon and the anti-leukemic compound mezerein (Jiang and Fisher, 1993). In the present study, we demonstrate that mda-6 (WAF1/CIP1) is an immediate early response gene induced during differentiation of the promyelocytic HL-60 leukemia cell line along the granulocytic or macrophage/monocyte pathway. mda-6 gene expressionmore » in HL-60 cells is induced within 1 to 3 h during differentiation along the macrophage/monocyte pathway evoked by 12-0-tetradecanoyl phorbol-13-acetate (TPA) or 1,25-dihydroxyvitamin D3 (Vit D3) or the granulocytic pathway produced by retinoic acid (RA) or dimethylsulfoxide (DMSO). Immunoprecipitation analyses using an anti-p21 antibody indicate a temporal induction of p21 protein following treatment with TPA, DMSO or RA. A relationship between rapid induction of mda-6 gene expression and differentiation is indicated by a delay in this expression in an HL-60 cell variant resistant to TPA-induced growth arrest and differentiation. A similar delay in mda-6 gene expression is not observed in Vit D3 treated TPA-resistant variant cells that are also sensitive to induction of monocytic differentiation. Since HL-60 cells have a null-p53 phenotype, these results demonstrate that p21 induction occurs during initiation of terminal differentiation in a p53-independent manner. In this context, p21 may play a more global role in growth control and differentiation than originally envisioned.« less

  4. Dynamics of Delayed p53 Mutations in Mice Given Whole-Body Irradiation at 8 Weeks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okazaki, Ryuji, E-mail: ryuji-o@med.uoeh-u.ac.j; Ootsuyama, Akira; Kakihara, Hiroyo

    2011-01-01

    Purpose: Ionizing irradiation might induce delayed genotoxic effects in a p53-dependent manner. However, a few reports have shown a p53 mutation as a delayed effect of radiation. In this study, we investigated the p53 gene mutation by the translocation frequency in chromosome 11, loss of p53 alleles, p53 gene methylation, p53 nucleotide sequence, and p53 protein expression/phosphorylation in p53{sup +/+} and p53{sup +/-} mice after irradiation at a young age. Methods and Materials: p53{sup +/+} and p53{sup +/-} mice were exposed to 3 Gy of whole-body irradiation at 8 weeks of age. Chromosome instability was evaluated by fluorescence in situmore » hybridization analysis. p53 allele loss was evaluated by polymerase chain reaction, and p53 methylation was evaluated by methylation-specific polymerase chain reaction. p53 sequence analysis was performed. p53 protein expression was evaluated by Western blotting. Results: The translocation frequency in chromosome 11 showed a delayed increase after irradiation. In old irradiated mice, the number of mice that showed p53 allele loss and p53 methylation increased compared to these numbers in old non-irradiated mice. In two old irradiated p53{sup +/-} mice, the p53 sequence showed heteromutation. In old irradiated mice, the p53 and phospho-p53 protein expressions decreased compared to old non-irradiated mice. Conclusion: We concluded that irradiation at a young age induced delayed p53 mutations and p53 protein suppression.« less

  5. Cell cycle regulatory gene abnormalities are important determinants of leukemogenesis and disease biology in adult acute lymphoblastic leukemia.

    PubMed

    Stock, W; Tsai, T; Golden, C; Rankin, C; Sher, D; Slovak, M L; Pallavicini, M G; Radich, J P; Boldt, D H

    2000-04-01

    To test the hypothesis that cell cycle regulatory gene abnormalities are determinants of clinical outcome in adult acute lymphoblastic leukemia (ALL), we screened lymphoblasts from patients on a Southwest Oncology Group protocol for abnormalities of the genes, retinoblastoma (Rb), p53, p15(INK4B), and p16(INK4A). Aberrant expression occurred in 33 (85%) patients in the following frequencies: Rb, 51%; p16(INK4A), 41%; p53, 26%. Thirteen patients (33%) had abnormalities in 2 or more genes. Outcomes were compared in patients with 0 to 1 abnormality versus patients with multiple abnormalities. The 2 groups did not differ in a large number of clinical and laboratory characteristics. The CR rates for patients with 0 to 1 and multiple abnormalities were similar (69% and 54%, respectively). Patients with 0 to 1 abnormality had a median survival time of 25 months (n = 26; 95% CI, 13-46 months) versus 8 months (n = 13; 95% CI, 4-12 months) for those with multiple abnormalities (P <.01). Stem cells (CD34+lin-) were isolated from adult ALL bone marrows and tested for p16(INK4A) expression by immunocytochemistry. In 3 of 5 patients lymphoblasts and sorted stem cells lacked p16(INK4A) expression. In 2 other patients only 50% of sorted stem cells expressed p16(INK4A). By contrast, p16 expression was present in the CD34+ lin- compartment in 95% (median) of 9 patients whose lymphoblasts expressed p16(INK4A). Therefore, cell cycle regulatory gene abnormalities are frequently present in adult ALL lymphoblasts, and they may be important determinants of disease outcome. The presence of these abnormalities in the stem compartment suggests that they contribute to leukemogenesis. Eradication of the stem cell subset harboring these abnormalities may be important to achieve cure.

  6. IP-10, p53, and Foxp3 Expression in Hepatocytes of Chronic Hepatitis B Patients with Cirrhosis and Hepatocellular Carcinoma

    PubMed Central

    Munshi, Saifullah; Jahan, Munira; Nessa, Afzalun; Alam, Shahinul; Tabassum, Shahina

    2016-01-01

    ABSTRACT Aim Elucidating differences in gene expression may be useful in understanding the molecular pathogenesis and for developing specific markers for the outcome of hepatitis B virus (HBV) infection. In the present study, expressions of host gene interferon gamma-inducible protein (IP-10), p53, and Foxp3 were studied in hepatocytes of patients with chronic HBV infection to determine a possible link between selected host gene expression and the outcome of HBV infection. Materials and methods The study was conducted in 60 patients with chronic HBV infection and they were divided into four groups: HBV-positive cirrhosis (n = 15), HBV-negative cirrhosis (n = 15), HBV-positive hepatocellular carcinoma (HCC) (n = 15) and HBV-negative HCC (n = 15). Total messenger ribonucleic acid (mRNA) extraction was done followed by complementary deoxyribonucleic acid (cDNA) synthesis, and finally gene expression was performed using real-time polymerase chain reaction (PCR) technique. Results IP-10 and p53 gene expressions were lower in HBV-positive cirrhosis, and Foxp3 gene expression was upregulated in HBV-positive cirrhosis in comparison to HBV-negative cirrhosis. The expressions of all the three genes were upregulated among HBV-positive HCC in comparison to HBV-negative HCC. The expression of IP-10, p53, and Foxp3 genes was upregulated in HBV-positive HCC in comparison to HBV-positive cirrhosis. Conclusion This study indicates that there are variations in the expression of the selected genes among cirrhosis and HCC patients with or without HBV. All the three selected genes were more or less upregulated in HBV-positive HCC patients, but only Foxp3 expression was upregulated in HBV-positive cirrhosis. These three particular genes may have a role in the molecular pathogenesis and clinical outcome of HBV-positive cirrhosis and HCC patients. These aspects need further evaluation by studies with larger numbers of cirrhosis and HCC patients. How to cite this article Shahera U, Munshi

  7. Expression of cell cycle regulators, 14-3-3σ and p53 proteins, and vimentin in canine transitional cell carcinoma of the urinary bladder.

    PubMed

    Suárez-Bonnet, Alejandro; Herráez, Pedro; Aguirre, Maria; Suárez-Bonnet, Elena; Andrada, Marisa; Rodríguez, Francisco; Espinosa de Los Monteros, Antonio

    2015-07-01

    The study of the expression of 14-3-3σ, p53, and vimentin proteins in canine transitional cell carcinoma (TCC) evaluating differences with normal bladder tissues, and the association with clinicopathological variables. We analyze by immunohistochemistry in 19 canine TCCs the expression of 14-3-3σ, p53, and vimentin using monoclonal antibodys. A semiquantitative scoring method was employed and statistical analysis was performed to display relationships between variables. In contrast to normal urinary bladder epithelium, which showed high levels of 14-3-3σ, its expression was decreased in 53% of the studied tumors (P = 0.0344). The 14-3-3σ protein was expressed by neoplastic emboli and by highly infiltrative neoplastic cells. The p53 protein was expressed in 26% of TCCs, but no significant association between 14-3-3σ and p53 was detected. Neoplastic epithelial cells displayed vimentin immunoreactivity in 21% of TCCs, and a positive correlation with mitotic index was observed (P = 0.042). Coexpression of vimentin and 14-3-3σ by highly infiltrative neoplastic cells was also observed. 14-3-3σ is deregulated in canine TCCs and its expression by highly infiltrative tumor cells may be related to the acquisition of aggressive behavior. Furthermore, this article reinforce the role of canine TCC as relevant model of human urothelial carcinoma and we suggest 14-3-3σ as a potential therapeutic target. Further studies are necessary to clarify the role of 14-3-3σ in canine TCC. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Prevalence of human papillomavirus, Epstein-Barr virus, p21, and p53 expression in sinonasal inverted papilloma, nasal polyp, and hypertrophied turbinate in Hong Kong patients.

    PubMed

    Sham, C L; To, K F; Chan, Paul K S; Lee, Dennis L Y; Tong, Michael C F; van Hasselt, C Andrew

    2012-04-01

    The purpose of this study of human papillomavirus (HPV), Epstein-Barr virus (EBV), p21, and p53 in sinonasal inverted papilloma (IP) was to help elucidate its pathogenesis. Seventy-three IPs, 48 nasal polyps, and 85 hypertrophied turbinates were subjected to HPV polymerase chain reaction (PCR) study. Seventy-three IPs, 30 nasal polyps, and 32 hypertrophied turbinates were subjected to EBV in situ hybridization (ISH), p21, and p53 immunohistochemical (IHC) studies. HPV was positive in 3 of 73 IPs (4.1%). All specimens were EBV negative. In all, 99% of IPs showed strong and diffuse p21 nuclear reactivity. Most nasal polyps and hypertrophied turbinates showed weak to moderate immunoreactivity of the basal and parabasal cells. Only focal p53 immunoreactivity of the basal and parabasal cells was found in 19% of IPs and 40% of nasal polyps. HPV prevalence of our IP is low. EBV is not present in IP. High p21 and low p53 expression in IP suggests a non-p53-dependent regulation pathway. Copyright © 2011 Wiley Periodicals, Inc.

  9. C/EBPbeta represses p53 to promote cell survival downstream of DNA damage independent of oncogenic Ras and p19(Arf).

    PubMed

    Ewing, S J; Zhu, S; Zhu, F; House, J S; Smart, R C

    2008-11-01

    CCAAT/enhancer-binding protein-beta (C/EBPbeta) is a mediator of cell survival and tumorigenesis. When C/EBPbeta(-/-) mice are treated with carcinogens that produce oncogenic Ras mutations in keratinocytes, they respond with abnormally elevated keratinocyte apoptosis and a block in skin tumorigenesis. Although this aberrant carcinogen-induced apoptosis results from abnormal upregulation of p53, it is not known whether upregulated p53 results from oncogenic Ras and its ability to induce p19(Arf) and/or activate DNA-damage response pathways or from direct carcinogen-induced DNA damage. We report that p19(Arf) is dramatically elevated in C/EBPbeta(-/-) epidermis and that C/EBPbeta represses a p19(Arf) promoter reporter. To determine whether p19(Arf) is responsible for the proapoptotic phenotype in C/EBPbeta(-/-) mice, C/EBPbeta(-/-);p19(Arf-/-) mice were generated. C/EBPbeta(-/-);p19(Arf-/-) mice responded to carcinogen treatment with increased p53 and apoptosis, indicating p19(Arf) is not essential. To ascertain whether oncogenic Ras activation induces aberrant p53 and apoptosis in C/EBPbeta(-/-) epidermis, we generated K14-ER:Ras;C/EBPbeta(-/-) mice. Oncogenic Ras activation induced by 4-hydroxytamoxifen did not produce increased p53 or apoptosis. Finally, when C/EBPbeta(-/-) mice were treated with differing types of DNA-damaging agents, including alkylating chemotherapeutic agents, they displayed aberrant levels of p53 and apoptosis. These results indicate that C/EBPbeta represses p53 to promote cell survival downstream of DNA damage and suggest that inhibition of C/EBPbeta may be a target for cancer cotherapy to increase the efficacy of alkylating chemotherapeutic agents.

  10. Epithelial PIK3R1 (p85) and TP53 Regulate Survivin Expression during Adaptation to Ileocecal Resection.

    PubMed

    Cohran, Valeria; Managlia, Elizabeth; Bradford, Emily M; Goretsky, Tatiana; Li, Ting; Katzman, Rebecca B; Cheresh, Paul; Brown, Jeffrey B; Hawkins, Jennifer; Liu, Shirley X L; De Plaen, Isabelle G; Weitkamp, Jörn-Hendrik; Helmrath, Michael; Zhang, Zheng; Barrett, Terrence A

    2016-07-01

    Intestinal adaptation to small-bowel resection (SBR) after necrotizing enterocolitis expands absorptive surface areas and promotes enteral autonomy. Survivin increases proliferation and blunts apoptosis. The current study examines survivin in intestinal epithelial cells after ileocecal resection. Wild-type and epithelial Pik3r1 (p85α)-deficient mice underwent sham surgery or 30% resection. RNA and protein were isolated from small bowel to determine levels of β-catenin target gene expression, activated caspase-3, survivin, p85α, and Trp53. Healthy and post-resection human infant small-bowel sections were analyzed for survivin, Ki-67, and TP53 by immunohistochemistry. Five days after ileocecal resection, epithelial levels of survivin increased relative to sham-operated on mice, which correlated with reduced cleaved caspase-3, p85α, and Trp53. At baseline, p85α-deficient intestinal epithelial cells had less Trp53 and more survivin, and relative responses to resection were blunted compared with wild-type. In infant small bowel, survivin in transit amplifying cells increased 71% after SBR. Resection increased proliferation and decreased numbers of TP53-positive epithelial cells. Data suggest that ileocecal resection reduces p85α, which lowers TP53 activation and releases survivin promoter repression. The subsequent increase in survivin among transit amplifying cells promotes epithelial cell proliferation and lengthens crypts. These findings suggest that SBR reduces p85α and TP53, which increases survivin and intestinal epithelial cell expansion during therapeutic adaptation in patients with short bowel syndrome. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. SIRT1 inhibition restores apoptotic sensitivity in p53-mutated human keratinocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbert, Katharine J.; Cook, Anthony L., E-mail: Anthony.Cook@utas.edu.au; Snow, Elizabeth T., E-mail: elizabeth.snow@utas.edu.au

    2014-06-15

    Mutations to the p53 gene are common in UV-exposed keratinocytes and contribute to apoptotic resistance in skin cancer. P53-dependent activity is modulated, in part, by a complex, self-limiting feedback loop imposed by miR-34a-mediated regulation of the lysine deacetylase, SIRT1. Expression of numerous microRNAs is dysregulated in squamous and basal cell carcinomas; however the contribution of specific microRNAs to the pathogenesis of skin cancer remains untested. Through use of RNAi, miRNA target site blocking oligonucleotides and small molecule inhibitors, this study explored the influence of p53 mutational status, SIRT1 activity and miR-34a levels on apoptotic sensitivity in primary (NHEK) and p53-mutatedmore » (HaCaT) keratinocyte cell lines. SIRT1 and p53 are overexpressed in p53-mutated keratinocytes, whilst miR-34a levels are 90% less in HaCaT cells. HaCaTs have impaired responses to p53/SIRT1/miR-34a axis manipulation which enhanced survival during exposure to the chemotherapeutic agent, camptothecin. Inhibition of SIRT1 activity in this cell line increased p53 acetylation and doubled camptothecin-induced cell death. Our results demonstrate that p53 mutations increase apoptotic resistance in keratinocytes by interfering with miR-34a-mediated regulation of SIRT1 expression. Thus, SIRT1 inhibitors may have a therapeutic potential for overcoming apoptotic resistance during skin cancer treatment. - Highlights: • Impaired microRNA biogenesis promotes apoptotic resistance in HaCaT keratinocytes. • TP53 mutations suppress miR-34a-mediated regulation of SIRT1 expression. • SIRT1 inhibition increases p53 acetylation in HaCaTs, restoring apoptosis.« less

  12. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro

    PubMed Central

    Xing, Fuqiang; Zhan, Qiuqiang; He, Yiduo; Cui, Jiesheng; He, Sailing; Wang, Guanyu

    2016-01-01

    Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR) at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS) generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant). Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor) and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis. PMID:27689798

  13. Increased fibroblast density in actinic cheilitis: association with tryptase-positive mast cells, actinic elastosis and epithelial p53 and COX-2 expression.

    PubMed

    Rojas, Isolde G; Boza, Yadira V; Spencer, Maria Loreto; Flores, Maritza; Martínez, Alejandra

    2012-01-01

    Actinic cheilitis (AC) is characterized by epithelial and connective tissue alterations caused by ultraviolet sunlight overexposure known as photodamage. Fibroblasts have been linked to photodamage and tumor progression during skin carcinogenesis; however, their role in early lip carcinogenesis remains unknown. The aim of this study was to assess the density of fibroblasts in AC and normal lip (NL) samples and determine their association with markers of lip photodamage. Fibroblasts, mast cells, p53, COX-2, and elastin were detected in NL (n = 20) and AC (n = 28) biopsies using immunohistochemistry/histochemistry. Mast cell and fibroblast density and epithelial p53 and COX-2 expression scores were then obtained. Elastosis was scored 1-4 according to elastin fiber density and tortuosity. Fibroblasts, mast cells, p53, COX-2, and elastosis were increased in AC as compared to NL (P < 0.001). Multivariate analysis showed an association between fibroblast and mast cell density at the papillary and reticular areas of AC and NL (P < 0.05). Papillary fibroblast density was also associated with epithelial p53 and COX-2 expression (P < 0.05). Increased fibroblast density, both papillary and reticular, was found in the high elastosis group (scores 3-4) as compared to the low elastosis group (scores 1-2) (P < 0.01). Increased reticular mast cell density was detected only in the high elastosis group (P < 0.01). Fibroblasts are increased in AC, and they are associated with mast cell density, epithelial p53 and COX-2 expression, and actinic elastosis. Therefore, fibroblasts may contribute to lip photodamage and could be considered useful markers of early lip carcinogenesis. © 2011 John Wiley & Sons A/S.

  14. Mechanism of p53-Dependent Apoptosis and its Role in Breast Cancer Therapy

    DTIC Science & Technology

    1999-07-01

    inducibly express p53 as previously described (Chen et a!., 1996). ( a ) Levels of p53, p21, and actin in p53-3, and p53(A62-91)-l, -5, and -6 cells...1994) was used as template, ( a ) Levels of p53, p21 and actin in p53-3 and p53(gln22-ser23/A62-91)-2 and -14 cells were assayed by Western blot...CGG TAC CCC TGT CAT CTT CTG TC; and reverse primer C393 as used for generating p53(A62-91). ( a ) Levels of p53, p21, and actin in p53-3, and p53(A74

  15. p53 predictive value for pT1-2 N0 disease at radical cystectomy.

    PubMed

    Shariat, Shahrokh F; Lotan, Yair; Karakiewicz, Pierre I; Ashfaq, Raheela; Isbarn, Hendrik; Fradet, Yves; Bastian, Patrick J; Nielsen, Matthew E; Capitanio, Umberto; Jeldres, Claudio; Montorsi, Francesco; Müller, Stefan C; Karam, Jose A; Heukamp, Lukas C; Netto, George; Lerner, Seth P; Sagalowsky, Arthur I; Cote, Richard J

    2009-09-01

    Approximately 15% to 30% of patients with pT1-2N0M0 urothelial carcinoma of the bladder experience disease progression despite radical cystectomy with curative intent. We determined whether p53 expression would improve the prediction of disease progression after radical cystectomy for pT1-2N0M0 UCB. In a multi-institutional retrospective cohort we identified 324 patients with pT1-2N0M0 urothelial carcinoma of the bladder who underwent radical cystectomy. Analysis focused on a testing cohort of 272 patients and an external validation of 52. Competing risks regression models were used to test the association of variables with cancer specific mortality after accounting for nonbladder cancer caused mortality. In the testing cohort 91 patients (33.5%) had altered p53 expression (p53alt). On multivariate competing risks regression analysis altered p53 achieved independent status for predicting disease recurrence and cancer specific mortality (each p <0.001). Adding p53 increased the accuracy of multivariate competing risks regression models predicting recurrence and cancer specific mortality by 5.7% (62.0% vs 67.7%) and 5.4% (61.6% vs 67.0%), respectively. Alterations in p53 represent a highly promising marker of disease recurrence and cancer specific mortality after radical cystectomy for urothelial carcinoma of the bladder. Analysis confirmed previous findings and showed that considering p53 can result in substantial accuracy gains relative to the use of standard predictors. The value and the level of the current evidence clearly exceed previous proof of the independent predictor status of p53 for predicting recurrence and cancer specific mortality.

  16. Transactivation domain of p53 regulates DNA repair and integrity in human iPS cells.

    PubMed

    Kannappan, Ramaswamy; Mattapally, Saidulu; Wagle, Pooja A; Zhang, Jianyi

    2018-05-18

    The role of p53 transactivation domain (p53-TAD), a multifunctional and dynamic domain, on DNA repair and retaining DNA integrity in human iPS cells has never been studied. p53-TAD was knocked out in iPS cells using CRISPR/Cas9 and was confirmed by DNA sequencing. p53-TAD KO cells were characterized by: accelerated proliferation, decreased population doubling time, and unaltered Bcl2, BBC3, IGF1R, Bax and altered Mdm2, p21, and PIDD transcripts expression. In p53-TAD KO cells p53 regulated DNA repair proteins XPA, DNA polH and DDB2 expression were found to be reduced compared to p53-WT cells. Exposure to low dose of doxorubicin (Doxo) induced similar DNA damage and DNA damage response (DDR) measured by RAD50 and MRE11 expression, Checkpoint kinase 2 activation and γH2A.X recruitment at DNA strand breaks in both the cell groups indicating silencing p53-TAD do not affect DDR mechanism upstream of p53. Following removal of Doxo p53-WT hiPS cells underwent DNA repair, corrected their damaged DNA and restored DNA integrity. Conversely, p53-TAD KO hiPS cells did not undergo complete DNA repair and failed to restore DNA integrity. More importantly continuous culture of p53-TAD KO hiPS cells underwent G2/M cell cycle arrest and expressed cellular senescent marker p16 INK4a . Our data clearly shows that silencing transactivation domain of p53 did not affect DDR but affected the DNA repair process implying the crucial role of p53 transactivation domain in maintaining DNA integrity. Therefore, activating p53-TAD domain using small molecules may promote DNA repair and integrity of cells and prevent senescence.

  17. Down-regulation of Wild-type p53-induced Phosphatase 1 (Wip1) Plays a Critical Role in Regulating Several p53-dependent Functions in Premature Senescent Tumor Cells*

    PubMed Central

    Crescenzi, Elvira; Raia, Zelinda; Pacifico, Francesco; Mellone, Stefano; Moscato, Fortunato; Palumbo, Giuseppe; Leonardi, Antonio

    2013-01-01

    Premature or drug-induced senescence is a major cellular response to chemotherapy in solid tumors. The senescent phenotype develops slowly and is associated with chronic DNA damage response. We found that expression of wild-type p53-induced phosphatase 1 (Wip1) is markedly down-regulated during persistent DNA damage and after drug release during the acquisition of the senescent phenotype in carcinoma cells. We demonstrate that down-regulation of Wip1 is required for maintenance of permanent G2 arrest. In fact, we show that forced expression of Wip1 in premature senescent tumor cells induces inappropriate re-initiation of mitosis, uncontrolled polyploid progression, and cell death by mitotic failure. Most of the effects of Wip1 may be attributed to its ability to dephosphorylate p53 at Ser15 and to inhibit DNA damage response. However, we also uncover a regulatory pathway whereby suppression of p53 Ser15 phosphorylation is associated with enhanced phosphorylation at Ser46, increased p53 protein levels, and induction of Noxa expression. On the whole, our data indicate that down-regulation of Wip1 expression during premature senescence plays a pivotal role in regulating several p53-dependent aspects of the senescent phenotype. PMID:23612976

  18. Pure versus combined Merkel cell carcinomas: immunohistochemical evaluation of cellular proteins (p53, Bcl-2, and c-kit) reveals significant overexpression of p53 in combined tumors.

    PubMed

    Lai, Jonathan H; Fleming, Kirsten E; Ly, Thai Yen; Pasternak, Sylvia; Godlewski, Marek; Doucette, Steve; Walsh, Noreen M

    2015-09-01

    Merkel cell polyomavirus is of oncogenic significance in approximately 80% of Merkel cell carcinomas. Morphological subcategories of the tumor differ in regard to viral status, the rare combined type being uniformly virus negative and the predominant pure type being mainly virus positive. Indications that different biological subsets of the tumor exist led us to explore this diversity. In an Eastern Canadian cohort of cases (75 patients; mean age, 76 years [range, 43-91]; male/female ratio, 43:32; 51 [68%] pure and 24 [34%] combined tumors), we semiquantitatively compared the immunohistochemical expression of 3 cellular proteins (p53, Bcl-2, and c-kit) in pure versus combined groups. Viral status was known in a subset of cases. The significant overexpression of p53 in the combined group (mean [SD], 153.8 [117.8] versus 121.6 [77.9]; P = .01) and the increased epidermal expression of this protein (p53 patches) in the same group lend credence to a primary etiologic role for sun damage in these cases. Expression of Bcl-2 and c-kit did not differ significantly between the 2 morphological groups. A relative increase in c-kit expression was significantly associated with a virus-negative status (median [interquartile range], 100 [60-115] versus 70 [0-100]; P = .03). Emerging data reveal divergent biological pathways in Merkel cell carcinoma, each with a characteristic immunohistochemical profile. Virus-positive tumors (all pure) exhibit high retinoblastoma protein and low p53 expression, whereas virus-negative cases (few pure and all combined) show high p53 and relatively high c-kit expression. The potential biological implications of this dichotomy call for consistent stratification of these tumors in future studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Clinical and pathologic relevance of p53 index in canine osseous tumors.

    PubMed

    Loukopoulos, P; Thornton, J R; Robinson, W F

    2003-05-01

    The clinicopathologic value of the immunohistochemical (IHC) expression of p53 protein was evaluated in 167 canine osseous tumors. p53 staining frequency and intensity in tumor cells was expressed as a p53 index. p53 index was significantly higher in osteosarcomas than in other sarcomas, chondrosarcoma, multilobular tumor of bone, and tumors initially misdiagnosed as osteosarcomas as well as in appendicular versus axial and in distal versus proximal osteosarcomas. A strong correlation is demonstrated between the p53 index and a range of clinicopathologic parameters in osteosarcoma, including the tumor site, histologic grade and score, mitotic index, degree of tumor necrosis, and pleomorphism. Chondroblastic osteosarcomas had significantly higher and telangiectatic osteosarcomas significantly lower p53 index than did osteosarcomas belonging to other histopathologic subtypes, a fact that tends to reinforce the perception of these osteosarcomas as distinct clinicopathologic entities. Entire males had higher p53 index than did neutered males. p53 index was higher in Rottweilers than in Great Danes and Terriers, confirming breed susceptibilities to osteosarcoma. p53 index showed no association with age, primary or secondary site status, or the presence of metastases or other tumor types. Biopsy samples had a higher p53 index than did postmortem samples, either because of differences in sample processing or the possibility that p53 overexpression is more evident at the earlier stages of osteosarcoma pathogenesis, presumably represented by the biopsy material. IHC examination for p53 and the derived index has the potential to be used as an additional diagnostic tool and prognostic indicator for osseous tumors.

  20. In vitro cytotoxic potential of friedelin in human MCF-7 breast cancer cell: Regulate early expression of Cdkn2a and pRb1, neutralize mdm2-p53 amalgamation and functional stabilization of p53.

    PubMed

    Subash-Babu, Pandurangan; Li, David K; Alshatwi, Ali A

    2017-10-02

    We aimed to explore the cytotoxic and apoptotic effect of friedelin on breast cancer MCF-7 cells. Cytotoxic effect of friedelin on MCF-7 cells was analyzed using MTT, cell and nuclear morphology. The apoptosis mechanism of friedelin on MCF-7 cells was analyzed using real-time PCR. Friedelin potentially inhibit 78% of MCF-7 cell's growth, the IC 50 value was 1.8μM in 24h and 1.2μM in 48h. Friedelin increased ROS significantly and DNA damage was confirmed by tunel assay. We found characteristically 52% apoptotic cells and 6% necrotic cells in PI, AO/ErBr staining after 48h treatment with 1.2μM of friedelin. Apoptosis was confirmed by significantly (p≤0.001) increased tumor suppressor gene Cdkn1a, pRb2, p53, Nrf2, caspase-3 and decreased Bcl-2, mdm2 & PCNA expression after 48h. In conclusion, friedelin effectively inhibit breast cancer MCF-7 cell growth, it was associated with early expression of Cdkn1a, pRb2 and activation of p53 and caspases. Copyright © 2017. Published by Elsevier GmbH.

  1. Zn(II)-curc targets p53 in thyroid cancer cells.

    PubMed

    Garufi, Alessia; D'Orazi, Valerio; Crispini, Alessandra; D'Orazi, Gabriella

    2015-10-01

    TP53 mutation is a common event in many cancers, including thyroid carcinoma. Defective p53 activity promotes cancer resistance to therapies and a more malignant phenotype, acquiring oncogenic functions. Rescuing the function of mutant p53 (mutp53) protein is an attractive anticancer therapeutic strategy. Zn(II)-curc is a novel small molecule that has been shown to target mutp53 protein in several cancer cells, but its effect in thyroid cancer cells remains unclear. Here, we investigated whether Zn(II)-curc could affect p53 in thyroid cancer cells with both p53 mutation (R273H) and wild-type p53. Zn(II)-curc induced mutp53H273 downregulation and reactivation of wild-type functions, such as binding to canonical target promoters and target gene transactivation. This latter effect was similar to that induced by PRIMA-1. In addition, Zn(II)-curc triggered p53 target gene expression in wild-type p53-carrying cells. In combination treatments, Zn(II)-curc enhanced the antitumor activity of chemotherapeutic drugs, in both mutant and wild-type-carrying cancer cells. Taken together, our data indicate that Zn(II)-curc promotes the reactivation of p53 in thyroid cancer cells, providing in vitro evidence for a potential therapeutic approach in thyroid cancers.

  2. [The expression of p53, MDM2 and Ref1 gene in cultured retina neurons of SD rats treated with vitamin B1 and/or elevated pressure].

    PubMed

    Yang, Zhikuan; Ge, Jian; Yin, Wei; Shen, Huangxuan; Liu, Haiquan; Guo, Yan

    2004-12-01

    To investigate the expression of p53, MDM2 and Ref1 gene in cultured retina neurons of SD rats treated with Vitamin B1 and (or) elevated pressure. The retinal neuron of postnatal SD rats were cultured in vivo, the elevated pressure was produced after 7 days, and the total RNA was extracted after another 2 days, expression of p53, MDM2 and Ref1 gene were analyzed with RT-PCR. The expression level of p53 and MDM2 gene were increased in elevated pressure group, normal with Ref1 gene expression. But the expression of p53 and MDM2 gene were decreased significantly in elevated pressure group treated with vitamine B1 compare to the elevated group. Apoptosis seem to be a mechanism of cell death in retinal neurons of SD rats with elevated pressure.Vitamine B1 have protect effects against elevated pressure.

  3. C/EBPβ represses p53 to promote cell survival downstream of DNA damage independent of oncogenic Ras and p19Arf

    PubMed Central

    Ewing, SJ; Zhu, S; Zhu, F; House, JS; Smart, RC

    2013-01-01

    CCAAT/enhancer-binding protein-β (C/EBPβ) is a mediator of cell survival and tumorigenesis. When C/EBPβ−/− mice are treated with carcinogens that produce oncogenic Ras mutations in keratinocytes, they respond with abnormally elevated keratinocyte apoptosis and a block in skin tumorigenesis. Although this aberrant carcinogen-induced apoptosis results from abnormal upregulation of p53, it is not known whether upregulated p53 results from oncogenic Ras and its ability to induce p19Arf and/or activate DNA-damage response pathways or from direct carcinogen-induced DNA damage. We report that p19Arf is dramatically elevated in C/EBPβ−/− epidermis and that C/EBPβ represses a p19Arf promoter reporter. To determine whether p19Arf is responsible for the proapoptotic phenotype in C/EBPβ−/− mice, C/EBPβ−/−;p19Arf−/− mice were generated. C/EBPβ−/−;p19Arf−/− mice responded to carcinogen treatment with increased p53 and apoptosis, indicating p19Arf is not essential. To ascertain whether oncogenic Ras activation induces aberrant p53 and apoptosis in C/EBPβ−/− epidermis, we generated K14-ER:Ras; C/EBPβ−/− mice. Oncogenic Ras activation induced by 4-hydroxytamoxifen did not produce increased p53 or apoptosis. Finally, when C/EBPβ−/− mice were treated with differing types of DNA-damaging agents, including alkylating chemotherapeutic agents, they displayed aberrant levels of p53 and apoptosis. These results indicate that C/EBPβ represses p53 to promote cell survival downstream of DNA damage and suggest that inhibition of C/EBPβ may be a target for cancer cotherapy to increase the efficacy of alkylating chemotherapeutic agents. PMID:18636078

  4. Immunohistochemical expression of TopBP1 in feline mammary neoplasia in relation to histological grade, Ki67, ERalpha and p53.

    PubMed

    Morris, Joanna S; Nixon, Colin; Bruck, Alicia; Nasir, Lubna; Morgan, Iain M; Philbey, Adrian W

    2008-02-01

    The immunohistochemical expression of topoisomerase IIbeta binding protein 1 (TopBP1) was examined in 123 feline mammary lesions (18 non-neoplastic lesions including six fibroadenomatous hyperplasia and 12 duct ectasia, 17 adenomas and 88 carcinomas) in relation to histological grade, oestrogen receptor alpha (ERalpha) status, proliferation index (Ki67) and p53 expression. There was positive staining for TopBP1 in 122 of 123 feline mammary lesions, although nine samples had fewer than 20% positive cells. The percentage of cells positive for TopBP1 increased with histological grade. Most staining was nuclear but both nuclear and cytoplasmic staining was observed as the degree of malignancy increased. TopBP1 is expressed in feline mammary tumours and its expression is correlated with histological grade. Many neoplasms which over-express p53 or are ERalpha negative show TopBP1 immunoreactivity.

  5. Influence of P53 on the radiotherapy response of hepatocellular carcinoma

    PubMed Central

    Gomes, Ana R.; Abrantes, Ana M.; Brito, Ana F.; Laranjo, Mafalda; Casalta-Lopes, João E.; Gonçalves, Ana C.; Sarmento-Ribeiro, Ana B.; Tralhão, José G.

    2015-01-01

    Background/Aims Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and it has a poor prognosis and few therapeutic options. Radiotherapy is one of the most effective forms of cancer treatment, and P53 protein is one of the key molecules determining how a cell responds to radiotherapy. The aim of this study was to determine the therapeutic efficacy of iodine-131 in three human HCC cell lines. Methods Western blotting was used to measure P53 expression. The effects of radiotherapy with iodine-131 were assessed by using the clonogenic assay to evaluate cell survival. Flow cytometry was carried out to examine the effects of iodine-131 on cell death, oxidative stress, reduced intracellular glutathione expression, the mitochondrial membrane potential, and the cell cycle. Results The P53 protein was not expressed in Hep3B2.1-7 cells, was expressed at normal levels in HepG2 cells, and was overexpressed in HuH7 cells. P53 expression in the HuH7 and HepG2 cell lines increased after internal and external irradiation with iodine-131. Irradiation induced a decrease in cell survival and led to a decrease in cell viability in all of the cell lines studied, accompanied by cell death via late apoptosis/necrosis and necrosis. Irradiation with 131-iodine induced mostly cell-cycle arrest in the G0/G1 phase. Conclusions These results suggest that P53 plays a key role in the radiotherapy response of HCC. PMID:26527121

  6. Super p53 for Treatment of Ovarian Cancer

    DTIC Science & Technology

    2017-09-01

    System 3, Clontech) containing wt-p53, p53-CC, and ZsGreen (control) were made. Ad-ZsGreen was tested in ID8 cells, which showed very high expression...views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army...MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14

  7. Rescue of the apoptotic-inducing function of mutant p53 by small molecule RITA.

    PubMed

    Zhao, Carolyn Y; Grinkevich, Vera V; Nikulenkov, Fedor; Bao, Wenjie; Selivanova, Galina

    2010-05-01

    Expression of mutant p53 correlates with poor prognosis in many tumors, therefore strategies aimed at reactivation of mutant p53 are likely to provide important benefits for treatment of tumors that are resistant to chemotherapy and radiotherapy. We have previously identified and characterized a small molecule RITA which binds p53 and induces a conformational change which prevents the binding of p53 to several inhibitors, including its own destructor MDM2. In this way, RITA rescues the tumor suppression function of wild type p53. Here, we demonstrate that RITA suppressed the growth and induced apoptosis in human tumor cell lines of a diverse origin carrying mutant p53 proteins. RITA restored transcriptional transactivation and transrepression function of several hot spot p53 mutants. The ability of RITA to rescue the activity of different p53 mutants suggests its generic mechanism of action. Thus, RITA is a promising lead for the development of anti-cancer drugs that reactivate the tumor suppressor function of p53 in cancer cells irrespective whether they express mutant or wild type p53.

  8. Low ATM protein expression and depletion of p53 correlates with olaparib sensitivity in gastric cancer cell lines

    PubMed Central

    Kubota, Eiji; Williamson, Christopher T; Ye, Ruiqiong; Elegbede, Anifat; Peterson, Lars; Lees-Miller, Susan P; Bebb, D Gwyn

    2014-01-01

    Small-molecule inhibitors of poly (ADP-ribose) polymerase (PARP) have shown considerable promise in the treatment of homologous recombination (HR)-defective tumors, such as BRCA1- and BRCA2-deficient breast and ovarian cancers. We previously reported that mantle cell lymphoma cells with deficiency in ataxia telangiectasia mutated (ATM) are sensitive to PARP-1 inhibitors in vitro and in vivo. Here, we report that PARP inhibitors can potentially target ATM deficiency arising in a solid malignancy. We show that ATM protein expression varies between gastric cancer cell lines, with NUGC4 having significantly reduced protein levels. Significant correlation was found between ATM protein expression and sensitivity to the PARP inhibitor olaparib, with NUGC4 being the most sensitive. Moreover, reducing ATM kinase activity using a small-molecule inhibitor (KU55933) or shRNA-mediated depletion of ATM protein enhanced olaparib sensitivity in gastric cancer cell lines with depletion or inactivation of p53. Our results demonstrate that ATM is a potential predictive biomarker for PARP-1 inhibitor activity in gastric cancer harboring disruption of p53, and that combined inhibition of ATM and PARP-1 is a rational strategy for expanding the utility of PARP-1 inhibitors to gastric cancer with p53 disruption. PMID:24841718

  9. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence.

    PubMed

    Jiang, Peng; Du, Wenjing; Mancuso, Anthony; Wellen, Kathryn E; Yang, Xiaolu

    2013-01-31

    Cellular senescence both protects multicellular organisms from cancer and contributes to their ageing. The pre-eminent tumour suppressor p53 has an important role in the induction and maintenance of senescence, but how it carries out this function remains poorly understood. In addition, although increasing evidence supports the idea that metabolic changes underlie many cell-fate decisions and p53-mediated tumour suppression, few connections between metabolic enzymes and senescence have been established. Here we describe a new mechanism by which p53 links these functions. We show that p53 represses the expression of the tricarboxylic-acid-cycle-associated malic enzymes ME1 and ME2 in human and mouse cells. Both malic enzymes are important for NADPH production, lipogenesis and glutamine metabolism, but ME2 has a more profound effect. Through the inhibition of malic enzymes, p53 regulates cell metabolism and proliferation. Downregulation of ME1 and ME2 reciprocally activates p53 through distinct MDM2- and AMP-activated protein kinase-mediated mechanisms in a feed-forward manner, bolstering this pathway and enhancing p53 activation. Downregulation of ME1 and ME2 also modulates the outcome of p53 activation, leading to strong induction of senescence, but not apoptosis, whereas enforced expression of either malic enzyme suppresses senescence. Our findings define physiological functions of malic enzymes, demonstrate a positive-feedback mechanism that sustains p53 activation, and reveal a connection between metabolism and senescence mediated by p53.

  10. TP53INP1 is a novel p73 target gene that induces cell cycle arrest and cell death by modulating p73 transcriptional activity.

    PubMed

    Tomasini, Richard; Seux, Mylène; Nowak, Jonathan; Bontemps, Caroline; Carrier, Alice; Dagorn, Jean-Charles; Pébusque, Marie-Josèphe; Iovanna, Juan L; Dusetti, Nelson J

    2005-12-08

    TP53INP1 is an alternatively spliced gene encoding two nuclear protein isoforms (TP53INP1alpha and TP53INP1beta), whose transcription is activated by p53. When overexpressed, both isoforms induce cell cycle arrest in G1 and enhance p53-mediated apoptosis. TP53INP1s also interact with the p53 gene and regulate p53 transcriptional activity. We report here that TP53INP1 expression is induced during experimental acute pancreatitis in p53-/- mice and in cisplatin-treated p53-/- mouse embryo fibroblasts (MEFs). We demonstrate that ectopic expression of p73, a p53 homologue, leads to TP53INP1 induction in p53-deficient cells. In turn, TP53INP1s alters the transactivation capacity of p73 on several p53-target genes, including TP53INP1 itself, demonstrating a functional association between p73 and TP53INP1s. Also, when overexpressed in p53-deficient cells, TP53INP1s inhibit cell growth and promote cell death as assessed by cell cycle analysis and colony formation assays. Finally, we show that TP53INP1s potentiate the capacity of p73 to inhibit cell growth, that effect being prevented when the p53 mutant R175H is expressed or when p73 expression is blocked by a siRNA. These results suggest that TP53INP1s are functionally associated with p73 to regulate cell cycle progression and apoptosis, independently from p53.

  11. p53 as a retrovirus-induced oxidative stress modulator.

    PubMed

    Kim, Soo Jin; Wong, Paul K Y

    2015-01-01

    Infection of astrocytes by the neuropathogenic mutant of Moloney murine leukemia virus, ts1, exhibits increased levels of reactive oxygen species (ROS) and signs of oxidative stress compared with uninfected astrocytes. Previously, we have demonstrated that ts1 infection caused two separate events of ROS upregulation. The first upregulation occurs during early viral establishment in host cells and the second during the virus-mediated apoptotic process. In this study, we show that virus-mediated ROS upregulation activates the protein kinase, ataxia telangiectasia mutated, which in turn phosphorylates serine 15 on p53. This activation of p53 however, is unlikely associated with ts1-induced cell death. Rather p53 appears to be involved in suppressing intracellular ROS levels in astrocytes under oxidative stress. The activated p53 appears to delay retroviral gene expression by suppressing NADPH oxidase, a superoxide-producing enzyme. These results suggest that p53 plays a role as a retrovirus-mediated oxidative stress modulator. © 2015 The Authors.

  12. Leptin reduces apoptosis triggered by high temperature in human placental villous explants: The role of the p53 pathway.

    PubMed

    Pérez-Pérez, Antonio; Toro, Ayelén R; Vilarino-Garcia, Teresa; Guadix, Pilar; Maymó, Julieta L; Dueñas, José L; Varone, Cecilia L; Sánchez-Margalet, Víctor

    2016-06-01

    Maternal fever is common during pregnancy and has for many years been suspected to harm the developing fetus. Whether increased maternal temperature produces exaggerated apoptosis in trophoblast cells remains unclear. Since p53 is a critical regulator of apoptosis we hypothesized that increased temperature in placenta produces abnormal expression of proteins in the p53 pathway and finally caspase-3 activation. Moreover, leptin, produced by placenta, is known to promote the proliferation and survival of trophoblastic cells. Thus, we aimed to study the possible role of leptin preventing apoptosis triggered by high temperature, as well as the molecular mechanisms underlying this effect. Fresh placental tissue was collected from normal pregnancies. Explants of placental villi were exposed to 37 °C, 40 °C and 42 °C during 3 h in the presence or absence of 10 nM leptin in DMEM-F12 medium. Western blotting and qRT-PCR was performed to analyze the expression of p53 and downstream effector, P53AIP1, Mdm2, p21, BAX and BCL-2 as well as the activated cleaved form of caspase-3 and the fragment of cytokeratin-18 (CK-18) cleaved at Asp396 (neoepitope M30). Phosphorylation of the Ser 46 residue on p53, the expression of P53AIP1, Mdm2, p21, as well as caspase-3 and CK-18 were significantly increased in explants at 40 °C and 42 °C. Conversely, these effects were significantly attenuated by leptin 10 nM at both 40 °C and 42 °C. The BCL2/BAX ratio was also significantly decreased in explants at 40 °C and 42 °C compared with explants incubated at 37 °C, which was prevented by leptin stimulation. These data illustrate the potential role of leptin for reducing apoptosis in trophoblast explants, including trophoblastic cells, triggered by high temperature, by preventing the activation of p53 signaling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Modeling the Etiology of p53-mutated Cancer Cells*

    PubMed Central

    Perez, Ricardo E.; Shen, Hong; Duan, Lei; Kim, Reuben H.; Kim, Terresa; Park, No-Hee; Maki, Carl G.

    2016-01-01

    p53 gene mutations are among the most common alterations in cancer. In most cases, missense mutations in one TP53 allele are followed by loss-of-heterozygosity (LOH), so tumors express only mutant p53. TP53 mutations and LOH have been linked, in many cases, with poor therapy response and worse outcome. Despite this, remarkably little is known about how TP53 point mutations are acquired, how LOH occurs, or the cells involved. Nutlin-3a occupies the p53-binding site in MDM2 and blocks p53-MDM2 interaction, resulting in the stabilization and activation of p53 and subsequent growth arrest or apoptosis. We leveraged the powerful growth inhibitory activity of Nutlin-3a to select p53-mutated cells and examined how TP53 mutations arise and how the remaining wild-type allele is lost or inactivated. Mismatch repair (MMR)-deficient colorectal cancer cells formed heterozygote (p53 wild-type/mutant) colonies when cultured in low doses of Nutlin-3a, whereas MMR-corrected counterparts did not. Placing these heterozygotes in higher Nutlin-3a doses selected clones in which the remaining wild-type TP53 was silenced. Our data suggest silencing occurred through a novel mechanism that does not involve DNA methylation, histone methylation, or histone deacetylation. These data indicate MMR deficiency in colorectal cancer can give rise to initiating TP53 mutations and that TP53 silencing occurs via a copy-neutral mechanism. Moreover, the data highlight the use of MDM2 antagonists as tools to study mechanisms of TP53 mutation acquisition and wild-type allele loss or silencing in cells with defined genetic backgrounds. PMID:27022024

  14. Tumour suppressor protein p53 regulates the stress activated bilirubin oxidase cytochrome P450 2A6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Hao, E-mail: hao.hu1@uqconnect.edu.au; Yu, Ting, E-mail: t.yu2@uq.edu.au; Arpiainen, Satu, E-mail: Satu.Juhila@orion.fi

    2015-11-15

    Human cytochrome P450 (CYP) 2A6 enzyme has been proposed to play a role in cellular defence against chemical-induced oxidative stress. The encoding gene is regulated by various stress activated transcription factors. This paper demonstrates that p53 is a novel transcriptional regulator of the gene. Sequence analysis of the CYP2A6 promoter revealed six putative p53 binding sites in a 3 kb proximate promoter region. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. Transfection with various stepwise deletions of CYP2A6-5′-Luc constructs – down to − 160 bp from the TSS – showed p53 responsivenessmore » in p53 overexpressed C3A cells. However, a further deletion from − 160 to − 74 bp, including the putative p53 binding site, totally abolished the p53 responsiveness. Electrophoretic mobility shift assay with a probe containing the putative binding site showed specific binding of p53. A point mutation at the binding site abolished both the binding and responsiveness of the recombinant gene to p53. Up-regulation of the endogenous p53 with benzo[α]pyrene – a well-known p53 activator – increased the expression of the p53 responsive positive control and the CYP2A6-5′-Luc construct containing the intact p53 binding site but not the mutated CYP2A6-5′-Luc construct. Finally, inducibility of the native CYP2A6 gene by benzo[α]pyrene was demonstrated by dose-dependent increases in CYP2A6 mRNA and protein levels along with increased p53 levels in the nucleus. Collectively, the results indicate that p53 protein is a regulator of the CYP2A6 gene in C3A cells and further support the putative cytoprotective role of CYP2A6. - Highlights: • CYP2A6 is an immediate target gene of p53. • Six putative p53REs located on 3 kb proximate CYP2A6 promoter region. • The region − 160 bp from TSS is highly homologous with the p53 consensus sequence. • P53 specifically bind to the p53RE on the − 160 bp region.

  15. Differential programming of p53-deficient embryonic cells during rotenone block

    EPA Science Inventory

    Mitochondrial dysfunction has been implicated in chemical toxicities. The present study used an in vitro model to investigate the differential expression of metabolic pathways during cellular stress in p53- efficient embryonic fibroblasts compared to p53-deficient cells. These c...

  16. Abrogation of Wip1 expression by RITA-activated p53 potentiates apoptosis induction via activation of ATM and inhibition of HdmX

    PubMed Central

    Spinnler, C; Hedström, E; Li, H; de Lange, J; Nikulenkov, F; Teunisse, A F A S; Verlaan-de Vries, M; Grinkevich, V; Jochemsen, A G; Selivanova, G

    2011-01-01

    Inactivation of the p53 tumour suppressor, either by mutation or by overexpression of its inhibitors Hdm2 and HdmX is the most frequent event in cancer. Reactivation of p53 by targeting Hdm2 and HdmX is therefore a promising strategy for therapy. However, Hdm2 inhibitors do not prevent inhibition of p53 by HdmX, which impedes p53-mediated apoptosis. Here, we show that p53 reactivation by the small molecule RITA leads to efficient HdmX degradation in tumour cell lines of different origin and in xenograft tumours in vivo. Notably, HdmX degradation occurs selectively in cancer cells, but not in non-transformed cells. We identified the inhibition of the wild-type p53-induced phosphatase 1 (Wip1) as the major mechanism important for full engagement of p53 activity accomplished by restoration of the ataxia telangiectasia mutated (ATM) kinase-signalling cascade, which leads to HdmX degradation. In contrast to previously reported transactivation of Wip1 by p53, we observed p53-dependent repression of Wip1 expression, which disrupts the negative feedback loop conferred by Wip1. Our study reveals that the depletion of both HdmX and Wip1 potentiates cell death due to sustained activation of p53. Thus, RITA is an example of a p53-reactivating drug that not only blocks Hdm2, but also inhibits two important negative regulators of p53 – HdmX and Wip1, leading to efficient elimination of tumour cells. PMID:21546907

  17. Abrogation of Wip1 expression by RITA-activated p53 potentiates apoptosis induction via activation of ATM and inhibition of HdmX.

