Sample records for abnormal protein accumulation

  1. A SENSITIVE IMMUNOFLUORESCENCE ASSAY FOR DETECTION OF P53 PROTEIN ACCUMULATION IN SPUTUM

    EPA Science Inventory

    p53 mutations are common genetic alterations in lung cancers and usually result in p53 protein accumulation in tumor cells. Sputum is noninvasive to collect and ideal for screening p53 abnormalities. This study was to determine the feasibility of detecting p53 protein accumulatio...

  2. Neprilysin participates in skeletal muscle regeneration and is accumulated in abnormal muscle fibres of inclusion body myositis.

    PubMed

    Broccolini, Aldobrando; Gidaro, Teresa; Morosetti, Roberta; Gliubizzi, Carla; Servidei, Tiziana; Pescatori, Mario; Tonali, Pietro A; Ricci, Enzo; Mirabella, Massimiliano

    2006-02-01

    Neprilysin (NEP, EP24.11), a metallopeptidase originally shown to modulate signalling events by degrading small regulatory peptides, is also an amyloid-beta- (Abeta) degrading enzyme. We investigated a possible role of NEP in inclusion body myositis (IBM) and other acquired and hereditary muscle disorders and found that in all myopathies NEP expression was directly associated with the degree of muscle fibre regeneration. In IBM muscle, NEP protein was also strongly accumulated in Abeta-bearing abnormal fibres. In vitro, during the experimental differentiation of myoblasts, NEP protein expression was regulated at the post-transcriptional level with a rapid increase in the early stage of myoblast differentiation followed by a gradual reduction thereafter, coincident with the progression of the myogenic programme. Treatment of differentiating muscle cells with the NEP inhibitor dl-3-mercapto-2-benzylpropanoylglycine resulted in impaired differentiation that was mainly associated with an abnormal regulation of Akt activation. Therefore, NEP may play an important role during muscle cell differentiation, possibly through the regulation, either directly or indirectly, of the insulin-like growth factor I-driven myogenic programme. In IBM muscle increased NEP may be instrumental in (i) reducing the Abeta accumulation in vulnerable fibres and (ii) promoting a repair/regenerative attempt of muscle fibres possibly through the modulation of insulin-like growth factor I-dependent pathways.

  3. The lipid accumulation product as a useful index for identifying abnormal glucose regulation in young Korean women.

    PubMed

    Oh, J-Y; Sung, Y-A; Lee, H J

    2013-04-01

    The lipid accumulation product, a combination of waist circumference and triglycerides concentration, has been suggested as a better marker for abnormal glucose regulation than BMI. We aimed to compare the lipid accumulation product and BMI as useful markers for abnormal glucose regulation in young Korean women. The lipid accumulation product was calculated using the formula [waist circumference (cm) - 58] × triglycerides (mmol/l). Glucose tolerance status was determined using a 75-g oral glucose tolerance test in 2810 Korean women aged 18-39 years from the general population. The prevalence of abnormal glucose regulation was 6.8% (isolated impaired fasting glucose 1.8%, isolated impaired glucose tolerance 4.0%; impaired fasting glucose + impaired glucose tolerance 0.4% and diabetes mellitus 0.6%). According to the quintile distributions of the lipid accumulation product and BMI, women with a lipid accumulation product quintile greater than their BMI quintile exhibited significantly greater areas under the curve and higher levels of 2-h post-load glucose, insulin, homeostasis model analysis of insulin resistance and lipid profiles than did women with a BMI quintile greater than their lipid accumulation product quintile. Multiple logistic regression revealed that the lipid accumulation product exhibited a higher odds ratio for abnormal glucose regulation than did BMI after adjusting for age, systolic blood pressure, HDL cholesterol, previous history of gestational diabetes and family history of diabetes (odds ratios 3.5 and 2.6 of the highest vs. the lowest quintiles of lipid accumulation product and BMI, respectively). The lipid accumulation product could be useful for identifying the young Korean women with abnormal glucose regulation. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  4. Abnormality of G-protein-coupled receptor kinases at prodromal and early stages of Alzheimer's disease: an association with early beta-amyloid accumulation.

    PubMed

    Suo, Zhiming; Wu, Min; Citron, Bruce A; Wong, Gwendolyn T; Festoff, Barry W

    2004-03-31

    Overwhelming evidence indicates that the effects of beta-amyloid (Abeta) are dose dependent both in vitro and in vivo, which implies that Abeta is not directly detrimental to brain cells until it reaches a threshold concentration. In an effort to understand early Alzheimer's disease (AD) pathogenesis, this study focused on the effects of subthreshold soluble Abeta and the underlying molecular mechanisms in murine microglial cells and an AD transgenic mouse model. We found that there were two phases of dose-dependent Abeta effects on microglial cells: at the threshold of 5 microm and above, Abeta directly induced tumor necrosis factor-alpha (TNF-alpha) release, and at subthreshold doses, Abeta indirectly potentiated TNF-alpha release induced by certain G-protein-coupled receptor (GPCR) activators. Mechanistic studies revealed that subthreshold Abeta pretreatment in vitro reduced membrane GPCR kinase-2/5 (GRK2/5), which led to retarded GPCR desensitization, prolonged GPCR signaling, and cellular hyperactivity to GPCR agonists. Temporal analysis in an early-onset AD transgenic model, CRND8 mice, revealed that the membrane (functional) GRK2/5 in brain cortices were significantly reduced. More importantly, such a GRK abnormality took place before cognitive decline and changed in a manner corresponding with the mild to moderate soluble Abeta accumulation in these transgenic mice. Together, this study not only discovered a novel link between subthreshold Abeta and GRK dysfunction, it also demonstrated that the GRK abnormality in vivo occurs at prodromal and early stages of AD.

  5. Metabolic Adaptation in Transplastomic Plants Massively Accumulating Recombinant Proteins

    PubMed Central

    Bally, Julia; Job, Claudette; Belghazi, Maya; Job, Dominique

    2011-01-01

    Background Recombinant chloroplasts are endowed with an astonishing capacity to accumulate foreign proteins. However, knowledge about the impact on resident proteins of such high levels of recombinant protein accumulation is lacking. Methodology/Principal Findings Here we used proteomics to characterize tobacco (Nicotiana tabacum) plastid transformants massively accumulating a p-hydroxyphenyl pyruvate dioxygenase (HPPD) or a green fluorescent protein (GFP). While under the conditions used no obvious modifications in plant phenotype could be observed, these proteins accumulated to even higher levels than ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), the most abundant protein on the planet. This accumulation occurred at the expense of a limited number of leaf proteins including Rubisco. In particular, enzymes involved in CO2 metabolism such as nuclear-encoded plastidial Calvin cycle enzymes and mitochondrial glycine decarboxylase were found to adjust their accumulation level to these novel physiological conditions. Conclusions/Significance The results document how protein synthetic capacity is limited in plant cells. They may provide new avenues to evaluate possible bottlenecks in recombinant protein technology and to maintain plant fitness in future studies aiming at producing recombinant proteins of interest through chloroplast transformation. PMID:21966485

  6. Protein accumulation and rumen stability of wheat γ-gliadin fusion proteins in tobacco and alfalfa.

    PubMed

    Sun, Xiaodong; Chi-Ham, Cecilia L; Cohen-Davidyan, Tamar; DeBen, Christopher; Getachew, Girma; DePeters, Edward; Putnam, Daniel; Bennett, Alan

    2015-09-01

    The nutritional value of various crops can be improved by engineering plants to produce high levels of proteins. For example, because methionine deficiency limits the protein quality of Medicago Sativa (alfalfa) forage, producing alfalfa plants that accumulate high levels of a methionine-rich protein could increase the nutritional value of that crop. We used three strategies in designing methionine-rich recombinant proteins that could accumulate to high levels in plants and thereby serve as candidates for improving the protein quality of alfalfa forage. In tobacco, two fusion proteins, γ-gliadin-δ-zein and γ-δ-zein, as well as δ-zein co-expressed with β-zein, all formed protein bodies. However, the γ-gliadin-δ-zein fusion protein accumulated to the highest level, representing up to 1.5% of total soluble protein (TSP) in one transformant. In alfalfa, γ-gliadin-δ-zein accumulated to 0.2% of TSP, and in an in vitro rumen digestion assay, γ-gliadin-δ-zein was more resistant to microbial degradation than Rubisco. Additionally, although it did not form protein bodies, a γ-gliadin-GFP fusion protein accumulated to much higher levels, 7% of TSP, than a recombinant protein comprised of an ER localization signal fused to GFP in tobacco. Based on our results, we conclude that γ-gliadin-δ-zein is a potential candidate protein to use for enhancing methionine levels in plants and for improving rumen stability of forage protein. γ-gliadin fusion proteins may provide a general platform for increasing the accumulation of recombinant proteins in transgenic plants. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Toxic Proteins in Neurodegenerative Disease

    NASA Astrophysics Data System (ADS)

    Taylor, J. Paul; Hardy, John; Fischbeck, Kenneth H.

    2002-06-01

    A broad range of neurodegenerative disorders is characterized by neuronal damage that may be caused by toxic, aggregation-prone proteins. As genes are identified for these disorders and cell culture and animal models are developed, it has become clear that a major effect of mutations in these genes is the abnormal processing and accumulation of misfolded protein in neuronal inclusions and plaques. Increased understanding of the cellular mechanisms for disposal of abnormal proteins and of the effects of toxic protein accumulation on neuronal survival may allow the development of rational, effective treatment for these disorders.

  8. Altered localization, abnormal modification and loss of function of Sigma receptor-1 in amyotrophic lateral sclerosis.

    PubMed

    Prause, J; Goswami, A; Katona, I; Roos, A; Schnizler, M; Bushuven, E; Dreier, A; Buchkremer, S; Johann, S; Beyer, C; Deschauer, M; Troost, D; Weis, J

    2013-04-15

    Intracellular accumulations of mutant, misfolded proteins are major pathological hallmarks of amyotrophic lateral sclerosis (ALS) and related disorders. Recently, mutations in Sigma receptor 1 (SigR1) have been found to cause a form of ALS and frontotemporal lobar degeneration (FTLD). Our goal was to pinpoint alterations and modifications of SigR1 in ALS and to determine how these changes contribute to the pathogenesis of ALS. In the present study, we found that levels of the SigR1 protein were reduced in lumbar ALS patient spinal cord. SigR1 was abnormally accumulated in enlarged C-terminals and endoplasmic reticulum (ER) structures of alpha motor neurons. These accumulations co-localized with the 20s proteasome subunit. SigR1 accumulations were also observed in SOD1 transgenic mice, cultured ALS-8 patient's fibroblasts with the P56S-VAPB mutation and in neuronal cell culture models. Along with the accumulation of SigR1 and several other proteins involved in protein quality control, severe disturbances in the unfolded protein response and impairment of protein degradation pathways were detected in the above-mentioned cell culture systems. Furthermore, shRNA knockdown of SigR1 lead to deranged calcium signaling and caused abnormalities in ER and Golgi structures in cultured NSC-34 cells. Finally, pharmacological activation of SigR1 induced the clearance of mutant protein aggregates in these cells. Our results support the notion that SigR1 is abnormally modified and contributes to the pathogenesis of ALS.

  9. The fanconi anemia proteins FANCA and FANCG stabilize each other and promote the nuclear accumulation of the Fanconi anemia complex.

    PubMed

    Garcia-Higuera, I; Kuang, Y; Denham, J; D'Andrea, A D

    2000-11-01

    Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with 8 complementation groups. Four of the FA genes have been cloned, and at least 3 of the encoded proteins, FANCA, FANCC, and FANCG/XRCC9, interact in a multisubunit protein complex. The FANCG protein binds directly to the amino terminal nuclear localization sequence (NLS) of FANCA, suggesting that FANCG plays a role in regulating FANCA nuclear accumulation. In the current study the functional consequences of FANCG/FANCA binding were examined. Correction of an FA-G cell line with the FANCG complementary DNA (cDNA) resulted in FANCA/FANCG binding, prolongation of the cellular half-life of FANCA, and an increase in the nuclear accumulation of the FA protein complex. Similar results were obtained upon correction of an FA-A cell line, with a reciprocal increase in the half-life of FANCG. Patient-derived mutant forms of FANCA, containing an intact NLS sequence but point mutations in the carboxy-terminal leucine zipper region, bound FANCG in the cytoplasm. The mutant forms failed to translocate to the nucleus of transduced cells, thereby suggesting a model of coordinated binding and nuclear translocation. These results demonstrate that the FANCA/FANCG interaction is required to maintain the cellular levels of both proteins. Moreover, at least one function of FANCG and FANCA is to regulate the nuclear accumulation of the FA protein complex. Failure to accumulate the nuclear FA protein complex results in the characteristic spectrum of clinical and cellular abnormalities observed in FA.

  10. Propiverine-induced accumulation of nuclear and cytosolic protein in F344 rat kidneys: Isolation and identification of the accumulating protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietrich, D.R.; Heussner, A.H.; O'Brien, E.

    2008-12-15

    Male and female F344 rats but not B6C3F1 mice exposed for 104 weeks to propiverine hydrochloride (1-methylpiperid-4-yl 2,2-diphenyl-2-(1-propoxy)acetate hydrochloride), used for treatment of patients with neurogenic detrusor overactivity (NDO) and overactive bladder (OAB), presented with an accumulation of proteins in the cytosol and nuclei of renal proximal tubule epithelial cells, yet despite this, no increased renal tumor incidence was observed. In order to provide an improved interpretation of these findings and a better basis for human health risk assessment, male and female F344 rats were exposed for 16 weeks to 1000 ppm propiverine in the diet, the accumulating protein wasmore » isolated from the kidneys via cytosolic and nuclear preparations or laser-capture microdissection and analyzed using molecular weight determination and mass spectrometry. The accumulating protein was found to be D-amino acid oxidase (DAAO), an enzyme involved in amino and fatty acid metabolism. Subsequent reanalysis of kidney homogenate and nuclear samples as well as tissue sections using western blot and DAAO-immunohistochemistry, confirmed the presence and localization of DAAO in propiverine-treated male and female F344 rats. The accumulation of DAAO only in rats, and the limited similarity of rat DAAO with other species, including humans, suggests a rat-specific mechanism underlying the drug-induced renal DAAO accumulation with little relevance for patients chronically treated with propiverine.« less

  11. Oil body proteins sequentially accumulate throughout seed development in Brassica napus.

    PubMed

    Jolivet, Pascale; Boulard, Céline; Bellamy, Annick; Valot, Benoît; d'Andréa, Sabine; Zivy, Michel; Nesi, Nathalie; Chardot, Thierry

    2011-11-15

    Despite the importance of seed oil bodies (OBs) as enclosed compartments for oil storage, little is known about lipid and protein accumulation in OBs during seed formation. OBs from rapeseed (Brassica napus) consist of a triacylglycerol (TAG) core surrounded by a phospholipid monolayer embedded with integral proteins which confer high stability to OBs in the mature dry seed. In the present study, we investigated lipid and protein accumulation patterns throughout seed development (from 5 to 65 days after pollination [DAP]) both in the whole seed and in purified OBs. Deposition of the major proteins (oleosins, caleosins and steroleosins) into OBs was assessed through (i) gene expression pattern, (ii) proteomics analysis, and (iii) protein immunodetection. For the first time, a sequential deposition of integral OB proteins was established. Accumulation of oleosins and caleosins was observed starting from early stages of seed development (12-17 DAP), while steroleosins accumulated later (~25 DAP) onwards. Copyright © 2011 Elsevier GmbH. All rights reserved.

  12. ELLI-1, a novel germline protein, modulates RNAi activity and P-granule accumulation in Caenorhabditis elegans

    PubMed Central

    Andralojc, Karolina M.; Kelly, Ashley L.; Tanner, Paige C.

    2017-01-01

    Germ cells contain non-membrane bound cytoplasmic organelles that help maintain germline integrity. In C. elegans they are called P granules; without them, the germline undergoes partial masculinization and aberrant differentiation. One key P-granule component is the Argonaute CSR-1, a small-RNA binding protein that antagonizes accumulation of sperm-specific transcripts in developing oocytes and fine-tunes expression of proteins critical to early embryogenesis. Loss of CSR-1 complex components results in a very specific, enlarged P-granule phenotype. In a forward screen to identify mutants with abnormal P granules, ten alleles were recovered with a csr-1 P-granule phenotype, eight of which contain mutations in known components of the CSR-1 complex (csr-1, ego-1, ekl-1, and drh-3). The remaining two alleles are in a novel gene now called elli-1 (enlarged germline granules). ELLI-1 is first expressed in primordial germ cells during mid-embryogenesis, and continues to be expressed in the adult germline. While ELLI-1 forms cytoplasmic aggregates, they occasionally dock, but do not co-localize with P granules. Instead, the majority of ELLI-1 aggregates accumulate in the shared germline cytoplasm. In elli-1 mutants, several genes that promote RNAi and P-granule accumulation are upregulated, and embryonic lethality, sterility, and RNAi resistance in a hypomorphic drh-3 allele is enhanced, suggesting that ELLI-1 functions with CSR-1 to modulate RNAi activity, P-granule accumulation, and post-transcriptional expression in the germline. PMID:28182654

  13. Higher accumulation of F1-V fusion recombinant protein in plants after induction of protein body formation.

    PubMed

    Alvarez, M Lucrecia; Topal, Emel; Martin, Federico; Cardineau, Guy A

    2010-01-01

    Improving foreign protein accumulation is crucial for enhancing the commercial success of plant-based production systems since product yields have a major influence on process economics. Cereal grain evolved to store large amounts of proteins in tightly organized aggregates. In maize, gamma-Zein is the major storage protein synthesized by the rough endoplasmic reticulum (ER) and stored in specialized organelles called protein bodies (PB). Zera (gamma-Zein ER-accumulating domain) is the N-terminal proline-rich domain of gamma-zein that is sufficient to induce the assembly of PB formation. Fusion of the Zera domain to proteins of interest results in assembly of dense PB-like, ER-derived organelles, containing high concentration of recombinant protein. Our main goal was to increase recombinant protein accumulation in plants in order to enhance the efficiency of orally-delivered plant-made vaccines. It is well known that oral vaccination requires substantially higher doses than parental formulations. As a part of a project to develop a plant-made plague vaccine, we expressed our model antigen, the Yersinia pestis F1-V antigen fusion protein, with and without a fused Zera domain. We demonstrated that Zera-F1-V protein accumulation was at least 3x higher than F1-V alone when expressed in three different host plant systems: Ncotiana benthamiana, Medicago sativa (alfalfa) and Nicotiana tabacum NT1 cells. We confirmed the feasibility of using Zera technology to induce protein body formation in non-seed tissues. Zera expression and accumulation did not affect plant development and growth. These results confirmed the potential exploitation of Zera technology to substantially increase the accumulation of value-added proteins in plants.

  14. Positive effects of duckweed polycultures on starch and protein accumulation.

    PubMed

    Li, Yang; Zhang, Fantao; Daroch, Maurycy; Tang, Jie

    2016-10-01

    The effect of duckweed species composition (Lemna aequinoctialis 5505, Landoltia punctata 5506 and Spirodela polyrhiza 5507) in polyculture and monoculture on biomass and starch/protein content were investigated at different levels of temperature, light intensity, nitrogen and phosphorus concentrations. The three growth parameters significantly affect duckweed biomass accumulation. Different combinations of duckweed species greatly varied in starch/protein content. Although all the polycultures showed a median relative growth rate and the majority of the polycultures showed a median and starch/protein content as compared with their respective monocultures, some of the polycultures were found to promote the accumulation of starch/protein at different growth conditions. These findings indicated that proper combination of duckweed species could facilitate desirable biomass accumulation and improve biomass quality. The present study provides useful references for future large-scale duckweed cultivation. © 2016 The Author(s).

  15. Positive effects of duckweed polycultures on starch and protein accumulation

    PubMed Central

    Li, Yang; Zhang, Fantao; Daroch, Maurycy; Tang, Jie

    2016-01-01

    The effect of duckweed species composition (Lemna aequinoctialis 5505, Landoltia punctata 5506 and Spirodela polyrhiza 5507) in polyculture and monoculture on biomass and starch/protein content were investigated at different levels of temperature, light intensity, nitrogen and phosphorus concentrations. The three growth parameters significantly affect duckweed biomass accumulation. Different combinations of duckweed species greatly varied in starch/protein content. Although all the polycultures showed a median relative growth rate and the majority of the polycultures showed a median and starch/protein content as compared with their respective monocultures, some of the polycultures were found to promote the accumulation of starch/protein at different growth conditions. These findings indicated that proper combination of duckweed species could facilitate desirable biomass accumulation and improve biomass quality. The present study provides useful references for future large-scale duckweed cultivation. PMID:27515418

  16. Disease-associated protein seeding suggests a dissociation between misfolded protein accumulation and neurodegeneration in prion disease

    PubMed Central

    Alibhai, James; Diack, Abigail; Manson, Jean

    2017-01-01

    ABSTRACT Chronic neurodegenerative diseases, such as prion diseases or Alzheimer's disease, are associated with progressive accumulation of host proteins which misfold and aggregate. Neurodegeneration is restricted to specific neuronal populations which show clear accumulation of misfolded proteins, whilst neighbouring neurons remain unaffected. Such data raise interesting questions about the vulnerability of specific neuronal populations to neurodegeneration and much research has concentrated only on the mechanisms of neurodegeneration in afflicted neuronal populations. An alternative, undervalued and almost completely unstudied question however is how and why neuronal populations are resilient to neurodegeneration. One potential answer is unaffected regions do not accumulate misfolded proteins, thus mechanisms of neurodegeneration do not become activated. In this perspectives, we discuss novel data from our laboratories which demonstrate that misfolded proteins do accumulate in regions of the brain which do not show evidence of neurodegeneration and further evidence that microglial responses may define the severity of neurodegeneration. PMID:29023184

  17. Disruption of Axonal Transport Perturbs Bone Morphogenetic Protein (BMP) - Signaling and Contributes to Synaptic Abnormalities in Two Neurodegenerative Diseases

    PubMed Central

    Kang, Min Jung; Hansen, Timothy J.; Mickiewicz, Monique; Kaczynski, Tadeusz J.; Fye, Samantha; Gunawardena, Shermali

    2014-01-01

    Formation of new synapses or maintenance of existing synapses requires the delivery of synaptic components from the soma to the nerve termini via axonal transport. One pathway that is important in synapse formation, maintenance and function of the Drosophila neuromuscular junction (NMJ) is the bone morphogenetic protein (BMP)-signaling pathway. Here we show that perturbations in axonal transport directly disrupt BMP signaling, as measured by its downstream signal, phospho Mad (p-Mad). We found that components of the BMP pathway genetically interact with both kinesin-1 and dynein motor proteins. Thick vein (TKV) vesicle motility was also perturbed by reductions in kinesin-1 or dynein motors. Interestingly, dynein mutations severely disrupted p-Mad signaling while kinesin-1 mutants showed a mild reduction in p-Mad signal intensity. Similar to mutants in components of the BMP pathway, both kinesin-1 and dynein motor protein mutants also showed synaptic morphological defects. Strikingly TKV motility and p-Mad signaling were disrupted in larvae expressing two human disease proteins; expansions of glutamine repeats (polyQ77) and human amyloid precursor protein (APP) with a familial Alzheimer's disease (AD) mutation (APPswe). Consistent with axonal transport defects, larvae expressing these disease proteins showed accumulations of synaptic proteins along axons and synaptic abnormalities. Taken together our results suggest that similar to the NGF-TrkA signaling endosome, a BMP signaling endosome that directly interacts with molecular motors likely exist. Thus problems in axonal transport occurs early, perturbs BMP signaling, and likely contributes to the synaptic abnormalities observed in these two diseases. PMID:25127478

  18. Melanin or a Melanin-Like Substance Interacts with the N-Terminal Portion of Prion Protein and Inhibits Abnormal Prion Protein Formation in Prion-Infected Cells

    PubMed Central

    Hamanaka, Taichi; Nishizawa, Keiko; Sakasegawa, Yuji; Oguma, Ayumi; Teruya, Kenta; Kurahashi, Hiroshi; Hara, Hideyuki; Sakaguchi, Suehiro

    2017-01-01

    ABSTRACT Prion diseases are progressive fatal neurodegenerative illnesses caused by the accumulation of transmissible abnormal prion protein (PrP). To find treatments for prion diseases, we searched for substances from natural resources that inhibit abnormal PrP formation in prion-infected cells. We found that high-molecular-weight components from insect cuticle extracts reduced abnormal PrP levels. The chemical nature of these components was consistent with that of melanin. In fact, synthetic melanin produced from tyrosine or 3-hydroxy-l-tyrosine inhibited abnormal PrP formation. Melanin did not modify cellular or cell surface PrP levels, nor did it modify lipid raft or cellular cholesterol levels. Neither did it enhance autophagy or lysosomal function. Melanin was capable of interacting with PrP at two N-terminal domains. Specifically, it strongly interacted with the PrP region of amino acids 23 to 50 including a positively charged amino acid cluster and weakly interacted with the PrP octarepeat peptide region of residues 51 to 90. However, the in vitro and in vivo data were inconsistent with those of prion-infected cells. Abnormal PrP formation in protein misfolding cyclic amplification was not inhibited by melanin. Survival after prion infection was not significantly altered in albino mice or exogenously melanin-injected mice compared with that of control mice. These data suggest that melanin, a main determinant of skin color, is not likely to modify prion disease pathogenesis, even though racial differences in the incidence of human prion diseases have been reported. Thus, the findings identify an interaction between melanin and the N terminus of PrP, but the pathophysiological roles of the PrP-melanin interaction remain unclear. IMPORTANCE The N-terminal region of PrP is reportedly important for neuroprotection, neurotoxicity, and abnormal PrP formation, as this region is bound by many factors, such as metal ions, lipids, nucleic acids, antiprion compounds

  19. Protein accumulation in aleurone cells, sub-aleurone cells and the center starch endosperm of cereals.

    PubMed

    Zheng, Yankun; Wang, Zhong

    2014-10-01

    There are mainly three endosperm storage tissues in the cereal endosperm: aleurone cells, sub-aleurone cells and the center starch endosperm. The protein accumulation is very different in the three endosperm storage tissues. The aleurone cells accumulate protein in aleurone granules. The sub-aleurone cells and the center starch endosperm accumulate protein in endoplasmic reticulum-derived protein bodies and vacuolar protein bodies. Proteins are deposited in different patterns within different endosperm storage tissues probably because of the special storage properties of these tissues. There are several special genes and other molecular factors to mediate the protein accumulation in these tissues. Different proteins have distinct functions in the protein body formation and the protein interactions determine protein body assembly. There are both cooperation and competition relationships between protein, starch and lipid in the cereal endosperm. This paper reviews the latest investigations on protein accumulation in aleurone cells, sub-aleurone cells and the center starch endosperm. Useful information will be supplied for future investigations on the cereal endosperm development.

  20. G protein abnormalities in pituitary adenomas.

    PubMed

    Spada, A; Lania, A; Ballarè, E

    1998-07-25

    It has been demonstrated that the majority of secreting and nonsecreting adenomas is monoclonal in origin suggesting that these neoplasia arise from the replication of a single mutated cell, in which growth advantage results from either activation of protooncogenes or inactivation of antioncogenes. Although a large number of genes has been screened for mutations, only few genetic abnormalities have been found in pituitary tumors such as allelic deletion of chromosome 11q13 where the MEN-1 gene has been localised, and mutations in the gene encoding the alpha subunit of the stimulatory Gs and Gi2 protein. These mutations constitutively activate the alpha subunit of the Gs and Gi2 protein by inhibiting their intrinsic GTPase activity. Both Gs alpha and Gi2alpha can be considered products of protooncogenes (gsp and gip2, respectively) since gain of function mutations that activate mitogenic signals have been recognized in human tumors. Gsp oncogene is found in 30-40% of GH-secreting adenomas, in a low percentage of nonfunctioning and ACTH-secreting pituitary adenomas, in toxic thyroid adenomas and differentiated thyroid carcinomas. The same mutations, occurred early in embriogenesis, have been also identified in tissues from patients affected with the McCune Albright syndrome. These mutations result in an increased cAMP production and in the subsequent overactivation of specific pathways involved in both cell growth and specific programmes of cell differentiation. By consequence, the endocrine tumors expressing gsp oncogene retain differentiated functions. The gip2 oncogene has been identified in about 10% of nonfunctioning pituitary adenomas, in tumors of the ovary and the adrenal cortex. However, it remains to be established whether Gi proteins activate mitogenic signals in pituitary cells. Since Gi proteins are involved in mediating the effect of inhibitory neurohormones on intracellular effectors, it has been proposed that in pituitary tumors the low expression of

  1. Nonadditive protein accumulation patterns in Maize (Zea mays L.) hybrids during embryo development.

    PubMed

    Marcon, Caroline; Schützenmeister, André; Schütz, Wolfgang; Madlung, Johannes; Piepho, Hans-Peter; Hochholdinger, Frank

    2010-12-03

    Heterosis describes the superior performance of heterozygous F(1)-hybrid plants compared to their homozygous parental inbred lines. In the present study, heterosis was detected for length, weight, and the time point of seminal root primordia initiation in maize (Zea mays L.) embryos of the reciprocal F(1)-hybrids UH005xUH250 and UH250xUH005. A two-dimensional gel electrophoresis (2-DE) proteome survey of the most abundant proteins of the reciprocal hybrids and their parental inbred lines 25 and 35 days after pollination revealed that 141 of 597 detected proteins (24%) exhibited nonadditive accumulation in at least one hybrid. Approximately 44% of all nonadditively accumulated proteins displayed an expression pattern that was not distinguishable from the low parent value. Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) analyses and subsequent functional classification of the 141 proteins revealed that development, protein metabolism, redox-regulation, glycolysis, and amino acid metabolism were the most prominent functional classes among nonadditively accumulated proteins. In 35-day-old embryos of the hybrid UH250xUH005, a significant up-regulation of enzymes related to glucose metabolism which often exceeded the best parent values was observed. A comparison of nonadditive protein accumulation between rice and maize embryo data sets revealed a significant overlap of nonadditively accumulated proteins suggesting conserved organ- or tissue-specific regulatory mechanisms in monocots related to heterosis.

  2. Abnormal mRNA Expression Levels of Telomere-Binding Proteins Represent Biomarkers in Myelodysplastic Syndromes: A Case-Control Study.

    PubMed

    Liu, Baoshan; Yan, Rongdi; Zhang, Jie; Wang, Bin; Sun, Hu; Cui, Xing

    2017-08-02

    As evidence was shown that abnormal shortening of telomeres begins to accumulate in myelodysplastic syndrome (MDS) patients, this study was conducted to determine the relationship between the mRNA expression levels of telomere-binding proteins (TRF1/TRF2/TIN2/TPP1/POT1/RAP1) and the risk level in MDS. There were 40 patients with MDS and 40 normal controls in this study. Methods including telomere content assays and quantitative reverse transcription-polymerase chain reaction were used to examine the mRNA levels of TRF1/TRF2/TIN2/TPP1/POT1/RAP1 in patients with MDS. Compared to the normal group used as a control, the mRNA expression levels of RAP1/POT1/TPP1 of the patients with MDS were decreased, whereas their levels of TRF1/TRF2 and TIN2 were increased. A positive correlation was found between the TRF1, TRF2, and TIN2 mRNA expression levels and the risk level of the International Prognostic Scoring System (IPSS) and the World Health Organization Prognostic Scoring System (WPSS) criteria; however, a negative correlation was found between RAP1/POT1/TPP1 mRNA expression levels and the risk levels of IPSS and WPSS criteria. Because the reduction of TRF1/TRF2/TIN2 mRNA expression and the increase of RAP1/POT1/TPP1 mRNA expression are closely related to the risk levels of the IPSS and WPSS criteria in MDS, it is thought that these telomere-binding proteins could lead to abnormal telomere length and function, which cause chromosomal abnormalities in MDS. With this evidence, we suggest that those proteins' mRNA expressions could be used as biomarkers for the assessment of the risk degree of MDS patients.

  3. Melanin or a Melanin-Like Substance Interacts with the N-Terminal Portion of Prion Protein and Inhibits Abnormal Prion Protein Formation in Prion-Infected Cells.

    PubMed

    Hamanaka, Taichi; Nishizawa, Keiko; Sakasegawa, Yuji; Oguma, Ayumi; Teruya, Kenta; Kurahashi, Hiroshi; Hara, Hideyuki; Sakaguchi, Suehiro; Doh-Ura, Katsumi

    2017-03-15

    Prion diseases are progressive fatal neurodegenerative illnesses caused by the accumulation of transmissible abnormal prion protein (PrP). To find treatments for prion diseases, we searched for substances from natural resources that inhibit abnormal PrP formation in prion-infected cells. We found that high-molecular-weight components from insect cuticle extracts reduced abnormal PrP levels. The chemical nature of these components was consistent with that of melanin. In fact, synthetic melanin produced from tyrosine or 3-hydroxy-l-tyrosine inhibited abnormal PrP formation. Melanin did not modify cellular or cell surface PrP levels, nor did it modify lipid raft or cellular cholesterol levels. Neither did it enhance autophagy or lysosomal function. Melanin was capable of interacting with PrP at two N-terminal domains. Specifically, it strongly interacted with the PrP region of amino acids 23 to 50 including a positively charged amino acid cluster and weakly interacted with the PrP octarepeat peptide region of residues 51 to 90. However, the in vitro and in vivo data were inconsistent with those of prion-infected cells. Abnormal PrP formation in protein misfolding cyclic amplification was not inhibited by melanin. Survival after prion infection was not significantly altered in albino mice or exogenously melanin-injected mice compared with that of control mice. These data suggest that melanin, a main determinant of skin color, is not likely to modify prion disease pathogenesis, even though racial differences in the incidence of human prion diseases have been reported. Thus, the findings identify an interaction between melanin and the N terminus of PrP, but the pathophysiological roles of the PrP-melanin interaction remain unclear. IMPORTANCE The N-terminal region of PrP is reportedly important for neuroprotection, neurotoxicity, and abnormal PrP formation, as this region is bound by many factors, such as metal ions, lipids, nucleic acids, antiprion compounds, and

  4. Hepatitis C virus core protein triggers abnormal porphyrin metabolism in human hepatocellular carcinoma cells.

    PubMed

    Nakano, Takafumi; Moriya, Kyoji; Koike, Kazuhiko; Horie, Toshiharu

    2018-01-01

    Porphyria cutanea tarda (PCT), the most common of the human porphyrias, arises from a deficiency of uroporphyrinogen decarboxylase. Studies have shown a high prevalence of hepatitis C virus (HCV) infection in patients with PCT. While these observations implicate HCV infection as a risk factor for PCT pathogenesis, the mechanism of interaction between the virus and porphyrin metabolism is unknown. This study aimed to assess the effect of HCV core protein on intracellular porphyrin metabolism to elucidate the link between HCV infection and PCT. The accumulation and excretion of porphyrins after treatment with 5-aminolevulinic acid, a porphyrin precursor, were compared between cells stably expressing HCV core protein and controls. Cells expressing HCV core protein had lower amounts of intracellular protoporphyrin IX and heme and had higher amounts of excreted coproporphyrin III, the oxidized form of coproporphyrinogen III, compared with controls. These observations suggest that HCV core protein affects porphyrin metabolism and facilitates the export of excess coproporphyrinogen III and/or coproporphyrin III, possibly via porphyrin transporters. Real-time PCR analysis revealed that the presence of HCV core protein increased the mRNA expression of porphyrin exporters ABCG2 and FLVCR1. Western blot analysis showed a higher expression level of FLVCR1, but not ABCG2, as well as a higher expression level of mature ALAS1, which is the rate-limiting enzyme in the heme synthesis pathway, in HCV core protein-expressing cells compared with controls. The data indicate that HCV core protein induced abnormal intracellular porphyrin metabolism, with an over-excretion of coproporphyrin III. These findings may partially account for the susceptibility of HCV-infected individuals to PCT development.

  5. The muscle protein dysferlin accumulates in the Alzheimer brain

    PubMed Central

    Palamand, Divya; Strider, Jeff; Milone, Margherita; Pestronk, Alan

    2006-01-01

    Dysferlin is a transmembrane protein that is highly expressed in muscle. Dysferlin mutations cause limb-girdle dystrophy type 2B, Miyoshi myopathy and distal anterior compartment myopathy. Dysferlin has also been described in neural tissue. We studied dysferlin distribution in the brains of patients with Alzheimer disease (AD) and controls. Twelve brains, staged using the Clinical Dementia Rating were examined: 9 AD cases (mean age: 85.9 years and mean disease duration: 8.9 years), and 3 age-matched controls (mean age: 87.5 years). Dysferlin is a cytoplasmic protein in the pyramidal neurons of normal and AD brains. In addition, there were dysferlin-positive dystrophic neurites within Aβ plaques in the AD brain, distinct from tau-positive neurites. Western blots of total brain protein (RIPA) and sequential extraction buffers (high salt, high salt/Triton X-100, SDS and formic acid) of increasing protein extraction strength were performed to examine solubility state. In RIPA fractions, dysferlin was seen as 230–272 kDa bands in normal and AD brains. In serial extractions, there was a shift of dysferlin from soluble phase in high salt/Triton X-100 to the more insoluble SDS fraction in AD. Dysferlin is a new protein described in the AD brain that accumulates in association with neuritic plaques. In muscle, dysferlin plays a role in the repair of muscle membrane damage. The accumulation of dysferlin in the AD brain may be related to the inability of neurons to repair damage due to Aβ deposits accumulating in the AD brain. PMID:17024495

  6. Identification and correction of abnormal, incomplete and mispredicted proteins in public databases.

    PubMed

    Nagy, Alinda; Hegyi, Hédi; Farkas, Krisztina; Tordai, Hedvig; Kozma, Evelin; Bányai, László; Patthy, László

    2008-08-27

    Despite significant improvements in computational annotation of genomes, sequences of abnormal, incomplete or incorrectly predicted genes and proteins remain abundant in public databases. Since the majority of incomplete, abnormal or mispredicted entries are not annotated as such, these errors seriously affect the reliability of these databases. Here we describe the MisPred approach that may provide an efficient means for the quality control of databases. The current version of the MisPred approach uses five distinct routines for identifying abnormal, incomplete or mispredicted entries based on the principle that a sequence is likely to be incorrect if some of its features conflict with our current knowledge about protein-coding genes and proteins: (i) conflict between the predicted subcellular localization of proteins and the absence of the corresponding sequence signals; (ii) presence of extracellular and cytoplasmic domains and the absence of transmembrane segments; (iii) co-occurrence of extracellular and nuclear domains; (iv) violation of domain integrity; (v) chimeras encoded by two or more genes located on different chromosomes. Analyses of predicted EnsEMBL protein sequences of nine deuterostome (Homo sapiens, Mus musculus, Rattus norvegicus, Monodelphis domestica, Gallus gallus, Xenopus tropicalis, Fugu rubripes, Danio rerio and Ciona intestinalis) and two protostome species (Caenorhabditis elegans and Drosophila melanogaster) have revealed that the absence of expected signal peptides and violation of domain integrity account for the majority of mispredictions. Analyses of sequences predicted by NCBI's GNOMON annotation pipeline show that the rates of mispredictions are comparable to those of EnsEMBL. Interestingly, even the manually curated UniProtKB/Swiss-Prot dataset is contaminated with mispredicted or abnormal proteins, although to a much lesser extent than UniProtKB/TrEMBL or the EnsEMBL or GNOMON-predicted entries. MisPred works efficiently in

  7. Perivascular Accumulation of β-Sheet-Rich Proteins in Offspring Brain following Maternal Exposure to Carbon Black Nanoparticles.

    PubMed

    Onoda, Atsuto; Kawasaki, Takayasu; Tsukiyama, Koichi; Takeda, Ken; Umezawa, Masakazu

    2017-01-01

    Environmental stimulation during brain development is an important risk factor for the development of neurodegenerative disease. Clinical evidence indicates that prenatal exposure to particulate air pollutants leads to diffuse damage to the neurovascular unit in the developing brain and accelerates neurodegeneration. Maternal exposure to carbon black nanoparticles (CB-NPs), used as a model for particulate air pollution, induces long-lasting diffuse perivascular abnormalities. We aimed to comprehensively characterize the perivascular abnormalities related to maternal NPs exposure using Fourier transform infrared microspectroscopy ( in situ FT-IR) and classical staining analysis. Pregnant ICR mice were intranasally treated with a CB-NPs suspension (95 μg/kg at a time) on gestational days 5 and 9. Brains were collected 6 weeks after birth and sliced to prepare 10-μm-thick serial sections. Reflective spectra of in situ FT-IR were acquired using lattice measurements ( x -axis: 7, y -axis: 7, 30-μm apertures) around a centered blood vessel. We also performed mapping analysis of protein secondary structures. Serial sections were stained with using periodic acid-Schiff or immunofluorescence to examine the phenotypes of the perivascular areas. Peaks of amide I bands in spectra from perivascular areas were shifted by maternal NPs exposure. However, there were two types of peak-shift in one mouse in the exposure group. Some vessels had a large peak-shift and others had a small peak-shift. In situ FT-IR combined with traditional staining revealed that the large peak-shift was induced around blood vessel adjacent to astrocytes with glial fibrillary acidic protein and aquaporin-4 over-expression and perivascular macrophages (PVMs) with enlarged lysosome granules. Furthermore, protein secondary structural analysis indicated that maternal NPs exposure led to increases in β-sheet content and decreases in α-helix content in areas that are mostly close to the centered blood

  8. [The relationship between the abnormal behavior and serum C-reactive protein in children with obstructive sleep apnea-hypopnea syndrome].

    PubMed

    Wang, Yan; Li, Yanzhong; Wang, Xin

    2009-12-01

    To explore the pathogenesis of abnormal behavior in children with obstructive sleep apnea-hypopnea syndrome (OSAHS). The behavioral problems and C-reactive protein were measured in 40 children with OSAHS and 30 children with habitual snoring who underwent overnight Polysomnography, 40 cases of healthy children for the control group. The ratio of abnormal behavior in OSAHS and habitual snoring children was significantly higher than that of the healthy control group, while no significant difference between the two groups. The content of C-reactive protein in OSAHS children (4.24 mg/L) was significantly higher than habitual snoring (2.76 mg/L) and healthy control group (1.27 mg/L); in habitual snoring children C-reactive protein was higher than in healthy control group. The content of serum C-reactive protein in OSAHS children accompanied by abnormal behavior (4.63 mg/L) was significantly higher than that without abnormal behavior (3.23 mg/L). The content of serum C-reactive protein content in habitual snoring children accompanied by abnormal behavior (3.63 mg/L) was significantly higher than that without abnormal behavior (1.76 mg/L). OSAHS and habitual snoring children have more behavior problems. C-reactive protein levels are higher in children with OSAHS and habitual snoring, and the levels of C-reactive protein are related to the abnormal behavior in these children.

  9. Unfolding story of inclusion-body myositis and myopathies: role of misfolded proteins, amyloid-beta, cholesterol, and aging.

    PubMed

    Askanas, Valerie; Engel, W King

    2003-03-01

    Sporadic inclusion-body myositis and hereditary inclusion-body myopathies are progressive muscle diseases leading to severe disability. We briefly summarize their clinical pictures and pathologic diagnostic criteria and discuss the latest advances in illuminating their pathogenic mechanism(s). We emphasize how different etiologies might lead to the strikingly similar pathology and possibly similar pathogenic cascade. On the basis of our research, several processes seem to be important in relation to the still speculative pathogenesis, including (a) increased transcription and accumulation of amyloid-beta precursor protein and accumulation of its proteolytic fragment amyloid-beta; (b) abnormal accumulation of components related to lipid metabolism, for example, cholesterol, accumulation of which is possibly owing to its abnormal trafficking; (c) oxidative stress; (d) accumulations of other Alzheimer's disease-related proteins; and (e) a milieu of muscle cellular aging in which these changes occur. We discuss a potentially very important role of unfolded and/or misfolded proteins as a possible mechanism in the formations of the inclusion bodies and other abnormalities.

  10. Accumulation and processing of a recombinant protein designed as a cleavable fusion to the endogenous Rubisco LSU protein in Chlamydomonas chloroplast

    PubMed Central

    Muto, Machiko; Henry, Ryan E; Mayfield, Stephen P

    2009-01-01

    Background Expression of recombinant proteins in green algal chloroplast holds substantial promise as a platform for the production of human therapeutic proteins. A number of proteins have been expressed in the chloroplast of Chlamydomonas reinhardtii, including complex mammalian proteins, but many of these proteins accumulate to significantly lower levels than do endogenous chloroplast proteins. We examined if recombinant protein accumulation could be enhanced by genetically fusing the recombinant reporter protein, luciferase, to the carboxy-terminal end of an abundant endogenous protein, the large subunit of ribulose bisphosphate carboxylase (Rubisco LSU). Additionally, as recombinant proteins fused to endogenous proteins are of little clinical or commercial value, we explored the possibility of engineering our recombinant protein to be cleavable from the endogenous protein in vivo. This strategy would obviate the need for further in vitro processing steps in order to produce the desired recombinant protein. To achieve this, a native protein-processing site from preferredoxin (preFd) was placed between the Rubisco LSU and luciferase coding regions in the fusion protein construct. Results The luciferase from the fusion protein accumulated to significantly higher levels than luciferase expressed alone. By eliminating the endogenous Rubisco large subunit gene (rbcL), we achieved a further increase in luciferase accumulation with respect to luciferase expression in the WT background. Importantly, near-wild type levels of functional Rubisco holoenzyme were generated following the proteolytic removal of the fused luciferase, while luciferase activity for the fusion protein was almost ~33 times greater than luciferase expressed alone. These data demonstrate the utility of using fusion proteins to enhance recombinant protein accumulation in algal chloroplasts, and also show that engineered proteolytic processing sites can be used to liberate the exogenous protein from

  11. Differential accumulation of proteins in oil palms affected by fatal yellowing disease

    PubMed Central

    do Nascimento, Sidney Vasconcelos; Magalhães, Marcelo Murad; Cunha, Roberto Lisboa; Costa, Paulo Henrique de Oliveira; Alves, Ronnie Cley de Oliveira; de Oliveira, Guilherme Corrêa

    2018-01-01

    There is still no consensus on the true origin of fatal yellowing, one of the most important diseases affecting oil palm (Elaeis guineensis Jacq.) plantations. This study involved two-dimensional liquid chromatography coupled with tandem mass spectrometry (2D-UPLC-MSE) analyses to identify changes in protein profiles of oil palms affected by FY disease. Oil palm roots were sampled from two growing areas. Differential accumulation of proteins was assessed by comparing plants with and without symptoms and between plants at different stages of FY development. Most of the proteins identified with differential accumulation were those related to stress response and energy metabolism. The latter proteins include the enzymes alcohol dehydrogenase and aldehyde dehydrogenase, related to alcohol fermentation, which were identified in plants with and without symptoms. The presence of these enzymes suggests an anaerobic condition before or during FY. Transketolase, isoflavone reductase, cinnamyl alcohol dehydrogenase, caffeic acid 3-O-methyltransferase, S-adenosylmethionine synthase, aldehyde dehydrogenase and ferritin, among others, were identified as potential marker proteins and could be used to guide selection of FY-tolerant oil palm genotypes or to understand the source of this anomaly. When comparing different stages of FY, we observed high accumulation of alcohol dehydrogenase and other abiotic stress related-proteins at all disease stages. On the other hand, biological stress-related proteins were more accumulated at later stages of the disease. These results suggest that changes in abiotic factors can trigger FY development, creating conditions for the establishment of opportunistic pathogens. PMID:29621343

  12. Abnormal pressure in hydrocarbon environments

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  13. Hydroxynonenal-generated crosslinking fluorophore accumulation in Alzheimer disease reveals a dichotomy of protein turnover.

    PubMed

    Zhu, Xiongwei; Castellani, Rudy J; Moreira, Paula I; Aliev, Gjumrakch; Shenk, Justin C; Siedlak, Sandra L; Harris, Peggy L R; Fujioka, Hisashi; Sayre, Lawrence M; Szweda, Pamela A; Szweda, Luke I; Smith, Mark A; Perry, George

    2012-02-01

    Lipid peroxidation generates reactive aldehydes, most notably hydroxynonenal (HNE), which covalently bind amino acid residue side chains leading to protein inactivation and insolubility. Specific adducts of lipid peroxidation have been demonstrated in intimate association with the pathological lesions of Alzheimer disease (AD), suggesting that oxidative stress is a major component of AD pathogenesis. Some HNE-protein products result in protein crosslinking through a fluorescent compound similar to lipofuscin, linking lipid peroxidation and the lipofuscin accumulation that commonly occurs in post-mitotic cells such as neurons. In this study, brain tissue from AD and control patients was examined by immunocytochemistry and immunoelectron microscopy for evidence of HNE-crosslinking modifications of the type that should accumulate in the lipofuscin pathway. Strong labeling of granulovacuolar degeneration (GVD) and Hirano bodies was noted but lipofuscin did not contain this specific HNE-fluorophore. These findings directly implicate lipid crosslinking peroxidation products as accumulating not in the lesions or the lipofuscin pathways, but instead in a distinct pathway, GVD, that accumulates cytosolic proteins. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Extracellular accumulation of recombinant protein by Escherichia coli in a defined medium.

    PubMed

    Fu, Xiang-Yang

    2010-09-01

    Extracellular accumulation of recombinant proteins in the culture medium of Escherichia coli is desirable but difficult to obtain. The inner or cytoplasmic membrane and the outer membrane of E. coli are two barriers for releasing recombinant proteins expressed in the cytoplasm into the culture medium. Even if recombinant proteins have been exported into the periplasm, a space between the outer membrane and the inner membrane, the outer membrane remains the last barrier for their extracellular release. However, when E. coli was cultured in a particular defined medium, recombinant proteins exported into the periplasm could diffuse into the culture medium automatically. If a nonionic detergent, Triton X-100, was added in the medium, recombinant proteins expressed in the cytoplasm could also be released into the culture medium. It was then that extracellular accumulation of recombinant proteins could be obtained by exporting them into the periplasm or releasing them from the cytoplasm with Triton X-100 addition. The tactics described herein provided simple and valuable methods for achieving extracellular production of recombinant proteins in E. coli.

  15. A charge-dependent mechanism is responsible for the dynamic accumulation of proteins inside nucleoli.

    PubMed

    Musinova, Yana R; Kananykhina, Eugenia Y; Potashnikova, Daria M; Lisitsyna, Olga M; Sheval, Eugene V

    2015-01-01

    The majority of known nucleolar proteins are freely exchanged between the nucleolus and the surrounding nucleoplasm. One way proteins are retained in the nucleoli is by the presence of specific amino acid sequences, namely nucleolar localization signals (NoLSs). The mechanism by which NoLSs retain proteins inside the nucleoli is still unclear. Here, we present data showing that the charge-dependent (electrostatic) interactions of NoLSs with nucleolar components lead to nucleolar accumulation as follows: (i) known NoLSs are enriched in positively charged amino acids, but the NoLS structure is highly heterogeneous, and it is not possible to identify a consensus sequence for this type of signal; (ii) in two analyzed proteins (NF-κB-inducing kinase and HIV-1 Tat), the NoLS corresponds to a region that is enriched for positively charged amino acid residues; substituting charged amino acids with non-charged ones reduced the nucleolar accumulation in proportion to the charge reduction, and nucleolar accumulation efficiency was strongly correlated with the predicted charge of the tested sequences; and (iii) sequences containing only lysine or arginine residues (which were referred to as imitative NoLSs, or iNoLSs) are accumulated in the nucleoli in a charge-dependent manner. The results of experiments with iNoLSs suggested that charge-dependent accumulation inside the nucleoli was dependent on interactions with nucleolar RNAs. The results of this work are consistent with the hypothesis that nucleolar protein accumulation by NoLSs can be determined by the electrostatic interaction of positively charged regions with nucleolar RNAs rather than by any sequence-specific mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. PML clastosomes prevent nuclear accumulation of mutant ataxin-7 and other polyglutamine proteins

    PubMed Central

    Janer, Alexandre; Martin, Elodie; Muriel, Marie-Paule; Latouche, Morwena; Fujigasaki, Hiroto; Ruberg, Merle; Brice, Alexis; Trottier, Yvon; Sittler, Annie

    2006-01-01

    The pathogenesis of spinocerebellar ataxia type 7 and other neurodegenerative polyglutamine (polyQ) disorders correlates with the aberrant accumulation of toxic polyQ-expanded proteins in the nucleus. Promyelocytic leukemia protein (PML) nuclear bodies are often present in polyQ aggregates, but their relation to pathogenesis is unclear. We show that expression of PML isoform IV leads to the formation of distinct nuclear bodies enriched in components of the ubiquitin-proteasome system. These bodies recruit soluble mutant ataxin-7 and promote its degradation by proteasome-dependent proteolysis, thus preventing the aggregate formation. Inversely, disruption of the endogenous nuclear bodies with cadmium increases the nuclear accumulation and aggregation of mutant ataxin-7, demonstrating their role in ataxin-7 turnover. Interestingly, β-interferon treatment, which induces the expression of endogenous PML IV, prevents the accumulation of transiently expressed mutant ataxin-7 without affecting the level of the endogenous wild-type protein. Therefore, clastosomes represent a potential therapeutic target for preventing polyQ disorders. PMID:16818720

  17. Accumulation of PrP-Sc in hemal nodes of naturally and experimentally scrapie-infected sheep

    USDA-ARS?s Scientific Manuscript database

    Classical scrapie is a naturally occurring fatal disease of sheep and goats which is caused by prions, a novel class of infectious agent. Infection is accompanied by accumulation of abnormal isoforms of the prion protein (PrP-Sc) in certain neural and lymphoid tissues. Hemal nodes, which are unique ...

  18. Abnormal accumulation and recycling of glycoproteins visualized in Niemann–Pick type C cells using the chemical reporter strategy

    PubMed Central

    Mbua, Ngalle Eric; Flanagan-Steet, Heather; Johnson, Steven; Wolfert, Margreet A.; Boons, Geert-Jan; Steet, Richard

    2013-01-01

    Niemann–Pick type C (NPC) disease is characterized by impaired cholesterol efflux from late endosomes and lysosomes and secondary accumulation of lipids. Although impaired trafficking of individual glycoproteins and glycolipids has been noted in NPC cells and other storage disorders, there is currently no effective way to monitor their localization and movement en masse. Using a chemical reporter strategy in combination with pharmacologic treatments, we demonstrate a disease-specific and previously unrecognized accumulation of a diverse set of glycoconjugates in NPC1-null and NPC2-deficient fibroblasts within endocytic compartments. These labeled vesicles do not colocalize with the cholesterol-laden compartments of NPC cells. Experiments using the endocytic uptake marker dextran show that the endosomal accumulation of sialylated molecules can be largely attributed to impaired recycling as opposed to altered fusion of vesicles. Treatment of either NPC1-null or NPC2-deficient cells with cyclodextrin was effective in reducing cholesterol storage as well as the endocytic accumulation of sialoglycoproteins, demonstrating a direct link between cholesterol storage and abnormal recycling. Our data further demonstrate that this accumulation is largely glycoproteins, given that inhibitors of O-glycan initiation or N-glycan processing led to a significant reduction in staining intensity. Taken together, our results provide a unique perspective on the trafficking defects in NPC cells, and highlight the utility of this methodology in analyzing cells with altered recycling and turnover of glycoproteins. PMID:23733943

  19. Intergenotypic replacement of lyssavirus matrix proteins demonstrates the role of lyssavirus M proteins in intracellular virus accumulation.

    PubMed

    Finke, Stefan; Granzow, Harald; Hurst, Jose; Pollin, Reiko; Mettenleiter, Thomas C

    2010-02-01

    Lyssavirus assembly depends on the matrix protein (M). We compared lyssavirus M proteins from different genotypes for their ability to support assembly and egress of genotype 1 rabies virus (RABV). Transcomplementation of M-deficient RABV with M from European bat lyssavirus (EBLV) types 1 and 2 reduced the release of infectious virus. Stable introduction of the heterogenotypic M proteins into RABV led to chimeric viruses with reduced virus release and intracellular accumulation of virus genomes. Although the chimeras indicated genotype-specific evolution of M, rapid selection of a compensatory mutant suggested conserved mechanisms of lyssavirus assembly and the requirement for only few adaptive mutations to fit the heterogenotypic M to a RABV backbone. Whereas the compensatory mutant replicated to similar infectious titers as RABV M-expressing virus, ultrastructural analysis revealed that both nonadapted EBLV M chimeras and the compensatory mutant differed from RABV M expressing viruses in the lack of intracellular viruslike structures that are enveloped and accumulate in cisterna of the degranulated and dilated rough endoplasmic reticulum compartment. Moreover, all viruses were able to bud at the plasma membrane. Since the lack of the intracellular viruslike structures correlated with the type of M protein but not with the efficiency of virus release, we hypothesize that the M proteins of EBLV-1 and RABV differ in their target membranes for virus assembly. Although the biological function of intracellular assembly and accumulation of viruslike structures in the endoplasmic reticulum remain unclear, the observed differences could contribute to diverse host tropism or pathogenicity.

  20. Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice

    PubMed Central

    Fujisawa, Yukiko; Kato, Teruhisa; Ohki, Shizuka; Ishikawa, Atsushi; Kitano, Hidemi; Sasaki, Takuji; Asahi, Tadashi; Iwasaki, Yukimoto

    1999-01-01

    Transgenic rice containing an antisense cDNA for the α subunit of rice heterotrimeric G protein produced little or no mRNA for the subunit and exhibited abnormal morphology, including dwarf traits and the setting of small seeds. In normal rice, the mRNA for the α subunit was abundant in the internodes and florets, the tissues closely related to abnormality in the dwarf transformants. The position of the α-subunit gene was mapped on rice chromosome 5 by mapping with the restriction fragment length polymorphism. The position was closely linked to the locus of a rice dwarf mutant, Daikoku dwarf (d-1), which is known to exhibit abnormal phenotypes similar to those of the transformants that suppressed the endogenous mRNA for the α subunit by antisense technology. Analysis of the cDNAs for the α subunits of five alleles of Daikoku dwarf (d-1), ID-1, DK22, DKT-1, DKT-2, and CM1361–1, showed that these dwarf mutants had mutated in the coding region of the α-subunit gene. These results show that the G protein functions in the formation of normal internodes and seeds in rice. PMID:10377457

  1. Biogenesis of protein bodies during legumin accumulation in developing olive (Olea europaea L.) seed.

    PubMed

    Jimenez-Lopez, Jose C; Zienkiewicz, Agnieszka; Zienkiewicz, Krzysztof; Alché, Juan D; Rodríguez-García, Maria I

    2016-03-01

    Much of our current knowledge about seed development and differentiation regarding reserves synthesis and accumulation come from monocot (cereals) plants. Studies in dicotyledonous seeds differentiation are limited to a few species and in oleaginous species are even scarcer despite their agronomic and economic importance. We examined the changes accompanying the differentiation of olive endosperm and cotyledon with a focus on protein bodies (PBs) biogenesis during legumin protein synthesis and accumulation, with the aim of getting insights and a better understanding of the PBs' formation process. Cotyledon and endosperm undergo differentiation during seed development, where an asynchronous time-course of protein synthesis, accumulation, and differential PB formation patterns was found in both tissues. At the end of seed maturation, a broad population of PBs, particularly in cotyledon cells, was distinguishable in terms of number per cell and morphometric and cytochemical features. Olive seed development is a tissue-dependent process characterized by differential rates of legumin accumulation and PB formation in the main tissues integrating seed. One of the main features of the impressive differentiation process is the specific formation of a broad group of PBs, particularly in cotyledon cells, which might depend on selective accumulation and packaging of proteins and specific polypeptides into PBs. The nature and availability of the major components detected in the PBs of olive seed are key parameters in order to consider the potential use of this material as a suitable source of carbon and nitrogen for animal or even human use.

  2. Reduced expression of the NMDA receptor-interacting protein SynGAP causes behavioral abnormalities that model symptoms of Schizophrenia.

    PubMed

    Guo, Xiaochuan; Hamilton, Peter J; Reish, Nicholas J; Sweatt, J David; Miller, Courtney A; Rumbaugh, Gavin

    2009-06-01

    Abnormal function of NMDA receptors is believed to be a contributing factor to the pathophysiology of schizophrenia. NMDAR subunits and postsynaptic-interacting proteins of these channels are abnormally expressed in some patients with this illness. In mice, reduced NMDAR expression leads to behaviors analogous to symptoms of schizophrenia, but reports of animals with mutations in core postsynaptic density proteins having similar a phenotype have yet to be reported. Here we show that reduced expression of the neuronal RasGAP and NMDAR-associated protein, SynGAP, results in abnormal behaviors strikingly similar to that reported in mice with reduced NMDAR function. SynGAP mutant mice exhibited nonhabituating and persistent hyperactivity that was ameliorated by the antipsychotic clozapine. An NMDAR antagonist, MK-801, induced hyperactivity in normal mice but SynGAP mutants were less responsive, suggesting that NMDAR hypofunction contributes to this behavioral abnormality. SynGAP mutants exhibited enhanced startle reactivity and impaired sensory-motor gating. These mice also displayed a complete lack of social memory and a propensity toward social isolation. Finally, SynGAP mutants had deficits in cued fear conditioning and working memory, indicating abnormal function of circuits that control emotion and choice. Our results demonstrate that SynGAP mutant mice have gross neurological deficits similar to other mouse models of schizophrenia. Because SynGAP interacts with NMDARs, and the signaling activity of this protein is regulated by these channels, our data in dicate that SynGAP lies downstream of NMDARs and is a required intermediate for normal neural circuit function and behavior. Taken together, these data support the idea that schizophrenia may arise from abnormal signaling pathways that are mediated by NMDA receptors.

  3. The Molecular Chaperone TRiC/CCT Binds to the Trp-Asp 40 (WD40) Repeat Protein WDR68 and Promotes Its Folding, Protein Kinase DYRK1A Binding, and Nuclear Accumulation*

    PubMed Central

    Miyata, Yoshihiko; Shibata, Takeshi; Aoshima, Masato; Tsubata, Takuichi; Nishida, Eisuke

    2014-01-01

    Trp-Asp (WD) repeat protein 68 (WDR68) is an evolutionarily conserved WD40 repeat protein that binds to several proteins, including dual specificity tyrosine phosphorylation-regulated protein kinase (DYRK1A), MAPK/ERK kinase kinase 1 (MEKK1), and Cullin4-damage-specific DNA-binding protein 1 (CUL4-DDB1). WDR68 affects multiple and diverse physiological functions, such as controlling anthocyanin synthesis in plants, tissue growth in insects, and craniofacial development in vertebrates. However, the biochemical basis and the regulatory mechanism of WDR68 activity remain largely unknown. To better understand the cellular function of WDR68, here we have isolated and identified cellular WDR68 binding partners using a phosphoproteomic approach. More than 200 cellular proteins with wide varieties of biochemical functions were identified as WDR68-binding protein candidates. Eight T-complex protein 1 (TCP1) subunits comprising the molecular chaperone TCP1 ring complex/chaperonin-containing TCP1 (TRiC/CCT) were identified as major WDR68-binding proteins, and phosphorylation sites in both WDR68 and TRiC/CCT were identified. Co-immunoprecipitation experiments confirmed the binding between TRiC/CCT and WDR68. Computer-aided structural analysis suggested that WDR68 forms a seven-bladed β-propeller ring. Experiments with a series of deletion mutants in combination with the structural modeling showed that three of the seven β-propeller blades of WDR68 are essential and sufficient for TRiC/CCT binding. Knockdown of cellular TRiC/CCT by siRNA caused an abnormal WDR68 structure and led to reduction of its DYRK1A-binding activity. Concomitantly, nuclear accumulation of WDR68 was suppressed by the knockdown of TRiC/CCT, and WDR68 formed cellular aggregates when overexpressed in the TRiC/CCT-deficient cells. Altogether, our results demonstrate that the molecular chaperone TRiC/CCT is essential for correct protein folding, DYRK1A binding, and nuclear accumulation of WDR68. PMID

  4. Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation

    DOE PAGES

    Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.; ...

    2016-09-23

    Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior.Caulobacter crescentusis unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaF aand RsaF b, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology toEscherichia coliTolC, the outer membrane channel of multidrug effluxmore » pumps. Here we provide evidence that, unlike TolC, RsaF aand RsaF bare not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaF aand RsaF bare required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaF aand RsaF bled to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaF aand RsaF bled to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaF aand RsaF bin cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels inC. crescentus. IMPORTANCEDecreased growth rate and reduced cell fitness are common side effects of protein production in overexpression systems. Inclusion bodies typically form inside the cell, largely due to a lack of sufficient export machinery to transport the overexpressed proteins to the extracellular environment. This

  5. Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.

    ABSTRACT Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior.Caulobacter crescentusis unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaF aand RsaF b, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology toEscherichia coliTolC, the outer membrane channel of multidrugmore » efflux pumps. Here we provide evidence that, unlike TolC, RsaF aand RsaF bare not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaF aand RsaF bare required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaF aand RsaF bled to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaF aand RsaF bled to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaF aand RsaF bin cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels inC. crescentus. IMPORTANCEDecreased growth rate and reduced cell fitness are common side effects of protein production in overexpression systems. Inclusion bodies typically form inside the cell, largely due to a lack of sufficient export machinery to transport the overexpressed proteins to the extracellular environment

  6. Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.

    Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior.Caulobacter crescentusis unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaF aand RsaF b, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology toEscherichia coliTolC, the outer membrane channel of multidrug effluxmore » pumps. Here we provide evidence that, unlike TolC, RsaF aand RsaF bare not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaF aand RsaF bare required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaF aand RsaF bled to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaF aand RsaF bled to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaF aand RsaF bin cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels inC. crescentus. IMPORTANCEDecreased growth rate and reduced cell fitness are common side effects of protein production in overexpression systems. Inclusion bodies typically form inside the cell, largely due to a lack of sufficient export machinery to transport the overexpressed proteins to the extracellular environment. This

  7. Protein Repair l-Isoaspartyl Methyltransferase1 Is Involved in Both Seed Longevity and Germination Vigor in Arabidopsis[W

    PubMed Central

    Ogé, Laurent; Bourdais, Gildas; Bove, Jérôme; Collet, Boris; Godin, Béatrice; Granier, Fabienne; Boutin, Jean-Pierre; Job, Dominique; Jullien, Marc; Grappin, Philippe

    2008-01-01

    The formation of abnormal amino acid residues is a major source of spontaneous age-related protein damage in cells. The protein l-isoaspartyl methyltransferase (PIMT) combats protein misfolding resulting from l-isoaspartyl formation by catalyzing the conversion of abnormal l-isoaspartyl residues to their normal l-aspartyl forms. In this way, the PIMT repair enzyme system contributes to longevity and survival in bacterial and animal kingdoms. Despite the discovery of PIMT activity in plants two decades ago, the role of this enzyme during plant stress adaptation and in seed longevity remains undefined. In this work, we have isolated Arabidopsis thaliana lines exhibiting altered expression of PIMT1, one of the two genes encoding the PIMT enzyme in Arabidopsis. PIMT1 overaccumulation reduced the accumulation of l-isoaspartyl residues in seed proteins and increased both seed longevity and germination vigor. Conversely, reduced PIMT1 accumulation was associated with an increase in the accumulation of l-isoaspartyl residues in the proteome of freshly harvested dry mature seeds, thus leading to heightened sensitivity to aging treatments and loss of seed vigor under stressful germination conditions. These data implicate PIMT1 as a major endogenous factor that limits abnormal l-isoaspartyl accumulation in seed proteins, thereby improving seed traits such as longevity and vigor. The PIMT repair pathway likely works in concert with other anti-aging pathways to actively eliminate deleterious protein products, thus enabling successful seedling establishment and strengthening plant proliferation in natural environments. PMID:19011119

  8. Nuclear poly(A)-binding protein aggregates misplace a pre-mRNA outside of SC35 speckle causing its abnormal splicing

    PubMed Central

    Klein, Pierre; Oloko, Martine; Roth, Fanny; Montel, Valérie; Malerba, Alberto; Jarmin, Susan; Gidaro, Teresa; Popplewell, Linda; Perie, Sophie; Lacau St Guily, Jean; de la Grange, Pierre; Antoniou, Michael N.; Dickson, George; Butler-Browne, Gillian; Bastide, Bruno; Mouly, Vincent; Trollet, Capucine

    2016-01-01

    A short abnormal polyalanine expansion in the polyadenylate-binding protein nuclear-1 (PABPN1) protein causes oculopharyngeal muscular dystrophy (OPMD). Mutated PABPN1 proteins accumulate as insoluble intranuclear aggregates in muscles of OPMD patients. While the roles of PABPN1 in nuclear polyadenylation and regulation of alternative poly(A) site choice have been established, the molecular mechanisms which trigger pathological defects in OPMD and the role of aggregates remain to be determined. Using exon array, for the first time we have identified several splicing defects in OPMD. In particular, we have demonstrated a defect in the splicing regulation of the muscle-specific Troponin T3 (TNNT3) mutually exclusive exons 16 and 17 in OPMD samples compared to controls. This splicing defect is directly linked to the SC35 (SRSF2) splicing factor and to the presence of nuclear aggregates. As reported here, PABPN1 aggregates are able to trap TNNT3 pre-mRNA, driving it outside nuclear speckles, leading to an altered SC35-mediated splicing. This results in a decreased calcium sensitivity of muscle fibers, which could in turn plays a role in muscle pathology. We thus report a novel mechanism of alternative splicing deregulation that may play a role in various other diseases with nuclear inclusions or foci containing an RNA binding protein. PMID:27507886

  9. Ozone-Induced Alterations in the Accumulation of Newly Synthesized Proteins in Leaves of Maize.

    PubMed Central

    Pino, M. E.; Mudd, J. B.; Bailey-Serres, J.

    1995-01-01

    We examined the response of leaves of 3-week-old maize (Zea mays L.) to short-term (5 h) fumigation with O3-enriched air (0, 0.12, 0.24, or 0.36 [mu]L/L). Older leaves and leaf tissue developed more severe visible damage at higher external O3 concentrations. To investigate the immediate effect of O3 exposure on the accumulation of newly synthesized leaf proteins, leaves were labeled with [35S]methionine after 2 h and fumigated for an additional 3 h. O3-induced alterations of leaf proteins were observed in a concentration-dependent manner. There was a significant decrease in [35S]methionine incorporation into protein at the highest O3 concentration. Developmental differences in accumulation of de novo-synthesized leaf proteins were observed when the leaf tip, middle, and basal sections were labeled under 0 [mu]L/L O3, and additional changes were apparent upon exposure to increasing O3 concentrations. Changes in leaf protein synthesis were observed in the absence of visible leaf injury. Subcellular fractionation revealed O3-induced alterations in soluble and membrane-associated proteins. A number of thylakoid membrane-associated proteins showed specific increases in response to O3 fumigation. In contrast, the synthesis of a 32-kD polypeptide associated with thylakoid membranes was reduced in response to O3 fumigation in parallel with reduced incorporation of [35S]methionine into protein. Immunoprecipitation identified this polypeptide as the D1 protein of photosystem II. A reduction in the accumulation of newly synthesized D1 could have consequences for the efficiency of photosynthesis and other cellular processes. PMID:12228510

  10. How and why do toxic conformers of aberrant proteins accumulate during ageing?

    PubMed

    Josefson, Rebecca; Andersson, Rebecca; Nyström, Thomas

    2017-07-15

    Ageing can be defined as a gradual decline in cellular and physical functions accompanied by an increased sensitivity to the environment and risk of death. The increased risk of mortality is causally connected to a gradual, intracellular accumulation of so-called ageing factors, of which damaged and aggregated proteins are believed to be one. Such aggregated proteins also contribute to several age-related neurodegenerative disorders e.g. Alzheimer's, Parkinson's, and Huntington's diseases, highlighting the importance of protein quality control (PQC) in ageing and its associated diseases. PQC consists of two interrelated systems: the temporal control system aimed at refolding, repairing, and/or removing aberrant proteins and their aggregates and the spatial control system aimed at harnessing the potential toxicity of aberrant proteins by sequestering them at specific cellular locations. The accumulation of toxic conformers of aberrant proteins during ageing is often declared to be a consequence of an incapacitated temporal PQC system-i.e. a gradual decline in the activity of chaperones and proteases. Here, we review the current knowledge on PQC in relation to ageing and highlight that the breakdown of both temporal and spatial PQC may contribute to ageing and thus comprise potential targets for therapeutic interventions of the ageing process. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  11. COLLAPSED ABNORMAL POLLEN1 Gene Encoding the Arabinokinase-Like Protein Is Involved in Pollen Development in Rice1[C][W][OA

    PubMed Central

    Ueda, Kenji; Yoshimura, Fumiaki; Miyao, Akio; Hirochika, Hirohiko; Nonomura, Ken-Ichi; Wabiko, Hiroetsu

    2013-01-01

    We isolated a pollen-defective mutant, collapsed abnormal pollen1 (cap1), from Tos17 insertional mutant lines of rice (Oryza sativa). The cap1 heterozygous plant produced equal numbers of normal and collapsed abnormal grains. The abnormal pollen grains lacked almost all cytoplasmic materials, nuclei, and intine cell walls and did not germinate. Genetic analysis of crosses revealed that the cap1 mutation did not affect female reproduction or vegetative growth. CAP1 encodes a protein consisting of 996 amino acids that showed high similarity to Arabidopsis (Arabidopsis thaliana) l-arabinokinase, which catalyzes the conversion of l-arabinose to l-arabinose 1-phosphate. A wild-type genomic DNA segment containing CAP1 restored mutants to normal pollen grains. During rice pollen development, CAP1 was preferentially expressed in anthers at the bicellular pollen stage, and the effects of the cap1 mutation were mainly detected at this stage. Based on the metabolic pathway of l-arabinose, cap1 pollen phenotype may have been caused by toxic accumulation of l-arabinose or by inhibition of cell wall metabolism due to the lack of UDP-l-arabinose derived from l-arabinose 1-phosphate. The expression pattern of CAP1 was very similar to that of another Arabidopsis homolog that showed 71% amino acid identity with CAP1. Our results suggested that CAP1 and related genes are critical for pollen development in both monocotyledonous and dicotyledonous plants. PMID:23629836

  12. A protein kinase binds the C-terminal domain of the readthrough protein of Turnip yellows virus and regulates virus accumulation.

    PubMed

    Rodriguez-Medina, Caren; Boissinot, Sylvaine; Chapuis, Sophie; Gereige, Dalya; Rastegar, Maryam; Erdinger, Monique; Revers, Frédéric; Ziegler-Graff, Véronique; Brault, Véronique

    2015-12-01

    Turnip yellows virus (TuYV), a phloem-limited virus, encodes a 74kDa protein known as the readthrough protein (RT) involved in virus movement. We show here that a TuYV mutant deleted of the C-terminal part of the RT protein (TuYV-∆RTCter) was affected in long-distance trafficking in a host-specific manner. By using the C-terminal domain of the RT protein as a bait in a yeast two-hybrid screen of a phloem cDNA library from Arabidopsis thaliana we identified the calcineurin B-like protein-interacting protein kinase-7 (AtCIPK7). Transient expression of a GFP:CIPK7 fusion protein in virus-inoculated Nicotiana benthamiana leaves led to local increase of wild-type TuYV accumulation, but not that of TuYV-∆RTCter. Surprisingly, elevated virus titer in inoculated leaves did not result in higher TuYV accumulation in systemic leaves, which indicates that virus long-distance movement was not affected. Since GFP:CIPK7 was localized in or near plasmodesmata, CIPK7 could negatively regulate TuYV export from infected cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Adipocyte differentiation-related protein promotes lipid accumulation in goat mammary epithelial cells.

    PubMed

    Shi, H B; Yu, K; Luo, J; Li, J; Tian, H B; Zhu, J J; Sun, Y T; Yao, D W; Xu, H F; Shi, H P; Loor, J J

    2015-10-01

    Milk fat originates from the secretion of cytosolic lipid droplets (CLD) synthesized within mammary epithelial cells. Adipocyte differentiation-related protein (ADRP; gene symbol PLIN2) is a CLD-binding protein that is crucial for synthesis of mature CLD. Our hypothesis was that ADRP regulates CLD production and metabolism in goat mammary epithelial cells (GMEC) and thus plays a role in determining milk fat content. To understand the role of ADRP in ruminant milk fat metabolism, ADRP (PLIN2) was overexpressed or knocked down in GMEC using an adenovirus system. Immunocytochemical staining revealed that ADRP localized to the surface of CLD. Supplementation with oleic acid (OA) enhanced its colocalization with CLD surface and enhanced lipid accumulation. Overexpression of ADRP increased lipid accumulation and the concentration of triacylglycerol in GMEC. In contrast, morphological examination revealed that knockdown of ADRP decreased lipid accumulation even when OA was supplemented. This response was confirmed by the reduction in mass of cellular TG when ADRP was knocked down. The fact that knockdown of ADRP did not completely eliminate lipid accumulation at a morphological level in GMEC without OA suggests that some other compensatory factors may also aid in the process of CLD formation. The ADRP reversed the decrease of CLD accumulation induced by adipose triglyceride lipase. This is highly suggestive of ADRP promoting triacylglycerol stability within CLD by preventing access to adipose triglyceride lipase. Collectively, these data provide direct in vitro evidence that ADRP plays a key role in CLD formation and stability in GMEC. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Minos-insertion mutant of the Drosophila GBA gene homologue showed abnormal phenotypes of climbing ability, sleep and life span with accumulation of hydroxy-glucocerebroside.

    PubMed

    Kawasaki, Haruhisa; Suzuki, Takahiro; Ito, Kumpei; Takahara, Tsubasa; Goto-Inoue, Naoko; Setou, Mitsutoshi; Sakata, Kazuki; Ishida, Norio

    2017-05-30

    Gaucher's disease in humans is considered a deficiency of glucocerebrosidase (GlcCerase) that result in the accumulation of its substrate, glucocerebroside (GlcCer). Although mouse models of Gaucher's disease have been reported from several laboratories, these models are limited due to the perinatal lethality of GlcCerase gene. Here, we examined phenotypes of Drosophila melanogaster homologues genes of the human Gaucher's disease gene by using Minos insertion. One of two Minos insertion mutants to unknown function gene (CG31414) accumulates the hydroxy-GlcCer in whole body of Drosophila melanogaster. This mutant showed abnormal phenotypes of climbing ability and sleep, and short lifespan. These abnormal phenotypes are very similar to that of Gaucher's disease in human. In contrast, another Minos insertion mutant (CG31148) and its RNAi line did not show such severe phenotype as observed in CG31414 gene mutation. The data suggests that Drosophila CG31414 gene mutation might be useful for unraveling the molecular mechanism of Gaucher's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. IFT Proteins Accumulate during Cell Division and Localize to the Cleavage Furrow in Chlamydomonas

    PubMed Central

    Wood, Christopher R.; Wang, Zhaohui; Diener, Dennis; Zones, James Matt; Rosenbaum, Joel; Umen, James G.

    2012-01-01

    Intraflagellar transport (IFT) proteins are well established as conserved mediators of flagellum/cilium assembly and disassembly. However, data has begun to accumulate in support of IFT protein involvement in other processes elsewhere in the cell. Here, we used synchronous cultures of Chlamydomonas to investigate the temporal patterns of accumulation and localization of IFT proteins during the cell cycle. Their mRNAs showed periodic expression that peaked during S and M phase (S/M). Unlike most proteins that are synthesized continuously during G1 phase, IFT27 and IFT46 levels were found to increase only during S/M phase. During cell division, IFT27, IFT46, IFT72, and IFT139 re-localized from the flagella and basal bodies to the cleavage furrow. IFT27 was further shown to be associated with membrane vesicles in this region. This localization pattern suggests a role for IFT in cell division. PMID:22328921

  16. Understanding renal nuclear protein accumulation: an in vitro approach to explain an in vivo phenomenon.

    PubMed

    Luks, Lisanne; Maier, Marcia Y; Sacchi, Silvia; Pollegioni, Loredano; Dietrich, Daniel R

    2017-11-01

    Proper subcellular trafficking is essential to prevent protein mislocalization and aggregation. Transport of the peroxisomal enzyme D-amino acid oxidase (DAAO) appears dysregulated by specific pharmaceuticals, e.g., the anti-overactive bladder drug propiverine or a norepinephrine/serotonin reuptake inhibitor (NSRI), resulting in massive cytosolic and nuclear accumulations in rat kidney. To assess the underlying molecular mechanism of the latter, we aimed to characterize the nature of peroxisomal and cyto-nuclear shuttling of human and rat DAAO overexpressed in three cell lines using confocal microscopy. Indeed, interference with peroxisomal transport via deletion of the PTS1 signal or PEX5 knockdown resulted in induced nuclear DAAO localization. Having demonstrated the absence of active nuclear import and employing variably sized mCherry- and/or EYFP-fusion proteins of DAAO and catalase, we showed that peroxisomal proteins ≤134 kDa can passively diffuse into mammalian cell nuclei-thereby contradicting the often-cited 40 kDa diffusion limit. Moreover, their inherent nuclear presence and nuclear accumulation subsequent to proteasome inhibition or abrogated peroxisomal transport suggests that nuclear localization is a characteristic in the lifecycle of peroxisomal proteins. Based on this molecular trafficking analysis, we suggest that pharmaceuticals like propiverine or an NSRI may interfere with peroxisomal protein targeting and import, consequently resulting in massive nuclear protein accumulation in vivo.

  17. Positive lysosomal modulation as a unique strategy to treat age-related protein accumulation diseases.

    PubMed

    Bahr, Ben A; Wisniewski, Meagan L; Butler, David

    2012-04-01

    Lysosomes are involved in degrading and recycling cellular ingredients, and their disruption with age may contribute to amyloidogenesis, paired helical filaments (PHFs), and α-synuclein and mutant huntingtin aggregation. Lysosomal cathepsins are upregulated by accumulating proteins and more so by the modulator Z-Phe-Ala-diazomethylketone (PADK). Such positive modulators of the lysosomal system have been studied in the well-characterized hippocampal slice model of protein accumulation that exhibits the pathogenic cascade of tau aggregation, tubulin breakdown, microtubule destabilization, transport failure, and synaptic decline. Active cathepsins were upregulated by PADK; Rab proteins were modified as well, indicating enhanced trafficking, whereas lysosome-associated membrane protein and proteasome markers were unchanged. Lysosomal modulation reduced the pre-existing PHF deposits, restored tubulin structure and transport, and recovered synaptic components. Further proof-of-principle studies used Alzheimer disease mouse models. It was recently reported that systemic PADK administration caused dramatic increases in cathepsin B protein and activity levels, whereas neprilysin, insulin-degrading enzyme, α-secretase, and β-secretase were unaffected by PADK. In the transgenic models, PADK treatment resulted in clearance of intracellular amyloid beta (Aβ) peptide and concomitant reduction of extracellular deposits. Production of the less pathogenic Aβ(1-38) peptide corresponded with decreased levels of Aβ(1-42), supporting the lysosome's antiamyloidogenic role through intracellular truncation. Amelioration of synaptic and behavioral deficits also indicates a neuroprotective function of the lysosomal system, identifying lysosomal modulation as an avenue for disease-modifying therapies. From the in vitro and in vivo findings, unique lysosomal modulators represent a minimally invasive, pharmacologically controlled strategy against protein accumulation disorders to enhance

  18. Overexpression of PLK3 Mediates the Degradation of Abnormal Prion Proteins Dependent on Chaperone-Mediated Autophagy.

    PubMed

    Wang, Hui; Tian, Chan; Sun, Jing; Chen, Li-Na; Lv, Yan; Yang, Xiao-Dong; Xiao, Kang; Wang, Jing; Chen, Cao; Shi, Qi; Shao, Qi-Xiang; Dong, Xiao-Ping

    2017-08-01

    Polo-like kinase 3 (PLK3) is the main cause of cell cycle reentry-related neuronal apoptosis which has been implicated in the pathogenesis of prion diseases. Previous work also showed the regulatory activity of exogenous PLK3 on the degradation of PrP (prion protein) mutants and pathogenic PrP Sc ; however, the precise mechanisms remain unknown. In this study, we identified that the overexpression of PLK3-mediated degradation of PrP mutant and PrP Sc was repressed by lysosome rather than by proteasomal and macroautophagy inhibitors. Core components of chaperone-mediated autophagy (CMA) effectors, lysosome-associated membrane protein type 2A (LAMP2a), and heat shock cognate protein 70 (Hsc70) are markedly decreased in the HEK293T cells expressing PrP mutant and scrapie-infected cell line SMB-S15. Meanwhile, PrP mutant showed ability to interact with LAMP2a and Hsc70. Overexpression of PLK3 sufficiently increased the cellular levels of LAMP2a and Hsc70, accompanying with declining the accumulations of PrP mutant and PrP Sc . The kinase domain (KD) of PLK3 was responsible for elevating LAMP2a and Hsc70. Knockdown of endogenous PLK3 enhanced the activity of macroautophagy in the cultured cells. Moreover, time-dependent reductions of LAMP2a and Hsc70 were also observed in the brain tissues of hamster-adapted scrapie agent 263K-infected hamsters, indicating an impairment of CMA during prion infection. Those data indicate that the overexpression of PLK3-mediated degradation of abnormal PrP is largely dependent on CMA pathway.

  19. Proteins associated with critical sperm functions and sperm head shape are differentially expressed in morphologically abnormal bovine sperm induced by scrotal insulation.

    PubMed

    Shojaei Saadi, Habib A; van Riemsdijk, Evine; Dance, Alysha L; Rajamanickam, Gayathri D; Kastelic, John P; Thundathil, Jacob C

    2013-04-26

    The objective was to investigate expression patterns of proteins in pyriform sperm, a common morphological abnormality in bull sperm. Ejaculates were collected from sexually mature Holstein bulls (n=3) twice weekly for 10 weeks (pre-thermal insult samples). Testicular temperature was elevated in all bulls by scrotal insulation for 72 consecutive hours during week 2. Total sperm proteins were extracted from pre- and post-thermal insult sperm samples and subjected to two-dimensional gel electrophoresis. Among the protein spots detected, 131 spots were significantly expressed (False Detection Rate <0.01) with ≥ 2 fold changes between normal and pyriform sperm. Among them, 25 spots with ≥ 4 fold difference in expression patterns were identified using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Expression of several proteins involved in sperm capacitation, sperm-egg interaction and sperm cytoskeletal structure was decreased in pyriform sperm, whereas proteins regulating antioxidant activity, apoptosis and metabolic activity were increased. Contents of reactive oxygen species and ubiquitinated proteins were higher in pyriform sperm. In addition to understanding the molecular basis of functional deficiencies in sperm with specific morphological abnormalities, comparing normal versus morphologically abnormal sperm appeared to be a suitable experimental model for identifying important sperm functional proteins. To our knowledge, this study is the first report on differential expression of proteins in pyriform bovine sperm versus morphologically normal sperm. We report that expression of several proteins involved in sperm capacitation, sperm-egg interaction and sperm cytoskeletal structure was decreased in pyriform sperm, whereas proteins which regulate antioxidant activity, apoptosis and metabolic activity were increased. Contents of reactive oxygen species and ubiquitinated proteins were higher in pyriform sperm. In addition to understanding

  20. Role of endometrial cancer abnormal MMR protein in screening Lynch-syndrome families.

    PubMed

    Long, Qiongxian; Peng, Yong; Tang, Zhirong; Wu, Cailiang

    2014-01-01

    To identify patients with endometrial cancer with potential Lynch-related DNA mismatch repair (MMR) protein expression defects and to explore the role of these defects in screening for LS. Endometrial cancers from 173 patients recruited to the Nanchong Central Hospital were tested for MMR (MLH1, MSH2, PMS2, and MSH6) protein expression using immunohistochemistry (IHC). In the 173 tumor tissue samples, the expression loss rates of MSH6, MSH2, PMS2 and MLH1 protein were 16.18% (28/173), 12.14% (21/173), 7.51% (13/173) and 5.78% (10/173), respectively. The total loss rate of MMR protein was 29.89% (27/87). There were 19 patients with a family history of cancer, of which 18 patients demonstrated loss of expression of MMR protein. In the 22 abnormal MMR patients without family history, five families were found to have Lynch-associated cancer (colorectal cancer, endometrial cancer, ovarian cancer, stomach cancer) after follow-up for two years. MMR proteins play an important role in the progress of endometrial cancer. The routine testing of MMR proteins in endometrial cancer can contribute to the screening of LS families, especially small families.

  1. Protein Kinase Cϵ (PKCϵ) Promotes Synaptogenesis through Membrane Accumulation of the Postsynaptic Density Protein PSD-95*

    PubMed Central

    Sen, Abhik; Hongpaisan, Jarin; Wang, Desheng; Nelson, Thomas J.; Alkon, Daniel L.

    2016-01-01

    Protein kinase Cϵ (PKCϵ) promotes synaptic maturation and synaptogenesis via activation of synaptic growth factors such as BDNF, NGF, and IGF. However, many of the detailed mechanisms by which PKCϵ induces synaptogenesis are not fully understood. Accumulation of PSD-95 to the postsynaptic density (PSD) is known to lead to synaptic maturation and strengthening of excitatory synapses. Here we investigated the relationship between PKCϵ and PSD-95. We show that the PKCϵ activators dicyclopropanated linoleic acid methyl ester and bryostatin 1 induce phosphorylation of PSD-95 at the serine 295 residue, increase the levels of PSD-95, and enhance its membrane localization. Elimination of the serine 295 residue in PSD-95 abolished PKCϵ-induced membrane accumulation. Knockdown of either PKCϵ or JNK1 prevented PKCϵ activator-mediated membrane accumulation of PSD-95. PKCϵ directly phosphorylated PSD-95 and JNK1 in vitro. Inhibiting PKCϵ, JNK, or calcium/calmodulin-dependent kinase II activity prevented the effects of PKCϵ activators on PSD-95 phosphorylation. Increase in membrane accumulation of PKCϵ and phosphorylated PSD-95 (p-PSD-95S295) coincided with an increased number of synapses and increased amplitudes of excitatory post-synaptic potentials (EPSPs) in adult rat hippocampal slices. Knockdown of PKCϵ also reduced the synthesis of PSD-95 and the presynaptic protein synaptophysin by 30 and 44%, respectively. Prolonged activation of PKCϵ increased synapse number by 2-fold, increased presynaptic vesicle density, and greatly increased PSD-95 clustering. These results indicate that PKCϵ promotes synaptogenesis by activating PSD-95 phosphorylation directly through JNK1 and calcium/calmodulin-dependent kinase II and also by inducing expression of PSD-95 and synaptophysin. PMID:27330081

  2. Type II fish antifreeze protein accumulation in transgenic tobacco does not confer frost resistance.

    PubMed

    Kenward, K D; Brandle, J; McPherson, J; Davies, P L

    1999-04-01

    Type II fish antifreeze protein (AFP) is active in both freezing point depression and the inhibition of ice recrystallization. This extensively disulfide-bonded 14 kDa protein was targeted for accumulation in its pro- and mature forms in the cytosol and apoplast of transgenic tobacco plants. Type II AFP gene constructs under control of a duplicate cauliflower mosaic virus 35S promoter, both with and without a native plant transit peptide sequence, were introduced into tobacco by Agrobacterium tumefaciens-mediated transformation. AFP did not accumulate in the cytosol of transgenic plants, but active AFP was present as 2% the total protein present in the apoplast. Plant-produced AFP was the same size as mature Type II AFP isolated from fish, and was comparable to wild-type AFP in thermal hysteresis activity and its effect on ice crystal morphology. Field trials conducted in late summer on R1 generation transgenic plants showed similar AFP accumulation in plants under field conditions at levels suitable for large-scale production: but no difference in frost resistance was observed between transgenic and wild-type plants during the onset of early fall frosts.

  3. Intraneuronal accumulation of misfolded tau protein induces overexpression of Hsp27 in activated astrocytes.

    PubMed

    Filipcik, Peter; Cente, Martin; Zilka, Norbert; Smolek, Tomas; Hanes, Jozef; Kucerak, Juraj; Opattova, Alena; Kovacech, Branislav; Novak, Michal

    2015-07-01

    Accumulation of misfolded forms of microtubule associated, neuronal protein tau causes neurofibrillary degeneration typical of Alzheimer's disease and other tauopathies. This process is accompanied by elevated cellular stress and concomitant deregulation of heat-shock proteins. We used a transgenic rat model of tauopathy to study involvement of heat shock protein 27 (Hsp27) in the process of neurofibrillary degeneration, its cell type specific expression and correlation with the amount of insoluble tau protein aggregates. The expression of Hsp27-mRNA is more than doubled and levels of Hsp27 protein tripled in aged transgenic animals with tau pathology. The data revealed a strong positive and highly significant correlation between Hsp27-mRNA and amount of sarkosyl insoluble tau. Interestingly, intracellular accumulation of insoluble misfolded tau protein in neurons was associated with overexpression of Hsp27 almost exclusively in reactive astrocytes, not in neurons. The topological dissociation of neuronally expressed pathological tau and the induction of astrocytic Hsp27, GFAP, and Vimentin along with up-regulation of microglia specific markers such as CD18, CD68 and C3 point to cooperation of astrocytes, microglia and neurons in response to intra-neuronal accumulation of insoluble tau. Our data suggest that over expression of Hsp27 represents a part of microglia-mediated astrocytic response mechanism in the process of neurofibrillary degeneration, which is not necessarily associated with neuroprotection and which in contrary may accelerate neurodegeneration in late stage of the disease. This phenomenon should be considered during development of disease modifying strategies for treatment of tauopathies and AD via regulation of activity of Hsp27. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Zinc deficiency-induced iron accumulation, a consequence of alterations in iron regulatory protein-binding activity, iron transporters, and iron storage proteins.

