Science.gov

Sample records for abnormal sex chromosome

  1. Abnormal human sex chromosome constitutions

    SciTech Connect

    1993-12-31

    Chapter 22, discusses abnormal human sex chromosome constitution. Aneuploidy of X chromosomes with a female phenotype, sex chromosome aneuploidy with a male phenotype, and various abnormalities in X chromosome behavior are described. 31 refs., 2 figs.

  2. Cognitive and Academic Skills in Children with Sex Chromosome Abnormalities.

    ERIC Educational Resources Information Center

    Bender, Bruce G.; And Others

    1991-01-01

    Follows 46 unselected children with various sex chromosome abnormalities using intellectual, language, and achievement testing. Notes that, although most children were not mentally retarded, most received special education help. Finds support for the inference that learning disorders were genetically mediated in this group. (RS)

  3. Non-invasive prenatal testing for sex chromosome abnormalities: a source of confusion.

    PubMed

    Kalafat, Erkan; Seval, Mehmet Murat; Turgay, Batuhan; Koç, Acar

    2015-01-01

    Cell-free fetal DNA has received significant attention for the purposes of prenatal genetic testing in the past decade. Fetal DNA testing is a new method and promising for many applications such as aneuploidy screening, prenatal diagnosis, prediction of preeclampsia and more. A 37-year-old primigravida, with a pregnancy conceived by intracytoplasmic sperm injection (ICSI), was offered non-invasive prenatal testing (NIPT) due to advanced maternal age. NIPT performed at 23 weeks' gestation reported a diagnosis of monosomy X. She was offered an amniocentesis, which revealed a euploid fetus with no sex chromosome abnormalities. Even with single nucleotide polymorphism-based NIPT, positive predictive value for detection of sex chromosome abnormalities is around 50%. Positive results of NIPT should be heeded with caution and an invasive diagnostic procedure should be performed, especially for rare chromosomal abnormalities and sex chromosome abnormalities where NIPT performs subpar compared to its performance for detection of trisomy 21. PMID:25631759

  4. Chromosome Abnormalities

    MedlinePlus

    ... of a condition caused by numerical abnormalities is Down syndrome, which is marked by mental retardation, learning difficulties, ... muscle tone (hypotonia) in infancy. An individual with Down syndrome has three copies of chromosome 21 rather than ...

  5. Head circumference and IQ of children with sex chromosome abnormalities.

    PubMed

    Ratcliffe, S G; Masera, N; Pan, H; McKie, M

    1994-06-01

    At all ages XXX girls had significantly smaller head circumferences than control girls. Their IQ deficit was 24 points and IQ at age seven correlated significantly with head circumference at birth. In XXY boys, head circumference was significantly reduced at birth and up to nine years of age. The XXY boys' IQ deficit was 22 points, but IQ did not correlate with head circumference, as reductions in the two parameters did not always occur in tandem. The ratio of height-to-head circumference differed most in this group and could be useful in clinical recognition of this condition. XYY boys' head size did not differ from controls, despite their greater height, lower IQ scores indicating an adverse effect of an additional Y chromosome on brain development. The major factor affecting IQ outcome in the cohort was abnormal karyotype, with smaller effects from social class and head growth. PMID:8005365

  6. Chromosome Abnormalities

    MedlinePlus

    ... division. There are two kinds of cell division, mitosis and meiosis. Mitosis results in two cells that are duplicates of the original cell. One cell with 46 chromosomes divides and becomes two cells ... replaced. Meiosis results in cells with half the number of ...

  7. Epilepsy and chromosomal abnormalities

    PubMed Central

    2010-01-01

    Background Many chromosomal abnormalities are associated with Central Nervous System (CNS) malformations and other neurological alterations, among which seizures and epilepsy. Some of these show a peculiar epileptic and EEG pattern. We describe some epileptic syndromes frequently reported in chromosomal disorders. Methods Detailed clinical assessment, electrophysiological studies, survey of the literature. Results In some of these congenital syndromes the clinical presentation and EEG anomalies seems to be quite typical, in others the manifestations appear aspecific and no strictly linked with the chromosomal imbalance. The onset of seizures is often during the neonatal period of the infancy. Conclusions A better characterization of the electro clinical patterns associated with specific chromosomal aberrations could give us a valuable key in the identification of epilepsy susceptibility of some chromosomal loci, using the new advances in molecular cytogenetics techniques - such as fluorescent in situ hybridization (FISH), subtelomeric analysis and CGH (comparative genomic hybridization) microarray. However further studies are needed to understand the mechanism of epilepsy associated with chromosomal abnormalities. PMID:20438626

  8. Chromosome abnormalities in glioma

    SciTech Connect

    Li, Y.S.; Ramsay, D.A.; Fan, Y.S.

    1994-09-01

    Cytogenetic studies were performed in 25 patients with gliomas. An interesting finding was a seemingly identical abnormality, an extra band on the tip of the short arm of chromosome 1, add(1)(p36), in two cases. The abnormality was present in all cells from a patient with a glioblastoma and in 27% of the tumor cells from a patient with a recurrent irradiated anaplastic astrocytoma; in the latter case, 7 unrelated abnormal clones were identified except 4 of those clones shared a common change, -Y. Three similar cases have been described previously. In a patient with pleomorphic astrocytoma, the band 1q42 in both homologues of chromosome 1 was involved in two different rearrangements. A review of the literature revealed that deletion of the long arm of chromosome 1 including 1q42 often occurs in glioma. This may indicate a possible tumor suppressor gene in this region. Cytogenetic follow-up studies were carried out in two patients and emergence of unrelated clones were noted in both. A total of 124 clonal breakpoints were identified in the 25 patients. The breakpoints which occurred three times or more were: 1p36, 1p22, 1q21, 1q25, 3q21, 7q32, 8q22, 9q22, 16q22, and 22q13.

  9. Verbal and spatial processing efficiency in 32 children with sex chromosome abnormalities.

    PubMed

    Bender, B G; Linden, M G; Robinson, A

    1989-06-01

    Spatial and linguistic processing efficiency was evaluated in sixty 8- to 18-yr-old children, including thirteen 47,XXY boys, eleven 47,XXX girls, six girls with 45,X, two girls with 46,X,Xq-, and 28 chromosomally normal controls. Results indicated that the 47,XXX girls performed significantly below controls on all four cognitive tests. Scores of the X monosomy group were reduced on both spatial tests, one requiring rapid information processing and one without time requirements, which is consistent with previous reports of spatial thinking deficits in these propositae. The X monosomy girls also had difficulty completing the high efficiency but not the low efficiency verbal tests. Scores in the 47,XXY group did not differ from controls on either spatial test or on the low efficiency verbal task. When required to rapidly access verbal information from memory, however, the performance of these boys was significantly impaired. This finding confirms earlier reports of impeded verbal fluency in these propositi. Alteration in capacity to rapidly process information appears to distinguish 47,XXY boys and X monosomy girls from their chromosomally normal peers, and suggests that adaptations in their educational setting should be introduced to allow additional time to learn and complete work. PMID:2740147

  10. Plant sex chromosome evolution.

    PubMed

    Charlesworth, Deborah

    2013-01-01

    It is now well established that plants have an important place in studies of sex chromosome evolution because of the repeated independent evolution of separate sexes and sex chromosomes. There has been considerable recent progress in studying plant sex chromosomes. In this review, I focus on how these recent studies have helped clarify or answer several important questions about sex chromosome evolution, and I shall also try to clarify some common misconceptions. I also outline future work that will be needed to make further progress, including testing some important ideas by genetic, molecular, and developmental approaches. Systems with different ages can clearly help show the time course of events during changes from an ancestral co-sexual state (hermaphroditism or monoecy), and I will also explain how different questions can be studied in lineages whose dioecy or sex chromosomes evolved at different times in the past. PMID:23125359

  11. Plant Sex Chromosomes.

    PubMed

    Charlesworth, Deborah

    2016-04-29

    Although individuals in most flowering plant species, and in many haploid plants, have both sex functions, dioecious species-in which individuals have either male or female functions only-are scattered across many taxonomic groups, and many species have genetic sex determination. Among these, some have visibly heteromorphic sex chromosomes, and molecular genetic studies are starting to uncover sex-linked markers in others, showing that they too have fully sex-linked regions that are either too small or are located in chromosomes that are too small to be cytologically detectable from lack of pairing, lack of visible crossovers, or accumulation of heterochromatin. Detailed study is revealing that, like animal sex chromosomes, plant sex-linked regions show evidence for accumulation of repetitive sequences and genetic degeneration. Estimating when recombination stopped confirms the view that many plants have young sex-linked regions, making plants of great interest for studying the timescale of these changes. PMID:26653795

  12. Sex chromosome drive.

    PubMed

    Helleu, Quentin; Gérard, Pierre R; Montchamp-Moreau, Catherine

    2015-02-01

    Sex chromosome drivers are selfish elements that subvert Mendel's first law of segregation and therefore are overrepresented among the products of meiosis. The sex-biased progeny produced then fuels an extended genetic conflict between the driver and the rest of the genome. Many examples of sex chromosome drive are known, but the occurrence of this phenomenon is probably largely underestimated because of the difficulty to detect it. Remarkably, nearly all sex chromosome drivers are found in two clades, Rodentia and Diptera. Although very little is known about the molecular and cellular mechanisms of drive, epigenetic processes such as chromatin regulation could be involved in many instances. Yet, its evolutionary consequences are far-reaching, from the evolution of mating systems and sex determination to the emergence of new species. PMID:25524548

  13. The use of molecular and cytogenetic methods as a valuable tool in the detection of chromosomal abnormalities in horses: a case of sex chromosome chimerism in a Spanish purebred colt.

    PubMed

    Demyda-Peyrás, S; Membrillo, A; Bugno-Poniewierska, M; Pawlina, K; Anaya, G; Moreno-Millán, M

    2013-01-01

    Chromosomal abnormalities associated to sex chromosomes are reported as a problem more common than believed to be in horses. Most of them remain undiagnosed due to the complexity of the horse karyotype and the lack of interest of breeders and veterinarians in this type of diagnosis. Approximately 10 years ago, the Spanish Purebred Breeders Association implemented a DNA paternity test to evaluate the pedigree of every newborn foal. All candidates who showed abnormal or uncertain results are routinely submitted to cytogenetical analysis to evaluate the presence of chromosomal abnormalities. We studied the case of a foal showing 3 and even 4 different alleles in several loci in the short tandem repeat (STR) -based DNA parentage test. To confirm these results, a filiation test was repeated using follicular hair DNA showing normal results. A complete set of conventional and molecular cytogenetic analysis was performed to determine their chromosomal complements. C-banding and FISH had shown that the foal presents a sex chimerism 64,XX/64,XY with a cellular percentage of approximately 70/30, diagnosed in blood samples. The use of a diagnostic approach combining routine parentage QF-PCR-based STR screening tested with classical or molecular cytogenetic analysis could be a powerful tool that allows early detection of foals that will have a poor or even no reproductive performance due to chromosomal abnormalities, saving time, efforts and breeders' resources. PMID:23735586

  14. Isolation and characterization of sex chromosome rearrangements generating male muscle dystrophy and female abnormal oogenesis in the silkworm, Bombyx mori.

    PubMed

    Fujii, T; Yokoyama, T; Ninagi, O; Kakehashi, K; Obara, Y; Nenoi, M; Ishikawa, T; Mita, K; Shimada, T; Abe, H

    2007-07-01

    In deletion-mapping of W-specific RAPD (W-RAPD) markers and putative female determinant gene (Fem), we used X-ray irradiation to break the translocation-carrying W chromosome (W( Ze )). We succeeded in obtaining a fragment of the W( Ze ) chromosome designated as Ze (W), having 3 of 12 W-RAPD markers (W-Bonsai, W-Yukemuri-S, W-Yukemuri-L). Inheritance of the Ze (W) fragment by males indicates that it does not include the Fem gene. On the basis of these results, we determined the relative positions of W-Yukemuri-S and W-Yukemuri-L, and we narrowed down the region where Fem gene is located. In addition to the Ze (W) fragment, the Z chromosome was also broken into a large fragment (Z(1)) having the +( sch ) (1-21.5) and a small fragment (Z(2)) having the +( od ) (1-49.6). Moreover, a new chromosomal fragment (Ze (W)Z(2)) was generated by a fusion event between the Ze (W) and the Z(2) fragments. We analyzed the genetic behavior of the Z(1) fragment and the Ze (W)Z(2) fragment during male (Z/Z(1) Ze (W)Z(2)) and female (Z(1) Ze (W)Z(2)/W) meiosis using phenotypic markers. It was observed that the Z(1) fragment and the Z or the W chromosomes separate without fail. On the other hand, non-disjunction between the Ze (W)Z(2) fragment and the Z chromosome and also between the Ze (W)Z(2) fragment and the W chromosome occurred. Furthermore, the females (2A: Z/Ze (W)Z(2)/W) and males (2A: Z/Z(1)) resulting from non-disjunction between the Ze (W)Z(2) fragment and the W chromosome had phenotypic defects: namely, females exhibited abnormal oogenesis and males were flapless due to abnormal indirect flight muscle structure. These results suggest that Z(2) region of the Z chromosome contains dose-sensitive gene(s), which are involved in oogenesis and indirect flight muscle development. PMID:17031495

  15. Chromosomal abnormalities in human sperm

    SciTech Connect

    Martin, R.H.

    1985-01-01

    The ability to analyze human sperm chromosome complements after penetration of zona pellucida-free hamster eggs provides the first opportunity to study the frequency and type of chromosomal abnormalities in human gametes. Two large-scale studies have provided information on normal men. We have studied 1,426 sperm complements from 45 normal men and found an abnormality rate of 8.9%. Brandriff et al. (5) found 8.1% abnormal complements in 909 sperm from 4 men. The distribution of numerical and structural abnormalities was markedly dissimilar in the 2 studies. The frequency of aneuploidy was 5% in our sample and only 1.6% in Brandriff's, perhaps reflecting individual variability among donors. The frequency of 24,YY sperm was low: 0/1,426 and 1/909. This suggests that the estimates of nondisjunction based on fluorescent Y body data (1% to 5%) are not accurate. We have also studied men at increased risk of sperm chromosomal abnormalities. The frequency of chromosomally unbalanced sperm in 6 men heterozygous for structural abnormalities varied dramatically: 77% for t11;22, 32% for t6;14, 19% for t5;18, 13% for t14;21, and 0% for inv 3 and 7. We have also studied 13 cancer patients before and after radiotherapy and demonstrated a significant dose-dependent increase of sperm chromosome abnormalities (numerical and structural) 36 months after radiation treatment.

  16. Sex chromosome tetrasomy and pentasomy.

    PubMed

    Linden, M G; Bender, B G; Robinson, A

    1995-10-01

    Sex chromosome abnormalities occur in at least 1 in 400 births and include the well-described 47,XXX, 47,XXY, 47,XYY, and 45,X karyotypes. The addition of more than one extra X or Y chromosome occurs rarely, and little information is available in the medical literature. Individual case reports make up most of this body of knowledge, and all are based on subjects who identified themselves postnatally. Many were ascertained through screenings of institutions and hospitals; thus, there is no unbiased information on the natural history of poly X and Y karyotypes. A direct relationship between the number of additional sex chromosomes and the severity of the phenotype is generally assumed. The purpose of this article is to summarize what is known about these conditions and to present 10 additional cases. The karyotypes include, 48,XXXX, 49,XXXXX, 48,XXYY, 48,XXXY, 49,XXXXY, 49,XXXYY, 48,XYYY, 49,XYYYY, and 49,XXYYY. PMID:7567329

  17. Abnormal pairing of X and Y sex chromosomes during meiosis I in interspecific hybrids of Phodopus campbelli and P. sungorus

    PubMed Central

    Ishishita, Satoshi; Tsuboi, Kazuma; Ohishi, Namiko; Tsuchiya, Kimiyuki; Matsuda, Yoichi

    2015-01-01

    Hybrid sterility plays an important role in the maintenance of species identity and promotion of speciation. Male interspecific hybrids from crosses between Campbell's dwarf hamster (Phodopus campbelli) and the Djungarian hamster (P. sungorus) exhibit sterility with abnormal spermatogenesis. However, the meiotic phenotype of these hybrids has not been well described. In the present work, we observed the accumulation of spermatocytes and apoptosis of spermatocyte-like cells in the testes of hybrids between P. campbelli females and P. sungorus males. In hybrid spermatocytes, a high frequency of asynapsis of X and Y chromosomes during the pachytene-like stage and dissociation of these chromosomes during metaphase I (MI) was observed. No autosomal univalency was observed during pachytene-like and MI stages in the hybrids; however, a low frequency of synapsis between autosomes and X or Y chromosomes, interlocking and partial synapsis between autosomal pairs, and γ-H2AFX staining in autosomal chromatin was observed during the pachytene-like stage. Degenerated MI-like nuclei were frequently observed in the hybrids. Most of the spermatozoa in hybrid epididymides exhibited head malformation. These results indicate that the pairing of X and Y chromosomes is more adversely affected than that of autosomes in Phodopus hybrids. PMID:25801302

  18. Genomics of Sex and Sex Chromosomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sex chromosomes are distinctive, not only because of their gender determining role, but also for genomic features that reflect their evolutionary history. The genomic sequences in the ancient sex chromosomes of humans and in the incipient sex chromosomes of medaka, stickleback, and papaya exhibit u...

  19. A Case of ADHD and a Major Y Chromosome Abnormality

    ERIC Educational Resources Information Center

    Mulligan, Aisling; Gill, Michael; Fitzgerald, Michael

    2008-01-01

    Background: ADHD is a common, heritable disorder of childhood. Sex chromosome abnormalities are relatively rare conditions that are sometimes associated with behavioral disorders. Method: The authors present a male child with ADHD and a major de-novo Y chromosome abnormality consisting of deletion of the long arm and duplication of the short arm.

  20. A Case of ADHD and a Major Y Chromosome Abnormality

    ERIC Educational Resources Information Center

    Mulligan, Aisling; Gill, Michael; Fitzgerald, Michael

    2008-01-01

    Background: ADHD is a common, heritable disorder of childhood. Sex chromosome abnormalities are relatively rare conditions that are sometimes associated with behavioral disorders. Method: The authors present a male child with ADHD and a major de-novo Y chromosome abnormality consisting of deletion of the long arm and duplication of the short arm.…

  1. Interpreting chromosomal abnormalities using Prolog.

    PubMed

    Cooper, G; Friedman, J M

    1990-04-01

    This paper describes an expert system for interpreting the standard notation used to represent human chromosomal abnormalities, namely, the International System for Human Cytogenetic Nomenclature. Written in Prolog, this program is very powerful, easy to maintain, and portable. The system can be used as a front end to any database that employs cytogenetic notation, such as a patient registry. PMID:2185921

  2. Making chromosome abnormalities treatable conditions.

    PubMed

    Cody, Jannine DeMars; Hale, Daniel Esten

    2015-09-01

    Individuals affected by the classic chromosome deletion syndromes which were first identified at the beginning of the genetic age, are now positioned to benefit from genomic advances. This issue highlights five of these conditions (4p-, 5p-, 11q-, 18p-, and 18q-). It focuses on the increased in understanding of the molecular underpinnings and envisions how these can be transformed into effective treatments. While it is scientifically exciting to see the phenotypic manifestations of hemizygosity being increasingly understood at the molecular and cellular level, it is even more amazing to consider that we are now on the road to making chromosome abnormalities treatable conditions. PMID:26351122

  3. Learning Disabilities in Children with Sex Chromosome Anomalies.

    ERIC Educational Resources Information Center

    Pennington, Bruce F.; And Others

    1982-01-01

    Results obtained from 44 children (ages 7 through 16) with sex chromosome abnormalities and from 17 chromosomally normal siblings demonstrated that children in the former group have an increased risk of encountering learning problems. (MP)

  4. Adults with Chromosome 18 Abnormalities.

    PubMed

    Soileau, Bridgette; Hasi, Minire; Sebold, Courtney; Hill, Annice; O'Donnell, Louise; Hale, Daniel E; Cody, Jannine D

    2015-08-01

    The identification of an underlying chromosome abnormality frequently marks the endpoint of a diagnostic odyssey. However, families are frequently left with more questions than answers as they consider their child's future. In the case of rare chromosome conditions, a lack of longitudinal data often makes it difficult to provide anticipatory guidance to these families. The objective of this study is to describe the lifespan, educational attainment, living situation, and behavioral phenotype of adults with chromosome 18 abnormalities. The Chromosome 18 Clinical Research Center has enrolled 483 individuals with one of the following conditions: 18q-, 18p-, Tetrasomy 18p, and Ring 18. As a part of the ongoing longitudinal study, we collect data on living arrangements, educational level attained, and employment status as well as data on executive functioning and behavioral skills on an annual basis. Within our cohort, 28 of the 483 participants have died, the majority of whom have deletions encompassing the TCF4 gene or who have unbalanced rearrangement involving other chromosomes. Data regarding the cause of and age at death are presented. We also report on the living situation, educational attainment, and behavioral phenotype of the 151 participants over the age of 18. In general, educational level is higher for people with all these conditions than implied by the early literature, including some that received post-high school education. In addition, some individuals are able to live independently, though at this point they represent a minority of patients. Data on executive function and behavioral phenotype are also presented. Taken together, these data provide insight into the long-term outcome for individuals with a chromosome 18 condition. This information is critical in counseling families on the range of potential outcomes for their child. PMID:25403900

  5. SEX CHROMOSOMES IN FLOWERING PLANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sex chromosomes in dioecious and polygamous plants evolved as a mechanism for ensuring outcrossing to increase genetic variation in the offspring. Sex specificity has evolved in 75% of plant families by male sterile or female sterile mutations, but well defined heteromorphic sex chromosomes are know...

  6. Numerically abnormal chromosome constitutions in humans

    SciTech Connect

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  7. Chromosome abnormalities in Indonesian patients with short stature

    PubMed Central

    2012-01-01

    Background Short stature is associated with several disorders including wide variations of chromosomal disorders and single gene disorders. The objective of this report is to present the cytogenetic findings in Indonesian patients with short stature. Methods G-banding and interphase/metaphase FISH were performed on short stature patients with and without other clinical features who were referred by clinicians all over Indonesia to our laboratory during the year 2003–2009. Results The results of chromosomal analysis of ninety seven patients (mean age: 10.7 years old) were collected. The group of patients with other clinical features showed sex chromosome abnormalities in 45% (18/40) and autosomal abnormalities in 10% (4/40), whereas those with short stature only, 42.1% (24/57) had sex chromosome abnormalities and 1.75% (1/57) had autosomal abnormalities. The autosomal chromosomal abnormalities involved mostly subtelomeric regions. Results discrepancies between karyotype and FISH were found in 10 patients, including detection of low-level monosomy X mosaicism in 6 patients with normal karyotype, and detection of mosaic aneuploidy chromosome 18 in 1 patient with 45,XX,rob(13;14)(q10;q10). Statistical analysis showed no significant association between the groups and the type of chromosomal abnormalities. Conclusion Chromosome abnormalities account for about 50% of the short stature patients. Wide variations of both sex and autosomal chromosomes abnormalities were detected in the study. Since three out of five patients had autosomal structural abnormalities involving the subtelomeric regions, thus in the future, subtelomeric FISH or even a more sensitive method such as genomic/SNP microarray is needed to confirm deletions of subtelomeric regions of chromosome 9, 11 and 18. Low-level mosaicism in normal karyotype patients indicates interphase FISH need to be routinely carried out in short stature patients as an adjunct to karyotyping. PMID:22863325

  8. Holoprosencephaly due to numeric chromosome abnormalities.

    PubMed

    Solomon, Benjamin D; Rosenbaum, Kenneth N; Meck, Jeanne M; Muenke, Maximilian

    2010-02-15

    Holoprosencephaly (HPE) is the most common malformation of the human forebrain. When a clinician identifies a patient with HPE, a routine chromosome analysis is often the first genetic test sent for laboratory analysis in order to assess for a structural or numerical chromosome anomaly. An abnormality of chromosome number is overall the most frequently identified etiology in a patient with HPE. These abnormalities include trisomy 13, trisomy 18, and triploidy, though several others have been reported. Such chromosome number abnormalities are almost universally fatal early in gestation or in infancy. Clinical features of specific chromosome number abnormalities may be recognized by phenotypic manifestations in addition to the HPE. PMID:20104610

  9. Holoprosencephaly due to Numeric Chromosome Abnormalities

    PubMed Central

    Solomon, Benjamin D.; Rosenbaum, Kenneth N.; Meck, Jeanne M.; Muenke, Maximilian

    2009-01-01

    Holoprosencephaly (HPE) is the most common malformation of the human forebrain. When a clinician identifies a patient with HPE, a routine chromosome analysis is often the first genetic test sent for laboratory analysis in order to assess for a structural or numerical chromosome anomaly. An abnormality of chromosome number is overall the most frequently identified etiology in a patient with HPE. These abnormalities include trisomy 13, trisomy 18, and triploidy, though several others have been reported. Such chromosome number abnormalities are almost universally fatal early in gestation or in infancy. Clinical features of specific chromosome number abnormalities may be recognized by phenotypic manifestations in addition to the HPE. PMID:20104610

  10. Prevalence of chromosomal abnormalities in infertile couples in romania

    PubMed Central

    Mierla, D; Malageanu, M; Tulin, R; Albu, D

    2015-01-01

    The purpose of this study was to establish a correlation between the presence of chromosomal abnormalities in one of the partners and infertility. This retrospective study was performed at the Department of Reproductive Medicine, Life Memorial Hospital, Bucharest, Romania, between August 2007 to December 2011. Two thousand, one hundred and ninety-five patients with reproductive problems were investigated, and the frequency of chromosomal abnormalities was calculated. The control group consisting of 87 fertile persons who had two or more children, was investigated in this retrospective study. All the patients of this study were investigated by cytogenetic techniques and the results of the two groups were compared by a two-tailed Fisher’s exact test. In this study, 94.99% patients had a normal karyotype and 5.01% had chromosomal abnormalities (numerical and structural chromosomal abnormalities). In the study group, numerical chromosomal abnormalities were detected in 1.14% of infertile men and 0.62% of infertile women, and structural chromosomal abnormalities were detected in 1.38% of infertile men and 1.87% of infertile women, respectively. The correlation between the incidence of chromosomal anomalies in the two sexes in couple with reproductive problems was not statistically significant. Recently, a possible association between infertility and chromosomal abnormalities with a significant statistical association has been reported. Our study shows that there is no association between chromosomal abnormalities and infertility, but this study needs to be confirmed with further investigations and a larger control group to establish the role of chromosomal abnormalities in the etiology of infertility. PMID:26929902

  11. Prevalence of chromosomal abnormalities in infertile couples in romania.

    PubMed

    Mierla, D; Malageanu, M; Tulin, R; Albu, D

    2015-06-01

    The purpose of this study was to establish a correlation between the presence of chromosomal abnormalities in one of the partners and infertility. This retrospective study was performed at the Department of Reproductive Medicine, Life Memorial Hospital, Bucharest, Romania, between August 2007 to December 2011. Two thousand, one hundred and ninety-five patients with reproductive problems were investigated, and the frequency of chromosomal abnormalities was calculated. The control group consisting of 87 fertile persons who had two or more children, was investigated in this retrospective study. All the patients of this study were investigated by cytogenetic techniques and the results of the two groups were compared by a two-tailed Fisher's exact test. In this study, 94.99% patients had a normal karyotype and 5.01% had chromosomal abnormalities (numerical and structural chromosomal abnormalities). In the study group, numerical chromosomal abnormalities were detected in 1.14% of infertile men and 0.62% of infertile women, and structural chromosomal abnormalities were detected in 1.38% of infertile men and 1.87% of infertile women, respectively. The correlation between the incidence of chromosomal anomalies in the two sexes in couple with reproductive problems was not statistically significant. Recently, a possible association between infertility and chromosomal abnormalities with a significant statistical association has been reported. Our study shows that there is no association between chromosomal abnormalities and infertility, but this study needs to be confirmed with further investigations and a larger control group to establish the role of chromosomal abnormalities in the etiology of infertility. PMID:26929902

  12. Gonadal sex chromosome complement in individuals with sex chromosomal and/or gonadal disorders

    SciTech Connect

    Bridge, J.A.; Sanger, W.G.; Seemayer, T.

    1994-09-01

    Gonadal abnormalities are characteristically seen in patients with sex chromosomal aneuploidy. Morphologically these abnormalities can be variable and are hypothesized to be dependent on the sex chromosomal consititution of the gonad (independent of the chromosomal complement of other tissues, such as peripheral blood lymphocytes). In this study, the gonadal sex chromosome complement was evaluated for potential mosaicism and correlated with the histopathology from 5 patients with known sex chromosomal and/or gonadal disorders. FISH techniques using X and Y chromosome specific probes were performed on nuclei extracted from paraffin embedded tissue. Gonadal tissue obtained from case 1 (a true hemaphroditic newborn) consisted of ovotestes and epididymis (left side) and ovary with fallopian tube (right side). Cytogenetic and FISH studies performed on blood, ovotestes and ovary revealed an XX complement. Cytogenetic analysis of blood from case 2, a 4-year-old with suspected Turner syndrome revealed 45,X/46,X,del(Y)(q11.21). FISH analysis of the resected gonads (histologically = immature testes) confirmed an X/XY mosaic complement. Histologically, the gonadal tissue was testicular. Severe autolysis prohibited successful analysis in the 2 remaining cases. In summary, molecular cytogenetic evaluation of gonadal tissue from individuals with sex chromosomal and/or gonadal disorders did not reveal tissue-specific anomalies which could account for differences observed pathologically.

  13. Numerous Transitions of Sex Chromosomes in Diptera

    PubMed Central

    Vicoso, Beatriz; Bachtrog, Doris

    2015-01-01

    Many species groups, including mammals and many insects, determine sex using heteromorphic sex chromosomes. Diptera flies, which include the model Drosophila melanogaster, generally have XY sex chromosomes and a conserved karyotype consisting of six chromosomal arms (five large rods and a small dot), but superficially similar karyotypes may conceal the true extent of sex chromosome variation. Here, we use whole-genome analysis in 37 fly species belonging to 22 different families of Diptera and uncover tremendous hidden diversity in sex chromosome karyotypes among flies. We identify over a dozen different sex chromosome configurations, and the small dot chromosome is repeatedly used as the sex chromosome, which presumably reflects the ancestral karyotype of higher Diptera. However, we identify species with undifferentiated sex chromosomes, others in which a different chromosome replaced the dot as a sex chromosome or in which up to three chromosomal elements became incorporated into the sex chromosomes, and others yet with female heterogamety (ZW sex chromosomes). Transcriptome analysis shows that dosage compensation has evolved multiple times in flies, consistently through up-regulation of the single X in males. However, X chromosomes generally show a deficiency of genes with male-biased expression, possibly reflecting sex-specific selective pressures. These species thus provide a rich resource to study sex chromosome biology in a comparative manner and show that similar selective forces have shaped the unique evolution of sex chromosomes in diverse fly taxa. PMID:25879221

  14. Sex chromosome aneuploidy and aging.

    PubMed

    Stone, J F; Sandberg, A A

    1995-10-01

    Loss of an X chromosome in females and of the Y chromosome in males are phenomena associated with aging. X chromosome loss occurs in and may be limited to PHA stimulated peripheral lymphocytes. In males, the loss of the Y is most evident in bone marrow cells, but also occurs to a lesser extent in PHA stimulated peripheral lymphocytes. X chromosome loss is associated with premature centromere division leading to anaphase lag and elimination in micronuclei. The mechanism of Y chromosome loss has not been elucidated. No pathological consequence of either X or Y chromosome loss has been convincingly demonstrated. With the advent of FISH technology, measurement of sex chromosome aneuploidy may prove to be a convenient assay for cellular senecence and aging. PMID:7565866

  15. Aplastic Anemia in Two Patients with Sex Chromosome Aneuploidies.

    PubMed

    Rush, Eric T; Schaefer, G Bradley; Sanger, Warren G; Coccia, Peter F

    2015-01-01

    Sex chromosome aneuploidies range in incidence from rather common to exceedingly rare and have a variable phenotype. We report 2 patients with sex chromosome aneuploidies who developed severe aplastic anemia requiring treatment. The first patient had tetrasomy X (48,XXXX) and presented at 9 years of age, and the second patient had trisomy X (47,XXX) and presented at 5 years of age. Although aplastic anemia has been associated with other chromosomal abnormalities, sex chromosome abnormalities have not been traditionally considered a risk factor for this condition. A review of the literature reveals that at least one other patient with a sex chromosome aneuploidy (45,X) has suffered from aplastic anemia and that other autosomal chromosomal anomalies have been described. Despite the uncommon nature of each condition, it is possible that the apparent association is coincidental. A better understanding of the genetic causes of aplastic anemia remains important. PMID:26571231

  16. Advances in understanding paternally transmitted Chromosomal Abnormalities

    SciTech Connect

    Marchetti, F; Sloter, E; Wyrobek, A J

    2001-03-01

    Multicolor FISH has been adapted for detecting the major types of chromosomal abnormalities in human sperm including aneuploidies for clinically-relevant chromosomes, chromosomal aberrations including breaks and rearrangements, and other numerical abnormalities. The various sperm FISH assays have been used to evaluate healthy men, men of advanced age, and men who have received mutagenic cancer therapy. The mouse has also been used as a model to investigate the mechanism of paternally transmitted genetic damage. Sperm FISH for the mouse has been used to detect chromosomally abnormal mouse sperm, while the PAINT/DAPI analysis of mouse zygotes has been used to evaluate the types of chromosomal defects that can be paternally transmitted to the embryo and their effects on embryonic development.

  17. Chromosomal abnormalities associated with cyclopia and synophthalmia.

    PubMed Central

    Howard, R O

    1977-01-01

    At the present time, essentially all known facts concerning cyclopia are consistent with some chromosomal disease, including clinical features of the pregnancy (fetal wastage, prematurity, intrauterine growth retardation, maternal age factor, complications of pregnancy), the generalized developmental abnormalities, specific ocular dysgenesis, by the high incidence of chromosomal abnormality already demonstrated, and the possibility of error in those cases of cyclopia with normal chromosomes. Even if chromosomal aberrations represent only one group of several different etiologic factors leading to cyclopia, at the present time chromosomal errors would seem to be the most common cause of cyclopia now recognized. Further studies will establish or disprove a chromosomal error in those instances which are now considered to be the result of an environmental factor alone or those with apparent familial patterns of inheritance. This apparent diverse origin of cyclopia can be clarified if future cyclopic specimens are carefully investigated. The evaluation should include a careful gross and microscopic examination of all organs, including the eye, and chromosome banding studies of all organs, including the eye, and chromosome banding studies of at least two cyclopic tissues. Then the presence or absence of multiple causative factors can be better evaluated. Images FIGURE 2 A FIGURE 2 B FIGURE 1 A FIGURE 1 B FIGURE 1 C FIGURE 1 D FIGURE 1 E FIGURE 1 F FIGURE 3 A FIGURE 3 B FIGURE 4 A FIGURE 4 B FIGURE 4 C FIGURE 4 D FIGURE 5 FIGURE 6 FIGURE 7 A FIGURE 7 B PMID:418547

  18. Chromosome abnormalities in human arrested preimplantation embryos: A multiple-probe FISH study

    SciTech Connect

    Munne, S.; Grifo, J.; Cohen, J. ); Weier, H.U.G. )

    1994-07-01

    Numerical chromosome abnormalities were studied in single blastomeres from arrested or otherwise morphologically abnormal human preimplantation embryos. A 6-h FISH procedure with fluorochrome-labeled DNA probes was developed to determine numerical abnormalities of chromosomes X, Y, and 18. The three chromosomes were stained and detected simultaneously in 571 blastomeres from 131 embryos. Successful analysis including biopsy, fixation, and FISH analysis was achieved in 86.5% of all blastomeres. The procedure described here offers a reliable alternative to sexing of embryos by PCR and allows simultaneous ploidy assessment. For the three chromosomes tested, numerical aberrations were found in 56.5% of the embroys. Most abnormal embryos were polyploid or mosaics, and 6.1% were aneuploid for gonosomes or chromosome 18. Extrapolation of these results to all human chromosomes suggests that the majority of abnormally developing and arrested human embryos carry numerical chromosome abnormalities. 44 refs., 1 fig., 4 tabs.

  19. Chromosomal abnormalities among children born with conotruncal cardiac defects

    PubMed Central

    Lammer, Edward J.; Chak, Jacqueline S.; Iovannisci, David M.; Schultz, Kathleen; Osoegawa, Kazutoyo; Yang, Wei; Carmichael, Suzan L.; Shaw, Gary M.

    2010-01-01

    BACKGROUND Conotruncal heart defects comprise 25%-30% of non-syndromic congenital heart defects. This study describes the frequency of chromosome abnormalities and microdeletion 22q11 associated with conotruncal heart malformations. METHODS From a population base of 974,579 infants/fetuses delivered, 622 Californian infants/fetuses were ascertained with a defect of aortico-pulmonary septation. Infants whose primary cardiac defect was tetralogy of Fallot (n=296) or D-transposition of the great vessels (n=189) were screened for microdeletions of 22q11. RESULTS Fourteen (2.3%) of the 622 infants/fetuses had chromosomal abnormalities. Thirty infants, 10% of those whose primary defect was tetralogy of Fallot, had chromosome 22q11 microdeletions. Right aortic arch, abnormal branching patterns of the major arteries arising from the thoracic aorta, and pulmonary artery abnormalities were observed more frequently in these children. CONCLUSIONS We found an unusual number of infants with an extra sex chromosome and a conotruncal defect. Infants with tetralogy of Fallot due to 22q11 microdeletion showed more associated vascular anomalies than infants with tetralogy but no 22q11 microdeletion. Although these associated vascular anomalies provide clues as to which infants with tetralogy of Fallot are more likely to carry the microdeletion, the overall risk of 10% among all infants with tetralogy of Fallot warrants chromosome analysis and FISH testing routinely. PMID:19067405

  20. Sex chromosome aberrations in schizophrenia.

    PubMed

    Chatterjee, S B; Basu, S K

    1980-04-01

    Research on sex chromosome aberrations has made considerable progress. There are evidences that possession of an extra X chromosome may affect the mental health of an individual. All the male schizophrenia patients registered during the period of study, who were not under treatment, constituted the patient sample. They numbered two hundered eighty seven. A properly matched control sample of two hundred thirty three healthy persons was also examined. Nuclear sexing and Karyotype was done for (a) all the chromatin positive cases in patient as well as control sample (b) ten per cent cases of normal XY individual's of patient sample(28) and control sample (23) Photography was done for the positive slides. The patients who showed chromation positive XXY pattern were studied further clinically along with Rorschach test and Bhatia battery. The schizophrenics showed more prevalence of chromatin positive than the control sample. PMID:22058457

  1. Chromosomal abnormalities in a psychiatric population

    SciTech Connect

    Lewis, K.E.; Lubetsky, M.J.; Wenger, S.L.; Steele, M.W.

    1995-02-27

    Over a 3.5 year period of time, 345 patients hospitalized for psychiatric problems were evaluated cytogenetically. The patient population included 76% males and 94% children with a mean age of 12 years. The criteria for testing was an undiagnosed etiology for mental retardation and/or autism. Cytogenetic studies identified 11, or 3%, with abnormal karyotypes, including 4 fragile X positive individuals (2 males, 2 females), and 8 with chromosomal aneuploidy, rearrangements, or deletions. While individuals with chromosomal abnormalities do not demonstrate specific behavioral, psychiatric, or developmental problems relative to other psychiatric patients, our results demonstrate the need for an increased awareness to order chromosomal analysis and fragile X testing in those individuals who have combinations of behavioral/psychiatric, learning, communication, or cognitive disturbance. 5 refs., 1 fig., 2 tabs.

  2. Chromosomal abnormalities as a cause of recurrent abortions in Egypt

    PubMed Central

    El-Dahtory, Faeza Abdel Mogib

    2011-01-01

    BACKGROUND: In 4%-8% of couples with recurrent abortion, at least one of the partners has chromosomal abnormality. Most spontaneous miscarriages which happen in the first and second trimesters are caused by chromosomal abnormalities. These chromosomal abnormalities may be either numerical or structural. MATERIAL AND METHODS: Cytogenetic study was done for 73 Egyptian couples who presented with recurrent abortion at Genetic Unit of Children Hospital, Mansoura University. RESULTS: We found that the frequency of chromosomal abnormalities was not significantly different from that reported worldwide. Chromosomal abnormalities were detected in 9 (6.1%) of 73 couples. Seven of chromosomal abnormalities were structural and two of them were numerical. CONCLUSION: Our results showed that 6.1% of the couples with recurrent abortion had chromosomal abnormalities, with no other abnormalities. We suggest that it is necessary to perform cytogenetic in vestigation for couples who have recurrent abortion. PMID:22090718

  3. Chromosome abnormalities in primary ovarian cancer

    SciTech Connect

    Yonescu, R.; Currie, J.; Griffin, C.A.

    1994-09-01

    Chromosome abnormalities that are specific and recurrent may occur in regions of the genome that are involved in the conversion of normal cells to those with tumorigenic potential. Ovarian cancer is the primary cause of death among patients with gynecological malignancies. We have performed cytogenetic analysis of 16 ovarian tumors from women age 28-82. Three tumors of low malignant potential and three granulosa cell tumors had normal karyotypes. To look for the presence of trisomy 12, which has been suggested to be a common aberration in this group of tumors, interphase fluorescence in situ hybridization was performed on direct preparations from three of these tumors using a probe for alpha satellite sequences of chromosome 12. In the 3 preparations, 92-98 percent of the cells contained two copies of chromosome 12, indicating that trisomy 12 is not a universal finding in low grade ovarian tumors. Endometrioid carcinoma of the ovary is histologically indistinguishable from endometial carcinoma of the uterus. We studied 10 endometrioid tumors to determine the degree of genetic similarity between these two carcinomas. Six out of ten endometrioid tumors showed a near-triploid modal number, and one presented with a tetraploid modal number. Eight of the ten contained structural chromosome abnormalities, of which the most frequent were 1p- (5 tumors), 19q+ (3 tumors), 6q- or ins(6) (4 tumors), 3q- or 3q+ (4 tumors). These cytogenetic results resemble those reported for papillary ovarian tumors and differ from those of endometrial carcinoma of the uterus. We conclude that despite the histologic similarities between the endometrioid and endometrial carcinomas, the genetic abnormalities in the genesis of these tumors differ significantly.

  4. Genetic conflict and sex chromosome evolution

    PubMed Central

    Meiklejohn, Colin D; Tao, Yun

    2009-01-01

    Chromosomal sex determination systems create the opportunity for the evolution of selfish genetic elements that increase the transmission of one sex chromosome at the expense of its homolog. Because such selfish elements on sex chromosomes can reduce fertility and distort the sex ratio of progeny, unlinked suppressors are expected to evolve, bringing different regions of the genome into conflict over the meiotic transmission of the sex chromosomes. Here we argue that recurrent genetic conflict over sex chromosome transmission is an important evolutionary force that has shaped a wide range of seemingly disparate phenomena including the epigenetic regulation of genes expressed in the germline, the distribution of genes in the genome, and the evolution of hybrid sterility between species. PMID:19931208

  5. X Chromosome Abnormalities and Cognitive Development: Implications for Understanding Normal Human Development.

    ERIC Educational Resources Information Center

    Walzer, Stanley

    1985-01-01

    Argues that knowledge from studies of individuals with sex chromosome abnormalities can further understanding of aspects of normal human development. Studies of XO girls, XXY boys, XXX girls, and males with a fragile X chromosome are summarized to demonstrate how results contribute to knowledge about normal cognitive development and about…

  6. X Chromosome Abnormalities and Cognitive Development: Implications for Understanding Normal Human Development.

    ERIC Educational Resources Information Center

    Walzer, Stanley

    1985-01-01

    Argues that knowledge from studies of individuals with sex chromosome abnormalities can further understanding of aspects of normal human development. Studies of XO girls, XXY boys, XXX girls, and males with a fragile X chromosome are summarized to demonstrate how results contribute to knowledge about normal cognitive development and about

  7. Autosomal Chromosome Abnormality: A Cause of Birth Defects.

    ERIC Educational Resources Information Center

    Plumridge, Diane

    Intended for parents and professionals, the book explains chromosome abnormalities in lay terms and discusses the relationship of specific conditions to birth defects. Chromosomal abnormalities are defined and factors in diagnosis and recurrence are discussed. Normal chromosome reproduction processes are covered while such numerical abnormalities…

  8. Evolutionary stability of sex chromosomes in snakes.

    PubMed

    Rovatsos, Michail; Vukić, Jasna; Lymberakis, Petros; Kratochvíl, Lukáš

    2015-12-22

    Amniote vertebrates possess various mechanisms of sex determination, but their variability is not equally distributed. The large evolutionary stability of sex chromosomes in viviparous mammals and birds was believed to be connected with their endothermy. However, some ectotherm lineages seem to be comparably conserved in sex determination, but previously there was a lack of molecular evidence to confirm this. Here, we document a stability of sex chromosomes in advanced snakes based on the testing of Z-specificity of genes using quantitative PCR (qPCR) across 37 snake species (our qPCR technique is suitable for molecular sexing in potentially all advanced snakes). We discovered that at least part of sex chromosomes is homologous across all families of caenophidian snakes (Acrochordidae, Xenodermatidae, Pareatidae, Viperidae, Homalopsidae, Colubridae, Elapidae and Lamprophiidae). The emergence of differentiated sex chromosomes can be dated back to about 60 Ma and preceded the extensive diversification of advanced snakes, the group with more than 3000 species. The Z-specific genes of caenophidian snakes are (pseudo)autosomal in the members of the snake families Pythonidae, Xenopeltidae, Boidae, Erycidae and Sanziniidae, as well as in outgroups with differentiated sex chromosomes such as monitor lizards, iguanas and chameleons. Along with iguanas, advanced snakes are therefore another example of ectothermic amniotes with a long-term stability of sex chromosomes comparable with endotherms. PMID:26702042

  9. Sex-biased gene expression at homomorphic sex chromosomes in emus and its implication for sex chromosome evolution

    PubMed Central

    Vicoso, Beatriz; Kaiser, Vera B.; Bachtrog, Doris

    2013-01-01

    Sex chromosomes originate from autosomes. The accumulation of sexually antagonistic mutations on protosex chromosomes selects for a loss of recombination and sets in motion the evolutionary processes generating heteromorphic sex chromosomes. Recombination suppression and differentiation are generally viewed as the default path of sex chromosome evolution, and the occurrence of old, homomorphic sex chromosomes, such as those of ratite birds, has remained a mystery. Here, we analyze the genome and transcriptome of emu (Dromaius novaehollandiae) and confirm that most genes on the sex chromosome are shared between the Z and W. Surprisingly, however, levels of gene expression are generally sex-biased for all sex-linked genes relative to autosomes, including those in the pseudoautosomal region, and the male-bias increases after gonad formation. This expression bias suggests that the emu sex chromosomes have become masculinized, even in the absence of ZW differentiation. Thus, birds may have taken different evolutionary solutions to minimize the deleterious effects imposed by sexually antagonistic mutations: some lineages eliminate recombination along the protosex chromosomes to physically restrict sexually antagonistic alleles to one sex, whereas ratites evolved sex-biased expression to confine the product of a sexually antagonistic allele to the sex it benefits. This difference in conflict resolution may explain the preservation of recombining, homomorphic sex chromosomes in other lineages and illustrates the importance of sexually antagonistic mutations driving the evolution of sex chromosomes. PMID:23547111

  10. Sex-biased gene expression at homomorphic sex chromosomes in emus and its implication for sex chromosome evolution.

    PubMed

    Vicoso, Beatriz; Kaiser, Vera B; Bachtrog, Doris

    2013-04-16

    Sex chromosomes originate from autosomes. The accumulation of sexually antagonistic mutations on protosex chromosomes selects for a loss of recombination and sets in motion the evolutionary processes generating heteromorphic sex chromosomes. Recombination suppression and differentiation are generally viewed as the default path of sex chromosome evolution, and the occurrence of old, homomorphic sex chromosomes, such as those of ratite birds, has remained a mystery. Here, we analyze the genome and transcriptome of emu (Dromaius novaehollandiae) and confirm that most genes on the sex chromosome are shared between the Z and W. Surprisingly, however, levels of gene expression are generally sex-biased for all sex-linked genes relative to autosomes, including those in the pseudoautosomal region, and the male-bias increases after gonad formation. This expression bias suggests that the emu sex chromosomes have become masculinized, even in the absence of ZW differentiation. Thus, birds may have taken different evolutionary solutions to minimize the deleterious effects imposed by sexually antagonistic mutations: some lineages eliminate recombination along the protosex chromosomes to physically restrict sexually antagonistic alleles to one sex, whereas ratites evolved sex-biased expression to confine the product of a sexually antagonistic allele to the sex it benefits. This difference in conflict resolution may explain the preservation of recombining, homomorphic sex chromosomes in other lineages and illustrates the importance of sexually antagonistic mutations driving the evolution of sex chromosomes. PMID:23547111

  11. Down's Syndrome and Leukemia: Mechanism of Additional Chromosomal Abnormalities

    ERIC Educational Resources Information Center

    And Others; Goh, Kong-oo

    1978-01-01

    Chromosomal abnormalities, some appearing in a stepwise clonal evoluation, were found in five Down's syndrome patients (35 weeks to 12 years old), four with acute leukemia and one with abnormal regulation of leukopoiesis. (Author/SBH)

  12. Neo-sex chromosomes of Ronderosia bergi: insight into the evolution of sex chromosomes in grasshoppers.

    PubMed

    Palacios-Gimenez, O M; Marti, D A; Cabral-de-Mello, D C

    2015-09-01

    Sex chromosomes have evolved many times from morphologically identical autosome pairs, most often presenting several recombination suppression events, followed by accumulation of repetitive DNA sequences. In Orthoptera, most species have an X0♂ sex chromosome system. However, in the subfamily Melanoplinae, derived variants of neo-sex chromosomes (neo-XY♂ or neo-X1X2Y♂) emerged several times. Here, we examined the differentiation of neo-sex chromosomes in a Melanoplinae species with a neo-XY♂/XX♀ system, Ronderosia bergi, using several approaches: (i) classical cytogenetic analysis, (ii) mapping via fluorescent in situ hybridization of some selected repetitive DNA sequences and microdissected sex chromosomes, and (iii) immunolocalization of distinct histone modifications. The microdissected sex chromosomes were also used as sources for Polymerase chain reaction (PCR) amplification of RNA-coding multigene families, to study variants related to the sex chromosomes. Our data suggest that the R. bergi neo-Y has become differentiated after its formation by a Robertsonian translocation and inversions, and has accumulated repetitive DNA sequences. Interestingly, the ex autosomes incorporated into the neo-sex chromosomes retain some autosomal post-translational histone modifications, at least in metaphase I, suggesting that the establishment of functional modifications in neo-sex chromosomes is slower than their sequence differentiation. PMID:25605041

  13. The genomics of plant sex chromosomes.

    PubMed

    Vyskot, Boris; Hobza, Roman

    2015-07-01

    Around six percent of flowering species are dioecious, with separate female and male individuals. Sex determination is mostly based on genetics, but morphologically distinct sex chromosomes have only evolved in a few species. Of these, heteromorphic sex chromosomes have been most clearly described in the two model species - Silene latifolia and Rumex acetosa. In both species, the sex chromosomes are the largest chromosomes in the genome. They are hence easily distinguished, can be physically separated and analyzed. This review discusses some recent experimental data on selected model dioecious species, with a focus on S. latifolia. Phylogenetic analyses show that dioecy in plants originated independently and repeatedly even within individual genera. A cogent question is whether there is genetic degeneration of the non-recombining part of the plant Y chromosome, as in mammals, and, if so, whether reduced levels of gene expression in the heterogametic sex are equalized by dosage compensation. Current data provide no clear conclusion. We speculate that although some transcriptome analyses indicate the first signs of degeneration, especially in S. latifolia, the evolutionary processes forming plant sex chromosomes in plants may, to some extent, differ from those in animals. PMID:26025526

  14. Visualizing how cancer chromosome abnormalities form in living cells

    Cancer.gov

    For the first time, scientists have directly observed events that lead to the formation of a chromosome abnormality that is often found in cancer cells. The abnormality, called a translocation, occurs when part of a chromosome breaks off and becomes attac

  15. Sex chromosome aneuploidy in cytogenetic findings of referral patients from south of Iran

    PubMed Central

    Jouyan, Najmeh; Davoudi Dehaghani, Elham; Senemar, Sara; Shojaee, Ashraf; Mozdarani, Hossein

    2012-01-01

    Background: Chromosome abnormality (CA) including Sex chromosomes abnormality (SCAs) is one of the most important causes of disordered sexual development and infertility. SCAs formed by numerical or structural alteration in X and Y chromosomes, are the most frequently CA encountered at both prenatal diagnosis and at birth. Objective: This study describes cytogenetic findings of cases suspected with CA referred for cytogenetic study. Materials and Methods: Blood samples of 4151 patients referred for cytogenetic analysis were cultured for chromosome preparation. Karyotypes were prepared for all samples and G-Banded chromosomes were analyzed using x100 objective lens. Sex chromosome aneuploidy cases were analyzed and categorized in two groups of Turners and Klinefelter’s syndrome (KFS). Results: Out of 230 (5.54%) cases with chromosomally abnormal karyotype, 122 (30%) cases suspected of sexual disorder showed SCA including 46% Turner’s syndrome, 46% KFS and the remaining other sex chromosome abnormalities. The frequency of classic and mosaic form of Turner’s syndrome was 33% and 67%, this was 55% and 45% for KFS, respectively. Conclusion: This study shows a relatively high sex chromosome abnormality in this region and provides cytogenetic data to assist clinicians and genetic counselors to determine the priority of requesting cytogenetic study. Differences between results from various reports can be due to different genetic background or ethnicity. PMID:25242988

  16. Sex chromosome evolution in moths and butterflies.

    PubMed

    Sahara, Ken; Yoshido, Atsuo; Traut, Walther

    2012-01-01

    Lepidoptera, i.e. moths and butterflies, have a female heterogametic sex chromosome system, with most females having a WZ constitution while males are ZZ. Besides this predominant WZ/ZZ system, Z/ZZ, WZ(1)Z(2)/Z(1)Z(1)Z(2)Z(2) and W(1)W(2)Z/ZZ systems also occur. Sex is determined by an unknown W-linked gene or genes in Bombyx mori, but by dosage-dependent and equally unknown Z-linked genes in all Z/ZZ species. The female heterogametic sex chromosome system has been conserved for at least 180 MY in the phylogenetic branch that combines Lepidoptera and Trichoptera. The W chromosome, which is present in most lepidopteran species, was incorporated in the sex chromosome system much later, about 90-100 MY ago. The Z chromosomes are highly conserved among Lepidoptera, much like the Z in birds or the X in mammals. The W, on the other hand, is evolving rapidly. It is crammed with repetitive elements which appear to have a high turnover rate but poor in or even devoid of protein-coding genes. It has frequently undergone fusion with autosomes or sporadically lost altogether. PMID:22187366

  17. Klinefelter syndrome and other sex chromosomal aneuploidies.

    PubMed

    Visootsak, Jeannie; Graham, John M

    2006-01-01

    The term Klinefelter syndrome (KS) describes a group of chromosomal disorder in which there is at least one extra X chromosome to a normal male karyotype, 46,XY. XXY aneuploidy is the most common disorder of sex chromosomes in humans, with prevalence of one in 500 males. Other sex chromosomal aneuploidies have also been described, although they are much less frequent, with 48,XXYY and 48,XXXY being present in 1 per 17,000 to 1 per 50,000 male births. The incidence of 49,XXXXY is 1 per 85,000 to 100,000 male births. In addition, 46,XX males also exist and it is caused by translocation of Y material including sex determining region (SRY) to the X chromosome during paternal meiosis. Formal cytogenetic analysis is necessary to make a definite diagnosis, and more obvious differences in physical features tend to be associated with increasing numbers of sex chromosomes. If the diagnosis is not made prenatally, 47,XXY males may present with a variety of subtle clinical signs that are age-related. In infancy, males with 47,XXY may have chromosomal evaluations done for hypospadias, small phallus or cryptorchidism, developmental delay. The school-aged child may present with language delay, learning disabilities, or behavioral problems. The older child or adolescent may be discovered during an endocrine evaluation for delayed or incomplete pubertal development with eunuchoid body habitus, gynecomastia, and small testes. Adults are often evaluated for infertility or breast malignancy. Androgen replacement therapy should begin at puberty, around age 12 years, in increasing dosage sufficient to maintain age appropriate serum concentrations of testosterone, estradiol, follicle stimulating hormone (FSH), and luteinizing hormone (LH). The effects on physical and cognitive development increase with the number of extra Xs, and each extra X is associated with an intelligence quotient (IQ) decrease of approximately 15-16 points, with language most affected, particularly expressive language skills. PMID:17062147

  18. Klinefelter syndrome and other sex chromosomal aneuploidies

    PubMed Central

    Visootsak, Jeannie; Graham, John M

    2006-01-01

    The term Klinefelter syndrome (KS) describes a group of chromosomal disorder in which there is at least one extra X chromosome to a normal male karyotype, 46,XY. XXY aneuploidy is the most common disorder of sex chromosomes in humans, with prevalence of one in 500 males. Other sex chromosomal aneuploidies have also been described, although they are much less frequent, with 48,XXYY and 48,XXXY being present in 1 per 17,000 to 1 per 50,000 male births. The incidence of 49,XXXXY is 1 per 85,000 to 100,000 male births. In addition, 46,XX males also exist and it is caused by translocation of Y material including sex determining region (SRY) to the X chromosome during paternal meiosis. Formal cytogenetic analysis is necessary to make a definite diagnosis, and more obvious differences in physical features tend to be associated with increasing numbers of sex chromosomes. If the diagnosis is not made prenatally, 47,XXY males may present with a variety of subtle clinical signs that are age-related. In infancy, males with 47,XXY may have chromosomal evaluations done for hypospadias, small phallus or cryptorchidism, developmental delay. The school-aged child may present with language delay, learning disabilities, or behavioral problems. The older child or adolescent may be discovered during an endocrine evaluation for delayed or incomplete pubertal development with eunuchoid body habitus, gynecomastia, and small testes. Adults are often evaluated for infertility or breast malignancy. Androgen replacement therapy should begin at puberty, around age 12 years, in increasing dosage sufficient to maintain age appropriate serum concentrations of testosterone, estradiol, follicle stimulating hormone (FSH), and luteinizing hormone (LH). The effects on physical and cognitive development increase with the number of extra Xs, and each extra X is associated with an intelligence quotient (IQ) decrease of approximately 15–16 points, with language most affected, particularly expressive language skills. PMID:17062147

  19. Psychoeducational Implications of Sex Chromosome Anomalies

    ERIC Educational Resources Information Center

    Wodrich, David L.; Tarbox, Jennifer

    2008-01-01

    Numerous anomalies involving the sex chromosomes (X or Y) have been documented and their impact on development, learning, and behavior studied. This article reviews three of these disorders, Turner syndrome, Klinefelter syndrome, and Lesch-Nyhan disease. Each of these three is associated with one or more selective impairments or behavioral

  20. Psychoeducational Implications of Sex Chromosome Anomalies

    ERIC Educational Resources Information Center

    Wodrich, David L.; Tarbox, Jennifer

    2008-01-01

    Numerous anomalies involving the sex chromosomes (X or Y) have been documented and their impact on development, learning, and behavior studied. This article reviews three of these disorders, Turner syndrome, Klinefelter syndrome, and Lesch-Nyhan disease. Each of these three is associated with one or more selective impairments or behavioral…

  1. Isodicentric Philadelphia chromosome: an uncommon chromosomal abnormality in the chronic phase of chronic myeloid leukemia (CML).