    PubMed

    Spinnler, C; Hedström, E; Li, H; de Lange, J; Nikulenkov, F; Teunisse, A F A S; Verlaan-de Vries, M; Grinkevich, V; Jochemsen, A G; Selivanova, G

    2011-11-01

    Inactivation of the p53 tumour suppressor, either by mutation or by overexpression of its inhibitors Hdm2 and HdmX is the most frequent event in cancer. Reactivation of p53 by targeting Hdm2 and HdmX is therefore a promising strategy for therapy. However, Hdm2 inhibitors do not prevent inhibition of p53 by HdmX, which impedes p53-mediated apoptosis. Here, we show that p53 reactivation by the small molecule RITA leads to efficient HdmX degradation in tumour cell lines of different origin and in xenograft tumours in vivo. Notably, HdmX degradation occurs selectively in cancer cells, but not in non-transformed cells. We identified the inhibition of the wild-type p53-induced phosphatase 1 (Wip1) as the major mechanism important for full engagement of p53 activity accomplished by restoration of the ataxia telangiectasia mutated (ATM) kinase-signalling cascade, which leads to HdmX degradation. In contrast to previously reported transactivation of Wip1 by p53, we observed p53-dependent repression of Wip1 expression, which disrupts the negative feedback loop conferred by Wip1. Our study reveals that the depletion of both HdmX and Wip1 potentiates cell death due to sustained activation of p53. Thus, RITA is an example of a p53-reactivating drug that not only blocks Hdm2, but also inhibits two important negative regulators of p53 - HdmX and Wip1, leading to efficient elimination of tumour cells.

  18. p53 Regulates insulin-like growth factor-I receptor gene expression in uterine serous carcinoma and predicts responsiveness to an insulin-like growth factor-I receptor-directed targeted therapy.

    PubMed

    Attias-Geva, Zohar; Bentov, Itay; Kidron, Dvora; Amichay, Keren; Sarfstein, Rive; Fishman, Ami; Bruchim, Ilan; Werner, Haim

    2012-07-01

    The role of the insulin-like growth factors (IGF) in endometrial cancer has been well established. The IGF-I receptor (IGF-IR), which mediates the biological actions of IGF-I, is usually overexpressed in endometrial tumours. Uterine serous carcinoma (USC) constitutes a defined histological category among endometrial cancers. Mutation of the p53 gene appears early in the course of the disease and is considered a key event in the initiation of USC. The aim of the present study was to evaluate the potential interactions between p53 and the IGF-IR in USC. In addition, we investigated the role of p53 as a biomarker in IGF-IR targeted therapies. Immunohistochemical analysis in a collection of 35 USC specimens revealed that IGF-IR is highly expressed in primary and metastatic USC. Likewise, p53 was expressed in 85.7% of primary tumours and 100% of metastases. A significant negative correlation between p53 expression and survival was noticed. In addition, using USC-derived cell lines we provide evidence that p53 regulates IGF-IR gene expression via a mechanism that involves repression of the IGF-IR promoter. We show that the mechanism of action of p53 involves interaction with zinc finger protein Sp1, a potent transactivator of the IGF-IR gene. Finally, we demonstrate that USC tumours overexpressing p53 are more likely to benefit from anti-IGF-IR therapies. In summary, we provide evidence that p53 regulates IGF-IR gene expression in USC cells via a mechanism that involves repression of the IGF-IR promoter. The interplay between the p53 and IGF-I signalling pathways is of major basic and translational relevance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Alterations of mitochondrial biogenesis in chronic lymphocytic leukemia cells with loss of p53

    PubMed Central

    Ogasawara, Marcia A.; Liu, Jinyun; Pelicano, Helene; Hammoudi, Naima; Croce, Carlo M.; Keating, Michael J.; Huang, Peng

    2016-01-01

    Deletion of chromosome 17p with a loss of p53 is an unfavorable cytogenetic change in chronic lymphocytic leukemia (CLL) with poor clinical outcome. Since p53 affects mitochondrial function and integrity, we examined possible mitochondrial changes in CLL mice with TCL1-Tg/p53−/− and TCL1-Tg/p53+/+ genotypes and in primary leukemia cells from CLL patients with or without 17p-deletion. Although the expression of mitochondrial COX1, ND2, and ND6 decreased in p53−/−CLL cells, there was an increase in mitochondrial biogenesis as evidenced by higher mitochondrial mass and mtDNA copy number associated with an elevated expression of TFAM and PGC-1α. Surprisingly, the overall mitochondrial respiratory activity and maximum reserved capacity increased in p53−/− CLL cells. Our study suggests that leukemia cells lacking p53 seem able to maintain respiratory function by compensatory increase in mitochondrial biogenesis. PMID:27650502

  20. MicroRNAs as Key Effectors in the p53 Network.

    PubMed

    Goeman, Frauke; Strano, Sabrina; Blandino, Giovanni

    2017-01-01

    The guardian of the genome p53 is embedded in a fine-spun network of MicroRNAs. p53 is able to activate or repress directly the transcription of MicroRNAs that are participating in the tumor-suppressive mission of p53. On the other hand, the expression of p53 is under tight control of MicroRNAs that are either targeting directly p53 or factors that are modifying its protein level or activity. Although the most important function of p53 is suggested to be transcriptional regulation, there are several nontranscriptional functions described. One of those regards the modulation of MicroRNA biogenesis. Wild-type p53 is increasing the maturation of selected MicroRNAs from the primary transcript to the precursor MiRNA by interacting with the Microprocessor complex. Furthermore, p53 is modulating the mRNA accessibility for certain MicroRNAs by association with the RISC complex and transcriptional regulation of RNA-binding proteins. In this way p53 is able to remodel the MiRNA-mRNA interaction network. As wild-type p53 is employing MicroRNAs to suppress cancer development, gain-of-function mutant p53 proteins use MicroRNAs to confer oncogenic properties like chemoresistance and the ability to drive metastasis. Like its wild-type counterpart mutant p53 is able to regulate MicroRNAs transcriptionally and posttranscriptionally. Mutant p53 affects the MiRNA processing at two cleavage steps through interfering with the Microprocessor complex and by downregulating Dicer and KSRP, a modulator of MiRNA biogenesis. Thus, MicroRNAs are essential components in the p53 pathway, contributing substantially to combat or enhance tumor development depending on the wild-type or mutant p53 context. © 2017 Elsevier Inc. All rights reserved.

  1. Effects of p53 on aldosterone-induced mesangial cell apoptosis in vivo and in vitro.

    PubMed

    Shi, Huimin; Zhang, Aiqing; He, Yanfang; Yang, Min; Gan, Weihua

    2016-06-01

    Aldosterone (ALD) is a well‑known hormone, which may initiate renal injury by inducing mesangial cell (MC) injury in chronic kidney disease (CKD); however, the molecular mechanism remains unknown. The aim of the present study was to investigate the effects of p53 on ALD‑induced MC apoptosis and elucidate the underlying molecular mechanism. For the in vivo studies, rats were randomly assigned to receive normal saline or ALD for 4 weeks. The ratio of MC apoptosis was analysed by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay. In addition, the expression level and localisation of p53, a well-known cell apoptosis-associated key protein, were detected by immunofluorescence. For the in vitro studies, rat MCs were incubated in medium containing either buffer (control) or ALD (10‑6 M) for 24 h. The cell apoptosis ratio was assessed by flow cytometry, and the expression level of p53 was assessed by reverse transcription quantitative polymerase chain reaction and western blotting. In order to confirm the role of p53 in ALD‑regulated cell apoptosis, a rescue experiment was performed using targeted small interfering (si)RNA to downregulate the expression of p53. The ALD‑treated rats exhibited greater numbers of TUNEL‑positive MCs and higher expression levels of p53 when compared with the control group. Furthermore, the ratio of MC apoptosis and the p53 expression level were significantly increased following ALD exposure, compared with the control group. Additionally, in the rescue experiment, the effects of ALD on MC were blocked by downregulating the expression level of p53 in MCs. The present study hypothesized that ALD may directly contribute to the occurrence of MC apoptosis via p53, which may participate in ALD-induced renal injury.

  2. p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase.

    PubMed

    Teodoro, Jose G; Parker, Albert E; Zhu, Xiaochun; Green, Michael R

    2006-08-18

    Recent evidence suggests that antiangiogenic therapy is sensitive to p53 status in tumors, implicating a role for p53 in the regulation of angiogenesis. Here we show that p53 transcriptionally activates the alpha(II) collagen prolyl-4-hydroxylase [alpha(II)PH] gene, resulting in the extracellular release of antiangiogenic fragments of collagen type 4 and 18. Conditioned media from cells ectopically expressing either p53 or alpha(II)PH selectively inhibited growth of primary human endothelial cells. When expressed intracellularly or exogenously delivered, alpha(II)PH significantly inhibited tumor growth in mice. Our results reveal a genetic and biochemical linkage between the p53 tumor suppressor pathway and the synthesis of antiangiogenic collagen fragments.

  3. MiR-142-3p is downregulated in aggressive p53 mutant mouse models of pancreatic ductal adenocarcinoma by hypermethylation of its locus.

    PubMed

    Godfrey, Jack D; Morton, Jennifer P; Wilczynska, Ania; Sansom, Owen J; Bushell, Martin D

    2018-05-29

    Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive disease with poor prognostic implications. This is partly due to a large proportion of PDACs carrying mutations in TP53, which impart gain-of-function characteristics that promote metastasis. There is evidence that microRNAs (miRNAs) may play a role in both gain-of-function TP53 mutations and metastasis, but this has not been fully explored in PDAC. Here we set out to identify miRNAs which are specifically dysregulated in metastatic PDAC. To achieve this, we utilised established mouse models of PDAC to profile miRNA expression in primary tumours expressing the metastasis-inducing mutant p53 R172H and compared these to two control models carrying mutations, which promote tumour progression but do not induce metastasis. We show that a subset of miRNAs are dysregulated in mouse PDAC tumour tissues expressing mutant p53 R172H , primary cell lines derived from mice with the same mutations and in TP53 null cells with ectopic expression of the orthologous human mutation, p53 R175H . Specifically, miR-142-3p is downregulated in all of these experimental models. We found that DNA methyltransferase 1 (Dnmt1) is upregulated in tumour tissue and cell lines, which express p53 R172H . Inhibition or depletion of Dnmt1 restores miR-142-3p expression. Overexpression of miR-142-3p attenuates the invasive capacity of p53 R172H -expressing tumour cells. MiR-142-3p dysregulation is known to be associated with cancer progression, metastasis and the miRNA is downregulated in patients with PDAC. Here we link TP53 gain-of-function mutations to Dnmt1 expression and in turn miR-142-3p expression. Additionally, we show a correlation between expression of these genes and patient survival, suggesting that they may have potential to be therapeutic targets.

  4. p53 as the focus of gene therapy: past, present and future.

    PubMed

    Valente, Joana Fa; Queiroz, Joao A; Sousa, Fani

    2018-01-15

    Several gene deviations can be responsible for triggering oncogenic processes. However, mutations in tumour suppressor genes are usually more associated to malignant diseases, being p53 one of the most affected and studied element. p53 is implicated in a number of known cellular functions, including DNA damage repair, cell cycle arrest in G1/S and G2/M and apoptosis, being an interesting target for cancer treatment. Considering these facts, the development of gene therapy approaches focused on p53 expression and regulation seems to be a promising strategy for cancer therapy. Several studies have shown that transfection of cancer cells with wild-type p53 expressing plasmids could directly drive cells into apoptosis and/or growth arrest, suggesting that a gene therapy approach for cancer treatment can be based on the re-establishment of the normal p53 expression levels and function. Up until now, several clinical research studies using viral and non-viral vectors delivering p53 genes, isolated or combined with other therapeutic agents, have been accomplished and there are already in the market therapies based on the use of this gene. This review summarizes the different methods used to deliver and/or target the p53 as well as the main results of therapeutic effect obtained with the different strategies applied. Finally, the ongoing approaches are described, also focusing the combinatorial therapeutics to show the increased therapeutic potential of combining gene therapy vectors with chemo or radiotherapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Prognostic significance of p16INK4a/p53 in Tunisian patients with breast carcinoma.

    PubMed

    Karray-Chouayekh, Sondes; Baccouche, Sami; Khabir, Abdelmajid; Sellami-Boudawara, Tahia; Daoud, Jamel; Frikha, Mounir; Jlidi, Rachid; Gargouri, Ali; Mokdad-Gargouri, Raja

    2011-09-01

    Infiltrating ductal carcinoma (IDC) of the breast is a result of genetic alterations that affect the regulation of the cell cycle check-point and apoptosis. The aim of the present study was analysis using immunohistochemical localization of mouse double minute-2 (mdm2), p16INK4a, p53, bax and bcl-2 markers in Tunisian patients with breast IDC and to determine if there was correlation with the major clinico-pathological parameters and with survival of patients. We showed that the expression of p53, p16INK4a, mdm2, bcl-2, and bax was observed in 46.3%, 20.7%, 38%, 50% and 11.9% of cases, respectively. Statistical analysis revealed that positive expression of mdm2 was associated with larger tumors (P=0.013), whereas bax positivity was more prevalent in younger patients and in tumors of smaller size (P=0.008 and P=0.012 respectively). Furthermore, the expression of p16INK4a correlated with advanced grade (P<0.0001), triple negative tumors (ER-/PR-/HER2-, P=0.001) and mdm2 expression (P=0.017). The absence of nuclear p53 accumulation was predictive of good prognosis as well as when it was associated with negative expression of p16INK4a. Our findings suggest that among the biomarkers tested, p16INK4a might have a useful clinical and prognostic significance in infiltrating ductal carcinoma of the breast. Copyright © 2010 Elsevier GmbH. All rights reserved.

  6. Increased gene expression noise in human cancers is correlated with low p53 and immune activities as well as late stage cancer.

    PubMed

    Han, Rongfei; Huang, Guanqun; Wang, Yejun; Xu, Yafei; Hu, Yueming; Jiang, Wenqi; Wang, Tianfu; Xiao, Tian; Zheng, Duo

    2016-11-01

    Gene expression in metazoans is delicately organized. As genetic information transmits from DNA to RNA and protein, expression noise is inevitably generated. Recent studies begin to unveil the mechanisms of gene expression noise control, but the changes of gene expression precision in pathologic conditions like cancers are unknown. Here we analyzed the transcriptomic data of human breast, liver, lung and colon cancers, and found that the expression noise of more than 74.9% genes was increased in cancer tissues as compared to adjacent normal tissues. This suggested that gene expression precision controlling collapsed during cancer development. A set of 269 genes with noise increased more than 2-fold were identified across different cancer types. These genes were involved in cell adhesion, catalytic and metabolic functions, implying the vulnerability of deregulation of these processes in cancers. We also observed a tendency of increased expression noise in patients with low p53 and immune activity in breast, liver and lung caners but not in colon cancers, which indicated the contributions of p53 signaling and host immune surveillance to gene expression noise in cancers. Moreover, more than 53.7% genes had increased noise in patients with late stage than early stage cancers, suggesting that gene expression precision was associated with cancer outcome. Together, these results provided genomic scale explorations of gene expression noise control in human cancers.

  7. Stimulation of autophagy by the p53 target gene Sestrin2.

    PubMed

    Maiuri, Maria Chiara; Malik, Shoaib Ahmad; Morselli, Eugenia; Kepp, Oliver; Criollo, Alfredo; Mouchel, Pierre-Luc; Carnuccio, Rosa; Kroemer, Guido

    2009-05-15

    The oncosuppressor protein p53 regulates autophagy in a dual fashion. The pool of cytoplasmic p53 protein represses autophagy in a transcription-independent fashion, while the pool of nuclear p53 stimulates autophagy through the transactivation of specific genes. Here we report the discovery that Sestrin2, a novel p53 target gene, is involved in the induction of autophagy. Depletion of Sestrin2 by RNA interference reduced the level of autophagy in a panel of p53-sufficient human cancer cell lines responding to distinct autophagy inducers. In quantitative terms, Sestrin2 depletion was as efficient in preventing autophagy induction as was the depletion of Dram, another p53 target gene. Knockout of either Sestrin2 or Dram reduced autophagy elicited by nutrient depletion, rapamycin, lithium or thapsigargin. Moreover, autophagy induction by nutrient depletion or pharmacological stimuli led to an increase in Sestrin2 expression levels in p53-proficient cells. In strict contrast, the depletion of Sestrin2 or Dram failed to affect autophagy in p53-deficient cells and did not modulate the inhibition of baseline autophagy by a cytoplasmic p53 mutant that was reintroduced into p53-deficient cells. We conclude that Sestrin2 acts as a positive regulator of autophagy in p53-proficient cells.

  8. CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript, Wrap53

    PubMed Central

    Saldaña-Meyer, Ricardo; González-Buendía, Edgar; Guerrero, Georgina; Narendra, Varun; Bonasio, Roberto; Recillas-Targa, Félix; Reinberg, Danny

    2014-01-01

    The multifunctional CCCTC-binding factor (CTCF) protein exhibits a broad range of functions, including that of insulator and higher-order chromatin organizer. We found that CTCF comprises a previously unrecognized region that is necessary and sufficient to bind RNA (RNA-binding region [RBR]) and is distinct from its DNA-binding domain. Depletion of cellular CTCF led to a decrease in not only levels of p53 mRNA, as expected, but also those of Wrap53 RNA, an antisense transcript originated from the p53 locus. PAR-CLIP-seq (photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation [PAR-CLIP] combined with deep sequencing) analyses indicate that CTCF binds a multitude of transcripts genome-wide as well as to Wrap53 RNA. Apart from its established role at the p53 promoter, CTCF regulates p53 expression through its physical interaction with Wrap53 RNA. Cells harboring a CTCF mutant in its RBR exhibit a defective p53 response to DNA damage. Moreover, the RBR facilitates CTCF multimerization in an RNA-dependent manner, which may bear directly on its role in establishing higher-order chromatin structures in vivo. PMID:24696455

  9. MYCN acts as a direct co-regulator of p53 in MYCN amplified neuroblastoma.

    PubMed

    Agarwal, Saurabh; Milazzo, Giorgio; Rajapakshe, Kimal; Bernardi, Ronald; Chen, Zaowen; Barberi, Eveline; Koster, Jan; Perini, Giovanni; Coarfa, Cristian; Shohet, Jason M

    2018-04-17

    The MYC oncogenes and p53 have opposing yet interrelated roles in normal development and tumorigenesis. How MYCN expression alters the biology and clinical responsiveness of pediatric neuroblastoma remains poorly defined. Neuroblastoma is p53 wild type at diagnosis and repression of p53 signaling is required for tumorigenesis. Here, we tested the hypothesis that MYCN amplification alters p53 transcriptional activity in neuroblastoma. Interestingly, we found that MYCN directly binds to the tetrameric form of p53 at its C-terminal domain, and this interaction is independent of MYCN/MAX heterodimer formation. Chromatin analysis of MYCN and p53 targets reveals dramatic changes in binding, as well as co-localization of the MYCN-p53 complex at p53-REs and E-boxes of genes critical to DNA damage responses and cell cycle progression. RNA sequencing studies show that MYCN-p53 co-localization significantly modulated the expression of p53 target genes. Furthermore, MYCN-p53 interaction leads to regulation of alternative p53 targets not regulated in the presence of low MYCN levels. These novel targets include a number of genes involved in lipid metabolism, DNA repair, and apoptosis. Taken together, our findings demonstrate a novel oncogenic role of MYCN as a transcriptional co-regulator of p53 in high-risk MYCN amplified neuroblastoma. Targeting this novel oncogenic function of MYCN may enhance p53-mediated responses and sensitize MYCN amplified tumors to chemotherapy.

  10. Expression of the p53 target CDIP correlates with sensitivity to TNFα-induced apoptosis in cancer cells.

    PubMed

    Brown-Endres, Lauren; Schoenfeld, David; Tian, Fang; Kim, Hyung-Gu; Namba, Takushi; Muñoz-Fontela, César; Mandinova, Anna; Aaronson, Stuart A; Lee, Sam W

    2012-05-01

    TNFα is a pleiotropic cytokine that signals for both survival and apoptotic cell fates. It is still unclear that the dual role of TNFα can be regulated in cancer cells. We previously described an apoptotic pathway involving p53→CDIP→TNFα that was activated in response to genotoxic stress. This pathway operated in the presence of JNK activation; therefore, we postulated that CDIP itself could sensitize cells to a TNFα apoptotic cell fate, survival, or death. We show that CDIP mediates sensitivity to TNFα-induced apoptosis and that cancer cells with endogenous CDIP expression are inherently sensitive to the growth-suppressive effects of TNFα in vitro and in vivo. Thus, CDIP expression correlates with sensitivity of cancer cells with TNFα, and CDIP seems to be a regulator of the p53-mediated death versus survival response of cells to TNFα. This CDIP-mediated sensitivity to TNFα-induced apoptosis favors pro- over antiapoptotic program in cancer cells, and CDIP may serve as a predictive biomarker for such sensitivity. ©2012 AACR

  11. Suppression of p53-inducible gene 3 is significant for glioblastoma progression and predicts poor patient prognosis.

    PubMed

    Quan, Jishu; Li, Yong; Jin, Meihua; Chen, Dunfu; Yin, Xuezhe; Jin, Ming

    2017-03-01

    Glioblastoma is the most malignant and invasive brain tumor with extremely poor prognosis. p53-inducible gene 3, a downstream molecule of the tumor suppressor p53, has been found involved in apoptosis and oxidative stress response. However, the functions of p53-inducible gene 3(PIG3) in cancer are far from clear including glioblastoma. In this study, we found that p53-inducible gene 3 expression was suppressed in glioblastoma tissues compared with normal tissues. And the expression of p53-inducible gene 3 was significantly associated with the World Health Organization grade. Patients with high p53-inducible gene 3 expression have a significantly longer median survival time (15 months) than those with low p53-inducible gene 3 expression (8 months). According to Cox regression analysis, p53-inducible gene 3 was an independent prognostic factor with multivariate hazard ratio of 0.578 (95% confidence interval, 0.352-0.947; p = 0.030) for overall survival. Additionally, gain and loss of function experiments showed that knockdown of p53-inducible gene 3 significantly increased the proliferation and invasion ability of glioblastoma cells while overexpression of p53-inducible gene 3 inhibited the proliferation and invasion ability. The results of in vivo glioblastoma models further confirmed that p53-inducible gene 3 suppression promoted glioblastoma progression. Altogether, our data suggest that high expression of p53-inducible gene 3 is significant for glioblastoma inhibition and p53-inducible gene 3 independently indicates good prognosis in patients, which might be a novel prognostic biomarker or potential therapeutic target in glioblastoma.

  12. Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation

    PubMed Central

    Procopio, Maria-Giuseppina; Laszlo, Csaba; Labban, Dania Al; Kim, Dong Eun; Bordignon, Pino; Jo, Seunghee; Goruppi, Sandro; Menietti, Elena; Ostano, Paola; Ala, Ugo; Provero, Paolo; Hoetzenecker, Wolfram; Neel, Victor; Kilarski, Witek; Swartz, Melody A.; Brisken, Cathrin; Lefort, Karine; Dotto, G. Paolo

    2015-01-01

    Stromal fibroblast senescence has been linked to aging-associated cancer risk. However, density and proliferation of cancer-associated fibroblasts (CAF) are frequently increased. Loss or down-modulation of the Notch effector CSL/RBP-Jκ in dermal fibroblasts is sufficient for CAF activation and ensuing keratinocyte-derived tumors. We report that CSL silencing induces senescence of primary fibroblasts from dermis, oral mucosa, breast and lung. CSL functions in these cells as direct repressor of multiple senescence- and CAF-effector genes. It also physically interacts with p53, repressing its activity. CSL is down-modulated in stromal fibroblasts of premalignant skin actinic keratosis lesions and squamous cell carcinomas (SCC), while p53 expression and function is down-modulated only in the latter, with paracrine FGF signaling as likely culprit. Concomitant loss of CSL and p53 overcomes fibroblast senescence, enhances expression of CAF effectors and promotes stromal and cancer cell expansion. The findings support a CAF activation/stromal co-evolution model under convergent CSL/p53 control. PMID:26302407

  13. Mechanisms of Breast Carcinogenesis Involving Wild-Type p53

    DTIC Science & Technology

    2001-09-01

    Nelson, C. E., Gryka , M . A., Litwak, G., Gebhardt, M ., level of p53 that was expressed in the cells in both these studies Bressac, B., Ozturk, M ., Baker...14 Publication resulting from this research: 1. Resnick-Silverman, L., S. St Clair, M . Maurer, K...activation by the tumor suppressor protein p53. Genes Dev 12:2102-7. 2. Tang, H. Y., K. Zhao, J. F. Pizzolato, M . Fonarev, J. C. Langer, and J. J

  14. Maspin, p53, p63, and Ki-67 in epithelial lesions of the tongue: from hyperplasia through dysplasia to carcinoma.

    PubMed

    Vered, Marilena; Allon, Irit; Dayan, Dan

    2009-03-01

    The pattern of changes in the expression of mammary serine protease inhibitor (maspin) tumor suppressor protein in tongue epithelial lesions [hyperplasia (HP), mild dysplasia (MD), moderate-to-severe dysplasia (MSD) and squamous cell carcinoma (SCC)] was investigated and correlated to the expression of maspin-regulating factors p53 and p63, and the proliferation marker Ki-67. Cases of HP (n = 16), MD (n = 12), MSD (n = 11), and SCC (n = 22) were immunostained for maspin, p53, p63, and Ki-67. Maspin expression was scored separately for the basal, middle, and upper thirds of the epithelial width, and as the total sum of all 'thirds' (maspin-total). p53, p63, and Ki-67 were immuno-morphometrically assessed for the entire epithelial width. Maspin expression was differential and progressive extending to higher epithelial layers as dysplastic changes aggravated and culminated in carcinoma. Strong expression was related to MSD in the middle third and to carcinoma in the upper third. It was frequently lost at the invasion front, where the tumor was less differentiated. The changes in mean scores of maspin-total in the different study groups were positively correlated to the mean scores of p63 (r = 0.5, P < 0.001), p53 (r = 0.4, P = 0.004), and Ki-67 (r = 0.5, P < 0.001). Strong expression of maspin in the middle third of the epithelium may be considered a diagnostic sign of mild-to-moderate dysplasia and an indication of carcinoma in the upper third. The correlations between maspin and controlling factors (e.g. p63 and p53) may be events with key roles in the development of tongue carcinoma.

  15. The impact of trisomy 12, retinoblastoma gene and P53 in prognosis of B-cell chronic lymphocytic leukemia.

    PubMed

    AbdelSalam, M; El Sissy, A; Samra, M A; Ibrahim, S; El Markaby, D; Gadallah, F

    2008-06-01

    Routine cytogenetic analysis frequently fails to identify an abnormal clone in B-cell lymphocytic leukaemia (B-CLL) due to poor response to mitogen stimulation. Fluorescence in situ hybridization (FISH) suggest that chromosomal abnormalities occur more frequently, most commonly trisomy 12, retinoblastoma gene deletion (Rb1 gene) and P53 gene deletion. 30 patients with B-CLL were enrolled in the trial from two centers in Cairo, Egypt during the period May 2000 to January 2002. Karyotyping and FISH assessment for possible chromosomal abnormalities (trisomy 12, Rb1 gene and P53 gene) were done at initial diagnosis. Results of cytogenetic abnormalities were correlated with clinical picture and survival. The median age was 57.4 years (range 40-75). Karyotyping technique showed that no metaphase could be detected in 30%, metaphase with normal karyotyping was observed in 63% and cytogenetic abnormalities were detected in two cases (one trisomy 12 and one deletion in chromosome 13). FISH examination of interphase and metaphase nuclei revealed cytogenetic abnormalities in 15 cases (50%), trisomy 12 in 9 (30%), Rb1 gene deletion in 5 (17%) and P53 gene deletion in 3. At diagnosis, patients with trisomy 12 were significantly associated with advanced stage and absolute lymphocyte count of >or=30,000/mm(3). Univariate analysis showed that absolute lymphocyte count >or=30,000/mm(3) (p=0.004) and trisomy 12 (p=0.024) were associated with poor progression free survival. Interphase and metaphase FISH studies improve the cytogenetic diagnosis of chromosomal abnormalities in B-CLL. Lymphocytosis and trisomy 12 may be a good indicator of poor prognosis.

  16. The rapid destabilization of p53 mRNA in immortal chicken embryo fibroblast cells.

    PubMed

    Kim, H; You, S; Foster, L K; Farris, J; Foster, D N

    2001-08-23

    The steady-state levels of p53 mRNA were dramatically lower in immortal chicken embryo fibroblast (CEF) cell lines compared to primary CEF cells. In the presence of cycloheximide (CHX), the steady-state levels of p53 mRNA markedly increased in immortal CEF cell lines, similar to levels found in primary cells. The de novo synthetic rates of p53 mRNA were relatively similar in primary and immortal cells grown in the presence or absence of CHX. Destabilization of p53 mRNA was observed in the nuclei of immortal, but not primary, CEF cells. The half-life of p53 mRNA in primary cells was found to be a relatively long 23 h compared to only 3 h in immortal cells. The expression of transfected p53 cDNA was inhibited in immortal cells, but restored upon CHX treatment. The 5'-region of the p53 mRNA was shown to be involved in the rapid p53 mRNA destabilization in immortal cells by expression analysis of 5'- and 3'-deleted p53 cDNAs as well as fusion mRNA constructs of N-terminal p53 and N-terminal deleted LacZ genes. Together, it is suggestive that the downregulation of p53 mRNA in immortal CEF cells occurs through a post-transcriptional destabilizing mechanism.

  17. A mutant p53/let-7i-axis-regulated gene network drives cell migration, invasion and metastasis

    PubMed Central

    Subramanian, M; Francis, P; Bilke, S; Li, XL; Hara, T; Lu, X; Jones, MF; Walker, RL; Zhu, Y; Pineda, M; Lee, C; Varanasi, L; Yang, Y; Martinez, LA; Luo, J; Ambs, S; Sharma, S; Wakefield, LM; Meltzer, PS; Lal, A

    2015-01-01

    Most p53 mutations in human cancers are missense mutations resulting in a full-length mutant p53 protein. Besides losing tumor suppressor activity, some hotspot p53 mutants gain oncogenic functions. This effect is mediated in part, through gene expression changes due to inhibition of p63 and p73 by mutant p53 at their target gene promoters. Here, we report that the tumor suppressor microRNA let-7i is downregulated by mutant p53 in multiple cell lines expressing endogenous mutant p53. In breast cancer patients, significantly decreased let-7i levels were associated with missense mutations in p53. Chromatin immunoprecipitation and promoter luciferase assays established let-7i as a transcriptional target of mutant p53 through p63. Introduction of let-7i to mutant p53 cells significantly inhibited migration, invasion and metastasis by repressing a network of oncogenes including E2F5, LIN28B, MYC and NRAS. Our findings demonstrate that repression of let-7i expression by mutant p53 has a key role in enhancing migration, invasion and metastasis. PMID:24662829

  18. Imiquimod activates p53-dependent apoptosis in a human basal cell carcinoma cell line.

    PubMed

    Huang, Shi-Wei; Chang, Shu-Hao; Mu, Szu-Wei; Jiang, Hsin-Yi; Wang, Sin-Ting; Kao, Jun-Kai; Huang, Jau-Ling; Wu, Chun-Ying; Chen, Yi-Ju; Shieh, Jeng-Jer

    2016-03-01

    The tumor suppressor p53 controls DNA repair, cell cycle, apoptosis, autophagy and numerous other cellular processes. Imiquimod (IMQ), a synthetic toll-like receptor (TLR) 7 ligand for the treatment of superficial basal cell carcinoma (BCC), eliminates cancer cells by activating cell-mediated immunity and directly inducing apoptosis and autophagy in cancer cells. To evaluate the role of p53 in IMQ-induced cell death in skin cancer cells. The expression, phosphorylation and subcellular localization of p53 were detected by real-time PCR, luciferase reporter assay, cycloheximide chase analysis, immunoblotting and immunocytochemistry. Using BCC/KMC1 cell line as a model, the upstream signaling of p53 activation was dissected by over-expression of TLR7/8, the addition of ROS scavenger, ATM/ATR inhibitors and pan-caspase inhibitor. The role of p53 in IMQ-induced apoptosis and autophagy was assessed by genetically silencing p53 and evaluated by a DNA content assay, immunoblotting, LC3 puncta detection and acridine orange staining. IMQ induced p53 mRNA expression and protein accumulation, increased Ser15 phosphorylation, promoted nuclear translocation and up-regulated its target genes in skin cancer cells in a TLR7/8-independent manner. In BCC/KMC1 cells, the induction of p53 by IMQ was achieved through increased ROS production to stimulate the ATM/ATR-Chk1/Chk2 axis but was not mediated by inducing DNA damage. The pharmacological inhibition of ATM/ATR significantly suppressed IMQ-induced p53 activation and apoptosis. Silencing of p53 significantly decreased the IMQ-induced caspase cascade activation and apoptosis but enhanced autophagy. Mutant p53 skin cancer cell lines were more resistant to IMQ-induced apoptosis than wildtype p53 skin cancer cell lines. IMQ induced ROS production to stimulate ATM/ATR pathways and contributed to p53-dependent apoptosis in a skin basal cell carcinoma cell line BCC/KMC1. Copyright © 2015 Japanese Society for Investigative Dermatology

  19. Pleurotus ostreatus inhibits proliferation of human breast and colon cancer cells through p53-dependent as well as p53-independent pathway

    PubMed Central

    JEDINAK, ANDREJ; SLIVA, DANIEL

    2009-01-01

    In spite of the global consumption of mushrooms, only two epidemiological studies demonstrated an inverse correlation between mushroom intake and the risk of cancer. Therefore, in the present study we evaluated whether extracts from edible mushrooms Agaricus bisporus (portabella), Flammulina velutipes (enoki), Lentinula edodes (shiitake) and Pleurotus ostreatus (oyster) affect the growth of breast and colon cancer cells. Here, we identified as the most potent, P. ostreatus (oyster mushroom) which suppressed proliferation of breast cancer (MCF-7, MDA-MB-231) and colon cancer (HT-29, HCT-116) cells, without affecting proliferation of epithelial mammary MCF-10A and normal colon FHC cells. Flow cytometry revealed that the inhibition of cell proliferation by P. ostreatus was associated with the cell cycle arrest at G0/G1 phase in MCF-7 and HT-29 cells. Moreover, P. ostreatus induced the expression of the tumor suppressor p53 and cyclin-dependent kinase inhibitor p21(CIP1/WAF1), whereas inhibited the phosphorylation of retinoblastoma Rb protein in MCF-7 cells. In addition, P. ostreatus also up-regulated expression of p21 and inhibited Rb phosphorylation in HT-29 cells, suggesting that that P. ostreatus suppresses the proliferation of breast and colon cancer cells via p53-dependent as well as p53-independent pathway. In conclusion, our results indicated that the edible oyster mushroom has potential therapeutic/preventive effects on breast and colon cancer. PMID:19020765

  20. Immunohistochemical Study of p53 Expression in Patients with Erosive and Non-Erosive Oral Lichen Planus

    PubMed Central

    Shiva, Atena; Zamanian, Ali; Arab, Shahin; Boloki, Mahsa

    2018-01-01

    Statement of the Problem: Oral lichen planus is a common mucocutaneous lesion with a chronic inflammatory process mediated by immune factors while a few cases of the disease become malignant. Purpose: This study aimed to determine the frequency of p53 marker as a tumor suppressor in patients with erosive and non-erosive oral lichen planus (OLP) by using immunohistochemical methods. Materials and Method: This descriptive cross-sectional study investigated the p53 expression in 16 erosive OLP, 16 non-erosive OLP samples, and 8 samples of normal oral mucosa through immunohistochemistry. The percentage of stained cells in basal and suprabasal layers, and inflammatory infiltrate were graded according to the degree of staining; if 0%, <10%, 10-25%, and >50% of the cells were stained, they were considered as (-), (+), (++), (+++) and (++++), respectively. The obtained data was statistically analyzed and compared by using Chi square and Fisher’s exact test. Results: The mean percentage of p53 positive cells in erosive OLP (34.5±14.2) was considerably higher than that in non-erosive OLP (23.8±10.4) and normal mucosa (17.5±17). There was a significant difference among the three groups of erosive, non-erosive and control in terms of staining intensity. No significant difference existed between the patients’ age and sex in the two OLP groups. Conclusion: The increased incidence of p53 from normal mucosa to erosive OLP indicated the difference between biological behavior of erosive and non-erosive OLP. It can be claimed that the erosive OLP has great premalignant potential compared with the non-erosive one.

  1. Curcumin causes superoxide anion production and p53-independent apoptosis in human colon cancer cells.

    PubMed

    Watson, Jane L; Hill, Richard; Yaffe, Paul B; Greenshields, Anna; Walsh, Mark; Lee, Patrick W; Giacomantonio, Carman A; Hoskin, David W

    2010-11-01

    Curcumin from the rhizome of theCurcuma longa plant has chemopreventative activity and inhibits the growth of neoplastic cells. Since p53 has been suggested to be important for anticancer activity by curcumin, we investigated curcumin-induced cytotoxicity in cultures of p53(+/+) and p53(-/-) HCT-116 colon cancer cells, as well as mutant p53 HT-29 colon cancer cells. Curcumin killed wild-type p53 HCT-116 cells and mutant p53 HT-29 cells in a dose- and time-dependent manner. In addition, curcumin-treated p53(+/+) HCT-116 cells and mutant p53 HT-29 cells showed upregulation of total and activated p53, as well as increased expression of p53-regulated p21, PUMA (p53 upregulated modulator of apoptosis), and Bax; however, an equivalent cytotoxic effect by curcumin was observed in p53(+/+) and p53(-/-) HCT-116 cells, demonstrating that curcumin-induced cytotoxicity was independent of p53 status. Similar results were obtained when the cytotoxic effect of curcumin was assessed in wild-type p53 HCT-116 cells after siRNA-mediated p53 knockdown. Chromatin condensation, poly (ADP-ribose) polymerase-1 cleavage and reduced pro-caspase-3 levels in curcumin-treated p53(+/+) and p53(-/-) HCT-116 cells suggested that curcumin caused apoptosis. In addition, exposure to curcumin resulted in superoxide anion production and phosphorylation of oxidative stress proteins in p53(+/+) and p53(-/-) HCT-116 cells. Collectively, our results indicate that, despite p53 upregulation and activation, curcumin-induced apoptosis in colon cancer cells was independent of p53 status and involved oxidative stress. Curcumin may therefore have therapeutic potential in the management of colon cancer, especially in tumorsthatare resistant to conventional chemotherapydue todefects inp53 expression or function. 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis.

    PubMed

    Arjonen, Antti; Kaukonen, Riina; Mattila, Elina; Rouhi, Pegah; Högnäs, Gunilla; Sihto, Harri; Miller, Bryan W; Morton, Jennifer P; Bucher, Elmar; Taimen, Pekka; Virtakoivu, Reetta; Cao, Yihai; Sansom, Owen J; Joensuu, Heikki; Ivaska, Johanna

    2014-03-01

    Mutations of the tumor suppressor TP53 are present in many forms of human cancer and are associated with increased tumor cell invasion and metastasis. Several mechanisms have been identified for promoting dissemination of cancer cells with TP53 mutations, including increased targeting of integrins to the plasma membrane. Here, we demonstrate a role for the filopodia-inducing motor protein Myosin-X (Myo10) in mutant p53-driven cancer invasion. Analysis of gene expression profiles from 2 breast cancer data sets revealed that MYO10 was highly expressed in aggressive cancer subtypes. Myo10 was required for breast cancer cell invasion and dissemination in multiple cancer cell lines and murine models of cancer metastasis. Evaluation of a Myo10 mutant without the integrin-binding domain revealed that the ability of Myo10 to transport β₁ integrins to the filopodia tip is required for invasion. Introduction of mutant p53 promoted Myo10 expression in cancer cells and pancreatic ductal adenocarcinoma in mice, whereas suppression of endogenous mutant p53 attenuated Myo10 levels and cell invasion. In clinical breast carcinomas, Myo10 was predominantly expressed at the invasive edges and correlated with the presence of TP53 mutations and poor prognosis. These data indicate that Myo10 upregulation in mutant p53-driven cancers is necessary for invasion and that plasma-membrane protrusions, such as filopodia, may serve as specialized metastatic engines.

  3. Modulation of p53 cellular function and cell death by African swine fever virus.

    PubMed

    Granja, Aitor G; Nogal, María L; Hurtado, Carolina; Salas, José; Salas, María L; Carrascosa, Angel L; Revilla, Yolanda

    2004-07-01

    Modulation of the activity of tumor suppressor p53 is a key event in the replication of many viruses. We have studied the function of p53 in African swine fever virus (ASFV) infection by determining the expression and activity of this transcription factor in infected cells. p53 levels are increased at early times of infection and are maintained throughout the infectious cycle. The protein is transcriptionally active, stabilized by phosphorylation, and localized in the nucleus. p53 induces the expression of p21 and Mdm2. Strikingly, these two proteins are located at the cytoplasmic virus factories. The retention of Mdm2 at the factory may represent a viral mechanism to prevent p53 inactivation by the protein. The expression of apoptotic proteins, such as Bax or active caspase-3, is also increased following ASFV infection, although the increase in caspase-3 does not appear to be, at least exclusively, p53 dependent. Bax probably plays a role in the induction of apoptosis in the infected cells, as suggested by the release of cytochrome c from the mitochondria. The significance of p21 induction and localization is discussed in relation to the shutoff of cellular DNA synthesis that is observed in ASFV-infected cells.

  4. Modulation of p53 Cellular Function and Cell Death by African Swine Fever Virus

    PubMed Central

    Granja, Aitor G.; Nogal, María L.; Hurtado, Carolina; Salas, José; Salas, María L.; Carrascosa, Angel L.; Revilla, Yolanda

    2004-01-01

    Modulation of the activity of tumor suppressor p53 is a key event in the replication of many viruses. We have studied the function of p53 in African swine fever virus (ASFV) infection by determining the expression and activity of this transcription factor in infected cells. p53 levels are increased at early times of infection and are maintained throughout the infectious cycle. The protein is transcriptionally active, stabilized by phosphorylation, and localized in the nucleus. p53 induces the expression of p21 and Mdm2. Strikingly, these two proteins are located at the cytoplasmic virus factories. The retention of Mdm2 at the factory may represent a viral mechanism to prevent p53 inactivation by the protein. The expression of apoptotic proteins, such as Bax or active caspase-3, is also increased following ASFV infection, although the increase in caspase-3 does not appear to be, at least exclusively, p53 dependent. Bax probably plays a role in the induction of apoptosis in the infected cells, as suggested by the release of cytochrome c from the mitochondria. The significance of p21 induction and localization is discussed in relation to the shutoff of cellular DNA synthesis that is observed in ASFV-infected cells. PMID:15194793

  5. miR-24-3p Suppresses Malignant Behavior of Lacrimal Adenoid Cystic Carcinoma by Targeting PRKCH to Regulate p53/p21 Pathway.

    PubMed

    Zhang, Ming-Xue; Zhang, Jie; Zhang, Hong; Tang, Hua

    2016-01-01

    MicroRNA (miRNA) may function as an oncogene or a tumor suppressor in tumorigenesis. However, the mechanism of miRNAs in adenoid cystic carcinoma (ACC) is unclear. Here, we provide evidence that miR-24-3p was downreglated and functions as a tumor suppressor in human lacrimal adenoid cystic carcinoma by suppressing proliferation and migration/invasion while promoting apoptosis. miR-24-3p down-regulated protein kinase C eta (PRKCH) by binding to its untranslated region (3'UTR). PRKCH increased the of the cell growth and migration/invasion in ACC cells and suppressed the expression of p53 and p21 in both mRNA and protein level. The overexpression of miR-24-3p decreased its malignant phenotype. Ectopic expression of PRKCH counteracted the suppression of malignancy induced by miR-24-3p, as well as ectopic expression of miR-24-3p rescued the suppression of PRKCH in the p53/p21 pathway. These results suggest that miR-24-3p promotes the p53/p21 pathway by down-regulating PRKCH expression in lacrimal adenoid cystic carcinoma cells.

  6. Immunohistochemical Analysis of ATRX, IDH1 and p53 in Glioblastoma and Their Correlations with Patient Survival

    PubMed Central

    2016-01-01

    Glioblastoma (GBM) can be classified into molecular subgroups, on the basis of biomarker expression. Here, we classified our cohort of 163 adult GBMs into molecular subgroups according to the expression of proteins encoded by genes of alpha thalassemia/mental retardation syndrome X-linked (ATRX), isocitrate dehydrogenase (IDH) and TP53. We focused on the survival rate of molecular subgroups, depending on each and various combination of these biomarkers. ATRX, IDH1 and p53 protein expression were evaluated immunohistochemically and Kaplan-Meier analysis were carried out in each group. A total of 15.3% of enrolled GBMs demonstrated loss of ATRX expression (ATRX-), 10.4% expressed an aberrant IDH1 R132H protein (IDH1+), and 48.4% exhibited p53 overexpression (p53+). Survival differences were statistically significant when single protein expression or different combinations of expression of these proteins were analyzed. In conclusion, in the case of single protein expression, the patients with each IDH1+, or ATRX-, or p53- GBMs showed better survival than patients with counterparts protein expressed GBMs. In the case of double protein pairs, the patients with ATRX-/p53-, ATRX-/IDH1+, and IDH1+/p53- GBMs revealed better survival than the patients with GBMs with the remained pairs. In the case of triple protein combinations, the patients with ATRX-/p53-/IDH+ showed statistically significant survival gain than the patients with remained combination of proteins-expression status. Therefore, these three biomarkers, individually and as a combination, can stratify GBMs into prognostically relevant subgroups and have strong prognostic values in adult GBMs. PMID:27478330

  7. Transcriptional repression of epithelial cell adhesion molecule (EpCAM) contributes to p53 control of breast cancer invasion

    PubMed Central

    Sankpal, NV; Willman, MW; Fleming, TP; Mayfield, J; Gillanders, WE

    2014-01-01

    p53 is a tumor suppressor gene with well-characterized roles in cell cycle regulation, apoptosis and the maintenance of genome stability. Recent evidence suggests that p53 may also contribute to the regulation of migration and invasion. Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein that is overexpressed in the majority of human epithelial carcinomas, including breast and colorectal carcinomas. We demonstrate by chromatin immunoprecipitation assays that p53 interacts with a candidate p53 binding site within the EpCAM gene. p53-mediated transcriptional repression of EpCAM was confirmed in gain-of-function, and loss-of-function experimental systems. Induction of wildtype p53 was associated with a significant dose-dependent decrease in EpCAM expression; conversely, specific ablation of p53 was associated with a significant increase in EpCAM expression. At the functional level, specific ablation of p53 expression is associated with increased breast cancer invasion, and this effect is abrogated by concomitant specific ablation of EpCAM expression. Taken together, these biochemical and functional data are the first demonstration that (1) wildtype p53 protein binds to a response element within the EpCAM gene and negatively regulates EpCAM expression, and (2) transcriptional repression of EpCAM contributes to p53 control of breast cancer invasion. PMID:19141643

  8. Regulation of p53 Stability and Apoptosis by a ROR Agonist

    PubMed Central

    Wang, Yongjun; Solt, Laura A.; Kojetin, Douglas J.; Burris, Thomas P.

    2012-01-01

    Activation of p53 function leading to cell-cycle arrest and/or apoptosis is a promising strategy for development of anti-cancer therapeutic agents. Here, we describe a novel mechanism for stabilization of p53 protein expression via activation of the orphan nuclear receptor, RORα. We demonstrate that treatment of cancer cells with a newly described synthetic ROR agonist, SR1078, leads to p53 stabilization and induction of apoptosis. These data suggest that synthetic ROR agonists may hold utility in the treatment of cancer. PMID:22509368

  9. Regulation of p53 stability and apoptosis by a ROR agonist.

    PubMed

    Wang, Yongjun; Solt, Laura A; Kojetin, Douglas J; Burris, Thomas P

    2012-01-01

    Activation of p53 function leading to cell-cycle arrest and/or apoptosis is a promising strategy for development of anti-cancer therapeutic agents. Here, we describe a novel mechanism for stabilization of p53 protein expression via activation of the orphan nuclear receptor, RORα. We demonstrate that treatment of cancer cells with a newly described synthetic ROR agonist, SR1078, leads to p53 stabilization and induction of apoptosis. These data suggest that synthetic ROR agonists may hold utility in the treatment of cancer.

  10. The p53–Mdm2 feedback loop protects against DNA damage by inhibiting p53 activity but is dispensable for p53 stability, development, and longevity

    PubMed Central

    Pant, Vinod; Xiong, Shunbin; Jackson, James G.; Post, Sean M.; Abbas, Hussein A.; Quintás-Cardama, Alfonso; Hamir, Amirali N.; Lozano, Guillermina

    2013-01-01

    The p53–Mdm2 feedback loop is perceived to be critical for regulating stress-induced p53 activity and levels. However, this has never been tested in vivo. Using a genetically engineered mouse with mutated p53 response elements in the Mdm2 P2 promoter, we show that feedback loop-deficient Mdm2P2/P2 mice are viable and aphenotypic and age normally. p53 degradation kinetics after DNA damage in radiosensitive tissues remains similar to wild-type controls. Nonetheless, DNA damage response is elevated in Mdm2P2/P2 mice. Enhanced p53-dependent apoptosis sensitizes hematopoietic stem cells (HSCs), causing drastic myeloablation and lethality. These results suggest that while basal Mdm2 levels are sufficient to regulate p53 in most tissues under homeostatic conditions, the p53–Mdm2 feedback loop is critical for regulating p53 activity and sustaining HSC function after DNA damage. Therefore, transient disruption of p53–Mdm2 interaction could be explored as a potential adjuvant/therapeutic strategy for targeting stem cells in hematological malignancies. PMID:23973961

  11. The prognostic value of p53 positive in colorectal cancer: A retrospective cohort study.

    PubMed

    Wang, Peng; Liang, Jianwei; Wang, Zheng; Hou, Huirong; Shi, Lei; Zhou, Zhixiang

    2017-05-01

    This retrospective cohort study aimed to discuss the prognostic value of p53 positive in colorectal cancer. A total of 124 consecutive patients diagnosed with colorectal cancer were evaluated at the National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College from 1 January 2009 to 31 December 2010. The expression of p53 in colorectal cancer was examined by immunohistochemistry. Based on the expression levels of p53, the 124 patients were divided into a p53 positive group and a p53 negative group. In this study, 72 patients were in the p53 positive group and 52 in the p53 negative group. The two groups were well balanced in gender, age, body mass index, American Society of Anesthesiologists scores, and number of lymph nodes harvested. p53 positive was associated with carcinoembryonic antigen ≥5 ng/mL ( p = 0.036), gross type ( p = 0.037), degree of tumor differentiation ( p = 0.026), pathological tumor stage ( p = 0.019), pathological node stage ( p = 0.004), pathological tumor-node-metastasis stage ( p = 0.017), nerve invasion ( p = 0.008), and vessel invasion ( p = 0.018). Tumor site, tumor size, and pathological pattern were not significantly different between these two groups. Disease-free survival and overall survival in the p53 positive group were significantly shorter than the p53 negative group ( p = 0.021 and 0.025, respectively). Colorectal cancer patients with p53 positive tended to be related to a higher degree of malignancy, advanced tumor-node-metastasis stage, and shorter disease-free survival and overall survival. p53 positive was independently an unfavorable prognostic marker for colorectal cancer patients.