    PubMed

    Niles, Brad J; Clegg, Michael S; Hanna, Lynn A; Chou, Susan S; Momma, Tony Y; Hong, Heeok; Keen, Carl L

    2008-02-22

    One consequence of zinc deficiency is an elevation in cell and tissue iron concentrations. To examine the mechanism(s) underlying this phenomenon, Swiss 3T3 cells were cultured in zinc-deficient (D, 0.5 microM zinc), zinc-supplemented (S, 50 microM zinc), or control (C, 4 microM zinc) media. After 24 h of culture, cells in the D group were characterized by a 50% decrease in intracellular zinc and a 35% increase in intracellular iron relative to cells in the S and C groups. The increase in cellular iron was associated with increased transferrin receptor 1 protein and mRNA levels and increased ferritin light chain expression. The divalent metal transporter 1(+)iron-responsive element isoform mRNA was decreased during zinc deficiency-induced iron accumulation. Examination of zinc-deficient cells revealed increased binding of iron regulatory protein 2 (IRP2) and decreased binding of IRP1 to a consensus iron-responsive element. The increased IRP2-binding activity in zinc-deficient cells coincided with an increased level of IRP2 protein. The accumulation of IRP2 protein was independent of zinc deficiency-induced intracellular nitric oxide production but was attenuated by the addition of the antioxidant N-acetylcysteine or ascorbate to the D medium. These data support the concept that zinc deficiency can result in alterations in iron transporter, storage, and regulatory proteins, which facilitate iron accumulation.

  5. MdHIR proteins repress anthocyanin accumulation by interacting with the MdJAZ2 protein to inhibit its degradation in apples

    PubMed Central

    Chen, Ke-Qin; Zhao, Xian-Yan; An, Xiu-Hong; Tian, Yi; Liu, Dan-Dan; You, Chun-Xiang; Hao, Yu-Jin

    2017-01-01

    In higher plants, jasmonate ZIM-domain (JAZ) proteins negatively regulate the biosynthesis of anthocyanins by interacting with bHLH transcription factors. However, it is largely unknown if and how other regulators are involved in this process. In this study, the apple MdJAZ2 protein was characterized in regards to its function in the negative regulation of anthocyanin accumulation and peel coloration. MdJAZ2 was used as a bait to screen a cDNA library using the yeast two-hybrid method. The hypersensitive induced reaction (HIR) proteins, MdHIR2 and MdHIR4, were obtained from this yeast two-hybrid. The ZIM domain of MdJAZ2 and the PHB domain of the MdHIR proteins are necessary for their interactions. The interactions were further verified using an in vitro pull-down assay. Subsequently, immunoblotting assays demonstrated that MdHIR4 enhanced the stability of the MdJAZ2-GUS protein. Finally, a viral vector-based transformation method showed that MdHIR4 inhibited anthocyanin accumulation and fruit coloration in apple by modulating the expression of genes associated with anthocyanin biosynthesis. PMID:28317851

  6. Protein Kinase Cϵ (PKCϵ) Promotes Synaptogenesis through Membrane Accumulation of the Postsynaptic Density Protein PSD-95.

    PubMed

    Sen, Abhik; Hongpaisan, Jarin; Wang, Desheng; Nelson, Thomas J; Alkon, Daniel L

    2016-08-05

    Protein kinase Cϵ (PKCϵ) promotes synaptic maturation and synaptogenesis via activation of synaptic growth factors such as BDNF, NGF, and IGF. However, many of the detailed mechanisms by which PKCϵ induces synaptogenesis are not fully understood. Accumulation of PSD-95 to the postsynaptic density (PSD) is known to lead to synaptic maturation and strengthening of excitatory synapses. Here we investigated the relationship between PKCϵ and PSD-95. We show that the PKCϵ activators dicyclopropanated linoleic acid methyl ester and bryostatin 1 induce phosphorylation of PSD-95 at the serine 295 residue, increase the levels of PSD-95, and enhance its membrane localization. Elimination of the serine 295 residue in PSD-95 abolished PKCϵ-induced membrane accumulation. Knockdown of either PKCϵ or JNK1 prevented PKCϵ activator-mediated membrane accumulation of PSD-95. PKCϵ directly phosphorylated PSD-95 and JNK1 in vitro Inhibiting PKCϵ, JNK, or calcium/calmodulin-dependent kinase II activity prevented the effects of PKCϵ activators on PSD-95 phosphorylation. Increase in membrane accumulation of PKCϵ and phosphorylated PSD-95 (p-PSD-95(S295)) coincided with an increased number of synapses and increased amplitudes of excitatory post-synaptic potentials (EPSPs) in adult rat hippocampal slices. Knockdown of PKCϵ also reduced the synthesis of PSD-95 and the presynaptic protein synaptophysin by 30 and 44%, respectively. Prolonged activation of PKCϵ increased synapse number by 2-fold, increased presynaptic vesicle density, and greatly increased PSD-95 clustering. These results indicate that PKCϵ promotes synaptogenesis by activating PSD-95 phosphorylation directly through JNK1 and calcium/calmodulin-dependent kinase II and also by inducing expression of PSD-95 and synaptophysin. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Walnut diet reduces accumulation of polyubiquitinated proteins and inflammation in the brain of aged rats

    USDA-ARS?s Scientific Manuscript database

    An increase in the aggregation of misfolded/damaged polyubiquitinated proteins has been the hallmark of many age-related neurodegenerative diseases. The accumulation of these potentially toxic proteins in brain increases with age, in part due to increased oxidative and inflammatory stresses. Walnuts...

  8. Limits to sulfur accumulation in transgenic lupin seeds expressing a foreign sulfur-rich protein.

    PubMed

    Tabe, Linda M; Droux, Michel

    2002-03-01

    The low sulfur amino acid content of legume seeds restricts their nutritive value for animals. We have investigated the limitations to the accumulation of sulfur amino acids in the storage proteins of narrow leaf lupin (Lupinus angustifolius) seeds. Variation in sulfur supply to lupin plants affected the sulfur amino acid accumulation in the mature seed. However, when sulfur was in abundant supply, it accumulated to a large extent in oxidized form, rather than reduced form, in the seeds. At all but severely limiting sulfur supply, addition of a transgenic (Tg) sink for organic sulfur resulted in an increase in seed sulfur amino acid content. We hypothesize that demand, or sink strength for organic sulfur, which is itself responsive to environmental sulfur supply, was the first limit to the methionine (Met) and cysteine (Cys) content of wild-type lupin seed protein under most growing conditions. In Tg, soil-grown seeds expressing a foreign Met- and Cys-rich protein, decreased pools of free Met, free Cys, and glutathione indicated that the rate of synthesis of sulfur amino acids in the cotyledon had become limiting. Homeostatic mechanisms similar to those mediating the responses of plants to environmental sulfur stress resulted in an adjustment of endogenous protein composition in Tg seeds, even when grown at adequate sulfur supply. Uptake of sulfur by lupin cotyledons, as indicated by total seed sulfur at maturity, responded positively to increased sulfur supply, but not to increased demand in the Tg seeds.

  9. Limits to Sulfur Accumulation in Transgenic Lupin Seeds Expressing a Foreign Sulfur-Rich Protein

    PubMed Central

    Tabe, Linda M.; Droux, Michel

    2002-01-01

    The low sulfur amino acid content of legume seeds restricts their nutritive value for animals. We have investigated the limitations to the accumulation of sulfur amino acids in the storage proteins of narrow leaf lupin (Lupinus angustifolius) seeds. Variation in sulfur supply to lupin plants affected the sulfur amino acid accumulation in the mature seed. However, when sulfur was in abundant supply, it accumulated to a large extent in oxidized form, rather than reduced form, in the seeds. At all but severely limiting sulfur supply, addition of a transgenic (Tg) sink for organic sulfur resulted in an increase in seed sulfur amino acid content. We hypothesize that demand, or sink strength for organic sulfur, which is itself responsive to environmental sulfur supply, was the first limit to the methionine (Met) and cysteine (Cys) content of wild-type lupin seed protein under most growing conditions. In Tg, soil-grown seeds expressing a foreign Met- and Cys-rich protein, decreased pools of free Met, free Cys, and glutathione indicated that the rate of synthesis of sulfur amino acids in the cotyledon had become limiting. Homeostatic mechanisms similar to those mediating the responses of plants to environmental sulfur stress resulted in an adjustment of endogenous protein composition in Tg seeds, even when grown at adequate sulfur supply. Uptake of sulfur by lupin cotyledons, as indicated by total seed sulfur at maturity, responded positively to increased sulfur supply, but not to increased demand in the Tg seeds. PMID:11891268

  10. SET oncoprotein accumulation regulates transcription through DNA demethylation and histone hypoacetylation.

    PubMed

    Almeida, Luciana O; Neto, Marinaldo P C; Sousa, Lucas O; Tannous, Maryna A; Curti, Carlos; Leopoldino, Andreia M

    2017-04-18

    Epigenetic modifications are essential in the control of normal cellular processes and cancer development. DNA methylation and histone acetylation are major epigenetic modifications involved in gene transcription and abnormal events driving the oncogenic process. SET protein accumulates in many cancer types, including head and neck squamous cell carcinoma (HNSCC); SET is a member of the INHAT complex that inhibits gene transcription associating with histones and preventing their acetylation. We explored how SET protein accumulation impacts on the regulation of gene expression, focusing on DNA methylation and histone acetylation. DNA methylation profile of 24 tumour suppressors evidenced that SET accumulation decreased DNA methylation in association with loss of 5-methylcytidine, formation of 5-hydroxymethylcytosine and increased TET1 levels, indicating an active DNA demethylation mechanism. However, the expression of some suppressor genes was lowered in cells with high SET levels, suggesting that loss of methylation is not the main mechanism modulating gene expression. SET accumulation also downregulated the expression of 32 genes of a panel of 84 transcription factors, and SET directly interacted with chromatin at the promoter of the downregulated genes, decreasing histone acetylation. Gene expression analysis after cell treatment with 5-aza-2'-deoxycytidine (5-AZA) and Trichostatin A (TSA) revealed that histone acetylation reversed transcription repression promoted by SET. These results suggest a new function for SET in the regulation of chromatin dynamics. In addition, TSA diminished both SET protein levels and SET capability to bind to gene promoter, suggesting that administration of epigenetic modifier agents could be efficient to reverse SET phenotype in cancer.

  11. Global Picture of Protein Regulation in Response to Dibutyl Phthalate (DBP) Stress of Two Brassica parachinensis Cultivars Differing in DBP Accumulation.

    PubMed

    Zhao, Hai-Ming; Huang, He-Biao; Du, Huan; Xiang, Lei; Mo, Ce-Hui; Li, Yan-Wen; Cai, Quan-Ying; Li, Hui; Liu, Jie-Sheng; Zhou, Dong-Mei; Wong, Ming-Hung

    2018-05-09

    iTRAQ analysis was used to map the proteomes of two Brassica parachinensis cultivars that differed in dibutyl phthalate (DBP) accumulation. A total of 5699 proteins were identified to obtain 152 differentially regulated proteins, of which 64 and 48 were specific to a high- and a low-DBP-accumulation cultivar, respectively. Genotype-specific biological processes were involved in coping with DBP stress, accounting for the variation in DBP tolerance and accumulation. Formation of high DBP accumulation in B. parachinensis might attribute to the more effective regulation of protein expression in physiology and metabolism, including (a) enhanced cell wall biosynthesis and modification, (b) better maintenance of photosynthesis and energy balance, (c) greatly improved total capacity for antioxidation and detoxification, and (d) enhanced cellular transport and signal transduction. Our novel findings contribute to a global picture of DBP-induced alterations of protein profiles in crops and provide valuable information for the development of molecular-assisted breeds of low-accumulation cultivars.

  12. Hypoxia induces p53 accumulation in the S-phase and accumulation of hypophosphorylated retinoblastoma protein in all cell cycle phases of human melanoma cells.

    PubMed Central

    Danielsen, T.; Hvidsten, M.; Stokke, T.; Solberg, K.; Rofstad, E. K.

    1998-01-01

    Hypoxia has been shown to induce accumulation of p53 and of hypophosphorylated retinoblastoma protein (pRb) in tumour cells. In this study, the cell cycle dependence of p53 accumulation and pRb hypophosphorylation in four human melanoma cell lines that are wild type for p53 was investigated using two-parameter flow cytometry measurements of p53 or pRb protein content and DNA content. The hypoxia-induced increase in p53 protein was higher in S-phase than in G1 and G2 phases in all cell lines. The accumulation of p53 in S-phase during hypoxia was not related to hypoxia-induced apoptosis or substantial cell cycle specific cell inactivation during the first 24 h of reoxygenation. pRb was hypophosphorylated in all cell cycle phases by hypoxia treatment. The results did not support a direct link between p53 and pRb during hypoxia because p53 was induced in a cell cycle-specific manner, whereas no cell cycle-dependent differences in pRb hypophosphorylation were detected. Only a fraction of the cell populations (0.60+/-0.10) showed hypophosphorylated pRb. Thus, pRb is probably not the only mediator of the hypoxia-induced cell cycle block seen in all cells and all cell cycle phases. Moreover, the cell cycle-dependent induction of p53 by hypoxia suggests that the primary function of p53 accumulation during hypoxia is other than to arrest the cells. Images Figure 4 Figure 7 PMID:9862563

  13. Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in Arabidopsis thaliana.

    PubMed

    Huang, Tengfang; Jander, Georg

    2017-10-01

    Whereas proline accumulates through de novo biosynthesis in plants subjected to osmotic stress, leucine, isoleucine, and valine accumulation in drought-stressed Arabidopsis thaliana is caused by abscisic acid-regulated protein degradation. In response to several kinds of abiotic stress, plants greatly increase their accumulation of free amino acids. Although stress-induced proline increases have been studied the most extensively, the fold-increase of other amino acids, in particular branched-chain amino acids (BCAAs; leucine, isoleucine, and valine), is often higher than that of proline. In Arabidopsis thaliana (Arabidopsis), BCAAs accumulate in response to drought, salt, mannitol, polyethylene glycol, herbicide treatment, and nitrogen starvation. Plants that are deficient in abscisic acid signaling accumulate lower amounts of BCAAs, but not proline and most other amino acids. Previous bioinformatic studies had suggested that amino acid synthesis, rather than protein degradation, is responsible for the observed BCAA increase in osmotically stressed Arabidopsis. However, whereas treatment with the protease inhibitor MG132 decreased drought-induced BCAA accumulation, inhibition of BCAA biosynthesis with the acetolactate synthase inhibitors chlorsulfuron and imazapyr did not. Additionally, overexpression of BRANCHED-CHAIN AMINO ACID TRANSFERASE2 (BCAT2), which is upregulated in response to osmotic stress and functions in BCAA degradation, decreased drought-induced BCAA accumulation. Together, these results demonstrate that BCAA accumulation in osmotically stressed Arabidopsis is primarily the result of protein degradation. After relief of the osmotic stress, BCAA homeostasis is restored over time by amino acid degradation involving BCAT2. Thus, drought-induced BCAA accumulation is different from that of proline, which is accumulated due to de novo synthesis in an abscisic acid-independent manner and remains elevated for a more prolonged period of time after removal of

  14. High levels of bcl-2 protein expression do not correlate with genetic abnormalities but predict worse prognosis in patients with lymphoblastic lymphoma.

    PubMed

    Gu, Yajun; Pan, Yi; Meng, Bin; Guan, Bingxin; Fu, Kai; Sun, Baocun; Zheng, Fang

    2013-06-01

    We aimed to investigate bcl-2, bcl-6, and c-myc rearrangements in patients with lymphoblastic lymphoma (LBL), especially focus on the correlation of protein expression with genetic abnormalities. Moreover, their prognostic significance was further analyzed in LBL. Protein expression and genetic abnormalities of bcl-2, bcl-6, and c-myc were investigated in microarrayed tumors from 33 cases of T cell LBL and eight cases of B cell lineage. Immunohistochemical (IHC) staining was performed to evaluate protein expression, including bcl-2, bcl-6, c-myc, TdT, CD1α, CD34, Ki-67, PAX-5, CD2, CD3, CD4, CD8, and CD20. Genetic abnormalities of bcl-2, bcl-6, and c-myc were detected by dual color fluorescence in situ hybridization (FISH). Bcl-2 protein was positive in 51.2 % (21/41) of the patients, bcl-6 protein in 7.3 % (three out of 41), and c-myc protein in 78.0 % (32/41). Bcl-2 breakpoint was found in two cases by FISH analysis. There was no evidence of bcl-6 or c-myc rearrangement in patients with LBL. However, both gene gain and loss events occurred in bcl-2, bcl-6, and c-myc. A univariate analysis showed that stage III or IV, elevated lactate dehydrogenase (LDH), and positivity for bcl-2 protein were associated with shorter survival (p<0.05). Enhanced protein expression and detectable genetic abnormalities of bcl-2, bcl-6, and c-myc were observed in patients with LBL. No statistical correlation was found between IHC results and cytogenetic findings. Stage III or IV, elevated LDH, and positivity for bcl-2 protein were identified as adverse prognostic factors. The patients with more adverse factors would have increasingly worse prognosis.

  15. CONCEPTUAL MODEL FOR ORIGIN OF ABNORMALLY PRESSURED GAS ACCUMULATIONS IN LOW-PERMEABILITY RESERVOIRS.

    USGS Publications Warehouse

    Law, B.E.; Dickinson, W.W.

    1985-01-01

    The paper suggests that overpressured and underpressured gas accumulations of this type have a common origin. In basins containing overpressured gas accumulations, rates of thermogenic gas accumulation exceed gas loss, causing fluid (gas) pressure to rise above the regional hydrostatic pressure. Free water in the larger pores is forced out of the gas generation zone into overlying and updip, normally pressured, water-bearing rocks. While other diagenetic processes continue, a pore network with very low permeability develops. As a result, gas accumulates in these low-permeability reservoirs at rates higher than it is lost. In basins containing underpressured gas accumulations, rates of gas generation and accumulation are less than gas loss. The basin-center gas accumulation persists, but because of changes in the basin dynamics, the overpressured accumulation evolves into an underpressured system.

  16. UCH-L1 induces podocyte hypertrophy in membranous nephropathy by protein accumulation.

    PubMed

    Lohmann, Frithjof; Sachs, Marlies; Meyer, Tobias N; Sievert, Henning; Lindenmeyer, Maja T; Wiech, Thorsten; Cohen, Clemens D; Balabanov, Stefan; Stahl, R A K; Meyer-Schwesinger, Catherine

    2014-07-01

    Podocytes are terminally differentiated cells of the glomerular filtration barrier that react with hypertrophy in the course of injury such as in membranous nephropathy (MGN). The neuronal deubiquitinase ubiquitin C-terminal hydrolase L1 (UCH-L1) is expressed and activated in podocytes of human and rodent MGN. UCH-L1 regulates the mono-ubiquitin pool and induces accumulation of poly-ubiquitinated proteins in affected podocytes. Here, we investigated the role of UCH-L1 in podocyte hypertrophy and in the homeostasis of the hypertrophy associated "model protein" p27(Kip1). A better understanding of the basic mechanisms leading to podocyte hypertrophy is crucial for the development of specific therapies in MGN. In human and rat MGN, hypertrophic podocytes exhibited a simultaneous up-regulation of UCH-L1 and of cytoplasmic p27(Kip1) content. Functionally, inhibition of UCH-L1 activity and knockdown or inhibition of UCH-L1 attenuated podocyte hypertrophy by decreasing the total protein content in isolated glomeruli and in cultured podocytes. In contrast, UCH-L1 levels and activity increased podocyte hypertrophy and total protein content in culture, specifically of cytoplasmic p27(Kip1). UCH-L1 enhanced cytoplasmic p27(Kip1) levels by nuclear export and decreased poly-ubiquitination and proteasomal degradation of p27(Kip1). In parallel, UCH-L1 increased podocyte turnover, migration and cytoskeletal rearrangement, which are associated with known oncogenic functions of cytoplasmic p27(Kip1) in cancer. We propose that UCH-L1 induces podocyte hypertrophy in MGN by increasing the total protein content through altered degradation and accumulation of proteins such as p27(Kip1) in the cytoplasm of podocytes. Modification of both UCH-L1 activity and levels could be a new therapeutic avenue to podocyte hypertrophy in MGN. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A protein kinase binds the C-terminal domain of the readthrough protein of Turnip yellows virus and regulates virus accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Medina, Caren; Boissinot, Sylvaine; Chapuis, Sophie

    Turnip yellows virus (TuYV), a phloem-limited virus, encodes a 74 kDa protein known as the readthrough protein (RT) involved in virus movement. We show here that a TuYV mutant deleted of the C-terminal part of the RT protein (TuYV-∆RT{sub Cter}) was affected in long-distance trafficking in a host-specific manner. By using the C-terminal domain of the RT protein as a bait in a yeast two-hybrid screen of a phloem cDNA library from Arabidopsis thaliana we identified the calcineurin B-like protein-interacting protein kinase-7 (AtCIPK7). Transient expression of a GFP:CIPK7 fusion protein in virus-inoculated Nicotiana benthamiana leaves led to local increase ofmore » wild-type TuYV accumulation, but not that of TuYV-∆RT{sub Cter}. Surprisingly, elevated virus titer in inoculated leaves did not result in higher TuYV accumulation in systemic leaves, which indicates that virus long-distance movement was not affected. Since GFP:CIPK7 was localized in or near plasmodesmata, CIPK7 could negatively regulate TuYV export from infected cells. - Highlights: • The C-terminal domain of TuYV-RT is required for long-distance movement. • CIPK7 from Arabidopsis interacts with RT{sub Cter} in yeast and in plants. • CIPK7 overexpression increases virus titer locally but not virus systemic movement. • CIPK7 localizes to plasmodesmata. • CIPK7 could be a defense protein regulating virus export.« less

  18. Abnormal structural luteolysis in ovaries of the senescence accelerated mouse (SAM): expression of Fas ligand/Fas-mediated apoptosis signaling molecules in luteal cells.

    PubMed

    Kiso, Minako; Manabe, Noboru; Komatsu, Kohji; Shimabe, Munetake; Miyamoto, Hajime

    2003-12-01

    Senescence accelerated mouse-prone (SAMP) mice with a shortened life span show accelerated changes in many of the signs of aging and a shorter reproductive life span than SAM-resistant (SAMR) controls. We previously showed that functional regression (progesterone dissimilation) occurs in abnormally accumulated luteal bodies (aaLBs) of SAMP mice, but structural regression of luteal cells in aaLB is inhibited. A deficiency of luteal cell apoptosis causes the abnormal accumulation of LBs in SAMP ovaries. In the present study, to show the abnormality of Fas ligand (FasL)/Fas-mediated apoptosis signal transducing factors in the aaLBs of the SAMP ovaries, we assessed the changes in the expression of FasL, Fas, caspase-8 and caspase-3 mRNAs by reverse transcription-polymerase chain reaction, and in the expression and localization of FasL, Fas and activated caspase-3 proteins by Western blotting and immunohistochemistry, respectively, during the estrus cycle/luteolysis. These mRNAs and proteins were expressed in normal LBs of both SAMP and SAMR ovaries, but not at all or only in trace amounts in aaLBs of SAMP, indicating that structural regression is inhibited by blockage of the expression of these transducing factors in luteal cells of aaLBs in SAMP mice.

  19. Multiple layers of temporal and spatial control regulate accumulation of the fruiting body-specific protein APP in Sordaria macrospora and Neurospora crassa.

    PubMed

    Nowrousian, Minou; Piotrowski, Markus; Kück, Ulrich

    2007-07-01

    During fungal fruiting body development, specialized cell types differentiate from vegetative mycelium. We have isolated a protein from the ascomycete Sordaria macrospora that is not present during vegetative growth but accumulates in perithecia. The protein was sequenced by mass spectrometry and the corresponding gene was termed app (abundant perithecial protein). app transcript occurs only after the onset of sexual development; however, the formation of ascospores is not a prerequisite for APP accumulation. The transcript of the Neurospora crassa ortholog is present prior to fertilization, but the protein accumulates only after fertilization. In crosses of N. crassa Deltaapp strains with the wild type, APP accumulates when the wild type serves as female parent, but not in the reciprocal cross; thus, the presence of a functional female app allele is necessary and sufficient for APP accumulation. These findings highlight multiple layers of temporal and spatial control of gene expression during fungal development.

  20. The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4

    PubMed Central

    Li, Shao-jia; Yin, Xue-ren; Xie, Xiu-lan; Allan, Andrew C.; Ge, Hang; Shen, Shu-ling; Chen, Kun-song

    2016-01-01

    Organic acids are essential to fruit flavor. The vacuolar H+ transporting adenosine triphosphatase (V-ATPase) plays an important role in organic acid transport and accumulation. However, less is known of V-ATPase interacting proteins and their relationship with organic acid accumulation. The relationship between V-ATPase and citric acid was investigated, using the citrus tangerine varieties ‘Ordinary Ponkan (OPK)’ and an early maturing mutant ‘Zaoshu Ponkan (ZPK)’. Five V-ATPase genes (CitVHA) were predicted as important to citric acid accumulation. Among the genes, CitVHA-c4 was observed, using a yeast two-hybrid screen, to interact at the protein level with an ethylene response factor, CitERF13. This was verified using bimolecular fluorescence complementation assays. A similar interaction was also observed between Arabidopsis AtERF017 (a CitERF13 homolog) and AtVHA-c4 (a CitVHA-c4 homolog). A synergistic effect on citric acid levels was observed between V-ATPase proteins and interacting ERFs when analyzed using transient over-expression in tobacco and Arabidopsis mutants. Furthermore, the transcript abundance of CitERF13 was concomitant with CitVHA-c4. CitERF13 or AtERF017 over-expression leads to significant citric acid accumulation. This accumulation was abolished in an AtVHA-c4 mutant background. ERF-VHA interactions appear to be involved in citric acid accumulation, which was observed in both citrus and Arabidopsis. PMID:26837571

  1. The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4.

    PubMed

    Li, Shao-jia; Yin, Xue-ren; Xie, Xiu-lan; Allan, Andrew C; Ge, Hang; Shen, Shu-ling; Chen, Kun-song

    2016-02-03

    Organic acids are essential to fruit flavor. The vacuolar H(+) transporting adenosine triphosphatase (V-ATPase) plays an important role in organic acid transport and accumulation. However, less is known of V-ATPase interacting proteins and their relationship with organic acid accumulation. The relationship between V-ATPase and citric acid was investigated, using the citrus tangerine varieties 'Ordinary Ponkan (OPK)' and an early maturing mutant 'Zaoshu Ponkan (ZPK)'. Five V-ATPase genes (CitVHA) were predicted as important to citric acid accumulation. Among the genes, CitVHA-c4 was observed, using a yeast two-hybrid screen, to interact at the protein level with an ethylene response factor, CitERF13. This was verified using bimolecular fluorescence complementation assays. A similar interaction was also observed between Arabidopsis AtERF017 (a CitERF13 homolog) and AtVHA-c4 (a CitVHA-c4 homolog). A synergistic effect on citric acid levels was observed between V-ATPase proteins and interacting ERFs when analyzed using transient over-expression in tobacco and Arabidopsis mutants. Furthermore, the transcript abundance of CitERF13 was concomitant with CitVHA-c4. CitERF13 or AtERF017 over-expression leads to significant citric acid accumulation. This accumulation was abolished in an AtVHA-c4 mutant background. ERF-VHA interactions appear to be involved in citric acid accumulation, which was observed in both citrus and Arabidopsis.

  2. Increased Temperature and Protein Oxidation Signal HSP72 mRNA and Protein Accumulation in the In Vivo Exercised Rat Heart

    PubMed Central

    Staib, Jessica L.; Tümer, Nihal; Powers, Scott K.

    2010-01-01

    Myocardial heat shock protein 72 (HSP72) expression, mediated by its transcription factor heat shock factor 1 (HSF1), increases following exercise. However, the up-stream stimuli governing exercise-induced HSF1 activation and subsequent HSP72 gene expression in the whole animal remain unclear. Exercise-induced increases in body temperature may promote myocardial radical production leading to protein oxidation. Conceivably, myocardial protein oxidation during exercise may serve as an important signal promoting nuclear HSF1 migration and activation of HSP72 expression. Therefore, these experiments tested the hypothesis that preventing exercise-induced increases in body temperature attenuates cardiac protein oxidation, diminishes HSF1 activation and decreases HSP72 expression in vivo. To test this hypothesis, in vivo exercise-induced body temperature was manipulated by exercising male rats in either cold (4°C) or warm (22°C) ambient conditions. Warm exercise increased both body temperature (+ 3°C) and myocardial protein oxidation whereas these changes were attenuated by cold exercise. Interestingly, exercise in both conditions did not significantly increase myocardial nuclear localized phosphorylated HSF1. Nonetheless, warm exercise elevated left-ventricular HSP72 mRNA by 9-fold and increased myocardial HSP72 protein levels by 3-fold compared to cold-exercised animals. Collectively, these data indicate that elevated body temperature and myocardial protein oxidation promoted exercise-induced cardiac HSP72 mRNA expression and protein accumulation following in vivo exercise. However, these results suggest that exercise-induced myocardial HSP72 protein accumulation is not a result of nuclear-localized, phosphorylated HSF1 indicating that other transcriptional or posttranscriptional regulatory mechanisms are involved in exercise-induced HSP72 expression. PMID:18931043

  3. RPT2/NCH1 subfamily of NPH3-like proteins is essential for the chloroplast accumulation response in land plants.

    PubMed

    Suetsugu, Noriyuki; Takemiya, Atsushi; Kong, Sam-Geun; Higa, Takeshi; Komatsu, Aino; Shimazaki, Ken-Ichiro; Kohchi, Takayuki; Wada, Masamitsu

    2016-09-13

    In green plants, the blue light receptor kinase phototropin mediates various photomovements and developmental responses, such as phototropism, chloroplast photorelocation movements (accumulation and avoidance), stomatal opening, and leaf flattening, which facilitate photosynthesis. In Arabidopsis, two phototropins (phot1 and phot2) redundantly mediate these responses. Two phototropin-interacting proteins, NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and ROOT PHOTOTROPISM 2 (RPT2), which belong to the NPH3/RPT2-like (NRL) family of BTB (broad complex, tramtrack, and bric à brac) domain proteins, mediate phototropism and leaf flattening. However, the roles of NRL proteins in chloroplast photorelocation movement remain to be determined. Here, we show that another phototropin-interacting NRL protein, NRL PROTEIN FOR CHLOROPLAST MOVEMENT 1 (NCH1), and RPT2 redundantly mediate the chloroplast accumulation response but not the avoidance response. NPH3, RPT2, and NCH1 are not involved in the chloroplast avoidance response or stomatal opening. In the liverwort Marchantia polymorpha, the NCH1 ortholog, MpNCH1, is essential for the chloroplast accumulation response but not the avoidance response, indicating that the regulation of the phototropin-mediated chloroplast accumulation response by RPT2/NCH1 is conserved in land plants. Thus, the NRL protein combination could determine the specificity of diverse phototropin-mediated responses.

  4. Functional Accumulation of Antenna Proteins in Chlorophyll b-Less Mutants of Chlamydomonas reinhardtii.

    PubMed

    Bujaldon, Sandrine; Kodama, Natsumi; Rappaport, Fabrice; Subramanyam, Rajagopal; de Vitry, Catherine; Takahashi, Yuichiro; Wollman, Francis-André

    2017-01-09

    The green alga Chlamydomonas reinhardtii contains several light-harvesting chlorophyll a/b complexes (LHC): four major LHCIIs, two minor LHCIIs, and nine LHCIs. We characterized three chlorophyll b-less mutants to assess the effect of chlorophyll b deficiency on the function, assembly, and stability of these chlorophyll a/b binding proteins. We identified point mutations in two mutants that inactivate the CAO gene responsible for chlorophyll a to chlorophyll b conversion. All LHCIIs accumulated to wild-type levels in a CAO mutant but their light-harvesting function for photosystem II was impaired. In contrast, most LHCIs accumulated to wild-type levels in the mutant and their light-harvesting capability for photosystem I remained unaltered. Unexpectedly, LHCI accumulation and the photosystem I functional antenna size increased in the mutant compared with in the wild type when grown in dim light. When the CAO mutation was placed in a yellow-in-the-dark background (yid-BF3), in which chlorophyll a synthesis remains limited in dim light, accumulation of the major LHCIIs and of most LHCIs was markedly reduced, indicating that sustained synthesis of chlorophyll a is required to preserve the proteolytic resistance of antenna proteins. Indeed, after crossing yid-BF3 with a mutant defective for the thylakoid FtsH protease activity, yid-BF3-ftsh1 restored wild-type levels of LHCI, which defines LHCI as a new substrate for the FtsH protease. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  5. Proteolysis of chloroplast proteins is responsible for accumulation of free amino acids in dark-treated tea (Camellia sinensis) leaves.

    PubMed

    Chen, Yiyong; Fu, Xiumin; Mei, Xin; Zhou, Ying; Cheng, Sihua; Zeng, Lanting; Dong, Fang; Yang, Ziyin

    2017-03-22

    Shade management (dark treatment) on tea (Camellia sinensis) plants is a common approach to improve free amino acids in raw materials of tea leaves. However, the reason for amino acid accumulation in dark-treated tea leaves is still unknown. In the present study, dark treatment significantly increased content of free amino acids and reduced content of soluble proteins in tea leaves. Quantitative proteomics analysis showed that most enzymes involved in biosyntheses of amino acids were down-accumulated by dark treatment. Chloroplast numbers reduced in dark-treated leaves and the content of soluble proteins reduced in the chloroplasts isolated from dark-treated leaves compared to control. These suggest that proteolysis of chloroplast proteins contributed to amino acid accumulation in dark-treated leaves. Two chloroplasts proteases, ATP-dependent Clp protease proteolytic subunit 3 and protease Do-like 2, were up-accumulated in dark-treated leaves. This study firstly elucidated the mechanism of accumulation of amino acids in dark-treated tea leaves. Effect of dark on crop growth has been widely studied, while less attention has been paid to effect of dark on quality-related metabolites in crops. Shade management (dark treatment) on tea plants is a common approach to improve free amino acids in tea leaves. However, the reason for accumulation of free amino acids in dark-treated tea leaves is still unknown. In the present study, an iTRAQ-based quantitative proteomic analysis was performed and the results revealed the accumulation of free amino acids in dark-treated tea leaves was not due to activation of biosyntheses of amino acids, but resulted from proteolysis of chloroplast proteins. The information will advance our understanding of formation of quality or function-related metabolites in agricultural crops exposed to dark stress/shade management. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. mTORC1 Coordinates Protein Synthesis and Immunoproteasome Formation via PRAS40 to Prevent Accumulation of Protein Stress.

    PubMed

    Yun, Young Sung; Kim, Kwan Hyun; Tschida, Barbara; Sachs, Zohar; Noble-Orcutt, Klara E; Moriarity, Branden S; Ai, Teng; Ding, Rui; Williams, Jessica; Chen, Liqiang; Largaespada, David; Kim, Do-Hyung

    2016-02-18

    Reduction of translational fidelity often occurs in cells with high rates of protein synthesis, generating defective ribosomal products. If not removed, such aberrant proteins can be a major source of cellular stress causing human diseases. Here, we demonstrate that mTORC1 promotes the formation of immunoproteasomes for efficient turnover of defective proteins and cell survival. mTORC1 sequesters precursors of immunoproteasome β subunits via PRAS40. When activated, mTORC1 phosphorylates PRAS40 to enhance protein synthesis and simultaneously to facilitate the assembly of the β subunits for forming immunoproteasomes. Consequently, the PRAS40 phosphorylations play crucial roles in clearing aberrant proteins that accumulate due to mTORC1 activation. Mutations of RAS, PTEN, and TSC1, which cause mTORC1 hyperactivation, enhance immunoproteasome formation in cells and tissues. Those mutations increase cellular dependence on immunoproteasomes for stress response and survival. These results define a mechanism by which mTORC1 couples elevated protein synthesis with immunoproteasome biogenesis to protect cells against protein stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Abnormalities of Calcium Handling Proteins in Skeletal Muscle Mirror those of the Heart in Humans with Heart Failure: a Shared Mechanism?

    PubMed Central

    Middlekauff, Holly R.; Vigna, Chris; Verity, M. Anthony; Fonarow, Gregg C.; Horwich, Tamara B.; Hamilton, Michele A.; Shieh, Perry; Tupling, A. Russell

    2012-01-01

    Background In the failing human heart, abnormalities of Ca2+ cycling have been described, but there is scant knowledge about Ca2+ handling in the skeletal muscle of humans with HF. We tested the hypothesis that in humans with HF, Ca2+ cycling proteins in skeletal muscle are abnormal. Methods and Results Ten advanced HF patients (50.4±3.7 years), and 9 age matched controls underwent vastus lateralis biopsy. Western blot analysis showed that sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a, which is responsible for Ca2+ sequestration into the sarcoplasmic reticulum(SR), was lower in HF vs controls (4.8±0.5vs7.5±0.8AU, p=0.01). Although phospholamban (PLN), which inhibits SERCA2a, was not different in HF vs controls, phosphorylation (SER16 site) of PLN, which relieves this inhibition, was reduced (0.8±0.1vs3.9±0.9AU, p=0.004). Dihydropyridine receptors were reduced in HF, (2.1±0.4vs3.6±0.5AU, p=0.04). We tested the hypothesis that these abnormalities of Ca2+ handling protein content and regulation were due to increased oxidative stress, but oxygen radical scavenger proteins were not elevated in the skeletal muscle of HF patients. Conclusion In chronic HF, marked abnormalities of Ca2+ handling proteins are present in skeletal muscle, which mirror those in failing heart tissue. This suggests a common mechanism, such as chronic augmentation of sympathetic activity and autophosphorylation of Ca2+-calmodulin-dependent-protein kinase II. PMID:22939042

  8. The proteins encoded by the Drosophila Planar Polarity Effector genes inturned, fuzzy and fritz interact physically and can re-pattern the accumulation of “upstream” Planar Cell Polarity proteins

    PubMed Central

    Wang, Ying; Yan, Jie; Lee, Haeryun; Lu, Qiuheng; Adler, Paul N.

    2014-01-01

    The frizzled/starry night pathway regulates planar cell polarity in a wide variety of tissues in many types of animals. It was discovered and has been most intensively studied in the Drosophila wing where it controls the formation of the array of distally pointing hairs that cover the wing. The pathway does this by restricting the activation of the cytoskeleton to the distal edge of wing cells. This results in hairs initiating at the distal edge and growing in the distal direction. All of the proteins encoded by genes in the pathway accumulate asymmetrically in wing cells. The pathway is a hierarchy with the Planar Cell Polarity (PCP) genes (aka the core genes) functioning as a group upstream of the Planar Polarity Effector (PPE) genes which in turn function as a group upstream of multiple wing hairs. Upstream proteins, such as Frizzled accumulate on either the distal and/or proximal edges of wing cells. Downstream PPE proteins accumulate on the proximal edge under the instruction of the upstream proteins. A variety of types of data support this hierarchy, however, we have found that when over expressed the PPE proteins can alter both the subcellular location and level of accumulation of the upstream proteins. Thus, the epistatic relationship is context dependent. We further show that the PPE proteins interact physically and can modulate the accumulation of each other in wing cells. We also find that over expression of Frtz results in a marked delay in hair initiation suggesting that it has a separate role/activity in regulating the cytoskeleton that is not shared by other members of the group. PMID:25072625

  9. Lysosomal activation is a compensatory response against protein accumulation and associated synaptopathogenesis--an approach for slowing Alzheimer disease?

    PubMed

    Bendiske, Jennifer; Bahr, Ben A

    2003-05-01

    Previous reports suggest that age-related lysosomal disturbances contribute to Alzheimer-type accumulations of protein species, blockage of axonal/dendritic transport, and synaptic decline. Here, we tested the hypothesis that lysosomal enzymes are upregulated as a compensatory response to pathogenic protein accumulation. In the hippocampal slice model, tau deposits and amyloidogenic fragments induced by the lysosomal inhibitor chloroquine were accompanied by disrupted microtubule integrity and by corresponding declines in postsynaptic glutamate receptors and the presynaptic marker synaptophysin. In the same slices, cathepsins B, D, and L, beta-glucuronidase, and elastase were upregulated by 70% to 135%. To address whether this selective activation of the lysosomal system represents compensatory signaling, N-Cbz-L-phenylalanyl-L-alanyl-diazomethylketone (PADK) was used to enhance the lysosome response, generating 4- to 8-fold increases in lysosomal enzymes. PADK-mediated lysosomal modulation was stable for weeks while synaptic components remained normal. When PADK and chloroquine were co-infused, chloroquine no longer increased cellular tau levels. To assess pre-existing pathology, chloroquine was applied for 6 days after which its removal resulted in continued degeneration. In contrast, enhancing lysosomal activation by replacing chloroquine after 6 days with PADK led to clearance of accumulated protein species and restored microtubule integrity. Transport processes lost during chloroquine exposure were consequently re-established, resulting in marked recovery of synaptic components. These data indicate that compensatory activation of lysosomes follows protein accumulation events, and that lysosomal modulation represents a novel approach for treating Alzheimer disease and other protein deposition diseases.

  10. Neuronal-specific overexpression of a mutant valosin-containing protein associated with IBMPFD promotes aberrant ubiquitin and TDP-43 accumulation and cognitive dysfunction in transgenic mice.

    PubMed

    Rodriguez-Ortiz, Carlos J; Hoshino, Hitomi; Cheng, David; Liu-Yescevitz, Liqun; Blurton-Jones, Mathew; Wolozin, Benjamin; LaFerla, Frank M; Kitazawa, Masashi

    2013-08-01

    Mutations in valosin-containing protein (VCP) cause a rare, autosomal dominant disease called inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD). One-third of patients with IBMPFD develop frontotemporal dementia, characterized by an extensive neurodegeneration in the frontal and temporal lobes. Neuropathologic hallmarks include nuclear and cytosolic inclusions positive to ubiquitin and transactive response DNA-binding protein 43 (TDP-43) in neurons and glial activation in affected regions. However, the pathogenic mechanisms by which mutant VCP triggers neurodegeneration remain unknown. Herein, we generated a mouse model selectively overexpressing a human mutant VCP in neurons to study pathogenic mechanisms of mutant VCP-mediated neurodegeneration and cognitive impairment. The overexpression of VCPA232E mutation in forebrain regions produced significant progressive impairments of cognitive function, including deficits in spatial memory, object recognition, and fear conditioning. Although overexpressed or endogenous VCP did not seem to focally aggregate inside neurons, TDP-43 and ubiquitin accumulated with age in transgenic mouse brains. TDP-43 was also found to co-localize with stress granules in the cytosolic compartment. Together with the appearance of high-molecular-weight TDP-43 in cytosolic fractions, these findings demonstrate the mislocalization and accumulation of abnormal TDP-43 in the cytosol of transgenic mice, which likely lead to an increase in cellular stress and cognitive impairment. Taken together, these results highlight an important pathologic link between VCP and cognition. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Paired Helical Filaments from Alzheimer Disease Brain Induce Intracellular Accumulation of Tau Protein in Aggresomes*

    PubMed Central

    Santa-Maria, Ismael; Varghese, Merina; Ksiȩżak-Reding, Hanna; Dzhun, Anastasiya; Wang, Jun; Pasinetti, Giulio M.

    2012-01-01

    Abnormal folding of tau protein leads to the generation of paired helical filaments (PHFs) and neurofibrillary tangles, a key neuropathological feature in Alzheimer disease and tauopathies. A specific anatomical pattern of pathological changes developing in the brain suggests that once tau pathology is initiated it propagates between neighboring neuronal cells, possibly spreading along the axonal network. We studied whether PHFs released from degenerating neurons could be taken up by surrounding cells and promote spreading of tau pathology. Neuronal and non-neuronal cells overexpressing green fluorescent protein-tagged tau (GFP-Tau) were treated with isolated fractions of human Alzheimer disease-derived PHFs for 24 h. We found that cells internalized PHFs through an endocytic mechanism and developed intracellular GFP-Tau aggregates with attributes of aggresomes. This was particularly evident by the perinuclear localization of aggregates and redistribution of the vimentin intermediate filament network and retrograde motor protein dynein. Furthermore, the content of Sarkosyl-insoluble tau, a measure of abnormal tau aggregation, increased 3-fold in PHF-treated cells. An exosome-related mechanism did not appear to be involved in the release of GFP-Tau from untreated cells. The evidence that cells can internalize PHFs, leading to formation of aggresome-like bodies, opens new therapeutic avenues to prevent propagation and spreading of tau pathology. PMID:22496370

  12. Laminin-521 Protein Therapy for Glomerular Basement Membrane and Podocyte Abnormalities in a Model of Pierson Syndrome.

    PubMed

    Lin, Meei-Hua; Miller, Joseph B; Kikkawa, Yamato; Suleiman, Hani Y; Tryggvason, Karl; Hodges, Bradley L; Miner, Jeffrey H

    2018-05-01

    Background Laminin α 5 β 2 γ 1 (LM-521) is a major component of the GBM. Mutations in LAMB2 that prevent LM-521 synthesis and/or secretion cause Pierson syndrome, a rare congenital nephrotic syndrome with diffuse mesangial sclerosis and ocular and neurologic defects. Because the GBM is uniquely accessible to plasma, which permeates endothelial cell fenestrae, we hypothesized that intravenous delivery of LM-521 could replace the missing LM-521 in the GBM of Lamb2 mutant mice and restore glomerular permselectivity. Methods We injected human LM-521 (hLM-521), a macromolecule of approximately 800 kD, into the retro-orbital sinus of Lamb2 -/- pups daily. Deposition of hLM-521 into the GBM was investigated by fluorescence microscopy. We assayed the effects of hLM-521 on glomerular permselectivity by urinalysis and the effects on podocytes by desmin immunostaining and ultrastructural analysis of podocyte architecture. Results Injected hLM-521 rapidly and stably accumulated in the GBM of all glomeruli. Super-resolution imaging showed that hLM-521 accumulated in the correct orientation in the GBM, primarily on the endothelial aspect. Treatment with hLM-521 greatly reduced the expression of the podocyte injury marker desmin and attenuated the foot process effacement observed in untreated pups. Moreover, treatment with hLM-521 delayed the onset of proteinuria but did not prevent nephrotic syndrome, perhaps due to its absence from the podocyte aspect of the GBM. Conclusions These studies show that GBM composition and function can be altered in vivo via vascular delivery of even very large proteins, which may advance therapeutic options for patients with abnormal GBM composition, whether genetic or acquired. Copyright © 2018 by the American Society of Nephrology.

  13. Chlamydomonas reinhardtii PsbS Protein Is Functional and Accumulates Rapidly and Transiently under High Light.

    PubMed

    Tibiletti, Tania; Auroy, Pascaline; Peltier, Gilles; Caffarri, Stefano

    2016-08-01

    Photosynthetic organisms must respond to excess light in order to avoid photo-oxidative stress. In plants and green algae the fastest response to high light is non-photochemical quenching (NPQ), a process that allows the safe dissipation of the excess energy as heat. This phenomenon is triggered by the low luminal pH generated by photosynthetic electron transport. In vascular plants the main sensor of the low pH is the PsbS protein, while in the green alga Chlamydomonas reinhardtii LhcSR proteins appear to be exclusively responsible for this role. Interestingly, Chlamydomonas also possesses two PsbS genes, but so far the PsbS protein has not been detected and its biological function is unknown. Here, we reinvestigated the kinetics of gene expression and PsbS and LhcSR3 accumulation in Chlamydomonas during high light stress. We found that, unlike LhcSR3, PsbS accumulates very rapidly but only transiently. In order to determine the role of PsbS in NPQ and photoprotection in Chlamydomonas, we generated transplastomic strains expressing the algal or the Arabidopsis psbS gene optimized for plastid expression. Both PsbS proteins showed the ability to increase NPQ in Chlamydomonas wild-type and npq4 (lacking LhcSR3) backgrounds, but no clear photoprotection activity was observed. Quantification of PsbS and LhcSR3 in vivo indicates that PsbS is much less abundant than LhcSR3 during high light stress. Moreover, LhcSR3, unlike PsbS, also accumulates during other stress conditions. The possible role of PsbS in photoprotection is discussed. © 2016 American Society of Plant Biologists. All Rights Reserved.

  14. Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics

    PubMed Central

    Drori, Ran; Celik, Yeliz; Davies, Peter L.; Braslavsky, Ido

    2014-01-01

    Ice-binding proteins that aid the survival of freeze-avoiding, cold-adapted organisms by inhibiting the growth of endogenous ice crystals are called antifreeze proteins (AFPs). The binding of AFPs to ice causes a separation between the melting point and the freezing point of the ice crystal (thermal hysteresis, TH). TH produced by hyperactive AFPs is an order of magnitude higher than that produced by a typical fish AFP. The basis for this difference in activity remains unclear. Here, we have compared the time dependence of TH activity for both hyperactive and moderately active AFPs using a custom-made nanolitre osmometer and a novel microfluidics system. We found that the TH activities of hyperactive AFPs were time-dependent, and that the TH activity of a moderate AFP was almost insensitive to time. Fluorescence microscopy measurement revealed that despite their higher TH activity, hyperactive AFPs from two insects (moth and beetle) took far longer to accumulate on the ice surface than did a moderately active fish AFP. An ice-binding protein from a bacterium that functions as an ice adhesin rather than as an antifreeze had intermediate TH properties. Nevertheless, the accumulation of this ice adhesion protein and the two hyperactive AFPs on the basal plane of ice is distinct and extensive, but not detectable for moderately active AFPs. Basal ice plane binding is the distinguishing feature of antifreeze hyperactivity, which is not strictly needed in fish that require only approximately 1°C of TH. Here, we found a correlation between the accumulation kinetics of the hyperactive AFP at the basal plane and the time sensitivity of the measured TH. PMID:25008081

  15. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization.

    PubMed

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-21

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement.

  16. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization

    PubMed Central

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-01

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement. PMID:26791570

  17. Physiology and biochemistry of source-regulated protein accumulation in the wheat grain.

    PubMed

    Barneix, Atilio J

    2007-05-01

    Wheat is unique among cereals for the baking qualities of its flour, which are dependent upon the type and concentration of its proteins. As a consequence, the grain protein concentration (GPC) is one of the main determinants of wheat international market price. More than 50-70% of the final grain N is accumulated before flowering and later remobilized to the grain, N fertilization being the common practice used to produce high GPC. However, after incremental additions of N fertilizer, GPC reaches a maximum and then remains constant, without any increase in N uptake or remobilization by the crop, thus decreasing the efficiency of N fertilizer. Although, the genetic and molecular mechanisms that regulate N uptake by the roots are being clarified quickly, the regulation and physiology of N transport from the leaves to the grain remains less clear. In this review, the possible regulatory points involved in N transport to the grain and the difficulties for increasing GPC are discussed. It has been demonstrated that protein synthesis in the grain is source-limited, and that the grain can accumulate protein limited only by the amino acids provided by the phloem. It has also been shown that there is no limitation in the amino acid/sugar ratios that can be exported to the phloem. On the other hand, NO(3)(-) uptake transporters are depressed when the plant concentration of some amino acids, such as glutamine, is high. It has also been shown that a high N supply increases cytokinins concentration, preventing leaf senescence and proteolysis. Based on this information, it is postulated that there are two main regulatory points during grain filling when plant N status is ample. On the one hand, the N uptake transporters in the roots are depressed due to the high amino acids concentration in the tissues, and N uptake is low. On the other, a high amino acids concentration keeps the cytokinins level high, repressing leaf protein degradation and decreasing amino acid export to the

  18. Overexpression of p62/SQSTM1 promotes the degradations of abnormally accumulated PrP mutants in cytoplasm and relieves the associated cytotoxicities via autophagy-lysosome-dependent way.

    PubMed

    Xu, Yin; Zhang, Jin; Tian, Chan; Ren, Ke; Yan, Yu-E; Wang, Ke; Wang, Hui; Chen, Cao; Wang, Jing; Shi, Qi; Dong, Xiao-Ping

    2014-04-01

    The protein of p62/sequestosome 1 (SQSTM1), a key cargo adaptor protein involved in autophagy-lysosome degradation, exhibits inclusion bodies structure in cytoplasm and plays a protective role in some models of neurodegenerative diseases. Some PrP mutants, such as PrP-CYTO and PrP-PG14, also form cytosolic inclusion bodies and trigger neuronal apoptosis either in cultured cells or in transgenic mice. Here, we demonstrated that the cellular p62/SQSTM1 incorporated into the inclusion bodies formed by expressing the abnormal PrP mutants, PrP-CYTO and PrP-PG14, in human embryonic kidney 293 cells. Overexpression of p62/SQSTM1 efficiently relieved the cytosolic aggregations and cell apoptosis induced by the abnormal PrPs. Autophagy-lysosome inhibitors instead of proteasome inhibitor sufficiently blocked the p62/SQSTM1-mediated degradations of abnormal PrPs. Overexpression of p62/SQSTM1 did not alter the levels of light chain 3 (LC3) in the cells expressing various PrPs. However, more complexes of p62/SQSTM1 with LC3 were detected in the cells expressing the misfolded PrPs. These data imply that p62/SQSTM1 plays an important role in the homeostasis of abnormal PrPs via autophagy-lysosome-dependent way.

  19. Differentially Accumulated Proteins in Coffea arabica Seeds during Perisperm Tissue Development and Their Relationship to Coffee Grain Size.

    PubMed

    Alves, Leonardo Cardoso; Magalhães, Diogo Maciel De; Labate, Mônica Teresa Veneziano; Guidetti-Gonzalez, Simone; Labate, Carlos Alberto; Domingues, Douglas Silva; Sera, Tumoru; Vieira, Luiz Gonzaga Esteves; Pereira, Luiz Filipe Protasio

    2016-02-24

    Coffee is one of the most important crops for developing countries. Coffee classification for trading is related to several factors, including grain size. Larger grains have higher market value then smaller ones. Coffee grain size is determined by the development of the perisperm, a transient tissue with a highly active metabolism, which is replaced by the endosperm during seed development. In this study, a proteomics approach was used to identify differentially accumulated proteins during perisperm development in two genotypes with regular (IPR59) and large grain sizes (IPR59-Graudo) in three developmental stages. Twenty-four spots were identified by MALDI-TOF/TOF-MS, corresponding to 15 proteins. We grouped them into categories as follows: storage (11S), methionine metabolism, cell division and elongation, metabolic processes (mainly redox), and energy. Our data enabled us to show that perisperm metabolism in IPR59 occurs at a higher rate than in IPR59-Graudo, which is supported by the accumulation of energy and detoxification-related proteins. We hypothesized that grain and fruit size divergences between the two coffee genotypes may be due to the comparatively earlier triggering of seed development processes in IPR59. We also demonstrated for the first time that the 11S protein is accumulated in the coffee perisperm.

  20. Identification and characterization of a fruit-specific, thaumatin-like protein that accumulates at very high levels in conjunction with the onset of sugar accumulation and berry softening in grapes.

    PubMed Central

    Tattersall, D B; van Heeswijck, R; Høj, P B

    1997-01-01

    The protein composition of the grape (Vitis vinifera cv Muscat of Alexandria) berry was examined from flowering to ripeness by gel electrophoresis. A protein with an apparent molecular mass of 24 kD, which was one of the most abundant proteins in extracts of mature berries, was purified and identified by amino acid sequence to be a thaumatin-like protein. Combined cDNA sequence analysis and electrospray mass spectrometry revealed that this protein, VVTL1 (for V. vinifera thaumatin-like protein 1), is synthesized with a transient signal peptide as seen for apoplastic preproteins. Apart from the removal of the targeting signal and the formation of eight disulfide bonds, VVTL1 undergoes no other posttranslational modification. Southern, northern, and western analyses revealed that VVTL1 is found in the berry only and is encoded by a single gene that is expressed in conjunction with the onset of sugar accumulation and softening. The exact role of VVTL1 is unknown, but the timing of its accumulation correlates with the inability of the fungal pathogen powdery mildew (Uncinula necator) to initiate new infections of the berry. Western analysis revealed that the presence of thaumatin-like proteins in ripening fruit might be a widespread phenomenon. PMID:9232867

  1. Proteomic analysis reveals differential accumulation of small heat shock proteins and late embryogenesis abundant proteins between ABA-deficient mutant vp5 seeds and wild-type Vp5 seeds in maize

    PubMed Central

    Wu, Xiaolin; Gong, Fangping; Yang, Le; Hu, Xiuli; Tai, Fuju; Wang, Wei

    2014-01-01

    ABA is a major plant hormone that plays important roles during many phases of plant life cycle, including seed development, maturity and dormancy, and especially the acquisition of desiccation tolerance. Understanding of the molecular basis of ABA-mediated plant response to stress is of interest not only in basic research on plant adaptation but also in applied research on plant productivity. Maize mutant viviparous-5 (vp5), deficient in ABA biosynthesis in seeds, is a useful material for studying ABA-mediated response in maize. Due to carotenoid deficiency, vp5 endosperm is white, compared to yellow Vp5 endosperm. However, the background difference at proteome level between vp5 and Vp5 seeds is unclear. This study aimed to characterize proteome alterations of maize vp5 seeds and to identify ABA-dependent proteins during seed maturation. We compared the embryo and endosperm proteomes of vp5 and Vp5 seeds by gel-based proteomics. Up to 46 protein spots, most in embryos, were found to be differentially accumulated between vp5 and Vp5. The identified proteins included small heat shock proteins (sHSPs), late embryogenesis abundant (LEA) proteins, stress proteins, storage proteins and enzymes among others. However, EMB564, the most abundant LEA protein in maize embryo, accumulated in comparable levels between vp5 and Vp5 embryos, which contrasted to previously characterized, greatly lowered expression of emb564 mRNA in vp5 embryos. Moreover, LEA proteins and sHSPs displayed differential accumulations in vp5 embryos: six out of eight identified LEA proteins decreased while nine sHSPs increased in abundance. Finally, we discussed the possible causes of global proteome alterations, especially the observed differential accumulation of identified LEA proteins and sHSPs in vp5 embryos. The data derived from this study provides new insight into ABA-dependent proteins and ABA-mediated response during maize seed maturation. PMID:25653661

  2. Spatio-temporal accumulation and activity of calcium-dependent protein kinases during embryogenesis, seed development, and germination in sandalwood.

    PubMed

    Anil, V S; Harmon, A C; Rao, K S

    2000-04-01

    Western-blot analysis and protein kinase assays identified two Ca(2+)-dependent protein kinases (CDPKs) of 55 to 60 kD in soluble protein extracts of embryogenic cultures of sandalwood (Santalum album L.). However, these sandalwood CDPKs (swCDPKs) were absent in plantlets regenerated from somatic embryos. swCDPKs exhibited differential expression (monitored at the level of the protein) and activity in different developmental stages. Zygotic embryos, seedlings, and endosperm showed high accumulation of swCDPK, but the enzyme was not detected in the soluble proteins of shoots and flowers. swCDPK exhibited a temporal pattern of expression in endosperm, showing high accumulation and activity in mature fruit and germinating stages; the enzyme was localized strongly in the storage bodies of the endosperm cells. The study also reports for the first time to our knowledge a post-translational inhibition/inactivation of swCDPK in zygotic embryos during seed dormancy and early stages of germination. The temporal expression of swCDPK during somatic/zygotic embryogenesis, seed maturation, and germination suggests involvement of the enzyme in these developmental processes.

  3. Peroxisome proliferator-activated receptor γ agonism attenuates endotoxaemia-induced muscle protein loss and lactate accumulation in rats.

    PubMed

    Crossland, Hannah; Constantin-Teodosiu, Dumitru; Gardiner, Sheila M; Greenhaff, Paul L

    2017-07-01

    The peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone (Rosi) appears to provide protection against organ dysfunction during endotoxaemia. We examined the potential benefits of Rosi on skeletal muscle protein maintenance and carbohydrate metabolism during lipopolysaccharide (LPS)-induced endotoxaemia. Sprague-Dawley rats were fed either standard chow (control) or standard chow containing Rosi (8.5 ± 0.1 mg·kg -1 ·day -1 ) for 2 weeks before and during 24 h continuous intravenous infusion of LPS (15 μg·kg -1 ·h -1 ) or saline. Rosi blunted LPS-induced increases in muscle tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) mRNA by 70% ( P <0.05) and 64% ( P <0.01) respectively. Furthermore, Rosi suppressed the LPS-induced reduction in phosphorylated AKT and phosphorylated Forkhead box O (FOXO) 1 protein, as well as the up-regulation of muscle RING finger 1 (MuRF1; P <0.01) mRNA and the LPS-induced increase in 20S proteasome activity ( P <0.05). Accordingly, LPS reduced the muscle protein:DNA ratio (∼30%, P <0.001), which Rosi offset. Increased muscle pyruvate dehydrogenase kinase 4 (PDK4) mRNA ( P <0.001) and muscle lactate accumulation ( P <0.001) during endotoxaemia were suppressed by Rosi. Thus, pre-treatment with Rosi reduced muscle cytokine accumulation and blunted muscle protein loss and lactate accumulation during endotoxaemia, and at least in part by reducing activation of molecular events known to increase muscle protein breakdown and mitochondrial pyruvate use. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  4. Retinal abnormalities in β-thalassemia major

    PubMed Central

    Bhoiwala, Devang L.; Dunaief, Joshua L.

    2015-01-01

    Patients with beta (β)-thalassemia (β-TM: thalassemia major, β-TI: thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelium degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with β-TM are transfusion dependent and require iron chelation therapy (ICT) in order to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by ICT. Some who were never treated with ICT exhibited retinopathy, and others receiving ICT had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with β-TM viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. PMID:26325202

  5. Protective role of RAD50 on chromatin bridges during abnormal cytokinesis.

    PubMed

    Schröder-Heurich, Bianca; Wieland, Britta; Lavin, Martin F; Schindler, Detlev; Dörk, Thilo

    2014-03-01

    Faithful chromosome segregation is required for preserving genomic integrity. Failure of this process may entail chromatin bridges preventing normal cytokinesis. To test whether RAD50, a protein normally involved in DNA double-strand break repair, is involved in abnormal cytokinesis and formation of chromatin bridges, we used immunocytochemical and protein interaction assays. RAD50 localizes to chromatin bridges during aberrant cytokinesis and subsequent stages of the cell cycle, either decorating the entire bridge or focally accumulating at the midbody zone. Ionizing radiation led to an ∼4-fold increase in the rate of chromatin bridges in an ataxia telangiectatica mutated (ATM)-dependent manner in human RAD50-proficient fibroblasts but not in RAD50-deficient cells. Cells with a RAD50-positive chromatin bridge were able to continue cell cycling and to progress through S phase (44%), whereas RAD50 knockdown caused a deficiency in chromatin bridges as well as an ∼4-fold prolonged duration of mitosis. RAD50 colocalized and directly interacted with Aurora B kinase and phospho-histone H3, and Aurora B kinase inhibition led to a deficiency in RAD50-positive bridges. Based on these observations, we propose that RAD50 is a crucial factor for the stabilization and shielding of chromatin bridges. Our study provides evidence for a hitherto unknown role of RAD50 in abnormal cytokinesis.

  6. Chlamydomonas reinhardtii PsbS Protein Is Functional and Accumulates Rapidly and Transiently under High Light1

    PubMed Central

    Tibiletti, Tania; Auroy, Pascaline; Peltier, Gilles; Caffarri, Stefano

    2016-01-01

    Photosynthetic organisms must respond to excess light in order to avoid photo-oxidative stress. In plants and green algae the fastest response to high light is non-photochemical quenching (NPQ), a process that allows the safe dissipation of the excess energy as heat. This phenomenon is triggered by the low luminal pH generated by photosynthetic electron transport. In vascular plants the main sensor of the low pH is the PsbS protein, while in the green alga Chlamydomonas reinhardtii LhcSR proteins appear to be exclusively responsible for this role. Interestingly, Chlamydomonas also possesses two PsbS genes, but so far the PsbS protein has not been detected and its biological function is unknown. Here, we reinvestigated the kinetics of gene expression and PsbS and LhcSR3 accumulation in Chlamydomonas during high light stress. We found that, unlike LhcSR3, PsbS accumulates very rapidly but only transiently. In order to determine the role of PsbS in NPQ and photoprotection in Chlamydomonas, we generated transplastomic strains expressing the algal or the Arabidopsis psbS gene optimized for plastid expression. Both PsbS proteins showed the ability to increase NPQ in Chlamydomonas wild-type and npq4 (lacking LhcSR3) backgrounds, but no clear photoprotection activity was observed. Quantification of PsbS and LhcSR3 in vivo indicates that PsbS is much less abundant than LhcSR3 during high light stress. Moreover, LhcSR3, unlike PsbS, also accumulates during other stress conditions. The possible role of PsbS in photoprotection is discussed. PMID:27329221

  7. Pathogenic implications of iron accumulation in multiple sclerosis

    PubMed Central

    Williams, Rachel; Buchheit, Cassandra L.; Berman, Nancy E. J.; LeVine, Steven M.

    2011-01-01

    Iron, an essential element used for a multitude of biochemical reactions, abnormally accumulates in the central nervous system of patients with multiple sclerosis (MS). The mechanisms of abnormal iron deposition in MS are not fully understood, nor do we know whether these deposits have adverse consequences, i.e., contribute to pathogenesis. With some exceptions, excess levels of iron are represented concomitantly in multiple deep gray matter structures often with bilateral representation, while in white matter pathological iron deposits are usually located at sites of inflammation that are associated with veins. These distinct spatial patterns suggest disparate mechanisms of iron accumulation between these regions. Iron has been postulated to promote disease activity in MS by various means: 1) iron can amplify the activated state of microglia resulting in the increased production of proinflammatory mediators; 2) excess intracellular iron deposits could promote mitochondria dysfunction; and 3) improperly managed iron could catalyze the production of damaging reactive oxygen species. The pathological consequences of abnormal iron deposits may be dependent on the affected brain region and/or accumulation process. Here we review putative mechanisms of enhanced iron uptake in MS and address the likely roles of iron in the pathogenesis of this disease. PMID:22004421

  8. Rapid auxin-induced nitric oxide accumulation and subsequent tyrosine nitration of proteins during adventitious root formation in sunflower hypocotyls

    PubMed Central

    Yadav, Sunita; David, Anisha; Baluška, František; Bhatla, Satish C.

    2013-01-01

    Using NO specific probe (MNIP-Cu), rapid nitric oxide (NO) accumulation as a response to auxin (IAA) treatment has been observed in the protoplasts from the hypocotyls of sunflower seedlings (Helianthus annuus L.). Incubation of protoplasts in presence of NPA (auxin efflux blocker) and PTIO (NO scavenger) leads to significant reduction in NO accumulation, indicating that NO signals represent an early signaling event during auxin-induced response. A surge in NO production has also been demonstrated in whole hypocotyl explants showing adventitious root (AR) development. Evidence of tyrosine nitration of cytosolic proteins as a consequence of NO accumulation has been provided by western blot analysis and immunolocalization in the sections of AR producing hypocotyl segments. Most abundant anti-nitrotyrosine labeling is evident in proteins ranging from 25–80 kDa. Tyrosine nitration of a particular protein (25 kDa) is completely absent in presence of NPA (which suppresses AR formation). Similar lack of tyrosine nitration of this protein is also evident in other conditions which do not allow AR differentiation. Immunofluorescent localization experiments have revealed that non-inductive treatments (such as PTIO) for AR develpoment from hypocotyl segments coincide with symplastic and apoplastic localization of tyrosine nitrated proteins in the xylem elements, in contrast with negligible (and mainly apoplastic) nitration of proteins in the interfascicular cells and phloem elements. Application of NPA does not affect tyrosine nitration of proteins even in the presence of an external source of NO (SNP). Tyrosine nitrated proteins are abundant around the nuclei in the actively dividing cells of the root primordium. Thus, NO-modulated rapid response to IAA treatment through differential distribution of tyrosine nitrated proteins is evident as an inherent aspect of the AR development. PMID:23299324

  9. Accumulation of transcription factors and cell signaling-related proteins in the nucleus during citrus-Xanthomonas interaction.

    PubMed

    Rani, T Swaroopa; Durgeshwar, P; Podile, Appa Rao

    2015-07-20

    The nucleus is the maestro of the cell and is involved in the modulation of cell signaling during stress. We performed a comprehensive nuclear proteome analysis of Citrus sinensis during interaction with host (Xanthomonas citri pv. citri-Xcc) and non-host (Xanthomonas oryzae pv. oryzae-Xoo) pathogens. The nuclear proteome was obtained using a sequential method of organelle enrichment and determined by nano-LC-MS/MS analysis. A total of 243 proteins accumulated differentially during citrus-Xanthomonas interaction, belonging to 11 functional groups, with signaling and transcription-related proteins dominating. MADS-box transcription factors, DEAD-box RNA helicase and leucine aminopeptidase, mainly involved in jasmonic acid (JA) responses, were in high abundance during non-host interaction (Xoo). Signaling-related proteins like serine/threonine kinase, histones (H3.2, H2A), phosphoglycerate kinase, dynamin, actin and aldolase showed increased accumulation early during Xoo interaction. Our results suggest that there is a possible involvement of JA-triggered defense responses during non-host resistance, with early recognition of the non-host pathogen. Copyright © 2015. Published by Elsevier GmbH.

  10. A lysosomal lair for a pathogenic protein pair.

    PubMed

    Dawson, Ted M; Dawson, Valina L

    2011-07-13

    Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects movement. Although many of the causes of PD remain unclear, a consistent finding is the abnormal accumulation of the protein α-synuclein. In a recent issue of Cell, Mazzuli et al. provide a molecular explanation for the unexpected link between PD and Gaucher's disease, a glycolipid lysosomal storage disorder caused by loss of the enzyme glucocerebrosidase (GBA). They report a reciprocal connection between loss of GBA activity and the accumulation of α-synuclein in lysosomes that establishes a bidirectional positive feedback loop with pathogenic consequences. Understanding how lysosomes are implicated in PD may reveal new therapeutic targets for treating this disease.

  11. Accumulation of BSA in Packed-bed Microfluidics

    NASA Astrophysics Data System (ADS)

    Summers, Samantha; Hu, Chuntian; Hartman, Ryan

    2012-11-01

    Alzheimers and Parkinsons are two diseases that are associated with protein deposition in the brain, causing loss of either cognitive or muscle functioning. Protein deposition diseases are considered progressive diseases since the continual aggregation of protein causes the patient's symptoms to slowly worsen over time. There are currently no known means of treatment for protein deposition diseases. Our goal is to understand the potential for packed-bed microfluidics to study protein accumulation. Measurement of the resistance to flow through micro-scale packed-beds is critical to understanding the process of protein accumulation. Aggregation in bulk is fundamentally different from accumulation on surfaces. Our study attempts to distinguish between either mechanism. The results from our experiments involving protein injection through a microfluidic system will be presented and discussed. Funding received by NSF REU Grant 1062611.

  12. The Cytoplasmic Zinc Finger Protein ZPR1 Accumulates in the Nucleolus of Proliferating Cells

    PubMed Central

    Galcheva-Gargova, Zoya; Gangwani, Laxman; Konstantinov, Konstantin N.; Mikrut, Monique; Theroux, Steven J.; Enoch, Tamar; Davis, Roger J.

    1998-01-01

    The zinc finger protein ZPR1 translocates from the cytoplasm to the nucleus after treatment of cells with mitogens. The function of nuclear ZPR1 has not been defined. Here we demonstrate that ZPR1 accumulates in the nucleolus of proliferating cells. The role of ZPR1 was examined using a gene disruption strategy. Cells lacking ZPR1 are not viable. Biochemical analysis demonstrated that the loss of ZPR1 caused disruption of nucleolar function, including preribosomal RNA expression. These data establish ZPR1 as an essential protein that is required for normal nucleolar function in proliferating cells. PMID:9763455

  13. Regulation of TG accumulation and lipid droplet morphology by the novel TLDP1 in Aurantiochytrium limacinum F26-b.

    PubMed

    Watanabe, Takashi; Sakiyama, Ryo; Iimi, Yuya; Sekine, Satomi; Abe, Eriko; Nomura, Kazuko H; Nomura, Kazuya; Ishibashi, Yohei; Okino, Nozomu; Hayashi, Masahiro; Ito, Makoto

    2017-12-01

    Thraustochytrids are marine single-cell protists that produce large amounts of PUFAs, such as DHA. They accumulate PUFAs in lipid droplets (LDs), mainly as constituent(s) of triacylglycerol (TG). We identified a novel protein in the LD fraction of Aurantiochytrium limacinum F26-b using 2D-difference gel electrophoresis. The protein clustered with orthologs of thraustochytrids; however, the cluster was evolutionally different from known PAT family proteins or plant LD protein; thus, we named it thraustochytrid-specific LD protein 1 (TLDP1). TLDP1 surrounded LDs when expressed as a GFP-tagged form. Disruption of the tldp1 gene decreased the content of TG and number of LDs per cell; however, irregular and unusually large LDs were generated in tldp1 -deficient mutants. Although the level of TG synthesis was unchanged by the disruption of tldp1 , the level of TG degradation was higher in tldp1 -deficient mutants than in the WT. These phenotypic abnormalities in tldp1 -deficient mutants were restored by the expression of tldp1 These results indicate that TLDP1 is a thraustochytrid-specific LD protein and regulates the TG accumulation and LD morphology in A. limacinum F26-b. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  14. An early nodulin-like protein accumulates in the sieve element plasma membrane of Arabidopsis.

    PubMed

    Khan, Junaid A; Wang, Qi; Sjölund, Richard D; Schulz, Alexander; Thompson, Gary A

    2007-04-01

    Membrane proteins within the sieve element-companion cell complex have essential roles in the physiological functioning of the phloem. The monoclonal antibody line RS6, selected from hybridomas raised against sieve elements isolated from California shield leaf (Streptanthus tortuosus; Brassicaceae) tissue cultures, recognizes an antigen in the Arabidopsis (Arabidopsis thaliana) ecotype Columbia that is associated specifically with the plasma membrane of sieve elements, but not companion cells, and accumulates at the earliest stages of sieve element differentiation. The identity of the RS6 antigen was revealed by reverse transcription-PCR of Arabidopsis leaf RNA using degenerate primers to be an early nodulin (ENOD)-like protein that is encoded by the expressed gene At3g20570. Arabidopsis ENOD-like proteins are encoded by a multigene family composed of several types of structurally related phytocyanins that have a similar overall domain structure of an amino-terminal signal peptide, plastocyanin-like copper-binding domain, proline/serine-rich domain, and carboxy-terminal hydrophobic domain. The amino- and carboxy-terminal domains of the 21.5-kD sieve element-specific ENOD are posttranslationally cleaved from the precursor protein, resulting in a mature peptide of approximately 15 kD that is attached to the sieve element plasma membrane via a carboxy-terminal glycosylphosphatidylinositol membrane anchor. Many of the Arabidopsis ENOD-like proteins accumulate in gametophytic tissues, whereas in both floral and vegetative tissues, the sieve element-specific ENOD is expressed only within the phloem. Members of the ENOD subfamily of the cupredoxin superfamily do not appear to bind copper and have unknown functions. Phenotypic analysis of homozygous T-DNA insertion mutants for the gene At3g20570 shows minimal alteration in vegetative growth but a significant reduction in the overall reproductive potential.

  15. Transgenic soya bean seeds accumulating β-carotene exhibit the collateral enhancements of oleate and protein content traits.

    PubMed

    Schmidt, Monica A; Parrott, Wayne A; Hildebrand, David F; Berg, R Howard; Cooksey, Amanda; Pendarvis, Ken; He, Yonghua; McCarthy, Fiona; Herman, Eliot M

    2015-05-01

    Transgenic soya bean (Glycine max) plants overexpressing a seed-specific bacterial phytoene synthase gene from Pantoea ananatis modified to target to plastids accumulated 845 μg β carotene g(-1) dry seed weight with a desirable 12:1 ratio of β to α. The β carotene accumulating seeds exhibited a shift in oil composition increasing oleic acid with a concomitant decrease in linoleic acid and an increase in seed protein content by at least 4% (w/w). Elevated β-carotene accumulating soya bean cotyledons contain 40% the amount of abscisic acid compared to nontransgenic cotyledons. Proteomic and nontargeted metabolomic analysis of the mid-maturation β-carotene cotyledons compared to the nontransgenic did not reveal any significant differences that would account for the altered phenotypes of both elevated oleate and protein content. Transcriptomic analysis, confirmed by RT-PCR, revealed a number of significant differences in ABA-responsive transcripton factor gene expression in the crtB transgenics compared to nontransgenic cotyledons of the same maturation stage. The altered seed composition traits seem to be attributed to altered ABA hormone levels varying transcription factor expression. The elevated β-carotene, oleic acid and protein traits in the β-carotene soya beans confer a substantial additive nutritional quality to soya beans. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Elevated TMEM106B levels exaggerate lipofuscin accumulation and lysosomal dysfunction in aged mice with progranulin deficiency.

    PubMed

    Zhou, Xiaolai; Sun, Lirong; Brady, Owen Adam; Murphy, Kira A; Hu, Fenghua

    2017-01-26

    Mutations resulting in haploinsufficiency of progranulin (PGRN) cause frontotemporal lobar degeneration with TDP-43-positive inclusions (FTLD-TDP), a devastating neurodegenerative disease. Accumulating evidence suggest a crucial role of progranulin in maintaining proper lysosomal function during aging. TMEM106B has been identified as a risk factor for frontotemporal lobar degeneration with progranulin mutations and elevated mRNA and protein levels of TMEM106B are associated with increased risk for frontotemporal lobar degeneration. Increased levels of TMEM106B alter lysosomal morphology and interfere with lysosomal degradation. However, how progranulin and TMEM106B interact to regulate lysosomal function and frontotemporal lobar degeneration (FTLD) disease progression is still unclear. Here we report that progranulin deficiency leads to increased TMEM106B protein levels in the mouse cortex with aging. To mimic elevated levels of TMEM106B in frontotemporal lobar degeneration (FTLD) cases, we generated transgenic mice expressing TMEM106B under the neuronal specific promoter, CamKII. Surprisingly, we found that the total protein levels of TMEM106B are not altered despite the expression of the TMEM106B transgene at mRNA and protein levels, suggesting a tight regulation of TMEM106B protein levels in the mouse brain. However, progranulin deficiency results in accumulation of TMEM106B protein from the transgene expression during aging, which is accompanied by exaggerated lysosomal abnormalities and increased lipofuscin accumulation. In summary, our mouse model nicely recapitulates the interaction between progranulin and TMEM106B in human patients and supports a critical role of lysosomal dysfunction in the frontotemporal lobar degeneration (FTLD) disease progression.

  17. Spatio-Temporal Accumulation and Activity of Calcium-Dependent Protein Kinases during Embryogenesis, Seed Development, and Germination in Sandalwood1

    PubMed Central

    Anil, Veena S.; Harmon, Alice C.; Rao, K. Sankara

    2000-01-01

    Western-blot analysis and protein kinase assays identified two Ca2+-dependent protein kinases (CDPKs) of 55 to 60 kD in soluble protein extracts of embryogenic cultures of sandalwood (Santalum album L.). However, these sandalwood CDPKs (swCDPKs) were absent in plantlets regenerated from somatic embryos. swCDPKs exhibited differential expression (monitored at the level of the protein) and activity in different developmental stages. Zygotic embryos, seedlings, and endosperm showed high accumulation of swCDPK, but the enzyme was not detected in the soluble proteins of shoots and flowers. swCDPK exhibited a temporal pattern of expression in endosperm, showing high accumulation and activity in mature fruit and germinating stages; the enzyme was localized strongly in the storage bodies of the endosperm cells. The study also reports for the first time to our knowledge a post-translational inhibition/inactivation of swCDPK in zygotic embryos during seed dormancy and early stages of germination. The temporal expression of swCDPK during somatic/zygotic embryogenesis, seed maturation, and germination suggests involvement of the enzyme in these developmental processes. PMID:10759499

  18. β-Propeller protein-associated neurodegeneration: a new X-linked dominant disorder with brain iron accumulation.

    PubMed

    Hayflick, Susan J; Kruer, Michael C; Gregory, Allison; Haack, Tobias B; Kurian, Manju A; Houlden, Henry H; Anderson, James; Boddaert, Nathalie; Sanford, Lynn; Harik, Sami I; Dandu, Vasuki H; Nardocci, Nardo; Zorzi, Giovanna; Dunaway, Todd; Tarnopolsky, Mark; Skinner, Steven; Holden, Kenton R; Frucht, Steven; Hanspal, Era; Schrander-Stumpel, Connie; Mignot, Cyril; Héron, Delphine; Saunders, Dawn E; Kaminska, Margaret; Lin, Jean-Pierre; Lascelles, Karine; Cuno, Stephan M; Meyer, Esther; Garavaglia, Barbara; Bhatia, Kailash; de Silva, Rajith; Crisp, Sarah; Lunt, Peter; Carey, Martyn; Hardy, John; Meitinger, Thomas; Prokisch, Holger; Hogarth, Penelope

    2013-06-01

    Neurodegenerative disorders with high iron in the basal ganglia encompass an expanding collection of single gene disorders collectively known as neurodegeneration with brain iron accumulation. These disorders can largely be distinguished from one another by their associated clinical and neuroimaging features. The aim of this study was to define the phenotype that is associated with mutations in WDR45, a new causative gene for neurodegeneration with brain iron accumulation located on the X chromosome. The study subjects consisted of WDR45 mutation-positive individuals identified after screening a large international cohort of patients with idiopathic neurodegeneration with brain iron accumulation. Their records were reviewed, including longitudinal clinical, laboratory and imaging data. Twenty-three mutation-positive subjects were identified (20 females). The natural history of their disease was remarkably uniform: global developmental delay in childhood and further regression in early adulthood with progressive dystonia, parkinsonism and dementia. Common early comorbidities included seizures, spasticity and disordered sleep. The symptoms of parkinsonism improved with l-DOPA; however, nearly all patients experienced early motor fluctuations that quickly progressed to disabling dyskinesias, warranting discontinuation of l-DOPA. Brain magnetic resonance imaging showed iron in the substantia nigra and globus pallidus, with a 'halo' of T1 hyperintense signal in the substantia nigra. All patients harboured de novo mutations in WDR45, encoding a beta-propeller protein postulated to play a role in autophagy. Beta-propeller protein-associated neurodegeneration, the only X-linked disorder of neurodegeneration with brain iron accumulation, is associated with de novo mutations in WDR45 and is recognizable by a unique combination of clinical, natural history and neuroimaging features.

  19. Endocrine Abnormalities in Patients with Chronic Kidney Disease.

    PubMed

    Kuczera, Piotr; Adamczak, Marcin; Wiecek, Andrzej

    2015-01-01

    In patients with chronic kidney disease the alterations of the endocrine system may arise from several causes. The kidney is the site of degradation as well as synthesis of many different hormones. Moreover, a number of concomitant pathological conditions such as inflammation, metabolic acidosis and malnutrition may participate in the pathogenesis of endocrine abnormalities in this group of patients. The most pronounced endocrine abnormalities in patients with chronic kidney disease are the deficiencies of: calcitriol, testosterone, insulin-like growth factor and, erythropoietin (EPO). Additionally accumulation of several hormones, such as: prolactin, growth hormone and insulin frequently also occur. The clinical consequences of the abovementioned endocrine abnormalities are among others: anemia, infertility and bone diseases.

  20. Lysosomal damage after spinal cord injury causes accumulation of RIPK1 and RIPK3 proteins and potentiation of necroptosis.

    PubMed

    Liu, Shuo; Li, Yun; Choi, Harry M C; Sarkar, Chinmoy; Koh, Eugene Y; Wu, Junfang; Lipinski, Marta M

    2018-04-23

    Necroptosis, a regulated necrosis pathway mediated by the receptor-interacting protein kinases 1 and 3 (RIPK1 and RIPK3), is induced following spinal cord injury (SCI) and thought to contribute to neuronal and glial cell death. However, mechanisms leading to activation of necroptosis after SCI remain unclear. We have previously shown that autophagy, a catabolic pathway facilitating degradation of cytoplasmic proteins and organelles in a lysosome-dependent manner, is inhibited following SCI in rats. Our current data confirm that inhibition of autophagy also occurs after thoracic contusive SCI in the mouse model, as indicated by accumulation of both the autophagosome marker, LC3-II and autophagy cargo protein, p62/SQSTM1. This was most pronounced in the ventral horn neurons and was caused by rapid inhibition of lysosomal function after SCI. Interestingly, RIPK1, RIPK3, and the necroptosis effector protein MLKL also rapidly accumulated after SCI and localized to neurons with disrupted autophagy, suggesting that these events may be related. To determine if lysosomal dysfunction could contribute to induction of necroptosis, we treated PC12 cells and primary rat cortical neurons with lysosomal inhibitors. This led to rapid accumulation of RIPK1 and RIPK3, confirming that they are normally degraded by the lysosomal pathway. In PC12 cells lysosomal inhibition also sensitized cells to necroptosis induced by tumor necrosis factor α (TNFα) and caspase inhibitor. Imaging studies confirmed that RIPK1 partially localized to lysosomes in both untreated and lysosomal inhibitor treated cells. Similarly, we detected presence of RIPK1, RIPK3 and MLKL in both cytosol and at lysosomes after SCI in vivo. Furthermore, stimulation of autophagy and lysosomal function with rapamycin treatment led to decreased accumulation of RIPK1 and attenuated cell death after SCI. These data suggest that lysosomal dysfunction after SCI may contribute to both inhibition of autophagy and sensitize cells

  1. δ-Tocopherol Reduces Lipid Accumulation in Niemann-Pick Type C1 and Wolman Cholesterol Storage Disorders*

    PubMed Central

    Xu, Miao; Liu, Ke; Swaroop, Manju; Porter, Forbes D.; Sidhu, Rohini; Finkes, Sally; Ory, Daniel S.; Marugan, Juan J.; Xiao, Jingbo; Southall, Noel; Pavan, William J.; Davidson, Cristin; Walkley, Steven U.; Remaley, Alan T.; Baxa, Ulrich; Sun, Wei; McKew, John C.; Austin, Christopher P.; Zheng, Wei

    2012-01-01

    Niemann-Pick disease type C (NPC) and Wolman disease are two members of a family of storage disorders caused by mutations of genes encoding lysosomal proteins. Deficiency in function of either the NPC1 or NPC2 protein in NPC disease or lysosomal acid lipase in Wolman disease results in defective cellular cholesterol trafficking. Lysosomal accumulation of cholesterol and enlarged lysosomes are shared phenotypic characteristics of both NPC and Wolman cells. Utilizing a phenotypic screen of an approved drug collection, we found that δ-tocopherol effectively reduced lysosomal cholesterol accumulation, decreased lysosomal volume, increased cholesterol efflux, and alleviated pathological phenotypes in both NPC1 and Wolman fibroblasts. Reduction of these abnormalities may be mediated by a δ-tocopherol-induced intracellular Ca2+ response and subsequent enhancement of lysosomal exocytosis. Consistent with a general mechanism for reduction of lysosomal lipid accumulation, we also found that δ-tocopherol reduces pathological phenotypes in patient fibroblasts from other lysosomal storage diseases, including NPC2, Batten (ceroid lipofuscinosis, neuronal 2, CLN2), Fabry, Farber, Niemann-Pick disease type A, Sanfilippo type B (mucopolysaccharidosis type IIIB, MPSIIIB), and Tay-Sachs. Our data suggest that regulated exocytosis may represent a potential therapeutic target for reduction of lysosomal storage in this class of diseases. PMID:23035117

  2. Proteomic Analysis of Differentially Accumulated Proteins in Cucumber (Cucumis sativus) Fruit Peel in Response to Pre-storage Cold Acclimation

    PubMed Central

    Wang, Bin; Shen, Fei; Zhu, Shijiang

    2018-01-01

    Harvested fruits are still living organs and respond to environmental stimuli. Low temperature storage is effective in extending life of harvested fruit, but it may also cause chilling injury. Cold acclimation has been shown to induce chilling tolerance in plants, but what proteomic changes caused by cold acclimation are related to defense against chilling stress remains largely unclear. Here, 3 d of pre-storage cold acclimation (PsCA) at 10°C reduced chilling injury and secondary disease severity in cucumber stored at 5°C by 51 and 94%, respectively, compared with the control which was directly stored at 5°C. Proteomic analysis of cucumber peel identified 21 significant differentially-accumulated proteins (SDAPs) right after PsCA treatment and 23 after the following cold storage (PsCA+CS). These proteins are mainly related to stress response and defense (SRD), energy metabolism, protein metabolism, signal transduction, primary metabolism, and transcription. The SRD proteins, which made up 37% of the 21 and 47% of the 23, respectively, represented the largest class of SDAPs, and all but one protein were up-regulated, suggesting accumulation of proteins involved in defense response is central feature of proteomic profile changes brought about by PsCA. In fruit just after PsCA treatment, the identified SDAPs are related to responses to various stresses, including chilling, salt stress, dehydration, fungi, bacteria, insects, and DNA damage. However, after prolonged cold storage, the targeted proteins in acclimated fruit were narrowed down in scope to those involved in defense against chilling and pathogens. The change patterns at the transcription level of the majority of the up-regulated differentially-accumulated proteins were highly consistent with those at protein level. Taken all, the results suggest that the short-time cold acclimation initiated comprehensive defense responses in cucumber fruit at first, while the long term storage thereafter altered the

  3. Proteomic Analysis of Differentially Accumulated Proteins in Cucumber (Cucumis sativus) Fruit Peel in Response to Pre-storage Cold Acclimation.

    PubMed

    Wang, Bin; Shen, Fei; Zhu, Shijiang

    2017-01-01

    Harvested fruits are still living organs and respond to environmental stimuli. Low temperature storage is effective in extending life of harvested fruit, but it may also cause chilling injury. Cold acclimation has been shown to induce chilling tolerance in plants, but what proteomic changes caused by cold acclimation are related to defense against chilling stress remains largely unclear. Here, 3 d of pre-storage cold acclimation (PsCA) at 10°C reduced chilling injury and secondary disease severity in cucumber stored at 5°C by 51 and 94%, respectively, compared with the control which was directly stored at 5°C. Proteomic analysis of cucumber peel identified 21 significant differentially-accumulated proteins (SDAPs) right after PsCA treatment and 23 after the following cold storage (PsCA+CS). These proteins are mainly related to stress response and defense (SRD), energy metabolism, protein metabolism, signal transduction, primary metabolism, and transcription. The SRD proteins, which made up 37% of the 21 and 47% of the 23, respectively, represented the largest class of SDAPs, and all but one protein were up-regulated, suggesting accumulation of proteins involved in defense response is central feature of proteomic profile changes brought about by PsCA. In fruit just after PsCA treatment, the identified SDAPs are related to responses to various stresses, including chilling, salt stress, dehydration, fungi, bacteria, insects, and DNA damage. However, after prolonged cold storage, the targeted proteins in acclimated fruit were narrowed down in scope to those involved in defense against chilling and pathogens. The change patterns at the transcription level of the majority of the up-regulated differentially-accumulated proteins were highly consistent with those at protein level. Taken all, the results suggest that the short-time cold acclimation initiated comprehensive defense responses in cucumber fruit at first, while the long term storage thereafter altered the

  4. Cadmium accumulation and protein binding patterns in tissues of the rainbow trout, Salmo gairdneri.

    PubMed Central

    Kay, J; Thomas, D G; Brown, M W; Cryer, A; Shurben, D; Solbe, J F; Garvey, J S

    1986-01-01

    Rainbow trout were exposed to defined levels of cadmium in their aquarium water for differing periods at a variety of near-lethal concentrations that ensured the survival of the majority of the fish. The gills, liver and kidney together accounted for 99% of the accumulated load of body cadmium in the fish under these conditions. Although the proportion of total cadmium present in the liver remained relatively constant throughout, the distribution of the remainder between gill and kidney altered with the time of exposure. The cadmium in all three organs was bound by two low molecular weight proteins distinct in character from metallothionein. The isoforms of metallothionein were also present but were found to bind only zinc and copper. By contrast, when trout were injected with cadmium intraperitoneally, most of the metal accumulated in the liver where it was sequestered by the two isoforms of metallothionein. Pre-exposure of the trout to either a low concentration of cadmium (for several months) or to an elevated concentration of zinc (for 5 days) allowed the animals to survive a subsequent exposure to a high, otherwise lethal concentration of cadmium. The proteins responsible for sequestration of the two metals were identified, but two different mechanisms seemed to be involved in the protection of the animals. The significance of these observations in terms of the induction of proteins and the prevention of the toxic effects of cadmium is considered. PMID:3709433

  5. Petri net-based prediction of therapeutic targets that recover abnormally phosphorylated proteins in muscle atrophy.

    PubMed

    Jung, Jinmyung; Kwon, Mijin; Bae, Sunghwa; Yim, Soorin; Lee, Doheon

    2018-03-05

    Muscle atrophy, an involuntary loss of muscle mass, is involved in various diseases and sometimes leads to mortality. However, therapeutics for muscle atrophy thus far have had limited effects. Here, we present a new approach for therapeutic target prediction using Petri net simulation of the status of phosphorylation, with a reasonable assumption that the recovery of abnormally phosphorylated proteins can be a treatment for muscle atrophy. The Petri net model was employed to simulate phosphorylation status in three states, i.e. reference, atrophic and each gene-inhibited state based on the myocyte-specific phosphorylation network. Here, we newly devised a phosphorylation specific Petri net that involves two types of transitions (phosphorylation or de-phosphorylation) and two types of places (activation with or without phosphorylation). Before predicting therapeutic targets, the simulation results in reference and atrophic states were validated by Western blotting experiments detecting five marker proteins, i.e. RELA, SMAD2, SMAD3, FOXO1 and FOXO3. Finally, we determined 37 potential therapeutic targets whose inhibition recovers the phosphorylation status from an atrophic state as indicated by the five validated marker proteins. In the evaluation, we confirmed that the 37 potential targets were enriched for muscle atrophy-related terms such as actin and muscle contraction processes, and they were also significantly overlapping with the genes associated with muscle atrophy reported in the Comparative Toxicogenomics Database (p-value < 0.05). Furthermore, we noticed that they included several proteins that could not be characterized by the shortest path analysis. The three potential targets, i.e. BMPR1B, ROCK, and LEPR, were manually validated with the literature. In this study, we suggest a new approach to predict potential therapeutic targets of muscle atrophy with an analysis of phosphorylation status simulated by Petri net. We generated a list of the potential

  6. Retinal abnormalities in β-thalassemia major.

    PubMed

    Bhoiwala, Devang L; Dunaief, Joshua L

    2016-01-01

    Patients with beta (β)-thalassemia (β-TM: β-thalassemia major, β-TI: β-thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelial degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with β-thalassemia major are transfusion dependent and require iron chelation therapy to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by iron chelation therapy. Some who were never treated with iron chelation therapy exhibited retinopathy, and others receiving iron chelation therapy had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with β-thalassemia major viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Arabidopsis mitochondrial protein slow embryo development1 is essential for embryo development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Yan; Liu, Chunying; Lu, Wenwen

    The plant seeds formation are crucial parts in reproductive process in seed plants as well as food source for humans. Proper embryo development ensure viable seed formation. Here, we showed an Arabidopsis T-DNA insertion mutant slow embryo development1 (sed1) which exhibited retarded embryogenesis, led to aborted seeds. Embryo without SED1 developed slower compared to normal one and could be recognized at early globular stage by its white appearance. In later development stage, storage accumulated poorly with less protein and lipid body production. In vitro culture did not rescue albino embryo. SED1 encoded a protein targeted to mitochondria. Transmission electron microscopic analysismore » revealed that mitochondria developed abnormally, and more strikingly plastid failed to construct grana in time in sed1/sed1 embryo. These data indicated that SED1 is indispensable for embryogenesis in Arabidopsis, and the mitochondria may be involved in the regulation of many aspects of seed development. -- Highlights: •Arabidopsis SED1 is essential for embryo development. •The sed1 embryo accumulates less storage and has abnormal ultrastructure. •SED1 localizes to the mitochondrion.« less

  8. Differential protein accumulations in isolates of the strawberry wilt pathogen Fusarium oxysporum f. sp. fragariae differing in virulence.