    PubMed

    Loo, Eric; Bansal, Pranshu; Cherukuri, Durga; Arana Yi, Cecilia

    2016-01-01

    An isodicentric Philadelphia chromosome is an uncommon finding previously described as a secondary chromosomal abnormality in accelerated- or blast-phase of chronic myeloid leukemia (CML) with resistance to imatinib mesylate or dasatinib. Here, we present a case with idic(Ph) chromosome identified at initial diagnosis in a patient with chronic-phase CML. PMID:26783434

  2. Signatures of Sex-Antagonistic Selection on Recombining Sex Chromosomes

    PubMed Central

    Kirkpatrick, Mark; Guerrero, Rafael F.

    2014-01-01

    Sex-antagonistic (SA) selection has major evolutionary consequences: it can drive genomic change, constrain adaptation, and maintain genetic variation for fitness. The recombining (or pseudoautosomal) regions of sex chromosomes are a promising setting in which to study SA selection because they tend to accumulate SA polymorphisms and because recombination allows us to deploy the tools of molecular evolution to locate targets of SA selection and quantify evolutionary forces. Here we use coalescent models to characterize the patterns of polymorphism expected within and divergence between recombining X and Y (or Z and W) sex chromosomes. SA selection generates peaks of divergence between X and Y that can extend substantial distances away from the targets of selection. Linkage disequilibrium between neutral sites is also inflated. We show how the pattern of divergence is altered when the SA polymorphism or the sex-determining region was recently established. We use data from the flowering plant Silene latifolia to illustrate how the strength of SA selection might be quantified using molecular data from recombining sex chromosomes. PMID:24578352

  3. The key role of repeated DNAs in sex chromosome evolution in two fish species with ZW sex chromosome system

    PubMed Central

    2012-01-01

    Despite substantial progress, there are still several gaps in our knowledge about the process of sex chromosome differentiation. The degeneration of sex-specific chromosome in some species is well documented, but it is not clear if all species follow the same evolutionary pathway. The accumulation of repetitive DNA sequences, however, is a common feature. To better understand this involvement, fish species emerge as excellent models because they exhibit a wide variety of sex chromosome and sex determining systems. Besides, they have much younger sex chromosomes compared to higher vertebrates, making it possible to follow early steps of differentiation. Here, we analyzed the arrangement of 9 repetitive DNA sequences in the W chromosomes of 2 fish species, namely Leporinus reinhardti and Triportheus auritus, which present well-differentiated ZZ/ZW sex system, but differ in respect to the size of the sex-specific chromosome. Both W chromosomes are almost fully heterochromatic, with accumulation of repeated DNAs in their heterochromatic regions. We found that microsatellites have strongly accumulated on the large W chromosome of L. reinhardti but not on the reduced-size W chromosome of T. auritus and are therefore important players of the W chromosome expansion. The present data highlight that the evolution of the sex chromosomes can diverge even in the same type of sex system, with and without the degeneration of the specific-sex chromosome, being more dynamic than traditionally appreciated. PMID:22658074

  4. The key role of repeated DNAs in sex chromosome evolution in two fish species with ZW sex chromosome system.

    PubMed

    de Bello Cioffi, Marcelo; Kejnovský, Eduard; Marquioni, Vinicius; Poltronieri, Juliana; Molina, Wagner Franco; Diniz, Débora; Bertollo, Luiz Antonio Carlos

    2012-01-01

    Despite substantial progress, there are still several gaps in our knowledge about the process of sex chromosome differentiation. The degeneration of sex-specific chromosome in some species is well documented, but it is not clear if all species follow the same evolutionary pathway. The accumulation of repetitive DNA sequences, however, is a common feature. To better understand this involvement, fish species emerge as excellent models because they exhibit a wide variety of sex chromosome and sex determining systems. Besides, they have much younger sex chromosomes compared to higher vertebrates, making it possible to follow early steps of differentiation. Here, we analyzed the arrangement of 9 repetitive DNA sequences in the W chromosomes of 2 fish species, namely Leporinus reinhardti and Triportheus auritus, which present well-differentiated ZZ/ZW sex system, but differ in respect to the size of the sex-specific chromosome. Both W chromosomes are almost fully heterochromatic, with accumulation of repeated DNAs in their heterochromatic regions. We found that microsatellites have strongly accumulated on the large W chromosome of L. reinhardti but not on the reduced-size W chromosome of T. auritus and are therefore important players of the W chromosome expansion. The present data highlight that the evolution of the sex chromosomes can diverge even in the same type of sex system, with and without the degeneration of the specific-sex chromosome, being more dynamic than traditionally appreciated. PMID:22658074

  5. [Detection of chromosomal abnormalities using cordocentesis].

    PubMed

    Zolotukhina, T V; Kuznetsov, M I; Kostiuk, E V; Shilova, N V; Solonichenko, V G

    1991-08-01

    Four cases of cytogenetic prenatal diagnosis of fetuses with chromosomal aberrations are presented: (1) the Patau syndrome; (2) and (4) the Down syndrome; (3) the Klinefelter syndrome. Cordocentesis has been shown to be expedient for rapid and accurate determination of fetus karyotype. Indicative for cytogenetic examination were ultrasonic data, maternal age, the values of AFP, HGG and nonconjugated estreol in maternal serum. Comparison of ultrasonic examination of fetuses with the data on abortus autotopsia was undertaken. The results demonstrate importance of ultrasonic, cytogenetic, biochemical and morphological research in prenatal malformation diagnosis. PMID:1722186

  6. Molecular cytogenetic studies in structural abnormalities of chromosome 13

    SciTech Connect

    Lozzio, C.B.; Bamberger, E.; Anderson, I.

    1994-09-01

    A partial trisomy 13 was detected prenatally in an amniocentesis performed due to the following ultrasound abnormalities: open sacral neural tube defect (NTD), a flattened cerebellum, and lumbar/thoracic hemivertebrae. Elevated AFP and positive acetylcholinesterase in amniotic fluid confirmed the open NTD. Chromosome analysis showed an extra acrocentric chromosome marker. FISH analysis with the painting probe 13 showed that most of the marker was derived from this chromosome. Chromosomes on the parents revealed that the mother had a balanced reciprocal translocation t(2;13)(q23;q21). Dual labeling with painting chromosomes 2 and 13 on cells from the mother and from the amniotic fluid identified the marker as a der(13)t(2;13)(p23;q21). Thus, the fetus had a partial trisomy 13 and a small partial trisomy 2p. The maternal grandfather was found to be a carrier for this translocation. Fetal demise occurred a 29 weeks of gestation. The fetus had open lumbar NTD and showed dysmorphic features, overlapping fingers and imperforate anus. This woman had a subsequent pregnancy and chorionic villi sample showed that this fetus was normal. Another case with an abnormal chromosome 13 was a newborn with partial monosomy 13 due to the presence of a ring chromosome 13. This infant had severe intrauterine growth retardation, oligohydramnios, dysmorphic features and multiple congenital microphthalmia, congenital heart disease, absent thumbs and toes and cervical vertebral anomalies. Chromosome studies in blood and skin fibroblast cultures showed that one chromosome 3 was replaced by a ring chromosome of various sizes. This ring was confirmed to be derived from chromosome 13 using the centromeric 21/13 probe.

  7. Chromosomal Abnormalities in Infertile Men from Southern India

    PubMed Central

    Suganya, Jaganathan; Kujur, Smita B; Selvaraj, Kamala; Suruli, Muthiah S.; Haripriya, Geetha

    2015-01-01

    Background and Objective Male infertility has been associated with aneuploidies and structural chromosomal abnormalities, Yq microdeletions and specific gene mutations and/or polymorphisms. Besides genetic factors, any block in sperm delivery, endocrine disorders, testicular tumours, infectious diseases, medications, lifestyle factors and environmental toxins can also play a causative role. This study aimed to determine the constitutional karyotype in infertile males having normal female partners in a south Indian population. Materials and Methods A total of 180 men with a complaint of primary infertility ranging from 1 to 25 years were screened for chromosomal abnormalities through conventional analysis of GTG-banded metaphases from cultured lymphocytes. Results Four individuals were diagnosed to have Klinefelter syndrome. Two cases exhibited reciprocal translocations and one showed a maternally inherited insertion. Polymorphisms were seen in sixty-seven patients (37.2%). Conclusion The occurrence of chromosomal abnormalities in 4.6% and variants involving the heterochromatic regions of Y, chromosome 9 and the acrocentric chromosomes in 38.2% of the infertile men with an abnormal seminogram strongly reiterates the inclusion of routine cytogenetic testing and counselling in the diagnostic work-up prior to the use of assisted reproduction technologies. PMID:26393143

  8. A new look at the evolution of avian sex chromosomes.

    PubMed

    Stiglec, R; Ezaz, T; Graves, J A M

    2007-01-01

    Birds have a ubiquitous, female heterogametic, ZW sex chromosome system. The current model suggests that the Z chromosome and its degraded partner, the W chromosome, evolved from an ancestral pair of autosomes independently from the mammalian XY male heteromorphic sex chromosomes--which are similar in size, but not gene content (Graves, 1995; Fridolfsson et al., 1998). Furthermore the degradation of the W has been proposed to be progressive, with the basal clade of birds (the ratites) possessing virtually homomorphic sex chromosomes and the more recently derived birds (the carinates) possessing highly heteromorphic sex chromosomes (Ohno, 1967; Solari, 1993). Recent findings have suggested an alternative to independent evolution of bird and mammal chromosomes, in which an XY system took over directly from an ancestral ZW system. Here we examine recent research into avian sex chromosomes and offer alternative suggestions as to their evolution. PMID:17675850

  9. Functional significance of the sex chromosomes during spermatogenesis

    PubMed Central

    Hu, Yueh-Chiang; Namekawa, Satoshi H.

    2015-01-01

    Mammalian sex chromosomes arose from an ordinary pair of autosomes. Over hundreds of millions of years, they have evolved into highly divergent X and Y chromosomes and have become increasingly specialized for male reproduction. Both sex chromosomes have acquired and amplified testis-specific genes, suggestive of roles in spermatogenesis. To understand how the sex chromosome genes participate in the regulation of spermatogenesis, we review genes, including single-copy, multi-copy, and ampliconic genes, whose spermatogenic functions have been demonstrated in mouse genetic studies. Sex chromosomes are subject to chromosome-wide transcriptional silencing in meiotic and postmeiotic stages of spermatogenesis. We also discuss particular sex-linked genes that escape postmeiotic silencing and their evolutionary implications. The unique gene contents and genomic structures of the sex chromosomes reflect their strategies to express genes at various stages of spermatogenesis and reveal the driving forces that shape their evolution. PMID:25948089

  10. Rapid prenatal diagnosis of chromosome abnormalities.

    PubMed

    Tan, S Y; Chan, W B; Cheng, W C; Hagarty, A; Lim, K T; Quaife, R

    2000-10-01

    The aim of the present work was to examine the efficacy of using FISH for the rapid prenatal diagnosis of common chromosome aneuploidies. A total of 100 analyses over a six month period were included in the study. Diagnosis was possible in all cases. A mosaic for trisomy 21 proved, by comparison with an extensive analysis of long term cultures, to be an apparent false positive. Otherwise the technique was reliable, accurate and relatively straightforward to perform. Results could be available within 24 hrs. In most cases an additional long term full analysis was also done, so as to exclude rarer aneuploidies and structural rearrangements. This methodology is seen as a useful addition to the prenatal diagnostic repertoire. PMID:11281441

  11. Anolis sex chromosomes are derived from a single ancestral pair

    PubMed Central

    Gamble, Tony; Geneva, Anthony J.; Glor, Richard E.; Zarkower, David

    2014-01-01

    To explain the frequency and distribution of heteromorphic sex chromosomes in the lizard genus Anolis we compared the relative roles of sex chromosome conservation vs. turnover of sex determining mechanisms. We used model based comparative methods to reconstruct karyotype evolution and the presence of heteromorphic sex chromosomes onto a newly generated Anolis phylogeny. We found that heteromorphic sex chromosomes evolved multiple times in the genus. Fluorescent in situ hybridization (FISH) of repetitive DNA showed variable rates of Y chromosome degeneration among Anolis species and identified previously undetected, homomorphic sex chromosomes in two species. We confirmed homology of sex chromosomes in the genus by performing FISH of an X-linked BAC and qPCR of X-linked genes in multiple Anolis species sampled across the phylogeny. Taken together, these results are consistent with long-term conservation of sex chromosomes in the group. Our results pave the way to address additional questions related to Anolis sex chromosome evolution and describe a conceptual framework that can be used to evaluate the origins and evolution of heteromorphic sex chromosomes in other clades. PMID:24279795

  12. Deciphering evolutionary strata on plant sex chromosomes and fungal mating-type chromosomes through compositional segmentation.

    PubMed

    Pandey, Ravi S; Azad, Rajeev K

    2016-03-01

    Sex chromosomes have evolved from a pair of homologous autosomes which differentiated into sex determination systems, such as XY or ZW system, as a consequence of successive recombination suppression between the gametologous chromosomes. Identifying the regions of recombination suppression, namely, the "evolutionary strata", is central to understanding the history and dynamics of sex chromosome evolution. Evolution of sex chromosomes as a consequence of serial recombination suppressions is well-studied for mammals and birds, but not for plants, although 48 dioecious plants have already been reported. Only two plants Silene latifolia and papaya have been studied until now for the presence of evolutionary strata on their X chromosomes, made possible by the sequencing of sex-linked genes on both the X and Y chromosomes, which is a requirement of all current methods that determine stratum structure based on the comparison of gametologous sex chromosomes. To circumvent this limitation and detect strata even if only the sequence of sex chromosome in the homogametic sex (i.e. X or Z chromosome) is available, we have developed an integrated segmentation and clustering method. In application to gene sequences on the papaya X chromosome and protein-coding sequences on the S. latifolia X chromosome, our method could decipher all known evolutionary strata, as reported by previous studies. Our method, after validating on known strata on the papaya and S. latifolia X chromosome, was applied to the chromosome 19 of Populus trichocarpa, an incipient sex chromosome, deciphering two, yet unknown, evolutionary strata. In addition, we applied this approach to the recently sequenced sex chromosome V of the brown alga Ectocarpus sp. that has a haploid sex determination system (UV system) recovering the sex determining and pseudoautosomal regions, and then to the mating-type chromosomes of an anther-smut fungus Microbotryum lychnidis-dioicae predicting five strata in the non-recombining region of both the chromosomes. PMID:26694866

  13. Autosomal origin of sex chromosome in a polyploid plant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While theory on sex chromosome evolution is well developed, evidence of the early stages of this process remains elusive, in part because this process unfolded in many animals so long ago. The relatively recent and repeated evolution of separate sexes (dioecy) and sex chromosomes in plants, however,...

  14. Chromosomal abnormalities associated with neural tube defects (II): partial aneuploidy.

    PubMed

    Chen, Chih-Ping

    2007-12-01

    Fetuses with neural tube defects (NTDs) carry a risk of chromosomal abnormalities. The risk varies with maternal age, gestational age at diagnosis, association with other structural abnormalities, and family history of chromosome aberrations. This article provides a comprehensive review of structural chromosomal abnormalities associated with NTDs, such as del(13q), r(13), dup(2p), del(2q), del(1p), del(1q), dup(1q), del(3p), dup(3p), del(3q), dup(3q), del(4p), dup(4p), del(4q), dup(4q), del(5p), del(6p), dup(6q), del(6q), dup(7p), del(7q), dup(8q), del(9p), del(10q), del(11q), dup(11q), dup(12p), dup(14q), del(14q), del(15q), dup(16q), del(18q), r(18), dup(20p), +i(20p), del(22q), del(Xp), and dup(Xq). NTDs may be associated with aneuploidy. Perinatal identification of NTDs should alert one to the possibility of chromosomal abnormalities and prompt a thorough cytogenetic investigation and genetic counseling. PMID:18182339

  15. Chromosomal abnormalities are associated with aging and cancer

    Cancer.gov

    Two new studies have found that large structural abnormalities in chromosomes, some of which have been associated with increased risk of cancer, can be detected in a small fraction of people without a prior history of cancer. The studies found that these

  16. Mechanisms and consequences of paternally transmitted chromosomal abnormalities

    SciTech Connect

    Marchetti, F; Wyrobek, A J

    2005-04-05

    Paternally transmitted chromosomal damage has been associated with pregnancy loss, developmental and morphological defects, infant mortality, infertility, and genetic diseases in the offspring including cancer. There is epidemiological evidence linking paternal exposure to occupational or environmental agents with an increased risk of abnormal reproductive outcomes. There is also a large body of literature on germ cell mutagenesis in rodents showing that treatment of male germ cells with mutagens has dramatic consequences on reproduction producing effects such as those observed in human epidemiological studies. However, we know very little about the etiology, transmission and early embryonic consequences of paternally-derived chromosomal abnormalities. The available evidence suggests that: (1) there are distinct patterns of germ cell-stage differences in the sensitivity of induction of transmissible genetic damage with male postmeiotic cells being the most sensitive; (2) cytogenetic abnormalities at first metaphase after fertilization are critical intermediates between paternal exposure and abnormal reproductive outcomes; and, (3) there are maternally susceptibility factors that may have profound effects on the amount of sperm DNA damage that is converted into chromosomal aberrations in the zygote and directly affect the risk for abnormal reproductive outcomes.

  17. Comparative analysis of sex chromosomes in Leporinus species (Teleostei, Characiformes) using chromosome painting

    PubMed Central

    2013-01-01

    Background The Leporinus genus, belonging to the Anostomidae family, is an interesting model for studies of sex chromosome evolution in fish, particularly because of the presence of heteromorphic sex chromosomes only in some species of the genus. In this study we used W chromosome-derived probes in a series of cross species chromosome painting experiments to try to understand events of sex chromosome evolution in this family. Results W chromosome painting probes from Leporinus elongatus, L. macrocephalus and L. obtusidens were hybridized to each others chromosomes. The results showed signals along their W chromosomes and the use of L. elongatus W probe against L. macrocephalus and L. obtusidens also showed signals over the Z chromosome. No signals were observed when the later aforementioned probe was used in hybridization procedures against other four Anostomidae species without sex chromosomes. Conclusions Our results demonstrate a common origin of sex chromosomes in L. elongatus, L. macrocephalus and L. obtusidens but suggest that the L. elongatus chromosome system is at a different evolutionary stage. The absence of signals in the species without differentiated sex chromosomes does not exclude the possibility of cryptic sex chromosomes, but they must contain other Leporinus W sequences than those described here. PMID:23822802

  18. A neo-sex-chromosome that drives post-zygotic sex determiniation in the Hessian fly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two nonoverlapping autosomal inversions defined unusual neo-sex chromosomes in the Hessian fly (Mayetiola destructor). Like other neo-sex chromosomes, these were normally heterozygous, present only in one sex, and suppressed recombination around a sex-determining master switch. Their unusual propert...

  19. Detection of sex chromosomal aneuploidies X-X, Y-Y, and X-Y in human sperm using two-chromosome fluorescence in situ hybridization

    SciTech Connect

    Wyrobek, A.J.; Robbins, W.A. |; Pinkel, D.; Weier, H.U.; Mehraein, Y. |

    1994-10-15

    Sex chromosome aneuploidy is the most common numerical chromosomal abnormality in humans at birth and a substantial portion of these abnormalities involve paternal chromosomes. An efficient method is presented for using air-dried smears of human semen to detect the number of X and Y chromosomes in sperm chromatin using two-chromosome fluorescence in situ hybridization. Air-dried semen smears were pre-treated with dithiothreitol and 3,4-diiodosalicylate salt to decondense the sperm chromatin and then were hybridized with repetitive sequence DNA probes that had been generated by PCR and differentially labeled. Hybridizations with X and Y specific probes showed the expected ratio of 50%X:50%Y bearing sperm. Sperm carrying extra fluorescence domains representing disomy for the X or Y chromosomes occurred at frequencies of {approximately} 4 per 10,000 sperm each. Cells carrying both X and Y fluorescence domains occurred at a frequency of {approximately} 6/10,000. Thus, the overall frequency of sperm that carried an extra sex chromosome was 1.4/1,000. The frequencies of sperm carrying sex chromosome aneuploidies determined by hybridization did not differ statistically from those reported from the same laboratory using the human-sperm/hamster-egg cytogenetic technique. Multi-chromosome fluorescence in situ hybridization to sperm is a promising method for assessing sex-ratio alterations in human semen and for determining the fraction of sperm carrying sex or other chromosome aneuploidies which may be transmissible to offspring. 44 refs., 1 fig., 3 tabs.

  20. Neo-sex chromosomes in the black muntjac recapitulate incipient evolution of mammalian sex chromosomes

    PubMed Central

    Zhou, Qi; Wang, Jun; Huang, Ling; Nie, Wenhui; Wang, Jinhuan; Liu, Yan; Zhao, Xiangyi; Yang, Fengtang; Wang, Wen

    2008-01-01

    Background The regular mammalian X and Y chromosomes diverged from each other at least 166 to 148 million years ago, leaving few traces of their early evolution, including degeneration of the Y chromosome and evolution of dosage compensation. Results We studied the intriguing case of black muntjac, in which a recent X-autosome fusion and a subsequent large autosomal inversion within just the past 0.5 million years have led to inheritance patterns identical to the traditional X-Y (neo-sex chromosomes). We compared patterns of genome evolution in 35-kilobase noncoding regions and 23 gene pairs on the homologous neo-sex chromosomes. We found that neo-Y alleles have accumulated more mutations, comprising a wide variety of mutation types, which indicates cessation of recombination and is consistent with an ongoing neo-Y degeneration process. Putative deleterious mutations were observed in coding regions of eight investigated genes as well as cis-regulatory regions of two housekeeping genes. In vivo assays characterized a neo-Y insertion in the promoter of the CLTC gene that causes a significant reduction in allelic expression. A neo-Y-linked deletion in the 3'-untranslated region of gene SNX22 abolished a microRNA target site. Finally, expression analyses revealed complex patterns of expression divergence between neo-Y and neo-X alleles. Conclusion The nascent neo-sex chromosome system of black muntjacs is a valuable model in which to study the evolution of sex chromosomes in mammals. Our results illustrate the degeneration scenarios in various genomic regions. Of particular importance, we report - for the first time - that regulatory mutations were probably able to accelerate the degeneration process of Y and contribute to further evolution of dosage compensation. PMID:18554412

  1. Effects of sex chromosome dosage on corpus callosum morphology in supernumerary sex chromosome aneuploidies

    PubMed Central

    2014-01-01

    Background Supernumerary sex chromosome aneuploidies (sSCA) are characterized by the presence of one or more additional sex chromosomes in an individuals karyotype; they affect around 1 in 400 individuals. Although there is high variability, each sSCA subtype has a characteristic set of cognitive and physical phenotypes. Here, we investigated the differences in the morphometry of the human corpus callosum (CC) between sex-matched controls 46,XY (N =99), 46,XX (N =93), and six unique sSCA karyotypes: 47,XYY (N =29), 47,XXY (N =58), 48,XXYY (N =20), 47,XXX (N =30), 48,XXXY (N =5), and 49,XXXXY (N =6). Methods We investigated CC morphometry using local and global area, local curvature of the CC boundary, and between-landmark distance analysis (BLDA). We hypothesized that CC morphometry would vary differentially along a proposed spectrum of Y:X chromosome ratio with supernumerary Y karyotypes having the largest CC areas and supernumerary X karyotypes having significantly smaller CC areas. To investigate this, we defined an sSCA spectrum based on a descending Y:X karyotype ratio: 47,XYY, 46,XY, 48,XXYY, 47,XXY, 48,XXXY, 49,XXXXY, 46,XX, 47,XXX. We similarly explored the effects of both X and Y chromosome numbers within sex. Results of shape-based metrics were analyzed using permutation tests consisting of 5,000 iterations. Results Several subregional areas, local curvature, and BLDs differed between groups. Moderate associations were found between area and curvature in relation to the spectrum and X and Y chromosome counts. BLD was strongly associated with X chromosome count in both male and female groups. Conclusions Our results suggest that X- and Y-linked genes have differential effects on CC morphometry. To our knowledge, this is the first study to compare CC morphometry across these extremely rare groups. PMID:25780557

  2. Single Origin of Sex Chromosomes and Multiple Origins of B Chromosomes in Fish Genus Characidium

    PubMed Central

    Pansonato-Alves, José Carlos; Serrano, Érica Alves; Utsunomia, Ricardo; Camacho, Juan Pedro M.; da Costa Silva, Guilherme José; Vicari, Marcelo Ricardo; Artoni, Roberto Ferreira; Oliveira, Cláudio; Foresti, Fausto

    2014-01-01

    Chromosome painting with DNA probes obtained from supernumerary (B) and sex chromosomes in three species of fish genus Characidium (C. gomesi, C. pterostictum and C. oiticicai) showed a close resemblance in repetitive DNA content between B and sex chromosomes in C. gomesi and C. pterostictum. This suggests an intraspecific origin for B chromosomes in these two species, probably deriving from sex chromosomes. In C. oiticicai, however, a DNA probe obtained from its B chromosome hybridized with the B but not with the A chromosomes, suggesting that the B chromosome in this species could have arisen interspecifically, although this hypothesis needs further investigation. A molecular phylogenetic analysis performed on nine Characidium species, with two mtDNA genes, showed that the presence of heteromorphic sex chromosomes in these species is a derived condition, and that their origin could have been unique, a conclusion also supported by interspecific chromosome painting with a CgW probe derived from the W chromosome in C. gomesi. Summing up, our results indicate that whereas heteromorphic sex chromosomes in the genus Characidium appear to have had a common and unique origin, B chromosomes may have had independent origins in different species. Our results also show that molecular phylogenetic analysis is an excellent complement for cytogenetic studies by unveiling the direction of evolutionary chromosome changes. PMID:25226580

  3. Chromosomal painting and ZW sex chromosomes differentiation in Characidium (Characiformes, Crenuchidae)

    PubMed Central

    2011-01-01

    Background The Characidium (a Neotropical fish group) have a conserved diploid number (2n = 50), but show remarkable differences among species and populations in relation to sex chromosome systems and location of nucleolus organizer regions (NOR). In this study, we isolated a W-specific probe for the Characidium and characterized six Characidium species/populations using cytogenetic procedures. We analyzed the origin and differentiation of sex and NOR-bearing chromosomes by chromosome painting in populations of Characidium to reveal their evolution, phylogeny, and biogeography. Results A W-specific probe for efficient chromosome painting was isolated by microdissection and degenerate oligonucleotide primed-polymerase chain reaction (DOP-PCR) amplification of W chromosomes from C. gomesi. The W probe generated weak signals dispersed on the proto sex chromosomes in C. zebra, dispersed signals in both W and Z chromosomes in C. lauroi and, in C. gomesi populations revealed a proximal site on the long arms of the Z chromosome and the entire W chromosome. All populations showed small terminal W probe sites in some autosomes. The 18S rDNA revealed distinctive patterns for each analyzed species/population with regard to proto sex chromosome, sex chromosome pair, and autosome location. Conclusions The results from dual-color fluorescence in situ hybridization (dual-color FISH) using W and 18S rDNA probes allowed us to infer the putative evolutionary pathways for the differentiation of sex chromosomes and NORs, from structural rearrangements in a sex proto-chromosome, followed by gene erosion and heterochromatin amplification, morphological differentiation of the sex chromosomal pair, and NOR transposition, giving rise to the distinctive patterns observed among species/populations of Characidium. Biogeographic isolation and differentiation of sex chromosomes seem to have played a major role in the speciation process in this group of fish. PMID:21787398

  4. Advanced age increases chromosome structural abnormalities in human spermatozoa

    PubMed Central

    Templado, Cristina; Donate, Anna; Giraldo, Jesús; Bosch, Mercè; Estop, Anna

    2011-01-01

    This study explores the relationship between sperm structural aberrations and age by using a multicolor multichromosome FISH strategy that provides information on the incidence of duplications and deletions on all the autosomes. ToTelvysion kit (Abbott Molecular, Abbott Park, IL, USA) with telomere-specific probes was used. We investigated the sperm of 10 male donors aged from 23 to 74 years old. The donors were divided into two groups according to age, a cohort of five individuals younger than 40 and a cohort of five individuals older than 60 years. The goal of this study was to determine (1) the relationship between donor age and frequency and type of chromosome structural abnormalities and (2) chromosomes more frequently involved in sperm structural aberrations. We found that the older patients had a higher rate of structural abnormalities (6.6%) compared with the younger cohort (4.9%). Although both duplications and deletions were seen more frequently in older men, our findings demonstrate the presence of an excess of duplications versus deletions in both groups at a ratio of 2 to 1. We demonstrate that the distribution of duplications and deletions was not linear along the chromosomes, although a trend toward a higher rate of abnormalities in larger chromosomes was observed. This work is the first study addressing the frequencies of sperm chromosome structural aberrations of all autosomes in a single assay thus making a contribution to the clarification of the amount and origin of damage present in human spermatozoa and in relation to age. PMID:21045871

  5. Variables influencing pregnancy termination following prenatal diagnosis of fetal chromosome abnormalities.

    PubMed

    Hawkins, Anne; Stenzel, Ana; Taylor, Joanne; Chock, Valerie Y; Hudgins, Louanne

    2013-04-01

    The objective of this study was to identify variables that may influence the decision to terminate or continue a pregnancy affected by a chromosome abnormality. We performed a retrospective cohort analysis of 286 pregnancies diagnosed with a chromosome abnormality following genetic counseling and prenatal diagnosis. Data obtained included procedure type, chromosome results, ethnicity, maternal age, use of fertility treatments, and uptake of genetic counseling after results, among other factors. Wilcoxon rank sum test, Fisher's exact test, and univariate and multivariate logistic regression models were used for data analysis. The overall termination rate in this study was 82.9 %. A lower likelihood to terminate was found in pregnancies with a diagnosis of a sex chromosome abnormality (OR 0.05, p < .0001), Filipina race (OR 0.10, p = .03), and uptake of second genetic counseling session (OR 0.05, p < .0001). Prior history of termination was associated with increased likelihood to terminate (OR 8.6, p = .02). Factors revealing no statistically significant association with termination included maternal age, gestational age, clinic site, fetal gender, ultrasound anomalies, reason for referral and who informed the patient. Our data affirm the complexity of the decision making process and reinforce that providers should refrain from making assumptions regarding a patient's likelihood to terminate based on factors such as maternal age, gestational age, type of procedure, or ultrasound. PMID:23001505

  6. Patterns of Neutral Genetic Variation on Recombining Sex Chromosomes

    PubMed Central

    Kirkpatrick, Mark; Guerrero, Rafael F.; Scarpino, Samuel V.

    2010-01-01

    Many animals and plants have sex chromosomes that recombine over much of their length. Here we develop coalescent models for neutral sites on these chromosomes. The emphasis is on expected coalescence times (proportional to the expected amount of neutral genetic polymorphism), but we also derive some results for linkage disequilibria between neutral sites. We analyze the standard neutral model, a model with polymorphic Y chromosomes under balancing selection, and the invasion of a neo-Y chromosome. The results may be useful for testing hypotheses regarding how new sex chromosomes originate and how selection acts upon them. PMID:20124026

  7. Turnover of Sex Chromosomes in Celebensis Group Medaka Fishes

    PubMed Central

    Myosho, Taijun; Takehana, Yusuke; Hamaguchi, Satoshi; Sakaizumi, Mitsuru

    2015-01-01

    Sex chromosomes and the sex-determining (SD) gene are variable in vertebrates. In particular, medaka fishes in the genus Oryzias show an extremely large diversity in sex chromosomes and the SD gene, providing a good model to study the evolutionary process by which they turnover. Here, we investigated the sex determination system and sex chromosomes in six celebensis group species. Our sex-linkage analysis demonstrated that all species had an XX-XY sex determination system, and that the Oryzias marmoratus and O. profundicola sex chromosomes were homologous to O. latipes linkage group (LG) 10, while those of the other four species, O. celebensis, O. matanensis, O. wolasi, and O. woworae, were homologous to O. latipes LG 24. The phylogenetic relationship suggested a turnover of the sex chromosomes from O. latipes LG 24 to LG 10 within this group. Six sex-linkage maps showed that the former two and the latter four species shared a common SD locus, respectively, suggesting that the LG 24 acquired the SD function in a common ancestor of the celebensis group, and that the LG 10 SD function appeared in a common ancestor of O. marmoratus and O. profundicola after the divergence of O. matanensis. Additionally, fine mapping and association analysis in the former two species revealed that Sox3 on the Y chromosome is a prime candidate for the SD gene, and that the Y-specific 430-bp insertion might be involved in its SD function. PMID:26497145

  8. Chromosome landmarks and autosome-sex chromosome translocations in Rumex hastatulus, a plant with XX/XY1Y2 sex chromosome system.

    PubMed

    Grabowska-Joachimiak, Aleksandra; Kula, Adam; Książczyk, Tomasz; Chojnicka, Joanna; Sliwinska, Elwira; Joachimiak, Andrzej J

    2015-06-01

    Rumex hastatulus is the North American endemic dioecious plant with heteromorphic sex chromosomes. It is differentiated into two chromosomal races: Texas (T) race characterised by a simple XX/XY sex chromosome system and North Carolina (NC) race with a polymorphic XX/XY1Y2 sex chromosome system. The gross karyotype morphology in NC race resembles the derived type, but chromosomal changes that occurred during its evolution are poorly understood. Our C-banding/DAPI and fluorescence in situ hybridization (FISH) experiments demonstrated that Y chromosomes of both races are enriched in DAPI-positive sequences and that the emergence of polymorphic sex chromosome system was accompanied by the break of ancestral Y chromosome and switch in the localization of 5S rDNA, from autosomes to sex chromosomes (X and Y2). Two contrasting domains were detected within North Carolina Y chromosomes: the older, highly heterochromatinised, inherited from the original Y chromosome and the younger, euchromatic, representing translocated autosomal material. The flow-cytometric DNA estimation showed ∼3.5 % genome downsizing in the North Carolina race. Our results are in contradiction to earlier reports on the lack of heterochromatin within Y chromosomes of this species and enable unambiguous identification of autosomes involved in the autosome-heterosome translocation, providing useful chromosome landmarks for further studies on the karyotype and sex chromosome differentiation in this species. PMID:25394583

  9. Cretaceous park of sex determination: sex chromosomes are conserved across iguanas

    PubMed Central

    Rovatsos, Michail; Pokorná, Martina; Altmanová, Marie; Kratochvíl, Lukáš

    2014-01-01

    Many poikilothermic vertebrate lineages, especially among amphibians and fishes, possess a rapid turnover of sex chromosomes, while in endotherms there is a notable stability of sex chromosomes. Reptiles in general exhibit variability in sex-determining systems; as typical poikilotherms, they might be expected to have a rapid turnover of sex chromosomes. However, molecular data which would enable the testing of the stability of sex chromosomes are lacking in most lineages. Here, we provide molecular evidence that sex chromosomes are highly conserved across iguanas, one of the most species-rich clade of reptiles. We demonstrate that members of the New World families Iguanidae, Tropiduridae, Leiocephalidae, Phrynosomatidae, Dactyloidae and Crotaphytidae, as well as of the family Opluridae which is restricted to Madagascar, all share homologous sex chromosomes. As our sampling represents the majority of the phylogenetic diversity of iguanas, the origin of iguana sex chromosomes can be traced back in history to the basal splitting of this group which occurred during the Cretaceous period. Iguanas thus show a stability of sex chromosomes comparable to mammals and birds and represent the group with the oldest sex chromosomes currently known among amniotic poikilothermic vertebrates. PMID:24598109

  10. Cretaceous park of sex determination: sex chromosomes are conserved across iguanas.

    PubMed

    Rovatsos, Michail; Pokorná, Martina; Altmanová, Marie; Kratochvíl, Lukáš

    2014-03-01

    Many poikilothermic vertebrate lineages, especially among amphibians and fishes, possess a rapid turnover of sex chromosomes, while in endotherms there is a notable stability of sex chromosomes. Reptiles in general exhibit variability in sex-determining systems; as typical poikilotherms, they might be expected to have a rapid turnover of sex chromosomes. However, molecular data which would enable the testing of the stability of sex chromosomes are lacking in most lineages. Here, we provide molecular evidence that sex chromosomes are highly conserved across iguanas, one of the most species-rich clade of reptiles. We demonstrate that members of the New World families Iguanidae, Tropiduridae, Leiocephalidae, Phrynosomatidae, Dactyloidae and Crotaphytidae, as well as of the family Opluridae which is restricted to Madagascar, all share homologous sex chromosomes. As our sampling represents the majority of the phylogenetic diversity of iguanas, the origin of iguana sex chromosomes can be traced back in history to the basal splitting of this group which occurred during the Cretaceous period. Iguanas thus show a stability of sex chromosomes comparable to mammals and birds and represent the group with the oldest sex chromosomes currently known among amniotic poikilothermic vertebrates. PMID:24598109

  11. Human postmeiotic sex chromatin and its impact on sex chromosome evolution.

    PubMed

    Sin, Ho-Su; Ichijima, Yosuke; Koh, Eitetsu; Namiki, Mikio; Namekawa, Satoshi H

    2012-05-01

    Sex chromosome inactivation is essential epigenetic programming in male germ cells. However, it remains largely unclear how epigenetic silencing of sex chromosomes impacts the evolution of the mammalian genome. Here we demonstrate that male sex chromosome inactivation is highly conserved between humans and mice and has an impact on the genetic evolution of human sex chromosomes. We show that, in humans, sex chromosome inactivation established during meiosis is maintained into spermatids with the silent compartment postmeiotic sex chromatin (PMSC). Human PMSC is illuminated with epigenetic modifications such as trimethylated lysine 9 of histone H3 and heterochromatin proteins CBX1 and CBX3, which implicate a conserved mechanism underlying the maintenance of sex chromosome inactivation in mammals. Furthermore, our analyses suggest that male sex chromosome inactivation has impacted multiple aspects of the evolutionary history of mammalian sex chromosomes: amplification of copy number, retrotranspositions, acquisition of de novo genes, and acquisition of different expression profiles. Most strikingly, profiles of escape genes from postmeiotic silencing diverge significantly between humans and mice. Escape genes exhibit higher rates of amino acid changes compared with non-escape genes, suggesting that they are beneficial for reproductive fitness and may allow mammals to cope with conserved postmeiotic silencing during the evolutionary past. Taken together, we propose that the epigenetic silencing mechanism impacts the genetic evolution of sex chromosomes and contributed to speciation and reproductive diversity in mammals. PMID:22375025

  12. Human postmeiotic sex chromatin and its impact on sex chromosome evolution

    PubMed Central

    Sin, Ho-Su; Ichijima, Yosuke; Koh, Eitetsu; Namiki, Mikio; Namekawa, Satoshi H.

    2012-01-01

    Sex chromosome inactivation is essential epigenetic programming in male germ cells. However, it remains largely unclear how epigenetic silencing of sex chromosomes impacts the evolution of the mammalian genome. Here we demonstrate that male sex chromosome inactivation is highly conserved between humans and mice and has an impact on the genetic evolution of human sex chromosomes. We show that, in humans, sex chromosome inactivation established during meiosis is maintained into spermatids with the silent compartment postmeiotic sex chromatin (PMSC). Human PMSC is illuminated with epigenetic modifications such as trimethylated lysine 9 of histone H3 and heterochromatin proteins CBX1 and CBX3, which implicate a conserved mechanism underlying the maintenance of sex chromosome inactivation in mammals. Furthermore, our analyses suggest that male sex chromosome inactivation has impacted multiple aspects of the evolutionary history of mammalian sex chromosomes: amplification of copy number, retrotranspositions, acquisition of de novo genes, and acquisition of different expression profiles. Most strikingly, profiles of escape genes from postmeiotic silencing diverge significantly between humans and mice. Escape genes exhibit higher rates of amino acid changes compared with non-escape genes, suggesting that they are beneficial for reproductive fitness and may allow mammals to cope with conserved postmeiotic silencing during the evolutionary past. Taken together, we propose that the epigenetic silencing mechanism impacts the genetic evolution of sex chromosomes and contributed to speciation and reproductive diversity in mammals. PMID:22375025

  13. Complex evolutionary trajectories of sex chromosomes across bird taxa.

    PubMed

    Zhou, Qi; Zhang, Jilin; Bachtrog, Doris; An, Na; Huang, Quanfei; Jarvis, Erich D; Gilbert, M Thomas P; Zhang, Guojie

    2014-12-12

    Sex-specific chromosomes, like the W of most female birds and the Y of male mammals, usually have lost most genes owing to a lack of recombination. We analyze newly available genomes of 17 bird species representing the avian phylogenetic range, and find that more than half of them do not have as fully degenerated W chromosomes as that of chicken. We show that avian sex chromosomes harbor tremendous diversity among species in their composition of pseudoautosomal regions and degree of Z/W differentiation. Punctuated events of shared or lineage-specific recombination suppression have produced a gradient of "evolutionary strata" along the Z chromosome, which initiates from the putative avian sex-determining gene DMRT1 and ends at the pseudoautosomal region. W-linked genes are subject to ongoing functional decay after recombination was suppressed, and the tempo of degeneration slows down in older strata. Overall, we unveil a complex history of avian sex chromosome evolution. PMID:25504727

  14. Multiple sex chromosome systems in howler monkeys (Platyrrhini, Alouatta)

    PubMed Central

    Steinberg, Eliana Ruth; Nieves, Mariela; Mudry, Marta Dolores

    2014-01-01

    Abstract In light of the multiple sex chromosome systems observed in howler monkeys (Alouatta Lacépède, 1799) a combined cladistic analysis using chromosomal and molecular characters was applied to discuss the possible origin of these systems. Mesoamerican and South American howlers were karyologically compared. FISH analysis using the chromosome painting probes for the #3 and #15 human chromosomes was applied to corroborate the homeology of the sexual systems. We found that the HSA3/15 syntenic association, present in the sex chromosome systems of South American Howlers, is not present in those of Mesoamerican ones. The autosomes involved in the translocation that formed the sexual systems in the Mesoamerican and South American species are different, thus suggesting an independent origin. Parsimony analysis resolved the phylogenetic relationships among howler species, demonstrating utility of the combined approach. A hypothesis for the origin of the multiple sex chromosome systems for the genus is proposed. PMID:24744833

  15. The unique sex chromosome system in platypus and echidna.

    PubMed

    Ferguson-Smith, M A; Rens, W

    2010-10-01

    A striking example of the power of chromosome painting has been the resolution of the male platypus karyotype and the pairing relationships of the chain often sex chromosomes. We have extended our analysis to the nine sex chromosomes of the male echidna. Cross-species painting with platypus shows that the first five chromosomes in the chain are identical in both, but the order of the remainder are different and, in each species, a different autosome replaces one of the five X chromosomes. As the therian X is homologous mainly to platypus autosome 6 and echidna 16, and as SRY is absent in both, the sex determination mechanism in monotremes is currently unknown. Several of the X and Y chromosomes contain genes orthologous to those in the avian Z but the significance of this is also unknown. It seems likely that a novel testis determinant is carried by a Y chromosome common to platypus and echidna. We have searched for candidates for this determinant among the many genes known to be involved in vertebrate sex differentiation. So far fourteen such genes have been mapped, eleven are autosomal in platypus, two map to the differential regions of X chromosomes, and one maps to a pairing segment and is likewise excluded. Search for the platypus testis-determining gene continues, and the extension of comparative mapping between platypus and birds and reptiles may shed light on the ancestral origin of monotreme sex chromosomes. PMID:21250543

  16. The genetics of sex chromosomes: evolution and implications for hybrid incompatibility

    PubMed Central

    Johnson, Norman A.; Lachance, Joseph

    2012-01-01

    Heteromorphic sex chromosomes, where one sex has two different types of sex chromosomes, face very different evolutionary consequences than do the autosomes. Two important features of sex chromosomes arise from being present in only copy in one of the sexes: dosage compensation and the meiotic silencing of sex chromosomes. Other differences arise because sex chromosomes spend unequal amounts of time in each sex. Thus, the impact of evolutionary processes (mutation, selection, genetic drift, and meiotic drive) differs substantially between each sex chromosome, and between the sex chromosomes and the autosomes. Sex chromosomes also play a disproportionate role in Haldane’s rule and other important patterns related to hybrid incompatibility, and thus speciation. We review the consequences of sex chromosomes on hybrid incompatibility. A theme running through this review is that epigenetic processes, notably those related to chromatin, may be more important to the evolution of sex chromosomes and the evolution of hybrid incompatibility than previously recognized. PMID:23025408

  17. Evolution of vertebrate sex chromosomes and dosage compensation.

    PubMed

    Graves, Jennifer A Marshall

    2016-01-01

    Differentiated sex chromosomes in mammals and other vertebrates evolved independently but in strikingly similar ways. Vertebrates with differentiated sex chromosomes share the problems of the unequal expression of the genes borne on sex chromosomes, both between the sexes and with respect to autosomes. Dosage compensation of genes on sex chromosomes is surprisingly variable - and can even be absent - in different vertebrate groups. Systems that compensate for different gene dosages include a wide range of global, regional and gene-by-gene processes that differ in their extent and their molecular mechanisms. However, many elements of these control systems are similar across distant phylogenetic divisions and show parallels to other gene silencing systems. These dosage systems cannot be identical by descent but were probably constructed from elements of ancient silencing mechanisms that are ubiquitous among vertebrates and shared throughout eukaryotes. PMID:26616198

  18. Evolution of sex chromosomes ZW of Schistosoma mansoni inferred from chromosome paint and BAC mapping analyses.

    PubMed

    Hirai, Hirohisa; Hirai, Yuriko; LoVerde, Philip T

    2012-12-01

    Chromosomes of schistosome parasites among digenetic flukes have a unique evolution because they exhibit the sex chromosomes ZW, which are not found in the other groups of flukes that are hermaphrodites. We conducted molecular cytogenetic analyses for investigating the sex chromosome evolution using chromosome paint analysis and BAC clones mapping. To carry this out, we developed a technique for making paint probes of genomic DNA from a single scraped chromosome segment using a chromosome microdissection system, and a FISH mapping technique for BAC clones. Paint probes clearly identified each of the 8 pairs of chromosomes by a different fluorochrome color. Combination analysis of chromosome paint analysis with Z/W probes and chromosome mapping with 93 BAC clones revealed that the W chromosome of Schistosoma mansoni has evolved by at least four inversion events and heterochromatinization. Nine of 93 BAC clones hybridized with both the Z and W chromosomes, but the locations were different between Z and W chromosomes. The homologous regions were estimated to have moved from the original Z chromosome to the differentiated W chromosome by three inversions events that occurred before W heterohcromatinization. An inversion that was observed in the heterochromatic region of the W chromosome likely occurred after W heterochromatinization. These inversions and heterochromatinization are hypothesized to be the key factors that promoted the evolution of the W chromosome of S. mansoni. PMID:22831897

  19. ETOPOSIDE INDUCES CHROMOSOMAL ABNORMALITIES IN SPERMATOCYTES AND SPERMATOGONIAL STEM CELLS

    SciTech Connect

    Marchetti, F; Pearson, F S; Bishop, J B; Wyrobek, A J

    2005-07-15

    Etoposide (ET) is a chemotherapeutic agent widely used in the treatment of leukemia, lymphomas and many solid tumors, such as testicular and ovarian cancers, that affect patients in their reproductive years. The purpose of the study was to use sperm FISH analyses to characterize the long-term effects of ET on male germ cells. We used a mouse model to characterize the induction of chromosomal aberrations (partial duplications and deletions) and whole chromosomal aneuploidies in sperm of mice treated with a clinical dose of ET. Semen samples were collected at 25 and 49 days after dosing to investigate the effects of ET on meiotic pachytene cells and spermatogonial stem-cells, respectively. ET treatment resulted in major increases in the frequencies of sperm carrying chromosomal aberrations in both meiotic pachytene (27- to 578-fold) and spermatogonial stem-cells (8- to 16-fold), but aneuploid sperm were induced only after treatment of meiotic cells (27-fold) with no persistent effects in stem cells. These results demonstrate that male meiotic germ cells are considerably more sensitive to ET than spermatogonial stem-cell and that increased frequencies of sperm with structural aberrations persist after spermatogonial stem-cell treatment. These findings predict that patients who undergo chemotherapy with ET may have transient elevations in the frequencies of aneuploid sperm, but more importantly, may have persistent elevations in the frequencies of sperm with chromosomal aberrations, placing them at higher risk for abnormal reproductive outcomes long after the end of their chemotherapy.

  20. Persistent clonal chromosomal abnormalities in a chronic myeloid leukemia patient.

    PubMed

    Muraoka, Michiko; Washio, Kana; Kanamitu, Kiichiro; Kanazawa, Yui; Ishida, Toshiaki; Miyamura, Takako; Chayama, Kosuke; Nishiuchi, Ritsuo; Oda, Megumi; Shimada, Akira

    2016-01-01

    Clonal cytogenetic abnormalities (CCA) in Philadelphia chromosome (Ph)-negative cells have been reported in a small population of adult chronic myelogenous leukemia (CML) patients during the clinical course, but CCA in pediatric CML patients are rarely reported. We herein report the case of an 8-year-old boy from the onset of CML. Although he had relapse after unrelated bone marrow transplantation when 9 years old, he has since been in complete molecular response on imatinib mesylate treatment. Surprisingly, various CCA have been observed in this patient, including several reciprocal chromosomal translocations in Ph-negative cells for >12 years. Although dysplasia in the bone marrow cells was identified, no overt transformation to myelodysplastic syndrome or acute myeloid leukemia has been observed. The cause of the CCA remains unknown in this patient, and careful observation is required. PMID:26542480

  1. Ever-Young Sex Chromosomes in European Tree Frogs

    PubMed Central

    Lindtke, Dorothea; Sermier, Roberto; Betto-Colliard, Caroline; Dufresnes, Christophe; Bonjour, Emmanuel; Dumas, Zoé; Luquet, Emilien; Maddalena, Tiziano; Sousa, Helena Clavero; Martinez-Solano, Iñigo; Perrin, Nicolas

    2011-01-01

    Non-recombining sex chromosomes are expected to undergo evolutionary decay, ending up genetically degenerated, as has happened in birds and mammals. Why are then sex chromosomes so often homomorphic in cold-blooded vertebrates? One possible explanation is a high rate of turnover events, replacing master sex-determining genes by new ones on other chromosomes. An alternative is that X-Y similarity is maintained by occasional recombination events, occurring in sex-reversed XY females. Based on mitochondrial and nuclear gene sequences, we estimated the divergence times between European tree frogs (Hyla arborea, H. intermedia, and H. molleri) to the upper Miocene, about 5.4–7.1 million years ago. Sibship analyses of microsatellite polymorphisms revealed that all three species have the same pair of sex chromosomes, with complete absence of X-Y recombination in males. Despite this, sequences of sex-linked loci show no divergence between the X and Y chromosomes. In the phylogeny, the X and Y alleles cluster according to species, not in groups of gametologs. We conclude that sex-chromosome homomorphy in these tree frogs does not result from a recent turnover but is maintained over evolutionary timescales by occasional X-Y recombination. Seemingly young sex chromosomes may thus carry old-established sex-determining genes, a result at odds with the view that sex chromosomes necessarily decay until they are replaced. This raises intriguing perspectives regarding the evolutionary dynamics of sexually antagonistic genes and the mechanisms that control X-Y recombination. PMID:21629756

  2. Ever-young sex chromosomes in European tree frogs.

    PubMed

    Stöck, Matthias; Horn, Agnès; Grossen, Christine; Lindtke, Dorothea; Sermier, Roberto; Betto-Colliard, Caroline; Dufresnes, Christophe; Bonjour, Emmanuel; Dumas, Zoé; Luquet, Emilien; Maddalena, Tiziano; Sousa, Helena Clavero; Martinez-Solano, Iñigo; Perrin, Nicolas

    2011-05-01

    Non-recombining sex chromosomes are expected to undergo evolutionary decay, ending up genetically degenerated, as has happened in birds and mammals. Why are then sex chromosomes so often homomorphic in cold-blooded vertebrates? One possible explanation is a high rate of turnover events, replacing master sex-determining genes by new ones on other chromosomes. An alternative is that X-Y similarity is maintained by occasional recombination events, occurring in sex-reversed XY females. Based on mitochondrial and nuclear gene sequences, we estimated the divergence times between European tree frogs (Hyla arborea, H. intermedia, and H. molleri) to the upper Miocene, about 5.4-7.1 million years ago. Sibship analyses of microsatellite polymorphisms revealed that all three species have the same pair of sex chromosomes, with complete absence of X-Y recombination in males. Despite this, sequences of sex-linked loci show no divergence between the X and Y chromosomes. In the phylogeny, the X and Y alleles cluster according to species, not in groups of gametologs. We conclude that sex-chromosome homomorphy in these tree frogs does not result from a recent turnover but is maintained over evolutionary timescales by occasional X-Y recombination. Seemingly young sex chromosomes may thus carry old-established sex-determining genes, a result at odds with the view that sex chromosomes necessarily decay until they are replaced. This raises intriguing perspectives regarding the evolutionary dynamics of sexually antagonistic genes and the mechanisms that control X-Y recombination. PMID:21629756

  3. Sex Chromosome Evolution in Amniotes: Applications for Bacterial Artificial Chromosome Libraries

    PubMed Central

    Janes, Daniel E.; Valenzuela, Nicole; Ezaz, Tariq; Amemiya, Chris; Edwards, Scott V.

    2011-01-01

    Variability among sex chromosome pairs in amniotes denotes a dynamic history. Since amniotes diverged from a common ancestor, their sex chromosome pairs and, more broadly, sex-determining mechanisms have changed reversibly and frequently. These changes have been studied and characterized through the use of many tools and experimental approaches but perhaps most effectively through applications for bacterial artificial chromosome (BAC) libraries. Individual BAC clones carry 100–200 kb of sequence from one individual of a target species that can be isolated by screening, mapped onto karyotypes, and sequenced. With these techniques, researchers have identified differences and similarities in sex chromosome content and organization across amniotes and have addressed hypotheses regarding the frequency and direction of past changes. Here, we review studies of sex chromosome evolution in amniotes and the ways in which the field of research has been affected by the advent of BAC libraries. PMID:20981143

  4. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  5. Diagnosis of four chromosome abnormalities of unknown origin by chromosome microdissection and subsequent reverse and forward painting

    SciTech Connect

    Coelho, K.E.F.A. de; Egashira, M.; Kato, R.

    1996-06-14

    A molecular cytogenetic method consisting of chromosome microdissection and subsequent reverse/forward chromosome painting is a powerful tool to identify chromosome abnormalities of unknown origin. We present 4 cases of chromosome structural abnormalities whose origins were ascertained by this method. In one MCA/MR patient with an add(5q)chromosome, fluorescence in situ hybridization (FISH), using probes generated from a microdissected additional segment of the add(5q) chromosome and then from a distal region of normal chromosome 5, confirmed that the patient had a tandem duplication for a 5q35-qter segment. Similarly, we ascertained that an additional segment of an add(3p) chromosome in another MCA/MR patient had been derived from a 7q32-qter segment. In a woman with a history of successive spontaneous abortions and with a minute marker chromosome, painting using microdissected probes from the whole marker chromosome revealed that it was i(15)(p10) or psu dic(15;15)(q11;q11). Likewise, a marker observed in a fetus was a ring chromosome derived from the paracentromeric region of chromosome 19. We emphasize the value of the microdissection-based chromosome painting method in the identification of unknown chromosomes, especially for marker chromosomes. The method may contribute to a collection of data among patients with similar or identical chromosome abnormalities, which may lead to a better clinical syndrome delineation. 15 refs., 2 figs.

  6. Diagnosis of four chromosome abnormalities of unknown origin by chromosome microdissection and subsequent reverse and forward painting.

    PubMed

    Coêlho, K E; Egashira, M; Kato, R; Fujimoto, M; Matsumoto, N; Rerkamnuaychoke, B; Abe, K; Harada, N; Ohashi, H; Fukushima, Y; Niikawa, N

    1996-06-14

    A molecular cytogenetic method consisting of chromosome microdissection and subsequent reverse/forward chromosome painting is a powerful tool to identify chromosome abnormalities of unknown origin. We present 4 cases of chromosome structural abnormalities whose origins were ascertained by this method. In one MCA/MR patient with an add(5q)chromosome, fluorescence in situ hybridization (FISH), using probes generated from a microdissected additional segment of the add(5q) chromosome and then from a distal region of normal chromosome 5, confirmed that the patient had a tandem duplication for a 5q35-qter segment. Similarly, we ascertained that an additional segment of an add(3p) chromosome in another MCA/MR patient had been derived from a 7q32-qter segment. In a woman with a history of successive spontaneous abortions and with a minute marker chromosome, painting using microdissected probes from the whole marker chromosome revealed that it was i(15)(p10) or psu dic(15;15)(q11;q11). Likewise, a marker observed in a fetus was a ring chromosome derived from the paracentromeric region of chromosome 19. We emphasize the value of the microdissection-based chromosome painting method in the identification of unknown chromosomes, especially for marker chromosomes. The method may contribute to a collection of data among patients with similar or identical chromosome abnormalities, which may lead to a better clinical syndrome delineation. PMID:8737654

  7. Functional significance of the sex chromosomes during spermatogenesis.

    PubMed

    Hu, Yueh-Chiang; Namekawa, Satoshi H

    2015-06-01

    Mammalian sex chromosomes arose from an ordinary pair of autosomes. Over hundreds of millions of years, they have evolved into highly divergent X and Y chromosomes and have become increasingly specialized for male reproduction. Both sex chromosomes have acquired and amplified testis-specific genes, suggestive of roles in spermatogenesis. To understand how the sex chromosome genes participate in the regulation of spermatogenesis, we review genes, including single-copy, multi-copy, and ampliconic genes, whose spermatogenic functions have been demonstrated in mouse genetic studies. Sex chromosomes are subject to chromosome-wide transcriptional silencing in meiotic and postmeiotic stages of spermatogenesis. We also discuss particular sex-linked genes that escape postmeiotic silencing and their evolutionary implications. The unique gene contents and genomic structures of the sex chromosomes reflect their strategies to express genes at various stages of spermatogenesis and reveal the driving forces that shape their evolution.Free Chinese abstract: A Chinese translation of this abstract is freely available at http://www.reproduction-online.org/content/149/6/R265/suppl/DC1.Free Japanese abstract: A Japanese translation of this abstract is freely available at http://www.reproduction-online.org/content/149/6/R265/suppl/DC2. PMID:25948089

  8. [Diagnosis of MDS: morphology, chromosome abnormalities and genetic mutations].