  12. Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability.

    PubMed

    Galanos, Panagiotis; Pappas, George; Polyzos, Alexander; Kotsinas, Athanassios; Svolaki, Ioanna; Giakoumakis, Nickolaos N; Glytsou, Christina; Pateras, Ioannis S; Swain, Umakanta; Souliotis, Vassilis L; Georgakilas, Alexandros G; Geacintov, Nicholas; Scorrano, Luca; Lukas, Claudia; Lukas, Jiri; Livneh, Zvi; Lygerou, Zoi; Chowdhury, Dipanjan; Sørensen, Claus Storgaard; Bartek, Jiri; Gorgoulis, Vassilis G

    2018-03-16

    Genomic instability promotes evolution and heterogeneity of tumors. Unraveling its mechanistic basis is essential for the design of appropriate therapeutic strategies. In a previous study, we reported an unexpected oncogenic property of p21 WAF1/Cip1 , showing that its chronic expression in a p53-deficient environment causes genomic instability by deregulation of the replication licensing machinery. We now demonstrate that p21 WAF1/Cip1 can further fuel genomic instability by suppressing the repair capacity of low- and high-fidelity pathways that deal with nucleotide abnormalities. Consequently, fewer single nucleotide substitutions (SNSs) occur, while formation of highly deleterious DNA double-strand breaks (DSBs) is enhanced, crafting a characteristic mutational signature landscape. Guided by the mutational signatures formed, we find that the DSBs are repaired by Rad52-dependent break-induced replication (BIR) and single-strand annealing (SSA) repair pathways. Conversely, the error-free synthesis-dependent strand annealing (SDSA) repair route is deficient. Surprisingly, Rad52 is activated transcriptionally in an E2F1-dependent manner, rather than post-translationally as is common for DNA repair factor activation. Our results signify the importance of mutational signatures as guides to disclose the repair history leading to genomic instability. We unveil how chronic p21 WAF1/Cip1 expression rewires the repair process and identifies Rad52 as a source of genomic instability and a candidate therapeutic target.

  13. Functional repair of p53 mutation in colorectal cancer cells using trans-splicing.

    PubMed

    He, Xingxing; Liao, Jiazhi; Liu, Fang; Yan, Junwei; Yan, Jingjun; Shang, Haitao; Dou, Qian; Chang, Ying; Lin, Jusheng; Song, Yuhu

    2015-02-10

    Mutation in the p53 gene is arguably the most frequent type of gene-specific alterations in human cancers. Current p53-based gene therapy contains the administration of wt-p53 or the suppression of mutant p53 expression in p53-defective cancer cells. . We hypothesized that trans-splicing could be exploited as a tool for the correction of mutant p53 transcripts in p53-mutated human colorectal cancer (CRC) cells. In this study, the plasmids encoding p53 pre-trans-splicing molecules (PTM) were transfected into human CRC cells carrying p53 mutation. The plasmids carrying p53-PTM repaired mutant p53 transcripts in p53-mutated CRC cells, which resulted in a reduction in mutant p53 transcripts and an induction of wt-p53 simultaneously. Intratumoral administration of adenovirus vectors carrying p53 trans-splicing cassettes suppressed the growth of tumor xenografts. Repair of mutant p53 transcripts by trans-splicing induced cell-cycle arrest and apoptosis in p53-defective colorectal cancer cells in vitro and in vivo. In conclusion, the present study demonstrated for the first time that trans-splicing was exploited as a strategy for the repair of mutant p53 transcripts, which revealed that trans-splicing would be developed as a new therapeutic approach for human colorectal cancers carrying p53 mutation.

  14. The prognostic implication of the expression of EGFR, p53, cyclin D1, Bcl-2 and p16 in primary locally advanced oral squamous cell carcinoma cases: a tissue microarray study.

    PubMed

    Solomon, Monica Charlotte; Vidyasagar, M S; Fernandes, Donald; Guddattu, Vasudev; Mathew, Mary; Shergill, Ankur Kaur; Carnelio, Sunitha; Chandrashekar, Chetana

    2016-12-01

    Oral squamous cell carcinomas comprise a heterogeneous tumor cell population with varied molecular characteristics, which makes prognostication of these tumors a complex and challenging issue. Thus, molecular profiling of these tumors is advantageous for an accurate prognostication and treatment planning. This is a retrospective study on a cohort of primary locally advanced oral squamous cell carcinomas (n = 178) of an Indian rural population. The expression of EGFR, p53, cyclin D1, Bcl-2 and p16 in a cohort of primary locally advanced oral squamous cell carcinomas was evaluated. A potential biomarker that can predict the tumor response to treatment was identified. Formalin-fixed paraffin-embedded tumor blocks of (n = 178) of histopathologically diagnosed cases of locally advanced oral squamous cell carcinomas were selected. Tissue microarray blocks were constructed with 2 cores of 2 mm diameter from each tumor block. Four-micron-thick sections were cut from these tissue microarray blocks. These tissue microarray sections were immunohistochemically stained for EGFR, p53, Bcl-2, cyclin D1 and p16. In this cohort, EGFR was the most frequently expressed 150/178 (84%) biomarker of the cases. Kaplan-Meier analysis showed a significant association (p = 0.038) between expression of p53 and a poor prognosis. A Poisson regression analysis showed that tumors that expressed p53 had a two times greater chance of recurrence (unadjusted IRR-95% CI 2.08 (1.03, 4.5), adjusted IRR-2.29 (1.08, 4.8) compared with the tumors that did not express this biomarker. Molecular profiling of oral squamous cell carcinomas will enable us to categorize our patients into more realistic risk groups. With biologically guided tumor characterization, personalized treatment protocols can be designed for individual patients, which will improve the quality of life of these patients.

  15. Differential association of S100A9, an inflammatory marker, and p53, a cell cycle marker, expression with epicardial adipocyte size in patients with cardiovascular disease.

    PubMed

    Agra, Rosa María; Fernández-Trasancos, Ángel; Sierra, Juan; González-Juanatey, José Ramón; Eiras, Sonia

    2014-10-01

    S100A9 (calgranulin B) has inflammatory and oxidative stress properties and was found to be associated with atherosclerosis and obesity. One of the proteins that can regulate S100A9 transcription is p53, which is involved in cell cycle, apoptosis and adipogenesis. Thus, it triggers adipocyte enlargement and finally obesity. Because epicardial adipose tissue (EAT) volume and thickness is related to coronary artery disease (CAD), we studied the gene expression of this pathway in patients with cardiovascular disease and its association with obesity. Adipocytes and stromal cells from EAT and subcutaneous adipose tissue (SAT) from 48 patients who underwent coronary artery bypass graft and/or valve replacement were obtained after collagenase digestion and differential centrifugation. The expression levels of the involved genes on adipogenesis and cell cycle like fatty acid-binding protein (FABP) 4, retinol-binding protein (RBP)4, p53 and S100A9 were determined by real-time polymerase chain reaction (PCR). Adipocyte diameter was measured by optical microscopy. We found that epicardial adipocytes expressed significantly lower levels of adipogenic genes (FABP4 and RBP4) and cell cycle-related genes (S100A9 and p53) than subcutaneous adipocytes. However, in obese patients, upregulation of adipogenic and cell cycle-related genes in subcutaneous and epicardial adipocytes, respectively, was observed. The enlargement of adipocyte size was related to FABP4, S100A9 and p53 expression levels in stromal cells. But only the p53 association was maintained in epicardial stromal cells from obese patients (p=0.003). The expression of p53, but not S100A9, in epicardial stromal cells is related to adipocyte enlargement in obese patients with cardiovascular disease. These findings suggest new mechanisms for understanding the relationship between epicardial fat thickness, obesity and cardiovascular disease.

  16. Difference of protein 53 expression based on radiation therapy response in cervical cancer

    NASA Astrophysics Data System (ADS)

    Pasaribu, H. P.; Lubis, L. I.; Dina, S.; Simanjuntak, R. Y.; Siregar, H. S.; Rivany, R.

    2018-03-01

    Cervical cancer is one of most common gynecological cancer in women and the leading cause of death in developing countries. An analytic study with the case-control design was conducted to determine the difference of p53 expression based on radiation therapy response in cervical cancer. The study was performed in Obstetric and Gynecology Department and Pathology Department of Adam Malik General Hospital Medan from January to February 2017. 15 paraffin blocks of acervical cancer patient with incomplete response were obtained as study samples, and 15 paraffin blocks of acervical cancer patient with complete response were obtained as control samples, The samples were collected by consecutive sampling, andan immunohistochemical assessment of p53 expression was done to assessapoptosis count and radiation response. Data were analyzed using Kruskal-Wallis with confidence interval 83.5% and p<0.05 was considered statistically significant. The study found that an increase of p53 expressionin samples with abundant apoptosis (≥5 apoptosis cells/5 HPF), p=0.033, and in incomplete response group, p=0.046. It means that p53 expression before radiation therapy can be used as an early marker for radiation therapy response in cervical cancer.

  17. DNM3, p65 and p53 from exosomes represent potential clinical diagnosis markers for glioblastoma multiforme

    PubMed Central

    Yang, Jian-kai; Song, Jian; Huo, Hao-ran; Zhao, Yin-long; Zhang, Guang-yu; Zhao, Zong-mao; Sun, Guo-zhu; Jiao, Bao-hua

    2017-01-01

    Background: Glioblastoma multiforme (GBM) is the most aggressive and deadly primary brain cancer that arises from astrocytes and classified as grade IV. Recently, exosomes have been reported as an essential mediator in diverse cancer carcinogenesis and metastasis. However, their role in GBM is still unclear. In this study, we aimed to investigate whether blood exosomes can be potential clinical diagnostic markers for GBM. Methods: We used a xenograft orthotopic mouse model to detect the differentially expressed genes in the brain and blood exosomes of original/recurrent GBM. Results: We found that recurrent GBM had stronger growth capacity and lethality than original GBM in the mouse model. A gene microarray of original tumors and blood exosomes from GBM orthotopic xenografts results showed that DNM3, p65 and CD117 expressions increased, whereas PTEN and p53 expressions decreased in both original tumors and blood exosomes. In the recurrent GBM tumor model, DNM3 and p65 showed increased expressions, whereas ST14 and p53 showed decreased expressions in tumor and blood exosomes of the recurrent GBM mouse model. Conclusion: In summary, we found that DNM3, p65 and p53 had a similar trend in brain and blood exosomes both for original and recurrent GBM, and could serve as potential clinical diagnostic markers for GBM. PMID:29449895

  18. Metformin Restores Parkin-Mediated Mitophagy, Suppressed by Cytosolic p53

    PubMed Central

    Song, Young Mi; Lee, Woo Kyung; Lee, Yong-ho; Kang, Eun Seok; Cha, Bong-Soo; Lee, Byung-Wan

    2016-01-01

    Metformin is known to alleviate hepatosteatosis by inducing 5’ adenosine monophosphate (AMP)-kinase-independent, sirtuin 1 (SIRT1)-mediated autophagy. Dysfunctional mitophagy in response to glucolipotoxicities might play an important role in hepatosteatosis. Here, we investigated the mechanism by which metformin induces mitophagy through restoration of the suppressed Parkin-mediated mitophagy. To this end, our ob/ob mice were divided into three groups: (1) ad libitum feeding of a standard chow diet; (2) intraperitoneal injections of metformin 300 mg/kg; and (3) 3 g/day caloric restriction (CR). HepG2 cells were treated with palmitate (PA) plus high glucose in the absence or presence of metformin. We detected enhanced mitophagy in ob/ob mice treated with metformin or CR, whereas mitochondrial spheroids were observed in mice fed ad libitum. Metabolically stressed ob/ob mice and PA-treated HepG2 cells showed an increase in expression of endoplasmic reticulum (ER) stress markers and cytosolic p53. Cytosolic p53 inhibited mitophagy by disturbing the mitochondrial translocation of Parkin, as demonstrated by immunoprecipitation. However, metformin decreased ER stress and p53 expression, resulting in induction of Parkin-mediated mitophagy. Furthermore, pifithrin-α, a specific inhibitor of p53, increased mitochondrial incorporation into autophagosomes. Taken together, these results indicate that metformin treatment facilitates Parkin-mediated mitophagy rather than mitochondrial spheroid formation by decreasing the inhibitory interaction with cytosolic p53 and increasing degradation of mitofusins. PMID:26784190

  19. The expression of TP53 pathway-related proteins in ovarian carcinoma transplanted subcutaneously in nude mice.

    PubMed

    Zhang, S-R; Li, D-B; Xue, J-W

    2018-03-01

    Given the important functions of TP53 pathway in various biological processes, this study aimed to investigate the expression of TP53 pathway-related proteins in ovarian carcinoma transplanted subcutaneously in nude mice with and without the presence of p53 inhibitor and to explore possible roles of p53 in the development of ovarian cancer. Thirty BALB/c-nu female nude mice were randomly divided into model group, control group and p53 inhibitor group (Pftα group). There were 10 rats in each group. The nude mice were subcutaneously inoculated with human ovarian cancer cell line SKOV3, and the tumor growth was observed. Morphological changes of tumor tissue were observed by hematoxylin and eosin (HE) staining. The mRNA and protein levels of TP53 pathway related factors-p53, p21 and mouse double minute 2 homolog (MDM2) were detected by RT-PCR and Western blot. p53 inhibitor can increase the growth rate of subcutaneously transplanted tumor in nude mice. p53 inhibitor could decrease the expression of p53 and p21 at both mRNA and protein levels and increase the expression of MDM2 at both mRNA and protein levels in ovarian carcinoma transplanted subcutaneously in nude mice. TP53 pathway may play pivotal roles in the development of ovarian cancer and TP53 pathway may be a new target for the treatment of ovarian cancer.

  20. ATM and p53 combined analysis predicts survival in glioblastoma multiforme patients: A clinicopathologic study.

    PubMed

    Romano, Francesco Jacopo; Guadagno, Elia; Solari, Domenico; Borrelli, Giorgio; Pignatiello, Sara; Cappabianca, Paolo; Del Basso De Caro, Marialaura

    2018-06-01

    Glioblastoma is one of the most malignant cancers, with a distinguishing dismal prognosis: surgery followed by chemo- and radiotherapy represents the current standard of care, and chemo- and radioresistance underlie disease recurrence and short overall survival of patients suffering from this malignancy. ATM is a kinase activated by autophosphorylation upon DNA doublestrand breaks arising from errors during replication, byproducts of metabolism, chemotherapy or ionizing radiations; TP53 is one of the most popular tumor suppressor, with a preeminent role in DNA damage response and repair. To study the effects of the immunohistochemical expression of p-ATM and p53 in glioblastoma patients, 21 cases were retrospectively examined. In normal brain tissue, p-ATM was expressed only in neurons; conversely, in tumors cells, the protein showed a variable cytoplasmic expression (score: +,++,+++), with being completely undetectable in three cases. Statistical analysis revealed that high p-ATM score (++/+++) strongly correlated to shorter survival (P = 0.022). No difference in overall survival was registered between p53 normally expressed (NE) and overexpressed (OE) glioblastoma patients (P = 0.669). Survival analysis performed on the results from combined assessment of the two proteins showed that patients with NE p53 /low pATM score had longer overall survival than the NE p53/ high pATM score counterpart. Cox-regression analysis confirmed this finding (HR = 0.025; CI 95% = 0.002-0.284; P = 0.003). Our study outlined the immunohistochemical expression of p-ATM/p53 in glioblastomas and provided data on their possible prognostic/predictive of response role. A "non-oncogene addiction" to ATM for NEp53 glioblastoma could be postulated, strengthening the rationale for development of ATM inhibiting drugs. © 2018 Wiley Periodicals, Inc.

  1. Wt-p53 action in human leukaemia cell lines corresponding to different stages of differentiation.

    PubMed

    Rizzo, M G; Zepparoni, A; Cristofanelli, B; Scardigli, R; Crescenzi, M; Blandino, G; Giuliacci, S; Ferrari, S; Soddu, S; Sacchi, A

    1998-05-01

    Recent studies support the potential application of the wt-p53 gene in cancer therapy. Expression of exogenous wt-p53 suppresses a variety of leukaemia phenotypes by acting on cell survival, proliferation and/or differentiation. As for tumour gene therapy, the final fate of the neoplastic cells is one of the most relevant points. We examined the effects of exogenous wt-p53 gene expression in several leukaemia cell lines to identify p53-responsive leukaemia. The temperature-sensitive p53Val135 mutant or the human wt-p53 cDNA was transduced in leukaemia cell lines representative of different acute leukaemia FAB subtypes, including M1 (KG1), M2 (HL-60), M3 (NB4), M5 (U937) and M6 (HEL 92.1.7), as well as blast crisis of chronic myelogenous leukaemia (BC-CML: K562, BV173) showing diverse differentiation features. By morphological, molecular and biochemical analyses, we have shown that exogenous wt-p53 gene expression induces apoptosis only in cells corresponding to M1, M2 and M3 of the FAB classification and in BC-CML showing morphological and cytochemical features of undifferentiated blast cells. In contrast, it promotes differentiation in the others. Interestingly, cell responsiveness was independent of the vector used and the status of the endogenous p53 gene.

  2. Methylation of Werner syndrome protein is associated with the occurrence and development of invasive meningioma via the regulation of Myc and p53 expression.

    PubMed

    Li, Puxian; Hao, Shuyu; Bi, Zhiyong; Zhang, Junting; Wu, Zhen; Ren, Xiaohui

    2015-08-01

    The aim of the present study was to investigate the positive rate of Werner syndrome protein (WRN) methylation in meningioma patients, and further assess the association between WRN methylation and the occurrence of meningioma. A total of 56 consecutive meningioma patients and 26 healthy individuals were enrolled in the study. A methylation-specific polymerase chain reaction assay was performed to detect the positive rate of WRN methylation in the peripheral blood and tissue samples collected from the recruited subjects. In addition, western blot analysis was performed to determine the protein expression levels of WRN, Myc and p53 in the peripheral blood and tissue samples. The positive rate of WRN methylation in the peripheral blood of the meningioma group was increased when compared with the control group (P<0.05). In addition, the protein expression levels of WRN were significantly decreased in the peripheral blood and tissue samples collected from the individuals with a positive WRN methylation status (P<0.05), as compared with the samples without WRN methylation. Furthermore, the protein expression levels of Myc and p53 were increased in the peripheral blood and tissue samples that exhibited positive WRN methylation when compared with those without WRN methylation (P<0.05). Therefore, WRN methylation was demonstrated to be associated with the occurrence and development of invasive meningioma, possibly through the regulation of Myc and p53 expression.

  3. Distinct tumor protein p53 mutants in breast cancer subgroups.

    PubMed

    Dumay, Anne; Feugeas, Jean-Paul; Wittmer, Evelyne; Lehmann-Che, Jacqueline; Bertheau, Philippe; Espié, Marc; Plassa, Louis-François; Cottu, Paul; Marty, Michel; André, Fabrice; Sotiriou, Christos; Pusztai, Lajos; de Thé, Hugues

    2013-03-01

    Tumor protein p53 (TP53) is mutated in approximately 30% of breast cancers, but this frequency fluctuates widely between subclasses. We investigated the p53 mutation status in 572 breast tumors, classified into luminal, basal and molecular apocrine subgroups. As expected, the lowest mutation frequency was observed in luminal (26%), and the highest in basal (88%) tumors. Luminal tumors showed significantly higher frequency of substitutions (82 vs. 65%), notably A/T to G/C transitions (31 vs. 15%), whereas molecular apocrine and basal tumors presented much higher frequencies of complex mutations (deletions/insertions) (36 and 33%, respectively, vs. 18%). Accordingly, missense mutations were significantly more frequent in luminal tumors (75 vs. 54%), whereas basal tumors displayed significantly increased rates of TP53 truncations (43 vs. 25%), resulting in loss of function and/or expression. Interestingly, as basal tumors, molecular apocrine tumors presented with a high rate of complex mutations, but paradoxically, these were not associated with increased frequency of p53 truncation. As in luminal tumors, this could reflect a selective pressure for p53 gain of function, possibly through P63/P73 inactivation. Collectively, these observations point not only to different mechanisms of TP53 alterations, but also to different functional consequences in the different breast cancer subtypes. Copyright © 2012 UICC.

  4. Inactivation of p53 by Human T-Cell Lymphotropic Virus Type 1 Tax Requires Activation of the NF-κB Pathway and Is Dependent on p53 Phosphorylation

    PubMed Central

    Pise-Masison, Cynthia A.; Mahieux, Renaud; Jiang, Hua; Ashcroft, Margaret; Radonovich, Michael; Duvall, Janet; Guillerm, Claire; Brady, John N.

    2000-01-01

    p53 plays a key role in guarding cells against DNA damage and transformation. We previously demonstrated that the human T-cell lymphotropic virus type 1 (HTLV-1) Tax can inactivate p53 transactivation function in lymphocytes. The present study demonstrates that in T cells, Tax-induced p53 inactivation is dependent upon NF-κB activation. Analysis of Tax mutants demonstrated that Tax inactivation of p53 function correlates with the ability of Tax to induce NF-κB but not p300 binding or CREB transactivation. The Tax-induced p53 inactivation can be overcome by overexpression of a dominant IκB mutant. Tax-NF-κB-induced p53 inactivation is not due to p300 squelching, since overexpression of p300 does not recover p53 activity in the presence of Tax. Further, using wild-type and p65 knockout mouse embryo fibroblasts (MEFs), we demonstrate that the p65 subunit of NF-κB is critical for Tax-induced p53 inactivation. While Tax can inactivate endogenous p53 function in wild-type MEFs, it fails to inactivate p53 function in p65 knockout MEFs. Importantly, Tax-induced p53 inactivation can be restored by expression of p65 in the knockout MEFs. Finally, we present evidence that phosphorylation of serines 15 and 392 correlates with inactivation of p53 by Tax in T cells. This study provides evidence that the divergent NF-κB proliferative and p53 cell cycle arrest pathways may be cross-regulated at several levels, including posttranslational modification of p53. PMID:10779327

  5. A common carcinogen benzo[a]pyrene causes p53 overexpression in mouse cervix via DNA damage.

    PubMed

    Gao, Meili; Li, Yongfei; Sun, Ying; Long, Jiangang; Kong, Yu; Yang, Shuiyun; Wang, Yili

    2011-09-18

    Benzo[a]pyrene (BaP) is cytotoxic and/or genotoxic to lung, stomach and skin tissue in the body. However, the effect of BaP on cervical tissue remains unclear. The present study detected DNA damage and the expression of the p53 gene in BaP-induced cervical tissue in female mice. Animals were intraperitoneally injected and orally gavaged with BaP at the doses of 2.5, 5, and 10mg/kg twice a week for 14 weeks. The single-cell gel electrophoresis (SCGE) assay was used to detect the DNA damage. Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to detect the expression of p53 protein and p53 mRNA, respectively. The results showed that BaP induced a significant and dose-dependent increase of the number of cells with DNA damaged and the tail length as well as Comet tail moment in cervical tissue. The expression level of p53 protein and mRNA was increased. The results demonstrate that BaP may show toxic effect on the cervix by increasing DNA damage and the expression of the p53 gene. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Constant p53 Pathway Inactivation in a Large Series of Soft Tissue Sarcomas with Complex Genetics

    PubMed Central

    Pérot, Gaëlle; Chibon, Frédéric; Montero, Audrey; Lagarde, Pauline; de Thé, Hugues; Terrier, Philippe; Guillou, Louis; Ranchère, Dominique; Coindre, Jean-Michel; Aurias, Alain

    2010-01-01

    Alterations of the p53 pathway are among the most frequent aberrations observed in human cancers. We have performed an exhaustive analysis of TP53, p14, p15, and p16 status in a large series of 143 soft tissue sarcomas, rare tumors accounting for around 1% of all adult cancers, with complex genetics. For this purpose, we performed genomic studies, combining sequencing, copy number assessment, and expression analyses. TP53 mutations and deletions are more frequent in leiomyosarcomas than in undifferentiated pleomorphic sarcomas. Moreover, 50% of leiomyosarcomas present TP53 biallelic inactivation, whereas most undifferentiated pleomorphic sarcomas retain one wild-type TP53 allele (87.2%). The spectrum of mutations between these two groups of sarcomas is different, particularly with a higher rate of complex mutations in undifferentiated pleomorphic sarcomas. Most tumors without TP53 alteration exhibit a deletion of p14 and/or lack of mRNA expression, suggesting that p14 loss could be an alternative genotype for direct TP53 inactivation. Nevertheless, the fact that even in tumors altered for TP53, we could not detect p14 protein suggests that other p14 functions, independent of p53, could be implicated in sarcoma oncogenesis. In addition, both p15 and p16 are frequently codeleted or transcriptionally co-inhibited with p14, essentially in tumors with two wild-type TP53 alleles. Conversely, in TP53-altered tumors, p15 and p16 are well expressed, a feature not incompatible with an oncogenic process. PMID:20884963

  7. Expression of the p53 target CDIP correlates with sensitivity to TNF-alpha induced apoptosis in cancer cells

    PubMed Central

    Brown-Endres, Lauren; Schoenfeld, David; Tian, Fang; Kim, Hyung-Gu; Namba, Takushi; Muñoz-Fontela, César; Mandinova, Anna; Aaronson, Stuart A.; Lee, Sam W.

    2012-01-01

    TNFα is a pleiotropic cytokine that signals for both survival and apoptotic cell fates. It is still unclear that the dual role of TNFα can be regulated in cancer cells. We previously described an apoptotic pathway involving p53→CDIP→TNFα that was activated in response to genotoxic stress. This pathway operated in the presence of JNK activation; therefore, we postulated that CDIP itself could sensitize cells to a TNFα apoptotic cell fate, survival or death. We show that CDIP mediates sensitivity to TNFα-induced apoptosis, and that cancer cells with endogenous CDIP expression are inherently sensitive to the growth suppressive effects of TNFα in vitro and in vivo. Thus, CDIP expression correlates with sensitivity of cancer cells with TNFα, and CDIP appears to be a regulator of the p53-mediated death versus survival response of cells to TNFα. This CDIP-mediated sensitivity to TNFα-induced apoptosis favors pro-over anti-apoptotic program in cancer cells and CDIP may serve as a predictive biomarker for such sensitivity. PMID:22549949

  8. Differentiation-induced skin cancer suppression by FOS, p53, and TACE/ADAM17

    PubMed Central

    Guinea-Viniegra, Juan; Zenz, Rainer; Scheuch, Harald; Jiménez, María; Bakiri, Latifa; Petzelbauer, Peter; Wagner, Erwin F.

    2012-01-01

    Squamous cell carcinomas (SCCs) are heterogeneous and aggressive skin tumors for which innovative, targeted therapies are needed. Here, we identify a p53/TACE pathway that is negatively regulated by FOS and show that the FOS/p53/TACE axis suppresses SCC by inducing differentiation. We found that epidermal Fos deletion in mouse tumor models or pharmacological FOS/AP-1 inhibition in human SCC cell lines induced p53 expression. Epidermal cell differentiation and skin tumor suppression were caused by a p53-dependent transcriptional activation of the metalloprotease TACE/ADAM17 (TNF-α–converting enzyme), a previously unknown p53 target gene that was required for NOTCH1 activation. Although half of cutaneous human SCCs display p53-inactivating mutations, restoring p53/TACE activity in mouse and human skin SCCs induced tumor cell differentiation independently of the p53 status. We propose FOS/AP-1 inhibition or p53/TACE reactivating strategies as differentiation-inducing therapies for SCCs. PMID:22772468

  9. Human T-Cell Leukemia Virus I Tax Protein Sensitizes p53-Mutant Cells to DNA Damage

    PubMed Central

    Mihaylova, Valia T.; Green, Allison M.; Khurgel, Moshe; Semmes, Oliver J.; Kupfer, Gary M.

    2018-01-01

    Mutations in p53 are a common cause of resistance of cancers to standard chemotherapy and, thus, treatment failure. Reports have shown that Tax, a human T-cell leukemia virus type I encoded protein that has been associated with genomic instability and perturbation of transcription and cell cycle, sensitizes HeLa cells to UV treatment. The extent to which Tax can sensitize cells and the mechanism by which it exerts its effect are unknown. In this study, we show that Tax sensitizes p53-mutant cells to a broad range of DNA-damaging agents, including mitomycin C, a bifunctional alkylator, etoposide, a topoisomerase II drug, and UV light, but not ionizing radiation, a double-strand break agent, or vinblastine, a tubulin poison. Tax caused hypersensitivity in all p53-deleted cell lines and several, but not all, mutant-expressed p53–containing cell lines, while unexpectedly being protective in p53 wild-type (wt) cells. The effect observed in p53-deleted lines could be reversed for this by transfection of wt p53. We also show that Tax activates a p53-independent proapoptotic program through decreased expression of the retinoblastoma protein and subsequent increased E2F1 expression. The expression of several proapoptotic proteins was also induced by Tax, including Puma and Noxa, culminating in a substantial increase in Bax dimerization. Our results show that Tax can sensitize p53-mutant cells to DNA damage while protecting p53 wt cells, a side benefit that might result in reduced toxicity in normal cells. Such studies hold the promise of a novel adjunctive therapy that could make cancer chemotherapy more effective. PMID:18559532

  10. Effect of Mutant p53 Proteins on Glycolysis and Mitochondrial Metabolism.

    PubMed

    Eriksson, Matilda; Ambroise, Gorbatchev; Ouchida, Amanda Tomie; Lima Queiroz, Andre; Smith, Dominique; Gimenez-Cassina, Alfredo; Iwanicki, Marcin P; Muller, Patricia A; Norberg, Erik; Vakifahmetoglu-Norberg, Helin

    2017-12-15

    TP53 is one of the most commonly mutated genes in human cancers. Unlike other tumor suppressors that are frequently deleted or acquire loss-of-function mutations, the majority of TP53 mutations in tumors are missense substitutions, which lead to the expression of full-length mutant proteins that accumulate in cancer cells and may confer unique gain-of-function (GOF) activities to promote tumorigenic events. Recently, mutant p53 proteins have been shown to mediate metabolic changes as a novel GOF to promote tumor development. There is a strong rationale that the GOF activities, including alterations in cellular metabolism, might vary between the different p53 mutants. Accordingly, the effect of different mutant p53 proteins on cancer cell metabolism is largely unknown. In this study, we have metabolically profiled several individual frequently occurring p53 mutants in cancers, focusing on glycolytic and mitochondrial oxidative phosphorylation pathways. Our investigation highlights the diversity of different p53 mutants in terms of their effect on metabolism, which might provide a foundation for the development of more effective targeted pharmacological approaches toward variants of mutant p53. Copyright © 2017 American Society for Microbiology.

  11. Serum p53 antibody as a potential tumor marker in extrahepatic cholangiocarcinoma.

    PubMed

    Okada, Rei; Shimada, Hideaki; Otsuka, Yuichiro; Tsuchiya, Masaru; Ishii, Jun; Katagiri, Toshio; Maeda, Tetsuya; Kubota, Yoshihisa; Nemoto, Tetsuo; Kaneko, Hironori

    2017-12-01

    Only a few studies have evaluated the clinicopathological significance of the p53 protein expression and s-p53-Abs level in patients with cholangiocarcinoma. We therefore analyzed the clinicopathological and prognostic significance of s-p53-Abs in patients with extrahepatic cholangiocarcinoma. We prospectively evaluated s-p53-Abs levels before and after surgery in 61 patients with extrahepatic cholangiocarcinoma to determine the relationship between clinicopathological factors and the prognostic significance of s-p53-Abs. Among a total of 61 primary extrahepatic cholangiocarcinoma cases, 23% were positive for s-p53-Abs. Combination of s-p53-Abs with the conventional serum markers carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) significantly increased the rate of positive extrahepatic cholangiocarcinoma cases (57% for CEA and/or CA19-9 vs. 75% for CEA and/or CA19-9 and/or s-p53-Abs, P = 0.035). There were no significant differences in clinicopathological factors between the p53-seropositive and p53-seronegative patients. An immunohistochemical analysis showed the presence of significant associations between the intensity (P = 0.003) and extent (P = 0.001) of p53 immunoreactivity and p53-seropositivitly. Although s-p53-Abs was not a significant prognostic factor for the survival in either univariate or multivariate analyses, p53 immunoreactivity was independently associated with a poor survival. Among patients positive for s-p53-Abs before surgery, the s-p53-Abs levels were reduced after surgery in most. These findings suggested that s-p53-Abs might be associated with p53 immunoreactivity. In addition, s-p53-Abs may be useful for a diagnosis, but was not useful for predicting tumor recurrence or the survival. This study was registered as UMIN000014530.

  12. The influence of SV40 immortalization of human fibroblasts on p53-dependent radiation responses

    NASA Technical Reports Server (NTRS)

    Kohli, M.; Jorgensen, T. J.

    1999-01-01

    The simian virus 40 large tumor antigen (SV40 Tag) has been ascribed many functions critical to viral propagation, including binding to the mammalian tumor suppressor p53. Recent studies have demonstrated that SV40-transformed murine cells have functional p53. The status of p53 in SV40-immortalized human cells, however, has not been characterized. We have found that in response to ionizing radiation, p53-dependent p21 transactivation activity is present, albeit reduced, in SV40-immortalized cells and that this activity can be further reduced with either dominant negative p53 expression or higher SV40 Tag expression. Furthermore, overexpression of p53 in SV40-immortalized ataxia-telangiectasia (A-T) cells restores p53-dependent p21 induction to typical A-T levels. All SV40-immortalized cell lines exhibited an absence of G1 arrest. Moreover, all SV40-immortalized cell lines exhibited increased apoptosis relative to primary cells in response to ionizing radiation, suggesting that SV40 immortalization results in a unique phenotype with regard to DNA damage responses. Copyright 1999 Academic Press.

  13. Alveolar epithelial cells in idiopathic pulmonary fibrosis display upregulation of TRAIL, DR4 and DR5 expression with simultaneous preferential over-expression of pro-apoptotic marker p53.

    PubMed

    Akram, Khondoker M; Lomas, Nicola J; Forsyth, Nicholas R; Spiteri, Monica A

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive, debilitating, and fatal lung disease of unknown aetiology with no current cure. The pathogenesis of IPF remains unclear but repeated alveolar epithelial cell (AEC) injuries and subsequent apoptosis are believed to be among the initiating/ongoing triggers. However, the precise mechanism of apoptotic induction is hitherto elusive. In this study, we investigated expression of a panel of pro-apoptotic and cell cycle regulatory proteins in 21 IPF and 19 control lung tissue samples. We reveal significant upregulation of the apoptosis-inducing ligand TRAIL and its cognate receptors DR4 and DR5 in AEC within active lesions of IPF lungs. This upregulation was accompanied by pro-apoptotic protein p53 overexpression. In contrast, myofibroblasts within the fibroblastic foci of IPF lungs exhibited high TRAIL, DR4 and DR5 expression but negligible p53 expression. Similarly, p53 expression was absent or negligible in IPF and control alveolar macrophages and lymphocytes. No significant differences in TRAIL expression were noted in these cell types between IPF and control lungs. However, DR4 and DR5 upregulation was detected in IPF alveolar macrophages and lymphocytes. The marker of cellular senescence p21(WAF1) was upregulated within affected AEC in IPF lungs. Cell cycle regulatory proteins Cyclin D1 and SOCS3 were significantly enhanced in AEC within the remodelled fibrotic areas of IPF lungs but expression was negligible in myofibroblasts. Taken together these findings suggest that, within the remodelled fibrotic areas of IPF, AEC can display markers associated with proliferation, senescence, and apoptotosis, where TRAIL could drive the apoptotic response. Clear understanding of disease processes and identification of therapeutic targets will direct us to develop effective therapies for IPF.

  14. Tea polyphenols prevent lung from preneoplastic lesions and effect p53 and bcl-2 gene expression in rat lung tissues.

    PubMed

    Gu, Qihua; Hu, Chengping; Chen, Qiong; Xia, Ying

    2013-01-01

    Lung cancer is one of the cancers that have the highest incidence and the highest mortality rate, and it is of great interest to identify ways to prevent its occurrence. We had established an animal model by using 3,4-benzopyrene intra-pulmonary injection in our previous study, and had observed that the rats lung carcinoma incidence and multiplicity were significantly reduced by green tea administration. This study further investigated the effect of tea polyphenols on rat lung preneoplastic lesions using the lung carcinoma model established by 3,4-benzopyrene intra-pulmonary injection. Sprague-Dawley rats of the same age were randomly divided into 10 groups and treated with 3,4-benzopyrene by intra-pulmonary injection. Five groups were given 0.3% solution of tea polyphenols (equivalent to 1.2% of green tea) in drinking water, while the other 5 groups were given pure drinking water. The rats were sacrificed at 0, 1, 4, 8 and 16 weeks after carcinogen treatment. In the control groups of rats, local bronchial inflammation were observed at 1 week after 3,4-benzopyrene treatment. From 4 weeks to 16 weeks after carcinogen treatment, hyperplasia, cell hyperproliferation, heterogeneity were observed in the bronchial epithelium. Meanwhile, the expression of p53 mRNA and protein, as well as the level of bcl-2, increased in the bronchial epithelial lesion. Tea polyphenols treatment significantly alleviated the bronchial epithelial lesions. At the same time, tea polyphenols treatment enhanced p53 expression, but reduced bcl-2 expression. These results indicated that tea polyphenols may have preventive effect against lung preneoplasm lesions, possibly through regulating the expression of some critical genes such as p53 and bcl-2.

  15. Osteoblast differentiation and skeletal development are regulated by Mdm2–p53 signaling

    PubMed Central

    Lengner, Christopher J.; Steinman, Heather A.; Gagnon, James; Smith, Thomas W.; Henderson, Janet E.; Kream, Barbara E.; Stein, Gary S.; Lian, Jane B.; Jones, Stephen N.

    2006-01-01

    Mdm2 is required to negatively regulate p53 activity at the peri-implantation stage of early mouse development. However, the absolute requirement for Mdm2 throughout embryogenesis and in organogenesis is unknown. To explore Mdm2–p53 signaling in osteogenesis, Mdm2-conditional mice were bred with Col3.6-Cre–transgenic mice that express Cre recombinase in osteoblast lineage cells. Mdm2-conditional Col3.6-Cre mice die at birth and display multiple skeletal defects. Osteoblast progenitor cells deleted for Mdm2 have elevated p53 activity, reduced proliferation, reduced levels of the master osteoblast transcriptional regulator Runx2, and reduced differentiation. In contrast, p53-null osteoprogenitor cells have increased proliferation, increased expression of Runx2, increased osteoblast maturation, and increased tumorigenic potential, as mice specifically deleted for p53 in osteoblasts develop osteosarcomas. These results demonstrate that p53 plays a critical role in bone organogenesis and homeostasis by negatively regulating bone development and growth and by suppressing bone neoplasia and that Mdm2-mediated inhibition of p53 function is a prerequisite for Runx2 activation, osteoblast differentiation, and proper skeletal formation. PMID:16533949

  16. Okadaic acid mediates p53 hyperphosphorylation and growth arrest in cells with wild-type p53 but increases aberrant mitoses in cells with non-functional p53.

    PubMed

    Milczarek, G J; Chen, W; Gupta, A; Martinez, J D; Bowden, G T

    1999-06-01

    The protein phosphatase inhibitor and tumor promoting agent okadaic acid (OA), has been shown previously to induce hyperphosphorylation of p53 protein, which in turn correlated with increased transactivation or apoptotic function. However, how the tumor promotion effects of OA relate to p53 tumor supressor function (or dysfunction) remain unclear. Rat embryonic fibroblasts harboring a temperature-sensitive mouse p53 transgene were treated with 50 nM doses of OA. At the wild-type permissive temperature this treatment resulted in: (i) the hyperphosphorylation of sites within tryptic peptides of the transactivation domain of p53; (ii) an increase in p53 affinity for a p21(waf1) promotor oligonucleotide; (iii) an increase in cellular steady state levels of p21(waf1) message; (iv) a G2/M cell cycle blockage in addition to the G1/S arrest previously associated with p53; and (v) no increased incidence of apoptosis. On the other hand, OA treatment at the mutated p53 permissive temperature resulted in a relatively high incidence of aberrant mitosis with no upregulation of p21(waf1) message. These results suggest that while wild-type p53 blocks the proliferative effects of OA through p21(waf1)-mediated growth arrest, cells with non-functional p53 cannot arrest and suffer relatively high levels of OA-mediated aberrant mitoses.

  17. Inhibitory effect of Survivin promoter-regulated oncolytic adenovirus carrying P53 gene against gallbladder cancer.

    PubMed

    Liu, Chen; Sun, Bin; An, Ni; Tan, Weifeng; Cao, Lu; Luo, Xiangji; Yu, Yong; Feng, Feiling; Li, Bin; Wu, Mengchao; Su, Changqing; Jiang, Xiaoqing

    2011-12-01

    Gene therapy has become an important strategy for treatment of malignancies, but problems remains concerning the low gene transferring efficiency, poor transgene expression and limited targeting specific tumors, which have greatly hampered the clinical application of tumor gene therapy. Gallbladder cancer is characterized by rapid progress, poor prognosis, and aberrantly high expression of Survivin. In the present study, we used a human tumor-specific Survivin promoter-regulated oncolytic adenovirus vector carrying P53 gene, whose anti-cancer effect has been widely confirmed, to construct a wide spectrum, specific, safe, effective gene-viral therapy system, AdSurp-P53. Examining expression of enhanced green fluorecent protein (EGFP), E1A and the target gene P53 in the oncolytic adenovirus system validated that Survivin promoter-regulated oncolytic adenovirus had high proliferation activity and high P53 expression in Survivin-positive gallbladder cancer cells. Our in vitro cytotoxicity experiment demonstrated that AdSurp-P53 possessed a stronger cytotoxic effect against gallbladder cancer cells and hepatic cancer cells. The survival rate of EH-GB1 cells was lower than 40% after infection of AdSurp-P53 at multiplicity of infection (MOI) = 1 pfu/cell, while the rate was higher than 90% after infection of Ad-P53 at the same MOI, demonstrating that AdSurp-P53 has a potent cytotoxicity against EH-GB1 cells. The tumor growth was greatly inhibited in nude mice bearing EH-GB1 xenografts when the total dose of AdSurp-P53 was 1 × 10(9) pfu, and terminal dUTP nick end-labeling (TUNEL) revealed that the apoptotic rate of cancer cells was (33.4 ± 8.4)%. This oncolytic adenovirus system overcomes the long-standing shortcomings of gene therapy: poor transgene expression and targeting of only specific tumors, with its therapeutic effect better than the traditional Ad-P53 therapy regimen already on market; our system might be used for patients with advanced gallbladder cancer and

  18. p53 Specifically Binds Triplex DNA In Vitro and in Cells

    PubMed Central

    Brázdová, Marie; Tichý, Vlastimil; Helma, Robert; Bažantová, Pavla; Polášková, Alena; Krejčí, Aneta; Petr, Marek; Navrátilová, Lucie; Tichá, Olga; Nejedlý, Karel; Bennink, Martin L.; Subramaniam, Vinod; Bábková, Zuzana; Martínek, Tomáš; Lexa, Matej; Adámik, Matej

    2016-01-01

    Triplex DNA is implicated in a wide range of biological activities, including regulation of gene expression and genomic instability leading to cancer. The tumor suppressor p53 is a central regulator of cell fate in response to different type of insults. Sequence and structure specific modes of DNA recognition are core attributes of the p53 protein. The focus of this work is the structure-specific binding of p53 to DNA containing triplex-forming sequences in vitro and in cells and the effect on p53-driven transcription. This is the first DNA binding study of full-length p53 and its deletion variants to both intermolecular and intramolecular T.A.T triplexes. We demonstrate that the interaction of p53 with intermolecular T.A.T triplex is comparable to the recognition of CTG-hairpin non-B DNA structure. Using deletion mutants we determined the C-terminal DNA binding domain of p53 to be crucial for triplex recognition. Furthermore, strong p53 recognition of intramolecular T.A.T triplexes (H-DNA), stabilized by negative superhelicity in plasmid DNA, was detected by competition and immunoprecipitation experiments, and visualized by AFM. Moreover, chromatin immunoprecipitation revealed p53 binding T.A.T forming sequence in vivo. Enhanced reporter transactivation by p53 on insertion of triplex forming sequence into plasmid with p53 consensus sequence was observed by luciferase reporter assays. In-silico scan of human regulatory regions for the simultaneous presence of both consensus sequence and T.A.T motifs identified a set of candidate p53 target genes and p53-dependent activation of several of them (ABCG5, ENOX1, INSR, MCC, NFAT5) was confirmed by RT-qPCR. Our results show that T.A.T triplex comprises a new class of p53 binding sites targeted by p53 in a DNA structure-dependent mode in vitro and in cells. The contribution of p53 DNA structure-dependent binding to the regulation of transcription is discussed. PMID:27907175

  19. CDC25B and p53 are independently implicated in radiation sensitivity for human esophageal cancers.

    PubMed

    Miyata, H; Doki, Y; Shiozaki, H; Inoue, M; Yano, M; Fujiwara, Y; Yamamoto, H; Nishioka, K; Kishi, K; Monden, M

    2000-12-01

    Ionized radiation leads to G1 arrest and apoptosis by a p53-dependent pathway and G2-M arrest through a p53-independent pathway. In this study, we evaluated the role of cell cycle-regulating molecules in the sensitivity of cancer cells for radiation therapy. Forty-seven patients with squamous cell carcinomas of the esophagus had undergone radiation therapy, followed by surgical resection. They were classified as sensitive to radiation (SR, 14 cases) with no residual tumor in the surgical specimen or as resistant to radiation (RR, 33 cases) with viable residual tumors. Their preradiation biopsy samples were immunohistochemically investigated for the expressions of cell cycle-related molecules, including p53, CDC25A, CDC25B, cyclin D1, cyclin B1, and Ki-67. p53 expression was negative in 71% (10 of 14) of SR and positive in 91% (30 of 33) of RR. The association was strong between high radiation sensitivity and negative p53 expression (P < 0.0001). CDC25B, which is not expressed in normal epithelium but is in the cytoplasm of esophageal cancers, was strongly expressed (2+) in 46% (6 of 14) of SR and in 6% (2 of 23) of RR. Thus, the sensitivity for radiation therapy was significantly correlated with CDC25B overexpression. With respect to CDC25A, cyclin D1, cyclin B1, and Ki-67, no statistically significant differences were found in their expressions between SR and RR tumors. p53 and CDC25B expressions showed no significant associations, and multivariate analysis revealed that both p53 and CDC25B are significant independent markers for predicting radiation sensitivity. CDC25B was revealed to be a novel predictor of radiation sensitivity in esophageal cancers. Because CDC25B is an oncogene, which affects G2-M progression, these results suggest the importance of a p53-independent G2-M checkpoint in radiation therapy.

  20. Improving survival by exploiting tumor dependence on stabilized mutant p53 for treatment

    PubMed Central

    Alexandrova, EM; Yallowitz, AR; Li, D; Xu, S; Schulz, R; Proia, DA; Lozano, G; Dobbelstein, M; Moll, UM

    2015-01-01

    SUMMARY Missense mutations in p53 generate aberrant proteins with abrogated tumor suppressor functions that can also acquire oncogenic gain-of-functions (GOF) that promote malignant progression, invasion, metastasis and chemoresistance1–5. Mutant p53 (mutp53) proteins undergo massive constitutive stabilization specifically in tumors, which is the key requisite for GOF6–8. Although currently 11 million patients worldwide live with tumors expressing highly stabilized mutp53, it is unknown whether mutp53 is a therapeutic target in vivo. Here we use a novel mutp53 mouse model expressing an inactivatible R248Q hotspot mutation (floxQ) to show that tumors depend on sustained mutp53 expression. Upon Tamoxifen-induced mutp53 ablation, allo-transplanted and autochthonous tumors curb their growth, thus extending animal survival by 37%, and advanced tumors undergo apoptosis and tumor regression or stagnation. The HSP90/HDAC6 chaperone machinery, which is significantly upregulated in cancer compared to normal tissues, is a major determinant of mutp53 stabilization9–12. We show that long-term HSP90 inhibition significantly extends the survival of mutp53 Q/−2 and H/H (R172H allele3) mice by 59% and 48%, respectively, but not their respective p53−/− littermates. This mutp53-dependent drug effect occurs in H/H mice treated with 17DMAG+SAHA and in H/H and Q/− mice treated with the potent Hsp90 inhibitor ganetespib. Notably, drug activity correlates with induction of mutp53 degradation, tumor apoptosis and prevention of T-lymphomagenesis. These proof-of-principle data identify mutp53 as an actionable cancer-specific drug target. PMID:26009011

  1. Roles of the functional loss of p53 and other genes in astrocytoma tumorigenesis and progression.

    PubMed Central

    Nozaki, M.; Tada, M.; Kobayashi, H.; Zhang, C. L.; Sawamura, Y.; Abe, H.; Ishii, N.; Van Meir, E. G.

    1999-01-01

    Loss of function of the p53 tumor suppressor gene due to mutation occurs early in astrocytoma tumorigenesis in about 30-40% of cases. This is believed to confer a growth advantage to the cells, allowing them to clonally expand due to loss of the p53-controlled G1 checkpoint and apoptosis. Genetic instability due to the impaired ability of p53 to mediate DNA damage repair further facilitates the acquisition of new genetic abnormalities, leading to malignant progression of an astrocytoma into anaplastic astrocytoma. This is reflected by a high rate of p53 mutation (60-70%) in anaplastic astrocytomas. The cell cycle control gets further compromised in astrocytoma by alterations in one of the G1/S transition control genes, either loss of the p16/CDKN2 or RB genes or amplification of the cyclin D gene. The final progression process leading to glioblastoma multiforme seems to need additional genetic abnormalities in the long arm of chromosome 10; one of which is deletion and/or functional loss of the PTEN/MMAC1 gene. Glioblastomas also occur as primary (de novo) lesions in patients of older age, without p53 gene loss but with amplification of the epidermal growth factor receptor (EGFR) genes. In contrast to the secondary glioblastomas that evolve from astrocytoma cells with p53 mutations in younger patients, primary glioblastomas seem to be resistant to radiation therapy and thus show a poorer prognosis. The evaluation and design of therapeutic modalities aimed at preventing malignant progression of astrocytomas and glioblastomas should now be based on stratifying patients with astrocytic tumors according to their genetic diagnosis. PMID:11550308

  2. [Study on serum p53 protein in cops in Guangzhou city].