    PubMed

    Fang, Xiangling; Barbetti, Martin J

    2014-08-28

    This study was conducted to define differences in Fusarium oxysporum f. sp. fragariae (Fof) isolates with different virulence efficiency to strawberry at the proteome level, in combination with their differences in mycelial growth, conidial production and germination. Comparative proteome analyses revealed substantial differences in mycelial proteomes between Fof isolates, where the 54 differentially accumulated protein spots were consistently over-accumulated or exclusively in the highly virulent isolate. These protein spots were identified through MALDI-TOF/TOF mass spectrometry analyses, and the identified proteins were mainly related to primary and protein metabolism, antioxidation, electron transport, cell cycle and transcription based on their putative functions. Proteins of great potential as Fof virulence factors were those involved in ubiquitin/proteasome-mediated protein degradation and reactive oxygen species detoxification; the hydrolysis-related protein haloacid dehalogenase superfamily hydrolase; 3,4-dihydroxy-2-butanone 4-phosphate synthase associated with riboflavin biosynthesis; and those exclusive to the highly virulent isolate. In addition, post-translational modifications may also make an important contribution to Fof virulence. F. oxysporum f. sp. fragariae (Fof), the causal agent of Fusarium wilt in strawberry, is a serious threat to commercial strawberry production worldwide. However, factors and mechanisms contributing to Fof virulence remained unknown. This study provides knowledge of the molecular basis for the differential expression of virulence in Fof, allowing new possibilities towards developing alternative and more effective strategies to manage Fusarium wilt. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Apple RING E3 ligase MdMIEL1 inhibits anthocyanin accumulation by ubiquitinating and degrading MdMYB1 protein.

    PubMed

    An, Jian-Ping; Liu, Xin; Li, Hao-Hao; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin

    2017-11-01

    MdMYB1 is an important regulator for anthocyanin accumulation in apple (Malus × domestica). Here, an apple RING E3 ligase, MdMIEL1, was screened out as a partner of MdMYB1 with a yeast two-hybrid approach. Pull-down, bimolecular fluorescence complementation and coimmunoprecipitation assays further verified the interaction between MdMIEL1 and MdMYB1 proteins. Subsequently, in vitro and in vivo experiments indicated that MdMIEL1 functioned as a ubiquitin E3 ligase to ubiquitinate MdMYB1 protein, followed by degradation through a 26S proteasome pathway. Furthermore, transgenic studies in apple calli and Arabidopsis demonstrated that MdMIEL1 negatively regulated anthocyanin accumulation by modulating the degradation of MdMYB1 protein. Taken together, our findings provide a new insight into the molecular mechanism by which MdMIEL1 negatively regulates anthocyanin biosynthesis by ubiquitinating and degrading MdMYB1 protein. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Casein Kinase II Induced Polymerization of Soluble TDP-43 into Filaments Is Inhibited by Heat Shock Proteins

    PubMed Central

    Davis, Mary; Lin, Wen-Lang; Cook, Casey; Dunmore, Judy; Tay, William; Menkosky, Kyle; Cao, Xiangkun; Petrucelli, Leonard; DeTure, Michael

    2014-01-01

    Background Trans-activation Response DNA-binding Protein-43 (TDP-43) lesions are observed in Amyotrophic Lateral Sclerosis (ALS), Frontotemporal Lobar Degeneration with ubiquitin inclusions (FTLD-TDP) and 25–50% of Alzheimer's Disease (AD) cases. These abnormal protein inclusions are composed of either amorphous TDP-43 aggregates or highly ordered filaments. The filamentous TDP-43 accumulations typically contain clean 10–12 nm filaments though wider 18–20 nm coated filaments may be observed. The TDP-43 present within these lesions is phosphorylated, truncated and ubiquitinated, and these modifications appear to be abnormal as they are linked to both a cellular heat shock response and microglial activation. The mechanisms associated with this abnormal TDP-43 accumulation are believed to result in a loss of TDP-43 function, perhaps due to the post-translational modifications or resulting from physical sequestration of the TDP-43. The formation of TDP-43 inclusions involves cellular translocation and conversion of TDP-43 into fibrillogenic forms, but the ability of these accumulations to sequester normal TDP-43 and propagate this behavior between neurons pathologically is mostly inferred. The lack of methodology to produce soluble full length TDP-43 and recapitulate this polymerization into filaments as observed in disease has limited our understanding of these pathogenic cascades. Results The protocols described here generate soluble, full-length and untagged TDP-43 allowing for a direct assessment of the impact of various posttranslational modifications on TDP-43 function. We demonstrate that Casein Kinase II (CKII) promotes the polymerization of this soluble TDP-43 into 10 nm diameter filaments that resemble the most common TDP-43 structures observed in disease. Furthermore, these filaments are recognized as abnormal by Heat Shock Proteins (HSPs) which can inhibit TDP-43 polymerization or directly promote TDP-43 filament depolymerization. Conclusion These

  11. Spider dragline silk proteins in transgenic tobacco leaves: accumulation and field production.

    PubMed

    Menassa, Rima; Zhu, Hong; Karatzas, Costas N; Lazaris, Anthoula; Richman, Alex; Brandle, Jim

    2004-09-01

    Spider dragline silk is a unique biomaterial and represents nature's strongest known fibre. As it is almost as strong as many commercial synthetic fibres, it is suitable for use in many industrial and medical applications. The prerequisite for such a widespread use is the cost-effective production in sufficient quantities for commercial fibre manufacturing. Agricultural biotechnology and the production of recombinant dragline silk proteins in transgenic plants offer the potential for low-cost, large-scale production. The purpose of this work was to examine the feasibility of producing the two protein components of dragline silk (MaSp1 and MaSp2) from Nephila clavipes in transgenic tobacco. Two different promoters, the enhanced CaMV 35S promoter (Kay et al., 1987) and a new tobacco cryptic constitutive promoter, tCUP (Foster et al., 1999) were used, in conjunction with a plant secretory signal (PR1b), a translational enhancer (alfalfa mosaic virus, AMV) and an endoplasmic reticulum (ER) retention signal (KDEL), to express the MaSp1 and MaSp2 genes in the leaves of transgenic plants. Both genes expressed successfully and recombinant protein accumulated in transgenic plants grown in both greenhouse and field trials.

  12. Amyotrophic lateral sclerosis mutant vesicle-associated membrane protein-associated protein-B transgenic mice develop TAR-DNA-binding protein-43 pathology.

    PubMed

    Tudor, E L; Galtrey, C M; Perkinton, M S; Lau, K-F; De Vos, K J; Mitchell, J C; Ackerley, S; Hortobágyi, T; Vámos, E; Leigh, P N; Klasen, C; McLoughlin, D M; Shaw, C E; Miller, C C J

    2010-05-19

    Cytoplasmic ubiquitin-positive inclusions containing TAR-DNA-binding protein-43 (TDP-43) within motor neurons are the hallmark pathology of sporadic amyotrophic lateral sclerosis (ALS). TDP-43 is a nuclear protein and the mechanisms by which it becomes mislocalized and aggregated in ALS are not properly understood. A mutation in the vesicle-associated membrane protein-associated protein-B (VAPB) involving a proline to serine substitution at position 56 (VAPBP56S) is the cause of familial ALS type-8. To gain insight into the molecular mechanisms by which VAPBP56S induces disease, we created transgenic mice that express either wild-type VAPB (VAPBwt) or VAPBP56S in the nervous system. Analyses of both sets of mice revealed no overt motor phenotype nor alterations in survival. However, VAPBP56S but not VAPBwt transgenic mice develop cytoplasmic TDP-43 accumulations within spinal cord motor neurons that were first detected at 18 months of age. Our results suggest a link between abnormal VAPBP56S function and TDP-43 mislocalization. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Nuclear Transport and Accumulation of Smad Proteins Studied by Single-Molecule Microscopy.

    PubMed

    Li, Yichen; Luo, Wangxi; Yang, Weidong

    2018-05-08

    Nuclear translocation of stimulated Smad heterocomplexes is a critical step in the signal transduction of transforming growth factor β (TGF-β) from transmembrane receptors into the nucleus. Specifically, normal nuclear accumulation of Smad2/Smad4 heterocomplexes induced by TGF-β1 is involved in carcinogenesis. However, the relationship between nuclear accumulation and the nucleocytoplasmic transport kinetics of Smad proteins in the presence of TGF-β1 remains obscure. By combining a high-speed single-molecule tracking microscopy and Förster resonance energy transfer technique, we tracked the entire TGF-β1-induced process of Smad2/Smad4 heterocomplex formation, as well as their transport through nuclear pore complexes in live cells, with a high single-molecule localization precision of 2 ms and <20 nm. Our single-molecule Förster resonance energy transfer data have revealed that in TGF-β1-treated cells, Smad2/Smad4 heterocomplexes formed in the cytoplasm, imported through the nuclear pore complexes as entireties, and finally dissociated in the nucleus. Moreover, we found that basal-state Smad2 or Smad4 cannot accumulate in the nucleus without the presence of TGF-β1, mainly because both of them have an approximately twofold higher nuclear export efficiency compared to their nuclear import. Remarkably and reversely, heterocomplexes of Smad2/Smad4 induced by TGF-β1 can rapidly concentrate in the nucleus because of their almost fourfold higher nuclear import rate in comparison with their nuclear export rate. Thus, we believe that the determined TGF-β1-dependent transport configurations and efficiencies for the basal-state Smad or stimulated Smad heterocomplexes elucidate the basic molecular mechanism to understand their nuclear transport and accumulation. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. C-reactive protein and homocysteine levels are associated with abnormal heart rate recovery in women with polycystic ovary syndrome.

    PubMed

    Kaya, Cemil; Akgül, Ebru; Pabuccu, Recai

    2010-06-01

    To determine heart rate recovery (HRR) in patients with polycystic ovary syndrome (PCOS) and its relation to C-reactive protein (CRP) and homocysteine (Hcy) levels. Prospective clinical study. University hospital. Sixty-eight women with PCOS and 68 healthy women were included this study. Heart rate recovery was evaluated. We measured serum levels of CRP and Hcy. The presence of insulin resistance was investigated using homeostasis model assesment (HOMA-IR). Heart rate recovery, CRP, Hcy. Heart rate recovery was significantly decreased in women with PCOS compared with control group women. Subjects with abnormal HRR had significantly greater levels of CRP and Hcy. The PCOS patients with HRR in the top tertile compared with the bottom quartile tended to have lower mean CRP and Hcy levels. The HRR was significantly and negatively correlated with age, CRP, Hcy, HOMA-IR, and body mass index. C-reactive protein and Hcy are independent determinants of HRR. The CRP and Hcy levels may affect the development and progression of abnormal HRR in PCOS. Crown Copyright (c) 2010. Published by Elsevier Inc. All rights reserved.

  15. Lipid and protein accumulation in developing seeds of three lupine species: Lupinus luteus L., Lupinus albus L., and Lupinus mutabilis Sweet.

    PubMed

    Borek, Slawomir; Pukacka, Stanisława; Michalski, Krzysztof; Ratajczak, Lech

    2009-01-01

    A comparative study was carried out on the dynamics of lipid accumulation in developing seeds of three lupine species. Lupine seeds differ in lipid content; yellow lupine (Lupinus luteus L.) seeds contain about 6%, white lupine (Lupinus albus L.) 7-14%, and Andean lupine (Lupinus mutabilis Sweet) about 20% of lipids by dry mass. Cotyledons from developing seeds were isolated and cultured in vitro for 96 h on Heller medium with 60 mM sucrose (+S) or without sucrose (-S). Each medium was additionally enriched with 35 mM asparagine or 35 mM NaNO3. Asparagine caused an increase in protein accumulation and simultaneously decreased the lipid content, but nitrate increased accumulation of both protein and lipid. Experiments with [1-14C]acetate and [2-14C]acetate showed that the decrease in lipid accumulation in developing lupine seeds resulted from exhaustion of lipid precursors rather than from degradation or modification of the enzymatic apparatus. The carbon atom from the C-1 position of acetate was liberated mainly as CO2, whereas the carbon atom from the C-2 position was preferentially used in anabolic pathways. The dominant phospholipid in the investigated lupine seed storage organs was phosphatidylcholine. The main fatty acid in yellow lupine cotyledons was linoleic acid, in white lupine it was oleic acid, and in Andean lupine it was both linoleic and oleic acids. The relationship between stimulation of lipid and protein accumulation by nitrate in developing lupine cotyledons and enhanced carbon flux through glycolysis caused by the inorganic nitrogen form is discussed.

  16. Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants

    DOE PAGES

    Cai, Yingqi; McClinchie, Elizabeth; Price, Ann; ...

    2017-01-18

    Fat storage-inducing transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)-localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. We tested the function of FIT2 in plant cells by ectopically expressing mouse (Mus musculus) FIT2 in Nicotiana tabacum suspension-cultured cells, Nicotiana benthamiana leaves and Arabidopsis thaliana plants. Confocal microscopy indicated that the expression of FIT2 dramatically increased the number and size of LDs in leaves of N. benthamiana and Arabidopsis, and lipidomics analysis and mass spectrometry imaging confirmed the accumulation of neutral lipids inmore » leaves. FIT2 also increased seed oil content by ~13% in some stable, overexpressing lines of Arabidopsis. Furthermore, when expressed transiently in leaves of N. benthamiana or suspension cells of N. tabacum, FIT2 localized specifically to the ER and was often concentrated at certain regions of the ER that resembled ER-LD junction sites. FIT2 also colocalized at the ER with other proteins known to be involved in triacylglycerol biosynthesis or LD formation in plants, but not with ER resident proteins involved in electron transfer or ERvesicle exit sites. Collectively, these results demonstrate that mouse FIT2 promotes LD accumulation in plants, a surprising functional conservation in the context of a plant cell given the apparent lack of FIT2 homologues in higher plants. Our results suggest also that FIT2 expression represents an effective synthetic biology strategy for elaborating neutral lipid compartments in plant tissues for potential biofuel or bioproduct purposes.« less

  17. Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yingqi; McClinchie, Elizabeth; Price, Ann

    Fat storage-inducing transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)-localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. We tested the function of FIT2 in plant cells by ectopically expressing mouse (Mus musculus) FIT2 in Nicotiana tabacum suspension-cultured cells, Nicotiana benthamiana leaves and Arabidopsis thaliana plants. Confocal microscopy indicated that the expression of FIT2 dramatically increased the number and size of LDs in leaves of N. benthamiana and Arabidopsis, and lipidomics analysis and mass spectrometry imaging confirmed the accumulation of neutral lipids inmore » leaves. FIT2 also increased seed oil content by ~13% in some stable, overexpressing lines of Arabidopsis. Furthermore, when expressed transiently in leaves of N. benthamiana or suspension cells of N. tabacum, FIT2 localized specifically to the ER and was often concentrated at certain regions of the ER that resembled ER-LD junction sites. FIT2 also colocalized at the ER with other proteins known to be involved in triacylglycerol biosynthesis or LD formation in plants, but not with ER resident proteins involved in electron transfer or ERvesicle exit sites. Collectively, these results demonstrate that mouse FIT2 promotes LD accumulation in plants, a surprising functional conservation in the context of a plant cell given the apparent lack of FIT2 homologues in higher plants. Our results suggest also that FIT2 expression represents an effective synthetic biology strategy for elaborating neutral lipid compartments in plant tissues for potential biofuel or bioproduct purposes.« less

  18. Stable Accumulation of Photosystem II Requires ONE-HELIX PROTEIN1 (OHP1) of the Light Harvesting-Like Family1[OPEN

    PubMed Central

    Takahashi, Kaori; Funk, Christiane; Nomura, Yuko

    2018-01-01

    The cellular functions of two Arabidopsis (Arabidopsis thaliana) one-helix proteins, OHP1 and OHP2 (also named LIGHT-HARVESTING-LIKE2 [LIL2] and LIL6, respectively, because they have sequence similarity to light-harvesting chlorophyll a/b-binding proteins), remain unclear. Tagged null mutants of OHP1 and OHP2 (ohp1 and ohp2) showed stunted growth with pale-green leaves on agar plates, and these mutants were unable to grow on soil. Leaf chlorophyll fluorescence and the composition of thylakoid membrane proteins revealed that ohp1 deletion substantially affected photosystem II (PSII) core protein function and led to reduced levels of photosystem I core proteins; however, it did not affect LHC accumulation. Transgenic ohp1 plants rescued with OHP1-HA or OHP1-Myc proteins developed a normal phenotype. Using these tagged OHP1 proteins in transgenic plants, we localized OHP1 to thylakoid membranes, where it formed protein complexes with both OHP2 and High Chlorophyll Fluorescence244 (HCF244). We also found PSII core proteins D1/D2, HCF136, and HCF173 and a few other plant-specific proteins associated with the OHP1/OHP2-HCF244 complex, suggesting that these complexes are early intermediates in PSII assembly. OHP1 interacted directly with HCF244 in the complex. Therefore, OHP1 and HCF244 play important roles in the stable accumulation of PSII. PMID:29438089

  19. Differential accumulation of photosynthetic proteins regulates diurnal photochemical adjustments of PSII in common fig (Ficus carica L.) leaves.

    PubMed

    Mlinarić, Selma; Antunović Dunić, Jasenka; Skendrović Babojelić, Martina; Cesar, Vera; Lepeduš, Hrvoje

    2017-02-01

    Molecular processes involved in photosystem II adaptation of woody species to diurnal changes in light and temperature conditions are still not well understood. Regarding this, here we investigated differences between young and mature leaves of common fig (Ficus carica L.) in photosynthetic performance as well as accumulation of the main photosynthetic proteins: light harvesting complex II, D1 protein and Rubisco large subunit. Investigated leaf types revealed different adjustment mechanisms to keep effective photosynthesis. Rather stable diurnal accumulation of light harvesting complex II in mature leaves enabled efficient excitation energy utilization (negative L-band) what triggered faster D1 protein degradation at high light. However, after photoinhibition, greater accumulation of D1 during the night enabled them faster recovery. So, the most photosynthetic parameters, as the maximum quantum yield for primary photochemistry, electron transport and overall photosynthetic efficiency in mature leaves successfully restored to their initial values at 1a.m. Reduced connectivity of light harvesting complexes II to its reaction centers (positive L-band) in young leaves increased dissipation of excess light causing less pressure to D1 and its slower degradation. Decreased electron transport in young leaves, due to reduced transfer beyond primary acceptor Q A - most probably additionally induced degradation of Rubisco large subunit what consequently led to the stronger decrease of overall photosynthetic efficiency in young leaves at noon. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Paired Helical Filaments of Inclusion-Body Myositis Muscle Contain RNA and Survival Motor Neuron Protein

    PubMed Central

    Broccolini, Aldobrando; Engel, W. King; Alvarez, Renate B.; Askanas, Valerie

    2000-01-01

    Sporadic inclusion-body myositis (s-IBM) is the most common progressive muscle disease of older persons. Pathologically, the muscle biopsy manifests various degrees of inflammation and specific vacuolar degeneration of muscle fibers characterized by paired helical filaments (PHFs) composed of phosphorylated tau. IBM vacuolated fibers also contain accumulations of several other Alzheimer-characteristic proteins. Molecular mechanisms leading to formation of the PHFs and accumulations of proteins in IBM muscle are not known. We report that the abnormal muscle fibers of IBM contained (i) acridine-orange-positive RNA inclusions that colocalized with the immunoreactivity of phosphorylated tau and (ii) survival motor neuron protein immunoreactive inclusions, which by immuno-electron microscopy were confined to paired helical filaments. This study demonstrates two novel components of the IBM paired helical filaments, which may lead to better understanding of their pathogenesis. PMID:10751338

  1. Paired helical filaments of inclusion-body myositis muscle contain RNA and survival motor neuron protein.

    PubMed

    Broccolini, A; Engel, W K; Alvarez, R B; Askanas, V

    2000-04-01

    Sporadic inclusion-body myositis (s-IBM) is the most common progressive muscle disease of older persons. Pathologically, the muscle biopsy manifests various degrees of inflammation and specific vacuolar degeneration of muscle fibers characterized by paired helical filaments (PHFs) composed of phosphorylated tau. IBM vacuolated fibers also contain accumulations of several other Alzheimer-characteristic proteins. Molecular mechanisms leading to formation of the PHFs and accumulations of proteins in IBM muscle are not known. We report that the abnormal muscle fibers of IBM contained (i) acridine-orange-positive RNA inclusions that colocalized with the immunoreactivity of phosphorylated tau and (ii) survival motor neuron protein immunoreactive inclusions, which by immuno-electron microscopy were confined to paired helical filaments. This study demonstrates two novel components of the IBM paired helical filaments, which may lead to better understanding of their pathogenesis.

  2. Advances and New Concepts in Alcohol-Induced Organelle Stress, Unfolded Protein Responses and Organ Damage.

    PubMed

    Ji, Cheng

    2015-06-03

    Alcohol is a simple and consumable biomolecule yet its excessive consumption disturbs numerous biological pathways damaging nearly all organs of the human body. One of the essential biological processes affected by the harmful effects of alcohol is proteostasis, which regulates the balance between biogenesis and turnover of proteins within and outside the cell. A significant amount of published evidence indicates that alcohol and its metabolites directly or indirectly interfere with protein homeostasis in the endoplasmic reticulum (ER) causing an accumulation of unfolded or misfolded proteins, which triggers the unfolded protein response (UPR) leading to either restoration of homeostasis or cell death, inflammation and other pathologies under severe and chronic alcohol conditions. The UPR senses the abnormal protein accumulation and activates transcription factors that regulate nuclear transcription of genes related to ER function. Similarly, this kind of protein stress response can occur in other cellular organelles, which is an evolving field of interest. Here, I review recent advances in the alcohol-induced ER stress response as well as discuss new concepts on alcohol-induced mitochondrial, Golgi and lysosomal stress responses and injuries.

  3. Abnormal swelling of the peritrophic membrane in Eri silkworm gut caused by MLX56 family defense proteins with chitin-binding and extensin domains.

    PubMed

    Konno, Kotaro; Shimura, Sachiko; Ueno, Chihiro; Arakawa, Toru; Nakamura, Masatoshi

    2018-03-01

    MLX56 family defense proteins, MLX56 and its close homolog LA-b, are chitin-binding defense proteins found in mulberry latex that show strong growth-inhibitions against caterpillars when fed at concentrations as low as 0.01%. MLX56 family proteins contain a unique structure with an extensin domain surrounded by two hevein-like chitin-binding domains, but their defensive modes of action remain unclear. Here, we analyzed the effects of MLX56 family proteins on the peritrophic membrane (PM), a thin and soft membrane consisting of chitin that lines the midgut lumen of insects. We observed an abnormally thick (>1/5 the diameter of midgut) hard gel-like membrane consisted of chitin and MLX56 family proteins, MLX56 and LA-b, in the midgut of the Eri silkworms, Samia ricini, fed a diet containing MLX56 family proteins, MLX56 and LA-b. When polyoxin AL, a chitin-synthesis-inhibitor, was added to the diet containing MLX56 family proteins, the toxicity of MLX56 family proteins disappeared and PM became thinner and fragmented. These results suggest that MLX56 family proteins, through their chitin-binding domains, bind to the chitin framework of PM, then through their extensin-domain (gum arabic-like structure), which functions as swelling agent, expands PM into an abnormally thick membrane that inhibits the growth of insects. This study shows that MLX56 family proteins are plant defense lectins with a totally unique mode of action, and reveals the functions of extensin domains and arabinogalactan proteins as swelling (gel-forming) agents of plants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils.

    PubMed

    Wen, Bei; Wu, Yali; Zhang, Hongna; Liu, Yu; Hu, Xiaoyu; Huang, Honglin; Zhang, Shuzhen

    2016-09-01

    The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in seven species of plants from biosolids-amended soils were investigated. The PFOS and PFOA root concentration factors (Croot/Csoil) ranged from 1.37 to 4.68 and 1.69 to 10.3 (ng/groot)/(ng/gsoil), respectively, while the translocation factors (Cshoot/Croot) ranged from 0.055 to 0.16 and 0.093 to 1.8 (ng/gshoot)/(ng/groot), respectively. The PFOS and PFOA accumulations in roots correlated positively with root protein contents (P < 0.05), while negatively with root lipid contents (P < 0.05). These suggested the promotion effects of protein and inhibition effects of lipid on root uptake. The translocation factors correlated positively with the ratios between protein contents in shoots to those in roots (P < 0.05), showing the importance of protein on PFOS and PFOA translocation. This study is the first to reveal the different roles of protein and lipid in the accumulation and distribution of PFOS and PFOA in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Subcellular distribution of human RDM1 protein isoforms and their nucleolar accumulation in response to heat shock and proteotoxic stress.

    PubMed

    Messaoudi, Lydia; Yang, Yun-Gui; Kinomura, Aiko; Stavreva, Diana A; Yan, Gonghong; Bortolin-Cavaillé, Marie-Line; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Hainaut, Pierre; Cavaillé, Jérome; Takata, Minoru; Van Dyck, Eric

    2007-01-01

    The RDM1 gene encodes a RNA recognition motif (RRM)-containing protein involved in the cellular response to the anti-cancer drug cisplatin in vertebrates. We previously reported a cDNA encoding the full-length human RDM1 protein. Here, we describe the identification of 11 human cDNAs encoding RDM1 protein isoforms. This repertoire is generated by alternative pre-mRNA splicing and differential usage of two translational start sites, resulting in proteins with long or short N-terminus and a great diversity in the exonic composition of their C-terminus. By using tagged proteins and fluorescent microscopy, we examined the subcellular distribution of full-length RDM1 (renamed RDM1alpha), and other RDM1 isoforms. We show that RDM1alpha undergoes subcellular redistribution and nucleolar accumulation in response to proteotoxic stress and mild heat shock. In unstressed cells, the long N-terminal isoforms displayed distinct subcellular distribution patterns, ranging from a predominantly cytoplasmic to almost exclusive nuclear localization, suggesting functional differences among the RDM1 proteins. However, all isoforms underwent stress-induced nucleolar accumulation. We identified nuclear and nucleolar localization determinants as well as domains conferring cytoplasmic retention to the RDM1 proteins. Finally, RDM1 null chicken DT40 cells displayed an increased sensitivity to heat shock, compared to wild-type (wt) cells, suggesting a function for RDM1 in the heat-shock response.

  6. Lipid and protein accumulation in developing seeds of three lupine species: Lupinus luteus L., Lupinus albus L., and Lupinus mutabilis Sweet

    PubMed Central

    Borek, Sławomir; Pukacka, Stanisława; Michalski, Krzysztof; Ratajczak, Lech

    2009-01-01

    A comparative study was carried out on the dynamics of lipid accumulation in developing seeds of three lupine species. Lupine seeds differ in lipid content; yellow lupine (Lupinus luteus L.) seeds contain about 6%, white lupine (Lupinus albus L.) 7–14%, and Andean lupine (Lupinus mutabilis Sweet) about 20% of lipids by dry mass. Cotyledons from developing seeds were isolated and cultured in vitro for 96 h on Heller medium with 60 mM sucrose (+S) or without sucrose (–S). Each medium was additionally enriched with 35 mM asparagine or 35 mM NaNO3. Asparagine caused an increase in protein accumulation and simultaneously decreased the lipid content, but nitrate increased accumulation of both protein and lipid. Experiments with [1-14C]acetate and [2-14C]acetate showed that the decrease in lipid accumulation in developing lupine seeds resulted from exhaustion of lipid precursors rather than from degradation or modification of the enzymatic apparatus. The carbon atom from the C-1 position of acetate was liberated mainly as CO2, whereas the carbon atom from the C-2 position was preferentially used in anabolic pathways. The dominant phospholipid in the investigated lupine seed storage organs was phosphatidylcholine. The main fatty acid in yellow lupine cotyledons was linoleic acid, in white lupine it was oleic acid, and in Andean lupine it was both linoleic and oleic acids. The relationship between stimulation of lipid and protein accumulation by nitrate in developing lupine cotyledons and enhanced carbon flux through glycolysis caused by the inorganic nitrogen form is discussed. PMID:19635747

  7. An Early Nodulin-Like Protein Accumulates in the Sieve Element Plasma Membrane of Arabidopsis1[OA

    PubMed Central

    Khan, Junaid A.; Wang, Qi; Sjölund, Richard D.; Schulz, Alexander; Thompson, Gary A.

    2007-01-01

    Membrane proteins within the sieve element-companion cell complex have essential roles in the physiological functioning of the phloem. The monoclonal antibody line RS6, selected from hybridomas raised against sieve elements isolated from California shield leaf (Streptanthus tortuosus; Brassicaceae) tissue cultures, recognizes an antigen in the Arabidopsis (Arabidopsis thaliana) ecotype Columbia that is associated specifically with the plasma membrane of sieve elements, but not companion cells, and accumulates at the earliest stages of sieve element differentiation. The identity of the RS6 antigen was revealed by reverse transcription-PCR of Arabidopsis leaf RNA using degenerate primers to be an early nodulin (ENOD)-like protein that is encoded by the expressed gene At3g20570. Arabidopsis ENOD-like proteins are encoded by a multigene family composed of several types of structurally related phytocyanins that have a similar overall domain structure of an amino-terminal signal peptide, plastocyanin-like copper-binding domain, proline/serine-rich domain, and carboxy-terminal hydrophobic domain. The amino- and carboxy-terminal domains of the 21.5-kD sieve element-specific ENOD are posttranslationally cleaved from the precursor protein, resulting in a mature peptide of approximately 15 kD that is attached to the sieve element plasma membrane via a carboxy-terminal glycosylphosphatidylinositol membrane anchor. Many of the Arabidopsis ENOD-like proteins accumulate in gametophytic tissues, whereas in both floral and vegetative tissues, the sieve element-specific ENOD is expressed only within the phloem. Members of the ENOD subfamily of the cupredoxin superfamily do not appear to bind copper and have unknown functions. Phenotypic analysis of homozygous T-DNA insertion mutants for the gene At3g20570 shows minimal alteration in vegetative growth but a significant reduction in the overall reproductive potential. PMID:17293437

  8. Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants.

    PubMed

    Cai, Yingqi; McClinchie, Elizabeth; Price, Ann; Nguyen, Thuy N; Gidda, Satinder K; Watt, Samantha C; Yurchenko, Olga; Park, Sunjung; Sturtevant, Drew; Mullen, Robert T; Dyer, John M; Chapman, Kent D

    2017-07-01

    Fat storage-inducing transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)-localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. Here, we tested the function of FIT2 in plant cells by ectopically expressing mouse (Mus musculus) FIT2 in Nicotiana tabacum suspension-cultured cells, Nicotiana benthamiana leaves and Arabidopsis thaliana plants. Confocal microscopy indicated that the expression of FIT2 dramatically increased the number and size of LDs in leaves of N. benthamiana and Arabidopsis, and lipidomics analysis and mass spectrometry imaging confirmed the accumulation of neutral lipids in leaves. FIT2 also increased seed oil content by ~13% in some stable, overexpressing lines of Arabidopsis. When expressed transiently in leaves of N. benthamiana or suspension cells of N. tabacum, FIT2 localized specifically to the ER and was often concentrated at certain regions of the ER that resembled ER-LD junction sites. FIT2 also colocalized at the ER with other proteins known to be involved in triacylglycerol biosynthesis or LD formation in plants, but not with ER resident proteins involved in electron transfer or ER-vesicle exit sites. Collectively, these results demonstrate that mouse FIT2 promotes LD accumulation in plants, a surprising functional conservation in the context of a plant cell given the apparent lack of FIT2 homologues in higher plants. These results suggest also that FIT2 expression represents an effective synthetic biology strategy for elaborating neutral lipid compartments in plant tissues for potential biofuel or bioproduct purposes. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Proteomic profiling of maize opaque endosperm mutants reveals selective accumulation of lysine-enriched proteins

    PubMed Central

    Morton, Kyla J.; Jia, Shangang; Zhang, Chi; Holding, David R.

    2016-01-01

    Reduced prolamin (zein) accumulation and defective endoplasmic reticulum (ER) body formation occurs in maize opaque endosperm mutants opaque2 (o2), floury2 (fl2), defective endosperm*B30 (DeB30), and Mucronate (Mc), whereas other opaque mutants such as opaque1 (o1) and floury1 (fl1) are normal in these regards. This suggests that other factors contribute to kernel texture. A liquid chromatography approach coupled with tandem mass spectrometry (LC-MS/MS) proteomics was used to compare non-zein proteins of nearly isogenic opaque endosperm mutants. In total, 2762 proteins were identified that were enriched for biological processes such as protein transport and folding, amino acid biosynthesis, and proteolysis. Principal component analysis and pathway enrichment suggested that the mutants partitioned into three groups: (i) Mc, DeB30, fl2 and o2; (ii) o1; and (iii) fl1. Indicator species analysis revealed mutant-specific proteins, and highlighted ER secretory pathway components that were enriched in selected groups of mutants. The most significantly changed proteins were related to stress or defense and zein partitioning into the soluble fraction for Mc, DeB30, o1, and fl1 specifically. In silico dissection of the most significantly changed proteins revealed novel qualitative changes in lysine abundance contributing to the overall lysine increase and the nutritional rebalancing of the o2 and fl2 endosperm. PMID:26712829

  10. Atorvastatin reduces lipid accumulation in the liver by activating protein kinase A-mediated phosphorylation of perilipin 5.

    PubMed

    Gao, Xing; Nan, Yang; Zhao, Yuanlin; Yuan, Yuan; Ren, Bincheng; Sun, Chao; Cao, Kaiyu; Yu, Ming; Feng, Xuyang; Ye, Jing

    2017-12-01

    Statins have been proven to be effective in treating non-alcoholic fatty liver disease (NAFLD). Recently, it was reported that statins decreased the hepatic expression of perilipin 5 (Plin5), a lipid droplet (LD)-associated protein, which plays critical roles in regulating lipid accumulation and lipolysis in liver. However, the function and regulation mechanism of Plin5 have not yet been well-established in NAFLD treatment with statins. In this study, we observed that atorvastatin moderately reduced the expression of Plin5 in livers without changing the protein level of Plin5 in the hepatic LD fraction of mice fed with high-fat diet (HFD). Intriguingly, atorvastatin stimulated the PKA-mediated phosphorylation of Plin5 and reduced the triglyceride (TG) accumulation in hepatocytes with overexpression of wide type (Plin5-WT) compared to serine-155 mutant Plin5 (Plin5-S155A). Moreover, PKA-stimulated FA release of purified LDs carrying Plin5-WT but not Plin5-S155A. Glucagon, a PKA activator, stimulated the phosphorylation of Plin5-WT and inhibited its interaction with CGI-58. The results indicated that atorvastatin promoted lipolysis and reduced TG accumulation in the liver by increasing PKA-mediated phosphorylation of Plin5. This new mechanism of lipid-lowering effects of atorvastatin might provide a new strategy for NAFLD treatment. Copyright © 2017. Published by Elsevier B.V.

  11. Ammonium accumulation in commercially available embryo culture media and protein supplements during storage at 2-8°C and during incubation at 37°C.

    PubMed

    Kleijkers, Sander H M; van Montfoort, Aafke P A; Bekers, Otto; Coonen, Edith; Derhaag, Josien G; Evers, Johannes L H; Dumoulin, John C M

    2016-06-01

    Does ammonium accumulate in commercially available culture media and protein supplements used for in vitro development of human pre-implantation embryos during storage and incubation? Ammonium accumulates in ready-to-use in vitro fertilization (IVF) culture media during storage at 2-8°C and in ready-to-use IVF culture media and protein supplements during incubation at 37°C. Both animal and human studies have shown that the presence of ammonium in culture medium has detrimental effects on embryonic development and pregnancy rate. It is, therefore, important to assess the amount of ammonium accumulation in ready-to-use IVF culture media under conditions that are common in daily practice. Ammonium accumulation was investigated in 15 ready-to-use media, 11 protein-free media and 8 protein supplements. Ammonium was measured by the use of an enzymatic method with glutamate dehydrogenase. To simulate the storage and incubation conditions during IVF treatments, ammonium concentrations were measured at different time-points during storage at 2-8°C for 6 weeks and during incubation at 37°C for 4 days. All ready-to-use, i.e. protein supplemented, culture media showed ammonium accumulation during storage for 6 weeks (ranging from 9.2 to 99.8 µM) and during incubation for 4 days (ranging from 8.4 to 138.6 µM), resulting in levels that might affect embryo development. The protein supplements also showed ammonium accumulation, while the culture media without protein supplementation did not. The main sources of ammonium buildup in ready-to-use culture media were unstable glutamine and the protein supplements. No additional ammonium buildup was found during incubation when using an oil overlay or with the presence of an embryo in the culture droplet. In addition to the unstable glutamine and the protein supplements, other free amino acids might contribute to the ammonium buildup. We did not investigate the deterioration of other components in the media. Break-down of

  12. Partial Tmem106b reduction does not correct abnormalities due to progranulin haploinsufficiency.

    PubMed

    Arrant, Andrew E; Nicholson, Alexandra M; Zhou, Xiaolai; Rademakers, Rosa; Roberson, Erik D

    2018-06-22

    Loss of function mutations in progranulin (GRN) are a major cause of frontotemporal dementia (FTD). Progranulin is a secreted glycoprotein that localizes to lysosomes and is critical for proper lysosomal function. Heterozygous GRN mutation carriers develop FTD with TDP-43 pathology and exhibit signs of lysosomal dysfunction in the brain, with increased levels of lysosomal proteins and lipofuscin accumulation. Homozygous GRN mutation carriers develop neuronal ceroid lipofuscinosis (NCL), an earlier-onset lysosomal storage disorder caused by severe lysosomal dysfunction. Multiple genome-wide association studies have shown that risk of FTD in GRN mutation carriers is modified by polymorphisms in TMEM106B, which encodes a lysosomal membrane protein. Risk alleles of TMEM106B may increase TMEM106B levels through a variety of mechanisms. Brains from FTD patients with GRN mutations exhibit increased TMEM106B expression, and protective TMEM106B polymorphisms are associated with decreased TMEM106B expression. Together, these data raise the possibility that reduction of TMEM106B levels may protect against the pathogenic effects of progranulin haploinsufficiency. We crossed Tmem106b +/- mice with Grn +/- mice, which model the progranulin haploinsufficiency of GRN mutation carriers and develop age-dependent social deficits and lysosomal abnormalities in the brain. We tested whether partial Tmem106b reduction could normalize the social deficits and lysosomal abnormalities of Grn +/- mice. Partial reduction of Tmem106b levels did not correct the social deficits of Grn +/- mice. Tmem106b reduction also failed to normalize most lysosomal abnormalities of Grn +/- mice, except for β-glucuronidase activity, which was suppressed by Tmem106b reduction and increased by progranulin insufficiency. These data do not support the hypothesis that Tmem106b reduction protects against the pathogenic effects of progranulin haploinsufficiency, but do show that Tmem106b reduction normalizes some

  13. Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to long-term heavy metal-contaminated estuary.

    PubMed

    Luo, Lianzhong; Ke, Caihuan; Guo, Xiaoyu; Shi, Bo; Huang, Miaoqin

    2014-06-01

    Bio-accumulation and bio-transmission of toxic metals and the toxicological responses of organisms exposed to toxic metals have been focused, due to heavy metal contaminations have critically threatened the ecosystem and food security. However, still few investigations focused on the responses of certain organisms exposed to the long term and severe heavy metal contamination in specific environments. In present investigation, the Hong Kong oyster, Crassostrea hongkongensis were obtained from 3 sites which were contaminated by different concentrations of heavy metals (such as zinc, copper, manganese and lead etc.), respectively. Heavy metal concentrations in the sea water samples collected from the 3 sites and the dissected tissues of the oysters with blue visceral mass were determinated to estimate the metal contamination levels in environments and the bio-accumulation ratios of the heavy metals in the different tissues of oysters. Moreover, Proteomic methods were employed to analyze the differentially expressed proteins in the gills of oysters exposed to long-term heavy metal contaminations. Results indicated that the Jiulong River estuary has been severely contaminated by Cu, Zn and slightly with Cr, Ni, Mn, etc, moreover, Zn and Cu were the major metals accumulated by oysters to phenomenally high concentrations (more than 3.0% of Zn and about 2.0% of Cu against what the dry weight of tissues were accumulated), and Cr, Ni, Mn, etc were also significantly accumulated. The differentially expressed proteins in the gills of oysters exposed to heavy metals participate in several cell processes, such as metal binding, transporting and saving, oxidative-reduction balance maintaining, stress response, signal transduction, etc. Significantly up-regulated expression (about 10 folds) of an important metal binding protein, metallothionein (MT) and granular cells was observed in the gills of oysters exposed to long-term and severely heavy-metal-contaminated estuary, it

  14. Abnormal nuclear morphology is independent of longevity in a zmpste24-deficient fish model of Hutchinson-Gilford progeria syndrome (HGPS).

    PubMed

    Tonoyama, Yasuhiro; Shinya, Minori; Toyoda, Atsushi; Kitano, Takeshi; Oga, Atsunori; Nishimaki, Toshiyuki; Katsumura, Takafumi; Oota, Hiroki; Wan, Miles T; Yip, Bill W P; Helen, Mok O L; Chisada, Shinichi; Deguchi, Tomonori; Au, Doris W T; Naruse, Kiyoshi; Kamei, Yasuhiro; Taniguchi, Yoshihito

    2018-07-01

    Lamin is an intermediate protein underlying the nuclear envelope and it plays a key role in maintaining the integrity of the nucleus. A defect in the processing of its precursor by a metalloprotease, ZMPSTE24, results in the accumulation of farnesylated prelamin in the nucleus and causes various diseases, including Hutchinson-Gilford progeria syndrome (HGPS). However, the role of lamin processing is unclear in fish species. Here, we generated zmpste24-deficient medaka and evaluated their phenotype. Unlike humans and mice, homozygous mutants did not show growth defects or lifespan shortening, despite lamin precursor accumulation. Gonadosomatic indices, blood glucose levels, and regenerative capacity of fins were similar in 1-year-old mutants and their wild-type (WT) siblings. Histological examination showed that the muscles, subcutaneous fat tissues, and gonads were normal in the mutants at the age of 1 year. However, the mutants showed hypersensitivity to X-ray irradiation, although p53target genes, p21 and mdm2, were induced 6 h after irradiation. Immunostaining of primary cultured cells from caudal fins and visualization of nuclei using H2B-GFP fusion proteins revealed an abnormal nuclear shape in the mutants both in vitro and in vivo. The telomere lengths were significantly shorter in the mutants compared to WT. Taken together, these results suggest that zmpste24-deficient medaka phenocopied HGPS only partially and that abnormal nuclear morphology and lifespan shortening are two independent events in vertebrates. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Protein degradation pathways in Parkinson's disease: curse or blessing.

    PubMed

    Ebrahimi-Fakhari, Darius; Wahlster, Lara; McLean, Pamela J

    2012-08-01

    Protein misfolding, aggregation and deposition are common disease mechanisms in many neurodegenerative diseases including Parkinson's disease (PD). Accumulation of damaged or abnormally modified proteins may lead to perturbed cellular function and eventually to cell death. Thus, neurons rely on elaborated pathways of protein quality control and removal to maintain intracellular protein homeostasis. Molecular chaperones, the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) are critical pathways that mediate the refolding or removal of abnormal proteins. The successive failure of these protein degradation pathways, as a cause or consequence of early pathological alterations in vulnerable neurons at risk, may present a key step in the pathological cascade that leads to spreading neurodegeneration. A growing number of studies in disease models and patients have implicated dysfunction of the UPS and ALP in the pathogenesis of Parkinson's disease and related disorders. Deciphering the exact mechanism by which the different proteolytic systems contribute to the elimination of pathogenic proteins, like α-synuclein, is therefore of paramount importance. We herein review the role of protein degradation pathways in Parkinson's disease and elaborate on the different contributions of the UPS and the ALP to the clearance of altered proteins. We examine the interplay between different degradation pathways and provide a model for the role of the UPS and ALP in the evolution and progression of α-synuclein pathology. With regards to exciting recent studies we also discuss the putative potential of using protein degradation pathways as novel therapeutic targets in Parkinson's disease.

  16. Expression of EGFP and NPTII protein is not associated with organ abnormalities in deceased transgenic cloned cattle.

    PubMed

    Liu, Yan; Wu, Qian; Cui, Huiting; Li, Qinghe; Zhao, Yiqiang; Luo, Juan; Liu, Qiuyue; Sun, Xiuzhu; Tang, Bo; Zhang, Lei; Dai, Yunping; Li, Ning

    2008-12-01

    Both enhanced green fluorescence protein (EGFP) and neomycin phosphotransferase type II enzyme (NPTII) are widely used in transgenic studies, but their side effects have not been extensively investigated. In this study, we evaluated the expression profiles of the two marker genes and the relationship between their expression and organ abnormalities. Eight transgenic cloned cattle were studied, four harboring both EGFP and NPTII, and four harboring only the NPTII gene. Four age-matched cloned cattle were used as controls. EGFP and NPTII expression were measured and detected by Q-PCR, Western blot, ELISA, and RIA in heart, liver, and lungs, and the values ranged from 0.3 to 5 microg/g. The expression profiles exhibited differential or mosaic pattern between the organs, the pathologic symptoms of which were identified, but were similar to those of age-matched cloned cattle. All data indicated that the expression of EGFP and NPTII is not associated with organ abnormalities in transgenic cloned cattle.

  17. The Bean Pod Mottle Virus RNA2-Encoded 58-Kilodalton Protein P58 Is Required in cis for RNA2 Accumulation

    PubMed Central

    Lin, Junyan; Guo, Jiangbo; Finer, John; Dorrance, Anne E.; Redinbaugh, Margaret G.

    2014-01-01

    ABSTRACT Bean pod mottle virus (BPMV) is a bipartite, positive-sense (+) RNA plant virus in the Secoviridae family. Its RNA1 encodes proteins required for genome replication, whereas RNA2 primarily encodes proteins needed for virion assembly and cell-to-cell movement. However, the function of a 58-kDa protein (P58) encoded by RNA2 has not been resolved. P58 and the movement protein (MP) of BPMV are two largely identical proteins differing only at their N termini, with P58 extending MP upstream by 102 amino acid residues. In this report, we unveil a unique role for P58. We show that BPMV RNA2 accumulation in infected cells was abolished when the start codon of P58 was eliminated. The role of P58 does not require the region shared by MP, as RNA2 accumulation in individual cells remained robust even when most of the MP coding sequence was removed. Importantly, the function of P58 required the P58 protein, rather than its coding RNA, as compensatory mutants could be isolated that restored RNA2 accumulation by acquiring new start codons upstream of the original one. Most strikingly, loss of P58 function could not be complemented by P58 provided in trans, suggesting that P58 functions in cis to selectively promote the accumulation of RNA2 copies that encode a functional P58 protein. Finally, we found that all RNA1-encoded proteins are cis-acting relative to RNA1. Together, our results suggest that P58 probably functions by recruiting the RNA1-encoded polyprotein to RNA2 to enable RNA2 reproduction. IMPORTANCE Bean pod mottle virus (BPMV) is one of the most important pathogens of the crop plant soybean, yet its replication mechanism is not well understood, hindering the development of knowledge-based control measures. The current study examined the replication strategy of BPMV RNA2, one of the two genomic RNA segments of this virus, and established an essential role for P58, one of the RNA2-encoded proteins, in the process of RNA2 replication. Our study demonstrates for

  18. Amyloid and intracellular accumulation of BRI2.

    PubMed

    Garringer, Holly J; Sammeta, Neeraja; Oblak, Adrian; Ghetti, Bernardino; Vidal, Ruben

    2017-04-01

    Familial British dementia (FBD) and familial Danish dementia (FDD) are caused by mutations in the BRI 2 gene. These diseases are characterized clinically by progressive dementia and ataxia and neuropathologically by amyloid deposits and neurofibrillary tangles. Herein, we investigate BRI 2 protein accumulation in FBD, FDD, Alzheimer disease and Gerstmann-Sträussler-Scheinker disease. In FBD and FDD, we observed reduced processing of the mutant BRI 2 pro-protein, which was found accumulating intracellularly in the Golgi of neurons and glial cells. In addition, we observed an accumulation of a mature form of BRI 2 protein in dystrophic neurites, surrounding amyloid cores. Accumulation of BRI 2 was also observed in dystrophic neurites of Alzheimer disease and Gerstmann-Sträussler-Scheinker disease cases. Although it remains to be determined whether intracellular accumulation of BRI 2 may lead to cell damage in these degenerative diseases, our study provides new insights into the role of mutant BRI 2 in the pathogenesis of FBD and FDD and implicates BRI 2 as a potential indicator of neuritic damage in diseases characterized by cerebral amyloid deposition. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Amyloid and intracellular accumulation of BRI2

    PubMed Central

    Garringer, Holly J.; Sammeta, Neeraja; Oblak, Adrian; Ghetti, Bernardino; Vidal, Ruben

    2016-01-01

    Familial British dementia (FBD) and familial Danish dementia (FDD) are caused by mutations in the BRI2 gene. These diseases are characterized clinically by progressive dementia and ataxia and neuropathologically by amyloid deposits and neurofibrillary tangles. Herein, we investigate BRI2 protein accumulation in FBD, FDD, Alzheimer disease and Gerstmann-Sträussler-Scheinker disease. In FBD and FDD, we observed reduced processing of the mutant BRI2 pro-protein, which was found accumulating intracellularly in the Golgi of neurons and glial cells. In addition, we observed an accumulation of a mature form of BRI2 protein in dystrophic neurites, surrounding amyloid cores. Accumulation of BRI2 was also observed in dystrophic neurites of Alzheimer disease and Gerstmann-Sträussler-Scheinker disease cases. Although it remains to be determined whether intracellular accumulation of BRI2 may lead to cell damage in these degenerative diseases, our study provides new insights into the role of mutant BRI2 in the pathogenesis of FBD and FDD and implicates BRI2 as a potential indicator of neuritic damage in diseases characterized by cerebral amyloid deposition. PMID:28131015

  20. Renal accumulation of pentosidine in non-diabetic proteinuria-induced renal damage in rats.

    PubMed

    Waanders, Femke; Greven, Wendela L; Baynes, John W; Thorpe, Suzanne R; Kramer, Andrea B; Nagai, Ryoji; Sakata, Noriyuki; van Goor, Harry; Navis, Gerjan

    2005-10-01

    accumulation, supporting a relationship between abnormal renal protein trafficking, proteinuria-induced tubular damage and tubular pentosidine accumulation. Future studies, applying specific AGE inhibitors, should be conducted to provide insight into the pathophysiological significance of renal AGEs in non-diabetic renal disease.

  1. Eyeblink Conditioning Deficits Indicate Timing and Cerebellar Abnormalities in Schizophrenia

    ERIC Educational Resources Information Center

    Brown, S.M.; Kieffaber, P.D.; Carroll, C.A.; Vohs, J.L.; Tracy, J.A.; Shekhar, A.; O'Donnell, B.F.; Steinmetz, J.E.; Hetrick, W.P.

    2005-01-01

    Accumulating evidence indicates that individuals with schizophrenia manifest abnormalities in structures (cerebellum and basal ganglia) and neurotransmitter systems (dopamine) linked to internal-timing processes. A single-cue tone delay eyeblink conditioning paradigm comprised of 100 learning and 50 extinction trials was used to examine cerebellar…

  2. Elucidation of metal-ion accumulation induced by hydrogen bonds on protein surfaces by using porous lysozyme crystals containing Rh(III) ions as the model surfaces.

    PubMed

    Ueno, Takafumi; Abe, Satoshi; Koshiyama, Tomomi; Ohki, Takahiro; Hikage, Tatsuo; Watanabe, Yoshihito

    2010-03-01

    Metal-ion accumulation on protein surfaces is a crucial step in the initiation of small-metal clusters and the formation of inorganic materials in nature. This event is expected to control the nucleation, growth, and position of the materials. There remain many unknowns, as to how proteins affect the initial process at the atomic level, although multistep assembly processes of the materials formation by both native and model systems have been clarified at the macroscopic level. Herein the cooperative effects of amino acids and hydrogen bonds promoting metal accumulation reactions are clarified by using porous hen egg white lysozyme (HEWL) crystals containing Rh(III) ions, as model protein surfaces for the reactions. The experimental results reveal noteworthy implications for initiation of metal accumulation, which involve highly cooperative dynamics of amino acids and hydrogen bonds: i) Disruption of hydrogen bonds can induce conformational changes of amino-acid residues to capture Rh(III) ions. ii) Water molecules pre-organized by hydrogen bonds can stabilize Rh(III) coordination as aqua ligands. iii) Water molecules participating in hydrogen bonds with amino-acid residues can be replaced by Rh(III) ions to form polynuclear structures with the residues. iv) Rh(III) aqua complexes are retained on amino-acid residues through stabilizing hydrogen bonds even at low pH (approximately 2). These metal-protein interactions including hydrogen bonds may promote native metal accumulation reactions and also may be useful in the preparation of new inorganic materials that incorporate proteins.

  3. Two copies of mthmg1, encoding a novel mitochondrial HMG-like protein, delay accumulation of mitochondrial DNA deletions in Podospora anserina.

    PubMed

    Dequard-Chablat, Michelle; Allandt, Cynthia

    2002-08-01

    In the filamentous fungus Podospora anserina, two degenerative processes which result in growth arrest are associated with mitochondrial genome (mitochondrial DNA [mtDNA]) instability. Senescence is correlated with mtDNA rearrangements and amplification of specific regions (senDNAs). Premature death syndrome is characterized by the accumulation of specific mtDNA deletions. This accumulation is due to indirect effects of the AS1-4 mutation, which alters a cytosolic ribosomal protein gene. The mthmg1 gene has been identified as a double-copy suppressor of premature death. It greatly delays premature death and the accumulation of deletions when it is present in two copies in an ASI-4 context. The duplication of mthmg1 has no significant effect on the wild-type life span or on senDNA patterns. In anAS1+ context, deletion of the mthmg1 gene alters germination, growth, and fertility and reduces the life span. The deltamthmg1 senescent strains display a particular senDNA pattern. This deletion is lethal in an AS1-4 context. According to its physical properties (very basic protein with putative mitochondrial targeting sequence and HMG-type DNA-binding domains) and the cellular localization of an mtHMG1-green fluorescent protein fusion, mtHMG1 appears to be a mitochondrial protein possibly associated with mtDNA. It is noteworthy that it is the first example of a protein combining the two DNA-binding domains, AT-hook motif and HMG-1 boxes. It may be involved in the stability and/or transmission of the mitochondrial genome. To date, no structural homologues have been found in other organisms. However, mtHMG1 displays functional similarities with the Saccharomyces cerevisiae mitochondrial HMG-box protein Abf2.

  4. The D1 and D2 proteins of dinoflagellates: unusually accumulated mutations which influence on PSII photoreaction.

    PubMed

    Iida, Satoko; Kobiyama, Atsushi; Ogata, Takehiko; Murakami, Akio

    2008-01-01

    Plastid encoded genes of the dinoflagellates are rapidly evolving and most divergent. The importance of unusually accumulated mutations on structure of PSII core protein and photosynthetic function was examined in the dinoflagellates, Symbiodinium sp. and Alexandrium tamarense. Full-length cDNA sequences of psbA (D1 protein) and psbD (D2 protein) were obtained and compared with the other oxygen-evolving photoautotrophs. Twenty-three amino acid positions (7%) for the D1 protein and 34 positions (10%) for the D2 were mutated in the dinoflagellates, although amino acid residues at these positions were conserved in cyanobacteria, the other algae, and plant. Many mutations were likely to distribute in the N-terminus and the D-E interhelical loop of the D1 protein and helix B of D2 protein, while the remaining regions were well conserved. The different structural properties in these mutated regions were supported by hydropathy profiles. The chlorophyll fluorescence kinetics of the dinoflagellates was compared with Synechocystis sp. PCC6803 in relation to the altered protein structure.

  5. Deletion of the Vaccinia Virus I2 Protein Interrupts Virion Morphogenesis, Leading to Retention of the Scaffold Protein and Mislocalization of Membrane-Associated Entry Proteins.

    PubMed

    Hyun, Seong-In; Weisberg, Andrea; Moss, Bernard

    2017-08-01

    The I2L open reading frame of vaccinia virus (VACV) encodes a conserved 72-amino-acid protein with a putative C-terminal transmembrane domain. Previous studies with a tetracycline-inducible mutant demonstrated that I2-deficient virions are defective in cell entry. The purpose of the present study was to determine the step of replication or entry that is affected by loss of the I2 protein. Fluorescence microscopy experiments showed that I2 colocalized with a major membrane protein of immature and mature virions. We generated a cell line that constitutively expressed I2 and allowed construction of the VACV I2L deletion mutant vΔI2. As anticipated, vΔI2 was unable to replicate in cells that did not express I2. Unexpectedly, morphogenesis was interrupted at a stage after immature virion formation, resulting in the accumulation of dense spherical particles instead of brick-shaped mature virions with well-defined core structures. The abnormal particles retained the D13 scaffold protein of immature virions, were severely deficient in the transmembrane proteins that comprise the entry fusion complex (EFC), and had increased amounts of unprocessed membrane and core proteins. Total lysates of cells infected with vΔI2 also had diminished EFC proteins due to instability attributed to their hydrophobicity and failure to be inserted into viral membranes. A similar instability of EFC proteins had previously been found with unrelated mutants blocked earlier in morphogenesis that also accumulated viral membranes retaining the D13 scaffold. We concluded that I2 is required for virion morphogenesis, release of the D13 scaffold, and the association of EFC proteins with viral membranes. IMPORTANCE Poxviruses comprise a large family that infect vertebrates and invertebrates, cause disease in both in humans and in wild and domesticated animals, and are being engineered as vectors for vaccines and cancer therapy. In addition, investigations of poxviruses have provided insights into

  6. Deletion of the Vaccinia Virus I2 Protein Interrupts Virion Morphogenesis, Leading to Retention of the Scaffold Protein and Mislocalization of Membrane-Associated Entry Proteins

    PubMed Central

    Hyun, Seong-In; Weisberg, Andrea

    2017-01-01

    ABSTRACT The I2L open reading frame of vaccinia virus (VACV) encodes a conserved 72-amino-acid protein with a putative C-terminal transmembrane domain. Previous studies with a tetracycline-inducible mutant demonstrated that I2-deficient virions are defective in cell entry. The purpose of the present study was to determine the step of replication or entry that is affected by loss of the I2 protein. Fluorescence microscopy experiments showed that I2 colocalized with a major membrane protein of immature and mature virions. We generated a cell line that constitutively expressed I2 and allowed construction of the VACV I2L deletion mutant vΔI2. As anticipated, vΔI2 was unable to replicate in cells that did not express I2. Unexpectedly, morphogenesis was interrupted at a stage after immature virion formation, resulting in the accumulation of dense spherical particles instead of brick-shaped mature virions with well-defined core structures. The abnormal particles retained the D13 scaffold protein of immature virions, were severely deficient in the transmembrane proteins that comprise the entry fusion complex (EFC), and had increased amounts of unprocessed membrane and core proteins. Total lysates of cells infected with vΔI2 also had diminished EFC proteins due to instability attributed to their hydrophobicity and failure to be inserted into viral membranes. A similar instability of EFC proteins had previously been found with unrelated mutants blocked earlier in morphogenesis that also accumulated viral membranes retaining the D13 scaffold. We concluded that I2 is required for virion morphogenesis, release of the D13 scaffold, and the association of EFC proteins with viral membranes. IMPORTANCE Poxviruses comprise a large family that infect vertebrates and invertebrates, cause disease in both in humans and in wild and domesticated animals, and are being engineered as vectors for vaccines and cancer therapy. In addition, investigations of poxviruses have provided insights

  7. Proteomic Characterization of Differential Abundant Proteins Accumulated between Lower and Upper Epidermises of Fleshy Scales in Onion (Allium cepa L.) Bulbs

    PubMed Central

    Wu, Xiaolin

    2016-01-01

    The onion (Allium cepa L.) is widely planted worldwide as a valuable vegetable crop. The scales of an onion bulb are a modified type of leaf. The one-layer-cell epidermis of onion scales is commonly used as a model experimental material in botany and molecular biology. The lower epidermis (LE) and upper epidermis (UE) of onion scales display obvious differences in microscopic structure, cell differentiation and pigment synthesis; however, associated proteomic differences are unclear. LE and UE can be easily sampled as single-layer-cell tissues for comparative proteomic analysis. In this study, a proteomic approach based on 2-DE and mass spectrometry (MS) was applied to compare LE and UE of fleshy scales from yellow and red onions. We identified 47 differential abundant protein spots (representing 31 unique proteins) between LE and UE in red and yellow onions. These proteins are mainly involved in pigment synthesis, stress response, and cell division. Particularly, the differentially accumulated chalcone-flavanone isomerase and flavone O-methyltransferase 1-like in LE may result in the differences in the onion scale color between red and yellow onions. Moreover, stress-related proteins abundantly accumulated in both LE and UE. In addition, the differential accumulation of UDP-arabinopyranose mutase 1-like protein and β-1,3-glucanase in the LE may be related to the different cell sizes between LE and UE of the two types of onion. The data derived from this study provides new insight into the differences in differentiation and developmental processes between onion epidermises. This study may also make a contribution to onion breeding, such as improving resistances and changing colors. PMID:28036352

  8. Proteomic Characterization of Differential Abundant Proteins Accumulated between Lower and Upper Epidermises of Fleshy Scales in Onion (Allium cepa L.) Bulbs.

    PubMed

    Wu, Si; Ning, Fen; Wu, Xiaolin; Wang, Wei

    2016-01-01

    The onion (Allium cepa L.) is widely planted worldwide as a valuable vegetable crop. The scales of an onion bulb are a modified type of leaf. The one-layer-cell epidermis of onion scales is commonly used as a model experimental material in botany and molecular biology. The lower epidermis (LE) and upper epidermis (UE) of onion scales display obvious differences in microscopic structure, cell differentiation and pigment synthesis; however, associated proteomic differences are unclear. LE and UE can be easily sampled as single-layer-cell tissues for comparative proteomic analysis. In this study, a proteomic approach based on 2-DE and mass spectrometry (MS) was applied to compare LE and UE of fleshy scales from yellow and red onions. We identified 47 differential abundant protein spots (representing 31 unique proteins) between LE and UE in red and yellow onions. These proteins are mainly involved in pigment synthesis, stress response, and cell division. Particularly, the differentially accumulated chalcone-flavanone isomerase and flavone O-methyltransferase 1-like in LE may result in the differences in the onion scale color between red and yellow onions. Moreover, stress-related proteins abundantly accumulated in both LE and UE. In addition, the differential accumulation of UDP-arabinopyranose mutase 1-like protein and β-1,3-glucanase in the LE may be related to the different cell sizes between LE and UE of the two types of onion. The data derived from this study provides new insight into the differences in differentiation and developmental processes between onion epidermises. This study may also make a contribution to onion breeding, such as improving resistances and changing colors.

  9. Lysosomal abnormalities in hereditary spastic paraplegia types SPG15 and SPG11

    PubMed Central

    Renvoisé, Benoît; Chang, Jaerak; Singh, Rajat; Yonekawa, Sayuri; FitzGibbon, Edmond J; Mankodi, Ami; Vanderver, Adeline; Schindler, Alice B; Toro, Camilo; Gahl, William A; Mahuran, Don J; Blackstone, Craig; Pierson, Tyler Mark

    2014-01-01

    Objective Hereditary spastic paraplegias (HSPs) are among the most genetically diverse inherited neurological disorders, with over 70 disease loci identified (SPG1-71) to date. SPG15 and SPG11 are clinically similar, autosomal recessive disorders characterized by progressive spastic paraplegia along with thin corpus callosum, white matter abnormalities, cognitive impairment, and ophthalmologic abnormalities. Furthermore, both have been linked to early-onset parkinsonism. Methods We describe two new cases of SPG15 and investigate cellular changes in SPG15 and SPG11 patient-derived fibroblasts, seeking to identify shared pathogenic themes. Cells were evaluated for any abnormalities in cell division, DNA repair, endoplasmic reticulum, endosomes, and lysosomes. Results Fibroblasts prepared from patients with SPG15 have selective enlargement of LAMP1-positive structures, and they consistently exhibited abnormal lysosomal storage by electron microscopy. A similar enlargement of LAMP1-positive structures was also observed in cells from multiple SPG11 patients, though prominent abnormal lysosomal storage was not evident. The stabilities of the SPG15 protein spastizin/ZFYVE26 and the SPG11 protein spatacsin were interdependent. Interpretation Emerging studies implicating these two proteins in interactions with the late endosomal/lysosomal adaptor protein complex AP-5 are consistent with shared abnormalities in lysosomes, supporting a converging mechanism for these two disorders. Recent work with Zfyve26−/− mice revealed a similar phenotype to human SPG15, and cells in these mice had endolysosomal abnormalities. SPG15 and SPG11 are particularly notable among HSPs because they can also present with juvenile parkinsonism, and this lysosomal trafficking or storage defect may be relevant for other forms of parkinsonism associated with lysosomal dysfunction. PMID:24999486

  10. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Jun; Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, TX

    2010-02-26

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4)more » which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.« less

  11. Endoplasmic Reticulum Stress Response and Mutant Protein Degradation in CHO Cells Accumulating Antithrombin (C95R) in Russell Bodies.

    PubMed

    Kimura, Koji; Inoue, Kengo; Okubo, Jun; Ueda, Yumiko; Kawaguchi, Kosuke; Sakurai, Hiroaki; Wada, Ikuo; Morita, Masashi; Imanaka, Tsuneo

    2015-01-01

    Newly synthesized secretory proteins are folded and assembled in the endoplasmic reticulum (ER), where an efficient protein quality control system performs a critically important function. When unfolded or aggregated proteins accumulate in the ER, certain signaling pathways such as the unfolded protein response (UPR) and ER-overload response (EOR) are functionally active in maintaining cell homeostasis. Recently we prepared Chinese hamster ovary (CHO) cells expressing mutant antithrombin (AT)(C95R) under control of the Tet-On system and showed that AT(C95R) accumulated in Russell bodies (RB), large distinctive structures derived from the ER. To characterize whether ER stress takes place in CHO cells, we examined characteristic UPR and EOR in ER stress responses. We found that the induction of ER chaperones such as Grp97, Grp78 and protein disulfide isomerase (PDI) was limited to a maximum of approximately two-fold. The processing of X-box-binding protein-1 (XBP1) mRNA and the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) subunit were not induced. Furthermore, the activation of nuclear factor-kappa B (NF-κB) was not observed. In contrast, CHO cells displayed UPR and EOR when the cells were treated with thapsigargin and tumor necrosis factor (TNF)-α, respectively. In addition, a portion of the mutant AT(C95R) was degraded through proteasomes and autophagy. CHO cells do respond to ER stress but the folding state of mutant AT(C95R) does not appear to activate the ER stress signal pathway.

  12. Neurofilament protein levels: quantitative analysis in essential tremor cerebellar cortex.

    PubMed

    Louis, Elan D; Ma, Karen; Babij, Rachel; Cortés, Etty; Liem, Ronald K; Vonsattel, Jean-Paul G; Faust, Phyllis L

    2012-06-14

    Essential tremor (ET) is among the most prevalent neurological diseases. A substantial increase in the number of Purkinje cell axonal swellings (torpedoes) has been identified in ET brains. We recently demonstrated that torpedoes in ET contain an over-accumulation of disorganized neurofilament (NF) proteins. This now raises the question whether NF protein composition and/or phosphorylation state in cerebellar tissue might differ between ET cases and controls. We used a Western blot analysis to compare the levels and phosphorylation state of NF proteins and α-internexin in cerebellar tissue from 47 ET cases versus 26 controls (2:1 ratio). Cases and controls did not differ with respect to the cerebellar levels of NF-light (NF-L), NF-medium (NF-M), NF-heavy (NF-H), or α-internexin. However, SMI-31 levels (i.e., phosphorylated NF-H) and SMI-32 levels (i.e., non-phosphorylated NF-H) were significantly higher in ET cases than controls (1.28±0.47 vs. 1.06±0.32, p=0.02; and 1.38±0.75 vs. 1.00±0.42, p=0.006). Whether the abnormal phosphorylation state that we observed is a cause of defective axonal transport and/or function of NFs in ET is not known. NF abnormalities have been demonstrated in several neurodegenerative diseases. Regardless of whether these protein aggregates are the cause or consequence of these diseases, NF abnormalities have been shown to be an important factor in the cellular disruption observed in several neurodegenerative diseases. Therefore, further analyses of these NF abnormalities and their mechanisms are important to enhance our understanding of disease pathogenesis in ET. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Centrobin-mediated Regulation of the Centrosomal Protein 4.1-associated Protein (CPAP) Level Limits Centriole Length during Elongation Stage*

    PubMed Central

    Gudi, Radhika; Haycraft, Courtney J.; Bell, P. Darwin; Li, Zihai; Vasu, Chenthamarakshan

    2015-01-01

    Microtubule-based centrioles in the centrosome mediate accurate bipolar cell division, spindle orientation, and primary cilia formation. Cellular checkpoints ensure that the centrioles duplicate only once in every cell cycle and achieve precise dimensions, dysregulation of which results in genetic instability and neuro- and ciliopathies. The normal cellular level of centrosomal protein 4.1-associated protein (CPAP), achieved by its degradation at mitosis, is considered as one of the major mechanisms that limits centriole growth at a predetermined length. Here we show that CPAP levels and centriole elongation are regulated by centrobin. Exogenous expression of centrobin causes abnormal elongation of centrioles due to massive accumulation of CPAP in the cell. Conversely, CPAP was undetectable in centrobin-depleted cells, suggesting that it undergoes degradation in the absence of centrobin. Only the reintroduction of full-length centrobin, but not its mutant form that lacks the CPAP binding site, could restore cellular CPAP levels in centrobin-depleted cells, indicating that persistence of CPAP requires its interaction with centrobin. Interestingly, inhibition of the proteasome in centrobin-depleted cells restored the cellular and centriolar CPAP expression, suggesting its ubiquitination and proteasome-mediated degradation when centrobin is absent. Intriguingly, however, centrobin-overexpressing cells also showed proteasome-independent accumulation of ubiquitinated CPAP and abnormal, ubiquitin-positive, elongated centrioles. Overall, our results show that centrobin interacts with ubiquitinated CPAP and prevents its degradation for normal centriole elongation function. Therefore, it appears that loss of centrobin expression destabilizes CPAP and triggers its degradation to restrict the centriole length during biogenesis. PMID:25616662

  14. Effect of hemin, baicalein and heme oxygenase-1 (HO-1) enzyme activity inhibitors on Cd-induced accumulation of HO-1, HSPs and aggresome-like structures in Xenopus kidney epithelial cells.

    PubMed

    Campbell, James H; Heikkila, John J

    2018-04-23

    Cadmium is a highly toxic environmental pollutant that can cause many adverse effects including cancer, neurological disease and kidney damage. Aquatic amphibians are particularly susceptible to this toxicant as it was shown to cause developmental abnormalities and genotoxic effects. In mammalian cells, the accumulation of heme oxygenase-1 (HO-1), which catalyzes the breakdown of heme into CO, free iron and biliverdin, was reported to protect cells against potentially lethal concentrations of CdCl 2 . In the present study, CdCl 2 treatment of A6 kidney epithelial cells, derived from the frog, Xenopus laevis, induced the accumulation of HO-1, heat shock protein 70 (HSP70) and HSP30 as well as an increase in the production of aggregated protein and aggresome-like structures. Treatment of cells with inhibitors of HO-1 enzyme activity, tin protoporphyrin (SnPP) and zinc protoporphyrin (ZnPP), enhanced CdCl 2 -induced actin cytoskeletal disorganization and the accumulation of HO-1, HSP70, aggregated protein and aggresome-like structures. Treatment of cells with hemin and baicalein, which were previously shown to provide cytoprotection against various stresses, induced HO-1 accumulation in a concentration-dependent manner. Also, treatment of cells with hemin and baicalein suppressed CdCl 2 -induced actin dysregulation and the accumulation of aggregated protein and aggresome-like structures. This cytoprotective effect was inhibited by SnPP. These results suggest that HO-1-mediated protection against CdCl 2 toxicity includes the maintenance of actin cytoskeletal and microtubular structure and the suppression of aggregated protein and aggresome-like structures. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Tissue-specific autoregulation of Drosophila suppressor of forked by alternative poly(A) site utilization leads to accumulation of the suppressor of forked protein in mitotically active cells.

    PubMed Central

    Juge, F; Audibert, A; Benoit, B; Simonelig, M

    2000-01-01

    The Suppressor of forked protein is the Drosophila homolog of the 77K subunit of human cleavage stimulation factor, a complex required for the first step of the mRNA 3'-end-processing reaction. We have shown previously that wild-type su(f) function is required for the accumulation of a truncated su(f) transcript polyadenylated in intron 4 of the gene. This led us to propose a model in which the Su(f) protein would negatively regulate its own accumulation by stimulating 3'-end formation of this truncated su(f) RNA. In this article, we demonstrate this model and show that su(f) autoregulation is tissue specific. The Su(f) protein accumulates at a high level in dividing tissues, but not in nondividing tissues. We show that this distribution of the Su(f) protein results from stimulation by Su(f) of the tissue-specific utilization of the su(f) intronic poly(A) site, leading to the accumulation of the truncated su(f) transcript in nondividing tissues. Utilization of this intronic poly(A) site is affected in a su(f) mutant and restored in the mutant with a transgene encoding wild-type Su(f) protein. These data provide an in vivo example of cell-type-specific regulation of a protein level by poly(A) site choice, and confirm the role of Su(f) in regulation of poly(A) site utilization. PMID:11105753

  16. Engineering the bacterial shapes for enhanced inclusion bodies accumulation.

    PubMed

    Jiang, Xiao-Ran; Wang, Huan; Shen, Rui; Chen, Guo-Qiang

    2015-05-01

    Many bacteria can accumulate inclusion bodies such as sulfur, polyphosphate, glycogen, proteins or polyhydroxyalkanoates. To exploit bacteria as factories for effective production of inclusion bodies, a larger intracellular space is needed for more inclusion body accumulation. In this study, polyhydroxybutyrate (PHB) was investigated as an inclusion bodies representative to be accumulated by Escherichia coli JM109SG. Various approaches were taken to increase the bacterial cell sizes including deletion on actin-like protein gene mreB, weak expression of mreB in mreB deletion mutant, and weak expression of mreB in mreB deletion mutant under inducible expression of SulA, the inhibitor of division ring protein FtsZ. All of the methods resulted in different levels of increases in bacterial sizes and PHB granules accumulation. Remarkably, an increase of over 100% PHB accumulation was observed in recombinant E. coli overexpressing mreB in an mreB deletion mutant under inducible expression of FtsZ inhibiting protein SulA. The molecular mechanism of enlarged bacterial size was found to be directly relate to weakened cytoskeleton which was the result of broken skeleton helix. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. Age-related accumulation of the advanced glycation endproduct pentosidine in human articular cartilage aggrecan: the use of pentosidine levels as a quantitative measure of protein turnover.

    PubMed

    Verzijl, N; DeGroot, J; Bank, R A; Bayliss, M T; Bijlsma, J W; Lafeber, F P; Maroudas, A; TeKoppele, J M

    2001-11-01

    During aging, non-enzymatic glycation results in the formation and accumulation of the advanced glycation endproduct pentosidine in long-lived proteins, such as articular cartilage collagen. In the present study, we investigated whether pentosidine accumulation also occurs in cartilage aggrecan. Furthermore, pentosidine levels in aggrecan subfractions of different residence time were used to explore pentosidine levels as a quantitative measure of aggrecan turnover. In order to compare protein turnover rates, protein residence time was measured as racemization of aspartic acid. As has previously been shown for collagen, pentosidine levels increase with age in cartilage aggrecan. Consistent with the faster turnover of aggrecan compared to collagen, the rate of pentosidine accumulation was threefold lower in aggrecan than in collagen. In the subfractions of aggrecan, pentosidine levels increased with protein residence time. These pentosidine levels were used to estimate the half-life of the globular hyaluronan-binding domain of aggrecan to be 19.5 years. This value is in good agreement with the half-life of 23.5 years that was estimated based on aspartic acid racemization. In aggrecan from osteoarthritic (OA) cartilage, decreased pentosidine levels were found compared with normal cartilage, which reflects increased aggrecan turnover during the OA disease process. In conclusion, we showed that pentosidine accumulates with age in aggrecan and that pentosidine levels can be used as a measure of turnover of long-lived proteins, both during normal aging and during disease.

  18. Abnormal Septation and Inhibition of Sporulation by Accumulation of l-α-Glycerophosphate in Bacillus subtilis Mutants

    PubMed Central

    Oh, Yong K.; Freese, Elisabeth B.; Freese, Ernst

    1973-01-01

    Accumulation of l-α-glycerophosphate, in cells of Bacillus subtilis mutants lacking the nicotinamide adenine dinucleotide-independent glycerophosphate dehydrogenase activity, suppresses both growth and sporulation. After growth has stopped, the cells slowly develop one and later more asymmetric septa that are thicker than normal prespore septa and apparently contain too much cell wall material to allow further membrane development into forespores or spores. l-Malate prevents accumulation of glycerophosphate and restores sporulation of the mutant. Glucose or gluconate cannot resotre sporulation, because they still effect glycerophosphate accumulation via de novo synthesis. If that accumulation is blocked in a double mutant, which is unable to make glycerophosphate from or to metabolize it into Embden-Meyerhof compounds, then nonsuppressing amounts of glucose or gluconate can restore sporulation. Images PMID:4632310

  19. Intranuclear inclusions of meningioma associated with abnormal cytoskeletal protein expression.

    PubMed

    Yoshida, T; Hirato, J; Sasaki, A; Yokoo, H; Nakazato, Y; Kurachi, H

    1999-01-01

    We describe a case of meningothelial meningioma with a large number of intranuclear inclusions. Morphologically, these are divided into cytoplasmic inclusions and nuclear vacuoles. The cytoplasmic inclusion has a limiting membrane with cell organelles and filaments. Inclusions of this type are generally eosinophilic, like the cytoplasm. However, there are many inclusions that are more eosinophilic than the cytoplasm or that have a ground-glass appearance. Some of them may contain fine or coarse granules. On the other hand, the nuclear vacuole lacks a limiting membrane and appears empty. In most of the inclusions of this type, there is a faintly basophilic substance in the margin. Generally, the cytoplasmic inclusions are as immunopositive as cytoplasm with vimentin, but some of these cytoplasmic inclusions are more reactive. Under the electron microscope, abnormal aggregation of intermediate filaments is recognized in the cytoplasmic inclusions. It is considered that a strong reaction of cytoplasmic inclusions with vimentin immunostaining is due to abnormal aggregation of intermediate filaments. The present study distinctly demonstrates abnormal localization of intermediate filaments in the cytoplasmic inclusions, and it is suggested that the cytoskeleton participates in the evolution of the cytoplasmic inclusions.

  20. Regulation of myofibrillar accumulation in chick muscle cultures - Evidence for the involvement of calcium and lysosomes in non-uniform turnover of contractile proteins

    NASA Technical Reports Server (NTRS)

    Silver, Geri; Etlinger, Joseph D.

    1985-01-01

    The effects of calcium on the synthesis and the degradation of individual myofibrillar proteins were investigated using primary chick-leg skeletal muscle cultures labeled with S-35-methionine (for protein accumulation experiments) or Ca(2+)-45 (for calcium efflux experiments). It was found that the turnover of individual contractile proteins is regulated nonuniformly by a calcium-dependent mechanism involving lysosomes. The results also indicate that contractile proteins are released from the myofibril before their breakdown to amino acids.

  1. Proteome analysis reveals differential expression of proteins involved in triacylglycerol accumulation by Rhodococcus jostii RHA1 after addition of methyl viologen.

    PubMed

    Dávila Costa, José Sebastián; Silva, Roxana A; Leichert, Lars; Alvarez, Héctor M

    2017-03-01

    Rhodococcus jostii RHA1 is able to degrade toxic compounds and accumulate high amounts of triacylglycerols (TAG) upon nitrogen starvation. These NADPH-dependent processes are essential for the adaptation of rhodococci to fluctuating environmental conditions. In this study, we used an MS-based, label-free and quantitative proteomic approach to better understand the integral response of R. jostii RHA1 to the presence of methyl viologen (MV) in relation to the synthesis and accumulation of TAG. The addition of MV promoted a decrease of TAG accumulation in comparison to cells cultivated under nitrogen-limiting conditions in the absence of this pro-oxidant. Proteomic analyses revealed that the abundance of key proteins of fatty acid biosynthesis, the Kennedy pathway, glyceroneogenesis and methylmalonyl-CoA pathway, among others, decreased in the presence of MV. In contrast, some proteins involved in lipolysis and β-oxidation of fatty acids were upregulated. Some metabolic pathways linked to the synthesis of NADPH remained activated during oxidative stress as well as under nitrogen starvation conditions. Additionally, exposure to MV resulted in the activation of complete antioxidant machinery comprising superoxide dismutases, catalases, mycothiol biosynthesis, mycothione reductase and alkyl hydroperoxide reductases, among others. Our study suggests that oxidative stress response affects TAG accumulation under nitrogen-limiting conditions through programmed molecular mechanisms when both stresses occur simultaneously.

  2. A mutation in Ccdc39 causes neonatal hydrocephalus with abnormal motile cilia development in mice.

    PubMed

    Abdelhamed, Zakia; Vuong, Shawn M; Hill, Lauren; Shula, Crystal; Timms, Andrew; Beier, David; Campbell, Kenneth; Mangano, Francesco T; Stottmann, Rolf W; Goto, June

    2018-01-09

    Pediatric hydrocephalus is characterized by an abnormal accumulation of cerebrospinal fluid (CSF) and is one of the most common congenital brain abnormalities. However, little is known about the molecular and cellular mechanisms regulating CSF flow in the developing brain. Through whole-genome sequencing analysis, we report that a homozygous splice site mutation in coiled-coil domain containing 39 ( Ccdc39 ) is responsible for early postnatal hydrocephalus in the progressive hydrocephal us ( prh ) mouse mutant. Ccdc39 is selectively expressed in embryonic choroid plexus and ependymal cells on the medial wall of the forebrain ventricle, and the protein is localized to the axoneme of motile cilia. The Ccdc39 prh/prh ependymal cells develop shorter cilia with disorganized microtubules lacking the axonemal inner arm dynein. Using high-speed video microscopy, we show that an orchestrated ependymal ciliary beating pattern controls unidirectional CSF flow on the ventricular surface, which generates bulk CSF flow in the developing brain. Collectively, our data provide the first evidence for involvement of Ccdc39 in hydrocephalus and suggest that the proper development of medial wall ependymal cilia is crucial for normal mouse brain development. © 2018. Published by The Company of Biologists Ltd.

  3. Overexpression of Promyelocytic Leukemia Protein Precludes the Dispersal of ND10 Structures and Has No Effect on Accumulation of Infectious Herpes Simplex Virus 1 or Its Proteins

    PubMed Central

    Lopez, Pascal; Jacob, Robert J.; Roizman, Bernard

    2002-01-01

    A key early event in the replication of herpes simplex virus 1 (HSV-1) is the localization of infected-cell protein no. 0 (ICP0) in nuclear structures knows as ND10 or promyelocytic leukemia oncogenic domains (PODs). This is followed by dispersal of ND10 constituents such as the promyelocytic leukemia protein (PML), CREB-binding protein (CBP), and Daxx. Numerous experiments have shown that this dispersal is mediated by ICP0. PML is thought to be the organizing structural component of ND10. To determine whether the virus targets PML because it is inimical to viral replication, telomerase-immortalized human foreskin fibroblasts and HEp-2 cells were transduced with wild-type baculovirus or a baculovirus expressing the Mr 69,000 form of PML. The transduced cultures were examined for expression and localization of PML in mock-infected and HSV-1-infected cells. The results obtained from studies of cells overexpressing PML were as follows. (i) Transduced cells accumulate large amounts of unmodified and SUMO-I-modified PML. (ii) Mock-infected cells exhibited enlarged ND10 structures containing CBP and Daxx in addition to PML. (iii) In infected cells, ICP0 colocalized with PML in ND10 early in infection, but the two proteins did not overlap or were juxtaposed in orderly structures. (iv) The enlarged ND10 structures remained intact at least until 12 h after infection and retained CBP and Daxx in addition to PML. (v) Overexpression of PML had no effect on the accumulation of viral proteins representative of α, β, or γ groups and had no effect on the accumulation of infectious virus in cells infected with wild-type virus or a mutant (R7910) from which the α0 genes had been deleted. These results indicate the following: (i) PML overexpressed in transduced cells cannot be differentiated from endogenous PML with respect to sumoylation and localization in ND10 structures. (ii) PML does not affect viral replication or the changes in the localization of ICP0 through infection

  4. An E8 promoter-HSP terminator cassette promotes the high-level accumulation of recombinant protein predominantly in transgenic tomato fruits: a case study of miraculin.

    PubMed

    Kurokawa, Natsuko; Hirai, Tadayoshi; Takayama, Mariko; Hiwasa-Tanase, Kyoko; Ezura, Hiroshi

    2013-04-01

    The E8 promoter-HSP terminator expression cassette is a powerful tool for increasing the accumulation of recombinant protein in a ripening tomato fruit. Strong, tissue-specific transgene expression is a desirable feature in transgenic plants to allow the production of variable recombinant proteins. The expression vector is a key tool to control the expression level and site of transgene and recombinant protein expression in transgenic plants. The combination of the E8 promoter, a fruit-ripening specific promoter, and a heat shock protein (HSP) terminator, derived from heat shock protein 18.2 of Arabidopsis thaliana, produces the strong and fruit-specific accumulation of recombinant miraculin in transgenic tomato. Miraculin gene expression was driven by an E8 promoter and HSP terminator cassette (E8-MIR-HSP) in transgenic tomato plants, and the miraculin concentration was the highest in the ripening fruits, representing 30-630 μg miraculin of the gram fresh weight. The highest level of miraculin concentration among the transgenic tomato plant lines containing the E8-MIR-HSP cassette was approximately four times higher than those observed in a previous study using a constitutive 35S promoter and NOS terminator cassette (Hiwasa-Tanase et al. in Plant Cell Rep 30:113-124, 2011). These results demonstrate that the combination of the E8 promoter and HSP terminator cassette is a useful tool to increase markedly the accumulation of recombinant proteins in a ripening fruit-specific manner.

  5. Diverse accumulation of several dehydrin-like proteins in cauliflower (Brassica oleracea var. botrytis), Arabidopsis thaliana and yellow lupin (Lupinus luteus) mitochondria under cold and heat stress.

    PubMed

    Rurek, Michal

    2010-08-18

    Dehydrins represent hydrophilic proteins acting mainly during cell dehydration and stress response. Dehydrins are generally thermostable; however, the so-called dehydrin-like (dehydrin-related) proteins show variable thermolability. Both groups immunoreact with antibodies directed against the K-segment of dehydrins. Plant mitochondrial dehydrin-like proteins are poorly characterized. The purpose of this study was to extend previous reports on plant dehydrins by comparing the level of immunoprecipitated dehydrin-like proteins in cauliflower (Brassica oleracea var. botrytis), Arabidopsis thaliana and yellow lupin (Lupinus luteus) mitochondria under cold and heat stress. All the analyzed plant species showed constitutive accumulation of thermostable mitochondrial putative dehydrins ranging from 50 to 70 kDa. The mitochondrial dehydrin-like proteins observed in cauliflower and Arabidopsis ranged from 10 to 100 kDa and in lupin imbibed seeds and hypocotyls--from 20 to 90 kDa. Cold treatment increased mainly the accumulation of 10-100 kDa cauliflower and Arabidopsis dehydrin-like proteins, in the patterns different in cauliflower leaf and inflorescence mitochondria. However, in lupin mitochondria, cold affected mainly 25-50 kDa proteins and seemed to induce the appearance of some novel dehydrin-like proteins. The influence of frost stress on cauliflower leaf mitochondrial dehydrin- like proteins was less significant. The impact of heat stress was less significant in lupin and Arabidopsis than in cauliflower inflorescence mitochondria. Cauliflower mitochondrial dehydrin-like proteins are localized mostly in the mitochondrial matrix; it seems that some of them may interact with mitochondrial membranes. All the results reveal an unexpectedly broad spectrum of dehydrin-like proteins accumulated during some abiotic stress in the mitochondria of the plant species analyzed. They display only limited similarity in size to those reported previously in maize, wheat and rye

  6. Correlation between Infectivity and Disease Associated Prion Protein in the Nervous System and Selected Edible Tissues of Naturally Affected Scrapie Sheep

    PubMed Central

    Chianini, Francesca; Cosseddu, Gian Mario; Steele, Philip; Hamilton, Scott; Hawthorn, Jeremy; Síso, Sílvia; Pang, Yvonne; Finlayson, Jeanie; Eaton, Samantha L.; Reid, Hugh W.; Dagleish, Mark P.; Di Bari, Michele Angelo; D’Agostino, Claudia; Agrimi, Umberto; Terry, Linda; Nonno, Romolo

    2015-01-01

    The transmissible spongiform encephalopathies (TSEs) or prion diseases are a group of fatal neurodegenerative disorders characterised by the accumulation of a pathological form of a host protein known as prion protein (PrP). The validation of abnormal PrP detection techniques is fundamental to allow the use of high-throughput laboratory based tests, avoiding the limitations of bioassays. We used scrapie, a prototype TSE, to examine the relationship between infectivity and laboratory based diagnostic tools. The data may help to optimise strategies to prevent exposure of humans to small ruminant TSE material via the food chain. Abnormal PrP distribution/accumulation was assessed by immunohistochemistry (IHC), Western blot (WB) and ELISA in samples from four animals. In addition, infectivity was detected using a sensitive bank vole bioassay with selected samples from two of the four sheep and protein misfolding cyclic amplification using bank vole brain as substrate (vPMCA) was also carried out in selected samples from one animal. Lymph nodes, oculomotor muscles, sciatic nerve and kidney were positive by IHC, WB and ELISA, although at levels 100–1000 fold lower than the brain, and contained detectable infectivity by bioassay. Tissues not infectious by bioassay were also negative by all laboratory tests including PMCA. Although discrepancies were observed in tissues with very low levels of abnormal PrP, there was an overall good correlation between IHC, WB, ELISA and bioassay results. Most importantly, there was a good correlation between the detection of abnormal PrP in tissues using laboratory tests and the levels of infectivity even when the titre was low. These findings provide useful information for risk modellers and represent a first step toward the validation of laboratory tests used to quantify prion infectivity, which would greatly aid TSE risk assessment policies. PMID:25807559

  7. Consequences of inhibiting amyloid precursor protein processing enzymes on synaptic function and plasticity.

    PubMed

    Wang, Hui; Megill, Andrea; He, Kaiwen; Kirkwood, Alfredo; Lee, Hey-Kyoung

    2012-01-01

    Alzheimer's disease (AD) is a neurodegenerative disease, one of whose major pathological hallmarks is the accumulation of amyloid plaques comprised of aggregated β-amyloid (Aβ) peptides. It is now recognized that soluble Aβ oligomers may lead to synaptic dysfunctions early in AD pathology preceding plaque deposition. Aβ is produced by a sequential cleavage of amyloid precursor protein (APP) by the activity of β- and γ-secretases, which have been identified as major candidate therapeutic targets of AD. This paper focuses on how Aβ alters synaptic function and the functional consequences of inhibiting the activity of the two secretases responsible for Aβ generation. Abnormalities in synaptic function resulting from the absence or inhibition of the Aβ-producing enzymes suggest that Aβ itself may have normal physiological functions which are disrupted by abnormal accumulation of Aβ during AD pathology. This interpretation suggests that AD therapeutics targeting the β- and γ-secretases should be developed to restore normal levels of Aβ or combined with measures to circumvent the associated synaptic dysfunction(s) in order to have minimal impact on normal synaptic function.