    PubMed

    Hata, Tomoko

    2015-10-01

    Myelodysplastic syndromes (MDS) are a group of hematological neoplasms associated with ineffective hematopoiesis and that can transform into acute leukemia. The clinical classification of MDS which is defined by cytopenia, the rate of blasts in peripheral blood and bone marrow, dysplasia, and chromosomal abnormalities, has undergone continuous revision. To increase the accuracy of dysplastic evaluation, IWGM-MDS and the Research Committee for Idiopathic Hematopoietic Disorders, Ministry of Health, Labour and Welfare, Japan have proposed a quantitative and qualitative definition of dysplasia. Recently, refining the definition of dysgranulopoiesis was proposed by IWGM-MDS. Neutrophils with abnormal clumping of chromatin, and harboring more than 4 nuclear projections, were recognized as dysplastic features. At present, karyotypic abnormalities are detected in approximately 50% of de novo MDS and these remain the most critical prognostic factor. In the new cytogenetic scoring system, cytogenetic abnormalities were classified into five prognostic subgroups. This new classification was adopted by the revised IPSS. Approximately 80% to 90% of MDS patients have detectable mutations by whole-exon sequencing or whole genome sequencing. Many genetic mutations had biological and prognostic significance. It is important to further understand the utility of this factor in determining prognosis and in selecting among therapeutic options. PMID:26458436

  9. Robin sequence associated with karyotypic mosaicism involving chromosome 22 abnormalities

    SciTech Connect

    Salinas, C.F.; Jastrzab, J.M.; Centu, E.S.

    1994-09-01

    Robin sequence is characterized by cleft palate, hypoplastic mandible, glossoptosis and respiratory difficulties. The Robin sequence may be observed as an isolated defect or as part of about 33 syndromes; however, to our knowledge, it has never been reported associated with chromosome 22 abnormalities. We examined a two-month-old black boy with a severe case of Robin sequence. Exam revealed a small child with hypoplastic mandible, glossoptosis, high palate and respiratory difficulty with continuous apnea episodes resulting in cyanotic lips and nails. In order to relieve the upper airway obstruction, his tongue was attached to the lower lip. Later a tracheostomy was performed. On follow-up exam, this patient was found to have developmental delay. Cytogenetic studies of both peripheral blood and fibroblast cells showed mosaicism involving chromosome 22 abnormalities which were designated as follows: 45,XY,-22/46,XY,-22,+r(22)/46,XY. Fluorescence in situ hybridization (FISH) studies confirmed the identity of the r(22) and showed the presence of the DiGeorge locus (D22575) but the absence of the D22539 locus which maps to 22q13.3. Reported cases of r(22) show no association with Robin sequence. However, r(22) has been associated with flat bridge of the nose, bulbous tip of the nose, epicanthus and high palate, all characteristics that we also observed in this case. These unusual cytogenetic findings may be causally related to the dysmorphology found in the patient we report.

  10. A Neo-Sex Chromosome That Drives Postzygotic Sex Determination in the Hessian Fly (Mayetiola destructor)

    PubMed Central

    Benatti, Thiago R.; Valicente, Fernando H.; Aggarwal, Rajat; Zhao, Chaoyang; Walling, Jason G.; Chen, Ming-Shun; Cambron, Sue E.; Schemerhorn, Brandon J.; Stuart, Jeffrey J.

    2010-01-01

    Two nonoverlapping autosomal inversions defined unusual neo-sex chromosomes in the Hessian fly (Mayetiola destructor). Like other neo-sex chromosomes, these were normally heterozygous, present only in one sex, and suppressed recombination around a sex-determining master switch. Their unusual properties originated from the anomalous Hessian fly sex determination system in which postzygotic chromosome elimination is used to establish the sex-determining karyotypes. This system permitted the evolution of a master switch (Chromosome maintenance, Cm) that acts maternally. All of the offspring of females that carry Cm-associated neo-sex chromosomes attain a female-determining somatic karyotype and develop as females. Thus, the chromosomes act as maternal effect neo-W's, or W-prime (W′) chromosomes, where ZW′ females mate with ZZ males to engender female-producing (ZW′) and male-producing (ZZ) females in equal numbers. Genetic mapping and physical mapping identified the inversions. Their distribution was determined in nine populations. Experimental matings established the association of the inversions with Cm and measured their recombination suppression. The inversions are the functional equivalent of the sciarid X-prime chromosomes. We speculate that W′ chromosomes exist in a variety of species that produce unisexual broods. PMID:20026681

  11. A neo-sex chromosome that drives postzygotic sex determination in the hessian fly (Mayetiola destructor).

    PubMed

    Benatti, Thiago R; Valicente, Fernando H; Aggarwal, Rajat; Zhao, Chaoyang; Walling, Jason G; Chen, Ming-Shun; Cambron, Sue E; Schemerhorn, Brandon J; Stuart, Jeffrey J

    2010-03-01

    Two nonoverlapping autosomal inversions defined unusual neo-sex chromosomes in the Hessian fly (Mayetiola destructor). Like other neo-sex chromosomes, these were normally heterozygous, present only in one sex, and suppressed recombination around a sex-determining master switch. Their unusual properties originated from the anomalous Hessian fly sex determination system in which postzygotic chromosome elimination is used to establish the sex-determining karyotypes. This system permitted the evolution of a master switch (Chromosome maintenance, Cm) that acts maternally. All of the offspring of females that carry Cm-associated neo-sex chromosomes attain a female-determining somatic karyotype and develop as females. Thus, the chromosomes act as maternal effect neo-W's, or W-prime (W') chromosomes, where ZW' females mate with ZZ males to engender female-producing (ZW') and male-producing (ZZ) females in equal numbers. Genetic mapping and physical mapping identified the inversions. Their distribution was determined in nine populations. Experimental matings established the association of the inversions with Cm and measured their recombination suppression. The inversions are the functional equivalent of the sciarid X-prime chromosomes. We speculate that W' chromosomes exist in a variety of species that produce unisexual broods. PMID:20026681

  12. The evolution of sex chromosomes in organisms with separate haploid sexes.

    PubMed

    Immler, Simone; Otto, Sarah Perin

    2015-03-01

    The evolution of dimorphic sex chromosomes is driven largely by the evolution of reduced recombination and the subsequent accumulation of deleterious mutations. Although these processes are increasingly well understood in diploid organisms, the evolution of dimorphic sex chromosomes in haploid organisms (U/V) has been virtually unstudied theoretically. We analyze a model to investigate the evolution of linkage between fitness loci and the sex-determining region in U/V species. In a second step, we test how prone nonrecombining regions are to degeneration due to accumulation of deleterious mutations. Our modeling predicts that the decay of recombination on the sex chromosomes and the addition of strata via fusions will be just as much a part of the evolution of haploid sex chromosomes as in diploid sex chromosome systems. Reduced recombination is broadly favored, as long as there is some fitness difference between haploid males and females. The degeneration of the sex-determining region due to the accumulation of deleterious mutations is expected to be slower in haploid organisms because of the absence of masking. Nevertheless, balancing selection often drives greater differentiation between the U/V sex chromosomes than in X/Y and Z/W systems. We summarize empirical evidence for haploid sex chromosome evolution and discuss our predictions in light of these findings. PMID:25582562

  13. Prospective studies on children with sex chromosome aneuploidy

    SciTech Connect

    Ratcliffe, S.G.; Paul, N.

    1986-01-01

    This book contains 11 selections. Some of the titles are: Growth and Development from Early to Midadolescence of Children with X and Y Chromosome Aneuploidy: The Toronto Study; Sex Chromomal Aneuploidy: Perspective and Longitudinal Studies; Psychologic Study of XYY and XXY Men; and Cellular and Molecular Studies in Human Chromosomal Diseases.

  14. Neo-sex chromosomes and adaptive potential in tortricid pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in genome architecture often have a significant effect on ecological specialization and speciation. This effect may be further enhanced by involvement of sex chromosomes playing a disproportionate role in reproductive isolation. We have physically mapped the Z chromosome of the major pome fr...

  15. Homomorphic plant sex chromosomes are coming of age.

    PubMed

    Filatov, Dmitry A

    2015-07-01

    Sex chromosomes are a very peculiar part of the genome that have evolved independently in many groups of animals and plants (Bull ). Major research efforts have so far been focused on large heteromorphic sex chromosomes in a few animal and plant species (Chibalina & Filatov ; Zhou & Bachtrog ; Bellott et al. ; Hough et al. ; Zhou et al. ), while homomorphic (cytologically indistinguishable) sex chromosomes have largely been neglected. However, this situation is starting to change. In this issue, Geraldes et al. () describe a small (~100 kb long) sex-determining region on the homomorphic sex chromosomes of poplars (Populus trichocarpa and related species, Fig. ). All species in Populus and its sister genus Salix are dioecious, suggesting that dioecy and the sex chromosomes, if any, should be relatively old. Contrary to this expectation, Geraldes et al. () demonstrate that the sex-determining region in poplars is of very recent origin and probably evolved within the genus Populus only a few million years ago. PMID:26113024

  16. Sex without sex chromosomes: genetic architecture of multiple loci independently segregating to determine sex ratios in the copepod Tigriopus californicus.

    PubMed

    Alexander, H J; Richardson, J M L; Edmands, S; Anholt, B R

    2015-12-01

    Sex-determining systems are remarkably diverse and may evolve rapidly. Polygenic sex-determination systems are predicted to be transient and evolutionarily unstable, yet examples have been reported across a range of taxa. Here, we provide the first direct evidence of polygenic sex determination in Tigriopus californicus, a harpacticoid copepod with no heteromorphic sex chromosomes. Using genetically distinct inbred lines selected for male- and female-biased clutches, we generated a genetic map with 39 SNPs across 12 chromosomes. Quantitative trait locus mapping of sex ratio phenotype (the proportion of male offspring produced by an F2 female) in four F2 families revealed six independently segregating quantitative trait loci on five separate chromosomes, explaining 19% of the variation in sex ratios. The sex ratio phenotype varied among loci across chromosomes in both direction and magnitude, with the strongest phenotypic effects on chromosome 10 moderated to some degree by loci on four other chromosomes. For a given locus, sex ratio phenotype varied in magnitude for individuals derived from different dam lines. These data, together with the environmental factors known to contribute to sex determination, characterize the underlying complexity and potential lability of sex determination, and confirm the polygenic architecture of sex determination in T. californicus. PMID:26332493

  17. The Sex Chromosomes of Frogs: Variability and Tolerance Offer Clues to Genome Evolution and Function

    PubMed Central

    Malcom, Jacob W.; Kudra, Randal S.; Malone, John H.

    2014-01-01

    Frog sex chromosomes offer an ideal system for advancing our understanding of genome evolution and function because of the variety of sex determination systems in the group, the diversity of sex chromosome maturation states, the ease of experimental manipulation during early development. After briefly reviewing sex chromosome biology generally, we focus on what is known about frog sex determination, sex chromosome evolution, and recent, genomics-facilitated advances in the field. In closing we highlight gaps in our current knowledge of frog sex chromosomes, and suggest priorities for future research that can advance broad knowledge of gene dose and sex chromosome evolution. PMID:25031658

  18. Sex chromosome complement regulates expression of mood-related genes

    PubMed Central

    2013-01-01

    Background Studies on major depressive and anxiety disorders suggest dysfunctions in brain corticolimbic circuits, including altered gamma-aminobutyric acid (GABA) and modulatory (serotonin and dopamine) neurotransmission. Interestingly, sexual dimorphisms in GABA, serotonin, and dopamine systems are also reported. Understanding the mechanisms behind these sexual dimorphisms may help unravel the biological bases of the heightened female vulnerability to mood disorders. Here, we investigate the contribution of sex-related factors (sex chromosome complement, developmental gonadal sex, or adult circulating hormones) to frontal cortex expression of selected GABA-, serotonin-, and dopamine-related genes. Methods As gonadal sex is determined by sex chromosome complement, the role of sex chromosomes cannot be investigated individually in humans. Therefore, we used the Four Core Genotypes (FCG) mouse model, in which sex chromosome complement and gonadal sex are artificially decoupled, to examine the expression of 13 GABA-related genes, 6 serotonin- and dopamine-related genes, and 8 associated signal transduction genes under chronic stress conditions. Results were analyzed by three-way ANOVA (sex chromosome complement × gonadal sex × circulating testosterone). A global perspective of gene expression changes was provided by heatmap representation and gene co-expression networks to identify patterns of transcriptional activities related to each main factor. Results We show that under chronic stress conditions, sex chromosome complement influenced GABA/serotonin/dopamine-related gene expression in the frontal cortex, with XY mice consistently having lower gene expression compared to XX mice. Gonadal sex and circulating testosterone exhibited less pronounced, more complex, and variable control over gene expression. Across factors, male conditions were associated with a tightly co-expressed set of signal transduction genes. Conclusions Under chronic stress conditions, sex-related factors differentially influence expression of genes linked to mood regulation in the frontal cortex. The main factor influencing expression of GABA-, serotonin-, and dopamine-related genes was sex chromosome complement, with an unexpected pro-disease effect in XY mice relative to XX mice. This effect was partially opposed by gonadal sex and circulating testosterone, although all three factors influenced signal transduction pathways in males. Since GABA, serotonin, and dopamine changes are also observed in other psychiatric and neurodegenerative disorders, these findings have broader implications for the understanding of sexual dimorphism in adult psychopathology. PMID:24199867

  19. Sex chromosome evolution: life, death and repetitive DNA

    PubMed Central

    Deshpande, Nikita; Meller, Victoria H

    2014-01-01

    Dimorphic sex chromosomes create problems. Males of many species, including Drosophila, are heterogametic, with dissimilar X and Y chromosomes. The essential process of dosage compensation modulates the expression of X-linked genes in one sex to maintain a constant ratio of X to autosomal expression. This involves the regulation of hundreds of dissimilar genes whose only shared property is chromosomal address. Drosophila males dosage compensate by up regulating X-linked genes 2 fold. This is achieved by the Male Specific Lethal (MSL) complex, which is recruited to genes on the X chromosome and modifies chromatin to increase expression. How the MSL complex is restricted to X-linked genes remains unknown. Recent studies of sex chromosome evolution have identified a central role for 2 types of repetitive elements in X recognition. Helitrons carrying sites that recruit the MSL complex have expanded across the X chromosome in at least one Drosophila species.1 Our laboratory found that siRNA from an X-linked satellite repeat promotes X recognition by a yet unknown mechanism.2 The recurring adoption of repetitive elements as X-identify elements suggests that the large and mysterious fraction of the genome called “junk” DNA is actually instrumental in the evolution of sex chromosomes. PMID:25751570

  20. Sex chromosome evolution: life, death and repetitive DNA.

    PubMed

    Deshpande, Nikita; Meller, Victoria H

    2014-01-01

    Dimorphic sex chromosomes create problems. Males of many species, including Drosophila, are heterogametic, with dissimilar X and Y chromosomes. The essential process of dosage compensation modulates the expression of X-linked genes in one sex to maintain a constant ratio of X to autosomal expression. This involves the regulation of hundreds of dissimilar genes whose only shared property is chromosomal address. Drosophila males dosage compensate by up regulating X-linked genes 2 fold. This is achieved by the Male Specific Lethal (MSL) complex, which is recruited to genes on the X chromosome and modifies chromatin to increase expression. How the MSL complex is restricted to X-linked genes remains unknown. Recent studies of sex chromosome evolution have identified a central role for 2 types of repetitive elements in X recognition. Helitrons carrying sites that recruit the MSL complex have expanded across the X chromosome in at least one Drosophila species. (1) Our laboratory found that siRNA from an X-linked satellite repeat promotes X recognition by a yet unknown mechanism. (2) The recurring adoption of repetitive elements as X-identify elements suggests that the large and mysterious fraction of the genome called "junk" DNA is actually instrumental in the evolution of sex chromosomes. PMID:25751570

  1. Impact of repetitive DNA on sex chromosome evolution in plants.

    PubMed

    Hobza, Roman; Kubat, Zdenek; Cegan, Radim; Jesionek, Wojciech; Vyskot, Boris; Kejnovsky, Eduard

    2015-09-01

    Structurally and functionally diverged sex chromosomes have evolved in many animals as well as in some plants. Sex chromosomes represent a specific genomic region(s) with locally suppressed recombination. As a consequence, repetitive sequences involving transposable elements, tandem repeats (satellites and microsatellites), and organellar DNA accumulate on the Y (W) chromosomes. In this paper, we review the main types of repetitive elements, their gathering on the Y chromosome, and discuss new findings showing that not only accumulation of various repeats in non-recombining regions but also opposite processes form Y chromosome. The aim of this review is also to discuss the mechanisms of repetitive DNA spread involving (retro) transposition, DNA polymerase slippage or unequal crossing-over, as well as modes of repeat removal by ectopic recombination. The intensity of these processes differs in non-recombining region(s) of sex chromosomes when compared to the recombining parts of genome. We also speculate about the relationship between heterochromatinization and the formation of heteromorphic sex chromosomes. PMID:26474787

  2. Nascent ZW sex chromosomes in Thecadactylus rapicauda (Reptilia, Squamata, Phyllodactylidae).

    PubMed

    Schmid, Michael; Steinlein, Claus; Haaf, Thomas; Mijares-Urrutia, Abraham

    2014-01-01

    The chromosomes of the turnip-tailed gecko Thecadactylus rapicauda from the Falcón State in northern Venezuela were examined by means of conventional staining, a variety of banding techniques and in situ hybridization with an 18S + 28S rDNA probe. In female specimens, C-banding analyses detected a cryptic W sex chromosome-associated interstitial heterochromatic segment which is absent in the Z sex chromosome. These ZW sex chromosomes are considered to be in a nascent stage of morphological differentiation and are absent in T. rapicauda collected in Guatemala. The amount, location and fluorochrome affinities of constitutive heterochromatin, the position of the nucleolus organizer region, and the genome sizes of female and male individuals were determined. The previously published cytogenetic data on T. rapicauda are discussed. PMID:25247775

  3. Frequency and the Type of Chromosomal Abnormalities in Patients with Primary Amenorrhea in Northeast of Iran

    PubMed Central

    Mohajertehran, Farnaz; Ghodsi, Kazem; Hafizi, Leili; Rezaee, Ameneh

    2013-01-01

    Objective(s): Primary and secondary amenorrhea are different from each other in that the former refers to a physiological failure in the onset of spontaneous menarche during the time when it is expected. whereas the latter involves the cessation of normal menstruation any time prior to menopause. In this study we aimed to investigate chromosomal abnormalities in patients with Primary Amenorrhea in Northeast of Iran by employing GTG banding. Materials and Methods: Chromosomal analysis was carried out on 180 cases that were referred from different clinics in eastern cities of Iran to our laboratory from 2004 to 2009. We implemented the suggested protocol regarding peripheral blood lymphocyte culture for metaphase chromosome preparation as well as conventional analysis for G-banded chromosome. Results: The karyotype results revealed that 75.55% (n=136) had normal chromosome composition and 24.45% (n=44) showed chromosomal abnormalities. Among the patients with abnormal chromosome constituents 86.36% exhibit numerical aberration and 13.63% showed structural abnormalities. The most frequent abnormality detected was X chromosome monosomy, homogeneous (21 cases –11.66%) or mosaic (8 cases – 4.44%). The other 6 cases (3.33%) had X chromosome structural imbalanced abnormalities (homogeneous or in mosaic). Discussion: As expected, this study confirmed previously reported cytogentic abnormalities in patients with amenorrhea. Although there are percentage differences between these studies and also verities in chromosomal abnormalities, they have still demonstrated the importance of cytogenetic investigations in the etiological diagnosis of amenorrhea. PMID:24250944

  4. Frequency and the Type of Chromosomal Abnormalities in Patients with Primary Amenorrhea in Northeast of Iran

    PubMed Central

    Mohajertehran, Farnaz; Ghodsi, Kazem; Hafizi, Leili; Rezaee, Ameneh

    2013-01-01

    Objective(s): Primary and secondary amenorrhea are different from each other in that the former refers to a physiological failure in the onset of spontaneous menarche during the time when it is expected. whereas the latter involves the cessation of normal menstruation any time prior to menopause. In this study we aimed to investigate chromosomal abnormalities in patients with Primary Amenorrhea in Northeast of Iran by employing GTG banding. Materials and Methods: Chromosomal analysis was carried out on 180 cases that were referred from different clinics in eastern cities of Iran to our laboratory from 2004 to 2009. We implemented the suggested protocol regarding peripheral blood lymphocyte culture for metaphase chromosome preparation as well as conventional analysis for G-banded chromosome. Results: The karyotype results revealed that 75.55% (n=136) had normal chromosome composition and 24.45% (n=44) showed chromosomal abnormalities. Among the patients with abnormal chromosome constituents 86.36% exhibit numerical aberration and 13.63% showed structural abnormalities. The most frequent abnormality detected was X chromosome monosomy, homogeneous (21 cases –11.66%) or mosaic (8 cases – 4.44%). The other 6 cases (3.33%) had X chromosome structural imbalanced abnormalities (homogeneous or in mosaic). Discussion: As expected, this study confirmed previously reported cytogentic abnormalities in patients with amenorrhea. Although there are percentage differences between these studies and also verities in chromosomal abnormalities, they have still demonstrated the importance of cytogenetic investigations in the etiological diagnosis of amenorrhea. PMID:24250941

  5. Counseling parents before prenatal diagnosis: do we need to say more about the sex chromosome aneuploidies?

    PubMed

    Lalatta, Faustina; Tint, G Stephen

    2013-11-01

    Sex chromosome trisomies (SCT), an extra X chromosome in females (triple X, XXX), males with an extra X chromosome (Klinefelter syndrome, XXY) or an extra Y chromosome (XYY) occur because of errors during meiosis and are relatively frequent in humans. Their identification has never been the goal of prenatal diagnosis (PD) but they almost never escape detection by any of the methods commonly in use. Despite recommendations and guide-lines which emphasize the importance of structured counseling before and after PD, most women remain unaware that testing for serious genetic abnormalities is more likely to uncover these trisomies. With the increasing use of PD more and more prospective parents receive a diagnosis of sex chromosome trisomies and are faced with the dilemma of whether to terminate the pregnancy or to carry it to term. Despite the dramatic and emotionally devastating consequences of having to make such a decision, they have little opportunity to consider in advance the possible outcomes of such a pregnancy and, rather than relying on their own feelings and judgements, are forced to depend on the advice of counseling professionals who may or may not themselves be fully aware of what having an extra sex chromosome can mean to the development of a child. We address here the principles of reproductive autonomy together with an analysis of the major issues that ought to be discussed with the parents before a PD is carried out in order to minimize detrimental effects caused by this unexpected finding. PMID:24115600

  6. Genetic screening and evaluation for chromosomal abnormalities of infertile males in Jilin Province, China.

    PubMed

    Zhang, M; Fan, H-T; Zhang, Q-S; Wang, X-Y; Yang, X; Tian, W-J; Li, R-W

    2015-01-01

    Chromosomal abnormality is the most common genetic cause of male infertility, particularly in cases of azoospermia, oligozoospermia, and recurrent spontaneous abortion. Chromosomal rearrangement may interrupt an important gene or exert position effects. The functionality of genes at specific breakpoints, perhaps with a specific role in spermatogenesis, may be altered by such rearrangements. Structural chromosome abnormalities are furthermore known to increase the risk of pregnancy loss. In this study, we aimed to assess chromosomal defects in infertile men from Jilin Province, China, by genetic screening and to evaluate the relationship between structural chromosome abnormalities and male infertility. The prevalence of chromosomal abnormalities among the study participants (receiving genetic counseling in Jilin Province, China) was 10.55%. The most common chromosome abnormality was Klinefelter syndrome, and the study findings suggested that azoospermia and oligospermia may result from structural chromosomal abnormalities. Chromosome 1 was shown to be most commonly involved in male infertility and balanced chromosomal translocation was identified as one of the causes of recurrent spontaneous abortion. Chromosomes 4, 7, and 10 were the most commonly involved chromosomes in male partners of women experiencing repeated abortion. PMID:26662410

  7. Cross-species chromosome painting tracks the independent origin of multiple sex chromosomes in two cofamiliar Erythrinidae fishes

    PubMed Central

    2011-01-01

    Background The Erythrinidae fish family is characterized by a large variation with respect to diploid chromosome numbers and sex-determining systems among its species, including two multiple X1X2Y sex systems in Hoplias malabaricus and Erythrinus erythrinus. At first, the occurrence of a same sex chromosome system within a family suggests that the sex chromosomes are correlated and originated from ancestral XY chromosomes that were either homomorphic or at an early stage of differentiation. To identify the origin and evolution of these X1X2Y sex chromosomes, we performed reciprocal cross-species FISH experiments with two sex-chromosome-specific probes designed from microdissected X1 and Y chromosomes of H. malabaricus and E. erythrinus, respectively. Results Our results yield valuable information regarding the origin and evolution of these sex chromosome systems. Our data indicate that these sex chromosomes evolved independently in these two closed related Erythrinidae species. Different autosomes were first converted into a poorly differentiated XY sex pair in each species, and additional chromosomal rearrangements produced both X1X2Y sex systems that are currently present. Conclusions Our data provide new insights into the origin and evolution of sex chromosomes, which increases our knowledge about fish sex chromosome evolution. PMID:21718509

  8. [Male infertility with chromosomal abnormalities. I. XYY syndrome].

    PubMed

    Hazama, M; Oka, N; Hamaguchi, T; Okada, H; Matsumoto, O; Kamidono, S; Ishigami, J

    1985-01-01

    Chromosomal abnormalities are found in a considerably high percentage of cases of male infertility, in particular azoospermia. We report a case of the XYY syndrome and review the literature. A 36-year-old man, a factory hand, presented with infertility. He was safely delivered at term as a fourth child when his father was 41 years old and his mother 38. He had no delinquent or criminal record. His height was 179 cm, weight 75 kg and distance of extended hands 184 cm. No gynecomastia was noticed. Both testes were 8ml in size and growth of pubic hair and penis were normal. Severe oligozoospermia was identified in semen analysis. Seminal vesiculography showed pathological dilatation of the seminal vas end. The testicular biopsy specimens revealed spermatogenic arrest for the most part. Chromosomal analysis showed 47, XYY karyotype; and, two Y-chromatin was revealed in cultured lymphocytes. Though plasma gonadotropin levels were high, testosterone, estradiol, prolactin, TSH, GH, T3 and T4 levels were within normal limits. Pituitary reserve function for secreting gonadotropins and Leydig cell reserve function to secrete testosterone have been found to be almost normal. PMID:4039524

  9. Plant contributions to our understanding of sex chromosome evolution.

    PubMed

    Charlesworth, Deborah

    2015-10-01

    A minority of angiosperms have male and female flowers separated in distinct individuals (dioecy), and most dioecious plants do not have cytologically different (heteromorphic) sex chromosomes. Plants nevertheless have several advantages for the study of sex chromosome evolution, as genetic sex determination has evolved repeatedly and is often absent in close relatives. I review sex-determining regions in non-model plant species, which may help us to understand when and how (and, potentially, test hypotheses about why) recombination suppression evolves within young sex chromosomes. I emphasize high-throughput sequencing approaches that are increasingly being applied to plants to test for non-recombining regions. These data are particularly illuminating when combined with sequence data that allow phylogenetic analyses, and estimates of when these regions evolved. Together with comparative genetic mapping, this has revealed that sex-determining loci and sex-linked regions evolved independently in many plant lineages, sometimes in closely related dioecious species, and often within the past few million years. In reviewing recent progress, I suggest areas for future work, such as the use of phylogenies to allow the informed choice of outgroup species suitable for inferring the directions of changes, including testing whether Y chromosome-like regions are undergoing genetic degeneration, a predicted consequence of losing recombination. PMID:26053356

  10. The role of sex chromosomes in mammalian germ cell differentiation: can the germ cells carrying X and Y chromosomes differentiate into fertile oocytes?

    PubMed

    Taketo, Teruko

    2015-01-01

    The sexual differentiation of germ cells into spermatozoa or oocytes is strictly regulated by their gonadal environment, testis or ovary, which is determined by the presence or absence of the Y chromosome, respectively. Hence, in normal mammalian development, male germ cells differentiate in the presence of X and Y chromosomes, and female germ cells do so in the presence of two X chromosomes. However, gonadal sex reversal occurs in humans as well as in other mammalian species, and the resultant XX males and XY females can lead healthy lives, except for a complete or partial loss of fertility. Germ cells carrying an abnormal set of sex chromosomes are efficiently eliminated by multilayered surveillance mechanisms in the testis, and also, though more variably, in the ovary. Studying the molecular basis for sex-specific responses to a set of sex chromosomes during gametogenesis will promote our understanding of meiotic processes contributing to the evolution of sex determining mechanisms. This review discusses the fate of germ cells carrying various sex chromosomal compositions in mouse models, the limitation of which may be overcome by recent successes in the differentiation of functional germ cells from embryonic stem cells under experimental conditions. PMID:25578929

  11. Psychological characteristics of and counseling for carriers of structural chromosome abnormalities.

    PubMed

    Wang, H L; Wu, B; Guo, K M; Tian, R H

    2016-01-01

    Infertility as a psychological problem has gained increasing attention. Male partners among infertile couples have elevated levels of psychological distress, which could affect semen quality, result in hormonal abnormalities, and increase the occurrence of early miscarriage. Infertile women are more vulnerable to psychological distress and require psychological support. Subfertile women who conceive after assisted reproduction have higher stress, anxiety, and depression levels. Psychological interventions have been shown to have beneficial effects on infertility patients. However, psychosocial characteristics of carriers of structural chromosome abnormalities have not been studied. We report the characteristics of carriers of structural chromosome abnormalities and their influence on psychological counseling. Seventy-five patients were carriers of reciprocal translocations, 25 carried Robertsonian translocations, 17 carried inversions, 10 carried deletions, and 3 carried isochromosomes. The main clinical characteristics were recurrent spontaneous abortion, oligospermatism, azoospermatism, primary amenorrhea, and fetal death. Self-rating anxiety scale (SAS) and self-rating depression scale (SDS) scores of women with structural chromosome abnormality were significantly higher than those scores of women with normal karyotype. SAS and SDS scores of men with structural chromosome abnormality were significantly higher than those of men with normal karyotype. SAS and SDS scores of women with structural chromosome abnormality were significantly higher than their scores of men with structural chromosome abnormality. Women carriers with structural chromosome abnormality were more vulnerable to psychological distress. Psychosocial counseling for carriers of structural chromosome abnormalities should focus on self-confidence and treatment with assisted reproductive technology. PMID:27173267

  12. Retrogenes Reveal the Direction of Sex-Chromosome Evolution in Mosquitoes

    PubMed Central

    Toups, Melissa A.; Hahn, Matthew W.

    2010-01-01

    The mosquito Anopheles gambiae has heteromorphic sex chromosomes, while the mosquito Aedes aegypti has homomorphic sex chromosomes. We use retrotransposed gene duplicates to show an excess of movement off the An. gambiae X chromosome only after the split with Ae. aegypti, suggesting that their ancestor had homomorphic sex chromosomes. PMID:20660646

  13. Independent sex chromosome evolution in lower vertebrates: a molecular cytogenetic overview in the Erythrinidae fish family.

    PubMed

    Cioffi, M B; Liehr, T; Trifonov, V; Molina, W F; Bertollo, L A C

    2013-01-01

    The Erythrinidae fish family is an excellent model for analyzing the evolution of sex chromosomes. Different stages of sex chromosome differentiation from homomorphic to highly differentiated ones can be found among the species of this family. Here, whole chromosome painting, together with the cytogenetic mapping of repetitive DNAs, highlighted the evolutionary relationships of the sex chromosomes among different erythrinid species and genera. It was demonstrated that the sex chromosomes can follow distinct evolutionary pathways inside this family. Reciprocal hybridizations with whole sex chromosome probes revealed that different autosomal pairs have evolved as the sex pair, even among closely related species. In addition, distinct origins and different patterns of differentiation were found for the same type of sex chromosome system. These features expose the high plasticity of the sex chromosome evolution in lower vertebrates, in contrast to that occurring in higher ones. A possible role of this sex chromosome turnover in the speciation processes is also discussed. PMID:23919986

  14. Control of introduced species using Trojan sex chromosomes.

    PubMed

    Cotton, Samuel; Wedekind, Claus

    2007-09-01

    To control introduced exotic species that have predominantly genetic, but environmentally reversible, sex determination (e.g. many species of fish), Gutierrez and Teem recently modeled the use of carriers of Trojan Y chromosomes--individuals who are phenotypically sex reversed from their genotype. Repeated introduction of YY females into wild populations should produce extreme male-biased sex ratios and eventual elimination of XX females, thus leading to population extinction. Analogous dynamics are expected in systems in which sex determination is influenced by one or a few major genes on autosomes. PMID:17640769

  15. Genome structure and primitive sex chromosome revealed in Populus

    SciTech Connect

    Tuskan, Gerald A; Yin, Tongming; Gunter, Lee E; Blaudez, D

    2008-01-01

    We constructed a comprehensive genetic map for Populus and ordered 332 Mb of sequence scaffolds along the 19 haploid chromosomes in order to compare chromosomal regions among diverse members of the genus. These efforts lead us to conclude that chromosome XIX in Populus is evolving into a sex chromosome. Consistent segregation distortion in favor of the sub-genera Tacamahaca alleles provided evidence of divergent selection among species, particularly at the proximal end of chromosome XIX. A large microsatellite marker (SSR) cluster was detected in the distorted region even though the genome-wide distribute SSR sites was uniform across the physical map. The differences between the genetic map and physical sequence data suggested recombination suppression was occurring in the distorted region. A gender-determination locus and an overabundance of NBS-LRR genes were also co-located to the distorted region and were put forth as the cause for divergent selection and recombination suppression. This hypothesis was verified by using fine-scale mapping of an integrated scaffold in the vicinity of the gender-determination locus. As such it appears that chromosome XIX in Populus is in the process of evolving from an autosome into a sex chromosome and that NBS-LRR genes may play important role in the chromosomal diversification process in Populus.

  16. Neo-sex chromosomes and adaptive potential in tortricid pests.

    PubMed

    Nguyen, Petr; Sýkorová, Miroslava; Šíchová, Jindra; Kůta, Václav; Dalíková, Martina; Čapková Frydrychová, Radmila; Neven, Lisa G; Sahara, Ken; Marec, František

    2013-04-23

    Changes in genome architecture often have a significant effect on ecological specialization and speciation. This effect may be further enhanced by involvement of sex chromosomes playing a disproportionate role in reproductive isolation. We have physically mapped the Z chromosome of the major pome fruit pest, the codling moth, Cydia pomonella (Tortricidae), and show that it arose by fusion between an ancestral Z chromosome and an autosome corresponding to chromosome 15 in the Bombyx mori reference genome. We further show that the fusion originated in a common ancestor of the main tortricid subfamilies, Olethreutinae and Tortricinae, comprising almost 700 pest species worldwide. The Z-autosome fusion brought two major genes conferring insecticide resistance and clusters of genes involved in detoxification of plant secondary metabolites under sex-linked inheritance. We suggest that this fusion significantly increased the adaptive potential of tortricid moths and thus contributed to their radiation and subsequent speciation. PMID:23569222

  17. Neo-sex chromosomes and adaptive potential in tortricid pests

    PubMed Central

    Nguyen, Petr; Sýkorová, Miroslava; Šíchová, Jindra; Kůta, Václav; Dalíková, Martina; Čapková Frydrychová, Radmila; Neven, Lisa G.; Sahara, Ken; Marec, František

    2013-01-01

    Changes in genome architecture often have a significant effect on ecological specialization and speciation. This effect may be further enhanced by involvement of sex chromosomes playing a disproportionate role in reproductive isolation. We have physically mapped the Z chromosome of the major pome fruit pest, the codling moth, Cydia pomonella (Tortricidae), and show that it arose by fusion between an ancestral Z chromosome and an autosome corresponding to chromosome 15 in the Bombyx mori reference genome. We further show that the fusion originated in a common ancestor of the main tortricid subfamilies, Olethreutinae and Tortricinae, comprising almost 700 pest species worldwide. The Z–autosome fusion brought two major genes conferring insecticide resistance and clusters of genes involved in detoxification of plant secondary metabolites under sex-linked inheritance. We suggest that this fusion significantly increased the adaptive potential of tortricid moths and thus contributed to their radiation and subsequent speciation. PMID:23569222

  18. Chromosome

    MedlinePlus

    ... if you are born a boy or a girl (your gender). They are called sex chromosomes: Females have 2 X chromosomes. Males have 1 X and 1 Y chromosome. The mother gives an X chromosome to the ... baby is a girl or a boy. The remaining chromosomes are called ...

  19. Sex-specific adaptation drives early sex chromosome evolution in Drosophila.

    PubMed

    Zhou, Qi; Bachtrog, Doris

    2012-07-20

    Most species' sex chromosomes are derived from ancient autosomes and show few signatures of their origins. We studied the sex chromosomes of Drosophila miranda, where a neo-Y chromosome originated only approximately 1 million years ago. Whole-genome and transcriptome analysis reveals massive degeneration of the neo-Y, that male-beneficial genes on the neo-Y are more likely to undergo accelerated protein evolution, and that neo-Y genes evolve biased expression toward male-specific tissues--the shrinking gene content of the neo-Y becomes masculinized. In contrast, although older X chromosomes show a paucity of genes expressed in male tissues, neo-X genes highly expressed in male-specific tissues undergo increased rates of protein evolution if haploid in males. Thus, the response to sex-specific selection can shift at different stages of X differentiation, resulting in masculinization or demasculinization of the X-chromosomal gene content. PMID:22822149

  20. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution.

    PubMed

    Wang, Jianping; Na, Jong-Kuk; Yu, Qingyi; Gschwend, Andrea R; Han, Jennifer; Zeng, Fanchang; Aryal, Rishi; VanBuren, Robert; Murray, Jan E; Zhang, Wenli; Navajas-Pérez, Rafael; Feltus, F Alex; Lemke, Cornelia; Tong, Eric J; Chen, Cuixia; Wai, Ching Man; Singh, Ratnesh; Wang, Ming-Li; Min, Xiang Jia; Alam, Maqsudul; Charlesworth, Deborah; Moore, Paul H; Jiang, Jiming; Paterson, Andrew H; Ming, Ray

    2012-08-21

    Sex determination in papaya is controlled by a recently evolved XY chromosome pair, with two slightly different Y chromosomes controlling the development of males (Y) and hermaphrodites (Y(h)). To study the events of early sex chromosome evolution, we sequenced the hermaphrodite-specific region of the Y(h) chromosome (HSY) and its X counterpart, yielding an 8.1-megabase (Mb) HSY pseudomolecule, and a 3.5-Mb sequence for the corresponding X region. The HSY is larger than the X region, mostly due to retrotransposon insertions. The papaya HSY differs from the X region by two large-scale inversions, the first of which likely caused the recombination suppression between the X and Y(h) chromosomes, followed by numerous additional chromosomal rearrangements. Altogether, including the X and/or HSY regions, 124 transcription units were annotated, including 50 functional pairs present in both the X and HSY. Ten HSY genes had functional homologs elsewhere in the papaya autosomal regions, suggesting movement of genes onto the HSY, whereas the X region had none. Sequence divergence between 70 transcripts shared by the X and HSY revealed two evolutionary strata in the X chromosome, corresponding to the two inversions on the HSY, the older of which evolved about 7.0 million years ago. Gene content differences between the HSY and X are greatest in the older stratum, whereas the gene content and order of the collinear regions are identical. Our findings support theoretical models of early sex chromosome evolution. PMID:22869747

  1. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution

    PubMed Central

    Wang, Jianping; Na, Jong-Kuk; Yu, Qingyi; Gschwend, Andrea R.; Han, Jennifer; Zeng, Fanchang; Aryal, Rishi; VanBuren, Robert; Murray, Jan E.; Zhang, Wenli; Navajas-Pérez, Rafael; Feltus, F. Alex; Lemke, Cornelia; Tong, Eric J.; Chen, Cuixia; Man Wai, Ching; Singh, Ratnesh; Wang, Ming-Li; Min, Xiang Jia; Alam, Maqsudul; Charlesworth, Deborah; Moore, Paul H.; Jiang, Jiming; Paterson, Andrew H.; Ming, Ray

    2012-01-01

    Sex determination in papaya is controlled by a recently evolved XY chromosome pair, with two slightly different Y chromosomes controlling the development of males (Y) and hermaphrodites (Yh). To study the events of early sex chromosome evolution, we sequenced the hermaphrodite-specific region of the Yh chromosome (HSY) and its X counterpart, yielding an 8.1-megabase (Mb) HSY pseudomolecule, and a 3.5-Mb sequence for the corresponding X region. The HSY is larger than the X region, mostly due to retrotransposon insertions. The papaya HSY differs from the X region by two large-scale inversions, the first of which likely caused the recombination suppression between the X and Yh chromosomes, followed by numerous additional chromosomal rearrangements. Altogether, including the X and/or HSY regions, 124 transcription units were annotated, including 50 functional pairs present in both the X and HSY. Ten HSY genes had functional homologs elsewhere in the papaya autosomal regions, suggesting movement of genes onto the HSY, whereas the X region had none. Sequence divergence between 70 transcripts shared by the X and HSY revealed two evolutionary strata in the X chromosome, corresponding to the two inversions on the HSY, the older of which evolved about 7.0 million years ago. Gene content differences between the HSY and X are greatest in the older stratum, whereas the gene content and order of the collinear regions are identical. Our findings support theoretical models of early sex chromosome evolution. PMID:22869747

  2. Clinical implications of chromosomal abnormalities in gastric adenocarcinomas

    SciTech Connect

    Wu, Chew-Wun; Chen, Gen-Der; Fann, Cathy S.-J.; Lee, Anna F.-Y.; Chi, Chin-Wen; Liu, Jacqueline M.; Weier, Ulli; Chen, Jeou-Yuan

    2003-06-23

    Gastric carcinoma (GC) is one of the most common malignancies worldwide and has a very poor prognosis. Genetic imbalances in 62 primary gastric adenocarcinomas of various histopathologic types and pathologic stages and six gastric cancer-derived cell lines were analyzed by comparative genomic hybridization, and the relationship of genomic abnormalities to clinical features in primary GC was evaluated at a genome-wide level. Eighty-four percent of the tumors and all six cell lines showed DNA copy number changes. The recurrent chromosomal abnormalities including gains at 15 regions and losses at 8 regions were identified. Statistical analyses revealed that gains at 17q24-qter (53 percent), 20q13-qter (48 percent), 1p32-p36 (42 percent), 22q12-qter (27 percent), 17p13-pter (24 percent), 16p13-pter (21 percent), 6p21-pter (19 percent), 20p12-pter (19 percent), 7p21-pter (18 percent), 3q28-qter (8 percent), and 13q13-q14 (8 percent), and losses at 18q12-qter (11 percent), 3p12 (8 percent), 3p25-pter (8 percent), 5q14-q23 (8 percent), and 9p21-p23 (5 percent), are associated with unique patient or tumor-related features. GCs of differing histopathologic features were shown to be associated with distinct patterns of genetic alterations, supporting the notion that they evolve through distinct genetic pathways. Metastatic tumors were also associated with specific genetic changes. These regions may harbor candidate genes involved in the pathogenesis of this malignancy.

  3. Neurogenin 3 mediates sex chromosome effects on the generation of sex differences in hypothalamic neuronal development

    PubMed Central

    Scerbo, María J.; Freire-Regatillo, Alejandra; Cisternas, Carla D.; Brunotto, Mabel; Arevalo, Maria A.; Garcia-Segura, Luis M.; Cambiasso, María J.

    2014-01-01

    The organizational action of testosterone during critical periods of development is the cause of numerous sex differences in the brain. However, sex differences in neuritogenesis have been detected in primary neuronal hypothalamic cultures prepared before the peak of testosterone production by fetal testis. In the present study we assessed the hypothesis of that cell-autonomous action of sex chromosomes can differentially regulate the expression of the neuritogenic gene neurogenin 3 (Ngn3) in male and female hypothalamic neurons, generating sex differences in neuronal development. Neuronal cultures were prepared from male and female E14 mouse hypothalami, before the fetal peak of testosterone. Female neurons showed enhanced neuritogenesis and higher expression of Ngn3 than male neurons. The silencing of Ngn3 abolished sex differences in neuritogenesis, decreasing the differentiation of female neurons. The sex difference in Ngn3 expression was determined by sex chromosomes, as demonstrated using the four core genotypes mouse model, in which a spontaneous deletion of the testis-determining gene Sry from the Y chromosome was combined with the insertion of the Sry gene onto an autosome. In addition, the expression of Ngn3, which is also known to mediate the neuritogenic actions of estradiol, was increased in the cultures treated with the hormone, but only in those from male embryos. Furthermore, the hormone reversed the sex differences in neuritogenesis promoting the differentiation of male neurons. These findings indicate that Ngn3 mediates both cell-autonomous actions of sex chromosomes and hormonal effects on neuritogenesis. PMID:25071448

  4. Structural chromosomal abnormalities in couples in cases of recurrent spontaneous abortions in Jilin Province, China.

    PubMed

    Fan, H-T; Zhang, M; Zhan, P; Yang, X; Tian, W-J; Li, R-W

    2016-01-01

    Recurrent spontaneous abortions (RSAs) occur in approximately 15 to 20% of all clinically recognizable pregnancies. Structural chromosome abnormalities result in increased risk of pregnancy loss. Parental chromosomal abnormalities are an important genetic cause of RSAs. Some cytogenetic investigations have been performed in various countries and regions to determine the pattern of chromosomal abnormalities in parents with RSAs. The aim of this study was to report the prevalence and type of structural chromosomal abnormalities in couples in cases of RSAs in Jilin Province, China. The prevalence of structural chromosomal abnormalities in these couples was 2.98%. The number of female carriers with balanced chromosomal aberrations significantly exceeded that of such male carriers, and the ratio of female/male carriers was approximately 2:1. The number of abortions in the case of female carriers was more than that for male carriers before the structural chromosome abnormality was diagnosed. This indicates that genetic counseling for couples with structural chromosomal abnormalities should consider the gender of the carriers. PMID:26909916

  5. Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes.

    PubMed

    Matsubara, Kazumi; Tarui, Hiroshi; Toriba, Michihisa; Yamada, Kazuhiko; Nishida-Umehara, Chizuko; Agata, Kiyokazu; Matsuda, Yoichi

    2006-11-28

    All snake species exhibit genetic sex determination with the ZZ/ZW type of sex chromosomes. To investigate the origin and evolution of snake sex chromosomes, we constructed, by FISH, a cytogenetic map of the Japanese four-striped rat snake (Elaphe quadrivirgata) with 109 cDNA clones. Eleven of the 109 clones were localized to the Z chromosome. All human and chicken homologues of the snake Z-linked genes were located on autosomes, suggesting that the sex chromosomes of snakes, mammals, and birds were all derived from different autosomal pairs of the common ancestor. We mapped the 11 Z-linked genes of E. quadrivirgata to chromosomes of two other species, the Burmese python (Python molurus bivittatus) and the habu (Trimeresurus flavoviridis), to investigate the process of W chromosome differentiation. All and 3 of the 11 clones were localized to both the Z and W chromosomes in P. molurus and E. quadrivirgata, respectively, whereas no cDNA clones were mapped to the W chromosome in T. flavoviridis. Comparative mapping revealed that the sex chromosomes are only slightly differentiated in P. molurus, whereas they are fully differentiated in T. flavoviridis, and E. quadrivirgata is at a transitional stage of sex-chromosome differentiation. The differentiation of sex chromosomes was probably initiated from the distal region on the short arm of the protosex chromosome of the common ancestor, and then deletion and heterochromatization progressed on the sex-specific chromosome from the phylogenetically primitive boids to the more advanced viperids. PMID:17110446

  6. The Staurotypus Turtles and Aves Share the Same Origin of Sex Chromosomes but Evolved Different Types of Heterogametic Sex Determination

    PubMed Central

    Kawagoshi, Taiki; Uno, Yoshinobu; Nishida, Chizuko; Matsuda, Yoichi

    2014-01-01

    Reptiles have a wide diversity of sex-determining mechanisms and types of sex chromosomes. Turtles exhibit temperature-dependent sex determination and genotypic sex determination, with male heterogametic (XX/XY) and female heterogametic (ZZ/ZW) sex chromosomes. Identification of sex chromosomes in many turtle species and their comparative genomic analysis are of great significance to understand the evolutionary processes of sex determination and sex chromosome differentiation in Testudines. The Mexican giant musk turtle (Staurotypus triporcatus, Kinosternidae, Testudines) and the giant musk turtle (Staurotypus salvinii) have heteromorphic XY sex chromosomes with a low degree of morphological differentiation; however, their origin and linkage group are still unknown. Cross-species chromosome painting with chromosome-specific DNA from Chinese soft-shelled turtle (Pelodiscus sinensis) revealed that the X and Y chromosomes of S. triporcatus have homology with P. sinensis chromosome 6, which corresponds to the chicken Z chromosome. We cloned cDNA fragments of S. triporcatus homologs of 16 chicken Z-linked genes and mapped them to S. triporcatus and S. salvinii chromosomes using fluorescence in situ hybridization. Sixteen genes were localized to the X and Y long arms in the same order in both species. The orders were also almost the same as those of the ostrich (Struthio camelus) Z chromosome, which retains the primitive state of the avian ancestral Z chromosome. These results strongly suggest that the X and Y chromosomes of Staurotypus turtles are at a very early stage of sex chromosome differentiation, and that these chromosomes and the avian ZW chromosomes share the same origin. Nonetheless, the turtles and birds acquired different systems of heterogametic sex determination during their evolution. PMID:25121779

  7. Y fuse? Sex chromosome fusions in fishes and reptiles.

    PubMed

    Pennell, Matthew W; Kirkpatrick, Mark; Otto, Sarah P; Vamosi, Jana C; Peichel, Catherine L; Valenzuela, Nicole; Kitano, Jun

    2015-05-01

    Chromosomal fusion plays a recurring role in the evolution of adaptations and reproductive isolation among species, yet little is known of the evolutionary drivers of chromosomal fusions. Because sex chromosomes (X and Y in male heterogametic systems, Z and W in female heterogametic systems) differ in their selective, mutational, and demographic environments, those differences provide a unique opportunity to dissect the evolutionary forces that drive chromosomal fusions. We estimate the rate at which fusions between sex chromosomes and autosomes become established across the phylogenies of both fishes and squamate reptiles. Both the incidence among extant species and the establishment rate of Y-autosome fusions is much higher than for X-autosome, Z-autosome, or W-autosome fusions. Using population genetic models, we show that this pattern cannot be reconciled with many standard explanations for the spread of fusions. In particular, direct selection acting on fusions or sexually antagonistic selection cannot, on their own, account for the predominance of Y-autosome fusions. The most plausible explanation for the observed data seems to be (a) that fusions are slightly deleterious, and (b) that the mutation rate is male-biased or the reproductive sex ratio is female-biased. We identify other combinations of evolutionary forces that might in principle account for the data although they appear less likely. Our results shed light on the processes that drive structural changes throughout the genome. PMID:25993542

  8. Y Fuse? Sex Chromosome Fusions in Fishes and Reptiles

    PubMed Central

    Vamosi, Jana C.; Peichel, Catherine L.; Valenzuela, Nicole; Kitano, Jun

    2015-01-01

    Chromosomal fusion plays a recurring role in the evolution of adaptations and reproductive isolation among species, yet little is known of the evolutionary drivers of chromosomal fusions. Because sex chromosomes (X and Y in male heterogametic systems, Z and W in female heterogametic systems) differ in their selective, mutational, and demographic environments, those differences provide a unique opportunity to dissect the evolutionary forces that drive chromosomal fusions. We estimate the rate at which fusions between sex chromosomes and autosomes become established across the phylogenies of both fishes and squamate reptiles. Both the incidence among extant species and the establishment rate of Y-autosome fusions is much higher than for X-autosome, Z-autosome, or W-autosome fusions. Using population genetic models, we show that this pattern cannot be reconciled with many standard explanations for the spread of fusions. In particular, direct selection acting on fusions or sexually antagonistic selection cannot, on their own, account for the predominance of Y-autosome fusions. The most plausible explanation for the observed data seems to be (a) that fusions are slightly deleterious, and (b) that the mutation rate is male-biased or the reproductive sex ratio is female-biased. We identify other combinations of evolutionary forces that might in principle account for the data although they appear less likely. Our results shed light on the processes that drive structural changes throughout the genome. PMID:25993542

  9. THE CONTRIBUTION OF FEMALE MEIOTIC DRIVE TO THE EVOLUTION OF NEO-SEX CHROMOSOMES

    PubMed Central

    Yoshida, Kohta; Kitano, Jun

    2012-01-01

    Sex chromosomes undergo rapid turnover in certain taxonomic groups. One of the mechanisms of sex chromosome turnover involves fusions between sex chromosomes and autosomes. Sexual antagonism, heterozygote advantage, and genetic drift have been proposed as the drivers for the fixation of this evolutionary event. However, all empirical patterns of the prevalence of multiple sex chromosome systems across different taxa cannot be simply explained by these three mechanisms. In this study, we propose that female meiotic drive may contribute to the evolution of neo-sex chromosomes. The results of this study showed that in mammals, the XY1Y2 sex chromosome system is more prevalent in species with karyotypes of more biarmed chromosomes, whereas the X1X2Y sex chromosome system is more prevalent in species with predominantly acrocentric chromosomes. In species where biarmed chromosomes are favored by female meiotic drive, X-autosome fusions (XY1Y2 sex chromosome system) will be also favored by female meiotic drive. In contrast, in species with more acrocentric chromosomes, Y-autosome fusions (X1X2Y sex chromosome system) will be favored just because of the biased mutation rate toward chromosomal fusions. Further consideration should be given to female meiotic drive as a mechanism in the fixation of neo-sex chromosomes. PMID:23025609

  10. Sex chromosome diversity in Armenian toad grasshoppers (Orthoptera, Acridoidea, Pamphagidae).

    PubMed

    Bugrov, Alexander G; Jetybayev, Ilyas E; Karagyan, Gayane H; Rubtsov, Nicolay B

    2016-01-01

    Although previous cytogenetic analysis of Pamphagidae grasshoppers pointed to considerable karyotype uniformity among most of the species in the family, our study of species from Armenia has discovered other, previously unknown karyotypes, differing from the standard for Pamphagidae mainly in having unusual sets of sex chromosomes. Asiotmethis turritus (Fischer von Waldheim, 1833), Paranocaracris rubripes (Fischer von Waldheim, 1846), and Nocaracris cyanipes (Fischer von Waldheim, 1846) were found to have the karyotype 2n♂=16+neo-XY and 2n♀=16+neo-XX, the neo-X chromosome being the result of centromeric fusion of an ancient acrocentric X chromosome and a large acrocentric autosome. The karyotype of Paranothrotes opacus (Brunner von Wattenwyl, 1882) was found to be 2n♂=14+X1X2Y and 2n♀=14+X1X1X2X2., the result of an additional chromosome rearrangement involving translocation of the neo-Y and another large autosome. Furthermore, evolution of the sex chromosomes in these species has involved different variants of heterochromatinization and miniaturization of the neo-Y. The karyotype of Eremopeza festiva (Saussure, 1884), in turn, appeared to have the standard sex determination system described earlier for Pamphagidae grasshoppers, 2n♂=18+X0 and 2n♀=18+XX, but all the chromosomes of this species were found to have small second C-positive arms. Using fluorescent in situ hybridization (FISH) with 18S rDNA and telomeric (TTAGG)n DNA repeats to yield new data on the structural organization of chromosomes in the species studied, we found that for most of them, clusters of repeats homologous to 18S rDNA localize on two, three or four pairs of autosomes and on the X. In Eremopeza festiva, however, FISH with labelled 18S rDNA painted C-positive regions of all autosomes and the X chromosome; clusters of telomeric repeats localized primarily on the ends of the chromosome arms. Overall, we conclude that the different stages of neo-Y degradation revealed in the Pamphagidae species studied make the family a very promising and useful model for studying sex chromosome evolution. PMID:27186337

  11. Sex chromosome diversity in Armenian toad grasshoppers (Orthoptera, Acridoidea, Pamphagidae)

    PubMed Central

    Bugrov, Alexander G.; Jetybayev, Ilyas E.; Karagyan, Gayane H.; Rubtsov, Nicolay B.

    2016-01-01

    Abstract Although previous cytogenetic analysis of Pamphagidae grasshoppers pointed to considerable karyotype uniformity among most of the species in the family, our study of species from Armenia has discovered other, previously unknown karyotypes, differing from the standard for Pamphagidae mainly in having unusual sets of sex chromosomes. Asiotmethis turritus (Fischer von Waldheim, 1833), Paranocaracris rubripes (Fischer von Waldheim, 1846), and Nocaracris cyanipes (Fischer von Waldheim, 1846) were found to have the karyotype 2n♂=16+neo-XY and 2n♀=16+neo-XX, the neo-X chromosome being the result of centromeric fusion of an ancient acrocentric X chromosome and a large acrocentric autosome. The karyotype of Paranothrotes opacus (Brunner von Wattenwyl, 1882) was found to be 2n♂=14+X1X2Y and 2n♀=14+X1X1X2X2., the result of an additional chromosome rearrangement involving translocation of the neo-Y and another large autosome. Furthermore, evolution of the sex chromosomes in these species has involved different variants of heterochromatinization and miniaturization of the neo-Y. The karyotype of Eremopeza festiva (Saussure, 1884), in turn, appeared to have the standard sex determination system described earlier for Pamphagidae grasshoppers, 2n♂=18+X0 and 2n♀=18+XX, but all the chromosomes of this species were found to have small second C-positive arms. Using fluorescent in situ hybridization (FISH) with 18S rDNA and telomeric (TTAGG)n DNA repeats to yield new data on the structural organization of chromosomes in the species studied, we found that for most of them, clusters of repeats homologous to 18S rDNA localize on two, three or four pairs of autosomes and on the X. In Eremopeza festiva, however, FISH with labelled 18S rDNA painted C-positive regions of all autosomes and the X chromosome; clusters of telomeric repeats localized primarily on the ends of the chromosome arms. Overall, we conclude that the different stages of neo-Y degradation revealed in the Pamphagidae species studied make the family a very promising and useful model for studying sex chromosome evolution. PMID:27186337

  12. Fifty probands with extra structurally abnormal chromosomes characterized by fluorescence in situ hybridization

    SciTech Connect

    Blennow, E.; Telenius, H.; Nordenskjoeld, M.