    PubMed

    Zhu, Wen-Chang; Chen, Qing; Chu, Xin-Wei; Luo, Chen-Ling; Wu, Min; Wang, Ya-Xian; Chen, Si-Dong

    2003-10-01

    Serum p53 protein overexpression was detected in population exposed to traffic exhaust gas to study the relation between traffic exhaust gas and the increased risk in p53 gene mutation. Serum p53 protein expression was measured by enzyme-linked immunosorbent assay. Relationship between different types of job and serum p53 protein overexpression were studied by pearson Chi-square tests. Results on serum p53 protein overexpression on jobs outside of office (5.74%) were not significantly higher than jobs inside the office. However, it suggested that traffic police men (12.12%) working outside of office, with whose length of service longer than 30 years had a significant overexpression of serum p53 protein than the others (5.36%) whose length of service was less than 30 years (P < 0.05, OR = 2.43, 95% CI: 1.11 - 5.33). Overexpression rate of p53 protein appeared to be 6.89% in the group whose average weekly exposure hours were more than 40 hours, which was significant higher than the group whose exposed hours were less than 40 hours (P < 0.05, OR = 1.71, 95% CI: 1.03 - 2.81). The result suggested that traffic exhaust gas was likely to cause mutation of p53 gene and increasing the incidence of lung cancer.

  3. Evolution of p53 transactivation specificity through the lens of a yeast-based functional assay.

    PubMed

    Lion, Mattia; Raimondi, Ivan; Donati, Stefano; Jousson, Olivier; Ciribilli, Yari; Inga, Alberto

    2015-01-01

    Co-evolution of transcription factors (TFs) with their respective cis-regulatory network enhances functional diversity in the course of evolution. We present a new approach to investigate transactivation capacity of sequence-specific TFs in evolutionary studies. Saccharomyces cerevisiae was used as an in vivo test tube and p53 proteins derived from human and five commonly used animal models were chosen as proof of concept. p53 is a highly conserved master regulator of environmental stress responses. Previous reports indicated conserved p53 DNA binding specificity in vitro, even for evolutionary distant species. We used isogenic yeast strains where p53-dependent transactivation was measured towards chromosomally integrated p53 response elements (REs). Ten REs were chosen to sample a wide range of DNA binding affinity and transactivation capacity for human p53 and proteins were expressed at two levels using an inducible expression system. We showed that the assay is amenable to study thermo-sensitivity of frog p53, and that chimeric constructs containing an ectopic transactivation domain could be rapidly developed to enhance the activity of proteins, such as fruit fly p53, that are poorly effective in engaging the yeast transcriptional machinery. Changes in the profile of relative transactivation towards the ten REs were measured for each p53 protein and compared to the profile obtained with human p53. These results, which are largely independent from relative p53 protein levels, revealed widespread evolutionary divergence of p53 transactivation specificity, even between human and mouse p53. Fruit fly and human p53 exhibited the largest discrimination among REs while zebrafish p53 was the least selective.

  4. Evolution of p53 Transactivation Specificity through the Lens of a Yeast-Based Functional Assay

    PubMed Central

    Lion, Mattia; Raimondi, Ivan; Donati, Stefano; Jousson, Olivier; Ciribilli, Yari; Inga, Alberto

    2015-01-01

    Co-evolution of transcription factors (TFs) with their respective cis-regulatory network enhances functional diversity in the course of evolution. We present a new approach to investigate transactivation capacity of sequence-specific TFs in evolutionary studies. Saccharomyces cerevisiae was used as an in vivo test tube and p53 proteins derived from human and five commonly used animal models were chosen as proof of concept. p53 is a highly conserved master regulator of environmental stress responses. Previous reports indicated conserved p53 DNA binding specificity in vitro, even for evolutionary distant species. We used isogenic yeast strains where p53-dependent transactivation was measured towards chromosomally integrated p53 response elements (REs). Ten REs were chosen to sample a wide range of DNA binding affinity and transactivation capacity for human p53 and proteins were expressed at two levels using an inducible expression system. We showed that the assay is amenable to study thermo-sensitivity of frog p53, and that chimeric constructs containing an ectopic transactivation domain could be rapidly developed to enhance the activity of proteins, such as fruit fly p53, that are poorly effective in engaging the yeast transcriptional machinery. Changes in the profile of relative transactivation towards the ten REs were measured for each p53 protein and compared to the profile obtained with human p53. These results, which are largely independent from relative p53 protein levels, revealed widespread evolutionary divergence of p53 transactivation specificity, even between human and mouse p53. Fruit fly and human p53 exhibited the largest discrimination among REs while zebrafish p53 was the least selective. PMID:25668429

  5. Low-level overexpression of p53 promotes warfarin-induced calcification of porcine aortic valve interstitial cells by activating Slug gene transcription.

    PubMed

    Gao, Li; Ji, Yue; Lu, Yan; Qiu, Ming; Shen, Yejiao; Wang, Yaqing; Kong, Xiangqing; Shao, Yongfeng; Sheng, Yanhui; Sun, Wei

    2018-03-09

    The most frequently used oral anti-coagulant warfarin has been implicated in inducing calcification of aortic valve interstitial cells (AVICs), whereas the mechanism is not fully understood. The low-level activation of p53 is found to be involved in osteogenic transdifferentiation and calcification of AVICs. Whether p53 participates in warfarin-induced AVIC calcification remains unknown. In this study, we investigated the role of low-level p53 overexpression in warfarin-induced porcine AVIC (pAVIC) calcification. Immunostaining, quantitative PCR, and Western blotting revealed that p53 was expressed in human and pAVICs and that p53 expression was slightly increased in calcific human aortic valves compared with non-calcific valves. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling staining indicated that apoptosis slightly increased in calcific aortic valves than in non-calcific valves. Warfarin treatment led to a low-level increase of p53 mRNA and protein in both pAVICs and mouse aortic valves. Low-level overexpression of p53 in pAVICs via an adenovirus vector did not affect pAVIC apoptosis but promoted warfarin-induced calcium deposition and expression of osteogenic markers. shRNA-mediated p53 knockdown attenuated the pAVIC calcium deposition and osteogenic marker expression. Moreover, ChIP and luciferase assays showed that p53 was recruited to the slug promoter and activated slug expression in calcific pAVICs. Of note, overexpression of Slug increased osteogenic marker Runx2 expression, but not pAVIC calcium deposition, and Slug knockdown attenuated pAVIC calcification and p53-mediated pAVIC calcium deposition and expression of osteogenic markers. In conclusion, we found that p53 plays an important role in warfarin induced pAVIC calcification, and increased slug transcription by p53 is required for p53-mediated pAVIC calcification. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Proposed megakaryocytic regulon of p53: the genes engaged to control cell cycle and apoptosis during megakaryocytic differentiation

    PubMed Central

    Apostolidis, Pani A.; Lindsey, Stephan; Miller, William M.

    2012-01-01

    During endomitosis, megakaryocytes undergo several rounds of DNA synthesis without division leading to polyploidization. In primary megakaryocytes and in the megakaryocytic cell line CHRF, loss or knock-down of p53 enhances cell cycling and inhibits apoptosis, leading to increased polyploidization. To support the hypothesis that p53 suppresses megakaryocytic polyploidization, we show that stable expression of wild-type p53 in K562 cells (a p53-null cell line) attenuates the cells' ability to undergo polyploidization during megakaryocytic differentiation due to diminished DNA synthesis and greater apoptosis. This suggested that p53's effects during megakaryopoiesis are mediated through cell cycle- and apoptosis-related target genes, possibly by arresting DNA synthesis and promoting apoptosis. To identify candidate genes through which p53 mediates these effects, gene expression was compared between p53 knock-down (p53-KD) and control CHRF cells induced to undergo terminal megakaryocytic differentiation using microarray analysis. Among substantially downregulated p53 targets in p53-KD megakaryocytes were cell cycle regulators CDKN1A (p21) and PLK2, proapoptotic FAS, TNFRSF10B, CASP8, NOTCH1, TP53INP1, TP53I3, DRAM1, ZMAT3 and PHLDA3, DNA-damage-related RRM2B and SESN1, and actin component ACTA2, while antiapoptotic CKS1B, BCL2, GTSE1, and p53 family member TP63 were upregulated in p53-KD cells. Additionally, a number of cell cycle-related, proapoptotic, and cytoskeleton-related genes with known functions in megakaryocytes but not known to carry p53-responsive elements were differentially expressed between p53-KD and control CHRF cells. Our data support a model whereby p53 expression during megakaryopoiesis serves to control polyploidization and the transition from endomitosis to apoptosis by impeding cell cycling and promoting apoptosis. Furthermore, we identify a putative p53 regulon that is proposed to orchestrate these effects. PMID:22548738

  7. Heterozygous inactivation of tsc2 enhances tumorigenesis in p53 mutant zebrafish

    PubMed Central

    Kim, Seok-Hyung; Kowalski, Marie L.; Carson, Robert P.; Bridges, L. Richard; Ess, Kevin C.

    2013-01-01

    SUMMARY Tuberous sclerosis complex (TSC) is a multi-organ disorder caused by mutations of the TSC1 or TSC2 genes. A key function of these genes is to inhibit mTORC1 (mechanistic target of rapamycin complex 1) kinase signaling. Cells deficient for TSC1 or TSC2 have increased mTORC1 signaling and give rise to benign tumors, although, as a rule, true malignancies are rarely seen. In contrast, other disorders with increased mTOR signaling typically have overt malignancies. A better understanding of genetic mechanisms that govern the transformation of benign cells to malignant ones is crucial to understand cancer pathogenesis. We generated a zebrafish model of TSC and cancer progression by placing a heterozygous mutation of the tsc2 gene in a p53 mutant background. Unlike tsc2 heterozygous mutant zebrafish, which never exhibited cancers, compound tsc2;p53 mutants had malignant tumors in multiple organs. Tumorigenesis was enhanced compared with p53 mutant zebrafish. p53 mutants also had increased mTORC1 signaling that was further enhanced in tsc2;p53 compound mutants. We found increased expression of Hif1-α, Hif2-α and Vegf-c in tsc2;p53 compound mutant zebrafish compared with p53 mutant zebrafish. Expression of these proteins probably underlies the increased angiogenesis seen in compound mutant zebrafish compared with p53 mutants and might further drive cancer progression. Treatment of p53 and compound mutant zebrafish with the mTORC1 inhibitor rapamycin caused rapid shrinkage of tumor size and decreased caliber of tumor-associated blood vessels. This is the first report using an animal model to show interactions between tsc2, mTORC1 and p53 during tumorigenesis. These results might explain why individuals with TSC rarely have malignant tumors, but also suggest that cancer arising in individuals without TSC might be influenced by the status of TSC1 and/or TSC2 mutations and be potentially treatable with mTORC1 inhibitors. PMID:23580196

  8. Murine Gammaherpesvirus 68 LANA and SOX Homologs Counteract ATM-Driven p53 Activity during Lytic Viral Replication

    PubMed Central

    Sifford, Jeffrey M.; Stahl, James A.; Salinas, Eduardo

    2015-01-01

    ABSTRACT Tumor suppressor p53 is activated in response to numerous cellular stresses, including viral infection. However, whether murine gammaherpesvirus 68 (MHV68) provokes p53 during the lytic replication cycle has not been extensively evaluated. Here, we demonstrate that MHV68 lytic infection induces p53 phosphorylation and stabilization in a manner that is dependent on the DNA damage response (DDR) kinase ataxia telangiectasia mutated (ATM). The induction of p53 during MHV68 infection occurred in multiple cell types, including splenocytes of infected mice. ATM and p53 activation required early viral gene expression but occurred independently of viral DNA replication. At early time points during infection, p53-responsive cellular genes were induced, coinciding with p53 stabilization and phosphorylation. However, p53-related gene expression subsided as infection progressed, even though p53 remained stable and phosphorylated. Infected cells also failed to initiate p53-dependent gene expression and undergo apoptosis in response to treatment with exogenous p53 agonists. The inhibition of p53 responses during infection required the expression of the MHV68 homologs of the shutoff and exonuclease protein (muSOX) and latency-associated nuclear antigen (mLANA). Interestingly, mLANA, but not muSOX, was necessary to prevent p53-mediated death in MHV68-infected cells under the conditions tested. This suggests that muSOX and mLANA are differentially required for inhibiting p53 in specific settings. These data reveal that DDR responses triggered by MHV68 infection promote p53 activation. However, MHV68 encodes at least two proteins capable of limiting the potential consequences of p53 function. IMPORTANCE Gammaherpesviruses are oncogenic herpesviruses that establish lifelong chronic infections. Defining how gammaherpesviruses overcome host responses to infection is important for understanding how these viruses infect and cause disease. Here, we establish that murine

  9. Over-expression of C/EBP-{alpha} induces apoptosis in cultured rat hepatic stellate cells depending on p53 and peroxisome proliferator-activated receptor-{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xueqing; Huang Guangcun; Mei Shuang

    2009-03-06

    Hepatic stellate cells (HSCs) play a key role in the pathogenesis of hepatic fibrosis. In our previous studies, CCAAT enhancer binding protein-{alpha} (C/EBP-{alpha}) has been shown to be involved in the activation of HSCs and to have a repression effect on hepatic fibrosis in vivo. However, the mechanisms are largely unknown. In this study, we show that the infection of adenovirus vector expressing C/EBP-{alpha} gene (Ad-C/EBP-{alpha}) could induce HSCs apoptosis in a dose- and time-dependent manner by Annexin V/PI staining, caspase-3 activation assay, and flow cytometry. Also, over-expression of C/EBP-{alpha} resulted in the up-regulation of peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) andmore » P53, while P53 expression was regulated by PPAR-{gamma}. In addition, Fas, FasL, DR4, DR5, and TRAIL were studied. The results indicated that the death receptor pathway was mainly involved and regulated by PPAR-{gamma} and p53 in the process of apoptosis triggered by C/EBP-{alpha} in HSCs.« less

  10. Genetic polymorphisms and protein expression of P53 and BRCA1 in preneoplastic and neoplastic rat mammary glands.

    PubMed

    Al-Dhaheri, Wafa; Hassouna, Imam; Karam, Sherif M

    2018-05-01

    Breast cancer is the most common type of cancer and the leading cause of cancer-related deaths among women in the United Arab Emirates and worldwide. Although many factors contribute to the high incidence of breast cancer, a considerable number of cases are related to environmental factors. In the present study, breast cancer was induced in female rats using a single dose, 80 mg/kg body wt, of the environmental carcinogen 7,12-dimethylbenz[a]anthracene (DMBA). The aim of the present study, was to characterize some of the molecular changes that occur during breast cancer development in the DMBA-treated rat model. Mammary gland tissues of control and DMBA-treated rats were processed for: i) immunohistochemical probing using anti-BRCA1 antibody to characterize and correlate the localization of this cell cycle protein during progression to cancer, ii) western blotting to analyze the alteration of p53 protein expression in preneoplastic and neoplastic lesions of the mammary glands, and iii) polymerase chain reactions using primers specific for BRCA1 and P53 genes followed by single stranded conformational polymorphism (SSCP) or restriction fragment length polymorphism (RFLP) assays to detect possible mutations in these genes during development of breast cancer. Microscopic examination revealed a wide range of preneoplastic and neoplastic lesions providing a sequence representing the multistep process of breast cancer formation in DMBA-treated rats. Probing for BRCA1 protein revealed a gradual defect in its translocation from the cytoplasm to the nucleus during breast cancer progression. In control rats, BRCA1 was present in the nuclei of terminal duct epithelial cells. However, in the preneoplastic lesions, BRCA1 was localized in both the cytoplasm and nuclei of the epithelial duct cells. In all malignant lesions, BRCA1 was mostly found in the cytoplasm. Western blotting revealed initial downregulation in the expression of p53 protein during breast cancer

  11. p53 Is a Key Regulator for Osthole-Triggered Cancer Pathogenesis

    PubMed Central

    Huang, Ssu-Ming; Tsai, Cheng-Fang; Wang, Min-Ying

    2014-01-01

    Osthole has been reported to have antitumor activities via the induction of apoptosis and inhibition of cancer cell growth and metastasis. However, the detailed molecular mechanisms underlying the anticancer effects of osthole in human colon cancer remain unclear. In the present study, we have assessed osthole-induced cell death in two different human colon cancer cell lines, HCT116 and SW480. Our results also showed that osthole activated proapoptotic signaling pathways in human colon cancer cells. By using cell culture insert system, osthole reduced cell motility in both human colon cancer cell lines. This study also provides evidence supporting the potential of osthole in p53 activation. Expression of p53, an apoptotic protein, was remarkably upregulated in cells treated with osthole. Importantly, the levels of phosphorylation of p53 on Ser15 (p-p53) and acetylation of p53 on Lys379 (acetyl-p53) were increased under osthole treatment. Our results also demonstrated that p53 was activated followed by generation of reactive oxygen species (ROS) and activation of c-Jun N-terminal kinase (JNK). Our study provides novel insights of p53-mediated responses under osthole treatment. Taken together, we concluded that osthole induces cancer cell death and inhibits migratory activity in a controlled manner and is a promising candidate for antitumor drug development. PMID:25013761

  12. p53 is a key regulator for osthole-triggered cancer pathogenesis.

    PubMed

    Huang, Ssu-Ming; Tsai, Cheng-Fang; Chen, Dar-Ren; Wang, Min-Ying; Yeh, Wei-Lan

    2014-01-01

    Osthole has been reported to have antitumor activities via the induction of apoptosis and inhibition of cancer cell growth and metastasis. However, the detailed molecular mechanisms underlying the anticancer effects of osthole in human colon cancer remain unclear. In the present study, we have assessed osthole-induced cell death in two different human colon cancer cell lines, HCT116 and SW480. Our results also showed that osthole activated proapoptotic signaling pathways in human colon cancer cells. By using cell culture insert system, osthole reduced cell motility in both human colon cancer cell lines. This study also provides evidence supporting the potential of osthole in p53 activation. Expression of p53, an apoptotic protein, was remarkably upregulated in cells treated with osthole. Importantly, the levels of phosphorylation of p53 on Ser15 (p-p53) and acetylation of p53 on Lys379 (acetyl-p53) were increased under osthole treatment. Our results also demonstrated that p53 was activated followed by generation of reactive oxygen species (ROS) and activation of c-Jun N-terminal kinase (JNK). Our study provides novel insights of p53-mediated responses under osthole treatment. Taken together, we concluded that osthole induces cancer cell death and inhibits migratory activity in a controlled manner and is a promising candidate for antitumor drug development.

  13. Novel histone deacetylase inhibitor CG200745 induces clonogenic cell death by modulating acetylation of p53 in cancer cells.

    PubMed

    Oh, Eun-Taex; Park, Moon-Taek; Choi, Bo-Hwa; Ro, Seonggu; Choi, Eun-Kyung; Jeong, Seong-Yun; Park, Heon Joo

    2012-04-01

    Histone deacetylase (HDAC) plays an important role in cancer onset and progression. Therefore, inhibition of HDAC offers potential as an effective cancer treatment regimen. CG200745, (E)-N(1)-(3-(dimethylamino)propyl)-N(8)-hydroxy-2-((naphthalene-1-loxy)methyl)oct-2-enediamide, is a novel HDAC inhibitor presently undergoing a phase I clinical trial. Enhancement of p53 acetylation by HDAC inhibitors induces cell cycle arrest, differentiation, and apoptosis in cancer cells. The purpose of the present study was to investigate the role of p53 acetylation in the cancer cell death caused by CG200745. CG200745-induced clonogenic cell death was 2-fold greater in RKO cells expressing wild-type p53 than in p53-deficient RC10.1 cells. CG200745 treatment was also cytotoxic to PC-3 human prostate cancer cells, which express wild-type p53. CG200745 increased acetylation of p53 lysine residues K320, K373, and K382. CG200745 induced the accumulation of p53, promoted p53-dependent transactivation, and enhanced the expression of MDM2 and p21(Waf1/Cip1) proteins, which are encoded by p53 target genes. An examination of CG200745 effects on p53 acetylation using cells transfected with various p53 mutants showed that cells expressing p53 K382R mutants were significantly resistant to CG200745-induced clonogenic cell death compared with wild-type p53 cells. Moreover, p53 transactivation in response to CG200745 was suppressed in all cells carrying mutant forms of p53, especially K382R. Taken together, these results suggest that acetylation of p53 at K382 plays an important role in CG200745-induced p53 transactivation and clonogenic cell death.

  14. p300 Regulates Liver Functions by Controlling p53 and C/EBP Family Proteins through Multiple Signaling Pathways.

    PubMed

    Breaux, Meghan; Lewis, Kyle; Valanejad, Leila; Iakova, Polina; Chen, Fengju; Mo, Qianxing; Medrano, Estela; Timchenko, Lubov; Timchenko, Nikolai

    2015-09-01

    The histone acetyltransferase p300 has been implicated in the regulation of liver biology; however, molecular mechanisms of this regulation are not known. In this paper, we examined these mechanisms using transgenic mice expressing a dominant negative p300 molecule (dnp300). While dnp300 mice did not show abnormal growth within 1 year, these mice have many alterations in liver biology and liver functions. We found that the inhibition of p300 leads to the accumulation of heterochromatin foci in the liver of 2-month-old mice. Transcriptome sequencing (RNA-Seq) analysis showed that this inhibition of p300 also causes alterations of gene expression in many signaling pathways, including chromatin remodeling, apoptosis, DNA damage, translation, and activation of the cell cycle. Livers of dnp300 mice have a high rate of proliferation and a much higher rate of proliferation after partial hepatectomy. We found that livers of dnp300 mice are resistant to CCl4-mediated injury and have reduced apoptosis but have increased proliferation after injury. Underlying mechanisms of resistance to liver injury and increased proliferation in dnp300 mice include ubiquitin-proteasome-mediated degradation of C/EBPα and translational repression of the p53 protein by the CUGBP1-eukaryotic initiation factor 2 (eIF2) repressor complex. Our data demonstrate that p300 regulates a number of critical signaling pathways that control liver functions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. The UbL-UBA Ubiquilin4 protein functions as a tumor suppressor in gastric cancer by p53-dependent and p53-independent regulation of p21.

    PubMed

    Huang, Shengkai; Li, Yan; Yuan, Xinghua; Zhao, Mei; Wang, Jia; Li, You; Li, Yuan; Lin, Hong; Zhang, Qiao; Wang, Wenjie; Li, Dongdong; Dong, Xin; Li, Lanfen; Liu, Min; Huang, Weiyan; Huang, Changzhi

    2018-06-13

    Ubiquilin4 (Ubqln4), a member of the UbL-UBA protein family, serves as an adaptor in the degradation of specific substrates via the proteasomal pathway. However, the biological function of Ubqln4 remains largely unknown, especially in cancer. Here, we reported that Ubqln4 was downregulated in gastric cancer tissues and functioned as a tumor suppressor by inhibiting gastric cancer cell proliferation in vivo and in vitro. Overexpression of Ubqln4-induced cellular senescence and G1-S cell cycle arrest in gastric cancer cells and activated the p53/p21 axis. Moreover, Ubqln4 regulated p21 through both p53-dependent and p53-independent manners. Ubqln4 interacted with RNF114, an E3 ubiquitin ligase of p21, and negatively regulated its expression level, which in turn stabilized p21 by attenuating proteasomal degradation of p21. These effects of Ubqln4 were partly abrogated in gastric cancer cells upon silencing of p21. Our findings not only establish the anti-tumor potential of Ubqln4 in gastric cancer but also reveal a role for Ubqln4 in regulation of the cell cycle and cellular senescence via stabilizing p21.

  16. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function

    PubMed Central

    Jones, Natalie C; Lynn, Megan L; Gaudenz, Karin; Sakai, Daisuke; Aoto, Kazushi; Rey, Jean-Phillipe; Glynn, Earl F; Ellington, Lacey; Du, Chunying; Dixon, Jill; Dixon, Michael J; Trainor, Paul A

    2010-01-01

    Treacher Collins syndrome (TCS) is a congenital disorder of craniofacial development arising from mutations in TCOF1, which encodes the nucleolar phosphoprotein Treacle. Haploinsufficiency of Tcof1 perturbs mature ribosome biogenesis, resulting in stabilization of p53 and the cyclin G1–mediated cell-cycle arrest that underpins the specificity of neuroepithelial apoptosis and neural crest cell hypoplasia characteristic of TCS. Here we show that inhibition of p53 prevents cyclin G1–driven apoptotic elimination of neural crest cells while rescuing the craniofacial abnormalities associated with mutations in Tcof1 and extending life span. These improvements, however, occur independently of the effects on ribosome biogenesis; thus suggesting that it is p53-dependent neuroepithelial apoptosis that is the primary mechanism underlying the pathogenesis of TCS. Our work further implies that neuroepithelial and neural crest cells are particularly sensitive to cellular stress during embryogenesis and that suppression of p53 function provides an attractive avenue for possible clinical prevention of TCS craniofacial birth defects and possibly those of other neurocristopathies. PMID:18246078

  17. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function.

    PubMed

    Jones, Natalie C; Lynn, Megan L; Gaudenz, Karin; Sakai, Daisuke; Aoto, Kazushi; Rey, Jean-Phillipe; Glynn, Earl F; Ellington, Lacey; Du, Chunying; Dixon, Jill; Dixon, Michael J; Trainor, Paul A

    2008-02-01

    Treacher Collins syndrome (TCS) is a congenital disorder of craniofacial development arising from mutations in TCOF1, which encodes the nucleolar phosphoprotein Treacle. Haploinsufficiency of Tcof1 perturbs mature ribosome biogenesis, resulting in stabilization of p53 and the cyclin G1-mediated cell-cycle arrest that underpins the specificity of neuroepithelial apoptosis and neural crest cell hypoplasia characteristic of TCS. Here we show that inhibition of p53 prevents cyclin G1-driven apoptotic elimination of neural crest cells while rescuing the craniofacial abnormalities associated with mutations in Tcof1 and extending life span. These improvements, however, occur independently of the effects on ribosome biogenesis; thus suggesting that it is p53-dependent neuroepithelial apoptosis that is the primary mechanism underlying the pathogenesis of TCS. Our work further implies that neuroepithelial and neural crest cells are particularly sensitive to cellular stress during embryogenesis and that suppression of p53 function provides an attractive avenue for possible clinical prevention of TCS craniofacial birth defects and possibly those of other neurocristopathies.

  18. Ensemble-based virtual screening reveals dual-inhibitors for the p53-MDM2/MDMX interactions.

    PubMed

    Barakat, Khaled; Mane, Jonathan; Friesen, Douglas; Tuszynski, Jack

    2010-02-26

    The p53 protein, a guardian of the genome, is inactivated by mutations or deletions in approximately half of human tumors. While in the rest of human tumors, p53 is expressed in wild-type form, yet it is inhibited by over-expression of its cellular regulators MDM2 and MDMX proteins. Although the p53-binding sites within the MDMX and MDM2 proteins are closely related, known MDM2 small-molecule inhibitors have been shown experimentally not to bind to its homolog, MDMX. As a result, the activity of these inhibitors including Nutlin3 is compromised in tumor cells over-expressing MDMX, preventing these compounds from fully activating the p53 protein. Here, we applied the relaxed complex scheme (RCS) to allow for the full receptor flexibility in screening for dual-inhibitors that can mutually antagonize the two p53-regulator proteins. First, we filtered the NCI diversity set, DrugBank compounds and a derivative library for MDM2-inhibitors against 28 dominant MDM2-conformations. Then, we screened the MDM2 top hits against the binding site of p53 within the MDMX target. Results described herein identify a set of compounds that have been computationally predicted to ultimately activate the p53 pathway in tumor cells retaining the wild-type protein. Crown Copyright 2009. Published by Elsevier Inc. All rights reserved.

  19. Interaction of p53 with prolyl isomerases: Healthy and unhealthy relationships.

    PubMed

    Mantovani, Fiamma; Zannini, Alessandro; Rustighi, Alessandra; Del Sal, Giannino

    2015-10-01

    The p53 protein family, comprising p53, p63 and p73, is primarily involved in preserving genome integrity and preventing tumor onset, and also affects a range of physiological processes. Signal-dependent modifications of its members and of other pathway components provide cells with a sophisticated code to transduce a variety of stress signaling into appropriate responses. TP53 mutations are highly frequent in cancer and lead to the expression of mutant p53 proteins that are endowed with oncogenic activities and sensitive to stress signaling. p53 family proteins have unique structural and functional plasticity, and here we discuss the relevance of prolyl-isomerization to actively shape these features. The anti-proliferative functions of the p53 family are carefully activated upon severe stress and this involves the interaction with prolyl-isomerases. In particular, stress-induced stabilization of p53, activation of its transcriptional control over arrest- and cell death-related target genes and of its mitochondrial apoptotic function, as well as certain p63 and p73 functions, all require phosphorylation of specific S/T-P motifs and their subsequent isomerization by the prolyl-isomerase Pin1. While these functions of p53 counteract tumorigenesis, under some circumstances their activation by prolyl-isomerases may have negative repercussions (e.g. tissue damage induced by anticancer therapies and ischemia-reperfusion, neurodegeneration). Moreover, elevated Pin1 levels in tumor cells may transduce deregulated phosphorylation signaling into activation of mutant p53 oncogenic functions. The complex repertoire of biological outcomes induced by p53 finds mechanistic explanations, at least in part, in the association between prolyl-isomerases and the p53 pathway. This article is part of a Special Issue entitled Proline-directed foldases: Cell signaling catalysts and drug targets. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. S100A4 interacts with p53 in the nucleus and promotes p53 degradation.

    PubMed

    Orre, L M; Panizza, E; Kaminskyy, V O; Vernet, E; Gräslund, T; Zhivotovsky, B; Lehtiö, J

    2013-12-05

    S100A4 is a small calcium-binding protein that is commonly overexpressed in a range of different tumor types, and it is widely accepted that S100A4 has an important role in the process of cancer metastasis. In vitro binding assays has shown that S100A4 interacts with the tumor suppressor protein p53, indicating that S100A4 may have additional roles in tumor development. In the present study, we show that endogenous S100A4 and p53 interact in complex samples, and that the interaction increases after inhibition of MDM2-dependent p53 degradation using Nutlin-3A. Further, using proximity ligation assay, we show that the interaction takes place in the cell nucleus. S100A4 knockdown experiments in two p53 wild-type cell lines, A549 and HeLa, resulted in stabilization of p53 protein, indicating that S100A4 is promoting p53 degradation. Finally, we demonstrate that S100A4 knockdown leads to p53-dependent cell cycle arrest and increased cisplatin-induced apoptosis. Thus, our data add a new layer to the oncogenic properties of S100A4 through its inhibition of p53-dependent processes.

  1. Neoplasia of the ampulla of Vater. Ki-ras and p53 mutations.

    PubMed Central

    Scarpa, A.; Capelli, P.; Zamboni, G.; Oda, T.; Mukai, K.; Bonetti, F.; Martignoni, G.; Iacono, C.; Serio, G.; Hirohashi, S.

    1993-01-01

    Eleven tumors of the ampulla of Vater (5 stage IV and 2 stage II adenocarcinomas, 1 stage II papillary carcinoma, 1 neuroendocrine carcinoma, and 2 adenomas, one with foci of carcinoma) were examined for Ki-ras and p53 gene mutations by single-strand conformation polymorphism analysis and direct sequencing of polymerase chain reaction-amplified DNA fragments. Ki-ras mutations were found in one adenocarcinoma and in the adenoma with foci of carcinoma, both involving mainly the intraduodenal bile duct component of the ampulla. Seven cases showed p53 gene mutations: four advanced-stage adenocarcinomas, the papillary carcinoma, the neuroendocrine carcinoma, and the adenoma with foci of carcinoma. Nuclear accumulation of p53 protein was immunohistochemically detected in the morphologically high-grade areas of the five cancers harboring a p53 gene missense point mutation. The adenomas, the two frame shift-mutated cancers, and the adenomatous and low-grade cancer areas of mutated carcinomas were immunohistochemically negative. Our data suggest that in ampullary neoplasia 1) p53 mutations are common abnormalities associated with the transformation of adenomas and low-grade cancers into morphologically high-grade carcinomas, and 2) Ki-ras mutations are relatively less frequent and might be restricted to tumors originating from the bile duct component of the ampulla. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8475992

  2. Two major pathways of penile carcinogenesis: HPV-induced penile cancers overexpress p16ink4a, HPV-negative cancers associated with dermatoses express p53, but lack p16ink4a overexpression.

    PubMed

    Mannweiler, Sebastian; Sygulla, Stephan; Winter, Elke; Regauer, Sigrid

    2013-07-01

    Penile squamous cell carcinomas (SCC) arise either through transforming infections with human papillomavirus (HPV) or independent of HPV, often in the background of lichen sclerosus (LS) and lichen planus (LP). Despite impact on therapy and prognosis, etiologic stratifications are missing in most histological diagnoses and publications about penile cancers/precursors. Classification of penile lesions into HPV-induced or HPV-negative via immunohistochemical demonstration of p16(ink4a) overexpression, a surrogate marker for transforming HPV-high-risk infections, and p53 expression in the absence of p16(ink4a) overexpression. Archival formalin-fixed material of 123 invasive penile cancers and 43 pre-invasive lesions was evaluated for the presence of LS, LP, 28 HPV genotypes, and expression of p53 and p16(ink4a). Seventy-two of 123 SCCs and 33 of 43 pre-invasive lesions showed p16(ink4a) overexpression independent of HPV-HR genotypes involved; 66 of 72 SCCs and 29 of 43 precursor lesions revealed a single HPV-high-risk-genotype (HPV-HR16 in 76% followed by HPV33, HPV31, HPV45, HPV18, HPV56); 5 of 72 SCCs and 4 of 43 precursor lesions revealed multiple HPV-HR-genotypes. One SCC revealed HPV-LR and HR-DNA. Fifty-one of 123 SCCs and 10 precursor lesions were p16(ink4a) negative, but showed nuclear p53 expression in tumor cells and basal keratinocytes. Forty-nine of 51 SCCs and 10 of 10 precursor lesions lacked HPV DNA. Two of 51 SCCs contained HPV18 and HPV45 DNA, respectively, but p16(ink4a) negativity classified them as non-HPV-induced. Twenty-seven of 51 SCCs showed peritumoral LS, 13 of 51 SCCs showed peritumoral LP, and 11 SCCs revealed no peritumoral tissue. Histologically, HPV-negative precursors showed hyperkeratotic, verrucous, atrophic, and basaloid differentiation. This was a retrospective study. p16(ink4a) overexpression identifies HPV-HR-induced penile carcinogenesis independent of HPV-HR genotype. p53 expression along with p16(ink4a) negativity identifies

  3. PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence

    PubMed Central

    Ivanschitz, Lisa; Takahashi, Yuki; Jollivet, Florence; Ayrault, Olivier; Le Bras, Morgane; de Thé, Hugues

    2015-01-01

    Promyelocytic leukemia protein (PML) nuclear bodies (NBs) recruit multiple partners, including p53 and many of its regulators. NBs are believed to facilitate several posttranslational modifications and are key regulators of senescence. PML, the organizer of NBs, is expressed as a number of splice variants that all efficiently recruit p53 partners. However, overexpression of only one of them, PML IV, triggers p53-driven senescence. Here, we show that PML IV specifically binds ARF, a key p53 regulator. Similar to ARF, PML IV enhances global SUMO-1 conjugation, particularly that of p53, resulting in p53 stabilization and activation. ARF interacts with and stabilizes the NB-associated UBC9 SUMO-conjugating enzyme, possibly explaining PML IV-enhanced SUMOylation. These results unexpectedly link two key tumor suppressors, highlighting their convergence for global control of SUMO conjugation, p53 activation, and senescence induction. PMID:26578773

  4. PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence.

    PubMed

    Ivanschitz, Lisa; Takahashi, Yuki; Jollivet, Florence; Ayrault, Olivier; Le Bras, Morgane; de Thé, Hugues

    2015-11-17

    Promyelocytic leukemia protein (PML) nuclear bodies (NBs) recruit multiple partners, including p53 and many of its regulators. NBs are believed to facilitate several posttranslational modifications and are key regulators of senescence. PML, the organizer of NBs, is expressed as a number of splice variants that all efficiently recruit p53 partners. However, overexpression of only one of them, PML IV, triggers p53-driven senescence. Here, we show that PML IV specifically binds ARF, a key p53 regulator. Similar to ARF, PML IV enhances global SUMO-1 conjugation, particularly that of p53, resulting in p53 stabilization and activation. ARF interacts with and stabilizes the NB-associated UBC9 SUMO-conjugating enzyme, possibly explaining PML IV-enhanced SUMOylation. These results unexpectedly link two key tumor suppressors, highlighting their convergence for global control of SUMO conjugation, p53 activation, and senescence induction.

  5. Tumor suppressor p53 negatively regulates glycolysis stimulated by hypoxia through its target RRAD

    PubMed Central

    Wu, Rui; Liang, Yingjian; Lin, Meihua; Liu, Jia; Chan, Chang S.; Hu, Wenwei; Feng, Zhaohui

    2014-01-01

    Cancer cells display enhanced glycolysis to meet their energetic and biosynthetic demands even under normal oxygen concentrations. Recent studies have revealed that tumor suppressor p53 represses glycolysis under normoxia as a novel mechanism for tumor suppression. As the common microenvironmental stress for tumors, hypoxia drives the metabolic switch from the oxidative phosphorylation to glycolysis, which is crucial for survival and proliferation of cancer cells under hypoxia. The p53's role and mechanism in regulating glycolysis under hypoxia is poorly understood. Here, we found that p53 represses hypoxia-stimulated glycolysis in cancer cells through RRAD, a newly-identified p53 target. RRAD expression is frequently decreased in lung cancer. Ectopic expression of RRAD greatly reduces glycolysis whereas knockdown of RRAD promotes glycolysis in lung cancer cells. Furthermore, RRAD represses glycolysis mainly through inhibition of GLUT1 translocation to the plasma membrane. Under hypoxic conditions, p53 induces RRAD, which in turn inhibits the translocation of GLUT1 and represses glycolysis in lung cancer cells. Blocking RRAD by siRNA greatly abolishes p53's function in repressing glycolysis under hypoxia. Taken together, our results revealed an important role and mechanism of p53 in antagonizing the stimulating effect of hypoxia on glycolysis, which contributes to p53's function in tumor suppression. PMID:25114038

  6. Downregulation of LRRC8A protects human ovarian and alveolar carcinoma cells against Cisplatin-induced expression of p53, MDM2, p21Waf1/Cip1, and Caspase-9/-3 activation

    PubMed Central

    Sørensen, Belinda Halling; Nielsen, Dorthe; Thorsteinsdottir, Unnur Arna; Hoffmann, Else Kay

    2016-01-01

    The leucine-rich repeat containing 8A (LRRC8A) protein is an essential component of the volume-sensitive organic anion channel (VSOAC), and using pharmacological anion channel inhibitors (NS3728, DIDS) and LRRC8A siRNA we have investigated its role in development of Cisplatin resistance in human ovarian (A2780) and alveolar (A549) carcinoma cells. In Cisplatin-sensitive cells Cisplatin treatment increases p53-protein level as well as downstream signaling, e.g., expression of p21Waf1/Cip1, Bax, Noxa, MDM2, and activation of Caspase-9/-3. In contrast, Cisplatin-resistant cells do not enter apoptosis, i.e., their p53 and downstream signaling are reduced and caspase activity unaltered following Cisplatin exposure. Reduced LRRC8A expression and VSOAC activity are previously shown to correlate with Cisplatin resistance, and here we demonstrate that pharmacological inhibition and transient knockdown of LRRC8A reduce the protein level of p53, MDM2, and p21Waf1/Cip1 as well as Caspase-9/-3 activation in Cisplatin-sensitive cells. Cisplatin resistance is accompanied by reduction in total LRRC8A expression (A2780) or LRRC8A expression in the plasma membrane (A549). Activation of Caspase-3 dependent apoptosis by TNFα-exposure or hyperosmotic cell shrinkage is almost unaffected by pharmacological anion channel inhibition. Our data indicate 1) that expression/activity of LRRC8A is essential for Cisplatin-induced increase in p53 protein level and its downstream signaling, i.e., Caspase-9/-3 activation, expression of p21Waf1/Cip1 and MDM2; and 2) that downregulation of LRRC8A-dependent osmolyte transporters contributes to acquirement of Cisplatin resistance in ovarian and lung carcinoma cells. Activation of LRRC8A-containing channels is upstream to apoptotic volume decrease as hypertonic cell shrinkage induces apoptosis independent of the presence of LRRC8A. PMID:26984736

  7. ATF4 induction through an atypical integrated stress response to ONC201 triggers p53-independent apoptosis in hematological malignancies

    PubMed Central

    Ishizawa, Jo; Kojima, Kensuke; Chachad, Dhruv; Ruvolo, Peter; Ruvolo, Vivian; Jacamo, Rodrigo O.; Borthakur, Gautam; Mu, Hong; Zeng, Zhihong; Tabe, Yoko; Allen, Joshua E.; Wang, Zhiqiang; Ma, Wencai; Lee, Hans C.; Orlowski, Robert; Sarbassov, Dos D.; Lorenzi, Philip L.; Huang, Xuelin; Neelapu, Sattva S.; McDonnell, Timothy; Miranda, Roberto N.; Wang, Michael; Kantarjian, Hagop; Konopleva, Marina; Davis, R. Eric.; Andreeff, Michael

    2016-01-01

    The clinical challenge posed by p53 abnormalities in hematological malignancies requires therapeutic strategies other than standard genotoxic chemotherapies. ONC201 is a first-in-class small molecule that activates p53-independent apoptosis, has a benign safety profile, and is in early clinical trials. We found that ONC201 caused p53-independent apoptosis and cell cycle arrest in cell lines and in mantle cell lymphoma (MCL) and acute myeloid leukemia (AML) samples from patients; these included samples from patients with genetic abnormalities associated with poor prognosis or cells that had developed resistance to the nongenotoxic agents ibrutinib and bortezomib. Moreover, ONC201 caused apoptosis in stem and progenitor AML cells and abrogated the engraftment of leukemic stem cells in mice while sparing normal bone marrow cells. ONC201 caused changes in gene expression similar to those caused by the unfolded protein response (UPR) and integrated stress responses (ISRs), which increase the translation of the transcription factor ATF4 through an increase in the phosphorylation of the translation initiation factor eIF2α. However, unlike the UPR and ISR, the increase in ATF4 abundance in ONC201-treated hematopoietic cells promoted apoptosis and did not depend on increased phosphorylation of eIF2α. ONC201 also inhibited mammalian target of rapamycin complex 1 (mTORC1) signaling, likely through ATF4-mediated induction of the mTORC1 inhibitor DDIT4. Overexpression of BCL-2 protected against ONC201-induced apoptosis, and the combination of ONC201 and the BCL-2 antagonist ABT-199 synergistically increased apoptosis. Thus, our results suggest that by inducing an atypical ISR and p53-independent apoptosis, ONC201 has clinical potential in hematological malignancies. PMID:26884599

  8. ATF4 induction through an atypical integrated stress response to ONC201 triggers p53-independent apoptosis in hematological malignancies.

    PubMed

    Ishizawa, Jo; Kojima, Kensuke; Chachad, Dhruv; Ruvolo, Peter; Ruvolo, Vivian; Jacamo, Rodrigo O; Borthakur, Gautam; Mu, Hong; Zeng, Zhihong; Tabe, Yoko; Allen, Joshua E; Wang, Zhiqiang; Ma, Wencai; Lee, Hans C; Orlowski, Robert; Sarbassov, Dos D; Lorenzi, Philip L; Huang, Xuelin; Neelapu, Sattva S; McDonnell, Timothy; Miranda, Roberto N; Wang, Michael; Kantarjian, Hagop; Konopleva, Marina; Davis, R Eric; Andreeff, Michael

    2016-02-16

    The clinical challenge posed by p53 abnormalities in hematological malignancies requires therapeutic strategies other than standard genotoxic chemotherapies. ONC201 is a first-in-class small molecule that activates p53-independent apoptosis, has a benign safety profile, and is in early clinical trials. We found that ONC201 caused p53-independent apoptosis and cell cycle arrest in cell lines and in mantle cell lymphoma (MCL) and acute myeloid leukemia (AML) samples from patients; these included samples from patients with genetic abnormalities associated with poor prognosis or cells that had developed resistance to the nongenotoxic agents ibrutinib and bortezomib. Moreover, ONC201 caused apoptosis in stem and progenitor AML cells and abrogated the engraftment of leukemic stem cells in mice while sparing normal bone marrow cells. ONC201 caused changes in gene expression similar to those caused by the unfolded protein response (UPR) and integrated stress responses (ISRs), which increase the translation of the transcription factor ATF4 through an increase in the phosphorylation of the translation initiation factor eIF2α. However, unlike the UPR and ISR, the increase in ATF4 abundance in ONC201-treated hematopoietic cells promoted apoptosis and did not depend on increased phosphorylation of eIF2α. ONC201 also inhibited mammalian target of rapamycin complex 1 (mTORC1) signaling, likely through ATF4-mediated induction of the mTORC1 inhibitor DDIT4. Overexpression of BCL-2 protected against ONC201-induced apoptosis, and the combination of ONC201 and the BCL-2 antagonist ABT-199 synergistically increased apoptosis. Thus, our results suggest that by inducing an atypical ISR and p53-independent apoptosis, ONC201 has clinical potential in hematological malignancies. Copyright © 2016, American Association for the Advancement of Science.

  9. Suppression of HPV E6 and E7 expression by BAF53 depletion in cervical cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kiwon; Lee, Ah-Young; Kwon, Yunhee Kim

    Highlights: {yields} Integration of HPV into host genome critical for activation of E6 and E7 oncogenes. {yields} BAF53 is essential for higher-order chromatin structure. {yields} BAF53 knockdown suppresses E6 and E7 from HPV integrants, but not from episomal HPVs. {yields} BAF53 knockdown decreases H3K9Ac and H4K12Ac on P105 promoter of integrated HPV 18. {yields} BAF53 knockdown restores the p53-dependent signaling pathway in HeLa and SiHa cells. -- Abstract: Deregulation of the expression of human papillomavirus (HPV) oncogenes E6 and E7 plays a pivotal role in cervical carcinogenesis because the E6 and E7 proteins neutralize p53 and Rb tumor suppressor pathways,more » respectively. In approximately 90% of all cervical carcinomas, HPVs are found to be integrated into the host genome. Following integration, the core-enhancer element and P105 promoter that control expression of E6 and E7 adopt a chromatin structure that is different from that of episomal HPV, and this has been proposed to contribute to activation of E6 and E7 expression. However, the molecular basis underlying this chromatin structural change remains unknown. Previously, BAF53 has been shown to be essential for the integrity of higher-order chromatin structure and interchromosomal interactions. Here, we examined whether BAF53 is required for activated expression of E6 and E7 genes. We found that BAF53 knockdown led to suppression of expression of E6 and E7 genes from HPV integrants in cervical carcinoma cell lines HeLa and SiHa. Conversely, expression of transiently transfected HPV18-LCR-Luciferase was not suppressed by BAF53 knockdown. The level of the active histone marks H3K9Ac and H4K12Ac on the P105 promoter of integrated HPV 18 was decreased in BAF53 knockdown cells. BAF53 knockdown restored the p53-dependent signaling pathway in HeLa and SiHa cells. These results suggest that activated expression of the E6 and E7 genes of integrated HPV is dependent on BAF53-dependent higher

  10. Mutant p53 proteins counteract autophagic mechanism sensitizing cancer cells to mTOR inhibition.

    PubMed

    Cordani, Marco; Oppici, Elisa; Dando, Ilaria; Butturini, Elena; Dalla Pozza, Elisa; Nadal-Serrano, Mercedes; Oliver, Jordi; Roca, Pilar; Mariotto, Sofia; Cellini, Barbara; Blandino, Giovanni; Palmieri, Marta; Di Agostino, Silvia; Donadelli, Massimo

    2016-08-01

    Mutations in TP53 gene play a pivotal role in tumorigenesis and cancer development. Here, we report that gain-of-function mutant p53 proteins inhibit the autophagic pathway favoring antiapoptotic effects as well as proliferation of pancreas and breast cancer cells. We found that mutant p53 significantly counteracts the formation of autophagic vesicles and their fusion with lysosomes throughout the repression of some key autophagy-related proteins and enzymes as BECN1 (and P-BECN1), DRAM1, ATG12, SESN1/2 and P-AMPK with the concomitant stimulation of mTOR signaling. As a paradigm of this mechanism, we show that atg12 gene repression was mediated by the recruitment of the p50 NF-κB/mutant p53 protein complex onto the atg12 promoter. Either mutant p53 or p50 NF-κB depletion downregulates atg12 gene expression. We further correlated the low expression levels of autophagic genes (atg12, becn1, sesn1, and dram1) with a reduced relapse free survival (RFS) and distant metastasis free survival (DMFS) of breast cancer patients carrying TP53 gene mutations conferring a prognostic value to this mutant p53-and autophagy-related signature. Interestingly, the mutant p53-driven mTOR stimulation sensitized cancer cells to the treatment with the mTOR inhibitor everolimus. All these results reveal a novel mechanism through which mutant p53 proteins promote cancer cell proliferation with the concomitant inhibition of autophagy. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer

    PubMed Central

    Suh, Seong O.; Chen, Yi; Zaman, Mohd Saif; Hirata, Hiroshi; Yamamura, Soichiro; Shahryari, Varahram; Liu, Jan; Tabatabai, Z.Laura; Kakar, Sanjay; Deng, Guoren; Tanaka, Yuichiro; Dahiya, Rajvir

    2011-01-01

    MiR-145 is downregulated in various cancers including prostate cancer. However, the underlying mechanisms of miR-145 downregulation are not fully understood. Here, we reported that miR-145 was silenced through DNA hypermethylation and p53 mutation status in laser capture microdissected (LCM) prostate cancer and matched adjacent normal tissues. In 22 of 27 (81%) prostate tissues, miR-145 was significantly downregulated in the cancer compared with the normal tissues. Further studies on miR-145 downregulation mechanism showed that miR-145 is methylated at the promoter region in both prostate cancer tissues and 50 different types of cancer cell lines. In seven cancer cell lines with miR-145 hypermethylation, 5-aza-2′-deoxycytidine treatment dramatically induced miR-145 expression. Interestingly, we also found a significant correlation between miR-145 expression and the status of p53 gene in both LCM prostate tissues and 47 cancer cell lines. In 29 cell lines with mutant p53, miR-145 levels were downregulated in 28 lines (97%), whereas in 18 cell lines with wild-type p53 (WT p53), miR-145 levels were downregulated in only 6 lines (33%, P < 0.001). Electrophoretic mobility shift assay showed that p53 binds to the p53 response element upstream of miR-145, but the binding was inhibited by hypermethylation. To further confirm that p53 binding to miR-145 could regulate miR-145 expression, we transfected WT p53 and MUT p53 into PC-3 cells and found that miR-145 is upregulated by WT p53 but not with MUTp53. The apoptotic cells are increased after WT p53 transfection. In summary, this is the first report documenting that downregulation of miR-145 is through DNA methylation and p53 mutation pathways in prostate cancer. PMID:21349819

  12. BTK blocks the inhibitory effects of MDM2 on p53 activity

    PubMed Central

    Rada, Miran; Althubiti, Mohammad; Ekpenyong-Akiba, Akang E.; Lee, Koon-Guan; Lam, Kong Peng; Fedorova, Olga; Barlev, Nickolai A.; Macip, Salvador

    2017-01-01

    p53 is a tumour suppressor that is activated in response to various types of stress. It is regulated by a complex pattern of over 50 different post-translational modifications, including ubiquitination by the E3 ligase MDM2, which leads to its proteasomal degradation. We have previously reported that expression of Bruton’s Tyrosine Kinase (BTK) induces phosphorylation of p53 at the N-terminus, including Serine 15, and increases its protein levels and activity. The mechanisms involved in this process are not completely understood. Here, we show that BTK also increases MDM2 and is necessary for MDM2 upregulation after DNA damage, consistent with what we have shown for other p53 target genes. Moreover, we found that BTK binds to MDM2 on its PH domain and induces its phosphorylation. This suggested a negative regulation of MDM2 functions by BTK, supported by the fact BTK expression rescued the inhibitory effects of MDM2 on p53 transcriptional activity. Indeed, we observed that BTK mediated the loss of the ubiquitination activity of MDM2, a process that was dependent on the phosphorylation functions of BTK. Our data together shows that the kinase activity of BTK plays an important role in disrupting the MDM2-p53 negative feedback loop by acting at different levels, including binding to and inactivation of MDM2. This study provides a potential mechanism to explain how BTK modulates p53 functions. PMID:29290977

  13. The expanding regulatory universe of p53 in gastrointestinal cancer.

    PubMed

    Fesler, Andrew; Zhang, Ning; Ju, Jingfang

    2016-01-01

    Tumor suppresser gene TP53 is one of the most frequently deleted or mutated genes in gastrointestinal cancers. As a transcription factor, p53 regulates a number of important protein coding genes to control cell cycle, cell death, DNA damage/repair, stemness, differentiation and other key cellular functions. In addition, p53 is also able to activate the expression of a number of small non-coding microRNAs (miRNAs) through direct binding to the promoter region of these miRNAs.  Many miRNAs have been identified to be potential tumor suppressors by regulating key effecter target mRNAs. Our understanding of the regulatory network of p53 has recently expanded to include long non-coding RNAs (lncRNAs). Like miRNA, lncRNAs have been found to play important roles in cancer biology.  With our increased understanding of the important functions of these non-coding RNAs and their relationship with p53, we are gaining exciting new insights into the biology and function of cells in response to various growth environment changes. In this review we summarize the current understanding of the ever expanding involvement of non-coding RNAs in the p53 regulatory network and its implications for our understanding of gastrointestinal cancer.