  8. Differential Nanos 2 protein stability results in selective germ cell accumulation in the sea urchin

    PubMed Central

    Oulhen, Nathalie; Wessel, Gary M.

    2016-01-01

    Nanos is a translational regulator required for the survival and maintenance of primordial germ cells. In the sea urchin, Strongylocentrotus purpuratus (Sp), Nanos 2 mRNA is broadly transcribed but accumulates specifically in the small micromere (sMic) lineage, in part because of the 3′UTR element GNARLE leads to turnover in somatic cells but retention in the sMics. Here we found that the Nanos 2 protein is also selectively stabilized; it is initially translated throughout the embryo but turned over in the future somatic cells and retained only in the sMics, the future germ line in this animal. This differential stability of Nanos protein is dependent on the open reading frame (ORF), and is independent of the sumoylation and ubiquitylation pathways. Manipulation of the ORF indicates that 68 amino acids in the N terminus of the Nanos protein are essential for its stability in the sMics whereas a 45 amino acid element adjacent to the zinc fingers targets its degradation. Further, this regulation of Nanos protein is cell autonomous, following formation of the germ line. These results are paradigmatic for the unique presence of Nanos in the germ line by a combination of selective RNA retention, distinctive translational control mechanisms (Oulhen et al., 2013), and now also by defined Nanos protein stability. PMID:27424271

  9. Differential Nanos 2 protein stability results in selective germ cell accumulation in the sea urchin.

    PubMed

    Oulhen, Nathalie; Wessel, Gary M

    2016-10-01

    Nanos is a translational regulator required for the survival and maintenance of primordial germ cells. In the sea urchin, Strongylocentrotus purpuratus (Sp), Nanos 2 mRNA is broadly transcribed but accumulates specifically in the small micromere (sMic) lineage, in part because of the 3'UTR element GNARLE leads to turnover in somatic cells but retention in the sMics. Here we found that the Nanos 2 protein is also selectively stabilized; it is initially translated throughout the embryo but turned over in the future somatic cells and retained only in the sMics, the future germ line in this animal. This differential stability of Nanos protein is dependent on the open reading frame (ORF), and is independent of the sumoylation and ubiquitylation pathways. Manipulation of the ORF indicates that 68 amino acids in the N terminus of the Nanos protein are essential for its stability in the sMics whereas a 45 amino acid element adjacent to the zinc fingers targets its degradation. Further, this regulation of Nanos protein is cell autonomous, following formation of the germ line. These results are paradigmatic for the unique presence of Nanos in the germ line by a combination of selective RNA retention, distinctive translational control mechanisms (Oulhen et al., 2013), and now also by defined Nanos protein stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Huntingtin Interacting Protein 1 mutations lead to abnormal hematopoiesis, spinal defects and cataracts.

    PubMed

    Oravecz-Wilson, Katherine I; Kiel, Mark J; Li, Lina; Rao, Dinesh S; Saint-Dic, Djenann; Kumar, Priti D; Provot, Melissa M; Hankenson, Kurt D; Reddy, Venkat N; Lieberman, Andrew P; Morrison, Sean J; Ross, Theodora S

    2004-04-15

    Huntingtin Interacting Protein 1 (HIP1) binds clathrin and AP2, is overexpressed in multiple human tumors, and transforms fibroblasts. The function of HIP1 is unknown although it is thought to play a fundamental role in clathrin trafficking. Gene-targeted Hip1-/- mice develop premature testicular degeneration and severe spinal deformities. Yet, although HIP1 is expressed in many tissues including the spleen and bone marrow and was part of a leukemogenic translocation, its role in hematopoiesis has not been examined. In this study we report that three different mutations of murine Hip1 lead to hematopoietic abnormalities reflected by diminished early progenitor frequencies and resistance to 5-FU-induced bone marrow toxicity. Two of the Hip1 mutant lines also display the previously described spinal defects. These observations indicate that, in addition to being required for the survival/proliferation of cancer cells and germline progenitors, HIP1 is also required for the survival/proliferation of diverse types of somatic cells, including hematopoietic progenitors.

  11. Rice choline monooxygenase (OsCMO) protein functions in enhancing glycine betaine biosynthesis in transgenic tobacco but does not accumulate in rice (Oryza sativa L. ssp. japonica).

    PubMed

    Luo, Di; Niu, Xiangli; Yu, Jinde; Yan, Jun; Gou, Xiaojun; Lu, Bao-Rong; Liu, Yongsheng

    2012-09-01

    Glycine betaine (GB) is a compatible quaternary amine that enables plants to tolerate abiotic stresses, including salt, drought and cold. In plants, GB is synthesized through two-step of successive oxidations from choline, catalyzed by choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH), respectively. Rice is considered as a typical non-GB accumulating species, although the entire genome sequencing revealed rice contains orthologs of both CMO and BADH. Several studies unraveled that rice has a functional BADH gene, but whether rice CMO gene (OsCMO) is functional or a pseudogene remains to be elucidated. In the present study, we report the functional characterization of rice CMO gene. The OsCMO gene was isolated from rice cv. Nipponbare (Oryza sativa L. ssp. japonica) using RT-PCR. Northern blot demonstrated the transcription of OsCMO is enhanced by salt stress. Transgenic tobacco plants overexpressing OsCMO results in increased GB content and elevated tolerance to salt stress. Immunoblotting analysis demonstrates that a functional OsCMO protein with correct size was present in transgenic tobacco but rarely accumulated in wild-type rice plants. Surprisingly, a large amount of truncated proteins derived from OsCMO was induced in the rice seedlings in response to salt stresses. This suggests that it is the lack of a functional OsCMO protein that presumably results in non-GB accumulation in the tested rice plant. Expression and transgenic studies demonstrate OsCMO is transcriptionally induced in response to salt stress and functions in increasing glycinebetaine accumulation and enhancing tolerance to salt stress. Immunoblotting analysis suggests that no accumulation of glycinebetaine in the Japonica rice plant presumably results from lack of a functional OsCMO protein.

  12. Disturbed vesicular trafficking of membrane proteins in prion disease.

    PubMed

    Uchiyama, Keiji; Miyata, Hironori; Sakaguchi, Suehiro

    2013-01-01

    The pathogenic mechanism of prion diseases remains unknown. We recently reported that prion infection disturbs post-Golgi trafficking of certain types of membrane proteins to the cell surface, resulting in reduced surface expression of membrane proteins and abrogating the signal from the proteins. The surface expression of the membrane proteins was reduced in the brains of mice inoculated with prions, well before abnormal symptoms became evident. Prions or pathogenic prion proteins were mainly detected in endosomal compartments, being particularly abundant in recycling endosomes. Some newly synthesized membrane proteins are delivered to the surface from the Golgi apparatus through recycling endosomes, and some endocytosed membrane proteins are delivered back to the surface through recycling endosomes. These results suggest that prions might cause neuronal dysfunctions and cell loss by disturbing post-Golgi trafficking of membrane proteins via accumulation in recycling endosomes. Interestingly, it was recently shown that delivery of a calcium channel protein to the cell surface was impaired and its function was abrogated in a mouse model of hereditary prion disease. Taken together, these results suggest that impaired delivery of membrane proteins to the cell surface is a common pathogenic event in acquired and hereditary prion diseases.

  13. Reduced miR-512 and the Elevated Expression of Its Targets cFLIP and MCL1 Localize to Neurons With Hyperphosphorylated Tau Protein in Alzheimer Disease.

    PubMed

    Mezache, Louisa; Mikhail, Madison; Garofalo, Michela; Nuovo, Gerard J

    2015-10-01

    The cause for the neurofibrillary tangles and plaques in Alzheimer disease likely relates to an abnormal accumulation of their key components, which include β-amyloid and hyperphosphorylated tau protein. We segregated Alzheimer brain sections from people with end-stage disease into those with abundant hyperphosphorylated tau protein and those without and compared each to normal brains for global microRNA patterns. A significant reduced expression of several microRNAs, including miR-512, was evident in the Alzheimer brain sections with abundant hyperphosphorylated tau. Immunohistochemistry documented that 2 known targets of microRNA-512, cFLIP and MCL1, were significantly over expressed and each colocalized to neurons with the abnormal tau protein. Analysis for apoptosis including activated caspase-3, increased caspase-4 and caspase-8, apoptosis initiating factor, APAF-1 activity, and the TUNEL assay was negative in the areas where neurons showed hyperphosphorylated tau. MCM2 expression, a marker of neuroprogenitor cells, was significantly reduced in the Alzheimer sections that contained the hyperphosphorylated tau. These results suggest that a basic defect in Alzheimer disease may be the reduced microRNA-driven increased expression of proteins that may alter the apoptotic/antiapoptotic balance of neurons. This, in turn, could lead to the accumulation of key Alzheimer proteins such as hyperphosphorylated tau that ultimately prevent normal neuronal function and lead to disease symptomatology.

  14. Mechanism of Arachidonic Acid Accumulation during Aging in Mortierella alpina: A Large-Scale Label-Free Comparative Proteomics Study.

    PubMed

    Yu, Yadong; Li, Tao; Wu, Na; Ren, Lujing; Jiang, Ling; Ji, Xiaojun; Huang, He

    2016-11-30

    Arachidonic acid (ARA) is an important polyunsaturated fatty acid having various beneficial physiological effects on the human body. The aging of Mortierella alpina has long been known to significantly improve ARA yield, but the exact mechanism is still elusive. Herein, multiple approaches including large-scale label-free comparative proteomics were employed to systematically investigate the mechanism mentioned above. Upon ultrastructural observation, abnormal mitochondria were found to aggregate around shrunken lipid droplets. Proteomics analysis revealed a total of 171 proteins with significant alterations of expression during aging. Pathway analysis suggested that reactive oxygen species (ROS) were accumulated and stimulated the activation of the malate/pyruvate cycle and isocitrate dehydrogenase, which might provide additional NADPH for ARA synthesis. EC 4.2.1.17-hydratase might be a key player in ARA accumulation during aging. These findings provide a valuable resource for efforts to further improve the ARA content in the oil produced by aging M. alpina.

  15. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism.

    PubMed

    Purcell, A E; Jeon, O H; Zimmerman, A W; Blue, M E; Pevsner, J

    2001-11-13

    Studies examining the brains of individuals with autism have identified anatomic and pathologic changes in regions such as the cerebellum and hippocampus. Little, if anything, is known, however, about the molecules that are involved in the pathogenesis of this disorder. To identify genes with abnormal expression levels in the cerebella of subjects with autism. Brain samples from a total of 10 individuals with autism and 23 matched controls were collected, mainly from the cerebellum. Two cDNA microarray technologies were used to identify genes that were significantly up- or downregulated in autism. The abnormal mRNA or protein levels of several genes identified by microarray analysis were investigated using PCR with reverse transcription and Western blotting. alpha-Amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA)- and NMDA-type glutamate receptor densities were examined with receptor autoradiography in the cerebellum, caudate-putamen, and prefrontal cortex. The mRNA levels of several genes were significantly increased in autism, including excitatory amino acid transporter 1 and glutamate receptor AMPA 1, two members of the glutamate system. Abnormalities in the protein or mRNA levels of several additional molecules in the glutamate system were identified on further analysis, including glutamate receptor binding proteins. AMPA-type glutamate receptor density was decreased in the cerebellum of individuals with autism (p < 0.05). Subjects with autism may have specific abnormalities in the AMPA-type glutamate receptors and glutamate transporters in the cerebellum. These abnormalities may be directly involved in the pathogenesis of the disorder.

  16. The Sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS

    PubMed Central

    Maxwell, Michele M.; Tomkinson, Elizabeth M.; Nobles, Johnathan; Wizeman, John W.; Amore, Allison M.; Quinti, Luisa; Chopra, Vanita; Hersch, Steven M.; Kazantsev, Aleksey G.

    2011-01-01

    Sirtuin 2 (SIRT2) is one of seven known mammalian protein deacetylases homologous to the yeast master lifespan regulator Sir2. In recent years, the sirtuin protein deacetylases have emerged as candidate therapeutic targets for many human diseases, including metabolic and age-dependent neurological disorders. In non-neuronal cells, SIRT2 has been shown to function as a tubulin deacetylase and a key regulator of cell division and differentiation. However, the distribution and function of the SIRT2 microtubule (MT) deacetylase in differentiated, postmitotic neurons remain largely unknown. Here, we show abundant and preferential expression of specific isoforms of SIRT2 in the mammalian central nervous system and find that a previously uncharacterized form, SIRT2.3, exhibits age-dependent accumulation in the mouse brain and spinal cord. Further, our studies reveal that focal areas of endogenous SIRT2 expression correlate with reduced α-tubulin acetylation in primary mouse cortical neurons and suggest that the brain-enriched species of SIRT2 may function as the predominant MT deacetylases in mature neurons. Recent reports have demonstrated an association between impaired tubulin acetyltransferase activity and neurodegenerative disease; viewed in this light, our results showing age-dependent accumulation of the SIRT2 neuronal MT deacetylase in wild-type mice suggest a functional link between tubulin acetylation patterns and the aging brain. PMID:21791548

  17. Accumulation and localization of extensin protein in apoplast of pea root nodule under aluminum stress.

    PubMed

    Sujkowska-Rybkowska, Marzena; Borucki, Wojciech

    2014-12-01

    Cell wall components such as hydroxyproline-rich glycoproteins (HRGPs, extensins) have been proposed to be involved in aluminum (Al) resistance mechanisms in plants. We have characterized the distribution of extensin in pea (Pisum sativum L.) root nodules apoplast under short (for 2 and 24h) Al stress. Monoclonal antibodie LM1 have been used to locate extensin protein epitope by immunofluorescence and immunogold labeling. The nodules were shown to respond to Al stress by thickening of plant and infection thread (IT) walls and disturbances in threads growth and bacteria endocytosis. Immunoblot results indicated the presence of a 17-kDa band specific for LM1. Irrespective of the time of Al stress, extensin content increased in root nodules. Further observation utilizing fluorescence and transmission electron microscope showed that LM1 epitope was localized in walls and intercellular spaces of nodule cortex tissues and in the infection threads matrix. Al stress in nodules appears to be associated with higher extensin accumulation in matrix of enlarged thick-walled ITs. In addition to ITs, thickened walls and intercellular spaces of nodule cortex were also associated with intense extensin accumulation. These data suggest that Al-induced extensin accumulation in plant cell walls and ITs matrix may have influence on the process of IT growth and tissue and cell colonization by Rhizobium bacteria. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Amyloid Precursor Protein Haploinsufficiency Preferentially Mediates Brain Iron Accumulation in Mice Transgenic for The Huntington's Disease Mutation.

    PubMed

    Berggren, Kiersten; Agrawal, Sonal; Fox, Julia A; Hildenbrand, Justin; Nelson, Ryan; Bush, Ashley I; Fox, Jonathan H

    2017-01-01

    Huntington's disease (HD) is an autosomal dominant disorder caused by a CAG expansion in the huntingtin gene that results in expression of mutant huntingtin protein. Iron accumulates in HD brain neurons. Amyloid precursor protein (APP) promotes neuronal iron export. However, the role of APP in brain iron accumulation in HD is unclear. To determine the effects of APP insufficiency on HD in YAC128 mice. We crossed APP hemizygous mice (APP+/-) with YAC128 mice that are transgenic (Tg) for human mutant huntingtin (hmHTT) to generate APP+/+ hmHTT-/-, APP+/- hmHTT-/-, APP+/+ hmHTT+/- and APP+/- hmHTT+/- progeny. Mice were evaluated for behavioral, biochemical and neuropathology HD outcomes at 2-12 months of age. APP heterozygosity decreased cortical APP 25% and 60% in non-Tg and Tg mice, respectively. Cerebral and striatal iron levels were increased by APP knockdown in Tg mice only. Nest-building behavior was decreased in Tg mice; APP knockdown decreased nest building in non-Tg but not Tg mice. Rota-rod endurance was decreased in Tg mice. APP+/- hHTT+/- mice demonstrated additional decreases in rota-rod endurance from 4-10 months of age. Tg mice had smaller striatal volumes and fewer striatal neurons but were not affected by APP knockdown. APP heterozygosity results in greater decreases of cortical APP in Tg versus non-Tg mice. Mutant huntingtin transgenic mice develop brain iron accumulation as a result of greater suppression of APP levels. Elevated brain iron in Tg mice was associated with a decline in motor endurance consistent with a disease promoting effect of iron in the YAC128 model of human HD.

  19. Chromoplast-specific carotenoid-associated protein appears to be important for enhanced accumulation of carotenoids in hp1 tomato fruits.

    PubMed

    Kilambi, Himabindu Vasuki; Kumar, Rakesh; Sharma, Rameshwar; Sreelakshmi, Yellamaraju

    2013-04-01

    Tomato (Solanum lycopersicum) high-pigment mutants with lesions in diverse loci such as DNA Damage-Binding Protein1 (high pigment1 [hp1]), Deetiolated1 (hp2), Zeaxanthin Epoxidase (hp3), and Intense pigment (Ip; gene product unknown) exhibit increased accumulation of fruit carotenoids coupled with an increase in chloroplast number and size. However, little is known about the underlying mechanisms exaggerating the carotenoid accumulation and the chloroplast number in these mutants. A comparison of proteome profiles from the outer pericarp of hp1 mutant and wild-type (cv Ailsa Craig) fruits at different developmental stages revealed at least 72 differentially expressed proteins during ripening. Hierarchical clustering grouped these proteins into three clusters. We found an increased abundance of chromoplast-specific carotenoid-associated protein (CHRC) in hp1 fruits at red-ripe stage that is also reflected in its transcript level. Western blotting using CHRC polyclonal antibody from bell pepper (Capsicum annuum) revealed a 2-fold increase in the abundance of CHRC protein in the red-ripe stage of hp1 fruits compared with the wild type. CHRC levels in hp2 were found to be similar to that of hp1, whereas hp3 and Ip showed intermediate levels to those in hp1, hp2, and wild-type fruits. Both CHRC and carotenoids were present in the isolated plastoglobules. Overall, our results suggest that loss of function of DDB1, DET1, Zeaxanthin Epoxidase, and Ip up-regulates CHRC levels. Increase in CHRC levels may contribute to the enhanced carotenoid content in these high-pigment fruits by assisting in the sequestration and stabilization of carotenoids.

  20. Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge.

    PubMed

    Lange, Bastien; van der Ent, Antony; Baker, Alan John Martin; Echevarria, Guillaume; Mahy, Grégory; Malaisse, François; Meerts, Pierre; Pourret, Olivier; Verbruggen, Nathalie; Faucon, Michel-Pierre

    2017-01-01

    This review synthesizes contemporary understanding of copper-cobalt (Cu-Co) tolerance and accumulation in plants. Accumulation of foliar Cu and Co to > 300 μg g -1 is exceptionally rare globally, and known principally from the Copperbelt of Central Africa. Cobalt accumulation is also observed in a limited number of nickel (Ni) hyperaccumulator plants occurring on ultramafic soils around the world. None of the putative Cu or Co hyperaccumulator plants appears to comply with the fundamental principle of hyperaccumulation, as foliar Cu-Co accumulation is strongly dose-dependent. Abnormally high plant tissue Cu concentrations occur only when plants are exposed to high soil Cu with a low root to shoot translocation factor. Most Cu-tolerant plants are Excluders sensu Baker and therefore setting nominal threshold values for Cu hyperaccumulation is not informative. Abnormal accumulation of Co occurs under similar circumstances in the Copperbelt of Central Africa as well as sporadically in Ni hyperaccumulator plants on ultramafic soils; however, Co-tolerant plants behave physiologically as Indicators sensu Baker. Practical application of Cu-Co accumulator plants in phytomining is limited due to their dose-dependent accumulation characteristics, although for Co field trials may be warranted on highly Co-contaminated mineral wastes because of its relatively high metal value. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  1. Mutations that alter a conserved element upstream of the potato virus X triple block and coat protein genes affect subgenomic RNA accumulation.

    PubMed

    Kim, K H; Hemenway, C

    1997-05-26

    The putative subgenomic RNA (sgRNA) promoter regions upstream of the potato virus X (PVX) triple block and coat protein (CP) genes contain sequences common to other potexviruses. The importance of these sequences to PVX sgRNA accumulation was determined by inoculation of Nicotiana tabacum NT1 cell suspension protoplasts with transcripts derived from wild-type and modified PVX cDNA clones. Analyses of RNA accumulation by S1 nuclease digestion and primer extension indicated that a conserved octanucleotide sequence element and the spacing between this element and the start-site for sgRNA synthesis are critical for accumulation of the two major sgRNA species. The impact of mutations on CP sgRNA levels was also reflected in the accumulation of CP. In contrast, genomic minus- and plus-strand RNA accumulation were not significantly affected by mutations in these regions. Studies involving inoculation of tobacco plants with the modified transcripts suggested that the conserved octanucleotide element functions in sgRNA accumulation and some other aspect of the infection process.

  2. Accumulate-Repeat-Accumulate-Accumulate-Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy

    2004-01-01

    Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.

  3. Blockade of sarcolemmal TRPV2 accumulation inhibits progression of dilated cardiomyopathy.

    PubMed

    Iwata, Yuko; Ohtake, Hitomi; Suzuki, Osamu; Matsuda, Junichiro; Komamura, Kazuo; Wakabayashi, Shigeo

    2013-09-01

    Dilated cardiomyopathy (DCM) is a severe disorder defined by ventricular dilation and contractile dysfunction. Abnormal Ca(2+) handling is hypothesized to play a critical pathological role in DCM progression. The transient receptor potential vanilloid 2 (TRPV2) has been previously suggested as a candidate pathway for enhanced Ca(2+) entry. Here, we examined the sarcolemmal accumulation of TRPV2 in various heart-failure model animals and DCM patients, and assessed whether presently available inhibitory tools against TRPV2 ameliorate DCM symptoms. Immunological and cell physiological analyses revealed that TRPV2 is highly concentrated and activated in the ventricular sarcolemma of DCM patients and three animal models-δ-sarcoglycan-deficient hamsters (J2N-k), transgenic mice over-expressing sialytransferase (4C30), and doxorubicin (DOX)-induced DCM mice. Over-expression of the amino-terminal (NT) domain of TRPV2 could block the plasma membrane accumulation and influx of Ca(2+) via TRPV2. Transgenic (Tg) or adenoviral expression of the NT domain in DCM animals caused effective removal of sarcolemmal TRPV2 along with reduction in the phosphorylation of calmodulin-dependent protein kinase II (CaMKII) and reactive oxygen species (ROS) production, which were activated in DCM; further, it prevented ventricular dilation and fibrosis, ameliorated contractile dysfunction in DCM, and improved survival of the affected animals. The TRPV2 inhibitor tranilast markedly suppressed DCM progression. Sarcolemmal TRPV2 accumulation appears to have considerable pathological impact on DCM progression, and blockade of this channel may be a promising therapeutic strategy for treating advanced heart failure.

  4. Abnormal Mitochondrial Dynamics and Synaptic Degeneration as Early Events in Alzheimer’s Disease: Implications to Mitochondria-Targeted Antioxidant Therapeutics

    PubMed Central

    Reddy, P. Hemachandra; Tripathy, Raghav; Troung, Quang; Thirumala, Karuna; Reddy, Tejaswini P.; Anekonda, Vishwanath; Shirendeb, Ulziibat P.; Calkins, Marcus J.; Reddy, Arubala P.; Mao, Peizhong; Manczak, Maria

    2011-01-01

    Synaptic pathology and mitochondrial oxidative damage are early events in Alzheimer’s disease (AD) progression. Loss of synapses and synaptic damage are the best correlate of cognitive deficits found in AD patients. Recent research on amyloid bet (Aβ) and mitochondria in AD revealed that Aβ accumulates in synapses and synaptic mitochondria, leading to abnormal mitochondrial dynamics and synaptic degeneration in AD neurons. Further, recent studies using live-cell imaging and primary neurons from amyloid beta precursor protein (AβPP) transgenic mice revealed that reduced mitochondrial mass, defective axonal transport of mitochondria and synaptic degeneration, indicating that Aβ is responsible for mitochondrial and synaptic deficiencies. Tremendous progress has been made in studying antioxidant approaches in mouse models of AD and clinical trials of AD patients. This article highlights the recent developments made in Aβ-induced abnormal mitochondrial dynamics, defective mitochondrial biogenesis, impaired axonal transport and synaptic deficiencies in AD. This article also focuses on mitochondrial approaches in treating AD, and also discusses latest research on mitochondria-targeted antioxidants in AD. PMID:22037588

  5. Diverse accumulation of several dehydrin-like proteins in cauliflower (Brassica oleracea var. botrytis), Arabidopsis thaliana and yellow lupin (Lupinus luteus) mitochondria under cold and heat stress

    PubMed Central

    2010-01-01

    Background Dehydrins represent hydrophilic proteins acting mainly during cell dehydration and stress response. Dehydrins are generally thermostable; however, the so-called dehydrin-like (dehydrin-related) proteins show variable thermolability. Both groups immunoreact with antibodies directed against the K-segment of dehydrins. Plant mitochondrial dehydrin-like proteins are poorly characterized. The purpose of this study was to extend previous reports on plant dehydrins by comparing the level of immunoprecipitated dehydrin-like proteins in cauliflower (Brassica oleracea var. botrytis), Arabidopsis thaliana and yellow lupin (Lupinus luteus) mitochondria under cold and heat stress. Results All the analyzed plant species showed constitutive accumulation of thermostable mitochondrial putative dehydrins ranging from 50 to 70 kDa. The mitochondrial dehydrin-like proteins observed in cauliflower and Arabidopsis ranged from 10 to 100 kDa and in lupin imbibed seeds and hypocotyls - from 20 to 90 kDa. Cold treatment increased mainly the accumulation of 10-100 kDa cauliflower and Arabidopsis dehydrin-like proteins, in the patterns different in cauliflower leaf and inflorescence mitochondria. However, in lupin mitochondria, cold affected mainly 25-50 kDa proteins and seemed to induce the appearance of some novel dehydrin-like proteins. The influence of frost stress on cauliflower leaf mitochondrial dehydrin- like proteins was less significant. The impact of heat stress was less significant in lupin and Arabidopsis than in cauliflower inflorescence mitochondria. Cauliflower mitochondrial dehydrin-like proteins are localized mostly in the mitochondrial matrix; it seems that some of them may interact with mitochondrial membranes. Conclusions All the results reveal an unexpectedly broad spectrum of dehydrin-like proteins accumulated during some abiotic stress in the mitochondria of the plant species analyzed. They display only limited similarity in size to those reported previously

  6. Accumulation of sphingolipid activator proteins (SAPs) A and D in granular osmiophilic deposits in miniature Schnauzer dogs with ceroid-lipofuscinosis.

    PubMed

    Palmer, D N; Tyynelä, J; van Mil, H C; Westlake, V J; Jolly, R D

    1997-03-01

    The neuronal ceroid-lipofuscinoses (NCL, Batten disease) are fatal inherited neurodegenerative diseases of children characterized by retinal and brain atrophy and the accumulation of electron-dense storage bodies in cells. Mutations in different genes underlie different major forms. The infantile disease (CLN-1, McKusick 256730) is distinguished by the storage of the sphingolipid activator proteins (SAPs) A and D in distinctive granular osmiophilic deposits (GRODs). This contrasts with the other major forms, where subunit c of mitochondrial ATP synthase is stored in various multilamellar profiles. Ceroid-lipofuscinoses also occur in dogs, including a form in miniature Schnauzers with distinctive granular osmiophilic deposit-like storage bodies. Antisera to SAPs A and D reacted to these storage bodies in situ. The presence of SAP D was confirmed by Western blotting and of SAP A by protein sequencing. Neither subunit c of mitochondrial ATP synthase nor of vacuolar ATPase is stored. This suggests that there are two families of ceroid-lipofuscinoses, the subunit c-storing forms, and those in which SAPs A and D, and perhaps other proteins, accumulate. Further work is required to determine whether other forms with granular osmiophilic deposits belong to the latter class and the genetic relationships between them and the human infantile disease.

  7. Role of splenic reservoir monocytes in pulmonary vascular monocyte accumulation in experimental hepatopulmonary syndrome

    PubMed Central

    Wu, Wei; Zhang, Junlan; Yang, Wenli; Hu, Bingqian

    2016-01-01

    Abstract Background and Aim Pulmonary monocyte infiltration plays a significant role in the development of angiogenesis in experimental hepatopulmonary syndrome (HPS) after common bile duct ligation (CBDL). Hepatic monocytes are also increased after CBDL, but the origins remain unclear. Splenic reservoir monocytes have been identified as a major source of monocytes that accumulate in injured tissues. Whether splenic monocytes contribute to monocyte alterations after CBDL is unknown. This study evaluates monocyte distributions and assesses effects of splenectomy on monocyte levels and pulmonary vascular and hepatic abnormalities in experimental HPS. Methods Splenectomy was performed in CBDL animals. Monocyte levels in different tissues and circulation were assessed with CD68. Pulmonary alterations of HPS were evaluated with vascular endothelial growth factor‐A (VEGF‐A) levels, angiogenesis, and alveolar–arterial oxygen gradient (AaPO2). Liver abnormalities were evaluated with fibrosis (Sirius red), bile duct proliferation (CK‐19), and enzymatic changes. Results Monocyte levels increased in the lung and liver after CBDL and were accompanied by elevated circulating monocyte numbers. Splenectomy significantly decreased monocyte accumulation, VEGF‐A levels, and angiogenesis in CBDL animal lung and improved AaPO2 levels. In contrast, hepatic monocyte levels, fibrosis, and functional abnormalities were further exacerbated by spleen removal. Conclusions Splenic reservoir monocytes are a major source for lung monocyte accumulation after CBDL, and spleen removal attenuates the development of experimental HPS. Liver monocytes may have different origins, and accumulation is exacerbated after depletion of splenic reservoir monocytes. Tissue specific monocyte alterations, influenced by the spleen reservoir, have a significant impact on pulmonary complications of liver disease. PMID:27029414

  8. Accumulate-Repeat-Accumulate-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy

    2007-01-01

    Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.

  9. The Human Cytomegalovirus IE2 and UL112-113 Proteins Accumulate in Viral DNA Replication Compartments That Initiate from the Periphery of Promyelocytic Leukemia Protein-Associated Nuclear Bodies (PODs or ND10)

    PubMed Central

    Ahn, Jin-Hyun; Jang, Won-Jong; Hayward, Gary S.

    1999-01-01

    During human cytomegalovirus (HCMV) infection, the periphery of promyelocytic leukemia protein (PML)-associated nuclear bodies (also known as PML oncogenic domains [PODs] or ND10) are sites for both input viral genome deposition and immediate-early (IE) gene transcription. At very early times after infection, the IE1 protein localizes to and subsequently disrupts PODs, whereas the IE2 protein localizes within or adjacent to PODs. This process appears to be required for efficient viral gene expression and DNA replication. We have investigated the initiation of viral DNA replication compartment formation by studying the localization of viral IE proteins, DNA replication proteins, and the PML protein during productive infection. Localization of IE2 adjacent to PODs between 2 and 6 h after infection was confirmed by confocal microscopy of human fibroblasts (HF cells) infected with both wild-type HCMV(Towne) and with an IE1-deletion mutant HCMV(CR208) that fails to disrupt PODs. In HCMV(Towne)-infected HF cells at 24 to 48 h, IE2 also accumulated in newly formed viral DNA replication compartments containing the polymerase processivity factor (UL44), the single-stranded DNA binding protein (SSB; UL57), the UL112-113 accessory protein, and newly incorporated bromodeoxyuridine (BrdU). Double labeling of the HCMV(CR208)-infected HF cells demonstrated that formation of viral DNA replication compartments initiates within granular structures that bud from the periphery of some of the PODs and subsequently coalesce into larger structures that are flanked by PODs. In transient DNA transfection assays, both the N terminus (codons 136 to 290) and the C terminus (codons 379 to 579) of IE2 exon 5, but not the central region between them, were found to be necessary for both the punctate distribution of IE2 and its association with PODs. Like IE2, the UL112-113 accessory replication protein was also distributed in a POD-associated pattern in both DNA-transfected and virus

  10. Heat Shock Protein 70: Roles in Multiple Sclerosis

    PubMed Central

    Mansilla, María José; Montalban, Xavier; Espejo, Carmen

    2012-01-01

    Heat shock proteins (HSP) have long been considered intracellular chaperones that possess housekeeping and cytoprotective functions. Consequently, HSP overexpression was proposed as a potential therapy for neurodegenerative diseases characterized by the accumulation or aggregation of abnormal proteins. Recently, the discovery that cells release HSP with the capacity to trigger proinflammatory as well as immunoregulatory responses has focused attention on investigating the role of HSP in chronic inflammatory autoimmune diseases such as multiple sclerosis (MS). To date, the most relevant HSP is the inducible Hsp70, which exhibits both cytoprotectant and immunoregulatory functions. Several studies have presented contradictory evidence concerning the involvement of Hsp70 in MS or experimental autoimmune encephalomyelitis (EAE), the MS animal model. In this review, we dissect the functions of Hsp70 and discuss the controversial data concerning the role of Hsp70 in MS and EAE. PMID:22669475

  11. Amyloid-β Precursor Protein Modulates the Sorting of Testican-1 and Contributes to Its Accumulation in Brain Tissue and Cerebrospinal Fluid from Patients with Alzheimer Disease.

    PubMed

    Barrera-Ocampo, Alvaro; Arlt, Sönke; Matschke, Jakob; Hartmann, Ursula; Puig, Berta; Ferrer, Isidre; Zürbig, Petra; Glatzel, Markus; Sepulveda-Falla, Diego; Jahn, Holger

    2016-09-01

    The mechanisms leading to amyloid-β (Aβ) accumulation in sporadic Alzheimer disease (AD) are unknown but both increased production or impaired clearance likely contribute to aggregation. To understand the potential roles of the extracellular matrix proteoglycan Testican-1 in the pathophysiology of AD, we used samples from AD patients and controls and an in vitro approach. Protein expression analysis showed increased levels of Testican-1 in frontal and temporal cortex of AD patients; histological analysis showed that Testican-1 accumulates and co-aggregates with Aβ plaques in the frontal, temporal and entorhinal cortices of AD patients. Proteomic analysis identified 10 fragments of Testican-1 in cerebrospinal fluid (CSF) from AD patients. HEK293T cells expressing human wild type or mutant Aβ precursor protein (APP) were transfected with Testican-1. The co-expression of both proteins modified the sorting of Testican-1 into the endocytic pathway leading to its transient accumulation in Golgi, which seemed to affect APP processing, as indicated by reduced Aβ40 and Aβ42 levels in APP mutant cells. In conclusion, patient data reflect a clearance impairment that may favor Aβ accumulation in AD brains and our in vitro model supports the notion that the interaction between APP and Testican-1 may be a key step in the production and aggregation of Aβ species. © 2016 Oxford University Press OR American Association of Neuropathologists.

  12. Coat Protein Regulation by CK2, CPIP, HSP70, and CHIP Is Required for Potato Virus A Replication and Coat Protein Accumulation

    PubMed Central

    Lõhmus, Andres; Hafrén, Anders

    2016-01-01

    ABSTRACT We demonstrate here that both coat protein (CP) phosphorylation by protein kinase CK2 and a chaperone system formed by two heat shock proteins, CP-interacting protein (CPIP) and heat shock protein 70 (HSP70), are essential for potato virus A (PVA; genus Potyvirus) replication and that all these host proteins have the capacity to contribute to the level of PVA CP accumulation. An E3 ubiquitin ligase called carboxyl terminus Hsc70-interacting protein (CHIP), which may participate in the CPIP-HSP70-mediated CP degradation, is also needed for robust PVA gene expression. Residue Thr243 within the CK2 consensus sequence of PVA CP was found to be essential for viral replication and to regulate CP protein stability. Substitution of Thr243 either with a phosphorylation-mimicking Asp (CPADA) or with a phosphorylation-deficient Ala (CPAAA) residue in CP expressed from viral RNA limited PVA gene expression to the level of nonreplicating PVA. We found that both the CPAAA mutant and CK2 silencing inhibited, whereas CPADA mutant and overexpression of CK2 increased, PVA translation. From our previous studies, we know that phosphorylation reduces the RNA binding capacity of PVA CP and an excess of CP fully blocks viral RNA translation. Together, these findings suggest that binding by nonphosphorylated PVA CP represses viral RNA translation, involving further CP phosphorylation and CPIP-HSP70 chaperone activities as prerequisites for PVA replication. We propose that this mechanism contributes to shifting potyvirus RNA from translation to replication. IMPORTANCE Host protein kinase CK2, two host chaperones, CPIP and HSP70, and viral coat protein (CP) phosphorylation at Thr243 are needed for potato virus A (PVA) replication. Our results show that nonphosphorylated CP blocks viral translation, likely via binding to viral RNA. We propose that this translational block is needed to allow time and space for the formation of potyviral replication complex around the 3′ end of

  13. Neuroimaging evidence of brain abnormalities in mastocytosis.

    PubMed

    Boddaert, N; Salvador, A; Chandesris, M O; Lemaître, H; Grévent, D; Gauthier, C; Naggara, O; Georgin-Lavialle, S; Moura, D S; Munsch, F; Jaafari, N; Zilbovicius, M; Lortholary, O; Gaillard, R; Hermine, O

    2017-08-08

    Mastocytosis is a rare disease in which chronic symptoms are related to mast cell accumulation and activation. Patients can display depression-anxiety-like symptoms and cognitive impairment. The pathophysiology of these symptoms may be associated with tissular mast cell infiltration, mast cell mediator release or both. The objective of this study is to perform morphological or functional brain analyses in mastocytosis to identify brain changes associated with this mast cell disorder. We performed a prospective and monocentric comparative study to evaluate the link between subjective psycho-cognitive complaints, psychiatric evaluation and objective medical data using magnetic resonance imaging with morphological and perfusion sequences (arterial spin-labeled perfusion) in 39 patients with mastocytosis compared with 33 healthy controls. In the test cohort of 39 mastocytosis patients with psycho-cognitive complaints, we found that 49% of them had morphological brain abnormalities, mainly abnormal punctuated white matter abnormalities (WMA). WMA were equally frequent in cutaneous mastocytosis patients and indolent forms of systemic mastocytosis patients (42% and 41% of patients with WMA, respectively). Patients with WMA showed increased perfusion in the putamen compared with patients without WMA and with healthy controls. Putamen perfusion was also negatively correlated with depression subscores. This study demonstrates, for we believe the first time, a high prevalence of morphological and functional abnormalities in the brains of mastocytosis patients with neuropsychiatric complaints. Further studies are required to determine the mechanism underpinning this association and to ascertain its specificity.

  14. Abnormal soluble CD40 ligand and C-reactive protein concentrations in hypertension: relationship to indices of angiogenesis.

    PubMed

    Patel, Jeetesh V; Lim, Hoong Sern; Nadar, Sunil; Tayebjee, Muzahir; Hughes, Elizabeth A; Lip, Gregory Yh

    2006-01-01

    Abnormal inflammation, platelets and angiogenesis are involved in the pathophysiology of cardiovascular disease (CVD). To test the hypothesis that concentrations of high sensitive C-reactive protein (CRP, an index of inflammation) and soluble CD40 ligand (sCD40L, an index of platelet activation) would be abnormal in hypertension, and in turn, be related to plasma indices of angiogenesis, the angiopoietins-1 and -2, and vascular endothelial growth factor (VEGF), in addition to the presence or absence of CVD. Using a cross-sectional approach, we measured plasma concentrations of CRP, sCD40L, VEGF, and angiopoietins-1 and -2 in 147 patients with hypertension (85 with a history of CVD event/s, 62 CVD event-free) and 68 age- and sex-matched healthy controls. Concentrations of sCD40L (P = 0.039), CRP (P < 0.001), angiopoietin-1 (P < 0.001), angiopoietin-2 (P = 0.003) and VEGF (P < 0.001) were all greater amongst hypertensive patients than in controls. There were no significant differences in sCD40L and VEGF concentrations between hypertensive individuals with and without CVD events, but CRP and angiopoietin-1 concentrations were significantly greater amongst those with CVD events. On multiple regression analysis, sCD40L was associated with angiopoietin-2 (P = 0.01) and VEGF (P = 0.007) in hypertensive individuals, but no such associations were found within the healthy control group. In patients with hypertension, sCD40L was associated with increased circulating markers of abnormal angiogenesis (angiopoietin-2, VEGF). The interaction between sCD40L and angiogenesis may contribute to the pathophysiology of CVD in hypertension.

  15. Accumulation of 52 kDa glycine rich protein in auxin-deprived strawberry fruits and its role in fruit growth. [Fragaria ananassa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, A.S.N.; Poovaiah, B.W.

    1987-04-01

    Growth of strawberry (Fragaria ananassa Duch) receptacles can be stopped at any stage by deachening the fruits and can be resumed by exogenous application of auxin. In their earlier studies they demonstrated auxin regulated polypeptide changes at different stages of strawberry fruit development. Removal of achenes from fruits to deprive auxin resulted in the accumulation of 52 KDa polypeptide. This polypeptide is associated with cell wall and its concentration is increased in a time-dependent manner in auxin deprived receptacles. Incorporation studies with (/sup 35/S) methionine showed the promotion of labelling of 52 kDa polypeptide in the auxin-deprived receptacles within 12more » h after removal of the achenes. Amino acid analysis revealed that the 52 KDa polypeptide is rich in glycine. Their studies, with normal and mutant strawberry receptacles, indicate that the synthesis and accumulation of this glycine rich protein correlates with cessation of receptacle growth. These results suggest a role for the glycine rich protein in growth.« less

  16. Herpes Simplex Virus 2 Infection Impacts Stress Granule Accumulation

    PubMed Central

    Finnen, Renée L.; Pangka, Kyle R.

    2012-01-01

    Interference with stress granule (SG) accumulation is gaining increased appreciation as a common strategy used by diverse viruses to facilitate their replication and to cope with translational arrest. Here, we examined the impact of infection by herpes simplex virus 2 (HSV-2) on SG accumulation by monitoring the localization of the SG components T cell internal antigen 1 (TIA-1), Ras-GTPase-activating SH3-domain-binding protein (G3BP), and poly(A)-binding protein (PABP). Our results indicate that SGs do not accumulate in HSV-2-infected cells and that HSV-2 can interfere with arsenite-induced SG accumulation early after infection. Surprisingly, SG accumulation was inhibited despite increased phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), implying that HSV-2 encodes previously unrecognized activities designed to maintain translation initiation downstream of eIF2α. SG accumulation was not inhibited in HSV-2-infected cells treated with pateamine A, an inducer that works independently of eIF2α phosphorylation. The SGs that accumulated following pateamine A treatment of infected cells contained G3BP and PABP but were largely devoid of TIA-1. We also identified novel nuclear structures containing TIA-1 that form late in infection. These structures contain the RNA binding protein 68-kDa Src-associated in mitosis (Sam68) and were noticeably absent in infected cells treated with inhibitors of viral DNA replication, suggesting that they arise as a result of late events in the virus replicative cycle. PMID:22623775

  17. The HSP terminator of Arabidopsis thaliana induces a high level of miraculin accumulation in transgenic tomatoes.

    PubMed

    Hirai, Tadayoshi; Kurokawa, Natsuko; Duhita, Narendra; Hiwasa-Tanase, Kyoko; Kato, Kazuhisa; Kato, Ko; Ezura, Hiroshi

    2011-09-28

    High-level accumulation of the target recombinant protein is a significant issue in heterologous protein expression using transgenic plants. Miraculin, a taste-modifying protein, was accumulated in transgenic tomatoes using an expression cassette in which the miraculin gene was expressed by the cauliflower mosaic virus (CaMV) 35S promoter and the heat shock protein (HSP) terminator (MIR-HSP). The HSP terminator was derived from heat shock protein 18.2 in Arabidopsis thaliana . Using this HSP-containing cassette, the miraculin concentration in T0 transgenic tomato lines was 1.4-13.9% of the total soluble protein (TSP), and that in the T1 transgenic tomato line homozygous for the miraculin gene reached 17.1% of the TSP. The accumulation level of the target protein was comparable to levels observed with chloroplast transformation. The high-level accumulation of miraculin in T0 transgenic tomato lines achieved by the HSP terminator was maintained in the successive T1 generation, demonstrating the genetic stability of this accumulation system.

  18. The human epilepsy mutation GABRG2(Q390X) causes chronic subunit accumulation and neurodegeneration.

    PubMed

    Kang, Jing-Qiong; Shen, Wangzhen; Zhou, Chengwen; Xu, Dong; Macdonald, Robert L

    2015-07-01

    Genetic epilepsy and neurodegenerative diseases are two common neurological disorders that are conventionally viewed as being unrelated. A subset of patients with severe genetic epilepsies who have impaired development and often go on to die of their disease respond poorly to anticonvulsant drug therapy, suggesting a need for new therapeutic targets. Previously, we reported that multiple GABAA receptor epilepsy mutations result in protein misfolding and abnormal receptor trafficking. We have now developed a model of a severe human genetic epileptic encephalopathy, the Gabrg2(+/Q390X) knock-in mouse. We found that, in addition to impairing inhibitory neurotransmission, mutant GABAA receptor γ2(Q390X) subunits accumulated and aggregated intracellularly, activated caspase 3 and caused widespread, age-dependent neurodegeneration. These findings suggest that the fundamental protein metabolism and cellular consequences of the epilepsy-associated mutant γ2(Q390X) ion channel subunit are not fundamentally different from those associated with neurodegeneration. Our results have far-reaching relevance for the identification of conserved pathological cascades and mechanism-based therapies that are shared between genetic epilepsies and neurodegenerative diseases.

  19. The Human Epilepsy Mutation GABRG2(Q390X) Causes Chronic Subunit Accumulation and Neurodegeneration

    PubMed Central

    Kang, Jing-Qiong; Shen, Wangzhen; Zhou, Chengwen; Xu, Dong; Macdonald, Robert L.

    2015-01-01

    Genetic epilepsy and neurodegenerative diseases are two common neurological disorders conventionally viewed as being unrelated. A subset of patients with severe genetic epilepsies with impaired development and often death respond poorly to anticonvulsant drug therapy, suggesting a need for new therapeutic targets. Previously, we reported that multiple GABAA receptor epilepsy mutations caused protein misfolding and abnormal receptor trafficking. Here we establish in a novel model of a severe human genetic epileptic encephalopathy, the Gabrg2+/Q390X knock-in mouse, that in addition to impairing inhibitory neurotransmission, mutant GABAA receptor γ2(Q390X) subunits accumulated and aggregated intracellularly, activated caspase 3 and caused widespread, age-dependent neurodegeneration. These novel findings suggest that the fundamental protein metabolism and cellular consequences of the epilepsy-associated mutant γ2(Q390X) ion channel subunit are not fundamentally different from those associated with neurodegeneration. The study has far-reaching significance for identification of conserved pathological cascades and mechanism-based therapies that overlap genetic epilepsies and neurodegenerative diseases. PMID:26005849

  20. THE SOURCE OF LIPID ACCUMULATION IN L CELLS

    PubMed Central

    Bensch, Klaus G.; King, Donald W.; Socolow, Edward L.

    1961-01-01

    Strain L cells accumulate lipid, concurrent with cessation of protein synthesis, in the stationary phase of growth from the extracellular medium and as a result of de novo synthesis. Cells which have been more severely damaged with an amino acid analogue also accumulate lipid from the extracellular medium, but synthesize very little lipid from labeled acetate. The possible roles which lipid accumulation may play in the cell are discussed. PMID:19866577

  1. Antimicrobial proteins in human unstimulated whole saliva in relation to each other, and to measures of health status, dental plaque accumulation and composition.

    PubMed

    Rudney, J D; Krig, M A; Neuvar, E K; Soberay, A H; Iverson, L

    1991-01-01

    Saliva antimicrobial proteins may interact in a common system to influence the oral ecology. Clinical studies of antimicrobial protein action thus may require a multiple-protein approach. Multivariate statistical methods have been used to describe possible patterns of interaction for lysozyme, lactoferrin, salivary peroxidase and secretory IgA in stimulated parotid saliva. However, oral microbes are most likely to encounter antimicrobial proteins in mixed resting saliva. Relationships among levels of lysozyme, lactoferrin, salivary peroxidase, and secretory IgA therefore were investigated in whole saliva from 216 subjects, and an attempt made to relate interperson variation in those proteins to differences in health and status, and dental plaque accumulation and composition. All proteins were significantly (alpha = 0.05) correlated with each other (r = 0.38-0.52, p less than 0.001). There was only one axis of common variation among proteins, and that axis was significantly correlated (p less than 0.001) with total protein (r = 0.84) and flow rate (r = -0.56). That pattern deviated from the previous finding that proteins of acinar origin tended to vary independently from proteins of ductal origin in stimulated parotid saliva. The difference between parotid and whole saliva may reflect constitutive secretion of all proteins at low levels of stimulation. Common variation of unstimulated saliva proteins suggests that antimicrobial actions can be compared in subjects at population extremes. There were no significant associations between antimicrobial proteins in whole saliva and measures of health status or plaque accumulation. However, the proportions of Streptococcus sanguis were significantly correlated with lysozyme (r = -0.26), lactoferrin (r = -0.34), peroxidase (r = -0.30), total protein (r = -0.37), flow rate (r = 0.24) and principal-components scores (r = -0.33) in a subset of subjects (n = 85) where commercial biochemical tests were used to supplement species

  2. Essentiality Is a Strong Determinant of Protein Rates of Evolution during Mutation Accumulation Experiments in Escherichia coli

    PubMed Central

    Alvarez-Ponce, David; Sabater-Muñoz, Beatriz; Toft, Christina; Ruiz-González, Mario X.; Fares, Mario A.

    2016-01-01

    Abstract The Neutral Theory of Molecular Evolution is considered the most powerful theory to understand the evolutionary behavior of proteins. One of the main predictions of this theory is that essential proteins should evolve slower than dispensable ones owing to increased selective constraints. Comparison of genomes of different species, however, has revealed only small differences between the rates of evolution of essential and nonessential proteins. In some analyses, these differences vanish once confounding factors are controlled for, whereas in other cases essentiality seems to have an independent, albeit small, effect. It has been argued that comparing relatively distant genomes may entail a number of limitations. For instance, many of the genes that are dispensable in controlled lab conditions may be essential in some of the conditions faced in nature. Moreover, essentiality can change during evolution, and rates of protein evolution are simultaneously shaped by a variety of factors, whose individual effects are difficult to isolate. Here, we conducted two parallel mutation accumulation experiments in Escherichia coli, during 5,500–5,750 generations, and compared the genomes at different points of the experiments. Our approach (a short-term experiment, under highly controlled conditions) enabled us to overcome many of the limitations of previous studies. We observed that essential proteins evolved substantially slower than nonessential ones during our experiments. Strikingly, rates of protein evolution were only moderately affected by expression level and protein length. PMID:27566759

  3. Promyelocytic Leukemia (Pml) Nuclear Bodies Are Protein Structures That Do Not Accumulate RNA

    PubMed Central

    Boisvert, François-Michel; Hendzel, Michael J.; Bazett-Jones, David P.

    2000-01-01

    The promyelocytic leukemia (PML) nuclear body (also referred to as ND10, POD, and Kr body) is involved in oncogenesis and viral infection. This subnuclear domain has been reported to be rich in RNA and a site of nascent RNA synthesis, implicating its direct involvement in the regulation of gene expression. We used an analytical transmission electron microscopic method to determine the structure and composition of PML nuclear bodies and the surrounding nucleoplasm. Electron spectroscopic imaging (ESI) demonstrates that the core of the PML nuclear body is a dense, protein-based structure, 250 nm in diameter, which does not contain detectable nucleic acid. Although PML nuclear bodies contain neither chromatin nor nascent RNA, newly synthesized RNA is associated with the periphery of the PML nuclear body, and is found within the chromatin-depleted region of the nucleoplasm immediately surrounding the core of the PML nuclear body. We further show that the RNA does not accumulate in the protein core of the structure. Our results dismiss the hypothesis that the PML nuclear body is a site of transcription, but support the model in which the PML nuclear body may contribute to the formation of a favorable nuclear environment for the expression of specific genes. PMID:10648561

  4. Up-regulated Ectonucleotidases in Fas-Associated Death Domain Protein- and Receptor-Interacting Protein Kinase 1-Deficient Jurkat Leukemia Cells Counteract Extracellular ATP/AMP Accumulation via Pannexin-1 Channels during Chemotherapeutic Drug-Induced Apoptosis.

    PubMed

    Boyd-Tressler, Andrea M; Lane, Graham S; Dubyak, George R

    2017-07-01

    Pannexin-1 (Panx1) channels mediate the efflux of ATP and AMP from cancer cells in response to induction of extrinsic apoptosis by death receptors or intrinsic apoptosis by chemotherapeutic agents. We previously described the accumulation of extracellular ATP /AMP during chemotherapy-induced apoptosis in Jurkat human leukemia cells. In this study, we compared how different signaling pathways determine extracellular nucleotide pools in control Jurkat cells versus Jurkat lines that lack the Fas-associated death domain (FADD) or receptor-interacting protein kinase 1 (RIP1) cell death regulatory proteins. Tumor necrosis factor- α induced extrinsic apoptosis in control Jurkat cells and necroptosis in FADD-deficient cells; treatment of both lines with chemotherapeutic drugs elicited similar intrinsic apoptosis. Robust extracellular ATP/AMP accumulation was observed in the FADD-deficient cells during necroptosis, but not during apoptotic activation of Panx1 channels. Accumulation of extracellular ATP/AMP was similarly absent in RIP1-deficient Jurkat cells during apoptotic responses to chemotherapeutic agents. Apoptotic activation triggered equivalent proteolytic gating of Panx1 channels in all three Jurkat cell lines. The differences in extracellular ATP/AMP accumulation correlated with cell-line-specific expression of ectonucleotidases that metabolized the released ATP/AMP. CD73 mRNA, and α β -methylene-ADP-inhibitable ecto-AMPase activity were elevated in the FADD-deficient cells. In contrast, the RIP1-deficient cells were defined by increased expression of tartrate-sensitive prostatic acid phosphatase as a broadly acting ectonucleotidase. Thus, extracellular nucleotide accumulation during regulated tumor cell death involves interplay between ATP/AMP efflux pathways and different cell-autonomous ectonucleotidases. Differential expression of particular ectonucleotidases in tumor cell variants will determine whether chemotherapy-induced activation of Panx1 channels

  5. Cycling of the signaling protein phospholipase D through cilia requires the BBSome only for the export phase

    PubMed Central

    Brown, Jason M.; Sampaio, Julio L.; Craft, Julie M.; Shevchenko, Andrej; Evans, James E.; Witman, George B.

    2013-01-01

    The BBSome is a complex of seven proteins, including BBS4, that is cycled through cilia by intraflagellar transport (IFT). Previous work has shown that the membrane-associated signaling protein phospholipase D (PLD) accumulates abnormally in cilia of Chlamydomonas reinhardtii bbs mutants. Here we show that PLD is a component of wild-type cilia but is enriched ∼150-fold in bbs4 cilia; this accumulation occurs progressively over time and results in altered ciliary lipid composition. When wild-type BBSomes were introduced into bbs cells, PLD was rapidly removed from the mutant cilia, indicating the presence of an efficient BBSome-dependent mechanism for exporting ciliary PLD. This export requires retrograde IFT. Importantly, entry of PLD into cilia is BBSome and IFT independent. Therefore, the BBSome is required only for the export phase of a process that continuously cycles PLD through cilia. Another protein, carbonic anhydrase 6, is initially imported normally into bbs4 cilia but lost with time, suggesting that its loss is a secondary effect of BBSome deficiency. PMID:23589493

  6. Accumulation of Amyloid β-Protein in the Low-Density Membrane Domain Accurately Reflects the Extent of β-Amyloid Deposition in the Brain

    PubMed Central

    Oshima, Noriko; Morishima-Kawashima, Maho; Yamaguchi, Haruyasu; Yoshimura, Masahiro; Sugihara, Shiro; Khan, Karen; Games, Dora; Schenk, Dale; Ihara, Yasuo

    2001-01-01

    To learn more about the process of amyloid β-protein (Aβ) deposition in the brain, human prefrontal cortices were fractionated by sucrose density gradient centrifugation, and the Aβ content in each fraction was quantified by a two-site enzyme-linked immunosorbent assay. The fractionation protocol revealed two pools of insoluble Aβ. One corresponded to a low-density membrane domain; the other was primarily composed of extracellular Aβ deposits in those cases in which Aβ accumulated to significant levels. Aβ42 levels in the low-density membrane domain were proportional to the extent of total Aβ42 accumulation, which is known to correlate well with overall amyloid burden. In PDAPP mice that form senile plaques and accumulate Aβ in a similar manner to aging humans, Aβ42 accumulation in the low-density membrane domain also increased as Aβ deposition progressed with aging. These observations indicate that the Aβ42 associated with low-density membrane domains is tightly coupled with the process of extracellular Aβ deposition. PMID:11395399

  7. Temporal resolution of misfolded prion protein transport, accumulation, glial activation, and neuronal death in the retinas of mice inoculated with scrapie

    USDA-ARS?s Scientific Manuscript database

    Currently, there is a lack of pathologic landmarks to describe the progression of prion disease in vivo. The goal of this work was to determine the temporal relationship between the transport of misfolded prion protein from the brain to the retina, the accumulation of PrPSc in the retina, the respon...

  8. 20-Hydroxyecdysone stimulates nuclear accumulation of BmNep1, a nuclear ribosome biogenesis-related protein in the silkworm, Bombyx mori.

    PubMed

    Ji, M-M; Liu, A-Q; Sima, Y-H; Xu, S-Q

    2016-10-01

    The pathway of communication between endocrine hormones and ribosome biogenesis critical for physiological adaptation is largely unknown. Nucleolar essential protein 1 (Nep1) is an essential gene for ribosome biogenesis and is functionally conserved in many in vertebrate and invertebrate species. In this study, we cloned Bombyx mori Nep1 (BmNep1) due to its high expression in silk glands of silkworms on day 3 of the fifth instar. We found that BmNep1 mRNA and protein levels were upregulated in silk glands during fourth-instar ecdysis and larval-pupal metamorphosis. By immunoprecipitation with the anti-BmNep1 antibody and liquid chromatography-tandem mass spectrometry analyses, it was shown that BmNep1 probably interacts with proteins related to ribosome structure formation. Immunohistochemistry, biochemical fractionation and immunocytochemistry revealed that BmNep1 is localized to the nuclei in Bombyx cells. Using BmN cells originally derived from ovaries, we demonstrated that 20-hydroxyecdysone (20E) induced BmNep1 expression and stimulated nuclear accumulation of BmNep1. Under physiological conditions, BmNep1 was also upregulated in ovaries during larval-pupal metamorphosis. Overall, our results indicate that the endocrine hormone 20E facilitates nuclear accumulation of BmNep1, which is involved in nuclear ribosome biogenesis in Bombyx. © 2016 The Royal Entomological Society.

  9. Accumulation of polyubiquitylated proteins in response to Ala-Ala-Phe-chloromethylketone is independent of the inhibition of Tripeptidyl peptidase II.

    PubMed

    Villasevil, Eugenia M; Guil, Sara; López-Ferreras, Lorena; Sánchez, Carlos; Del Val, Margarita; Antón, Luis C

    2010-09-01

    In the present study we have addressed the issue of proteasome independent cytosolic protein degradation. Tripeptidyl peptidase II (TPPII) has been suggested to compensate for a reduced proteasome activity, partly based on evidence using the inhibitor Ala-Ala-Phe-chloromethylketone (AAF-cmk). Here we show that AAF-cmk induces the formation of polyubiquitin-containing accumulations in osteosarcoma and Burkitt's lymphoma cell lines. These accumulations meet many of the landmarks of the aggresomes that form after proteasome inhibition. Using a combination of experiments with chemical inhibitors and interference of gene expression, we show that TPPII inhibition is not responsible for these accumulations. Our evidence suggests that the relevant target(s) is/are in the ubiquitin-proteasome pathway, most likely upstream the proteasome. We obtained evidence supporting this model by inhibition of Hsp90, which also acts upstream the proteasome. Although our data suggest that Hsp90 is not a target of AAF-cmk, its inhibition resulted in accumulations similar to those obtained with AAF-cmk. Therefore, our results question the proposed role for TPPII as a prominent alternative to the proteasome in cellular proteolysis. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Anderson's disease (chylomicron retention disease): a new mutation in the SARA2 gene associated with muscular and cardiac abnormalities.

    PubMed

    Silvain, M; Bligny, D; Aparicio, T; Laforêt, P; Grodet, A; Peretti, N; Ménard, D; Djouadi, F; Jardel, C; Bégué, J M; Walker, F; Schmitz, J; Lachaux, A; Aggerbeck, L P; Samson-Bouma, M E

    2008-12-01

    Anderson's disease (AD) or chylomicron retention disease (CMRD) is a rare hereditary lipid malabsorption syndrome linked to SARA2 gene mutations. We report in this study a novel mutation in two sisters for which the Sar1b protein is predicted to be truncated by 32 amino acids at its carboxyl-terminus. Because the SARA2 gene is also expressed in the muscle, heart, liver and placenta, extraintestinal clinical manifestations may exist. For the first time, we describe in this study in the two sisters muscular as well as cardiac abnormalities that could be related to the reported expression of SARA2 in these tissues. We also evaluated six other patients for potential manifestations of the SARA2 mutation. The creatine phosphokinase levels were increased in all patients [1.5-9.4 x normal (N)] and transaminases were moderately elevated in five of the eight patients (1.2-2.6 x N), probably related to muscle disease rather than to liver dysfunction. A decreased ejection fraction occurred in one patient (40%, N: 60%). The muscle, liver and placental tissues that were examined had no specific abnormalities and, in particular, no lipid accumulation. These results suggest that myolysis and other extraintestinal abnormalities can occur in AD/CMRD and that the clinical evaluation of patients should reflect this.

  11. Distinct kinetics of DNA repair protein accumulation at DNA lesions and cell cycle-dependent formation of γH2AX- and NBS1-positive repair foci.

    PubMed

    Suchánková, Jana; Kozubek, Stanislav; Legartová, Soňa; Sehnalová, Petra; Küntziger, Thomas; Bártová, Eva

    2015-12-01

    The DNA damage response is a fundamental, well-regulated process that occurs in the genome to recognise DNA lesions. Here, we studied kinetics of proteins involved in DNA repair pathways and their recruitment to DNA lesions during the cell cycle. In non-irradiated and irradiated cells, we analysed the distribution pattern and spatiotemporal dynamics of γH2AX, 53BP1, BMI1, MDC1, NBS1, PCNA, coilin and BRCA1 proteins. We observed that spontaneous and irradiation-induced foci (IRIF) demonstrated a high abundance of phosphorylated H2AX, which was consistent with 53BP1 and BMI1 protein accumulation. However, NBS1 and MDC1 proteins were recruited to nuclear bodies (NBs) to a lesser extent. Irradiation by γ-rays significantly increased the number of 53BP1- and γH2AX-positive IRIF, but cell cycle-dependent differences were only observed for γH2AX-positive foci in both non-irradiated and γ-irradiated cells. In non-irradiated cells, the G2 phase was characterised by an increased number of spontaneous γH2AX-foci; this increase was more pronounced after γ-irradiation. Cells in G2 phase had the highest number of γH2AX-positive foci. Similarly, γ-irradiation increased the number of NBS1-positive NBs only in G2 phase. Moreover, NBS1 accumulated in nucleoli after γ-irradiation showed the slowest recovery after photobleaching. Analysis of protein accumulation kinetics at locally induced DNA lesions showed that in HeLa cells, BMI1, PCNA and coilin were rapidly recruited to the lesions, 10-15 s after UVA-irradiation, whereas among the other proteins studied, BRCA1 demonstrated the slowest recruitment: BRCA1 appeared at the lesion 20 min after local micro-irradiation by UVA laser. We show that the kinetics of the accumulation of selected DNA repair-related proteins is protein specific at locally induced DNA lesions, and that the formation of γH2AX- and NBS1-positive foci, but not 53BP1-positive NBs, is cell cycle dependent in HeLa cells. Moreover, γH2AX is the most

  12. Protein-losing enteropathy

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007338.htm Protein-losing enteropathy To use the sharing features on this page, please enable JavaScript. Protein-losing enteropathy is an abnormal loss of protein ...

  13. Accumulation of p21 proteins at DNA damage sites independent of p53 and core NHEJ factors following irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koike, Manabu, E-mail: m_koike@nirs.go.jp; Yutoku, Yasutomo; Graduate School of Science, Chiba University, Chiba 263-8522

    2011-08-19

    Highlights: {yields} p21 accumulated rapidly at laser-irradiated sites via its C-terminal region. {yields} p21 colocalized with the DSB marker {gamma}-H2AX and the DSB sensor Ku80. {yields} Accumulation of p21 is dependent on PCNA, but not p53 and the NHEJ core factors. {yields} Accumulation activity of p21 was conserved among human and animal cells. {yields} p21 is a useful tool as a detection marker of DNA damaged sites. -- Abstract: The cyclin-dependent kinase (CDK) inhibitor p21 plays key roles in p53-dependent DNA-damage responses, i.e., cell cycle checkpoints, senescence, or apoptosis. p21 might also play a role in DNA repair. p21 focimore » arise at heavy-ion-irradiated DNA-double-strand break (DSB) sites, which are mainly repaired by nonhomologous DNA-end-joining (NHEJ). However, no mechanisms of p21 accumulation at double-strand break (DSB) sites have been clarified in detail. Recent works indicate that Ku70 and Ku80 are essential for the accumulation of other NHEJ core factors, e.g., DNA-PKcs, XRCC4 and XLF, and other DNA damage response factors, e.g., BRCA1. Here, we show that p21 foci arise at laser-irradiated sites in cells from various tissues from various species. The accumulation of EGFP-p21 was detected in not only normal cells, but also transformed or cancer cells. Our results also showed that EGFP-p21 accumulated rapidly at irradiated sites, and colocalized with the DSB marker {gamma}-H2AX and with the DSB sensor protein Ku80. On the other hand, the accumulation occurred in Ku70-, Ku80-, or DNA-PKcs-deficient cell lines and in human papillomavirus 18-positive cells, whereas the p21 mutant without the PCNA-binding region (EGFP-p21(1-146)) failed to accumulate at the irradiated sites. These findings suggest that the accumulation of p21, but not functional p53 and the NHEJ core factors, is dependent on PCNA. These findings also suggest that the accumulation activity of p21 at DNA damaged sites is conserved among human and animal cells, and p21 is

  14. Pericellular innervation of neurons expressing abnormally hyperphosphorylated tau in the hippocampal formation of Alzheimer's disease patients.

    PubMed

    Blazquez-Llorca, Lidia; Garcia-Marin, Virginia; Defelipe, Javier

    2010-01-01

    Neurofibrillary tangles (NFT) represent one of the main neuropathological features in the cerebral cortex associated with Alzheimer's disease (AD). This neurofibrillary lesion involves the accumulation of abnormally hyperphosphorylated or abnormally phosphorylated microtubule-associated protein tau into paired helical filaments (PHF-tau) within neurons. We have used immunocytochemical techniques and confocal microscopy reconstructions to examine the distribution of PHF-tau-immunoreactive (ir) cells, and their perisomatic GABAergic and glutamatergic innervations in the hippocampal formation and adjacent cortex of AD patients. Furthermore, correlative light and electron microscopy was employed to examine these neurons and the perisomatic synapses. We observed two patterns of staining in PHF-tau-ir neurons, pattern I (without NFT) and pattern II (with NFT), the distribution of which varies according to the cortical layer and area. Furthermore, the distribution of both GABAergic and glutamatergic terminals around the soma and proximal processes of PHF-tau-ir neurons does not seem to be altered as it is indistinguishable from both control cases and from adjacent neurons that did not contain PHF-tau. At the electron microscope level, a normal looking neuropil with typical symmetric and asymmetric synapses was observed around PHF-tau-ir neurons. These observations suggest that the synaptic connectivity around the perisomatic region of these PHF-tau-ir neurons was apparently unaltered.

  15. Arabidopsis SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation

    DOE PAGES

    Cai, Yingqi; Goodman, Joel M.; Pyc, Michal; ...

    2015-09-01

    The lipodystrophy protein SEIPIN is important for lipid droplet (LD) biogenesis in human and yeast cells. In contrast with the single SEIPIN genes in humans and yeast, there are three SEIPIN homologs in Arabidopsis thaliana, designated SEIPIN1, SEIPIN2, and SEIPIN3. Essentially nothing is known about the functions of SEIPIN homologs in plants. Here, a yeast (Saccharomyces cerevisiae) SEIPIN deletion mutant strain and a plant (Nicotiana benthamiana) transient expression system were used to test the ability of Arabidopsis SEIPINs to influence LD morphology. In both species, expression of SEIPIN1 promoted accumulation of large-sized lipid droplets, while expression of SEIPIN2 and especiallymore » SEIPIN3 promoted small LDs. Arabidopsis SEIPINs increased triacylglycerol levels and altered composition. In tobacco, endoplasmic reticulum (ER)-localized SEIPINs reorganized the normal, reticulated ER structure into discrete ER domains that colocalized with LDs. N-terminal deletions and swapping experiments of SEIPIN1 and 3 revealed that this region of SEIPIN determines LD size. Ectopic overexpression of SEIPIN1 in Arabidopsis resulted in increased numbers of large LDs in leaves, as well as in seeds, and increased seed oil content by up to 10% over wild-type seeds. By contrast, RNAi suppression of SEIPIN1 resulted in smaller seeds and, as a consequence, a reduction in the amount of oil per seed compared with the wild type. Finally, overall, our results indicate that Arabidopsis SEIPINs are part of a conserved LD biogenesis machinery in eukaryotes and that in plants these proteins may have evolved specialized roles in the storage of neutral lipids by differentially modulating the number and sizes of lipid droplets.« less

  16. Essentiality Is a Strong Determinant of Protein Rates of Evolution during Mutation Accumulation Experiments in Escherichia coli.

    PubMed

    Alvarez-Ponce, David; Sabater-Muñoz, Beatriz; Toft, Christina; Ruiz-González, Mario X; Fares, Mario A

    2016-09-26

    The Neutral Theory of Molecular Evolution is considered the most powerful theory to understand the evolutionary behavior of proteins. One of the main predictions of this theory is that essential proteins should evolve slower than dispensable ones owing to increased selective constraints. Comparison of genomes of different species, however, has revealed only small differences between the rates of evolution of essential and nonessential proteins. In some analyses, these differences vanish once confounding factors are controlled for, whereas in other cases essentiality seems to have an independent, albeit small, effect. It has been argued that comparing relatively distant genomes may entail a number of limitations. For instance, many of the genes that are dispensable in controlled lab conditions may be essential in some of the conditions faced in nature. Moreover, essentiality can change during evolution, and rates of protein evolution are simultaneously shaped by a variety of factors, whose individual effects are difficult to isolate. Here, we conducted two parallel mutation accumulation experiments in Escherichia coli, during 5,500-5,750 generations, and compared the genomes at different points of the experiments. Our approach (a short-term experiment, under highly controlled conditions) enabled us to overcome many of the limitations of previous studies. We observed that essential proteins evolved substantially slower than nonessential ones during our experiments. Strikingly, rates of protein evolution were only moderately affected by expression level and protein length. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Protein electrophoresis - serum

    MedlinePlus

    ... digestive tract to absorb proteins ( protein-losing enteropathy ) Malnutrition Kidney disorder called nephrotic syndrome Scarring of the ... may indicate: Abnormally low level of LDL cholesterol Malnutrition Increased gamma globulin proteins may indicate: Bone marrow ...

  18. A correlation of reactive oxygen species accumulation by depletion of superoxide dismutases with age-dependent impairment in the nervous system and muscles of Drosophila adults.

    PubMed

    Oka, Saori; Hirai, Jun; Yasukawa, Takashi; Nakahara, Yasuyuki; Inoue, Yoshihiro H

    2015-08-01

    The theory that accumulation of reactive oxygen species (ROS) in internal organs is a major promoter of aging has been considered negatively. However, it is still controversial whether overexpression of superoxide dismutases (SODs), which remove ROS, extends the lifespan in Drosophila adults. We examined whether ROS accumulation by depletion of Cu/Zn-SOD (SOD1) or Mn-SOD (SOD2) influenced age-related impairment of the nervous system and muscles in Drosophila. We confirmed the efficient depletion of Sod1 and Sod2 through RNAi and ROS accumulation by monitoring of ROS-inducible gene expression. Both RNAi flies displayed accelerated impairment of locomotor activity with age and shortened lifespan. Similarly, adults with nervous system-specific depletion of Sod1 or Sod2 also showed reduced lifespan. We then found an accelerated loss of dopaminergic neurons in the flies with suppressed SOD expression. A half-dose reduction of three pro-apoptotic genes resulted in a significant suppression of the neuronal loss, suggesting that apoptosis was involved in the neuronal loss caused by SOD silencing. In addition, depletion of Sod1 or Sod2 in musculature is also associated with enhancement of age-related locomotion impairment. In indirect flight muscles from SOD-depleted adults, abnormal protein aggregates containing poly-ubiquitin accumulated at an early adult stage and continued to increase as the flies aged. Most of these protein aggregates were observed between myofibril layers. Moreover, immuno-electron microscopy indicated that the aggregates were predominantly localized in damaged mitochondria. These findings suggest that muscular and neuronal ROS accumulation may have a significant effect on age-dependent impairment of the Drosophila adults.

  19. Accumulation of p62 in degenerated spinal cord under chronic mechanical compression

    PubMed Central

    Tanabe, Fumito; Yone, Kazunori; Kawabata, Naoya; Sakakima, Harutoshi; Matsuda, Fumiyo; Ishidou, Yasuhiro; Maeda, Shingo; Abematsu, Masahiko; Komiya, Setsuro

    2011-01-01

    Intracellular accumulation of altered proteins, including p62 and ubiquitinated proteins, is the basis of most neurodegenerative disorders. The relationship among the accumulation of altered proteins, autophagy, and spinal cord dysfunction by cervical spondylotic myelopathy has not been clarified. We examined the expression of p62 and autophagy markers in the chronically compressed spinal cord of tiptoe-walking Yoshimura mice. In addition, we examined the expression and roles of p62 and autophagy in hypoxic neuronal cells. Western blot analysis showed the accumulation of p62, ubiquitinated proteins, and microtubule-associated protein 1 light chain 3 (LC3), an autophagic marker, in the compressed spinal cord. Immunohistochemical examinations showed that p62 accumulated in neurons, axons, astrocytes, and oligodendrocytes. Electron microscopy showed the expression of autophagy markers, including autolysosomes and autophagic vesicles, in the compressed spinal cord. These findings suggest the presence of p62 and autophagy in the degenerated compressed spinal cord. Hypoxic stress increased the expression of p62, ubiquitinated proteins, and LC3-II in neuronal cells. In addition, LC3 turnover assay and GFP-LC3 cleavage assay showed that hypoxic stress increased autophagy flux in neuronal cells. These findings suggest that hypoxic stress induces accumulation of p62 and autophagy in neuronal cells. The forced expression of p62 decreased the number of neuronal cells under hypoxic stress. These findings suggest that p62 accumulation under hypoxic stress promotes neuronal cell death. Treatment with 3-methyladenine, an autophagy inhibitor decreased the number of neuronal cells, whereas lithium chloride, an autophagy inducer increased the number of cells under hypoxic stress. These findings suggest that autophagy promotes neuronal cell survival under hypoxic stress. Our findings suggest that pharmacological inducers of autophagy may be useful for treating cervical spondylotic

  20. GOLGI TRANSPORT 1B Regulates Protein Export from the Endoplasmic Reticulum in Rice Endosperm Cells[OPEN

    PubMed Central

    Liu, Feng; Wang, Yunlong; Liu, Xi; Wang, Di; Zhu, Xiaopin; Jing, Ruonan; Wu, Mingming; Hao, Yuanyuan; Jiang, Ling; Wang, Chunming

    2016-01-01

    Coat protein complex II (COPII) mediates the first step of anterograde transport of newly synthesized proteins from the endoplasmic reticulum (ER) to other endomembrane compartments in eukaryotes. A group of evolutionarily conserved proteins (Sar1, Sec23, Sec24, Sec13, and Sec31) constitutes the basic COPII coat machinery; however, the details of how the COPII coat assembly is regulated remain unclear. Here, we report a protein transport mutant of rice (Oryza sativa), named glutelin precursor accumulation4 (gpa4), which accumulates 57-kD glutelin precursors and forms two types of ER-derived abnormal structures. GPA4 encodes the evolutionarily conserved membrane protein GOT1B (also known as GLUP2), homologous to the Saccharomyces cerevisiae GOT1p. The rice GOT1B protein colocalizes with Arabidopsis thaliana Sar1b at Golgi-associated ER exit sites (ERESs) when they are coexpressed in Nicotiana benthamiana. Moreover, GOT1B physically interacts with rice Sec23, and both proteins are present in the same complex(es) with rice Sar1b. The distribution of rice Sar1 in the endomembrane system, its association with rice Sec23c, and the ERES organization pattern are significantly altered in the gpa4 mutant. Taken together, our results suggest that GOT1B plays an important role in mediating COPII vesicle formation at ERESs, thus facilitating anterograde transport of secretory proteins in plant cells. PMID:27803308

  1. Discovery of a vezatin-like protein for dynein-mediated early endosome transport

    PubMed Central

    Yao, Xuanli; Arst, Herbert N.; Wang, Xiangfeng; Xiang, Xin

    2015-01-01

    Early endosomes are transported bidirectionally by cytoplasmic dynein and kinesin-3, but how the movements are regulated in vivo remains unclear. Here our forward genetic study led to the discovery of VezA, a vezatin-like protein in Aspergillus nidulans, as a factor critical for early endosome distribution. Loss of vezA causes an abnormal accumulation of early endosomes at the hyphal tip, where microtubule plus ends are located. This abnormal accumulation depends on kinesin-3 and is due to a decrease in the frequency but not the speed of dynein-mediated early endosome movement. VezA-GFP signals are enriched at the hypha tip in an actin-dependent manner but are not obviously associated with early endosomes, thus differing from the early endosome association of the cargo adapter HookA (Hook in A. nidulans). On loss of VezA, HookA associates normally with early endosomes, but the interaction between dynein-dynactin and the early-endosome-bound HookA is significantly decreased. However, VezA is not required for linking dynein-dynactin to the cytosolic ∆C-HookA, lacking the cargo-binding C-terminus. These results identify VezA as a novel regulator required for the interaction between dynein and the Hook-bound early endosomes in vivo. PMID:26378255

  2. Decreased mTOR signalling reduces mitochondrial ROS in brain via accumulation of the telomerase protein TERT within mitochondria.

    PubMed

    Miwa, Satomi; Czapiewski, Rafal; Wan, Tengfei; Bell, Amy; Hill, Kirsten N; von Zglinicki, Thomas; Saretzki, Gabriele

    2016-10-22

    Telomerase in its canonical function maintains telomeres in dividing cells. In addition, the telomerase protein TERT has non-telomeric functions such as shuttling to mitochondria resulting in a decreased oxidative stress, DNA damage and apoptosis. TERT protein persists in adult neurons and can co-localise to mitochondria under various stress conditions. We show here that TERT expression decreased in mouse brain during aging while release of reactive oxygen species (ROS) from the mitochondrial electron transport chain increased. Dietary restriction (DR) caused accumulation of TERT protein in mouse brain mitochondria correlating to decreased ROS release and improved learning and spatial short-term memory. Decreased mTOR signalling is a mediator of DR. Accordingly, feeding mice with rapamycin increased brain mitochondrial TERT and reduced ROS release. Importantly, the beneficial effects of rapamycin on mitochondrial function were absent in brains and fibroblasts from first generation TERT -/- mice, and when TERT shuttling was inhibited by the Src kinase inhibitor bosutinib. Taken together, our data suggests that the mTOR signalling pathway impinges on the mitochondrial localisation of TERT protein, which might in turn contribute to the protection of the brain by DR or rapamycin against age-associated mitochondrial ROS increase and cognitive decline.

  3. Deficiency of a membrane skeletal protein, 4.1G, results in myelin abnormalities in the peripheral nervous system.

    PubMed

    Saitoh, Yurika; Ohno, Nobuhiko; Yamauchi, Junji; Sakamoto, Takeharu; Terada, Nobuo

    2017-12-01

    We previously demonstrated that a membrane skeletal molecular complex, 4.1G-membrane palmitoylated protein 6 (MPP6)-cell adhesion molecule 4, is incorporated in Schwann cells in the peripheral nervous system (PNS). In this study, we evaluated motor activity and myelin ultrastructures in 4.1G-deficient (-/-) mice. When suspended by the tail, aged 4.1G -/- mice displayed spastic leg extension, especially after overwork. Motor-conduction velocity in 4.1G -/- mice was slower than that in wild-type mice. Using electron microscopy, 4.1G -/- mice exhibited myelin abnormalities: myelin was thicker in internodes, and attachment of myelin tips was distorted in some paranodes. In addition, we found a novel function of 4.1G for sorting a scaffold protein, Lin7, due to disappearance of the immunolocalization and reduction of the production of Lin7c and Lin7a in 4.1G -/- sciatic nerves, as well as the interaction of MPP6 and Lin7 with immunoprecipitation. Thus, we herein propose 4.1G functions as a signal for proper formation of myelin in PNS.

  4. Proteins containing expanded polyglutamine tracts and neurodegenerative disease

    PubMed Central

    Adegbuyiro, Adewale; Sedighi, Faezeh; Pilkington, Albert W.; Groover, Sharon; Legleiter, Justin

    2017-01-01

    Several hereditary neurological and neuromuscular diseases are caused by an abnormal expansion of trinucleotide repeats. To date, there have been ten of these trinucleotide repeat disorders associated with an expansion of the codon CAG encoding glutamine (Q). For these polyglutamine (polyQ) diseases, there is a critical threshold length of the CAG repeat required for disease, and further expansion beyond this threshold is correlated with age of onset and symptom severity. PolyQ expansion in the translated proteins promotes their self-assembly into a variety of oligomeric and fibrillar aggregate species that accumulate into the hallmark proteinaceous inclusion bodies associated with each disease. Here, we review aggregation mechanisms of proteins with expanded polyQ-tracts, structural consequences of expanded polyQ ranging from monomers to fibrillar aggregates, the impact of protein context and post translational modifications on aggregation, and a potential role for lipids membranes in aggregation. As the pathogenic mechanisms that underlie these disorders are often classified as either a gain of toxic function or loss of normal protein function, some toxic mechanisms associated with mutant polyQ tracts will also be discussed. PMID:28170216

  5. Clusterin deficiency induces lipid accumulation and tissue damage in kidney.

    PubMed

    Heo, Jung-Yoon; Kim, Ji-Eun; Dan, Yongwook; Kim, Yong-Woon; Kim, Jong-Yeon; Cho, Kyu Hyang; Bae, Young Kyung; Im, Seung-Soon; Liu, Kwang-Hyeon; Song, In-Hwan; Kim, Jae-Ryong; Lee, In-Kyu; Park, So-Young

    2018-05-01

    Clusterin is a secretory glycoprotein that is involved in multiple physiopathological processes, including lipid metabolism. Previous studies have shown that clusterin prevents hepatic lipid accumulation via suppression of sterol regulatory element-binding protein (SREBP) 1. In this study, we examined the role of clusterin in renal lipid accumulation in clusterin-knockout mice and NRK52e tubular epithelial cells. Clusterin deficiency increased the expression of SREBP1 and its target genes and decreased malonyl-CoA decarboxylase protein levels in the kidney. Expression of the endocytic receptor, megalin, and scavenger receptor class A was increased in clusterin-deficient mice. Functional analysis of lipid metabolism also revealed that lipid uptake and triglyceride synthesis were increased and fatty acid oxidation was reduced, leading to increased lipid accumulation in clusterin-deficient mice. These phenomena were accompanied by mesangial expansion, fibrosis and increased urinary protein-to-creatinine ratio. High-fat feeding aggravated these clusterin deficiency-induced pathological changes. Clusterin knockdown in NRK52e cells increased lipogenic gene expression and lipid levels, whereas overexpression of clusterin by treatment with adenovirus or recombinant clusterin protein suppressed lipogenic gene expression and lipid levels. Transforming growth factor-beta 1 (TGFB1) expression increased in the kidney of clusterin-deficient mice and suppression of TGFB1 in NRK52e cells suppressed lipid accumulation. These results suggest that clusterin deficiency induces renal lipid accumulation by dysregulating the expression of lipid metabolism-related factors and TGFB1, thereby leading to chronic kidney disease. Hence, clusterin may serve as a therapeutic target for lipid-induced chronic kidney disease. © 2018 Society for Endocrinology.

  6. Pulmonary accumulation of polymorphonuclear leukocytes in the adult respiratory distress syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powe, J.E.; Short, A.; Sibbald, W.J.

    1982-11-01

    The polymorphonuclear leukocyte (PMN) plays an integral role in the development of permeability pulmonary edema associated with the adult respiratory distress syndrome (ARDS). This report describes 3 patients with ARDS secondary to systemic sepsis who demonstrated an abnormal diffuse accumulation of Indium (/sup 111/In)-labeled PMNs in their lungs, without concomitant clinical or laboratory evidence of a primary chest infection. In one patient, the accumulation of the pulmonary activity during an initial pass suggested that this observation was related to diffuse leukoaggregation within the pulmonary microvasculature. A 4th patient with ARDS was on high-dose corticosteroids at the time of a similarmore » study, and showed no pulmonary accumulation of PMNs, suggesting a possible reason for the reported beneficial effect of corticosteroids in human ARDS.« less

  7. Nipah Virus V Protein Evades Alpha and Gamma Interferons by Preventing STAT1 and STAT2 Activation and Nuclear Accumulation

    PubMed Central

    Rodriguez, Jason J.; Parisien, Jean-Patrick; Horvath, Curt M.

    2002-01-01

    Characterization of recent outbreaks of fatal encephalitis in southeast Asia identified the causative agent to be a previously unrecognized enveloped negative-strand RNA virus of the Paramyxoviridae family, Nipah virus. One feature linking Nipah virus to this family is a conserved cysteine-rich domain that is the hallmark of paramyxovirus V proteins. The V proteins of other paramyxovirus species have been linked with evasion of host cell interferon (IFN) signal transduction and subsequent antiviral responses by inducing proteasomal degradation of the IFN-responsive transcription factors, STAT1 or STAT2. Here we demonstrate that Nipah virus V protein escapes IFN by a distinct mechanism involving direct inhibition of STAT protein function. Nipah virus V protein differs from other paramyxovirus V proteins in its subcellular distribution but not in its ability to inhibit cellular IFN responses. Nipah virus V protein does not induce STAT degradation but instead inhibits IFN responses by forming high-molecular-weight complexes with both STAT1 and STAT2. We demonstrate that Nipah virus V protein accumulates in the cytoplasm by a Crm1-dependent mechanism, alters the STAT protein subcellular distribution in the steady state, and prevents IFN-stimulated STAT redistribution. Consistent with the formation of complexes, STAT protein tyrosine phosphorylation is inhibited in cells expressing the Nipah virus V protein. As a result, Nipah virus V protein efficiently prevents STAT1 and STAT2 nuclear translocation in response to IFN, inhibiting cellular responses to both IFN-α and IFN-γ. PMID:12388709

  8. LIPID ABNORMALITIES AND LIPID-BASED REPAIR STRATEGIES IN ATOPIC DERMATITIS

    PubMed Central

    Elias, Peter M.

    2013-01-01

    Prior studies have revealed the key roles played by Th1/Th2 cell dysregulation, IgE production, mast cell hyperactivity, and dendritic cell signaling in the evolution of the chronic, pruritic, inflammatory dermatosis that characterizes atopic dermatitis (AD). We review here increasing evidence that the inflammation in AD results primarily from inherited abnormalities in epidermal structural and enzymatic proteins that impact permeability barrier function. We also will show that the barrier defect can be attributed to a paracellular abnormality due to a variety of abnormalities in lipid composition, transport and extracellular organization. Accordingly, we also review the therapeutic implications of this emerging pathogenic paradigm, including several current and potentially novel, lipid-based approaches to corrective therapy. PMID:24128970

  9. Traffic Jam at the Blood Brain Barrier Promotes Greater Accumulation of Alzheimer’s Disease Amyloid-β Proteins in the Cerebral Vasculature

    PubMed Central

    Agyare, Edward K.; Leonard, Sarah R.; Curran, Geoffry L.; Yu, Caroline C.; Lowe, Val J.; Paravastu, Anant K.; Poduslo, Joseph F.; Kandimalla, Karunya K.

    2013-01-01

    Amyloid-β (Aβ) deposition in the brain vasculature results in cerebral amyloid angiopathy (CAA), which occurs in about 80% of Alzheimer’s disease (AD) patients. While Aβ42 predominates parenchymal amyloid plaques in AD brain, Aβ40 is prevalent in the cerebrovascular amyloid. Dutch mutation of Aβ40 (E22Q) promotes aggressive cerebrovascular accumulation and leads to severe CAA in the mutation carriers; knowledge of how DutchAβ40 drives this process more efficiently than Aβ40 could reveal various pathophysiological events that promote CAA. In this study we have demonstrated that DutchAβ40 show preferential accumulation in the blood-brain-barrier (BBB) endothelial cells due to its inefficient blood-to-brain transcytosis. Consequently, DutchAβ40 establishes a permeation barrier in the BBB endothelium, prevents its own clearance from the brain and promotes the formation of amyloid deposits in the cerebral microvessels. The BBB endothelial accumulation of native Aβ40 is not robust enough to exercise such a significant impact on its brain clearance. Hence, the cerebrovascular accumulation of Aβ40 is slow and may require other co-pathologies to precipitate into CAA. In conclusion, the magnitude of Aβ accumulation in the BBB endothelial cells is a critical factor that promotes CAA; hence, clearing vascular endothelium of Aβ proteins may halt or even reverse CAA. PMID:23249146

  10. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, A.; Divsalar, D.; Yao, K.

    2004-01-01

    In this paper we propose an innovative channel coding scheme called Accumulate Repeat Accumulate codes. This class of codes can be viewed as trubo-like codes, namely a double serial concatenation of a rate-1 accumulator as an outer code, a regular or irregular repetition as a middle code, and a punctured accumulator as an inner code.

  11. Cardiac Expression of Microsomal Triglyceride Transfer Protein Is Increased in Obesity and Serves to Attenuate Cardiac Triglyceride Accumulation

    PubMed Central

    Bartels, Emil D.; Nielsen, Jan M.; Hellgren, Lars I.; Ploug, Thorkil; Nielsen, Lars B.

    2009-01-01

    Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and β-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via secretion of apolipoproteinB-containing (apoB) lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP); the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression in response to increased fatty acid availability during fasting and fat feeding. This resulted in cardiac triglyceride accumulation but unaffected cardiac insulin-stimulated glucose uptake. Long-term fat-feeding of male C57Bl/6 mice increased cardiac triglycerides, induced cardiac expression of triglyceride metabolism-controlling genes and attenuated heart function. Abolishing cardiac triglyceride accumulation in fat-fed mice by overexpression of an apoB transgene in the heart prevented the induction of triglyceride metabolism-controlling genes and improved heart function. The results suggest that in obesity, the physiological increase of cardiac MTP expression serves to attenuate cardiac triglyceride accumulation albeit without major effects on cardiac insulin sensitivity. Nevertheless, the data suggest that genetically increased lipoprotein secretion prevents development of obesity-induced lipotoxic heart disease. PMID:19390571

  12. 24-hour urine protein

    MedlinePlus

    ... one urine sample (protein-to-creatinine ratio). Normal Results The normal value is less than 100 milligrams ... meaning of your specific test results. What Abnormal Results Mean Abnormal results may be due to: A ...

  13. The development of behavioral abnormalities in the motor neuron degeneration (mnd) mouse.

    PubMed

    Bolivar, Valerie J; Scott Ganus, J; Messer, Anne

    2002-05-24

    The motor neuron degeneration (mnd) mouse, which has widespread abnormal accumulating lipoprotein and neuronal degeneration, has a mutation in CLN8, the gene for human progressive epilepsy with mental retardation (EPMR). EPMR is one of the neuronal ceroid lipofuscinoses (NCLs), a group of neurological disorders characterized by autofluorescent lipopigment accumulation, blindness, seizures, motor deterioration, and dementia. The human phenotype of EPMR suggests that, in addition to the motor symptoms previously categorized, various types of progressive behavioral abnormalities would be expected in mnd mice. We have therefore examined exploratory behavior, fear conditioning, and aggression in 2-3 month and 4-5 month old male mnd mice and age-matched C57BL/6 (B6) controls. The mnd mice displayed increased activity with decreased habituation in the activity monitor, poor contextual and cued memory, and heightened aggression relative to B6 controls. These behavioral deficits were most prominent at 4-5 months of age, which is prior to the onset of gross motor symptoms at 6 months. Our results provide a link from the mutation via pathology to a quantifiable multidimensional behavioral phenotype of this naturally occurring mouse model of NCL.