    1995-01-02

    Extra structurally abnormal chromosomes (ESACs) are small supernumerary chromosomes often associated with developmental abnormalities and malformations. We present 50 probands with ESACs characterized by fluorescence in situ hybridization using centromere-specific probes and chromosome-specific libraries. ESAC-specific libraries were constructed by flow sorting and subsequent amplification by DOP-PCR. Using such ESAC-specific libraries we were able to outline the chromosome regions involved. Twenty-three of the 50 ESACs were inverted duplications of chromosome 15 (inv dup(15)), including patients with normal phenotypes and others with similar clinical symptoms. These 2 groups differed in size and shape of the inv dup(15). Patients with a large inv dup(15), which included the Prader-Willi region, had a high risk of abnormality, whereas patients with a small inv dup(15), not including the Prader-Willi region, were normal. ESACs derived from chromosomes 13 or 21 appeared to have a low risk of abnormality, while one out of 3 patients with an ESAC derived from chromosome 14 had discrete symptoms. One out of 3 patients with an ESAC derived from chromosome 22 had severe anomalies, corresponding to some of the manifestations of the cat eye syndrome. Small extra ring chromosomes of autosomal origin and ESACs identified as i(12p) or i(18p) were all associated with a high risk of abnormality. 42 refs., 2 figs., 2 tabs.

  13. Female heterogamety in Madagascar chameleons (Squamata: Chamaeleonidae: Furcifer): differentiation of sex and neo-sex chromosomes.

    PubMed

    Rovatsos, Michail; Johnson Pokorn, Martina; Altmanov, Marie; Kratochvl, Luk

    2015-01-01

    Amniotes possess variability in sex determining mechanisms, however, this diversity is still only partially known throughout the clade and sex determining systems still remain unknown even in such a popular and distinctive lineage as chameleons (Squamata: Acrodonta: Chamaeleonidae). Here, we present evidence for female heterogamety in this group. The Malagasy giant chameleon (Furcifer oustaleti) (chromosome number 2n?=?22) possesses heteromorphic Z and W sex chromosomes with heterochromatic W. The panther chameleon (Furcifer pardalis) (2n?=?22 in males, 21 in females), the second most popular chameleon species in the world pet trade, exhibits a rather rare Z1Z1Z2Z2/Z1Z2W system of multiple sex chromosomes, which most likely evolved from W-autosome fusion. Notably, its neo-W chromosome is partially heterochromatic and its female-specific genetic content has expanded into the previously autosomal region. Showing clear evidence for genotypic sex determination in the panther chameleon, we resolve the long-standing question of whether or not environmental sex determination exists in this species. Together with recent findings in other reptile lineages, our work demonstrates that female heterogamety is widespread among amniotes, adding another important piece to the mosaic of knowledge on sex determination in amniotes needed to understand the evolution of this important trait. PMID:26286647

  14. Female heterogamety in Madagascar chameleons (Squamata: Chamaeleonidae: Furcifer): differentiation of sex and neo-sex chromosomes

    PubMed Central

    Rovatsos, Michail; Pokorná, Martina Johnson; Altmanová, Marie; Kratochvíl, Lukáš

    2015-01-01

    Amniotes possess variability in sex determining mechanisms, however, this diversity is still only partially known throughout the clade and sex determining systems still remain unknown even in such a popular and distinctive lineage as chameleons (Squamata: Acrodonta: Chamaeleonidae). Here, we present evidence for female heterogamety in this group. The Malagasy giant chameleon (Furcifer oustaleti) (chromosome number 2n = 22) possesses heteromorphic Z and W sex chromosomes with heterochromatic W. The panther chameleon (Furcifer pardalis) (2n = 22 in males, 21 in females), the second most popular chameleon species in the world pet trade, exhibits a rather rare Z1Z1Z2Z2/Z1Z2W system of multiple sex chromosomes, which most likely evolved from W-autosome fusion. Notably, its neo-W chromosome is partially heterochromatic and its female-specific genetic content has expanded into the previously autosomal region. Showing clear evidence for genotypic sex determination in the panther chameleon, we resolve the long-standing question of whether or not environmental sex determination exists in this species. Together with recent findings in other reptile lineages, our work demonstrates that female heterogamety is widespread among amniotes, adding another important piece to the mosaic of knowledge on sex determination in amniotes needed to understand the evolution of this important trait. PMID:26286647

  15. Sex-biased chromatin and regulatory cross-talk between sex chromosomes, autosomes, and mitochondria

    PubMed Central

    2014-01-01

    Several autoimmune and neurological diseases exhibit a sex bias, but discerning the causes and mechanisms of these biases has been challenging. Sex differences begin to manifest themselves in early embryonic development, and gonadal differentiation further bifurcates the male and female phenotypes. Even at this early stage, however, there is evidence that males and females respond to environmental stimuli differently, and the divergent phenotypic responses may have consequences later in life. The effect of prenatal nutrient restriction illustrates this point, as adult women exposed to prenatal restrictions exhibited increased risk factors of cardiovascular disease, while men exposed to the same condition did not. Recent research has examined the roles of sex-specific genes, hormones, chromosomes, and the interactions among them in mediating sex-biased phenotypes. Such research has identified testosterone, for example, as a possible protective agent against autoimmune disorders and an XX chromosome complement as a susceptibility factor in murine models of lupus and multiple sclerosis. Sex-biased chromatin is an additional and likely important component. Research suggesting a role for X and Y chromosome heterochromatin in regulating epigenetic states of autosomes has highlighted unorthodox mechanisms of gene regulation. The crosstalk between the Y chromosomes and autosomes may be further mediated by the mitochondria. The organelles have solely maternal transmission and exert differential effects on males and females. Altogether, research supports the notion that the interaction between sex-biased elements might exert novel regulatory functions in the genome and contribute to sex-specific susceptibilities to autoimmune and neurological diseases. PMID:24422881

  16. Acute promyelocytic leukaemia with a PML-RARA insertional translocation and a chromosome 21 abnormality in XYY syndrome: case report.

    PubMed

    He, Yi; Li, Xudong; Wang, Dongning; Zhang, Erhong; Hu, Yuan; Wang, Wenwen; Huang, Renwei; Xiao, Ruozhi

    2014-12-01

    The concomitant presence of the XYY syndrome with haematological malignancies is rare. This report presents a case of acute promyelocytic leukaemia (APL) with the promyelocytic leukaemia-retinoic acid receptor alpha (PML-RARA) gene insertional translocation and a chromosome 21 abnormality in a 29-year-old XYY male patient. Karyotype analysis revealed an abnormal karyotype of 47,XYY [14]/46,XYY,-21[16]. Fluorescence in situ hybridization and reverse transcription-polymerase chain reaction analysis showed the existence of a PML-RARA fusion gene. The patient was treated by all-trans retinoic acid (ATRA) and chemotherapy. Laboratory results revealed that the coagulopathy improved and the patient achieved complete remission, based on bone-marrow morphology. The patient then received sequential monthly therapy using arsenic trioxide, followed by ATRA, followed by chemotherapy; he has survived disease-free for 36 months. Our findings suggest that the additional chromosomal abnormalities involving the sex chromosomes and chromosome 21 did not affect the prognosis of APL, and that the sequential treatment strategy had a good clinical effect without being associated with severe side-effects. PMID:25223426

  17. Chromosome mapping of repetitive sequences in Anostomidae species: implications for genomic and sex chromosome evolution

    PubMed Central

    2012-01-01

    Background Members of the Anostomidae family provide an interesting model system for the study of the influence of repetitive elements on genome composition, mainly because they possess numerous heterochromatic segments and a peculiar system of female heterogamety that is restricted to a few species of the Leporinus genus. The aim of this study was to isolate and identify important new repetitive DNA elements in Anostomidae through restriction enzyme digestion, followed by cloning, characterisation and chromosome mapping of this fragment. To identify repetitive elements in other Leporinus species and expand on studies of repetitive elements in Anostomidae, hybridisation experiments were also performed using previously described probes of LeSpeI repetitive elements. Results The 628-base pair (bp) LeSpeII fragment was hybridised to metaphase cells of L. elongatus individuals as well as those of L. macrocephalus, L. obtusidens, L. striatus, L. lacustris, L. friderici, Schizodon borellii and S. isognathus. In L. elongatus, both male and female cells contained small clusters of LeSpeII repetitive elements dispersed on all of the chromosomes, with enrichment near most of the terminal portions of the chromosomes. In the female sex chromosomes of L. elongatus (Z2,Z2/W1W2), however, this repeated element was absent. In the remaining species, a dispersed pattern of hybridisation was observed on all chromosomes irrespective of whether or not they were sex chromosomes. The repetitive element LeSpeI produced positive hybridisations signals only in L. elongatus, L. macrocephalus and L. obtusidens, i.e., species with differentiated sex chromosomes. In the remaining species, the LeSpeI element did not produce hybridisation signals. Conclusions Results are discussed in terms of the effects of repetitive sequences on the differentiation of the Anostomidae genome, especially with respect to sex chromosome evolution. LeSpeII showed hybridisation patterns typical of Long Interspersed Elements (LINEs). The differential distribution of this element may be linked to sex chromosome differentiation in L. elongatus species. The relationship between sex chromosome specificity and the LeSpeI element is confirmed in the species L. elongatus, L. macrocephalus and L. obtusidens. PMID:23228116

  18. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes

    PubMed Central

    Soh, Y.Q. Shirleen; Alföldi, Jessica; Pyntikova, Tatyana; Brown, Laura G.; Graves, Tina; Minx, Patrick J.; Fulton, Robert S.; Kremitzki, Colin; Koutseva, Natalia; Mueller, Jacob L.; Rozen, Steve; Hughes, Jennifer F.; Owens, Elaine; Womack, James E.; Murphy, William J.; Cao, Qing; de Jong, Pieter; Warren, Wesley C.; Wilson, Richard K.; Skaletsky, Helen; Page, David C.

    2014-01-01

    Summary We sequenced the MSY (Male-Specific region of the Y chromosome) of the C57BL/6J strain of the laboratory mouse Mus musculus. In contrast to theories that Y chromosomes are heterochromatic and gene poor, the mouse MSY is 99.9% euchromatic and contains about 700 protein-coding genes. Only two percent of the MSY derives from the ancestral autosomes that gave rise to the mammalian sex chromosomes. Instead, all but 50 of the MSY's genes belong to three acquired, massively amplified gene families that have no homologs on primate MSYs, but do have acquired, amplified homologs on the mouse X chromosome. The complete mouse MSY sequence brings to light dramatic forces in sex chromosome evolution: lineage-specific convergent acquisition and amplification of X-Y gene families, possibly fueled by antagonism between acquired X-Y homologs. The mouse MSY sequence presents opportunities for experimental studies of a sex-specific chromosome in its entirety, in a genetically tractable model organism. PMID:25417157

  19. Spectral karyotyping to study chromosome abnormalities in humans and mice with polycystic kidney disease.

    PubMed

    AbouAlaiwi, Wissam A; Rodriguez, Ingrid; Nauli, Surya M

    2012-01-01

    Conventional method to identify and classify individual chromosomes depends on the unique banding pattern of each chromosome in a specific species being analyzed (1, 2). This classical banding technique, however, is not reliable in identifying complex chromosomal aberrations such as those associated with cancer. To overcome the limitations of the banding technique, Spectral Karyotyping (SKY) is introduced to provide much reliable information on chromosome abnormalities. SKY is a multicolor fluorescence in-situ hybridization (FISH) technique to detect metaphase chromosomes with spectral microscope (3, 4). SKY has been proven to be a valuable tool for the cytogenetic analysis of a broad range of chromosome abnormalities associated with a large number of genetic diseases and malignancies (5, 6). SKY involves the use of multicolor fluorescently-labelled DNA probes prepared from the degenerate oligonucleotide primers by PCR. Thus, every chromosome has a unique spectral color after in-situ hybridization with probes, which are differentially labelled with a mixture of fluorescent dyes (Rhodamine, Texas Red, Cy5, FITC and Cy5.5). The probes used for SKY consist of up to 55 chromosome specific probes (7-10). The procedure for SKY involves several steps (Figure 1). SKY requires the availability of cells with high mitotic index from normal or diseased tissue or blood. The chromosomes of a single cell from either a freshly isolated primary cell or a cell line are spread on a glass slide. This chromosome spread is labeled with a different combination of fluorescent dyes specific for each chromosome. For probe detection and image acquisition,the spectral imaging system consists of sagnac interferometer and a CCD camera. This allows measurement of the visible light spectrum emitted from the sample and to acquire a spectral image from individual chromosomes. HiSKY, the software used to analyze the results of the captured images, provides an easy identification of chromosome anomalies. The end result is a metaphase and a karyotype classification image, in which each pair of chromosomes has a distinct color (Figure 2). This allows easy identification of chromosome identities and translocations. For more details, please visit Applied Spectral Imaging website (http://www.spectral-imaging.com/). SKY was recently used for an identification of chromosome segregation defects and chromosome abnormalities in humans and mice with Autosomal Dominant Polycystic Kidney Disease (ADPKD), a genetic disease characterized by dysfunction in primary cilia (11-13). Using this technique, we demonstrated the presence of abnormal chromosome segregation and chromosomal defects in ADPKD patients and mouse models (14). Further analyses using SKY not only allowed us to identify chromosomal number and identity, but also to accurately detect very complex chromosomal aberrations such as chromosome deletions and translocations (Figure 2). PMID:22330078

  20. Chromosome abnormalities diagnosed in utero: a Japanese study of 28 983 amniotic fluid specimens collected before 22 weeks gestations.

    PubMed

    Nishiyama, Miyuki; Yan, Jim; Yotsumoto, Junko; Sawai, Hideaki; Sekizawa, Akihiko; Kamei, Yoshimasa; Sago, Haruhiko

    2015-03-01

    To investigate the frequency and type of abnormal karyotype in Japan by amniocentesis before 22 weeks of gestation. We performed a retrospective analysis of 28 983 amniotic fluid specimens in a local population collected before 22 weeks gestations for fetal karyotyping. The incidence of abnormal karyotype was 6.0%. The main indication was advanced maternal age (AMA) of 35 years and older, which represented over half of the clinical indications. Abnormal karyotype was most frequently reported among the referrals for abnormal ultrasound findings (21.8%), followed by positive maternal serum screen results (5.3%). Three-fourths of abnormal karyotype was either autosomal aneuploidy (64.0%) or sex chromosome aneuploidy (11.6%). Abnormal karyotype was detected in 2.8% of pregnant women referred for AMA. Clinically significant abnormal karyotype increased with advancing maternal age. The frequency and type of abnormal karyotype detected by amniocentesis for various indications were determined. Amniocentesis was mainly performed among the referrals for AMA, which is a characteristic distribution of indications of Japan. PMID:25566756

  1. Deficit of mitonuclear genes on the human X chromosome predates sex chromosome formation.

    PubMed

    Dean, Rebecca; Zimmer, Fabian; Mank, Judith E

    2015-02-01

    Two taxa studied to date, the therian mammals and Caenorhabditis elegans, display underrepresentations of mitonuclear genes (mt-N genes, nuclear genes whose products are imported to and act within the mitochondria) on their X chromosomes. This pattern has been interpreted as the result of sexual conflict driving mt-N genes off of the X chromosome. However, studies in several other species have failed to detect a convergent biased distribution of sex-linked mt-N genes, leading to questions over the generality of the role of sexual conflict in shaping the distribution of mt-N genes. Here we tested whether mt-N genes moved off of the therian X chromosome following sex chromosome formation, consistent with the role of sexual conflict, or whether the paucity of mt-N genes on the therian X is a chance result of an underrepresentation on the ancestral regions that formed the X chromosome. We used a synteny-based approach to identify the ancestral regions in the platypus and chicken genomes that later formed the therian X chromosome. We then quantified the movement of mt-N genes on and off of the X chromosome and the distribution of mt-N genes on the human X and ancestral X regions. We failed to find an excess of mt-N gene movement off of the X. The bias of mt-N genes on ancestral therian X chromosomes was also not significantly different from the biases on the human X. Together our results suggest that, rather than conflict driving mt-N genes off of the mammalian X, random biases on chromosomes that formed the X chromosome could explain the paucity of mt-N genes in the therian lineage. PMID:25637223

  2. Deficit of Mitonuclear Genes on the Human X Chromosome Predates Sex Chromosome Formation

    PubMed Central

    Dean, Rebecca; Zimmer, Fabian; Mank, Judith E.

    2015-01-01

    Two taxa studied to date, the therian mammals and Caenorhabditis elegans, display underrepresentations of mitonuclear genes (mt-N genes, nuclear genes whose products are imported to and act within the mitochondria) on their X chromosomes. This pattern has been interpreted as the result of sexual conflict driving mt-N genes off of the X chromosome. However, studies in several other species have failed to detect a convergent biased distribution of sex-linked mt-N genes, leading to questions over the generality of the role of sexual conflict in shaping the distribution of mt-N genes. Here we tested whether mt-N genes moved off of the therian X chromosome following sex chromosome formation, consistent with the role of sexual conflict, or whether the paucity of mt-N genes on the therian X is a chance result of an underrepresentation on the ancestral regions that formed the X chromosome. We used a synteny-based approach to identify the ancestral regions in the platypus and chicken genomes that later formed the therian X chromosome. We then quantified the movement of mt-N genes on and off of the X chromosome and the distribution of mt-N genes on the human X and ancestral X regions. We failed to find an excess of mt-N gene movement off of the X. The bias of mt-N genes on ancestral therian X chromosomes was also not significantly different from the biases on the human X. Together our results suggest that, rather than conflict driving mt-N genes off of the mammalian X, random biases on chromosomes that formed the X chromosome could explain the paucity of mt-N genes in the therian lineage. PMID:25637223

  3. Modeling X Chromosome Data Using Random Forests: Conquering Sex Bias.

    PubMed

    Winham, Stacey J; Jenkins, Gregory D; Biernacka, Joanna M

    2016-02-01

    Machine learning methods, including Random Forests (RF), are increasingly used for genetic data analysis. However, the standard RF algorithm does not correctly model the effects of X chromosome single nucleotide polymorphisms (SNPs), leading to biased estimates of variable importance. We propose extensions of RF to correctly model X SNPs, including a stratified approach and an approach based on the process of X chromosome inactivation. We applied the new and standard RF approaches to case-control alcohol dependence data from the Study of Addiction: Genes and Environment (SAGE), and compared the performance of the alternative approaches via a simulation study. Standard RF applied to a case-control study of alcohol dependence yielded inflated variable importance estimates for X SNPs, even when sex was included as a variable, but the results of the new RF methods were consistent with univariate regression-based approaches that correctly model X chromosome data. Simulations showed that the new RF methods eliminate the bias in standard RF variable importance for X SNPs when sex is associated with the trait, and are able to detect causal autosomal and X SNPs. Even in the absence of sex effects, the new extensions perform similarly to standard RF. Thus, we provide a powerful multimarker approach for genetic analysis that accommodates X chromosome data in an unbiased way. This method is implemented in the freely available R package "snpRF" (http://www.cran.r-project.org/web/packages/snpRF/). PMID:26639183

  4. Rapid Y degeneration and dosage compensation in plant sex chromosomes

    PubMed Central

    Papadopulos, Alexander S. T.; Chester, Michael; Ridout, Kate; Filatov, Dmitry A.

    2015-01-01

    The nonrecombining regions of animal Y chromosomes are known to undergo genetic degeneration, but previous work has failed to reveal large-scale gene degeneration on plant Y chromosomes. Here, we uncover rapid and extensive degeneration of Y-linked genes in a plant species, Silene latifolia, that evolved sex chromosomes de novo in the last 10 million years. Previous transcriptome-based studies of this species missed unexpressed, degenerate Y-linked genes. To identify sex-linked genes, regardless of their expression, we sequenced male and female genomes of S. latifolia and integrated the genomic contigs with a high-density genetic map. This revealed that 45% of Y-linked genes are not expressed, and 23% are interrupted by premature stop codons. This contrasts with X-linked genes, in which only 1.3% of genes contained stop codons and 4.3% of genes were not expressed in males. Loss of functional Y-linked genes is partly compensated for by gene-specific up-regulation of X-linked genes. Our results demonstrate that the rate of genetic degeneration of Y-linked genes in S. latifolia is as fast as in animals, and that the evolutionary trajectories of sex chromosomes are similar in the two kingdoms. PMID:26438872

  5. Sex-chromosome differentiation and ‘sex races’ in the common frog (Rana temporaria)

    PubMed Central

    Rodrigues, Nicolas; Vuille, Yvan; Loman, Jon; Perrin, Nicolas

    2015-01-01

    Sex-chromosome differentiation was recently shown to vary among common frog populations in Fennoscandia, suggesting a trend of increased differentiation with latitude. By rearing families from two contrasted populations (respectively, from northern and southern Sweden), we show this disparity to stem from differences in sex-determination mechanisms rather than in XY-recombination patterns. Offspring from the northern population display equal sex ratios at metamorphosis, with phenotypic sexes that correlate strongly with paternal LG2 haplotypes (the sex chromosome); accordingly, Y haplotypes are markedly differentiated, with male-specific alleles and depressed diversity testifying to their smaller effective population size. In the southern population, by contrast, a majority of juveniles present ovaries at metamorphosis; only later in development do sex ratios return to equilibrium. Even at these later stages, phenotypic sexes correlate only mildly with paternal LG2 haplotypes; accordingly, there are no recognizable Y haplotypes. These distinct patterns of gonadal development fit the concept of ‘sex races’ proposed in the 1930s, with our two populations assigned to the ‘differentiated’ and ‘semi-differentiated’ races, respectively. Our results support the suggestion that ‘sex races’ differ in the genetic versus epigenetic components of sex determination. Analysing populations from the ‘undifferentiated race’ with high-density genetic maps should help to further test this hypothesis. PMID:25833852

  6. CYTOGENETIC ABNORMALITY IN MANWider Implications of Theories of Sex Chromatin Origin

    PubMed Central

    Miles, Charles P.

    1962-01-01

    Female nuclei may be identified by means of sex chromatin. In general the number of sex chromatin bodies is one less than the number of X chromosomes. An exception to this rule is a case of sex chromatin-positive XO Turner's syndrome. This case suggests the possibility of sex chromatin-positive XY males, and it may be evidence for chromosomal differentiation. PMID:14473851

  7. Genetic mapping of sex determination in a wild strawberry, Fragaria virginiana reveals earliest form of sex chromosome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The evolution of separate sexes (dioecy) from hermaphroditism is one of the major evolutionary transitions in plants and this transition can be accompanied by the development of sex chromosomes. However, we are now just beginning to gain insight into the initial stages of sex chromosome evolution vi...

  8. Mouse model systems to study sex chromosome genes and behavior: relevance to humans.

    PubMed

    Cox, Kimberly H; Bonthuis, Paul J; Rissman, Emilie F

    2014-10-01

    Sex chromosome genes directly influence sex differences in behavior. The discovery of the Sry gene on the Y chromosome (Gubbay et al., 1990; Koopman et al., 1990) substantiated the sex chromosome mechanistic link to sex differences. Moreover, the pronounced connection between X chromosome gene mutations and mental illness produces a strong sex bias in these diseases. Yet, the dominant explanation for sex differences continues to be the gonadal hormones. Here we review progress made on behavioral differences in mouse models that uncouple sex chromosome complement from gonadal sex. We conclude that many social and cognitive behaviors are modified by sex chromosome complement, and discuss the implications for human research. Future directions need to include identification of the genes involved and interactions with these genes and gonadal hormones. PMID:24388960

  9. Mouse model systems to study sex chromosome genes and behavior: relevance to humans

    PubMed Central

    Cox, Kimberly H.; Bonthuis, Paul J.; Rissman, Emilie F.

    2014-01-01

    Sex chromosome genes directly influence sex differences in behavior. The discovery of the Sry gene on the Y chromosome (Gubbay et al., 1990; Koopman et al., 1990) substantiated the sex chromosome mechanistic link to sex differences. Moreover, the pronounced connection between X chromosome gene mutations and mental illness produces a strong sex bias in these diseases. Yet, the dominant explanation for sex differences continues to be the gonadal hormones. Here we review progress made on behavioral differences in mouse models that uncouple sex chromosome complement from gonadal sex. We conclude that many social and cognitive behaviors are modified by sex chromosome complement, and discuss the implications for human research. Future directions need to include identification of the genes involved and interactions with these genes and gonadal hormones. PMID:24388960

  10. Evolutionary strata on the chicken Z chromosome: implications for sex chromosome evolution.

    PubMed Central

    Handley, Lori-Jayne Lawson; Ceplitis, Helene; Ellegren, Hans

    2004-01-01

    The human X chromosome exhibits four "evolutionary strata," interpreted to represent distinct steps in the process whereby recombination became arrested between the proto X and proto Y. To test if this is a general feature of sex chromosome evolution, we studied the Z-W sex chromosomes of birds, which have female rather than male heterogamety and evolved from a different autosome pair than the mammalian X and Y. Here we analyze all five known gametologous Z-W gene pairs to investigate the "strata" hypothesis in birds. Comparisons of the rates of synonymous substitution and intronic divergence between Z and W gametologs reveal the presence of at least two evolutionary strata spread over the p and q arms of the chicken Z chromosome. A phylogenetic analysis of intronic sequence data from different avian lineages indicates that Z-W recombination ceased in the oldest stratum (on Zq; CHD1Z, HINTZ, and SPINZ) 102-170 million years ago (MYA), before the split of the Neoaves and Eoaves. However, recombination continued in the second stratum (on Zp; UBAP2Z and ATP5A1Z) until after the divergence of extant avian orders, with Z and W diverging 58-85 MYA. Our data suggest that progressive and stepwise cessation of recombination is a general feature behind sex chromosome evolution. PMID:15166161

  11. Evolutionary strata on the chicken Z chromosome: implications for sex chromosome evolution.

    PubMed

    Handley, Lori-Jayne Lawson; Ceplitis, Helene; Ellegren, Hans

    2004-05-01

    The human X chromosome exhibits four "evolutionary strata," interpreted to represent distinct steps in the process whereby recombination became arrested between the proto X and proto Y. To test if this is a general feature of sex chromosome evolution, we studied the Z-W sex chromosomes of birds, which have female rather than male heterogamety and evolved from a different autosome pair than the mammalian X and Y. Here we analyze all five known gametologous Z-W gene pairs to investigate the "strata" hypothesis in birds. Comparisons of the rates of synonymous substitution and intronic divergence between Z and W gametologs reveal the presence of at least two evolutionary strata spread over the p and q arms of the chicken Z chromosome. A phylogenetic analysis of intronic sequence data from different avian lineages indicates that Z-W recombination ceased in the oldest stratum (on Zq; CHD1Z, HINTZ, and SPINZ) 102-170 million years ago (MYA), before the split of the Neoaves and Eoaves. However, recombination continued in the second stratum (on Zp; UBAP2Z and ATP5A1Z) until after the divergence of extant avian orders, with Z and W diverging 58-85 MYA. Our data suggest that progressive and stepwise cessation of recombination is a general feature behind sex chromosome evolution. PMID:15166161

  12. Sexually antagonistic "zygotic drive" of the sex chromosomes.

    PubMed

    Rice, William R; Gavrilets, Sergey; Friberg, Urban

    2008-12-01

    Genomic conflict is perplexing because it causes the fitness of a species to decline rather than improve. Many diverse forms of genomic conflict have been identified, but this extant tally may be incomplete. Here, we show that the unusual characteristics of the sex chromosomes can, in principle, lead to a previously unappreciated form of sexual genomic conflict. The phenomenon occurs because there is selection in the heterogametic sex for sex-linked mutations that harm the sex of offspring that does not carry them, whenever there is competition among siblings. This harmful phenotype can be expressed as an antagonistic green-beard effect that is mediated by epigenetic parental effects, parental investment, and/or interactions among siblings. We call this form of genomic conflict sexually antagonistic "zygotic drive", because it is functionally equivalent to meiotic drive, except that it operates during the zygotic and postzygotic stages of the life cycle rather than the meiotic and gametic stages. A combination of mathematical modeling and a survey of empirical studies is used to show that sexually antagonistic zygotic drive is feasible, likely to be widespread in nature, and that it can promote a genetic "arms race" between the homo- and heteromorphic sex chromosomes. This new category of genomic conflict has the potential to strongly influence other fundamental evolutionary processes, such as speciation and the degeneration of the Y and W sex chromosomes. It also fosters a new genetic hypothesis for the evolution of enigmatic fitness-reducing traits like the high frequency of spontaneous abortion, sterility, and homosexuality observed in humans. PMID:19096519

  13. Sexually Antagonistic “Zygotic Drive” of the Sex Chromosomes

    PubMed Central

    Rice, William R.; Gavrilets, Sergey; Friberg, Urban

    2008-01-01

    Genomic conflict is perplexing because it causes the fitness of a species to decline rather than improve. Many diverse forms of genomic conflict have been identified, but this extant tally may be incomplete. Here, we show that the unusual characteristics of the sex chromosomes can, in principle, lead to a previously unappreciated form of sexual genomic conflict. The phenomenon occurs because there is selection in the heterogametic sex for sex-linked mutations that harm the sex of offspring that does not carry them, whenever there is competition among siblings. This harmful phenotype can be expressed as an antagonistic green-beard effect that is mediated by epigenetic parental effects, parental investment, and/or interactions among siblings. We call this form of genomic conflict sexually antagonistic “zygotic drive”, because it is functionally equivalent to meiotic drive, except that it operates during the zygotic and postzygotic stages of the life cycle rather than the meiotic and gametic stages. A combination of mathematical modeling and a survey of empirical studies is used to show that sexually antagonistic zygotic drive is feasible, likely to be widespread in nature, and that it can promote a genetic “arms race” between the homo- and heteromorphic sex chromosomes. This new category of genomic conflict has the potential to strongly influence other fundamental evolutionary processes, such as speciation and the degeneration of the Y and W sex chromosomes. It also fosters a new genetic hypothesis for the evolution of enigmatic fitness-reducing traits like the high frequency of spontaneous abortion, sterility, and homosexuality observed in humans. PMID:19096519

  14. Spectral karyotyping refines cytogenetic diagnostics of constitutional chromosomal abnormalities.

    PubMed

    Schrck, E; Veldman, T; Padilla-Nash, H; Ning, Y; Spurbeck, J; Jalal, S; Shaffer, L G; Papenhausen, P; Kozma, C; Phelan, M C; Kjeldsen, E; Schonberg, S A; O'Brien, P; Biesecker, L; du Manoir, S; Ried, T

    1997-12-01

    Karyotype analysis by chromosome banding is the standard method for identifying numerical and structural chromosomal aberrations in pre- and postnatal cytogenetics laboratories. However, the chromosomal origins of markers, subtle translocations, or complex chromosomal rearrangements are often difficult to identify with certainty. We have developed a novel karyotyping technique, termed spectral karyotyping (SKY), which is based on the simultaneous hybridization of 24 chromosome-specific painting probes labeled with different fluorochromes or fluorochrome combinations. The measurement of defined emission spectra by means of interferometer-based spectral imaging allows for the definitive discernment of all human chromosomes in different colors. Here, we report the comprehensive karyotype analysis of 16 samples from different cytogenetic laboratories by merging conventional cytogenetic methodology and spectral karyotyping. This approach could become a powerful tool for the cytogeneticists, because it results in a considerable improvement of karyotype analysis by identifying chromosomal aberrations not previously detected by G-banding alone. Advantages, limitations, and future directions of spectral karyotyping are discussed. PMID:9439652

  15. Comparative Sex Chromosome Genomics in Snakes: Differentiation, Evolutionary Strata, and Lack of Global Dosage Compensation

    PubMed Central

    Zektser, Yulia; Mahajan, Shivani; Bachtrog, Doris

    2013-01-01

    Snakes exhibit genetic sex determination, with female heterogametic sex chromosomes (ZZ males, ZW females). Extensive cytogenetic work has suggested that the level of sex chromosome heteromorphism varies among species, with Boidae having entirely homomorphic sex chromosomes, Viperidae having completely heteromorphic sex chromosomes, and Colubridae showing partial differentiation. Here, we take a genomic approach to compare sex chromosome differentiation in these three snake families. We identify homomorphic sex chromosomes in boas (Boidae), but completely heteromorphic sex chromosomes in both garter snakes (Colubridae) and pygmy rattlesnake (Viperidae). Detection of W-linked gametologs enables us to establish the presence of evolutionary strata on garter and pygmy rattlesnake sex chromosomes where recombination was abolished at different time points. Sequence analysis shows that all strata are shared between pygmy rattlesnake and garter snake, i.e., recombination was abolished between the sex chromosomes before the two lineages diverged. The sex-biased transmission of the Z and its hemizygosity in females can impact patterns of molecular evolution, and we show that rates of evolution for Z-linked genes are increased relative to their pseudoautosomal homologs, both at synonymous and amino acid sites (even after controlling for mutational biases). This demonstrates that mutation rates are male-biased in snakes (male-driven evolution), but also supports faster-Z evolution due to differential selective effects on the Z. Finally, we perform a transcriptome analysis in boa and pygmy rattlesnake to establish baseline levels of sex-biased expression in homomorphic sex chromosomes, and show that heteromorphic ZW chromosomes in rattlesnakes lack chromosome-wide dosage compensation. Our study provides the first full scale overview of the evolution of snake sex chromosomes at the genomic level, thus greatly expanding our knowledge of reptilian and vertebrate sex chromosomes evolution. PMID:24015111

  16. Gain of chromosome 17 is the most frequent abnormality detected in neuroblastoma by comparative genomic hybridization.

    PubMed Central

    Plantaz, D.; Mohapatra, G.; Matthay, K. K.; Pellarin, M.; Seeger, R. C.; Feuerstein, B. G.

    1997-01-01

    Neuroblastoma behavior is variable and outcome partially depends on genetic factors. However, tumors that lack high-risk factors such as MYCN amplification or 1p deletion may progress, possibly due to other genetic aberrations. Comparative genomic hybridization summarizes DNA copy number abnormalities in a tumor by mapping them to their positions on normal metaphase chromosomes. We analyzed 29 tumors from nearly equal proportions of children with stage I, II, III, IV, and IV-S disease by comparative genomic hybridization. We found two classes of copy number abnormalities: whole chromosome and partial chromosome. Whole chromosome losses were frequent at 11, 14, and X. The most frequent partial chromosome losses were on 1p and 11q. Gains were most frequent on chromosome 17 (72% of cases). The two patterns of gain for this chromosome were whole 17 gain and 17q gain, with 17q21-qter as a minimal common region of gain. Other common gains were on chromosomes 7, 6, and 18. High level amplifications were detected at 2p23-25 (MYCN region), at 4q33-35, and at 6p11-22. Chromosome 17q gains were associated with 1p and/or 11q deletions and advanced stage. The high frequency of chromosome 17 gain and its association with bad prognostic factors suggest an important role for this chromosome in the development of neuroblastoma. PMID:9006325

  17. Polymorphic karyotypes and sex chromosomes in the tufted deer (Elaphodus cephalophus): cytogenetic studies and analyses of sex chromosome-linked genes.

    PubMed

    Cao, X; Jiang, H; Zhang, X

    2005-01-01

    Different diploid chromosome numbers have been reported for the tufted deer Elaphodus cephalophus (female, 2n = 46/47; male, 2n = 47/48) in earlier reports. In the present study, chromosomal analysis of seven tufted deer (5 male symbol, 2 female symbol) revealed that the karyotype of these animals contains 48 chromosomes, including a pair of large heteromorphic chromosomes in the male. C-banding revealed these chromosomes to be very rich in constitutive heterochromatin. Chromosome banding and PCR of sex chromosome-linked genes (SRY, ZFX, ZFY) performed on DOP-PCR products of single microdissected X and Y chromosomes confirmed that the large telocentric chromosome without secondary constriction is the X chromosome whereas the subtelocentric chromosome is the Y. The increased size of both, the X and Y chromosome, appears to be at least partially attributable to the presence of substantial amounts of heterochromatin. PMID:15905647

  18. Chromosomal Abnormalities Subdivide Ependymal Tumors into Clinically Relevant Groups

    PubMed Central

    Hirose, Yuichi; Aldape, Kenneth; Bollen, Andrew; James, C. David; Brat, Daniel; Lamborn, Kathleen; Berger, Mitchel; Feuerstein, Burt G.

    2001-01-01

    Ependymoma occurs most frequently within the central nervous system of children and young adults. We determined relative chromosomal copy-number aberrations in 44 ependymomas using comparative genomic hybridization. The study included 24 intracranial and 20 spinal cord tumors from pediatric and adult patients. Frequent chromosomal aberrations in intracranial tumors were gain of 1q and losses on 6q, 9, and 13. Gain of 1q and loss on 9 were preferentially associated with histological grade 3 tumors. On the other hand, gain on chromosome 7 was recognized almost exclusively in spinal cord tumors, and was associated with various other chromosomal aberrations including frequent loss of 22q. We conclude that cytogenetic analysis of ependymomas may help to classify these tumors and provide leads concerning their initiation and progression. The relationship of these aberrations to patient outcome needs to be addressed. PMID:11238062

  19. Sex differences in ischemic stroke sensitivity are influenced by gonadal hormones, not by sex chromosome complement

    PubMed Central

    Manwani, Bharti; Bentivegna, Kathryn; Benashski, Sharon E; Venna, Venugopal Reddy; Xu, Yan; Arnold, Arthur P; McCullough, Louise D

    2015-01-01

    Epidemiologic studies have shown sex differences in ischemic stroke. The four core genotype (FCG) mouse model, in which the testes determining gene, Sry, has been moved from Y chromosome to an autosome, was used to dissociate the effects of sex hormones from sex chromosome in ischemic stroke outcome. Middle cerebral artery occlusion (MCAO) in gonad intact FCG mice revealed that gonadal males (XXM and XYM) had significantly higher infarct volumes as compared with gonadal females (XXF and XYF). Serum testosterone levels were equivalent in adult XXM and XYM, as was serum estrogen in XXF and XYF mice. To remove the effects of gonadal hormones, gonadectomized FCG mice were subjected to MCAO. Gonadectomy significantly increased infarct volumes in females, while no change was seen in gonadectomized males, indicating that estrogen loss increases ischemic sensitivity. Estradiol supplementation in gonadectomized FCG mice rescued this phenotype. Interestingly, FCG male mice were less sensitive to effects of hormones. This may be due to enhanced expression of the transgene Sry in brains of FCG male mice. Sex differences in ischemic stroke sensitivity appear to be shaped by organizational and activational effects of sex hormones, rather than sex chromosomal complement. PMID:25388681

  20. Tracking the evolution of sex chromosome systems in Melanoplinae grasshoppers through chromosomal mapping of repetitive DNA sequences

    PubMed Central

    2013-01-01

    Background The accumulation of repetitive DNA during sex chromosome differentiation is a common feature of many eukaryotes and becomes more evident after recombination has been restricted or abolished. The accumulated repetitive sequences include multigene families, microsatellites, satellite DNAs and mobile elements, all of which are important for the structural remodeling of heterochromatin. In grasshoppers, derived sex chromosome systems, such as neo-XY♂/XX♀ and neo-X1X2Y♂/X1X1X2X2♀, are frequently observed in the Melanoplinae subfamily. However, no studies concerning the evolution of sex chromosomes in Melanoplinae have addressed the role of the repetitive DNA sequences. To further investigate the evolution of sex chromosomes in grasshoppers, we used classical cytogenetic and FISH analyses to examine the repetitive DNA sequences in six phylogenetically related Melanoplinae species with X0♂/XX♀, neo-XY♂/XX♀ and neo-X1X2Y♂/X1X1X2X2♀ sex chromosome systems. Results Our data indicate a non-spreading of heterochromatic blocks and pool of repetitive DNAs (C0t-1 DNA) in the sex chromosomes; however, the spreading of multigene families among the neo-sex chromosomes of Eurotettix and Dichromatos was remarkable, particularly for 5S rDNA. In autosomes, FISH mapping of multigene families revealed distinct patterns of chromosomal organization at the intra- and intergenomic levels. Conclusions These results suggest a common origin and subsequent differential accumulation of repetitive DNAs in the sex chromosomes of Dichromatos and an independent origin of the sex chromosomes of the neo-XY and neo-X1X2Y systems. Our data indicate a possible role for repetitive DNAs in the diversification of sex chromosome systems in grasshoppers. PMID:23937327

  1. Sex-specific adaptation drives early sex chromosome evolution in Drosophila

    PubMed Central

    Zhou, Qi; Bachtrog, Doris

    2014-01-01

    Most species’ sex chromosomes are derived from ancient autosomes and show few signatures of their origins. We studied the sex chromosomes of Drosophila miranda, where a neo-Y chromosome originated only about 1 million years (MY) ago. Whole genome and transcriptome analysis reveals massive degeneration of the neo-Y, that male-beneficial genes on the neo-Y are more likely to undergo accelerated protein-evolution, and that neo-Y genes evolve biased expression towards male-specific tissues, i.e. the shrinking gene content of the neo-Y becomes masculinized. In contrast, while older X chromosomes show a paucity of genes expressed in male tissues, neo-X genes highly expressed in male-specific tissues undergo increased rates of protein evolution if haploid in males. Thus, the response to sex-specific selection can shift at different stages of X differentiation, resulting in masculinization or demasculinization of the X-chromosomal gene content. PMID:22822149

  2. Using RAD-seq to recognize sex-specific markers and sex chromosome systems.

    PubMed

    Gamble, Tony

    2016-05-01

    Next-generation sequencing methods have initiated a revolution in molecular ecology and evolution (Tautz et al. ). Among the most impressive of these sequencing innovations is restriction site-associated DNA sequencing or RAD-seq (Baird et al. ; Andrews et al. ). RAD-seq uses the Illumina sequencing platform to sequence fragments of DNA cut by a specific restriction enzyme and can generate tens of thousands of molecular genetic markers for analysis. One of the many uses of RAD-seq data has been to identify sex-specific genetic markers, markers found in one sex but not the other (Baxter et al. ; Gamble & Zarkower ). Sex-specific markers are a powerful tool for biologists. At their most basic, they can be used to identify the sex of an individual via PCR. This is useful in cases where a species lacks obvious sexual dimorphism at some or all life history stages. For example, such tests have been important for studying sex differences in life history (Sheldon ; Mossman & Waser ), the management and breeding of endangered species (Taberlet et al. ; Griffiths & Tiwari ; Robertson et al. ) and sexing embryonic material (Hacker et al. ; Smith et al. ). Furthermore, sex-specific markers allow recognition of the sex chromosome system in cases where standard cytogenetic methods fail (Charlesworth & Mank ; Gamble & Zarkower ). Thus, species with male-specific markers have male heterogamety (XY) while species with female-specific markers have female heterogamety (ZW). In this issue, Fowler & Buonaccorsi () illustrate the ease by which RAD-seq data can generate sex-specific genetic markers in rockfish (Sebastes). Moreover, by examining RAD-seq data from two closely related rockfish species, Sebastes chrysomelas and Sebastes carnatus (Fig. ), Fowler & Buonaccorsi () uncover shared sex-specific markers and a conserved sex chromosome system. PMID:27213697

  3. Growth and differentiation of circulating hemopoietic stem cells with atomic bomb irradiation-induced chromosome abnormalities

    SciTech Connect

    Amenomori, T.; Honda, T.; Otake, M.; Tomonaga, M.; Ichimaru, M.

    1988-11-01

    The effects of atomic bomb irradiation on hemopoietic stem cells were studied cytogenetically using single colonies derived from hemopoietic progenitor cells. The subjects studied were 21 healthy atomic bomb survivors (10 males and 11 females) in the high dose exposure group (100+ rad) with a known high incidence (10% or more) of radiation-induced chromosome abnormalities in their peripheral blood lymphocytes (stimulated with phytohemagglutinin), and 11 nonexposed healthy controls (5 males and 6 females). Colony formation by circulating granulocyte-macrophage (GM-CFC) and erythroid (BFU-E) progenitor cells was made by the methylcellulose method using peripheral blood mononuclear cells. Chromosome specimens were prepared from single colonies by our micromethod. The total number of colonies analyzed in the exposed group was 131 for GM-CFC and 75 for BFU-E. Chromosome abnormalities were observed in 15 (11.5%) and 9 (12.0%) colonies, respectively. In the control group, the total number of colonies analyzed was 61 for GM-CFC and 41 for BFU-E. None of these colonies showed chromosome abnormalities. The difference in incidence of chromosome abnormalities was highly significant by an exact test; p = 0.003 for GM-CFC and 0.017 for BFU-E. The karyotypes of chromosome abnormalities obtained from the colonies in the exposed group were mostly translocations, but deletion and marker chromosomes were also observed. In two individuals, such karyotypic abnormalities as observed in the peripheral lymphocytes were also seen in the myeloid progenitor cells. This finding suggests that atomic bomb irradiation produced a chromosome aberration on multipotent hemopoietic stem cells common to myeloid and lymphoid lineages.

  4. [Phenomenon of the evolution of clonal chromosomal abnormalities in childhood acute myeloid leukemia].

    PubMed

    Andreeva, S V; Drozdova, V D; Kavardakova, N V

    2010-01-01

    Analysis of chromosomal abnormalities in bone marrow cells in 116 children with diagnosis of acute myeloid leukemia (AML) was performed. Frequency of evolution of clonal chromosome abnormalities in AML constituted 42,3%. The most abundant among them were numerical abnormalities of chromosomes 8, 9, and 21 as well as secondary structural abnormalities in region 12p12, 9p22, 9q22, 9q34, 11q14-23, and 16q22. Numerical abnormalities were registered in 26,7% cases. The basic mechanism of leukemic clone evolution was trisomy, deletion and monosomy. The frequency of evolution was 7 times higher in the age group up to 2 years and twice higher in the age group up to 5 years. The high frequency of evolution was established at t(15;17)(q22;q22) and the absence at inv(16)(p13q22). The patients with clonal evolution died earlier, before reaching remission, that can be connected with heavy initial state and high frequency of relapse. Conception of abnormality clone evolution was proposed at some stages: I--appearance of balanced rearrangement; II--trisomy; III--lose of chromosomal material. Appearance of unbalanced genome in evolution possess an advantage in proliferate activity and can be connected with the answer on chemotherapy. Identity of abnormal chromosome structure at diagnosis and relapse of disease can be an evidence of the influence of chemical agent on establishment of some types of evolution of chromosome abnormalities in leukemic cells in AML in children. PMID:20608159

  5. Genomic characterization of prenatally detected chromosomal structural abnormalities using oligonucleotide array comparative genomic hybridization.

    PubMed

    Li, Peining; Pomianowski, Pawel; DiMaio, Miriam S; Florio, Joanne R; Rossi, Michael R; Xiang, Bixia; Xu, Fang; Yang, Hui; Geng, Qian; Xie, Jiansheng; Mahoney, Maurice J

    2011-07-01

    Detection of chromosomal structural abnormalities using conventional cytogenetic methods poses a challenge for prenatal genetic counseling due to unpredictable clinical outcomes and risk of recurrence. Of the 1,726 prenatal cases in a 3-year period, we performed oligonucleotide array comparative genomic hybridization (aCGH) analysis on 11 cases detected with various structural chromosomal abnormalities. In nine cases, genomic aberrations and gene contents involving a 3p distal deletion, a marker chromosome from chromosome 4, a derivative chromosome 5 from a 5p/7q translocation, a de novo distal 6q deletion, a recombinant chromosome 8 comprised of an 8p duplication and an 8q deletion, an extra derivative chromosome 9 from an 8p/9q translocation, mosaicism for chromosome 12q with added material of initially unknown origin, an unbalanced 13q/15q rearrangement, and a distal 18q duplication and deletion were delineated. An absence of pathogenic copy number changes was noted in one case with a de novo 11q/14q translocation and in another with a familial insertion of 21q into a 19q. Genomic characterization of the structural abnormalities aided in the prediction of clinical outcomes. These results demonstrated the value of aCGH analysis in prenatal cases with subtle or complex chromosomal rearrangements. Furthermore, a retrospective analysis of clinical indications of our prenatal cases showed that approximately 20% of them had abnormal ultrasound findings and should be considered as high risk pregnancies for a combined chromosome and aCGH analysis. PMID:21671377

  6. Evolution of the avian sex chromosomes from an ancestral pair of autosomes

    PubMed Central

    Fridolfsson, Anna-Karin; Cheng, Hans; Copeland, Neal G.; Jenkins, Nancy A.; Liu, Hsiao-Ching; Raudsepp, Terje; Woodage, Trevor; Chowdhary, Bhanu; Halverson, Joy; Ellegren, Hans

    1998-01-01

    Among the mechanisms whereby sex is determined in animals, chromosomal sex determination is found in a wide variety of distant taxa. The widespread but not ubiquitous occurrence, not even within lineages, of chromosomal sex determination suggests that sex chromosomes have evolved independently several times during animal radiation, but firm evidence for this is lacking. The most favored model for this process is gradual differentiation of ancestral pairs of autosomes. As known for mammals, sex chromosomes may have a very ancient origin, and it has even been speculated that the sex chromosomes of mammals and birds would share a common chromosomal ancestry. In this study we showed that the two genes, ATP5A1 and CHD1, so far assigned to the female-specific W chromosome of birds both exist in a very closely related copy on the Z chromosome but are not pseudoautosomal. This indicates a common ancestry of the two sex chromosomes, consistent with the evolution from a pair of autosomes. Comparative mapping demonstrates, however, that ATP5A1 and CHD1 are not sex-linked among eutherian mammals; this is also not the case for the majority of other genes so far assigned to the avian Z chromosome. Our results suggest that the evolution of sex chromosomes has occurred independently in mammals and birds. PMID:9653155

  7. Different autosomes evolved into sex chromosomes in the sister genera of Salix and Populus

    PubMed Central

    Hou, Jing; Ye, Ning; Zhang, Defang; Chen, Yingnan; Fang, Lecheng; Dai, Xiaogang; Yin, Tongming

    2015-01-01

    Willows (Salix) and poplars (Populus) are dioecious plants in Salicaceae family. Sex chromosome in poplar genome was consistently reported to be associated with chromosome XIX. In contrast to poplar, this study revealed that chromosome XV was sex chromosome in willow. Previous studies revealed that both ZZ/ZW and XX/XY sex-determining systems could be present in some species of Populus. In this study, sex of S. suchowensis was found to be determined by the ZW system in which the female was the heterogametic gender. Gene syntenic and collinear comparisons revealed macrosynteny between sex chromosomes and the corresponding autosomes between these two lineages. By contrast, no syntenic segments were found to be shared between poplar's and willow's sex chromosomes. Syntenic analysis also revealed substantial chromosome rearrangements between willow's alternate sex chromatids. Since willow and poplar originate from a common ancestor, we proposed that evolution of autosomes into sex chromosomes in these two lineages occurred after their divergence. Results of this study indicate that sex chromosomes in Salicaceae are still at the early stage of evolutionary divergence. Additionally, this study provided valuable information for better understanding the genetics and evolution of sex chromosome in dioecious plants. PMID:25766834

  8. Multiple sex chromosomes in the light of female meiotic drive in amniote vertebrates.

    PubMed

    Pokorná, Martina; Altmanová, Marie; Kratochvíl, Lukáš

    2014-04-01

    It is notable that the occurrence of multiple sex chromosomes differs significantly between major lineages of amniote vertebrates. In this respect, birds are especially conspicuous, as multiple sex chromosomes have not been observed in this lineage so far. On the other hand, in mammals, multiple sex chromosomes have evolved many times independently. We hypothesize that this contrast can be related to the different involvement of sex-specific sex chromosomes in female meiosis subjected to the female meiotic drive under male versus female heterogamety. Essentially, the male-specific Y chromosome is not involved in female meiosis and is therefore sheltered against the effects of the female meiotic drive affecting the X chromosome and autosomes. Conversely, the Z and W sex chromosomes are both present in female meiosis. Nonrandom segregation of these sex chromosomes as a consequence of their rearrangements connected with the emergence of multiple sex chromosomes would result in a biased sex ratio, which should be penalized by selection. Therefore, the emergence of multiple sex chromosomes should be less constrained in the lineages with male rather than female heterogamety. Our broader phylogenetic comparison across amniotes supports this prediction. We suggest that our results are consistent with the widespread occurrence of female meiotic drive in amniotes. PMID:24590843

  9. MMPI Profiles of Males with Abnormal Sex Chromosome Complements

    ERIC Educational Resources Information Center

    Rosen, M.; And Others

    1971-01-01

    Nine males with Klinefelter's syndrome (XXY) and seven XYY males, located primarily in prisons and psychiatric hospitals, were administered the Minnesota Multiphasic Personality Inventory. (Author/KW)

  10. Rapid De Novo Evolution of X Chromosome Dosage Compensation in Silene latifolia, a Plant with Young Sex Chromosomes

    PubMed Central

    Deschamps, Clothilde; Mousset, Sylvain; Widmer, Alex; Marais, Gabriel A. B.

    2012-01-01

    Silene latifolia is a dioecious plant with heteromorphic sex chromosomes that have originated only ∼10 million years ago and is a promising model organism to study sex chromosome evolution in plants. Previous work suggests that S. latifolia XY chromosomes have gradually stopped recombining and the Y chromosome is undergoing degeneration as in animal sex chromosomes. However, this work has been limited by the paucity of sex-linked genes available. Here, we used 35 Gb of RNA-seq data from multiple males (XY) and females (XX) of an S. latifolia inbred line to detect sex-linked SNPs and identified more than 1,700 sex-linked contigs (with X-linked and Y-linked alleles). Analyses using known sex-linked and autosomal genes, together with simulations indicate that these newly identified sex-linked contigs are reliable. Using read numbers, we then estimated expression levels of X-linked and Y-linked alleles in males and found an overall trend of reduced expression of Y-linked alleles, consistent with a widespread ongoing degeneration of the S. latifolia Y chromosome. By comparing expression intensities of X-linked alleles in males and females, we found that X-linked allele expression increases as Y-linked allele expression decreases in males, which makes expression of sex-linked contigs similar in both sexes. This phenomenon is known as dosage compensation and has so far only been observed in evolutionary old animal sex chromosome systems. Our results suggest that dosage compensation has evolved in plants and that it can quickly evolve de novo after the origin of sex chromosomes. PMID:22529744

  11. Chromosomal abnormalities in neutron-induced acute myeloid leukemias in CBA/H mice

    SciTech Connect

    Bouffler, S.D.; Meijne, E.I.M.; Huiskamp, R.

    1996-09-01

    Acute myeloid leukemias (AMLs) induced in CBA/H mice by 1 MeV fission neutrons have been examined for chromosomal abnormalities by G-band analysis. In common with X-ray- and {alpha}-particle-induced AMLs in CBA/H mice, more than 90% (16/17) of the myeloid leukemias had chromosome 2 abnormalities, in this case, all interstitial deletions. Chromosome 2 breakpoints were not wholly consistent, but clustering in three specific G-band regions was observed. Very distal (H-region) breakpoints were more common in the neutron AMLs than in X-ray- or {alpha}-particle-induced leukemias. These data indicate that neutron-induced AMLs in CBA/H mice are not characterized by a specific chromosome deletion but that a variety of chromosome 2 deletion types are associated with the disease. Trisomy of chromosome 1 (12.5% AMLs) and aneusomy of chromosomes 6 (31% AMLs) and Y (37.5% AMLs) were noted. While chromatid breakage was observed occasionally in neutron-induced AML, no clear indications of persistent chromosomal instability or high levels of stable chromosomal change were apparent. 19 refs., 1 fig., 1 tab.

  12. Recent gene-capture on the UV sex chromosomes of the moss Ceratodon purpureus

    PubMed Central

    McDaniel, Stuart F.; Neubig, Kurt M.; Payton, Adam C.; Quatrano, Ralph S.; Cove, David J.

    2013-01-01

    Sex chromosomes evolve from ordinary autosomes through the expansion and subsequent degeneration of a region of suppressed recombination that is inherited through one sex. Here we investigate the relative timing of these processes in the UV sex chromosomes of the moss Ceratodon purpureus using molecular population genetic analyses of eight newly discovered sex-linked loci. In this system recombination is suppressed on both the female-transmitted (U) sex chromosome and the male-transmitted (V) chromosome. Genes on both chromosomes therefore should show the deleterious effects of suppressed recombination and sex-limited transmission, while purifying selection should maintain homologs of genes essential for both sexes on both sex chromosomes. Based on analyses of eight sex-linked loci, we show that the non-recombining portions of the U and V-chromosomes expanded in at least two events (~0.6 – 1.3 MYA and ~2.8 – 3.5 MYA), after the divergence of C. purpureus from its dioecious sister species, Trichodon cylindricus and Cheilothela chloropus. Both U and V-linked copies showed reduced nucleotide diversity and limited population structure, compared to autosomal loci, suggesting that the sex chromosomes experienced more recent selective sweeps that the autosomes. Collectively these results highlight the dynamic nature of gene composition and molecular evolution on non-recombining portions of the U and V sex chromosomes. PMID:24094335

  13. Consistent chromosome abnormalities including double minutes (dms) in adenocarcinoma of the pancreas

    SciTech Connect

    Griffin, C.A.; Morsberger, L.; Ellingham, T.

    1994-09-01

    Little is known about the somatic genetic changes which characterize pancreatic adenocarcinoma (PA), and identification of acquired genomic alterations would further our understanding of the biology of this neoplasm. We have studied 62 primary specimens of PA using classical and FISH methods. Clonally abnormal karyotypes were observed in 44 neoplasms. Karyotypes were generally complex (greater than 3 abnormalities) including both numerical and structural chromosome changes. Many tumors contained at least one marker chromosome. The most frequent whole chromosomal gains were chromosomes 20 (7 tumors) and 7 (5 tumors). Losses were much more frequent: chromosome 18 was lost in 22 tumors, followed by chromosomes 13 (15 tumors), 12 (13 tumors), and 6 (12 tumors). Structural abnormalities were common. 200 chromosome breakpoints were identified. Excluding Robertsonian translocations, chromosomal arms most frequently involved were 6q (12 chromosomes), 1p and 3p (10 each), 11p and 17p (9 each), 1q (8), 8p and 19q (7 each). Of particular interest, we found dms in 6 cases. These represent the first PAs with cytogenetic evidence of gene amplification, and are under investigation using chromosome microdissection. To begin to define the smallest region of 6q which is deleted, 5 tumors with 6q deletions were hybridized with a biotin-labeled probe, made by microdissection of 6q24-qter. Loss of one copy of this region was verified in 4/5 tumors; additional probes are being made. Our results are similar to those of 34 other reported PAs, and the combined data suggest that gains of chromosomes 7 and 20 and deletions and rearrangements of 1p and 6q may be particularly important in the biology of adenocarcinoma of the pancreas.