  14. Repression of the interleukin 6 gene promoter by p53 and the retinoblastoma susceptibility gene product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santhanam, U.; Ray, A.; Sehgal, P.B.

    1991-09-01

    The aberrant overexpression of interleukin 6 (IL-6) is implicated as an autocrine mechanism in the enhanced proliferation of the neoplastic cell elements in various B- and T-cell malignancies and in some carcinomas and sarcomas; many of these neoplasms have been shown to be associated with a mutated p53 gene. The possibility that wild-type (wt) p53, a nuclear tumor-suppressor protein, but not its transforming mutants might serve to repress IL-6 gene expression was investigated in HeLa cells. The authors transiently cotransfected these cells with constitutive cytomegalovirus (CMV) enhancer/promoter expression plasmids overproducing wt or mutant human or murine p53 and with appropriatemore » chloramphenicol acetyltransferase (CAT) reporter plasmids containing the promoter elements of human IL-6, c-fos, or {beta}-actin genes or of porcine major histocompatibility complex (MHC) class I gene in pN-38 to evaluate the effect of the various p53 species on these promoters. These observations identify transcriptional repression as a property of p53 and suggest that p53 and RB may be involved as transcriptional repressors in modulating IL-6 gene expression during cellular differentiation and oncogenesis.« less

  15. Mechanisms involved in p53 downregulation by leptin in trophoblastic cells.

    PubMed

    Toro, Ayelén Rayen; Pérez-Pérez, Antonio; Corrales Gutiérrez, Isabel; Sánchez-Margalet, Víctor; Varone, Cecilia Laura

    2015-11-01

    Leptin, a 16-kDa polypeptide hormone, is produced by the adipocyte and can also be synthesized by placenta. We previously demonstrated that leptin promotes proliferation and survival in placenta, in part mediated by the p53 pathway. In this work, we investigated the mechanisms involved in leptin down-regulation of p53 level. The human first trimester cytotrophoblastic Swan-71 cell line and human placental explants at term were used. In order to study the late phase of apoptosis, triggered by serum deprivation, experiments of DNA fragmentation were carried out. Exogenous leptin added to human placental explants, showed a decrease on DNA ladder formation and MAPK pathway is involved in this leptin effect. We also found that under serum deprivation condition, leptin decreases p53 levels and the inhibitory leptin effect is lost when cells were pretreated with 50 μM PD98059 or 10 μM LY29004; or were transfected with dominant negative mutants of intermediates of these pathways, suggesting that MAPK and PI3K signaling pathways are necessaries for leptin action. Additionally, leptin diminished Ser-46 p53 phosphorylation and this effect in placental explants was mediated by the activation of MAPK and PI3K pathways. Finally, in order to assess leptin effect on p53 half-life experiments with cycloheximide were performed and MDM-2 expression was analyzed. Leptin diminished p53 half-life and up-regulated MDM-2 expression. In summary, we provided evidence suggesting that leptin anti-apoptotic effect is mediated by MAPK and PI3K pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Involvement of p53 and Bcl-2 in sensory cell degeneration in aging rat cochleae.

    PubMed

    Xu, Yang; Yang, Wei Ping; Hu, Bo Hua; Yang, Shiming; Henderson, Donald

    2017-06-01

    p53 and Bcl-2 (B-cell lymphoma 2) are involved in the process of sensory cell degeneration in aging cochleae. To determine molecular players in age-related hair cell degeneration, this study examined the changes in p53 and Bcl-2 expression at different stages of apoptotic and necrotic death of hair cells in aging rat cochleae. Young (3-4 months) and aging (23-24 months) Fisher 344/NHsd rats were used. The thresholds of the auditory brainstem response (ABR) were measured to determine the auditory function. Immunolabeling was performed to determine the expression of p53 and Bcl-2 proteins in the sensory epithelium. Propidium iodide staining was performed to determine the morphologic changes in hair cell nuclei. Aging rats exhibited a significant elevation in ABR thresholds at all tested frequencies (p < 0.001). The p53 and Bcl-2 immunoreactivity was increased in aging hair cells showing the early signs of apoptotic changes in their nuclei. The Bcl-2 expression increase was also observed in hair cells displaying early signs of necrosis. As the hair cell degenerative process advanced, p53 and Bcl-2 immunoreactivity became reduced or absent. In the areas where no detectable nuclear staining was present, p53 and Bcl-2 immunoreactivity was absent.

  17. Low dose arsenite confers resistance to UV induced apoptosis via p53-MDM2 pathway in ketatinocytes

    PubMed Central

    Zhou, Y; Zeng, W; Qi, M; Duan, Y; Su, J; Zhao, S; Zhong, W; Gao, M; Li, F; He, Y; Hu, X; Xu, X; Chen, X; Peng, C; Zhang, J

    2017-01-01

    Chronic arsenite and ultraviolet (UV) exposure are associated with skin tumor. To investigate the details by low concentrations of arsenite and UV induced carcinogenesis in skin, hTERT-immortalized human keratinocytes were used as a cellular model with exposure to low concentrations of sodium arsenite and UV. The effect of NaAsO2 on UV treatment-induced apoptosis was measured by flow cytometry and Hoechst staining. We found that the cell apoptosis induced by UV exposure was significantly attenuated after exposure to low-dose arsenite, and knockdown of p53 could block UV-induced apoptosis indicating that this phenomenon depended on p53. Interestingly, the expression of murine double minute 2 (MDM2), including its protein and transcriptional levels, was remarkably high after exposure to low-dose arsenite. Moreover, low-dose arsenite treatment dramatically decreased the MDM2 gene promoter activity, suggesting that this effect has been mediated through transcription. In addition, treatment of PD98059 reversed low-dose arsenite-induced MDM2 expression, and the inhibition of ERK2 expression could significantly block MDM2 expression as a consequence, and p53 expression automatically was increased. To validate the role of p53 in exposure to low-dose arsenite, the expression of p53 was examined by immunohistochemistry in the skin of Sprague−Dawley rats model by chronic arsenite exposure for 6 months and in patients with arsenic keratosis, and the results showed that the expression of p53 was decreased in those samples. Taken together, our results demonstrated that low-dose arsenite-induced resistance to apoptosis through p53 mediated by MDM2 in keratinocytes. PMID:28785074

  18. Nucleophosmin regulates the stability and transcriptional activity of p53.

    PubMed

    Colombo, Emanuela; Marine, Jean-Christophe; Danovi, Davide; Falini, Brunangelo; Pelicci, Pier Giuseppe

    2002-07-01

    Nucleophosmin (NPM) is a ubiquitously expressed nucleolar phosphoprotein that continuously shuttles between the nucleus and cytoplasm. It has been proposed to function in ribosomal protein assembly and transport, and also as a molecular chaperone that prevents proteins from aggregating in the crowded environment of the nucleolus. The NPM gene is involved in several tumour-associated chromosome translocations, which have resulted in the formation of fusion proteins that retain the amino terminus of NPM, including NPM ALK, NPM RAR and NPM MLF1 (ref. 6). It is generally thought that the NPM component is not involved in the transforming potential of these fusion proteins, but instead provides a dimerization interface for the oligomerization and the oncogenic conversion of the various NPM partners (ALK, RAR, MLF1). Here we show that NPM interacts directly with the tumour suppressor p53, regulates the increase in stability and transcriptional activation of p53 after different types of stress, and induces p53-dependent premature senescence on overexpression in diploid fibroblasts. These findings indicate that NPM is a crucial regulator of p53 and suggest that alterations of the NPM function by NPM fusion proteins might lead to deregulation of p53 in tumours.

  19. miR-338-3p confers 5-fluorouracil resistance in p53 mutant colon cancer cells by targeting the mammalian target of rapamycin.

    PubMed

    Han, Jia; Li, Jie; Tang, Kaijie; Zhang, Huahua; Guo, Bo; Hou, Ni; Huang, Chen

    2017-11-15

    Evidence demonstrate that p53 mutations and microRNAs (miRs) are important components of 5-FU resistance in colorectal cancer (CRC). miR-338-3p has been reported associated with cancer prognosis. However whether or not it influences chemotherapy sensitivity and the underlying mechanisms have not been elucidated. Here, three types of human colon cancer cell lines, HT29 (mutant p53), HCT116 (wild-type p53), and HCT116 p53 -/- (deficient p53), were treated with 5-FU. We showed that expression of miR-338-3p was correlated with apoptosis and 5-FU resistance in colon cancer cells. Ectopic expression of miR-338-3p conferred resistance to 5-FU in HCT116 cells. Further experiments indicated that miR-338-3p mediated 5-FU resistance through down-regulation of mTOR expression. Moreover, inhibition of miR-338-3p in HT29 and HCT116 p53 -/- cells increased their sensitivity to 5-FU treatment. Furthermore, we detected autophagy changes in our experiment because mTOR was known prominently regulating autophagy and the competition between autophagy and apoptosis in response to 5-FU was a mechanism influencing 5-FU sensitivity. Our results reveal a critical and novel role of miR-338-3p in the correlation of 5-FU resistance with p53 status. Moreover, the miR-338-3p inhibitor has the potential to overcome 5-FU resistance in p53 mutant colon cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. CDIP, a novel pro-apoptotic gene, regulates TNFalpha-mediated apoptosis in a p53-dependent manner.

    PubMed

    Brown, Lauren; Ongusaha, Pat P; Kim, Hyung-Gu; Nuti, Shanthy; Mandinova, Anna; Lee, Ji Won; Khosravi-Far, Roya; Aaronson, Stuart A; Lee, Sam W

    2007-07-25

    We have identified a novel pro-apoptotic p53 target gene named CDIP (Cell Death Involved p53-target). Inhibition of CDIP abrogates p53-mediated apoptotic responses, demonstrating that CDIP is an important p53 apoptotic effector. CDIP itself potently induces apoptosis that is associated with caspase-8 cleavage, implicating the extrinsic cell death pathway in apoptosis mediated by CDIP. siRNA-directed knockdown of caspase-8 results in a severe impairment of CDIP-dependent cell death. In investigating the potential involvement of extrinsic cell death pathway in CDIP-mediated apoptosis, we found that TNF-alpha expression tightly correlates with CDIP expression, and that inhibition of TNF-alpha signaling attenuates CDIP-dependent apoptosis. We also demonstrate that TNF-alpha is upregulated in response to p53 and p53 inducing genotoxic stress, in a CDIP-dependent manner. Consistently, knockdown of TNF-alpha impairs p53-mediated stress-induced apoptosis. Together, these findings support a novel p53 --> CDIP --> TNF-alpha apoptotic pathway that directs apoptosis after exposure of cells to genotoxic stress. Thus, CDIP provides a new link between p53-mediated intrinsic and death receptor-mediated extrinsic apoptotic signaling, providing a novel target for cancer therapeutics aimed at maximizing the p53 apoptotic response of cancer cells to drug therapy.

  1. p53 Restoration in Induction and Maintenance of Senescence: Differential Effects in Premalignant and Malignant Tumor Cells

    PubMed Central

    Harajly, Mohamad; Zalzali, Hasan; Nawaz, Zafar; Ghayad, Sandra E.; Ghamloush, Farah; Basma, Hussein; Zainedin, Samiha; Rabeh, Wissam; Jabbour, Mark; Tawil, Ayman; Badro, Danielle A.; Evan, Gerard I.

    2015-01-01

    The restoration of p53 has been suggested as a therapeutic approach in tumors. However, the timing of p53 restoration in relation to its efficacy during tumor progression still is unclear. We now show that the restoration of p53 in murine premalignant proliferating pineal lesions resulted in cellular senescence, while p53 restoration in invasive pineal tumors did not. The effectiveness of p53 restoration was not dependent on p19Arf expression but showed an inverse correlation with Mdm2 expression. In tumor cells, p53 restoration became effective when paired with either DNA-damaging therapy or with nutlin, an inhibitor of p53-Mdm2 interaction. Interestingly, the inactivation of p53 after senescence resulted in reentry into the cell cycle and rapid tumor progression. The evaluation of a panel of human supratentorial primitive neuroectodermal tumors (sPNET) showed low activity of the p53 pathway. Together, these data suggest that the restoration of the p53 pathway has different effects in premalignant versus invasive pineal tumors, and that p53 activation needs to be continually sustained, as reversion from senescence occurs rapidly with aggressive tumor growth when p53 is lost again. Finally, p53 restoration approaches may be worth exploring in sPNET, where the p53 gene is intact but the pathway is inactive in the majority of examined tumors. PMID:26598601

  2. Selective sensitization to DNA-damaging agents in a human rhabdomyosarcoma cell line with inducible wild-type p53 overexpression.

    PubMed

    Gibson, A A; Harwood, F G; Tillman, D M; Houghton, J A

    1998-01-01

    Drug-induced cytotoxicity or apoptosis may be influenced by the expression of the p53 tumor suppressor gene and by the specific oncogene expressed, which may dictate the threshold at which a cytotoxic response may by induced. The objective of the study was to elucidate how DNA-damaging agents with different mechanisms of action were sensitized in the context of expression of the Pax3/FKHR fusion protein, a transformation event unique to alveolar rhabdomyosarcomas (ARMSs), and wild-type p53 (wtp53). A wtp53 cDNA was subcloned into the pGRE5-2/EBV vector with dexamethasone-inducible overexpression and transfected into Rh30 ARMS cells that express Pax3/FKHR and a mutant p53 phenotype. Following dexamethasone induction of wtp53 overexpression in a derived clone (Cl.#27), growth was slowed, and cells accumulated in G1. Functional wtp53 activity was demonstrated by selective transactivation of p50-2, a wtp53 chloramphenicol acetyltransferase reporter construct, and by up-regulated expression of endogenous p21Waf1. Data demonstrated p53-dependent sensitization (> or = 4-fold) to bleomycin, actinomycin D, and 5-fluorouracil and considerably less p53-dependence (< or = 2-fold) for doxorubicin, topotecan, etoposide, and cisplatin in Cl.#27 compared to an equivalent clone containing the pGRE5-EBV vector alone (VC#3). Data demonstrate that ARMS cells show a selective sensitization to DNA-damaging agents when wtp53 is overexpressed. The cytotoxic activity of agents that are not potentiated substantially must, therefore, depend upon p53-independent factors that relate to the mechanism of drug action.

  3. Enhanced radiosensitization of p53 mutant cells by oleamide.

    PubMed

    Lee, Yoon-Jin; Chung, Da Yeon; Lee, Su-Jae; Ja Jhon, Gil; Lee, Yun-Sil

    2006-04-01

    Effect of oleamide, an endogenous fatty-acid primary amide, on tumor cells exposed to ionizing radiation (IR) has never before been explored. NCI H460, human lung cancer cells, and human astrocytoma cell lines, U87 and U251, were used. The cytotoxicity of oleamide alone or in combination with IR was determined by clonogenic survival assay, and induction of apoptosis was estimated by FACS analysis. Protein expressions were confirmed by Western blotting, and immunofluorescence analysis of Bax by use of confocal microscopy was also performed. The combined effect of IR and oleamide to suppress tumor growth was studied by use of xenografts in the thighs of nude mice. Oleamide in combination with IR had a synergistic effect that decreased clonogenic survival of lung-carcinoma cell lines and also sensitized xenografts in nude mice. Enhanced induction of apoptosis of the cells by the combined treatment was mediated by loss of mitochondrial membrane potential, which resulted in the activation of caspase-8, caspase-9, and caspase-3 accompanied by cytochrome c release and Bid cleavage. The synergistic effects of the combined treatment were more enhanced in p53 mutant cells than in p53 wild-type cells. In p53 wild-type cells, both oleamide and radiation induced Bax translocation to mitochondria. On the other hand, in p53 mutant cells, radiation alone slightly induced Bax translocation to mitochondria, whereas oleamide induced a larger translocation. Oleamide may exhibit synergistic radiosensitization in p53 mutant cells through p53-independent Bax translocation to mitochondria.

  4. Evaluation of bax, bcl-2, p21 and p53 genes expression variations on cerebellum of BALB/c mice before and after birth under mobile phone radiation exposure.

    PubMed

    Ghatei, Najmeh; Nabavi, Ariane Sadr; Toosi, Mohammad Hossein Bahreyni; Azimian, Hosein; Homayoun, Mansour; Targhi, Reza Ghasemnezhad; Haghir, Hossein

    2017-09-01

    The increasing rate of over using cell phones has been considerable in youths and pregnant women. We examined the effect of mobile phones radiation on genes expression variation on cerebellum of BALB/c mice before and after of the birth. In this study, a mobile phone jammer, which is an instrument to prevent receiving signals between cellular phones and base transceiver stations (two frequencies 900 and 1800 MHz) for exposure was used and twelve pregnant mice (BALB/c) divided into two groups (n=6), first group irradiated in pregnancy period (19th day), the second group did not irradiate in pregnancy period. After childbirth, offspring were classified into four groups (n=4): Group1: control, Group 2: B1 (Irradiated after birth), Group 3: B2 (Irradiated in pregnancy period and after birth), Group 4: B3 (Irradiated in pregnancy period). When maturity was completed (8-10 weeks old), mice were dissected and cerebellum was isolated. The expression level of bax , bcl-2, p21 and p53 genes examined by real-time reverse transcription polymerase chain reaction (Real-Time RT- PCR). The data showed that mobile phone radio waves were ineffective on the expression level of bcl-2 and p53 genes) P >0.05(. Also gene expression level of bax decreased and gene expression level of p21 increased comparing to the control group ( P <0.05). From the obtained data it could be concluded that the mobile phone radiations did not induce apoptosis in cells of the cerebellum and the injured cells can be repaired by cell cycle arrest.

  5. Depletion of Securin Induces Senescence After Irradiation and Enhances Radiosensitivity in Human Cancer Cells Regardless of Functional p53 Expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Wenshu; Yu Yichu; Lee Yijang

    2010-06-01

    Purpose: Radiotherapy is one of the best choices for cancer treatment. However, various tumor cells exhibit resistance to irradiation-induced apoptosis. The development of new strategies to trigger cancer cell death besides apoptosis is necessary. This study investigated the role of securin in radiation-induced apoptosis and senescence in human cancer cells. Methods and Materials: Cell survival was determined using clonogenic assays. Western blot analysis was used to analyze levels of securin, caspase-3, PARP, p53, p21, Rb, gamma-H2AX, and phospho-Chk2. Senescent cells were analyzed using a beta-galactosidase staining assay. A securin-expressed vector (pcDNA-securin) was stably transfected into securin-null HCT116 cells. Securin genemore » knockdown was performed by small interfering RNA and small hairpin RNA in HCT116 and MDA-MB-231 cells, respectively. Results: Radiation was found to induce apoptosis in securin wild type HCT116 cells but induced senescence in securin-null cells. Restoration of securin reduced senescence and increased cell survival in securin-null HCT116 cells after irradiation. Radiation-induced gamma-H2AX and Chk2 phosphorylation were induced transiently in securin-wild-type cells but exhibited sustained activation in securin-null cells. Securin gene knockdown switches irradiation-induced apoptosis to senescence in both HCT116 p53-null and MDA-MB-231 cells. Conclusions: Our results demonstrated that the level of securin expression plays a determining role in the radiosensitivity and fate of cells. Depletion of securin impairs DNA repair after irradiation, increasing DNA damage and promoting senescence in the residual surviving cells regardless of functional p53 expression. The knockdown of securin may contribute to a novel radiotherapy protocol for the treatment of human cancer cells that are resistant to irradiation.« less

  6. The analysis of expression of p16 protein in group of 53 patients treated for sinonasal inverted papilloma.

    PubMed

    Zydroń, Roland; Marszałek, Andrzej; Bodnar, Magdalena; Kosikowski, Paweł; Greczka, Grażyna; Wierzbicka, Małgorzata

    Sinonasal inverted papilloma constitute relevant therapeutic problem due to destructive character of growth, tendency to recur and the possibility of malignant transformation. Therefore, many attempts to identify risk factors for inverted papilloma occurrence have been undertaken, as well as research to find markers that would allow for the earlier detection of tumors and the application of adequate therapy. A widely known risk factor of inverted papilloma is HPV infection. One of the markers of HPV infection and the ongoing effect of this change (although arousing some controversy) is the expression of the p16 protein. The aim of the study was to analyze the correlation between the expression of p16 as a surrogate of HPV infection in analyzed histopathological material and epidemiological variables, recurrences or malignant transformation. The retrospective study includes a group of 53 patients (18 women and 35 men) undergoing treatment for sinonasal inverted papilloma in the period of 2002-2012. The intensity of the p16 protein in histopathological material was scored as: 0 - no expression, 1 - diffuse expression (borderline) and 2 - positive expression; or 0 - no expression/diffuse expression (borderline); 1 - positive expression. The Ethics Committee agreement was obtained (1089/12; 245/13). There was no statistically significant relationship between the expression of p16 and the age of patients, cigarette smoking, tumor location, tumor staging according to the Krouse and Cannady classification, the presence of dysplasia or the occurrence of relapse. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  7. Editor's Highlight: Hydroxyurea Exposure Activates the P53 Signaling Pathway in Murine Organogenesis-Stage Embryos

    PubMed Central

    El Husseini, Nazem; Schlisser, Ava E.; Hales, Barbara F.

    2016-01-01

    Hydroxyurea, an anticancer agent and potent teratogen, induces oxidative stress and activates a DNA damage response pathway in the gestation day (GD) 9 mouse embryo. To delineate the stress response pathways activated by this drug, we investigated the effect of hydroxyurea exposure on the transcriptome of GD 9 embryos. Timed pregnant CD-1 mice were treated with saline or hydroxyurea (400 mg/kg or 600 mg/kg) on GD 9; embryonic gene and protein expression were examined 3 h later. Microarray analysis revealed that the expression of 1346 probe sets changed significantly in embryos exposed to hydroxyurea compared with controls; the P53 signaling pathway was highly affected. In addition, P53 related family members, P63 and P73, were predicted to be activated and had common and unique downstream targets. Western blot analysis revealed that active phospho-P53 was significantly increased in drug-exposed embryos; confocal microscopy showed that the translocation of phospho-P53 to the nucleus was widespread in the embryo. Furthermore, qRT-PCR showed that the expression of P53-regulated genes (Cdkn1A, Fas, and Trp53inp1) was significantly upregulated in hydroxyurea-exposed embryos; the concentration of the redox sensitive P53INP1 protein was also increased in a hydroxyurea dose-dependent fashion. Thus, hydroxyurea elicits a significant effect on the transcriptome of the organogenesis stage murine embryo, activating several key developmental signaling pathways related to DNA damage and oxidative stress. We propose that the P53 pathway plays a central role in the embryonic stress response and the developmental outcome after teratogen exposure. PMID:27208086

  8. Tea polyphenols can restrict benzo[a]pyrene-induced lung carcinogenesis by altered expression of p53-associated genes and H-ras, c-myc and cyclin D1.

    PubMed

    Manna, Sugata; Mukherjee, Sudeshna; Roy, Anup; Das, Sukta; Panda, Chinmay Kr

    2009-05-01

    The modulatory influence of tea polyphenols (epigallocatechin gallate, epicatechin gallate and theaflavin) on benzo[a]pyrene (B[a]P)-induced lung carcinogenesis in mice was analyzed using histopathological and molecular parameters. Progression of lung lesions was restricted at the hyperplastic stage by tea polyphenols. A significant reduction in cellular proliferative index and an increase in apoptotic index were noted in the restricted lung lesions. High expression of H-ras, c-myc, cyclin D1 and p53 genes was seen at the inflammatory stage (9th week) and in subsequent premalignant lesions, but down-regulation of H-ras at the hyperplastic stage (17th week). Expression of bcl-2 was high in hyperplastic lesions, whereas the expression of mdm2 and bcl-xl increased only at the moderately dysplastic stage (36th week). The tea polyphenols inhibited inflammatory response in the lung lesions on the 9th week, when decreased expression of H-ras and c-myc and increased expression of bax were noted. Prolonged treatment (>9th week) with tea polyphenols resulted in changes in the expression of some additional genes, such as reduced expression of cyclin D1 (from the 17th week), bcl-2 (from the 26th week; mild dysplasia) and p21 (on the 36th week), and high expression of p53 (from the 17th week) and p27 (on the 36th week). These observations indicate that the tea polyphenols can restrict B[a]P-induced lung carcinogenesis by differential modulation of the expression of p53 and its associated genes such as bax, bcl-2, mdm2, p21 and p27, along with H-ras, c-myc and cyclin D1, at different time points.

  9. Immunohistochemical Analysis of p53, Ki-67, CD44, HER-2/neu Expression Patterns in Gastric Cancer, and Their Association with One Year Survival in North-West of Iran

    PubMed Central

    Sanaat, Zohreh; Halimi, Monireh; Ghojezadeh, Morteza; Pirovi, Amir Hossein; Gharamaleki, Jalil Vaez; Ziae, Ali Esfahani Jamal Eivazi; Kermani, Iraj Aswadi

    2013-01-01

    Introduction Gastric cancer remains the second most common cause of cancer-related deaths worldwide. In many malignancies like, lung and breast, multiple prognostic factors are known, such as mutations in Ki-67, HER-2/neu, p53. In this study, we evaluated immunohistochemical protein expression patterns of cell-cycle-regulators p53, proliferation marker Ki-67, surface expression of CD44, HER-2/neu oncogene proposed as useful prognostic factors. Methods In this descriptive-analytic study, we evaluate 100 patients with gastric cancer who were referred to Shahid Ghazi Hospital or other oncology clinics of Tabriz University of Medical Sciences in 2005-2010. Patients with pathologic confirmation of gastric cancer were selected. Expression of p53, ki-67, CD-44, HER-2/neu were detected by immunohistochemical staining. Results In this study, 100 patients with gastric cancer participated. 76(76%) were men and 24(24%) were women with mean age of 64.02(8.05) years. Seventy two samples were intestinal type and 28 were diffuse type. CD44 was positive in 27(27%) patients. P53 was positive in 35(35%) patients. Ki-67 was positive in 53(53%) patients. HER-2/neu was positive in 51(51%) patients. Conclusion The frequency of positive p53, Ki-67, CD44 and HER-2/neu varied in different studies. Positive Ki-67 and HER-2/neu were not associated with changes in survival but positive p53 and CD44 were significantly associated with improved survival. PMID:24505530

  10. Fluoxetine protects against IL-1β-induced neuronal apoptosis via downregulation of p53.

    PubMed

    Shan, Han; Bian, Yaqi; Shu, Zhaoma; Zhang, Linxia; Zhu, Jialei; Ding, Jianhua; Lu, Ming; Xiao, Ming; Hu, Gang

    2016-08-01

    Fluoxetine, a selective serotonin reuptake inhibitor, exerts neuroprotective effects in a variety of neurological diseases including stroke, but the underlying mechanism remains obscure. In the present study, we addressed the molecular events in fluoxetine against ischemia/reperfusion-induced acute neuronal injury and inflammation-induced neuronal apoptosis. We showed that treatment of fluoxetine (40 mg/kg, i.p.) with twice injections at 1 h and 12 h after transient middle cerebral artery occlusion (tMCAO) respectively alleviated neurological deficits and neuronal apoptosis in a mouse ischemic stroke model, accompanied by inhibiting interleukin-1β (IL-1β), Bax and p53 expression and upregulating anti-apoptotic protein Bcl-2 level. We next mimicked neuroinflammation in ischemic stroke with IL-1β in primary cultured cortical neurons and found that pretreatment with fluoxetine (1 μM) prevented IL-1β-induced neuronal apoptosis and upregulation of p53 expression. Furthermore, we demonstrated that p53 overexpression in N2a cell line abolished the anti-apoptotic effect of fluoxetine, indicating that p53 downregulation is required for the protective role of fluoxetine in IL-1β-induced neuronal apoptosis. Fluoxetine downregulating p53 expression could be mimicked by SB203580, a specific inhibitor of p38, but blocked by anisomycin, a p38 activator. Collectively, our findings have revealed that fluoxetine protects against IL-1β-induced neuronal apoptosis via p38-p53 dependent pathway, which give us an insight into the potential of fluoxetine in terms of opening up novel therapeutic avenues for neurological diseases including stroke. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Inhibition of autophagy as a treatment strategy for p53 wild-type acute myeloid leukemia

    PubMed Central

    Folkerts, Hendrik; Hilgendorf, Susan; Wierenga, Albertus T J; Jaques, Jennifer; Mulder, André B; Coffer, Paul J; Schuringa, Jan Jacob; Vellenga, Edo

    2017-01-01

    Here we have explored whether inhibition of autophagy can be used as a treatment strategy for acute myeloid leukemia (AML). Steady-state autophagy was measured in leukemic cell lines and primary human CD34+ AML cells with a large variability in basal autophagy between AMLs observed. The autophagy flux was higher in AMLs classified as poor risk, which are frequently associated with TP53 mutations (TP53mut), compared with favorable- and intermediate-risk AMLs. In addition, the higher flux was associated with a higher expression level of several autophagy genes, but was not affected by alterations in p53 expression by knocking down p53 or overexpression of wild-type p53 or p53R273H. AML CD34+ cells were more sensitive to the autophagy inhibitor hydroxychloroquine (HCQ) than normal bone marrow CD34+ cells. Similar, inhibition of autophagy by knockdown of ATG5 or ATG7 triggered apoptosis, which coincided with increased expression of p53. In contrast to wild-type p53 AML (TP53wt), HCQ treatment did not trigger a BAX and PUMA-dependent apoptotic response in AMLs harboring TP53mut. To further characterize autophagy in the leukemic stem cell-enriched cell fraction AML CD34+ cells were separated into ROSlow and ROShigh subfractions. The immature AML CD34+-enriched ROSlow cells maintained higher basal autophagy and showed reduced survival upon HCQ treatment compared with ROShigh cells. Finally, knockdown of ATG5 inhibits in vivo maintenance of AML CD34+ cells in NSG mice. These results indicate that targeting autophagy might provide new therapeutic options for treatment of AML since it affects the immature AML subfraction. PMID:28703806

  12. Regulation of autophagy by cytoplasmic p53.

    PubMed

    Tasdemir, Ezgi; Maiuri, M Chiara; Galluzzi, Lorenzo; Vitale, Ilio; Djavaheri-Mergny, Mojgan; D'Amelio, Marcello; Criollo, Alfredo; Morselli, Eugenia; Zhu, Changlian; Harper, Francis; Nannmark, Ulf; Samara, Chrysanthi; Pinton, Paolo; Vicencio, José Miguel; Carnuccio, Rosa; Moll, Ute M; Madeo, Frank; Paterlini-Brechot, Patrizia; Rizzuto, Rosario; Szabadkai, Gyorgy; Pierron, Gérard; Blomgren, Klas; Tavernarakis, Nektarios; Codogno, Patrice; Cecconi, Francesco; Kroemer, Guido

    2008-06-01

    Multiple cellular stressors, including activation of the tumour suppressor p53, can stimulate autophagy. Here we show that deletion, depletion or inhibition of p53 can induce autophagy in human, mouse and nematode cells subjected to knockout, knockdown or pharmacological inhibition of p53. Enhanced autophagy improved the survival of p53-deficient cancer cells under conditions of hypoxia and nutrient depletion, allowing them to maintain high ATP levels. Inhibition of p53 led to autophagy in enucleated cells, and cytoplasmic, not nuclear, p53 was able to repress the enhanced autophagy of p53(-/-) cells. Many different inducers of autophagy (for example, starvation, rapamycin and toxins affecting the endoplasmic reticulum) stimulated proteasome-mediated degradation of p53 through a pathway relying on the E3 ubiquitin ligase HDM2. Inhibition of p53 degradation prevented the activation of autophagy in several cell lines, in response to several distinct stimuli. These results provide evidence of a key signalling pathway that links autophagy to the cancer-associated dysregulation of p53.

  13. Antiproliferative and Apoptotic Effect of Dendrosomal Curcumin Nanoformulation in P53 Mutant and Wide-Type Cancer Cell Lines.

    PubMed

    Montazeri, Maryam; Pilehvar-Soltanahmadi, Younes; Mohaghegh, Mina; Panahi, Alireza; Khodi, Samaneh; Zarghami, Nosratollah; Sadeghizadeh, Majid

    2017-01-01

    The aim of this paper is to investigate the effect of dendrosomal curcumin (DNC) on the expression of p53 in both p53 mutant cell lines SKBR3/SW480 and p53 wild-type MCF7/HCT116 in both RNA and protein levels. Curcumin, derived from Curcumin longa, is recently considered in cancer related researches for its cell growth inhibition properties. p53 is a common tumor-suppressor gene involved in cancers and its mutation not only inhibits tumor suppressor activity but also promotes oncogenic activity. Here, p53 mutant/Wild-type cells were employed to study the toxicity of DNC using MTT assay, Flow cytometry and Annexin-V, Real-time PCR and Western blot were used to analyze p53, BAX, Bcl-2, p21 and Noxa changes after treatment. During the time, DNC increased the SubG1 cells and decreased G1, S and G2/M cells, early apoptosis also indicated the inhibition of cell growth in early phase. Real-Time PCR assay showed an increased mRNA of BAX, Noxa and p21 during the time with decreased Bcl-2. The expression of p53 mutant decreased in SKBR3/SW480, and the expression of p53 wild-type increased in MCF7/HCT116. Consequently, p53 plays an important role in mediating the survival by DNC, which can prevent tumor cell growth by modulating the expression of genes involved in apoptosis and proliferation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Effects of 1,540-nm Fractional Nonablative Erbium and 2,940-nm Fractional Ablative Erbium on p53 Epidermal Expression After 3 months: A Split-Face Interventional Study.

    PubMed

    Borges, Juliano; Araújo, Luciana; de Oliveira, Rodrigo P B; Manela-Azulay, Monica

    2018-04-16

    Expression of p53 by keratinocytes may be important in the pathogenesis of skin cancer induced by ultraviolet light. We used side-by-side nonablative and ablative erbium fractional laser resurfacing to assess the effects on expression of p53 by facial keratinocytes. Ten female patients (age range, 50-63 years) with Fitzpatrick skin Types I-IV and clinical signs of photoaging underwent erbium fractional laser resurfacing (nonablative, 1,540-nm; ablative, 2,940-nm) on opposite sides of the face. Skin biopsies were obtained before treatment and 3 months after treatment for comparison with control biopsies of face and inner arm, quantifying p53 in immunostained tissue sections. Only ablative (2,940-nm) treatments produced a statistically significant reduction in p53 scoring after 3 months. The histologic appearance of skin after ablative resurfacing more closely resembled inner arm skin (rather than facial skin) of control subjects. Epidermal repopulation with p53-negative keratinocytes through ablative erbium fractional laser resurfacing may diminish the risk of eventual malignancy in photoaged skin.

  15. Regulation of autophagy by cytoplasmic p53

    PubMed Central

    Tasdemir, Ezgi; Maiuri, M. Chiara; Galluzzi, Lorenzo; Vitale, Ilio; Djavaheri-Mergny, Mojgan; D'Amelio, Marcello; Criollo, Alfredo; Morselli, Eugenia; Zhu, Changlian; Harper, Francis; Nannmark, Ulf; Samara, Chrysanthi; Pinton, Paolo; Vicencio, José Miguel; Carnuccio, Rosa; Moll, Ute M.; Madeo, Frank; Paterlini-Brechot, Patrizia; Rizzuto, Rosario; Szabadkai, Gyorgy; Pierron, Gérard; Blomgren, Klas; Tavernarakis, Nektarios; Codogno, Patrice; Cecconi, Francesco; Kroemer, Guido

    2009-01-01

    Multiple cellular stressors, including activation of the tumour suppressor p53, can stimulate autophagy. Here we show that knockout, knockdown or pharmacological inhibition of p53 can induce autophagy in human, mouse and nematode cells. Enhanced autophagy improved the survival of p53-deficient cancer cells under conditions of hypoxia and nutrient depletion, allowing them to maintain high ATP levels. Inhibition of p53 led to autophagy in enucleated cells, and cytoplasmic, not nuclear, p53 was able to repress the enhanced autophagy of p53-/- cells. Many different inducers of autophagy (for example, starvation, rapamycin and toxins affecting the endoplasmic reticulum) stimulated proteasome-mediated degradation of p53 through a pathway relying on the E3 ubiquitin ligase HDM2. Inhibition of p53 degradation prevented the activation of autophagy in several cell lines, in response to several distinct stimuli. These results provide evidence of a key signalling pathway that links autophagy to the cancer-associated dysregulation of p53. PMID:18454141

  16. Heat shock factor-1 modulates p53 activity in the transcriptional response to DNA damage

    PubMed Central

    Logan, Ian R.; McNeill, Hesta V.; Cook, Susan; Lu, Xiaohong; Meek, David W.; Fuller-Pace, Frances V.; Lunec, John; Robson, Craig N.

    2009-01-01

    Here we define an important role for heat shock factor 1 (HSF1) in the cellular response to genotoxic agents. We demonstrate for the first time that HSF1 can complex with nuclear p53 and that both proteins are co-operatively recruited to p53-responsive genes such as p21. Analysis of natural and synthetic cis elements demonstrates that HSF1 can enhance p53-mediated transcription, whilst depletion of HSF1 reduces the expression of p53-responsive transcripts. We find that HSF1 is required for optimal p21 expression and p53-mediated cell-cycle arrest in response to genotoxins while loss of HSF1 attenuates apoptosis in response to these agents. To explain these novel properties of HSF1 we show that HSF1 can complex with DNA damage kinases ATR and Chk1 to effect p53 phosphorylation in response to DNA damage. Our data reveal HSF1 as a key transcriptional regulator in response to genotoxic compounds widely used in the clinical setting, and suggest that HSF1 will contribute to the efficacy of these agents. PMID:19295133

  17. p53-dependent p21-mediated growth arrest pre-empts and protects HCT116 cells from PUMA-mediated apoptosis induced by EGCG

    PubMed Central

    Thakur, Vijay S; Amin, A.R.M. Ruhul; Paul, Rajib K; Gupta, Kalpana; Hastak, Kedar; Agarwal, Mukesh K; Jackson, Mark W; Wald, David N; Mukhtar, Hasan; Agarwal, Munna L

    2010-01-01

    The tumor suppressor protein p53 plays a key role in regulation of negative cellular growth in response to EGCG. To further explore the role of p53 signaling and elucidate the molecular mechanism, we employed colon cancer HCT116 cell line and its derivatives in which a specific transcriptional target of p53 is knocked down by homologous recombination. Cells expressing p53 and p21 accumulate in G1 upon treatment with EGCG. In contrast, same cells lacking p21 traverse through the cell cycle and eventually undergo apoptosis as revealed by TUNEL staining. Treatment with EGCG leads to induction of p53, p21 and PUMA in p21 wild-type, and p53 and PUMA in p21−/− cells. Ablation of p53 by RNAi protects p21−/− cells, thus indicating a p53-dependent apoptosis by EGCG. Furthermore, analysis of cells lacking PUMA or Bax with or without p21 but with p53 reveals that all the cells expressing p53 and p21 survived after EGCG treatment. More interestingly, cells lacking both PUMA and p21 survived ECGC treatment whereas those lacking p21 and Bax did not. Taken together, our results present a novel concept wherein p21-dependent growth arrest pre-empts and protects cells from otherwise, in its absence, apoptosis which is mediated by activation of pro-apoptotic protein PUMA. Furthermore, we find that p53-dependent activation of PUMA in response to EGCG directly leads to apoptosis with out requiring Bax as is the case in response to agents that induce DNA damage. p21, thus can be used as a molecular switch for therapeutic intervention of colon cancer. PMID:20444544

  18. CDIP, a novel pro-apoptotic gene, regulates TNFα-mediated apoptosis in a p53-dependent manner

    PubMed Central

    Brown, Lauren; Ongusaha, Pat P; Kim, Hyung-Gu; Nuti, Shanthy; Mandinova, Anna; Lee, Ji Won; Khosravi-Far, Roya; Aaronson, Stuart A; Lee, Sam W

    2007-01-01

    We have identified a novel pro-apoptotic p53 target gene named CDIP (Cell Death Involved p53-target). Inhibition of CDIP abrogates p53-mediated apoptotic responses, demonstrating that CDIP is an important p53 apoptotic effector. CDIP itself potently induces apoptosis that is associated with caspase-8 cleavage, implicating the extrinsic cell death pathway in apoptosis mediated by CDIP. siRNA-directed knockdown of caspase-8 results in a severe impairment of CDIP-dependent cell death. In investigating the potential involvement of extrinsic cell death pathway in CDIP-mediated apoptosis, we found that TNF-α expression tightly correlates with CDIP expression, and that inhibition of TNF-α signaling attenuates CDIP-dependent apoptosis. We also demonstrate that TNF-α is upregulated in response to p53 and p53 inducing genotoxic stress, in a CDIP-dependent manner. Consistently, knockdown of TNF-α impairs p53-mediated stress-induced apoptosis. Together, these findings support a novel p53 → CDIP → TNF-α apoptotic pathway that directs apoptosis after exposure of cells to genotoxic stress. Thus, CDIP provides a new link between p53-mediated intrinsic and death receptor-mediated extrinsic apoptotic signaling, providing a novel target for cancer therapeutics aimed at maximizing the p53 apoptotic response of cancer cells to drug therapy. PMID:17599062

  19. Downregulation of B-myb promotes senescence via the ROS-mediated p53/p21 pathway, in vascular endothelial cells.

    PubMed

    Zhou, Zhihui; Yin, Yanlin; Chang, Qun; Sun, Guanqun; Lin, Jiahui; Dai, Yalei

    2017-04-01

    To reveal whether B-myb is involved in preventing senescence of vascular endothelial cells, and if so, to identify possible mechanisms for it. C57/BL6 male mice and primary human aortic endothelial cells (HAECs) were used. Bleomycin was applied to induce stress-related premature senescence. B-myb knockdown was achieved using an siRNA technique and cell senescence was assessed using the senescence-associated β-galactosidase (SA-β-gal) assay. Intracellular reactive oxygen species (ROS) production was analysed using an ROS assay kit and cell proliferation was evaluated using KFluor488 EdU kit. Capillary tube network formation was determined by Matrigel assay. Expressions of mRNA and protein levels were detected by real-time PCR and western blotting. B-myb expression significantly decreased, while p53 and p21 expressions increased in the aortas of aged mice. This expression pattern was also found in replicative senescent HAECs and senescent HAECs induced by bleomycin. B-myb knockdown resulted in upregulation of p22 phox , ROS accumulation and cell senescence of HAECs. Downregulation of B-myb significantly inhibited cell proliferation and capillary tube network formation and activated the p53/p21 signalling pathway. Blocking ROS production or inhibiting p53 activation remarkably attenuated SA-β-gal activity and delayed cell senescence induced by B-myb-silencing. Downregulation of B-myb induced senescence by upregulation of p22 phox and activation of the ROS/p53/p21 pathway, in our vascular endothelial cells, suggesting that B-myb may be a novel candidate for regulating cell senescence to protect against endothelial senescence-related cardiovascular diseases. © 2016 John Wiley & Sons Ltd.

  20. MiR-300 regulate the malignancy of breast cancer by targeting p53.

    PubMed

    Xu, Xiao-Heng; Li, Da-Wei; Feng, Hui; Chen, Hong-Mei; Song, Yan-Qiu

    2015-01-01

    In this study, we investigated the role of miR-300 in regulating cell proliferation and invasion of breast cancer (BC) cells. MicroRNA and protein expression patterns were compared between breast cancer tissue and normal tissue and between two different prognostic groups. The up-regulation of miR-300 was confirmed by real-time reverse transcription polymerase chain reaction and its expression was analyzed in MCF-7 breast cancer cells. We observed that miR-300 expression was frequently and dramatically up-regulated in human breast cancer tissues and cell lines compared with the matched adjacent normal tissues and cells. We further showed that transient and stable over-expression of miR-300 could promote cell proliferation and cell cycle progression. Moreover, p53, a key inhibitor of cell cycle, was verified as a direct target of miR-300, suggesting that miR-300 might promote breast cancer cell proliferation and invasion by regulating p53 expression. Our findings indicated that miR-300 up-regulation might exert some sort of antagonistic function by targeting p53 in breast cancer cell proliferation during breast tumorigenesis.

  1. MiR-300 regulate the malignancy of breast cancer by targeting p53

    PubMed Central

    Xu, Xiao-Heng; Li, Da-Wei; Feng, Hui; Chen, Hong-Mei; Song, Yan-Qiu

    2015-01-01

    Objective: In this study, we investigated the role of miR-300 in regulating cell proliferation and invasion of breast cancer (BC) cells. Methods: MicroRNA and protein expression patterns were compared between breast cancer tissue and normal tissue and between two different prognostic groups. The up-regulation of miR-300 was confirmed by real-time reverse transcription polymerase chain reaction and its expression was analyzed in MCF-7 breast cancer cells. Results: We observed that miR-300 expression was frequently and dramatically up-regulated in human breast cancer tissues and cell lines compared with the matched adjacent normal tissues and cells. We further showed that transient and stable over-expression of miR-300 could promote cell proliferation and cell cycle progression. Moreover, p53, a key inhibitor of cell cycle, was verified as a direct target of miR-300, suggesting that miR-300 might promote breast cancer cell proliferation and invasion by regulating p53 expression. Conclusion: Our findings indicated that miR-300 up-regulation might exert some sort of antagonistic function by targeting p53 in breast cancer cell proliferation during breast tumorigenesis. PMID:26221232

  2. A novel p53 mutational hotspot in skin tumors from UV-irradiated Xpc mutant mice alters transactivation functions.

    PubMed

    Inga, Alberto; Nahari, Dorit; Velasco-Miguel, Susana; Friedberg, Errol C; Resnick, Michael A

    2002-08-22

    A mutation in codon 122 of the mouse p53 gene resulting in a T to L amino acid substitution (T122-->L) is frequently associated with skin cancer in UV-irradiated mice that are both homozygous mutant for the nucleotide excision repair (NER) gene Xpc (Xpc(-/-)) and hemizygous mutant for the p53 gene. We investigated the functional consequences of the mouse T122-->L mutation when expressed either in mammalian cells or in the yeast Saccharomyces cerevisiae. Similar to a non-functional allele, high expression of the T122-->L allele in p53(-/-) mouse embryo fibroblasts and human Saos-2 cells failed to suppress growth. However, the T122-->L mutant p53 showed wild-type transactivation levels with Bax and MDM2 promoters when expressed in either cell type and retained transactivation of the p21 and the c-Fos promoters in one cell line. Using a recently developed rheostatable p53 induction system in yeast we assessed the T122-->L transactivation capacity at low levels of protein expression using 12 different p53 response elements (REs). Compared to wild-type p53 the T122-->L protein manifested an unusual transactivation pattern comprising reduced and enhanced activity with specific REs. The high incidence of the T122-->L mutant allele in the Xpc(-/-) background suggests that both genetic and epigenetic conditions may facilitate the emergence of particular functional p53 mutations. Furthermore, the approach that we have taken also provides for the dissection of functions that may be retained in many p53 tumor alleles.

  3. Expression of Bcl-2, p53, and MDM2 in Localized Prostate Cancer With Respect to the Outcome of Radical Radiotherapy Dose Escalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vergis, Roy; Corbishley, Catherine M.; Thomas, Karen

    Purpose: Established prognostic factors in localized prostate cancer explain only a moderate proportion of variation in outcome. We analyzed tumor expression of apoptotic markers with respect to outcome in men with localized prostate cancer in two randomized controlled trials of radiotherapy dose escalation. Methods and Materials: Between 1995 and 2001, 308 patients with localized prostate cancer received neoadjuvant androgen deprivation and radical radiotherapy at our institution in one of two dose-escalation trials. The biopsy specimens in 201 cases were used to make a biopsy tissue microarray. We evaluated tumor expression of Bcl-2, p53, and MDM2 by immunohistochemistry with respect tomore » outcome. Results: Median follow-up was 7 years, and 5-year freedom from biochemical failure (FFBF) was 70.4% (95% CI, 63.5-76.3%). On univariate analysis, expression of Bcl-2 (p < 0.001) and p53 (p = 0.017), but not MDM2 (p = 0.224), was significantly associated with FFBF. Expression of Bcl-2 remained significantly associated with FFBF (p = 0.001) on multivariate analysis, independently of T stage, Gleason score, initial prostate-specific antigen level, and radiotherapy dose. Seven-year biochemical control was 61% vs. 41% (p = 0.0122) for 74 Gy vs. 64 Gy, respectively, among patients with Bcl-2-positive tumors and 87% vs. 81% (p = 0.423) for 74 Gy vs. 64 Gy, respectively, among patients with Bcl-2-negative tumors. There was no statistically significant interaction between dose and Bcl-2 expression. Conclusions: Bcl-2 expression was a significant, independent determinant of biochemical control after neoadjuvant androgen deprivation and radical radiotherapy for prostate cancer. These data generate the hypothesis that Bcl-2 expression could be used to inform the choice of radiotherapy dose in individual patients.« less

  4. [A preliminary study on p53 gene in lung cancer tissues of workers exposed to silica and welding fumes].