  14. Tor1 regulates protein solubility in Saccharomyces cerevisiae

    PubMed Central

    Peters, Theodore W.; Rardin, Matthew J.; Czerwieniec, Gregg; Evani, Uday S.; Reis-Rodrigues, Pedro; Lithgow, Gordon J.; Mooney, Sean D.; Gibson, Bradford W.; Hughes, Robert E.

    2012-01-01

    Accumulation of insoluble protein in cells is associated with aging and aging-related diseases; however, the roles of insoluble protein in these processes are uncertain. The nature and impact of changes to protein solubility during normal aging are less well understood. Using quantitative mass spectrometry, we identify 480 proteins that become insoluble during postmitotic aging in Saccharomyces cerevisiae and show that this ensemble of insoluble proteins is similar to those that accumulate in aging nematodes. SDS-insoluble protein is present exclusively in a nonquiescent subpopulation of postmitotic cells, indicating an asymmetrical distribution of this protein. In addition, we show that nitrogen starvation of young cells is sufficient to cause accumulation of a similar group of insoluble proteins. Although many of the insoluble proteins identified are known to be autophagic substrates, induction of macroautophagy is not required for insoluble protein formation. However, genetic or chemical inhibition of the Tor1 kinase is sufficient to promote accumulation of insoluble protein. We conclude that target of rapamycin complex 1 regulates accumulation of insoluble proteins via mechanisms acting upstream of macroautophagy. Our data indicate that the accumulation of proteins in an SDS-insoluble state in postmitotic cells represents a novel autophagic cargo preparation process that is regulated by the Tor1 kinase. PMID:23097491

  15. Iron Accumulates in Huntington’s Disease Neurons: Protection by Deferoxamine

    PubMed Central

    Chen, Jianfang; Lai, Barry; Zhang, Zhaojie; Duce, James A.; Lam, Linh Q.; Volitakis, Irene; Bush, Ashley I.; Hersch, Steven

    2013-01-01

    Huntington’s disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine-encoding CAG expansion in the huntingtin gene. Iron accumulates in the brains of HD patients and mouse disease models. However, the cellular and subcellular sites of iron accumulation, as well as significance to disease progression are not well understood. We used independent approaches to investigate the location of brain iron accumulation. In R6/2 HD mouse brain, synchotron x-ray fluorescence analysis revealed iron accumulation as discrete puncta in the perinuclear cytoplasm of striatal neurons. Further, perfusion Turnbull’s staining for ferrous iron (II) combined with transmission electron microscope ultra-structural analysis revealed increased staining in membrane bound peri-nuclear vesicles in R6/2 HD striatal neurons. Analysis of iron homeostatic proteins in R6/2 HD mice revealed decreased levels of the iron response proteins (IRPs 1 and 2) and accordingly decreased expression of iron uptake transferrin receptor (TfR) and increased levels of neuronal iron export protein ferroportin (FPN). Finally, we show that intra-ventricular delivery of the iron chelator deferoxamine results in an improvement of the motor phenotype in R6/2 HD mice. Our data supports accumulation of redox-active ferrous iron in the endocytic / lysosomal compartment in mouse HD neurons. Expression changes of IRPs, TfR and FPN are consistent with a compensatory response to an increased intra-neuronal labile iron pool leading to increased susceptibility to iron-associated oxidative stress. These findings, together with protection by deferoxamine, support a potentiating role of neuronal iron accumulation in HD. PMID:24146952

  16. Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in Caenorhabditis elegans

    PubMed Central

    Grussendorf, Kelly A.; Trezza, Christopher J.; Salem, Alexander T.; Al-Hashimi, Hikmat; Mattingly, Brendan C.; Kampmeyer, Drew E.; Khan, Liakot A.; Hall, David H.; Göbel, Verena; Ackley, Brian D.; Buechner, Matthew

    2016-01-01

    Determination of luminal diameter is critical to the function of small single-celled tubes. A series of EXC proteins, including EXC-1, prevent swelling of the tubular excretory canals in Caenorhabditis elegans. In this study, cloning of exc-1 reveals it to encode a homolog of mammalian IRG proteins, which play roles in immune response and autophagy and are associated with Crohn’s disease. Mutants in exc-1 accumulate early endosomes, lack recycling endosomes, and exhibit abnormal apical cytoskeletal structure in regions of enlarged tubules. EXC-1 interacts genetically with two other EXC proteins that also affect endosomal trafficking. In yeast two-hybrid assays, wild-type and putative constitutively active EXC-1 binds to the LIM-domain protein EXC-9, whose homolog, cysteine-rich intestinal protein, is enriched in mammalian intestine. These results suggest a model for IRG function in forming and maintaining apical tubule structure via regulation of endosomal recycling. PMID:27334269

  17. Accumulation of Herpes Simplex Virus Type 1 Early and Leaky-Late Proteins Correlates with Apoptosis Prevention in Infected Human HEp-2 Cells

    PubMed Central

    Aubert, Martine; Rice, Stephen A.; Blaho, John A.

    2001-01-01

    We previously reported that a recombinant ICP27-null virus stimulated, but did not prevent, apoptosis in human HEp-2 cells during infection (M. Aubert and J. A. Blaho, J. Virol. 73:2803–2813, 1999). In the present study, we used a panel of 15 recombinant ICP27 mutant viruses to determine which features of herpes simplex virus type 1 (HSV-1) replication are required for the apoptosis-inhibitory activity. Each virus was defined experimentally as either apoptotic, partially apoptotic, or nonapoptotic based on infected HEp-2 cell morphologies, percentages of infected cells with condensed chromatin, and patterns of specific cellular death factor processing. Viruses d27-1, d1-5, d1-2, M11, M15, M16, n504R, n406R, n263R, and n59R are apoptotic or partially apoptotic in HEp-2 cells and severely defective for growth in Vero cells. Viruses d2-3, d3-4, d4-5, d5-6, and d6-7 are nonapoptotic, demonstrating that ICP27 contains a large amino-terminal region, including its RGG box RNA binding domain, which is not essential for apoptosis prevention. Accumulations of viral TK, VP16, and gD but not gC, ICP22, or ICP4 proteins correlated with prevention of apoptosis during the replication of these viruses. Of the nonapoptotic viruses, d4-5 did not produce gC, indicating that accumulation of true late gene products is not necessary for the prevention process. Analyses of viral DNA synthesis in HEp-2 cells indicated that apoptosis prevention by HSV-1 requires that the infection proceeds to the stage in which viral DNA replication takes place. Infections performed in the presence of the drug phosphonoacetic acid confirmed that the process of viral DNA synthesis and the accumulation of true late (γ2) proteins are not required for apoptosis prevention. Based on our results, we conclude that the accumulation of HSV-1 early (β) and leaky-late (γ1) proteins correlates with the prevention of apoptosis in infected HEp-2 cells. PMID:11134315

  18. Identification of differentially accumulated proteins associated with embryogenic and non-embryogenic calli in saffron (Crocus sativus L.)

    PubMed Central

    2012-01-01

    Background Somatic embryogenesis (SE) is a complex biological process that occurs under inductive conditions and causes fully differentiated cells to be reprogrammed to an embryo like state. In order to get a better insight about molecular basis of the SE in Crocus sativus L. and to characterize differentially accumulated proteins during the process, a proteomic study based on two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry has been carried out. Results We have compared proteome profiles of non-embryogenic and embryogenic calli with native corm explants. Total soluble proteins were phenol-extracted and loaded on 18 cm IPG strips for the first dimension and 11.5% sodium dodecyl sulfate-polyacrylamide gels for the second dimension. Fifty spots with more than 1.5-fold change in abundance were subjected to mass spectrometry analysis for further characterization. Among them 36 proteins could be identified, which are classified into defense and stress response, protein synthesis and processing, carbohydrate and energy metabolism, secondary metabolism, and nitrogen metabolism. Conclusion Our results showed that diverse cellular and molecular processes were affected during somatic to embryogenic transition. Differential proteomic analysis suggests a key role for ascorbate metabolism during early stage of SE, and points to the possible role of ascorbate-glutathione cycle in establishing somatic embryos. PMID:22243837

  19. The brain-specific double-stranded RNA-binding protein Staufen2: nucleolar accumulation and isoform-specific exportin-5-dependent export.

    PubMed

    Macchi, Paolo; Brownawell, Amy M; Grunewald, Barbara; DesGroseillers, Luc; Macara, Ian G; Kiebler, Michael A

    2004-07-23

    The mammalian double-stranded RNA-binding proteins Staufen (Stau1 and Stau2) are involved in RNA localization in polarized neurons. In contrast to the more ubiquitously expressed Stau1, Stau2 is mainly expressed in the nervous system. In Drosophila, the third double-stranded RNA-binding domain (RBD3) of Staufen is essential for RNA interaction. When conserved amino acids within the RBD3 of Stau2 were mutated to render Stau2 defective for RNA binding, the mutant Stau2 proteins accumulate predominantly in the nucleolus. This is in contrast to wild type Stau2 that mostly localizes in the cytosol. The nuclear import is dependent on a nuclear localization signal in close proximity to the RBD3. The nuclear export of Stau2 is not dependent on CRM1 but rather on Exportin-5. We show that Exportin-5 interacts with the RBD3 of wild type Stau2 in an RNA-dependent manner in vitro but not with mutant Stau2. When Exportin-5 is down-regulated by RNA interference, only the largest isoform of Stau2 (Stau2(62)) preferentially accumulates in the nucleolus. It is tempting to speculate that Stau2(62) binds RNA in the nucleus and assembles into ribonucleoparticles, which are then exported via the Exportin-5 pathway to their final destination.

  20. Herpes simplex virus 1 regulatory protein ICP22 interacts with a new cell cycle-regulated factor and accumulates in a cell cycle-dependent fashion in infected cells.

    PubMed

    Bruni, R; Roizman, B

    1998-11-01

    The herpes simplex virus 1 infected cell protein 22 (ICP22), the product of the alpha22 gene, is a nucleotidylylated and phosphorylated nuclear protein with properties of a transcriptional factor required for the expression of a subset of viral genes. Here, we report the following. (i) ICP22 interacts with a previously unknown cellular factor designated p78 in the yeast two-hybrid system. The p78 cDNA encodes a polypeptide with a distribution of leucines reminiscent of a leucine zipper. (ii) In uninfected and infected cells, antibody to p78 reacts with two major bands with an apparent Mr of 78,000 and two minor bands with apparent Mrs of 62, 000 and 55,000. (ii) p78 also interacts with ICP22 in vitro. (iii) In uninfected cells, p78 was dispersed largely in the nucleoplasm in HeLa cells and in the nucleoplasm and cytoplasm in HEp-2 cells. After infection, p78 formed large dense bodies which did not colocalize with the viral regulatory protein ICP0. (iv) Accumulation of p78 was cell cycle dependent, being highest very early in S phase. (v) The accumulation of ICP22 in synchronized cells was highest in early S phase, in contrast to the accumulation of another protein, ICP27, which was relatively independent of the cell cycle. (vi) In the course of the cell cycle, ICP22 was transiently modified in an aberrant fashion, and this modification coincided with expression of p78. The results suggest that ICP22 interacts with and may be stabilized by cell cycle-dependent proteins.

  1. Protein lipoxidation: Detection strategies and challenges

    PubMed Central

    Aldini, Giancarlo; Domingues, M. Rosário; Spickett, Corinne M.; Domingues, Pedro; Altomare, Alessandra; Sánchez-Gómez, Francisco J.; Oeste, Clara L.; Pérez-Sala, Dolores

    2015-01-01

    Enzymatic and non-enzymatic lipid metabolism can give rise to reactive species that may covalently modify cellular or plasma proteins through a process known as lipoxidation. Under basal conditions, protein lipoxidation can contribute to normal cell homeostasis and participate in signaling or adaptive mechanisms, as exemplified by lipoxidation of Ras proteins or of the cytoskeletal protein vimentin, both of which behave as sensors of electrophilic species. Nevertheless, increased lipoxidation under pathological conditions may lead to deleterious effects on protein structure or aggregation. This can result in impaired degradation and accumulation of abnormally folded proteins contributing to pathophysiology, as may occur in neurodegenerative diseases. Identification of the protein targets of lipoxidation and its functional consequences under pathophysiological situations can unveil the modification patterns associated with the various outcomes, as well as preventive strategies or potential therapeutic targets. Given the wide structural variability of lipid moieties involved in lipoxidation, highly sensitive and specific methods for its detection are required. Derivatization of reactive carbonyl species is instrumental in the detection of adducts retaining carbonyl groups. In addition, use of tagged derivatives of electrophilic lipids enables enrichment of lipoxidized proteins or peptides. Ultimate confirmation of lipoxidation requires high resolution mass spectrometry approaches to unequivocally identify the adduct and the targeted residue. Moreover, rigorous validation of the targets identified and assessment of the functional consequences of these modifications are essential. Here we present an update on methods to approach the complex field of lipoxidation along with validation strategies and functional assays illustrated with well-studied lipoxidation targets. PMID:26072467

  2. Strategies for Cd accumulation in Dittrichia viscosa (L.) Greuter: role of the cell wall, non-protein thiols and organic acids.

    PubMed

    Fernández, R; Fernández-Fuego, D; Bertrand, A; González, A

    2014-05-01

    Dittrichia viscosa (L.) Greuter is plant species commonly found in degraded zones of Asturias (Spain), where it accumulates high levels of Cd, but the mechanisms involved in this response in non-model plants have not been elucidated. In this way, we analysed the fraction of the total Cd bound to the cell walls, the ultrastructural localization of this metal, and non-protein thiol and organic acid concentrations of two clones of D. viscosa: DV-A (from a metal-polluted soil) and DV-W (from a non-polluted area). After 10 days of hydroponic culture with Cd, fractionation and ultrastructural localisation studies showed that most of the Cd accumulated by D. viscosa was kept in the cell wall. The non-protein thiol content rose in D. viscosa with Cd exposure, especially in the non-metallicolous DV-W clone, and in both clones we found with Cd exposure a synthesis de novo of phytochelatins PC2 and PC3 in shoots and roots and also of other phytochelatin-related compounds, particularly in roots. Regarding organic acids, their concentration in both clones decreased in shoots after Cd treatment, but increased in roots, mainly due to changes in the citric acid concentration. Thus, retention of Cd in the cell wall seems to be the first strategy in response to metal entry in D. viscosa and once inside cells non-protein thiols and organic acids might also participate in Cd tolerance. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. HACE1-dependent protein degradation provides cardiac protection in response to haemodynamic stress

    NASA Astrophysics Data System (ADS)

    Zhang, Liyong; Chen, Xin; Sharma, Parveen; Moon, Mark; Sheftel, Alex D.; Dawood, Fayez; Nghiem, Mai P.; Wu, Jun; Li, Ren-Ke; Gramolini, Anthony O.; Sorensen, Poul H.; Penninger, Josef M.; Brumell, John H.; Liu, Peter P.

    2014-03-01

    The HECT E3 ubiquitin ligase HACE1 is a tumour suppressor known to regulate Rac1 activity under stress conditions. HACE1 is increased in the serum of patients with heart failure. Here we show that HACE1 protects the heart under pressure stress by controlling protein degradation. Hace1 deficiency in mice results in accelerated heart failure and increased mortality under haemodynamic stress. Hearts from Hace1-/- mice display abnormal cardiac hypertrophy, left ventricular dysfunction, accumulation of LC3, p62 and ubiquitinated proteins enriched for cytoskeletal species, indicating impaired autophagy. Our data suggest that HACE1 mediates p62-dependent selective autophagic turnover of ubiquitinated proteins by its ankyrin repeat domain through protein-protein interaction, which is independent of its E3 ligase activity. This would classify HACE1 as a dual-function E3 ligase. Our finding that HACE1 has a protective function in the heart in response to haemodynamic stress suggests that HACE1 may be a potential diagnostic and therapeutic target for heart disease.

  4. A PQL (protein quantity loci) analysis of mature pea seed proteins identifies loci determining seed protein composition.

    PubMed

    Bourgeois, Michael; Jacquin, Françoise; Cassecuelle, Florence; Savois, Vincent; Belghazi, Maya; Aubert, Grégoire; Quillien, Laurence; Huart, Myriam; Marget, Pascal; Burstin, Judith

    2011-05-01

    Legume seeds are a major source of dietary proteins for humans and animals. Deciphering the genetic control of their accumulation is thus of primary significance towards their improvement. At first, we analysed the genetic variability of the pea seed proteome of three genotypes over 3 years of cultivation. This revealed that seed protein composition variability was under predominant genetic control, with as much as 60% of the spots varying quantitatively among the three genotypes. Then, by combining proteomic and quantitative trait loci (QTL) mapping approaches, we uncovered the genetic architecture of seed proteome variability. Protein quantity loci (PQL) were searched for 525 spots detected on 2-D gels obtained for 157 recombinant inbred lines. Most protein quantity loci mapped in clusters, suggesting that the accumulation of the major storage protein families was under the control of a limited number of loci. While convicilin accumulation was mainly under the control of cis-regulatory regions, vicilins and legumins were controlled by both cis- and trans-regulatory regions. Some loci controlled both seed protein composition and protein content and a locus on LGIIa appears to be a major regulator of protein composition and of protein in vitro digestibility. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Abnormal expression of leiomyoma cytoskeletal proteins involved in cell migration.

    PubMed

    Ura, Blendi; Scrimin, Federica; Arrigoni, Giorgio; Athanasakis, Emmanouil; Aloisio, Michelangelo; Monasta, Lorenzo; Ricci, Giuseppe

    2016-05-01

    Uterine leiomyomas are monoclonal tumors. Several factors are involved in the neoplastic transformation of the myometrium. In our study we focused on dysregulated cytoskeletal proteins in the leiomyoma as compared to the myometrium. Paired tissue samples of ten leiomyomas and adjacent myometria were obtained and analyzed by two‑dimensional gel electrophoresis (2-DE). Mass spectrometry was used for protein identification, and western blotting for 2-DE data validation. The values of ten cytoskeletal proteins were found to be significantly different: eight proteins were upregulated in the leiomyoma and two proteins were downregulated. Three of the upregulated proteins (myosin regulatory light polypeptide 9, four and a half LIM domains protein 1 and LIM and SH3 domain protein 1) are involved in cell migration, while downregulated protein transgelin is involved in replicative senescence. Myosin regulatory light polypeptide 9 (MYL9) was further validated by western blotting because it is considered to be a cell migration marker in several cancers and could play a key role in leiomyoma development. Our data demonstrate significant alterations in the expression of cytoskeletal proteins involved in leiomyoma growth. A better understanding of the involvement of cytoskeletal proteins in leiomyoma pathogenesis may contribute to the identification of new therapeutic targets and the development of new pharmacological approaches.

  6. The importance of sensitive screening for abnormal glucose metabolism in patients with IgA nephropathy.

    PubMed

    Jia, Xiaoyuan; Pan, Xiaoxia; Xie, Jingyuan; Shen, Pingyan; Wang, Zhaohui; Li, Ya; Wang, Weiming; Chen, Nan

    2016-01-01

    To investigate the prevalence of abnormal glucose metabolism, insulin resistance (IR) and the related risk factors in IgA nephropathy (IgAN) patients. We analyzed oral glucose tolerance test (OGTT) and clinical data of 107 IgAN patients and 106 healthy controls. Glucose metabolism, homeostasis model assessment of insulin resistance (HOMA-IR) and the insulin sensitivity index (ISI) of both groups were evaluated. The prevalence of abnormal glucose metabolism was significantly higher in the IgAN group than in the control group (41.12% vs. 9.43%, p < 0.001), while the prevalence of IR between the two groups was not significantly different. IgAN patients have significantly higher fasting blood glucose, fasting insulin, OGTT 2-hour blood glucose, OGTT 2-hour insulin, HOMA-IR, and lower ISI than healthy controls. Triglyceride (OR = 2.55), 24-hour urine protein excretion (OR = 1.39), and age (OR = 1.06) were independent risk factors for abnormal glucose metabolism in IgAN patients. BMI, eGFR, 24-hour urine protein excretion, triglyceride, fasting blood glucose, fasting insulin, OGTT 2-hour blood glucose, and OGTT 2-hour insulin were significantly higher in IgAN patients with IR than in IgAN patients without IR, while HDL and ISI were significantly lower. BMI, serum albumin, and 24-hour urine protein excretion were correlated factors of IR in IgAN patients. Our study highlighted that abnormal glucose metabolism was common in IgAN patients. Triglyceride and 24-hour urine protein excretion were significant risk factors for abnormal glucose metabolism. Therefore, sensitive screening for glucose metabolism status and timely intervention should be carried out in clinical work.

  7. Disruption of the A-Kinase Anchoring Domain in Flagellar Radial Spoke Protein 3 Results in Unregulated Axonemal cAMP-dependent Protein Kinase Activity and Abnormal Flagellar Motility

    PubMed Central

    Gaillard, Anne R.; Fox, Laura A.; Rhea, Jeanne M.; Craige, Branch

    2006-01-01

    Biochemical studies of Chlamydomonas flagellar axonemes revealed that radial spoke protein (RSP) 3 is an A-kinase anchoring protein (AKAP). To determine the physiological role of PKA anchoring in the axoneme, an RSP3 mutant, pf14, was transformed with an RSP3 gene containing a mutation in the PKA-binding domain. Analysis of several independent transformants revealed that the transformed cells exhibit an unusual phenotype: a fraction of the cells swim normally; the remainder of the cells twitch feebly or are paralyzed. The abnormal/paralyzed motility is not due to an obvious deficiency of radial spoke assembly, and the phenotype cosegregates with the mutant RSP3. We postulated that paralysis was due to failure in targeting and regulation of axonemal cAMP-dependent protein kinase (PKA). To test this, reactivation experiments of demembranated cells were performed in the absence or presence of PKA inhibitors. Importantly, motility in reactivated cell models mimicked the live cell phenotype with nearly equal fractions of motile and paralyzed cells. PKA inhibitors resulted in a twofold increase in the number of motile cells, rescuing paralysis. These results confirm that flagellar RSP3 is an AKAP and reveal that a mutation in the PKA binding domain results in unregulated axonemal PKA activity and inhibition of normal motility. PMID:16571668

  8. Enhanced accumulation of Kir4.1 protein, but not mRNA, in a murine model of cuprizone-induced demyelination.

    PubMed

    Nakajima, Mitsunari; Kawamura, Takuya; Tokui, Ryuji; Furuta, Kohei; Sugino, Mami; Nakanishi, Masayuki; Okuyama, Satoshi; Furukawa, Yoshiko

    2013-11-06

    Two channel proteins, inwardly rectifying potassium channel 4.1 (Kir4.1) and water channel aquaporin-4 (AQP4), were recently identified as targets of an autoantibody response in patients with multiple sclerosis and neuromyelitis optica, respectively. In the present study, we examined the expression patterns of Kir4.1 and AQP4 in a mouse model of demyelination induced by cuprizone, a copper chelator. Demyelination was confirmed by immunohistochemistry using an anti-proteolipid protein antibody in various brain regions, including the corpus callosum, of cuprizone-fed mice. Activation of microglial and astroglial cells was also confirmed by immunohistochemistry, using an anti-ionized calcium binding adapter molecule and a glial fibrillary acidic protein antibody. Western blot analysis revealed the induction of Kir4.1 protein, but not AQP4, in the cortex of cuprizone-fed mice. Immunohistochemical analysis confirmed the Kir4.1 protein induction in microvessels of the cerebral cortex. Real-time polymerase chain reaction analysis revealed that mRNA levels of Kir4.1 and AQP4 in the cortex did not change during cuprizone administration. These findings suggest that enhanced accumulation of Kir4.1 protein in the brain with an inflammatory condition facilitates the autoantibody formation against Kir4.1 in patients with multiple sclerosis. © 2013 Published by Elsevier B.V.

  9. 5-Mehtyltetrahydrofolate rescues alcohol-induced neural crest cell migration abnormalities.

    PubMed

    Shi, Yu; Li, Jiejing; Chen, Chunjiang; Gong, Manzi; Chen, Yuan; Liu, Youxue; Chen, Jie; Li, Tingyu; Song, Weihong

    2014-09-16

    Alcohol is detrimental to early development. Fetal alcohol spectrum disorders (FASD) due to maternal alcohol abuse results in a series of developmental abnormalities including cranial facial dysmorphology, ocular anomalies, congenital heart defects, microcephaly and intellectual disabilities. Previous studies have been shown that ethanol exposure causes neural crest (NC) apoptosis and perturbation of neural crest migration. However, the underlying mechanism remains elusive. In this report we investigated the fetal effect of alcohol on the process of neural crest development in the Xenopus leavis. Pre-gastrulation exposure of 2-4% alcohol induces apoptosis in Xenopus embryo whereas 1% alcohol specifically impairs neural crest migration without observing discernible apoptosis. Additionally, 1% alcohol treatment considerably increased the phenotype of small head (43.4% ± 4.4%, total embryo n = 234), and 1.5% and 2.0% dramatically augment the deformation to 81.2% ± 6.5% (n = 205) and 91.6% ± 3.0% (n = 235), respectively (P < 0.05). Significant accumulation of Homocysteine was caused by alcohol treatment in embryos and 5-mehtyltetrahydrofolate restores neural crest migration and alleviates homocysteine accumulation, resulting in inhibition of the alcohol-induced neurocristopathies. Our study demonstrates that prenatal alcohol exposure causes neural crest cell migration abnormality and 5-mehtyltetrahydrofolate could be beneficial for treating FASD.

  10. Arabidopsis SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation[OPEN

    PubMed Central

    2015-01-01

    The lipodystrophy protein SEIPIN is important for lipid droplet (LD) biogenesis in human and yeast cells. In contrast with the single SEIPIN genes in humans and yeast, there are three SEIPIN homologs in Arabidopsis thaliana, designated SEIPIN1, SEIPIN2, and SEIPIN3. Essentially nothing is known about the functions of SEIPIN homologs in plants. Here, a yeast (Saccharomyces cerevisiae) SEIPIN deletion mutant strain and a plant (Nicotiana benthamiana) transient expression system were used to test the ability of Arabidopsis SEIPINs to influence LD morphology. In both species, expression of SEIPIN1 promoted accumulation of large-sized lipid droplets, while expression of SEIPIN2 and especially SEIPIN3 promoted small LDs. Arabidopsis SEIPINs increased triacylglycerol levels and altered composition. In tobacco, endoplasmic reticulum (ER)-localized SEIPINs reorganized the normal, reticulated ER structure into discrete ER domains that colocalized with LDs. N-terminal deletions and swapping experiments of SEIPIN1 and 3 revealed that this region of SEIPIN determines LD size. Ectopic overexpression of SEIPIN1 in Arabidopsis resulted in increased numbers of large LDs in leaves, as well as in seeds, and increased seed oil content by up to 10% over wild-type seeds. By contrast, RNAi suppression of SEIPIN1 resulted in smaller seeds and, as a consequence, a reduction in the amount of oil per seed compared with the wild type. Overall, our results indicate that Arabidopsis SEIPINs are part of a conserved LD biogenesis machinery in eukaryotes and that in plants these proteins may have evolved specialized roles in the storage of neutral lipids by differentially modulating the number and sizes of lipid droplets. PMID:26362606

  11. Nuclear accumulation of epidermal growth factor receptor and acceleration of G1/S stage by Epstein-Barr-encoded oncoprotein latent membrane protein 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao Yongguang; Song Xing; Deng Xiyun

    Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is considered to be the major oncogenic protein of EBV-encoded proteins and has always been the core of the oncogenic mechanism of EBV. Advanced studies on nuclear translocation of the epidermal growth factor receptor (EGFR) family have greatly improved our knowledge of the biological function of cell surface receptors. In this study, we used the Tet-on LMP1 HNE2 cell line as a cell model, which is a dual-stable LMP1-integrated nasopharyngeal carcinoma (NPC) cell line and the expression of LMP1 which could be regulated by the Tet system. We found that LMP1 couldmore » regulate the nuclear accumulation of EGFR in a dose-dependent manner quantitatively and qualitatively. We also demonstrated that the nuclear localization sequence of EGFR played some roles in the location of the protein within the nucleus under LMP1 regulation and EGFR in the nucleus could bind to the promoters of cyclinD1 and cyclinE, respectively. We further demonstrated that EGFR is involved in the acceleration of the G1/S phase transition by LMP1 through binding to cyclinD1 and cyclinE directly. These findings provided a novel view that the acceleration of LMP1 on the G1/S transition via the nuclear accumulation of EGFR was critical in the process of nasopharyngeal carcinoma.« less

  12. Glutamatergic abnormalities of the thalamus in schizophrenia: a systematic review.

    PubMed

    Watis, L; Chen, S H; Chua, H C; Chong, S A; Sim, K

    2008-01-01

    The thalamus, a key information processing centre in facilitating sensory discrimination and cognitive processes, has been implicated in schizophrenia due to the increasing evidence showing structural and functional thalamic abnormalities. Glutamatergic abnormalities, in particular, have been examined since glutamate is one of the main neurotransmitters found in the thalamus. We aimed to review the existing literature (1978 till 2007) on post-mortem and in vivo studies of the various components of glutamatergic neurotransmission as well as studies of the glutamate receptor genes within the thalamus in schizophrenia. The literature search was done using multiple databases including Scopus, Web of Science, EBSCO host, Pubmed and ScienceDirect. Keywords used were "glutamate", "thalamus", "schizophrenia", "abnormalities", and "glutamatergic". Further searches were made using the bibliographies in the main journals and related papers were obtained. The extant data suggest that abnormalities of the glutamate receptors as well as other molecules involved in glutamatergic neurotransmission (including glutamate transporters and associated proteins, N-methyl D-aspartate (NMDA) receptor-associated intracellular signaling proteins, and glutamatergic enzymes) are found within the thalamus in schizophrenia. There is a pressing need for more rapid replication of findings from post mortem and genetic studies as well as the promotion of multi-component or multi-modality assessments of glutamatergic anomalies within the thalamus in order to allow a better appreciation of disruptions in these molecular networks in schizophrenia. These and future findings may represent potential novel targets for antipsychotic drugs to ameliorate the symptoms of schizophrenia.

  13. Hepatitis B virus X protein (HBx)-induced abnormalities of nucleic acid metabolism revealed by (1)H-NMR-based metabonomics.

    PubMed

    Dan Yue; Zhang, Yuwei; Cheng, Liuliu; Ma, Jinhu; Xi, Yufeng; Yang, Liping; Su, Chao; Shao, Bin; Huang, Anliang; Xiang, Rong; Cheng, Ping

    2016-04-14

    Hepatitis B virus X protein (HBx) plays an important role in HBV-related hepatocarcinogenesis; however, mechanisms underlying HBx-mediated carcinogenesis remain unclear. In this study, an NMR-based metabolomics approach was applied to systematically investigate the effects of HBx on cell metabolism. EdU incorporation assay was conducted to examine the effects of HBx on DNA synthesis, an important feature of nucleic acid metabolism. The results revealed that HBx disrupted metabolism of glucose, lipids, and amino acids, especially nucleic acids. To understand the potential mechanism of HBx-induced abnormalities of nucleic acid metabolism, gene expression profiles of HepG2 cells expressing HBx were investigated. The results showed that 29 genes involved in DNA damage and DNA repair were differentially expressed in HBx-expressing HepG2 cells. HBx-induced DNA damage was further demonstrated by karyotyping, comet assay, Western blotting, immunofluorescence and immunohistochemistry analyses. Many studies have previously reported that DNA damage can induce abnormalities of nucleic acid metabolism. Thus, our results implied that HBx initially induces DNA damage, and then disrupts nucleic acid metabolism, which in turn blocks DNA repair and induces the occurrence of hepatocellular carcinoma (HCC). These findings further contribute to our understanding of the occurrence of HCC.

  14. Low protein diet fed exclusively during mouse oocyte maturation leads to behavioural and cardiovascular abnormalities in offspring

    PubMed Central

    Watkins, Adam J; Wilkins, Adrian; Cunningham, Colm; Perry, V Hugh; Seet, Meei J; Osmond, Clive; Eckert, Judith J; Torrens, Christopher; Cagampang, Felino R A; Cleal, Jane; Gray, William P; Hanson, Mark A; Fleming, Tom P

    2008-01-01

    Early embryonic development is known to be susceptible to maternal undernutrition, leading to a disease-related postnatal phenotype. To determine whether this sensitivity extended into oocyte development, we examined the effect of maternal normal protein diet (18% casein; NPD) or isocaloric low protein diet (9% casein; LPD) restricted to one ovulatory cycle (3.5 days) prior to natural mating in female MF-1 mice. After mating, all females received NPD for the remainder of gestation and all offspring were litter size adjusted and fed standard chow. No difference in gestation length, litter size, sex ratio or postnatal growth was observed between treatments. Maternal LPD did, however, induce abnormal anxiety-related behaviour in open field activities in male and female offspring (P < 0.05). Maternal LPD offspring also exhibited elevated systolic blood pressure (SBP) in males at 9 and 15 weeks and in both sexes at 21 weeks (P < 0.05). Male LPD offspring hypertension was accompanied by attenuated arterial responsiveness in vitro to vasodilators acetylcholine and isoprenaline (P < 0.05). LPD female offspring adult kidneys were also smaller, but had increased nephron numbers (P < 0.05). Moreover, the relationship between SBP and kidney or heart size or nephron number was altered by diet treatment (P < 0.05). These data demonstrate the sensitivity of mouse maturing oocytes in vivo to maternal protein undernutrition and identify both behavioural and cardiovascular postnatal outcomes, indicative of adult disease. These outcomes probably derive from a direct effect of protein restriction, although indirect stress mechanisms may also be contributory. Similar and distinct postnatal outcomes were observed here compared with maternal LPD treatment during post-fertilization preimplantation development which may reflect the relative contribution of the paternal genome. PMID:18308825

  15. Acetylated sialic acid residues and blood group antigens localise within the epithelium in microvillous atrophy indicating internal accumulation of the glycocalyx

    PubMed Central

    Phillips, A D; Brown, A; Hicks, S; Schüller, S; Murch, S H; Walker-Smith, J A; Swallow, D M

    2004-01-01

    Background: Microvillous atrophy, a disorder of intractable diarrhoea in infancy, is characterised by the intestinal epithelial cell abnormalities of abnormal accumulation of periodic acid-Schiff (PAS) positive secretory granules within the apical cytoplasm and the presence of microvillous inclusions. The identity of the PAS positive material is not known, and the aim of this paper was to further investigate its composition. Methods: Formaldehyde fixed sections were stained with alcian blue/PAS to identify the acidic or neutral nature of the material, phenylhydrazine blocking was employed to stain specifically for sialic acid, and saponification determined the presence of sialic acid acetylation. The specificity of sialic acid staining was tested by digestion with mild sulphuric acid. Expression of blood group related antigens was tested immunochemically. Results: Alcian blue/PAS staining identified a closely apposed layer of acidic material on the otherwise neutral (PAS positive) brush border in controls. In microvillous atrophy, a triple layer was seen with an outer acidic layer, an unstained brush border region, and accumulation within the epithelium of a neutral glycosubstance that contained acetylated sialic acid. Blood group antigens were detected on the brush border, in mucus, and within goblet cells in controls. In microvillous atrophy they were additionally expressed within the apical cytoplasm of epithelial cells mirroring the PAS abnormality. Immuno electron microscopy localised expression to secretory granules. Conclusions: A neutral, blood group antigen positive, glycosubstance that contains acetylated sialic acid accumulates in the epithelium in microvillous atrophy. Previous studies have demonstrated that the direct and indirect constitutive pathways are intact in this disorder and it is speculated that the abnormal staining pattern reflects accumulation of glycocalyx related material. PMID:15542511

  16. Schedule-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts.

    PubMed

    Rapisarda, Annamaria; Zalek, Jessica; Hollingshead, Melinda; Braunschweig, Till; Uranchimeg, Badarch; Bonomi, Carrie A; Borgel, Suzanne D; Carter, John P; Hewitt, Stephen M; Shoemaker, Robert H; Melillo, Giovanni

    2004-10-01

    We have previously shown that topotecan, a topoisomerase I poison, inhibits hypoxia-inducible factor (HIF)-1alpha protein accumulation by a DNA damage-independent mechanism. Here, we report that daily administration of topotecan inhibits HIF-1alpha protein expression in U251-HRE glioblastoma xenografts. Concomitant with HIF-1alpha inhibition, topotecan caused a significant tumor growth inhibition associated with a marked decrease of angiogenesis and expression of HIF-1 target genes in tumor tissue. These results provide a compelling rationale for testing topotecan in clinical trials to target HIF-1 in cancer patients.

  17. Small Molecule Disrupts Abnormal Gene Fusion Associated with Leukemia | Center for Cancer Research

    Cancer.gov

    Rare chromosomal abnormalities, called chromosomal translocations, in which part of a chromosome breaks off and becomes attached to another chromosome, can result in the generation of chimeric proteins. These aberrant proteins have unpredictable, and sometimes harmful, functions, including uncontrolled cell growth that can lead to cancer. One type of translocation, in which a portion of the gene encoding nucleoporin 98 (NUP98)—one of about 50 proteins comprising the nuclear pore complex through which proteins are shuttled into and out of the nucleus—fuses with another gene, has been shown to result in improper histone modifications. These abnormalities alter the gene expression patterns of certain types of hematopoietic, or blood-forming, stem cells, resulting primarily in overexpression of the Hoxa7, Hoxa9,and Hoxa10 genes. NUP98 chromosomal translocations have been associated with many types of leukemia, including acute myeloid leukemia (AML), acute lymphoid leukemia (ALL), chronic myeloid leukemia in blast crisis (CML-bc), and myelodysplastic syndrome (MDS).

  18. A Caleosin-Like Protein with Peroxygenase Activity Mediates Aspergillus flavus Development, Aflatoxin Accumulation, and Seed Infection.

    PubMed

    Hanano, Abdulsamie; Almousally, Ibrahem; Shaban, Mouhnad; Blee, Elizabeth

    2015-09-01

    Caleosins are a small family of calcium-binding proteins endowed with peroxygenase activity in plants. Caleosin-like genes are present in fungi; however, their functions have not been reported yet. In this work, we identify a plant caleosin-like protein in Aspergillus flavus that is highly expressed during the early stages of spore germination. A recombinant purified 32-kDa caleosin-like protein supported peroxygenase activities, including co-oxidation reactions and reduction of polyunsaturated fatty acid hydroperoxides. Deletion of the caleosin gene prevented fungal development. Alternatively, silencing of the gene led to the increased accumulation of endogenous polyunsaturated fatty acid hydroperoxides and antioxidant activities but to a reduction of fungal growth and conidium formation. Two key genes of the aflatoxin biosynthesis pathway, aflR and aflD, were downregulated in the strains in which A. flavus PXG (AfPXG) was silenced, leading to reduced aflatoxin B1 production in vitro. Application of caleosin/peroxygenase-derived oxylipins restored the wild-type phenotype in the strains in which AfPXG was silenced. PXG-deficient A. flavus strains were severely compromised in their capacity to infect maize seeds and to produce aflatoxin. Our results uncover a new branch of the fungal oxylipin pathway and may lead to the development of novel targets for controlling fungal disease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. UL31 and UL34 Proteins of Herpes Simplex Virus Type 1 Form a Complex That Accumulates at the Nuclear Rim and Is Required for Envelopment of Nucleocapsids

    PubMed Central

    Reynolds, Ashley E.; Ryckman, Brent J.; Baines, Joel D.; Zhou, Yuping; Liang, Li; Roller, Richard J.

    2001-01-01

    The herpes simplex virus type 1 (HSV-1) UL34 protein is likely a type II membrane protein that localizes within the nuclear membrane and is required for efficient envelopment of progeny virions at the nuclear envelope, whereas the UL31 gene product of HSV-1 is a nuclear matrix-associated phosphoprotein previously shown to interact with UL34 protein in HSV-1-infected cell lysates. For these studies, polyclonal antisera directed against purified fusion proteins containing UL31 protein fused to glutathione-S-transferase (UL31-GST) and UL34 protein fused to GST (UL34-GST) were demonstrated to specifically recognize the UL31 and UL34 proteins of approximately 34,000 and 30,000 Da, respectively. The UL31 and UL34 gene products colocalized in a smooth pattern throughout the nuclear rim of infected cells by 10 h postinfection. UL34 protein also accumulated in pleiomorphic cytoplasmic structures at early times and associated with an altered nuclear envelope late in infection. Localization of UL31 protein at the nuclear rim required the presence of UL34 protein, inasmuch as cells infected with a UL34 null mutant virus contained UL31 protein primarily in central intranuclear domains separate from the nuclear rim, and to a lesser extent in the cytoplasm. Conversely, localization of UL34 protein exclusively at the nuclear rim required the presence of the UL31 gene product, inasmuch as UL34 protein was detectable at the nuclear rim, in replication compartments, and in the cytoplasm of cells infected with a UL31 null virus. When transiently expressed in the absence of other viral factors, UL31 protein localized diffusely in the nucleoplasm, whereas UL34 protein localized primarily in the cytoplasm and at the nuclear rim. In contrast, coexpression of the UL31 and UL34 proteins was sufficient to target both proteins exclusively to the nuclear rim. The proteins were also shown to directly interact in vitro in the absence of other viral proteins. In cells infected with a virus

  20. Genotypic-dependent effects of N fertilizer, glutathione, silicon, zinc, and selenium on proteomic profiles, amino acid contents, and quality of rice genotypes with contrasting grain Cd accumulation.

    PubMed

    Cao, Fangbin; Fu, Manman; Wang, Runfeng; Cheng, Wangda; Zhang, Guoping; Wu, Feibo

    2017-07-01

    Soil heavy metal (HM) contamination has posed a serious problem for safe food production. For restricting the translocation of HM into grain, many proteins were regulated to involve in the process. To identify these proteins, 2D-based proteomic analysis was carried out using different rice genotypes with distinct Cd accumulation in grains and as affected by an alleviating regulator (AR) in field experiments. AR application improved grain quality, with increased contents in Glu, Cys, His, Pro, and protein. Twenty-six low-grain HM accumulation-associated protein species were identified and categorized as physiological functions via two-dimensional gel electrophoresis (2DE) and mass spectrometry. Among these proteins, 8, 9, and 9 proteins exhibited higher accumulation, lower accumulation, and unchanged accumulation, respectively, in Xiushui817 (low accumulator) vs R8097 (high accumulator) under control conditions but showed differential accumulation patterns after AR application. These proteins included sucrose synthase 3, alanine aminotransferase, glutelin, cupin family protein, and zinc finger CCCH domain-containing protein 32. The differential expression of these protein species might contribute to decreased HM accumulation in grain via decreasing the protein accumulation which had high affinity to HM or regulating energy metabolism and signal transduction. Our findings provide valuable insights into the mechanisms of low-grain HM accumulation in rice and possible utilization of candidate protein species in developing low-grain HM accumulation genotypes.

  1. Rapid and systemic accumulation of chloroplast mRNA-binding protein transcripts after flame stimulus in tomato

    NASA Technical Reports Server (NTRS)

    Vian, A.; Henry-Vian, C.; Davies, E.

    1999-01-01

    It has been shown that tomato (Lycopersicon esculentum) plants respond to flame wounding and electrical stimulation by a rapid (15 min) and systemic up-regulation of proteinase inhibitor (pin) genes. To find other genes having a similar expression pattern, we used subtractive cDNA screening between flamed and control plants to select clones up-regulated by flame wounding. We report the characterization of one of them, a chloroplast mRNA-binding protein encoded by a single gene and expressed preferentially in the leaves. Systemic gene expression in response to flaming in the youngest terminal leaf exhibited three distinct phases: a rapid and transient increase (5-15 min) in transcript accumulation, a decline to basal levels (15-45 min), and then a second, more prolonged increase (60-90 min). In contrast, after a mechanical wound the rapid, transient increase (5 min) was followed by a rapid decline to basal levels but no later, prolonged accumulation. In the petiole, the initial flame-wound-evoked transient increase (15 min) was followed by a continuous decline for 3 h. The nature of the wound signal(s) causing such rapid changes in transcript abundance is discussed in relation to electrical signaling, which has recently been implicated in plant responses to wounding.

  2. The predominant circular form of avocado sunblotch viroid accumulates in planta as a free RNA adopting a rod-shaped secondary structure unprotected by tightly bound host proteins.

    PubMed

    López-Carrasco, Amparo; Flores, Ricardo

    2017-07-01

    Avocado sunblotch viroid (ASBVd), the type member of the family Avsunviroidae, replicates and accumulates in chloroplasts. Whether this minimal non-protein-coding circular RNA of 246-250 nt exists in vivo as a free nucleic acid or closely associated with host proteins remains unknown. To tackle this issue, the secondary structures of the monomeric circular (mc) (+) and (-) strands of ASBVd have been examined in silico by searching those of minimal free energy, and in vitro at single-nucleotide resolution by selective 2'-hydroxyl acylation analysed by primer extension (SHAPE). Both approaches resulted in predominant rod-like secondary structures without tertiary interactions, with the mc (+) RNA being more compact than its (-) counterpart as revealed by non-denaturing polyacryamide gel electrophoresis. Moreover, in vivo SHAPE showed that the mc ASBVd (+) form accumulates in avocado leaves as a free RNA adopting a similar rod-shaped conformation unprotected by tightly bound host proteins. Hence, the mc ASBVd (+) RNA behaves in planta like the previously studied mc (+) RNA of potato spindle tuber viroid, the type member of nuclear viroids (family Pospiviroidae), indicating that two different viroids replicating and accumulating in distinct subcellular compartments, have converged into a common structural solution. Circularity and compact secondary structures confer to these RNAs, and probably to all viroids, the intrinsic stability needed to survive in their natural habitats. However, in vivo SHAPE has not revealed the (possibly transient or loose) interactions of the mc ASBVd (+) RNA with two host proteins observed previously by UV irradiation of infected avocado leaves.

  3. Chromoplast-Specific Carotenoid-Associated Protein Appears to Be Important for Enhanced Accumulation of Carotenoids in hp1 Tomato Fruits1[C][W][OA

    PubMed Central

    Kilambi, Himabindu Vasuki; Kumar, Rakesh; Sharma, Rameshwar; Sreelakshmi, Yellamaraju

    2013-01-01

    Tomato (Solanum lycopersicum) high-pigment mutants with lesions in diverse loci such as DNA Damage-Binding Protein1 (high pigment1 [hp1]), Deetiolated1 (hp2), Zeaxanthin Epoxidase (hp3), and Intense pigment (Ip; gene product unknown) exhibit increased accumulation of fruit carotenoids coupled with an increase in chloroplast number and size. However, little is known about the underlying mechanisms exaggerating the carotenoid accumulation and the chloroplast number in these mutants. A comparison of proteome profiles from the outer pericarp of hp1 mutant and wild-type (cv Ailsa Craig) fruits at different developmental stages revealed at least 72 differentially expressed proteins during ripening. Hierarchical clustering grouped these proteins into three clusters. We found an increased abundance of chromoplast-specific carotenoid-associated protein (CHRC) in hp1 fruits at red-ripe stage that is also reflected in its transcript level. Western blotting using CHRC polyclonal antibody from bell pepper (Capsicum annuum) revealed a 2-fold increase in the abundance of CHRC protein in the red-ripe stage of hp1 fruits compared with the wild type. CHRC levels in hp2 were found to be similar to that of hp1, whereas hp3 and Ip showed intermediate levels to those in hp1, hp2, and wild-type fruits. Both CHRC and carotenoids were present in the isolated plastoglobules. Overall, our results suggest that loss of function of DDB1, DET1, Zeaxanthin Epoxidase, and Ip up-regulates CHRC levels. Increase in CHRC levels may contribute to the enhanced carotenoid content in these high-pigment fruits by assisting in the sequestration and stabilization of carotenoids. PMID:23400702

  4. HIV-1 transgenic rats display mitochondrial abnormalities consistent with abnormal energy generation and distribution.

    PubMed

    Villeneuve, Lance M; Purnell, Phillip R; Stauch, Kelly L; Callen, Shannon E; Buch, Shilpa J; Fox, Howard S

    2016-10-01

    With the advent of the combination antiretroviral therapy era (cART), the development of AIDS has been largely limited in the USA. Unfortunately, despite the development of efficacious treatments, HIV-1-associated neurocognitive disorders (HAND) can still develop, and as many HIV-1 positive individuals age, the prevalence of HAND is likely to rise because HAND manifests in the brain with very low levels of virus. However, the mechanism producing this viral disorder is still debated. Interestingly, HIV-1 infection exposes neurons to proteins including Tat, Nef, and Vpr which can drastically alter mitochondrial properties. Mitochondrial dysfunction has been posited to be a cornerstone of the development of numerous neurodegenerative diseases. Therefore, we investigated mitochondria in an animal model of HAND. Using an HIV-1 transgenic rat model expressing seven of the nine HIV-1 viral proteins, mitochondrial functional and proteomic analysis were performed on a subset of mitochondria that are particularly sensitive to cellular changes, the neuronal synaptic mitochondria. Quantitative mass spectroscopic studies followed by statistical analysis revealed extensive proteome alteration in this model paralleling mitochondrial abnormalities identified in HIV-1 animal models and HIV-1-infected humans. Novel mitochondrial protein changes were discovered in the electron transport chain (ETC), the glycolytic pathways, mitochondrial trafficking proteins, and proteins involved in various energy pathways, and these findings correlated well with the function of the mitochondria as assessed by a mitochondrial coupling and flux assay. By targeting these proteins and proteins upstream in the same pathway, we may be able to limit the development of HAND.

  5. The role of gigaxonin in the degradation of the glial-specific intermediate filament protein GFAP

    PubMed Central

    Lin, Ni-Hsuan; Huang, Yu-Shan; Opal, Puneet; Goldman, Robert D.; Messing, Albee; Perng, Ming-Der

    2016-01-01

    Alexander disease (AxD) is a primary genetic disorder of astrocytes caused by dominant mutations in the gene encoding the intermediate filament (IF) protein GFAP. This disease is characterized by excessive accumulation of GFAP, known as Rosenthal fibers, within astrocytes. Abnormal GFAP aggregation also occurs in giant axon neuropathy (GAN), which is caused by recessive mutations in the gene encoding gigaxonin. Given that one of the functions of gigaxonin is to facilitate proteasomal degradation of several IF proteins, we sought to determine whether gigaxonin is involved in the degradation of GFAP. Using a lentiviral transduction system, we demonstrated that gigaxonin levels influence the degradation of GFAP in primary astrocytes and in cell lines that express this IF protein. Gigaxonin was similarly involved in the degradation of some but not all AxD-associated GFAP mutants. In addition, gigaxonin directly bound to GFAP, and inhibition of proteasome reversed the clearance of GFAP in cells achieved by overexpressing gigaxonin. These studies identify gigaxonin as an important factor that targets GFAP for degradation through the proteasome pathway. Our findings provide a critical foundation for future studies aimed at reducing or reversing pathological accumulation of GFAP as a potential therapeutic strategy for AxD and related diseases. PMID:27798231

  6. Abscisic Acid Deficiency Antagonizes High-Temperature Inhibition of Disease Resistance through Enhancing Nuclear Accumulation of Resistance Proteins SNC1 and RPS4 in Arabidopsis[C][W

    PubMed Central

    Mang, Hyung-Gon; Qian, Weiqiang; Zhu, Ying; Qian, Jun; Kang, Hong-Gu; Klessig, Daniel F.; Hua, Jian

    2012-01-01

    Plant defense responses to pathogens are influenced by abiotic factors, including temperature. Elevated temperatures often inhibit the activities of disease resistance proteins and the defense responses they mediate. A mutant screen with an Arabidopsis thaliana temperature-sensitive autoimmune mutant bonzai1 revealed that the abscisic acid (ABA)–deficient mutant aba2 enhances resistance mediated by the resistance (R) gene SUPPRESSOR OF npr1-1 CONSTITUTIVE1 (SNC1) at high temperature. ABA deficiency promoted nuclear accumulation of SNC1, which was essential for it to function at low and high temperatures. Furthermore, the effect of ABA deficiency on SNC1 protein accumulation is independent of salicylic acid, whose effects are often antagonized by ABA. ABA deficiency also promotes the activity and nuclear localization of R protein RESISTANCE TO PSEUDOMONAS SYRINGAE4 at higher temperature, suggesting that the effect of ABA on R protein localization and nuclear activity is rather broad. By contrast, mutations that confer ABA insensitivity did not promote defense responses at high temperature, suggesting either tissue specificity of ABA signaling or a role of ABA in defense regulation independent of the core ABA signaling machinery. Taken together, this study reveals a new intersection between ABA and disease resistance through R protein localization and provides further evidence of antagonism between abiotic and biotic responses. PMID:22454454

  7. Asynchronous accumulation of lettuce infectious yellows virus RNAs 1 and 2 and identification of an RNA 1 trans enhancer of RNA 2 accumulation.

    PubMed

    Yeh, H H; Tian, T; Rubio, L; Crawford, B; Falk, B W

    2000-07-01

    Time course and mutational analyses were used to examine the accumulation in protoplasts of progeny RNAs of the bipartite Crinivirus, Lettuce infectious yellow virus (LIYV; family Closteroviridae). Hybridization analyses showed that simultaneous inoculation of LIYV RNAs 1 and 2 resulted in asynchronous accumulation of progeny LIYV RNAs. LIYV RNA 1 progeny genomic and subgenomic RNAs could be detected in protoplasts as early as 12 h postinoculation (p.i.) and accumulated to high levels by 24 h p.i. The LIYV RNA 1 open reading frame 2 (ORF 2) subgenomic RNA was the most abundant of all LIYV RNAs detected. In contrast, RNA 2 progeny were not readily detected until ca. 36 h p.i. Mutational analyses showed that in-frame stop codons introduced into five of seven RNA 2 ORFs did not affect accumulation of progeny LIYV RNA 1 or RNA 2, confirming that RNA 2 does not encode proteins necessary for LIYV RNA replication. Mutational analyses also supported that LIYV RNA 1 encodes proteins necessary for replication of LIYV RNAs 1 and 2. A mutation introduced into the LIYV RNA 1 region encoding the overlapping ORF 1B and ORF 2 was lethal. However, mutations introduced into only LIYV RNA 1 ORF 2 resulted in accumulation of progeny RNA 1 near or equal to wild-type RNA 1. In contrast, the RNA 1 ORF 2 mutants did not efficiently support the trans accumulation of LIYV RNA 2. Three distinct RNA 1 ORF 2 mutants were analyzed and all exhibited a similar phenotype for progeny LIYV RNA accumulation. These data suggest that the LIYV RNA 1 ORF 2 encodes a trans enhancer for RNA 2 accumulation.

  8. Asynchronous Accumulation of Lettuce Infectious Yellows Virus RNAs 1 and 2 and Identification of an RNA 1 trans Enhancer of RNA 2 Accumulation

    PubMed Central

    Yeh, Hsin-Hung; Tian, Tongyan; Rubio, Luis; Crawford, Brett; Falk, Bryce W.

    2000-01-01

    Time course and mutational analyses were used to examine the accumulation in protoplasts of progeny RNAs of the bipartite Crinivirus, Lettuce infectious yellow virus (LIYV; family Closteroviridae). Hybridization analyses showed that simultaneous inoculation of LIYV RNAs 1 and 2 resulted in asynchronous accumulation of progeny LIYV RNAs. LIYV RNA 1 progeny genomic and subgenomic RNAs could be detected in protoplasts as early as 12 h postinoculation (p.i.) and accumulated to high levels by 24 h p.i. The LIYV RNA 1 open reading frame 2 (ORF 2) subgenomic RNA was the most abundant of all LIYV RNAs detected. In contrast, RNA 2 progeny were not readily detected until ca. 36 h p.i. Mutational analyses showed that in-frame stop codons introduced into five of seven RNA 2 ORFs did not affect accumulation of progeny LIYV RNA 1 or RNA 2, confirming that RNA 2 does not encode proteins necessary for LIYV RNA replication. Mutational analyses also supported that LIYV RNA 1 encodes proteins necessary for replication of LIYV RNAs 1 and 2. A mutation introduced into the LIYV RNA 1 region encoding the overlapping ORF 1B and ORF 2 was lethal. However, mutations introduced into only LIYV RNA 1 ORF 2 resulted in accumulation of progeny RNA 1 near or equal to wild-type RNA 1. In contrast, the RNA 1 ORF 2 mutants did not efficiently support the trans accumulation of LIYV RNA 2. Three distinct RNA 1 ORF 2 mutants were analyzed and all exhibited a similar phenotype for progeny LIYV RNA accumulation. These data suggest that the LIYV RNA 1 ORF 2 encodes a trans enhancer for RNA 2 accumulation. PMID:10846054

  9. Energy-Dependent Accumulation of Fluoroquinolones in Quinolone-Resistant Klebsiella pneumoniae Strains

    PubMed Central

    Martínez-Martínez, Luis; García, Isabel; Ballesta, Sofía; Benedí, Vicente Javier; Hernández-Allés, Santiago; Pascual, Alvaro

    1998-01-01

    The intracellular accumulation of norfloxacin and pefloxacin in Klebsiella pneumoniae was evaluated. The roles of lipopolysaccharide, capsule, and outer membrane proteins were not important for the intrabacterial accumulation of fluoroquinolones in isogenic strains with known outer membrane alterations. In fluoroquinolone-resistant clinical isolates also expressing GyrA alterations, an active efflux leading to decreased accumulation of the drugs enhanced their resistance to these agents. PMID:9661034

  10. Houttuynia cordata attenuates lipid accumulation via activation of AMP-activated protein kinase signaling pathway in HepG2 cells.

    PubMed

    Kang, Hyun; Koppula, Sushruta

    2014-01-01

    Houttuynia cordata (H. cordata) from the family Saururaceae is a perennial herb native to Southeast Asia. It possesses a range of medicinal properties to treat several disease symptoms including allergic inflammation and anaphylaxis. In the present investigation, we provided the molecular mechanisms underlying the role of H. cordata extract (HCE) in the prevention of high glucose-induced lipid accumulation in human HepG2 hepatocytes. HepG2 cells were pre-treated with various concentrations of HCE (0, 10, 20, 40, and 80 μg/mL) and treated with serum-free medium with normal glucose (5 mM) for 1 h, followed by exposure to high glucose (25 mM D-glucose) for 24 h. HCE significantly and dose-dependently attenuated lipid accumulation in human HepG2 hepatocytes when exposed to high glucose (25 mM D-glucose) (p < 0.05, p < 0.01 and p < 0.001 at 20, 40, and 80 μg/mL concentrations, respectively). Further, HCE attenuated the expression of fatty acid synthase (FAS), sterol regulatory element-binding protein-1 and glycerol 3-phosphate acyltransferases (GPATs). The adenosine monophosphate-activated protein kinase (AMPK) was also activated by HCE treatment when exposed to high glucose (25 mM D-glucose) in human HepG2 hepatocytes. This study suggests the hypolipidemic effects of HCE by the inhibition of lipid biosynthesis mediated through AMPK signaling, which may play an active role and can be developed as an anti-obesity agent.

  11. Functions of TET Proteins in Hematopoietic Transformation.

    PubMed

    Han, Jae-A; An, Jungeun; Ko, Myunggon

    2015-11-01

    DNA methylation is a well-characterized epigenetic modification that plays central roles in mammalian development, genomic imprinting, X-chromosome inactivation and silencing of retrotransposon elements. Aberrant DNA methylation pattern is a characteristic feature of cancers and associated with abnormal expression of oncogenes, tumor suppressor genes or repair genes. Ten-eleven-translocation (TET) proteins are recently characterized dioxygenases that catalyze progressive oxidation of 5-methylcytosine to produce 5-hydroxymethylcytosine and further oxidized derivatives. These oxidized methylcytosines not only potentiate DNA demethylation but also behave as independent epigenetic modifications per se. The expression or activity of TET proteins and DNA hydroxymethylation are highly dysregulated in a wide range of cancers including hematologic and non-hematologic malignancies, and accumulating evidence points TET proteins as a novel tumor suppressor in cancers. Here we review DNA demethylation-dependent and -independent functions of TET proteins. We also describe diverse TET loss-of-function mutations that are recurrently found in myeloid and lymphoid malignancies and their potential roles in hematopoietic transformation. We discuss consequences of the deficiency of individual Tet genes and potential compensation between different Tet members in mice. Possible mechanisms underlying facilitated oncogenic transformation of TET-deficient hematopoietic cells are also described. Lastly, we address non-mutational mechanisms that lead to suppression or inactivation of TET proteins in cancers. Strategies to restore normal 5mC oxidation status in cancers by targeting TET proteins may provide new avenues to expedite the development of promising anti-cancer agents.

  12. Ophthalmic acid accumulation in an Escherichia coli mutant lacking the conserved pyridoxal 5'-phosphate-binding protein YggS.

    PubMed

    Ito, Tomokazu; Yamauchi, Ayako; Hemmi, Hisashi; Yoshimura, Tohru

    2016-12-01

    Escherichia coli YggS is a highly conserved pyridoxal 5'-phosphate (PLP)-binding protein whose biochemical function is currently unknown. A previous study with a yggS-deficient E. coli strain (ΔyggS) demonstrated that YggS controls l-Ile- and l-Val-metabolism by modulating 2-ketobutyrate (2-KB), l-2-aminobutyrate (l-2-AB), and/or coenzyme A (CoA) availability in a PLP-dependent fashion. In this study, we found that ΔyggS accumulates an unknown metabolite as judged by amino acid analyses. LC/MS and MS/MS analyses of the compound with propyl chloroformate derivatization, and co-chromatography analysis identified this compound as γ-l-glutamyl-l-2-aminobutyryl-glycine (ophthalmic acid), a glutathione (GSH) analogue in which the l-Cys moiety is replaced by l-2-AB. We also determine the metabolic consequence of the yggS mutation. Absence of YggS initially increases l-2-AB availability, and then causes ophthalmic acid accumulation and CoA limitation in the cell. The expression of a γ-glutamylcysteine synthetase and a glutathione synthetase in a ΔyggS background causes high-level accumulation of ophthalmic acid in the cells (∼1.2 nmol/mg cells) in a minimal synthetic medium. This opens the possibility of a first fermentative production of ophthalmic acid. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. A non-aggregating Surfactant Protein C mutant is misdirected to early endosomes and disrupts phospholipid recycling

    PubMed Central

    Beers, Michael F.; Hawkins, Arie; Maguire, Jean Ann; Kotorashvili, Adam; Zhao, Ming; Newitt, Jennifer L.; Ding, Wenge; Russo, Scott; Guttentag, Susan; Gonzales, Linda; Mulugeta, Surafel

    2011-01-01

    Interstitial lung disease in both children and adults has been linked to mutations in the lung-specific Surfactant protein C gene (SFTPC). Among these, the missense mutation (isoleucine to threonine at codon 73 = hSP-CI73T) accounts for ~30% of all described SFTPC mutations. We reported previously that unlike the BRICHOS misfolding SFTPC mutants, expression of hSP-CI73T induces lung remodeling and alveolar lipoproteinosis without a substantial ER stress response or ER-mediated intrinsic apoptosis. We show here that, in contrast to its wild type counterpart that is directly routed to lysosomal-like organelles for processing, SP-CI73T is misdirected to the plasma membrane and subsequently internalized to the endocytic pathway via early endosomes, leading to the accumulation of abnormally processed proSP-C isoforms. Functionally, cells expressing hSP-CI73T demonstrated both impaired uptake and degradation of surfactant phospholipid, thus providing a molecular mechanism for the observed lipid accumulation in patients expressing hSP-CI73T through the disruption of normal phospholipid recycling. Our data provide evidence for a novel cellular mechanism for conformational protein associated diseases, and suggest a paradigm for mistargeted proteins involved in the disruption of the endosomal/lysosomal sorting machinery. PMID:21707890

  14. Re-analysis of protein data reveals the germination pathway and up accumulation mechanism of cell wall hydrolases during the radicle protrusion step of seed germination in Podophyllum hexandrum- a high altitude plant

    PubMed Central

    Dogra, Vivek; Bagler, Ganesh; Sreenivasulu, Yelam

    2015-01-01

    Podophyllum hexandrum Royle is an important high-altitude plant of Himalayas with immense medicinal value. Earlier, it was reported that the cell wall hydrolases were up accumulated during radicle protrusion step of Podophyllum seed germination. In the present study, Podophyllum seed Germination protein interaction Network (PGN) was constructed by using the differentially accumulated protein (DAP) data set of Podophyllum during the radicle protrusion step of seed germination, with reference to Arabidopsis protein–protein interaction network (AtPIN). The developed PGN is comprised of a giant cluster with 1028 proteins having 10,519 interactions and a few small clusters with relevant gene ontological signatures. In this analysis, a germination pathway related cluster which is also central to the topology and information dynamics of PGN was obtained with a set of 60 key proteins. Among these, eight proteins which are known to be involved in signaling, metabolism, protein modification, cell wall modification, and cell cycle regulation processes were found commonly highlighted in both the proteomic and interactome analysis. The systems-level analysis of PGN identified the key proteins involved in radicle protrusion step of seed germination in Podophyllum. PMID:26579141

  15. A downstream box fusion allows stable accumulation of a bacterial cellulase in Chlamydomonas reinhardtii chloroplasts.

    PubMed

    Richter, Lubna V; Yang, Huijun; Yazdani, Mohammad; Hanson, Maureen R; Ahner, Beth A

    2018-01-01

    We investigated strategies to improve foreign protein accumulation in the chloroplasts of the model algae Chlamydomonas reinhardtii and tested the outcome in both standard culture conditions as well as one pertinent to algal biofuel production. The downstream box (DB) of the TetC or NPTII genes, the first 15 codons following the start codon, was N -terminally fused to the coding region of cel6A , an endoglucanase from Thermobifida fusca . We also employed a chimeric regulatory element, consisting of the 16S rRNA promoter and the atpA 5'UTR, previously reported to enhance protein expression, to regulate the expression of the TetC- cel6A gene. We further investigated the accumulation of TetC-Cel6A under N -deplete growth conditions. Both of the DB fusions improved intracellular accumulation of Cel6A in transplastomic C. reinhardtii strains though the TetC DB was much more effective than the NPTII DB. Furthermore, using the chimeric regulatory element, the TetC-Cel6A protein accumulation displayed a significant increase to 0.3% total soluble protein (TSP), whereas NPTII-Cel6A remained too low to quantify. Comparable levels of TetC- and NPTII- cel6A transcripts were observed, which suggests that factors other than transcript abundance mediate the greater TetC-Cel6A accumulation. The TetC-Cel6A accumulation was stable regardless of the growth stage, and the transplastomic strain growth rate was not altered. When transplastomic cells were suspended in N -deplete medium, cellular levels of TetC-Cel6A increased over time along with TSP, and were greater than those in cells suspended in N -replete medium. The DB fusion holds great value as a tool to enhance foreign protein accumulation in C. reinhardtii chloroplasts and its influence is related to translation or other post-transcriptional processes. Our results also suggest that transplastomic protein production can be compatible with algal biofuel production strategies. Cells displayed a consistent accumulation of

  16. Small Molecule Disrupts Abnormal Gene Fusion Associated with Leukemia | Center for Cancer Research

    Cancer.gov

    Rare chromosomal abnormalities, called chromosomal translocations, in which part of a chromosome breaks off and becomes attached to another chromosome, can result in the generation of chimeric proteins. These aberrant proteins have unpredictable, and sometimes harmful, functions, including uncontrolled cell growth that can lead to cancer. One type of translocation, in which a

  17. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  18. Abnormal Uterine Bleeding

    MedlinePlus

    ... abnormal uterine bleeding? Abnormal uterine bleeding is any heavy or unusual bleeding from the uterus (through your ... one symptom of abnormal uterine bleeding. Having extremely heavy bleeding during your period can also be considered ...

  19. Effects of proteome rebalancing and sulfur nutrition on the accumulation of methionine rich δ-zein in transgenic soybeans

    PubMed Central

    Kim, Won-Seok; Jez, Joseph M.; Krishnan, Hari B.

    2014-01-01

    Expression of heterologous methionine-rich proteins to increase the overall sulfur amino acid content of soybean seeds has been only marginally successful, presumably due to low accumulation of transgenes in soybeans or due to gene silencing. Proteome rebalancing of seed proteins has been shown to promote the accumulation of foreign proteins. In this study, we have utilized RNAi technology to suppress the expression of the β-conglycinin, the abundant 7S seed storage proteins of soybean. Western blot and 2D-gel analysis revealed that β-conglycinin knockdown line (SAM) failed to accumulate the α′, α, and β-subunits of β-conglycinin. The proteome rebalanced SAM retained the overall protein and oil content similar to that of wild-type soybean. We also generated transgenic soybean lines expressing methionine-rich 11 kDa δ-zein under the control of either the glycinin or β-conglycinin promoter. The introgression of the 11 kDa δ-zein into β-conglycinin knockdown line did not enhance the accumulation of the 11 kDa δ-zein. However, when the same plants were grown in sulfur-rich medium, we observed 3- to 16-fold increased accumulation of the 11 kDa δ-zein. Transmission electron microscopy observation revealed that seeds grown in sulfur-rich medium contained numerous endoplasmic reticulum derived protein bodies. Our findings suggest that sulfur availability, not proteome rebalancing, is needed for high-level accumulation of heterologous methionine-rich proteins in soybean seeds. PMID:25426134

  20. Exogenous calcium improves viability of biocontrol yeasts under heat stress by reducing ROS accumulation and oxidative damage of cellular protein.

    PubMed

    An, Bang; Li, Boqiang; Qin, Guozheng; Tian, Shiping

    2012-08-01

    In this article, we investigated the effect of exogenous calcium on improving viability of Debaryomyces hansenii and Pichia membranaefaciens under heat stress, and evaluated the role of calcium in reducing oxidant damage of proteins in the yeast cells. The results indicated that high concentration of exogenous calcium in culture medium was beneficial for enhancing the tolerance of the biocontrol yeasts to heat stress. The possible mechanism of calcium improving the viability of yeasts was attributed to enhancement of antioxidant enzyme activities, decrease in ROS accumulation and reduction of oxidative damage of intracellular protein in yeast cells under heat stress. D. hansenii is more sensitive to calcium as compared to P. membranaefaciens. Our results suggest that application of exogenous calcium combined with biocontrol yeasts is a practical approach for the control of postharvest disease in fruit.

  1. Histology, composition, and quality traits of chicken Pectoralis major muscle affected by wooden breast abnormality.

    PubMed

    Soglia, F; Mudalal, S; Babini, E; Di Nunzio, M; Mazzoni, M; Sirri, F; Cavani, C; Petracci, M

    2016-03-01

    Only a few years ago, the poultry industry began to face a recent abnormality in breast meat, known as wooden breast, which frequently overlaps with white striping. This study aimed to assess the impact of wooden breast abnormality on quality traits of meat. For this purpose, 32 normal (NRM), 32 wooden (WB), and 32 wooden and white-striped (WB/WS) Pectoralis major muscles were selected from the same flock of heavy broilers (males, Ross 708, weighing around 3.7 kg) in the deboning area of a commercial processing plant at 3 h postmortem and used to assess histology, proximate (moisture, protein, fat, ash, and collagen) and mineral composition (Mg, K, P, Na and Ca), sarcoplasmic and myofibrillar protein patterns, and technological traits of breast meat. Compared to the normal group, WB/WS fillets showed more severe histological lesions characterized by fiber degeneration, fibrosis, and lipidosis, coupled with a significantly harder texture. With regard to proximate and mineral composition, abnormal samples exhibited significantly (P < 0.001) higher moisture, fat, and collagen contents coupled with lower (P < 0.001) amounts of protein and ash. Furthermore, increased calcium (131 vs. 84 mg kg(-1); P < 0.05) and sodium (741 vs. 393 mg kg(-1); P < 0.001) levels were found in WB/WS meat samples. The SDS-PAGE analysis revealed a significantly lower amount of calcium-ATPase (SERCA, 114 kDa), responsible for the translocation of Ca ions across the membrane, in normal breasts compared to abnormal ones. As for meat quality traits, fillets affected by wooden abnormality exhibited significantly (P < 0.001) higher ultimate pH and lower water-holding/water-binding capacity. In particular, compared to normal, abnormal samples showed reduced marinade uptake coupled with increased drip loss and cooking losses as well. In conclusion, this study revealed that meat affected by wooden breast or both wooden breast and white striping abnormalities exhibit poorer nutritional value, harder

  2. Niemann-Pick Type C2 Protein Regulates Free Cholesterol Accumulation and Influences Hepatic Stellate Cell Proliferation and Mitochondrial Respiration Function.

    PubMed

    Wang, Yuan-Hsi; Twu, Yuh-Ching; Wang, Chung-Kwe; Lin, Fu-Zhen; Lee, Chun-Ya; Liao, Yi-Jen

    2018-06-05

    Liver fibrosis is the first step toward the progression to cirrhosis, portal hypertension, and hepatocellular carcinoma. A high-cholesterol diet is associated with liver fibrosis via the accumulation of free cholesterol in hepatic stellate cells (HSCs). Niemann-Pick type C2 (NPC2) plays an important role in the regulation of intracellular free cholesterol homeostasis via direct binding with free cholesterol. Previously, we reported that NPC2 was downregulated in liver cirrhosis tissues. Loss of NPC2 enhanced the accumulation of free cholesterol in HSCs and made them more susceptible to transforming growth factor (TGF)-β1. In this study, we showed that knockdown of NPC2 resulted in marked increases in platelet-derived growth factor BB (PDGF-BB)-induced HSC proliferation through enhanced extracellular signal-regulated kinases (ERK), p38, c-Jun N-terminal kinases (JNK), and protein kinase B (AKT) phosphorylation. In contrast, NPC2 overexpression decreased PDGF-BB-induced cell proliferation by inhibiting p38, JNK, and AKT phosphorylation. Although NPC2 expression did not affect caspase-related apoptosis, the autophagy marker light chain 3β (LC3B) was decreased in NPC2 knockdown, and free cholesterol accumulated in the HSCs. The mitochondrial respiration functions (such as oxygen consumption rate, ATP production, and maximal respiratory capacity) were decreased in NPC2 knockdown, and free cholesterol accumulated in the HSCs, while NPC2-overexpressed cells remained normal. In addition, NPC2 expression did not affect the susceptibility of HSCs to lipopolysaccharides (LPS), and U18666A treatment induced free cholesterol accumulation, which enhanced LPS-induced Toll-like receptor 4 (TLR4), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 phosphorylation, interleukin (IL)-1 and IL-6 expression. Our study demonstrated that NPC2-mediated free cholesterol homeostasis controls HSC proliferation and mitochondrial function.

  3. Accumulation of functional recombinant human coagulation factor IX in transgenic soybean seeds.

    PubMed

    Cunha, Nicolau B; Murad, André M; Ramos, Gustavo L; Maranhão, Andréia Q; Brígido, Marcelo M; Araújo, Ana Cláudia G; Lacorte, Cristiano; Aragão, Francisco J L; Covas, Dimas T; Fontes, Aparecida M; Souza, Gustavo H M F; Vianna, Giovanni R; Rech, Elíbio L

    2011-08-01

    The seed-based production of recombinant proteins is an efficient strategy to achieve the accumulation, correct folding, and increased stability of these recombinant proteins. Among potential plant molecular farming systems, soybean [Glycine max (L.) Merrill] is a viable option for the production of recombinant proteins due to its high protein content, known regulatory sequences, efficient gene transfer protocols, and a scalable production system under greenhouse conditions. We report here the expression and stable accumulation of human coagulation factor IX (hFIX) in transgenic soybean seeds. A biolistic process was utilised to co-introduce a plasmid carrying the hFIX gene under the transcriptional control of the α' subunit of a β-conglycinin seed-specific promoter and an α-Coixin signal peptide in soybean embryonic axes from mature seeds. The 56-kDa hFIX protein was expressed in the transgenic seeds at levels of up to 0.23% (0.8 g kg(-1) seed) of the total soluble seed protein as determined by an enzyme-linked immunosorbent assay (ELISA) and western blot. Ultrastructural immunocytochemistry assays indicated that the recombinant hFIX in seed cotyledonary cells was efficiently directed to protein storage vacuoles. Mass spectrometry characterisation confirmed the presence of the hFIX recombinant protein sequence. Protein extracts from transgenic seeds showed a blood-clotting activity of up to 1.4% of normal plasma. Our results demonstrate the correct processing and stable accumulation of functional hFIX in soybean seeds stored for 6 years under room temperature conditions (22 ± 2°C).

  4. RPLP1 and RPLP2 Are Essential Flavivirus Host Factors That Promote Early Viral Protein Accumulation

    PubMed Central

    Campos, Rafael K.; Wong, Benjamin; Lu, Yi-Fan; Shi, Pei-Yong; Pompon, Julien

    2016-01-01

    ABSTRACT The Flavivirus genus contains several arthropod-borne viruses that pose global health threats, including dengue viruses (DENV), yellow fever virus (YFV), and Zika virus (ZIKV). In order to understand how these viruses replicate in human cells, we previously conducted genome-scale RNA interference screens to identify candidate host factors. In these screens, we identified ribosomal proteins RPLP1 and RPLP2 (RPLP1/2) to be among the most crucial putative host factors required for DENV and YFV infection. RPLP1/2 are phosphoproteins that bind the ribosome through interaction with another ribosomal protein, RPLP0, to form a structure termed the ribosomal stalk. RPLP1/2 were validated as essential host factors for DENV, YFV, and ZIKV infection in two human cell lines: A549 lung adenocarcinoma and HuH-7 hepatoma cells, and for productive DENV infection of Aedes aegypti mosquitoes. Depletion of RPLP1/2 caused moderate cell-line-specific effects on global protein synthesis, as determined by metabolic labeling. In A549 cells, global translation was increased, while in HuH-7 cells it was reduced, albeit both of these effects were modest. In contrast, RPLP1/2 knockdown strongly reduced early DENV protein accumulation, suggesting a requirement for RPLP1/2 in viral translation. Furthermore, knockdown of RPLP1/2 reduced levels of DENV structural proteins expressed from an exogenous transgene. We postulate that these ribosomal proteins are required for efficient translation elongation through the viral open reading frame. In summary, this work identifies RPLP1/2 as critical flaviviral host factors required for translation. IMPORTANCE Flaviviruses cause important diseases in humans. Examples of mosquito-transmitted flaviviruses include dengue, yellow fever and Zika viruses. Viruses require a plethora of cellular factors to infect cells, and the ribosome plays an essential role in all viral infections. The ribosome is a complex macromolecular machine composed of RNA and

  5. TRANSPARENT TESTA GLABRA1 Regulates the Accumulation of Seed Storage Reserves in Arabidopsis.

    PubMed

    Chen, Mingxun; Zhang, Bin; Li, Chengxiang; Kulaveerasingam, Harikrishna; Chew, Fook Tim; Yu, Hao

    2015-09-01

    Seed storage reserves mainly consist of starch, triacylglycerols, and storage proteins. They not only provide energy for seed germination and seedling establishment, but also supply essential dietary nutrients for human beings and animals. So far, the regulatory networks that govern the accumulation of seed storage reserves in plants are still largely unknown. Here, we show that TRANSPARENT TESTA GLABRA1 (TTG1), which encodes a WD40 repeat transcription factor involved in many aspects of plant development, plays an important role in mediating the accumulation of seed storage reserves in Arabidopsis (Arabidopsis thaliana). The dry weight of ttg1-1 embryos significantly increases compared with that of wild-type embryos, which is accompanied by an increase in the contents of starch, total protein, and fatty acids in ttg1-1 seeds. FUSCA3 (FUS3), a master regulator of seed maturation, binds directly to the TTG1 genomic region and suppresses TTG1 expression in developing seeds. TTG1 negatively regulates the accumulation of seed storage proteins partially through transcriptional repression of 2S3, a gene encoding a 2S albumin precursor. TTG1 also indirectly suppresses the expression of genes involved in either seed development or synthesis/modification of fatty acids in developing seeds. In addition, we demonstrate that the maternal allele of the TTG1 gene suppresses the accumulation of storage proteins and fatty acids in seeds. Our results suggest that TTG1 is a direct target of FUS3 in the framework of the regulatory hierarchy controlling seed filling and regulates the accumulation of seed storage proteins and fatty acids during the seed maturation process. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. [Genetic diagnostics of pathogenic splicing abnormalities in the clinical laboratory--pitfalls and screening approaches].

    PubMed

    Niimi, Hideki; Ogawa, Tomomi; Note, Rhougou; Hayashi, Shirou; Ueno, Tomohiro; Harada, Kenu; Uji, Yoshinori; Kitajima, Isao

    2010-12-01

    In recent years, genetic diagnostics of pathogenic splicing abnormalities are increasingly recognized as critically important in the clinical genetic diagnostics. It is reported that approximately 10% of pathogenic mutations causing human inherited diseases are splicing mutations. Nonetheless, it is still difficult to identify splicing abnormalities in routine genetic diagnostic settings. Here, we studied two different kinds of cases with splicing abnormalities. The first case is a protein S deficiency. Nucleotide analyses revealed that the proband had a previously reported G to C substitution in the invariant AG dinucleotide at the splicing acceptor site of intronl/exon2, which produces multiple splicing abnormalities resulting in protein S deficiency. The second case is an antithrombin (AT) deficiency. This proband had a previously reported G to A substitution, at nucleotide position 9788 in intron 4, 14 bp in front of exon 5, which created a de novo exon 5 splice site and resulted in AT deficiency. From a practical standpoint, we discussed the pitfalls, attentions, and screening approaches in genetic diagnostics of pathogenic splicing abnormalities. Due to the difficulty with full-length sequence analysis of introns, and the lack of RNA samples, splicing mutations may escape identification. Although current genetic testing remains to be improved, to screen for splicing abnormalities more efficiently, it is significant to use an appropriate combination of various approaches such as DNA and/or RNA samples, splicing mutation databases, bioinformatic tools to detect splice sites and cis-regulatory elements, and in vitro and/or in vivo experimentally methods as needed.

  7. Decarboxylation of malonyl-(acyl carrier protein) by 3-oxoacyl-(acyl carrier protein) synthases in plant fatty acid biosynthesis.

    PubMed Central

    Winter, E; Brummel, M; Schuch, R; Spener, F

    1997-01-01

    In order to identify regulatory steps in fatty acid biosynthesis, the influence of intermediate 3-oxoacyl-(acyl carrier proteins) (3-oxoacyl-ACPs) and end-product acyl-ACPs of the fatty acid synthase reaction on the condensation reaction was investigated in vitro, using total fatty acid synthase preparations and purified 3-oxoacyl-ACP synthases (KASs; EC 2.3.1.41) from Cuphea lanceolata seeds. KAS I and II in the fatty acid synthase preparations were assayed for the elongation of octanoyl- and hexadecanoyl-ACP respectively, and the accumulation of the corresponding condensation product 3-oxoacyl-ACP was studied by modulating the content of the reducing equivalentS NADH and NADPH. Complete omission of reducing equivalents resulted with either KAS in the abnormal synthesis of acetyl-ACP from malonyl-ACP by a decarboxylation reaction. Supplementation with NADPH or NADH, separately or in combination with recombinant 3-oxoacyl-ACP reductase (EC 1.1.1.100), led to a decrease in the amount of acetyl-ACP and a simultaneous increase in elongation products. This demonstrates that the accumulation of 3-oxoacyl-ACP inhibits the condensation reaction on the one hand, and induces the decarboxylation of malonyl-ACP on the other. By carrying out similar experiments with purified enzymes, this decarboxylation was attributed to the action of KAS. Our data point to a regulatory mechanism for the degradation of malonyl-ACP in plants which is activated by the accumulation of the fatty acid synthase intermediate 3-oxoacyl-ACP. PMID:9020860

  8. Decarboxylation of malonyl-(acyl carrier protein) by 3-oxoacyl-(acyl carrier protein) synthases in plant fatty acid biosynthesis.

    PubMed

    Winter, E; Brummel, M; Schuch, R; Spener, F

    1997-01-15

    In order to identify regulatory steps in fatty acid biosynthesis, the influence of intermediate 3-oxoacyl-(acyl carrier proteins) (3-oxoacyl-ACPs) and end-product acyl-ACPs of the fatty acid synthase reaction on the condensation reaction was investigated in vitro, using total fatty acid synthase preparations and purified 3-oxoacyl-ACP synthases (KASs; EC 2.3.1.41) from Cuphea lanceolata seeds. KAS I and II in the fatty acid synthase preparations were assayed for the elongation of octanoyl- and hexadecanoyl-ACP respectively, and the accumulation of the corresponding condensation product 3-oxoacyl-ACP was studied by modulating the content of the reducing equivalentS NADH and NADPH. Complete omission of reducing equivalents resulted with either KAS in the abnormal synthesis of acetyl-ACP from malonyl-ACP by a decarboxylation reaction. Supplementation with NADPH or NADH, separately or in combination with recombinant 3-oxoacyl-ACP reductase (EC 1.1.1.100), led to a decrease in the amount of acetyl-ACP and a simultaneous increase in elongation products. This demonstrates that the accumulation of 3-oxoacyl-ACP inhibits the condensation reaction on the one hand, and induces the decarboxylation of malonyl-ACP on the other. By carrying out similar experiments with purified enzymes, this decarboxylation was attributed to the action of KAS. Our data point to a regulatory mechanism for the degradation of malonyl-ACP in plants which is activated by the accumulation of the fatty acid synthase intermediate 3-oxoacyl-ACP.

  9. Transcriptional activation of a MYB gene controls the tissue-specific anthocyanin accumulation in a purple cauliflower mutant

    USDA-ARS?s Scientific Manuscript database

    Flavonoids such as anthocyanins possess significant health benefits to humans and play important physiological roles in plants. An interesting Purple gene mutation in cauliflower confers an abnormal pattern of anthocyanin accumulation, giving intense purple color in very young leaves, curds, and see...

  10. Muscle-specific deletion of Prkaa1 enhances skeletal muscle lipid accumulation in mice fed a high-fat diet.

    PubMed

    Wu, Weiche; Xu, Ziye; Zhang, Ling; Liu, Jiaqi; Feng, Jie; Wang, Xinxia; Shan, Tizhong; Wang, Yizhen

    2018-05-01

    Excessive intramyocellular triacylglycerols (IMTGs, muscle lipids) are associated with the abnormal energy metabolism and insulin resistance of skeletal muscle. AMP-activated protein kinase (AMPK), a crucial cellular energy sensor, consists of α, β and γ subunits. Researchers have not clearly determined whether Prkaa1 (also known as AMPKα1) affects IMTG accumulation in skeletal muscle. Here, we show an important role of Prkaa1 in skeletal muscle lipid metabolism. Deletion of muscle Prkaa1 leads to the delayed development of skeletal muscles but does not affect glucose tolerance or insulin sensitivity in animals fed a normal diet. Notably, when animals are fed a high-fat diet, the skeletal muscle of muscle-specific Prkaa1 knockout mice accumulates more lipids than the skeletal muscle of wild-type (WT) mice, with concomitant upregulation of adipogenic gene expressions and downregulation of the expression of genes associated with mitochondrial oxidation. Muscle-specific Prkaa1 ablation also results in hyperlipidemia, which may contribute to the increased IMTG levels. Furthermore, Prkaa1 deletion activates skeletal muscle mTOR signalling, which has a central role in lipid metabolism and mitochondrial oxidation. Collectively, our study provides new insights into the role of Prkaa1 in skeletal muscle. This knowledge may contribute to the treatment of related metabolic diseases.

  11. ALS-associated mutation SOD1G93A leads to abnormal mitochondrial dynamics in osteocytes.

    PubMed

    Wang, Huan; Yi, Jianxun; Li, Xuejun; Xiao, Yajuan; Dhakal, Kamal; Zhou, Jingsong

    2018-01-01

    mitochondrial fission, but suppresses the fusion activity. Our data provide the first evidence that mitochondria show abnormality in osteocytes derived from an ALS mouse model. The accumulation of mutant SOD1 G93A protein inside mitochondria directly causes dysfunction in mitochondrial dynamics in cultured MLO-Y4 osteocytes. In addition, the ALS mutation SOD1 G93A -mediated dysfunction in mitochondrial dynamics is associated with an enhanced apoptosis in osteocytes, which could be a potential mechanism underlying the bone loss during ALS progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Global abnormalities in lymphatic function following systemic therapy in patients with breast cancer.

    PubMed

    Bains, S K; Peters, A M; Zammit, C; Ryan, N; Ballinger, J; Glass, D M; Allen, S; Stanton, A W B; Mortimer, P S; Purushotham, A D

    2015-04-01

    Breast cancer-related lymphoedema (BCRL) is a result of interaction between several pathophysiological processes, and is not simply a 'stopcock' effect resulting from removal of axillary lymph nodes. The aim of this study was to test the hypothesis that there is a constitutional 'global' lymphatic dysfunction in patients who develop BCRL. Lower-limb lymphoscintigraphy was performed in 30 women who had undergone axillary lymph node dissection at least 3 years previously, of whom 15 had BCRL and 15 did not. No patient had any clinical abnormality of the lower limb. The control group comprised 24 women with no history of cancer or lower-limb lymphoedema. (99m) Tc-Nanocoll was injected subcutaneously into the first webspace of each foot, followed by whole-body imaging. Scans were reported as abnormal if there was delay in lymph transport or rerouting through skin or deep system. Quantification was expressed as the percentage injected activity accumulating in ilioinguinal nodes. Mean(s.d.) ilioinguinal nodal accumulation at 150 min was significantly lower in women with BCRL than in those without (2·7(2·5) versus 5·9(4·8) per cent respectively; P = 0·006). Abnormal findings on lower-limb lymphoscintigraphy were observed in 17 of the 30 patients: ten of the 15 women who had BCRL and seven of the 15 who did not. None of the 24 control subjects had abnormal scan findings. Women with BCRL had reduced lower-limb lymph drainage, supporting the hypothesis of a predisposition to BCRL. A surprisingly high proportion of patients with breast cancer also demonstrated lymphatic dysfunction, despite clinically normal lower limbs. Possible explanations could be a systemic effect of breast cancer or its treatment, or an unidentified association between breast cancer and lymphatic dysfunction. ISRCTN84866416 ( http://www.isrctn.com). © 2015 BJS Society Ltd Published by John Wiley & Sons Ltd.

  13. Characterization of UO2(2+) binding to osteopontin, a highly phosphorylated protein: insights into potential mechanisms of uranyl accumulation in bones.

    PubMed

    Qi, Lei; Basset, Christian; Averseng, Olivier; Quéméneur, Eric; Hagège, Agnès; Vidaud, Claude

    2014-01-01

    Bones are one of the few organs in which uranyl (UO2(2+)) accumulates. This large dioxo-cation displays affinity for carboxylates, phenolates and phosphorylated functional groups in proteins. The noncollagenous protein osteopontin (OPN) plays an important role in bone homeostasis. It is mainly found in the extracellular matrix of mineralized tissues but also in body fluids such as milk, blood and urine. Furthermore, OPN is an intrinsically disordered protein, which, like other proteins of the SIBLING family, contains a polyaspartic acid sequence and numerous patterns of alternating acidic and phosphorylated residues. All these properties led to the hypothesis that this protein could be prone to UO2(2+) binding. In this work, a simple purification procedure enabling highly purified bovine (bOPN) and human OPN (hOPN) to be obtained was developed. Various biophysical approaches were set up to study the impact of phosphorylations on the affinity of OPN for UO2(2+) as well as the formation of stable complexes originating from structural changes induced by the binding of this metal cation. The results obtained suggest a new mechanism of the interaction of UO2(2+) with bone metabolism and a new role for OPN as a metal transporter.

  14. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  15. Accumulation of Cytoplasmic Dynein and Dynactin at Microtubule Plus Ends in Aspergillus nidulans Is Kinesin DependentV⃞

    PubMed Central

    Zhang, Jun; Li, Shihe; Fischer, Reinhard; Xiang, Xin

    2003-01-01

    The mechanism(s) by which microtubule plus-end tracking proteins are targeted is unknown. In the filamentous fungus Aspergillus nidulans, both cytoplasmic dynein and NUDF, the homolog of the LIS1 protein, localize to microtubule plus ends as comet-like structures. Herein, we show that NUDM, the p150 subunit of dynactin, also forms dynamic comet-like structures at microtubule plus ends. By examining proteins tagged with green fluorescent protein in different loss-of-function mutants, we demonstrate that dynactin and cytoplasmic dynein require each other for microtubule plus-end accumulation, and the presence of cytoplasmic dynein is also important for NUDF's plus-end accumulation. Interestingly, deletion of NUDF increases the overall accumulation of dynein and dynactin at plus ends, suggesting that NUDF may facilitate minus-end–directed dynein movement. Finally, we demonstrate that a conventional kinesin, KINA, is required for the microtubule plus-end accumulation of cytoplasmic dynein and dynactin, but not of NUDF. PMID:12686603

  16. Meiotic abnormalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  17. Identification of differentially accumulated proteins involved in regulating independent and combined osmosis and cadmium stress response in Brachypodium seedling roots.