  14. Hidden chromosome 8 abnormalities detected by FISH in adult primary myelodysplastic syndromes.

    PubMed

    Panani, Anna D; Pappa, Vasiliki

    2005-01-01

    Acquired clonal chromosomal abnormalities are found in about 30-50% of primary myelodysplastic syndromes (MDS). These abnormalities are predominantly characterized by total/partial chromosomal losses or gains and rarely by balanced structural aberrations. Trisomy 8 represents the most common chromosomal gain. In the present study, the numerical aberration of chromosome 8 was evaluated by the fluorescence in situ hybridization (FISH) technique in MDS, and the results compared with those of conventional cytogenetics. Thirty adult patients with primary MDS, 17 with a normal karyotype and 13 with several chromosomal abnormalities except chromosome 8, were included in this study. On comparing the results of FISH and conventional cytogenetics, a superiority of FISH over the karyotype was detected in 3 cases. In one of them, further cytogenetic analysis confirmed the FISH results. Nevertheless, the FISH technique has limitations, detecting only abnormalities specific for the target FISH probe used In clinical practice, conventional cytogenetics continues to be the basic technique for MDS patient evaluation. However, a large number of metaphases, even those of poor quality, must be analyzed in each case. The FISH technique could be considered to be complementary to achieve a more accurate analysis. PMID:16277010

  15. A polymorphic pseudoautosomal boundary in the Carica papaya sex chromosomes.

    PubMed

    Lappin, Fiona M; Medert, Charles M; Hawkins, Kevin K; Mardonovich, Sandra; Wu, Meng; Moore, Richard C

    2015-08-01

    Sex chromosomes are defined by a non-recombining sex-determining region (SDR) flanked by one or two pseudoautosomal regions (PARs). The genetic composition and evolutionary dynamics of the PAR is also influenced by its linkage to the differentiated non-recombining SDR; however, understanding the effects of this linkage requires a precise definition of the PAR boundary. Here, we took a molecular population genetic approach to further refine the location of the PAR boundary of the evolutionary young sex chromosomes of the tropical plant, Carica papaya. We were able to map the position of the papaya PAR boundary A to a 100-kb region between two genetic loci approximately 2 Mb upstream of the previously genetically identified PAR boundary. Furthermore, this boundary is polymorphic within natural populations of papaya, with an approximately 100-130 kb expansion of the non-recombining SDR found in 16 % of individuals surveyed. The expansion of the PAR boundary in one Y haplotype includes at least one additional gene. Homologs of this gene are involved in male gametophyte and pollen development in other plant species. PMID:25711306

  16. Abnormal chromosome 22 and recurrence of trisomy-22 syndrome.

    PubMed Central

    Emanuel, B S; Zackai, E H; Aronson, M M; Mellman, W J; Moorhead, P S

    1976-01-01

    Trisomy-22 was confirmed with both Q- and G-banding in two sibs. Growth and mental retardation plus various dysmorphic features of this syndrome are described and compared with previous reports. Cytogenetic studies reveal a morphologically atypical No. 22 in cells of the phenotypically normal mother (46,XX) and in both affected children. The variant G chromosome is identified as No. 22 by Q- and G-banding and is interpreted as a product of a pericentric inversion on the basis of general length, arm ratio (1.4), and anomalous satellite association frequency. Repeated nondisjunction for No. 22 is considered to have resulted from asynapsis caused by interference of an inversion loop configuration which, though short, comprised a major part of chromosome 22. Images PMID:138742

  17. Coexistence of Y, W, and Z sex chromosomes in Xenopus tropicalis

    PubMed Central

    Roco, Álvaro S.; Olmstead, Allen W.; Degitz, Sigmund J.; Amano, Tosikazu; Zimmerman, Lyle B.; Bullejos, Mónica

    2015-01-01

    Homomorphic sex chromosomes and rapid turnover of sex-determining genes can complicate establishing the sex chromosome system operating in a given species. This difficulty exists in Xenopus tropicalis, an anuran quickly becoming a relevant model for genetic, genomic, biochemical, and ecotoxicological research. Despite the recent interest attracted by this species, little is known about its sex chromosome system. Direct evidence that females are the heterogametic sex, as in the related species Xenopus laevis, has yet to be presented. Furthermore, X. laevis’ sex-determining gene, DM-W, does not exist in X. tropicalis, and the sex chromosomes in the two species are not homologous. Here we identify X. tropicalis’ sex chromosome system by integrating data from (i) breeding sex-reversed individuals, (ii) gynogenesis, (iii) triploids, and (iv) crosses among several strains. Our results indicate that at least three different types of sex chromosomes exist: Y, W, and Z, observed in YZ, YW, and ZZ males and in ZW and WW females. Because some combinations of parental sex chromosomes produce unisex offspring and other distorted sex ratios, understanding the sex-determination systems in X. tropicalis is critical for developing this flexible animal model for genetics and ecotoxicology. PMID:26216983

  18. Gonadal- and Sex-Chromosome-Dependent Sex Differences in the Circadian System

    PubMed Central

    Kuljis, Dika A.; Truong, Danny; Vosko, Andrew M.; Ong, Margaret L.; McClusky, Rebecca; Arnold, Arthur P.; Colwell, Christopher S.

    2013-01-01

    Compelling reasons to study the role of sex in the circadian system include the higher rates of sleep disorders in women than in men and evidence that sex steroids modulate circadian control of locomotor activity. To address the issue of sex differences in the circadian system, we examined daily and circadian rhythms in wheel-running activity, electrical activity within the suprachiasmatic nucleus, and PER2::LUC-driven bioluminescence of gonadally-intact adult male and female C57BL/6J mice. We observed greater precision of activity onset in 12-hour light, 12-hour dark cycle for male mice, longer activity duration in 24 hours of constant darkness for female mice, and phase-delayed PER2::LUC bioluminescence rhythm in female pituitary and liver. Next, in order to investigate whether sex differences in behavior are sex chromosome or gonadal sex dependent, we used the 4 core genotypes (FCG) mouse model, in which sex chromosome complement is independent of gonadal phenotype. Gonadal males had more androgen receptor expression in the suprachiasmatic nucleus and behaviorally reduced photic phase shift response compared with gonadal female FCG mice. Removal of circulating gonadal hormones in adults, to test activational vs organizational effects of sex revealed that XX animals have longer activity duration than XY animals regardless of gonadal phenotype. Additionally, we observed that the activational effects of gonadal hormones were more important for regulating activity levels in gonadal male mice than in gonadal female FCG mice. Taken together, sex differences in the circadian rhythms of activity, neuronal physiology, and gene expression were subtle but provide important clues for understanding the pathophysiology of the circadian system. PMID:23439698

  19. Should Y stay or should Y go: The evolution of non-recombining sex chromosomes

    PubMed Central

    Sun, Sheng; Heitman, Joseph

    2013-01-01

    Gradual degradation seems inevitable for non-recombining sex chromosomes. This has been supported by the observation of degenerated non-recombining sex chromosomes in a variety of species. The human Y chromosome has also degenerated significantly during its evolution, and theories have been advanced that the Y chromosome could disappear within the next ~5 million years, if the degeneration rate it has experienced continues. However, recent studies suggest that this is unlikely. Conservative evolutionary forces such as strong purifying selection and intrachromosomal repair through gene conversion balance the degeneration tendency of the Y chromosome and maintain its integrity after an initial period of faster degeneration. We discuss the evidence both for and against the extinction of the Y chromosome. We also discuss potential insights gained on the evolution of sex-determining chromosomes by studying simpler sex-determining chromosomal regions of unicellular and multicellular microorganisms. PMID:22948853

  20. Unequal mitotic sister chromatid exchange: A rare mechanism for chromosomal abnormality resulting in duplication/deletion of chromosome 7q

    SciTech Connect

    Eydoux, P.; Ortenberg, J.; Chalifoux, N.

    1994-09-01

    We report a case of unequal mitotic chromatid exchange, which has rarely been reported as a mechanism for microscopic chromosomal anomalies. The proposita was born at 40 weeks, after an uneventful pregnancy, of parents with a negative family history. The baby was small for gestational age and had dysmorphic features, including scaphocephaly, bilateral epicanthal folds and palpebral ptosis, mild hypertelorism, hypoplasia of orbital contours, right coloboma, bulbous prominent nose, retrognathism, downturned mouth, low set posteriorly rotated ears, tapering of the limbs. bilateral Sydney creases. At 5 months, she was under the 5th percentile for height, weight and head circumference, and had a mild developmental delay. The karyotype showed an abnormality of chromosome 7 in all cells, half with a duplication and half with a deletion of the same region; 46,XX,del(7)(q33{yields}q34)/46,XX,dup(7)(q33{yields}q34). This chromosomal abnormality could be explained by an unequal chromatid exchange occuring in the first mitosis of the embryo. To our knowledge, only one such human microscopic abnormality, involving chromosome Y, has been reported to date. This type of genetic unbalance could be missed by molecular techniques.

  1. Lack of Dosage Compensation Accompanies the Arrested Stage of Sex Chromosome Evolution in Ostriches

    PubMed Central

    Adolfsson, Sofia; Ellegren, Hans

    2013-01-01

    Sex chromosome evolution is usually seen as a process that, once initiated, will inevitably progress toward an advanced stage of degeneration of the nonrecombining chromosome. However, despite evidence that avian sex chromosome evolution was initiated >100 Ma, ratite birds have been trapped in an arrested stage of sex chromosome divergence. We performed RNA sequencing of several tissues from male and female ostriches and assembled the transcriptome de novo. A total of 315 Z-linked genes fell into two categories: those that have equal expression level in the two sexes (for which Z–W recombination still occurs) and those that have a 2-fold excess of male expression (for which Z–W recombination has ceased). We suggest that failure to evolve dosage compensation has constrained sex chromosome divergence in this basal avian lineage. Our results indicate that dosage compensation is a prerequisite for, not only a consequence of, sex chromosome evolution. PMID:23329687

  2. Lack of dosage compensation accompanies the arrested stage of sex chromosome evolution in ostriches.

    PubMed

    Adolfsson, Sofia; Ellegren, Hans

    2013-04-01

    Sex chromosome evolution is usually seen as a process that, once initiated, will inevitably progress toward an advanced stage of degeneration of the nonrecombining chromosome. However, despite evidence that avian sex chromosome evolution was initiated >100 Ma, ratite birds have been trapped in an arrested stage of sex chromosome divergence. We performed RNA sequencing of several tissues from male and female ostriches and assembled the transcriptome de novo. A total of 315 Z-linked genes fell into two categories: those that have equal expression level in the two sexes (for which Z-W recombination still occurs) and those that have a 2-fold excess of male expression (for which Z-W recombination has ceased). We suggest that failure to evolve dosage compensation has constrained sex chromosome divergence in this basal avian lineage. Our results indicate that dosage compensation is a prerequisite for, not only a consequence of, sex chromosome evolution. PMID:23329687

  3. INDEPENDENT STRATUM FORMATION ON THE AVIAN SEX CHROMOSOMES REVEALS INTER-CHROMOSOMAL GENE CONVERSION AND PREDOMINANCE OF PURIFYING SELECTION ON THE W CHROMOSOME

    PubMed Central

    Wright, Alison E; Harrison, Peter W; Montgomery, Stephen H; Pointer, Marie A; Mank, Judith E

    2014-01-01

    We used a comparative approach spanning three species and 90 million years to study the evolutionary history of the avian sex chromosomes. Using whole transcriptomes, we assembled the largest cross-species dataset of W-linked coding content to date. Our results show that recombination suppression in large portions of the avian sex chromosomes has evolved independently, and that long-term sex chromosome divergence is consistent with repeated and independent inversions spreading progressively to restrict recombination. In contrast, over short-term periods we observe heterogeneous and locus-specific divergence. We also uncover four instances of gene conversion between both highly diverged and recently evolved gametologs, suggesting a complex mosaic of recombination suppression across the sex chromosomes. Lastly, evidence from 16 gametologs reveal that the W chromosome is evolving with a significant contribution of purifying selection, consistent with previous findings that W-linked genes play an important role in encoding sex-specific fitness. PMID:25066800

  4. Independent stratum formation on the avian sex chromosomes reveals inter-chromosomal gene conversion and predominance of purifying selection on the W chromosome.

    PubMed

    Wright, Alison E; Harrison, Peter W; Montgomery, Stephen H; Pointer, Marie A; Mank, Judith E

    2014-11-01

    We used a comparative approach spanning three species and 90 million years to study the evolutionary history of the avian sex chromosomes. Using whole transcriptomes, we assembled the largest cross-species dataset of W-linked coding content to date. Our results show that recombination suppression in large portions of the avian sex chromosomes has evolved independently, and that long-term sex chromosome divergence is consistent with repeated and independent inversions spreading progressively to restrict recombination. In contrast, over short-term periods we observe heterogeneous and locus-specific divergence. We also uncover four instances of gene conversion between both highly diverged and recently evolved gametologs, suggesting a complex mosaic of recombination suppression across the sex chromosomes. Lastly, evidence from 16 gametologs reveal that the W chromosome is evolving with a significant contribution of purifying selection, consistent with previous findings that W-linked genes play an important role in encoding sex-specific fitness. PMID:25066800

  5. Risk of chromosomal abnormalities, with emphasis on live-born offspring of young mothers.

    PubMed

    Little, B B; Ramin, S M; Cambridge, B S; Schneider, N R; Cohen, D S; Snell, L M; Harrod, M J; Johnston, W L

    1995-11-01

    In a large public urban hospital obstetrics service with > 123,000 deliveries in a 10-year period (1980-89), the frequencies (0.12%) of any type of chromosomal abnormality and of trisomy syndromes were analyzed for maternal age-related risk, by logistic regression. Focusing on very young gravidas, we found that in the study period there were 9,332 births (7.5% of all deliveries) to mothers < or = 16 years old. Estimated risks of chromosomal abnormalities among offspring associated with very young maternal age (9-16 years) were similar to those age-associated risks of mothers 20-29 years old. Risks of chromosomal abnormalities increase with advancing maternal age and are independent of ethnicity. PMID:7485170

  6. A time stamp comparative analysis of frequent chromosomal abnormalities in Romanian patients.

    PubMed

    Suciu, Nicolae; Plaiasu, Vasilica

    2014-01-01

    Chromosome abnormalities represent the leading cause in many human genetic disorders. Gain or loss of genetic material can disrupt the normal expression of genes important in fetal development and result in abnormal phenotypes. Approximately 60% of first-trimester spontaneous abortions exhibit karyotype abnormalities. The majority of these abnormalities consist of numerical chromosomal changes, such as autosomal trisomy, monosomy X and polyploidy. In our current study, 411 cases were analyzed over a period of 5 years, which reflected the incidence of cytogenetic abnormalities in Romania. Down syndrome showed the highest frequency at 79%. At 2.6% structural chromosome abnormality syndromes and Turner syndrome followed suit. Next were the Edwards and Patau syndromes with an incidence of 1.2%. Klinefelter, Cri du chat and Wolf-Hirschhorn syndromes all had an incidence of 0.7%. Finally, the lowest frequencies were shown by Williams at 0.4% and only one case of Beckwith-Wiedemann syndrome with abnormal karyotype. The average maternal age at childbirth was 31.15 years (SD = 6.96) and the average paternal age was 33.41 years (SD = 7.17). PMID:23570267

  7. Empirical evidence for large X-effects in animals with undifferentiated sex chromosomes

    PubMed Central

    Dufresnes, Christophe; Majtyka, Tomasz; Baird, Stuart J. E.; Gerchen, Jörn F.; Borzée, Amaël; Savary, Romain; Ogielska, Maria; Perrin, Nicolas; Stöck, Matthias

    2016-01-01

    Reproductive isolation is crucial for the process of speciation to progress. Sex chromosomes have been assigned a key role in driving reproductive isolation but empirical evidence from natural population processes has been restricted to organisms with degenerated sex chromosomes such as mammals and birds. Here we report restricted introgression at sex-linked compared to autosomal markers in a hybrid zone between two incipient species of European tree frog, Hyla arborea and H. orientalis, whose homologous X and Y sex chromosomes are undifferentiated. This large X-effect cannot result from the dominance or faster-X aspects of Haldane’s rule, which are specific to degenerated sex chromosomes, but rather supports a role for faster-heterogametic-sex or faster-male evolutionary processes. Our data suggest a prominent contribution of undifferentiated sex chromosomes to speciation. PMID:26868373

  8. Empirical evidence for large X-effects in animals with undifferentiated sex chromosomes.

    PubMed

    Dufresnes, Christophe; Majtyka, Tomasz; Baird, Stuart J E; Gerchen, Jörn F; Borzée, Amaël; Savary, Romain; Ogielska, Maria; Perrin, Nicolas; Stöck, Matthias

    2016-01-01

    Reproductive isolation is crucial for the process of speciation to progress. Sex chromosomes have been assigned a key role in driving reproductive isolation but empirical evidence from natural population processes has been restricted to organisms with degenerated sex chromosomes such as mammals and birds. Here we report restricted introgression at sex-linked compared to autosomal markers in a hybrid zone between two incipient species of European tree frog, Hyla arborea and H. orientalis, whose homologous X and Y sex chromosomes are undifferentiated. This large X-effect cannot result from the dominance or faster-X aspects of Haldane's rule, which are specific to degenerated sex chromosomes, but rather supports a role for faster-heterogametic-sex or faster-male evolutionary processes. Our data suggest a prominent contribution of undifferentiated sex chromosomes to speciation. PMID:26868373

  9. Molecular analysis of sex chromosome-linked mutants in the silkworm Bombyx mori.

    PubMed

    Fujii, Tsuguru; Abe, Hiroaki; Shimada, Toru

    2010-09-01

    In Bombyx mori, the W chromosome determines the female sex. A few W chromosome-linked mutations that cause masculinization of the female genitalia have been found. In female antennae of a recently isolated mutant, both female-type and male-type Bmdsx mRNAs were expressed, and BmOr1 (bombykol receptor) and BmOr3 (bombykal receptor), which are predominantly expressed in the antennae of male moths, were expressed about 50 times more abundantly in the antennae of mutant females than in those of normal females. These mutants are valuable resources for the molecular analysis of the sexdetermination system. Besides the Fem gene, the quantitative egg size-determining gene Esd is thought to be present on the W chromosome, based on the observation that ZWW triploid moths produce larger eggs than ZZW triploids. The most recently updated B. mori genome assembly comprises 20.5 Mb of Z chromosome sequence. Using these sequence data, responsible genes or candidate genes for four Z-linked mutants have been reported. The od (distinct oily) and spli (soft and pliable) are caused by mutation in BmBLOS2 and Bmacj6, respectively. Bmap is a candidate gene for Vg (vestigial). Similarly, Bmprm is a candidate gene for Md (muscle dystrophy), causing abnormal development of indirect flight muscle. PMID:20877003

  10. Sex differences in juvenile mouse social behavior are influenced by sex chromosomes and social context

    PubMed Central

    Cox, Kimberly H.; Rissman, Emilie F.

    2011-01-01

    Play behavior in juvenile primates, rats, and other species is sexually dimorphic, with males demonstrating more play than females. In mice, sex differences in juvenile play have only been examined in out-bred CD-1 mice. In this strain, contrary to other animals, male mice display less play soliciting than females. Using an established same-sex dyadic interaction test, we examined play in inbred C57BL/6J (B6) 21 day-old mice. When paired with non-siblings, males tended to be more social than females, spending more time exploring the test cage. Females displayed significantly more anogenital sniffing and solicited play more frequently than did males. To determine if the origin of the sex difference was sex chromosome genes or gonadal sex, next we used the four core genotype (FCG) mouse. We found significant interactions between gonadal sex and genotype for several behaviors. Finally, we asked if sibling pairs (as compared to non-siblings) would display qualitative or quantitatively different behavior. In fact, XX females paired with a sibling were more social and less exploratory or investigative, while XY males exhibited less investigative and play soliciting behaviors in tests with siblings. Many neurobehavioral disorders, like autism spectrum disorder (ASD), are sexually dimorphic in incidence and patients interact less than normal with other children. Our results suggest that sex chromosome genes interact with gonadal hormones to shape the development of juvenile social behavior, and that social context can drastically alter sex differences. These data may have relevance for understanding the etiology of sexually dimorphic disorders such as ASD. PMID:21414140

  11. Distribution of the sex chromosome during mouse spermatogenesis in testis tissue sections

    PubMed Central

    OTAKA, Kosuke; HIRADATE, Yuuki; KOBAYASHI, Norio; SHIRAKATA, Yoshiki; TANEMURA, Kentaro

    2015-01-01

    During mammalian spermatogenesis, spermatogenic cells undergo mitotic division and are subsequently divided into haploid spermatids by meiotic division, but the dynamics of sex chromosomes during spermatogenesis are unclear in vivo. To gain insight into the distribution of sex chromosomes in the testis, we examined the localization of sex chromosomes before and after meiosis in mouse testis sections. Here, we developed a method of fluorescence in situ hybridization (FISH) using specific probes for the X and Y chromosomes to obtain their positional information in histological testis sections. FISH analysis revealed the sex chromosomal position during spermatogenesis in each stage of seminiferous epithelia and in each spermatogenic cell. In the spermatogonia and leptotene spermatocytes, sex chromosomes were distantly positioned in the cell. In the zygotene and pachytene spermatocytes at prophase I, X and Y chromosomes had a random distribution. After meiosis, the X and Y spermatids were random in every seminiferous epithelium. We also detected aneuploidy of sex chromosomes in spermatogenic cells using our developed FISH analysis. Our results provide further insight into the distribution of sex chromosomes during spermatogenesis, which could help to elucidate a specific difference between X and Y spermatids and sex chromosome-specific behavior. PMID:26073979

  12. Clonal chromosomal abnormalities in congenital bile duct dilatation (Caroli's disease)

    PubMed Central

    Parada, L; Hallen, M; Hagerstrand, I; Tranberg, K; Johansson, B

    1999-01-01

    BACKGROUND—Caroli's disease is a rare congenital disorder characterised by cystic dilatation of the intrahepatic bile ducts and an increased risk of cholangiocellular carcinoma. The cause is unknown, but occasional familial clustering suggests that some cases are inherited, in particular when occurring in association with polycystic kidney disease and germline PKD1 gene mutations. To date, no gene responsible for familial isolated Caroli's disease has been identified, and no genetic investigations of liver tissue from patients with Caroli's disease have been reported.
PATIENT/METHOD—A liver biopsy specimen from a patient with isolated Caroli's disease, without any signs of cholangiocellular carcinoma, was short term cultured and cytogenetically investigated after G banding with Wright's stain.
RESULT—Cytogenetic analysis disclosed the karyotype 45-47,XX,der(3)t(3;8)(p23;q13), +2mar[cp6]/46,XX[18].
CONCLUSIONS—The finding of an unbalanced translocation between chromosomes 3 and 8 suggests that loss of distal 3p and/or gain of 8q is of pathogenetic importance in Caroli's disease. Alternatively, structural rearrangements of genes located in 3p23 and 8q13 may be of the essence. These chromosomal breakpoints may also pinpoint the location of genes involved in inherited forms of Caroli's disease not associated with polycystic kidney disease.


Keywords: Caroli's disease; bile duct; cytogenetics PMID:10517920

  13. Sex Chromosome Turnover Contributes to Genomic Divergence between Incipient Stickleback Species

    PubMed Central

    Yoshida, Kohta; Makino, Takashi; Yamaguchi, Katsushi; Shigenobu, Shuji; Hasebe, Mitsuyasu; Kawata, Masakado; Kume, Manabu; Mori, Seiichi; Peichel, Catherine L.; Toyoda, Atsushi; Fujiyama, Asao; Kitano, Jun

    2014-01-01

    Sex chromosomes turn over rapidly in some taxonomic groups, where closely related species have different sex chromosomes. Although there are many examples of sex chromosome turnover, we know little about the functional roles of sex chromosome turnover in phenotypic diversification and genomic evolution. The sympatric pair of Japanese threespine stickleback (Gasterosteus aculeatus) provides an excellent system to address these questions: the Japan Sea species has a neo-sex chromosome system resulting from a fusion between an ancestral Y chromosome and an autosome, while the sympatric Pacific Ocean species has a simple XY sex chromosome system. Furthermore, previous quantitative trait locus (QTL) mapping demonstrated that the Japan Sea neo-X chromosome contributes to phenotypic divergence and reproductive isolation between these sympatric species. To investigate the genomic basis for the accumulation of genes important for speciation on the neo-X chromosome, we conducted whole genome sequencing of males and females of both the Japan Sea and the Pacific Ocean species. No substantial degeneration has yet occurred on the neo-Y chromosome, but the nucleotide sequence of the neo-X and the neo-Y has started to diverge, particularly at regions near the fusion. The neo-sex chromosomes also harbor an excess of genes with sex-biased expression. Furthermore, genes on the neo-X chromosome showed higher non-synonymous substitution rates than autosomal genes in the Japan Sea lineage. Genomic regions of higher sequence divergence between species, genes with divergent expression between species, and QTL for inter-species phenotypic differences were found not only at the regions near the fusion site, but also at other regions along the neo-X chromosome. Neo-sex chromosomes can therefore accumulate substitutions causing species differences even in the absence of substantial neo-Y degeneration. PMID:24625862

  14. Sex determination in Madagascar geckos of the genus Paroedura (Squamata: Gekkonidae): are differentiated sex chromosomes indeed so evolutionary stable?

    PubMed

    Koubová, Martina; Johnson Pokorná, Martina; Rovatsos, Michail; Farkačová, Klára; Altmanová, Marie; Kratochvíl, Lukáš

    2014-12-01

    Among amniote vertebrates, geckos represent a clade with exceptional variability in sex determination; however, only a minority of species of this highly diverse group has been studied in this respect. Here, we describe for the first time a female heterogamety in the genus Paroedura, the group radiated in Madagascar and adjacent islands. We identified homomorphic ZZ/ZW sex chromosomes with a highly heterochromatic W chromosome in Paroedura masobe, Paroedura oviceps, Paroedura karstophila, Paroedura stumpffi, and Paroedura lohatsara. Comparative genomic hybridization (CGH) revealed that female-specific sequences are greatly amplified in the W chromosome of P. lohatsara and that P. gracilis seems to possess a derived system of multiple sex chromosomes. Contrastingly, neither CGH nor heterochromatin visualization revealed differentiated sex chromosomes in the members of the Paroedura picta-Paroedura bastardi-Paroedura ibityensis clade, which is phylogenetically nested within lineages with a heterochromatic W chromosome. As a sex ratio consistent with genotypic sex determination has been reported in P. picta, it appears that the members of the P. picta-P. bastardi-P. ibityensis clade possess homomorphic, poorly differentiated sex chromosomes and may represent a rare example of evolutionary loss of highly differentiated sex chromosomes. Fluorescent in situ hybridization (FISH) with a telomeric probe revealed a telomere-typical pattern in all species and an accumulation of telomeric sequences in the centromeric region of autosomes in P. stumpffi and P. bastardi. Our study adds important information for the greater understanding of the variability and evolution of sex determination in geckos and demonstrates how the geckos of the genus Paroedura provide an interesting model for studying the evolution of the sex chromosomes. PMID:25056523

  15. Ring chromosome 5 associated with severe growth retardation as the sole major physical abnormality

    SciTech Connect

    Migliori, M.V.; Pettinari, A.; Cherubini, V.; Bartolotta, E.; Pecora, R.

    1994-01-01

    The authors report on a case of ring chromosome 5 in a 36-month-old girl with severe growth retardation, clinodactyly, mild psychological abnormalities, and normal facial appearance. Endocrine tests showed partial growth hormone deficiency. Cytogenetic investigation failed to demonstrate any apparent microscopic deletion of either the short or long arm of chromosome 5 as a consequence of ring formation. In 12% of cells examined, the ring was either absent or present in multiple copies. Only 3 previous cases of ring chromosome 5 have been reported in association with short stature of prenatal onset and minor anomalies, without mental retardation. 12 refs., 3 figs.

  16. Method of detecting genetic deletions identified with chromosomal abnormalities

    DOEpatents

    Gray, Joe W; Pinkel, Daniel; Tkachuk, Douglas

    2013-11-26

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acids probes are typically of a complexity greater tha 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particlularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar ut genetically different diseases, and for many prognostic and diagnostic applications.

  17. Method of detecting genetic translocations identified with chromosomal abnormalities

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Tkachuk, Douglas

    2001-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  18. Occupational risk factors and frequency of sex chromosome disomy.

    PubMed

    Radwan, Micha?; Jurewicz, Joanna; Radwan, Pawe?; Ula?ska, Anna; Jakubowski, Lucjusz; Hanke, Wojciech

    2015-09-01

    Possible reproductive toxicants such as occupational factors may affect the normal disjunction of chromosomes during meiosis, thereby altering the number of chromosomes in sperm nuclei. The purpose of the present analysis was to determine whether exposure to occupational factors existing in a contemporary work setting affected sperm aneuploidy. The study population consisted of 212 men who attended the infertility clinic for diagnostic purposes. The men either had a normal semen concentration of 20-300 million/ml or slight oligozoospermia (semen concentration of 15-20 million/ml) ( WHO 1999 ). All participants were interviewed and provided a semen sample. Sperm aneuploidy was assessed using multicolor FISH. After adjustment for potential confounders, positive associations were found between disomy XY18, 18, and sex chromosome disomy and exposure to mechanical vibrations (p = 0.03, p = 0.04, p = 0.03, respectively). In addition, sitting for more than 6 h at work increased X and Y disomy (p = 0.03, p = 0.04, respectively). To the best of our knowledge, this is the first study to show a significant effect of occupational factors on sperm aneuploidy. As such, the results need to be confirmed in larger studies. PMID:25687408

  19. Dynamic transposable element accumulation in the nascent sex chromosomes of papaya

    PubMed Central

    VanBuren, Robert; Ming, Ray

    2013-01-01

    From their inception, Y chromosomes in plants and animals are subjected to the powerful effects of Müller’s ratchet, a process spurred by suppression of recombination that results in a rapid accumulation of mutations and repetitive elements. These mutations eventually lead to gene loss and degeneration of the Y chromosome. Y chromosomes in mammals are ancient, whereas most sex chromosomes in plants and many in insects and fish evolved recently. Sex type in papaya is controlled by a pair of nascent sex chromosomes that evolved around 7 million years ago. The papaya X and Yh were recently sequenced, providing valuable insight into the early stages of sex chromosome evolution. Here we discuss the fruits of this work with a focus on the repeat accumulation, gene trafficking and promiscuous DNA sequences found in the slowly degenerating Yh chromosome of papaya. PMID:23734293

  20. [Role of transposons in origin and evolution of plant XY sex chromosomes].

    PubMed

    Shufen, Li; Sha, Li; Chuanliang, Deng; Longdou, Lu; Wujun, Gao

    2015-02-01

    The XY sex-determination system is crucial for plant reproduction. However, little is known about the mechanism of the origin and evolution of the XY sex chromosomes. It has been believed that a pair of autosomes is evolved to produce young sex chromosomes (neo-X chromosome and neo-Y chromosome) by loss of function or gain of function mutation, which influences the development of pistil or stamen. With the aggravation of the recombination suppression between neo-X and neo-Y and consequent expanding of the non-recombination region, the proto-sex chromosomes were finally developed to heteromorphic sex chromosomes. Accumulation of repetitive sequences and DNA methylation were probably involved in this process. Transposons, as the most abundant repetitive sequences in the genome, might be the initial motivation factors for the evolution of sex chromosome. Moreover, transposons may also increase heterochromatin expansion and recombination suppression of sex chromosome by local epigenetics modification. In this review, we summarize the function of transposon accumulation and the relationship between transposon and heterochromatization in the evolution of plant sex chromosome. PMID:25665642

  1. Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour

    PubMed Central

    Scott, R H; Stiller, C A; Walker, L; Rahman, N

    2006-01-01

    Wilms tumour has been reported in association with over 50 different clinical conditions and several abnormal constitutional karyotypes. Conclusive evidence of an increased risk of Wilms tumour exists for only a minority of these conditions, including WT1 associated syndromes, familial Wilms tumour, and certain overgrowth conditions such as Beckwith?Wiedemann syndrome. In many reported conditions the rare co?occurrence of Wilms tumour is probably due to chance. However, for several conditions the available evidence cannot either confirm or exclude an increased risk, usually because of the rarity of the syndrome. In addition, emerging evidence suggests that an increased risk of Wilms tumour occurs only in a subset of individuals for some syndromes. The complex clinical and molecular heterogeneity of disorders associated with Wilms tumour, together with the apparent absence of functional links between most of the known predisposition genes, suggests that abrogation of a variety of pathways can promote Wilms tumorigenesis. PMID:16690728

  2. Back to the roots: segregation of univalent sex chromosomes in meiosis.

    PubMed

    Fabig, Gunar; Müller-Reichert, Thomas; Paliulis, Leocadia V

    2016-06-01

    In males of many taxa, univalent sex chromosomes normally segregate during the first meiotic division, and analysis of sex chromosome segregation was foundational for the chromosome theory of inheritance. Correct segregation of single or multiple univalent sex chromosomes occurs in a cellular environment where every other chromosome is a bivalent that is being partitioned into homologous chromosomes at anaphase I. The mechanics of univalent chromosome segregation vary among animal taxa. In some, univalents establish syntelic attachment of sister kinetochores to the spindle. In others, amphitelic attachment is established. Here, we review how this problem of segregation of unpaired chromosomes is solved in different animal systems. In addition, we give a short outlook of how mechanistic insights into this process could be gained by explicitly studying model organisms, such as Caenorhabditis elegans. PMID:26511278

  3. Chromosomal abnormalities in soft coal open-cast mining workers.

    PubMed

    Srám, R J; Holá, N; Kotĕsovec, F; Vávra, R

    1985-12-01

    Chromosome aberration tests on cultured peripheral blood lymphocytes were carried out in two groups of open-cast mining workers engaged in stripping operations (Group I) and digging operations (Group II), in a group of coal cleaning plant workers used as a positive control, and in a group of nonexposed subjects serving as matching controls. Peripheral blood samples in group I and group II miners were collected in March and June of 1984, the antimutagenic potential of long-term prophylactic vitamin administrations (1 g of ascorbic acid given daily for a period of 3 months and 100 mg of vitamin A a day for two 5-day cycles) initiated after the first blood sampling was tested in group II miners. The frequency of aberrant cells (% AB.C.) found in the cultured lymphocytes of group I miners was increased at both times of measurement (2.41% AB.C. and 2.29% AB.C.), in group II miners given the vitamin prophylaxis it dropped significantly (P greater than 0.01) from the initial 3.16% AB.C. in March to 1.77% AB.C. in June, and in the group of coal cleaning plant workers (1.30% AB.C.) it was more or less equal to that of matching controls (1.21% AB.C.). Implicitly, coal dust alone can hardly be made responsible for the rise in % AB.C. It appears that the increase in frequency of chromosome aberrations observed in soft coal open-cast mining workers rather reflects an increased risk of genetic injury due to exposure to ever-present fumes and fire hazards that may give rise to the mutagenic chemicals belonging to a class of polycyclic aromatic hydrocarbons. The antimutagenic effect of ascorbic acid prophylaxis was characterized by a significant drop in % AB.C. and a speed-up of the lymphocyte cell cycle expressed as the proliferating rate index (PRI) whose value rose from the original 1.41 to 1.69, thus reaching the PRI value of matching controls (1.63). PMID:4069143

  4. Sex differences in body fluid homeostasis: Sex chromosome complement influences on bradycardic baroreflex response and sodium depletion induced neural activity.

    PubMed

    Vivas, L; Dadam, F M; Caeiro, X E

    2015-12-01

    Clinical and basic findings indicate that angiotensin II (ANG II) differentially modulates hydroelectrolyte and cardiovascular responses in male and female. But are only the activational and organizational hormonal effects to blame for such differences? Males and females not only differ in their sex (males are born with testes and females with ovaries) but also carry different sex chromosome complements and are thus influenced throughout life by different genomes. In this review, we discuss our recent studies in order to evaluate whether sex chromosome complement is in part responsible for gender differences previously observed in ANG II bradycardic-baroreflex response and sodium depletion-induced sodium appetite and neural activity. To test the hypothesis that XX or XY contributes to the dimorphic ANG II bradycardic-baroreflex response, we used the four core genotype mouse model, in which the effects of gonadal sex (testes or ovaries) and sex chromosome complement (XX or XY) are dissociated. The results indicate that ANG II bradycardic-baroreflex sexual dimorphic response may be ascribed to differences in sex chromosomes, indicating an XX-sex chromosome complement facilitatory bradycardic-baroreflex control of heart rate. Furthermore, we evaluated whether genetic differences within the sex chromosome complement may differentially modulate the known sexually dimorphic sodium appetite as well as basal or induced brain activity due to physiological stimulation of the renin-angiotensin system by furosemide and low-sodium treatment. Our studies demonstrate an organizational hormonal effect on sexually dimorphic induced sodium intake in mice, while at the brain level (subfornical organ and area postrema) we showed a sex chromosome complement effect in sodium-depleted mice, suggesting a sex chromosome gene participation in the modulation of neural pathways underlying regulatory response to renin-angiotensin stimulation. PMID:26260434

  5. A Large Pseudoautosomal Region on the Sex Chromosomes of the Frog Silurana tropicalis

    PubMed Central

    Bewick, Adam J.; Chain, Frédéric J.J.; Zimmerman, Lyle B.; Sesay, Abdul; Gilchrist, Michael J.; Owens, Nick D.L.; Seifertova, Eva; Krylov, Vladimir; Macha, Jaroslav; Tlapakova, Tereza; Kubickova, Svatava; Cernohorska, Halina; Zarsky, Vojtech; Evans, Ben J.

    2013-01-01

    Sex chromosome divergence has been documented across phylogenetically diverse species, with amphibians typically having cytologically nondiverged (“homomorphic”) sex chromosomes. With an aim of further characterizing sex chromosome divergence of an amphibian, we used “RAD-tags” and Sanger sequencing to examine sex specificity and heterozygosity in the Western clawed frog Silurana tropicalis (also known as Xenopus tropicalis). Our findings based on approximately 20 million genotype calls and approximately 200 polymerase chain reaction-amplified regions across multiple male and female genomes failed to identify a substantially sized genomic region with genotypic hallmarks of sex chromosome divergence, including in regions known to be tightly linked to the sex-determining region. We also found that expression and molecular evolution of genes linked to the sex-determining region did not differ substantially from genes in other parts of the genome. This suggests that the pseudoautosomal region, where recombination occurs, comprises a large portion of the sex chromosomes of S. tropicalis. These results may in part explain why African clawed frogs have such a high incidence of polyploidization, shed light on why amphibians have a high rate of sex chromosome turnover, and raise questions about why homomorphic sex chromosomes are so prevalent in amphibians. PMID:23666865

  6. Novel sex-determining genes in fish and sex chromosome evolution.

    PubMed

    Kikuchi, Kiyoshi; Hamaguchi, Satoshi

    2013-04-01

    Although the molecular mechanisms underlying many developmental events are conserved across vertebrate taxa, the lability at the top of the sex-determining (SD) cascade has been evident from the fact that four master SD genes have been identified: mammalian Sry; chicken DMRT1; medaka Dmy; and Xenopus laevis DM-W. This diversity is thought to be associated with the turnover of sex chromosomes, which is likely to be more frequent in fishes and other poikilotherms than in therian mammals and birds. Recently, four novel candidates for vertebrate SD genes were reported, all of them in fishes. These include amhy in the Patagonian pejerrey, Gsdf in Oryzias luzonensis, Amhr2 in fugu and sdY in rainbow trout. These studies provide a good opportunity to infer patterns from the seemingly chaotic picture of sex determination systems. Here, we review recent advances in our understanding of the master SD genes in fishes. PMID:23335327

  7. Chromosome 1 abnormalities in elderly patients with newly diagnosed multiple myeloma treated with novel therapies

    PubMed Central

    Caltagirone, Simona; Ruggeri, Marina; Aschero, Simona; Gilestro, Milena; Oddolo, Daniela; Gay, Francesca; Bringhen, Sara; Musolino, Caterina; Baldini, Luca; Musto, Pellegrino; Petrucci, Maria T.; Gaidano, Gianluca; Passera, Roberto; Bruno, Benedetto; Palumbo, Antonio; Boccadoro, Mario; Omedè, Paola

    2014-01-01

    Multiple myeloma is a plasma cell disorder characterized by malignant plasma cell infiltration in the bone marrow, serum and/or urine monoclonal protein and organ damage. The aim of this study was to investigate the impact of chromosome 1 abnormalities in a group of elderly patients (>65 years) with newly diagnosed multiple myeloma enrolled in the GIMEMA-MM-03-05 trial and treated with bortezomib, melphalan and prednisone or bortezomib, melphalan, prednisone and thalidomide followed by bortezomib and thalidomide maintenance. We also evaluated the link between chromosome 1 abnormalities and other clinical, genetic and immunophenotypic features by a multivariate logistic regression model. Interphase fluorescence in situ hybridization on immunomagnetically purified plasma cells and bone marrow multiparameter flow cytometry were employed. A multivariate Cox model showed that chromosome 1 abnormalities, age >75 years and a CD19+/CD117− immunophenotype of bone marrow plasma cells were independent risk factors for overall survival in elderly patients with newly diagnosed multiple myeloma. Moreover, a detrimental effect of thalidomide, even when administered in association with bortezomib, was observed in patients with abnormal chromosome 1 as well as in those with 17p deletion, while the benefit of adding thalidomide to the bortezomib-melphalan-prednisone regimen was noted in patients carrying an aggressive CD19+/CD117− bone marrow plasma cell immunophenotype. This trial was registered at www.clinicaltri-als.gov as #NCT01063179. PMID:25015938

  8. Chromosome 1 abnormalities in elderly patients with newly diagnosed multiple myeloma treated with novel therapies.

    PubMed

    Caltagirone, Simona; Ruggeri, Marina; Aschero, Simona; Gilestro, Milena; Oddolo, Daniela; Gay, Francesca; Bringhen, Sara; Musolino, Caterina; Baldini, Luca; Musto, Pellegrino; Petrucci, Maria T; Gaidano, Gianluca; Passera, Roberto; Bruno, Benedetto; Palumbo, Antonio; Boccadoro, Mario; Omedè, Paola

    2014-10-01

    Multiple myeloma is a plasma cell disorder characterized by malignant plasma cell infiltration in the bone marrow, serum and/or urine monoclonal protein and organ damage. The aim of this study was to investigate the impact of chromosome 1 abnormalities in a group of elderly patients (>65 years) with newly diagnosed multiple myeloma enrolled in the GIMEMA-MM-03-05 trial and treated with bortezomib, melphalan and prednisone or bortezomib, melphalan, prednisone and thalidomide followed by bortezomib and thalidomide maintenance. We also evaluated the link between chromosome 1 abnormalities and other clinical, genetic and immunophenotypic features by a multivariate logistic regression model. Interphase fluorescence in situ hybridization on immunomagnetically purified plasma cells and bone marrow multiparameter flow cytometry were employed. A multivariate Cox model showed that chromosome 1 abnormalities, age >75 years and a CD19(+)/CD117(-) immunophenotype of bone marrow plasma cells were independent risk factors for overall survival in elderly patients with newly diagnosed multiple myeloma. Moreover, a detrimental effect of thalidomide, even when administered in association with bortezomib, was observed in patients with abnormal chromosome 1 as well as in those with 17p deletion, while the benefit of adding thalidomide to the bortezomib-melphalan-prednisone regimen was noted in patients carrying an aggressive CD19(+)/CD117(-) bone marrow plasma cell immunophenotype. This trial was registered at www.clinicaltri-als.gov as #NCT01063179. PMID:25015938

  9. Constitutional abnormalities of chromosome 21 predispose to iAMP21-acute lymphoblastic leukaemia.

    PubMed

    Harrison, Christine J; Schwab, Claire

    2016-03-01

    In addition to Down syndrome, individuals with other constitutional abnormalities of chromosome 21 have an increased risk of developing childhood acute lymphoblastic leukaemia (ALL). Specifically, carriers of the Robertsonian translocation between chromosomes 15 and 21, rob(15;21) (q10; q10)c, have ∼2700 increased risk of developing ALL with iAMP21 (intrachromosomal amplification of chromosome 21). In these patients, chromosome 15 as well as chromosome 21 is involved in the formation of iAMP21, referred to here as der(21)(15;21). Individuals with constitutional ring chromosomes involving chromosome 21, r(21)c, are also predisposed to iAMP21-ALL, involving the same series of mutational processes as seen in sporadic- and der(21)(15;21)-iAMP21 ALL. Evidence is accumulating that the dicentric nature of the Robertsonian and ring chromosome is the initiating factor in the formation of the complex iAMP21 structure. Unravelling these intriguing predispositions to iAMP21-ALL may provide insight into how other complex rearrangements arise in cancer. PMID:26836400

  10. The Program of Sex Chromosome Pairing in Meiosis Is Highly Conserved Across Marsupial Species

    PubMed Central

    Page, Jesús; Berríos, Soledad; Parra, María Teresa; Viera, Alberto; Suja, José Ángel; Prieto, Ignacio; Barbero, José Luis; Rufas, Julio S.; Fernández-Donoso, Raúl

    2005-01-01

    Marsupials present a series of genetic and chromosomal features that are highly conserved in very distant species. One of these features is the absence of a homologous region between X and Y chromosomes. According to this genetic differentiation, sex chromosomes do not synapse during the first meiotic prophase in males, and a special structure, the dense plate, maintains sex chromosome association. In this report we present results on the process of meiotic sex chromosome pairing obtained from three different species, Thylamys elegans, Dromiciops gliroides, and Rhyncholestes raphanurus, representing the three orders of American marsupials. We have investigated the relationships between the axial structures organized along sex chromosomes and the formation of the dense plate. We found that in the three species the dense plate arises as a modification of sex chromosomal axial elements, but without the involvement of other meiotic axial structures, such as the cohesin axes. Considering the phylogenetic relationships among the marsupials studied here, our data reinforce the idea that the dense plate emerged early in marsupial evolution as an efficient mechanism to ensure the association of the nonhomologous sex chromosomes. This situation could have influenced the further evolution of sex chromosomes in marsupials. PMID:15802509

  11. Patterns of molecular evolution of an avian neo-sex chromosome.

    PubMed

    Pala, Irene; Hasselquist, Dennis; Bensch, Staffan; Hansson, Bengt

    2012-12-01

    Newer parts of sex chromosomes, neo-sex chromosomes, offer unique possibilities for studying gene degeneration and sequence evolution in response to loss of recombination and population size decrease. We have recently described a neo-sex chromosome system in Sylvioidea passerines that has resulted from a fusion between the first half (10 Mb) of chromosome 4a and the ancestral sex chromosomes. In this study, we report the results of molecular analyses of neo-Z and neo-W gametologs and intronic parts of neo-Z and autosomal genes on the second half of chromosome 4a in three species within different Sylvioidea lineages (Acrocephalidea, Timaliidae, and Alaudidae). In line with hypotheses of neo-sex chromosome evolution, we observe 1) lower genetic diversity of neo-Z genes compared with autosomal genes, 2) moderate synonymous and weak nonsynonymous sequence divergence between neo-Z and neo-W gametologs, and 3) lower GC content on neo-W than neo-Z gametologs. Phylogenetic reconstruction of eight neo-Z and neo-W gametologs suggests that recombination continued after the split of Alaudidae from the rest of the Sylvioidea lineages (i.e., after ~42.2 Ma) and with some exceptions also after the split of Acrocephalidea and Timaliidae (i.e., after ~39.4 Ma). The Sylvioidea neo-sex chromosome shares classical evolutionary features with the ancestral sex chromosomes but, as expected from its more recent origin, shows weaker divergence between gametologs. PMID:22826461

  12. Differentiation of Sex Chromosomes and Karyotype Characterisation in the Dragonsnake Xenodermus javanicus (Squamata: Xenodermatidae).

    PubMed

    Rovatsos, Michail; Johnson Pokorná, Martina; Kratochvíl, Lukáš

    2015-01-01

    Highly differentiated heteromorphic ZZ/ZW sex chromosomes with a heterochromatic W are a basic principle among advanced snakes of the lineage Colubroidea, while other snake lineages generally lack these characteristics. For the first time, we cytogenetically examined the dragonsnake, Xenodermus javanicus, a member of the family Xenodermatidae, which is phylogenetically nested between snake lineages with and without differentiated sex chromosomes. Although most snakes have a karyotype with a stable chromosomal number of 2n = 36, the dragonsnake has an unusual, derived karyotype with 2n = 32 chromosomes. We found that heteromorphic ZZ/ZW sex chromosomes with a heterochromatic W are present in the dragonsnake, which suggests that the emergence of a highly differentiated W sex chromosome within snakes predates the split of Xenodermatidae and the clade including families Pareatidae, Viperidae, Homalopsidae, Lamprophiidae, Elapidae, and Colubridae. Although accumulations of interstitial telomeric sequences have not been previously reported in snakes, by using FISH with a telomeric probe we discovered them in 6 pairs of autosomes as well as in the W sex chromosome of the dragonsnake. Similarly to advanced snakes, the sex chromosomes of the dragonsnake have a significant accumulation of repeats containing a (GATA)n sequence. The results facilitate the dating of the differentiation of sex chromosomes within snakes back to the split between Xenodermatidae and other advanced snakes, i.e. around 40-75 mya. PMID:26575989

  13. Assessemnt of nasal bone in first trimester screening for chromosomal abnormalities in Khuzestan

    PubMed Central

    Masihi, Sara; Barati, Mojgan; Mohamadjafari, Razieh; Hashemi, Marzieh

    2014-01-01

    Background: Fetal nasal bone assessment is a non-invasive procedure that helps provide even greater assurance to patients undergoing their first trimester risk assessment for aneuploidies. Absence or presence of this factor is different in some races. Objective: The study was aimed to evaluate nasal bone in the first trimester of pregnancy in the indigenous population of Khuzestan Province, and to monitor its value in the diagnosis of chromosomal abnormalities. Materials and Methods: This study was conducted on 2314 pregnant women between 17-43 years old who referred for first trimester screening for chromosomal abnormalities. Gestational age was between 11-13w + 6 days. Nuchal translucency (NT), fetal heart rate (FHR), crown rump length (CRL), and maternal age and maternal blood serum factors (Free HCG) and pregnancy-associated plasma protein-A (PAPP-A) and nasal bone were assessed. Finally the risk of trisomies was calculated. The statistical tests are based on the relationship between chromosomal abnormality and the presence or absence of the nasal bone. Results: In 114 cases we could not examine the nasal bone. Also, in 20 cases missed abortion happened without knowing the karyotype. 2173 cases were delivered normal baby, and in seven cases chromosomal abnormalities were diagnosed. Nasal bone was absent in all three cases with trisomy 21 and six of 2173 cases with normal phenotype (0.3%). With use of the Fisher exact test (p=0.0001), a significant correlation was found between the absence of the nasal bone and the risk of chromosomal abnormality. Conclusion: Inclusion of the nasal bone in first-trimester combined screening for aneuploidies achieves greater detection rate especially in Down syndrome. PMID:25031576

  14. Loss of sex chromosomes in the hematopoietic disorders: Questions, concerns and data interpretation

    SciTech Connect

    Slovak, M.L.

    1994-09-01

    The significance of sex chromosome aberrations in the hematopoietic disorders has not yet been defined. Interpretive problems stem from (1) the loss of a sex chromosome associated with aging, (2) sex chromosome loss as the sole aberration in leukemia is rare, (3) random -(X or Y) is observed frequently in bone marrow samples, and (4) constitutional sex chromosome anomalies must be ruled out in cancer and follow-up may not be possible. The COH database identified 41 patients (pts) with sex chromosome loss. Loss of a sex chromosome was common in myeloid disorders (21/41). In t(8;21) leukemia (n=10), -(X or Y) was a common secondary karyotypic change. Additionally, -Y was associated with clonal evolution in 2 Ph + CML pts. In 2 elderly pts with myeloid disorders, -(X or Y) was observed in complex karyotypes with dmins; however, in the lymphoproliferative disorders -(X or Y) was noted in elderly pts without apparent pathogenetic significance. Three pts had constitutional sex chromosome aberrations: CML in 45,X; ALL in 47, XXY; and RAEB-IT in mos45,X/46,XX. In the mos45,X/46,XX pt, the leukemic clone was associated with the 45,X line without other karyotypic changes. Non-clonal aberrations were observed in 11 cases; in 3 cases these non-clonal losses were observed in serial samples. In a sex-mismatched BMT case, -(X or Y) in 4 cells was one of the first pathogenetic signs of leukemia relapse. These data suggest (1) interpretation of sex chromosome loss in leukemia must be made with caution and after a baseline sample, (2) non-clonal aberrations should be recorded, and (3) -(X or Y) appears to have pathogenetic significance in the myeloid disorders. Multi-institutional studies are needed to define (1) the incidence of leukemia in pts with constitutional sex chromosome anomalies and (2) the incidence and significance of sex chromosome aberrations as the primary (sole) cytogenetic aberration in leukemia.

  15. Effects of Sex Chromosome Aneuploidies on Brain Development: Evidence from Neuroimaging Studies

    ERIC Educational Resources Information Center

    Lenroot, Rhoshel K.; Lee, Nancy Raitano; Giedd, Jay N.

    2009-01-01

    Variation in the number of sex chromosomes is a relatively common genetic condition, affecting as many as 1/400 individuals. The sex chromosome aneuploidies (SCAs) are associated with characteristic behavioral and cognitive phenotypes, although the degree to which specific individuals are affected can fall within a wide range. Understanding the…

  16. Effects of Sex Chromosome Aneuploidies on Brain Development: Evidence from Neuroimaging Studies

    ERIC Educational Resources Information Center

    Lenroot, Rhoshel K.; Lee, Nancy Raitano; Giedd, Jay N.

    2009-01-01

    Variation in the number of sex chromosomes is a relatively common genetic condition, affecting as many as 1/400 individuals. The sex chromosome aneuploidies (SCAs) are associated with characteristic behavioral and cognitive phenotypes, although the degree to which specific individuals are affected can fall within a wide range. Understanding the

  17. The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes.

    PubMed

    Ezaz, Tariq; Quinn, Alexander E; Miura, Ikuo; Sarre, Stephen D; Georges, Arthur; Marshall Graves, Jennifer A

    2005-01-01

    The bearded dragon, Pogona vitticeps (Agamidae: Reptilia) is an agamid lizard endemic to Australia. Like crocodilians and many turtles, temperature-dependent sex determination (TSD) is common in agamid lizards, although many species have genotypic sex determination (GSD). P. vitticeps is reported to have GSD, but no detectable sex chromosomes. Here we used molecular cytogenetic and differential banding techniques to reveal sex chromosomes in this species. Comparative genomic hybridization (CGH), GTG- and C-banding identified a highly heterochromatic microchromosome specific to females, demonstrating female heterogamety (ZZ/ZW) in this species. We isolated the P. vitticeps W chromosome by microdissection, re-amplified the DNA and used it to paint the W. No unpaired bivalents were detected in male synaptonemal complexes at meiotic pachytene, confirming male homogamety. We conclude that P. vitticeps has differentiated previously unidentifable W and Z micro-sex chromosomes, the first to be demonstrated in an agamid lizard. Our finding implies that heterochromatinization of the heterogametic chromosome occurred during sex chromosome differentiation in this species, as is the case in some lizards and many snakes, as well as in birds and mammals. Many GSD reptiles with cryptic sex chromosomes may also prove to have micro-sex chromosomes. Reptile microchromosomes, long dismissed as non-functional minutiae and often omitted from karyotypes, therefore deserve closer scrutiny with new and more sensitive techniques. PMID:16331408

  18. Genetic architecture of sexual dimorphism in a subdioecious plant with a proto-sex chromosome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sexual dimorphism is thought to arise once sexually antagonistic genes accumulate on sex chromosomes early in their evolution. Yet because the earliest stages of sex chromosome evolution are elusive, we lack empirical evidence supporting this theory. In this study, we shed first light on the genetic...

  19. Sex chromosome recombination failure, apoptosis, and fertility in male mice.

    PubMed

    Faisal, Imrul; Kauppi, Liisa

    2016-06-01

    Lack of crossing-over in meiosis can trigger an apoptotic response at metaphase I by the spindle assembly checkpoint (SAC). In contrast to females, segregation of sex chromosomes in males poses a particular challenge as recombination and chiasma formation is restricted to the pseudoautosomal region, the small region of homology between X and Y chromosomes. Existing data indicate that low levels of crossover failure in male meiosis can be tolerated without compromising fertility, while high levels of X-Y dissociation (in ≥70 % of cells) result in widespread apoptosis and subsequent infertility, demonstrated earlier, e.g., in Spo11β-only mice. Here, we explore the threshold of X-Y recombination failure frequency that is compatible with fertility. We show that in Spo11β-only(mb) mice with a mixed genetic background, in contrast to Spo11β-only mice with a C57BL/6 background, X-Y pairing fails in ~50 % of cells but this still allows for sperm production without any overt impact on fertility. We also review data on apoptosis and fertility from other achiasmate mouse models and propose that the incidence of homolog dissociation that can be tolerated in vivo without compromising male fertility lies between 50 and 70 %. PMID:26440410

  20. The number of x chromosomes causes sex differences in adiposity in mice.

    PubMed

    Chen, Xuqi; McClusky, Rebecca; Chen, Jenny; Beaven, Simon W; Tontonoz, Peter; Arnold, Arthur P; Reue, Karen

    2012-01-01

    Sexual dimorphism in body weight, fat distribution, and metabolic disease has been attributed largely to differential effects of male and female gonadal hormones. Here, we report that the number of X chromosomes within cells also contributes to these sex differences. We employed a unique mouse model, known as the "four core genotypes," to distinguish between effects of gonadal sex (testes or ovaries) and sex chromosomes (XX or XY). With this model, we produced gonadal male and female mice carrying XX or XY sex chromosome complements. Mice were gonadectomized to remove the acute effects of gonadal hormones and to uncover effects of sex chromosome complement on obesity. Mice with XX sex chromosomes (relative to XY), regardless of their type of gonad, had up to 2-fold increased adiposity and greater food intake during daylight hours, when mice are normally inactive. Mice with two X chromosomes also had accelerated weight gain on a high fat diet and developed fatty liver and elevated lipid and insulin levels. Further genetic studies with mice carrying XO and XXY chromosome complements revealed that the differences between XX and XY mice are attributable to dosage of the X chromosome, rather than effects of the Y chromosome. A subset of genes that escape X chromosome inactivation exhibited higher expression levels in adipose tissue and liver of XX compared to XY mice, and may contribute to the sex differences in obesity. Overall, our study is the first to identify sex chromosome complement, a factor distinguishing all male and female cells, as a cause of sex differences in obesity and metabolism. PMID:22589744

  1. Analysis of non-clonal chromosome abnormalities observed in hematologic malignancies among Southwest Oncology Group patients

    SciTech Connect

    McConnell, T.S.; Dobin, S.M.

    1994-09-01

    From 1987-1994, the Southwest Oncology Group Cytogenetics Committee reviewed 1571 studies in 590 adult patient cases with ALL, AML, CML or CLL. These were analyzed for the presence of clinically important non-clonal abnormalities (NCA). Abnormalities were defined as non-clonal if one metaphase had a structural abnormality or an extra chromosome. Chromosome loss was not analyzed due to the possibility of random loss. In 72 cases (12%) comprising 136 studies, at least one NCA was observed. In 21 of these cases (29%), NCAs consisted of obvious clonal evolution or instability, and thus were not included in the analysis. At least one structural NCA was observed in which the abnormality differed from the mainline in 36 (50%) patients. Seventeen of the 36 cases had a normal mode. Nineteen of the 36 patients had an abnormal or normal/abnormal mode. At least one numerical NCA was found in 15 cases (21%). Fifteen cases (21%) contained at least one marker chromosome. Several cases involved NCA in more than one of the above divisions. NCAs could be classified into several categories: (1){open_quotes}the clone to come{close_quotes}, (2) evolving clones which then disappeared, (3) NCAs with putative clinical importance that never became clonal, (4) NCAs during remission identical to the preceding clonal abnormality, (5) NCAs which indicated clonal evolution or instability. Examples include one metaphase with t(9;22) or del(20q) or inv(16) or +8 which either preceded or followed clonal findings of the same aberration. Such findings should be communicated to the clinician.