    PubMed

    Liu, B; Zhou, P; Miao, Q

    1997-05-01

    Mutations of suppressor gene p53 was studied in 36 cases of silica related lung cancer and 6 cases of welding fume related lung cancer with immunohistochemical and PCR-SSCP methods. Cancer tissues were embedded in paraffin and stored for 13.4 years in average. Results revealed that there was abnormal mobility shift of electrophoresis in 18 cases with 20 point mutations of 42 specimens tested, accounted for 42.9%, and 50% (10/20) of the mutations were clustered in exon 8. This finding differed from mutational spectrum of gene in non-occupational lung cancer, in which mutation frequency of exon 8 ranged from 17.5% to 23.5%. Gene mutation frequency in varied pathological categories of pneumoconiosis related lung cancer also differed from that in common lung cancer. In the latter, the highest one was in small cell lung cancer (70%) and the lowest in adenocarcinoma (33%), but in the former, the highest in adenocarcinoma (53.9%) and the lowest in small cell lung cancer (30.8%). Immunohistochemical observations also showed a very high prevalence of p53 gene mutation expression (46.9%). Sequencing, which was determined in two cases of this study, revealed that two point mutations all occurred in non-hotspot codon 144 of p53 gene. Difference in gene mutation spectrum suggests that there exist specific carcinogens and carcinogenesis in silica and welding fume related lung cancer.

  5. Schisantherin A Improves Learning and Memory of Mice with D-Galactose-Induced Learning and Memory Impairment through Its Antioxidation and Regulation of p19/p53/p21/Cyclin D1/CDK4/RB Gene Expressions.

    PubMed

    Liu, Cong; Sun, Weijing; Li, Ning; Gao, Jiaqi; Yu, Chunyan; Wang, Chunmei; Sun, Jinghui; Jing, Shu; Chen, Jianguang; Li, He

    2018-05-31

    Schisantherin A (SCA) was evaluated for possible function in restoring the learning and memory impairment induced by D-galactose in mice. ICR mice were treated with D-galactose subcutaneously (220 mg·kg -1 ), and followed by SCA in different doses (1.25, 2.50 and 5.00 mg·kg -1 , administered orally) for 42 days. Effects of SCA on learning and memory were examined by step-through tests and Morris water maze tests. The activity of superoxide dismutase (SOD), the content of malondialdehyde (MDA) in the peripheral blood and hippocampus of mice were assayed by water-soluble tetrazolium-1 (WST-1) and thiobarbituric acid (TBA) methods. The contents of 8 hydroxy deoxy guanosine (8-OHdG) in the hippocampus of mice were detected by immunosorbent assay methods, respectively. Quantitative real-time PCR and Western Blot were respectively used to detect the expression of p19, p53, p21, cyclin D1, CDK4 and RB genes, and the phosphorylation of RB in the hippocampus of mice. We found that SCA significantly improved the learning and memory impairment induced by D-galactose in mice. After SCA treatment, SOD activity was increased and the content of MDA was decreased in both peripheral blood and hippocampus of mice. 8-OHDG content was also decreased in the hippocampus of mice. Furthermore, the expression of p19, p53 and p21 genes was reduced and the expression of cyclin D1 and CDK4 and the phosphorylation of RB protein were elevated in the hippocampus. SCA may improve the learning and memory impairment induced by D-galactose by enhancing the antioxidant capacity, and regulating the expression of p19/p53/p21/cyclinD1/CDK4 genes, and the phosphorylation of RB protein in the hippocampus of mice.

  6. Editor's Highlight: Hydroxyurea Exposure Activates the P53 Signaling Pathway in Murine Organogenesis-Stage Embryos.

    PubMed

    El Husseini, Nazem; Schlisser, Ava E; Hales, Barbara F

    2016-08-01

    Hydroxyurea, an anticancer agent and potent teratogen, induces oxidative stress and activates a DNA damage response pathway in the gestation day (GD) 9 mouse embryo. To delineate the stress response pathways activated by this drug, we investigated the effect of hydroxyurea exposure on the transcriptome of GD 9 embryos. Timed pregnant CD-1 mice were treated with saline or hydroxyurea (400 mg/kg or 600 mg/kg) on GD 9; embryonic gene and protein expression were examined 3 h later. Microarray analysis revealed that the expression of 1346 probe sets changed significantly in embryos exposed to hydroxyurea compared with controls; the P53 signaling pathway was highly affected. In addition, P53 related family members, P63 and P73, were predicted to be activated and had common and unique downstream targets. Western blot analysis revealed that active phospho-P53 was significantly increased in drug-exposed embryos; confocal microscopy showed that the translocation of phospho-P53 to the nucleus was widespread in the embryo. Furthermore, qRT-PCR showed that the expression of P53-regulated genes (Cdkn1A, Fas, and Trp53inp1) was significantly upregulated in hydroxyurea-exposed embryos; the concentration of the redox sensitive P53INP1 protein was also increased in a hydroxyurea dose-dependent fashion. Thus, hydroxyurea elicits a significant effect on the transcriptome of the organogenesis stage murine embryo, activating several key developmental signaling pathways related to DNA damage and oxidative stress. We propose that the P53 pathway plays a central role in the embryonic stress response and the developmental outcome after teratogen exposure. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53

    PubMed Central

    Martinez-Zapien, Denise; Ruiz, Francesc Xavier; Poirson, Juline; Mitschler, André; Ramirez-Ramos, Juan; Forster, Anne; Cousido-Siah, Alexandra; Masson, Murielle; Pol, Scott Vande; Podjarny, Alberto; Travé, Gilles; Zanier, Katia

    2015-01-01

    Summary The p53 pro-apoptotic tumor suppressor is mutated or functionally altered in most cancers. In epithelial tumors induced by “high-risk” mucosal Human Papillomaviruses (hrm-HPVs), including human cervical carcinoma and a growing number of head-and-neck cancers 1, p53 is degraded by the viral oncoprotein E6 2. In this process, E6 binds to a short LxxLL consensus sequence within the cellular ubiquitin ligase E6AP 3. Subsequently, the E6/E6AP heterodimer recruits and degrades p53 4. Neither E6 nor E6AP are separately able to recruit p53 3,5, and the precise mode of assembly of E6, E6AP and p53 is unknown. Here, we solved the crystal structure of a ternary complex comprising full-length HPV16 E6, the LxxLL motif of E6AP and the core domain of p53. The LxxLL motif of E6AP renders the conformation of E6 competent for interaction with p53 by structuring a p53-binding cleft on E6. Mutagenesis of critical positions at the E6-p53 interface disrupts p53 degradation. The E6-binding site of p53 is distal from previously described DNA- and protein-binding surfaces of the core domain. This suggests that, in principle, E6 may avoid competition with cellular factors by targeting both free and bound p53 molecules. The E6/E6AP/p53 complex represents a prototype of viral hijacking of both the ubiquitin-mediated protein degradation pathway and the p53 tumor suppressor pathway. The present structure provides a framework for the design of inhibitory therapeutic strategies against HPV-mediated oncogenesis. PMID:26789255

  8. Wip1 and p53 contribute to HTLV-1 Tax-induced tumorigenesis

    PubMed Central

    2012-01-01

    Background Human T-cell Leukemia Virus type 1 (HTLV-1) infects 20 million individuals world-wide and causes Adult T-cell Leukemia/Lymphoma (ATLL), a highly aggressive T-cell cancer. ATLL is refractory to treatment with conventional chemotherapy and fewer than 10% of afflicted individuals survive more than 5 years after diagnosis. HTLV-1 encodes a viral oncoprotein, Tax, that functions in transforming virus-infected T-cells into leukemic cells. All ATLL cases are believed to have reduced p53 activity although only a minority of ATLLs have genetic mutations in their p53 gene. It has been suggested that p53 function is inactivated by the Tax protein. Results Using genetically altered mice, we report here that Tax expression does not achieve a functional equivalence of p53 inactivation as that seen with genetic mutation of p53 (i.e. a p53−/− genotype). Thus, we find statistically significant differences in tumorigenesis between Tax+p53+/+versus Tax+p53−/− mice. We also find a role contributed by the cellular Wip1 phosphatase protein in tumor formation in Tax transgenic mice. Notably, Tax+Wip1−/− mice show statistically significant reduced prevalence of tumorigenesis compared to Tax+Wip1+/+ counterparts. Conclusions Our findings provide new insights into contributions by p53 and Wip1 in the in vivo oncogenesis of Tax-induced tumors in mice. PMID:23256545

  9. Metabolic activation of 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine and DNA adduct formation depends on p53: Studies in Trp53(+/+),Trp53(+/-) and Trp53(-/-) mice.

    PubMed

    Krais, Annette M; Speksnijder, Ewoud N; Melis, Joost P M; Singh, Rajinder; Caldwell, Anna; Gamboa da Costa, Gonçalo; Luijten, Mirjam; Phillips, David H; Arlt, Volker M

    2016-02-15

    The expression of the tumor suppressor p53 can influence the bioactivation of, and DNA damage induced by, the environmental carcinogen benzo[a]pyrene, indicating a role for p53 in its cytochrome P450 (CYP)-mediated biotransformation. The carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), which is formed during the cooking of food, is also metabolically activated by CYP enzymes, particularly CYP1A2. We investigated the potential role of p53 in PhIP metabolism in vivo by treating Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice with a single oral dose of 50 mg/kg body weight PhIP. N-(Deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP-C8-dG) levels in DNA, measured by liquid chromatography-tandem mass spectrometry, were significantly lower in liver, colon, forestomach and glandular stomach of Trp53(-/-) mice compared to Trp53(+/+) mice. Lower PhIP-DNA adduct levels in the livers of Trp53(-/-) mice correlated with lower Cyp1a2 enzyme activity (measured by methoxyresorufin-O-demethylase activity) in these animals. Interestingly, PhIP-DNA adduct levels were significantly higher in kidney and bladder of Trp53(-/-) mice compared to Trp53(+/+) mice, which was accompanied by higher sulfotransferase (Sult) 1a1 protein levels and increased Sult1a1 enzyme activity (measured by 2-naphthylsulfate formation from 2-naphthol) in kidneys of these animals. Our study demonstrates a role for p53 in the metabolism of PhIP in vivo, extending previous results on a novel role for p53 in xenobiotic metabolism. Our results also indicate that the impact of p53 on PhIP biotransformation is tissue-dependent and that in addition to Cyp1a enzymes, Sult1a1 can contribute to PhIP-DNA adduct formation. © 2015 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  10. Long noncoding RNA MEG3 mediated angiogenesis after cerebral infarction through regulating p53/NOX4 axis.

    PubMed

    Zhan, Renya; Xu, Kangli; Pan, Jianwei; Xu, Qingsheng; Xu, Shengjie; Shen, Jian

    2017-08-26

    This study aimed to explore the mechanism of lncRNA MEG3 on angiogenesis after cerebral infarction (CI). The rat brain microvascular endothelial cells (RBMVECs) isolated from rat was used to establish CI model, which were treated with oxygen-glucose deprivation/reoxygenation (OGD/R). The genes mRNA and protein expression levels in RBMVECs were determined by the quantitative real-time polymerase chain reaction (RT-qPCR) and western blot, respectively. The flow cytometry was used to measured cell apoptosis and intracellular reactive oxygen species (ROS) generation. The RBMVECs activities was detected by MTT method. The RNA-immunoprecipitation (RIP) assay was used to detect the interaction between MEG3 and p53, and the relationship between p53 and NOX4 was proved by chromatin co-immunoprecipitation (chip) assay. The results showed that OGD or OGD/R increased MEG3 and NOX4 expression, and there was positive correlation between MEG3 and NOX4 expression in RBMVECs. Next, knockdown of MEG3 indicated that inhibition of MEG3 was conducive to protect RBMVECs against OGD/R-induced apoptosis, with decreased NOX4 and p53 expression, further enhanced pro-angiogenic factors (HIF-1α and VEGF) expression, and reduced intracellular ROS generation. And then the RIP and CHIP assay demonstrated that MEG3 could interacted with p53 and regulated its expression, and p53 exerted significant binding in the promoters for NOX4, suggesting that MEG3 regulated NOX4 expression via p53. At last, knockdown of NOX4 indicated that inhibition of NOX4 protected RBMVECs against OGD/R-induced apoptosis, with increased cell viability and pro-angiogenic factors expression, and reduced ROS generation. LncRNA MEG3 was an important regulator in OGD/R induced-RBMVECs apoptosis and the mechanism of MEG3 on angiogenesis after CI was reduced ROS by p53/NOX4 axis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. ROS-dependent activation of JNK converts p53 into an efficient inhibitor of oncogenes leading to robust apoptosis

    PubMed Central

    Shi, Y; Nikulenkov, F; Zawacka-Pankau, J; Li, H; Gabdoulline, R; Xu, J; Eriksson, S; Hedström, E; Issaeva, N; Kel, A; Arnér, E S J; Selivanova, G

    2014-01-01

    Rescue of the p53 tumor suppressor is an attractive cancer therapy approach. However, pharmacologically activated p53 can induce diverse responses ranging from cell death to growth arrest and DNA repair, which limits the efficient application of p53-reactivating drugs in clinic. Elucidation of the molecular mechanisms defining the biological outcome upon p53 activation remains a grand challenge in the p53 field. Here, we report that concurrent pharmacological activation of p53 and inhibition of thioredoxin reductase followed by generation of reactive oxygen species (ROS), result in the synthetic lethality in cancer cells. ROS promote the activation of c-Jun N-terminal kinase (JNK) and DNA damage response, which establishes a positive feedback loop with p53. This converts the p53-induced growth arrest/senescence to apoptosis. We identified several survival oncogenes inhibited by p53 in JNK-dependent manner, including Mcl1, PI3K, eIF4E, as well as p53 inhibitors Wip1 and MdmX. Further, we show that Wip1 is one of the crucial executors downstream of JNK whose ablation confers the enhanced and sustained p53 transcriptional response contributing to cell death. Our study provides novel insights for manipulating p53 response in a controlled way. Further, our results may enable new pharmacological strategy to exploit abnormally high ROS level, often linked with higher aggressiveness in cancer, to selectively kill cancer cells upon pharmacological reactivation of p53. PMID:24413150

  12. Immunohistochemical Expression of Ki67 and p53 in Wilms Tumor and Its Relationship with Tumor Histology and Stage at Presentation

    PubMed Central

    Krishna, O. H. Radhika; Kayla, Geetha; Abdul Aleem, Mohammed; Malleboyina, Ramani; Reddy Kota, Ramesh

    2016-01-01

    Aim. Evaluate tumor proliferation marker (Ki67) and p53 tumor suppressor marker in Wilms tumor and correlate with histology, anaplasia, and staging. Design. Prospective, hospital based study conducted at a tertiary pediatric referral centre in south India. Setting. Wilms tumor is the most common childhood renal malignancy worldwide. Anaplasia on histology is associated with treatment resistance but not with aggressiveness clinical presentation. Chemotherapy for Wilms tumor is based on histology and staging. Most patients respond to current chemotherapy protocol. However, a small fraction relapses or metastasizes. Affordable prognostic markers are needed for histopathological evaluation of this tumor. Subjects. Cases of histologically confirmed Wilms tumor over five years. Cases after chemotherapy were excluded as the immunostaining was inconsistent in necrotic areas. Methods. The clinical and radiological findings of 31 cases of Wilms tumor were documented at a tertiary pediatric referral hospital over five years. In addition to Hematoxylin and Eosin staining, Ki67 proliferation index and p53 expression were correlated with tumor histology and staging. Results. Age incidence was 3–8 years with female preponderance. Significant correlation was noted between Ki67 proliferation index and tumor staging. p53 expression was not useful in stratification of Wilms tumor. Conclusion. Ki67 was cost-effective immunohistochemical marker for prognostication of pediatric Wilms tumor. PMID:26904359

  13. CP-31398 inhibits the growth of p53-mutated liver cancer cells in vitro and in vivo.

    PubMed

    He, Xing-Xing; Zhang, Yu-Nan; Yan, Jun-Wei; Yan, Jing-Jun; Wu, Qian; Song, Yu-Hu

    2016-01-01

    The tumor suppressor p53 is one of the most frequently mutated genes in hepatocellular carcinoma (HCC). Previous studies demonstrated that CP-31398 restored the native conformation of mutant p53 and trans-activated p53 downstream genes in tumor cells. However, the research on the application of CP-31398 to liver cancer has not been reported. Here, we investigated the effects of CP-31398 on the phenotype of HCC cells carrying p53 mutation. The effects of CP-31398 on the characteristic of p53-mutated HCC cells were evaluated through analyzing cell cycle, cell apoptosis, cell proliferation, and the expression of p53 downstream genes. In tumor xenografts developed by PLC/PRF/5 cells, the inhibition of tumor growth by CP-31398 was analyzed through gross morphology, growth curve, and the expression of p53-related genes. Firstly, we demonstrated that CP-31398 inhibited the growth of p53-mutated liver cancer cells in a dose-dependent and p53-dependent manner. Then, further study showed that CP-31398 re-activated wild-type p53 function in p53-mutated HCC cells, which resulted in inhibitive response of cell proliferation and an induction of cell-cycle arrest and apoptosis. Finally, in vivo data confirmed that CP-31398 blocked the growth of xenografts tumors through transactivation of p53-responsive downstream molecules. Our results demonstrated that CP-31398 induced desired phenotypic change of p53-mutated HCC cells in vitro and in vivo, which revealed that CP-31398 would be developed as a therapeutic candidate for HCC carrying p53 mutation.

  14. Screening of medicinal plant phytochemicals as natural antagonists of p53-MDM2 interaction to reactivate p53 functioning.

    PubMed

    Riaz, Muhammad; Ashfaq, Usman A; Qasim, Muhammad; Yasmeen, Erum; Ul Qamar, Muhammad T; Anwar, Farooq

    2017-10-01

    In most types of cancer, overexpression of murine double minute 2 (MDM2) often leads to inactivation of p53. The crystal structure of MDM2, with a 109-residue amino-terminal domain, reveals that MDM2 has a core hydrophobic region to which p53 binds as an amphipathic α helix. The interface depends on the steric complementarity between MDM2 and the hydrophobic region of p53. Especially, on p53's triad, amino acids Phe19, Trp23 and Leu26 bind to the MDM2 core. Results from studies suggest that the structural motif of both p53 and MDM2 can be attributed to similarities in the amphipathic α helix. Thus, in the current investigation it is hypothesized that the similarity in the structural motif might be the cause of p53 inactivation by MDM2. Hence, molecular docking and phytochemical screening approaches are appraised to inhibit the hydrophobic cleft of MDM2 and to stop p53-MDM2 interaction, resulting in reactivation of p53 activity. For this purpose, a library of 2295 phytochemicals were screened against p53-MDM2 to find potential candidates. Of these, four phytochemicals including epigallocatechin gallate, alvaradoin M, alvaradoin E and nordihydroguaiaretic acid were found to be potential inhibitors of p53-MDM2 interaction. The screened phytochemicals, derived from natural extracts, may have negligible side effects and can be explored as potent antagonists of p53-MDM2 interactions, resulting in reactivation of the normal transcription of p53.

  15. hCLCA2 is a p53-inducible inhibitor of breast cancer cell proliferation

    PubMed Central

    Walia, Vijay; Ding, Ming; Kumar, Sumit; Nie, Daotai; Premkumar, Louis; Elble, Randolph C.

    2009-01-01

    hCLCA2 is frequently downregulated in breast cancer and is a candidate tumor suppressor gene. We show here that the hCLCA2 gene is strongly induced by p53 in response to DNA damage. Adenoviral expression of p53 induces hCLCA2 in a variety of breast cell lines. Further, we find that p53 binds to consensus elements in the hCLCA2 promoter and mutation of these sites abolishes p53-responsiveness and induction by DNA damage. Adenoviral transduction of hCLCA2 into immortalized cells induces p53, CDK inhibitors p21 and p27, and cell cycle arrest by 24 hours, and caspase induction and apoptosis by 40 hours post-infection. Transduction of the malignant tumor cell line BT549 on the other hand does not induce p53, p21, or p27 but instead induces apoptosis directly and more rapidly. Knockout and knockdown studies indicate that growth inhibition and apoptosis are signaled via multiple pathways. Conversely, suppression of hCLCA2 by RNA interference enhances proliferation of MCF10A and reduces sensitivity to doxorubicin. Gene expression profiles indicate that hCLCA2 levels are strongly predictive of tumor cell sensitivity to doxorubicin and other chemotherapeutics. Because certain Cl- channels are proposed to promote apoptosis by reducing intracellular pH, we tested whether, and established that, hCLCA2 enhances Cl- current in breast cancer cells and reduces pH to ∼6.7. These results reveal hCLCA2 as a novel p53-inducible growth inhibitor, explain how its downregulation confers a survival advantage to tumor cells, and suggest both prognostic and therapeutic applications. PMID:19654313

  16. ATM and MET kinases are synthetic lethal with non-genotoxic activation of p53

    PubMed Central

    Sullivan, Kelly D.; Padilla-Just, Nuria; Henry, Ryan E.; Porter, Christopher C.; Kim, Jihye; Tentler, John J.; Eckhardt, S. Gail; Tan, Aik Choon; DeGregori, James; Espinosa, Joaquín M.

    2012-01-01

    The p53 tumor suppressor orchestrates alternative stress responses including cell cycle arrest and apoptosis, but the mechanisms defining cell fate upon p53 activation are poorly understood. Several small molecule activators of p53 have been developed, including Nutlin-3, but their therapeutic potential is limited by the fact that they induce reversible cell cycle arrest in most cancer cell types. We report here the results of a ‘Synthetic Lethal with Nutlin-3’ genome-wide shRNA screen, which revealed that the ATM and MET kinases govern cell fate choice upon p53 activation. Genetic or pharmacological interference with ATM or MET activity converts the cellular response from cell cycle arrest into apoptosis in diverse cancer cell types without affecting expression of key p53 target genes. ATM and MET inhibitors enable Nutlin-3 to kill tumor spheroids. These results identify novel pathways controlling the cellular response to p53 activation and aid in the design of p53-based therapies. PMID:22660439

  17. Identification of two novel functional p53 responsive elements in the Herpes Simplex Virus-1 genome

    PubMed Central

    Hsieh, Jui-Cheng; Kuta, Ryan; Armour, Courtney R.; Boehmer, Paul E.

    2014-01-01

    Analysis of the herpes simplex virus-1 (HSV-1) genome reveals two candidate p53 responsive elements (p53RE), located in proximity to the replication origins oriL and oriS, referred to as p53RE-L and p53RE-S, respectively. The sequences of p53RE-L and p53RE-S conform to the p53 consensus site and are present in HSV-1 strains KOS, 17, and F. p53 binds to both elements in vitro and in virus-infected cells. Both p53RE-L and p53RE-S are capable of conferring p53-dependent transcriptional activation onto a heterologous reporter gene. Importantly, expression of the essential immediate early viral transactivator ICP4 and the essential DNA replication protein ICP8, that are adjacent to p53RE-S and p53RE-L, are repressed in a p53-dependent manner. Taken together, this study identifies two novel functional p53RE in the HSV-1 genome and suggests a complex mechanism of viral gene regulation by p53 which may determine progression of the lytic viral replication cycle or the establishment of latency. PMID:25010269

  18. p53 is a major component of the transcriptional and apoptotic program regulated by PI 3-kinase/Akt/GSK3 signaling.

    PubMed

    Nayak, G; Cooper, G M

    2012-10-11

    The phosphatidylinositol (PI) 3-kinase/Akt signaling pathway has a prominent role in cell survival and proliferation, in part, by regulating gene expression at the transcriptional level. Previous work using global expression profiling identified FOXOs and the E-box-binding transcription factors MITF and USF1 as key targets of PI 3-kinase signaling that lead to the induction of proapoptotic and cell cycle arrest genes in response to inhibition of PI 3-kinase. In this study, we investigated the role of p53 downstream of PI 3-kinase signaling by analyzing the effects of inhibition of PI 3-kinase in Rat-1 cells, which have wild-type p53, compared with Rat-1 cells expressing a dominant-negative p53 mutant. Expression of dominant-negative p53 conferred partial resistance to apoptosis induced by inhibition of PI 3-kinase. Global gene expression profiling combined with computational and experimental analysis of transcription factor binding sites demonstrated that p53, along with FOXO, MITF and USF1, contributed to gene induction in response to PI 3-kinase inhibition. Activation of p53 was mediated by phosphorylation of the histone acetyltransferase Tip60 by glycogen synthase kinase (GSK) 3, leading to activation of p53 by acetylation. Many of the genes targeted by p53 were also targeted by FOXO and E-box-binding transcription factors, indicating that p53 functions coordinately with these factors to regulate gene expression downstream of PI 3-kinase/Akt/GSK3 signaling.

  19. Multiple primary tumors of the upper aerodigestive tract: is there a role for constitutional mutations in the p53 gene?

    PubMed

    Gallo, O; Sardi, I; Pepe, G; Franchi, A; Attanasio, M; Giusti, B; Bocciolini, C; Abbate, R

    1999-07-19

    Head-and-neck cancer (HNC) patients have a high risk of developing second primary tumors of the upper aerodigestive tract, the main cause of death. Although the roles of tobacco and diet in multiple head-and-neck carcinogenesis have been thoroughly investigated, little is known about individual genetic susceptibility factors involved in this process. Genomic instability, reflecting the propensity and the susceptibility of the genome to acquire multiple alterations, could be considered a driving force behind multiple carcinogenesis. Mutation of the p53 tumor-suppressor gene has been proposed to play an important role in this process. Therefore, we evaluated the incidence of inherited p53 germ-line alteration(s) in a population of 24 consecutive HNC patients and their first-degree relatives affected by multiple malignancies as well as the occurrence of p53 somatic acquired mutation(s) in 16 cancers, including first and second primaries from 5 HNCs of the same group. Mutations in exons 4-11 of the p53 gene were investigated using SSCP-PCR analysis and DNA sequencing. Analysis was extended to the peripheral blood and cancer biopsies available from first-degree relatives of cancer-prone families with p53 germ-line mutations. p53 germ-line mutations were identified in the peripheral blood and corresponding cancers of 3 HNC patients who had multiple malignancies. The only missense mutation detected was mapped in exon 6; it is a GTG to GAG substitution with an amino acid change from Val to Glu at codon 197. The remaining 2 p53 germ-line mutations were single-nucleotide substitutions without amino acid change in exon 6 (codon 213, CGA to CGG) and in exon 8 (codon 295, CCT to CCC), respectively. These mutations were found in HNC patients with a family history of cancer. Abnormal expression of wild-type p53 protein in normal and pathological tissues from patients with the same sense single-nucleotide substitutions was detected by immuno-histochemistry.

  20. Interleukin-6 increases matrix metalloproteinase-14 (MMP-14) levels via down-regulation of p53 to drive cancer progression.

    PubMed

    Cathcart, Jillian M; Banach, Anna; Liu, Alice; Chen, Jun; Goligorsky, Michael; Cao, Jian

    2016-09-20

    Matrix metalloproteinases (MMPs) play critical roles in cancer invasion and metastasis by digesting basement membrane and extracellular matrix (ECM). Much attention has focused on the enzymatic activities of MMPs; however, the regulatory mechanism of MMP expression remains elusive. By employing bioinformatics analysis, we identified a potential p53 response element within the MMP-14 promoter. Experimentally, we found that p53 can repress MMP-14 promoter activity, whereas deletion of this p53 response element abrogated this effect. Furthermore, we found that p53 expression decreases MMP-14 mRNA and protein levels and attenuates MMP-14-mediated cellular functions. Additional promoter analysis and chromatin immunoprecipitation studies identified a mechanism of regulation of MMP-14 expression by which p53 and transcription factor Sp1 competitively bind to the promoter. As the correlation between inflammation and cancer aggressiveness is well described, we next sought to evaluate if inflammatory cytokines could differentially affect p53 and MMP-14 levels. We demonstrate that interleukin-6 (IL-6) down-regulates p53 protein levels and thus results in a concomitant increase in MMP-14 expression, leading to enhanced cancer cell invasion and metastasis. Our data collectively indicate a novel mechanism of regulation of MMP-14 by a cascade of IL-6 and p53, demonstrating that the tumor microenvironment directly stimulates molecular changes in cancer cells to drive an invasive phenotype.

  1. Interleukin-6 increases matrix metalloproteinase-14 (MMP-14) levels via down-regulation of p53 to drive cancer progression

    PubMed Central

    Cathcart, Jillian M.; Banach, Anna; Liu, Alice; Chen, Jun; Goligorsky, Michael; Cao, Jian

    2016-01-01

    Matrix metalloproteinases (MMPs) play critical roles in cancer invasion and metastasis by digesting basement membrane and extracellular matrix (ECM). Much attention has focused on the enzymatic activities of MMPs; however, the regulatory mechanism of MMP expression remains elusive. By employing bioinformatics analysis, we identified a potential p53 response element within the MMP-14 promoter. Experimentally, we found that p53 can repress MMP-14 promoter activity, whereas deletion of this p53 response element abrogated this effect. Furthermore, we found that p53 expression decreases MMP-14 mRNA and protein levels and attenuates MMP-14-mediated cellular functions. Additional promoter analysis and chromatin immunoprecipitation studies identified a mechanism of regulation of MMP-14 expression by which p53 and transcription factor Sp1 competitively bind to the promoter. As the correlation between inflammation and cancer aggressiveness is well described, we next sought to evaluate if inflammatory cytokines could differentially affect p53 and MMP-14 levels. We demonstrate that interleukin-6 (IL-6) down-regulates p53 protein levels and thus results in a concomitant increase in MMP-14 expression, leading to enhanced cancer cell invasion and metastasis. Our data collectively indicate a novel mechanism of regulation of MMP-14 by a cascade of IL-6 and p53, demonstrating that the tumor microenvironment directly stimulates molecular changes in cancer cells to drive an invasive phenotype. PMID:27531896

  2. p53-regulated autophagy is controlled by glycolysis and determines cell fate

    PubMed Central

    Duan, Lei; Perez, Ricardo E.; Davaadelger, Batzaya; Dedkova, Elena N.; Blatter, Lothar A.; Maki, Carl G.

    2015-01-01

    The tumor suppressor p53 regulates downstream targets that determine cell fate. Canonical p53 functions include inducing apoptosis, growth arrest, and senescence. Non-canonical p53 functions include its ability to promote or inhibit autophagy and its ability to regulate metabolism. The extent to which autophagy and/or metabolic regulation determines cell fate by p53 is unclear. To address this, we compared cells resistant or sensitive to apoptosis by the p53 activator Nutlin-3a. In resistant cells, glycolysis was maintained upon Nutlin-3a treatment, and activated p53 promoted prosurvival autophagy. In contrast, in apoptosis sensitive cells activated p53 increased superoxide levels and inhibited glycolysis through repression of glycolytic pathway genes. Glycolysis inhibition and increased superoxide inhibited autophagy by repressing ATG genes essential for autophagic vesicle maturation. Inhibiting glycolysis increased superoxide and blocked autophagy in apoptosis-resistant cells, causing p62-dependent caspase-8 activation. Finally, treatment with 2-DG or the autophagy inhibitors chloroquine or bafilomycin A1 sensitized resistant cells to Nutlin-3a-induced apoptosis. Together, these findings reveal novel links between glycolysis and autophagy that determine apoptosis-sensitivity in response to p53. Specifically, the findings indicate 1) that glycolysis plays an essential role in autophagy by limiting superoxide levels and maintaining expression of ATG genes required for autophagic vesicle maturation, 2) that p53 can promote or inhibit autophagy depending on the status of glycolysis, and 3) that inhibiting protective autophagy can expand the breadth of cells susceptible to Nutlin-3a induced apoptosis. PMID:26337205

  3. p53 Mutation suppresses adult neurogenesis in medaka fish (Oryzias latipes)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isoe, Yasuko; Okuyama, Teruhiro; Taniguchi, Yoshihito

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Progenitor migration is accompanied by an increase in their numbers in the adult brain. Black-Right-Pointing-Pointer p53 Mutation suppressed an increase in the number of the migrated progenitors. Black-Right-Pointing-Pointer The decreased progenitor number is not due to enhanced cell death. Black-Right-Pointing-Pointer p53 Mutation did not affect proliferation of stem cells. -- Abstract: Tumor suppressor p53 negatively regulates self-renewal of neural stem cells in the adult murine brain. Here, we report that the p53 null mutation in medaka fish (Oryzias latipes) suppressed neurogenesis in the telencephalon, independent of cell death. By using 5-bromo-29-deoxyuridine (BrdU) immunohistochemistry, we identified 18 proliferation zonesmore » in the brains of young medaka fish; in situ hybridization showed that p53 was expressed selectively in at least 12 proliferation zones. We also compared the number of BrdU-positive cells present in the whole telencephalon of wild-type (WT) and p53 mutant fish. Immediately after BrdU exposure, the number of BrdU-positive cells did not differ significantly between them. One week after BrdU-exposure, the BrdU-positive cells migrated from the proliferation zone, which was accompanied by an increased number in the WT brain. In contrast, no significant increase was observed in the p53 mutant brain. Terminal deoxynucleotidyl transferase (dUTP) nick end-labeling revealed that there was no significant difference in the number of apoptotic cells in the telencephalon of p53 mutant and WT medaka, suggesting that the decreased number of BrdU-positive cells in the mutant may be due to the suppression of proliferation rather than the enhancement of neural cell death. These results suggest that p53 positively regulates neurogenesis via cell proliferation.« less

  4. PML is a ROS sensor activating p53 upon oxidative stress

    PubMed Central

    Soilihi, Hassane

    2017-01-01

    Promyelocytic leukemia (PML) nuclear bodies (NBs) recruit partner proteins, including p53 and its regulators, thereby controlling their abundance or function. Investigating arsenic sensitivity of acute promyelocytic leukemia, we proposed that PML oxidation promotes NB biogenesis. However, physiological links between PML and oxidative stress response in vivo remain unexplored. Here, we identify PML as a reactive oxygen species (ROS) sensor. Pml−/− cells accumulate ROS, whereas PML expression decreases ROS levels. Unexpectedly, Pml−/− embryos survive acute glutathione depletion. Moreover, Pml−/− animals are resistant to acetaminophen hepatotoxicity or fasting-induced steatosis. Molecularly, Pml−/− animals fail to properly activate oxidative stress–responsive p53 targets, whereas the NRF2 response is amplified and accelerated. Finally, in an oxidative stress–prone background, Pml−/− animals display a longevity phenotype, likely reflecting decreased basal p53 activation. Thus, similar to p53, PML exerts basal antioxidant properties but also drives oxidative stress–induced changes in cell survival/proliferation or metabolism in vivo. Through NB biogenesis, PML therefore couples ROS sensing to p53 responses, shedding a new light on the role of PML in senescence or stem cell biology. PMID:28931625

  5. PML is a ROS sensor activating p53 upon oxidative stress.

    PubMed

    Niwa-Kawakita, Michiko; Ferhi, Omar; Soilihi, Hassane; Le Bras, Morgane; Lallemand-Breitenbach, Valérie; de Thé, Hugues

    2017-11-06

    Promyelocytic leukemia (PML) nuclear bodies (NBs) recruit partner proteins, including p53 and its regulators, thereby controlling their abundance or function. Investigating arsenic sensitivity of acute promyelocytic leukemia, we proposed that PML oxidation promotes NB biogenesis. However, physiological links between PML and oxidative stress response in vivo remain unexplored. Here, we identify PML as a reactive oxygen species (ROS) sensor. Pml -/- cells accumulate ROS, whereas PML expression decreases ROS levels. Unexpectedly, Pml -/- embryos survive acute glutathione depletion. Moreover, Pml -/- animals are resistant to acetaminophen hepatotoxicity or fasting-induced steatosis. Molecularly, Pml -/- animals fail to properly activate oxidative stress-responsive p53 targets, whereas the NRF2 response is amplified and accelerated. Finally, in an oxidative stress-prone background, Pml -/- animals display a longevity phenotype, likely reflecting decreased basal p53 activation. Thus, similar to p53, PML exerts basal antioxidant properties but also drives oxidative stress-induced changes in cell survival/proliferation or metabolism in vivo. Through NB biogenesis, PML therefore couples ROS sensing to p53 responses, shedding a new light on the role of PML in senescence or stem cell biology. © 2017 Niwa-Kawakita et al.

  6. p53 mutations promote proteasomal activity.

    PubMed

    Oren, Moshe; Kotler, Eran

    2016-07-27

    p53 mutations occur very frequently in human cancer. Besides abrogating the tumour suppressive functions of wild-type p53, many of those mutations also acquire oncogenic gain-of-function activities. Augmentation of proteasome activity is now reported as a common gain-of-function mechanism shared by different p53 mutants, which promotes cancer resistance to proteasome inhibitors.

  7. Activation of endogenous p53 by combined p19Arf gene transfer and nutlin-3 drug treatment modalities in the murine cell lines B16 and C6

    PubMed Central

    2010-01-01

    Background Reactivation of p53 by either gene transfer or pharmacologic approaches may compensate for loss of p19Arf or excess mdm2 expression, common events in melanoma and glioma. In our previous work, we constructed the pCLPG retroviral vector where transgene expression is controlled by p53 through a p53-responsive promoter. The use of this vector to introduce p19Arf into tumor cells that harbor p53wt should yield viral expression of p19Arf which, in turn, would activate the endogenous p53 and result in enhanced vector expression and tumor suppression. Since nutlin-3 can activate p53 by blocking its interaction with mdm2, we explored the possibility that the combination of p19Arf gene transfer and nutlin-3 drug treatment may provide an additive benefit in stimulating p53 function. Methods B16 (mouse melanoma) and C6 (rat glioma) cell lines, which harbor p53wt, were transduced with pCLPGp19 and these were additionally treated with nutlin-3 or the DNA damaging agent, doxorubicin. Viral expression was confirmed by Western, Northern and immunofluorescence assays. p53 function was assessed by reporter gene activity provided by a p53-responsive construct. Alterations in proliferation and viability were measured by colony formation, growth curve, cell cycle and MTT assays. In an animal model, B16 cells were treated with the pCLPGp19 virus and/or drugs before subcutaneous injection in C57BL/6 mice, observation of tumor progression and histopathologic analyses. Results Here we show that the functional activation of endogenous p53wt in B16 was particularly challenging, but accomplished when combined gene transfer and drug treatments were applied, resulting in increased transactivation by p53, marked cell cycle alteration and reduced viability in culture. In an animal model, B16 cells treated with both p19Arf and nutlin-3 yielded increased necrosis and decreased BrdU marking. In comparison, C6 cells were quite susceptible to either treatment, yet p53 was further activated

  8. IκB kinase b Mediating the Downregulation of p53 and p21 by Lipopolysaccharide in Human Papillomavirus 16+ Cervical Cancer Cells.

    PubMed

    Tan, Zhi-Hui; Zhang, Yu; Tian, Yan; Tan, Wei; Li, Ying-Hua

    2016-11-20

    Cervical cancer is the second most common cancer of woman in the world, and human papillomavirus (HPV) infection plays an important role in the development of most of the cases. IκB kinase β (IKKβ) is a kinase-mediating nuclear factor kappa B (NF-κB) activation by phosphorylating the inhibitor of NF-κB (IκB) and is related by some diseases caused by virus infection. However, there is little known about the correlation between IKKβ and HPV infection in cervical cancer. This study aimed to investigate the expression of IKKβ protein in cervical cancer tissues and effects of inflammation on HPV positive or negative cervical cancer cells through detecting the expression of IKKβ, IκBα, p53, and p21 proteins after treated with lipopolysaccharide (LPS) to mimic bacterial infection. We also examined the effects of LPS on cervical cancer cells after blocking IKKβ with pharmacological inhibitor. Thirty-six matched specimens of cervical cancer and adjacent normal tissues were collected and analyzed in the study. The expression of IKKβ in the tissue specimens was determined by immunohistochemical staining. In addition, Western blot was used to detect the expression level changes of IKKβ, IκBα, p53, and p21 after LPS stimulated in the HPV16+ (SiHa) and HPV16- (C33A) cervical cancer cell lines. Furthermore, the effects of IKKβ inhibitor SC-514 on LPS-induced expression change of these proteins were investigated. The expression of IKKβ was higher in cervical cancer than adjacent normal tissues, and there was no significant difference between tumor differentiation, size, and invasive depth with IKKβ expression. The LPS, which increased the expression level of IKKβ protein but decreased in the IκBα, p53 and p21 proteins, was illustrated in HPV16+ (SiHa) but not in HPV16- (C33A) cells. Moreover, IKKβ inhibitor SC-514 totally reversed the upregulation of IKKβ and downregulation of p53 and p21 by LPS in SiHa cells. IKKβ may mediate the downregulation of p53 and

  9. Epigallocatechin-3-Gallate Prevents Autoimmune-Associated Down-Regulation of p21 in Salivary Gland Cells Through a p53-Independent Pathway

    PubMed Central

    Dickinson, Douglas; Yu, Hongfang; Ohno, Seiji; Thomas, Cristina; DeRossi, Scott; Ma, Yat-Ho; Yates, Nicole; Hahn, Emily; Bisch, Frederick; Yamamoto, Tetsuya; Hsu, Stephen

    2015-01-01

    The submandibular salivary glands of non-obese diabetic (NOD) mice, a model for Sjogren’s syndrome and type-1 diabetes, show an elevated level of proliferating cell nuclear antigen (PCNA), a protein involved in cell proliferation and repair of DNA damage. We reported previously that epigallocatechin-3-gallate (EGCG), the most abundant green tea catechin, normalizes the PCNA level. PCNA’s activity can be regulated by the cyclin-dependent kinase inhibitor p21, which is also important for epithelial cell differentiation. In turn, expression of p21 and PCNA are partially regulated by Rb phosphorylation levels. EGCG was found to modulate p21 expression in epithelial cells, suggesting that EGCG-induced p21 could be associated with down-regulation of PCNA in vivo. The current study examined the protein levels of p21 and p53 (which can up-regulate p21) in NOD mice fed with either water or EGCG, and the effect of EGCG on p21 and p53 in cell line models with either normal or defective Rb. In NOD mice, the p21 level was low, and EGCG normalized it. In contrast to HSG cells with functional Rb, negligible expression of p21 in NS-SV-AC cells that lack Rb was not altered by EGCG treatment. Inhibition of p53 by siRNA demonstrated that p21 and p53 were induced independently in HSG cells by a physiological concentration range of EGCG, suggesting p53 could be an important but not conditional factor associated with p21 expression. In conclusion, PCNA and p21 levels are altered inversely in the NOD model for SS and in HSG cells, and warrant further study as candidate new markers for salivary dysfunction associated with xerostomia. Induction of p21 by EGCG could provide clinically useful normalization of salivary glands by promoting differentiation and reducing PCNA levels. PMID:24329914

  10. Mechanisms of Breast Carcinogenesis Involving Wild-Type p53

    DTIC Science & Technology

    1999-09-01

    Gryka , M . A., Litwak, G., Gebhardt, M ., level of p53 that was expressed in the cells in both these studies Bressac, B., Ozturk, M ., Baker, S. J...research: Tang, H., Zhao, K., Pizzolato, J.F., Fonarev, M ., Langer, J.C., and Manfredi, J.J. (1998) Constitutive expression of the cyclin-dependent...Biol. Chem. 274: 33747-33755. Meeting abstracts resulting from this, research: Resnick-Silverman, L., St. Clair, S., Thornborrow, E., Maurer, M

  11. Cross Talk between PML and p53 during Poliovirus Infection: Implications for Antiviral Defense

    PubMed Central

    Pampin, Mathieu; Simonin, Yannick; Blondel, Bruno; Percherancier, Yann; Chelbi-Alix, Mounira K.

    2006-01-01

    PML nuclear bodies (NBs) are dynamic intranuclear structures harboring numerous transiently or permanently localized proteins. PML, the NBs' organizer, is directly induced by interferon, and its expression is critical for antiviral host defense. We describe herein the molecular events following poliovirus infection that lead to PML-dependent p53 activation and protection against virus infection. Poliovirus infection induces PML phosphorylation through the extracellular signal-regulated kinase pathway, increases PML SUMOylation, and induces its transfer from the nucleoplasm to the nuclear matrix. These events result in the recruitment of p53 to PML NBs, p53 phosphorylation on Ser15, and activation of p53 target genes leading to the induction of apoptosis. Moreover, the knock-down of p53 by small interfering RNA results in higher poliovirus replication, suggesting that p53 participates in antiviral defense. This effect, which requires the presence of PML, is transient since poliovirus targets p53 by inducing its degradation in a proteasome- and MDM2-dependent manner. Our results provide evidence of how poliovirus counteracts p53 antiviral activity by regulating PML and NBs, thus leading to p53 degradation. PMID:16912307

  12. Cross talk between PML and p53 during poliovirus infection: implications for antiviral defense.

    PubMed

    Pampin, Mathieu; Simonin, Yannick; Blondel, Bruno; Percherancier, Yann; Chelbi-Alix, Mounira K

    2006-09-01

    PML nuclear bodies (NBs) are dynamic intranuclear structures harboring numerous transiently or permanently localized proteins. PML, the NBs' organizer, is directly induced by interferon, and its expression is critical for antiviral host defense. We describe herein the molecular events following poliovirus infection that lead to PML-dependent p53 activation and protection against virus infection. Poliovirus infection induces PML phosphorylation through the extracellular signal-regulated kinase pathway, increases PML SUMOylation, and induces its transfer from the nucleoplasm to the nuclear matrix. These events result in the recruitment of p53 to PML NBs, p53 phosphorylation on Ser15, and activation of p53 target genes leading to the induction of apoptosis. Moreover, the knock-down of p53 by small interfering RNA results in higher poliovirus replication, suggesting that p53 participates in antiviral defense. This effect, which requires the presence of PML, is transient since poliovirus targets p53 by inducing its degradation in a proteasome- and MDM2-dependent manner. Our results provide evidence of how poliovirus counteracts p53 antiviral activity by regulating PML and NBs, thus leading to p53 degradation.

  13. Downregulation of VRK1 by p53 in Response to DNA Damage Is Mediated by the Autophagic Pathway

    PubMed Central

    Valbuena, Alberto; Castro-Obregón, Susana; Lazo, Pedro A.

    2011-01-01

    Human VRK1 induces a stabilization and accumulation of p53 by specific phosphorylation in Thr18. This p53 accumulation is reversed by its downregulation mediated by Hdm2, requiring a dephosphorylated p53 and therefore also needs the removal of VRK1 as stabilizer. This process requires export of VRK1 to the cytosol and is inhibited by leptomycin B. We have identified that downregulation of VRK1 protein levels requires DRAM expression, a p53-induced gene. DRAM is located in the endosomal-lysosomal compartment. Induction of DNA damage by UV, IR, etoposide and doxorubicin stabilizes p53 and induces DRAM expression, followed by VRK1 downregulation and a reduction in p53 Thr18 phosphorylation. DRAM expression is induced by wild-type p53, but not by common human p53 mutants, R175H, R248W and R273H. Overexpression of DRAM induces VRK1 downregulation and the opposite effect was observed by its knockdown. LC3 and p62 were also downregulated, like VRK1, in response to UV-induced DNA damage. The implication of the autophagic pathway was confirmed by its requirement for Beclin1. We propose a model with a double regulatory loop in response to DNA damage, the accumulated p53 is removed by induction of Hdm2 and degradation in the proteasome, and the p53-stabilizer VRK1 is eliminated by the induction of DRAM that leads to its lysosomal degradation in the autophagic pathway, and thus permitting p53 degradation by Hdm2. This VRK1 downregulation is necessary to modulate the block in cell cycle progression induced by p53 as part of its DNA damage response. PMID:21386980

  14. Patterns of Proteins that Associate with p53 or with p53 Binding Sites Present in the Ribosomal Gene Cluster and MDM2 (P2) Promoter

    DTIC Science & Technology

    2000-08-01

    Spodoptera frugiperda (Sf21) cells were infected with a recombinant baculovirus expressing the wild-type human p53. 3-4 and 10-1 cells were grown at 37 ’C in...for further use. Spodoptera fugiperda (Sf21) cells were grown at 27 0C in TC-100 medium (GIBCO), supplemented with 10% of heat inactivated Fetal

  15. Loss of P53 regresses cardiac remodeling induced by pressure overload partially through inhibiting HIF1α signaling in mice.

    PubMed

    Li, Jiming; Zeng, Jingjing; Wu, Lianpin; Tao, Luyuan; Liao, Zhiyong; Chu, Maoping; Li, Lei

    2018-06-22

    The tumor suppressor p53 is recognized as the guardian of the genome in cell cycle and cell death. P53 expression increases as cardiac hypertrophy worsens to heart failure, suggesting that p53 may play important role in cardiac remodeling. In the present study, deletion of p53 in the mice heart would ameliorate cardiac hypertrophy induced by pressure overload. The role of p53 on heart was investigated using in vivo models. Cardiac hypertrophy in mice was induced by transverse aortic banding surgery. The extent of cardiac hypertrophy was examined by echocardiography, as well as pathological and molecular analyses of heart tissue. Global knockout of p53 in the mice reduced the hypertrophic response and markedly reduced cardiac apoptosis, and fibrosis. Ejection fraction of heart was also improved in hearts without p53 in response to pressure overload. Protein determination further suggested loss of p53 expression markedly increased Hypoxia-inducible factor 1-alpha (HIF1α) and vascular endothelial growth factor (VEGF) expression. The study indicated p53 deteriorated cardiac functions and cardiac hypertrophy, apoptosis, and fibrosis by partially inhibition of HIF1α and VEGF. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Lung tumors with distinct p53 mutations respond similarly to p53 targeted therapy but exhibit genotype-specific statin sensitivity

    PubMed Central

    Turrell, Frances K.; Kerr, Emma M.; Gao, Meiling; Thorpe, Hannah; Doherty, Gary J.; Cridge, Jake; Shorthouse, David; Speed, Alyson; Samarajiwa, Shamith; Hall, Benjamin A.; Griffiths, Meryl; Martins, Carla P.