    PubMed

    Chen, Ziyan; Zhu, Dong; Wu, Jisu; Cheng, Zhiwei; Yan, Xing; Deng, Xiong; Yan, Yueming

    2018-05-17

    In this study, we aimed to identify differentially accumulated proteins (DAPs) involved in PEG mock osmotic stress, cadmium (Cd 2+ ) stress, and their combined stress responses in Brachypodium distachyon seedling roots. The results showed that combined PEG and Cd 2+ stresses had more significant effects on Brachypodium seedling root growth, physiological traits, and ultrastructures when compared with each individual stress. Totally, 106 DAPs were identified that are responsive to individual and combined stresses in roots. These DAPs were mainly involved in energy metabolism, detoxification and stress defense and protein metabolism. Principal component analysis revealed that DAPs from Cd 2+ and combined stress treatments were grouped closer than those from osmotic stress treatment, indicating that Cd 2+ and combined stresses had more severe influences on the root proteome than osmotic stress alone. Protein-protein interaction analyses highlighted a 14-3-3 centered sub-network that synergistically responded to osmotic and Cd 2+ stresses and their combined stresses. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of 14 key DAP genes revealed that most genes showed consistency between transcriptional and translational expression patterns. A putative pathway of proteome metabolic changes in Brachypodium seedling roots under different stresses was proposed, which revealed a complicated synergetic responsive network of plant roots to adverse environments.

  18. Tonoplast Sugar Transporters (SbTSTs) putatively control sucrose accumulation in sweet sorghum stems.

    PubMed

    Bihmidine, Saadia; Julius, Benjamin T; Dweikat, Ismail; Braun, David M

    2016-01-01

    Carbohydrates are differentially partitioned in sweet versus grain sorghums. While the latter preferentially accumulate starch in the grain, the former primarily store large amounts of sucrose in the stem. Previous work determined that neither sucrose metabolizing enzymes nor changes in Sucrose transporter (SUT) gene expression accounted for the carbohydrate partitioning differences. Recently, 2 additional classes of sucrose transport proteins, Tonoplast Sugar Transporters (TSTs) and SWEETs, were identified; thus, we examined whether their expression tracked sucrose accumulation in sweet sorghum stems. We determined 2 TSTs were differentially expressed in sweet vs. grain sorghum stems, likely underlying the massive difference in sucrose accumulation. A model illustrating potential roles for different classes of sugar transport proteins in sorghum sugar partitioning is discussed.

  19. Abnormalities of the erythrocyte membrane.

    PubMed

    Gallagher, Patrick G

    2013-12-01

    Primary abnormalities of the erythrocyte membrane are characterized by clinical, laboratory, and genetic heterogeneity. Among this group, hereditary spherocytosis patients are more likely to experience symptomatic anemia. Treatment of hereditary spherocytosis with splenectomy is curative in most patients. Growing recognition of the long-term risks of splenectomy has led to re-evaluation of the role of splenectomy. Management guidelines acknowledge these considerations and recommend discussion between health care providers, patient, and family. The hereditary elliptocytosis syndromes are the most common primary disorders of erythrocyte membrane proteins. However, most elliptocytosis patients are asymptomatic and do not require therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Expression of ferrochelatase has a strong correlation in protoporphyrin IX accumulation with photodynamic detection of bladder cancer.

    PubMed

    Nakai, Yasushi; Tatsumi, Yoshihiro; Miyake, Makito; Anai, Satoshi; Kuwada, Masaomi; Onishi, Sayuri; Chihara, Yoshitomo; Tanaka, Nobumichi; Hirao, Yoshihiko; Fujimoto, Kiyohide

    2016-03-01

    The mechanism underlying the increased levels of protoporphyrin IX in bladder cancer remains unclear. Here, we focus on proteins associated with protoporphyrin IX accumulation in bladder cancer cells and investigate the protein that plays a key role in increased protoporphyrin IX accumulation in bladder cancer cells. Western blotting was used to determine the expression of peptide transporter 1, hydroxymethylbilane synthase, ferrochelatase, ATP-binding cassette 2, and heme oxygenase-1 in bladder cancer cell line cells. We evaluated the correlation between the expression of each protein and accumulated protoporphyrin IX in these cells using Pearson's correlation analysis. Immunohistochemistry was used to estimate the expression of the same five proteins in samples from 75 patients who underwent transurethral resection of bladder tumors. The correlation between the expression of each protein in cells from resected bladder specimens and accumulated protoporphyrin IX in bladder cancer cells in voided urine was evaluated using Pearson's correlation analysis. The expression of ferrochelatase showed a significant negative correlation with protoporphyrin IX accumulation in vitro (p=0.04). The expression of peptide transporter 1 (p<0.01, R=0.39), heme oxygenase-1 (p<0.01, R=0.33), and ferrochelatase (p<0.01, R=0.75) in resected bladder specimens by immunohistochemistry was correlated with protoporphyrin IX accumulation in bladder cancer cells in voided urine. On multivariate analysis, the expression of ferrochelatase (p=0.03) was significant factors to predict positive 5-aminolevulinic acid-induced fluorescent cytology. The expression of ferrochelatase has a strong correlation in protoporphyrin IX accumulation with photodynamic detection of bladder cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Age-related accumulation of pentosidine in aggrecan and collagen from normal and degenerate human intervertebral discs

    PubMed Central

    Sivan, Sarit Sara; Tsitron, Eve; Wachtel, Ellen; Roughley, Peter; Sakkee, Nico; van der Ham, Frits; Degroot, Jeroen; Maroudas, Alice

    2006-01-01

    During aging and degeneration, many changes occur in the structure and composition of human cartilaginous tissues, which include the accumulation of the AGE (advanced glycation end-product), pentosidine, in long-lived proteins. In the present study, we investigated the accumulation of pentosidine in constituents of the human IVD (intervertebral disc), i.e. collagen, aggrecan-derived PG (proteoglycan) (A1) and its fractions (A1D1–A1D6) in health and pathology. We found that, after maturity, pentosidine accumulates with age. Over the age range studied, a linear 6-fold increase was observed in pentosidine accumulation for A1 and collagen with respective rates of 0.12 and 0.66 nmol·(g of protein)−1·year−1. Using previously reported protein turnover rate constants (kT) obtained from measurements of the D-isomer of aspartic residue in collagen and aggrecan of human IVD, we could calculate the pentosidine formation rate constants (kF) for these constituents [Sivan, Tsitron, Wachtel, Roughley, Sakkee, van der Ham, DeGroot, Roberts and Maroudas (2006) J. Biol. Chem. 281, 13009–13014; Tsitron (2006) MSc Thesis, Technion-Israel Institute of Technology, Haifa, Israel]. In spite of the comparable formation rate constants obtained for A1D1 and collagen [1.81±0.25 compared with 3.71±0.26 μmol of pentosidine·(mol of lysine)−1·year−1 respectively], the higher pentosidine accumulation in collagen is consistent with its slower turnover (0.005 year−1 compared with 0.134 year−1 for A1D1). Pentosidine accumulation increased with decreasing buoyant density and decreasing turnover of the proteins from the most glycosaminoglycan-rich PG components (A1D1) to the least (A1D6), with respective kF values of 1.81±0.25 and 3.18±0.37 μmol of pentosidine·(mol of lysine)−1·year−1. We concluded that protein turnover is an important determinant of pentosidine accumulation in aggrecan and collagen of human IVD, as was found for articular cartilage. Correlation of

  2. Abnormal branching and regression of the notochord and its relationship to foregut abnormalities.

    PubMed

    Vleesch Dubois, V N; Quan Qi, B; Beasley, S W; Williams, A

    2002-04-01

    An abnormally positioned notochord has been reported in embryos that develop foregut abnormalities, vertebral defects and other abnormalities of the VATER association. This study examines the patterns of regression of the abnormal notochord in the rat model of the VATER association and investigates the relationship between developmental abnormalities of the notochord and those of the vertebra and foregut. Timed-pregnant Sprague-Dawley rats were given daily intraperitoneal injections of 1.75 mg/kg adriamycin on gestational days 6 - 9 inclusive. Rats were sacrificed between days 14 and 20 and their embryos harvested, histologically sectioned and stained and examined serially. The location and appearance of the degenerating notochord and its relationship to regional structural defects were analysed. All 26 embryos exposed to adriamycin developed foregut abnormalities and had an abnormal notochord. The notochord disappeared by a process of apoptotic degeneration that lagged behind that of the normal embryo: the notochord persisted in the abnormal embryo beyond day 17, whereas in the normal rat it had already disappeared. Similarly, formation of the nucleus pulposus was delayed. Vertebral abnormalities occurred when the notochord was ventrally-positioned. The notochord disappears during day 16 in the normal embryo whereas abnormal branches of the notochord persist until day 19 in the adriamycin-treated embryo. Degeneration of the notochord is dominated by apoptosis. An excessively ventrally-placed notochord is closely associated with abnormalities of the vertebral column, especially hemivertebrae.

  3. MTHFSD and DDX58 are novel RNA-binding proteins abnormally regulated in amyotrophic lateral sclerosis.

    PubMed

    MacNair, Laura; Xiao, Shangxi; Miletic, Denise; Ghani, Mahdi; Julien, Jean-Pierre; Keith, Julia; Zinman, Lorne; Rogaeva, Ekaterina; Robertson, Janice

    2016-01-01

    Tar DNA-binding protein 43 (TDP-43) is an RNA-binding protein normally localized to the nucleus of cells, where it elicits functions related to RNA metabolism such as transcriptional regulation and alternative splicing. In amyotrophic lateral sclerosis, TDP-43 is mislocalized from the nucleus to the cytoplasm of diseased motor neurons, forming ubiquitinated inclusions. Although mutations in the gene encoding TDP-43, TARDBP, are found in amyotrophic lateral sclerosis, these are rare. However, TDP-43 pathology is common to over 95% of amyotrophic lateral sclerosis cases, suggesting that abnormalities of TDP-43 play an active role in disease pathogenesis. It is our hypothesis that a loss of TDP-43 from the nucleus of affected motor neurons in amyotrophic lateral sclerosis will lead to changes in RNA processing and expression. Identifying these changes could uncover molecular pathways that underpin motor neuron degeneration. Here we have used translating ribosome affinity purification coupled with microarray analysis to identify the mRNAs being actively translated in motor neurons of mutant TDP-43(A315T) mice compared to age-matched non-transgenic littermates. No significant changes were found at 5 months (presymptomatic) of age, but at 10 months (symptomatic) the translational profile revealed significant changes in genes involved in RNA metabolic process, immune response and cell cycle regulation. Of 28 differentially expressed genes, seven had a ≥ 2-fold change; four were validated by immunofluorescence labelling of motor neurons in TDP-43(A315T) mice, and two of these were confirmed by immunohistochemistry in amyotrophic lateral sclerosis cases. Both of these identified genes, DDX58 and MTHFSD, are RNA-binding proteins, and we show that TDP-43 binds to their respective mRNAs and we identify MTHFSD as a novel component of stress granules. This discovery-based approach has for the first time revealed translational changes in motor neurons of a TDP-43 mouse model

  4. Low copper and high manganese levels in prion protein plaques

    USGS Publications Warehouse

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecth, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system.

  5. Blockade of lipid accumulation by silibinin in adipocytes and zebrafish.

    PubMed

    Suh, Hyung Joo; Cho, So Young; Kim, Eun Young; Choi, Hyeon-Son

    2015-02-05

    Silibinin is a compound present mainly in milk thistle. In this study, we investigated the mechanism by which silibinin suppresses adipogenesis of 3T3-L1 cells, and evaluated the anti-adipogenic effect of silibinin in zebrafish. Silibinin reduced lipid accumulation by downregulating adipogenic factors, such as, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT-enhancer binding protein α (C/EBPα), and fatty acid-binding protein 4 (FABP4). The reduction of these adipogenic protein levels was associated with the regulation of early adipogenic factors, such as, C/EBPβ and Krüppel-like factor 2 (KLF2), and was reflected in downregulation of lipid synthetic enzymes. Silibinin arrested cells in the G0/G1 phase of the cell cycle, accompanied by downregulation of cyclins and upregulation of p27, a cell cycle inhibitor. These results correlated with the finding of deactivation of extracellular signal-regulated kinase (ERK) and AKT, a serine/threonine-specific kinase. In addition, silibinin activated AMP-activated protein kinase α (AMPKα) to inhibit fatty acid synthesis. As observed in 3T3-L1 cells, silibinin inhibited lipid accumulation in zebrafish with the reduction of adipogenic factors and triglyceride levels. Our data revealed that silibinin inhibited lipid accumulation in 3T3-L1 cells and zebrafish, and this inhibitory effect was associated with abrogation of early adipogenesis via regulation of cell cycle and AMPKα signaling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Implications of white striping and spaghetti meat abnormalities on meat quality and histological features in broilers.

    PubMed

    Baldi, G; Soglia, F; Mazzoni, M; Sirri, F; Canonico, L; Babini, E; Laghi, L; Cavani, C; Petracci, M

    2018-01-01

    During the past few years, there has been an increasing prevalence of broiler breast muscle abnormalities, such as white striping (WS) and wooden breast conditions. More recently, a new muscular abnormality termed as spaghetti meat (SM) because of the altered structural integrity of the Pectoralis major muscle often associated with WS has emerged. Thus, this study aimed at evaluating the effects of WS and SM conditions, occurring alone or combined within the same P. major muscle, on meat quality traits and muscle histology. In two replications, 96 P. major muscles were classified into four classes: normal (N), WS, SM and WS/SM. The whole fillet was used for weight assessment and morphometric measurements, then each sample was cut in order to separate the superficial layer from the deep one and used to evaluate proximate composition, histological features, nuclear magnetic resonance relaxation times, functional properties and both myofibrillar and sarcoplasmic proteins profile. Fillets affected by WS and SM abnormalities exhibited higher weights and increased thickness and length. SM condition was associated with a relevant decrease in protein content coupled with a significant increase in moisture level, whereas fat content was affected only by the simultaneous presence of WS. Histological evaluations revealed that abnormal samples were characterized by several degenerative aspects that almost completely concerned the superficial layer of the fillets. White striped fillets exhibited necrosis and lysis of fibers, fibrosis, lipidosis, loss of cross striation and vacuolar degeneration. Moreover, SM samples were characterized by poor fiber uniformity and a progressive rarefaction of the endo- and peri-mysial connective tissue, whereas WS/SM fillets showed intermediate histological features. Nuclear magnetic resonance relaxation analysis revealed a higher proportion of extra-myofibrillar water in the superficial section of all the abnormal fillets, especially in SM

  7. Netrin-1 Regulates Fibrocyte Accumulation in the Decellularized Fibrotic Sclerodermatous Lung Microenvironment and in Bleomycin-Induced Pulmonary Fibrosis.

    PubMed

    Sun, Huanxing; Zhu, Yangyang; Pan, Hongyi; Chen, Xiaosong; Balestrini, Jenna L; Lam, TuKiet T; Kanyo, Jean E; Eichmann, Anne; Gulati, Mridu; Fares, Wassim H; Bai, Hanwen; Feghali-Bostwick, Carol A; Gan, Ye; Peng, Xueyan; Moore, Meagan W; White, Eric S; Sava, Parid; Gonzalez, Anjelica L; Cheng, Yuwei; Niklason, Laura E; Herzog, Erica L

    2016-05-01

    Fibrocytes are collagen-producing leukocytes that accumulate in patients with systemic sclerosis (SSc; scleroderma)-related interstitial lung disease (ILD) via unknown mechanisms that have been associated with altered expression of neuroimmune proteins. The extracellular matrix (ECM) influences cellular phenotypes. However, a relationship between the lung ECM and fibrocytes in SSc has not been explored. The aim of this study was to use a novel translational platform based on decellularized human lungs to determine whether the lung ECM of patients with scleroderma controls the development of fibrocytes from peripheral blood mononuclear cells. We performed biomechanical evaluation of decellularized scaffolds prepared from lung explants from healthy control subjects and patients with scleroderma, using tensile testing and biochemical and proteomic analysis. Cells obtained from healthy controls and patients with SSc-related ILD were cultured on these scaffolds, and CD45+pro-ColIα1+ cells meeting the criteria for fibrocytes were quantified. The contribution of the neuromolecule netrin-1 to fibrosis was assessed using neutralizing antibodies in this system and by administering bleomycin via inhalation to netrin-1(+/-) mice. Compared with control lung scaffolds, lung scaffolds from patients with SSc-related ILD showed aberrant anatomy, enhanced stiffness, and abnormal ECM composition. Culture of control cells in lung scaffolds from patients with SSc-related ILD increased production of pro-ColIα1+ cells, which was stimulated by enhanced stiffness and abnormal ECM composition. Cells from patients with SSc-related ILD demonstrated increased pro-ColIα1 responsiveness to lung scaffolds from scleroderma patients but not enhanced stiffness. Enhanced detection of netrin-1-expressing CD14(low) cells in patients with SSc-related ILD was observed, and antibody-mediated netrin-1 neutralization attenuated detection of CD45+pro-ColIα1+ cells in all settings. Netrin-1(+/-) mice were

  8. Regulation of ciliary retrograde protein trafficking by the Joubert syndrome proteins ARL13B and INPP5E.

    PubMed

    Nozaki, Shohei; Katoh, Yohei; Terada, Masaya; Michisaka, Saki; Funabashi, Teruki; Takahashi, Senye; Kontani, Kenji; Nakayama, Kazuhisa

    2017-02-01

    ARL13B (a small GTPase) and INPP5E (a phosphoinositide 5-phosphatase) are ciliary proteins encoded by causative genes of Joubert syndrome. We here showed, by taking advantage of a visible immunoprecipitation assay, that ARL13B interacts with the IFT46 -: IFT56 (IFT56 is also known as TTC26) dimer of the intraflagellar transport (IFT)-B complex, which mediates anterograde ciliary protein trafficking. However, the ciliary localization of ARL13B was found to be independent of its interaction with IFT-B, but dependent on the ciliary-targeting sequence RVEP in its C-terminal region. ARL13B-knockout cells had shorter cilia than control cells and exhibited aberrant localization of ciliary proteins, including INPP5E. In particular, in ARL13B-knockout cells, the IFT-A and IFT-B complexes accumulated at ciliary tips, and GPR161 (a negative regulator of Hedgehog signaling) could not exit cilia in response to stimulation with Smoothened agonist. This abnormal phenotype was rescued by the exogenous expression of wild-type ARL13B, as well as by its mutant defective in the interaction with IFT-B, but not by its mutants defective in INPP5E binding or in ciliary localization. Thus, ARL13B regulates IFT-A-mediated retrograde protein trafficking within cilia through its interaction with INPP5E. © 2017. Published by The Company of Biologists Ltd.

  9. Two key arginine residues in the coat protein of Bamboo mosaic virus differentially affect the accumulation of viral genomic and subgenomic RNAs.

    PubMed

    Hung, Chien-Jen; Hu, Chung-Chi; Lin, Na-Sheng; Lee, Ya-Chien; Meng, Menghsiao; Tsai, Ching-Hsiu; Hsu, Yau-Heiu

    2014-02-01

    The interactions between viral RNAs and coat proteins (CPs) are critical for the efficient completion of infection cycles of RNA viruses. However, the specificity of the interactions between CPs and genomic or subgenomic RNAs remains poorly understood. In this study, Bamboo mosaic virus (BaMV) was used to analyse such interactions. Using reversible formaldehyde cross-linking and mass spectrometry, two regions in CP, each containing a basic amino acid (R99 and R227, respectively), were identified to bind directly to the 5' untranslated region of BaMV genomic RNA. Analyses of the alanine mutations of R99 and R227 revealed that the secondary structures of CP were not affected significantly, whereas the accumulation of BaMV genomic, but not subgenomic, RNA was severely decreased at 24 h post-inoculation in the inoculated protoplasts. In the absence of CP, the accumulation levels of genomic and subgenomic RNAs were decreased to 1.1%-1.5% and 33%-40% of that of the wild-type (wt), respectively, in inoculated leaves at 5 days post-inoculation (dpi). In contrast, in the presence of mutant CPs, the genomic RNAs remained about 1% of that of wt, whereas the subgenomic RNAs accumulated to at least 87%, suggesting that CP might increase the accumulation of subgenomic RNAs. The mutations also restricted viral movement and virion formation in Nicotiana benthamiana leaves at 5 dpi. These results demonstrate that R99 and R227 of CP play crucial roles in the accumulation, movement and virion formation of BaMV RNAs, and indicate that genomic and subgenomic RNAs interact differently with BaMV CP. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  10. Reversible voltage dependent transition of abnormal and normal bipolar resistive switching.

    PubMed

    Wang, Guangyu; Li, Chen; Chen, Yan; Xia, Yidong; Wu, Di; Xu, Qingyu

    2016-11-14

    Clear understanding the mechanism of resistive switching is the important prerequisite for the realization of high performance nonvolatile resistive random access memory. In this paper, binary metal oxide MoO x layer sandwiched by ITO and Pt electrodes was taken as a model system, reversible transition of abnormal and normal bipolar resistive switching (BRS) in dependence on the maximum voltage was observed. At room temperature, below a critical maximum voltage of 2.6 V, butterfly shaped I-V curves of abnormal BRS has been observed with low resistance state (LRS) to high resistance state (HRS) transition in both polarities and always LRS at zero field. Above 2.6 V, normal BRS was observed, and HRS to LRS transition happened with increasing negative voltage applied. Temperature dependent I-V measurements showed that the critical maximum voltage increased with decreasing temperature, suggesting the thermal activated motion of oxygen vacancies. Abnormal BRS has been explained by the partial compensation of electric field from the induced dipoles opposite to the applied voltage, which has been demonstrated by the clear amplitude-voltage and phase-voltage hysteresis loops observed by piezoelectric force microscopy. The normal BRS was due to the barrier modification at Pt/MoO x interface by the accumulation and depletion of oxygen vacancies.

  11. Factors influencing the accumulation of ciprofloxacin in Pseudomonas aeruginosa.

    PubMed Central

    Celesk, R A; Robillard, N J

    1989-01-01

    Ciprofloxacin accumulation in Pseudomonas aeruginosa was measured by a bioassay. Drug accumulation in strain PAO2 was compared with that of three spontaneous ciprofloxacin-resistant mutants selected with 0.5 micrograms of ciprofloxacin per ml. PAO4701 cfxA2 contains a mutation in the gyrA gene, PAO4742 cfxB5 may represent a permeability mutant based on pleiotropic drug resistance, and PAO4700 cfxA1 cfxB1 contains both types of mutations. In all strains, drug accumulation was similar, reaching steady state during the first minute of exposure. Drug accumulation was unsaturable over a range of 5 to 80 micrograms/ml, suggesting that ciprofloxacin accumulates by diffusion in P. aeruginosa. Although all four strains accumulated two- to sevenfold more ciprofloxacin in the presence of the inhibitor carbonyl cyanide m-chlorophenylhydrazone, the cfxB mutants accumulated two- to fourfold less drug than either PAO2 or the cfxA2 mutant. Polyacrylamide gel analysis revealed a protein common to cfxB mutants only, while all strains had similar lipopolysaccharide profiles. The results suggest that ciprofloxacin accumulation in P. aeruginosa is a complex phenomenon that may be affected by both an energy-dependent drug efflux process and outer envelope composition. Images PMID:2514623

  12. Mechanisms of Lipid Accumulation in the Bone Morphogenetic Protein Receptor Type 2 Mutant Right Ventricle

    PubMed Central

    Brittain, Evan L.; Fessel, Joshua P.; Penner, Niki; Atkinson, James; Funke, Mitch; Grueter, Carrie; Jerome, W. Gray; Freeman, Michael; Newman, John H.; West, James; Hemnes, Anna R.

    2016-01-01

    Rationale: In heritable pulmonary arterial hypertension with germline mutation in the bone morphogenetic protein receptor type 2 (BMPR2) gene, right ventricle (RV) dysfunction is associated with RV lipotoxicity; however, the underlying mechanism for lipid accumulation is not known. Objectives: We hypothesized that lipid accumulation in cardiomyocytes with BMPR2 mutation occurs owing to alterations in lipid transport and impaired fatty acid oxidation (FAO), which is exacerbated by a high-lipid (Western) diet (WD). Methods: We used a transgenic mouse model of pulmonary arterial hypertension with mutant BMPR2 and generated a cardiomyocyte cell line with BMPR2 mutation. Electron microscopy and metabolomic analysis were performed on mouse RVs. Measurements and Main Results: By metabolomics analysis, we found an increase in long-chain fatty acids in BMPR2 mutant mouse RVs compared with controls, which correlated with cardiac index. BMPR2-mutant cardiomyocytes had increased lipid compared with controls. Direct measurement of FAO in the WD-fed BMPR2-mutant RV showed impaired palmitate-linked oxygen consumption, and metabolomics analysis showed reduced indices of FAO. Using both mutant BMPR2 mouse RVs and cardiomyocytes, we found an increase in the uptake of 14C-palmitate and fatty acid transporter CD36 that was further exacerbated by WD. Conclusions: Taken together, our data suggest that impaired FAO and increased expression of the lipid transporter CD36 are key mechanisms underlying lipid deposition in the BMPR2-mutant RV, which are exacerbated in the presence of dietary lipids. These findings suggest important features leading to RV lipotoxicity in pulmonary arterial hypertension and may point to novel areas of therapeutic intervention. PMID:27077479

  13. Intracellular and extracellular microtubule associated protein tau as a therapeutic target in Alzheimer disease and other tauopathies.

    PubMed

    Avila, Jesús; Pallas, Noemí; Bolós, Marta; Sayas, C Laura; Hernandez, Felix

    2016-06-01

    Microtubule associated protein tau, a protein mainly expressed in neurons, plays an important role in several diseases related to dementia, named tauopathies. Alzheimer disease is the most relevant tauopathy. The role of tau protein in dementia is now a topic under discussion, and is the focus of this review. We have covered two major areas: tau pathology and tau as a therapeutic target. Tau pathology is mainly related to a gain of toxic function due to an abnormal accumulation, aberrant modifications (such as hyperphosphorylation and truncation, among others) and self-aggregation of tau into oligomers or larger structures. Also, tau can be found extracellularly in a toxic form. Tau-based therapy is mainly centered on avoiding the gain of these toxic functions of tau. Tau therapies are focused on lowering tau levels, mainly of modified tau species that could be toxic for neurons (phosphorylated, truncated or aggregated tau), in intracellular or extracellular form. Decreasing the levels of those toxic species is a possible therapeutic strategy.

  14. Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage.

    PubMed

    Solozobova, Valeriya; Rolletschek, Alexandra; Blattner, Christine

    2009-06-17

    P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial. In proliferating embryonic stem cells, p53 is localized predominantly in the cytoplasm. DNA damage-induced nuclear accumulation of p53 in embryonic stem cells activates transcription of the target genes mdm2, p21, puma and noxa. We observed bi-phasic kinetics for nuclear accumulation of p53 after ionizing radiation. During the first wave of nuclear accumulation, p53 levels were increased and the p53 target genes mdm2, p21 and puma were transcribed. Transcription of noxa correlated with the second wave of nuclear accumulation. Transcriptional activation of p53 target genes resulted in an increased amount of proteins with the exception of p21. While p21 transcripts were efficiently translated in 3T3 cells, we failed to see an increase in p21 protein levels after IR in embryonal stem cells. In embryonic stem cells where (anti-proliferative) p53 activity is not necessary, or even unfavorable, p53 is retained in the cytoplasm and prevented from activating its target genes. However, if its activity is beneficial or required, p53 is allowed to accumulate in the nucleus and activates its target genes, even in embryonic stem cells.

  15. [Status of lead exposure and its impact on health of workers in an accumulator factory].

    PubMed

    Liang, Jiabin; Zhang, Jian; Guo, Xiaojing; Mai, Jianping; Wang, Zhi; Liu, Yimin

    2014-02-01

    To identify the occupational hazard factors in an accumulator factory, to analyze the status of internal and external lead exposure and evaluate the impact of lead exposure on the health of workers in the accumulator industry, and to provide a theoretical basis for improved lead exposure criteria and technical support for the control of lead contamination in the accumulator industry. An on-site investigation was carried out to monitor and evaluate the lead fume and dust in the workplaces of an accumulator factory, and occupational health examination was performed in all workers. The occupational hazard safeguards in the accumulator factory were unadvanced. The contamination of lead fume and dust was serious. The abnormal rate of blood lead was up to 79.80%, and many workers developed anemia and mild peripheral nerve disease. Lead contamination is serious in the accumulator factory, leading to poor health of workers. It is essential to take effective control measures, improve the working environment, provide occupational health education, increase workers' self-protection awareness, and periodically conduct occupational hazard monitoring and health surveillance. The government must reinforce occupational health supervision of such enterprises.

  16. Life and death in the trash heap: The ubiquitin proteasome pathway and UCHL1 in brain aging, neurodegenerative disease and cerebral Ischemia.

    PubMed

    Graham, Steven H; Liu, Hao

    2017-03-01

    The ubiquitin proteasome pathway (UPP) is essential for removing abnormal proteins and preventing accumulation of potentially toxic proteins within the neuron. UPP dysfunction occurs with normal aging and is associated with abnormal accumulation of protein aggregates within neurons in neurodegenerative diseases. Ischemia disrupts UPP function and thus may contribute to UPP dysfunction seen in the aging brain and in neurodegenerative diseases. Ubiquitin carboxy-terminal hydrolase L1 (UCHL1), an important component of the UPP in the neuron, is covalently modified and its activity inhibited by reactive lipids produced after ischemia. As a result, degradation of toxic proteins is impaired which may exacerbate neuronal function and cell death in stroke and neurodegenerative diseases. Preserving or restoring UCHL1 activity may be an effective therapeutic strategy in stroke and neurodegenerative diseases. Published by Elsevier B.V.

  17. Mechanisms of intrahepatic triglyceride accumulation

    PubMed Central

    Ress, Claudia; Kaser, Susanne

    2016-01-01

    Hepatic steatosis defined as lipid accumulation in hepatocytes is very frequently found in adults and obese adolescents in the Western World. Etiologically, obesity and associated insulin resistance or excess alcohol intake are the most frequent causes of hepatic steatosis. However, steatosis also often occurs with chronic hepatitis C virus (HCV) infection and is also found in rare but potentially life-threatening liver diseases of pregnancy. Clinical significance and outcome of hepatic triglyceride accumulation are highly dependent on etiology and histological pattern of steatosis. This review summarizes current concepts of pathophysiology of common causes of hepatic steatosis, including non-alcoholic fatty liver disease (NAFLD), alcoholic fatty liver disease, chronic HCV infections, drug-induced forms of hepatic steatosis, and acute fatty liver of pregnancy. Regarding the pathophysiology of NAFLD, this work focuses on the close correlation between insulin resistance and hepatic triglyceride accumulation, highlighting the potential harmful effects of systemic insulin resistance on hepatic metabolism of fatty acids on the one side and the role of lipid intermediates on insulin signalling on the other side. Current studies on lipid droplet morphogenesis have identified novel candidate proteins and enzymes in NAFLD. PMID:26819531

  18. Profound bioenergetic abnormalities in peri-infarct myocardial regions.

    PubMed

    Hu, Qingsong; Wang, Xiaohong; Lee, Joseph; Mansoor, Abdul; Liu, Jingbo; Zeng, Lepeng; Swingen, Cory; Zhang, Ge; Feygin, Julia; Ochiai, Koichi; Bransford, Toni L; From, Arthur H L; Bache, Robert J; Zhang, Jianyi

    2006-08-01

    Regions of myocardial infarct (MI) are surrounded by a border zone (BZ) of normally perfused but dysfunctional myocardium. Although systolic dysfunction has been attributed to elevated wall stress in this region, there is evidence that intrinsic abnormalities of contractile performance exist in BZ myocardium. This study examined whether decreases of high-energy phosphates (HEP) and mitochondrial F(1)F(0)-ATPase (mtATPase) subunits typical of failing myocardium exist in BZ myocardium of compensated postinfarct remodeled hearts. Eight pigs were studied 6 wk after MI was produced by ligation of the left anterior descending coronary artery (LAD) distal to the second diagonal. Animals developed compensated LV remodeling with a decrease of ejection fraction from 54.6 +/- 5.4% to 31 +/- 2.1% (MRI) 5 wk after LAD occlusion. The remote zone (RZ) myocardium demonstrated modest decreases of ATP and mtATPase components. In contrast, BZ myocardium demonstrated profound abnormalities with ATP levels decreased to 42% of normal, and phosphocreatine-to-ATP ratio ((31)P-magnetic resonance spectroscopy) decreased from 2.06 +/- 0.19 in normal hearts to 1.07 +/- 0.10, with decreases in alpha-, beta-, OSCP, and IF(1) subunits of mtATPase, especially in the subendocardium. The reduction of myocardial creatine kinase isoform protein expression was also more severe in the BZ relative to the RZ myocardium. These abnormalities were independent of a change in mitochondrial content because the mitochondrial citrate synthase protein level was not different between the BZ and RZ. This regional heterogeneity of ATP content and expression of key enzymes in ATP production suggests that energetic insufficiency in the peri-infarct region may contribute to the transition from compensated LV remodeling to congestive heart failure.

  19. Proteomic analysis of the maize rachis: potential roles of constitutive and induced proteins in resistance to Aspergillus flavus infection and aflatoxin accumulation.

    PubMed

    Pechanova, Olga; Pechan, Tibor; Williams, W Paul; Luthe, Dawn S

    2011-01-01

    Infection of the maize (Zea mays L.) with aflatoxigenic fungus Aspergillus flavus and consequent contamination with carcinogenic aflatoxin is a persistent and serious agricultural problem causing disease and significant crop losses worldwide. The rachis (cob) is an important structure of maize ear that delivers essential nutrients to the developing kernels and A. flavus spreads through the rachis to infect kernels within the ear. Therefore, rachis plays an important role in fungal proliferation and subsequent kernel contamination. We used proteomic approaches and investigated the rachis tissue from aflatoxin accumulation resistant (Mp313E and Mp420) and susceptible (B73 and SC212m) maize inbred lines. First, we compared rachis proteins from resistant and susceptible inbred lines, which revealed that the young resistant rachis contains higher levels of abiotic stress-related proteins and proteins from phenylpropanoid metabolism, whereas susceptible young rachis contains pathogenesis-related proteins, which are generally inducible upon biotic stress. Second, we identified A. flavus-responsive proteins in rachis of both resistant and susceptible genotypes after 10- and 35-day infection. Differential expression of many stress/defense proteins during rachis juvenility, maturation and after A. flavus challenge demonstrates that resistant rachis relies on constitutive defenses, while susceptible rachis is more dependent on inducible defenses. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Mechanisms of disordered neurodegenerative function: concepts and facts about the different roles of the protein kinase RNA-like endoplasmic reticulum kinase (PERK).

    PubMed

    Taalab, Yasmeen M; Ibrahim, Nour; Maher, Ahmed; Hassan, Mubashir; Mohamed, Wael; Moustafa, Ahmed A; Salama, Mohamed; Johar, Dina; Bernstein, Larry

    2018-06-27

    Neurodegenerative diseases, such as Alzheimer's disease, Huntington's disease, Parkinson's disease, prion disease, and amyotrophic lateral sclerosis, are a dissimilar group of disorders that share a hallmark feature of accumulation of abnormal intraneuronal or extraneuronal misfolded/unfolded protein and are classified as protein misfolding disorders. Cellular and endoplasmic reticulum (ER) stress activates multiple signaling cascades of the unfolded protein response (UPR). Consequently, translational and transcriptional alterations in target gene expression occur in response directed toward restoring the ER capacity of proteostasis and reestablishing the cellular homeostasis. Evidences from in vitro and in vivo disease models indicate that disruption of ER homeostasis causes abnormal protein aggregation that leads to synaptic and neuronal dysfunction. However, the exact mechanism by which it contributes to disease progression and pathophysiological changes remains vague. Downstream signaling pathways of UPR are fully integrated, yet with diverse unexpected outcomes in different disease models. Three well-identified ER stress sensors have been implicated in UPR, namely, inositol requiring enzyme 1, protein kinase RNA-activated-like ER kinase (PERK), and activating transcription factor 6. Although it cannot be denied that each of the involved stress sensor initiates a distinct downstream signaling pathway, it becomes increasingly clear that shared pathways are crucial in determining whether or not the UPR will guide the cells toward adaptive prosurvival or proapoptotic responses. We review a body of work on the mechanism of neurodegenerative diseases based on oxidative stress and cell death pathways with emphasis on the role of PERK.

  1. 19q13.12 microdeletion syndrome fibroblasts display abnormal storage of cholesterol and sphingolipids in the endo-lysosomal system.

    PubMed

    Zhao, Kexin; van der Spoel, Aarnoud; Castiglioni, Claudia; Gale, Sarah; Fujiwara, Hideji; Ory, Daniel S; Ridgway, Neale D

    2018-06-01

    Microdeletions in 19q12q13.12 cause a rare and complex haploinsufficiency syndrome characterized by intellectual deficiency, developmental delays, and neurological movement disorders. Variability in the size and interval of the deletions makes it difficult to attribute the complex clinical phenotype of this syndrome to an underlying gene(s). As an alternate approach, we examined the biochemical and metabolic features of fibroblasts from an affected individual to derive clues as to the molecular basis for the syndrome. Immunofluorescence and electron microscopy of affected fibroblasts revealed an abnormal endo-lysosomal compartment that was characterized by rapid accumulation of lysosomotropic dyes, elevated LAMP1 and LAMP2 expression and vacuoles containing membrane whorls, common features of lysosomal lipid storage disorders. The late endosomes-lysosomes (LE/LY) of affected fibroblasts accumulated low-density lipoprotein cholesterol, and displayed reduced cholesterol esterification and increased de novo cholesterol synthesis, indicative of defective cholesterol transport to the endoplasmic reticulum. Affected fibroblasts also had increased ceramide and sphingolipid mass, altered glycosphingolipid species and accumulation of a fluorescent lactosylceramide probe in LE/LY. Autophagosomes also accumulated in affected fibroblasts because of decreased fusion with autolysosomes, a defect associated with other lysosomal storage diseases. Attempts to correct the cholesterol/sphingolipid storage defect in fibroblasts with cyclodextrin, sphingolipid synthesis inhibitors or by altering ion transport were unsuccessful. Our data show that 19q13.12 deletion fibroblasts have abnormal accumulation of cholesterol and sphingolipids in the endo-lysosomal system that compromises organelle function and could be an underlying cause of the clinical features of the syndrome. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Regulation of S-like ribonuclease levels in Arabidopsis. Antisense inhibition of RNS1 or RNS2 elevates anthocyanin accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bariola, P.A.; MacIntosh, G.C.; Green, P.J.

    1999-01-01

    The S-like ribonucleases (RNases) RNS1 and RNS2 of Arabidopsis are members of the widespread T{sub 2} ribonuclease family, whose members also include the S-RNases, involved in gametophytic self-incompatibility in plants. Both RNS1 and RNS2 mRNAs have been shown previously to be induced by inorganic phosphate (Pi) starvation. In this study the authors examined this regulation at the protein level and determined the effects of diminishing RNS1 and RNS2 expression using antisense techniques. The Pi-starvation control of RNS1 and RNS2 was confirmed using antibodies specific for each protein. These specific antibodies also demonstrated that RNS1 is secreted, whereas RNS2 is intracellular.more » By introducing antisense constructs, mRNA accumulation was inhibited by up to 90% for RNS1 and up to 65% for NS2. These plants contained abnormally high levels of anthocyanins, the production of which is often associated with several forms of stress, including Pi starvation. This effect demonstrates that diminishing the amounts of either RNS1 or RNS2 leads to effects that cannot be compensated for by the actions of other RNases, even though Arabidopsis contains a large number of different RNase activities. These results, together with the differential localization of the proteins, imply that RNS1 and RNS2 have distinct functions in the plant.« less

  3. TRANSPARENT TESTA GLABRA1 Regulates the Accumulation of Seed Storage Reserves in Arabidopsis1[OPEN

    PubMed Central

    Chen, Mingxun; Zhang, Bin; Li, Chengxiang; Kulaveerasingam, Harikrishna; Chew, Fook Tim; Yu, Hao

    2015-01-01

    Seed storage reserves mainly consist of starch, triacylglycerols, and storage proteins. They not only provide energy for seed germination and seedling establishment, but also supply essential dietary nutrients for human beings and animals. So far, the regulatory networks that govern the accumulation of seed storage reserves in plants are still largely unknown. Here, we show that TRANSPARENT TESTA GLABRA1 (TTG1), which encodes a WD40 repeat transcription factor involved in many aspects of plant development, plays an important role in mediating the accumulation of seed storage reserves in Arabidopsis (Arabidopsis thaliana). The dry weight of ttg1-1 embryos significantly increases compared with that of wild-type embryos, which is accompanied by an increase in the contents of starch, total protein, and fatty acids in ttg1-1 seeds. FUSCA3 (FUS3), a master regulator of seed maturation, binds directly to the TTG1 genomic region and suppresses TTG1 expression in developing seeds. TTG1 negatively regulates the accumulation of seed storage proteins partially through transcriptional repression of 2S3, a gene encoding a 2S albumin precursor. TTG1 also indirectly suppresses the expression of genes involved in either seed development or synthesis/modification of fatty acids in developing seeds. In addition, we demonstrate that the maternal allele of the TTG1 gene suppresses the accumulation of storage proteins and fatty acids in seeds. Our results suggest that TTG1 is a direct target of FUS3 in the framework of the regulatory hierarchy controlling seed filling and regulates the accumulation of seed storage proteins and fatty acids during the seed maturation process. PMID:26152712

  4. Abnormal Uterine Bleeding FAQ

    MedlinePlus

    ... Abnormal Uterine Bleeding • What is a normal menstrual cycle? • When is bleeding abnormal? • At what ages is ... abnormal bleeding? •Glossary What is a normal menstrual cycle? The normal length of the menstrual cycle is ...

  5. A new molecular link between defective autophagy and erythroid abnormalities in chorea-acanthocytosis.

    PubMed

    Lupo, Francesca; Tibaldi, Elena; Matte, Alessandro; Sharma, Alok K; Brunati, Anna Maria; Alper, Seth L; Zancanaro, Carlo; Benati, Donatella; Siciliano, Angela; Bertoldi, Mariarita; Zonta, Francesca; Storch, Alexander; Walker, Ruth H; Danek, Adrian; Bader, Benedikt; Hermann, Andreas; De Franceschi, Lucia

    2016-12-22

    Chorea-acanthocytosis is one of the hereditary neurodegenerative disorders known as the neuroacanthocytoses. Chorea-acanthocytosis is characterized by circulating acanthocytes deficient in chorein, a protein of unknown function. We report here for the first time that chorea-acanthocytosis red cells are characterized by impaired autophagy, with cytoplasmic accumulation of active Lyn and of autophagy-related proteins Ulk1 and Atg7. In chorea-acanthocytosis erythrocytes, active Lyn is sequestered by HSP90-70 to form high-molecular-weight complexes that stabilize and protect Lyn from its proteasomal degradation, contributing to toxic Lyn accumulation. An interplay between accumulation of active Lyn and autophagy was found in chorea-acanthocytosis based on Lyn coimmunoprecipitation with Ulk1 and Atg7 and on the presence of Ulk1 in Lyn-containing high-molecular-weight complexes. In addition, chorein associated with Atg7 in healthy but not in chorea-acanthocytosis erythrocytes. Electron microscopy detected multivesicular bodies and membrane remnants only in circulating chorea-acanthocytosis red cells. In addition, reticulocyte-enriched chorea-acanthocytosis red cell fractions exhibited delayed clearance of mitochondria and lysosomes, further supporting the impairment of authophagic flux. Because autophagy is also important in erythropoiesis, we studied in vitro CD34 + -derived erythroid precursors. In chorea-acanthocytosis, we found (1) dyserythropoiesis; (2) increased active Lyn; (3) accumulation of a marker of autophagic flux and autolysososme degradation; (4) accumlation of Lamp1, a lysosmal membrane protein, and LAMP1-positive aggregates; and (5) reduced clearance of lysosomes and mitochondria. Our results uncover in chorea-acanthocytosis erythroid cells an association between accumulation of active Lyn and impaired autophagy, suggesting a link between chorein and autophagic vesicle trafficking in erythroid maturation.

  6. Fragile X-like behaviors and abnormal cortical dendritic spines in cytoplasmic FMR1-interacting protein 2-mutant mice.

    PubMed

    Han, Kihoon; Chen, Hogmei; Gennarino, Vincenzo A; Richman, Ronald; Lu, Hui-Chen; Zoghbi, Huda Y

    2015-04-01

    Silencing of fragile X mental retardation 1 (FMR1) gene and loss of fragile X mental retardation protein (FMRP) cause fragile X syndrome (FXS), a genetic disorder characterized by intellectual disability and autistic behaviors. FMRP is an mRNA-binding protein regulating neuronal translation of target mRNAs. Abnormalities in actin-rich dendritic spines are major neuronal features in FXS, but the molecular mechanism and identity of FMRP targets mediating this phenotype remain largely unknown. Cytoplasmic FMR1-interacting protein 2 (Cyfip2) was identified as an interactor of FMRP, and its mRNA is a highly ranked FMRP target in mouse brain. Importantly, Cyfip2 is a component of WAVE regulatory complex, a key regulator of actin cytoskeleton, suggesting that Cyfip2 could be implicated in the dendritic spine phenotype of FXS. Here, we generated and characterized Cyfip2-mutant (Cyfip2(+/-)) mice. We found that Cyfip2(+/-) mice exhibited behavioral phenotypes similar to Fmr1-null (Fmr1(-/y)) mice, an animal model of FXS. Synaptic plasticity and dendritic spines were normal in Cyfip2(+/-) hippocampus. However, dendritic spines were altered in Cyfip2(+/-) cortex, and the dendritic spine phenotype of Fmr1(-/y) cortex was aggravated in Fmr1(-/y); Cyfip2(+/-) double-mutant mice. In addition to the spine changes at basal state, metabotropic glutamate receptor (mGluR)-induced dendritic spine regulation was impaired in both Fmr1(-/y) and Cyfip2(+/-) cortical neurons. Mechanistically, mGluR activation induced mRNA translation-dependent increase of Cyfip2 in wild-type cortical neurons, but not in Fmr1(-/y) or Cyfip2(+/-) neurons. These results suggest that misregulation of Cyfip2 function and its mGluR-induced expression contribute to the neurobehavioral phenotypes of FXS. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Co-localisation of advanced glycation end products and D-β-aspartic acid-containing proteins in gelatinous drop-like corneal dystrophy.

    PubMed

    Kaji, Yuichi; Oshika, Tetsuro; Takazawa, Yutaka; Fukayama, Masashi; Fujii, Noriko

    2012-08-01

    Gelatinous drop-like corneal dystrophy (GDLD), also known as familial subepithelial corneal amyloidosis, is an autosomal recessive disorder that causes progressive corneal opacity due to accumulation of amyloid fibrils in the corneal stroma. Genetic analyses have revealed that a mutation in membrane component chromosome 1 surface marker 1 gene is responsible for GDLD. However, the mechanism of amyloid formation in the corneal stroma remains unclear. The present study attempted to reveal the role of advanced glycation end products (AGE) and d-amino acids in amyloid formation in GDLD. Informed consent was obtained from five patients with GDLD, three patients with bullous keratopathy and three patients with interstitial keratitis and all the specimens were analysed. Localisation of amyloid fibrils was analysed using Congo-red and thioflavin T staining. In addition, the localisation of AGE (N(ε)-carboxy(methyl)-L-lysine, pyrraline and pentosidine) and D-β-aspartic acid-containing proteins, a major form of d-amino acid-containing proteins, was analysed immunohistochemically. In all GDLD specimens, strong immunoreactivity to AGE and D-β-aspartic acid-containing proteins was detected in the subepithelial amyloid-rich region. In contrast, amyloid fibrils, AGE, or D-amino acid-containing proteins were slightly detected in the corneal stroma of patients with bullous keratopathy and interstitial keratitis. Abnormally accumulated proteins rich in AGE and D-β-aspartic acid co-localise in the amyloid lesions in GDLD. These results indicate that non-enzymatic post-translational modifications of proteins, including AGE formation and isomerisation of aspartyl residues, will be the cause as well as the result of amyloid fibril formations in GDLD.

  8. Lack of FTSH4 Protease Affects Protein Carbonylation, Mitochondrial Morphology, and Phospholipid Content in Mitochondria of Arabidopsis: New Insights into a Complex Interplay.

    PubMed

    Smakowska, Elwira; Skibior-Blaszczyk, Renata; Czarna, Malgorzata; Kolodziejczak, Marta; Kwasniak-Owczarek, Malgorzata; Parys, Katarzyna; Funk, Christiane; Janska, Hanna

    2016-08-01

    FTSH4 is one of the inner membrane-embedded ATP-dependent metalloproteases in mitochondria of Arabidopsis (Arabidopsis thaliana). In mutants impaired to express FTSH4, carbonylated proteins accumulated and leaf morphology was altered when grown under a short-day photoperiod, at 22°C, and a long-day photoperiod, at 30°C. To provide better insight into the function of FTSH4, we compared the mitochondrial proteomes and oxyproteomes of two ftsh4 mutants and wild-type plants grown under conditions inducing the phenotypic alterations. Numerous proteins from various submitochondrial compartments were observed to be carbonylated in the ftsh4 mutants, indicating a widespread oxidative stress. One of the reasons for the accumulation of carbonylated proteins in ftsh4 was the limited ATP-dependent proteolytic capacity of ftsh4 mitochondria, arising from insufficient ATP amount, probably as a result of an impaired oxidative phosphorylation (OXPHOS), especially complex V. In ftsh4, we further observed giant, spherical mitochondria coexisting among normal ones. Both effects, the increased number of abnormal mitochondria and the decreased stability/activity of the OXPHOS complexes, were probably caused by the lower amount of the mitochondrial membrane phospholipid cardiolipin. We postulate that the reduced cardiolipin content in ftsh4 mitochondria leads to perturbations within the OXPHOS complexes, generating more reactive oxygen species and less ATP, and to the deregulation of mitochondrial dynamics, causing in consequence the accumulation of oxidative damage. © 2016 American Society of Plant Biologists. All Rights Reserved.

  9. Urine - abnormal color

    MedlinePlus

    ... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  10. Defects in the Expression of Chloroplast Proteins Leads to H2O2 Accumulation and Activation of Cyclic Electron Flow around Photosystem I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strand, Deserah D.; Livingston, Aaron K.; Satoh-Cruz, Mio

    We describe a new member of the class of mutants in Arabidopsis exhibiting high rates of cyclic electron flow around photosystem I (CEF), a light-driven process that produces ATP but not NADPH. High cyclic electron flow 2 (hcef2) shows strongly increased CEF activity through the NADPH dehydrogenase complex (NDH), accompanied by increases in thylakoid proton motive force (pmf), activation of the photoprotective qE response, and the accumulation of H 2O 2 . Surprisingly, hcef2 was mapped to a nonsense mutation in the TADA1 (tRNA adenosine deaminase arginine) locus, coding for a plastid targeted tRNA editing enzyme required for efficient codonmore » recognition. Comparison of protein content from representative thylakoid complexes, the cytochrome bf complex and the ATP synthase, suggests that inefficient translation of hcef2 leads to compromised complex assembly or stability leading to alterations in stoichiometries of major thylakoid complexes as well as their constituent subunits. Altered subunit stoichiometries for photosystem I, ratios and properties of cytochrome bf hemes, and the decay kinetics of the flash induced thylakoid electric field suggest that these defect lead to accumulation of H 2O 2 in hcef2, which we have previously shown leads to activation of NDHrelated CEF. We observed similar increases in CEF and H 2O 2 accumulation in other translation defective mutants, suggesting that loss of coordination in plastid protein levels lead to imbalances in the photosynthetic energy balance that leads to increased CEF. These results, together with a large body of previous observations, support a general model in which processes that imbalances in chloroplast energetics result in the production of H 2O 2 , which activates CEF, either as a redox signal or by inducing deficits in ATP levels.« less

  11. Depletion of the cellular levels of Bag-1 proteins attenuates phorbol ester-induced downregulation of I{kappa}B{alpha} and nuclear accumulation of NF-{kappa}B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, Jana V., E-mail: Jana.maier@kit.edu; Volz, Yvonne; Berger, Caroline

    2010-10-22

    Research highlights: {yields}Bag-1 depletion only marginally affects the action of the glucocorticoid receptor but strongly regulates the activity of NF-{kappa}B. {yields}Bag-1 depletion attenuates phosphorylation and degradation of I{kappa}B{alpha} and nuclear accumulation of NF-{kappa}B p65 and p50. {yields}Bag-1 interacts with I{kappa}B{alpha} and partially restores I{kappa}B{alpha} and NF-{kappa}B activation in Bag-1 depleted cells. -- Abstract: Bag-1 consists in humans of four isoforms generated from the same RNA by alternative translation. Overexpression of single Bag-1 isoforms has identified Bag-1 as a negative regulator of action of many proteins including the glucocorticoid receptor (GR). Here we have analysed the ability of Bag-1 to regulatemore » the transrepression function of the GR. Silencing Bag-1 expression only marginally affects the transrepression action of the GR but decreased the action of the transcription factor NF-{kappa}B. Furthermore phosphorylation and degradation of the inhibitor protein I{kappa}B{alpha} and nuclear accumulation of p65 and p50 NF-{kappa}B proteins in response to phorbol ester was attenuated following Bag-1 depletion in HeLa cells. Reconstitution of Bag-1 in depleted cells partially restored I{kappa}B{alpha} and NF-{kappa}B activation. Knock-down of Bag-1 expression also did not significantly alter GR-mediated transactivation but affected the basal transcription of some of the target genes. Thus Bag-1 proteins function as regulators of the action of selective transcription factors.« less

  12. Disruption of the mouse Jhy gene causes abnormal ciliary microtubule patterning and juvenile hydrocephalus

    PubMed Central

    Appelbe, Oliver K.; Bollman, Bryan; Attarwala, Ali; Triebes, Lindy A.; Muniz-Talavera, Hilmarie; Curry, Daniel J.; Schmidt, Jennifer V.

    2013-01-01

    SUMMARY Congenital hydrocephalus, the accumulation of excess cerebrospinal fluid (CSF) in the ventricles of the brain, affects one of every 1,000 children born today, making it one of the most common human developmental disorders. Genetic causes of hydrocephalus are poorly understood in humans, but animal models suggest a broad genetic program underlying the regulation of CSF balance. In this study, the random integration of a transgene into the mouse genome led to the development of an early onset and rapidly progressive hydrocephalus. Juvenile hydrocephalus transgenic mice (JhylacZ) inherit communicating hydrocephalus in an autosomal recessive fashion with dilation of the lateral ventricles observed as early as postnatal day 1.5. Ventricular dilation increases in severity over time, becoming fatal at 4-8 weeks of age. The ependymal cilia lining the lateral ventricles are morphologically abnormal and reduced in number in JhylacZ/lacZ brains, and ultrastructural analysis revealed disorganization of the expected 9+2 microtubule pattern. Rather, the majority of JhylacZ/lacZ cilia develop axonemes with 9+0 or 8+2 microtubule structures. Disruption of an unstudied gene, 4931429I11Rik (now named Jhy) appears to underlie the hydrocephalus of JhylacZ/lacZ mice, and the Jhy transcript and protein are decreased in JhylacZ/lacZ mice. Partial phenotypic rescue was achieved in JhylacZ/lacZ mice by the introduction of a bacterial artificial chromosome (BAC) carrying 60-70% of the JHY protein coding sequence. Jhy is evolutionarily conserved from humans to basal vertebrates, but the predicted JHY protein lacks identifiable functional domains. Ongoing studies are directed at uncovering the physiological function of JHY and its role in CSF homeostasis. PMID:23906841

  13. Transforming growth factor β-induced superficial zone protein accumulation in the surface zone of articular cartilage is dependent on the cytoskeleton.

    PubMed

    McNary, Sean M; Athanasiou, Kyriacos A; Reddi, A Hari

    2014-03-01

    The phenotype of articular chondrocytes is dependent on the cytoskeleton, specifically the actin microfilament architecture. Articular chondrocytes in monolayer culture undergo dedifferentiation and assume a fibroblastic phenotype. This process can be reversed by altering the actin cytoskeleton by treatment with cytochalasin. Whereas dedifferentiation has been studied on chondrocytes isolated from the whole cartilage, the effects of cytoskeletal alteration on specific zones of cells such as superficial zone chondrocytes are not known. Chondrocytes from the superficial zone secrete superficial zone protein (SZP), a lubricating proteoglycan that reduces the coefficient of friction of articular cartilage. A better understanding of this phenomenon may be useful in elucidating chondrocyte dedifferentiation in monolayer and accumulation of the cartilage lubricant SZP, with an eye toward tissue engineering functional articular cartilage. In this investigation, the effects of cytoskeletal modulation on the ability of superficial zone chondrocytes to secrete SZP were examined. Primary superficial zone chondrocytes were cultured in monolayer and treated with a combination of cytoskeleton modifying reagents and transforming growth factor β (TGFβ) 1, a critical regulator of SZP production. Whereas cytochalasin D maintains the articular chondrocyte phenotype, the hallmark of the superficial zone chondrocyte, SZP, was inhibited in the presence of TGFβ1. A decrease in TGFβ1-induced SZP accumulation was also observed when the microtubule cytoskeleton was modified using paclitaxel. These effects of actin and microtubule alteration were confirmed through the application of jasplakinolide and colchicine, respectively. As Rho GTPases regulate actin organization and microtubule polymerization, we hypothesized that the cytoskeleton is critical for TGFβ-induced SZP accumulation. TGFβ-mediated SZP accumulation was inhibited by small molecule inhibitors ML141 (Cdc42), NSC23766 (Rac1

  14. Nature, origin, and production characteristics of the Lower Silurian regional oil and gas accumulation, central Appalachian basin, United States

    USGS Publications Warehouse

    Ryder, R.; Zagorski, W.A.

    2003-01-01

    Low-permeability sandstones of the Lower Silurian regional oil and gas accumulation cover about 45,000 mi2 (117,000 km2) of the Appalachian basin and may contain as much as 30 tcf of recoverable gas resources. Major reservoirs consist of the "Clinton" sandstone and Medina Group sandstones. The stratigraphically equivalent Tuscarora Sandstone increases the area of the Lower Silurian regional accumulation (LSRA) by another 30,000 mi2 (78,000 km2). Approximately 8.7 tcf of gas and 400 million bbl of oil have been produced from the Clinton/Medina reservoirs since 1880. The eastern predominantly gas-bearing part of the LSRA is a basin-center gas accumulation, whereas the western part is a conventional oil and gas accumulation with hybrid features of a basin-center accumulation. The basin-center accumulations have pervasive gas saturation, water near irreducible saturation, and generally low fluid pressures. In contrast, the hybrid-conventional accumulations have less-pervasive oil and gas saturation, higher mobile-water saturation, and both normal and abnormally low fluid pressures. High mobile-water saturation in the hybrid-conventional reservoirs form the updip trap for the basin-center gas creating a broad transition zone, tens of miles wide, that has characteristics of both end-member accumulation types. Although the Tuscarora Sandstone part of the basin-center gas accumulation is pervasively saturated with gas, most of its constituent sandstone beds have low porosity and permeability. Commercial gas fields in the Tuscarora Sandstone are trapped in naturally fractured, faulted anticlines. The origin of the LSRA includes (1) generation of oil and gas from Ordovician black shales, (2) vertical migration through an overlying 1000-ft (305-m)-thick Ordovician shale; (3) abnormally high fluid pressure created by oil-to-gas transformation; (4) updip displacement of mobile pore water by overpressured gas; (5) entrapment of pervasive gas in the basin center; (6) postorogenic

  15. Severe abnormal behavior incidence after administration of neuraminidase inhibitors using the national database of medical claims.

    PubMed

    Nakamura, Yuuki; Sugawara, Tamie; Ohkusa, Yasushi; Taniguchi, Kiyosu; Miyazaki, Chiaki; Momoi, Mariko; Okabe, Nobuhiko

    2018-03-01

    An earlier study using the number of abnormal behaviors reported to the study group as the numerator and the number of influenza patient prescribed each neuraminidase inhibitor (NI) estimated by respective pharmaceutical companies found no significant difference among incidence rates of the most severe abnormal behaviors by type of NI throughout Japan. However, the dataset for the denominator used in that earlier study was the estimated number of prescriptions. In the present study, to compare the incidence rates of abnormal behavior more precisely among influenza patients administered several sorts of NI or administered no NI, we used data obtained from the National Database of Electronic Medical Claims (NDBEMC) as the denominator to reach a definitive conclusion. Results show that patients not administered any NI (hereinafter un-administered) or those administered peramivir sometimes showed higher risk of abnormal behavior than those administered oseltamivir, zanamivir, or laninamivir. However, the un-administered or peramivir patients were fewer than those taking other NI. Therefore, accumulation of data through continued research is expected to be necessary to reach a definitive conclusion about the relation between abnormal behavior and NI in influenza patients. Since severe abnormal behaviors with all types of NI or of un-administered patients have been reported, there are some risks in the administration of NI or even in un-administered cases. Therefore, we infer that the policy mandating package inserts in all types of NI. Copyright © 2017. Published by Elsevier Ltd.

  16. Crumbs 2 prevents cortical abnormalities in mouse dorsal telencephalon.

    PubMed

    Dudok, Jacobus J; Murtaza, Mariyam; Henrique Alves, C; Rashbass, Pen; Wijnholds, Jan

    2016-07-01

    The formation of a functionally integrated nervous system is dependent on a highly organized sequence of events that includes timely division and differentiation of progenitors. Several apical polarity proteins have been shown to play crucial roles during neurogenesis, however, the role of Crumbs 2 (CRB2) in cortical development has not previously been reported. Here, we show that conditional ablation of Crb2 in the murine dorsal telencephalon leads to defects in the maintenance of the apical complex. Furthermore, within the mutant dorsal telencephalon there is premature expression of differentiation proteins. We examined the physiological function of Crb2 on wild type genetic background as well as on background lacking Crb1. Telencephalon lacking CRB2 resulted in reduced levels of PALS1 and CRB3 from the apical complex, an increased number of mitotic cells and expanded neuronal domain. These defects are transient and therefore only result in rather mild cortical abnormalities. We show that CRB2 is required for maintenance of the apical polarity complex during development of the cortex and regulation of cell division, and that loss of CRB2 results in cortical abnormalities. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  17. Clinical and Imaging Presentation of a Patient with Beta-Propeller Protein-Associated Neurodegeneration, a Rare and Sporadic form of Neurodegeneration with Brain Iron Accumulation (NBIA).

    PubMed

    Hattingen, Elke; Handke, Nikolaus; Cremer, Kirsten; Hoffjan, Sabine; Kukuk, Guido Matthias

    2017-12-01

    Neurodegeneration with brain iron accumulation (NBIA) is a heterogeneous group of inherited neurologic disorders with iron accumulation in the basal ganglia, which share magnetic resonance (MR) imaging characteristics, histopathologic and clinical features. According to the affected basal nuclei, clinical features include extrapyramidal movement disorders and varying degrees of intellectual disability status. The most common NBIA subtype is caused by pathogenic variants in PANK2. The hallmark of MR imaging in patients with PANK2 mutations is an eye-of-the-tiger sign in the globus pallidus. We report a 33-year-old female with a rare subtype of NBIA, called beta-propeller protein-associated neurodegeneration (BPAN) with a hitherto unknown missense variant in WDR45. She presented with BPAN's particular biphasic course of neurological symptoms and with a dominant iron accumulation in the midbrain that enclosed a spotty T2-hyperintensity.

  18. Environmentally toxicant exposures induced intragenerational transmission of liver abnormalities in mice

    PubMed Central

    Al-Griw, Mohamed A.; Treesh, Soad A.; Alghazeer, Rabia O.; Regeai, Sassia O.

    2017-01-01

    Environmental toxicants such as chemicals, heavy metals, and pesticides have been shown to promote transgenerational inheritance of abnormal phenotypes and/or diseases to multiple subsequent generations following parental and/or ancestral exposures. This study was designed to examine the potential transgenerational action of the environmental toxicant trichloroethane (TCE) on transmission of liver abnormality, and to elucidate the molecular etiology of hepatocyte cell damage. A total of thirty two healthy immature female albino mice were randomly divided into three equal groups as follows: a sham group, which did not receive any treatment; a vehicle group, which received corn oil alone, and TCE treated group (3 weeks, 100 μg/kg i.p., every 4th day). The F0 and F1 generation control and TCE populations were sacrificed at the age of four months, and various abnormalities histpathologically investigated. Cell death and oxidative stress indices were also measured. The present study provides experimental evidence for the inheritance of environmentally induced liver abnormalities in mice. The results of this study show that exposure to the TCE promoted adult onset liver abnormalities in F0 female mice as well as unexposed F1 generation offspring. It is the first study to report a transgenerational liver abnormalities in the F1 generation mice through maternal line prior to gestation. This finding was based on careful evaluation of liver histopathological abnormalities, apoptosis of hepatocytes, and measurements of oxidative stress biomarkers (lipid peroxidation, protein carbonylation, and nitric oxide) in control and TCE populations. There was an increase in liver histopathological abnormalities, cell death, and oxidative lipid damage in F0 and F1 hepatic tissues of TCE treated group. In conclusion, this study showed that the biological and health impacts of environmental toxicant TCE do not end in maternal adults, but are passed on to offspring generations. Hence

  19. Immunohistochemical localization of beta-amyloid precursor protein sequences in Alzheimer and normal brain tissue by light and electron microscopy.

    PubMed

    McGeer, P L; Akiyama, H; Kawamata, T; Yamada, T; Walker, D G; Ishii, T

    1992-03-01

    Immunohistochemical staining with antibodies directed against four segments of the amyloid precursor protein (APP) was studied by light and electron microscopy in normal and Alzheimer (AD) brain tissue. The segments according to the Kang et al. sequence were: 18-38 (T97); 527-540 (R36); 597-620 (1-24 of beta-amyloid protein [BAP], R17); and 681-695 (R37) (Kang et al. [1987]: Nature 325:733-736). The antibodies recognized full length APP in Western blots of extracts of APP transfected cells. They stained cytoplasmic granules in some pyramidal neurons in normal appearing tissue from control and AD cases. In AD affected tissue, the antibodies to amino terminal sections of APP stained tangled neurons and neuropil threads, and intensely stained dystrophic neurites in senile plaques. By electron microscopy, this staining was localized to abnormal filaments. The antibody to the carboxy terminal segment failed to stain neurofibrillary tangles or neuropil threads; it did stain some neurites with globular swellings. It also stained globular and elongated deposits in senile plaque areas. The antibody against the BAP intensely stained extracellular material in senile plaques and diffuse deposits. By electron microscopy, the antibodies all stained intramicroglial deposits. Some of the extracellular and intracellular BAP-positive deposits were fibrillary. Communication between intramicroglial and extracellular fibrils was detected in plaque areas. These data suggest the following sequence of events. APP is normally concentrated in intraneuronal granules. In AD, it accumulates in damaged neuronal fibers. The amino terminal portion binds to abnormal neurofilaments. Major fragments of APP are phagocytosed and processed by microglia with the BAP portion being preserved. The preserved BAP is then extruded and accumulates in extracellular tissue.

  20. CDK5-mediated tau accumulation triggers methamphetamine-induced neuronal apoptosis via endoplasmic reticulum-associated degradation pathway.

    PubMed

    Xiao, Ning; Zhang, Fu; Zhu, Bofeng; Liu, Chao; Lin, Zhoumeng; Wang, Huijun; Xie, Wei-Bing

    2018-08-01

    Overexposure to methamphetamine (METH) causes apoptosis in a number of cell types, particularly neuronal cells. However, the underlying mechanisms of METH-induced neuronal apoptosis remain to be elucidated. Accumulation of microtubule-associated protein Tau can lead to activation of multiple neurotoxic pathways, which is closely correlated with neuronal apoptosis. The aim of this study was to determine the role of Tau in METH-induced neuronal apoptosis. We determined the expression of two phosphorylated Tau proteins (serine 396 and threonine 231) in the human neuroblastoma SH-SY5Y cells and in the hippocampus of Sprague-Dawley rats treated with vehicle or METH using western blotting, immunohistochemical staining and immunofluorescence staining. We also measured the expression levels of the phosphorylated Tau protein, ubiquitination proteins, the intermediate products of proteasome degradation pathway, CD3-δ (a substrate of proteasome degradation pathway), endoplasmic reticulum stress signal molecule phosphorylated PERK (pPERK), and endoplasmic reticulum stress-specific apoptotic signal molecule caspase-12 in SH-SY5Y cells and in rats after inhibiting the expression of an upstream regulatory factor of phosphorylated Tau protein (CDK5) using siRNA or virus transfection. The results showed that exposure to METH significantly up-regulated the expression of phosphorylated Tau protein in vivo and in vitro and silencing the expression of CDK5 inhibited the up-regulation of phosphorylated Tau induced by METH exposure. METH exposure also significantly increased the expression of ubiquitination protein and CD3-δ and these effects were blocked by CDK5 silencing. In addition, METH exposure significantly elevated the levels of phosphorylated PERK and caspase-12 and these effects were suppressed after CDK5 silencing, which indicates that blockade of CDK5 expression can mitigate METH-induced neuronal apoptosis. These results suggest that METH can impair the endoplasmic

  1. Differential accumulation of nif structural gene mRNA in Azotobacter vinelandii.

    PubMed

    Hamilton, Trinity L; Jacobson, Marty; Ludwig, Marcus; Boyd, Eric S; Bryant, Donald A; Dean, Dennis R; Peters, John W

    2011-09-01

    Northern analysis was employed to investigate mRNA produced by mutant strains of Azotobacter vinelandii with defined deletions in the nif structural genes and in the intergenic noncoding regions. The results indicate that intergenic RNA secondary structures effect the differential accumulation of transcripts, supporting the high Fe protein-to-MoFe protein ratio required for optimal diazotrophic growth.

  2. Antidepressants Accumulate in Lipid Rafts Independent of Monoamine Transporters to Modulate Redistribution of the G Protein, Gαs.

    PubMed

    Erb, Samuel J; Schappi, Jeffrey M; Rasenick, Mark M

    2016-09-16

    Depression is a significant public health problem for which currently available medications, if effective, require weeks to months of treatment before patients respond. Previous studies have shown that the G protein responsible for increasing cAMP (Gαs) is increasingly localized to lipid rafts in depressed subjects and that chronic antidepressant treatment translocates Gαs from lipid rafts. Translocation of Gαs, which shows delayed onset after chronic antidepressant treatment of rats or of C6 glioma cells, tracks with the delayed onset of therapeutic action of antidepressants. Because antidepressants appear to specifically modify Gαs localized to lipid rafts, we sought to determine whether structurally diverse antidepressants accumulate in lipid rafts. Sustained treatment of C6 glioma cells, which lack 5-hydroxytryptamine transporters, showed marked concentration of several antidepressants in raft fractions, as revealed by increased absorbance and by mass fingerprint. Closely related molecules without antidepressant activity did not concentrate in raft fractions. Thus, at least two classes of antidepressants accumulate in lipid rafts and effect translocation of Gαs to the non-raft membrane fraction, where it activates the cAMP-signaling cascade. Analysis of the structural determinants of raft localization may both help to explain the hysteresis of antidepressant action and lead to design and development of novel substrates for depression therapeutics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Soya protein attenuates abnormalities of the renin-angiotensin system in adipose tissue from obese rats.

    PubMed

    Frigolet, María E; Torres, Nimbe; Tovar, Armando R

    2012-01-01

    Several metabolic disturbances during obesity are associated with adipose tissue-altered functions. Adipocytes contain the renin-angiotensin system (RAS), which regulates signalling pathways that control angiogenesis via Akt in an autocrine fashion. Soya protein (Soy) consumption modifies the gene expression pattern in adipose tissue, resulting in an improved adipocyte function. Therefore, the aim of the present work is to study whether dietary Soy regulates the expression of RAS and angiogenesis-related genes and its association with the phosphorylated state of Akt in the adipose tissue of obese rats. Animals were fed a 30 % Soy or casein (Cas) diet containing 5 or 25 % fat for 160 d. mRNA abundance was studied in the adipose tissue, and Akt phosphorylation and hormone release were measured in the primary adipocyte culture. The present results show that Soy treatment in comparison with Cas consumption induces lower angiotensin release and increased insulin-stimulated Akt activation in adipocytes. Furthermore, Soy consumption varies the expression of RAS and angiogenesis-related genes, which maintain cell size and vascularity in the adipose tissue of rats fed a high-fat diet. Thus, adipocyte hypertrophy and impaired angiogenesis, which are frequently observed in dysfunctional adipose tissue, were avoided by consuming dietary Soy. Taken together, these findings suggest that Soy can be used as a dietary strategy to preserve adipocyte functionality and to prevent obesity abnormalities.

  4. Trafficking modulator TENin1 inhibits endocytosis, causes endomembrane protein accumulation at the pre-vacuolar compartment and impairs gravitropic response in Arabidopsis thaliana.

    PubMed

    Paudyal, Rupesh; Jamaluddin, Adam; Warren, James P; Doyle, Siamsa M; Robert, Stéphanie; Warriner, Stuart L; Baker, Alison

    2014-06-01

    Auxin gradients are established and maintained by polarized distribution of auxin transporters that undergo constitutive endocytic recycling from the PM (plasma membrane) and are essential for the gravitropic response in plants. The present study characterizes an inhibitor of endomembrane protein trafficking, TE1 (trafficking and endocytosis inhibitor 1/TENin1) that reduces gravitropic root bending in Arabidopsis thaliana seedlings. Short-term TE1 treatment causes accumulation of PM proteins, including the BR (brassinosteroid) receptor BRI1 (BR insensitive 1), PIP2a (PM intrinsic protein 2a) and the auxin transporter PIN2 (PIN-FORMED 2) in a PVC (pre-vacuolar related compartment), which is sensitive to BFA (Brefeldin A). This compound inhibits endocytosis from the PM and promotes trafficking to the vacuole, consistent with inhibition of retrieval of proteins to the TGN (trans-Golgi network) from the PVC and the PM. However, trafficking of newly synthesized proteins to the PM is unaffected. The short-term protein trafficking inhibition and long-term effect on plant growth and survival caused by TE1 were fully reversible upon drug washout. Structure-activity relationship studies revealed that only minor modifications were possible without loss of biological activity. Diversity in Arabidopsis ecotypes was also exploited to identify two Arabidopsis accessions that display reduced sensitivity to TE1. This compound and the resistant Arabidopsis accessions may be used as a resource in future studies to better understand endomembrane trafficking in plants.

  5. Abnormal sympathetic innervation of the heart in a patient with Emery-Dreifuss muscular dystrophy.

    PubMed

    Fujiita, Takashi; Shimizu, Masami; Kaku, Bunji; Kanaya, Hounin; Horita, Yuki; Uno, Yoshihide; Yamazaki, Tsukasa; Ohka, Takio; Sakata, Kenji; Mabuchi, Hiroshi

    2005-07-01

    A 33-year-old man was admitted for general malaise and vomiting. An electrocardiogram showed a complete atrioventricular block and an echocardiogram showed right atrial dilatation and normal wall motion of left ventricle (LV). Gene analysis showed nonsense mutation in the STA gene, which codes for emerin, and Emery-Dreifuss muscular dystrophy was diagnosed. An endomyocardial biopsy of right ventricle showed mild hypertrophy of myocytes. Myocardial scintigraphic studies with Tc-99m methoxyisobutylisonitrile (MIBI) and I-123-betamethyl-p-iodophenylpentadecanoic acid (BMIPP) scintigrams showed no abnormalities. In contrast, I-123 metaiodobenzylguanidine (MIBG) scintigrams showed a diffuse and severe decrease in accumulation of MIBG in the heart. Six months later, his LV wall motion on echocardiograms developed diffuse hypokinesis. These results suggest that the abnormality on I-123 MIBG myocardial scintigrams may predict LV dysfunction in Emery-Dreifuss muscular dystrophy.

  6. Rapid and Highly Sensitive Detection of Variant Creutzfeldt - Jakob Disease Abnormal Prion Protein on Steel Surfaces by Protein Misfolding Cyclic Amplification: Application to Prion Decontamination Studies

    PubMed Central

    Belondrade, Maxime; Nicot, Simon; Béringue, Vincent; Coste, Joliette; Lehmann, Sylvain; Bougard, Daisy

    2016-01-01

    The prevalence of variant Creutzfeldt-Jakob disease (vCJD) in the population remains uncertain, although it has been estimated that 1 in 2000 people in the United Kingdom are positive for abnormal prion protein (PrPTSE) by a recent survey of archived appendix tissues. The prominent lymphotropism of vCJD prions raises the possibility that some surgical procedures may be at risk of iatrogenic vCJD transmission in healthcare facilities. It is therefore vital that decontamination procedures applied to medical devices before their reprocessing are thoroughly validated. A current limitation is the lack of a rapid model permissive to human prions. Here, we developed a prion detection assay based on protein misfolding cyclic amplification (PMCA) technology combined with stainless-steel wire surfaces as carriers of prions (Surf-PMCA). This assay allowed the specific detection of minute quantities (10−8 brain dilution) of either human vCJD or ovine scrapie PrPTSE adsorbed onto a single steel wire, within a two week timeframe. Using Surf-PMCA we evaluated the performance of several reference and commercially available prion-specific decontamination procedures. Surprisingly, we found the efficiency of several marketed reagents to remove human vCJD PrPTSE was lower than expected. Overall, our results demonstrate that Surf-PMCA can be used as a rapid and ultrasensitive assay for the detection of human vCJD PrPTSE adsorbed onto a metallic surface, therefore facilitating the development and validation of decontamination procedures against human prions. PMID:26800081

  7. Multimodal Imaging in Rat Model Recapitulates Alzheimer's Disease Biomarkers Abnormalities.

    PubMed

    Parent, Maxime J; Zimmer, Eduardo R; Shin, Monica; Kang, Min Su; Fonov, Vladimir S; Mathieu, Axel; Aliaga, Antonio; Kostikov, Alexey; Do Carmo, Sonia; Dea, Doris; Poirier, Judes; Soucy, Jean-Paul; Gauthier, Serge; Cuello, A Claudio; Rosa-Neto, Pedro

    2017-12-13

    Imaging biomarkers are frequently proposed as endpoints for clinical trials targeting brain amyloidosis in Alzheimer's disease (AD); however, the specific impact of amyloid-β (Aβ) aggregation on biomarker abnormalities remains elusive in AD. Using the McGill-R-Thy1-APP transgenic rat as a model of selective Aβ pathology, we characterized the longitudinal progression of abnormalities in biomarkers commonly used in AD research. Middle-aged (9-11 months) transgenic animals (both male and female) displayed mild spatial memory impairments and disrupted cingulate network connectivity measured by resting-state fMRI, even in the absence of hypometabolism (measured with PET [ 18 F]FDG) or detectable fibrillary amyloidosis (measured with PET [ 18 F]NAV4694). At more advanced ages (16-19 months), cognitive deficits progressed in conjunction with resting connectivity abnormalities; furthermore, hypometabolism, Aβ plaque accumulation, reduction of CSF Aβ 1-42 concentrations, and hippocampal atrophy (structural MRI) were detectable at this stage. The present results emphasize the early impact of Aβ on brain connectivity and support a framework in which persistent Aβ aggregation itself is sufficient to impose memory circuits dysfunction, which propagates to adjacent brain networks at later stages. SIGNIFICANCE STATEMENT The present study proposes a "back translation" of the Alzheimer pathological cascade concept from human to animals. We used the same set of Alzheimer imaging biomarkers typically used in large human cohorts and assessed their progression over time in a transgenic rat model, which allows for a finer spatial resolution not attainable with mice. Using this translational platform, we demonstrated that amyloid-β pathology recapitulates an Alzheimer-like profile of biomarker abnormalities even in the absence of other hallmarks of the disease such as neurofibrillary tangles and widespread neuronal losses. Copyright © 2017 Parent et al.

  8. Multimodal Imaging in Rat Model Recapitulates Alzheimer's Disease Biomarkers Abnormalities

    PubMed Central

    Parent, Maxime J.; Kang, Min Su; Mathieu, Axel; Aliaga, Antonio; Do Carmo, Sonia; Dea, Doris; Gauthier, Serge; Cuello, A. Claudio

    2017-01-01

    Imaging biomarkers are frequently proposed as endpoints for clinical trials targeting brain amyloidosis in Alzheimer's disease (AD); however, the specific impact of amyloid-β (Aβ) aggregation on biomarker abnormalities remains elusive in AD. Using the McGill-R-Thy1-APP transgenic rat as a model of selective Aβ pathology, we characterized the longitudinal progression of abnormalities in biomarkers commonly used in AD research. Middle-aged (9–11 months) transgenic animals (both male and female) displayed mild spatial memory impairments and disrupted cingulate network connectivity measured by resting-state fMRI, even in the absence of hypometabolism (measured with PET [18F]FDG) or detectable fibrillary amyloidosis (measured with PET [18F]NAV4694). At more advanced ages (16–19 months), cognitive deficits progressed in conjunction with resting connectivity abnormalities; furthermore, hypometabolism, Aβ plaque accumulation, reduction of CSF Aβ1-42 concentrations, and hippocampal atrophy (structural MRI) were detectable at this stage. The present results emphasize the early impact of Aβ on brain connectivity and support a framework in which persistent Aβ aggregation itself is sufficient to impose memory circuits dysfunction, which propagates to adjacent brain networks at later stages. SIGNIFICANCE STATEMENT The present study proposes a “back translation” of the Alzheimer pathological cascade concept from human to animals. We used the same set of Alzheimer imaging biomarkers typically used in large human cohorts and assessed their progression over time in a transgenic rat model, which allows for a finer spatial resolution not attainable with mice. Using this translational platform, we demonstrated that amyloid-β pathology recapitulates an Alzheimer-like profile of biomarker abnormalities even in the absence of other hallmarks of the disease such as neurofibrillary tangles and widespread neuronal losses. PMID:29097597

  9. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  10. Immunization with a Recombinant Vaccinia Virus That Encodes Nonstructural Proteins of the Hepatitis C Virus Suppresses Viral Protein Levels in Mouse Liver

    PubMed Central

    Sekiguchi, Satoshi; Kimura, Kiminori; Chiyo, Tomoko; Ohtsuki, Takahiro; Tobita, Yoshimi; Tokunaga, Yuko; Yasui, Fumihiko; Tsukiyama-Kohara, Kyoko; Wakita, Takaji; Tanaka, Toshiyuki; Miyasaka, Masayuki; Mizuno, Kyosuke; Hayashi, Yukiko; Hishima, Tsunekazu; Matsushima, Kouji; Kohara, Michinori

    2012-01-01

    Chronic hepatitis C, which is caused by infection with the hepatitis C virus (HCV), is a global health problem. Using a mouse model of hepatitis C, we examined the therapeutic effects of a recombinant vaccinia virus (rVV) that encodes an HCV protein. We generated immunocompetent mice that each expressed multiple HCV proteins via a Cre/loxP switching system and established several distinct attenuated rVV strains. The HCV core protein was expressed consistently in the liver after polyinosinic acid–polycytidylic acid injection, and these mice showed chronic hepatitis C-related pathological findings (hepatocyte abnormalities, accumulation of glycogen, steatosis), liver fibrosis, and hepatocellular carcinoma. Immunization with one rVV strain (rVV-N25), which encoded nonstructural HCV proteins, suppressed serum inflammatory cytokine levels and alleviated the symptoms of pathological chronic hepatitis C within 7 days after injection. Furthermore, HCV protein levels in liver tissue also decreased in a CD4 and CD8 T-cell-dependent manner. Consistent with these results, we showed that rVV-N25 immunization induced a robust CD8 T-cell immune response that was specific to the HCV nonstructural protein 2. We also demonstrated that the onset of chronic hepatitis in CN2-29(+/−)/MxCre(+/−) mice was mainly attributable to inflammatory cytokines, (tumor necrosis factor) TNF-α and (interleukin) IL-6. Thus, our generated mice model should be useful for further investigation of the immunological processes associated with persistent expression of HCV proteins because these mice had not developed immune tolerance to the HCV antigen. In addition, we propose that rVV-N25 could be developed as an effective therapeutic vaccine. PMID:23284733

  11. Immunization with a recombinant vaccinia virus that encodes nonstructural proteins of the hepatitis C virus suppresses viral protein levels in mouse liver.

    PubMed

    Sekiguchi, Satoshi; Kimura, Kiminori; Chiyo, Tomoko; Ohtsuki, Takahiro; Tobita, Yoshimi; Tokunaga, Yuko; Yasui, Fumihiko; Tsukiyama-Kohara, Kyoko; Wakita, Takaji; Tanaka, Toshiyuki; Miyasaka, Masayuki; Mizuno, Kyosuke; Hayashi, Yukiko; Hishima, Tsunekazu; Matsushima, Kouji; Kohara, Michinori

    2012-01-01

    Chronic hepatitis C, which is caused by infection with the hepatitis C virus (HCV), is a global health problem. Using a mouse model of hepatitis C, we examined the therapeutic effects of a recombinant vaccinia virus (rVV) that encodes an HCV protein. We generated immunocompetent mice that each expressed multiple HCV proteins via a Cre/loxP switching system and established several distinct attenuated rVV strains. The HCV core protein was expressed consistently in the liver after polyinosinic acid-polycytidylic acid injection, and these mice showed chronic hepatitis C-related pathological findings (hepatocyte abnormalities, accumulation of glycogen, steatosis), liver fibrosis, and hepatocellular carcinoma. Immunization with one rVV strain (rVV-N25), which encoded nonstructural HCV proteins, suppressed serum inflammatory cytokine levels and alleviated the symptoms of pathological chronic hepatitis C within 7 days after injection. Furthermore, HCV protein levels in liver tissue also decreased in a CD4 and CD8 T-cell-dependent manner. Consistent with these results, we showed that rVV-N25 immunization induced a robust CD8 T-cell immune response that was specific to the HCV nonstructural protein 2. We also demonstrated that the onset of chronic hepatitis in CN2-29((+/-))/MxCre((+/-)) mice was mainly attributable to inflammatory cytokines, (tumor necrosis factor) TNF-α and (interleukin) IL-6. Thus, our generated mice model should be useful for further investigation of the immunological processes associated with persistent expression of HCV proteins because these mice had not developed immune tolerance to the HCV antigen. In addition, we propose that rVV-N25 could be developed as an effective therapeutic vaccine.

  12. Abnormal cerebrospinal fluid protein indices in schizophrenia.

    PubMed

    Kirch, D G; Kaufmann, C A; Papadopoulos, N M; Martin, B; Weinberger, D R

    1985-10-01

    Determinations of albumin and immunoglobulin G (IgG) were performed in paired cerebrospinal fluid (CSF) and serum samples from 24 subjects with schizophrenia. These determinations allowed calculation of two indices, one that is an indicator of integrity of the blood-brain barrier and the other a measure of selective IgG production within the central nervous system (CNS). In comparison with previously determined reference values, 7 of 24 (29%) subjects showed increased blood-brain barrier permeability, and 8 of 24 (33%) demonstrated elevated endogenous CNS IgG production. One of these eight also demonstrated oligoclonal banding on high-resolution protein electrophoresis of the CSF.

  13. Differential effects of citric acid on cadmium uptake and accumulation between tall fescue and Kentucky bluegrass.

    PubMed

    Wang, ShuTing; Dong, Qin; Wang, ZhaoLong

    2017-11-01

    Organic acids play an important role in cadmium availability, uptake, translocation, and detoxification. A sand culture experiment was designed to investigate the effects of citric acid on Cd uptake, translocation, and accumulation in tall fescue and Kentucky bluegrass. The results showed that two grass species presented different Cd chemical forms, organic acid components and amount in roots. The dormant Cd accumulated in roots of tall fescue was the pectate- and protein- integrated form, which contributed by 84.85%. However, in Kentucky bluegrass, the pectate- and protein- integrated Cd was only contributed by 35.78%, and the higher proportion of Cd form was the water soluble Cd-organic acid complexes. In tall fescue, citric acid dramatically enhanced 2.8 fold of Cd uptake, 3 fold of root Cd accumulation, and 2.3 fold of shoot Cd accumulation. In Kentucky bluegrass, citric acid promoted Cd accumulation in roots, but significantly decreased Cd accumulation in shoots. These results suggested that the enhancements of citric acid on Cd uptake, translocation, and accumulation in tall fescue was associated with its promotion of organic acids and the water soluble Cd-organic acid complexes in roots. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Mitochondrial Protein PGAM5 Regulates Mitophagic Protection against Cell Necroptosis.

    PubMed

    Lu, Wei; Sun, Junhui; Yoon, Jeong Seon; Zhang, Yan; Zheng, Lixin; Murphy, Elizabeth; Mattson, Mark P; Lenardo, Michael J

    2016-01-01

    Necroptosis as a molecular program, rather than simply incidental cell death, was established by elucidating the roles of receptor interacting protein (RIP) kinases 1 and 3, along with their downstream partner, mixed lineage kinase-like domain protein (MLKL). Previous studies suggested that phosphoglycerate mutase family member 5 (PGAM5), a mitochondrial protein that associates with RIP1/RIP3/MLKL complex, promotes necroptosis. We have generated mice deficient in the pgam5 gene and surprisingly found PGAM5-deficiency exacerbated rather than reduced necroptosis in response to multiple in vitro and in vivo necroptotic stimuli, including ischemic reperfusion injury (I/R) in the heart and brain. Electron microscopy, biochemical, and confocal analysis revealed that PGAM5 is indispensable for the process of PINK1 dependent mitophagy which antagonizes necroptosis. The loss of PGAM5/PINK1 mediated mitophagy causes the accumulation of abnormal mitochondria, leading to the overproduction of reactive oxygen species (ROS) that worsen necroptosis. Our results revise the former proposal that PGAM5 acts downstream of RIP1/RIP3 to mediate necroptosis. Instead, PGAM5 protects cells from necroptosis by independently promoting mitophagy. PGAM5 promotion of mitophagy may represent a therapeutic target for stroke, myocardial infarction and other diseases caused by oxidative damage and necroptosis.

  15. Label-free Proteomic Reveals that Cowpea Severe Mosaic Virus Transiently Suppresses the Host Leaf Protein Accumulation During the Compatible Interaction with Cowpea (Vigna unguiculata [L.] Walp.).

    PubMed

    Paiva, Ana L S; Oliveira, Jose T A; de Souza, Gustavo A; Vasconcelos, Ilka M

    2016-12-02

    Viruses are important plant pathogens that threaten diverse crops worldwide. Diseases caused by Cowpea severe mosaic virus (CPSMV) have drawn attention because of the serious damages they cause to economically important crops including cowpea. This work was undertaken to quantify and identify the responsive proteins of a susceptible cowpea genotype infected with CPSMV, in comparison with mock-inoculated controls, using label-free quantitative proteomics and databanks, aiming at providing insights on the molecular basis of this compatible interaction. Cowpea leaves were mock- or CPSMV-inoculated and 2 and 6 days later proteins were extracted and analyzed. More than 3000 proteins were identified (data available via ProteomeXchange, identifier PXD005025) and 75 and 55 of them differentially accumulated in response to CPSMV, at 2 and 6 DAI, respectively. At 2 DAI, 76% of the proteins decreased in amount and 24% increased. However, at 6 DAI, 100% of the identified proteins increased. Thus, CPSMV transiently suppresses the synthesis of proteins involved particularly in the redox homeostasis, protein synthesis, defense, stress, RNA/DNA metabolism, signaling, and other functions, allowing viral invasion and spread in cowpea tissues.

  16. MicroRNA166 Modulates Cadmium Tolerance and Accumulation in Rice.

    PubMed

    Ding, Yanfei; Gong, Shaohua; Wang, Yi; Wang, Feijuan; Bao, Hexigeduleng; Sun, Junwei; Cai, Chong; Yi, Keke; Chen, Zhixiang; Zhu, Cheng

    2018-06-20

    MicroRNAs (miRNAs) are 20- to 24-nucleotide small non-coding RNAs that regulate gene expression in eukaryotic organisms. Several plant miRNAs, such as miR166, have vital roles in plant growth, development and responses to environmental stresses. One such environmental stress encountered by crop plants is exposure to cadmium (Cd), an element highly toxic to most organisms, including humans and plants. In this study, we analyzed the role of miR166 in Cd accumulation and tolerance in rice (Oryza sativa). The expression levels of miR166 in both root and leaf tissues were significantly higher in the reproductive stage than in the seedling stage in rice. The expression of miR166 in the roots of rice seedlings was reduced after Cd treatment. Overexpression of miR166 in rice improved Cd tolerance, a result associated with the reduction of Cd-induced oxidative stress in transgenic rice plants. Furthermore, overexpression of miR166 reduced both Cd translocation from roots to shoots and Cd accumulation in the grains. miR166 targets genes encoding the class-III homeodomain-leucine zipper (HD-Zip) family proteins in plants. In rice, HOMEODOMAIN CONTAINING PROTEIN 4 (OsHB4) gene (Os03g43930), which encodes an HD-Zip protein, was up-regulated by Cd treatment but down-regulated by overexpression of miR166 in transgenic rice plants. Overexpression of OsHB4 increased Cd sensitivity and Cd accumulation in the leaves and grains of transgenic rice plants. By contrast, silencing OsHB4 by RNA interference enhanced Cd tolerance in transgenic rice plants. These results indicate a critical role for miR166 in Cd accumulation and tolerance through regulation of its target gene, OsHB4, in rice. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  17. Drosophila Syd-1, Liprin-α, and Protein Phosphatase 2A B′ Subunit Wrd Function in a Linear Pathway to Prevent Ectopic Accumulation of Synaptic Materials in Distal Axons

    PubMed Central

    Li, Long; Tian, Xiaolin; Zhu, Mingwei; Bulgari, Dinara; Böhme, Mathias A.; Goettfert, Fabian; Wichmann, Carolin; Sigrist, Stephan J.; Levitan, Edwin S.