  2. Sex chromosomes evolved from independent ancestral linkage groups in winged insects.

    PubMed

    Pease, James B; Hahn, Matthew W

    2012-06-01

    The evolution of a pair of chromosomes that differ in appearance between males and females (heteromorphic sex chromosomes) has occurred repeatedly across plants and animals. Recent work has shown that the male heterogametic (XY) and female heterogametic (ZW) sex chromosomes evolved independently from different pairs of homomorphic autosomes in the common ancestor of birds and mammals but also that X and Z chromosomes share many convergent molecular features. However, little is known about how often heteromorphic sex chromosomes have either evolved convergently from different autosomes or in parallel from the same pair of autosomes and how universal patterns of molecular evolution on sex chromosomes really are. Among winged insects with sequenced genomes, there are male heterogametic species in both the Diptera (e.g., Drosophila melanogaster) and the Coleoptera (Tribolium castaneum), female heterogametic species in the Lepidoptera (Bombyx mori), and haplodiploid species in the Hymenoptera (e.g., Nasonia vitripennis). By determining orthologous relationships among genes on the X and Z chromosomes of insects with sequenced genomes, we are able to show that these chromosomes are not homologous to one another but are homologous to autosomes in each of the other species. These results strongly imply that heteromorphic sex chromosomes have evolved independently from different pairs of ancestral chromosomes in each of the insect orders studied. We also find that the convergently evolved X chromosomes of Diptera and Coleoptera share genomic features with each other and with vertebrate X chromosomes, including excess gene movement from the X to the autosomes. However, other patterns of molecular evolution--such as increased codon bias, decreased gene density, and the paucity of male-biased genes on the X--differ among the insect X and Z chromosomes. Our results provide evidence for both differences and nearly universal similarities in patterns of evolution among independently derived sex chromosomes. PMID:22319158

  3. Uniparental isodisomy of chromosome 14 in two cases: An abnormal child and a normal adult

    SciTech Connect

    Papenhausen, P.R.; Mueller, O.T.; Sutcliffe, M.; Diamond, T.M.; Kousseff, B.G.; Johnson, V.P.

    1995-11-20

    Uniparental disomy (UPD) of a number of different chromosomes has been found in association with abnormal phenotypes. A growing body of evidence for an imprinting effect involving chromosome 14 has been accumulating. We report on a case of paternal UPD of chromosome 14 studied in late gestation due to polyhydramnios and a ventral wall hernia. A prenatal karyotype documented a balanced Robertsonian 14:14 translocation. The baby was born prematurely with hairy forehead, retrognathia, mild puckering of the lips and finger contractures. Hypotonia has persisted since birth and at age one year, a tracheostomy for laryngomalacia and gastrostomy for feeding remain necessary. Absence of maternal VNTR polymorphisms and homozygosity of paternal polymorphisms using chromosome 14 specific probes at D14S22 and D14S13 loci indicated paternal uniparental isodisomy (pUPID). Parental chromosomes were normal. We also report on a case of maternal LTPD in a normal patient with a balanced Robertsonian 14:14 translocation and a history of multiple miscarriages. Five previous reports of chromosome 14 UPD suggest that an adverse developmental effect may be more severe whenever the UPD is paternal in origin. This is the second reported patient with paternal UPD and the fifth reported with maternal UPD, and only few phenotypic similarities are apparent. Examination of these chromosome 14 UPD cases of maternal and paternal origin suggests that there are syndromic imprinting effects. 30 refs., 3 figs.

  4. Clinical and molecular cytogenetic studies in ring chromosome 5: report of a child with congenital abnormalities.

    PubMed

    Basinko, Audrey; Giovannucci Uzielli, Maria Luisa; Scarselli, Gloria; Priolo, Manuela; Timpani, Giuseppina; De Braekeleer, Marc

    2012-02-01

    We report here a child with a ring chromosome 5 (r(5)) associated with facial dysmorphology and multiple congenital abnormalities. Fluorescent in situ hybridization (FISH) using bacterial artificial chromosome (BAC) clones was performed to determine the breakpoints involved in the r(5). The 5p deletion extended from 5p13.2-3 to 5pter and measured 34.61 Mb (range: 33.7-35.52 Mb) while the 5q deletion extended from 5q35.3 to 5qter and measured 2.44 Mb (range: 2.31-2.57 Mb). The patient presented signs such as microcephaly, hypertelorism, micrognathia and epicanthal folds, partially recalling those of a deletion of the short arm of chromosome 5 and the "cri-du-chat" syndrome. The most striking phenotypic features were the congenital heart abnormalities which have been frequently reported in deletions of the distal part of the long arm of chromosome 5 and in rings leading to a 5q35-5qter deletion. However, the NKX2-5 gene, which has been related to congenital heart defects, was not deleted in our patient, nor presumably to some other patients with 5q35.3-5qter deletion. We propose that VEGFR3, deleted in our patient, could be a candidate gene for the congenital heart abnormalities observed. PMID:22193390

  5. Description of the pre-reductional sex chromosome during male meiosis of Pachylis laticornis (Heteroptera: Coreidae).

    PubMed

    Banho, C A; Alevi, K C C; Pereira, L L V; Souza-Firmino, T S; Itoyama, M M

    2016-01-01

    In Heteroptera, the division of sex chromosomes is well defined as post-reductional for most of species, i.e., the first meiotic division is equational and the second is reductional. However, in some species pre-reductional division has been observed, whereby the first meiotic division is reductional and the second is equational. These include Anisops fieberi (Notonectidae), Ectrychotes disparate (Reduviidae), Dictyonota tricornis (Tingidae), and Archimerus alternatus (Coreidae), as well as other species of the genus Pachylis, in the family Coreidae. Thus, this study aimed to characterize the meiotic behavior of Pachylis laticornis, in order to consider whether this species also undergoes pre-reduction division for the sex chromosomes. Cytogenetic analysis of meiosis in P. laticornis made it possible to characterize the holocentric nature of the chromosomes, the chromosome number of this species [2n = 15 (2m + 12A + X0)], the chromosomal system of sex X0 type, and the presence of m-chromosomes. Furthermore, the analysis of anaphase I, telophase I and II allowed pre-reductional meiotic behavior to be observed for this sex chromosome. Thus, this meiotic behavior was confirmed for another species of Heteroptera, stressing the importance of more cytogenetic studies of meiosis to increase our understanding of variation in the behavior of sex chromosomes during spermatogenesis in heteropterans. Therefore, the present study describes the chromosomal number, the system of sex determination, and meiotic behavior of P. laticornis, corroborating the relationship of this species with others of the same genus. PMID:27173284

  6. Fatness QTL on chicken chromosome 5 and interaction with sex

    PubMed Central

    Abasht, Behnam; Pitel, Frédérique; Lagarrigue, Sandrine; Le Bihan-Duval, Elisabeth; Le Roy, Pascale; Demeure, Olivier; Vignoles, Florence; Simon, Jean; Cogburn, Larry; Aggrey, Sammy; Vignal, Alain; Douaire, Madeleine

    2006-01-01

    Quantitative trait loci (QTL) affecting fatness in male chickens were previously identified on chromosome 5 (GGA5) in a three-generation design derived from two experimental chicken lines divergently selected for abdominal fat weight. A new design, established from the same pure lines, produced 407 F2 progenies (males and females) from 4 F1-sire families. Body weight and abdominal fat were measured on the F2 at 9 wk of age. In each sire family, selective genotyping was carried out for 48 extreme individuals for abdominal fat using seven microsatellite markers from GGA5. QTL analyses confirmed the presence of QTL for fatness on GGA5 and identified a QTL by sex interaction. By crossing one F1 sire heterozygous at the QTL with lean line dams, three recombinant backcross 1 (BC1) males were produced and their QTL genotypes were assessed in backcross 2 (BC2) progenies. These results confirmed the QTL by sex interaction identified in the F2 generation and they allow mapping of the female QTL to less than 8 Mb at the distal part of the GGA5. They also indicate that fat QTL alleles were segregating in both fat and lean lines. PMID:16635451

  7. Fatness QTL on chicken chromosome 5 and interaction with sex.

    PubMed

    Abasht, Behnam; Pitel, Frédérique; Lagarrigue, Sandrine; Le Bihan-Duval, Elisabeth; Le Roy, Pascale; Demeure, Olivier; Vignoles, Florence; Simon, Jean; Cogburn, Larry; Aggrey, Sammy; Vignal, Alain; Douaire, Madeleine

    2006-01-01

    Quantitative trait loci (QTL) affecting fatness in male chickens were previously identified on chromosome 5 (GGA5) in a three-generation design derived from two experimental chicken lines divergently selected for abdominal fat weight. A new design, established from the same pure lines, produced 407 F2 progenies (males and females) from 4 F1-sire families. Body weight and abdominal fat were measured on the F2 at 9 wk of age. In each sire family, selective genotyping was carried out for 48 extreme individuals for abdominal fat using seven microsatellite markers from GGA5. QTL analyses confirmed the presence of QTL for fatness on GGA5 and identified a QTL by sex interaction. By crossing one F1 sire heterozygous at the QTL with lean line dams, three recombinant backcross 1 (BC1) males were produced and their QTL genotypes were assessed in backcross 2 (BC2) progenies. These results confirmed the QTL by sex interaction identified in the F2 generation and they allow mapping of the female QTL to less than 8 Mb at the distal part of the GGA5. They also indicate that fat QTL alleles were segregating in both fat and lean lines. PMID:16635451

  8. Sex chromosome evolution in cotton stainers of the genus Dysdercus (Heteroptera: Pyrrhocoridae).

    PubMed

    Bressa, M J; Papeschi, A G; Vítková, M; Kubícková, S; Fuková, I; Pigozzi, M I; Marec, F

    2009-01-01

    The neo-X and neo-Y sex chromosomes of Dysdercus albofasciatus represent a unique model for the study of early stages of sex chromosome evolution since they retained the ability to pair and recombine, in contrast to sex chromosomes in most Heteroptera. Here we examined structure, molecular differentiation, and meiotic behaviour of the D. albofasciatus neo-sex chromosomes. Two related species with the ancestral X0 system, D. chaquensis and D. ruficollis, were used for a comparison. In D. albofasciatus, 2 nucleolar organizer regions (NORs) were identified on the neo-X chromosome using fluorescence in situ hybridization (FISH) with an rDNA probe, whereas a single NOR was found on an autosomal pair in the other 2 species. Genomic in situ hybridization (GISH) differentiated a part of the original X in the neo-X chromosome but not the neo-Y chromosome. The same segment of the neo-X chromosome was identified by Zoo-FISH with a chromosome painting probe derived from the X chromosome of D. ruficollis, indicating that this part is conserved between the species. Immunostaining against the cohesin subunit SMC3 revealed that only terminal regions of the D. albofasciatus neo-Xneo-Y bivalent pair and form a synaptonemal complex, which is in keeping with the occurrence of terminal chiasmata, whereas the interstitial region forms a large loop indicating the absence of homology. These results support the hypothesis that the neo-X chromosome evolved by insertion of the original X chromosome into 1 NOR-bearing autosome in an ancestor carrying the X0 system. As a consequence, the homologue of this NOR-autosome became the neo-Y chromosome. A subsequent inversion followed by transposition of the NOR located on the neo-Y onto the neo-X chromosome resulted in the present neo-sex chromosome system in D. albofasciatus. PMID:19864893

  9. Genetic architecture of sexual dimorphism in a subdioecious plant with a proto-sex chromosome.

    PubMed

    Spigler, Rachel B; Lewers, Kim S; Ashman, Tia-Lynn

    2011-04-01

    The rise of sexual dimorphism is thought to coincide with the evolution of sex chromosomes. Yet because sex chromosomes in many species are ancient, we lack empirical evidence of the earliest stages of this transition. We use QTL analysis to examine the genetic architecture of sexual dimorphism in subdioecious octoploid Fragaria virginiana. We demonstrate that the region housing the male-function locus controls the majority of quantitative variation in proportion fruit set, confirming the existence of a proto-sex chromosome, and houses major QTL for eight additional sexually dimorphic traits, consistent with theory and data from animals and plants with more advanced sex chromosomes. We also detected autosomal QTL, demonstrating contributions to phenotypic variation in sexually dimorphic traits outside the sex-determining region. Moreover, for proportion seed set we found significant epistatic interactions between autosomal QTL and the male-function locus, indicating sex-limited QTL. We identified linked QTL reflecting trade-offs between male and female traits expected from theory and positive integration of male traits. These findings indicate the potential for the evolution of greater sexual dimorphism. Involvement of linkage groups homeologous to the proto-sex chromosome in these correlations reflects the polyploid origin of F. virginiana and raises the possibility that chromosomes in this homeologous group were predisposed to become the sex chromosome. PMID:21062281

  10. The origin and evolution of vertebrate sex chromosomes and dosage compensation

    PubMed Central

    Livernois, A M; Graves, J A M; Waters, P D

    2012-01-01

    In mammals, birds, snakes and many lizards and fish, sex is determined genetically (either male XY heterogamy or female ZW heterogamy), whereas in alligators, and in many reptiles and turtles, the temperature at which eggs are incubated determines sex. Evidently, different sex-determining systems (and sex chromosome pairs) have evolved independently in different vertebrate lineages. Homology shared by Xs and Ys (and Zs and Ws) within species demonstrates that differentiated sex chromosomes were once homologous, and that the sex-specific non-recombining Y (or W) was progressively degraded. Consequently, genes are left in single copy in the heterogametic sex, which results in an imbalance of the dosage of genes on the sex chromosomes between the sexes, and also relative to the autosomes. Dosage compensation has evolved in diverse species to compensate for these dose differences, with the stringency of compensation apparently differing greatly between lineages, perhaps reflecting the concentration of genes on the original autosome pair that required dosage compensation. We discuss the organization and evolution of amniote sex chromosomes, and hypothesize that dosage insensitivity might predispose an autosome to evolving function as a sex chromosome. PMID:22086077

  11. Combined Use of Cytogenetic and Molecular Methods in Prenatal Diagnostics of Chromosomal Abnormalities

    PubMed Central

    Stomornjak-Vukadin, Meliha; Kurtovic-Basic, Ilvana; Mehinovic, Lejla; Konjhodzic, Rijad

    2015-01-01

    Aim: The aim of prenatal diagnostics is to provide information of the genetic abnormalities of the fetus early enough for the termination of pregnancy to be possible. Chromosomal abnormalities can be detected in an unborn child through the use of cytogenetic, molecular- cytogenetic and molecular methods. In between them, central spot is still occupied by cytogenetic methods. In cases where use of such methods is not informative enough, one or more molecular cytogenetic methods can be used for further clarification. Combined use of the mentioned methods improves the quality of the final findings in the diagnostics of chromosomal abnormalities, with classical cytogenetic methods still occupying the central spot. Material and methods: Conducted research represent retrospective-prospective study of a four year period, from 2008 through 2011. In the period stated, 1319 karyotyping from amniotic fluid were conducted, along with 146 FISH analysis. Results: Karyotyping had detected 20 numerical and 18 structural aberrations in that period. Most common observed numerical aberration were Down syndrome (75%), Klinefelter syndrome (10%), Edwards syndrome, double Y syndrome and triploidy (5% each). Within observed structural aberrations more common were balanced chromosomal aberrations then non balanced ones. Most common balanced structural aberrations were as follows: reciprocal translocations (60%), Robertson translocations (13.3%), chromosomal inversions, duplications and balanced de novo chromosomal rearrangements (6.6% each). Conclusion: With non- balanced aberrations observed in the samples of amniotic fluid, non- balanced translocations, deletions and derived chromosomes were equally represented. Number of detected aneuploidies with FISH, prior to obtaining results with karyotyping, were 6. PMID:26005269

  12. Multiple Sex-Associated Regions and a Putative Sex Chromosome in Zebrafish Revealed by RAD Mapping and Population Genomics

    PubMed Central

    Anderson, Jennifer L.; Rodríguez Marí, Adriana; Braasch, Ingo; Amores, Angel; Hohenlohe, Paul; Batzel, Peter; Postlethwait, John H.

    2012-01-01

    Within vertebrates, major sex determining genes can differ among taxa and even within species. In zebrafish (Danio rerio), neither heteromorphic sex chromosomes nor single sex determination genes of large effect, like Sry in mammals, have yet been identified. Furthermore, environmental factors can influence zebrafish sex determination. Although progress has been made in understanding zebrafish gonad differentiation (e.g. the influence of germ cells on gonad fate), the primary genetic basis of zebrafish sex determination remains poorly understood. To identify genetic loci associated with sex, we analyzed F2 offspring of reciprocal crosses between Oregon *AB and Nadia (NA) wild-type zebrafish stocks. Genome-wide linkage analysis, using more than 5,000 sequence-based polymorphic restriction site associated (RAD-tag) markers and population genomic analysis of more than 30,000 single nucleotide polymorphisms in our *ABxNA crosses revealed a sex-associated locus on the end of the long arm of chr-4 for both cross families, and an additional locus in the middle of chr-3 in one cross family. Additional sequencing showed that two SNPs in dmrt1 previously suggested to be functional candidates for sex determination in a cross of ABxIndia wild-type zebrafish, are not associated with sex in our AB fish. Our data show that sex determination in zebrafish is polygenic and that different genes may influence sex determination in different strains or that different genes become more important under different environmental conditions. The association of the end of chr-4 with sex is remarkable because, unique in the karyotype, this chromosome arm shares features with known sex chromosomes: it is highly heterochromatic, repetitive, late replicating, and has reduced recombination. Our results reveal that chr-4 has functional and structural properties expected of a sex chromosome. PMID:22792396

  13. Anthropometric study with emphasis on hand and foot measurements in the Prader-Willi syndrome: sex, age and chromosome effects.

    PubMed

    Butler, M G; Haynes, J L; Meaney, F J

    1991-01-01

    Age, sex and chromosome effects on weight, height, sitting height, three head dimensions, and five hand and three foot measurements were analyzed from 57 patients (35 males and 22 females) with the Prader-Willi syndrome (PWS). No significant differences were observed in anthropometric data between PWS patients with the 15q chromosome deletion and those with normal chromosomes. Preschool children were found to have dolichocephaly, while hand and foot measurements, stature and sitting height were within normal range, although foot size was smaller than hand size in females when compared with PWS males. However, anthropometric measurements, excluding weight, head length and ankle breadth, were less than -2 SD in adult patients. Abnormal growth patterns apparently exist with significant negative correlations with age, particularly in PWS males, for height, sitting height, head circumference, and hand and foot measurements, but a significant positive correlation for weight was found in patients below 10 years of age. PMID:1997214

  14. Analysis and visualization of chromosomal abnormalities in SNP data with SNPscan

    PubMed Central

    Ting, Jason C; Ye, Ying; Thomas, George H; Ruczinski, Ingo; Pevsner, Jonathan

    2006-01-01

    Background A variety of diseases are caused by chromosomal abnormalities such as aneuploidies (having an abnormal number of chromosomes), microdeletions, microduplications, and uniparental disomy. High density single nucleotide polymorphism (SNP) microarrays provide information on chromosomal copy number changes, as well as genotype (heterozygosity and homozygosity). SNP array studies generate multiple types of data for each SNP site, some with more than 100,000 SNPs represented on each array. The identification of different classes of anomalies within SNP data has been challenging. Results We have developed SNPscan, a web-accessible tool to analyze and visualize high density SNP data. It enables researchers (1) to visually and quantitatively assess the quality of user-generated SNP data relative to a benchmark data set derived from a control population, (2) to display SNP intensity and allelic call data in order to detect chromosomal copy number anomalies (duplications and deletions), (3) to display uniparental isodisomy based on loss of heterozygosity (LOH) across genomic regions, (4) to compare paired samples (e.g. tumor and normal), and (5) to generate a file type for viewing SNP data in the University of California, Santa Cruz (UCSC) Human Genome Browser. SNPscan accepts data exported from Affymetrix Copy Number Analysis Tool as its input. We validated SNPscan using data generated from patients with known deletions, duplications, and uniparental disomy. We also inspected previously generated SNP data from 90 apparently normal individuals from the Centre d'Étude du Polymorphisme Humain (CEPH) collection, and identified three cases of uniparental isodisomy, four females having an apparently mosaic X chromosome, two mislabelled SNP data sets, and one microdeletion on chromosome 2 with mosaicism from an apparently normal female. These previously unrecognized abnormalities were all detected using SNPscan. The microdeletion was independently confirmed by fluorescence in situ hybridization, and a region of homozygosity in a UPD case was confirmed by sequencing of genomic DNA. Conclusion SNPscan is useful to identify chromosomal abnormalities based on SNP intensity (such as chromosomal copy number changes) and heterozygosity data (including regions of LOH and some cases of UPD). The program and source code are available at the SNPscan website . PMID:16420694

  15. Retrospective evaluation of the clinical and laboratory data from 300 patients of various hematological malignancies with chromosome 3 abnormalities.

    PubMed

    Liu, Dandan; Zhang, Yong; Chen, Suning; Pan, Jinlan; He, Xuefeng; Liang, Jianying; Chen, Zixing

    2015-06-01

    This retrospective study was designed to evaluate the clinical and laboratory behaviors of chromosome 3 abnormalities by analyzing the morphological, cytogenetic, and follow-up data from 300 patients of various hematological malignancies with chromosome 3 abnormalities. From the results, trisomy 3, translocation (3q), and del(3) were the abnormal types most frequently observed (>10%) among the chromosome 3 abnormalities. In hematological malignancies, chromosome 3 abnormalities were most frequently seen in the patients with acute myeloid leukemia (AML) (24.7%) and myelodysplastic syndrome (MDS) (16%), followed by those with acute lymphocytic leukemia (ALL) (13.7%) and multiple myeloma (MM) (12.7%). In this series, genomic losses were the most frequent genetic abnormalities in AML, ALL, and hybrid acute leukemia (HAL) patients, whereas structural rearrangements were frequently seen in chronic myeloid leukemia (CML) and MDS patients, and genomic gains in MM, lymphoma and chronic lymphocytic leukemia (CLL) patients. Chromosome 3 abnormalities mainly occurred as a component of a complex abnormality (251/300) rather than a sole one (14/300). Survival analysis demonstrated a statistical difference between the patients with trisomy 3, who had a better prognosis, and patients with del(3), who had a worse prognosis in this series (P < 0.05). Abnormalities in chromosome 3 may imply an unfavorable outcome in CML and ALL. PMID:26032184

  16. Sex chromosome elimination, X chromosome inactivation and reactivation in the southern brown bandicoot Isoodon obesulus (Marsupialia: Peramelidae).

    PubMed

    Johnston, P G; Watson, C M; Adams, M; Paull, D J

    2002-01-01

    Cytogenetic studies have shown that bandicoots (family Peramelidae) eliminate one X chromosome in females and the Y chromosome in males from some somatic tissues at different stages during development. The discovery of a polymorphism for X-linked phosphoglycerate kinase (PGK-1) in a population of Isoodon obesulus from Mount Gambier, South Australia, has allowed us to answer a number of long standing questions relating to the parental source of the eliminated X chromosome, X chromosome inactivation and reactivation in somatic and germ cells of female bandicoots. We have found no evidence of paternal PGK-1 allele expression in a wide range of somatic tissues and cell types from known female heterozygotes. We conclude that paternal X chromosome inactivation occurs in bandicoots as in other marsupial groups and that it is the paternally derived X chromosome that is eliminated from some cell types of females. The absence of PGK-1 paternal activity in somatic cells allowed us to examine the state of X chromosome activity in germ cells. Electrophoresis of germ cells from different aged pouch young heterozygotes showed only maternal allele expression in oogonia whereas an additional paternally derived band was observed in pre-dictyate oocytes. We conclude that reactivation of the inactive X chromosome occurs around the onset of meiosis in female bandicoots. As in other mammals, late replication is a common feature of the Y chromosome in male and the inactive X chromosome in female bandicoots. The basis of sex chromosome loss is still not known; however later timing of DNA synthesis is involved. Our finding that the paternally derived X chromosome is eliminated in females suggests that late DNA replication may provide the imprint for paternal X inactivation and the elimination of sex chromosomes in bandicoots. PMID:12900554

  17. Chromosomal Disorders and Autism.

    ERIC Educational Resources Information Center

    Gillberg, Christopher

    1998-01-01

    This paper reviews the literature on chromosomal aberrations in autism, especially possible gene markers. It notes that Chromosome 15 and numerical and structural abnormalities of the sex chromosomes have been most frequently reported as related to the genesis of autism. (Author/DB)

  18. A unique sex chromosome system in the knifefish Gymnotus bahianus with inferences about chromosomal evolution of Gymnotidae.

    PubMed

    Almeida, Josivanda S; Migues, Vitor H; Diniz, Débora; Affonso, Paulo Roberto A M

    2015-01-01

    Cytogenetic studies in Neotropical electric knifefish of genus Gymnotus have shown a remarkable interspecific variability, including distinct sex chromosome systems. In this study, we present the first chromosomal data in Gymnotus bahianus from Contas River basin, northeastern South America. Based on extensive analyses, the modal diploid values were 2n = 36 (30m/sm + 6st) for females and 2n = 37 (32m/sm + 5st) for males. Therefore, a novel XX/XY1Y2 sex chromosome system is described for the genus. Single nucleolar organizer regions (NORs) interspersed to GC-rich sites were detected on a subtelocentric pair (7th) for both sexes and confirmed by fluorescent in situ hybridization with 18S rDNA probes. Heterochromatin was detected at pericentromeric regions of all chromosomes and interspersed to NORs on pair 7 and 5S rDNA cistrons on pair 9. The highly differentiated karyotype of Gymnoytus bahianus, with low diploid numbers and a unique XX/XY1Y2 system, reinforces the independent origin of sex chromosomes in Gymnotiformes and seems to reflect the particular evolutionary history of this species in a small and isolated drainage system. Moreover, in spite of morphological similarities, the present results indicate a remarkable chromosomal divergence in relation to closely related species such as G. sylvius and G. carapo. PMID:25596613

  19. Sex chromosome complement influences operant responding for a palatable food in mice.

    PubMed

    Seu, E; Groman, S M; Arnold, A P; Jentsch, J D

    2014-07-01

    The procurement and consumption of palatable, calorie-dense foods is influenced by the nutritional and hedonic value of foods. Although many factors can influence the control over behavior by foods rich in sugar and fat, emerging evidence indicates that biological sex may play a particularly crucial role in the types of foods individuals seek out, as well as the level of motivation individuals will exert to obtain those foods. However, a systematic investigation of food-seeking and consumption that disentangles the effects of the major sex-biasing factors, including sex chromosome complement and organizational and activational effects of sex hormones, has yet to be conducted. Using the four core genotypes mouse model system, we separated and quantified the effects of sex chromosome complement and gonadal sex on consumption of and motivation to obtain a highly palatable solution [sweetened condensed milk (SCM)]. Gonadectomized mice with an XY sex chromosome complement, compared with those with two X chromosomes, independent of gonadal sex, appeared to be more sensitive to the reward value of the SCM solution and were more motivated to expend effort to obtain it, as evidenced by their dramatically greater expended effort in an instrumental task with progressively larger response-to-reward ratios. Gonadal sex independently affected free consumption of the solution but not motivation to obtain it. These data indicate that gonadal and chromosomal sex effects independently influence reward-related behaviors, contributing to sexually dimorphic patterns of behavior related to the pursuit and consumption of rewards. PMID:24861924

  20. Sex ratio of congenital abnormalities in the function of maternal age: a population-based study.

    PubMed

    Csermely, Gyula; Urbán, Robert; Czeizel, Andrew E; Veszprémi, Béla

    2015-05-01

    Maternal age effect is well-known in the origin of numerical chromosomal aberrations and some isolated congenital abnormalities (CAs). The sex ratio (SR), i.e. number of males divided by the number of males and females together, of most CAs deviates from the SR of newborn population (0.51). The objective of this analysis was to evaluate the possible association of maternal age with the SR of isolated CAs in a population-based large dataset of the Hungarian Case-Control Surveillance of Congenital Abnormalities, 1980-1996. First, SR of 24 CA entities/groups was estimated in 21,494 patients with isolated CA. In the next step SR of different maternal age groups was compared to the mean SR of the given CA-groups. The SR of four CA-groups showed some deviation in certain maternal age groups. Cases with anencephaly had female excess in young mothers (<25 years). Cases with skull's CAs particularly craniosynostosis had a male excess in cases born to women over 30 years. Two other CA groups (cleft lip ± palate and valvar pulmonic stenosis within the group of right-sided obstructive defect of heart) had significant deviation in SR of certain maternal age groups from the mean SR, but these deviations were not harmonized with joining age groups and thus were considered as a chance effect due to multiple testing. In conclusion, our study did not suggest that in general SR of isolated CAs might be modified by certain maternal age groups with some exception such as anencephaly and craniosynostosis. PMID:25354028

  1. The fragile Y hypothesis: Y chromosome aneuploidy as a selective pressure in sex chromosome and meiotic mechanism evolution.

    PubMed

    Blackmon, Heath; Demuth, Jeffery P

    2015-09-01

    Loss of the Y-chromosome is a common feature of species with chromosomal sex determination. However, our understanding of why some lineages frequently lose Y-chromosomes while others do not is limited. The fragile Y hypothesis proposes that in species with chiasmatic meiosis the rate of Y-chromosome aneuploidy and the size of the recombining region have a negative correlation. The fragile Y hypothesis provides a number of novel insights not possible under traditional models. Specifically, increased rates of Y aneuploidy may impose positive selection for (i) gene movement off the Y; (ii) translocations and fusions which expand the recombining region; and (iii) alternative meiotic segregation mechanisms (achiasmatic or asynaptic). These insights as well as existing evidence for the frequency of Y-chromosome aneuploidy raise doubt about the prospects for long-term retention of the human Y-chromosome despite recent evidence for stable gene content in older non-recombining regions. PMID:26200104

  2. The X Chromosome of Hemipteran Insects: Conservation, Dosage Compensation and Sex-Biased Expression

    PubMed Central

    Pal, Arka; Vicoso, Beatriz

    2015-01-01

    Insects of the order Hemiptera (true bugs) use a wide range of mechanisms of sex determination, including genetic sex determination, paternal genome elimination, and haplodiploidy. Genetic sex determination, the prevalent mode, is generally controlled by a pair of XY sex chromosomes or by an XX/X0 system, but different configurations that include additional sex chromosomes are also present. Although this diversity of sex determining systems has been extensively studied at the cytogenetic level, only the X chromosome of the model pea aphid Acyrthosiphon pisum has been analyzed at the genomic level, and little is known about X chromosome biology in the rest of the order. In this study, we take advantage of published DNA- and RNA-seq data from three additional Hemiptera species to perform a comparative analysis of the gene content and expression of the X chromosome throughout this clade. We find that, despite showing evidence of dosage compensation, the X chromosomes of these species show female-biased expression, and a deficit of male-biased genes, in direct contrast to the pea aphid X. We further detect an excess of shared gene content between these very distant species, suggesting that despite the diversity of sex determining systems, the same chromosomal element is used as the X throughout a large portion of the order. PMID:26556591

  3. Geographic/ethnic variability of chromosomal and molecular abnormalities in leukemia.

    PubMed

    De Braekeleer, Marc; De Braekeleer, Etienne; Douet-Guilbert, Nathalie

    2015-01-01

    In 1963, Jean Bernard, a French hematologist, opened a new chapter in hematology called geographic hematology ('Hmatologie Gographique'). He distinguished two research avenues. One dealt with the differences between the various populations (ethnic hematology), the other with various environmental factors (environmental hematology). In recent years, focus has been put on analyzing the genetic susceptibility in cancer and hematological malignancies, particularly in childhood acute lymphoblastic leukemia, using specific gene or (genome-wide association study) approach. However, almost 30 years ago, it was suggested by a few workers that chromosomal abnormalities observed in leukemia could have a geographic and/or ethnic distribution. In this review, we analyze the literature on chromosomal and molecular abnormalities in several types of leukemia. PMID:26211807

  4. Solar activity cycle and the incidence of foetal chromosome abnormalities detected at prenatal diagnosis

    NASA Astrophysics Data System (ADS)

    Halpern, Gabrielle J.; Stoupel, Eliahu G.; Barkai, Gad; Chaki, Rina; Legum, Cyril; Fejgin, Moshe D.; Shohat, Mordechai

    1995-06-01

    We studied 2001 foetuses during the period of minimal solar activity of solar cycle 21 and 2265 foetuses during the period of maximal solar activity of solar cycle 22, in all women aged 37 years and over who underwent free prenatal diagnosis in four hospitals in the greater Tel Aviv area. There were no significant differences in the total incidence of chromosomal abnormalities or of trisomy between the two periods (2.15% and 1.8% versus 2.34% and 2.12%, respectively). However, the trend of excessive incidence of chromosomal abnormalities in the period of maximal solar activity suggests that a prospective study in a large population would be required to rule out any possible effect of extreme solar activity.

  5. Implication of sperm chromosomal abnormalities in recurrent abortion and multiple implantation failure.

    PubMed

    Caseiro, Ana Lara; Regalo, Ana; Pereira, Elisa; Esteves, Telma; Fernandes, Fernando; Carvalho, Joaquim

    2015-10-01

    Currently, some infertility treatment centres provide sperm karyotype analysis, although the impact of sperm chromosomal abnormalities on fertility is not yet fully understood. Several studies using fluorescence in-situ hybridization (FISH) to analyse sperm chromosomal constitution discovered that the incidence of aneuploidy is increased in individuals with a history of repeated abortion or implantation failure and is even higher in cases of oligoasthenoteratozoospermia (OAT), abnormal somatic karyotype or in spermatozoa retrieved directly from the testis or epididymis, showing that the application of FISH in these cases may be of some benefit for improving the reproductive outcome. This article presents the results of clinical trials of FISH analysis on spermatozoa, the medical indications for performing this examination, its results in infertile patients and the advantages when performing genetic counselling prior to treatment. Also discussed is the possibility of applying the latest techniques of genetic analysis in these cases and the potential benefits for improving the prognosis of male infertility. PMID:26299791

  6. CAFE: an R package for the detection of gross chromosomal abnormalities from gene expression microarray data

    PubMed Central

    Bollen, Sander; Mah, Nancy

    2014-01-01

    Summary: The current methods available to detect chromosomal abnormalities from DNA microarray expression data are cumbersome and inflexible. CAFE has been developed to alleviate these issues. It is implemented as an R package that analyzes Affymetrix *.CEL files and comes with flexible plotting functions, easing visualization of chromosomal abnormalities. Availability and implementation: CAFE is available from https://bitbucket.org/cob87icW6z/cafe/ as both source and compiled packages for Linux and Windows. It is released under the GPL version 3 license. CAFE will also be freely available from Bioconductor. Contact: sander.h.bollen@gmail.com or nancy.mah@mdc-berlin.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24451624

  7. Abnormal sex ratios in human populations: Causes and consequences

    PubMed Central

    Hesketh, Therese; Xing, Zhu Wei

    2006-01-01

    In the absence of manipulation, both the sex ratio at birth and the population sex ratio are remarkably constant in human populations. Small alterations do occur naturally; for example, a small excess of male births has been reported to occur during and after war. The tradition of son preference, however, has distorted these natural sex ratios in large parts of Asia and North Africa. This son preference is manifest in sex-selective abortion and in discrimination in care practices for girls, both of which lead to higher female mortality. Differential gender mortality has been a documented problem for decades and led to reports in the early 1990s of 100 million “missing women” across the developing world. Since that time, improved health care and conditions for women have resulted in reductions in female mortality, but these advances have now been offset by a huge increase in the use of sex-selective abortion, which became available in the mid-1980s. Largely as a result of this practice, there are now an estimated 80 million missing females in India and China alone. The large cohorts of “surplus” males now reaching adulthood are predominantly of low socioeconomic class, and concerns have been expressed that their lack of marriageability, and consequent marginalization in society, may lead to antisocial behavior and violence, threatening societal stability and security. Measures to reduce sex selection must include strict enforcement of existing legislation, the ensuring of equal rights for women, and public awareness campaigns about the dangers of gender imbalance. PMID:16938885

  8. Overview of Epidemiology, Genetics, Birth Defects, and Chromosome Abnormalities Associated With CDH

    PubMed Central

    Pober, Barbara R.

    2010-01-01

    Congenital diaphragmatic hernia (CDH) is a common and well-studied birth defect. The etiology of most cases remains unknown but increasing evidence points to genetic causation. The data supporting genetic etiologies which are detailed below include the association of CDH with recurring chromosome abnormalities, the existence of CDH-multiplex families, and the co-occurrence of CDH with additional congenital malformations. PMID:17436298

  9. Chromosome Abnormalities

    MedlinePlus

    ... are two kinds of cell division, mitosis and meiosis. Mitosis results in two cells that are duplicates ... make up our body are made and replaced. Meiosis results in cells with half the number of ...

  10. Translocation (2;13) and other chromosome abnormalities in intraosseous schwannoma of the mandible.

    PubMed

    Manor, Esther; Tetro, Sarit; Noyhous, Monica; Kachko, Palina; Bodner, Lipa

    2009-09-01

    Intraosseous schwannoma is rare, and most commonly occurs in the mandible. Benign classic schwannomas commonly carry normal karyotypes admixed with aberrant near-diploid karyotypes with a few simple clonal chromosome changes, mainly numerical. No consistent chromosomal aberrations have been observed so far. It is unclear whether the chromosomal abnormalities are affected by the anatomic site of the tumor; however, we know of no cytogenetic reports on schwannoma in the oral area. This novel report of cytogenetic analysis of intraosseous schwannoma represents the fifth report on a new balanced translocation in schwannoma in general. We identified clonal t(2;13) in an intraosseous schwannoma of the mandible. The significance of t(2;13) in diagnosis or prognosis is not yet clear, and should be further examined by karyotyping of more schwannoma cases. PMID:19665074

  11. A contribution to the differential diagnosis of the "group of schizophrenias": structural abnormality of chromosome 4.

    PubMed Central

    Palmour, R M; Miller, S; Fielding, A; Vekemans, M; Ervin, F R

    1994-01-01

    A structural abnormality of chromosome 4 [inv 4 (p15.2; q21.3)] is reported in a male presenting with DSM-III-R schizophrenia, undifferentiated type (295.94) and in his mother, who displayed symptoms associated with schizotypal personality disorder (DSM-III-R 301.22). The proband had a performance IQ of 91, poor motor coordination, stature in the lowest quartile and an impaired sense of time. There were no diagnostic physical or neurological abnormalities. Mild ventricular enlargement and prominent sulci were found on computed tomography. Both he and his chromosomally normal father had strabismus which required surgical correction. This case joins the long list of chromosomal abnormalities previously reported to confer an increased risk of mental illness and emphasizes the importance of a sophisticated differential diagnosis in evaluating patients who present with symptoms of schizophrenia. The implications for recent initiatives which attempt to localize genes conferring susceptibility to schizophrenia and other major mental illnesses are discussed. Images Fig. 2 PMID:7918348

  12. Sex chromosome system ZZ/ZW in Apareiodon hasemani Eigenmann, 1916 (Characiformes, Parodontidae) and a derived chromosomal region

    PubMed Central

    Bellafronte, Elisangela; Schemberger, Michelle Orane; Artoni, Roberto Ferreira; Filho, Orlando Moreira; Vicari, Marcelo Ricardo

    2012-01-01

    Parodontidae fish show few morphological characteristics for the identification of their representatives and chromosomal analyses have provided reliable features for determining the interrelationships in this family. In this study, the chromosomes of Apareiodon hasemani from the São Francisco River basin, Brazil, were analyzed and showed a karyotype with 2n = 54 meta/submetacentric chromosomes, and a ZZ/ZW sex chromosome system. The study revealed active NORs located on pair 11 and additional 18S rDNA sites on pairs 7 and 22. The 5S rDNA locus was found in pair 14. It showed a pericentric inversion regarding the ancestral condition. The satellite DNA pPh2004 was absent in the chromosomes of A. hasemani, a shared condition with most members of Apareiodon. The WAp probe was able to detect the amplification region of the W chromosome, corroborating the common origin of the system within Parodontidae. These chromosomal data corroborate an origin for the ZW system of Parodontidae and aid in the understanding of the differentiation of sex chromosome systems in Neotropical fishes. PMID:23271937

  13. Radiation exposure and chromosome abnormalities. Human cytogenetic studies at the National Institute of Radiological Sciences, Japan, 1963-1988

    SciTech Connect

    Ishihara, T.; Kohno, S.; Minamihisamatsu, M. )

    1990-03-01

    The results of human cytogenetic studies performed at the National Institute of Radiological Sciences (NIRS), Chiba, Japan for about 25 years are described. The studies were pursued primarily under two major projects: one involving people exposed to radiation under various conditions and the other involving patients with malignant diseases, especially leukemias. Whereas chromosome abnormalities in radiation-exposed people are excellent indicators of radiation exposure, their behavior in bone marrow provide useful information for a better understanding of chromosome abnormalities in leukemias and related disorders. The role of chromosome abnormalities in the genesis and development of leukemia and related disorders is considered, suggesting a view for future studies in this field.

  14. Effects of sex chromosome aneuploidies on brain development: evidence from neuroimaging studies.

    PubMed

    Lenroot, Rhoshel K; Lee, Nancy Raitano; Giedd, Jay N

    2009-01-01

    Variation in the number of sex chromosomes is a relatively common genetic condition, affecting as many as 1/400 individuals. The sex chromosome aneuploidies (SCAs) are associated with characteristic behavioral and cognitive phenotypes, although the degree to which specific individuals are affected can fall within a wide range. Understanding the effects of different dosages of sex chromosome genes on brain development may help to understand the basis for functional differences in affected individuals. It may also be informative regarding how sex chromosomes contribute to typical sexual differentiation. Studies of 47,XXY males make up the bulk of the current literature of neuroimaging studies in individuals with supernumerary sex chromosomes, with a few small studies or case reports of the other SCAs. Findings in 47,XXY males typically include decreased gray and white matter volumes, with most pronounced effects in the frontal and temporal lobes. Functional studies have shown evidence of decreased lateralization. Although the hypogonadism typically found in 47,XXY males may contribute to the decreased brain volume, the observation that 47,XXX females also show decreased brain volume in the presence of normal pubertal maturation suggests a possible direct dosage effect of X chromosome genes. Additional X chromosomes, such as in 49,XXXXY males, are associated with more markedly decreased brain volume and increased incidence of white matter hyperintensities. The limited data regarding effects of having two Y chromosomes (47,XYY) do not find significant differences in brain volume, although there are some reports of increased head size. PMID:20014372

  15. Children with sex chromosome trisomies: parental disclosure of genetic status.

    PubMed

    Gratton, Nikki C; Myring, Jessica; Middlemiss, Prisca; Shears, Deborah; Wellesley, Diana; Wynn, Sarah; Bishop, Dorothy Vm; Scerif, Gaia

    2016-05-01

    Sex chromosome trisomies (SCTs) are frequently diagnosed, both prenatally and postnatally, but the highly variable childhood outcomes can leave parents at a loss on whether, when and how to disclose genetic status. In two complementary studies, we detail current parental practices, with a view to informing parents and their clinicians. Study 1 surveyed detailed qualitative data from focus groups of parents and affected young people with either Trisomy X or XYY (N=34 families). These data suggested that decisions to disclose were principally affected by the child's level of cognitive, social and emotional functioning. Parents reported that they were more likely to disclose when a child was experiencing difficulties. In Study 2, standardised data on cognitive, social and emotional outcomes in 126 children with an SCT and 63 sibling controls highlighted results that converged with Study 1: logistic regression analyses revealed that children with the lowest levels of functioning were more likely to know about their SCT than those children functioning at a higher level. These effects were also reflected in the likelihood of parents to disclose to unaffected siblings, schools and general practitioners. In contrast, specific trisomy type and the professional category of the clinician providing the original diagnosis did not affect likelihood of disclosure. Our study emphasises the complex weighing up of costs and benefits that parents engage in when deciding whether to disclose a diagnosis. PMID:26306644

  16. Sex Chromosomes and Karyotype of the (Nearly) Mythical Creature, the Gila Monster, Heloderma suspectum (Squamata: Helodermatidae)

    PubMed Central

    Pokorná, Martina Johnson; Rovatsos, Michail; Kratochvíl, Lukáš

    2014-01-01

    A wide variety of sex determination systems exist among squamate reptiles. They can therefore serve as an important model for studies of evolutionary transitions among particular sex determination systems. However, we still have only a limited knowledge of sex determination in certain important lineages of squamates. In this respect, one of the most understudied groups is the family Helodermatidae (Anguimorpha) encompassing the only two venomous species of lizards which are potentially lethal to human beings. We uncovered homomorphic ZZ/ZW sex chromosomes in the Gila monster (Heloderma suspectum) with a highly heterochromatic W chromosome. The sex chromosomes are morphologically similar to the ZZ/ZW sex chromosomes of monitor lizards (Varanidae). If the sex chromosomes of helodermatids and varanids are homologous, female heterogamety may be ancestral for the whole Anguimorpha group. Moreover, we found that the karyotype of the Gila monster consists of 2n = 36 chromosomes (14 larger metacentric chromosomes and 22 acrocentric microchromosomes). 2n = 36 is the widely distributed chromosomal number among squamates. In his pioneering works representing the only previous cytogenetic examination of the family Helodermatidae, Matthey reported the karyotype as 2n = 38 and suggested a different chromosomal morphology for this species. We believe that this was probably erroneously. We also discovered a strong accumulation of telomeric sequences on several pairs of microchromosomes in the Gila monster, which is a trait documented relatively rarely in vertebrates. These new data fill an important gap in our understanding of the sex determination and karyotype evolution of squamates. PMID:25119263

  17. Genomic imprinting as a probable explanation for variable intrafamilial phenotypic expression of an unusual chromosome 3 abnormality

    SciTech Connect

    Fryburg, J.S.; Shashi, V.; Kelly, T.E.

    1994-09-01

    We present a 4 generation family in which an abnormal chromosome 3 with dup(3)(q25) segregated from great-grandmother to grandmother to son without phenotypic effect. The son`s 2 daughters have dysmorphic features, mild developmental delays and congenital heart disease. Both girls have the abnormal chr. 3 but are the only family members with the abnormality to have phenotypic effects. An unaffected son of the father has normal chromosomes. FISH with whole chromosome paints for chromosomes 1, 2, 6, 7, 8, 14, 18, and 22 excluded these as the origin of the extra material. Chromosome 3-specific paint revealed a uniform pattern, suggesting that the extra material is from chromosome 3. Comparative genomic hybridization and DNA studies are pending. Possible explanations for the discordance in phenotypes between the 4th generation offspring and the first 3 generations include: an undetected rearrangement in the previous generations that is unbalanced in the two affected individuals; the chromosome abnormality may be a benign variant and unrelated to the phenotype; or, most likely, genomic imprinting. Genomic imprinting is suggested by the observation that a phenotypic effect was only seen after the chromosome was inherited from the father. The mothers in the first two generations appear to have passed the abnormal chr. 3 on without effect. This is an opportunity to delineate a region of the human genome affected by paternal imprinting.

  18. Is the Y chromosome all that is required for sex determination?

    PubMed Central

    Karkanaki, A; Praras, N; Katsikis, I; Kita, M; Panidis, D

    2007-01-01

    The gender identity of a person is the final result of genetic, hormonal and morphologic sex. Over a long period sex determination, and, specifically, male sex determination, has been correlated to the presence of the Y chromosome, which in turn has been the karyotype signal of the testes. However, research has provided data to convince that this theory is only part of the truth. In addition to the Y chromosome, a multitude of other genes influence sex determination and are able to cause male to female sex-reversal and vice versa. It is of great interest that these genes are located in more than one autosomal chromosomes or even in the X chromosome. It has become obvious that sex determination, according to the genetic sex, is a complicated matter that not only requires the presence of Y chromosome. This fact triggered extensive research of the Y chromosome and led to great insight into its structure, origin, evolution and eventual fate in humans. PMID:19582205

  19. The mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma represents a model for early evolution of sex chromosomes.

    PubMed

    Menkis, Audrius; Jacobson, David J; Gustafsson, Tim; Johannesson, Hanna

    2008-03-01

    We combined gene divergence data, classical genetics, and phylogenetics to study the evolution of the mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma. In this species, a large non-recombining region of the mating-type chromosome is associated with a unique fungal life cycle where self-fertility is enforced by maintenance of a constant state of heterokaryosis. Sequence divergence between alleles of 35 genes from the two single mating-type component strains (i.e. the homokaryotic mat A or mat a-strains), derived from one N. tetrasperma heterokaryon (mat A+mat a), was analyzed. By this approach we were able to identify the boundaries and size of the non-recombining region, and reveal insight into the history of recombination cessation. The non-recombining region covers almost 7 Mbp, over 75% of the chromosome, and we hypothesize that the evolution of the mating-type chromosome in this lineage involved two successive events. The first event was contemporaneous with the split of N. tetrasperma from a common ancestor with its outcrossing relative N. crassa and suppressed recombination over at least 6.6 Mbp, and the second was confined to a smaller region in which recombination ceased more recently. In spite of the early origin of the first "evolutionary stratum", genealogies of five genes from strains belonging to an additional N. tetrasperma lineage indicate independent initiations of suppressed recombination in different phylogenetic lineages. This study highlights the shared features between the sex chromosomes found in the animal and plant kingdoms and the fungal mating-type chromosome, despite fungi having no separate sexes. As is often found in sex chromosomes of plants and animals, recombination suppression of the mating-type chromosome of N. tetrasperma involved more than one evolutionary event, covers the majority of the mating-type chromosome and is flanked by distal regions with obligate crossovers. PMID:18369449

  20. Repetitive DNA Sequences and Evolution of ZZ/ZW Sex Chromosomes in Characidium (Teleostei: Characiformes)

    PubMed Central

    Pansonato-Alves, José Carlos; da Costa Silva, Guilherme José; Vicari, Marcelo Ricardo; Artoni, Roberto Ferreira; Oliveira, Claudio; Foresti, Fausto

    2015-01-01

    Characidium constitutes an interesting model for cytogenetic studies, since a large degree of karyotype variation has been detected in this group, like the presence/absence of sex and supernumerary chromosomes and variable distribution of repetitive sequences in different species/populations. In this study, we performed a comparative cytogenetic analysis in 13 Characidium species collected at different South American river basins in order to investigate the karyotype diversification in this group. Chromosome analyses involved the karyotype characterization, cytogenetic mapping of repetitive DNA sequences and cross-species chromosome painting using a W-specific probe obtained in a previous study from Characidium gomesi. Our results evidenced a conserved diploid chromosome number of 2n = 50, and almost all the species exhibited homeologous ZZ/ZW sex chromosomes in different stages of differentiation, except C. cf. zebra, C. tenue, C. xavante and C. stigmosum. Notably, some ZZ/ZW sex chromosomes showed 5S and/or 18S rDNA clusters, while no U2 snDNA sites could be detected in the sex chromosomes, being restricted to a single chromosome pair in almost all the analyzed species. In addition, the species Characidium sp. aff. C. vidali showed B chromosomes with an inter-individual variation of 1 to 4 supernumerary chromosomes per cell. Notably, these B chromosomes share sequences with the W-specific probe, providing insights about their origin. Results presented here further confirm the extensive karyotype diversity within Characidium in contrast with a conserved diploid chromosome number. Such chromosome differences seem to constitute a significant reproductive barrier, since several sympatric Characidium species had been described during the last few years and no interespecific hybrids were found. PMID:26372604

  1. Dynamics of sex expression and chromosome diversity in Cucurbitaceae: a story in the making.

    PubMed

    Bhowmick, Biplab Kumar; Jha, Sumita

    2015-12-01

    The family Cucurbitaceae showcases a wide range of sexual phenotypes being variedly regulated by biological and environmental factors. In the present context, we have tried to assemble reports of cytogenetic investigations carried out in cucurbits accompanied by information on sex expression diversities and chromosomal or molecular basis of sex determination in dioecious (or other sexual types, if reported) taxa known so far. Most of the Cucurbitaceae tribes have mixed sexual phenotypes with varying range of chromosome numbers and hence, ancestral conditions become difficult to probe. Occurrence of polyploidy is rare in the family and has no influence on sexual traits. The sex determination mechanisms have been elucidated in some well-studied taxa like Bryonia,Coccinia and Cucumis showing interplay of genic, biochemical, developmental and sometimes chromosomal determinants. Substantial knowledge about genic and molecular sex differentiation has been obtained for genera like Momordica, Cucurbita and Trichosanthes. The detailed information on sex determination schemes, genomic sequences and molecular phylogenetic relationships facilitate further comprehensive investigations in the tribe Bryonieae. The discovery of organ identity genes and sex-specific sequences regulating sexual behaviour in Coccinia,Cucumis and Cucurbita opens up opportunities of relevant investigations to answer yet unaddressed questions pertaining to floral unisexuality, dioecy and chromosome evolution in the family. The present discussion brings the genera in light, previously recognized under subfamily Nhandiroboideae, where the study of chromosome cytology and sex determination mechanisms can simplify our understanding of sex expression pathways and its phylogenetic impacts. PMID:26690537

  2. High-density sex-specific linkage maps of a European tree frog (Hyla arborea) identify the sex chromosome without information on offspring sex.