    2017-01-01

    Lung adenocarcinoma accounts for ∼40% of lung cancers, the leading cause of cancer-related death worldwide, and current therapies provide only limited survival benefit. Approximately half of lung adenocarcinomas harbor mutations in TP53 (p53), making these mutants appealing targets for lung cancer therapy. As mutant p53 remains untargetable, mutant p53-dependent phenotypes represent alternative targeting opportunities, but the prevalence and therapeutic relevance of such effects (gain of function and dominant-negative activity) in lung adenocarcinoma are unclear. Through transcriptional and functional analysis of murine KrasG12D-p53null, -p53R172H (conformational), and -p53R270H (contact) mutant lung tumors, we identified genotype-independent and genotype-dependent therapeutic sensitivities. Unexpectedly, we found that wild-type p53 exerts a dominant tumor-suppressive effect on mutant tumors, as all genotypes were similarly sensitive to its restoration in vivo. These data show that the potential of p53 targeted therapies is comparable across all p53-deficient genotypes and may explain the high incidence of p53 loss of heterozygosity in mutant tumors. In contrast, mutant p53 gain of function and their associated vulnerabilities can vary according to mutation type. Notably, we identified a p53R270H-specific sensitivity to simvastatin in lung tumors, and the transcriptional signature that underlies this sensitivity was also present in human lung tumors, indicating that this therapeutic approach may be clinically relevant. PMID:28790158

  17. A Chimeric Protein PTEN-L-p53 Enters U251 Cells to Repress Proliferation and Invasion.

    PubMed

    Xiao, Man; An, Yang; Wang, Fengling; Yao, Chao; Zhang, Chu; Xin, Junfang; Duan, Yongjian; Zhao, Xiaofang; Fang, Na; Ji, Shaoping

    2018-05-23

    PTEN, a well-known tumor suppressor, dephosphorylates PIP3 and inhibits AKT activity. A translational variant of PTEN has been identified and termed PTEN-Long (PTEN-L). The additional 173 amino acids (PTEN-L leader) at the N-terminal constitute a potential signal peptide. Differing from canonical PTEN, PTEN-L is secreted into the extracellular fluid and re-enters recipient cells, playing the similar roles as PTEN in vivo and in vitro. This character confers the PTEN-L a therapeutic ability via directly protein delivering instead of traditional DNA and RNA vector options. In the present study, we employed PTEN-L leader to assemble a fusion protein, PTEN-L-p53, inosculated with the transcriptional regulator TP53, which is another powerful tumor suppressor. We overexpressed PTEN-L-p53 in HEK293T cells and detected it in both the cytoplasm and nucleus. Subsequently, we found that PTEN-L-p53 was secreted outside of the cells and detected in the culture media by immunoblotting. Furthermore, we demonstrated that PTEN-L-p53 freely entered the cells and suppressed the viability of U251cells (p53 R273H , a cell line with p53 R273H-mutation). PTEN-L-p53 is composed of endogenous protein/peptide bearing low immunogenicity, and only the junction region between PTEN-L leader and p53 can act as a new immune epitope. Accordingly, this fusion protein can potentially be used as a therapeutic option for TP53-abnormality cancers. Copyright © 2018. Published by Elsevier Inc.

  18. Pokemon enhances proliferation, cell cycle progression and anti-apoptosis activity of colorectal cancer independently of p14ARF-MDM2-p53 pathway.

    PubMed

    Zhao, Yi; Yao, Yun-hong; Li, Li; An, Wei-fang; Chen, Hong-zen; Sun, Li-ping; Kang, Hai-xian; Wang, Sen; Hu, Xin-rong

    2014-12-01

    Pokemon has been showed to directly suppress p14(ARF) expression and also to overexpress in multiple cancers. However, p14(ARF)-MDM2-p53 pathway is usually aberrant in colorectal cancer (CRC). The aim is to confirm whether Pokemon plays a role in CRC and explore whether Pokemon works through p14(ARF)-MDM2-p53 pathway in CRC. Immunohistochemistry for Pokemon, p14(ARF) and Mtp53 protein was applied to 45 colorectal epitheliums (CREs), 42 colorectal adenomas (CRAs) and 66 CRCs. Pokemon was knocked down with RNAi technique in CRC cell line Lovo to detect mRNA expression of p14(ARF) with qRT-PCR, cell proliferation with CCK8 assay, and cell cycle and apoptosis with flowcytometry analysis. The protein expression rates were significantly higher in CRC (75.8%) than in CRE (22.2 %) or CRA (38.1%) for Pokemon and higher in CRC (53.0%) than in CRE (0) or CRA (4.8%) for Mtp53, but not significantly different in CRC (86.4 %) versus CRE (93.3%) or CRA (90.5 %) for p14(ARF). Higher expression rate of Pokemon was associated with lymph node metastasis and higher Duke's stage. After knockdown of Pokemon in Lovo cells, the mRNA level of p14(ARF) was not significantly changed, the cell proliferation ability was decreased by 20.6%, cell cycle was arrested by 55.7% in G0/G1 phase, and apoptosis rate was increased by 19.0%. Pokemon enhanced the oncogenesis of CRC by promoting proliferation, cell cycle progression and anti-apoptosis activity of CRC cells independently of p14(ARF)-MDM2-p53 pathway. This finding provided a novel idea for understanding and further studying the molecular mechanism of Pokemon on carcinogenesis of CRC.

  19. Targeting the p53 signaling pathway in cancer therapy - The promises, challenges, and perils

    PubMed Central

    Stegh, Alexander H.

    2012-01-01

    Introduction Research over the past three decades has identified p53 as a multifunctional transcription factor, which regulates the expression of >2,500 target genes. p53 impacts myriad, highly diverse cellular processes, including the maintenance of genomic stability and fidelity, metabolism, longevity, and represents one of the most important and extensively studied tumor suppressors. Activated by various stresses, foremost genotoxic damage, hypoxia, heat shock and oncogenic assault, p53 blocks cancer progression by provoking transient or permanent growth arrest, by enabling DNA repair or by advancing cellular death programs. This potent and versatile anti-cancer activity profile, together with genomic and mutational analyses documenting inactivation of p53 in more than 50% of human cancers, motivated drug development efforts to (re-) activate p53 in established tumors. Areas covered In this review the complexities of p53 signaling in cancer are summarized. Current strategies and challenges to restore p53’s tumor suppressive function in established tumors, i.e. adenoviral gene transfer and small molecules to activate p53, to inactivate p53 inhibitors and to restore wild type function of p53 mutant proteins are discussed. Expert opinion It is indubitable that p53 represents an attractive target for the development of anti-cancer therapies. Whether p53 is ‘druggable’, however, remains an area of active research and discussion, as p53 has pro-survival functions and chronic p53 activation accelerates aging, which may compromise the long-term homeostasis of an organism. Thus, the complex biology and dual functions of p53 in cancer prevention and age-related cellular responses pose significant challenges on the development of p53-targeting cancer therapies. PMID:22239435

  20. WWOX and p53 Dysregulation Synergize to Drive the Development of Osteosarcoma.

    PubMed

    Del Mare, Sara; Husanie, Hussam; Iancu, Ortal; Abu-Odeh, Mohammad; Evangelou, Konstantinos; Lovat, Francesca; Volinia, Stefano; Gordon, Jonathan; Amir, Gail; Stein, Janet; Stein, Gary S; Croce, Carlo M; Gorgoulis, Vassilis; Lian, Jane B; Aqeilan, Rami I

    2016-10-15

    Osteosarcoma is a highly metastatic form of bone cancer in adolescents and young adults that is resistant to existing treatments. Development of an effective therapy has been hindered by very limited understanding of the mechanisms of osteosarcomagenesis. Here, we used genetically engineered mice to investigate the effects of deleting the tumor suppressor Wwox selectively in either osteoblast progenitors or mature osteoblasts. Mice with conditional deletion of Wwox in preosteoblasts (Wwox Δosx1 ) displayed a severe inhibition of osteogenesis accompanied by p53 upregulation, effects that were not observed in mice lacking Wwox in mature osteoblasts. Deletion of p53 in Wwox Δosx1 mice rescued the osteogenic defect. In addition, the Wwox;p53 Δosx1 double knockout mice developed poorly differentiated osteosarcomas that resemble human osteosarcoma in histology, location, metastatic behavior, and gene expression. Strikingly, the development of osteosarcomas in these mice was greatly accelerated compared with mice lacking p53 only. In contrast, combined WWOX and p53 inactivation in mature osteoblasts did not accelerate osteosarcomagenesis compared with p53 inactivation alone. These findings provide evidence that a WWOX-p53 network regulates normal bone formation and that disruption of this network in osteoprogenitors results in accelerated osteosarcoma. The Wwox;p53 Δosx1 double knockout establishes a new osteosarcoma model with significant advancement over existing models. Cancer Res; 76(20); 6107-17. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquitin ligase 'Synoviolin'.

    PubMed

    Yamasaki, Satoshi; Yagishita, Naoko; Sasaki, Takeshi; Nakazawa, Minako; Kato, Yukihiro; Yamadera, Tadayuki; Bae, Eunkyung; Toriyama, Sayumi; Ikeda, Rie; Zhang, Lei; Fujitani, Kazuko; Yoo, Eunkyung; Tsuchimochi, Kaneyuki; Ohta, Tomohiko; Araya, Natsumi; Fujita, Hidetoshi; Aratani, Satoko; Eguchi, Katsumi; Komiya, Setsuro; Maruyama, Ikuro; Higashi, Nobuyo; Sato, Mitsuru; Senoo, Haruki; Ochi, Takahiro; Yokoyama, Shigeyuki; Amano, Tetsuya; Kim, Jaeseob; Gay, Steffen; Fukamizu, Akiyoshi; Nishioka, Kusuki; Tanaka, Keiji; Nakajima, Toshihiro

    2007-01-10

    Synoviolin, also called HRD1, is an E3 ubiquitin ligase and is implicated in endoplasmic reticulum -associated degradation. In mammals, Synoviolin plays crucial roles in various physiological and pathological processes, including embryogenesis and the pathogenesis of arthropathy. However, little is known about the molecular mechanisms of Synoviolin in these actions. To clarify these issues, we analyzed the profile of protein expression in synoviolin-null cells. Here, we report that Synoviolin targets tumor suppressor gene p53 for ubiquitination. Synoviolin sequestrated and metabolized p53 in the cytoplasm and negatively regulated its cellular level and biological functions, including transcription, cell cycle regulation and apoptosis. Furthermore, these p53 regulatory functions of Synoviolin were irrelevant to other E3 ubiquitin ligases for p53, such as MDM2, Pirh2 and Cop1, which form autoregulatory feedback loops. Our results provide novel insights into p53 signaling mediated by Synoviolin.

  2. PRAP1 is a novel executor of p53-dependent mechanisms in cell survival after DNA damage

    PubMed Central

    Huang, B H; Zhuo, J L; Leung, C H W; Lu, G D; Liu, J J; Yap, C T; Hooi, S C

    2012-01-01

    p53 has a crucial role in governing cellular mechanisms in response to a broad range of genotoxic stresses. During DNA damage, p53 can either promote cell survival by activating senescence or cell-cycle arrest and DNA repair to maintain genomic integrity for cell survival or direct cells to undergo apoptosis to eliminate extensively damaged cells. The ability of p53 to execute these two opposing cell fates depends on distinct signaling pathways downstream of p53. In this study, we showed that under DNA damage conditions induced by chemotherapeutic drugs, gamma irradiation and hydrogen peroxide, p53 upregulates a novel protein, proline-rich acidic protein 1 (PRAP1). We identified functional p53-response elements within intron 1 of PRAP1 gene and showed that these regions interact directly with p53 using ChIP assays, indicating that PRAP1 is a novel p53 target gene. The induction of PRAP1 expression by p53 may promote resistance of cancer cells to chemotherapeutic drugs such as 5-fluorouracil (5-FU), as knockdown of PRAP1 increases apoptosis in cancer cells after 5-FU treatment. PRAP1 appears to protect cells from apoptosis by inducing cell-cycle arrest, suggesting that the induction of PRAP1 expression by p53 in response to DNA-damaging agents contributes to cancer cell survival. Our findings provide a greater insight into the mechanisms underlying the pro-survival role of p53 in response to cytotoxic treatments. PMID:23235459

  3. PRAP1 is a novel executor of p53-dependent mechanisms in cell survival after DNA damage.

    PubMed

    Huang, B H; Zhuo, J L; Leung, C H W; Lu, G D; Liu, J J; Yap, C T; Hooi, S C

    2012-12-13

    p53 has a crucial role in governing cellular mechanisms in response to a broad range of genotoxic stresses. During DNA damage, p53 can either promote cell survival by activating senescence or cell-cycle arrest and DNA repair to maintain genomic integrity for cell survival or direct cells to undergo apoptosis to eliminate extensively damaged cells. The ability of p53 to execute these two opposing cell fates depends on distinct signaling pathways downstream of p53. In this study, we showed that under DNA damage conditions induced by chemotherapeutic drugs, gamma irradiation and hydrogen peroxide, p53 upregulates a novel protein, proline-rich acidic protein 1 (PRAP1). We identified functional p53-response elements within intron 1 of PRAP1 gene and showed that these regions interact directly with p53 using ChIP assays, indicating that PRAP1 is a novel p53 target gene. The induction of PRAP1 expression by p53 may promote resistance of cancer cells to chemotherapeutic drugs such as 5-fluorouracil (5-FU), as knockdown of PRAP1 increases apoptosis in cancer cells after 5-FU treatment. PRAP1 appears to protect cells from apoptosis by inducing cell-cycle arrest, suggesting that the induction of PRAP1 expression by p53 in response to DNA-damaging agents contributes to cancer cell survival. Our findings provide a greater insight into the mechanisms underlying the pro-survival role of p53 in response to cytotoxic treatments.

  4. Mechanisms that enhance sustainability of p53 pulses.

    PubMed

    Kim, Jae Kyoung; Jackson, Trachette L

    2013-01-01

    The tumor suppressor p53 protein shows various dynamic responses depending on the types and extent of cellular stresses. In particular, in response to DNA damage induced by γ-irradiation, cells generate a series of p53 pulses. Recent research has shown the importance of sustaining repeated p53 pulses for recovery from DNA damage. However, far too little attention has been paid to understanding how cells can sustain p53 pulses given the complexities of genetic heterogeneity and intrinsic noise. Here, we explore potential molecular mechanisms that enhance the sustainability of p53 pulses by developing a new mathematical model of the p53 regulatory system. This model can reproduce many experimental results that describe the dynamics of p53 pulses. By simulating the model both deterministically and stochastically, we found three potential mechanisms that improve the sustainability of p53 pulses: 1) the recently identified positive feedback loop between p53 and Rorα allows cells to sustain p53 pulses with high amplitude over a wide range of conditions, 2) intrinsic noise can often prevent the dampening of p53 pulses even after mutations, and 3) coupling of p53 pulses in neighboring cells via cytochrome-c significantly reduces the chance of failure in sustaining p53 pulses in the presence of heterogeneity among cells. Finally, in light of these results, we propose testable experiments that can reveal important mechanisms underlying p53 dynamics.

  5. p53-dependent and p53-independent anticancer activity of a new indole derivative in human osteosarcoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappadone, C., E-mail: concettina.cappadone@unibo.it; Stefanelli, C.; Malucelli, E.

    2015-11-13

    Osteosarcoma (OS) is the most common primary malignant tumor of bone, occurring most frequently in children and adolescents. The mechanism of formation and development of OS have been studied for a long time. Tumor suppressor pathway governed by p53 gene are known to be involved in the pathogenesis of osteosarcoma. Moreover, loss of wild-type p53 activity is thought to be a major predictor of failure to respond to chemotherapy in various human cancers. In previous studies, we described the activity of a new indole derivative, NSC743420, belonging to the tubulin inhibitors family, capable to induce apoptosis and arrest of themore » cell cycle in the G2/M phase of various cancer cell lines. However, this molecule has never been tested on OS cell line. Here we address the activity of NSC743420 by examine whether differences in the p53 status could influence its effects on cell proliferation and death of OS cells. In particular, we compared the effect of the tested molecule on p53-wild type and p53-silenced U2OS cells, and on SaOS2 cell line, which is null for p53. Our results demonstrated that NSC743420 reduces OS cell proliferation by p53-dependent and p53-independent mechanisms. In particular, the molecule induces proliferative arrest that culminate to apoptosis in SaOS2 p53-null cells, while it brings a cytostatic and differentiating effect in U2OS cells, characterized by the cell cycle arrest in G0/G1 phase and increased alkaline phosphatase activity. - Highlights: • The indole derivative NSC743420 induces antitumor effects on osteosarcoma cells. • p53 status could drive the activity of antitumor agents on osteosarcoma cells. • NSC743420 induces cytostatic and differentiating effects on U2OS cells. • NSC743420 causes apoptosis on p53-null SaOS2 cells.« less

  6. Identification of two novel functional p53 responsive elements in the herpes simplex virus-1 genome.

    PubMed

    Hsieh, Jui-Cheng; Kuta, Ryan; Armour, Courtney R; Boehmer, Paul E

    2014-07-01

    Analysis of the herpes simplex virus-1 (HSV-1) genome reveals two candidate p53 responsive elements (p53RE), located in proximity to the replication origins oriL and oriS, referred to as p53RE-L and p53RE-S, respectively. The sequences of p53RE-L and p53RE-S conform to the p53 consensus site and are present in HSV-1 strains KOS, 17, and F. p53 binds to both elements in vitro and in virus-infected cells. Both p53RE-L and p53RE-S are capable of conferring p53-dependent transcriptional activation onto a heterologous reporter gene. Importantly, expression of the essential immediate early viral transactivator ICP4 and the essential DNA replication protein ICP8, that are adjacent to p53RE-S and p53RE-L, are repressed in a p53-dependent manner. Taken together, this study identifies two novel functional p53RE in the HSV-1 genome and suggests a complex mechanism of viral gene regulation by p53 which may determine progression of the lytic viral replication cycle or the establishment of latency. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Ser46 phosphorylation and prolyl-isomerase Pin1-mediated isomerization of p53 are key events in p53-dependent apoptosis induced by mutant huntingtin.

    PubMed

    Grison, Alice; Mantovani, Fiamma; Comel, Anna; Agostoni, Elena; Gustincich, Stefano; Persichetti, Francesca; Del Sal, Giannino

    2011-11-01

    Huntington disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for huntingtin protein. Several mechanisms have been proposed by which mutant huntingtin (mHtt) may trigger striatal neurodegeneration, including mitochondrial dysfunction, oxidative stress, and apoptosis. Furthermore, mHtt induces DNA damage and activates a stress response. In this context, p53 plays a crucial role in mediating mHtt toxic effects. Here we have dissected the pathway of p53 activation by mHtt in human neuronal cells and in HD mice, with the aim of highlighting critical nodes that may be pharmacologically manipulated for therapeutic intervention. We demonstrate that expression of mHtt causes increased phosphorylation of p53 on Ser46, leading to its interaction with phosphorylation-dependent prolyl isomerase Pin1 and consequent dissociation from the apoptosis inhibitor iASPP, thereby inducing the expression of apoptotic target genes. Inhibition of Ser46 phosphorylation by targeting homeodomain-interacting protein kinase 2 (HIPK2), PKCδ, or ataxia telangiectasia mutated kinase, as well as inhibition of the prolyl isomerase Pin1, prevents mHtt-dependent apoptosis of neuronal cells. These results provide a rationale for the use of small-molecule inhibitors of stress-responsive protein kinases and Pin1 as a potential therapeutic strategy for HD treatment.

  8. Silver nanoparticles defeat p53-positive and p53-negative osteosarcoma cells by triggering mitochondrial stress and apoptosis

    PubMed Central

    Kovács, Dávid; Igaz, Nóra; Keskeny, Csilla; Bélteky, Péter; Tóth, Tímea; Gáspár, Renáta; Madarász, Dániel; Rázga, Zsolt; Kónya, Zoltán; Boros, Imre M.; Kiricsi, Mónika

    2016-01-01

    Loss of function of the tumour suppressor p53 observed frequently in human cancers challenges the drug-induced apoptotic elimination of cancer cells from the body. This phenomenon is a major concern and provides much of the impetus for current attempts to develop a new generation of anticancer drugs capable of provoking apoptosis in a p53-independent manner. Since silver nanoparticles (AgNPs) possess unique cytotoxic features, we examined, whether their activity could be exploited to kill tumour suppressor-deficient cancer cells. Therefore, we investigated the effects of AgNPs on osteosarcoma cells of different p53 genetic backgrounds. As particle diameters might influence the molecular mechanisms leading to AgNP-induced cell death we applied 5 nm and 35 nm sized citrate-coated AgNPs. We found that both sized AgNPs targeted mitochondria and induced apoptosis in wild-type p53-containing U2Os and p53-deficient Saos-2 cells. According to our findings AgNPs are able to kill osteosarcoma cells independently from their actual p53 status and induce p53-independent cancer cell apoptosis. This feature renders AgNPs attractive candidates for novel chemotherapeutic approaches. PMID:27291325

  9. FBXW7-mutated colorectal cancer cells exhibit aberrant expression of phosphorylated-p53 at Serine-15

    PubMed Central

    Normatova, Makhliyo; Babaei-Jadidi, Roya; Tomlinson, Ian; Nateri, Abdolrahman S.

    2015-01-01

    FBXW7 mutations occur in a variety of human cancers including colorectal cancer (CRC). Elucidating its mechanism of action has become crucial for cancer therapy; however, it is also complicated by the fact that FBXW7 can influence many pathways due to its role as an E3-ubiquitin ligase in proteasome degradation. FBXW7 and TP53 are tumour suppressors intensively implicated in colorectal carcinogenesis. Deletion mutations in these two genes in animal models mark the progression from adenoma to carcinoma. Although still largely unknown, the last defense mechanism against CRC at the molecular level could be through a synergistic effect of the two genes. The underlying mechanism requires further investigation. In our laboratory, we have used a phospho-kinase profiler array to illustrate a potential molecular link between FBXW7 and p53 in CRC cells. In vitro and in vivo assessments demonstrated aberrant induction of phosphorylated p53 at Serine 15 [phospho-p53(Ser15)] in human FBXW7-deficient CRC cells as compared to their FBXW7-wild-type counterparts. FBXW7 loss in HCT116 cells promoted resistance to oxaliplatin. Immunoblotting data further confirmed that reduction of phospho-p53(Ser15) may contribute to the decreased efficacy of therapy in FBXW7-mutated CRC cells. The findings may suggest the applicability of phospho-p53(Ser15) as an indicative marker of FBXW7-mutations. Phospho-p53(Ser15) regulation by FBXW7 E3-ligase activity could provide important clues for understanding FBXW7 behavior in tumour progression and grounds for its clinical applicability thereafter. PMID:25860929

  10. Molecular Dynamic Simulation Insights into the Normal State and Restoration of p53 Function

    PubMed Central

    Fu, Ting; Min, Hanyi; Xu, Yong; Chen, Jianzhong; Li, Guohui

    2012-01-01

    As a tumor suppressor protein, p53 plays a crucial role in the cell cycle and in cancer prevention. Almost 50 percent of all human malignant tumors are closely related to a deletion or mutation in p53. The activity of p53 is inhibited by over-active celluar antagonists, especially by the over-expression of the negative regulators MDM2 and MDMX. Protein-protein interactions, or post-translational modifications of the C-terminal negative regulatory domain of p53, also regulate its tumor suppressor activity. Restoration of p53 function through peptide and small molecular inhibitors has become a promising strategy for novel anti-cancer drug design and development. Molecular dynamics simulations have been extensively applied to investigate the conformation changes of p53 induced by protein-protein interactions and protein-ligand interactions, including peptide and small molecular inhibitors. This review focuses on the latest MD simulation research, to provide an overview of the current understanding of interactions between p53 and its partners at an atomic level. PMID:22949826

  11. Caspase-2-mediated cleavage of Mdm2 creates p53-induced positive feedback loop

    PubMed Central

    Oliver, Trudy G.; Meylan, Etienne; Chang, Gregory P.; Xue, Wen; Burke, James R.; Humpton, Timothy J.; Hubbard, Diana; Bhutkar, Arjun; Jacks, Tyler

    2011-01-01

    SUMMARY Caspase-2 is an evolutionarily conserved caspase, yet its biological function and cleavage targets are poorly understood. Caspase-2 is activated by the p53 target gene product PIDD (also known as LRDD) in a complex called the Caspase-2-PIDDosome. We show that PIDD expression promotes growth arrest and chemotherapy resistance by a mechanism that depends on Caspase-2 and wild-type p53. PIDD-induced Caspase-2 directly cleaves the E3 ubiquitin ligase Mdm2 at Asp 367, leading to loss of the C-terminal RING domain responsible for p53 ubiquitination. As a consequence, N-terminally truncated Mdm2 binds p53 and promotes its stability. Upon DNA damage, p53 induction of the Caspase-2-PIDDosome creates a positive feedback loop that inhibits Mdm2 and reinforces p53 stability and activity, contributing to cell survival and drug resistance. These data establish Mdm2 as a cleavage target of Caspase-2 and provide insight into a mechanism of Mdm2 inhibition that impacts p53 dynamics upon genotoxic stress. PMID:21726810

  12. p53 is important for the anti-proliferative effect of ibuprofen in colon carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssen, Astrid; Schiffmann, Susanne; Birod, Kerstin

    2008-01-25

    S-ibuprofen which inhibits the cyclooxygenase-1/-2 and R-ibuprofen which shows no COX-inhibition at therapeutic concentrations have anti-carcinogenic effects in human colon cancer cells; however, the molecular mechanisms for these effects are still unknown. Using HCT-116 colon carcinoma cell lines, expressing either the wild-type form of p53 (HCT-116 p53{sup wt}) or being p(HCT-116 p53{sup -/-}), we demonstrated that both induction of a cell cycle block and apoptosis after S- and R-ibuprofen treatment is in part dependent on p53. Also in the in vivo nude mice model HCT-116 p53{sup -/-} xenografts were less sensitive for S- and R-ibuprofen treatment than HCT-116 p53{sup wt}more » cells. Furthermore, results indicate that induction of apoptosis in HCT-116 p53{sup wt} cells after ibuprofen treatment is in part dependent on a signalling pathway including the neutrophin receptor p75{sup NTR}, p53 and Bax.« less

  13. Autonomous feedback loop of RUNX1-p53-CBFB in acute myeloid leukemia cells.

    PubMed

    Morita, Ken; Noura, Mina; Tokushige, Chieko; Maeda, Shintaro; Kiyose, Hiroki; Kashiwazaki, Gengo; Taniguchi, Junichi; Bando, Toshikazu; Yoshida, Kenichi; Ozaki, Toshifumi; Matsuo, Hidemasa; Ogawa, Seishi; Liu, Pu Paul; Nakahata, Tatsutoshi; Sugiyama, Hiroshi; Adachi, Souichi; Kamikubo, Yasuhiko

    2017-11-30

    Although runt-related transcription factor 1 (RUNX1) and its associating core binding factor-β (CBFB) play pivotal roles in leukemogenesis, and inhibition of RUNX1 has now been widely recognized as a novel strategy for anti-leukemic therapies, it has been elusive how leukemic cells could acquire the serious resistance against RUNX1-inhibition therapies and also whether CBFB could participate in this process. Here, we show evidence that p53 (TP53) and CBFB are sequentially up-regulated in response to RUNX1 depletion, and their mutual interaction causes the physiological resistance against chemotherapy for acute myeloid leukemia (AML) cells. Mechanistically, p53 induced by RUNX1 gene silencing directly binds to CBFB promoter and stimulates its transcription as well as its translation, which in turn acts as a platform for the stabilization of RUNX1, thereby creating a compensative RUNX1-p53-CBFB feedback loop. Indeed, AML cells derived from relapsed cases exhibited higher CBFB expression levels compared to those from primary AML cells at diagnosis, and these CBFB expressions were positively correlated to those of p53. Our present results underscore the importance of RUNX1-p53-CBFB regulatory loop in the development and/or maintenance of AML cells, which could be targeted at any sides of this triangle in strategizing anti-leukemia therapies.

  14. Astrocytes Can Adopt Endothelial Cell Fates in a p53-Dependent Manner.

    PubMed

    Brumm, Andrew J; Nunez, Stefanie; Doroudchi, Mehdi M; Kawaguchi, Riki; Duan, Jinhzu; Pellegrini, Matteo; Lam, Larry; Carmichael, S Thomas; Deb, Arjun; Hinman, Jason D

    2017-08-01

    Astrocytes respond to a variety of CNS injuries by cellular enlargement, process outgrowth, and upregulation of extracellular matrix proteins that function to prevent expansion of the injured region. This astrocytic response, though critical to the acute injury response, results in the formation of a glial scar that inhibits neural repair. Scar-forming cells (fibroblasts) in the heart can undergo mesenchymal-endothelial transition into endothelial cell fates following cardiac injury in a process dependent on p53 that can be modulated to augment cardiac repair. Here, we sought to determine whether astrocytes, as the primary scar-forming cell of the CNS, are able to undergo a similar cellular phenotypic transition and adopt endothelial cell fates. Serum deprivation of differentiated astrocytes resulted in a change in cellular morphology and upregulation of endothelial cell marker genes. In a tube formation assay, serum-deprived astrocytes showed a substantial increase in vessel-like morphology that was comparable to human umbilical vein endothelial cells and dependent on p53. RNA sequencing of serum-deprived astrocytes demonstrated an expression profile that mimicked an endothelial rather than astrocyte transcriptome and identified p53 and angiogenic pathways as specifically upregulated. Inhibition of p53 with genetic or pharmacologic strategies inhibited astrocyte-endothelial transition. Astrocyte-endothelial cell transition could also be modulated by miR-194, a microRNA downstream of p53 that affects expression of genes regulating angiogenesis. Together, these studies demonstrate that differentiated astrocytes retain a stimulus-dependent mechanism for cellular transition into an endothelial phenotype that may modulate formation of the glial scar and promote injury-induced angiogenesis.

  15. Clinical Significance of p53 and p16(ink4a) Status in a Contemporary North American Penile Carcinoma Cohort.

    PubMed

    Zargar-Shoshtari, Kamran; Spiess, Philippe E; Berglund, Anders E; Sharma, Pranav; Powsang, Julio M; Giuliano, Anna; Magliocco, Anthony M; Dhillon, Jasreman

    2016-08-01

    Because of the low incidence of penile carcinoma (PC), the value of p16(ink4a), p53, and human papilloma virus (HPV) infection status in clinical practice remains unclear. Herein, we report our experience with potential clinical utility of these markers in men with PC treated at our institution. Tissue microarrays of 57 cases of invasive penile squamous cell carcinomas were immunohistochemically stained for p16 and p53. HPV in situ hybridization (ISH) for high-risk subtypes was also performed. Association between marker status, nodal disease, overall (OS) and cancer-specific survival (CSS) were assessed. p16 and HPV ISH were positive in 23 (40%) and 24 (42%) of the cohort, respectively. The proportion of warty, basaloid, or mixed warty basaloid tumor subtypes were significantly greater in the p16-positive patients (48% vs. 3%; P < .01). p53 expression was negative in 31 (54%) cases. Only in p16-negative patients, positive p53 status was associated with pN+ disease (odds ratio, 4.4 [95% confidence interval (CI), 1.04-18.6]). In Kaplan-Meier analysis, the unadjusted estimated OS was insignificantly longer in p16-positive patients (median OS, 75 vs. 27 months; P = .27) and median CSS was not reached (P = .16). In a multivariable Cox proportional hazard model, when controlling for pathological nodal status and adjuvant chemotherapy, p16 status was a significant predictor for improved CSS (hazard ratio, 0.36 [95% CI, 0.13-0.99]). The worst CSS was seen in pN+ patients with double negative p16 and p53 expression (8 vs. 34 months; P = .01). In this current cohort, p53 and p16 status showed clinical utility in predicting nodal disease as well as survival. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. p53 prevents progression of nevi to melanoma predominantly through cell cycle regulation

    PubMed Central

    Terzian, Tamara; Torchia, Enrique C.; Dai, Daisy; Robinson, Steven E.; Murao, Kazutoshi; Stiegmann, Regan A.; Gonzalez, Victoria; Boyle, Glen M.; Powell, Marianne B.; Pollock, Pamela M.; Lozano, Guillermina; Robinson, William A.; Roop, Dennis R.; Box, Neil F.

    2011-01-01

    p53 is the central member of a critical tumor suppressor pathway in virtually all tumor types, where it is silenced mainly by missense mutations. In melanoma, p53 predominantly remains wild type, thus its role has been neglected. To study the effect of p53 on melanocyte function and melanomagenesis, we crossed the ‘high-p53’ Mdm4+/− mouse to the well-established TP-ras0/+ murine melanoma progression model. After treatment with the carcinogen dimethylbenzanthracene (DMBA), TP-ras0/+ mice on the Mdm4+/− background developed fewer tumors with a delay in the age of onset of melanomas compared to TP-ras0/+ mice. Furthermore, we observed a dramatic decrease in tumor growth, lack of metastasis with increased survival of TP-ras0/+: Mdm4+/− mice. Thus, p53 effectively prevented the conversion of small benign tumors to malignant and metastatic melanoma. p53 activation in cultured primary melanocyte and melanoma cell lines using Nutlin-3, a specific Mdm2 antagonist, supported these findings. Moreover, global gene expression and network analysis of Nutlin-3-treated primary human melanocytes indicated that cell cycle regulation through the p21WAF1/CIP1 signaling network may be the key anti-melanomagenic activity of p53. PMID:20849464

  17. p53 genes function to restrain mobile elements

    PubMed Central

    Wylie, Annika; Jones, Amanda E.; D'Brot, Alejandro; Lu, Wan-Jin; Kurtz, Paula; Moran, John V.; Rakheja, Dinesh; Chen, Kenneth S.; Hammer, Robert E.; Comerford, Sarah A.; Amatruda, James F.; Abrams, John M.

    2016-01-01

    Throughout the animal kingdom, p53 genes govern stress response networks by specifying adaptive transcriptional responses. The human member of this gene family is mutated in most cancers, but precisely how p53 functions to mediate tumor suppression is not well understood. Using Drosophila and zebrafish models, we show that p53 restricts retrotransposon activity and genetically interacts with components of the piRNA (piwi-interacting RNA) pathway. Furthermore, transposon eruptions occurring in the p53− germline were incited by meiotic recombination, and transcripts produced from these mobile elements accumulated in the germ plasm. In gene complementation studies, normal human p53 alleles suppressed transposons, but mutant p53 alleles from cancer patients could not. Consistent with these observations, we also found patterns of unrestrained retrotransposons in p53-driven mouse and human cancers. Furthermore, p53 status correlated with repressive chromatin marks in the 5′ sequence of a synthetic LINE-1 element. Together, these observations indicate that ancestral functions of p53 operate through conserved mechanisms to contain retrotransposons. Since human p53 mutants are disabled for this activity, our findings raise the possibility that p53 mitigates oncogenic disease in part by restricting transposon mobility. PMID:26701264

  18. The curcumin analog HO-3867 selectively kills cancer cells by converting mutant p53 protein to transcriptionally active wildtype p53.

    PubMed

    Madan, Esha; Parker, Taylor M; Bauer, Matthias R; Dhiman, Alisha; Pelham, Christopher J; Nagane, Masaki; Kuppusamy, M Lakshmi; Holmes, Matti; Holmes, Thomas R; Shaik, Kranti; Shee, Kevin; Kiparoidze, Salome; Smith, Sean D; Park, Yu-Soon A; Gomm, Jennifer J; Jones, Louise J; Tomás, Ana R; Cunha, Ana C; Selvendiran, Karuppaiyah; Hansen, Laura A; Fersht, Alan R; Hideg, Kálmán; Gogna, Rajan; Kuppusamy, Periannan

    2018-03-23

    p53 is an important tumor-suppressor protein that is mutated in more than 50% of cancers. Strategies for restoring normal p53 function are complicated by the oncogenic properties of mutant p53 and have not met with clinical success. To counteract mutant p53 activity, a variety of drugs with the potential to reconvert mutant p53 to an active wildtype form have been developed. However, these drugs are associated with various negative effects such as cellular toxicity, nonspecific binding to other proteins, and inability to induce a wildtype p53 response in cancer tissue. Here, we report on the effects of a curcumin analog, HO-3867, on p53 activity in cancer cells from different origins. We found that HO-3867 covalently binds to mutant p53, initiates a wildtype p53-like anticancer genetic response, is exclusively cytotoxic toward cancer cells, and exhibits high anticancer efficacy in tumor models. In conclusion, HO-3867 is a p53 mutant-reactivating drug with high clinical anticancer potential. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Human T-cell leukemia virus type-1-encoded protein HBZ represses p53 function by inhibiting the acetyltransferase activity of p300/CBP and HBO1

    PubMed Central

    Hoang, Kimson; Ankney, John A.; Nguyen, Stephanie T.; Rushing, Amanda W.; Polakowski, Nicholas; Miotto, Benoit; Lemasson, Isabelle

    2016-01-01

    Adult T-cell leukemia (ATL) is an often fatal malignancy caused by infection with the complex retrovirus, human T-cell Leukemia Virus, type 1 (HTLV-1). In ATL patient samples, the tumor suppressor, p53, is infrequently mutated; however, it has been shown to be inactivated by the viral protein, Tax. Here, we show that another HTLV-1 protein, HBZ, represses p53 activity. In HCT116 p53+/+ cells treated with the DNA-damaging agent, etoposide, HBZ reduced p53-mediated activation of p21/CDKN1A and GADD45A expression, which was associated with a delay in G2 phase-arrest. These effects were attributed to direct inhibition of the histone acetyltransferase (HAT) activity of p300/CBP by HBZ, causing a reduction in p53 acetylation, which has be linked to decreased p53 activity. In addition, HBZ bound to, and inhibited the HAT activity of HBO1. Although HBO1 did not acetylate p53, it acted as a coactivator for p53 at the p21/CDKN1A promoter. Therefore, through interactions with two separate HAT proteins, HBZ impairs the ability of p53 to activate transcription. This mechanism may explain how p53 activity is restricted in ATL cells that do not express Tax due to modifications of the HTLV-1 provirus, which accounts for a majority of patient samples. PMID:26625199

  20. Interrelationship between TP53 gene deletion, protein expression and chromosome 17 aneusomy in gastric adenocarcinoma

    PubMed Central

    2009-01-01

    Background This study evaluates the existence of numerical alterations of chromosome 17 and TP53 gene deletion in gastric adenocarcinoma. The p53 protein expression was also evaluated, as well as, possible associations with clinicopathological characteristics. Methods Dual-color fluorescence in situ hybridization and immunostaining were performed in twenty gastric cancer samples of individuals from Northern Brazil. Results Deletion of TP53 was found in all samples. TP53 was inactivated mainly by single allelic deletion, varying to 7–39% of cells/case. Aneusomy of chromosome 17 was observed in 85% of cases. Chromosome 17 monosomy and gain were both observed in about half of cases. Cells with gain of chromosome 17 frequently presented TP53 deletion. The frequency of cells with two chr17 and one TP53 signals observed was higher in diffuse than in intestinal-type GC. Immunoreactivity of p53 was found only in intestinal-type samples. The frequency of cells with two chr17 and two TP53 signals found was higher in samples with positive p53 expression than in negative cases in intestinal-type GC. Conclusion We suggest that TP53 deletion and chromosome 17 aneusomy is a common event in GC and other TP53 alterations, as mutation, may be implicated in the distinct carcinogenesis process of diffuse and intestinal types. PMID:19619279

  1. Mutant p53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF).

    PubMed

    Tan, B S; Tiong, K H; Choo, H L; Chung, F Fei-Lei; Hii, L-W; Tan, S H; Yap, I K S; Pani, S; Khor, N T W; Wong, S F; Rosli, R; Cheong, S-K; Leong, C-O

    2015-07-16

    p53 is the most frequently mutated tumor-suppressor gene in human cancers. Unlike other tumor-suppressor genes, p53 mutations mainly occur as missense mutations within the DNA-binding domain, leading to the expression of full-length mutant p53 protein. Mutant p53 proteins not only lose their tumor-suppressor function, but may also gain new oncogenic functions and promote tumorigenesis. Here, we showed that silencing of endogenous p53-R273H contact mutant, but not p53-R175H conformational mutant, reduced AKT phosphorylation, induced BCL2-modifying factor (BMF) expression, sensitized BIM dissociation from BCL-XL and induced mitochondria-dependent apoptosis in cancer cells. Importantly, cancer cells harboring endogenous p53-R273H mutant were also found to be inherently resistant to anoikis and lack BMF induction following culture in suspension. Underlying these activities is the ability of p53-R273H mutant to suppress BMF expression that is dependent on constitutively active PI3K/AKT signaling. Collectively, these findings suggest that p53-R273H can specifically drive AKT signaling and suppress BMF expression, resulting in enhanced cell survivability and anoikis resistance. These findings open the possibility that blocking of PI3K/AKT will have therapeutic benefit in mutant p53-R273H expressing cancers.

  2. p53 Enables metabolic fitness and self-renewal of nephron progenitor cells.

    PubMed

    Li, Yuwen; Liu, Jiao; Li, Wencheng; Brown, Aaron; Baddoo, Melody; Li, Marilyn; Carroll, Thomas; Oxburgh, Leif; Feng, Yumei; Saifudeen, Zubaida

    2015-04-01

    Contrary to its classic role in restraining cell proliferation, we demonstrate here a divergent function of p53 in the maintenance of self-renewal of the nephron progenitor pool in the embryonic mouse kidney. Nephron endowment is regulated by progenitor availability and differentiation potential. Conditional deletion of p53 in nephron progenitor cells (Six2Cre(+);p53(fl/fl)) induces progressive depletion of Cited1(+)/Six2(+) self-renewing progenitors and loss of cap mesenchyme (CM) integrity. The Six2(p53-null) CM is disorganized, with interspersed stromal cells and an absence of a distinct CM-epithelia and CM-stroma interface. Impaired cell adhesion and epithelialization are indicated by decreased E-cadherin and NCAM expression and by ineffective differentiation in response to Wnt induction. The Six2Cre(+);p53(fl/fl) cap has 30% fewer Six2(GFP(+)) cells. Apoptotic index is unchanged, whereas proliferation index is significantly reduced in accordance with cell cycle analysis showing disproportionately fewer Six2Cre(+);p53(fl/fl) cells in the S and G2/M phases compared with Six2Cre(+);p53(+/+) cells. Mutant kidneys are hypoplastic with fewer generations of nascent nephrons. A significant increase in mean arterial pressure is observed in early adulthood in both germline and conditional Six2(p53-null) mice, linking p53-mediated defects in kidney development to hypertension. RNA-Seq analyses of FACS-isolated wild-type and Six2(GFP(+)) CM cells revealed that the top downregulated genes in Six2Cre(+);p53(fl/fl) CM belong to glucose metabolism and adhesion and/or migration pathways. Mutant cells exhibit a ∼ 50% decrease in ATP levels and a 30% decrease in levels of reactive oxygen species, indicating energy metabolism dysfunction. In summary, our data indicate a novel role for p53 in enabling the metabolic fitness and self-renewal of nephron progenitors. © 2015. Published by The Company of Biologists Ltd.

  3. Prognostic impact of c-Rel nuclear expression and REL amplification and crosstalk between c-Rel and the p53 pathway in diffuse large B-cell lymphoma

    PubMed Central

    Ok, Chi Young; Tzankov, Alexandar; Manyam, Ganiraju C.; Sun, Ruifan; Visco, Carlo; Zhang, Mingzhi; Montes-Moreno, Santiago; Dybkaer, Karen; Chiu, April; Orazi, Attilio; Zu, Youli; Bhagat, Govind; Richards, Kristy L.; Hsi, Eric D.; Choi, William W.L.; van Krieken, J. Han; Huh, Jooryung; Ponzoni, Maurilio; Ferreri, Andrés J.M.; Møller, Michael B.; Wang, Jinfeng; Parsons, Ben M.; Winter, Jane N.; Piris, Miguel A.; Pham, Lan V.; Medeiros, L. Jeffrey; Young, Ken H.

    2015-01-01

    Dysregulated NF-κB signaling is critical for lymphomagenesis. The regulation, function, and clinical relevance of c-Rel/NF-κB activation in diffuse large B-cell lymphoma (DLBCL) have not been well studied. In this study we analyzed the prognostic significance and gene-expression signature of c-Rel nuclear expression as surrogate of c-Rel activation in 460 patients with de novo DLBCL. Nuclear c-Rel expression, observed in 137 (26.3%) DLBCL patients frequently associated with extranoal origin, did not show significantly prognostic impact in the overall- or germinal center B-like-DLBCL cohort, likely due to decreased pAKT and Myc levels, up-regulation of FOXP3, FOXO3, MEG3 and other tumor suppressors coincided with c-Rel nuclear expression, as well as the complicated relationships between NF-κB members and their overlapping function. However, c-Rel nuclear expression correlated with significantly poorer survival in p63+ and BCL-2− activated B-cell-like-DLBCL, and in DLBCL patients with TP53 mutations. Multivariate analysis indicated that after adjusting clinical parameters, c-Rel positivity was a significantly adverse prognostic factor in DLBCL patients with wild type TP53. Gene expression profiling suggested dysregulations of cell cycle, metabolism, adhesion, and migration associated with c-Rel activation. In contrast, REL amplification did not correlate with c-Rel nuclear expression and patient survival, likely due to co-amplification of genes that negatively regulate NF-κB activation. These insights into the expression, prognostic impact, regulation and function of c-Rel as well as its crosstalk with the p53 pathway underscore the importance of c-Rel and have significant therapeutic implications. PMID:26324762

  4. Immunohistochemical detection of tumor suppressor gene p53 protein in feline injection site-associated sarcomas.

    PubMed

    Nambiar, P R; Jackson, M L; Ellis, J A; Chelack, B J; Kidney, B A; Haines, D M

    2001-03-01

    Sarcomas associated with injection sites are a rare but important problem in cats. Immunohistochemical detection of p53 protein may correlate to mutation of the p53 tumor suppressor gene, a gene known to be important in oncogenesis. The expression of nuclear p53 protein in 40 feline injection site-assocated sarcomas was examined by immunohistochemical staining. In 42.5% (17/40), tumor cell nuclei were stained darkly; in 20% (8/40), tumor cell nuclei were stained palely; and in 37.5% (15/40), tumor cell nuclei were unstained. Immunohistochemical detection of p53 protein in a proportion of injection site-associated sarcomas suggests that mutation of the p53 gene may play a role in the pathogenesis of these tumors.

  5. Establishment of a dog model for the p53 family pathway and identification of a novel isoform of p21 cyclin-dependent kinase inhibitor

    PubMed Central

    Zhang, Jin; Chen, Xiangling; Kent, Michael S.; Rodriguez, Carlos O.; Chen, Xinbin

    2009-01-01

    Spontaneous tumors in the dog offer a unique opportunity as models to study human cancer etiology and therapy. p53, the most commonly mutated gene in human cancers, is found to be altered in dog cancers. However, little is known about the role of p53 in dog tumorigenesis. Here, we found that upon exposure to DNA damage agents or Mdm2 inhibitor nutlin-3, canine p53 is accumulated and capable of inducing its target genes, MDM2 and p21. We also found that upon DNA damage, canine p53 is accumulated in the nucleus, followed by MDM2 nuclear translocation and increased 53BP1 foci formation. In addition, we found that canine p63 and p73 are up-regulated by DNA damage agents. Furthermore, colony formation assay showed that canine tumor cells are sensitive to DNA damage agents and nutlin-3 in a p53-dependent manner. Surprisingly, canine p21 is expressed as two isoforms. Thus, we generated multiple canine p21 mutants and found that aa 129 to 142 is required, whereas aa 139 is one of the key determinants, for two p21 isoform expression. Finally, we showed that although the full-length human p21 cDNA expresses one polypeptide, aa 139 appears to play a similar role as that in canine p21 for various migration patterns. Taken together, our results indicate that canine p53 family proteins have biological activities similar to human counterparts. These similarities make the dog as an excellent out-bred spontaneous tumor model and the dog can serve as a translation model from bench-top to cage-side and then to bed-side. PMID:19147538

  6. Co-expression of antioxidant enzymes with expression of p53, DNA repair, and heat shock protein genes in the gamma ray-irradiated hermaphroditic fish Kryptolebias marmoratus larvae.

    PubMed

    Rhee, Jae-Sung; Kim, Bo-Mi; Kim, Ryeo-Ok; Seo, Jung Soo; Kim, Il-Chan; Lee, Young-Mi; Lee, Jae-Seong

    2013-09-15

    To investigate effects of gamma ray irradiation in the hermaphroditic fish, Kryptolebias marmoratus larvae, we checked expression of p53, DNA repair, and heat shock protein genes with several antioxidant enzyme activities by quantitative real-time RT-PCR and biochemical methods in response to different doses of gamma radiation. As a result, the level of gamma radiation-induced DNA damage was initiated after 4Gy of radiation, and biochemical and molecular damage became substantial from 8Gy. In particular, several DNA repair mechanism-related genes were significantly modulated in the 6Gy gamma radiation-exposed fish larvae, suggesting that upregulation of such DNA repair genes was closely associated with cell survival after gamma irradiation. The mRNA expression of p53 and most hsps was also significantly upregulated at high doses of gamma radiation related to cellular damage. This finding indicates that gamma radiation can induce oxidative stress with associated antioxidant enzyme activities, and linked to modulation of the expression of DNA repair-related genes as one of the defense mechanisms against radiation damage. This study provides a better understanding of the molecular mode of action of defense mechanisms upon gamma radiation in fish larvae. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Anti-cancer peptides from ras-p21 and p53 proteins.

    PubMed

    Pincus, Matthew R; Fenelus, Maly; Sarafraz-Yazdi, Ehsan; Adler, Victor; Bowne, Wilbur; Michl, Josef

    2011-01-01

    We have employed computer-based molecular modeling approaches to design peptides from the ras-p21 and p53 proteins that either induce tumor cell reversion to the untransformed phenotype or induce tumor cell necrosis without affecting normal cells. For rasp21, we have computed and superimposed the average low energy structures for the wild-type protein and oncogenic forms of this protein and found that specific domains change conformation in the oncogenic proteins. We have synthesized peptides corresponding to these and found that ras peptides, 35-47 (PNC-7) and 96-110 (PNC-2), block oncogenic ras-p21-induced oocyte maturation but have no effect on insulin-induced oocyte maturation that requires activation of endogenous wild-type ras-p21. These results show signal transduction pathway differences between oncogenic and activated wild-type ras-p21. Both peptides, attached to a membrane-penetrating peptide (membrane residency peptide or MRP), either induce phenotypic reversion to the untransformed phenotype or tumor cell necrosis of several ras-transformed cell lines, but have no effect on the growth of normal cells. Using other computational methods, we have designed two peptides, PNC-27 and 28, containing HDM-2-protein-binding domain sequences from p53 linked on their C-termini to the MRP that induce pore formation in the membranes of a wide range of cancer cells but not any normal cells tested. This is due to the expression of HDM-2 in the cancer cell membrane that does not occur in normal cells. These peptides eradicate a highly malignant tumor in nude mice with no apparent side effects. Both ras and p53 peptides show promise as anti-tumor agents in humans.

  8. [Application of PLA Method for Detection of p53/p63/p73 Complexes in Situ in Tumour Cells and Tumour Tissue].