    2014-01-01

    During synaptic development, presynaptic differentiation occurs as an intrinsic property of axons to form specialized areas of plasma membrane [active zones (AZs)] that regulate exocytosis and endocytosis of synaptic vesicles. Genetic and biochemical studies in vertebrate and invertebrate model systems have identified a number of proteins involved in AZ assembly. However, elucidating the molecular events of AZ assembly in a spatiotemporal manner remains a challenge. Syd-1 (synapse defective-1) and Liprin-α have been identified as two master organizers of AZ assembly. Genetic and imaging analyses in invertebrates show that Syd-1 works upstream of Liprin-α in synaptic assembly through undefined mechanisms. To understand molecular pathways downstream of Liprin-α, we performed a proteomic screen of Liprin-α-interacting proteins in Drosophila brains. We identify Drosophila protein phosphatase 2A (PP2A) regulatory subunit B′ [Wrd (Well Rounded)] as a Liprin-α-interacting protein, and we demonstrate that it mediates the interaction of Liprin-α with PP2A holoenzyme and the Liprin-α-dependent synaptic localization of PP2A. Interestingly, loss of function in syd-1, liprin-α, or wrd shares a common defect in which a portion of synaptic vesicles, dense-core vesicles, and presynaptic cytomatrix proteins ectopically accumulate at the distal, but not proximal, region of motoneuron axons. Strong genetic data show that a linear syd-1/liprin-α/wrd pathway in the motoneuron antagonizes glycogen synthase kinase-3β kinase activity to prevent the ectopic accumulation of synaptic materials. Furthermore, we provide data suggesting that the syd-1/liprin-α/wrd pathway stabilizes AZ specification at the nerve terminal and that such a novel function is independent of the roles of syd-1/liprin-α in regulating the morphology of the T-bar structural protein BRP (Bruchpilot). PMID:24948803

  18. Drosophila Syd-1, liprin-α, and protein phosphatase 2A B' subunit Wrd function in a linear pathway to prevent ectopic accumulation of synaptic materials in distal axons.

    PubMed

    Li, Long; Tian, Xiaolin; Zhu, Mingwei; Bulgari, Dinara; Böhme, Mathias A; Goettfert, Fabian; Wichmann, Carolin; Sigrist, Stephan J; Levitan, Edwin S; Wu, Chunlai

    2014-06-18

    During synaptic development, presynaptic differentiation occurs as an intrinsic property of axons to form specialized areas of plasma membrane [active zones (AZs)] that regulate exocytosis and endocytosis of synaptic vesicles. Genetic and biochemical studies in vertebrate and invertebrate model systems have identified a number of proteins involved in AZ assembly. However, elucidating the molecular events of AZ assembly in a spatiotemporal manner remains a challenge. Syd-1 (synapse defective-1) and Liprin-α have been identified as two master organizers of AZ assembly. Genetic and imaging analyses in invertebrates show that Syd-1 works upstream of Liprin-α in synaptic assembly through undefined mechanisms. To understand molecular pathways downstream of Liprin-α, we performed a proteomic screen of Liprin-α-interacting proteins in Drosophila brains. We identify Drosophila protein phosphatase 2A (PP2A) regulatory subunit B' [Wrd (Well Rounded)] as a Liprin-α-interacting protein, and we demonstrate that it mediates the interaction of Liprin-α with PP2A holoenzyme and the Liprin-α-dependent synaptic localization of PP2A. Interestingly, loss of function in syd-1, liprin-α, or wrd shares a common defect in which a portion of synaptic vesicles, dense-core vesicles, and presynaptic cytomatrix proteins ectopically accumulate at the distal, but not proximal, region of motoneuron axons. Strong genetic data show that a linear syd-1/liprin-α/wrd pathway in the motoneuron antagonizes glycogen synthase kinase-3β kinase activity to prevent the ectopic accumulation of synaptic materials. Furthermore, we provide data suggesting that the syd-1/liprin-α/wrd pathway stabilizes AZ specification at the nerve terminal and that such a novel function is independent of the roles of syd-1/liprin-α in regulating the morphology of the T-bar structural protein BRP (Bruchpilot). Copyright © 2014 the authors 0270-6474/14/348474-14$15.00/0.

  19. Redox imbalance and mitochondrial abnormalities in the diabetic lung.

    PubMed

    Wu, Jinzi; Jin, Zhen; Yan, Liang-Jun

    2017-04-01

    Although the lung is one of the least studied organs in diabetes, increasing evidence indicates that it is an inevitable target of diabetic complications. Nevertheless, the underlying biochemical mechanisms of lung injury in diabetes remain largely unexplored. Given that redox imbalance, oxidative stress, and mitochondrial dysfunction have been implicated in diabetic tissue injury, we set out to investigate mechanisms of lung injury in diabetes. The objective of this study was to evaluate NADH/NAD + redox status, oxidative stress, and mitochondrial abnormalities in the diabetic lung. Using STZ induced diabetes in rat as a model, we measured redox-imbalance related parameters including aldose reductase activity, level of poly ADP ribose polymerase (PAPR-1), NAD + content, NADPH content, reduced form of glutathione (GSH), and glucose 6-phophate dehydrogenase (G6PD) activity. For assessment of mitochondrial abnormalities in the diabetic lung, we measured the activities of mitochondrial electron transport chain complexes I to IV and complex V as well as dihydrolipoamide dehydrogenase (DLDH) content and activity. We also measured the protein content of NAD + dependent enzymes such as sirtuin3 (sirt3) and NAD(P)H: quinone oxidoreductase 1 (NQO1). Our results demonstrate that NADH/NAD + redox imbalance occurs in the diabetic lung. This redox imbalance upregulates the activities of complexes I to IV, but not complex V; and this upregulation is likely the source of increased mitochondrial ROS production, oxidative stress, and cell death in the diabetic lung. These results, together with the findings that the protein contents of DLDH, sirt3, and NQO1 all are decreased in the diabetic lung, demonstrate that redox imbalance, mitochondrial abnormality, and oxidative stress contribute to lung injury in diabetes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Abnormal troponin I levels in a thalassemia major patient with high ferritin concentration, permanent atrial fibrillation and without acute coronary syndrome.

    PubMed

    Patanè, Salvatore; Marte, Filippo

    2010-01-21

    Thalassemia is a congenital hemoglobinopathy leading to anemia because of impaired erythropoiesis and peripheral hemolysis. Thalassemia major patients are transfusion dependent and it results in iron accumulation. The heart is one of the major organs affected with iron overload and iron induced cardiac dysfunction (pump and conduction abnormalities) remains the number one cause of death among thalassemia major patients. It has been reported that a high ferritin concentration is related to high troponin levels in hemodialysis patients receiving more intravenous iron sucrose. Abnormal troponin I levels have also been reported without acute coronary syndrome. We present a case of abnormal troponin I levels in Thalassemia major patient with high ferritin concentration, permanent atrial fibrillation and without acute coronary syndrome. To our knowledge, this is the first report of abnormal troponin I levels in a Thalassemia major patient with high ferritin concentration and without acute coronary syndrome and also this case focuses attention on the importance of the correct evaluation of abnormal troponin I levels. Copyright (c) 2008 Elsevier Ireland Ltd. All rights reserved.

  1. Increased de novo ceramide synthesis and accumulation in failing myocardium

    PubMed Central

    Ji, Ruiping; Akashi, Hirokazu; Drosatos, Konstantinos; Liao, Xianghai; Jiang, Hongfeng; Kennel, Peter J.; Brunjes, Danielle L.; Castillero, Estibaliz; Zhang, Xiaokan; Deng, Lily Y.; Homma, Shunichi; George, Isaac J.; Takayama, Hiroo; Naka, Yoshifumi; Goldberg, Ira J.

    2017-01-01

    Abnormal lipid metabolism may contribute to myocardial injury and remodeling. To determine whether accumulation of very long–chain ceramides occurs in human failing myocardium, we analyzed myocardial tissue and serum from patients with severe heart failure (HF) undergoing placement of left ventricular assist devices and controls. Lipidomic analysis revealed increased total and very long–chain ceramides in myocardium and serum of patients with advanced HF. After unloading, these changes showed partial reversibility. Following myocardial infarction (MI), serine palmitoyl transferase (SPT), the rate-limiting enzyme of the de novo pathway of ceramide synthesis, and ceramides were found increased. Blockade of SPT by the specific inhibitor myriocin reduced ceramide accumulation in ischemic cardiomyopathy and decreased C16, C24:1, and C24 ceramides. SPT inhibition also reduced ventricular remodeling, fibrosis, and macrophage content following MI. Further, genetic deletion of the SPTLC2 gene preserved cardiac function following MI. Finally, in vitro studies revealed that changes in ceramide synthesis are linked to hypoxia and inflammation. In conclusion, cardiac ceramides accumulate in the failing myocardium, and increased levels are detectable in circulation. Inhibition of de novo ceramide synthesis reduces cardiac remodeling. Thus, increased de novo ceramide synthesis contributes to progressive pathologic cardiac remodeling and dysfunction. PMID:28469091

  2. Quantifying the eating abnormalities in frontotemporal dementia.

    PubMed

    Ahmed, Rebekah M; Irish, Muireann; Kam, Jonathan; van Keizerswaard, Jolanda; Bartley, Lauren; Samaras, Katherine; Hodges, John R; Piguet, Olivier

    2014-12-01

    Presence of eating abnormalities is one of the core criteria for the diagnosis of behavioral variant frontotemporal dementia (bvFTD), yet their occurrence in other subtypes of frontotemporal dementia (FTD) and effect on metabolic health is not known. To define and quantify patterns of eating behavior and energy, sugar, carbohydrate, protein, and fat intake, as well as indices of metabolic health in patients with bvFTD and semantic dementia (SD) compared with patients with Alzheimer disease (AD) and healthy control participants. Prospective case-controlled study involving patient and caregiver completion of surveys. Seventy-five participants with dementia (21 with bvFTD, 26 with SD, and 28 with AD) and 18 age- and education-matched healthy controls were recruited from FRONTIER, the FTD research clinic at Neuroscience Research Australia in Sydney. Caregivers of patients with FTD and AD completed validated questionnaires on appetite, eating behaviors, energy consumption, and dietary macronutrient composition. All participants completed surveys on hunger and satiety. Body mass index and weight measurements were prospectively collected. The bvFTD group had significant abnormalities in the domains of appetite (U = 111.0, z = 2.7, P = .007), eating habits (U = 69.5, z = 3.8, P = .001), food preferences (U = 57.0, z = 4.1, P = .001), swallowing (U = 109.0, z = 3.0, P = .003), and other oral behaviors (U = 141.0, z = 2.6, P = .009) compared with the AD group. The bvFTD and SD groups tended to have increased energy consumption. Compared with controls, the bvFTD group had significantly increased carbohydrate intake (251 vs 170 g/d; P = .05) and the SD group had significantly increased sugar intake (114 vs 76 g/d; P = .049). No significant differences in total fat or protein intake between the groups were found. Despite similar energy intake, the SD group had lower hunger and satiety scores compared with the bvFTD group. In contrast, hunger and satiety scores did not differ

  3. Studying Coxiella burnetii Type IV Substrates in the Yeast Saccharomyces cerevisiae: Focus on Subcellular Localization and Protein Aggregation.

    PubMed

    Rodríguez-Escudero, María; Cid, Víctor J; Molina, María; Schulze-Luehrmann, Jan; Lührmann, Anja; Rodríguez-Escudero, Isabel

    2016-01-01

    Coxiella burnetii is a Gram-negative obligate parasitic bacterium that causes the disease Q-fever in humans. To establish its intracellular niche, it utilizes the Icm/Dot type IVB secretion system (T4BSS) to inject protein effectors into the host cell cytoplasm. The host targets of most cognate and candidate T4BSS-translocated effectors remain obscure. We used the yeast Saccharomyces cerevisiae as a model to express and study six C. burnetii effectors, namely AnkA, AnkB, AnkF, CBU0077, CaeA and CaeB, in search for clues about their role in C. burnetii virulence. When ectopically expressed in HeLa cells, these effectors displayed distinct subcellular localizations. Accordingly, GFP fusions of these proteins produced in yeast also decorated distinct compartments, and most of them altered cell growth. CaeA was ubiquitinated both in yeast and mammalian cells and, in S. cerevisiae, accumulated at juxtanuclear quality-control compartments (JUNQs) and insoluble protein deposits (IPODs), characteristic of aggregative or misfolded proteins. AnkA, which was not ubiquitinated, accumulated exclusively at the IPOD. CaeA, but not AnkA or the other effectors, caused oxidative damage in yeast. We discuss that CaeA and AnkA behavior in yeast may rather reflect misfolding than recognition of conserved targets in the heterologous system. In contrast, CBU0077 accumulated at vacuolar membranes and abnormal ER extensions, suggesting that it interferes with vesicular traffic, whereas AnkB associated with the yeast nucleolus. Both effectors shared common localization features in HeLa and yeast cells. Our results support the idea that C. burnetii T4BSS effectors manipulate multiple host cell targets, which can be conserved in higher and lower eukaryotic cells. However, the behavior of CaeA and AnkA prompt us to conclude that heterologous protein aggregation and proteostatic stress can be a limitation to be considered when using the yeast model to assess the function of bacterial effectors.

  4. Studying Coxiella burnetii Type IV Substrates in the Yeast Saccharomyces cerevisiae: Focus on Subcellular Localization and Protein Aggregation

    PubMed Central

    Rodríguez-Escudero, María; Cid, Víctor J.; Molina, María; Schulze-Luehrmann, Jan; Lührmann, Anja; Rodríguez-Escudero, Isabel

    2016-01-01

    Coxiella burnetii is a Gram-negative obligate parasitic bacterium that causes the disease Q-fever in humans. To establish its intracellular niche, it utilizes the Icm/Dot type IVB secretion system (T4BSS) to inject protein effectors into the host cell cytoplasm. The host targets of most cognate and candidate T4BSS-translocated effectors remain obscure. We used the yeast Saccharomyces cerevisiae as a model to express and study six C. burnetii effectors, namely AnkA, AnkB, AnkF, CBU0077, CaeA and CaeB, in search for clues about their role in C. burnetii virulence. When ectopically expressed in HeLa cells, these effectors displayed distinct subcellular localizations. Accordingly, GFP fusions of these proteins produced in yeast also decorated distinct compartments, and most of them altered cell growth. CaeA was ubiquitinated both in yeast and mammalian cells and, in S. cerevisiae, accumulated at juxtanuclear quality-control compartments (JUNQs) and insoluble protein deposits (IPODs), characteristic of aggregative or misfolded proteins. AnkA, which was not ubiquitinated, accumulated exclusively at the IPOD. CaeA, but not AnkA or the other effectors, caused oxidative damage in yeast. We discuss that CaeA and AnkA behavior in yeast may rather reflect misfolding than recognition of conserved targets in the heterologous system. In contrast, CBU0077 accumulated at vacuolar membranes and abnormal ER extensions, suggesting that it interferes with vesicular traffic, whereas AnkB associated with the yeast nucleolus. Both effectors shared common localization features in HeLa and yeast cells. Our results support the idea that C. burnetii T4BSS effectors manipulate multiple host cell targets, which can be conserved in higher and lower eukaryotic cells. However, the behavior of CaeA and AnkA prompt us to conclude that heterologous protein aggregation and proteostatic stress can be a limitation to be considered when using the yeast model to assess the function of bacterial effectors

  5. Deletion of Aryl Hydrocarbon Receptor AHR in Mice Leads to Subretinal Accumulation of Microglia and RPE Atrophy

    PubMed Central

    Kim, Soo-Young; Yang, Hyun-Jin; Chang, Yi-Sheng; Kim, Jung-Woong; Brooks, Matthew; Chew, Emily Y.; Wong, Wai T.; Fariss, Robert N.; Rachel, Rivka A.; Cogliati, Tiziana; Qian, Haohua; Swaroop, Anand

    2014-01-01

    Purpose. The aryl hydrocarbon receptor (AHR) is a ligand-activated nuclear receptor that regulates cellular response to environmental signals, including UV and blue wavelength light. This study was undertaken to elucidate AHR function in retinal homeostasis. Methods. RNA-seq data sets were examined for Ahr expression in the mouse retina and rod photoreceptors. The Ahr−/− mice were evaluated by fundus imaging, optical coherence tomography, histology, immunohistochemistry, and ERG. For light damage experiments, adult mice were exposed to 14,000 to 15,000 lux of diffuse white light for 2 hours. Results. In mouse retina, Ahr transcripts were upregulated during development, with continued increase in aging rod photoreceptors. Fundus examination of 3-month-old Ahr−/− mice revealed subretinal autofluorescent spots, which increased in number with age and following acute light exposure. Ahr−/− retina also showed subretinal microglia accumulation that correlated with autofluorescence changes, RPE abnormalities, and reactivity against immunoglobulin, complement factor H, and glial fibrillary acidic protein. Functionally, Ahr−/− mice displayed reduced ERG c-wave amplitudes. Conclusions. The Ahr−/− mice exhibited subretinal accumulation of microglia and focal RPE atrophy, phenotypes observed in AMD. Together with a recently published report on another Ahr−/− mouse model, our study suggests that AHR has a protective role in the retina as an environmental stress sensor. As such, its altered function may contribute to human AMD progression and provide a target for pharmacological intervention. PMID:25159211

  6. Early white matter abnormalities, progressive brain pathology and motor deficits in a novel knock-in mouse model of Huntington's disease

    PubMed Central

    Jin, Jing; Peng, Qi; Hou, Zhipeng; Jiang, Mali; Wang, Xin; Langseth, Abraham J.; Tao, Michael; Barker, Peter B.; Mori, Susumu; Bergles, Dwight E.; Ross, Christopher A.; Detloff, Peter J.; Zhang, Jiangyang; Duan, Wenzhen

    2015-01-01

    White matter abnormalities have been reported in premanifest Huntington's disease (HD) subjects before overt striatal neuronal loss, but whether the white matter changes represent a necessary step towards further pathology and the underlying mechanism of these changes remains unknown. Here, we characterized a novel knock-in mouse model that expresses mouse HD gene homolog (Hdh) with extended CAG repeat- HdhQ250, which was derived from the selective breeding of HdhQ150 mice. HdhQ250 mice manifest an accelerated and robust phenotype compared with its parent line. HdhQ250 mice exhibit progressive motor deficits, reduction in striatal and cortical volume, accumulation of mutant huntingtin aggregation, decreased levels of DARPP32 and BDNF and altered striatal metabolites. The abnormalities detected in this mouse model are reminiscent of several aspects of human HD. In addition, disturbed myelination was evident in postnatal Day 14 HdhQ250 mouse brain, including reduced levels of myelin regulatory factor and myelin basic protein, and decreased numbers of myelinated axons in the corpus callosum. Thinner myelin sheaths, indicated by increased G-ratio of myelin, were also detected in the corpus callosum of adult HdhQ250 mice. Moreover, proliferation of oligodendrocyte precursor cells is altered by mutant huntingtin both in vitro and in vivo. Our data indicate that this model is suitable for understanding comprehensive pathogenesis of HD in white matter and gray matter as well as developing therapeutics for HD. PMID:25609071

  7. 21 CFR 862.1630 - Protein (fractionation) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... body fluids. Protein fractionations are used as an aid in recognizing abnormal proteins in body fluids...

  8. 21 CFR 862.1630 - Protein (fractionation) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... body fluids. Protein fractionations are used as an aid in recognizing abnormal proteins in body fluids...

  9. 21 CFR 862.1630 - Protein (fractionation) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... body fluids. Protein fractionations are used as an aid in recognizing abnormal proteins in body fluids...

  10. 21 CFR 862.1630 - Protein (fractionation) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... body fluids. Protein fractionations are used as an aid in recognizing abnormal proteins in body fluids...

  11. Abnormal metabolism of glycogen phosphate as a cause for Lafora disease.

    PubMed

    Tagliabracci, Vincent S; Girard, Jean Marie; Segvich, Dyann; Meyer, Catalina; Turnbull, Julie; Zhao, Xiaochu; Minassian, Berge A; Depaoli-Roach, Anna A; Roach, Peter J

    2008-12-05

    Lafora disease is a progressive myoclonus epilepsy with onset in the teenage years followed by neurodegeneration and death within 10 years. A characteristic is the widespread formation of poorly branched, insoluble glycogen-like polymers (polyglucosan) known as Lafora bodies, which accumulate in neurons, muscle, liver, and other tissues. Approximately half of the cases of Lafora disease result from mutations in the EPM2A gene, which encodes laforin, a member of the dual specificity protein phosphatase family that is able to release the small amount of covalent phosphate normally present in glycogen. In studies of Epm2a(-/-) mice that lack laforin, we observed a progressive change in the properties and structure of glycogen that paralleled the formation of Lafora bodies. At three months, glycogen metabolism remained essentially normal, even though the phosphorylation of glycogen has increased 4-fold and causes altered physical properties of the polysaccharide. By 9 months, the glycogen has overaccumulated by 3-fold, has become somewhat more phosphorylated, but, more notably, is now poorly branched, is insoluble in water, and has acquired an abnormal morphology visible by electron microscopy. These glycogen molecules have a tendency to aggregate and can be recovered in the pellet after low speed centrifugation of tissue extracts. The aggregation requires the phosphorylation of glycogen. The aggregrated glycogen sequesters glycogen synthase but not other glycogen metabolizing enzymes. We propose that laforin functions to suppress excessive glycogen phosphorylation and is an essential component of the metabolism of normally structured glycogen.

  12. Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation.

    PubMed

    Das, Natasha; Bhattacharya, Surajit; Maiti, Mrinal K

    2016-08-01

    One of the most grievous heavy metal pollutants in the environment is cadmium (Cd), which is not only responsible for the crop yield loss owing to its phytotoxicity, but also for the human health hazards as the toxic elements usually accumulate in the consumable parts of crop plants. In the present study, we aimed to isolate and functionally characterize the OsMTP1 gene from indica rice (Oryza sativa L. cv. IR64) to study its potential application for efficient phytoremediation of Cd. The 1257 bp coding DNA sequence (CDS) of OsMTP1 encodes a ∼46 kDa protein belonging to the cation diffusion facilitator (CDF) or metal tolerance/transport protein (MTP) family. The OsMTP1 transcript in rice plant was found to respond during external Cd stress. Heterologous expression of OsMTP1 in tobacco resulted in the reduction of Cd stress-induced phytotoxic effects, including growth inhibition, lipid peroxidation, and cell death. Compared to untransformed control, the transgenic tobacco plants showed enhanced vacuolar thiol content, indicating vacuolar localization of the sequestered Cd. The transgenic tobacco plants exhibited significantly higher biomass growth (2.2-2.8-folds) and hyperaccumulation of Cd (1.96-2.22-folds) compared to untransformed control under Cd exposure. The transgenic plants also showed moderate tolerance and accumulation of arsenic (As) upon exogenous As stress, signifying broad substrate specificity of OsMTP1. Together, findings of our research suggest that the transgenic tobacco plants overexpressing OsMTP1 with its hyperaccumulating activity and increased growth rate could be useful for future phytoremediation applications to clean up the Cd-contaminated soil. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Co-localisation of advanced glycation end products and d-β-aspartic acid-containing proteins in gelatinous drop-like corneal dystrophy

    PubMed Central

    Oshika, Tetsuro; Takazawa, Yutaka; Fukayama, Masashi; Fujii, Noriko

    2012-01-01

    Purpose Gelatinous drop-like corneal dystrophy (GDLD), also known as familial subepithelial corneal amyloidosis, is an autosomal recessive disorder that causes progressive corneal opacity due to accumulation of amyloid fibrils in the corneal stroma. Genetic analyses have revealed that a mutation in membrane component chromosome 1 surface marker 1 gene is responsible for GDLD. However, the mechanism of amyloid formation in the corneal stroma remains unclear. The present study attempted to reveal the role of advanced glycation end products (AGE) and d-amino acids in amyloid formation in GDLD. Methods Informed consent was obtained from five patients with GDLD, three patients with bullous keratopathy and three patients with interstitial keratitis and all the specimens were analysed. Localisation of amyloid fibrils was analysed using Congo-red and thioflavin T staining. In addition, the localisation of AGE (Nɛ-carboxy(methyl)-l-lysine, pyrraline and pentosidine) and d-β-aspartic acid-containing proteins, a major form of d-amino acid-containing proteins, was analysed immunohistochemically. Results In all GDLD specimens, strong immunoreactivity to AGE and d-β-aspartic acid-containing proteins was detected in the subepithelial amyloid-rich region. In contrast, amyloid fibrils, AGE, or d-amino acid-containing proteins were slightly detected in the corneal stroma of patients with bullous keratopathy and interstitial keratitis. Conclusions Abnormally accumulated proteins rich in AGE and d-β-aspartic acid co-localise in the amyloid lesions in GDLD. These results indicate that non-enzymatic post-translational modifications of proteins, including AGE formation and isomerisation of aspartyl residues, will be the cause as well as the result of amyloid fibril formations in GDLD. PMID:22694960

  14. Mammalian Target of Rapamycin (mTor) Mediates Tau Protein Dyshomeostasis

    PubMed Central

    Tang, Zhi; Bereczki, Erika; Zhang, Haiyan; Wang, Shan; Li, Chunxia; Ji, Xinying; Branca, Rui M.; Lehtiö, Janne; Guan, Zhizhong; Filipcik, Peter; Xu, Shaohua; Winblad, Bengt; Pei, Jin-Jing

    2013-01-01

    Previous evidence from post-mortem Alzheimer disease (AD) brains and drug (especially rapamycin)-oriented in vitro and in vivo models implicated an aberrant accumulation of the mammalian target of rapamycin (mTor) in tangle-bearing neurons in AD brains and its role in the formation of abnormally hyperphosphorylated tau. Compelling evidence indicated that the sequential molecular events such as the synthesis and phosphorylation of tau can be regulated through p70 S6 kinase, the well characterized immediate downstream target of mTor. In the present study, we further identified that the active form of mTor per se accumulates in tangle-bearing neurons, particularly those at early stages in AD brains. By using mass spectrometry and Western blotting, we identified three phosphoepitopes of tau directly phosphorylated by mTor. We have developed a variety of stable cell lines with genetic modification of mTor activity using SH-SY5Y neuroblastoma cells as background. In these cellular systems, we not only confirmed the tau phosphorylation sites found in vitro but also found that mTor mediates the synthesis and aggregation of tau, resulting in compromised microtubule stability. Changes of mTor activity cause fluctuation of the level of a battery of tau kinases such as protein kinase A, v-Akt murine thymoma viral oncogene homolog-1, glycogen synthase kinase 3β, cyclin-dependent kinase 5, and tau protein phosphatase 2A. These results implicate mTor in promoting an imbalance of tau homeostasis, a condition required for neurons to maintain physiological function. PMID:23585566

  15. Soybean GmMYB73 promotes lipid accumulation in transgenic plants

    PubMed Central

    2014-01-01

    Background Soybean is one of the most important oil crops. The regulatory genes involved in oil accumulation are largely unclear. We initiated studies to identify genes that regulate this process. Results One MYB-type gene GmMYB73 was found to display differential expression in soybean seeds of different developing stages by microarray analysis and was further investigated for its functions in lipid accumulation. GmMYB73 is a small protein with single MYB repeat and has similarity to CPC-like MYB proteins from Arabidopsis. GmMYB73 interacted with GL3 and EGL3, and then suppressed GL2, a negative regulator of oil accumulation. GmMYB73 overexpression enhanced lipid contents in both seeds and leaves of transgenic Arabidopsis plants. Seed length and thousand-seed weight were also promoted. GmMYB73 introduction into the Arabidopsis try cpc double mutant rescued the total lipids, seed size and thousand-seed weight. GmMYB73 also elevated lipid levels in seeds and leaves of transgenic Lotus, and in transgenic hairy roots of soybean plants. GmMYB73 promoted PLDα1 expression, whose promoter can be bound and inhibited by GL2. PLDα1 mutation reduced triacylglycerol levels mildly in seeds but significantly in leaves of Arabidopsis plants. Conclusions GmMYB73 may reduce GL2, and then release GL2-inhibited PLDα1 expression for lipid accumulation. Manipulation of GmMYB73 may potentially improve oil production in legume crop plants. PMID:24655684

  16. Ursolic acid, a natural pentacyclic triterpenoid, inhibits intracellular trafficking of proteins and induces accumulation of intercellular adhesion molecule-1 linked to high-mannose-type glycans in the endoplasmic reticulum

    PubMed Central

    Mitsuda, Satoshi; Yokomichi, Tomonobu; Yokoigawa, Junpei; Kataoka, Takao

    2014-01-01

    Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) is a natural pentacyclic triterpenoid that is present in many plants, including medicinal herbs, and foods. Ursolic acid was initially identified as an inhibitor of the expression of intercellular adhesion molecule-1 (ICAM-1) in response to interleukin-1α (IL-1α). We report here a novel biological activity: ursolic acid inhibits intracellular trafficking of proteins. Ursolic acid markedly inhibited the IL-1α-induced cell-surface ICAM-1 expression in human cancer cell lines and human umbilical vein endothelial cells. By contrast, ursolic acid exerted weak inhibitory effects on the IL-1α-induced ICAM-1 expression at the protein level. Surprisingly, we found that ursolic acid decreased the apparent molecular weight of ICAM-1 and altered the structures of N-linked oligosaccharides bound to ICAM-1. Ursolic acid induced the accumulation of ICAM-1 in the endoplasmic reticulum, which was linked mainly to high-mannose-type glycans. Moreover, in ursolic-acid-treated cells, the Golgi apparatus was fragmented into pieces and distributed over the cells. Thus, our results reveal that ursolic acid inhibits intracellular trafficking of proteins and induces the accumulation of ICAM-1 linked to high-mannose-type glycans in the endoplasmic reticulum. PMID:24649404

  17. Accumulation and altered localization of telomere-associated protein TRF2 in immortally transformed and tumor-derived human breast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nijjar, Tarlochan; Bassett, Ekaterina; Garbe, James

    2004-12-23

    We have used cultured human mammary epithelial cells (HMEC) and breast tumor-derived lines to gain information on defects that occur during breast cancer progression. HMEC immortalized by a variety of agents (the chemical carcinogen benzo(a)pyrene, oncogenes c-myc and ZNF217, and/or dominant negative p53 genetic suppressor element GSE22) displayed marked up regulation (10-15 fold) of the telomere binding protein, TRF2. Up-regulation of TRF2 protein was apparently due to differences in post-transcriptional regulation, as mRNA levels remained comparable in finite life span and immortal HMEC. TRF2 protein was not up-regulated by the oncogenic agents alone in the absence of immortalization, nor bymore » expression of exogenously introduced hTERT genes. We found TRF2 levels to be at least 2-fold higher than in control cells in 11/15 breast tumor cell lines, suggesting that elevated TRF2 levels are a frequent occurrence during the transformation of breast tumor cells in vivo. The dispersed distribution of TRF2 throughout the nuclei in some immortalized and tumor-derived cells indicated that not all the TRF2 was associated with telomeres in these cells. The process responsible for accumulation of TRF2 in immortalized HMEC and breast tumor-derived cell lines may promote tumorigenesis by contributing to the cells ability to maintain an indefinite life span.« less

  18. Trophic transfer and accumulation of TiO2 nanoparticles from clamworm (Perinereis aibuhitensis) to juvenile turbot (Scophthalmus maximus) along a marine benthic food chain.

    PubMed

    Wang, Zhenyu; Yin, Liyun; Zhao, Jian; Xing, Baoshan

    2016-05-15

    In the present work, we investigated the potential benthic trophic transfer of TiO2 nanoparticles (NPs) from clamworm (Perinereis aibuhitensis) to juvenile turbot (Scophthalmus maximus) and their related distribution and toxicity. TiO2 NPs (at 10, 50 and 100 mg/L) could be taken up by clamworms, and mainly accumulated in the lower-digestive tract. TiO2 NPs were able to transfer from clamworms to juvenile turbots. The accumulation of TiO2 NPs in juvenile turbots increased with increasing Ti contents in clamworms during the dietary exposure, however, no biomagnification (BMFs, 0.30-0.33) of TiO2 NPs was observed. For both dietary and waterborne exposure, accumulation of TiO2 NPs was higher in the gill, intestine and stomach of juvenile turbot, following by skin, liver, and muscle. During dietary exposure at Day 20, the growth of turbots was reduced, and abnormal symptoms of liver and spleen were detected. Moreover, both dietary (50 and 100 mg/L TiO2 NPs-treated clamworms) and waterborne (100 mg/L TiO2 NPs) exposures led to significantly lower protein and higher lipid contents, suggesting the nutrition quality reduction of turbots. The findings from this work highlighted the trophic transfer of TiO2 NPs in marine benthic food chain, leading to the potential negative impact on marine aquaculture and food quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Do cancer proteins really interact strongly in the human protein-protein interaction network?

    PubMed Central

    Xia, Junfeng; Sun, Jingchun; Jia, Peilin; Zhao, Zhongming

    2011-01-01

    Protein-protein interaction (PPI) network analysis has been widely applied in the investigation of the mechanisms of diseases, especially cancer. Recent studies revealed that cancer proteins tend to interact more strongly than other categories of proteins, even essential proteins, in the human interactome. However, it remains unclear whether this observation was introduced by the bias towards more cancer studies in humans. Here, we examined this important issue by uniquely comparing network characteristics of cancer proteins with three other sets of proteins in four organisms, three of which (fly, worm, and yeast) whose interactomes are essentially not biased towards cancer or other diseases. We confirmed that cancer proteins had stronger connectivity, shorter distance, and larger betweenness centrality than non-cancer disease proteins, essential proteins, and control proteins. Our statistical evaluation indicated that such observations were overall unlikely attributed to random events. Considering the large size and high quality of the PPI data in the four organisms, the conclusion that cancer proteins interact strongly in the PPI networks is reliable and robust. This conclusion suggests that perturbation of cancer proteins might cause major changes of cellular systems and result in abnormal cell function leading to cancer. PMID:21666777

  20. Glioma Selectivity of Magnetically Targeted Nanoparticles: A Role of Abnormal Tumor Hydrodynamics

    PubMed Central

    Chertok, Beata; David, Allan E.; Huang, Yongzhuo; Yang, Victor C.

    2007-01-01

    Magnetic targeting is a promising strategy for achieving localized drug delivery. Application of this strategy to treat brain tumors, however, is complicated by their deep intracranial location, since magnetic field density cannot be focused at a distance from an externally applied magnet. This study intended to examine whether, with magnetic targeting, pathological alteration in brain tumor flow dynamics could be of value in discriminating the diseased site from healthy brain. To address this question, the capture of magnetic nanoparticles was first assessed in vitro using a simple flow system under theoretically estimated glioma and normal brain flow conditions. Secondly, accumulation of nanoparticles via magnetic targeting was evaluated in vivo using 9L-glioma bearing rats. In vitro results that predicted a 7.6-fold increase in nanoparticle capture at glioma-versus contralateral brain-relevant flow rates were relatively consistent with the 9.6-fold glioma selectivity of nanoparticle accumulation over the contralateral brain observed in vivo. Based on these finding, the in vitro ratio of nanoparticle capture can be viewed as a plausible indicator of in vivo glioma selectivity. Overall, it can be concluded that the decreased blood flow rate in glioma, reflecting tumor vascular abnormalities, is an important contributor to glioma-selective nanoparticle accumulation with magnetic targeting. PMID:17628157

  1. Glioma selectivity of magnetically targeted nanoparticles: a role of abnormal tumor hydrodynamics.

    PubMed

    Chertok, Beata; David, Allan E; Huang, Yongzhuo; Yang, Victor C

    2007-10-08

    Magnetic targeting is a promising strategy for achieving localized drug delivery. Application of this strategy to treat brain tumors, however, is complicated by their deep intracranial location, since magnetic field density cannot be focused at a distance from an externally applied magnet. This study intended to examine whether, with magnetic targeting, pathological alteration in brain tumor flow dynamics could be of value in discriminating the diseased site from healthy brain. To address this question, the capture of magnetic nanoparticles was first assessed in vitro using a simple flow system under theoretically estimated glioma and normal brain flow conditions. Secondly, accumulation of nanoparticles via magnetic targeting was evaluated in vivo using 9L-glioma bearing rats. In vitro results that predicted a 7.6-fold increase in nanoparticle capture at glioma- versus contralateral brain-relevant flow rates were relatively consistent with the 9.6-fold glioma selectivity of nanoparticle accumulation over the contralateral brain observed in vivo. Based on these finding, the in vitro ratio of nanoparticle capture can be viewed as a plausible indicator of in vivo glioma selectivity. Overall, it can be concluded that the decreased blood flow rate in glioma, reflecting tumor vascular abnormalities, is an important contributor to glioma-selective nanoparticle accumulation with magnetic targeting.

  2. Aspirin suppresses the abnormal lipid metabolism in liver cancer cells via disrupting an NFκB-ACSL1 signaling.

    PubMed

    Yang, Guang; Wang, Yuan; Feng, Jinyan; Liu, Yunxia; Wang, Tianjiao; Zhao, Man; Ye, Lihong; Zhang, Xiaodong

    2017-05-06

    Abnormal lipid metabolism is a hallmark of tumorigenesis. Hence, the alterations of metabolism enhance the development of hepatocellular carcinoma (HCC). Aspirin is able to inhibit the growth of cancers through targeting nuclear factor κB (NF-κB). However, the role of aspirin in disrupting abnormal lipid metabolism in HCC remains poorly understood. In this study, we report that aspirin can suppress the abnormal lipid metabolism of HCC cells through inhibiting acyl-CoA synthetase long-chain family member 1 (ACSL1), a lipid metabolism-related enzyme. Interestingly, oil red O staining showed that aspirin suppressed lipogenesis in HepG2 cells and Huh7 cells in a dose-dependent manner. In addition, aspirin attenuated the levels of triglyceride and cholesterol in the cells, respectively. Strikingly, we identified that aspirin was able to down-regulate ACSL1 at the levels of mRNA and protein. Moreover, we validated that aspirin decreased the nuclear levels of NF-κB in HepG2 cells. Mechanically, PDTC, an inhibitor of NF-κB, could down-regulate ACSL1 at the levels of mRNA and protein in the cells. Functionally, PDTC reduced the levels of lipid droplets, triglyceride and cholesterol in HepG2 cells. Thus, we conclude that aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling. Our finding provides new insights into the mechanism by which aspirin inhibits abnormal lipid metabolism of HCC. Therapeutically, aspirin is potentially available for HCC through controlling abnormal lipid metabolism. Copyright © 2017. Published by Elsevier Inc.

  3. Selenium accumulation by plants

    PubMed Central

    White, Philip J.

    2016-01-01

    Background Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg–1 dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg–1 dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000–15 000 mg Se kg–1 dry matter and are called Se hyperaccumulators. Scope This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. Conclusions The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated

  4. Selenium accumulation by plants.

    PubMed

    White, Philip J

    2016-02-01

    Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg(-1) dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators. This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins

  5. Adverse factors increase preeclampsia-like changes in pregnant mice with abnormal lipid metabolism.

    PubMed

    Ding, Xiaoyan; Yang, Zi; Han, Yiwei; Yu, Huan

    2014-01-01

    Preeclampsia (PE) is a multifactorial pregnancy complication. Maternal underlying condition and adverse factors both influence the pathogenesis of PE. Abnormal lipid metabolism as a maternal underlying disease may participate in the occurrence and development of PE. This study aimed to observe the effects of adverse factors on PE-like symptoms of pregnant mice with genetic abnormal lipid metabolism. Apolipoprotein C-III (ApoC3) transgenic mice with abnormal lipid metabolism were subcutaneously injected with L-arginine methyl ester (L-NAME) or normal saline (NS) daily starting at Day 7 or 16 of pregnancy (ApoC3+L-NA and ApoC3+NS groups), and wild-type (WT) mice served as a control (WT+L-NA and WT+NS groups). All mice were subdivided into early and late subgroups by injection time. The mean arterial pressure (MAP) and urinary protein were measured. Pregnancy outcomes, including fetal weight, placental weight, live birth rate, and fetal absorption rate, were analyzed. Pathologic changes in the placenta were observed by hematoxylin-eosin staining. One-way analysis of variance, t-test, and χ(2) test were used for statistical analysis. MAP significantly increased for ApoC3+NS groups compared with WT+NS groups (P < 0.05), without significant difference in urine protein. Following L-NAME injection, MAP and urinary protein significantly increased for ApoC3+L-NA and WT+L-NA compared with the corresponding NS groups (P < 0.05), and the increase for ApoC3+L-NA was more obvious. Urinary protein levels in early ApoC3+L-NA and WT+L-NA significantly increased compared with the corresponding late groups (P < 0.05). Fetal absorption rate significantly increased and fetal and placental weights significantly decreased in early ApoC3+L-NA and WT+L-NA compared with the corresponding NS groups (P < 0.05), without significant difference in late ApoC3+L-NA and WT+L-NA groups. Fetal weight in early ApoC3+L-NA was significantly lower than in early WT+L-NA group (P < 0.05). Morphologic

  6. Sterol Carrier Protein-2: Binding Protein for Endocannabinoids

    PubMed Central

    Liedhegner, Elizabeth Sabens; Vogt, Caleb D.; Sem, Daniel S.; Cunningham, Christopher W.

    2015-01-01

    The endocannabinoid (eCB) system, consisting of eCB ligands and the type 1 cannabinoid receptor (CB1R), subserves retrograde, activity-dependent synaptic plasticity in the brain. eCB signaling occurs “on-demand,” thus the processes regulating synthesis, mobilization and degradation of eCBs are also primary mechanisms for the regulation of CB1R activity. The eCBs, N-arachidonylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), are poorly soluble in water. We hypothesize that their aqueous solubility, and, therefore, their intracellular and transcellular distribution, are facilitated by protein binding. Using in silico docking studies, we have identified the nonspecific lipid binding protein, sterol carrier protein 2 (SCP-2), as a potential AEA binding protein. The docking studies predict that AEA and AM404 associate with SCP-2 at a putative cholesterol binding pocket with ΔG values of −3.6 and −4.6 kcal/mol, respectively. These values are considerably higher than cholesterol (−6.62 kcal/mol) but consistent with a favorable binding interaction. In support of the docking studies, SCP-2-mediated transfer of cholesterol in vitro is inhibited by micromolar concentrations of AEA; and heterologous expression of SCP-2 in HEK 293 cells increases time-related accumulation of AEA in a temperature-dependent fashion. These results suggest that SCP-2 facilitates cellular uptake of AEA. However, there is no effect of SCP-2 transfection on the cellular accumulation of AEA determined at equilibrium or the IC50 values for AEA, AM404 or 2-AG to inhibit steady state accumulation of radiolabelled AEA. We conclude that SCP-2 is a low affinity binding protein for AEA that can facilitate its cellular uptake but does not contribute significantly to intracellular sequestration of AEA. PMID:24510313

  7. Quantitative Proteomics of Human Fibroblasts with I1061T Mutation in Niemann–Pick C1 (NPC1) Protein Provides Insights into the Disease Pathogenesis*

    PubMed Central

    Rauniyar, Navin; Subramanian, Kanagaraj; Lavallée-Adam, Mathieu; Martínez-Bartolomé, Salvador; Balch, William E.; Yates, John R.

    2015-01-01

    Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder characterized by the accumulation of unesterified cholesterol in the late endosomal/lysosomal compartments. Mutations in the NPC1 protein are implicated in 95% of patients with NPC disease. The most prevalent mutation is the missense mutation I1061T that occurs in ∼15–20% of the disease alleles. In our study, an isobaric labeling-based quantitative analysis of proteome of NPC1I1061T primary fibroblasts when compared with wild-type cells identified 281 differentially expressed proteins based on stringent data analysis criteria. Gene ontology enrichment analysis revealed that these proteins play important roles in diverse cellular processes such as protein maturation, energy metabolism, metabolism of reactive oxygen species, antioxidant activity, steroid metabolism, lipid localization, and apoptosis. The relative expression level of a subset of differentially expressed proteins (TOR4A, DHCR24, CLGN, SOD2, CHORDC1, HSPB7, and GAA) was independently and successfully substantiated by Western blotting. We observed that treating NPC1I1061T cells with four classes of seven different compounds that are potential NPC drugs increased the expression level of SOD2 and DHCR24. We have also shown an abnormal accumulation of glycogen in NPC1I1061T fibroblasts possibly triggered by defective processing of lysosomal alpha-glucosidase. Our study provides a starting point for future more focused investigations to better understand the mechanisms by which the reported dysregulated proteins triggers the pathological cascade in NPC, and furthermore, their effect upon therapeutic interventions. PMID:25873482

  8. Fatty acid transport protein-2 inhibitor Grassofermata/CB5 protects cells against lipid accumulation and toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saini, Nipun; Black, Paul N.; Montefusco, David

    The inhibition of the fatty acid uptake into non-adipose tissues provides an attractive target for prevention of lipotoxicity leading to obesity-associated non-alcoholic fatty liver disease and type 2 diabetes. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterification with coenzyme A. Here we characterize Grassofermata/CB5, previously identified as a fatty acid uptake inhibitor directed against HsFATP2. The compound was effective in inhibiting the uptake of fatty acids in the low micro-molar range (IC{sub 50} 8–11 μM) and prevented palmitate-mediated lipid accumulation and cell death in cell lines that are models formore » intestines, liver, muscle and pancreas. In adipocytes, uptake inhibition was less effective (IC{sub 50} 58 μM). Inhibition was specific for long chain fatty acids and was ineffective toward medium chain fatty acids, which are transported by diffusion. Kinetic analysis of Grassofermata-dependent FA transport inhibition verified a non-competitive mechanism. By comparison with Grassofermata, several atypical antipsychotic drugs previously implicated as inhibitors of FA uptake were ineffectual. In mice Grassofermata decreased absorption of {sup 13}C-oleate demonstrating its potential as a therapeutic agent. - Highlights: • Grassofermata is a small compound inhibitor of FATP2. • Uptake inhibition is specific for long chain fatty acids. • Uptake kinetics shows low specificity for adipocytes compared to other cell types. • Inhibition is by a non-competitive mechanism. • Atypical antipsychotics do not inhibit FA uptake by comparison with Grassofermata.« less

  9. Quantifying why urea is a protein denaturant, whereas glycine betaine is a protein stabilizer

    PubMed Central

    Guinn, Emily J.; Pegram, Laurel M.; Capp, Michael W.; Pollock, Michelle N.; Record, M. Thomas

    2011-01-01

    To explain the large, opposite effects of urea and glycine betaine (GB) on stability of folded proteins and protein complexes, we quantify and interpret preferential interactions of urea with 45 model compounds displaying protein functional groups and compare with a previous analysis of GB. This information is needed to use urea as a probe of coupled folding in protein processes and to tune molecular dynamics force fields. Preferential interactions between urea and model compounds relative to their interactions with water are determined by osmometry or solubility and dissected using a unique coarse-grained analysis to obtain interaction potentials quantifying the interaction of urea with each significant type of protein surface (aliphatic, aromatic hydrocarbon (C); polar and charged N and O). Microscopic local-bulk partition coefficients Kp for the accumulation or exclusion of urea in the water of hydration of these surfaces relative to bulk water are obtained. Kp values reveal that urea accumulates moderately at amide O and weakly at aliphatic C, whereas GB is excluded from both. These results provide both thermodynamic and molecular explanations for the opposite effects of urea and glycine betaine on protein stability, as well as deductions about strengths of amide NH—amide O and amide NH—amide N hydrogen bonds relative to hydrogen bonds to water. Interestingly, urea, like GB, is moderately accumulated at aromatic C surface. Urea m-values for protein folding and other protein processes are quantitatively interpreted and predicted using these urea interaction potentials or Kp values. PMID:21930943

  10. Quantifying why urea is a protein denaturant, whereas glycine betaine is a protein stabilizer.

    PubMed

    Guinn, Emily J; Pegram, Laurel M; Capp, Michael W; Pollock, Michelle N; Record, M Thomas

    2011-10-11

    To explain the large, opposite effects of urea and glycine betaine (GB) on stability of folded proteins and protein complexes, we quantify and interpret preferential interactions of urea with 45 model compounds displaying protein functional groups and compare with a previous analysis of GB. This information is needed to use urea as a probe of coupled folding in protein processes and to tune molecular dynamics force fields. Preferential interactions between urea and model compounds relative to their interactions with water are determined by osmometry or solubility and dissected using a unique coarse-grained analysis to obtain interaction potentials quantifying the interaction of urea with each significant type of protein surface (aliphatic, aromatic hydrocarbon (C); polar and charged N and O). Microscopic local-bulk partition coefficients K(p) for the accumulation or exclusion of urea in the water of hydration of these surfaces relative to bulk water are obtained. K(p) values reveal that urea accumulates moderately at amide O and weakly at aliphatic C, whereas GB is excluded from both. These results provide both thermodynamic and molecular explanations for the opposite effects of urea and glycine betaine on protein stability, as well as deductions about strengths of amide NH--amide O and amide NH--amide N hydrogen bonds relative to hydrogen bonds to water. Interestingly, urea, like GB, is moderately accumulated at aromatic C surface. Urea m-values for protein folding and other protein processes are quantitatively interpreted and predicted using these urea interaction potentials or K(p) values.

  11. Pharmacoperone drugs: targeting misfolded proteins causing lysosomal storage-, ion channels-, and G protein-coupled receptors-associated conformational disorders.

    PubMed

    Hou, Zhi-Shuai; Ulloa-Aguirre, Alfredo; Tao, Ya-Xiong

    2018-06-01

    Conformational diseases are caused by structurally abnormal proteins that cannot fold properly and achieve their native conformation. Misfolded proteins frequently originate from genetic mutations that may lead to loss-of-function diseases involving a variety of structurally diverse proteins including enzymes, ion channels, and membrane receptors. Pharmacoperones are small molecules that cross the cell surface plasma membrane and reach their target proteins within the cell, serving as molecular scaffolds to stabilize the native conformation of misfolded or well-folded but destabilized proteins, to prevent their degradation and promote correct trafficking to their functional site of action. Because of their high specificity toward the target protein, pharmacoperones are currently the focus of intense investigation as therapy for several conformational diseases. Areas covered: This review summarizes data on the mechanisms leading to protein misfolding and the use of pharmacoperone drugs as an experimental approach to rescue function of distinct misfolded/misrouted proteins associated with a variety of diseases, such as lysosomal storage diseases, channelopathies, and G protein-coupled receptor misfolding diseases. Expert commentary: The fact that many misfolded proteins may retain function, offers a unique therapeutic opportunity to cure disease by directly correcting misrouting through administering pharmacoperone drugs thereby rescuing function of disease-causing, conformationally abnormal proteins.

  12. Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae.

    PubMed

    Imamura, Sousuke; Kawase, Yasuko; Kobayashi, Ikki; Sone, Toshiyuki; Era, Atsuko; Miyagishima, Shin-Ya; Shimojima, Mie; Ohta, Hiroyuki; Tanaka, Kan

    2015-10-01

    Most microalgae produce triacylglycerol (TAG) under stress conditions such as nitrogen depletion, but the underlying molecular mechanism remains unclear. In this study, we focused on the role of target of rapamycin (TOR) in TAG accumulation. TOR is a serine/threonine protein kinase that is highly conserved and plays pivotal roles in nitrogen and other signaling pathways in eukaryotes. We previously constructed a rapamycin-susceptible Cyanidioschyzon merolae, a unicellular red alga, by expressing yeast FKBP12 protein to evaluate the results of TOR inhibition (Imamura et al. in Biochem Biophys Res Commun 439:264-269, 2013). By using this strain, we here report that rapamycin-induced TOR inhibition results in accumulation of cytoplasmic lipid droplets containing TAG. Transcripts for TAG synthesis-related genes, such as glycerol-3-phosphate acyltransferase and acyl-CoA:diacylglycerol acyltransferase (DGAT), were increased by rapamycin treatment. We also found that fatty acid synthase-dependent de novo fatty acid synthesis was required for the accumulation of lipid droplets. Induction of TAG and up-regulation of DGAT gene expression by rapamycin were similarly observed in the unicellular green alga, Chlamydomonas reinhardtii. These results suggest the general involvement of TOR signaling in TAG accumulation in divergent microalgae.

  13. Common and Specific Protein Accumulation Patterns in Different Albino/Pale-Green Mutants Reveals Regulon Organization at the Proteome Level1[W

    PubMed Central

    Motohashi, Reiko; Rödiger, Anja; Agne, Birgit; Baerenfaller, Katja; Baginsky, Sacha

    2012-01-01

    Research interest in proteomics is increasingly shifting toward the reverse genetic characterization of gene function at the proteome level. In plants, several distinct gene defects perturb photosynthetic capacity, resulting in the loss of chlorophyll and an albino or pale-green phenotype. Because photosynthesis is interconnected with the entire plant metabolism and its regulation, all albino plants share common characteristics that are determined by the switch from autotrophic to heterotrophic growth. Reverse genetic characterizations of such plants often cannot distinguish between specific consequences of a gene defect from generic effects in response to perturbations in photosynthetic capacity. Here, we set out to define common and specific features of protein accumulation in three different albino/pale-green plant lines. Using quantitative proteomics, we report a common molecular phenotype that connects the loss of photosynthetic capacity with other chloroplast and cellular functions, such as protein folding and stability, plastid protein import, and the expression of stress-related genes. Surprisingly, we do not find significant differences in the expression of key transcriptional regulators, suggesting that substantial regulation occurs at the posttranscriptional level. We examine the influence of different normalization schemes on the quantitative proteomics data and report all identified proteins along with their fold changes and P values in albino plants in comparison with the wild type. Our analysis provides initial guidance for the distinction between general and specific adaptations of the proteome in photosynthesis-impaired plants. PMID:23027667

  14. Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance

    PubMed Central

    Mao, Ying-Bo; Liu, Yao-Qian; Chen, Dian-Yang; Chen, Fang-Yan; Fang, Xin; Hong, Gao-Jie; Wang, Ling-Jian; Wang, Jia-Wei; Chen, Xiao-Ya

    2017-01-01

    Immunity deteriorates with age in animals but comparatively little is known about the temporal regulation of plant resistance to herbivores. The phytohormone jasmonate (JA) is a key regulator of plant insect defense. Here, we show that the JA response decays progressively in Arabidopsis. We show that this decay is regulated by the miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE9 (SPL9) group of proteins, which can interact with JA ZIM-domain (JAZ) proteins, including JAZ3. As SPL9 levels gradually increase, JAZ3 accumulates and the JA response is attenuated. We provide evidence that this pathway contributes to insect resistance in young plants. Interestingly however, despite the decay in JA response, older plants are still comparatively more resistant to both the lepidopteran generalist Helicoverpa armigera and the specialist Plutella xylostella, along with increased accumulation of glucosinolates. We propose a model whereby constitutive accumulation of defense compounds plays a role in compensating for age-related JA-response attenuation during plant maturation. PMID:28067238

  15. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice.

    PubMed

    Priyadarshini, Emayavaramban; Anuradha, Carani Venkatraman

    2017-02-01

    High intake of dietary fructose causes perturbation in lipid metabolism and provokes lipid-induced insulin resistance. A rise in glucocorticoids (GCs) has recently been suggested to be involved in fructose-induced insulin resistance. The objective of the study was to investigate the effect of GC blockade on lipid abnormalities in insulin-resistant mice. Insulin resistance was induced in mice by administering a high-fructose diet (HFrD) for 60 days. Mifepristone (RU486), a GC antagonist, was administered to HFrD-fed mice for the last 18 days, and the intracellular and extracellular GC levels, the glucocorticoid receptor (GR) activation and the expression of GC-regulated genes involved in lipid metabolism were examined. HFrD elevated the intracellular GC content in both liver and adipose tissue and enhanced the GR nuclear translocation. The plasma GC level remained unchanged. The levels of free fatty acids and triglycerides in plasma were elevated, accompanied by increased plasma insulin and glucose levels and decreased hepatic glycogen content. Treatment with RU486 reduced plasma lipid levels, tissue GC levels and the expression of GC-targeted genes involved in lipid accumulation, and it improved insulin sensitivity. This study demonstrated that HFrD-induced lipid accumulation and insulin resistance are mediated by enhanced GC in liver and adipose tissue and that GC antagonism might reduce fructose-induced lipid abnormalities and insulin resistance. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  16. Fat accumulation in the tongue is associated with male gender, abnormal upper airway measures and whole-body adiposity

    PubMed Central

    Godoy, Ivan R. B.; Martinez-Salazar, Edgar Leonardo; Eajazi, Alireza; Genta, Pedro R.; Bredella, Miriam A.; Torriani, Martin

    2017-01-01

    Objective To examine associations between tongue adiposity with upper airway measures, whole-body adiposity and gender. We hypothesized that increased tongue adiposity is higher in males and positively associated with abnormal upper airway measures and whole-body adiposity. Methods We studied subjects who underwent whole-body positron emission tomography/computed tomography to obtain tongue attenuation (TA) values and cross-sectional area, pharyngeal length (PL) and mandibular-hyoid distance (MPH), as well as abdominal circumference, abdominal subcutaneous and visceral (VAT) adipose tissue areas, neck circumference (NC) and neck adipose tissue area. Metabolic syndrome was determined from available clinical and laboratory data. Results We identified 206 patients (104 females, 102 males) with mean age 56±17y and mean body mass index (BMI) 28±6kg/m2 (range 16–47kg/m2). Males had lower TA values (P=0.0002) and higher upper airway measures (P< 0.0001) independent of age and BMI (P<0.001). In all subjects, TA was negatively associated with upper airway measures (P<0.001). TA was negatively associated with body composition parameters (all P<0.0001), most notably with VAT (r=−0.53) and NC (r=−0.47). TA values were lower in subjects with metabolic syndrome (P<0.0001). Conclusion Increased tongue adiposity is influenced by gender and is associated with abnormal upper airway patency and body composition parameters. PMID:27733254

  17. Fat accumulation in the tongue is associated with male gender, abnormal upper airway patency and whole-body adiposity.

    PubMed

    Godoy, Ivan R B; Martinez-Salazar, Edgar Leonardo; Eajazi, Alireza; Genta, Pedro R; Bredella, Miriam A; Torriani, Martin

    2016-11-01

    To examine associations between tongue adiposity with upper airway measures, whole-body adiposity and gender. We hypothesized that increased tongue adiposity is higher in males and positively associated with abnormal upper airway measures and whole-body adiposity. We studied subjects who underwent whole-body positron emission tomography/computed tomography to obtain tongue attenuation (TA) values and cross-sectional area, pharyngeal length (PL) and mandibular plane to hyoid distance (MPH), as well as abdominal circumference, abdominal subcutaneous and visceral (VAT) adipose tissue areas, neck circumference (NC) and neck adipose tissue area. Metabolic syndrome was determined from available clinical and laboratory data. We identified 206 patients (104 females, 102 males) with mean age 56±17years and mean body mass index (BMI) 28±6kg/m 2 (range 16-47kg/m 2 ). Males had lower TA values (P=0.0002) and higher upper airway measures (P<0.0001) independent of age and BMI (P<0.001). In all subjects, TA was negatively associated with upper airway measures (P<0.001). TA was negatively associated with body composition parameters (all P<0.0001), most notably with VAT (r=-0.53) and NC (r=-0.47). TA values were lower in subjects with metabolic syndrome (P<0.0001). Increased tongue adiposity is influenced by gender and is associated with abnormal upper airway patency and body composition parameters. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Accumulation of deaminated peptides in anoxic sediments of Santa Barbara Basin

    NASA Astrophysics Data System (ADS)

    Abdulla, Hussain A.; Burdige, David J.; Komada, Tomoko

    2018-02-01

    Proteins represent the most abundant class of biomolecules in marine sinking particles and microbial biomass, yet their cycling in marine sediments is not fully understood. To investigate whether some portion of hydrolyzed proteins escapes complete remineralization and accumulate in the pore waters, we analyzed dissolved organic matter from the anoxic sediments of Santa Barbara Basin, California, by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS). The results showed an increase in the molecular diversity and abundance of dissolved organic nitrogen (DON) formulas with depth. A comparison of the detected DON formulas to a database of small peptides (2-4 amino acid sequences) returned 119 matches, and these formulas were most abundant near the sediment surface. When we compared our detected formulas to all possible structures that would result from deamination of peptides in the database, we found 680 formula matches. However, these molecular formulas can represent hundreds of different structural isomers (in the present case as many as 3257 different deaminated peptide structures), which cannot be distinguished by the FTICR-MS settings that were used. Analysis of amino acid sequences suggests that these deaminated peptides may be the products of selective degradation of source proteins in marine sediments. We hypothesize that these deaminated peptides accumulate in the pore waters due to extracellular proteinases being inhibited from completely hydrolyzing specific peptides to free amino acids. We suggest that anaerobic microbes deaminate peptides largely to produce H2, which is ultimately used as a reducing agent by other sediment microbes (e.g. CO2 reduction by methanogens). Simple calculations suggest that deaminated peptides may represent ∼25-45% of DOC accumulating in these sediment pore waters. Unlike rapid remineralization of free amino acids, peptide deamination leaves behind the peptide carbon skeleton. Molecular structures of these

  19. Cone Photoreceptor Abnormalities Correlate with Vision Loss in Patients with Stargardt Disease

    PubMed Central

    Chen, Yingming; Ratnam, Kavitha; Sundquist, Sanna M.; Lujan, Brandon; Ayyagari, Radha; Gudiseva, V. Harini; Roorda, Austin

    2011-01-01

    Purpose. To study the relationship between macular cone structure, fundus autofluorescence (AF), and visual function in patients with Stargardt disease (STGD). Methods. High-resolution images of the macula were obtained with adaptive optics scanning laser ophthalmoscopy (AOSLO) and spectral domain optical coherence tomography in 12 patients with STGD and 27 age-matched healthy subjects. Measures of retinal structure and AF were correlated with visual function, including best-corrected visual acuity, color vision, kinetic and static perimetry, fundus-guided microperimetry, and full-field electroretinography. Mutation analysis of the ABCA4 gene was completed in all patients. Results. Patients were 15 to 55 years old, and visual acuity ranged from 20/25–20/320. Central scotomas were present in all patients, although the fovea was spared in three patients. The earliest cone spacing abnormalities were observed in regions of homogeneous AF, normal visual function, and normal outer retinal structure. Outer retinal structure and AF were most normal near the optic disc. Longitudinal studies showed progressive increases in AF followed by reduced AF associated with losses of visual sensitivity, outer retinal layers, and cones. At least one disease-causing mutation in the ABCA4 gene was identified in 11 of 12 patients studied; 1 of 12 patients showed no disease-causing ABCA4 mutations. Conclusions. AOSLO imaging demonstrated abnormal cone spacing in regions of abnormal fundus AF and reduced visual function. These findings provide support for a model of disease progression in which lipofuscin accumulation results in homogeneously increased AF with cone spacing abnormalities, followed by heterogeneously increased AF with cone loss, then reduced AF with cone and RPE cell death. (ClinicalTrials.gov number, NCT00254605.) PMID:21296825

  20. Proteomic analysis of the seed development in Jatropha curcas: from carbon flux to the lipid accumulation.

    PubMed

    Liu, Hui; Wang, Cuiping; Komatsu, Setsuko; He, Mingxia; Liu, Gongshe; Shen, Shihua

    2013-10-08

    To characterize the metabolic signatures of lipid accumulation in Jatropha curcas seeds, comparative proteomic technique was employed to profile protein changes during the seed development. Temporal changes in comparative proteome were examined using gels-based proteomic technique at six developmental stages for lipid accumulation. And 104 differentially expressed proteins were identified by MALDI-TOF/TOF tandem mass spectrometry. These protein species were classified into 10 functional categories, and the results demonstrated that protein species related to energy and metabolism were notably accumulated and involved in the carbon flux to lipid accumulation that occurs primarily from early to late stage in seed development. Glycolysis and oxidative pentose phosphate pathways were the major pathways of producing carbon flux, and the glucose-6-phosphate and triose-phosphate are the major carbon source for fatty acid synthesis. Lipid analysis revealed that fatty acid accumulation initiated 25days after flowering at the late stage of seed development of J. curcas. Furthermore, C16:0 was initially synthesized as the precursor for the elongation to C18:1 and C18:2 in the developing seeds of J. curcas. Together, the metabolic signatures on protein changes in seed development provide profound knowledge and perspective insights into understanding lipid network in J. curcas. Due to the abundant oil content in seeds, Jatropha curcas seeds are being considered as the ideal materials for biodiesel. Although several studies had carried out the transcriptomic project to study the genes expression profiles in seed development of J. curcas, these ESTs hadn't been confirmed by qRT-PCR. Yet, the seed development of J. curcas had been described for a pool of developing seeds instead of being characterized systematically. Moreover, cellular metabolic events are also controlled by protein-protein interactions, posttranslational protein modifications, and enzymatic activities which

  1. The Craterostigma plantagineum glycine-rich protein CpGRP1 interacts with a cell wall-associated protein kinase 1 (CpWAK1) and accumulates in leaf cell walls during dehydration.

    PubMed

    Giarola, Valentino; Krey, Stephanie; von den Driesch, Barbara; Bartels, Dorothea

    2016-04-01

    Craterostigma plantagineum tolerates extreme desiccation. Leaves of this plant shrink and extensively fold during dehydration and expand again during rehydration, preserving their structural integrity. Genes were analysed that may participate in the reversible folding mechanism. Analysis of transcripts abundantly expressed in desiccated leaves identified a gene putatively coding for an apoplastic glycine-rich protein (CpGRP1). We studied the expression, regulation and subcellular localization of CpGRP1 and its ability to interact with a cell wall-associated protein kinase (CpWAK1) to understand the role of CpGRP1 in the cell wall during dehydration. The CpGRP1 protein accumulates in the apoplast of desiccated leaves. Analysis of the promoter revealed that the gene expression is mainly regulated at the transcriptional level, is independent of abscisic acid (ABA) and involves a drought-responsive cis-element (DRE). CpGRP1 interacts with CpWAK1 which is down-regulated in response to dehydration. Our data suggest a role of the CpGRP1-CpWAK1 complex in dehydration-induced morphological changes in the cell wall during dehydration in C. plantagineum. Cell wall pectins and dehydration-induced pectin modifications are predicted to be involved in the activity of the CpGRP1-CpWAK1 complex. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. Fermentation, degradation and microbial nitrogen partitioning for three forage colour phenotypes within anthocyanidin-accumulating Lc-alfalfa progeny.

    PubMed

    Jonker, Arjan; Gruber, Margaret Y; Wang, Yuxi; Narvaez, Nelmy; Coulman, Bruce; McKinnon, John J; Christensen, David A; Azarfar, Arash; Yu, Peiqiang

    2012-08-30

    Alfalfa has the disadvantage of having a rapid initial rate of protein degradation, which results in pasture bloat, low efficiency of protein utilisation and excessive nitrogen (N) pollution into the environment for cattle. Introducing a gene that stimulates the accumulation of monomeric/polymeric anthocyanidins might reduce the ruminal protein degradation rate (by fixing protein and/or direct interaction with microbes) and additionally reduce methane emission. The objectives of this study were to evaluate in vitro fermentation, degradation and microbial N partitioning of three forage colour phenotypes (green, light purple-green (LPG) and purple-green (PG)) within newly developed Lc-progeny and to compare them with those of parental green non-transgenic (NT) alfalfa. PG-Lc accumulated more anthocyanidin compared with Green-Lc (P < 0.05), with LPG-Lc intermediate. Volatile fatty acids and potentially degradable dry matter (DM) and N were similar among the four phenotypes. Gas, methane and ammonia accumulation rates were slower for the two purple-Lc phenotypes compared with NT-alfalfa (P < 0.05), while Green-Lc was intermediate. Effective degradable DM and N were lower in the three Lc-phenotypes (P < 0.05) compared with NT-alfalfa. Anthocyanidin concentration was negatively correlated (P < 0.05) with gas and methane production rates and effective degradability of DM and N. The Lc-alfalfa phenotypes accumulated anthocyanidin. Fermentation and degradation parameters indicated a reduced rate of fermentation and effective degradability for both purple anthocyanidin-accumulating Lc-alfalfa phenotypes compared with NT-alfalfa. Copyright © 2012 Society of Chemical Industry.

  3. Protein Oxidation in Aging: Does It Play a Role in Aging Progression?

    PubMed Central

    Reeg, Sandra

    2015-01-01

    Abstract Significance: A constant accumulation of oxidized proteins takes place during aging. Oxidation of proteins leads to a partial unfolding and, therefore, to aggregation. Protein aggregates impair the activity of cellular proteolytic systems (proteasomes, lysosomes), resulting in further accumulation of oxidized proteins. In addition, the accumulation of highly crosslinked protein aggregates leads to further oxidant formation, damage to macromolecules, and, finally, to apoptotic cell death. Furthermore, protein oxidation seems to play a role in the development of various age-related diseases, for example, neurodegenerative diseases. Recent Advances: The highly oxidized lipofuscin accumulates during aging. Lipofuscin formation might cause impaired lysosomal and proteasomal degradation, metal ion accumulation, increased reactive oxygen species formation, and apoptosis. Critical Issues: It is still unclear to which extent protein oxidation is involved in the progression of aging and in the development of some age-related diseases. Future Directions: An extensive knowledge of the effects of protein oxidation on the aging process and its contribution to the development of age-related diseases could enable further strategies to reduce age-related impairments. Strategies aimed at lowering aggregate formation might be a straightforward intervention to reduce age-related malfunctions of organs. Antioxid. Redox Signal. 23, 239–255. PMID:25178482

  4. Accumulation of potassium in scala vestibuli perilymph of the mammalian cochlea.

    PubMed

    Salt, A N; Ohyama, K

    1993-01-01

    Movements of potassium (K+) were monitored during perfusion of either the scala tympani (ST) or the scala vestibuli (SV) of the guinea pig cochlea with a solution containing 15 mmol/LK+. A highly asymmetric clearance of K+ was observed, with K+ rapidly being taken up from the ST and allowed to accumulate in the SV. Under some conditions the SV K+ concentration could exceed that in the perfused ST. These observations are believed to result from the distortion of passive K+ diffusion by the high circulating current of K+ that is part of the transduction process. Calculations are presented to demonstrate that circulating fluxes are of sufficient magnitude to generate the results observed. The high rate of circulating K+ current is probably also responsible for the difference in physiologic K+ concentration between the ST and SV, in which the ST perilymph K+ concentration is typically found to be half that of the SV. A clearance of K+ from the ST and its eventual accumulation in the SV could play a role in how the ear responds to abnormal ion concentrations, such as may occur in Meniere's disease. It is proposed that an accumulation of K+ in the SV would result in vestibular dysfunction that might contribute to the vestibular symptoms of the disease.

  5. Protein O-Mannosyltransferases Affect Sensory Axon Wiring and Dynamic Chirality of Body Posture in the Drosophila Embryo.

    PubMed

    Baker, Ryan; Nakamura, Naosuke; Chandel, Ishita; Howell, Brooke; Lyalin, Dmitry; Panin, Vladislav M

    2018-02-14

    Genetic defects in protein O-mannosyltransferase 1 (POMT1) and POMT2 underlie severe muscular dystrophies. POMT genes are evolutionarily conserved in metazoan organisms. In Drosophila , both male and female POMT mutants show a clockwise rotation of adult abdominal segments, suggesting a chirality of underlying pathogenic mechanisms. Here we described and analyzed a similar phenotype in POMT mutant embryos that shows left-handed body torsion. Our experiments demonstrated that coordinated muscle contraction waves are associated with asymmetric embryo rolling, unveiling a new chirality marker in Drosophila development. Using genetic and live-imaging approaches, we revealed that the torsion phenotype results from differential rolling and aberrant patterning of peristaltic waves of muscle contractions. Our results demonstrated that peripheral sensory neurons are required for normal contractions that prevent the accumulation of torsion. We found that POMT mutants show abnormal axonal connections of sensory neurons. POMT transgenic expression limited to sensory neurons significantly rescued the torsion phenotype, axonal connectivity defects, and abnormal contractions in POMT mutant embryos. Together, our data suggested that protein O-mannosylation is required for normal sensory feedback to control coordinated muscle contractions and body posture. This mechanism may shed light on analogous functions of POMT genes in mammals and help to elucidate the etiology of neurological defects in muscular dystrophies. SIGNIFICANCE STATEMENT Protein O-mannosyltransferases (POMTs) are evolutionarily conserved in metazoans. Mutations in POMTs cause severe muscular dystrophies associated with pronounced neurological defects. However, neurological functions of POMTs remain poorly understood. We demonstrated that POMT mutations in Drosophila result in abnormal muscle contractions and cause embryo torsion. Our experiments uncovered a chirality of embryo movements and a unique POMT -dependent

  6. Glutamatergic system abnormalities in posttraumatic stress disorder.

    PubMed

    Nishi, Daisuke; Hashimoto, Kenji; Noguchi, Hiroko; Hamazaki, Kei; Hamazaki, Tomohito; Matsuoka, Yutaka

    2015-12-01

    Accumulating evidence suggests involvement of the glutamatergic system in the biological mechanisms of posttraumatic stress disorder (PTSD), but few studies have demonstrated an association between glutamatergic system abnormalities and PTSD diagnosis or severity. We aimed to examine whether abnormalities in serum glutamate and in the glutamine/glutamate ratio were associated with PTSD diagnosis and severity in severely injured patients at risk for PTSD and major depressive disorder (MDD). This is a nested case-control study in TPOP (Tachikawa project for prevention of posttraumatic stress disorder with polyunsaturated fatty acid) trial. Diagnosis and severity of PTSD were assessed 3 months after the accidents using the Clinician-Administered PTSD Scale. The associations of glutamate levels and the glutamine/glutamate ratio with diagnosis and severity of PTSD and MDD were investigated by univariate and multiple linear regression analyses. Ninety-seven of 110 participants (88 %) completed assessments at 3 months. Serum glutamate levels were significantly higher for participants with full or partial PTSD than for participants without PTSD (p = 0.049) and for participants with MDD than for participants without MDD (p = 0.048). Multiple linear regression analyses showed serum glutamate levels were significantly positively associated with PTSD severity (p = 0.02) and MDD severity (p = 0.03). The glutamine/glutamate ratio was also significantly inversely associated with PTSD severity (p = 0.03), but not with MDD severity (p = 0.07). These findings suggest that the glutamatergic system may play a major role in the pathogenesis of PTSD and the need for new treatments targeting the glutamatergic system to be developed for PTSD.

  7. The bornavirus-derived human protein EBLN1 promotes efficient cell cycle transit, microtubule organisation and genome stability.

    PubMed

    Myers, Katie N; Barone, Giancarlo; Ganesh, Anil; Staples, Christopher J; Howard, Anna E; Beveridge, Ryan D; Maslen, Sarah; Skehel, J Mark; Collis, Spencer J

    2016-10-14

    It was recently discovered that vertebrate genomes contain multiple endogenised nucleotide sequences derived from the non-retroviral RNA bornavirus. Strikingly, some of these elements have been evolutionary maintained as open reading frames in host genomes for over 40 million years, suggesting that some endogenised bornavirus-derived elements (EBL) might encode functional proteins. EBLN1 is one such element established through endogenisation of the bornavirus N gene (BDV N). Here, we functionally characterise human EBLN1 as a novel regulator of genome stability. Cells depleted of human EBLN1 accumulate DNA damage both under non-stressed conditions and following exogenously induced DNA damage. EBLN1-depleted cells also exhibit cell cycle abnormalities and defects in microtubule organisation as well as premature centrosome splitting, which we attribute in part, to improper localisation of the nuclear envelope protein TPR. Our data therefore reveal that human EBLN1 possesses important cellular functions within human cells, and suggest that other EBLs present within vertebrate genomes may also possess important cellular functions.

  8. MYB89 Transcription Factor Represses Seed Oil Accumulation1[OPEN

    PubMed Central

    Li, Dong; Jin, Changyu; Duan, Shaowei; Zhu, Yana; Qi, Shuanghui; Liu, Kaige; Gao, Chenhao; Ma, Haoli; Liao, Yuncheng

    2017-01-01

    In many higher plants, seed oil accumulation is precisely controlled by intricate multilevel regulatory networks, among which transcriptional regulation mainly influences oil biosynthesis. In Arabidopsis (Arabidopsis thaliana), the master positive transcription factors, WRINKLED1 (WRI1) and LEAFY COTYLEDON1-LIKE (L1L), are important for seed oil accumulation. We found that an R2R3-MYB transcription factor, MYB89, was expressed predominantly in developing seeds during maturation. Oil and major fatty acid biosynthesis in seeds was significantly promoted by myb89-1 mutation and MYB89 knockdown; thus, MYB89 was an important repressor during seed oil accumulation. RNA sequencing revealed remarkable up-regulation of numerous genes involved in seed oil accumulation in myb89 seeds at 12 d after pollination. Posttranslational activation of a MYB89-glucocorticoid receptor fusion protein and chromatin immunoprecipitation assays demonstrated that MYB89 inhibited seed oil accumulation by directly repressing WRI1 and five key genes and by indirectly suppressing L1L and 11 key genes involved in oil biosynthesis during seed maturation. These results help us to understand the novel function of MYB89 and provide new insights into the regulatory network of transcriptional factors controlling seed oil accumulation in Arabidopsis. PMID:27932421

  9. Activation of the Protein Kinase C1 Pathway upon Continuous Heat Stress in Saccharomyces cerevisiae Is Triggered by an Intracellular Increase in Osmolarity due to Trehalose Accumulation

    PubMed Central

    Mensonides, Femke I. C.; Brul, Stanley; Klis, Frans M.; Hellingwerf, Klaas J.; Teixeira de Mattos, M. Joost

    2005-01-01

    This paper reports on physiological and molecular responses of Saccharomyces cerevisiae to heat stress conditions. We observed that within a very narrow range of culture temperatures, a shift from exponential growth to growth arrest and ultimately to cell death occurred. A detailed analysis was carried out of the accumulation of trehalose and the activation of the protein kinase C1 (PKC1) (cell integrity) pathway in both glucose- and ethanol-grown cells upon temperature upshifts within this narrow range of growth temperatures. It was observed that the PKC1 pathway was hardly activated in a tps1 mutant that is unable to accumulate any trehalose. Furthermore, it was observed that an increase of the extracellular osmolarity during a continuous heat stress prevented the activation of the pathway. The results of these analyses support our hypothesis that under heat stress conditions the activation of the PKC1 pathway is triggered by an increase in intracellular osmolarity, due to the accumulation of trehalose, rather than by the increase in temperature as such. PMID:16085846

  10. Genome-Wide Association Mapping Combined with Reverse Genetics Identifies New Effectors of Low Water Potential-Induced Proline Accumulation in Arabidopsis1[W][OPEN

    PubMed Central

    Verslues, Paul E.; Lasky, Jesse R.; Juenger, Thomas E.; Liu, Tzu-Wen; Kumar, M. Nagaraj

    2014-01-01

    Arabidopsis (Arabidopsis thaliana) exhibits natural genetic variation in drought response, including varying levels of proline (Pro) accumulation under low water potential. As Pro accumulation is potentially important for stress tolerance and cellular redox control, we conducted a genome-wide association (GWAS) study of low water potential-induced Pro accumulation using a panel of natural accessions and publicly available single-nucleotide polymorphism (SNP) data sets. Candidate genomic regions were prioritized for subsequent study using metrics considering both the strength and spatial clustering of the association signal. These analyses found many candidate regions likely containing gene(s) influencing Pro accumulation. Reverse genetic analysis of several candidates identified new Pro effector genes, including thioredoxins and several genes encoding Universal Stress Protein A domain proteins. These new Pro effector genes further link Pro accumulation to cellular redox and energy status. Additional new Pro effector genes found include the mitochondrial protease LON1, ribosomal protein RPL24A, protein phosphatase 2A subunit A3, a MADS box protein, and a nucleoside triphosphate hydrolase. Several of these new Pro effector genes were from regions with multiple SNPs, each having moderate association with Pro accumulation. This pattern supports the use of summary approaches that incorporate clusters of SNP associations in addition to consideration of individual SNP probability values. Further GWAS-guided reverse genetics promises to find additional effectors of Pro accumulation. The combination of GWAS and reverse genetics to efficiently identify new effector genes may be especially applicable for traits difficult to analyze by other genetic screening methods. PMID:24218491

  11. Late Embryogenesis Abundant (LEA) proteins in legumes

    PubMed Central

    Battaglia, Marina; Covarrubias, Alejandra A.

    2013-01-01

    Plants are exposed to different external conditions that affect growth, development, and productivity. Water deficit is one of these adverse conditions caused by drought, salinity, and extreme temperatures. Plants have developed different responses to prevent, ameliorate or repair the damage inflicted by these stressful environments. One of these responses is the activation of a set of genes encoding a group of hydrophilic proteins that typically accumulate to high levels during seed dehydration, at the last stage of embryogenesis, hence named Late Embryogenesis Abundant (LEA) proteins. LEA proteins also accumulate in response to water limitation in vegetative tissues, and have been classified in seven groups based on their amino acid sequence similarity and on the presence of distinctive conserved motifs. These proteins are widely distributed in the plant kingdom, from ferns to angiosperms, suggesting a relevant role in the plant response to this unfavorable environmental condition. In this review, we analyzed the LEA proteins from those legumes whose complete genomes have been sequenced such as Phaseolus vulgaris, Glycine max, Medicago truncatula, Lotus japonicus, Cajanus cajan, and Cicer arietinum. Considering their distinctive motifs, LEA proteins from the different groups were identified, and their sequence analysis allowed the recognition of novel legume specific motifs. Moreover, we compile their transcript accumulation patterns based on publicly available data. In spite of the limited information on these proteins in legumes, the analysis and data compiled here confirm the high correlation between their accumulation and water deficit, reinforcing their functional relevance under this detrimental conditions. PMID:23805145

  12. Investigation of pathways of advanced glycation end-products accumulation in macrophages.

    PubMed

    Nagai, Ryoji; Fujiwara, Yukio; Mera, Katsumi; Otagiri, Masaki

    2007-04-01

    Advanced glycation end-products (AGE) play a role in the pathogenesis of several diseases, including diabetic complications and atherosclerosis. In atherosclerotic lesions of human aortas, AGE are localized in the extracellular matrix and intracellularly in foam cells. Two interpretations are possible for AGE accumulation inside macrophages, one is endocytic uptake of extracellular AGE-proteins by scavenger receptors; the other is intracellular AGE formation inside the macrophages. In the present study, we determined the pathways involved in AGE accumulation inside macrophages. RAW 264.7 cells, a murine macrophage cell line, incubated with BSA and 1600 mM glucose for 40 weeks, recognized heavily modified AGE- BSA. In contrast, the cells showed no ligand activity for mildly modified AGE-BSA, prepared by incubating BSA with 50 mM glucose for 24 weeks. Nepsilon-(carboxymethyl)lysine (CML)-modified proteins of about 65 kDa were detected in human monocyte-derived macrophages incubated for 7 days with 30 mM glucose and phorbol myristate acetate. Furthermore, CML was generated when glycated protein was incubated with hypochloric acid. Taken together, our results indicate that AGE detected inside foam cells in atherosclerotic lesions are generated intracellularly rather than representing endocytic uptake of extracellular AGE-proteins by scavenger receptors.

  13. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans

    PubMed Central

    Hulver, Matthew W.; Berggren, Jason R.; Carper, Michael J.; Miyazaki, Makoto; Ntambi, James M.; Hoffman, Eric P.; Thyfault, John P.; Stevens, Robert; Dohm, G. Lynis; Houmard, Joseph A.; Muoio, Deborah M.

    2014-01-01

    Summary Obesity and type 2 diabetes are strongly associated with abnormal lipid metabolism and accumulation of intramyocellular triacylglycerol, but the underlying cause of these perturbations are yet unknown. Herein, we show that the lipogenic gene, stearoyl-CoA desaturase 1 (SCD1), is robustly up-regulated in skeletal muscle from extremely obese humans. High expression and activity of SCD1, an enzyme that catalyzes the synthesis of monounsaturated fatty acids, corresponded with low rates of fatty acid oxidation, increased triacylglycerol synthesis and increased monounsaturation of muscle lipids. Elevated SCD1 expression and abnormal lipid partitioning were retained in primary skeletal myocytes derived from obese compared to lean donors, implying that these traits might be driven by epigenetic and/or heritable mechanisms. Overexpression of human SCD1 in myotubes from lean subjects was sufficient to mimic the obese phenotype. These results suggest that elevated expression of SCD1 in skeletal muscle contributes to abnormal lipid metabolism and progression of obesity. PMID:16213227

  14. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans.

    PubMed

    Hulver, Matthew W; Berggren, Jason R; Carper, Michael J; Miyazaki, Makoto; Ntambi, James M; Hoffman, Eric P; Thyfault, John P; Stevens, Robert; Dohm, G Lynis; Houmard, Joseph A; Muoio, Deborah M

    2005-10-01

    Obesity and type 2 diabetes are strongly associated with abnormal lipid metabolism and accumulation of intramyocellular triacylglycerol, but the underlying cause of these perturbations are yet unknown. Herein, we show that the lipogenic gene, stearoyl-CoA desaturase 1 (SCD1), is robustly up-regulated in skeletal muscle from extremely obese humans. High expression and activity of SCD1, an enzyme that catalyzes the synthesis of monounsaturated fatty acids, corresponded with low rates of fatty acid oxidation, increased triacylglycerol synthesis and increased monounsaturation of muscle lipids. Elevated SCD1 expression and abnormal lipid partitioning were retained in primary skeletal myocytes derived from obese compared to lean donors, implying that these traits might be driven by epigenetic and/or heritable mechanisms. Overexpression of human SCD1 in myotubes from lean subjects was sufficient to mimic the obese phenotype. These results suggest that elevated expression of SCD1 in skeletal muscle contributes to abnormal lipid metabolism and progression of obesity.

  15. Lack of Glycogenin Causes Glycogen Accumulation and Muscle Function Impairment.

    PubMed

    Testoni, Giorgia; Duran, Jordi; García-Rocha, Mar; Vilaplana, Francisco; Serrano, Antonio L; Sebastián, David; López-Soldado, Iliana; Sullivan, Mitchell A; Slebe, Felipe; Vilaseca, Marta; Muñoz-Cánoves, Pura; Guinovart, Joan J

    2017-07-05

    Glycogenin is considered essential for glycogen synthesis, as it acts as a primer for the initiation of the polysaccharide chain. Against expectations, glycogenin-deficient mice (Gyg KO) accumulate high amounts of glycogen in striated muscle. Furthermore, this glycogen contains no covalently bound protein, thereby demonstrating that a protein primer is not strictly necessary for the synthesis of the polysaccharide in vivo. Strikingly, in spite of the higher glycogen content, Gyg KO mice showed lower resting energy expenditure and less resistance than control animals when subjected to endurance exercise. These observations can be attributed to a switch of oxidative myofibers toward glycolytic metabolism. Mice overexpressing glycogen synthase in the muscle showed similar alterations, thus indicating that this switch is caused by the excess of glycogen. These results may explain the muscular defects of GSD XV patients, who lack glycogenin-1 and show high glycogen accumulation in muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Altered mechanisms underlying the abnormal glutamate release in amyotrophic lateral sclerosis at a pre-symptomatic stage of the disease.

    PubMed

    Bonifacino, Tiziana; Musazzi, Laura; Milanese, Marco; Seguini, Mara; Marte, Antonella; Gallia, Elena; Cattaneo, Luca; Onofri, Franco; Popoli, Maurizio; Bonanno, Giambattista

    2016-11-01

    Abnormal Glu release occurs in the spinal cord of SOD1(G93A) mice, a transgenic animal model for human ALS. Here we studied the mechanisms underlying Glu release in spinal cord nerve terminals of SOD1(G93A) mice at a pre-symptomatic disease stage (30days) and found that the basal release of Glu was more elevated in SOD1(G93A) with respect to SOD1 mice, and that the surplus of release relies on synaptic vesicle exocytosis. Exposure to high KCl or ionomycin provoked Ca(2+)-dependent Glu release that was likewise augmented in SOD1(G93A) mice. Equally, the Ca(2+)-independent hypertonic sucrose-induced Glu release was abnormally elevated in SOD1(G93A) mice. Also in this case, the surplus of Glu release was exocytotic in nature. We could determine elevated cytosolic Ca(2+) levels, increased phosphorylation of Synapsin-I, which was causally related to the abnormal Glu release measured in spinal cord synaptosomes of pre-symptomatic SOD1(G93A) mice, and increased phosphorylation of glycogen synthase kinase-3 at the inhibitory sites, an event that favours SNARE protein assembly. Western blot experiments revealed an increased number of SNARE protein complexes at the nerve terminal membrane, with no changes of the three SNARE proteins and increased expression of synaptotagmin-1 and β-Actin, but not of an array of other release-related presynaptic proteins. These results indicate that the abnormal exocytotic Glu release in spinal cord of pre-symptomatic SOD1(G93A) mice is mainly based on the increased size of the readily releasable pool of vesicles and release facilitation, supported by plastic changes of specific presynaptic mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. N-terminal lipid modification is required for the stable accumulation of CyanoQ in Synechocystis sp. PCC 6803

    DOE PAGES

    Juneau, Andrea D.; Frankel, Laurie K.; Bricker, Terry M.; ...

    2016-09-22

    Here, the CyanoQ protein has been demonstrated to be a component of cyanobacterial Photosystem II (PS II), but there exist a number of outstanding questions concerning its physical association with the complex. CyanoQ is a lipoprotein; upon cleavage of its transit peptide by Signal Peptidase II, which targets delivery of the mature protein to the thylakoid lumenal space, the N-terminal cysteinyl residue is lipid-modified. This modification appears to tether this otherwise soluble component to the thylakoid membrane. To probe the functional significance of the lipid anchor, mutants of the CyanoQ protein have been generated in Synechocystis sp. PCC 6803 tomore » eliminate the N-terminal cysteinyl residue, preventing lipid modification. Substitution of the N-terminal cysteinyl residue with serine (Q-C22S) resulted in a decrease in the amount of detectable CyanoQ protein to 17% that of the wild-type protein. Moreover, the physical properties of the accumulated Q-C22S protein were consistent with altered processing of the CyanoQ precursor. The Q-C22S protein was shifted to a higher apparent molecular mass and partitioned in the hydrophobic phase in TX-114 phase-partitioning experiments. These results suggest that the hydrophobic N-terminal 22 amino acids were not properly cleaved by a signal peptidase. Substitution of the entire CyanoQ transit peptide with the transit peptide of the soluble lumenal protein PsbO yielded the Q-SS mutant and resulted in no detectable accumulation of the modified CyanoQ protein. Finally, the CyanoQ protein was present at normal amounts in the PS II mutant strains ΔpsbB and ΔpsbO, indicating that an association with PS II was not a prerequisite for stable CyanoQ accumulation. Together these results indicate that CyanoQ accumulation in Synechocystis sp. PCC 6803 depends on the presence of the N-terminal lipid anchor, but not on the association of CyanoQ with the PS II complex.« less

  18. N-terminal lipid modification is required for the stable accumulation of CyanoQ in Synechocystis sp. PCC 6803

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juneau, Andrea D.; Frankel, Laurie K.; Bricker, Terry M.

    Here, the CyanoQ protein has been demonstrated to be a component of cyanobacterial Photosystem II (PS II), but there exist a number of outstanding questions concerning its physical association with the complex. CyanoQ is a lipoprotein; upon cleavage of its transit peptide by Signal Peptidase II, which targets delivery of the mature protein to the thylakoid lumenal space, the N-terminal cysteinyl residue is lipid-modified. This modification appears to tether this otherwise soluble component to the thylakoid membrane. To probe the functional significance of the lipid anchor, mutants of the CyanoQ protein have been generated in Synechocystis sp. PCC 6803 tomore » eliminate the N-terminal cysteinyl residue, preventing lipid modification. Substitution of the N-terminal cysteinyl residue with serine (Q-C22S) resulted in a decrease in the amount of detectable CyanoQ protein to 17% that of the wild-type protein. Moreover, the physical properties of the accumulated Q-C22S protein were consistent with altered processing of the CyanoQ precursor. The Q-C22S protein was shifted to a higher apparent molecular mass and partitioned in the hydrophobic phase in TX-114 phase-partitioning experiments. These results suggest that the hydrophobic N-terminal 22 amino acids were not properly cleaved by a signal peptidase. Substitution of the entire CyanoQ transit peptide with the transit peptide of the soluble lumenal protein PsbO yielded the Q-SS mutant and resulted in no detectable accumulation of the modified CyanoQ protein. Finally, the CyanoQ protein was present at normal amounts in the PS II mutant strains ΔpsbB and ΔpsbO, indicating that an association with PS II was not a prerequisite for stable CyanoQ accumulation. Together these results indicate that CyanoQ accumulation in Synechocystis sp. PCC 6803 depends on the presence of the N-terminal lipid anchor, but not on the association of CyanoQ with the PS II complex.« less

  19. Adaptation to a high-protein diet progressively increases the postprandial accumulation of carbon skeletons from dietary amino acids in rats.