    PubMed

    Brelsford, A; Dufresnes, C; Perrin, N

    2016-02-01

    Identifying homology between sex chromosomes of different species is essential to understanding the evolution of sex determination. Here, we show that the identity of a homomorphic sex chromosome pair can be established using a linkage map, without information on offspring sex. By comparing sex-specific maps of the European tree frog Hyla arborea, we find that the sex chromosome (linkage group 1) shows a threefold difference in marker number between the male and female maps. In contrast, the number of markers on each autosome is similar between the two maps. We also find strongly conserved synteny between H. arborea and Xenopus tropicalis across 200 million years of evolution, suggesting that the rate of chromosomal rearrangement in anurans is low. Finally, we show that recombination in males is greatly reduced at the centers of large chromosomes, consistent with previous cytogenetic findings. Our research shows the importance of high-density linkage maps for studies of recombination, chromosomal rearrangement and the genetic architecture of ecologically or economically important traits. PMID:26374238

  3. Limb malformations and abnormal sex hormone concentrations in frogs.

    PubMed Central

    Sower, S A; Reed, K L; Babbitt, K J

    2000-01-01

    Declines in amphibian populations, and amphibians with gross malformations, have prompted concern regarding the biological status of many anuran species. A survey of bullfrogs, Rana catesbeiana, and green frogs, Rana clamitans, conducted in central and southern New Hampshire showed malformed frogs at 81% of the sites sampled (13 of 16 sites). Brain gonadotropin-releasing hormone (GnRH) and the synthesis of androgens and estradiol, hormones essential to reproductive processes, were measured from limb-malformed and normal (no limb malformation) frogs. Normal frogs had significantly higher concentrations (nearly 3-fold) of in vitro produced androgens and of brain GnRH than malformed frogs. Because most malformations are thought to occur during development, we propose that environmental factors or endocrine-disrupting chemicals that may cause developmental abnormalities also act during early development to ultimately cause abnormally reduced GnRH and androgen production in adult frogs. The consequences of reduced GnRH and androgens on anuran reproductive behavior and population dynamics are unknown but certainly may be profound and warrant further research. PMID:11102301

  4. Weird mammals provide insights into the evolution of mammalian sex chromosomes and dosage compensation.

    PubMed

    Graves, Jennifer A Marshall

    2015-12-01

    The deep divergence of mammalian groups 166 and 190 million years ago (MYA) provide genetic variation to explore the evolution of DNA sequence, gene arrangement and regulation of gene expression in mammals. With encouragement from the founder of the field, Mary Lyon, techniques in cytogenetics and molecular biology were progressively adapted to characterize the sex chromosomes of kangaroos and other marsupials, platypus and echidna-and weird rodent species. Comparative gene mapping reveals the process of sex chromosome evolution from their inception 190 MYA (they are autosomal in platypus) to their inevitable end (the Y has disappeared in two rodent lineages). Our X and Y are relatively young, getting their start with the evolution of the sex-determining SRY gene, which triggered progressive degradation of the Y chromosome. Even more recently, sex chromosomes of placental mammals fused with an autosomal region which now makes up most of the Y. Exploration of gene activity patterns over four decades showed that dosage compensation via X-chromosome inactivation is unique to therian mammals, and that this whole chromosome control process is different in marsupials and absent in monotremes and reptiles, and birds. These differences can be exploited to deduce how mammalian sex chromosomes and epigenetic silencing evolved. PMID:26690510

  5. Transition in sexual system and sex chromosome evolution in the tadpole shrimp Triops cancriformis.

    PubMed

    Mathers, T C; Hammond, R L; Jenner, R A; Hänfling, B; Atkins, J; Gómez, A

    2015-07-01

    Transitions in sexual system and reproductive mode may affect the course of sex chromosome evolution, for instance by altering the strength of sexually antagonistic selection. However, there have been few studies of sex chromosomes in systems where such transitions have been documented. The European tadpole shrimp, Triops cancriformis, has undergone a transition from dioecy to androdioecy (a sexual system where hermaphrodites and males coexist), offering an excellent opportunity to test the impact of this transition on the evolution of sex chromosomes. To identify sex-linked markers, to understand mechanisms of sex determination and to investigate differences between sexual systems, we carried out a genome-wide association study using restriction site-associated DNA sequencing (RAD-seq) of 47 males, females and hermaphrodites from one dioecious and one androdioecious population. We analysed 22.9 Gb of paired-end sequences and identified and scored >3000 high coverage novel genomic RAD markers. Presence-absence of markers, single-nucleotide polymorphism association and read depth identified 52 candidate sex-linked markers. We show that sex is genetically determined in T. cancriformis, with a ZW system conserved across dioecious and androdioecious populations and that hermaphrodites have likely evolved from females. We also show that the structure of the sex chromosomes differs strikingly, with a larger sex-linked region in the dioecious population compared with the androdioecious population. PMID:25757406

  6. Endocrine abnormalities in ring chromosome 11: a case report and review of the literature

    PubMed Central

    Lange, Renata; Von Linsingen, Caoê; Mata, Fernanda; Moraes, Aline Barbosa; Arruda, Mariana

    2015-01-01

    Summary Ring chromosomes (RCs) are uncommon cytogenetic findings, and RC11 has only been described in 19 cases in the literature. Endocrine abnormalities associated with RC11 were reported for two of these cases. The clinical features of RC11 can result from an alteration in the structure of the genetic material, ring instability, mosaicism, and various extents of genetic material loss. We herein describe a case of RC11 with clinical features of 11q-syndrome and endocrine abnormalities that have not yet been reported. A 20-year-old female patient had facial dysmorphism, short stature, psychomotor developmental delays, a ventricular septal defect, and thrombocytopenia. Karyotyping demonstrated RC11 (46,XX,r(11)(p15q25)). This patient presented with clinical features that may be related to Jacobsen syndrome, which is caused by partial deletion of the long arm of chromosome 11. Regarding endocrine abnormalities, our patient presented with precocious puberty followed by severe hirsutism, androgenic alopecia, clitoromegaly, and amenorrhea, which were associated with overweight, type 2 diabetes mellitus (T2DM), and hyperinsulinemia; therefore, this case meets the diagnostic criteria for polycystic ovary syndrome. Endocrine abnormalities are rare in patients with RC11, and the association of RC11 with precocious puberty, severe clinical hyperandrogenism, insulin resistance, and T2DM has not been reported previously. We speculate that gene(s) located on chromosome 11 might be involved in the pathogenesis of these conditions. Despite the rarity of RCs, studies to correlate the genes located on the chromosomes with the phenotypes observed could lead to major advances in the understanding and treatment of more prevalent diseases. Learning points We hypothesize that the endocrine features of precocious puberty, severe clinical hyperandrogenism, insulin resistance, and T2DM might be associated with 11q-syndrome.A karyotype study should be performed in patients with short stature and facial dysmorphism.Early diagnosis and adequate management of these endocrine abnormalities are essential to improve the quality of life of the patient and to prevent other chronic diseases, such as diabetes and its complications. PMID:26576288

  7. Plant genetics. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons.

    PubMed

    Akagi, Takashi; Henry, Isabelle M; Tao, Ryutaro; Comai, Luca

    2014-10-31

    In plants, multiple lineages have evolved sex chromosomes independently, providing a powerful comparative framework, but few specific determinants controlling the expression of a specific sex have been identified. We investigated sex determinants in the Caucasian persimmon, Diospyros lotus, a dioecious plant with heterogametic males (XY). Male-specific short nucleotide sequences were used to define a male-determining region. A combination of transcriptomics and evolutionary approaches detected a Y-specific sex-determinant candidate, OGI, that displays male-specific conservation among Diospyros species. OGI encodes a small RNA targeting the autosomal MeGI gene, a homeodomain transcription factor regulating anther fertility in a dosage-dependent fashion. This identification of a feminizing gene suppressed by a Y-chromosome-encoded small RNA contributes to our understanding of the evolution of sex chromosome systems in higher plants. PMID:25359977

  8. Role of Testis-Specific Gene Expression in Sex-Chromosome Evolution of Anopheles gambiae

    PubMed Central

    Baker, Dean A.; Russell, Steven

    2011-01-01

    Gene expression in Anopheles gambiae shows a deficiency of testis-expressed genes on the X chromosome associated with an excessive movement of retrogene duplication. We suggest that the degeneration of sex chromosomes in this monandrous species is likely the result of pressures from X inactivation, dosage compensation, and sexual antagonism. PMID:21890740

  9. Comparative Genetic Mapping Points to Different Sex Chromosomes in Sibling Species of Wild Strawberry (Fragaria)

    PubMed Central

    Goldberg, Margot T.; Spigler, Rachel B.; Ashman, Tia-Lynn

    2010-01-01

    Separate sexes have evolved repeatedly from hermaphroditic ancestors in flowering plants, and thus select taxa can provide unparalleled insight into the evolutionary dynamics of sex chromosomes that are thought to be shared by plants and animals alike. Here we ask whether two octoploid sibling species of wild strawberry—one almost exclusively dioecious (males and females), Fragaria chiloensis, and one subdioecious (males, females, and hermaphrodites), F. virginiana—share the same sex-determining chromosome. We created a genetic map of the sex chromosome and its homeologs in F. chiloensis and assessed macrosynteny between it and published maps of the proto-sex chromosome of F. virginiana and the homeologous autosome of hermaphroditic diploid species. Segregation of male and female function in our F. chiloensis mapping population confirmed that linkage and dominance relations are similar to those in F. virginiana. However, identification of the molecular markers most tightly linked to the sex-determining locus in the two octoploid species shows that, in both, this region maps to homeologues of chromosome 6 in diploid congeners, but is located at opposite ends of their respective chromosomes. PMID:20923978

  10. Chromosomal abnormalities resembling Joubert syndrome: two cases illustrating the diagnostic pitfalls.

    PubMed

    Kroes, Hester Y; Hochstenbach, Ron; Nievelstein, Rutger A J; Den Hollander, Anneke I; Lugtenberg, Dorien T; Van Nieuwenhuizen, Onno; Lindhout, Dick; Poot, Martin

    2011-07-01

    We describe two patients with severe developmental delay, hypotonia and breathing abnormalities initially diagnosed with the autosomal recessive Joubert syndrome (JBS) who at a later stage appeared to carry chromosomal abnormalities. One case was due to a 4.8 Mb terminal 1q44 deletion, and the other due to a 15.5 Mb duplication of Xq27.2-qter containing the MECP2 gene. Critical evaluation of the clinical data showed that, retrospectively, the cases did not fulfil the diagnostic criteria for JBS, and that the diagnosis of JBS was incorrectly made. We discuss the diagnostic pitfalls and recommend adhering strictly to the JBS diagnostic criteria in the case of a negative molecular diagnosis. Critical assessment of the MRI findings by a specialized neuroradiologist is imperative. As chromosomal abnormalities may give rise to symptoms resembling JBS, we recommend array-based screening for segmental aneuploidies as an initial genetic test in all cases with a JBS-like phenotype. PMID:21527849

  11. Chromosome aberrations, micronucleus and sperm head abnormalities in mice treated with natamycin, [corrected] a food preservative.

    PubMed

    Rasgele, Pinar Goc; Kaymak, Fisun

    2010-03-01

    Natamycin [corrected] is used as preservative in foods. The genotoxic effects of the food preservative natamycin [corrected] were evaluated using chromosome aberrations and micronucleus test in bone marrow cells and sperm head abnormality assays in mice. Blood samples were taken from mice and levels of total testosterone in serum were also determined. Natamycin [corrected] was intraperitoneally (ip) injected at 200, 400 and 800 mg/kg. Natamycin [corrected] did not induce chromosome aberrations but significantly increased the number of micronucleated polychromatic erythrocytes in bone marrow and sperm head abnormalities at all concentrations and treatment periods. It also decreased MI at all concentrations for 6, 12 and 24h treatment periods. Natamycin [corrected] decreased PCE/NCE ratio at all concentrations for 48h in female mice, for 24 and 48h treatment periods in male mice. At the 800 mg/kg concentration, natamycin [corrected] decreased PCE/NCE ratio for 24 and 72h in female mice. A dose dependent increase was observed in the percentage of sperm head abnormalities. The levels of serum testosterone decreased dose-dependently. The obtained results indicate that natamycin [corrected] is not clastogenic, but it is aneugenic in mice bone marrow and it is a potential germ cell mutagen in sperm cells. PMID:20026162

  12. Prenatal diagnosis of chromosome 15 abnormalities in the Prader-Willi/Angelman syndrome region by traditional and molecular cytogenetics

    SciTech Connect

    Toth-Fejel, S.; Magenis, R.E.; Leff, S.

    1995-02-13

    With improvements in culturing and banding techniques, amniotic fluid studies now achieve a level of resolution at which the Prader-Willi syndrome (PWS) and Angelman syndrome (AS) region may be questioned. Chromosome 15 heteromorphisms, detected with Q- and R-banding and used in conjunction with PWS/AS region-specific probes, can confirm a chromosome deletion and establish origin to predict the clinical outcome. We report four de novo cases of an abnormal-appearing chromosome 15 in amniotic fluid samples referred for advanced maternal age or a history of a previous chromosomally abnormal child. The chromosomes were characterized using G-, Q-, and R-banding, as well as isotopic and fluorescent in situ hybridization of DNA probes specific for the proximal chromosome 15 long arm. In two cases, one chromosome 15 homolog showed a consistent deletion of the ONCOR PWS/AS region A and B. In the other two cases, one of which involved an inversion with one breakpoint in the PWS/AS region, all of the proximal chromosome 15 long arm DNA probes used in the in situ hybridization were present on both homologs. Clinical follow-up was not available on these samples, as in all cases the parents chose to terminate the pregnancies. These cases demonstrate the ability to prenatally diagnose chromosome 15 abnormalities associated with PWS/AS. In addition, they highlight the need for a better understanding of this region for accurate prenatal diagnosis. 41 refs., 5 figs.

  13. Deciphering neo-sex and B chromosome evolution by the draft genome of Drosophila albomicans

    PubMed Central

    2012-01-01

    Background Drosophila albomicans is a unique model organism for studying both sex chromosome and B chromosome evolution. A pair of its autosomes comprising roughly 40% of the whole genome has fused to the ancient X and Y chromosomes only about 0.12 million years ago, thereby creating the youngest and most gene-rich neo-sex system reported to date. This species also possesses recently derived B chromosomes that show non-Mendelian inheritance and significantly influence fertility. Methods We sequenced male flies with B chromosomes at 124.5-fold genome coverage using next-generation sequencing. To characterize neo-Y specific changes and B chromosome sequences, we also sequenced inbred female flies derived from the same strain but without B's at 28.5-fold. Results We assembled a female genome and placed 53% of the sequence and 85% of the annotated proteins into specific chromosomes, by comparison with the 12 Drosophila genomes. Despite its very recent origin, the non-recombining neo-Y chromosome shows various signs of degeneration, including a significant enrichment of non-functional genes compared to the neo-X, and an excess of tandem duplications relative to other chromosomes. We also characterized a B-chromosome linked scaffold that contains an actively transcribed unit and shows sequence similarity to the subcentromeric regions of both the ancient X and the neo-X chromosome. Conclusions Our results provide novel insights into the very early stages of sex chromosome evolution and B chromosome origination, and suggest an unprecedented connection between the births of these two systems in D. albomicans. PMID:22439699

  14. Independent evolution of transcriptional inactivation on sex chromosomes in birds and mammals.

    PubMed

    Livernois, Alexandra M; Waters, Shafagh A; Deakin, Janine E; Marshall Graves, Jennifer A; Waters, Paul D

    2013-01-01

    X chromosome inactivation in eutherian mammals has been thought to be tightly controlled, as expected from a mechanism that compensates for the different dosage of X-borne genes in XX females and XY males. However, many X genes escape inactivation in humans, inactivation of the X in marsupials is partial, and the unrelated sex chromosomes of monotreme mammals have incomplete and gene-specific inactivation of X-linked genes. The bird ZW sex chromosome system represents a third independently evolved amniote sex chromosome system with dosage compensation, albeit partial and gene-specific, via an unknown mechanism (i.e. upregulation of the single Z in females, down regulation of one or both Zs in males, or a combination). We used RNA-fluorescent in situ hybridization (RNA-FISH) to demonstrate, on individual fibroblast cells, inactivation of 11 genes on the chicken Z and 28 genes on the X chromosomes of platypus. Each gene displayed a reproducible frequency of 1Z/1X-active and 2Z/2X-active cells in the homogametic sex. Our results indicate that the probability of inactivation is controlled on a gene-by-gene basis (or small domains) on the chicken Z and platypus X chromosomes. This regulatory mechanism must have been exapted independently to the non-homologous sex chromosomes in birds and mammals in response to an over-expressed Z or X in the homogametic sex, highlighting the universal importance that (at least partial) silencing plays in the evolution on amniote dosage compensation and, therefore, the differentiation of sex chromosomes. PMID:23874231

  15. In vitro radiosensitivity of fibroblasts derived from patients with retinoblastoma and abnormalities of chromosome 13

    SciTech Connect

    Weichselbaum, R.R.; Nichols, W.W.; Albert, D.M.; Little, J.B.

    1983-01-01

    In vitro x-ray survival experiments were performed on fibroblast strains derived from nine patients with sporatic unilateral retinoblastoma and 26 patients with hereditary retinoblastoma. Fibroblasts derived from patients with hereditary retinoblastoma were significantly more radiosensitive than those derived from patients with sporatic retinoblastoma. The authors hypothesize that the increased in vitro radiosensitivity observed in some hereditary retinoblastoma cell strains is a reflection of an, as yet, uncharacterized defect in DNA repair or post-irradiation DNA replication. X-ray sensitivity was also measured in 19 fibroblast strains derived from patients bearing deletions, trisomies, inversions, or translocations of all or part of chromosome 13. These results are compared with data from individuals trisomic for three other autosomes. The results suggest an association between abnormalities of chromosome 13 and the cytotoxic effects of x-irradiation.

  16. X chromosome abnormalities and cognitive development: implications for understanding normal human development.

    PubMed

    Walzer, S

    1985-03-01

    Recent advances in the biological sciences have offered new opportunities to identify biological contributions as they interact with social experience to help determine psychological development. The role of biological factors is more easily demonstrated in subhuman species in which extensive experimental manipulations of variables are possible. One strategy for the study of human behaviour genetics has been the systematic analysis of behaviour in individuals with naturally occurring X chromosome variations. The aim has been to demonstrate whether or not the range of expected variability in particular areas of behavioural development was narrowed by the specific genotypic abnormality. The knowledge obtained from these studies can be applied meaningfully to enhance our understanding about human behavioural development in chromosomally unaffected individuals. PMID:3884639

  17. Amplification of microsatellite repeat motifs is associated with the evolutionary differentiation and heterochromatinization of sex chromosomes in Sauropsida.

    PubMed

    Matsubara, Kazumi; O'Meally, Denis; Azad, Bhumika; Georges, Arthur; Sarre, Stephen D; Graves, Jennifer A Marshall; Matsuda, Yoichi; Ezaz, Tariq

    2016-03-01

    The sex chromosomes in Sauropsida (reptiles and birds) have evolved independently many times. They show astonishing diversity in morphology ranging from cryptic to highly differentiated sex chromosomes with male (XX/XY) and female heterogamety (ZZ/ZW). Comparing such diverse sex chromosome systems thus provides unparalleled opportunities to capture evolution of morphologically differentiated sex chromosomes in action. Here, we describe chromosomal mapping of 18 microsatellite repeat motifs in eight species of Sauropsida. More than two microsatellite repeat motifs were amplified on the sex-specific chromosome, W or Y, in five species (Bassiana duperreyi, Aprasia parapulchella, Notechis scutatus, Chelodina longicollis, and Gallus gallus) of which the sex-specific chromosomes were heteromorphic and heterochromatic. Motifs (AAGG)n and (ATCC)n were amplified on the W chromosome of Pogona vitticeps and the Y chromosome of Emydura macquarii, respectively. By contrast, no motifs were amplified on the W chromosome of Christinus marmoratus, which is not much differentiated from the Z chromosome. Taken together with previously published studies, our results suggest that the amplification of microsatellite repeats is tightly associated with the differentiation and heterochromatinization of sex-specific chromosomes in sauropsids as well as in other taxa. Although some motifs were common between the sex-specific chromosomes of multiple species, no correlation was observed between this commonality and the species phylogeny. Furthermore, comparative analysis of sex chromosome homology and chromosomal distribution of microsatellite repeats between two closely related chelid turtles, C. longicollis and E. macquarii, identified different ancestry and differentiation history. These suggest multiple evolutions of sex chromosomes in the Sauropsida. PMID:26194100

  18. Sex Chromosome Dosage Compensation in Heliconius Butterflies: Global yet Still Incomplete?

    PubMed

    Walters, James R; Hardcastle, Thomas J; Jiggins, Chris D

    2015-09-01

    The evolution of heterogametic sex chromosomes is often-but not always-accompanied by the evolution of dosage compensating mechanisms that mitigate the impact of sex-specific gene dosage on levels of gene expression. One emerging view of this process is that such mechanisms may only evolve in male-heterogametic (XY) species but not in female-heterogametic (ZW) species, which will consequently exhibit "incomplete" sex chromosome dosage compensation. However, recent results suggest that at least some Lepidoptera (moths and butterflies) may prove to be an exception to this prediction. Studies in bombycoid moths indicate the presence of a chromosome-wide epigenetic mechanism that effectively balances Z chromosome gene expression between the sexes by reducing Z-linked expression in males. In contrast, strong sex chromosome dosage effects without any reduction in male Z-linked expression were previously reported in a pyralid moth, suggesting a lack of any such dosage compensating mechanism. Here we report an analysis of sex chromosome dosage compensation in Heliconius butterflies, sampling multiple individuals for several different adult tissues (head, abdomen, leg, mouth, and antennae). Methodologically, we introduce a novel application of linear mixed-effects models to assess dosage compensation, offering a unified statistical framework that can estimate effects specific to chromosome, to sex, and their interactions (i.e., a dosage effect). Our results show substantially reduced Z-linked expression relative to autosomes in both sexes, as previously observed in bombycoid moths. This observation is consistent with an increasing body of evidence that some lepidopteran species possess an epigenetic dosage compensating mechanism that reduces Z chromosome expression in males to levels comparable with females. However, this mechanism appears to be imperfect in Heliconius, resulting in a modest dosage effect that produces an average 5-20% increase in male expression relative to females on the Z chromosome, depending on the tissue. Thus our results in Heliconius reflect a mixture of previous patterns reported for Lepidoptera. In Heliconius, a moderate pattern of incomplete dosage compensation persists apparently despite the presence of an epigenetic dosage compensating mechanism. The chromosomal distributions of sex-biased genes show an excess of male-biased and a dearth of female-biased genes on the Z chromosome relative to autosomes, consistent with predictions of sexually antagonistic evolution. PMID:26338190

  19. Sex Chromosome Dosage Compensation in Heliconius Butterflies: Global yet Still Incomplete?

    PubMed Central

    Walters, James R.; Hardcastle, Thomas J.; Jiggins, Chris D.

    2015-01-01

    The evolution of heterogametic sex chromosomes is often—but not always—accompanied by the evolution of dosage compensating mechanisms that mitigate the impact of sex-specific gene dosage on levels of gene expression. One emerging view of this process is that such mechanisms may only evolve in male-heterogametic (XY) species but not in female-heterogametic (ZW) species, which will consequently exhibit “incomplete” sex chromosome dosage compensation. However, recent results suggest that at least some Lepidoptera (moths and butterflies) may prove to be an exception to this prediction. Studies in bombycoid moths indicate the presence of a chromosome-wide epigenetic mechanism that effectively balances Z chromosome gene expression between the sexes by reducing Z-linked expression in males. In contrast, strong sex chromosome dosage effects without any reduction in male Z-linked expression were previously reported in a pyralid moth, suggesting a lack of any such dosage compensating mechanism. Here we report an analysis of sex chromosome dosage compensation in Heliconius butterflies, sampling multiple individuals for several different adult tissues (head, abdomen, leg, mouth, and antennae). Methodologically, we introduce a novel application of linear mixed-effects models to assess dosage compensation, offering a unified statistical framework that can estimate effects specific to chromosome, to sex, and their interactions (i.e., a dosage effect). Our results show substantially reduced Z-linked expression relative to autosomes in both sexes, as previously observed in bombycoid moths. This observation is consistent with an increasing body of evidence that some lepidopteran species possess an epigenetic dosage compensating mechanism that reduces Z chromosome expression in males to levels comparable with females. However, this mechanism appears to be imperfect in Heliconius, resulting in a modest dosage effect that produces an average 5–20% increase in male expression relative to females on the Z chromosome, depending on the tissue. Thus our results in Heliconius reflect a mixture of previous patterns reported for Lepidoptera. In Heliconius, a moderate pattern of incomplete dosage compensation persists apparently despite the presence of an epigenetic dosage compensating mechanism. The chromosomal distributions of sex-biased genes show an excess of male-biased and a dearth of female-biased genes on the Z chromosome relative to autosomes, consistent with predictions of sexually antagonistic evolution. PMID:26338190

  20. IDENTIFICATION OF SEX CHROMOSOME MOLECULAR MARKERS USING RAPDS AND FLUORESCENT IN SITU HYBRIDIZATION IN RAINBOW TROUT

    EPA Science Inventory

    The goal of this work is to identify molecular markers associated with the sex chromosomes in rainbow trout to study the mode of sex determination mechanisms in this species. Using the RAPD assay and bulked segregant analysis, two markers were identified that generated polymorphi...

  1. Comparative genetic mapping in Fragaria virginiana reveals autosomal origin of sex chromosome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although most flowering plants are hermaphrodite, separate sexes (dioecy) have evolved repeatedly. The evolution of sex chromosomes from autosomes can often, but not always, accompany this transition. Thus, many have argued that plant genera that contain both hermaphroditic and dioecious members pro...

  2. Male only progeny in Anastrepha suspensa by RNAi-induced sex reversion of chromosomal females

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Tephritidae sex determination is established by orthologs to the Drosophila melanogaster transformer and transformer-2 genes. In contrast, primary signals for sex determination are different in these species corresponding to the number of X chromosomes (XSE) in Drosophilidae species and to the pr...

  3. Molecular Cytogenetic Characterization of the Dioecious Cannabis sativa with an XY Chromosome Sex Determination System

    PubMed Central

    Divashuk, Mikhail G.; Alexandrov, Oleg S.; Razumova, Olga V.; Kirov, Ilya V.; Karlov, Gennady I.

    2014-01-01

    Hemp (Cannabis sativa L.) was karyotyped using by DAPI/C-banding staining to provide chromosome measurements, and by fluorescence in situ hybridization with probes for 45 rDNA (pTa71), 5S rDNA (pCT4.2), a subtelomeric repeat (CS-1) and the Arabidopsis telomere probes. The karyotype has 18 autosomes plus a sex chromosome pair (XX in female and XY in male plants). The autosomes are difficult to distinguish morphologically, but three pairs could be distinguished using the probes. The Y chromosome is larger than the autosomes, and carries a fully heterochromatic DAPI positive arm and CS-1 repeats only on the less intensely DAPI-stained, euchromatic arm. The X is the largest chromosome of all, and carries CS-1 subtelomeric repeats on both arms. The meiotic configuration of the sex bivalent locates a pseudoautosomal region of the Y chromosome at the end of the euchromatic CS-1-carrying arm. Our molecular cytogenetic study of the C. sativa sex chromosomes is a starting point for helping to make C. sativa a promising model to study sex chromosome evolution. PMID:24465491

  4. Triploid plover female provides support for a role of the W chromosome in avian sex determination

    PubMed Central

    Küpper, Clemens; Augustin, Jakob; Edwards, Scott; Székely, Tamás; Kosztolányi, András; Burke, Terry; Janes, Daniel E.

    2012-01-01

    Two models, Z Dosage and Dominant W, have been proposed to explain sex determination in birds, in which males are characterized by the presence of two Z chromosomes, and females are hemizygous with a Z and a W chromosome. According to the Z Dosage model, high dosage of a Z-linked gene triggers male development, whereas the Dominant W model postulates that a still unknown W-linked gene triggers female development. Using 33 polymorphic microsatellite markers, we describe a female triploid Kentish plover Charadrius alexandrinus identified by characteristic triallelic genotypes at 14 autosomal markers that produced viable diploid offspring. Chromatogram analysis showed that the sex chromosome composition of this female was ZZW. Together with two previously described ZZW female birds, our results suggest a prominent role for a female determining gene on the W chromosome. These results imply that avian sex determination is more dynamic and complex than currently envisioned. PMID:22647929

  5. First evidence of sex chromosome pre-reduction in male meiosis in the Miridae bugs (Heteroptera).

    PubMed

    Grozeva, Snejana; Nokkala, Seppo; Simov, Nikolay

    2006-01-01

    The karyotype and male meiosis of Macrolophus costalis Fieber (Insecta, Heteroptera, Miridae) were studied using C-banding, AgNOR-banding and DNA sequence specific fluorochrome staining. The chromosome formula of the species is 2n = 28(24+X1X2X3Y). Male meiotic prophase is characterized by a prominent condensation stage. At this stage, two sex chromosomes, "X" and Y are positively heteropycnotic and always appeared together, while in autosomal bivalents homologous chromosomes were aligned side by side along their entire length, that is, meiosis is achiasmatic. At metaphase I, "X" and Y form a pseudobivalent and orient to the opposite poles. At early anaphase I, the "X" chromosome disintegrates into three separate small chromosomes, X1, X2, and X3. Hence both the autosomes and sex chromosomes segregate reductionally in the first anaphase, and separate equationally in the second anaphase. This is the first evidence of sex chromosome pre-reduction in the family Miridae. Data on C-heterochromatin distribution and its composition in the chromosomes of this species are discussed. PMID:17044253

  6. Repetitive DNA chromosomal organization in the cricket Cycloptiloides americanus: a case of the unusual X1X 20 sex chromosome system in Orthoptera.

    PubMed

    Palacios-Gimenez, Octavio M; Cabral-de-Mello, Diogo C

    2015-04-01

    A common placement for most sex chromosomes that is involved in their evolutionary histories is the accumulation of distinct classes of repetitive DNAs. Here, with the aim of understanding the poorly studied repetitive DNA organization in crickets and its possible role in sex chromosome differentiation, we characterized the chromosomes of the cricket species Cycloptiloides americanus, a species with the remarkable presence of the unusual sex chromosome system X1X20♂/X1X1X2X2♀. For these proposes, we used C-banding and mapping through the fluorescence in situ hybridization of some repetitive DNAs. The C-banding and distribution of highly and moderately repetitive DNAs (C 0t-1 DNA) varied depending of the chromosome. The greater accumulation of repetitive DNAs in the X2 chromosome was evidenced. The microsatellites were spread along entire chromosomes, but (AG)10 and (TAA)10 were less enriched, mainly in the centromeric areas. Among the multigene families, the 18S rDNA was spread throughout almost all of the chromosomes, except for pair 5 and X2, while the U2 snDNA was placed exclusively in the largest chromosome. Finally, the 5S rDNA was exclusively located in the short arms of the sex chromosomes. The obtained data reinforce the importance of chromosomal dissociation and inversion as a primary evolutionary mechanism to generate neo-sex chromosomes in the species studied, followed by the repetitive DNAs accumulation. Moreover the exclusive placement of 5S rDNA in the sex chromosomes suggests the involvement of this sequence in sex chromosome recognition throughout meiosis and, consequently, their maintenance, in addition to their avoiding degeneration. PMID:25373534

  7. Reduced representation genome sequencing suggests low diversity on the sex chromosomes of tonkean macaque monkeys.

    PubMed

    Evans, Ben J; Zeng, Kai; Esselstyn, Jacob A; Charlesworth, Brian; Melnick, Don J

    2014-09-01

    In species with separate sexes, social systems can differ in the relative variances of male versus female reproductive success. Papionin monkeys (macaques, mangabeys, mandrills, drills, baboons, and geladas) exhibit hallmarks of a high variance in male reproductive success, including a female-biased adult sex ratio and prominent sexual dimorphism. To explore the potential genomic consequences of such sex differences, we used a reduced representation genome sequencing approach to quantifying polymorphism at sites on autosomes and sex chromosomes of the tonkean macaque (Macaca tonkeana), a species endemic to the Indonesian island of Sulawesi. The ratio of nucleotide diversity of the X chromosome to that of the autosomes was less than the value (0.75) expected with a 1:1 sex ratio and no sex differences in the variance in reproductive success. However, the significance of this difference was dependent on which outgroup was used to standardize diversity levels. Using a new model that includes the effects of varying population size, sex differences in mutation rate between the autosomes and X chromosome, and GC-biased gene conversion (gBGC) or selection on GC content, we found that the maximum-likelihood estimate of the ratio of effective population size of the X chromosome to that of the autosomes was 0.68, which did not differ significantly from 0.75. We also found evidence for 1) a higher level of purifying selection on genic than nongenic regions, 2) gBGC or natural selection favoring increased GC content, 3) a dynamic demography characterized by population growth and contraction, 4) a higher mutation rate in males than females, and 5) a very low polymorphism level on the Y chromosome. These findings shed light on the population genomic consequences of sex differences in the variance in reproductive success, which appear to be modest in the tonkean macaque; they also suggest the occurrence of hitchhiking on the Y chromosome. PMID:24987106

  8. Latrunculin A Treatment Prevents Abnormal Chromosome Segregation for Successful Development of Cloned Embryos

    PubMed Central

    Terashita, Yukari; Yamagata, Kazuo; Tokoro, Mikiko; Itoi, Fumiaki; Wakayama, Sayaka; Li, Chong; Sato, Eimei; Tanemura, Kentaro; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer to an enucleated oocyte is used for reprogramming somatic cells with the aim of achieving totipotency, but most cloned embryos die in the uterus after transfer. While modifying epigenetic states of cloned embryos can improve their development, the production rate of cloned embryos can also be enhanced by changing other factors. It has already been shown that abnormal chromosome segregation (ACS) is a major cause of the developmental failure of cloned embryos and that Latrunculin A (LatA), an actin polymerization inhibitor, improves F-actin formation and birth rate of cloned embryos. Since F-actin is important for chromosome congression in embryos, here we examined the relation between ACS and F-actin in cloned embryos. Using LatA treatment, the occurrence of ACS decreased significantly whereas cloned embryo-specific epigenetic abnormalities such as dimethylation of histone H3 at lysine 9 (H3K9me2) could not be corrected. In contrast, when H3K9me2 was normalized using the G9a histone methyltransferase inhibitor BIX-01294, the Magea2 gene—essential for normal development but never before expressed in cloned embryos—was expressed. However, this did not increase the cloning success rate. Thus, non-epigenetic factors also play an important role in determining the efficiency of mouse cloning. PMID:24205216

  9. Probing the W chromosome of the codling moth, Cydia pomonella, with sequences from microdissected sex chromatin.

    PubMed

    Fuková, Iva; Traut, Walther; Vítková, Magda; Nguyen, Petr; Kubícková, Svatava; Marec, Frantisek

    2007-04-01

    The W chromosome of the codling moth, Cydia pomonella, like that of most Lepidoptera species, is heterochromatic and forms a female-specific sex chromatin body in somatic cells. We collected chromatin samples by laser microdissection from euchromatin and W-chromatin bodies. DNA from the samples was amplified by degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR) and used to prepare painting probes and start an analysis of the W-chromosome sequence composition. With fluorescence in situ hybridization (FISH), the euchromatin probe labelled all chromosomes, whereas the W-chromatin DNA proved to be a highly specific W-chromosome painting probe. For sequence analysis, DOP-PCR-generated DNA fragments were cloned, sequenced, and tested by Southern hybridization. We recovered single-copy and low-copy W-specific sequences, a sequence that was located only in the W and the Z chromosome, multi-copy sequences that were enriched in the W chromosome but occurred also elsewhere, and ubiquitous multi-copy sequences. Three of the multi-copy sequences were recognized as derived from hitherto unknown retrotransposons. The results show that our approach is feasible and that the W-chromosome composition of C. pomonella is not principally different from that of Bombyx mori or from that of Y chromosomes of several species with an XY sex-determining mechanism. The W chromosome has attracted repetitive sequences during evolution but also contains unique sequences. PMID:17103220

  10. Flow sorting of the Y sex chromosome in the dioecious plant Melandrium album

    SciTech Connect

    Veuskens, J.; Jacobs, M.; Negrutiu, I.

    1995-12-01

    The preparation of stable chromosome suspensions and flow cytometric sorting of both the Y sex chromosome of the white campion, Melandrium album, and the deleted Y chromosome of an asexual mutant, 5K63, is described. The principle has been to maintain transformed roots in vitro, synchronize and block mitosis, reduce cells to protoplasts, and lyse these to release chromosomes. Such in vitro material, unlike many cell suspensions, showed a stable karyotype. Factors critical to producing high-quality chromosome suspensions from protoplasts include osmolality of isolation solutions and choice of spindle toxin and of lysis buffer. Agrobacterium rhizogenes transformed young growing root cultures were synchronized at G1/S with 50 {mu}M aphidicolin for 24 h and released to a mitotic block with 30 {mu}M oryzalin for 11 h. Protoplast preparations from such tissue routinely had metaphase indices reaching 15%. Suspensions of intact metaphase chromosomes, with few chromatids, were obtained by lysing swollen mitotic protoplasts in a citric acid/disodium phosphate buffer. Except for the presence of clumps of autosomal chromosomes near the X and Y chromosome zones, monoparametric histograms of fluorescence intensities of suspensions stained with 4{prime},6-diamidino-2-phenylindole showed profiles similar to theoretical flow karyotypes. Two types of Y chromosomes, one full-length and one partially deleted (from the asexual mutant), could be sorted at 90% purity (21-fold enrichment of Y). These results are discussed in the context of sex determination and differentiation in higher plants. 45 refs., 6 figs., 2 tabs.

  11. The sex chromosomes of Silene latifolia revisited and revised.

    PubMed Central

    Lengerova, Martina; Moore, Richard C; Grant, Sarah R; Vyskot, Boris

    2003-01-01

    Classical studies have established that, during meiosis, the X and Y chromosomes of the model dioecious plant Silene latifolia pair over a region at the ends of their q arms. We used fluorescence in situ hybridization of two molecular markers to demonstrate that this widely accepted model is incorrect. From these data we conclude that the homologous arm of the X chromosome is the p arm and that of the Y chromosome is the q arm. The establishment of the proper orientation of the pseudoautosomal region is essential for mapping and evolutionary studies. PMID:14573500

  12. Four loci on abnormal chromosome 10 contribute to meiotic drive in maize.

    PubMed Central

    Hiatt, Evelyn N; Dawe, R Kelly

    2003-01-01

    We provide a genetic analysis of the meiotic drive system on maize abnormal chromosome 10 (Ab10) that causes preferential segregation of specific chromosomal regions to the reproductive megaspore. The data indicate that at least four chromosomal regions contribute to meiotic drive, each providing distinct functions that can be differentiated from each other genetically and/or phenotypically. Previous reports established that meiotic drive requires neocentromere activity at specific tandem repeat arrays (knobs) and that two regions on Ab10 are involved in trans-activating neocentromeres. Here we confirm and extend data suggesting that only one of the neocentromere-activating regions is sufficient to move many knobs. We also confirm the localization of a locus/loci on Ab10, thought to be a prerequisite for meiotic drive, which promotes recombination in structural heterozygotes. In addition, we identified two new and independent functions required for meiotic drive. One was identified through the characterization of a deletion derivative of Ab10 [Df(L)] and another as a newly identified meiotic drive mutation (suppressor of meiotic drive 3). In the absence of either function, meiotic drive is abolished but neocentromere activity and the recombination effect typical of Ab10 are unaffected. These results demonstrate that neocentromere activity and increased recombination are not the only events required for meiotic drive. PMID:12807790

  13. Neural Activation During Mental Rotation in Complete Androgen Insensitivity Syndrome: The Influence of Sex Hormones and Sex Chromosomes.

    PubMed

    van Hemmen, Judy; Veltman, Dick J; Hoekzema, Elseline; Cohen-Kettenis, Peggy T; Dessens, Arianne B; Bakker, Julie

    2016-03-01

    Sex hormones, androgens in particular, are hypothesized to play a key role in the sexual differentiation of the human brain. However, possible direct effects of the sex chromosomes, that is, XX or XY, have not been well studied in humans. Individuals with complete androgen insensitivity syndrome (CAIS), who have a 46,XY karyotype but a female phenotype due to a complete androgen resistance, enable us to study the separate effects of gonadal hormones versus sex chromosomes on neural sex differences. Therefore, in the present study, we compared 46,XY men (n = 30) and 46,XX women (n = 29) to 46,XY individuals with CAIS (n = 21) on a mental rotation task using functional magnetic resonance imaging. Previously reported sex differences in neural activation during mental rotation were replicated in the control groups, with control men showing more activation in the inferior parietal lobe than control women. Individuals with CAIS showed a female-like neural activation pattern in the parietal lobe, indicating feminization of the brain in CAIS. Furthermore, this first neuroimaging study in individuals with CAIS provides evidence that sex differences in regional brain function during mental rotation are most likely not directly driven by genetic sex, but rather reflect gonadal hormone exposure. PMID:25452569

  14. Array-Based Comparative Genomic Hybridization for the Genomewide Detection of Submicroscopic Chromosomal Abnormalities

    PubMed Central

    Vissers, Lisenka E. L. M. ; de Vries, Bert B. A. ; Osoegawa, Kazutoyo ; Janssen, Irene M. ; Feuth, Ton ; Choy, Chik On ; Straatman, Huub ; van der Vliet, Walter ; Huys, Erik H. L. P. G. ; van Rijk, Anke ; Smeets, Dominique ; van Ravenswaaij-Arts, Conny M. A. ; Knoers, Nine V. ; van der Burgt, Ineke ; de Jong, Pieter J. ; Brunner, Han G. ; van Kessel, Ad Geurts ; Schoenmakers, Eric F. P. M. ; Veltman, Joris A. 

    2003-01-01

    Microdeletions and microduplications, not visible by routine chromosome analysis, are a major cause of human malformation and mental retardation. Novel high-resolution, whole-genome technologies can improve the diagnostic detection rate of these small chromosomal abnormalities. Array-based comparative genomic hybridization allows such a high-resolution screening by hybridizing differentially labeled test and reference DNAs to arrays consisting of thousands of genomic clones. In this study, we tested the diagnostic capacity of this technology using ∼3,500 flourescent in situ hybridization–verified clones selected to cover the genome with an average of 1 clone per megabase (Mb). The sensitivity and specificity of the technology were tested in normal-versus-normal control experiments and through the screening of patients with known microdeletion syndromes. Subsequently, a series of 20 cytogenetically normal patients with mental retardation and dysmorphisms suggestive of a chromosomal abnormality were analyzed. In this series, three microdeletions and two microduplications were identified and validated. Two of these genomic changes were identified also in one of the parents, indicating that these are large-scale genomic polymorphisms. Deletions and duplications as small as 1 Mb could be reliably detected by our approach. The percentage of false-positive results was reduced to a minimum by use of a dye-swap-replicate analysis, all but eliminating the need for laborious validation experiments and facilitating implementation in a routine diagnostic setting. This high-resolution assay will facilitate the identification of novel genes involved in human mental retardation and/or malformation syndromes and will provide insight into the flexibility and plasticity of the human genome. PMID:14628292

  15. Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities.

    PubMed

    Vissers, Lisenka E L M; de Vries, Bert B A; Osoegawa, Kazutoyo; Janssen, Irene M; Feuth, Ton; Choy, Chik On; Straatman, Huub; van der Vliet, Walter; Huys, Erik H L P G; van Rijk, Anke; Smeets, Dominique; van Ravenswaaij-Arts, Conny M A; Knoers, Nine V; van der Burgt, Ineke; de Jong, Pieter J; Brunner, Han G; van Kessel, Ad Geurts; Schoenmakers, Eric F P M; Veltman, Joris A

    2003-12-01

    Microdeletions and microduplications, not visible by routine chromosome analysis, are a major cause of human malformation and mental retardation. Novel high-resolution, whole-genome technologies can improve the diagnostic detection rate of these small chromosomal abnormalities. Array-based comparative genomic hybridization allows such a high-resolution screening by hybridizing differentially labeled test and reference DNAs to arrays consisting of thousands of genomic clones. In this study, we tested the diagnostic capacity of this technology using approximately 3,500 flourescent in situ hybridization-verified clones selected to cover the genome with an average of 1 clone per megabase (Mb). The sensitivity and specificity of the technology were tested in normal-versus-normal control experiments and through the screening of patients with known microdeletion syndromes. Subsequently, a series of 20 cytogenetically normal patients with mental retardation and dysmorphisms suggestive of a chromosomal abnormality were analyzed. In this series, three microdeletions and two microduplications were identified and validated. Two of these genomic changes were identified also in one of the parents, indicating that these are large-scale genomic polymorphisms. Deletions and duplications as small as 1 Mb could be reliably detected by our approach. The percentage of false-positive results was reduced to a minimum by use of a dye-swap-replicate analysis, all but eliminating the need for laborious validation experiments and facilitating implementation in a routine diagnostic setting. This high-resolution assay will facilitate the identification of novel genes involved in human mental retardation and/or malformation syndromes and will provide insight into the flexibility and plasticity of the human genome. PMID:14628292

  16. Detection of sex chromosome aneuploidy in dog spermatozoa by triple color fluorescence in situ hybridization.

    PubMed

    Komaki, Haruna; Oi, Maya; Suzuki, Hiroshi

    2014-09-01

    With the development of a direct visualization of sex chromosome in a single sperm by fluorescence in situ hybridization (FISH) technique, the frequency of aberration (aneuploidy) in spermatozoa in several mammals has been investigated. However, there is no report in the incidence of X-Y aneuploidy in the sperm population of dogs. Therefore, in this study, the aneuploidy in dog spermatozoa was examined by multicolor FISH using specific molecular probes for canine sex chromosomes and autosome. Semen from eight male Labrador retrievers was used as specimen. For decondensation of sperm nuclei, the specimen was treated with 1 M NaOH for 4 minutes at room temperature. Probes for chromosomes X, Y, and 1, labeled with SpectrumGreen, Cy3 and Cy5, respectively, were hybridized with decondensed spermatozoa. Fluorescence in situ hybridization signals in sperm heads were clearly detected in each specimen, regardless of the sperm donor. The FISH signal of at least one of the three probes was detected in all sperm heads examined. There was no significant difference between the theoretical ratio (50:50) and the observed ratio of X and Y chromosomes in spermatozoa of all the eight dogs. Mean percentage of sex chromosome aneuploidy was 0.127% (ranged between 0% and 0.316%). This percentage of canine sex chromosome aneuploidy was lower than the one reported in cattle, horses, river buffalo, and goats sperm, but higher than that observed in mice and sheep. PMID:24962971

  17. Dgcr8 and Dicer are essential for sex chromosome integrity during meiosis in males.

    PubMed

    Modzelewski, Andrew J; Hilz, Stephanie; Crate, Elizabeth A; Schweidenback, Caterina T H; Fogarty, Elizabeth A; Grenier, Jennifer K; Freire, Raimundo; Cohen, Paula E; Grimson, Andrew

    2015-06-15

    Small RNAs play crucial roles in regulating gene expression during mammalian meiosis. To investigate the function of microRNAs (miRNAs) and small interfering RNAs (siRNAs) during meiosis in males, we generated germ-cell-specific conditional deletions of Dgcr8 and Dicer in mice. Analysis of spermatocytes from both conditional knockout lines revealed that there were frequent chromosomal fusions during meiosis, always involving one or both sex chromosomes. RNA sequencing indicates upregulation of Atm in spermatocytes from miRNA-deficient mice, and immunofluorescence imaging demonstrates an increased abundance of activated ATM kinase and mislocalization of phosphorylated MDC1, an ATM phosphorylation substrate. The Atm 3'UTR contains many potential microRNA target sites, and, notably, target sites for several miRNAs depleted in both conditional knockout mice were highly effective at promoting repression. RNF8, a telomere-associated protein whose localization is controlled by the MDC1-ATM kinase cascade, normally associates with the sex chromosomes during pachytene, but in both conditional knockouts redistributed to the autosomes. Taken together, these results suggest that Atm dysregulation in microRNA-deficient germ lines contributes to the redistribution of proteins involved in chromosomal stability from the sex chromosomes to the autosomes, resulting in sex chromosome fusions during meiotic prophase I. PMID:25934699

  18. Dgcr8 and Dicer are essential for sex chromosome integrity during meiosis in males

    PubMed Central

    Modzelewski, Andrew J.; Hilz, Stephanie; Crate, Elizabeth A.; Schweidenback, Caterina T. H.; Fogarty, Elizabeth A.; Grenier, Jennifer K.; Freire, Raimundo; Cohen, Paula E.; Grimson, Andrew

    2015-01-01

    ABSTRACT Small RNAs play crucial roles in regulating gene expression during mammalian meiosis. To investigate the function of microRNAs (miRNAs) and small interfering RNAs (siRNAs) during meiosis in males, we generated germ-cell-specific conditional deletions of Dgcr8 and Dicer in mice. Analysis of spermatocytes from both conditional knockout lines revealed that there were frequent chromosomal fusions during meiosis, always involving one or both sex chromosomes. RNA sequencing indicates upregulation of Atm in spermatocytes from miRNA-deficient mice, and immunofluorescence imaging demonstrates an increased abundance of activated ATM kinase and mislocalization of phosphorylated MDC1, an ATM phosphorylation substrate. The Atm 3′UTR contains many potential microRNA target sites, and, notably, target sites for several miRNAs depleted in both conditional knockout mice were highly effective at promoting repression. RNF8, a telomere-associated protein whose localization is controlled by the MDC1–ATM kinase cascade, normally associates with the sex chromosomes during pachytene, but in both conditional knockouts redistributed to the autosomes. Taken together, these results suggest that Atm dysregulation in microRNA-deficient germ lines contributes to the redistribution of proteins involved in chromosomal stability from the sex chromosomes to the autosomes, resulting in sex chromosome fusions during meiotic prophase I. PMID:25934699

  19. Chromatin structural changes around satellite repeats on the female sex chromosome in Schistosoma mansoni and their possible role in sex chromosome emergence

    PubMed Central

    2012-01-01

    Background In the leuphotrochozoan parasitic platyhelminth Schistosoma mansoni, male individuals are homogametic (ZZ) whereas females are heterogametic (ZW). To elucidate the mechanisms that led to the emergence of sex chromosomes, we compared the genomic sequence and the chromatin structure of male and female individuals. As for many eukaryotes, the lower estimate for the repeat content is 40%, with an unknown proportion of domesticated repeats. We used massive sequencing to de novo assemble all repeats, and identify unambiguously Z-specific, W-specific and pseudoautosomal regions of the S. mansoni sex chromosomes. Results We show that 70 to 90% of S. mansoni W and Z are pseudoautosomal. No female-specific gene could be identified. Instead, the W-specific region is composed almost entirely of 36 satellite repeat families, of which 33 were previously unknown. Transcription and chromatin status of female-specific repeats are stage-specific: for those repeats that are transcribed, transcription is restricted to the larval stages lacking sexual dimorphism. In contrast, in the sexually dimorphic adult stage of the life cycle, no transcription occurs. In addition, the euchromatic character of histone modifications around the W-specific repeats decreases during the life cycle. Recombination repression occurs in this region even if homologous sequences are present on both the Z and W chromosomes. Conclusion Our study provides for the first time evidence for the hypothesis that, at least in organisms with a ZW type of sex chromosomes, repeat-induced chromatin structure changes could indeed be the initial event in sex chromosome emergence. PMID:22377319

  20. Abnormal Behavior in a Chromosome- Engineered Mouse Model for Human 15q11-13 Duplication Seen in Autism

    PubMed Central

    Nakatani, Jin; Tamada, Kota; Hatanaka, Fumiyuki; Ise, Satoko; Ohta, Hisashi; Inoue, Kiyoshi; Tomonaga, Shozo; Watanabe, Yasuhito; Chung, Yeun Jun; Banerjee, Ruby; Iwamoto, Kazuya; Kato, Tadafumi; Okazawa, Makoto; Yamauchi, Kenta; Tanda, Koichi; Takao, Keizo; Miyakawa, Tsuyoshi; Bradley, Allan; Takumi, Toru

    2009-01-01

    Summary Substantial evidence suggests that chromosomal abnormalities contribute to the risk of autism. The duplication of human chromosome 15q11-13 is known to be the most frequent cytogenetic abnormality in autism. We have modeled this genetic change in mice by using chromosome engineering to generate a 6.3 Mb duplication of the conserved linkage group on mouse chromosome 7. Mice with a paternal duplication display poor social interaction, behavioral inflexibility, abnormal ultrasonic vocalizations, and correlates of anxiety. An increased MBII52 snoRNA within the duplicated region, affecting the serotonin 2c receptor (5-HT2cR), correlates with altered intracellular Ca2+ responses elicited by a 5-HT2cR agonist in neurons of mice with a paternal duplication. This chromosome-engineered mouse model for autism seems to replicate various aspects of human autistic phenotypes and validates the relevance of the human chromosome abnormality. This model will facilitate forward genetics of developmental brain disorders and serve as an invaluable tool for therapeutic development. PMID:19563756

  1. Identification of Sex Chromosomes by Means of Comparative Genomic Hybridization in a Lizard, Eremias multiocellata.

    PubMed

    Wang, Cui; Tang, Xiaolong; Xin, Ying; Yue, Feng; Yan, Xuefeng; Liu, Bingbing; An, Bei; Wang, Xi; Chen, Qiang

    2015-04-01

    Eremias multiocellata is a viviparous lizard that is known to exhibit temperature-dependent sex determination (TSD). Conventional Giemsa staining under light microscope examination has identified the karyotype of this species to be 2 n = 36 I + 2 m, with no detectable heteromorphic sex chromosomes. However, a highly differentiated female-specific chromosome, W, which is homomorphic with the Z chromosome, is found in the present study by the high-resolution cytogenetic method of comparative genomic hybridization (CGH). The results show that E. multiocellata is a viviparous lizard with both TSD and ZW heterogametic sex chromosomes. Despite the fact that a different sex ratio of male offspring was found in two populations (separated by an altitude of 1400 m) in previous incubation experiments, we demonstrate, using genomic in situ hybridization (GISH), that there is no significant chromosomal loss or acquisition between the two populations. This suggests that temperature may play a more important role in lowland populations. These results most likely indicate that E. multiocellata is transitioning between the evolutionary processes of TSD and genotypic sex determination (GSD) systems, and also give clues to the effect of TSD versus GSD in this process. PMID:25826063

  2. Chromosome 12p abnormalities and IMP3 expression in prepubertal pure testicular teratomas.

    PubMed

    Cornejo, Kristine M; Cheng, Liang; Church, Alanna; Wang, Mingsheng; Jiang, Zhong

    2016-03-01

    Although the histologic appearance of pure testicular teratomas (PTTs) is similar in children and adults, the prognosis is dramatically different. Prepubertal PTTs are rare, with a benign clinical course, whereas the adult cases typically have malignant outcomes. Chromosome 12p abnormalities are seen in most adult testicular germ cell tumors but have not been found in prepubertal PTTs. IMP3 is an oncofetal protein that is highly expressed in many malignancies. Recently, we demonstrated IMP3 is expressed in adult mature testicular teratomas but not in mature ovarian teratomas. The aim of this study was to evaluate prepubertal PTTs for chromosome 12p abnormalities and expression of IMP3. A total of 11 cases (excision, n=1; orchiectomy, n=10) were obtained from the surgical pathology archives of 2 large medical centers (1957-2013). All 11 cases were investigated for isochromosome 12p and 12p copy number gain using interphase fluorescence in situ hybridization analysis and were examined by immunohistochemistry for IMP3 expression. Patients ranged in age from 0.9 to 7.0 (mean, 2.4) years. A positive immunohistochemical stain for IMP3 (cytoplasmic staining) was identified in 5 (46%) of 11 cases. Isochromosome 12p was detected in 2 cases (18%) that also expressed IMP3. Somatic copy number alterations of 12p were not observed (0%). We are the first to describe 12p abnormalities and IMP3 expression in prepubertal PTTs. Our data demonstrate a small subset of PTTs harbor typical molecular alterations observed in adult testicular germ cell tumors. Although prepubertal PTTs are considered to be benign neoplasms, it may be a heterogeneous group. PMID:26826410

  3. Step-by-step evolution of neo-sex chromosomes in geographical populations of wild silkmoths, Samia cynthia ssp.

    PubMed

    Yoshido, A; Sahara, K; Marec, F; Matsuda, Y

    2011-04-01

    Geographical subspecies of wild silkmoths, Samia cynthia ssp. (Lepidoptera: Saturniidae), differ considerably in sex chromosome constitution owing to sex chromosome fusions with autosomes, which leads to variation in chromosome numbers. We cloned S. cynthia orthologues of 16 Bombyx mori genes and mapped them to chromosome spreads of S. cynthia subspecies by fluorescence in situ hybridization (FISH) to determine the origin of S. cynthia neo-sex chromosomes. FISH mapping revealed that the Z chromosome and chromosome 12 of B. mori correspond to the Z chromosome and an autosome (A₁) of S. c. ricini (Vietnam population, 2n=27, Z0 in female moths), respectively. B. mori chromosome 11 corresponds partly to another autosome (A₂) and partly to a chromosome carrying nucleolar organizer region (NOR) of this subspecies. The NOR chromosome of S. c. ricini is also partly homologous to B. mori chromosome 24. Furthermore, our results revealed that two A₁ homologues each fused with the W and Z chromosomes in a common ancestor of both Japanese subspecies S. c. walkeri (Sapporo population, 2n=26, neo-Wneo-Z) and S. cynthia subsp. indet. (Nagano population, 2n=25, neo-WZ₁Z₂). One homologue, corresponding to the A₂ autosome in S. c. ricini and S. c. walkeri, fused with the W chromosome in S. cynthia subsp. indet. Consequently, the other homologue became a Z₂ chromosome. These results clearly showed a step-by-step evolution of the neo-sex chromosomes by repeated autosome-sex chromosome fusions. We suggest that the rearrangements of sex chromosomes may facilitate divergence of S. cynthia subspecies towards speciation. PMID:20668432

  4. Step-by-step evolution of neo-sex chromosomes in geographical populations of wild silkmoths, Samia cynthia ssp.

    PubMed Central

    Yoshido, A; Sahara, K; Marec, F; Matsuda, Y

    2011-01-01

    Geographical subspecies of wild silkmoths, Samia cynthia ssp. (Lepidoptera: Saturniidae), differ considerably in sex chromosome constitution owing to sex chromosome fusions with autosomes, which leads to variation in chromosome numbers. We cloned S. cynthia orthologues of 16 Bombyx mori genes and mapped them to chromosome spreads of S. cynthia subspecies by fluorescence in situ hybridization (FISH) to determine the origin of S. cynthia neo-sex chromosomes. FISH mapping revealed that the Z chromosome and chromosome 12 of B. mori correspond to the Z chromosome and an autosome (A1) of S. c. ricini (Vietnam population, 2n=27, Z0 in female moths), respectively. B. mori chromosome 11 corresponds partly to another autosome (A2) and partly to a chromosome carrying nucleolar organizer region (NOR) of this subspecies. The NOR chromosome of S. c. ricini is also partly homologous to B. mori chromosome 24. Furthermore, our results revealed that two A1 homologues each fused with the W and Z chromosomes in a common ancestor of both Japanese subspecies S. c. walkeri (Sapporo population, 2n=26, neo-Wneo-Z) and S. cynthia subsp. indet. (Nagano population, 2n=25, neo-WZ1Z2). One homologue, corresponding to the A2 autosome in S. c. ricini and S. c. walkeri, fused with the W chromosome in S. cynthia subsp. indet. Consequently, the other homologue became a Z2 chromosome. These results clearly showed a step-by-step evolution of the neo-sex chromosomes by repeated autosome–sex chromosome fusions. We suggest that the rearrangements of sex chromosomes may facilitate divergence of S. cynthia subspecies towards speciation. PMID:20668432

  5. Self-correction of chromosomal abnormalities in human preimplantation embryos and embryonic stem cells.

    PubMed

    Bazrgar, Masood; Gourabi, Hamid; Valojerdi, Mojtaba Rezazadeh; Yazdi, Poopak Eftekhari; Baharvand, Hossein

    2013-09-01

    Aneuploidy is commonly seen in human preimplantation embryos, most particularly at the cleavage stage because of genome activation by third cell division. Aneuploid embryos have been used for the derivation of normal embryonic stem cell (ESC) lines and developmental modeling. This review addresses aneuploidies in human preimplantation embryos and human ESCs and the potential of self-correction of these aberrations. Diploid-aneuploid mosaicism is the most frequent abnormality observed; hence, embryos selected by preimplantation genetic diagnosis at the cleavage or blastocyst stage could be partly abnormal. Differentiation is known as the barrier for eliminating mosaic embryos by death and/or decreased division of abnormal cells. However, some mosaicisms, such as copy number variations could be compatible with live birth. Several reasons have been proposed for self-correction of aneuploidies during later stages of development, including primary misdiagnosis, allocation of the aneuploidy in the trophectoderm, cell growth advantage of diploid cells in mosaic embryos, lagging of aneuploid cell division, extrusion or duplication of an aneuploid chromosome, and the abundance of DNA repair gene products. Although more studies are needed to understand the mechanisms of self-correction as a rare phenomenon, most likely, it is related to overcoming mosaicism. PMID:23557100

  6. Sex chromosome loss and aging: In situ hybridization studies on human interphase nuclei

    SciTech Connect

    Guttenbach, M.; Koschorz, B.; Bernthaler, U.

    1995-11-01

    A total of 1,000 lymphocyte interphase nuclei per proband from 90 females and 138 males age 1 wk to 93 years were analyzed by in situ hybridization for loss of the X and Y chromosomes, respectively. Both sex chromosomes showed an age-dependent loss. In males, Y hypoploidy was very low up to age 15 years (0.05%) but continuously increased to a frequency of 1.34% in men age 76-80 years. In females, the baseline level for X chromosome loss is much higher than that seen for the Y chromosome in males. Even prepubertal females show a rate of X chromosome loss on the order of 1.5%-2.5%, rising to {approximately}4.5%-5% in women older than 75 years. Dividing the female probands into three biological age groups on the basis of sex hormone function (<13 years, 13-51 years, and >51 years), a significant correlation of X chromosome loss versus age could clearly be demonstrated in women beyond age 51 years. Females age 51-91 years showed monosomy X at a rate from 3.2% to 5.1%. In contrast to sex chromosomal loss, the frequency of autosomal monosomies does not change during the course of aging: chromosome 1 and chromosome 17 monosomic cells were found with a constant incidence of 1.2% and 1%, respectively. These data also indicate that autosome loss in interphase nuclei is not a function of chromosome size. 34 refs., 5 figs., 6 tabs.

  7. Karyological characterization of the endemic Iberian rock lizard, Iberolacerta monticola (Squamata, Lacertidae): insights into sex chromosome evolution.

    PubMed

    Rojo, V; Giovannotti, M; Naveira, H; Nisi Cerioni, P; González-Tizón, A M; Caputo Barucchi, V; Galán, P; Olmo, E; Martínez-Lage, A

    2014-01-01

    Rock lizards of the genus Iberolacerta constitute a promising model to examine the process of sex chromosome evolution, as these closely related taxa exhibit remarkable diversity in the degree of sex chromosome differentiation with no clear phylogenetic segregation, ranging from cryptic to highly heteromorphic ZW chromosomes and even multiple chromosome systems (Z1Z1Z2Z2/Z1Z2W). To gain a deeper insight into the patterns of karyotype and sex chromosome evolution, we performed a cytogenetic analysis based on conventional staining, banding techniques and fluorescence in situ hybridization in the species I. monticola, for which previous cytogenetic investigations did not detect differentiated sex chromosomes. The karyotype is composed of 2n = 36 acrocentric chromosomes. NORs and the major ribosomal genes were located in the subtelomeric region of chromosome pair 6. Hybridization signals of the telomeric sequences (TTAGGG)n were visualized at the telomeres of all chromosomes and interstitially in 5 chromosome pairs. C-banding showed constitutive heterochromatin at the centromeres of all chromosomes, as well as clear pericentromeric and light telomeric C-bands in several chromosome pairs. These results highlight some chromosomal markers which can be useful to identify species-specific diagnostic characters, although they may not accurately reflect the phylogenetic relationships among the taxa. In addition, C-banding revealed the presence of a heteromorphic ZW sex chromosome pair, where W is smaller than Z and almost completely heterochromatic. This finding sheds light on sex chromosome evolution in the genus Iberolacerta and suggests that further comparative cytogenetic analyses are needed to understand the processes underlying the origin, differentiation and plasticity of sex chromosome systems in lacertid lizards. PMID:24296524

  8. [Variations of heterochromatic chromosomal regions and chromosome abnormalities in children with autism: identification of genetic markers in autistic spectrum disorders].