    PubMed

    Hrabal, V; Nekulová, M; Nenutil, R; Holčaková, J; Coates, P J; Vojtěšek, B

    2017-01-01

    PLA (proximity ligation assay) can be used for detection of protein-protein interactions in situ directly in cells and tissues. Due to its high sensitivity and specificity it is useful for detection, localization and quantification of protein complexes with single molecule resolution. One of the mechanisms of mutated p53 gain of function is formation of proten-protein complexes with other members of p53 family - p63 and p73. These interactions influences chemosensitivity and invasivity of cancer cells and this is why these complexes are potential targets of anti-cancer therapy. The aim of this work is to detect p53/p63/p73 interactions in situ in tumour cells and tumour tissue using PLA method. Unique in-house antibodies for specific detection of p63 and p73 isoforms were developed and characterized. Potein complexes were detected using PLA in established cell lines SVK14, HCC1806 and FaDu and in paraffin sections of colorectal carcinoma tissue. Cell lines were also processed to paraffin blocks. p53/T-antigen and ΔNp63/T-antigen protein complexes were detected in SVK14 cells using PLA. Interactions of ΔNp63 and TAp73 isoforms were found in HCC1806 cell line with endogenous expression of these proteins. In FaDu cell line mut-p53/TAp73 complex was localized but not mut-p53/ΔNp63 complex. p53 tetramer was detected directly in colorectal cancer tissue. During development of PLA method for detection of protein complexes between p53 family members we detected interactions of p53 and p63 with T-antigen and mut-p53 and ΔNp63 with TAp73 tumour suppressor in tumour cell lines and p53 tetramers in paraffin sections of colorectal cancer tissue. PLA will be further used for detection of p53/p63, p53/p73 and p63/p73 interactions in tumour tissues and it could be also used for screening of compounds that can block formation of p53/p63/p73 protein complexes.Key words: p53 protein family - protein interaction mapping - immunofluorescence This work was supported by MEYS - NPS I

  9. p53 in breast cancer subtypes and new insights into response to chemotherapy.

    PubMed

    Bertheau, Philippe; Lehmann-Che, Jacqueline; Varna, Mariana; Dumay, Anne; Poirot, Brigitte; Porcher, Raphaël; Turpin, Elisabeth; Plassa, Louis-François; de Roquancourt, Anne; Bourstyn, Edwige; de Cremoux, Patricia; Janin, Anne; Giacchetti, Sylvie; Espié, Marc; de Thé, Hugues

    2013-08-01

    , these data can help to better understand p53-mediated response to doxorubicin-based chemotherapy in breast cancer: in ER(+) TP53 WT breast cancers, ER-induced inhibition of p53 apoptotic response would lead preferentially to tumor cell senescence and subsequent resistance to treatment. Conversely, in ER negative (ER(-)) TP53 mutated breast cancers, accumulation of genetic abnormalities would lead to mitotic catastrophe and subsequent better response. In view of these recent results, p53 impact in breast cancer should be reconsidered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Mutant p53 dictates the oncogenic activity of c-Abl in triple-negative breast cancers

    PubMed Central

    Morrison, Chevaun D; Chang, Jenny C; Keri, Ruth A; Schiemann, William P

    2017-01-01

    We recently established c-Abl as a potent suppressor of triple-negative breast cancer (TNBC) progression through its reactivation of a p53:p21 signaling axis coupled to senescence. Moreover, we observed co-expression of p53 and c-Abl to be essential for normal mammary epithelial cell physiology, as this relationship is lost upon breast cancer progression. Cytoplasmic c-Abl activity is markedly increased in some TNBCs and contributes to disease progression; however, the mechanisms underlying these events remain largely unknown. In addressing this question, we show here that c-Abl is predominantly restricted to the cytoplasm of human MDA-MB-231 TNBC cells, and to the nucleus of human MCF-7 luminal A cells. TTK is a mitotic protein kinase that phosphorylates c-Abl on Thr735, thereby creating a recognition binding motif for 14-3-3 adaptor proteins in response to oxidative stress. By interrogating the METABRIC database, we observed a significant correlation between p53 expression and that of c-Abl and TTK in basal-like breast cancers. Moreover, heterologous expression of TTK in MCF-7 cells significantly stimulated their growth in part via a c-Abl-dependent mechanism. Conversely, depleting TTK expression in MDA-MB-231 cells not only inhibited their organoid growth in 3D-cultures, but also sensitized them to the tumor suppressing activities of c-Abl independent of its subcellular localization. Moreover, we show that mutant p53 forms cytoplasmic complexes with c-Abl, thereby dictating the subcellular localization of c-Abl and the sensitivity of MDA-MB-231 cells to Imatinib. In response to nutrient deprivation, c-Abl:p53 complexes readily accumulate in the nucleus, resulting in the hyperactivation of c-Abl and initiation of its anti-tumor activities. Collectively, we identified a novel mutant p53:c-Abl cytoplasmic signaling complex that promotes MDA-MB-231 cell growth and highlights the contextual cues that confer oncogenic activity to c-Abl in breast cancer. PMID:28661474

  11. Targeting p53 via JNK pathway: a novel role of RITA for apoptotic signaling in multiple myeloma.

    PubMed

    Saha, Manujendra N; Jiang, Hua; Yang, Yijun; Zhu, Xiaoyun; Wang, Xiaoming; Schimmer, Aaron D; Qiu, Lugui; Chang, Hong

    2012-01-01

    The low frequency of p53 alterations e.g., mutations/deletions (∼10%) in multiple myeloma (MM) makes this tumor type an ideal candidate for p53-targeted therapies. RITA is a small molecule which can induce apoptosis in tumor cells by activating the p53 pathway. We previously showed that RITA strongly activates p53 while selectively inhibiting growth of MM cells without inducing genotoxicity, indicating its potential as a drug lead for p53-targeted therapy in MM. However, the molecular mechanisms underlying the pro-apoptotic effect of RITA are largely undefined. Gene expression analysis by microarray identified a significant number of differentially expressed genes associated with stress response including c-Jun N-terminal kinase (JNK) signaling pathway. By Western blot analysis we further confirmed that RITA induced activation of p53 in conjunction with up-regulation of phosphorylated ASK-1, MKK-4 and c-Jun. These results suggest that RITA induced the activation of JNK signaling. Chromatin immunoprecipitation (ChIP) analysis showed that activated c-Jun binds to the activator protein-1 (AP-1) binding site of the p53 promoter region. Disruption of the JNK signal pathway by small interfering RNA (siRNA) against JNK or JNK specific inhibitor, SP-600125 inhibited the activation of p53 and attenuated apoptosis induced by RITA in myeloma cells carrying wild type p53. On the other hand, p53 transcriptional inhibitor, PFT-α or p53 siRNA not only inhibited the activation of p53 transcriptional targets but also blocked the activation of c-Jun suggesting the presence of a positive feedback loop between p53 and JNK. In addition, RITA in combination with dexamethasone, known as a JNK activator, displays synergistic cytotoxic responses in MM cell lines and patient samples. Our study unveils a previously undescribed mechanism of RITA-induced p53-mediated apoptosis through JNK signaling pathway and provides the rationale for combination of p53 activating drugs with JNK

  12. Targeting p53 via JNK Pathway: A Novel Role of RITA for Apoptotic Signaling in Multiple Myeloma

    PubMed Central

    Saha, Manujendra N.; Jiang, Hua; Yang, Yijun; Zhu, Xiaoyun; Wang, Xiaoming; Schimmer, Aaron D.; Qiu, Lugui; Chang, Hong

    2012-01-01

    The low frequency of p53 alterations e.g., mutations/deletions (∼10%) in multiple myeloma (MM) makes this tumor type an ideal candidate for p53-targeted therapies. RITA is a small molecule which can induce apoptosis in tumor cells by activating the p53 pathway. We previously showed that RITA strongly activates p53 while selectively inhibiting growth of MM cells without inducing genotoxicity, indicating its potential as a drug lead for p53-targeted therapy in MM. However, the molecular mechanisms underlying the pro-apoptotic effect of RITA are largely undefined. Gene expression analysis by microarray identified a significant number of differentially expressed genes associated with stress response including c-Jun N-terminal kinase (JNK) signaling pathway. By Western blot analysis we further confirmed that RITA induced activation of p53 in conjunction with up-regulation of phosphorylated ASK-1, MKK-4 and c-Jun. These results suggest that RITA induced the activation of JNK signaling. Chromatin immunoprecipitation (ChIP) analysis showed that activated c-Jun binds to the activator protein-1 (AP-1) binding site of the p53 promoter region. Disruption of the JNK signal pathway by small interfering RNA (siRNA) against JNK or JNK specific inhibitor, SP-600125 inhibited the activation of p53 and attenuated apoptosis induced by RITA in myeloma cells carrying wild type p53. On the other hand, p53 transcriptional inhibitor, PFT-α or p53 siRNA not only inhibited the activation of p53 transcriptional targets but also blocked the activation of c-Jun suggesting the presence of a positive feedback loop between p53 and JNK. In addition, RITA in combination with dexamethasone, known as a JNK activator, displays synergistic cytotoxic responses in MM cell lines and patient samples. Our study unveils a previously undescribed mechanism of RITA-induced p53-mediated apoptosis through JNK signaling pathway and provides the rationale for combination of p53 activating drugs with JNK

  13. Assessment of mdm2 Alterations on p53 Expression in Breast Cancer

    DTIC Science & Technology

    2000-10-01

    Figure 2. Schematic Comparison of mdm2 with PCR Products of Various Sizes. nuclear localization signal I p53 binding site X acidic domain zinc...susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell. 85: 319-329, 1996. 36. Li, L., Li, X ...twelve years. Chinese Journal of Parasitology and Parasitic Diseases 10: 112-114, 1992. 7. Gao DQ, Cansesaa L, Mouradian MM, Jose P. Dopamine D2-long

  14. p53 isoform Δ133p53 promotes efficiency of induced pluripotent stem cells and ensures genomic integrity during reprogramming.

    PubMed

    Gong, Lu; Pan, Xiao; Chen, Haide; Rao, Lingjun; Zeng, Yelin; Hang, Honghui; Peng, Jinrong; Xiao, Lei; Chen, Jun

    2016-11-22

    Human induced pluripotent stem (iPS) cells have great potential in regenerative medicine, but this depends on the integrity of their genomes. iPS cells have been found to contain a large number of de novo genetic alterations due to DNA damage response during reprogramming. Thus, to maintain the genetic stability of iPS cells is an important goal in iPS cell technology. DNA damage response can trigger tumor suppressor p53 activation, which ensures genome integrity of reprogramming cells by inducing apoptosis and senescence. p53 isoform Δ133p53 is a p53 target gene and functions to not only antagonize p53 mediated apoptosis, but also promote DNA double-strand break (DSB) repair. Here we report that Δ133p53 is induced in reprogramming. Knockdown of Δ133p53 results 2-fold decrease in reprogramming efficiency, 4-fold increase in chromosomal aberrations, whereas overexpression of Δ133p53 with 4 Yamanaka factors showes 4-fold increase in reprogamming efficiency and 2-fold decrease in chromosomal aberrations, compared to those in iPS cells induced only with 4 Yamanaka factors. Overexpression of Δ133p53 can inhibit cell apoptosis and promote DNA DSB repair foci formation during reprogramming. Our finding demonstrates that the overexpression of Δ133p53 not only enhances reprogramming efficiency, but also results better genetic quality in iPS cells.

  15. Ser46 phosphorylation and prolyl-isomerase Pin1-mediated isomerization of p53 are key events in p53-dependent apoptosis induced by mutant huntingtin

    PubMed Central

    Grison, Alice; Mantovani, Fiamma; Comel, Anna; Agostoni, Elena; Gustincich, Stefano; Persichetti, Francesca; Del Sal, Giannino

    2011-01-01

    Huntington disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for huntingtin protein. Several mechanisms have been proposed by which mutant huntingtin (mHtt) may trigger striatal neurodegeneration, including mitochondrial dysfunction, oxidative stress, and apoptosis. Furthermore, mHtt induces DNA damage and activates a stress response. In this context, p53 plays a crucial role in mediating mHtt toxic effects. Here we have dissected the pathway of p53 activation by mHtt in human neuronal cells and in HD mice, with the aim of highlighting critical nodes that may be pharmacologically manipulated for therapeutic intervention. We demonstrate that expression of mHtt causes increased phosphorylation of p53 on Ser46, leading to its interaction with phosphorylation-dependent prolyl isomerase Pin1 and consequent dissociation from the apoptosis inhibitor iASPP, thereby inducing the expression of apoptotic target genes. Inhibition of Ser46 phosphorylation by targeting homeodomain-interacting protein kinase 2 (HIPK2), PKCδ, or ataxia telangiectasia mutated kinase, as well as inhibition of the prolyl isomerase Pin1, prevents mHtt-dependent apoptosis of neuronal cells. These results provide a rationale for the use of small-molecule inhibitors of stress-responsive protein kinases and Pin1 as a potential therapeutic strategy for HD treatment. PMID:22011578

  16. Hyaluronan suppresses lidocaine-induced apoptosis of human chondrocytes in vitro by inhibiting the p53-dependent mitochondrial apoptotic pathway.

    PubMed

    Lee, Yoon-Jin; Kim, Soo A; Lee, Sang-Han

    2016-05-01

    Intra-articular injection of local anesthetics (LAs) is a common procedure for therapeutic purposes. However, LAs have been found toxic to articular cartilage, and hyaluronan may attenuate this toxicity. In this study we investigated whether hyaluronan attenuated lidocaine-induced chondrotoxicity, and if so, to elucidate the underlying mechanisms. Human chondrocyte cell line SW1353 and newly isolated murine chondrocytes were incubated in culture medium containing hyaluronan and/or lidocaine for 72 h. Cell viability was evaluated using MTT assay. Cell apoptosis was detected with DAPI staining, caspase 3/7 activity assay and flow cytometry. Cell cycle distributions, ROS levels and mitochondrial membrane potential (ΔΨm) were determined using flow cytometry. The expression of p53 and p53-regulated gene products was measured with Western blotting. Lidocaine (0.005%-0.03%) dose-dependently decreased the viability of SW1353 cells. This local anesthetic (0.015%, 0.025%) induced apoptosis, G2/M phase arrest and loss of ΔΨm, and markedly increased ROS production in SW1353 cells. Hyaluronan (50-800 μg/mL) alone did not affect the cell viability, but co-treatment with hyaluronan (200 μg/mL) significantly attenuated lidocaine-induced apoptosis and other abnormalities in SW1353 cells. Furthermore, co-treatment with lidocaine and hyaluronan significantly decreased the levels of p53 and its transcription targets Bax and p21 in SW1353 cells, although treatment with lidocaine alone did not significantly change these proteins. Similar results were obtained in ex vivo cultured murine chondrocytes. Hyaluronan suppresses lidocaine-induced apoptosis of human chondrocytes in vitro through inhibiting the p53-dependent mitochondrial apoptotic pathway.

  17. Pharmacological activation of a novel p53-dependent S-phase checkpoint involving CHK-1

    PubMed Central

    Ahmed, A; Yang, J; Maya-Mendoza, A; Jackson, D A; Ashcroft, M

    2011-01-01

    We have recently shown that induction of the p53 tumour suppressor protein by the small-molecule RITA (reactivation of p53 and induction of tumour cell apoptosis; 2,5-bis(5-hydroxymethyl-2-thienyl)furan) inhibits hypoxia-inducible factor-1α and vascular endothelial growth factor expression in vivo and induces p53-dependent tumour cell apoptosis in normoxia and hypoxia. Here, we demonstrate that RITA activates the canonical ataxia telangiectasia mutated/ataxia telangiectasia and Rad3-related DNA damage response pathway. Interestingly, phosphorylation of checkpoint kinase (CHK)-1 induced in response to RITA was influenced by p53 status. We found that induction of p53, phosphorylated CHK-1 and γH2AX proteins was significantly increased in S-phase. Furthermore, we found that RITA stalled replication fork elongation, prolonged S-phase progression and induced DNA damage in p53 positive cells. Although CHK-1 knockdown did not significantly affect p53-dependent DNA damage or apoptosis induced by RITA, it did block the ability for DNA integrity to be maintained during the immediate response to RITA. These data reveal the existence of a novel p53-dependent S-phase DNA maintenance checkpoint involving CHK-1. PMID:21593792

  18. Involvements of Estrogen Receptor, Proliferating Cell Nuclear Antigen and p53 in Endometrial Adenocarcinoma Development in Donryu Rats

    PubMed Central

    Yoshida, Midori; Katsuda, Shin-ichi; Maekawa, Akihiko

    2012-01-01

    Involvements of estrogen receptor (ER)α, proliferating cell nuclear antigen (PCNA) and p53 in the uterine carcinogenesis process in Donryu rats, a high yield strain of the uterine cancer were investigated immunohistochemically. ERα was expressed in atypical endometrial hyperplasia, accepted as a precancerous lesion of the uterine tumors, as well as well- and in moderately-differentiated endometrial adenocarcinomas, and the intensities of expression were similar to those in the luminal epithelial cells of the atrophic uterus at 15 months of age. The expression, however, was negative in the tumor cells of poorly differentiated type. Good growth of implanted grafts of the poorly-differentiated adenocarcinomas in both sexes with or without gonadectomy supported the estrogen independency of tumor progression to malignancy. PCNA labeling indices were increased with tumor development from atypical hyperplasia to adenocarcinoma. The tumor cells in poorly-differentiated adenocarcinomas were positive for p53 positive but negative for p21 expression, suggesting accumulation of mutated p53. These results indicate that the consistent ERα expression is involved in initiation and promotion steps of uterine carcinogenesis, but not progression. In addition, PCNA is related to tumor development and the expression of mutated p53 might be a late event during endometrial carcinogenesis. PMID:23345926

  19. Epstein-Barr virus nuclear antigen 3C targets p53 and modulates its transcriptional and apoptotic activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi Fuming; Saha, Abhik; Murakami, Masanao

    The p53 tumor suppressor gene is one of the most commonly mutated genes in human cancers and the corresponding encoded protein induces apoptosis or cell-cycle arrest at the G1/S checkpoint in response to DNA damage. To date, previous studies have shown that antigens encoded by human tumor viruses such as SV40 large T antigen, adenovirus E1A and HPV E6 interact with p53 and disrupt its functional activity. In a similar fashion, we now show that EBNA3C, one of the EBV latent antigens essential for the B-cell immortalization in vitro, interacts directly with p53. Additionally, we mapped the interaction of EBNA3Cmore » with p53 to the C-terminal DNA-binding and the tetramerization domain of p53, and the region of EBNA3C responsible for binding to p53 was mapped to the N-terminal domain of EBNA3C (residues 130-190), previously shown to interact with a number of important cell-cycle components, specifically SCF{sup Skp2}, cyclin A, and cMyc. Furthermore, we demonstrate that EBNA3C substantially represses the transcriptional activity of p53 in luciferase based reporter assays, and rescues apoptosis induced by ectopic p53 expression in SAOS-2 (p53{sup -/-}) cells. Interestingly, we also show that the DNA-binding ability of p53 is diminished in the presence of EBNA3C. Thus, the interaction between the p53 and EBNA3C provides new insights into the mechanism(s) by which the EBNA3C oncoprotein can alter cellular gene expression in EBV associated human cancers.« less

  20. 3-MCPD 1-Palmitate Induced Tubular Cell Apoptosis In Vivo via JNK/p53 Pathways

    PubMed Central

    Liu, Man; Huang, Guoren; Wang, Thomas T.Y.; Sun, Xiangjun; Yu, Liangli (Lucy)

    2016-01-01

    Fatty acid esters of 3-chloro-1, 2-propanediol (3-MCPD esters) are a group of processing induced food contaminants with nephrotoxicity but the molecular mechanism(s) remains unclear. This study investigated whether and how the JNK/p53 pathway may play a role in the nephrotoxic effect of 3-MCPD esters using 3-MCPD 1-palmitate (MPE) as a probe compound in Sprague Dawley rats. Microarray analysis of the kidney from the Sprague Dawley rats treated with MPE, using Gene Ontology categories and KEGG pathways, revealed that MPE altered mRNA expressions of the genes involved in the mitogen-activated protein kinase (JNK and ERK), p53, and apoptotic signal transduction pathways. The changes in the mRNA expressions were confirmed by qRT-PCR and Western blot analyses and were consistent with the induction of tubular cell apoptosis as determined by histopathological, TUNEL, and immunohistochemistry analyses in the kidneys of the Sprague Dawley rats. Additionally, p53 knockout attenuated the apoptosis, and the apoptosis-related protein bax expression and cleaved caspase-3 activation induced by MPE in the p53 knockout C57BL/6 mice, whereas JNK inhibitor SP600125 but not ERK inhibitor U0126 inhibited MPE-induced apoptosis, supporting the conclusion that JNK/p53 might play a critical role in the tubular cell apoptosis induced by MPE and other 3-MCPD fatty acid esters. PMID:27008853

  1. CP-31398 prevents the growth of p53-mutated colorectal cancer cells in vitro and in vivo.

    PubMed

    He, Xingxing; Kong, Xinjuan; Yan, Junwei; Yan, Jingjun; Zhang, Yunan; Wu, Qian; Chang, Ying; Shang, Haitao; Dou, Qian; Song, Yuhu; Liu, Fang

    2015-03-01

    Rescuing the function of mutant p53 protein is an attractive cancer therapeutic strategy. Small molecule CP-31398 was shown to restore mutant p53 tumor suppressor functions in cancer cells. Here, we determined the effects of CP-31398 on the growth of p53-mutated colorectal cancer (CRC) cells in vitro and in vivo. CRC cells which carry p53 mutation in codon 273 were treated with CP-31398 and the control, and the effects of CP-31398 on cell cycle, cell apoptosis, and proliferation were determined. The expression of p53-responsive downstream genes was evaluated by quantitative reverse transcriptase PCR (RT-PCR) and Western blot. CP-31398 was administrated into xenograft tumors created by the inoculation of HT-29 cells, and then the effect of CP-31398 on the growth of xenograft tumors was examined. CP-31398 induced p53 downstream target molecules in cultured HT-29 cells, which resulted in the inhibition of CRC cell growth assessed by the determination of cell cycle, apoptosis, and cell proliferation. In xenograft tumors, CP-31398 modulated the expression of Bax, Bcl-2, caspase 3, cyclin D, and Mdm2 and then blocked the growth of xenograft tumors. CP-31398 would be developed as a therapeutic candidate for p53-mutated CRC due to the restoration of mutant p53 tumor suppressor functions.

  2. The miR-1000-p53 pathway regulates apoptosis and virus infection in shrimp.

    PubMed

    Gong, Yi; Ju, Chenyu; Zhang, Xiaobo

    2015-10-01

    The p53 protein plays an important role in apoptosis which is involved in the immunity of animals. However, effects of the miRNA-mediated regulation of p53 expression on apoptosis and virus infection are not extensively investigated. To address this issue, the miRNA-mediated p53-dependent apoptotic pathway was explored in this study. The results indicated that p53 could regulate the apoptotic activity of Marsupenaeus japonicas shrimp and influence the infection of white spot syndrome virus (WSSV). The further data presented that miR-1000 could target the 3'-untranslated region (3'UTR) of p53 gene. The results of in vivo experiments showed that the miR-1000 overexpression led to significant decreases of shrimp apoptotic activity and the capacity of WSSV infection, while the miR-1000 silencing resulted in significant increases of apoptotic activity and virus infection, indicating that miR-1000 took great effects on apoptosis and virus infection by targeting p53. Therefore, our study revealed a novel mechanism that the miR-1000-p53 pathway regulated apoptosis and virus infection in shrimp. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Palmitate induces VSMC apoptosis via toll like receptor (TLR)4/ROS/p53 pathway.

    PubMed

    Zhang, Yuanjun; Xia, Guanghao; Zhang, Yaqiong; Liu, Juxiang; Liu, Xiaowei; Li, Weihua; Lv, Yaya; Wei, Suhong; Liu, Jing; Quan, Jinxing

    2017-08-01

    Toll-like receptor 4 (TLR4) has been implicated in vascular inflammation, as well as in the pathogenesis of atherosclerosis and diabetes. Vascular smooth muscle cell (VSMC) apoptosis has been shown to induce plaque vulnerability in atherosclerosis. Previous studies reported that palmitate induced apoptosis in VSMCs; however, the role of TLR4 in palmitate-induced apoptosis in VSMCs has not yet been defined. In this study, we investigated whether or not palmitate-induced apoptosis depended on the activation of the TLR4 pathway. VSMCs were treated with or without palmitate, CRISPR/Cas9z-mediated genome editing methods were used to deplete TLR4 expression, while NADPH oxidase inhibitors were used to inhibit reactive oxygen species (ROS) generation. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, ROS was measured using the 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) method, the mRNA and protein expression levels of caspase 3, caspase 9, BCL-2 and p53 were studied by real-time polymerase chain reaction (RT-PCR) and ELISA. Palmitate significantly promotes VSMC apoptosis, ROS generation, and expression of caspase 3, caspase 9 and p53; while NADPH oxidase inhibitor pretreatment markedly attenuated these effects. Moreover, knockdown of TLR4 significantly blocked palmitate-induced ROS generation and VSMC apoptosis accompanied by inhibition of caspase 3, caspase 9, p53 expression and restoration of BCL-2 expression. Our results suggest that palmitate-induced apoptosis depends on the activation of the TLR4/ROS/p53 signaling pathway, and that TLR4 may be a potential therapeutic target for the prevention and treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquitin ligase ‘Synoviolin'

    PubMed Central

    Yamasaki, Satoshi; Yagishita, Naoko; Sasaki, Takeshi; Nakazawa, Minako; Kato, Yukihiro; Yamadera, Tadayuki; Bae, Eunkyung; Toriyama, Sayumi; Ikeda, Rie; Zhang, Lei; Fujitani, Kazuko; Yoo, Eunkyung; Tsuchimochi, Kaneyuki; Ohta, Tomohiko; Araya, Natsumi; Fujita, Hidetoshi; Aratani, Satoko; Eguchi, Katsumi; Komiya, Setsuro; Maruyama, Ikuro; Higashi, Nobuyo; Sato, Mitsuru; Senoo, Haruki; Ochi, Takahiro; Yokoyama, Shigeyuki; Amano, Tetsuya; Kim, Jaeseob; Gay, Steffen; Fukamizu, Akiyoshi; Nishioka, Kusuki; Tanaka, Keiji; Nakajima, Toshihiro

    2007-01-01

    Synoviolin, also called HRD1, is an E3 ubiquitin ligase and is implicated in endoplasmic reticulum -associated degradation. In mammals, Synoviolin plays crucial roles in various physiological and pathological processes, including embryogenesis and the pathogenesis of arthropathy. However, little is known about the molecular mechanisms of Synoviolin in these actions. To clarify these issues, we analyzed the profile of protein expression in synoviolin-null cells. Here, we report that Synoviolin targets tumor suppressor gene p53 for ubiquitination. Synoviolin sequestrated and metabolized p53 in the cytoplasm and negatively regulated its cellular level and biological functions, including transcription, cell cycle regulation and apoptosis. Furthermore, these p53 regulatory functions of Synoviolin were irrelevant to other E3 ubiquitin ligases for p53, such as MDM2, Pirh2 and Cop1, which form autoregulatory feedback loops. Our results provide novel insights into p53 signaling mediated by Synoviolin. PMID:17170702

  5. Baculovirus p35 gene is oppositely regulated by P53 and AP-1 like factors in Spodoptera frugiperda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohareer, Krishnaveni; Institute of Life Sciences, University of Hyderabad Campus, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046; Sahdev, Sudhir

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Baculovirus p35 is regulated by both viral and host factors. Black-Right-Pointing-Pointer Baculovirus p35 is negatively regulated by SfP53-like factor. Black-Right-Pointing-Pointer Baculovirus p35 is positively regulated by SfAP-1-like factor. -- Abstract: Baculovirus p35 belongs to the early class of genes of AcMNPV and requires viral factors like Immediate Early protein-1 for its transcription. To investigate the role of host factors in regulating p35 gene expression, the putative transcription factor binding sites were examined in silico and the role of these factors in influencing the transcription of p35 gene was assessed. We focused our studies on AP-1 and P53-like factors,more » which are activated under oxidative stress conditions. The AP-1 motif is located at -1401 while P53 motif is at -1912 relative to p35 translation start site. The predicted AP-1 and P53 elements formed specific complexes with Spodoptera frugiperda nuclear extracts. Both AP-1 and P53 motif binding proteins were down regulated as a function of AcMNPV infection in Spodoptera cells. To address the question whether during an oxidative outburst, the p35 transcription is enhanced; we investigated the role of these oxidative stress induced host transcription factors in influencing p35 gene transcription. Reporter assays revealed that AP-1 element enhances the transcription of p35 by a factor of two. Interestingly, P53 element appears to repress the transcription of p35 gene.« less

  6. Role of p53, Mitochondrial DNA Deletions, and Paternal Age in Autism: A Case-Control Study

    PubMed Central

    Wong, Sarah; Napoli, Eleonora; Krakowiak, Paula; Tassone, Flora; Hertz-Picciotto, Irva

    2016-01-01

    BACKGROUND: The tumor suppressor p53 responds to a variety of environmental stressors by regulating cell cycle arrest, apoptosis, senescence, DNA repair, bioenergetics and mitochondrial DNA (mtDNA) copy number maintenance. Developmental abnormalities have been reported in p53-deficient mice, and altered p53 and p53-associated pathways in autism (AU). Furthermore, via the Pten-p53 crosstalk, Pten haploinsufficient-mice have autisticlike behavior accompanied by brain mitochondrial dysfunction with accumulation of mtDNA deletions. METHODS: mtDNA copy number and deletions, and p53 gene copy ratios were evaluated in peripheral blood monocytic cells from children aged 2–5 years with AU (n = 66), race-, gender-, and age-matched typically neurodeveloping children (n = 46), and both parents from each diagnostic group, recruited by the Childhood Autism Risk from Genes and Environment study at the University of California, Davis. RESULTS: mtDNA deletions and higher p53 gene copy ratios were more common in children with AU and their fathers. The incidence of mtDNA deletions in fathers of children with AU was increased 1.9-fold over fathers of typically neurodeveloping children, suggesting a role for deficient DNA repair capacity not driven by paternal age. Deletions in mtDNA and altered p53 gene copy ratios seem to result from genetics (children with severity scores ≥8) and/or act in concert with environmental factors (children with 6–7 severity scores). CONCLUSIONS: Given pro- and antioxidant activities of p53, and associations of genomic instability with disorders other than AU, our study suggests a link between DNA repair capacity, genomic instability in the 17p13.1 region influenced by environmental triggers, and AU diagnosis. PMID:27033107

  7. Loss of p53 promotes anaplasia and local invasion in ret/PTC1-induced thyroid carcinomas.

    PubMed

    La Perle, K M; Jhiang, S M; Capen, C C

    2000-08-01

    Papillary thyroid carcinomas in humans are associated with the ret/PTC oncogene and, following loss of p53 function, may progress to anaplastic carcinomas. Mice with thyroid-targeted expression of ret/PTC1 developed papillary thyroid carcinomas that were minimally invasive and did not metastasize. These mice were crossed with p53-/- mice to investigate whether loss of p53 would promote anaplasia and metastasis of ret/PTC1-induced thyroid tumors. The majority of p53-/- mice died or were euthanized by 17 weeks of age due to the development of thymic lymphomas, soft tissue sarcomas, and testicular teratomas. All ret/PTC1 mice developed thyroid carcinomas, but tumors in p53-/- mice were more anaplastic, larger in diameter, more invasive, and had a higher mitotic index than tumors in p53+/+ and p53+/- mice. Thyroid tumors did not metastasize in any of the experimental p53+/+ and p53+/- mice p53-/- mice p53-/- mouse used to maintain the colony developed anaplastic thyroid carcinoma with liver metastases. These findings demonstrate that the lack of functional p53 in ret/PTC1 mice promotes anaplasia and invasiveness of thyroid carcinomas.

  8. Induction of MDM2-P2 Transcripts Correlates with Stabilized Wild-Type p53 in Betel- and Tobacco-Related Human Oral Cancer

    PubMed Central

    Ralhan, Ranju; Sandhya, Agarwal; Meera, Mathur; Bohdan, Wasylyk; Nootan, Shukla K.

    2000-01-01

    MDM2, a critical element of cellular homeostasis mechanisms, is involved in complex interactions with important cell-cycle and stress-response regulators including p53. The mdm2-P2 promoter is a transcriptional target of p53. The aim of this study was to determine the association between mdm2-P2 transcripts and the status of the p53 gene in betel- and tobacco-related oral squamous cell carcinomas (SCCs) to understand the mechanism of deregulation of MDM2 and p53 expression and their prognostic implications in oral tumorigenesis. Elevated levels of MDM2 proteins were observed in 11 of 25 (44%) oral hyperplastic lesions, nine of 15 (60%) dysplastic lesions, and 71 of 100 (71%) SCCs. The intriguing feature of the study was the identification and different subcellular localization of three isoforms of MDM2 (ie, 90 kd, 76 kd, and 57 kd) in oral SCCs and their correlation with p53 overexpression in each tumor. The hallmark of the study was the detection of mdm2-P2 transcripts in 12 of 20 oral SCCs overexpressing both MDM2 and p53 proteins while harboring wild-type p53 alleles. Furthermore, mdm2 amplification was an infrequent event in betel- and tobacco-associated oral tumorigenesis. The differential compartmentalization of the three isoforms of MDM2 suggests that each has a distinct function, potentially in the regulation of p53 and other gene products implicated in oral tumorigenesis. In conclusion, we report herein the first evidence suggesting that enhanced translation of mdm2-P2 transcripts (S-mdm2) may represent an important mechanism of overexpression and consequent stabilization and functional inactivation of wild-type p53 serving as an adverse prognosticator in betel- and tobacco-related oral cancer. The clinical significance of the functional inactivation of wild-type p53 by MDM2 is underscored by the significantly shorter median disease-free survival time (16 months) observed in p53/MDM2-positive cases as compared to those which did not show co-expression of

  9. Requirement of the ATM/p53 tumor suppressor pathway for glucose homeostasis.

    PubMed

    Armata, Heather L; Golebiowski, Diane; Jung, Dae Young; Ko, Hwi Jin; Kim, Jason K; Sluss, Hayla K

    2010-12-01

    Ataxia telangiectasia (A-T) patients can develop multiple clinical pathologies, including neuronal degeneration, an elevated risk of cancer, telangiectasias, and growth retardation. Patients with A-T can also exhibit an increased risk of insulin resistance and type 2 diabetes. The ATM protein kinase, the product of the gene mutated in A-T patients (Atm), has been implicated in metabolic disease, which is characterized by insulin resistance and increased cholesterol and lipid levels, blood pressure, and atherosclerosis. ATM phosphorylates the p53 tumor suppressor on a site (Ser15) that regulates transcription activity. To test whether the ATM pathway that regulates insulin resistance is mediated by p53 phosphorylation, we examined insulin sensitivity in mice with a germ line mutation that replaces the p53 phosphorylation site with alanine. The loss of p53 Ser18 (murine Ser15) led to increased metabolic stress, including severe defects in glucose homeostasis. The mice developed glucose intolerance and insulin resistance. The insulin resistance correlated with the loss of antioxidant gene expression and decreased insulin signaling. N-Acetyl cysteine (NAC) treatment restored insulin signaling in late-passage primary fibroblasts. The addition of an antioxidant in the diet rendered the p53 Ser18-deficient mice glucose tolerant. This analysis demonstrates that p53 phosphorylation on an ATM site is an important mechanism in the physiological regulation of glucose homeostasis.

  10. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Li; College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158; Huang, Yong

    2014-03-07

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressedmore » cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.« less

  11. Curcumin Induces Apoptosis in Human Colorectal Carcinoma (HCT-15) Cells by Regulating Expression of Prp4 and p53

    PubMed Central

    Shehzad, Adeeb; Lee, Jaetae; Huh, Tae-Lin; Lee, Young Sup

    2013-01-01

    Curcumin (diferuloylmethane), the yellow pigment of turmeric, is one of the most commonly used and extensively studied phytochemicals due to its pleiotropic effects in several human cancers. In the current study, the therapeutic efficacy of curcumin was investigated in human colorectal carcinoma HCT-15 cells. Curcumin inhibited HCT-15 cells proliferation and induced apoptosis in a dose- and time-dependent manner. Hoechst 33342 and DCFHDA staining revealed morphological and biochemical features of apoptosis as well as ROS generation in HCT-15 cells treated with 30 and 50 μM curcumin. Over-expression of pre-mRNA processing factor 4B (Prp4B) and p53 mutations have been reported as hallmarks of cancer cells. Western blot analysis revealed that curcumin treatment activated caspase-3 and decreased expression of p53 and Prp4B in a time-dependent manner. Transfection of HCT-15 cells with Prp4B clone perturbed the growth inhibition induced by 30 μM curcumin. Fractionation of cells revealed increased accumulation of Prp4B in the nucleus, following its translocation from the cytoplasm. To further evaluate the underlying mechanism and survival effect of Prp4B, we generated siRNA-Prp4B HCT15 clones. Knockdown of Prp4B with siRNA diminished the protective effects of Prp4B against curcumin-induced apoptosis. These results suggest a possible underlying molecular mechanism in which Prp4B over-expression and activity are closely associated with the survival and regulation of apoptotic events in human colon cancer HCT-15 cells. PMID:23686430

  12. Study of the biologic behavior of odontogenic keratocyst and orthokeratinaized odontogenic cyst using TGF-alpha and P53 markers.

    PubMed

    Deyhimi, Parviz; Hashemzadeh, Zahra

    2014-04-01

    Odontogenic keratocyst (OKC) is an aggressive cyst, and its recurrence rate is higher than that of other odontogenic cysts. Orthokeratinized odontogenic cyst (OOC) is less aggressive than OKC, but bears the probability of carcinomatous changes. In this study, we evaluated the expression and intensity of P53 and TGF-alpha in order to compare the biologic behavior or probable carcinomatous changes of these two cysts. In this cross-sectional study, 15 OKC and 15 OOC were stained immunohistochemically for P53 and TGF-alpha using the Novolink polymer method. Then, all slides were examined by an optical microscope with 400× magnification, and the stained cells in the basal and parabasal layers were counted. Finally, the results were analyzed by the Mann-Whitney and Wilcoxon tests (P-value<0.05). The difference between the expression of P53 and TGF alpha in the basal layer of OKC and OOC was not statistically significant (P-value>0.05), but the expression of P53 and TGF-alpha in the parabasal layer in OKC was statistically higher compared to OOC (P<0.05). Considering the known role of P53 and TGF-alpha in malignant changes and the higher expression of P53 and TGF-alpha in OKC compared to those in OOC, the probability of carcinomatous changes was higher in OKC than in OOC. Copyright © 2013 Elsevier GmbH. All rights reserved.

  13. Aciculatin Induces p53-Dependent Apoptosis via MDM2 Depletion in Human Cancer Cells In Vitro and In Vivo

    PubMed Central

    Lai, Chin-Yu; Tsai, An-Chi; Chen, Mei-Chuan; Chang, Li-Hsun; Sun, Hui-Lung; Chang, Ya-Ling; Chen, Chien-Chih

    2012-01-01

    Aciculatin, a natural compound extracted from the medicinal herb Chrysopogon aciculatus, shows potent anti-cancer potency. This study is the first to prove that aciculatin induces cell death in human cancer cells and HCT116 mouse xenografts due to G1 arrest and subsequent apoptosis. The primary reason for cell cycle arrest and cell death was p53 accumulation followed by increased p21 level, dephosphorylation of Rb protein, PUMA expression, and induction of apoptotic signals such as cleavage of caspase-9, caspase-3, and PARP. We demonstrated that p53 allele-null (−/−) (p53-KO) HCT116 cells were more resistant to aciculatin than cells with wild-type p53 (+/+). The same result was achieved by knocking down p53 with siRNA in p53 wild-type cells, indicating that p53 plays a crucial role in aciculatin-induced apoptosis. Although DNA damage is the most common event leading to p53 activation, we found only weak evidence of DNA damage after aciculatin treatment. Interestingly, the aciculatin-induced downregulation of MDM2, an important negative regulator of p53, contributed to p53 accumulation. The anti-cancer activity and importance of p53 after aciculatin treatment were also confirmed in the HCT116 xenograft models. Collectively, these results indicate that aciculatin treatment induces cell cycle arrest and apoptosis via inhibition of MDM2 expression, thereby inducing p53 accumulation without significant DNA damage and genome toxicity. PMID:22912688

  14. Studying p53 family proteins in yeast: Induction of autophagic cell death and modulation by interactors and small molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leão, Mariana; Gomes, Sara; Bessa, Cláudia

    In this work, the yeast Saccharomyces cerevisiae was used to individually study human p53, p63 (full length and truncated forms) and p73. Using this cell system, the effect of these proteins on cell proliferation and death, and the influence of MDM2 and MDMX on their activities were analyzed. When expressed in yeast, wild-type p53, TAp63, ΔNp63 and TAp73 induced growth inhibition associated with S-phase cell cycle arrest. This growth inhibition was accompanied by reactive oxygen species production and autophagic cell death. Furthermore, they stimulated rapamycin-induced autophagy. On the contrary, none of the tested p53 family members induced apoptosis either permore » se or after apoptotic stimuli. As previously reported for p53, also TAp63, ΔNp63 and TAp73 increased actin expression levels and its depolarization, suggesting that ACT1 is also a p63 and p73 putative yeast target gene. Additionally, MDM2 and MDMX inhibited the activity of all tested p53 family members in yeast, although the effect was weaker on TAp63. Moreover, Nutlin-3a and SJ-172550 were identified as potential inhibitors of the p73 interaction with MDM2 and MDMX, respectively. Altogether, the yeast-based assays herein developed can be envisaged as a simplified cell system to study the involvement of p53 family members in autophagy, the modulation of their activities by specific interactors (MDM2 and MDMX), and the potential of new small molecules to modulate these interactions. - Highlights: • p53, p63 and p73 are individually studied in the yeast S. cerevisiae. • p53 family members induce ROS production, cell cycle arrest and autophagy in yeast. • p53 family members increase actin depolarization and expression levels in yeast. • MDM2 and MDMX inhibit the activity of p53 family members in yeast. • Yeast can be a useful tool to study the biology and drugability of p53, p63 and p73.« less

  15. PAF53 is essential in mammalian cells: CRISPR/Cas9 fails to eliminate PAF53 expression.

    PubMed

    Rothblum, Lawrence I; Rothblum, Katrina; Chang, Eugenie

    2017-05-15

    When mammalian cells are nutrient and/or growth factor deprived, exposed to inhibitors of protein synthesis, stressed by heat shock or grown to confluence, rDNA transcription is essentially shut off. Various mechanisms are available to accomplish this downshift in ribosome biogenesis. Muramatsu's laboratory (Hanada et al., 1996) first demonstrated that mammalian PAF53 was essential for specific rDNA transcription and that PAF53 levels were regulated in response to growth factors. While S. cerevisae A49, the homologue of vertebrate PAF53, is not essential for viability (Liljelund et al., 1992), deletion of yA49 results in colonies that grow at 6% of the wild type rate at 25°C. Experiments described by Wang et al. (2015) identified PAF53 as a gene "essential for optimal proliferation". However, they did not discriminate genes essential for viability. Hence, in order to resolve this question, we designed a series of experiments to determine if PAF53 was essential for cell survival. We set out to delete the gene product from mammalian cells using CRISPR/CAS9 technology. Human 293 cells were transfected with lentiCRISPR v2 carrying genes for various sgRNA that targeted PAF53. In some experiments, the cells were cotransfected in parallel with plasmids encoding FLAG-tagged mouse PAF53. After treating the transfected cells with puromycin (to select for the lentiCRISPR backbone), cells were cloned and analyzed by western blots for PAF53 expression. Genomic DNA was amplified across the "CRISPRd" exon, cloned and sequenced to identify mutated PAF53 genes. We obtained cell lines in which the endogenous PAF53 gene was "knocked out" only when we rescued with FLAG-PAF53. DNA sequencing demonstrated that in the absence of ectopic PAF53 expression, cells demonstrated unique means of surviving; including recombination or the utilization of alternative reading frames. We never observed a clone in which one PAF53 gene is expressed, unless there was also ectopic expression In the

  16. Alcohol alters hepatic FoxO1, p53, and mitochondrial SIRT5 deacetylation function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieber, Charles S.; Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029; Leo, Maria Anna

    2008-08-22

    Chronic alcohol consumption affects the gene expression of a NAD-dependent deacetylase Sirtuis 1 (SIRT1) and the peroxisome proliferator-activated receptor-{gamma} coactivator1{alpha} (PGC-1{alpha}). Our aim was to verify that it also alters the forkhead (FoxO1) and p53 transcription factor proteins, critical in the hepatic response to oxidative stress and regulated by SIRT1 through its deacetylating capacity. Accordingly, rats were pair-fed the Lieber-DeCarli alcohol-containing liquid diets for 28 days. Alcohol increased hepatic mRNA expression of FoxO1 (p = 0.003) and p53 (p = 0.001) while corresponding protein levels remained unchanged. However phospho-FoxO1 and phospho-Akt (protein kinase) were both decreased by alcohol consumption (pmore » = 0.04 and p = 0.02, respectively) while hepatic p53 was found hyperacetylated (p = 0.017). Furthermore, mitochondrial SIRT5 was reduced (p = 0.0025), and PGC-1{alpha} hyperacetylated (p = 0.027), establishing their role in protein modification. Thus, alcohol consumption disrupts nuclear-mitochondrial interactions by post-translation protein modifications, which contribute to alteration of mitochondrial biogenesis through the newly discovered reduction of SIRT5.« less

  17. p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armesilla-Diaz, Alejandro, E-mail: aarmesilla@cib.csic.es; Elvira, Gema; Silva, Augusto

    2009-12-10

    Mesenchymal stem cells (MSC) have been extensively studied and gained wide popularity due to their therapeutic potential. Spontaneous transformation of MSC, from both human and murine origin, has been reported in many studies. MSC transformation depends on the culture conditions, the origin of the cells and the time on culture; however, the precise biological characteristics involved in this process have not been fully defined yet. In this study, we investigated the role of p53 in the biology and transformation of murine bone marrow (BM)-derived MSC. We demonstrate that the MSC derived from p53KO mice showed an augmented proliferation rate, amore » shorter doubling time and also morphologic and phenotypic changes, as compared to MSC derived from wild-type animals. Furthermore, the MSC devoid of p53 had an increased number of cells able to generate colonies. In addition, not only proliferation but also MSC differentiation is controlled by p53 since its absence modifies the speed of the process. Moreover, genomic instability, changes in the expression of c-myc and anchorage independent growth were also observed in p53KO MSC. In addition, the absence of p53 implicates the spontaneous transformation of MSC in long-term cultures. Our results reveal that p53 plays a central role in the biology of MSC.« less

  18. Exercise Activates p53 and Negatively Regulates IGF-1 Pathway in Epidermis within a Skin Cancer Model.

    PubMed

    Yu, Miao; King, Brenee; Ewert, Emily; Su, Xiaoyu; Mardiyati, Nur; Zhao, Zhihui; Wang, Weiqun

    2016-01-01

    Exercise has been previously reported to lower cancer risk through reducing circulating IGF-1 and IGF-1-dependent signaling in a mouse skin cancer model. This study aims to investigate the underlying mechanisms by which exercise may down-regulate the IGF-1 pathway via p53 and p53-related regulators in the skin epidermis. Female SENCAR mice were pair-fed an AIN-93 diet with or without 10-week treadmill exercise at 20 m/min, 60 min/day and 5 days/week. Animals were topically treated with TPA 2 hours before sacrifice and the target proteins in the epidermis were analyzed by both immunohistochemistry and Western blot. Under TPA or vehicle treatment, MDM2 expression was significantly reduced in exercised mice when compared with sedentary control. Meanwhile, p53 was significantly elevated. In addition, p53-transcriptioned proteins, i.e., p21, IGFBP-3, and PTEN, increased in response to exercise. There was a synergy effect between exercise and TPA on the decreased MDM2 and increased p53, but not p53-transcripted proteins. Taken together, exercise appeared to activate p53, resulting in enhanced expression of p21, IGFBP-3, and PTEN that might induce a negative regulation of IGF-1 pathway and thus contribute to the observed cancer prevention by exercise in this skin cancer model.

  19. Age-Related Susceptibility to Apoptosis in Human Retinal Pigment Epithelial Cells Is Triggered by Disruption of p53–Mdm2 Association

    PubMed Central

    Bhattacharya, Sujoy; Chaum, Edward; Johnson, Dianna A.; Johnson, Leonard R.

    2012-01-01

    Purpose. Relatively little is known about the contribution of p53/Mdm2 pathway in apoptosis of retinal pigment epithelial (RPE) cells or its possible link to dysfunction of aging RPE or to related blinding disorders such as age-related macular degeneration (AMD). Methods. Age-associated changes in p53 activation were evaluated in primary RPE cultures from human donor eyes of various ages. Apoptosis was evaluated by activation of caspases and DNA fragmentation. Gene-specific small interfering RNA was used to knock down expression of p53. Results. We observed that the basal rate of p53-dependent apoptosis increased in an age-dependent manner in human RPE. The age-dependent increase in apoptosis was linked to alterations in several aspects of the p53 pathway. p53 phosphorylation Ser15 was increased through the stimulation of ATM-Ser1981. p53 acetylation Lys379 was increased through the inhibition of SIRT1/2. These two posttranslational modifications of p53 blocked the sequestration of p53 by Mdm2, thus resulting in an increase in free p53 and of p53 stimulation of apoptosis through increased expression of PUMA (p53 upregulated modulator of apoptosis) and activation of caspase-3. Aged RPE also had reduced expression of antiapoptotic Bcl-2, which contributed to the increase in apoptosis. Of particular interest in these studies was that pharmacologic treatments to block p53 phosphorylation, acetylation, or expression were able to protect RPE cells from apoptosis. Conclusions. Our studies suggest that aging in the RPE leads to alterations of specific checkpoints in the apoptotic pathway, which may represent important molecular targets for the treatment of RPE-related aging disorders such as AMD. PMID:23139272

  20. The retinoblastoma protein/p16 INK4A pathway but not p53 is disrupted by human papillomavirus in penile squamous cell carcinoma.

    PubMed

    Stankiewicz, Elzbieta; Prowse, David M; Ktori, Elena; Cuzick, Jack; Ambroisine, Laurence; Zhang, Xiaoxi; Kudahetti, Sakunthala; Watkin, Nicholas; Corbishley, Catherine; Berney, Daniel M

    2011-02-01

    The pathogenesis of penile squamous cell carcinoma (PSCC) is not well understood. Human papillomavirus (HPV) may be involved in carcinogenesis, but few studies have compared cell-cycle protein expression in HPV positive and negative cancers. The aim was to determine the extent of HPV infection in different histological subtypes of PSCC and its impact on the expression of key cell-cycle proteins: p53, p21, p16(INK4A) and retinoblastoma (RB) protein. One hundred and forty-eight PSCC samples were examined immunohistochemically for RB, p16(INK4A) , p53 and p21 protein expression. One hundred and two cases were typed for HPV by PCR. HPV DNA was detected in 56% of tumours, with HPV16 present in 81%. Basaloid tumours were related strongly to HPV infection (10 of 13), while verrucous were not (three of 13). Fifty-nine per cent (38 of 64) of usual type SCCs had HPV infection. RB protein correlated negatively (P<0.0001) and p16(INK4A) (P<0.0001) and p21 (P=0.0002) correlated positively with HPV infection. p53 did not correlate with HPV infection. HPV infection is present in more than half of penile cancers and it is responsible for RB pathway disruption. However, no link between HPV and p53 immunodetection was found. Only basaloid and half of usual-type PSSCs correlate with HPV infection, confirming possible separate aetiologies for those tumours. © 2011 Blackwell Publishing Limited.