    PubMed

    Stepien, Magdalena; Azzout-Marniche, Dalila; Even, Patrick C; Khodorova, Nadezda; Fromentin, Gilles; Tomé, Daniel; Gaudichon, Claire

    2016-10-01

    We aimed to determine whether oxidative pathways adapt to the overproduction of carbon skeletons resulting from the progressive activation of amino acid (AA) deamination and ureagenesis under a high-protein (HP) diet. Ninety-four male Wistar rats, of which 54 were implanted with a permanent jugular catheter, were fed a normal protein diet for 1 wk and were then switched to an HP diet for 1, 3, 6, or 14 days. On the experimental day, they were given their meal containing a mixture of 20 U-[ 15 N]-[ 13 C] AA, whose metabolic fate was followed for 4 h. Gastric emptying tended to be slower during the first 3 days of adaptation. 15 N excretion in urine increased progressively during the first 6 days, reaching 29% of ingested protein. 13 CO 2 excretion was maximal, as early as the first day, and represented only 16% of the ingested proteins. Consequently, the amount of carbon skeletons remaining in the metabolic pools 4 h after the meal ingestion progressively increased to 42% of the deaminated dietary AA after 6 days of HP diet. In contrast, 13 C enrichment of plasma glucose tended to increase from 1 to 14 days of the HP diet. We conclude that there is no oxidative adaptation in the early postprandial period to an excess of carbon skeletons resulting from AA deamination in HP diets. This leads to an increase in the postprandial accumulation of carbon skeletons throughout the adaptation to an HP diet, which can contribute to the sustainable satiating effect of this diet. Copyright © 2016 the American Physiological Society.

  20. Electrocardiographic abnormalities in opiate addicts.

    PubMed

    Wallner, Christina; Stöllberger, Claudia; Hlavin, Anton; Finsterer, Josef; Hager, Isabella; Hermann, Peter

    2008-12-01

    To determine in a cross-sectional study the prevalence of electrocardiographic (ECG) abnormalities in opiate addicts who were therapy-seeking and its association with demographic, clinical and drug-specific parameters. In consecutive therapy-seeking opiate addicts, a 12-lead ECG was registered within 24 hours after admission and evaluated according to a pre-set protocol between October 2004 and August 2006. Additionally, demographic, clinical and drug-specific parameters were recorded. Included were 511 opiate-addicts, 25% female, with a mean age of 29 years (range 17-59 years). One or more ECG abnormalities were found in 314 patients (61%). In the 511 patients we found most commonly ST abnormalities (19%), QTc prolongation (13%), tall R- and/or S-waves (11%) and missing R progression (10%). ECG abnormalities were more common in males than in females (64 versus 54%, P < 0.05), and in patients with positive than negative urine findings for cannabis (68 versus 57%, P < 0.05). Patients with ST abnormalities were more often males than females (21 versus 11%, P < 0.05), had a history of seizures less often (16 versus 27%, P < 0.05), had positive than negative urine findings for cannabis more often (26 versus 15%, P < 0.01) and had negative than positive urine findings for methadone more often (21 versus 11%, P < 0.05). QTc prolongation was more frequent in patients with high dosages of maintenance drugs than in patients with medium or low dosages (27 versus 12 versus 10%, P < 0.05) and in patients whose urine findings were positive than negative for methadone (23 versus 11%, P < 0.001) as well as for benzodiazepines (17 versus 9%, P < 0.05). Limitations of the data are that in most cases other risk factors for the cardiac abnormalities were not known. ECG abnormalities are frequent in opiate addicts. The most frequent ECG abnormalities are ST abnormalities, QTc prolongation and tall R- and/or S-waves. ST abnormalities are associated with cannabis, and QTc prolongation

  1. Do cancer proteins really interact strongly in the human protein-protein interaction network?

    PubMed

    Xia, Junfeng; Sun, Jingchun; Jia, Peilin; Zhao, Zhongming

    2011-06-01

    Protein-protein interaction (PPI) network analysis has been widely applied in the investigation of the mechanisms of diseases, especially cancer. Recent studies revealed that cancer proteins tend to interact more strongly than other categories of proteins, even essential proteins, in the human interactome. However, it remains unclear whether this observation was introduced by the bias towards more cancer studies in humans. Here, we examined this important issue by uniquely comparing network characteristics of cancer proteins with three other sets of proteins in four organisms, three of which (fly, worm, and yeast) whose interactomes are essentially not biased towards cancer or other diseases. We confirmed that cancer proteins had stronger connectivity, shorter distance, and larger betweenness centrality than non-cancer disease proteins, essential proteins, and control proteins. Our statistical evaluation indicated that such observations were overall unlikely attributed to random events. Considering the large size and high quality of the PPI data in the four organisms, the conclusion that cancer proteins interact strongly in the PPI networks is reliable and robust. This conclusion suggests that perturbation of cancer proteins might cause major changes of cellular systems and result in abnormal cell function leading to cancer. © 2011 Elsevier Ltd. All rights reserved.

  2. Implications of metal accumulation mechanisms to phytoremediation.

    PubMed

    Memon, Abdul R; Schröder, Peter

    2009-03-01

    Trace elements (heavy metals and metalloids) are important environmental pollutants, and many of them are toxic even at very low concentrations. Pollution of the biosphere with trace elements has accelerated dramatically since the Industrial Revolution. Primary sources are the burning of fossil fuels, mining and smelting of metalliferous ores, municipal wastes, agrochemicals, and sewage. In addition, natural mineral deposits containing particularly large quantities of heavy metals are found in many regions. These areas often support characteristic plant species thriving in metal-enriched environments. Whereas many species avoid the uptake of heavy metals from these soils, some of them can accumulate significantly high concentrations of toxic metals, to levels which by far exceed the soil levels. The natural phenomenon of heavy metal tolerance has enhanced the interest of plant ecologists, plant physiologists, and plant biologists to investigate the physiology and genetics of metal tolerance in specialized hyperaccumulator plants such as Arabidopsis halleri and Thlaspi caerulescens. In this review, we describe recent advances in understanding the genetic and molecular basis of metal tolerance in plants with special reference to transcriptomics of heavy metal accumulator plants and the identification of functional genes implied in tolerance and detoxification. Plants are susceptible to heavy metal toxicity and respond to avoid detrimental effects in a variety of different ways. The toxic dose depends on the type of ion, ion concentration, plant species, and stage of plant growth. Tolerance to metals is based on multiple mechanisms such as cell wall binding, active transport of ions into the vacuole, and formation of complexes with organic acids or peptides. One of the most important mechanisms for metal detoxification in plants appears to be chelation of metals by low-molecular-weight proteins such as metallothioneins and peptide ligands, the phytochelatins. For

  3. Enzymatic activity of a subtilisin homolog, Tk-SP, from Thermococcus kodakarensis in detergents and its ability to degrade the abnormal prion protein

    PubMed Central

    2013-01-01

    Background Tk-SP is a member of subtilisin-like serine proteases from a hyperthermophilic archaeon Thermococcus kodakarensis. It has been known that the hyper-stable protease, Tk-SP, could exhibit enzymatic activity even at high temperature and in the presence of chemical denaturants. In this work, the enzymatic activity of Tk-SP was measured in the presence of detergents and EDTA. In addition, we focused to demonstrate that Tk-SP could degrade the abnormal prion protein (PrPSc), a protease-resistant isoform of normal prion protein (PrPC). Results Tk-SP was observed to maintain its proteolytic activity with nonionic surfactants and EDTA at 80°C. We optimized the condition in which Tk-SP functions efficiently, and demonstrated that the enzyme is highly stable in the presence of 0.05% (w/v) nonionic surfactants and 0.01% (w/v) EDTA, retaining up to 80% of its activity. Additionally, we also found that Tk-SP can degrade PrPSc to a level undetectable by western-blot analysis. Conclusions Our results indicate that Tk-SP has a great potential for technological applications, such as thermo-stable detergent additives. In addition, it is also suggested that Tk-SP-containing detergents can be developed to decrease the secondary infection risks of transmissible spongiform encephalopathies (TSE). PMID:23448268

  4. A trial of production of the plant-derived high-value protein in a plant factory: photosynthetic photon fluxes affect the accumulation of recombinant miraculin in transgenic tomato fruits.

    PubMed

    Kato, Kazuhisa; Maruyama, Shinichiro; Hirai, Tadayoshi; Hiwasa-Tanase, Kyoko; Mizoguchi, Tsuyoshi; Goto, Eiji; Ezura, Hiroshi

    2011-08-01

    One of the ultimate goals of plant science is to test a hypothesis obtained by basic science and to apply it to agriculture and industry. A plant factory is one of the ideal systems for this trial. Environmental factors affect both plant yield and the accumulation of recombinant proteins for industrial applications within transgenic plants. However, there have been few reports studying plant productivity for recombinant protein in closed cultivation systems called plant factories. To investigate the effects of photosynthetic photon flux (PPF) on tomato fruit yield and the accumulation of recombinant miraculin, a taste-modifying glycoprotein, in transgenic tomato fruits, plants were cultivated at various PPFs from 100 to 400 (µmol m(-2) s(-)1) in a plant factory. Miraculin production per unit of energy used was highest at PPF100, although miraculin production per unit area was highest at PPF300. The commercial productivity of recombinant miraculin in transgenic tomato fruits largely depended on light conditions in the plant factory. Our trial will be useful to consider the trade-offs between the profits from production of high-value materials in plants and the costs of electricity.

  5. Biochemical abnormalities in neonatal seizures.

    PubMed

    Sood, Arvind; Grover, Neelam; Sharma, Roshan

    2003-03-01

    The presence of seizure does not constitute a diagnoses but it is a symptom of an underlying central nervous system disorder due to systemic or biochemical disturbances. Biochemical disturbances occur frequently in the neonatal seizures either as an underlying cause or as an associated abnormality. In their presence, it is difficult to control seizure and there is a risk of further brain damage. Early recognition and treatment of biochemical disturbances is essential for optimal management and satisfactory long term outcome. The present study was conducted in the department of pediatrics in IGMC Shimla on 59 neonates. Biochemical abnormalities were detected in 29 (49.15%) of cases. Primary metabolic abnormalities occurred in 10(16.94%) cases of neonatal seizures, most common being hypocalcaemia followed by hypoglycemia, other metabolic abnormalities include hypomagnesaemia and hyponateremia. Biochemical abnormalities were seen in 19(38.77%) cases of non metabolic seizure in neonates. Associated metabolic abnormalities were observed more often with Hypoxic-ischemic-encephalopathy (11 out of 19) cases and hypoglycemia was most common in this group. No infant had hyponateremia, hyperkelemia or low zinc level.

  6. Leptospira interrogans induces uterine inflammatory responses and abnormal expression of extracellular matrix proteins in dogs.

    PubMed

    Wang, Wei; Gao, Xuejiao; Guo, Mengyao; Zhang, Wenlong; Song, Xiaojing; Wang, Tiancheng; Zhang, Zecai; Jiang, Haichao; Cao, Yongguo; Zhang, Naisheng

    2014-10-01

    Leptospira interrogans (L. interrogans), a worldwide zoonosis, infect humans and animals. In dogs, four syndromes caused by leptospirosis have been identified: icteric, hemorrhagic, uremic (Stuttgart disease) and reproductive (abortion and premature or weak pups), and also it caused inflammation. Extracellular matrix (ECM) is a complex mixture of matrix molecules that is crucial to the reproduction. Both inflammatory response and ECM are closed relative to reproductive. The aim of this study was to clarify how L. interrogans affected the uterus of dogs, by focusing on the inflammatory responses, and ECM expression in dogs uterine tissue infected by L. interrogans. In the present study, 27 dogs were divided into 3 groups, intrauterine infusion with L. interrogans, to make uterine infection, sterile EMJH, and normal saline as a control, respectively. The uteruses were removed by surgical operation in 10, 20, and 30 days, respectively. The methods of histopathological analysis, ELISA, Western blot and qPCR were used. The results showed that L. interrogans induced significantly inflammatory responses, which were characterized by inflammatory cellular infiltration and high expression levels of tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in uterine tissue of these dogs. Furthermore, L. interrogans strongly down-regulated the expression of ECM (collagens (CL) IV, fibronectins (FN) and laminins (LN)) in mRNA and protein levels. These data indicated that strongly inflammatory responses, and abnormal regulation of ECM might contribute to the proliferation of dogs infected by L. interrogans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A systematic screen for morphological abnormalities during fission yeast sexual reproduction identifies a mechanism of actin aster formation for cell fusion

    PubMed Central

    Groux, Raphaël; Vincenzetti, Vincent

    2017-01-01

    In non-motile fungi, sexual reproduction relies on strong morphogenetic changes in response to pheromone signaling. We report here on a systematic screen for morphological abnormalities of the mating process in fission yeast Schizosaccharomyces pombe. We derived a homothallic (self-fertile) collection of viable deletions, which, upon visual screening, revealed a plethora of phenotypes affecting all stages of the mating process, including cell polarization, cell fusion and sporulation. Cell fusion relies on the formation of the fusion focus, an aster-like F-actin structure that is marked by strong local accumulation of the myosin V Myo52, which concentrates secretion at the fusion site. A secondary screen for fusion-defective mutants identified the myosin V Myo51-associated coiled-coil proteins Rng8 and Rng9 as critical for the coalescence of the fusion focus. Indeed, rng8Δ and rng9Δ mutant cells exhibit multiple stable dots at the cell-cell contact site, instead of the single focus observed in wildtype. Rng8 and Rng9 accumulate on the fusion focus, dependent on Myo51 and tropomyosin Cdc8. A tropomyosin mutant allele, which compromises Rng8/9 localization but not actin binding, similarly leads to multiple stable dots instead of a single focus. By contrast, myo51 deletion does not strongly affect fusion focus coalescence. We propose that focusing of the actin filaments in the fusion aster primarily relies on Rng8/9-dependent cross-linking of tropomyosin-actin filaments. PMID:28410370

  8. Platelet Proteomic Analysis Revealed Differential Pattern of Cytoskeletal- and Immune-Related Proteins at Early Stages of Alzheimer's Disease.

    PubMed

    González-Sánchez, Marta; Díaz, Teresa; Pascual, Consuelo; Antequera, Desiree; Herrero-San Martín, Alejandro; Llamas-Velasco, Sara; Villarejo-Galende, Alberto; Bartolome, Fernando; Carro, Eva

    2018-03-30

    Platelets are considered a good model system to study a number of elements associated with neuronal pathways as they share biochemical similarities. Platelets represent the major source of amyloid-β (Aβ) in blood contributing to the Aβ accumulation in the brain parenchyma and vasculature. Peripheral blood platelet alterations including cytoskeletal abnormalities, abnormal cytoplasmic calcium fluxes or increased oxidative stress levels have been related to Alzheimer's disease (AD) pathology. Therefore, platelets can be considered a peripheral model to study metabolic mechanisms occurring in AD. To investigate peripheral molecular alterations, we examined platelet protein expression in a cohort of 164 subjects, including mild cognitive impairment (MCI), and AD patients, and healthy aged-matched controls. A two-dimensional difference gel electrophoresis (2D-DIGE) discovery phase revealed significant differences between patients and controls in five proteins: talin, vinculin, moesin, complement C3b and Rho GDP, which are known to be involved in cytoskeletal regulation including focal adhesions, inflammation and immune functions. Western blot analysis verified that talin was found to be increased in mild and moderate AD groups versus control, while the other three were found to be decreased. We also analysed amyloid precursor protein (APP), amyloid-β 1-40 (Aβ 40 ) and 1-42 (Aβ 42 ) levels in platelets from the same groups of subjects. Upregulation of platelet APP and Aβ peptides was found in AD patients compared to controls. These findings complement and expand previous reports concerning the morphological and functional alterations in AD platelets, and provide more insights into possible mechanisms that participate in the multifactorial and systemic damage in AD.

  9. Plasma-Advanced Oxidation Protein Products Are Potent High-Density Lipoprotein Receptor Antagonists In Vivo

    PubMed Central

    Marsche, Gunther; Frank, Sasa; Hrzenjak, Andelko; Holzer, Michael; Dirnberger, Sabine; Wadsack, Christian; Scharnagl, Hubert; Stojakovic, Tatjana; Heinemann, Akos; Oettl, Karl

    2010-01-01

    Advanced oxidation protein products (AOPPs) are carried by oxidized plasma proteins, especially albumin and accumulate in subjects with renal disease and coronary artery disease. AOPPs represent an excellent novel marker of oxidative stress and their roles in the development of cardiovascular disease might be of great importance. Here, we show that in vitro–generated AOPP-albumin binds with high affinity to the high-density lipoprotein (HDL) receptor scavenger receptor class B type I (SR-BI). Already an equimolar concentration of AOPP-albumin to HDL blocked HDL association to SR-BI and effectively inhibited SR-BI–mediated cholesterol ester (CE) uptake. Interestingly, albumin extensively modified by advanced glycation end products (AGE-albumin), which is an established SR-BI ligand known to accumulate in renal disease, only weakly interfered with HDL binding to SR-BI. Furthermore, AOPP-albumin administration increased the plasma half-life of [3H]CE-HDL in control mice 1.6-fold (P=0.01) and 8-fold (P=0.0003) in mice infected with adenoviral vectors encoding human SR-BI. Moreover, albumin isolated from hemodialysis patients, but not albumin isolated from healthy controls, markedly inhibited SR-BI–mediated HDL-CE transfer in vitro dependent on the AOPP content of albumin. These results indicate that AOPP-albumin effectively blocks SR-BI in vitro and in vivo. Thus, depressed plasma clearance of HDL-cholesterol may contribute to the abnormal composition of HDL and the high cardiovascular risk observed in patients with chronic renal failure. PMID:19179658

  10. Rigid-Docking Approaches to Explore Protein-Protein Interaction Space.

    PubMed

    Matsuzaki, Yuri; Uchikoga, Nobuyuki; Ohue, Masahito; Akiyama, Yutaka

    Protein-protein interactions play core roles in living cells, especially in the regulatory systems. As information on proteins has rapidly accumulated on publicly available databases, much effort has been made to obtain a better picture of protein-protein interaction networks using protein tertiary structure data. Predicting relevant interacting partners from their tertiary structure is a challenging task and computer science methods have the potential to assist with this. Protein-protein rigid docking has been utilized by several projects, docking-based approaches having the advantages that they can suggest binding poses of predicted binding partners which would help in understanding the interaction mechanisms and that comparing docking results of both non-binders and binders can lead to understanding the specificity of protein-protein interactions from structural viewpoints. In this review we focus on explaining current computational prediction methods to predict pairwise direct protein-protein interactions that form protein complexes.

  11. Carotenoid accumulation in orange-pigmented Capsicum annuum fruit, regulated at multiple levels.

    PubMed

    Rodriguez-Uribe, Laura; Guzman, Ivette; Rajapakse, Wathsala; Richins, Richard D; O'Connell, Mary A

    2012-01-01

    The pericarp of Capsicum fruit is a rich dietary source of carotenoids. Accumulation of these compounds may be controlled, in part, by gene transcription of biosynthetic enzymes. The carotenoid composition in a number of orange-coloured C. annuum cultivars was determined using HPLC and compared with transcript abundances for four carotenogenic enzymes, Psy, LcyB, CrtZ-2, and Ccs determined by qRT-PCR. There were unique carotenoid profiles as well as distinct patterns of transcription of carotenogenic enzymes within the seven orange-coloured cultivars. In one cultivar, 'Fogo', carrying the mutant ccs-3 allele, transcripts were detected for this gene, but no CCS protein accumulated. The premature stop termination in ccs-3 prevented expression of the biosynthetic activity to synthesize the capsanthin and capsorubin forms of carotenoids. In two other orange-coloured cultivars, 'Orange Grande' and 'Oriole', both with wild-type versions of all four carotenogenic enzymes, no transcripts for Ccs were detected and no red pigments accumulated. Finally, in a third case, the orange-coloured cultivar, Canary, transcripts for all four of the wild-type carotenogenic enzymes were readily detected yet no CCS protein appeared to accumulate and no red carotenoids were synthesized. In the past, mutations in Psy and Ccs have been identified as the loci controlling colour in the fruit. Now there is evidence that a non-structural gene may control colour development in Capsicum.

  12. Protein degradation and protection against misfolded or damaged proteins

    NASA Astrophysics Data System (ADS)

    Goldberg, Alfred L.

    2003-12-01

    The ultimate mechanism that cells use to ensure the quality of intracellular proteins is the selective destruction of misfolded or damaged polypeptides. In eukaryotic cells, the large ATP-dependent proteolytic machine, the 26S proteasome, prevents the accumulation of non-functional, potentially toxic proteins. This process is of particular importance in protecting cells against harsh conditions (for example, heat shock or oxidative stress) and in a variety of diseases (for example, cystic fibrosis and the major neurodegenerative diseases). A full understanding of the pathogenesis of the protein-folding diseases will require greater knowledge of how misfolded proteins are recognized and selectively degraded.

  13. Chronological protein synthesis in regenerating rat liver.

    PubMed

    He, Jinjun; Hao, Shuai; Zhang, Hao; Guo, Fuzheng; Huang, Lingyun; Xiao, Xueyuan; He, Dacheng

    2015-07-01

    Liver regeneration has been studied for decades; however, its regulation remains unclear. In this study, we report a dynamic tracing of protein synthesis in rat regenerating liver with a new proteomic technique, (35) S in vivo labeling analysis for dynamic proteomics (SiLAD). Conventional proteomic techniques typically measure protein alteration in accumulated amounts. The SiLAD technique specifically detects protein synthesis velocity instead of accumulated amounts of protein through (35) S pulse labeling of newly synthesized proteins, providing a direct way for analyzing protein synthesis variations. Consequently, protein synthesis within short as 30 min was visualized and protein regulations in the first 8 h of regenerating liver were dynamically traced. Further, the 3.5-5 h post partial hepatectomy (PHx) was shown to be an important regulatory turning point by acute regulation of many proteins in the initiation of liver regeneration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Chorionic villus sampling for abnormal screening compared to historical indications: prevalence of abnormal karyotypes.

    PubMed

    Marshall, Nicole E; Fraley, Gwen; Feist, Cori; Burns, Michael J; Pereira, Leonardo

    2012-08-01

    To determine the prevalence of abnormal karyotype results in women undergoing chorionic villus sampling (CVS) for abnormal first trimester screening compared to CVS for historical indications (advanced maternal age (AMA) or prior aneuploidy). Retrospective cohort of all patients undergoing CVS at Oregon Health & Science University from January 2006 to June 2010. Patients were separated based on CVS indication: (1) positive ultrasound (U/S) or serum screening; or (2) AMA or prior aneuploidy with normal or no screening. Prevalence of abnormal karyotype results were compared between groups. Fetal karyotyping was successful in 500 of 506 CVS procedures performed. 203 CVS were performed for positive screening with 69 abnormal karyotypes (34.0%). 264 CVS were performed for historical indications with 11 abnormal karyotypes (4.2%). This difference was statistically significant (χ(2) 71.9, p < 0.001; OR 11.8 [95% CI 5.8, 24.6]). There were two age-related aneuplodies in AMA women without positive screening. 42 out of 44 AMA women diagnosed with aneuploidy (95.5%) had abnormal U/S and/or serum screening (35 U/S, 4 serum, 3 U/S and serum). Combined ultrasound and serum screening should be recommended to all women, including AMA women, prior to undergoing invasive testing to improve risk-based counseling and minimize morbidity.

  15. Cadmium accumulation, sub-cellular distribution and chemical forms in rice seedling in the presence of sulfur.

    PubMed

    Zhang, Wen; Lin, Kuangfei; Zhou, Jian; Zhang, Wei; Liu, Lili; Zhang, Qianqian

    2014-01-01

    Changes in cadmium (Cd) accumulation, distribution, and chemical form in rice seedling in the joint presence of different concentrations of sulfur (S) remain almost unknown. Therefore, the indoor experiments were performed to determine the accumulation, sub-cellular distribution and chemical forms of Cd under three S levels in rice seedling for the first time. The result showed that Cd accumulation in rice roots was more than in shoots. Sub-cellular distribution of Cd in rice roots and shoots indicated that the largest proportion of Cd accumulated in cell walls and soluble fractions. As S supply increased, the proportion of Cd in cell walls reduced, while it increased in the soluble fractions. The majority of Cd existed in inorganic form, and then gradually changed to organic forms that included pectates and proteins with increased S supply. The results showed that S supply significantly influenced Cd accumulation, distribution, and chemical forms, suggesting that S might provide the material for the synthesis of sulfhydryl protein and thereby affect Cd stress on plants. These observations provided a basic understanding of potential ecotoxicological effects of joint Cd and S exposure in the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. MoVam7, a Conserved SNARE Involved in Vacuole Assembly, Is Required for Growth, Endocytosis, ROS Accumulation, and Pathogenesis of Magnaporthe oryzae

    PubMed Central

    Dou, Xianying; Wang, Qi; Qi, Zhongqiang; Song, Wenwen; Wang, Wei; Guo, Min; Zhang, Haifeng; Zhang, Zhengguang; Wang, Ping; Zheng, Xiaobo

    2011-01-01

    Soluble NSF attachment protein receptor (SNARE) proteins play a central role in membrane fusion and vesicle transport of eukaryotic organisms including fungi. We previously identified MoSce22 as a homolog of Saccharomyces cerevisiae SNARE protein Sec22 to be involved in growth, stress resistance, and pathogenicity of Magnaporthe oryzae. Here, we provide evidences that MoVam7, an ortholog of S. cerevisiae SNARE protein Vam7, exerts conserved functions in vacuolar morphogenesis and functions in pathogenicity of M. oryzae. Staining with neutral red and FM4-64 revealed the presence of abnormal fragmented vacuoles and an absence of the Spitzenkörper body in the ΔMovam7 mutant. The ΔMovam7 mutant also exhibited reduced vegetative growth, poor conidiation, and failure to produce the infection structure appressorium. Additionally, treatments with cell wall perturbing agents indicated weakened cell walls and altered distributions of the cell wall component chitin. Furthermore, the ΔMovam7 mutant showed a reduced accumulation of reactive oxygen species (ROS) in the hyphal apex and failed to cause diseases on the rice plant. In summary, our studies indicate that MoVam7, like MoSec22, is a component of the SNARE complex whose functions in vacuole assembly also underlies the growth, conidiation, appressorium formation, and pathogenicity of M. oryzae. Further studies of MoVam7, MoSec22, and additional members of the SNARE complex are likely to reveal critical mechanisms in vacuole formation and membrane trafficking that is linked to fungal pathogenicity. PMID:21283626

  17. MdSOS2L1 phosphorylates MdVHA-B1 to modulate malate accumulation in response to salinity in apple.

    PubMed

    Hu, Da-Gang; Sun, Cui-Hui; Sun, Mei-Hong; Hao, Yu-Jin

    2016-03-01

    Salt-induced phosphorylation of MdVHA-B1 protein was mediated by MdSOS2L1 protein kinase, and thereby increasing malate content in apple. Salinity is an important environmental factor that influences malate accumulation in apple. However, the molecular mechanism by which salinity regulates this process is poorly understood. In this work, we found that MdSOS2L1, a novel AtSOS2-LIKE protein kinase, interacts with V-ATPase subunit MdVHA-B1. Furthermore, MdSOS2L1 directly phosphorylates MdVHA-B1 at Ser(396) site to modulate malate accumulation in response to salt stress. Meanwhile, a series of transgenic analyses in apple calli showed that the MdSOS2L1-MdVHAB1 pathway was involved in the regulation of malate accumulation. Finally, a viral vector-based transformation approach demonstrated that the MdSOS2L1-MdVHAB1 pathway also modulated malate accumulation in apple fruits with or without salt stress. Collectively, our findings provide a new insight into the mechanism by which MdSOS2L1 phosphorylates MdVHA-B1 to modulate malate accumulation in response to salinity in apple.

  18. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  19. Protein-accumulating cells and dilated cisternae of the endoplasmic reticulum in three glucosinolate-containing genera: Armoracia, Capparis, Drypetes.

    PubMed

    Jørgensen, L B; Behnke, H D; Mabry, T J

    1977-01-01

    Three glucosinolate-containing species, Armoracia rusticana Gaertner, Meyer et Scherbius (Brassicaceae), Capparis cynophallophora L. (Capparaceae) and Drypetes roxburghii (Wall.) Hurusawa (Euphorbiaceae), are shown by both light and electron microscopy to contain protein-accumulating cells (PAC). The PAC of Armoracia and Copparis (former "myrosin cells") occur as idioblasts. The PAC of Drypetes are usual members among axial phloem parenchyma cells rather than idioblasts. In Drypetes the vacuoles of the PAC are shown ultrastructurally to contain finely fibrillar material and to originate from local dilatations of the endoplasmic reticulum. The vacuoles in PAC of Armoracia and Capparis seem to originate in the same way; but ultrastructurally, their content is finely granular. In addition, Armoracia and Capparis are shown by both light and electron microscopy to contain dilated cisternae (DC) of the endoplasmic reticulum in normal parenchyma cells, in accord with previous findings for several species within Brassicaceae. The relationship of PAC and DC to glucosinolates and the enzyme myrosinase is discussed.

  20. Genetic modifiers of abnormal organelle biogenesis in a Drosophila model of BLOC-1 deficiency

    PubMed Central

    Cheli, Verónica T.; Daniels, Richard W.; Godoy, Ruth; Hoyle, Diego J.; Kandachar, Vasundhara; Starcevic, Marta; Martinez-Agosto, Julian A.; Poole, Stephen; DiAntonio, Aaron; Lloyd, Vett K.; Chang, Henry C.; Krantz, David E.; Dell'Angelica, Esteban C.

    2010-01-01

    Biogenesis of lysosome-related organelles complex 1 (BLOC-1) is a protein complex formed by the products of eight distinct genes. Loss-of-function mutations in two of these genes, DTNBP1 and BLOC1S3, cause Hermansky–Pudlak syndrome, a human disorder characterized by defective biogenesis of lysosome-related organelles. In addition, haplotype variants within the same two genes have been postulated to increase the risk of developing schizophrenia. However, the molecular function of BLOC-1 remains unknown. Here, we have generated a fly model of BLOC-1 deficiency. Mutant flies lacking the conserved Blos1 subunit displayed eye pigmentation defects due to abnormal pigment granules, which are lysosome-related organelles, as well as abnormal glutamatergic transmission and behavior. Epistatic analyses revealed that BLOC-1 function in pigment granule biogenesis requires the activities of BLOC-2 and a putative Rab guanine-nucleotide-exchange factor named Claret. The eye pigmentation phenotype was modified by misexpression of proteins involved in intracellular protein trafficking; in particular, the phenotype was partially ameliorated by Rab11 and strongly enhanced by the clathrin-disassembly factor, Auxilin. These observations validate Drosophila melanogaster as a powerful model for the study of BLOC-1 function and its interactions with modifier genes. PMID:20015953

  1. Protein oxidation and degradation caused by particulate matter

    NASA Astrophysics Data System (ADS)

    Lai, Ching-Huang; Lee, Chun-Nin; Bai, Kuan-Jen; Yang, You-Lan; Chuang, Kai-Jen; Wu, Sheng-Ming; Chuang, Hsiao-Chi

    2016-09-01

    Particulate matter (PM) modulates the expression of autophagy; however, the role of selective autophagy by PM remains unclear. The objective of this study was to determine the underlying mechanisms in protein oxidation and degradation caused by PM. Human epithelial A549 cells were exposed to diesel exhaust particles (DEPs), urban dust (UD), and carbon black (CB; control particles). Cell survival and proliferation were significantly reduced by DEPs and UD in A549 cells. First, benzo(a)pyrene diolepoxide (BPDE) protein adduct was caused by DEPs at 150 μg/ml. Methionine oxidation (MetO) of human albumin proteins was induced by DEPs, UD, and CB; however, the protein repair mechanism that converts MetO back to methionine by methionine sulfoxide reductases A (MSRA) and B3 (MSRB3) was activated by DEPs and inhibited by UD, suggesting that oxidized protein was accumulating in cells. As to the degradation of oxidized proteins, proteasome and autophagy activation was induced by CB with ubiquitin accumulation, whereas proteasome and autophagy activation was induced by DEPs without ubiquitin accumulation. The results suggest that CB-induced protein degradation may be via an ubiquitin-dependent autophagy pathway, whereas DEP-induced protein degradation may be via an ubiquitin-independent autophagy pathway. A distinct proteotoxic effect may depend on the physicochemistry of PM.

  2. Glycogen Synthase Kinase-3β (GSK3β) Negatively Regulates PTTG1/Human Securin Protein Stability, and GSK3β Inactivation Correlates with Securin Accumulation in Breast Tumors*

    PubMed Central

    Mora-Santos, Mar; Limón-Mortés, M. Cristina; Giráldez, Servando; Herrero-Ruiz, Joaquín; Sáez, Carmen; Japón, Miguel Á.; Tortolero, Maria; Romero, Francisco

    2011-01-01

    PTTG1, also known as securin, is an inactivating partner of separase, the major effector for chromosome segregation during mitosis. At the metaphase-to-anaphase transition, securin is targeted for proteasomal destruction by the anaphase-promoting complex or cyclosome, allowing activation of separase. In addition, securin is overexpressed in metastatic or genomically instable tumors, suggesting a relevant role for securin in tumor progression. Stability of securin is regulated by phosphorylation; some phosphorylated forms are degraded out of mitosis, by the action of the SKP1-CUL1-F-box protein (SCF) complex. The kinases targeting securin for proteolysis have not been identified, and mechanistic insight into the cause of securin accumulation in human cancers is lacking. Here, we demonstrate that glycogen synthase kinase-3β (GSK3β) phosphorylates securin to promote its proteolysis via SCFβTrCP E3 ubiquitin ligase. Importantly, a strong correlation between securin accumulation and GSK3β inactivation was observed in breast cancer tissues, indicating that GSK3β inactivation may account for securin accumulation in breast cancers. PMID:21757741

  3. Glycogen synthase kinase-3beta (GSK3beta) negatively regulates PTTG1/human securin protein stability, and GSK3beta inactivation correlates with securin accumulation in breast tumors.

    PubMed

    Mora-Santos, Mar; Limón-Mortés, M Cristina; Giráldez, Servando; Herrero-Ruiz, Joaquín; Sáez, Carmen; Japón, Miguel Á; Tortolero, Maria; Romero, Francisco

    2011-08-26

    PTTG1, also known as securin, is an inactivating partner of separase, the major effector for chromosome segregation during mitosis. At the metaphase-to-anaphase transition, securin is targeted for proteasomal destruction by the anaphase-promoting complex or cyclosome, allowing activation of separase. In addition, securin is overexpressed in metastatic or genomically instable tumors, suggesting a relevant role for securin in tumor progression. Stability of securin is regulated by phosphorylation; some phosphorylated forms are degraded out of mitosis, by the action of the SKP1-CUL1-F-box protein (SCF) complex. The kinases targeting securin for proteolysis have not been identified, and mechanistic insight into the cause of securin accumulation in human cancers is lacking. Here, we demonstrate that glycogen synthase kinase-3β (GSK3β) phosphorylates securin to promote its proteolysis via SCF(βTrCP) E3 ubiquitin ligase. Importantly, a strong correlation between securin accumulation and GSK3β inactivation was observed in breast cancer tissues, indicating that GSK3β inactivation may account for securin accumulation in breast cancers.

  4. Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas

    DOE PAGES

    Hong-Hermesdorf, Anne; Miethke, Marcus; Gallaher, Sean D.; ...

    2014-10-26

    Here we identified a Cu-accumulating structure with a dynamic role in intracellular Cu homeostasis. During Zn limitation, Chlamydomonas reinhardtii hyperaccumulates Cu, a process dependent on the nutritional Cu sensor CRR1, but it is functionally Cu deficient. Visualization of intracellular Cu revealed major Cu accumulation sites coincident with electron-dense structures that stained positive for low pH and polyphosphate, suggesting that they are lysosome-related organelles. Nano-secondary ion MS showed colocalization of Ca and Cu, and X-ray absorption spectroscopy was consistent with Cu + accumulation in an ordered structure. Zn resupply restored Cu homeostasis concomitant with reduced abundance of these structures. Cu isotopemore » labeling demonstrated that sequestered Cu + became bioavailable for the synthesis of plastocyanin, and transcriptome profiling indicated that mobilized Cu became visible to CRR1. Cu trafficking to intracellular accumulation sites may be a strategy for preventing protein mismetallation during Zn deficiency and enabling efficient cuproprotein metallation or remetallation upon Zn resupply.« less

  5. Characterization of a S-adenosyl-l-methionine (SAM)-accumulating strain of Scheffersomyces stipitis.

    PubMed

    Križanović, Stela; Butorac, Ana; Mrvčić, Jasna; Krpan, Maja; Cindrić, Mario; Bačun-Družina, Višnja; Stanzer, Damir

    2015-06-01

    S-adenosyl-l-methionine (SAM) is an important molecule in the cellular metabolism of mammals. In this study, we examined several of the physiological characteristics of a SAM-accumulating strain of the yeast Scheffersomyces stipitis (M12), including SAM production, ergosterol content, and ethanol tolerance. S. stipitis M12 accumulated up to 52.48 mg SAM/g dry cell weight. Proteome analyses showed that the disruption of C-24 methylation in ergosterol biosynthesis, a step mediated by C-24 sterol methyltransferase (Erg6p), results in greater SAM accumulation by S. stipitis M12 compared to the wild-type strain. A comparative proteome-wide analysis identified 25 proteins that were differentially expressed by S. stipitis M12. These proteins are involved in ribosome biogenesis, translation, the stress response, ubiquitin-dependent catabolic processes, the cell cycle, ethanol tolerance, posttranslational modification, peroxisomal membrane stability, epigenetic regulation, the actin cytoskeleton and cell morphology, iron and copper homeostasis, cell signaling, and energy metabolism. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  6. Uridine prevents tamoxifen-induced liver lipid droplet accumulation

    PubMed Central

    2014-01-01

    Background Tamoxifen, an agonist of estrogen receptor, is widely prescribed for the prevention and long-term treatment of breast cancer. A side effect of tamoxifen is fatty liver, which increases the risk for non-alcoholic fatty liver disease. Prevention of tamoxifen-induced fatty liver has the potential to improve the safety of long-term tamoxifen usage. Methods Uridine, a pyrimidine nucleoside with reported protective effects against drug-induced fatty liver, was co-administered with tamoxifen in C57BL/6J mice. Liver lipid levels were evaluated with lipid visualization using coherent anti-Stokes Raman scatting (CARS) microscopy, biochemical assay measurement of triacylglyceride (TAG), and liquid chromatography coupled with mass spectrometry (LC-MS) measurement of membrane phospholipid. Blood TAG and cholesterol levels were measured. Mitochondrial respiration of primary hepatocytes in the presence of tamoxifen and/or uridine was evaluated by measuring oxygen consumption rate with an extracellular flux analyzer. Liver protein lysine acetylation profiles were evaluated with 1D and 2D Western blots. In addition, the relationship between endogenous uridine levels, fatty liver, and tamoxifen administration was evaluated in transgenic mice UPase1−/−and UPase1-TG. Results Uridine co-administration prevented tamoxifen-induced liver lipid droplet accumulation in mice. The most prominent effect of uridine co-administration with tamoxifen was the stimulation of liver membrane phospholipid biosynthesis. Uridine had no protective effect against tamoxifen-induced impairment to mitochondrial respiration of primary hepatocytes or liver TAG and cholesterol export. Uridine had no effect on tamoxifen-induced changes to liver protein acetylation profile. Transgenic mice UPase1−/−with increased pyrimidine salvage activity were protected against tamoxifen-induced liver lipid droplet accumulation. In contrast, UPase1-TG mice with increased pyrimidine catabolism activity had

  7. Uridine prevents tamoxifen-induced liver lipid droplet accumulation.

    PubMed

    Le, Thuc T; Urasaki, Yasuyo; Pizzorno, Giuseppe

    2014-05-23

    Tamoxifen, an agonist of estrogen receptor, is widely prescribed for the prevention and long-term treatment of breast cancer. A side effect of tamoxifen is fatty liver, which increases the risk for non-alcoholic fatty liver disease. Prevention of tamoxifen-induced fatty liver has the potential to improve the safety of long-term tamoxifen usage. Uridine, a pyrimidine nucleoside with reported protective effects against drug-induced fatty liver, was co-administered with tamoxifen in C57BL/6J mice. Liver lipid levels were evaluated with lipid visualization using coherent anti-Stokes Raman scatting (CARS) microscopy, biochemical assay measurement of triacylglyceride (TAG), and liquid chromatography coupled with mass spectrometry (LC-MS) measurement of membrane phospholipid. Blood TAG and cholesterol levels were measured. Mitochondrial respiration of primary hepatocytes in the presence of tamoxifen and/or uridine was evaluated by measuring oxygen consumption rate with an extracellular flux analyzer. Liver protein lysine acetylation profiles were evaluated with 1D and 2D Western blots. In addition, the relationship between endogenous uridine levels, fatty liver, and tamoxifen administration was evaluated in transgenic mice UPase1-/-and UPase1-TG. Uridine co-administration prevented tamoxifen-induced liver lipid droplet accumulation in mice. The most prominent effect of uridine co-administration with tamoxifen was the stimulation of liver membrane phospholipid biosynthesis. Uridine had no protective effect against tamoxifen-induced impairment to mitochondrial respiration of primary hepatocytes or liver TAG and cholesterol export. Uridine had no effect on tamoxifen-induced changes to liver protein acetylation profile. Transgenic mice UPase1-/-with increased pyrimidine salvage activity were protected against tamoxifen-induced liver lipid droplet accumulation. In contrast, UPase1-TG mice with increased pyrimidine catabolism activity had intrinsic liver lipid droplet

  8. Chromosomal abnormalities in human sperm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, R.H.

    1985-01-01

    The ability to analyze human sperm chromosome complements after penetration of zona pellucida-free hamster eggs provides the first opportunity to study the frequency and type of chromosomal abnormalities in human gametes. Two large-scale studies have provided information on normal men. We have studied 1,426 sperm complements from 45 normal men and found an abnormality rate of 8.9%. Brandriff et al. (5) found 8.1% abnormal complements in 909 sperm from 4 men. The distribution of numerical and structural abnormalities was markedly dissimilar in the 2 studies. The frequency of aneuploidy was 5% in our sample and only 1.6% in Brandriff's, perhapsmore » reflecting individual variability among donors. The frequency of 24,YY sperm was low: 0/1,426 and 1/909. This suggests that the estimates of nondisjunction based on fluorescent Y body data (1% to 5%) are not accurate. We have also studied men at increased risk of sperm chromosomal abnormalities. The frequency of chromosomally unbalanced sperm in 6 men heterozygous for structural abnormalities varied dramatically: 77% for t11;22, 32% for t6;14, 19% for t5;18, 13% for t14;21, and 0% for inv 3 and 7. We have also studied 13 cancer patients before and after radiotherapy and demonstrated a significant dose-dependent increase of sperm chromosome abnormalities (numerical and structural) 36 months after radiation treatment.« less

  9. Enhanced exosome secretion in Down syndrome brain - a protective mechanism to alleviate neuronal endosomal abnormalities.

    PubMed

    Gauthier, Sébastien A; Pérez-González, Rocío; Sharma, Ajay; Huang, Fang-Ke; Alldred, Melissa J; Pawlik, Monika; Kaur, Gurjinder; Ginsberg, Stephen D; Neubert, Thomas A; Levy, Efrat

    2017-08-29

    A dysfunctional endosomal pathway and abnormally enlarged early endosomes in neurons are an early characteristic of Down syndrome (DS) and Alzheimer's disease (AD). We have hypothesized that endosomal material can be released by endosomal multivesicular bodies (MVBs) into the extracellular space via exosomes to relieve neurons of accumulated endosomal contents when endosomal pathway function is compromised. Supporting this, we found that exosome secretion is enhanced in the brains of DS patients and a mouse model of the disease, and by DS fibroblasts. Furthermore, increased levels of the tetraspanin CD63, a regulator of exosome biogenesis, were observed in DS brains. Importantly, CD63 knockdown diminished exosome release and worsened endosomal pathology in DS fibroblasts. Taken together, these data suggest that increased CD63 expression enhances exosome release as an endogenous mechanism mitigating endosomal abnormalities in DS. Thus, the upregulation of exosome release represents a potential therapeutic goal for neurodegenerative disorders with endosomal pathology.

  10. Neural autoantibodies and neurophysiologic abnormalities in patients exposed to molds in water-damaged buildings.

    PubMed

    Campbell, Andrew W; Thrasher, Jack D; Madison, Roberta A; Vojdani, Aristo; Gray, Michael R; Johnson, Al

    2003-08-01

    Adverse health effects of fungal bioaerosols on occupants of water-damaged homes and other buildings have been reported. Recently, it has been suggested that mold exposure causes neurological injury. The authors investigated neurological antibodies and neurophysiological abnormalities in patients exposed to molds at home who developed symptoms of peripheral neuropathy (i.e., numbness, tingling, tremors, and muscle weakness in the extremities). Serum samples were collected and analyzed with the enzyme-linked immunosorbent assay (ELISA) technique for antibodies to myelin basic protein, myelin-associated glycoprotein, ganglioside GM1, sulfatide, myelin oligodendrocyte glycoprotein, alpha-B-crystallin, chondroitin sulfate, tubulin, and neurofilament. Antibodies to molds and mycotoxins were also determined with ELISA, as reported previously. Neurophysiologic evaluations for latency, amplitude, and velocity were performed on 4 motor nerves (median, ulnar, peroneal, and tibial), and for latency and amplitude on 3 sensory nerves (median, ulnar, and sural). Patients with documented, measured exposure to molds had elevated titers of antibodies (immunoglobulin [Ig]A, IgM, and IgG) to neural-specific antigens. Nerve conduction studies revealed 4 patient groupings: (1) mixed sensory-motor polyneuropathy (n = 55, abnormal), (2) motor neuropathy (n = 17, abnormal), (3) sensory neuropathy (n = 27, abnormal), and (4) those with symptoms but no neurophysiological abnormalities (n = 20, normal controls). All groups showed significantly increased autoantibody titers for all isotypes (IgA, IgM, and IgG) of antibodies to neural antigens when compared with 500 healthy controls. Groups 1 through 3 also exhibited abnormal neurophysiologic findings. The authors concluded that exposure to molds in water-damaged buildings increased the risk for development of neural autoantibodies, peripheral neuropathy, and neurophysiologic abnormalities in exposed individuals.

  11. A strategy for targeting recombinant proteins to protein storage vacuoles by fusion to Brassica napus napin in napin-depleted seeds.

    PubMed

    Hegedus, Dwayne D; Baron, Marcus; Labbe, Natalie; Coutu, Cathy; Lydiate, Derek; Lui, Helen; Rozwadowski, Kevin

    2014-03-01

    Seeds are capable of accumulating high levels of seed storage proteins (SSP), as well as heterologous proteins under certain conditions. Arabidopsis thaliana was used to develop a strategy to deplete seeds of an endogenous SSP and then replenish them with the same protein fused to a heterologous protein. In several other studies, competition with endogenous SSP for space and metabolic resources was shown to affect the accumulation of recombinant proteins in seeds. We used RNAi to reduce the expression of the five napin genes and deplete the seeds of this SSP. Targeting a recombinant protein to a vacuole or structure within the seed where it can be protected from cytosolic proteases can also promote its accumulation. To achieve this, a synthetic Brassica napus napin gene (Bn napin) was designed that was both impervious to the A. thaliana napin (At napin) RNAi construct and permitted fusion to a heterologous protein, in this case green fluorescent protein (GFP). GFP was placed in several strategic locations within Bn napin with consideration to maintaining structure, processing sites and possible vacuolar targeting signals. In transgenic A. thaliana plants, GFP was strongly localized to the seed protein storage vacuole in all Bn napin fusion configurations tested, but not when expressed alone. This SSP depletion-replenishment strategy outlined here would be applicable to expression of recombinant proteins in industrial crops that generally have large repertoires of endogenous SSP genes. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  12. [Cognitive abnormalities and cannabis use].

    PubMed

    Solowij, Nadia; Pesa, Nicole

    2010-05-01

    Evidence that cannabis use impairs cognitive function in humans has been accumulating in recent decades. The purpose of this overview is to update knowledge in this area with new findings from the most recent literature. Literature searches were conducted using the Web of Science database up to February 2010. The terms searched were: "cannabi*" or "marijuana", and "cogniti*" or "memory" or "attention" or "executive function", and human studies were reviewed preferentially over the animal literature. Cannabis use impairs memory, attention, inhibitory control, executive functions and decision making, both during the period of acute intoxication and beyond, persisting for hours, days, weeks or more after the last use of cannabis. Pharmacological challenge studies in humans are elucidating the nature and neural substrates of cognitive changes associated with various cannabinoids. Long-term or heavy cannabis use appears to result in longer-lasting cognitive abnormalities and possibly structural brain alterations. Greater adverse cognitive effects are associated with cannabis use commencing in early adolescence. The endogenous cannabinoid system is involved in regulatory neural mechanisms that modulate processes underlying a range of cognitive functions that are impaired by cannabis. Deficits in human users most likely therefore reflect neuroadaptations and altered functioning of the endogenous cannabinoid system.

  13. Aspirin suppresses the abnormal lipid metabolism in liver cancer cells via disrupting an NFκB-ACSL1 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Guang; Wang, Yuan; Feng, Jinyan

    Abnormal lipid metabolism is a hallmark of tumorigenesis. Hence, the alterations of metabolism enhance the development of hepatocellular carcinoma (HCC). Aspirin is able to inhibit the growth of cancers through targeting nuclear factor κB (NF-κB). However, the role of aspirin in disrupting abnormal lipid metabolism in HCC remains poorly understood. In this study, we report that aspirin can suppress the abnormal lipid metabolism of HCC cells through inhibiting acyl-CoA synthetase long-chain family member 1 (ACSL1), a lipid metabolism-related enzyme. Interestingly, oil red O staining showed that aspirin suppressed lipogenesis in HepG2 cells and Huh7 cells in a dose-dependent manner. Inmore » addition, aspirin attenuated the levels of triglyceride and cholesterol in the cells, respectively. Strikingly, we identified that aspirin was able to down-regulate ACSL1 at the levels of mRNA and protein. Moreover, we validated that aspirin decreased the nuclear levels of NF-κB in HepG2 cells. Mechanically, PDTC, an inhibitor of NF-κB, could down-regulate ACSL1 at the levels of mRNA and protein in the cells. Functionally, PDTC reduced the levels of lipid droplets, triglyceride and cholesterol in HepG2 cells. Thus, we conclude that aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling. Our finding provides new insights into the mechanism by which aspirin inhibits abnormal lipid metabolism of HCC. Therapeutically, aspirin is potentially available for HCC through controlling abnormal lipid metabolism. - Highlights: • Aspirin inhibits the levels of liquid droplets, triglyceride and cholesterol in HCC cells. • Aspirin is able to down-regulate ACSL1 in HCC cells. • NF-κB inhibitor PDTC can down-regulate ACSL1 and reduces lipogenesis in HCC cells. • Aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling.« less

  14. Hippocampal mutant APP and amyloid beta-induced cognitive decline, dendritic spine loss, defective autophagy, mitophagy and mitochondrial abnormalities in a mouse model of Alzheimer's disease.

    PubMed

    Manczak, Maria; Kandimalla, Ramesh; Yin, Xiangling; Reddy, P Hemachandra

    2018-04-15

    The purpose of our study was to determine the toxic effects of hippocampal mutant APP and amyloid beta (Aβ) in 12-month-old APP transgenic mice. Using rotarod and Morris water maze tests, immunoblotting and immunofluorescence, Golgi-cox staining and transmission electron microscopy, we assessed cognitive behavior, protein levels of synaptic, autophagy, mitophagy, mitochondrial dynamics, biogenesis, dendritic protein MAP2 and quantified dendritic spines and mitochondrial number and length in 12-month-old APP mice that express Swedish mutation. Mitochondrial function was assessed by measuring the levels of hydrogen peroxide, lipid peroxidation, cytochrome c oxidase activity and mitochondrial ATP. Morris water maze and rotarod tests revealed that hippocampal learning and memory and motor learning and coordination were impaired in APP mice relative to wild-type (WT) mice. Increased levels of mitochondrial fission proteins, Drp1 and Fis1 and decreased levels of fusion (Mfn1, Mfn2 and Opa1) biogenesis (PGC1α, NRF1, NRF2 and TFAM), autophagy (ATG5 and LC3BI, LC3BII), mitophagy (PINK1 and TERT), synaptic (synaptophysin and PSD95) and dendritic (MAP2) proteins were found in 12-month-old APP mice relative to age-matched non-transgenic WT mice. Golgi-cox staining analysis revealed that dendritic spines are significantly reduced. Transmission electron microscopy revealed significantly increased mitochondrial numbers and reduced mitochondrial length in APP mice. These findings suggest that hippocampal accumulation of mutant APP and Aβ is responsible for abnormal mitochondrial dynamics and defective biogenesis, reduced MAP2, autophagy, mitophagy and synaptic proteins and reduced dendritic spines and hippocampal-based learning and memory impairments, and mitochondrial structural and functional changes in 12-month-old APP mice.

  15. Expression of Human Complement Factor H Prevents Age-Related Macular Degeneration–Like Retina Damage and Kidney Abnormalities in Aged Cfh Knockout Mice

    PubMed Central

    Ding, Jin-Dong; Kelly, Una; Landowski, Michael; Toomey, Christopher B.; Groelle, Marybeth; Miller, Chelsey; Smith, Stephanie G.; Klingeborn, Mikael; Singhapricha, Terry; Jiang, Haixiang; Frank, Michael M.; Bowes Rickman, Catherine

    2016-01-01

    Complement factor H (CFH) is an important regulatory protein in the alternative pathway of the complement system, and CFH polymorphisms increase the genetic risk of age-related macular degeneration dramatically. These same human CFH variants have also been associated with dense deposit disease. To mechanistically study the function of CFH in the pathogenesis of these diseases, we created transgenic mouse lines using human CFH bacterial artificial chromosomes expressing full-length human CFH variants and crossed these to Cfh knockout (Cfh−/−) mice. Human CFH protein inhibited cleavage of mouse complement component 3 and factor B in plasma and in retinal pigment epithelium/choroid/sclera, establishing that human CFH regulates activation of the mouse alternative pathway. One of the mouse lines, which express relatively higher levels of CFH, demonstrated functional and structural protection of the retina owing to the Cfh deletion. Impaired visual function, detected as a deficit in the scotopic electroretinographic response, was improved in this transgenic mouse line compared with Cfh−/− mice, and transgenics had a thicker outer nuclear layer and less sub–retinal pigment epithelium deposit accumulation. In addition, expression of human CFH also completely protected the mice from developing kidney abnormalities associated with loss of CFH. These humanized CFH mice present a valuable model for study of the molecular mechanisms of age-related macular degeneration and dense deposit disease and for testing therapeutic targets. PMID:25447048

  16. Protective Effect of Tat PTD-Hsp27 Fusion Protein on Tau Hyperphosphorylation Induced by Okadaic Acid in the Human Neuroblastoma Cell Line SH-SY5Y.

    PubMed

    Choi, Sunghyun; Oh, Jae Hoon; Kim, Hyeseon; Nam, So Hee; Shin, Jeehae; Park, Jong-Sang

    2015-10-01

    Alzheimer's disease (AD) is an age-related disorder that causes a loss of brain function. Hyperphosphorylation of tau and the subsequent formation of intracellular neurofibrillary tangles (NFTs) are implicated in the pathogenesis of AD. Hyperphosphorylated tau accumulates into insoluble paired helical filaments that aggregate into NFTs; therefore, regulation of tau phosphorylation represents an important treatment approach for AD. Heat shock protein 27 (Hsp27) plays a specific role in human neurodegenerative diseases; however, few studies have examined its therapeutic effect. In this study, we induced tau hyperphosphorylation using okadaic acid, which is a protein phosphatase inhibitor, and generated a fusion protein of Hsp27 and the protein transduction domain of the HIV Tat protein (Tat-Hsp27) to enhance the delivery of Hsp27. We treated Tat-Hsp27 to SH-SY5Y neuroblastoma cells for 2 h; the transduction level was proportional to the Tat-hsp27 concentration. Additionally, Tat-Hsp27 reduced the level of hyperphosphorylated tau and protected cells from apoptotic cell death caused by abnormal tau aggregates. These results reveal that Hsp27 represents a valuable protein therapeutic for AD.

  17. Effective charge measurements reveal selective and preferential accumulation of anions, but not cations, at the protein surface in dilute salt solutions

    PubMed Central

    Gokarn, Yatin R; Fesinmeyer, R Matthew; Saluja, Atul; Razinkov, Vladimir; Chase, Susan F; Laue, Thomas M; Brems, David N

    2011-01-01

    Specific-ion effects are ubiquitous in nature; however, their underlying mechanisms remain elusive. Although Hofmeister-ion effects on proteins are observed at higher (>0.3M) salt concentrations, in dilute (<0.1M) salt solutions nonspecific electrostatic screening is considered to be dominant. Here, using effective charge (Q*) measurements of hen-egg white lysozyme (HEWL) as a direct and differential measure of ion-association, we experimentally show that anions selectively and preferentially accumulate at the protein surface even at low (<100 mM) salt concentrations. At a given ion normality (50 mN), the HEWL Q* was dependent on anion, but not cation (Li+, Na+, K+, Rb+, Cs+, GdnH+, and Ca2+), identity. The Q* decreased in the order F− > Cl− > Br− > NO3− ∼ I− > SCN− > ClO4− ≫ SO42−, demonstrating progressively greater binding of the monovalent anions to HEWL and also show that the SO42− anion, despite being strongly hydrated, interacts directly with the HEWL surface. Under our experimental conditions, we observe a remarkable asymmetry between anions and cations in their interactions with the HEWL surface. PMID:21432935

  18. MicroRNA-122 Influences the Development of Sperm Abnormalities from Human Induced Pluripotent Stem Cells by Regulating TNP2 Expression

    PubMed Central

    Huang, Yongyi; Liu, Jianjun; Zhao, Yanhui; Jiang, Lizhen; Huang, Qin

    2013-01-01

    Sperm abnormalities are one of the main factors responsible for male infertility; however, their pathogenesis remains unclear. The role of microRNAs in the development of sperm abnormalities in infertile men has not yet been investigated. Here, we used human induced pluripotent stem cells to investigate the influence of miR-122 expression on the differentiation of these cells into spermatozoa-like cells in vitro. After induction, mutant miR-122-transfected cells formed spermatozoa-like cells. Flow cytometry of DNA content revealed a significant increase in the haploid cell population in spermatozoa-like cells derived from mutant miR-122-transfected cells as compared to those derived from miR-122-transfected cells. During induction, TNP2 and protamine mRNA and protein levels were significantly higher in mutant miR-122-transfected cells than in miR-122-transfected cells. High-throughput isobaric tags for relative and absolute quantification were used to identify and quantify the different protein expression levels in miR-122- and mutant miR-122-transfected cells. Among all the proteins analyzed, the expression of lipoproteins, for example, APOB and APOA1, showed the most significant difference between the two groups. This study illustrates that miR-122 expression is associated with abnormal sperm development. MiR-122 may influence spermatozoa-like cells by suppressing TNP2 expression and inhibiting the expression of proteins associated with sperm development. PMID:23327642

  19. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves

    NASA Astrophysics Data System (ADS)

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Dwivedi, Sanjay; Deeba, Farah; Kumar, Smita; Suman, Shankar; Adhikari, Bijan; Shukla, Yogeshwar; Trivedi, Prabodh Kumar; Pandey, Vivek; Tripathi, Rudra Deo

    2015-11-01

    Arsenic (As) contamination of water is a global concern and rice consumption is the biggest dietary exposure to human posing carcinogenic risks, predominantly in Asia. Sulfur (S) is involved in di-sulfide linkage in many proteins and plays crucial role in As detoxification. Present study explores role of variable S supply on rice leaf proteome, its inclination towards amino acids (AA) profile and non protein thiols under arsenite exposure. Analysis of 282 detected proteins on 2-DE gel revealed 113 differentially expressed proteins, out of which 80 were identified by MALDI-TOF-TOF. The identified proteins were mostly involved in glycolysis, TCA cycle, AA biosynthesis, photosynthesis, protein metabolism, stress and energy metabolism. Among these, glycolytic enzymes play a major role in AA biosynthesis that leads to change in AAs profiling. Proteins of glycolytic pathway, photosynthesis and energy metabolism were also validated by western blot analysis. Conclusively S supplementation reduced the As accumulation in shoot positively skewed thiol metabolism and glycolysis towards AA accumulation under AsIII stress.

  20. Deferoxamine-mediated up-regulation of HIF-1α prevents dopaminergic neuronal death via the activation of MAPK family proteins in MPTP-treated mice.

    PubMed

    Guo, Chuang; Hao, Li-Juan; Yang, Zhao-Hui; Chai, Rui; Zhang, Shuai; Gu, Yu; Gao, Hui-Ling; Zhong, Man-Li; Wang, Tao; Li, Jia-Yi; Wang, Zhan-You

    2016-06-01

    Accumulating evidence suggests that an abnormal accumulation of iron in the substantia nigra (SN) is one of the defining characteristics of Parkinson's disease (PD). Accordingly, the potential neuroprotection of Fe chelators is widely acknowledged for the treatment of PD. Although desferrioxamine (DFO), an iron chelator widely used in clinical settings, has been reported to improve motor deficits and dopaminergic neuronal survival in animal models of PD, DFO has poor penetration to cross the blood-brain barrier and elicits side effects. We evaluated whether an intranasal administration of DFO improves the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced degeneration of dopaminergic neurons in the nigrostriatal axis and investigated the molecular mechanisms of intranasal DFO treatment in preventing MPTP-induced neurodegeneration. Treatment with DFO efficiently alleviated behavioral deficits, increased the survival of tyrosine hydroxylase (TH)-positive neurons, and decreased the action of astrocytes in the SN and striatum in an MPTP-induced PD mouse model. Interestingly, we found that DFO up-regulated the expression of HIF-1α protein, TH, vascular endothelial growth factor (VEGF), and growth associated protein 43 (GAP43) and down-regulated the expression of α-synuclein, divalent metal transporter with iron-responsive element (DMT1+IRE), and transferrin receptor (TFR). This was accompanied by a decrease in iron-positive cells in the SN and striatum of the DFO-treated group. We further revealed that DFO treatment significantly inhibited the MPTP-induced phosphorylation of the c-Jun N-terminal kinase (JNK) and differentially enhanced the phosphorylation of extracellular regulated protein kinases (ERK) and mitogen-activated protein kinase (MAPK)/P38 kinase. Additionally, the effects of DFO on increasing the Bcl-2/Bax ratio were further validated in vitro and in vivo. In SH-SY5Y cells, the DFO-mediated up-regulation of HIF-1α occurred via the activation of

  1. Accumulation of p62 in degenerated spinal cord under chronic mechanical compression: functional analysis of p62 and autophagy in hypoxic neuronal cells.

    PubMed

    Tanabe, Fumito; Yone, Kazunori; Kawabata, Naoya; Sakakima, Harutoshi; Matsuda, Fumiyo; Ishidou, Yasuhiro; Maeda, Shingo; Abematsu, Masahiko; Komiya, Setsuro; Setoguchi, Takao

    2011-12-01

    Intracellular accumulation of altered proteins, including p62 and ubiquitinated proteins, is the basis of most neurodegenerative disorders. The relationship among the accumulation of altered proteins, autophagy, and spinal cord dysfunction by cervical spondylotic myelopathy has not been clarified. We examined the expression of p62 and autophagy markers in the chronically compressed spinal cord of tiptoe-walking Yoshimura mice. In addition, we examined the expression and roles of p62 and autophagy in hypoxic neuronal cells. Western blot analysis showed the accumulation of p62, ubiquitinated proteins, and microtubule-associated protein 1 light chain 3 (LC3), an autophagic marker, in the compressed spinal cord. Immunohistochemical examinations showed that p62 accumulated in neurons, axons, astrocytes, and oligodendrocytes. Electron microscopy showed the expression of autophagy markers, including autolysosomes and autophagic vesicles, in the compressed spinal cord. These findings suggest the presence of p62 and autophagy in the degenerated compressed spinal cord. Hypoxic stress increased the expression of p62, ubiquitinated proteins, and LC3-II in neuronal cells. In addition, LC3 turnover assay and GFP-LC3 cleavage assay showed that hypoxic stress increased autophagy flux in neuronal cells. These findings suggest that hypoxic stress induces accumulation of p62 and autophagy in neuronal cells. The forced expression of p62 decreased the number of neuronal cells under hypoxic stress. These findings suggest that p62 accumulation under hypoxic stress promotes neuronal cell death. Treatment with 3-methyladenine, an autophagy inhibitor decreased the number of neuronal cells, whereas lithium chloride, an autophagy inducer increased the number of cells under hypoxic stress. These findings suggest that autophagy promotes neuronal cell survival under hypoxic stress. Our findings suggest that pharmacological inducers of autophagy may be useful for treating cervical spondylotic

  2. Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants.

    PubMed

    Xu, Wen; Cai, Shu-Yu; Zhang, Yun; Wang, Yu; Ahammed, Golam Jalal; Xia, Xiao-Jian; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Reiter, Russel J; Zhou, Jie

    2016-11-01

    Melatonin is a pleiotropic signaling molecule that provides physiological protection against diverse environmental stresses in plants. Nonetheless, the mechanisms for melatonin-mediated thermotolerance remain largely unknown. Here, we report that endogenous melatonin levels increased with a rise in ambient temperature and that peaked at 40°C. Foliar pretreatment with an optimal dose of melatonin (10 μmol/L) or the overexpression of N-acetylserotonin methyltransferase (ASMT) gene effectively ameliorated heat-induced photoinhibition and electrolyte leakage in tomato plants. Both exogenous melatonin treatment and endogenous melatonin manipulation by overexpression of ASMT decreased the levels of insoluble and ubiquitinated proteins, but enhanced the expression of heat-shock proteins (HSPs) to refold denatured and unfolded proteins under heat stress. Meanwhile, melatonin also induced expression of several ATG genes and formation of autophagosomes to degrade aggregated proteins under the same stress. Proteomic profile analyses revealed that protein aggregates for a large number of biological processes accumulated in wild-type plants. However, exogenous melatonin treatment or overexpression of ASMT reduced the accumulation of aggregated proteins. Aggregation responsive proteins such as HSP70 and Rubisco activase were preferentially accumulated and ubiquitinated in wild-type plants under heat stress, while melatonin mitigated heat stress-induced accumulation and ubiquitination of aggregated proteins. These results suggest that melatonin promotes cellular protein protection through induction of HSPs and autophagy to refold or degrade denatured proteins under heat stress in tomato plants. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. A Lactobacillus mutant capable of accumulating long-chain polyphosphates that enhance intestinal barrier function.

    PubMed

    Saiki, Asako; Ishida, Yasuaki; Segawa, Shuichi; Hirota, Ryuichi; Nakamura, Takeshi; Kuroda, Akio

    2016-05-01

    Inorganic polyphosphate (polyP) was previously identified as a probiotic-derived substance that enhances intestinal barrier function. PolyP-accumulating bacteria are expected to have beneficial effects on the human gastrointestinal tract. In this study, we selected Lactobacillus paracasei JCM 1163 as a strain with the potential to accumulate polyP, because among the probiotic bacteria stored in our laboratory, it had the largest amount of polyP. The chain length of polyP accumulated in L. paracasei JCM 1163 was approximately 700 phosphate (Pi) residues. L. paracasei JCM 1163 accumulated polyP when Pi was added to Pi-starved cells. We further improved the ability of L. paracasei JCM 1163 to accumulate polyP by nitrosoguanidine mutagenesis. The mutant accumulated polyP at a level of 1500 nmol/mg protein-approximately 190 times that of the wild-type strain. PolyP extracted from the L. paracasei JCM 1163 significantly suppressed the oxidant-induced intestinal permeability in mouse small intestine. In conclusion, we have succeeded in breeding the polyP-accumulating Lactobacillus mutant that is expected to enhance intestinal barrier function.

  4. Carotenoid accumulation in orange-pigmented Capsicum annuum fruit, regulated at multiple levels

    PubMed Central

    Rodriguez-Uribe, Laura; Guzman, Ivette; Rajapakse, Wathsala; Richins, Richard D.; O’Connell, Mary A.

    2012-01-01

    The pericarp of Capsicum fruit is a rich dietary source of carotenoids. Accumulation of these compounds may be controlled, in part, by gene transcription of biosynthetic enzymes. The carotenoid composition in a number of orange-coloured C. annuum cultivars was determined using HPLC and compared with transcript abundances for four carotenogenic enzymes, Psy, LcyB, CrtZ-2, and Ccs determined by qRT-PCR. There were unique carotenoid profiles as well as distinct patterns of transcription of carotenogenic enzymes within the seven orange-coloured cultivars. In one cultivar, ‘Fogo’, carrying the mutant ccs-3 allele, transcripts were detected for this gene, but no CCS protein accumulated. The premature stop termination in ccs-3 prevented expression of the biosynthetic activity to synthesize the capsanthin and capsorubin forms of carotenoids. In two other orange-coloured cultivars, ‘Orange Grande’ and ‘Oriole’, both with wild-type versions of all four carotenogenic enzymes, no transcripts for Ccs were detected and no red pigments accumulated. Finally, in a third case, the orange-coloured cultivar, Canary, transcripts for all four of the wild-type carotenogenic enzymes were readily detected yet no CCS protein appeared to accumulate and no red carotenoids were synthesized. In the past, mutations in Psy and Ccs have been identified as the loci controlling colour in the fruit. Now there is evidence that a non-structural gene may control colour development in Capsicum. PMID:21948863

  5. Accumulation of senescent cells in mitotic tissue of aging primates.

    PubMed

    Jeyapalan, Jessie C; Ferreira, Mark; Sedivy, John M; Herbig, Utz

    2007-01-01

    Cellular senescence, a stress induced growth arrest of somatic cells, was first documented in cell cultures over 40 years ago, however its physiological significance has only recently been demonstrated. Using novel biomarkers of cellular senescence we examined whether senescent cells accumulate in tissues from baboons of ages encompassing the entire lifespan of this species. We show that dermal fibroblasts, displaying markers of senescence such as telomere damage, active checkpoint kinase ATM, high levels of heterochromatin proteins and elevated levels of p16, accumulate in skin biopsies from baboons with advancing age. The number of dermal fibroblasts containing damaged telomeres reaches a value of over 15% of total fibroblasts, whereas 80% of cells contain high levels of the heterochromatin protein HIRA. In skeletal muscle, a postmitotic tissue, only a small percentage of myonuclei containing damaged telomeres were detected regardless of animal age. The presence of senescent cells in mitotic tissues might therefore be a contributing factor to aging and age related pathology and provides further evidence that cellular senescence is a physiological event.

  6. Accumulation of Senescent Cells in Mitotic Tissue of Aging Primates

    PubMed Central

    Jeyapalan, Jessie C.; Ferreira, Mark; Sedivy, John M.; Herbig, Utz

    2013-01-01

    Cellular senescence, a stress induced growth arrest of somatic cells, was first documented in cell cultures over forty years ago, however its physiological significance has only recently been demonstrated. Using novel biomarkers of cellular senescence we examined whether senescent cells accumulate in tissues from baboons of ages encompassing the entire lifespan of this species. We show that dermal fibroblasts, displaying markers of senescence such as telomere damage, active checkpoint kinase ATM, high levels of heterochromatin proteins and elevated levels of p16, accumulate in skin biopsies from baboons with advancing age. The number of dermal fibroblasts containing damaged telomeres reaches a value of over 15% of total fibroblasts, whereas 80% of cells contain high levels of the heterochromatin protein HIRA. In skeletal muscle, a postmitotic tissue, only a small percentage of myonuclei containing damaged telomeres were detected regardless of animal age. The presence of senescent cells in mitotic tissues might therefore be a contributing factor to aging and age related pathology and provides further evidence that cellular senescence is a physiological event. PMID:17116315

  7. Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer's disease amyloid plaques.

    PubMed

    Gowrishankar, Swetha; Yuan, Peng; Wu, Yumei; Schrag, Matthew; Paradise, Summer; Grutzendler, Jaime; De Camilli, Pietro; Ferguson, Shawn M

    2015-07-14

    Through a comprehensive analysis of organellar markers in mouse models of Alzheimer's disease, we document a massive accumulation of lysosome-like organelles at amyloid plaques and establish that the majority of these organelles reside within swollen axons that contact the amyloid deposits. This close spatial relationship between axonal lysosome accumulation and extracellular amyloid aggregates was observed from the earliest stages of β-amyloid deposition. Notably, we discovered that lysosomes that accumulate in such axons are lacking in multiple soluble luminal proteases and thus are predicted to be unable to efficiently degrade proteinaceous cargos. Of relevance to Alzheimer's disease, β-secretase (BACE1), the protein that initiates amyloidogenic processing of the amyloid precursor protein and which is a substrate for these proteases, builds up at these sites. Furthermore, through a comparison between the axonal lysosome accumulations at amyloid plaques and neuronal lysosomes of the wild-type brain, we identified a similar, naturally occurring population of lysosome-like organelles in neuronal processes that is also defined by its low luminal protease content. In conjunction with emerging evidence that the lysosomal maturation of endosomes and autophagosomes is coupled to their retrograde transport, our results suggest that extracellular β-amyloid deposits cause a local impairment in the retrograde axonal transport of lysosome precursors, leading to their accumulation and a blockade in their further maturation. This study both advances understanding of Alzheimer's disease brain pathology and provides new insights into the subcellular organization of neuronal lysosomes that may have broader relevance to other neurodegenerative diseases with a lysosomal component to their pathology.

  8. PROTEIN METABOLISM AND EXCHANGE AS INFLUENCED BY CONSTRICTION OF THE VENA CAVA

    PubMed Central

    McKee, Frank W.; Schloerb, Paul R.; Schilling, John A.; Tishkoff, Garson H.; Whipple, George H.

    1948-01-01

    Constriction of inferior vena cava above the diaphragm is used to produce experimental ascites in the dog. This type of experimental ascites drains the body protein reserves, reduces the level of circulating plasma proteins, and in effect is an internal plasmapheresis. As the ascitic fluid is withdrawn and the proteins measured, we observe a production of ascitic protein (80–90 gm. per week) comparable to that removed by plasmapheresis (bleeding and replacement of red cells in saline). High protein diet tends to decrease the ascites but the protein content of the ascitic fluid may increase. Sodium chloride increases notably the volume of the ascites which accumulates and the total ascitic protein output increases. Sodium-free salt mixtures have a negative influence. High protein diet low in sodium salts gives minimal ascitic accumulation under these conditions. The question of circulation of the ascitic fluid is raised—how rapid is the absorption and the related accumulation? PMID:18858638

  9. Expression of human PQBP-1 in Drosophila impairs long-term memory and induces abnormal courtship.

    PubMed

    Yoshimura, Natsue; Horiuchi, Daisuke; Shibata, Masao; Saitoe, Minoru; Qi, Mei-Ling; Okazawa, Hitoshi

    2006-04-17

    Frame shift mutations of the polyglutamine binding protein-1 (PQBP1) gene lead to total or partial truncation of the C-terminal domain (CTD) and cause mental retardation in human patients. Interestingly, normal Drosophila homologue of PQBP-1 lacks CTD. As a model to analyze the molecular network of PQBP-1 affecting intelligence, we generated transgenic flies expressing human PQBP-1 with CTD. Pavlovian olfactory conditioning revealed that the transgenic flies showed disturbance of long-term memory. In addition, they showed abnormal courtship that male flies follow male flies. Abnormal functions of PQBP-1 or its binding partner might be linked to these symptoms.

  10. Senescence marker protein-30/superoxide dismutase 1 double knockout mice exhibit increased oxidative stress and hepatic steatosis

    PubMed Central

    Kondo, Yoshitaka; Masutomi, Hirofumi; Noda, Yoshihiro; Ozawa, Yusuke; Takahashi, Keita; Handa, Setsuko; Maruyama, Naoki; Shimizu, Takahiko; Ishigami, Akihito

    2014-01-01

    Superoxide dismutase 1 (SOD1) is an antioxidant enzyme that converts superoxide anion radicals into hydrogen peroxide and molecular oxygen. The senescence marker protein-30 (SMP30) is a gluconolactonase that functions as an antioxidant protein in mammals due to its involvement in ascorbic acid (AA) biosynthesis. SMP30 also participates in Ca2+ efflux by activating the calmodulin-dependent Ca2+-pump. To reveal the role of oxidative stress in lipid metabolism defects occurring in non-alcoholic fatty liver disease pathogenesis, we generated SMP30/SOD1-double knockout (SMP30/SOD1-DKO) mice and investigated their survival curves, plasma and hepatic lipid profiles, amounts of hepatic oxidative stress, and hepatic protein levels expressed by genes related to lipid metabolism. While SMP30/SOD1-DKO pups had no growth retardation by 14 days of age, they did have low plasma and hepatic AA levels. Thereafter, 39% and 53% of male and female pups died by 15–24 and 89 days of age, respectively. Compared to wild type, SMP30-KO and SOD1-KO mice, by 14 days SMP30/SOD1-DKO mice exhibited: (1) higher plasma levels of triglyceride and aspartate aminotransferase; (2) severe accumulation of hepatic triglyceride and total cholesterol; (3) higher levels of superoxide anion radicals and thiobarbituric acid reactive substances in livers; and (4) decreased mRNA and protein levels of Apolipoprotein B (ApoB) in livers – ApoB is an essential component of VLDL secretion. These results suggest that high levels of oxidative stress due to concomitant deficiency of SMP30 and/or AA, and SOD1 cause abnormal plasma lipid metabolism, hepatic lipid accumulation and premature death resulting from impaired VLDL secretion. PMID:25003023

  11. Endoplasmic Reticulum Stress Caused by Lipoprotein Accumulation Suppresses Immunity against Bacterial Pathogens and Contributes to Immunosenescence

    PubMed Central

    Singh, Jogender

    2017-01-01

    ABSTRACT The unfolded protein response (UPR) is a stress response pathway that is activated upon increased unfolded and/or misfolded proteins in the endoplasmic reticulum (ER), and enhanced ER stress response prolongs life span and improves immunity. However, the mechanism by which ER stress affects immunity remains poorly understood. Using the nematode Caenorhabditis elegans, we show that mutations in the lipoproteins vitellogenins, which are homologs of human apolipoprotein B-100, resulted in upregulation of the UPR. Lipoprotein accumulation in the intestine adversely affects the immune response and the life span of the organism, suggesting that it could be a contributing factor to immunosenescence. We show that lipoprotein accumulation inhibited the expression of several immune genes encoding proteins secreted by the intestinal cells in an IRE-1-independent manner. Our studies provide a mechanistic explanation for adverse effects caused by protein aggregation and ER stress on immunity and highlight the role of an IRE-1-independent pathway in the suppression of the expression of genes encoding secreted proteins. PMID:28559483

  12. Skeletal accumulation of fluorescently tagged zoledronate is higher in animals with early stage chronic kidney disease.

    PubMed

    Swallow, E A; Aref, M W; Chen, N; Byiringiro, I; Hammond, M A; McCarthy, B P; Territo, P R; Kamocka, M M; Winfree, S; Dunn, K W; Moe, S M; Allen, M R

    2018-06-11

    This work examines the skeletal accumulation of fluorescently tagged zoledronate in an animal model of chronic kidney disease. The results show higher accumulation in 24-h post-dose animals with lower kidney function due to greater amounts of binding at individual surfaces. Chronic kidney disease (CKD) patients suffer from increased rates of skeletal-related mortality from changes driven by biochemical abnormalities. Bisphosphonates are commonly used in reducing fracture risk in a variety of diseases, yet their use is not recommended in advanced stages of CKD. This study aimed to characterize the accumulation of a single dose of fluorescently tagged zoledronate (FAM-ZOL) in the setting of reduced kidney function. At 25 weeks of age, FAM-ZOL was administered to normal and CKD rats. Twenty-four hours later, multiple bones were collected and assessed using bulk fluorescence imaging, two-photon imaging, and dynamic histomorphometry. CKD animals had significantly higher levels of FAM-ZOL accumulation in the proximal tibia, radius, and ulna, but not in lumbar vertebral body or mandible, based on multiple measurement modalities. Although a majority of trabecular bone surfaces were covered with FAM-ZOL in both normal and CKD animals, the latter had significantly higher levels of fluorescence per unit bone surface in the proximal tibia. These results provide new data regarding how reduced kidney function affects drug accumulation in rat bone.

  13. A multidrug and toxic compound extrusion transporter mediates berberine accumulation into vacuoles in Coptis japonica.

    PubMed

    Takanashi, Kojiro; Yamada, Yasuyuki; Sasaki, Takayuki; Yamamoto, Yoko; Sato, Fumihiko; Yazaki, Kazufumi

    2017-06-01

    Plants produce a large variety of alkaloids, which have diverse chemical structures and biological activities. Many of these alkaloids accumulate in vacuoles. Although some membrane proteins on tonoplasts have been identified as alkaloid uptake transporters, few have been characterized to date, and relatively little is known about the mechanisms underlying alkaloid transport and accumulation in plant cells. Berberine is a model alkaloid. Although all genes involved in berberine biosynthesis, as well as the master regulator, have been identified, the gene responsible for the final accumulation of berberine at tonoplasts has not been determined. This study showed that a multidrug and toxic compound extrusion protein 1 (CjMATE1) may act as a berberine transporter in cultured Coptis japonica cells. CjMATE1 was found to localize at tonoplasts in C. japonica cells and, in intact plants, to be expressed preferentially in rhizomes, the site of abundant berberine accumulation. Cellular transport analysis using a yeast expression system showed that CjMATE1 could transport berberine. Expression analysis showed that RNAi suppression of CjbHLH1, a master transcription factor of the berberine biosynthetic pathway, markedly reduced the expression of CjMATE1 in a manner similar to the suppression of berberine biosynthetic genes. These results strongly suggest that CjMATE1 is the transporter that mediates berberine accumulation in vacuoles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Principles of protein targeting to the nucleolus.

    PubMed

    Martin, Robert M; Ter-Avetisyan, Gohar; Herce, Henry D; Ludwig, Anne K; Lättig-Tünnemann, Gisela; Cardoso, M Cristina

    2015-01-01

    The nucleolus is the hallmark of nuclear compartmentalization and has been shown to exert multiple roles in cellular metabolism besides its main function as the place of rRNA synthesis and assembly of ribosomes. Nucleolar proteins dynamically localize and accumulate in this nuclear compartment relative to the surrounding nucleoplasm. In this study, we have assessed the molecular requirements that are necessary and sufficient for the localization and accumulation of peptides and proteins inside the nucleoli of living cells. The data showed that positively charged peptide entities composed of arginines alone and with an isoelectric point at and above 12.6 are necessary and sufficient for mediating significant nucleolar accumulation. A threshold of 6 arginines is necessary for peptides to accumulate in nucleoli, but already 4 arginines are sufficient when fused within 15 amino acid residues of a nuclear localization signal of a protein. Using a pH sensitive dye, we found that the nucleolar compartment is particularly acidic when compared to the surrounding nucleoplasm and, hence, provides the ideal electrochemical environment to bind poly-arginine containing proteins. In fact, we found that oligo-arginine peptides and GFP fusions bind RNA in vitro. Consistent with RNA being the main binding partner for arginines in the nucleolus, we found that the same principles apply to cells from insects to man, indicating that this mechanism is highly conserved throughout evolution.

  15. Inhibition of Protein Ubiquitination by Paraquat and 1-Methyl-4-Phenylpyridinium Impairs Ubiquitin-Dependent Protein Degradation Pathways.

    PubMed

    Navarro-Yepes, Juliana; Anandhan, Annadurai; Bradley, Erin; Bohovych, Iryna; Yarabe, Bo; de Jong, Annemieke; Ovaa, Huib; Zhou, You; Khalimonchuk, Oleh; Quintanilla-Vega, Betzabet; Franco, Rodrigo

    2016-10-01

    Intracytoplasmic inclusions of protein aggregates in dopaminergic cells (Lewy bodies) are the pathological hallmark of Parkinson's disease (PD). Ubiquitin (Ub), alpha (α)-synuclein, p62/sequestosome 1, and oxidized proteins are the major components of Lewy bodies. However, the mechanisms involved in the impairment of misfolded/oxidized protein degradation pathways in PD are still unclear. PD is linked to mitochondrial dysfunction and environmental pesticide exposure. In this work, we evaluated the effects of the pesticide paraquat (PQ) and the mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP(+)) on Ub-dependent protein degradation pathways. No increase in the accumulation of Ub-bound proteins or aggregates was observed in dopaminergic cells (SK-N-SH) treated with PQ or MPP(+), or in mice chronically exposed to PQ. PQ decreased Ub protein content, but not its mRNA transcription. Protein synthesis inhibition with cycloheximide depleted Ub levels and potentiated PQ-induced cell death. The inhibition of proteasomal activity by PQ was found to be a late event in cell death progression and had neither effect on the toxicity of either MPP(+) or PQ, nor on the accumulation of oxidized sulfenylated, sulfonylated (DJ-1/PARK7 and peroxiredoxins), and carbonylated proteins induced by PQ. PQ- and MPP(+)-induced Ub protein depletion prompted the dimerization/inactivation of the Ub-binding protein p62 that regulates the clearance of ubiquitinated proteins by autophagy. We confirmed that PQ and MPP(+) impaired autophagy flux and that the blockage of autophagy by the overexpression of a dominant-negative form of the autophagy protein 5 (dnAtg5) stimulated their toxicity, but there was no additional effect upon inhibition of the proteasome. PQ induced an increase in the accumulation of α-synuclein in dopaminergic cells and membrane-associated foci in yeast cells. Our results demonstrate that the inhibition of protein ubiquitination by PQ and MPP(+) is involved in the

  16. Inhibition of protein ubiquitination by paraquat and 1-methyl-4-phenylpyridinium impairs ubiquitin-dependent protein degradation pathways

    PubMed Central

    Navarro-Yepes, Juliana; Anandhan, Annadurai; Bradley, Erin; Bohovych, Iryna; Yarabe, Bo; de Jong, Annemieke; Ovaa, Huib; Zhou, You; Khalimonchuk, Oleh; Quintanilla-Vega, Betzabet; Franco, Rodrigo

    2016-01-01

    Intracytoplasmic inclusions of protein aggregates in dopaminergic cells (Lewy bodies) are the pathological hallmark of Parkinson’s disease (PD). Ubiquitin (Ub), alpha [α]-synuclein, p62/sequestosome 1 and oxidized proteins are major components of Lewy bodies. However, the mechanisms involved in the impairment of misfolded/oxidized protein degradation pathways in PD are still unclear. PD is linked to mitochondrial dysfunction and environmental pesticide exposure. In this work, we evaluated the effect of the pesticide paraquat (PQ) and the mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP+) on Ub-dependent protein degradation pathways. No increase in the accumulation of Ub-bound proteins or aggregates was observed in dopaminergic cells (SK-N-SH) treated with PQ or MPP+, or in mice chronically exposed to PQ. PQ decreased Ub protein content, but not its mRNA transcription. Protein synthesis inhibition with cycloheximide depleted Ub levels and potentiated PQ–induced cell death. Inhibition of proteasomal activity by PQ was found to be a late event in cell death progression, and had no effect on either the toxicity of MPP+ or PQ, or the accumulation of oxidized sulfenylated, sulfonylated (DJ-1/PARK7 and peroxiredoxins) and carbonylated proteins induced by PQ. PQ- and MPP+-induced Ub protein depletion prompted the dimerization/inactivation of the Ub-binding protein p62 that regulates the clearance of ubiquitinated proteins by autophagic. We confirmed that PQ and MPP+ impaired autophagy flux, and that the blockage of autophagy by the overexpression of a dominant-negative form of the autophagy protein 5 (dnAtg5) stimulated their toxicity, but there was no additional effect upon inhibition of the proteasome. PQ induced an increase in the accumulation of α-synuclein in dopaminergic cells and membrane associated foci in yeast cells. Our results demonstrate that inhibition of protein ubiquitination by PQ and MPP+ is involved in the dysfunction of Ub-dependent protein

  17. Induction of IAPP amyloid deposition and associated diabetic abnormalities by a prion-like mechanism

    PubMed Central

    Morales-Scheihing, Diego; Salvadores, Natalia; Moreno-Gonzalez, Ines; Gonzalez, Cesar; Shahnawaz, Mohammad

    2017-01-01

    Although a large proportion of patients with type 2 diabetes (T2D) accumulate misfolded aggregates composed of the islet amyloid polypeptide (IAPP), its role in the disease is unknown. Here, we show that pancreatic IAPP aggregates can promote the misfolding and aggregation of endogenous IAPP in islet cultures obtained from transgenic mouse or healthy human pancreas. Islet homogenates immunodepleted with anti-IAPP–specific antibodies were not able to induce IAPP aggregation. Importantly, intraperitoneal inoculation of pancreatic homogenates containing IAPP aggregates into transgenic mice expressing human IAPP dramatically accelerates IAPP amyloid deposition, which was accompanied by clinical abnormalities typical of T2D, including hyperglycemia, impaired glucose tolerance, and a substantial reduction on β cell number and mass. Finally, induction of IAPP deposition and diabetic abnormalities were also induced in vivo by administration of IAPP aggregates prepared in vitro using pure, synthetic IAPP. Our findings suggest that some of the pathologic and clinical alterations of T2D might be transmissible through a similar mechanism by which prions propagate in prion diseases. PMID:28765400

  18. Natural variation in floral nectar proteins of two Nicotiana attenuata accessions.

    PubMed

    Seo, Pil Joon; Wielsch, Natalie; Kessler, Danny; Svatos, Ales; Park, Chung-Mo; Baldwin, Ian T; Kim, Sang-Gyu

    2013-07-13

    Floral nectar (FN) contains not only energy-rich compounds to attract pollinators, but also defense chemicals and several proteins. However, proteomic analysis of FN has been hampered by the lack of publically available sequence information from nectar-producing plants. Here we used next-generation sequencing and advanced proteomics to profile FN proteins in the opportunistic outcrossing wild tobacco, Nicotiana attenuata. We constructed a transcriptome database of N. attenuata and characterized its nectar proteome using LC-MS/MS. The FN proteins of N. attenuata included nectarins, sugar-cleaving enzymes (glucosidase, galactosidase, and xylosidase), RNases, pathogen-related proteins, and lipid transfer proteins. Natural variation in FN proteins of eleven N. attenuata accessions revealed a negative relationship between the accumulation of two abundant proteins, nectarin1b and nectarin5. In addition, microarray analysis of nectary tissues revealed that protein accumulation in FN is not simply correlated with the accumulation of transcripts encoding FN proteins and identified a group of genes that were specifically expressed in the nectary. Natural variation of identified FN proteins in the ecological model plant N. attenuata suggests that nectar chemistry may have a complex function in plant-pollinator-microbe interactions.

  19. Natural variation in floral nectar proteins of two Nicotiana attenuata accessions

    PubMed Central

    2013-01-01

    Background Floral nectar (FN) contains not only energy-rich compounds to attract pollinators, but also defense chemicals and several proteins. However, proteomic analysis of FN has been hampered by the lack of publically available sequence information from nectar-producing plants. Here we used next-generation sequencing and advanced proteomics to profile FN proteins in the opportunistic outcrossing wild tobacco, Nicotiana attenuata. Results We constructed a transcriptome database of N. attenuata and characterized its nectar proteome using LC-MS/MS. The FN proteins of N. attenuata included nectarins, sugar-cleaving enzymes (glucosidase, galactosidase, and xylosidase), RNases, pathogen-related proteins, and lipid transfer proteins. Natural variation in FN proteins of eleven N. attenuata accessions revealed a negative relationship between the accumulation of two abundant proteins, nectarin1b and nectarin5. In addition, microarray analysis of nectary tissues revealed that protein accumulation in FN is not simply correlated with the accumulation of transcripts encoding FN proteins and identified a group of genes that were specifically expressed in the nectary. Conclusions Natural variation of identified FN proteins in the ecological model plant N. attenuata suggests that nectar chemistry may have a complex function in plant-pollinator-microbe interactions. PMID:23848992

  20. C‑reactive protein/oxidized low density lipoprotein/β2‑glycoprotein i complexes induce lipid accumulation and inflammatory reaction in macrophages via p38/mitogen‑activated protein kinase and nuclear factor‑κB signaling pathways.

    PubMed

    Wang, Jie; Feng, Mei-Jun; Zhang, Rui; Yu, De-Min; Zhou, Sai-Jun; Chen, Rui; Yu, Pei

    2016-10-01

    Oxidized low-density lipoprotein (oxLDL) can bind to β2-glycoprotein I (β2GPI) and C-reactive protein (CRP) to form stable complexes, which exert certain effects in diabetic cardiovascular disease. A previous study by our group has confirmed that the resulting complexes promote atherosclerosis in diabetic BALB/c mice. The present study was designed to investigate the effects and potential mechanisms of oxLDL complexes on lipid accumulation and inflammatory reactions in RAW264.7 macrophages cultured in a hyperglycemic environment. Cultured cells were divided into seven groups, which were treated with phosphate‑buffered saline (control), CRP, β2GPI, oxLDL, CRP/oxLDL, oxLDL/β2GPI or CRP/oxLDL/β2GPI. The results revealed the formation of foam cells in the oxLDL, CRP/oxLDL, oxLDL/β2GPI as well as CRP/oxLDL/β2GPI groups. Compared with oxLDL, the three complexes induced less lipid accumulation (P<0.05) through inhibiting the expression of CD36 mRNA and promoting the expression of and ABCG1 mRNA (P<0.05 vs. oxLDL). Furthermore, the levels of inflammatory factors interleukin (IL)‑1β, IL‑6 and tumor necrosis factor‑α were elevated in the CRP/oxLDL and CRP/oxLDL/β2GPI groups (P>0.05 vs. oxLDL), and obvious effects on p38/mitogen‑activated protein kinase and nuclear factor (NF)‑κB phosphorylation were also observed in these groups (P<0.05 vs. oxLDL). These results suggested that CRP/oxLDL/βG2P1 complexes may induce lipid accumulation and inflammation in macrophages via the p38/MAPK and NF‑κB signaling pathways. However, some differences were observed between the complexes, which may be attributed to the property of each constituent; therefore, further studies are required.