    PubMed

    Vorsanova, S G; Iurov, I Iu; Demidova, I A; Voinova-Ulas, V Iu; Kravets, V S; Solov'ev, I V; Gorbachevskaia, N L; Iurov, Iu B

    2006-01-01

    In the present study, the cytogenetic and molecular cytogenetic analysis of 90 children with autism and their mothers (18 subjects) was carried out. Chromosome fragility and abnormalities were found in four cases: mos 47,XXX[98]/ 46,XX[2]; 46,XY,r(22)(p11q13); 46,XY,inv(2)(p11.2q13),16qh-; 46Y,fra(X)(q27.3)16qh-. Using C-banding and quantitative fluorescent in situ hybridization (FISH), the significantly increased incidence of heterochromatic region variation was shown in autism as compared to the controls (48 and 16%, respectively). Pericentric 9phqh inversion was not characteristic of the patients with autism whereas heterochromatic variations 1phqh, 9qh+ and 16qh- were more frequent in autism (p<0,05). Basing on the data obtained, a possible role of position effect in autism pathogenesis as well as a potential of heterochromatic region variation analysis for the search of biological markers of autistic spectrum disorders are discussed. PMID:16841485

  9. Comparison of Abnormal Cervical Cytology from HIV Positive Women, Female Sex Workers and General Population

    PubMed Central

    Vafaei, Homeira; Asadi, Nasrin; Foroughinia, Leila; Salehi, Alireza; Kuhnavard, Safieh; Akbarzadeh, Mojgan; Ravanbod, Hamid Reza; Mohamadalian, Ferdos; Kasraeian, Maryam

    2015-01-01

    Background Sex workers and HIV seropositive women are at high risk of abnormal cervical cytology. The objective of this study was to compare the cervical cytology among three groups of women: active sex workers, HIV-infected women, and general population in Iran. Methods This was a cross-sectional study performed in Hazrat Zeinab, Lavan clinics and drop in center (DIC) in Shiraz, Iran. This study was performed from October 2009 to October 2011. A total of 266 patients were assigned into three groups: sex-workers (85), HIV positive patients (100), and general population (81). Pap smear was performed for all participants from the exocervix and endocervix, using a plastic Ayres’s spatula and cytobrush. The samples were sent to a pathology center, using a liquid-based media.  Results The risk of cervical infection in sex workers and HIV positive women was greater than the general population (OR=5.47, 95% confidence interval [CI]:2.24, 13.40), (OR=3.71, 95% CI:1.52, 9.09), respectively. The frequency of abnormal cervical cytology in the HIV positive and sex worker groups was higher than the general population (OR=6. 76, 95% CI:2.25, 20.32), (OR=3. 80, 95% CI:1.19, 12.07), respectively. Low-grade squamous intraepithelial lesion (LSIL) and high-grade squamous intraepithelial lesion (HSIL) were associated with CD4 cell count<200Í106/L, P=0.021 and P<0.001, respectively. Conclusion Vaginal infections were seen more often in the sex worker group, and abnormal cervical cytology was greater in the HIV positive group. PMID:26005687

  10. The epigenome of evolving Drosophila neo-sex chromosomes: dosage compensation and heterochromatin formation.

    PubMed

    Zhou, Qi; Ellison, Christopher E; Kaiser, Vera B; Alekseyenko, Artyom A; Gorchakov, Andrey A; Bachtrog, Doris

    2013-11-01

    Sex chromosomes originated from autosomes but have evolved a highly specialized chromatin structure. Drosophila Y chromosomes are composed entirely of silent heterochromatin, while male X chromosomes have highly accessible chromatin and are hypertranscribed as a result of dosage compensation. Here, we dissect the molecular mechanisms and functional pressures driving heterochromatin formation and dosage compensation of the recently formed neo-sex chromosomes of Drosophila miranda. We show that the onset of heterochromatin formation on the neo-Y is triggered by an accumulation of repetitive DNA. The neo-X has evolved partial dosage compensation and we find that diverse mutational paths have been utilized to establish several dozen novel binding consensus motifs for the dosage compensation complex on the neo-X, including simple point mutations at pre-binding sites, insertion and deletion mutations, microsatellite expansions, or tandem amplification of weak binding sites. Spreading of these silencing or activating chromatin modifications to adjacent regions results in massive mis-expression of neo-sex linked genes, and little correspondence between functionality of genes and their silencing on the neo-Y or dosage compensation on the neo-X. Intriguingly, the genomic regions being targeted by the dosage compensation complex on the neo-X and those becoming heterochromatic on the neo-Y show little overlap, possibly reflecting different propensities along the ancestral chromosome that formed the sex chromosome to adopt active or repressive chromatin configurations. Our findings have broad implications for current models of sex chromosome evolution, and demonstrate how mechanistic constraints can limit evolutionary adaptations. Our study also highlights how evolution can follow predictable genetic trajectories, by repeatedly acquiring the same 21-bp consensus motif for recruitment of the dosage compensation complex, yet utilizing a diverse array of random mutational changes to attain the same phenotypic outcome. PMID:24265597

  11. The fate of W chromosomes in hybrids between wild silkmoths, Samia cynthia ssp.: no role in sex determination and reproduction.

    PubMed

    Yoshido, A; Marec, F; Sahara, K

    2016-05-01

    Moths and butterflies (Lepidoptera) have sex chromosome systems with female heterogamety (WZ/ZZ or derived variants). The maternally inherited W chromosome is known to determine female sex in the silkworm, Bombyx mori. However, little is known about the role of W chromosome in other lepidopteran species. Here we describe two forms of the W chromosome, W and neo-W, that are transmitted to both sexes in offspring of hybrids from reciprocal crosses between subspecies of wild silkmoths, Samia cynthia. We performed crosses between S. c. pryeri (2n=28, WZ/ZZ) and S. c. walkeri (2n=26, neo-Wneo-Z/neo-Zneo-Z) and examined fitness and sex chromosome constitution in their hybrids. The F1 hybrids of both reciprocal crosses had reduced fertility. Fluorescence in situ hybridization revealed not only the expected sex chromosome constitutions in the backcross and F2 hybrids of both sexes but also females without the W (or neo-W) chromosome and males carrying the W (or neo-W) chromosome. Furthermore, crosses between the F2 hybrids revealed no association between the presence or absence of W (or neo-W) chromosome and variations in the hatchability of their eggs. Our results clearly suggest that the W (or neo-W) chromosome of S. cynthia ssp. plays no role in sex determination and reproduction, and thus does not contribute to the formation of reproductive barriers between different subspecies. PMID:26758188

  12. Identification of X Chromosome Regions in Caenorhabditis Elegans That Contain Sex-Determination Signal Elements

    PubMed Central

    Akerib, C. C.; Meyer, B. J.

    1994-01-01

    The primary sex-determination signal of Caenorhabditis elegans is the ratio of X chromosomes to sets of autosomes (X/A ratio). This signal coordinately controls both sex determination and X chromosome dosage compensation. To delineate regions of X that contain counted signal elements, we examined the effect on the X/A ratio of changing the dose of specific regions of X, using duplications in XO animals and deficiencies in XX animals. Based on the mutant phenotypes of genes that are controlled by the signal, we expected that increases (in males) or decreases (in hermaphrodites) in the dose of X chromosome elements could cause sex-specific lethality. We isolated duplications and deficiencies of specific X chromosome regions, using strategies that would permit their recovery regardless of whether they affect the signal. We identified a dose-sensitive region at the left end of X that contains X chromosome signal elements. XX hermaphrodites with only one dose of this region have sex determination and dosage compensation defects, and XO males with two doses are more severely affected and die. The hermaphrodite defects are suppressed by a downstream mutation that forces all animals into the XX mode of sex determination and dosage compensation. The male lethality is suppressed by mutations that force all animals into the XO mode of both processes. We were able to subdivide this region into three smaller regions, each of which contains at least one signal element. We propose that the X chromosome component of the sex-determination signal is the dose of a relatively small number of genes. PMID:7896094

  13. Instability of Multiple Sex Chromosomes Systems in Fish: The Case of Erythrinus erythrinus (Bloch & Schneider, 1801) (Characiformes, Erythrinidae).

    PubMed

    Bueno, Vanessa; Moresco, Rafaela Maria; Konerat, Jocicléia Thums; Moreira-Filho, Orlando; Margarido, Vladimir Pavan

    2016-02-01

    The fish species Erythrinus erythrinus belongs to the family Erythrinidae (order Characiformes, superorder Teleostei) and is considered a species complex because of the considerable differences between the karyotypes of analyzed populations. Whereas some populations present a sex chromosome system with male heterogamety, others do not show differentiated sex chromosomes. In this article, two novel karyotypes of E. erythrinus with the occurrence of male and female heterogamety are described, and a discussion of the stability of multiple sex chromosome systems is provided. A possible cause for sex chromosomes instability is that the Robertsonian rearrangements that originated the multiple systems did not prevent recombination with ancestral chromosomes, which also did not pass through a heterochromatinization process, the opposite of what usually happens with simple systems, especially of the ZZ/ZW or XX/XY type. It is suggested that multiple sex chromosome systems would not act as an effective postzygotic barrier, especially when there are hybridization zones between distinct karyomorphs that bear and that do not bear sex chromosome systems, allowing the generation of hybrids. This finding is important both for the comprehension of sex chromosomes evolution in fish and for conservation biology since the contact between populations with and without multiple sex chromosomes may compromise the regional biodiversity. PMID:26618235

  14. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle.

    PubMed

    Chen, Songlin; Zhang, Guojie; Shao, Changwei; Huang, Quanfei; Liu, Geng; Zhang, Pei; Song, Wentao; An, Na; Chalopin, Domitille; Volff, Jean-Nicolas; Hong, Yunhan; Li, Qiye; Sha, Zhenxia; Zhou, Heling; Xie, Mingshu; Yu, Qiulin; Liu, Yang; Xiang, Hui; Wang, Na; Wu, Kui; Yang, Changgeng; Zhou, Qian; Liao, Xiaolin; Yang, Linfeng; Hu, Qiaomu; Zhang, Jilin; Meng, Liang; Jin, Lijun; Tian, Yongsheng; Lian, Jinmin; Yang, Jingfeng; Miao, Guidong; Liu, Shanshan; Liang, Zhuo; Yan, Fang; Li, Yangzhen; Sun, Bin; Zhang, Hong; Zhang, Jing; Zhu, Ying; Du, Min; Zhao, Yongwei; Schartl, Manfred; Tang, Qisheng; Wang, Jun

    2014-03-01

    Genetic sex determination by W and Z chromosomes has developed independently in different groups of organisms. To better understand the evolution of sex chromosomes and the plasticity of sex-determination mechanisms, we sequenced the whole genomes of a male (ZZ) and a female (ZW) half-smooth tongue sole (Cynoglossus semilaevis). In addition to insights into adaptation to a benthic lifestyle, we find that the sex chromosomes of these fish are derived from the same ancestral vertebrate protochromosome as the avian W and Z chromosomes. Notably, the same gene on the Z chromosome, dmrt1, which is the male-determining gene in birds, showed convergent evolution of features that are compatible with a similar function in tongue sole. Comparison of the relatively young tongue sole sex chromosomes with those of mammals and birds identified events that occurred during the early phase of sex-chromosome evolution. Pertinent to the current debate about heterogametic sex-chromosome decay, we find that massive gene loss occurred in the wake of sex-chromosome 'birth'. PMID:24487278

  15. Allelic interaction of F1 pollen sterility loci and abnormal chromosome behaviour caused pollen sterility in intersubspecific autotetraploid rice hybrids

    PubMed Central

    He, J. H.; Shahid, M. Q.; Guo, H. B.; Cheng, X. A.; Liu, X. D.; Lu, Y. G.

    2011-01-01

    The intersubspecific hybrids of autotetraploid rice has many features that increase rice yield, but lower seed set is a major hindrance in its utilization. Pollen sterility is one of the most important factors which cause intersubspecific hybrid sterility. The hybrids with greater variation in seed set were used to study how the F1 pollen sterile loci (S-a, S-b, and S-c) interact with each other and how abnormal chromosome behaviour and allelic interaction of F1 sterility loci affect pollen fertility and seed set of intersubspecific autotetraploid rice hybrids. The results showed that interaction between pollen sterility loci have significant effects on the pollen fertility of autotetraploid hybrids, and pollen fertility further decreased with an increase in the allelic interaction of F1 pollen sterility loci. Abnormal ultra-structure and microtubule distribution patterns during pollen mother cell (PMC) meiosis were found in the hybrids with low pollen fertility in interphase and leptotene, suggesting that the effect-time of pollen sterility loci interaction was very early. There were highly significant differences in the number of quadrivalents and bivalents, and in chromosome configuration among all the hybrids, and quadrivalents decreased with an increase in the seed set of autotetraploid hybrids. Many different kinds of chromosomal abnormalities, such as chromosome straggling, chromosome lagging, asynchrony of chromosome disjunction, and tri-fission were found during the various developmental stages of PMC meiosis. All these abnormalities were significantly higher in sterile hybrids than in fertile hybrids, suggesting that pollen sterility gene interactions tend to increase the chromosomal abnormalities which cause the partial abortion of male gametes and leads to the decline in the seed set of the autotetraploid rice hybrids. PMID:21624978

  16. Postzygotic isolation involves strong mitochondrial and sex-specific effects in Tigriopus californicus, a species lacking heteromorphic sex chromosomes.

    PubMed

    Foley, B R; Rose, C G; Rundle, D E; Leong, W; Edmands, S

    2013-11-01

    Detailed studies of the genetics of speciation have focused on a few model systems, particularly Drosophila. The copepod Tigriopus californicus offers an alternative that differs from standard animal models in that it lacks heteromorphic chromosomes (instead, sex determination is polygenic) and has reduced opportunities for sexual conflict, because females mate only once. Quantitative trait loci (QTL) mapping was conducted on reciprocal F2 hybrids between two strongly differentiated populations, using a saturated linkage map spanning all 12 autosomes and the mitochondrion. By comparing sexes, a possible sex ratio distorter was found but no sex chromosomes. Although studies of standard models often find an excess of hybrid male sterility factors, we found no QTL for sterility and multiple QTL for hybrid viability (indicated by non-Mendelian adult ratios) and other characters. Viability problems were found to be stronger in males, but the usual explanations for weaker hybrid males (sex chromosomes, sensitivity of spermatogenesis, sexual selection) cannot fully account for these male viability problems. Instead, higher metabolic rates may amplify deleterious effects in males. Although many studies of standard speciation models find the strongest genetic incompatibilities to be nuclear-nuclear (specifically X chromosome-autosome), we found the strongest deleterious interaction in this system was mito-nuclear. Consistent with the snowball theory of incompatibility accumulation, we found that trigenic interactions in this highly divergent cross were substantially more frequent (>6×) than digenic interactions. This alternative system thus allows important comparisons to studies of the genetics of reproductive isolation in more standard model systems. PMID:23860232

  17. High frequency of sex chromosomal disomy in spermatozoa of Lebanese infertile men.

    PubMed

    Younes, Berthes G; Hazzouri, Khaled M; Chaaban, Mustapha J; Karam, Walid G; Abou Jaoude, Imad F; Attieh, Joanna H; Hazzouri, Mira M

    2011-01-01

    In Lebanon, assisted reproductive techniques (ART) are widely used to overcome infertility, but the genetic risk associated with these techniques is still ignored. In this study, in order to estimate the transmission risk of paternal chromosomal anomalies to ART offspring, the meiotic segregation of chromosomes X, Y, 18, and 21 was analyzed by fluorescent in situ hybridization on the spermatozoa of 19 Lebanese infertile men. Our results show significantly higher frequencies of sex chromosome disomies in the group of patients with oligozoospermia compared with a control group of fertile males. Interestingly, the sex chromosome aneuploidy rates were highly variable between oligozoospermic patients, and ranged between 0.9% and 12.87%. No significant increase in aneuploidy rates was found for the group of nonoligozoospermic patients with asthenozoospermia and/or teratozoospermia. In addition, the disomy rate for chromosome 21 was analyzed in 8 patients, in whom higher disomy rates were shown as compared with the controls. Altogether, the results suggest that Lebanese oligozoospermic men undergoing ART may have an increased risk of transmitting sex chromosome anomalies to their offspring, as well as, in some cases, trisomy 21. Based on this work, genetic counseling programs for Lebanese infertile couples undergoing ART procedures should be developed, in order to improve the investigation and selection of Lebanese infertile couple candidates for ART procedures and optimize the choice of ART techniques. PMID:21164147

  18. Detection of cryptic chromosomal abnormalities in unexplained mental retardation: a general strategy using hypervariable subtelomeric DNA polymorphisms.

    PubMed Central

    Wilkie, A O

    1993-01-01

    Given the availability of DNA from both parents, unusual segregation of hypervariable DNA polymorphisms (HVPs) in the offspring may be attributable to deletion, unbalanced chromosomal translocation, or uniparental disomy. The telomeric regions of chromosomes are rich in both genes and hypervariable minisatellite sequences and may also be particularly prone to cryptic breakage events. Here I describe and analyze a general approach to the detection of subtelomeric abnormalities and uniparental disomy in patients with unexplained mental retardation. With 29 available polymorphic systems, approximately 50%-70% of these abnormalities could currently be detected. Development of subtelomeric HVPs physically localized with respect to their telomeres should provide a valuable resource in routine diagnostics. PMID:8352277

  19. A Dominantly Acting Murine Allele of Mcm4 Causes Chromosomal Abnormalities and Promotes Tumorigenesis

    PubMed Central

    Bagley, Bruce N.; Keane, Thomas M.; Maklakova, Vilena I.; Marshall, Jonathon G.; Lester, Rachael A.; Cancel, Michelle M.; Paulsen, Alex R.; Bendzick, Laura E.; Been, Raha A.; Kogan, Scott C.; Cormier, Robert T.; Kendziorski, Christina; Adams, David J.; Collier, Lara S.

    2012-01-01

    Here we report the isolation of a murine model for heritable T cell lymphoblastic leukemia/lymphoma (T-ALL) called Spontaneous dominant leukemia (Sdl). Sdl heterozygous mice develop disease with a short latency and high penetrance, while mice homozygous for the mutation die early during embryonic development. Sdl mice exhibit an increase in the frequency of micronucleated reticulocytes, and T-ALLs from Sdl mice harbor small amplifications and deletions, including activating deletions at the Notch1 locus. Using exome sequencing it was determined that Sdl mice harbor a spontaneously acquired mutation in Mcm4 (Mcm4D573H). MCM4 is part of the heterohexameric complex of MCM2–7 that is important for licensing of DNA origins prior to S phase and also serves as the core of the replicative helicase that unwinds DNA at replication forks. Previous studies in murine models have discovered that genetic reductions of MCM complex levels promote tumor formation by causing genomic instability. However, Sdl mice possess normal levels of Mcms, and there is no evidence for loss-of-heterozygosity at the Mcm4 locus in Sdl leukemias. Studies in Saccharomyces cerevisiae indicate that the Sdl mutation produces a biologically inactive helicase. Together, these data support a model in which chromosomal abnormalities in Sdl mice result from the ability of MCM4D573H to incorporate into MCM complexes and render them inactive. Our studies indicate that dominantly acting alleles of MCMs can be compatible with viability but have dramatic oncogenic consequences by causing chromosomal abnormalities. PMID:23133403

  20. Allogeneic marrow grafts from donors with congenital chromosomal abnormalities in marrow cells.

    PubMed

    Barquinero, J; Witherspoon, R; Sanders, J; Horowitz, M M; Montuoro, A; Patton, D F; Bacigalupo, A; Abecasis, M M; Miale, T; Rozman, C

    1995-07-01

    To determine whether siblings with chromosomal abnormalities in marrow cells which are associated with cellular defects (e.g. Down syndrome or heterozygosity for Fanconi syndrome) are suitable donors for allogeneic bone marrow transplants, we have reviewed the patient files at the Fred Hutchinson Cancer Research Center (FHCRC) and carried out a survey among member centres of the International Bone Marrow Transplant Registry (IBMTR). The 57 of 253 (23%) member centres which responded to the survey reported seven transplants from donors with the following conditions: Down syndrome (n = 2), suspected heterozygotes for Fanconi syndrome (n = 3), and 47,XXX syndrome (n = 2), among a total of 5,561 allogeneic transplants from HLA-identical siblings. Adding the three cases seen at the Fed Hutchinson Cancer Research Center among 2,927 HLA-identical sibling transplants during 1992 resulted in 10 transplants among 8,488 cases transplanted overall: four with Down syndrome, four suspected of being heterozygous for Fanconi syndrome, and two trisomy X. Three out of four grafts from siblings with Down syndrome had complications, including poor graft function (n = 2) and graft failure (n = 1). Two of four recipients of marrow from presumed Fanconi syndrome heterozygotes presented with poor graft function and a third recipient developed graft failure after initial evidence of engraftment. The two patients given marrow from siblings with 47,XXX syndrome engrafted uneventfully. The experience reported here shows a low frequency of encountering an HLA-identical sibling donor who has chromosomal abnormalities in marrow cells consistent with Down syndrome or heterozygosity for Fanconi syndrome, about one case among 1,000 transplants. The much higher than expected incidence of graft problems with marrow from such a donor would make it reasonable to look either for an alternative marrow donor or consider an autologous transplant, in case a sibling marrow donor with Down syndrome or heterozygosity for Fanconi syndrome is encountered, although a donor with trisomy X seems acceptable. PMID:7646999

  1. Down syndrome-associated haematopoiesis abnormalities created by chromosome transfer and genome editing technologies.

    PubMed

    Kazuki, Yasuhiro; Yakura, Yuwna; Abe, Satoshi; Osaki, Mitsuhiko; Kajitani, Naoyo; Kazuki, Kanako; Takehara, Shoko; Honma, Kazuhisa; Suemori, Hirofumi; Yamazaki, Satoshi; Sakuma, Tetsushi; Toki, Tsutomu; Shimizu, Ritsuko; Nakauchi, Hiromitsu; Yamamoto, Takashi; Oshimura, Mitsuo

    2014-01-01

    Infants with Down syndrome (DS) are at a high risk of developing transient abnormal myelopoiesis (TAM). A GATA1 mutation leading to the production of N-terminally truncated GATA1 (GATA1s) in early megakaryocyte/erythroid progenitors is linked to the onset of TAM and cooperated with the effect of trisomy 21 (Ts21). To gain insights into the underlying mechanisms of the progression to TAM in DS patients, we generated human pluripotent stem cells harbouring Ts21 and/or GATA1s by combining microcell-mediated chromosome transfer and genome editing technologies. In vitro haematopoietic differentiation assays showed that the GATA1s mutation blocked erythropoiesis irrespective of an extra chromosome 21, while Ts21 and the GATA1s mutation independently perturbed megakaryopoiesis and the combination of Ts21 and the GATA1s mutation synergistically contributed to an aberrant accumulation of skewed megakaryocytes. Thus, the DS model cells generated by these two technologies are useful in assessing how GATA1s mutation is involved in the onset of TAM in patients with DS. PMID:25159877

  2. Sexually biased transcripts at early embryonic stages of the silkworm depend on the sex chromosome constitution.

    PubMed

    Kawamoto, Munetaka; Koga, Hikaru; Kiuchi, Takashi; Shoji, Keisuke; Sugano, Sumio; Shimada, Toru; Suzuki, Yutaka; Katsuma, Susumu

    2015-04-10

    In the silkworm, Bombyx mori, females are heterogametic (WZ) whereas males have two Z chromosomes. Femaleness of B. mori is determined by the presence of the W chromosome, suggesting that there is a dominant feminizing gene on this chromosome. Recently, by transcriptome analysis of B. mori embryos, we discovered that a single W-chromosome-derived PIWI-interacting RNA (piRNA) is the long-sought primary determinant of femaleness in B. mori. However, sexual bias in the transcriptome of B. mori early embryos has not yet been well characterized. Using deep sequencing data from molecularly sexed RNA of B. mori embryos, we identified and characterized 157 transcripts that are statistically differentially expressed between male and female early embryos. Most of the female-biased transcripts were transposons or repeat sequences that are produced presumably from the W chromosome. Bioinformatic analysis revealed that these repetitive sequences are piRNA precursors. In contrast, male-biased genes were frequently transcribed from the Z chromosome, suggesting that dosage compensation in Z-linked genes does not occur or is incomplete at early embryonic stages. Our analysis has drawn a picture of a global landscape of sexually biased transcriptome during early B. mori embyogenesis and has suggested for the first time that most sexually biased embryonic transcripts depend on sex chromosomes. PMID:25615878

  3. Sex ratio in normal and disomic sperm: Evidence that the extra chromosome 21 preferentially segregates with the Y chromosome

    SciTech Connect

    Griffin, D.K.; Millie, E.A.; Hassold, T.J. |

    1996-11-01

    In humans, deviations from a 1:1 male:female ratio have been identified in both chromosomally normal and trisomic live births: among normal newborns there is a slight excess of males, among trisomy 18 live borns a large excess of females, and among trisomy 21 live borns an excess of males. These differences could arise from differential production of or fertilization by Y- or X-bearing sperm or from selection against male or female conceptions. To examine the proportion of Y- and X- bearing sperm in normal sperm and in sperm disomic for chromosomes 18 or 21, we used three-color FISH (to the X and Y and either chromosome 18 or chromosome 21) to analyze > 300,000 sperm from 24 men. In apparently normal sperm, the sex ratio was nearly 1:1 (148,074 Y-bearing to 148,657 X-bearing sperm), and the value was not affected by the age of the donor. Certain of the donors, however, had significant excesses of Y- or X-bearing sperm. In disomy 18 sperm, there were virtually identical numbers of Y- and X-bearing sperm; thus, the excess of females in trisomy 18 presumably is due to selection against male trisomic conceptions. In contrast, we observed 69 Y-bearing and 44 X-bearing sperm disomic for chromosome 21. This is consistent with previous molecular studies, which have identified an excess of males among paternally derived cases of trisomy 21, and suggests that some of the excess of males among Down syndrome individuals is attributable to a nondisjunctional mechanism in which the extra chromosome 21 preferentially segregates with the Y chromosome. 17 refs., 2 tabs.

  4. Congenital Abnormalities

    MedlinePlus

    ... Life Family Life Family Life Medical Home Family Dynamics Media Work & Play Getting Involved in Your Community ... Categories of Congenital Abnormalities Chromosome Abnormalities Chromosomes are structures that carry genetic material inherited from one generation ...

  5. An Asymmetric Chromosome Pair Undergoes Synaptic Adjustment and Crossover Redistribution During Caenorhabditis elegans Meiosis: Implications for Sex Chromosome Evolution

    PubMed Central

    Henzel, Jonathan V.; Nabeshima, Kentaro; Schvarzstein, Mara; Turner, B. Elizabeth; Villeneuve, Anne M.; Hillers, Kenneth J.

    2011-01-01

    Heteromorphic sex chromosomes, such as the X/Y pair in mammals, differ in size and DNA sequence yet function as homologs during meiosis; this bivalent asymmetry presents special challenges for meiotic completion. In Caenorhabditis elegans males carrying mnT12, an X;IV fusion chromosome, mnT12 and IV form an asymmetric bivalent: chromosome IV sequences are capable of pairing and synapsis, while the contiguous X portion of mnT12 lacks a homologous pairing partner. Here, we investigate the meiotic behavior of this asymmetric neo-X/Y chromosome pair in C. elegans. Through immunolocalization of the axis component HIM-3, we demonstrate that the unpaired X axis has a distinct, coiled morphology while synapsed axes are linear and extended. By showing that loci at the fusion-proximal end of IV become unpaired while remaining synapsed as pachytene progresses, we directly demonstrate the occurrence of synaptic adjustment in this organism. We further demonstrate that meiotic crossover distribution is markedly altered in males with the asymmetric mnT12/+ bivalent relative to controls, resulting in greatly reduced crossover formation near the X;IV fusion point and elevated crossovers at the distal end of the bivalent. In effect, the distal end of the bivalent acts as a neo-pseudoautosomal region in these males. We discuss implications of these findings for mechanisms that ensure crossover formation during meiosis. Furthermore, we propose that redistribution of crossovers triggered by bivalent asymmetry may be an important driving force in sex chromosome evolution. PMID:21212235

  6. Spatial Dynamics of Evolving Dosage Compensation in a Young Sex Chromosome System

    PubMed Central

    Schultheiß, Roland; Viitaniemi, Heidi M.; Leder, Erica H.

    2015-01-01

    The loss of Y-linked genes during sex chromosome evolution creates a potentially deleterious low gene dosage in males. Recent studies have reported different strategies of dosage compensation. Unfortunately, most of these studies investigated taxa with comparatively old sex chromosome systems, which may limit insights into the evolution of dosage compensation and thus into the causes of different compensation strategies. Using deep RNA sequencing, we investigate differential expression patterns along the young XY chromosomes of threespine sticklebacks. Our strata-specific analyses provide new insights into the spatial patterns during the early stages of the evolution of dosage compensation. In particular, our results indicate systematic upregulation of male gene expression in stratum II, which in turn causes female hypertranscription in the same stratum. These findings are consistent with theoretical predictions that selection during early stages of sex chromosome evolution is stronger for a compensating upregulation in males than for the countercompensation of female hyperexpression. In contrast, no elevated gene expression is detectable in stratum I. We argue that strata-specific differences in compensating male gene expression may evolve in response to differences in the prevailing mechanism of Y chromosome degeneration. PMID:25618140

  7. Genomic identification and characterization of the pseudoautosomal region in highly differentiated avian sex chromosomes

    PubMed Central

    Smeds, Linnéa; Kawakami, Takeshi; Burri, Reto; Bolivar, Paulina; Husby, Arild; Qvarnström, Anna; Uebbing, Severin; Ellegren, Hans

    2014-01-01

    The molecular characteristics of the pseudoautosomal region (PAR) of sex chromosomes remain elusive. Despite significant genome-sequencing efforts, the PAR of highly differentiated avian sex chromosomes remains to be identified. Here we use linkage analysis together with whole-genome re-sequencing to uncover the 630-kb PAR of an ecological model species, the collared flycatcher. The PAR contains 22 protein-coding genes and is GC rich. The genetic length is 64 cM in female meiosis, consistent with an obligate crossing-over event. Recombination is concentrated to a hotspot region, with an extreme rate of >700 cM/Mb in a 67-kb segment. We find no signatures of sexual antagonism and propose that sexual antagonism may have limited influence on PAR sequences when sex chromosomes are nearly fully differentiated and when a recombination hotspot region is located close to the PAR boundary. Our results demonstrate that a very small PAR suffices to ensure homologous recombination and proper segregation of sex chromosomes during meiosis. PMID:25378102

  8. Postzygotic isolation involves strong mitochondrial and sex-specific effects in Tigriopus californicus, a species lacking heteromorphic sex chromosomes

    PubMed Central

    Foley, B R; Rose, C G; Rundle, D E; Leong, W; Edmands, S

    2013-01-01

    Detailed studies of the genetics of speciation have focused on a few model systems, particularly Drosophila. The copepod Tigriopus californicus offers an alternative that differs from standard animal models in that it lacks heteromorphic chromosomes (instead, sex determination is polygenic) and has reduced opportunities for sexual conflict, because females mate only once. Quantitative trait loci (QTL) mapping was conducted on reciprocal F2 hybrids between two strongly differentiated populations, using a saturated linkage map spanning all 12 autosomes and the mitochondrion. By comparing sexes, a possible sex ratio distorter was found but no sex chromosomes. Although studies of standard models often find an excess of hybrid male sterility factors, we found no QTL for sterility and multiple QTL for hybrid viability (indicated by non-Mendelian adult ratios) and other characters. Viability problems were found to be stronger in males, but the usual explanations for weaker hybrid males (sex chromosomes, sensitivity of spermatogenesis, sexual selection) cannot fully account for these male viability problems. Instead, higher metabolic rates may amplify deleterious effects in males. Although many studies of standard speciation models find the strongest genetic incompatibilities to be nuclear–nuclear (specifically X chromosome–autosome), we found the strongest deleterious interaction in this system was mito–nuclear. Consistent with the snowball theory of incompatibility accumulation, we found that trigenic interactions in this highly divergent cross were substantially more frequent (>6 × ) than digenic interactions. This alternative system thus allows important comparisons to studies of the genetics of reproductive isolation in more standard model systems. PMID:23860232

  9. Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in Florida.

    PubMed Central

    Guillette, L J; Gross, T S; Masson, G R; Matter, J M; Percival, H F; Woodward, A R

    1994-01-01

    The reproductive development of alligators from a contaminated and a control lake in central Florida was examined. Lake Apopka is adjacent to an EPA Superfund site, listed due to an extensive spill of dicofol and DDT or its metabolites. These compounds can act as estrogens. Contaminants in the lake also have been derived from extensive agricultural activities around the lake that continue today and a sewage treatment facility associated with the city of Winter Garden, Florida. We examined the hypothesis that an estrogenic contaminant has caused the current failure in recruitment of alligators on Lake Apopka. Supporting data include the following: At 6 months of age, female alligators from Lake Apopka had plasma estradiol-17 beta concentrations almost two times greater than normal females from the control lake, Lake Woodruff. The Apopka females exhibited abnormal ovarian morphology with large numbers of polyovular follicles and polynuclear oocytes. Male juvenile alligators had significantly depressed plasma testosterone concentrations comparable to levels observed in normal Lake Woodruff females but more than three times lower than normal Lake Woodruff males. Additionally, males from Lake Apopka had poorly organized testes and abnormally small phalli. The differences between lakes and sexes in plasma hormone concentrations of juvenile alligators remain even after stimulation with luteinizing hormone. Our data suggest that the gonads of juveniles from Lake Apopka have been permanently modified in ovo, so that normal steroidogenesis is not possible, and thus normal sexual maturation is unlikely. Images p680-a Figure 1. Figure 2. Figure 3. A Figure 3. B Figure 3. C Figure 4. A Figure 4. B Figure 4. C Figure 4. D Figure 5. A Figure 5. B Figure 5. C PMID:7895709

  10. Sex-biased gene expression and evolution of the x chromosome in nematodes.

    PubMed

    Albritton, Sarah Elizabeth; Kranz, Anna-Lena; Rao, Prashant; Kramer, Maxwell; Dieterich, Christoph; Ercan, Sevinç

    2014-07-01

    Studies of X chromosome evolution in various organisms have indicated that sex-biased genes are nonrandomly distributed between the X and autosomes. Here, to extend these studies to nematodes, we annotated and analyzed X chromosome gene content in four Caenorhabditis species and in Pristionchus pacificus. Our gene expression analyses comparing young adult male and female mRNA-seq data indicate that, in general, nematode X chromosomes are enriched for genes with high female-biased expression and depleted of genes with high male-biased expression. Genes with low sex-biased expression do not show the same trend of X chromosome enrichment and depletion. Combined with the observation that highly sex-biased genes are primarily expressed in the gonad, differential distribution of sex-biased genes reflects differences in evolutionary pressures linked to tissue-specific regulation of X chromosome transcription. Our data also indicate that X dosage imbalance between males (XO) and females (XX) is influential in shaping both expression and gene content of the X chromosome. Predicted upregulation of the single male X to match autosomal transcription (Ohno's hypothesis) is supported by our observation that overall transcript levels from the X and autosomes are similar for highly expressed genes. However, comparison of differentially located one-to-one orthologs between C. elegans and P. pacificus indicates lower expression of X-linked orthologs, arguing against X upregulation. These contradicting observations may be reconciled if X upregulation is not a global mechanism but instead acts locally on a subset of tissues and X-linked genes that are dosage sensitive. PMID:24793291

  11. Sex-Biased Gene Expression and Evolution of the X Chromosome in Nematodes

    PubMed Central

    Albritton, Sarah Elizabeth; Kranz, Anna-Lena; Rao, Prashant; Kramer, Maxwell; Dieterich, Christoph; Ercan, Sevinç

    2014-01-01

    Studies of X chromosome evolution in various organisms have indicated that sex-biased genes are nonrandomly distributed between the X and autosomes. Here, to extend these studies to nematodes, we annotated and analyzed X chromosome gene content in four Caenorhabditis species and in Pristionchus pacificus. Our gene expression analyses comparing young adult male and female mRNA-seq data indicate that, in general, nematode X chromosomes are enriched for genes with high female-biased expression and depleted of genes with high male-biased expression. Genes with low sex-biased expression do not show the same trend of X chromosome enrichment and depletion. Combined with the observation that highly sex-biased genes are primarily expressed in the gonad, differential distribution of sex-biased genes reflects differences in evolutionary pressures linked to tissue-specific regulation of X chromosome transcription. Our data also indicate that X dosage imbalance between males (XO) and females (XX) is influential in shaping both expression and gene content of the X chromosome. Predicted upregulation of the single male X to match autosomal transcription (Ohno’s hypothesis) is supported by our observation that overall transcript levels from the X and autosomes are similar for highly expressed genes. However, comparison of differentially located one-to-one orthologs between C. elegans and P. pacificus indicates lower expression of X-linked orthologs, arguing against X upregulation. These contradicting observations may be reconciled if X upregulation is not a global mechanism but instead acts locally on a subset of tissues and X-linked genes that are dosage sensitive. PMID:24793291

  12. Recombination and Nucleotide Diversity in the Sex Chromosomal Pseudoautosomal Region of the Emu, Dromaius novaehollandiae

    PubMed Central

    Ezaz, Tariq; Marshall Graves, Jennifer A.; Edwards, Scott V.

    2009-01-01

    Pseudoautosomal regions (PARs) shared by avian Z and W sex chromosomes are typically small homologous regions within which recombination still occurs and are hypothesized to share the properties of autosomes. We capitalized on the unusual structure of the sex chromosomes of emus, Dromaius novaehollandiae, which consist almost entirely of PAR shared by both sex chromosomes, to test this hypothesis. We compared recombination, linkage disequilibrium (LD), GC content, and nucleotide diversity between pseudoautosomal and autosomal loci derived from 11 emu bacterial artificial chromosome (BAC) clones that were mapped to chromosomes by fluorescent in situ hybridization. Nucleotide diversity (π = 4Neμ) was not significantly lower in pseudoautosomal loci (14 loci, 1.9 ± 2.4 × 10−3) than autosomal loci (8 loci, 4.2 ± 6.1 × 10−3). By contrast, recombination per site within BAC-end sequences (ρ = 4Nc) (pseudoautosomal, 3.9 ± 6.9 × 10−2; autosomal, 2.3 ± 3.7 × 10−2) was higher and average LD (D′) (pseudoautosomal, 4.2 ± 0.2 × 10−1; autosomal, 4.7 ± 0.5 × 10−1) slightly lower in pseudoautosomal sequences. We also report evidence of deviation from a simple neutral model in the PAR and in autosomal loci, possibly caused by departures from demographic equilibrium, such as population growth. This study provides a snapshot of the population genetics of avian sex chromosomes at an early stage of differentiation. PMID:18775880

  13. Genome structure and emerging evidence of an incipient sex chromosome in Populus

    SciTech Connect

    Yin, Tongming; DiFazio, Stephen P; Gunter, Lee E; Zhang, Xinye; Sewell, Mitchell; Woolbright, Dr. Scott; Allan, Dr. Gery; Kelleher, Colin; Douglas, Carl; Wang, Prof. Mingxiu; Tuskan, Gerald A

    2008-01-01

    The genus Populus consists of dioecious woody species with largely unknown genetic mechanisms for gender determination. We have discovered genetic and genomic features in the peritelomeric region of chromosome XIX that suggest this region of the Populus genome is in the process of developing characteristics of a sex chromosome. We have identified a gender-associated locus that consistently maps to this region. Furthermore, comparison of genetic maps across multiple Populus families reveals consistently distorted segregation within this region. We have intensively characterized this region using an F1 interspecific cross involving the female genotype that was used for genome sequencing. This region shows suppressed recombination and high divergence between the alternate haplotypes, as revealed by dense map-based genome assembly using microsatellite markers. The suppressed recombination, distorted segregation, and haplotype divergence were observed only for the maternal parent in this cross. Furthermore, the progeny of this cross showed a strongly male-biased sex ratio, in agreement with Haldane's rule that postulates that the heterogametic sex is more likely to be absent, rare, or sterile in interspecific crosses. Together, these results support the role of chromosome XIX in sex determination and suggest that sex determination in Populus occurs through a ZW system in which the female is the heterogametic gender.

  14. Chromosomal abnormalities in roots of aquatic plant Elodea canadensis as a tool for testing genotoxicity of bottom sediments.

    PubMed

    Zotina, Tatiana; Medvedeva, Marina; Trofimova, Elena; Alexandrova, Yuliyana; Dementyev, Dmitry; Bolsunovsky, Alexander

    2015-12-01

    Submersed freshwater macrophytes are considered as relevant indicators for use in bulk bottom sediment contact tests. The purpose of this study was to estimate the validity of endpoints of aquatic plant Elodea canadensis for laboratory genotoxicity testing of natural bottom sediments. The inherent level of chromosome abnormalities (on artificial sediments) in roots of E. canadensis under laboratory conditions was lower than the percentage of abnormal cells in bulk sediments from the Yenisei River. The percentage of abnormal cells in roots of E. canadensis was more sensitive to the presence of genotoxic agents in laboratory contact tests than in the natural population of the plant. The spectra of chromosomal abnormalities that occur in roots of E. canadensis under natural conditions in the Yenisei River and in laboratory contact tests on the bulk bottom sediments from the Yenisei River were similar. Hence, chromosome abnormalities in roots of E. canadensis can be used as a relevant and sensitive genotoxicity endpoint in bottom sediment-contact tests. PMID:26342689

  15. Serial study of the effect of radiotherapy on semen parameters, hamster egg penetration rates, and lymphocyte chromosome abnormalities

    SciTech Connect

    Martin, R.H.; Barnes, M.; Arthur, K.; Ringrose, T.; Douglas, G.

    1984-02-01

    This study was designed to assess the long-term effects of radiotherapy (RT) on male fertility and the induction of lymphocyte and sperm chromosome abnormalities. This preliminary report provides information on 11 cancer patients (mainly seminomas) treated by RT (testicular dose, 44 to 499 rads). All 11 men were studied pre-RT and at intervals post-RT. The pre-RT semen profile varied considerably, but, in general, the profile was poor with a mean sperm concentration of 19.4 x 10/sup 6/ ml and a mean hamster egg penetration rate of 5%. One month after RT, the sperm concentration decreased and hamster egg penetration was 0% in all men. At 3 and 12 months post-RT, all but two patients were azoospermic. By 24 months post-RT, 9 of 11 patients had regained sperm production and 5 had sperm capable of hamster egg penetration. The three men who have been studied 36 months post-RT had a mean sperm concentration of 45.3 x 10/sup 6/ ml, and all had positive hamster egg penetration tests, although two of the three men had very low penetration rates (2% and 4%). Lymphocyte chromosome analysis demonstrated a striking frequency of chromosome abnormalities post-RT which decreased with time (pre-RT, 0%; 1 month, 42.4%; 3 months, 24.7%; 12 months, 13.8%; 24 months, 11.2%; and 36 months, 10.0%). Thus, it appears that sperm production starts to recover 2 to 3 years after RT when the frequency of lymphocyte chromosome abnormalities has decreased, but the sperm may not be fully functional at this time, as evidenced by poor rates of hamster egg penetration. Future studies of sperm chromosome analysis in these men will determine whether this impairment of the sperm is associated with meiotic chromosome abnormalities.

  16. Sex-specific Trans-regulatory Variation on the Drosophila melanogaster X Chromosome

    PubMed Central

    Stocks, Michael; Dean, Rebecca; Rogell, Björn; Friberg, Urban

    2015-01-01

    The X chromosome constitutes a unique genomic environment because it is present in one copy in males, but two copies in females. This simple fact has motivated several theoretical predictions with respect to how standing genetic variation on the X chromosome should differ from the autosomes. Unmasked expression of deleterious mutations in males and a lower census size are expected to reduce variation, while allelic variants with sexually antagonistic effects, and potentially those with a sex-specific effect, could accumulate on the X chromosome and contribute to increased genetic variation. In addition, incomplete dosage compensation of the X chromosome could potentially dampen the male-specific effects of random mutations, and promote the accumulation of X-linked alleles with sexually dimorphic phenotypic effects. Here we test both the amount and the type of genetic variation on the X chromosome within a population of Drosophila melanogaster, by comparing the proportion of X linked and autosomal trans-regulatory SNPs with a sexually concordant and discordant effect on gene expression. We find that the X chromosome is depleted for SNPs with a sexually concordant effect, but hosts comparatively more SNPs with a sexually discordant effect. Interestingly, the contrasting results for SNPs with sexually concordant and discordant effects are driven by SNPs with a larger influence on expression in females than expression in males. Furthermore, the distribution of these SNPs is shifted towards regions where dosage compensation is predicted to be less complete. These results suggest that intrinsic properties of dosage compensation influence either the accumulation of different types of trans-factors and/or their propensity to accumulate mutations. Our findings document a potential mechanistic basis for sex-specific genetic variation, and identify the X as a reservoir for sexually dimorphic phenotypic variation. These results have general implications for X chromosome evolution, as well as the genetic basis of sex-specific evolutionary change. PMID:25679222

  17. Sequential Cross-Species Chromosome Painting among River Buffalo, Cattle, Sheep and Goat: A Useful Tool for Chromosome Abnormalities Diagnosis within the Family Bovidae

    PubMed Central

    Pauciullo, Alfredo; Perucatti, Angela; Cosenza, Gianfranco; Iannuzzi, Alessandra; Incarnato, Domenico; Genualdo, Viviana; Di Berardino, Dino; Iannuzzi, Leopoldo

    2014-01-01

    The main goal of this study was to develop a comparative multi-colour Zoo-FISH on domestic ruminants metaphases using a combination of whole chromosome and sub-chromosomal painting probes obtained from the river buffalo species (Bubalus bubalis, 2n = 50,XY). A total of 13 DNA probes were obtained through chromosome microdissection and DOP-PCR amplification, labelled with two fluorochromes and sequentially hybridized on river buffalo, cattle (Bos taurus, 2n = 60,XY), sheep (Ovis aries, 2n = 54,XY) and goat (Capra hircus, 2n = 60,XY) metaphases. The same set of paintings were then hybridized on bovine secondary oocytes to test their potential use for aneuploidy detection during in vitro maturation. FISH showed excellent specificity on metaphases and interphase nuclei of all the investigated species. Eight pairs of chromosomes were simultaneously identified in buffalo, whereas the same set of probes covered 13 out 30 chromosome pairs in the bovine and goat karyotypes and 40% of the sheep karyotype (11 out of 27 chromosome pairs). This result allowed development of the first comparative M-FISH karyotype within the domestic ruminants. The molecular resolution of complex karyotypes by FISH is particularly useful for the small chromosomes, whose similarity in the banding patterns makes their identification very difficult. The M-FISH karyotype also represents a practical tool for structural and numerical chromosome abnormalities diagnosis. In this regard, the successful hybridization on bovine secondary oocytes confirmed the potential use of this set of probes for the simultaneous identification on the same germ cell of 12 chromosome aneuploidies. This is a fundamental result for monitoring the reproductive health of the domestic animals in relation to management errors and/or environmental hazards. PMID:25330006

  18. Embryo Sexing and Sex Chromosomal Chimerism Analysis by Loop-Mediated Isothermal Amplification in Cattle and Water Buffaloes

    PubMed Central

    HIRAYAMA, Hiroki; KAGEYAMA, Soichi; MORIYASU, Satoru; SAWAI, Ken; MINAMIHASHI, Akira

    2013-01-01

    Abstract In domestic animals of the family Bovidae, sex preselection of offspring has been demanded for convenience of milk/beef production and animal breeding. Development of the nonsurgical embryo transfer technique and sexing methods of preimplantation embryos made it possible. Sexing based on detection of Y chromosome-specific DNA sequences is considered the most reliable method to date. PCR enables amplification of a target sequence from a small number of blastomeres. However, it requires technical skill and is time consuming. Furthermore, PCR has the risk of false positives because of DNA contamination during handling of the PCR products in duplicate PCR procedures and/or electrophoresis. Therefore, for embryo sexing to become widely used in the cattle embryo transfer industry, a simple, rapid and precise sexing method needs to be developed. Loop-mediated isothermal amplification (LAMP) is a novel DNA amplification method, and the reaction is carried out under isothermal conditions (range, 60 to 65 C) using DNA polymerase with strand displacement activity. When the target DNA is amplified by LAMP, a white precipitate derived from magnesium pyrophosphate (a by-product of the LAMP reaction) is observed. It is noteworthy that LAMP does not need special reagents or electrophoresis to detect the amplified DNA. This review describes the development and application of an embryo sexing method using LAMP in cattle and water buffaloes. PMID:23965599

  19. Embryo sexing and sex chromosomal chimerism analysis by loop-mediated isothermal amplification in cattle and water buffaloes.

    PubMed

    Hirayama, Hiroki; Kageyama, Soichi; Moriyasu, Satoru; Sawai, Ken; Minamihashi, Akira

    2013-01-01

    In domestic animals of the family Bovidae, sex preselection of offspring has been demanded for convenience of milk/beef production and animal breeding. Development of the nonsurgical embryo transfer technique and sexing methods of preimplantation embryos made it possible. Sexing based on detection of Y chromosome-specific DNA sequences is considered the most reliable method to date. PCR enables amplification of a target sequence from a small number of blastomeres. However, it requires technical skill and is time consuming. Furthermore, PCR has the risk of false positives because of DNA contamination during handling of the PCR products in duplicate PCR procedures and/or electrophoresis. Therefore, for embryo sexing to become widely used in the cattle embryo transfer industry, a simple, rapid and precise sexing method needs to be developed. Loop-mediated isothermal amplification (LAMP) is a novel DNA amplification method, and the reaction is carried out under isothermal conditions (range, 60 to 65 C) using DNA polymerase with strand displacement activity. When the target DNA is amplified by LAMP, a white precipitate derived from magnesium pyrophosphate (a by-product of the LAMP reaction) is observed. It is noteworthy that LAMP does not need special reagents or electrophoresis to detect the amplified DNA. This review describes the development and application of an embryo sexing method using LAMP in cattle and water buffaloes. PMID:23965599

  20. Dosage Effects of X and Y Chromosomes on Language and Social Functioning in Children with Supernumerary Sex Chromosome Aneuploidies: Implications for Idiopathic Language Impairment and Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Lee, Nancy Raitano; Wallace, Gregory L.; Adeyemi, Elizabeth I.; Lopez, Katherine C.; Blumenthal, Jonathan D.; Clasen, Liv S.; Giedd, Jay N.

    2012-01-01

    Background: Supernumerary sex chromosome aneuploidies (X/Y-aneuploidies), the presence of extra X and/or Y chromosomes, are associated with heightened rates of language impairments and social difficulties. However, no single study has examined different language domains and social functioning in the same sample of children with tri-, tetra-, and

  1. Dosage Effects of X and Y Chromosomes on Language and Social Functioning in Children with Supernumerary Sex Chromosome Aneuploidies: Implications for Idiopathic Language Impairment and Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Lee, Nancy Raitano; Wallace, Gregory L.; Adeyemi, Elizabeth I.; Lopez, Katherine C.; Blumenthal, Jonathan D.; Clasen, Liv S.; Giedd, Jay N.

    2012-01-01

    Background: Supernumerary sex chromosome aneuploidies (X/Y-aneuploidies), the presence of extra X and/or Y chromosomes, are associated with heightened rates of language impairments and social difficulties. However, no single study has examined different language domains and social functioning in the same sample of children with tri-, tetra-, and…

  2. The Sex Chromosome Trisomy mouse model of XXY and XYY: metabolism and motor performance

    PubMed Central

    2013-01-01

    Background Klinefelter syndrome (KS), caused by XXY karyotype, is characterized by low testosterone, infertility, cognitive deficits, and increased prevalence of health problems including obesity and diabetes. It has been difficult to separate direct genetic effects from hormonal effects in human studies or in mouse models of KS because low testosterone levels are confounded with sex chromosome complement. Methods In this study, we present the Sex Chromosome Trisomy (SCT) mouse model that produces XXY, XYY, XY, and XX mice in the same litters, each genotype with either testes or ovaries. The independence of sex chromosome complement and gonadal type allows for improved recognition of sex chromosome effects that are not dependent on levels of gonadal hormones. All mice were gonadectomized and treated with testosterone for 3 weeks. Body weight, body composition, and motor function were measured. Results Before hormonal manipulation, XXY mice of both sexes had significantly greater body weight and relative fat mass compared to XY mice. After gonadectomy and testosterone replacement, XXY mice (both sexes) still had significantly greater body weight and relative fat mass, but less relative lean mass compared to XY mice. Liver, gonadal fat pad, and inguinal fat pad weights were also higher in XXY mice, independent of gonadal sex. In several of these measures, XX mice also differed from XY mice, and gonadal males and females differed significantly on almost every metabolic measure. The sex chromosome effects (except for testis size) were also seen in gonadally female mice before and after ovariectomy and testosterone treatment, indicating that they do not reflect group differences in levels of testicular secretions. XYY mice were similar to XY mice on body weight and metabolic variables but performed worse on motor tasks compared to other groups. Conclusions We find that the new SCT mouse model for XXY and XYY recapitulates features found in humans with these aneuploidies. We illustrate that this model has significant promise for unveiling the role of genetic effects compared to hormonal effects in these syndromes, because many phenotypes are different in XXY vs. XY gonadal female mice which have never been exposed to testicular secretions. PMID:23926958

  3. Genetic marking of sex using a W chromosome-linked transgene.

    PubMed

    Ma, Sanyuan; Wang, Xiaogang; Fei, Jitao; Liu, Yuanyuan; Duan, Jianping; Wang, Feng; Xu, Hanfu; Zhao, Ping; Xia, Qingyou

    2013-12-01

    Many species belonging to the order Lepidoptera are major pests in agriculture and arboriculture. The sterile insect technique (SIT) is an eco-friendly and highly efficient genetically targeted pest management approach. In many cases, it is preferable to release only sterile males in an SIT program, and efficient sexing strategies are crucial to the successful large-scale implementation of SIT. In the present study, we established 160 transgenic silkworm (Bombyx mori) lines to test the possibility of genetic sexing using a W chromosome-linked transgene, which is thought to be the best sexing strategy for lepidopteran species. One transgenic line with a female-specific expression pattern of reporter gene was obtained. The expression level of the W-linked transgene was comparable with autosomal insertions and was stable for 17 continuous generations. Molecular characterization showed this line contained a single copy of the reporter gene on the W chromosome, and the integration site was TTAG in contig W-BAC-522N19-C9. The feasibility of using a W chromosome-linked transgene demonstrated here and the possible improvements discussed will provide valuable information for other lepidopteran pests. The novel W chromosome-linked transgenic line established in this study will serve as an important resource for fundamental research with the silkworm B. mori. PMID:24036279

  4. Comparative cytogenetic analysis of sex chromosomes in several Canidae species using zoo-FISH.

    PubMed

    Bugno-Poniewierska, Monika; Sojecka, Agnieszka; Pawlina, Klaudia; Jakubczak, Andrzej; Jezewska-Witkowska, Grazyna

    2012-01-01

    Sex chromosome differentiation began early during mammalian evolution. The karyotype of almost all placental mammals living today includes a pair of heterosomes: XX in females and XY in males. The genomes of different species may contain homologous synteny blocks indicating that they share a common ancestry. One of the tools used for their identification is the Zoo-FISH technique. The aim of the study was to determine whether sex chromosomes of some members of the Canidae family (the domestic dog, the red fox, the arctic fox, an interspecific hybrid: arctic fox x red fox and the Chinese raccoon dog) are evolutionarily conservative. Comparative cytogenetic analysis by Zoo-FISH using painting probes specific to domestic dog heterosomes was performed. The results show the presence of homologous synteny covering the entire structures of the X and the Y chromosomes. This suggests that sex chromosomes are conserved in the Canidae family. The data obtained through Zoo-FISH karyotype analysis append information obtained using other comparative genomics methods, giving a more complete depiction of genome evolution. PMID:22428301

  5. Sex, rebellion and decadence: the scandalous evolutionary history of the human Y chromosome.

    PubMed

    Navarro-Costa, Paulo

    2012-12-01

    It can be argued that the Y chromosome brings some of the spirit of rock&roll to our genome. Equal parts degenerate and sex-driven, the Y has boldly rebelled against sexual recombination, one of the sacred pillars of evolution. In evolutionary terms this chromosome also seems to have adopted another of rock&roll's mottos: living fast. Yet, it appears to have refused to die young. In this manuscript the Y chromosome will be analyzed from the intersection between structural, evolutionary and functional biology. Such integrative approach will present the Y as a highly specialized product of a series of remarkable evolutionary processes. These led to the establishment of a sex-specific genomic niche that is maintained by a complex balance between selective pressure and the genetic diversity introduced by intrachromosomal recombination. Central to this equilibrium is the "polish or perish" dilemma faced by the male-specific Y genes: either they are polished by the acquisition of male-related functions or they perish via the accumulation of inactivating mutations. Thus, understanding to what extent the idiosyncrasies of Y recombination may impact this chromosome's role in sex determination and male germline functions should be regarded as essential for added clinical insight into several male infertility phenotypes. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure. PMID:22542510

  6. Effect of separating bull semen into X and Y chromosome-bearing fractions on the sex ratio of resulting embryos.

    PubMed Central

    Hagele, W C; Hare, W C; Singh, E L; Grylls, J L; Abt, D A

    1984-01-01

    Seventy-six, day 12 to day 15 bovine embryos, collected from 14 donors which had been inseminated with either X or Y chromosome-bearing spermatozoa fractions of semen separated by a thermal convection counterstreaming sedimentation and forced convection galvanization process, were processed for sexing by chromosomal analysis. Fifty-seven embryos were sexed; 20 from Y chromosome-bearing and 37 from X chromosome-bearing fractions of semen. Statistical analysis of the sexing data indicated that there was no significant difference in the male: female ratio for donors receiving male fractions compared to those receiving female fractions. The Y chromosome-bearing fractions produced a male: female ratio that was indistinguishable from the expected 1:1 ratio. However, the X chromosome-bearing fractions of semen produced a highly significant deviation from the expected 1:1 ratio towards the male. PMID:6478299

  7. Platypus chain reaction: directional and ordered meiotic pairing of the multiple sex chromosome chain in Ornithorhynchus anatinus.

    PubMed

    Daish, Tasman; Casey, Aaron; Grützner, Frank

    2009-01-01

    Monotremes are phylogenetically and phenotypically unique animals with an unusually complex sex chromosome system that is composed of ten chromosomes in platypus and nine in echidna. These chromosomes are alternately linked (X1Y1, X2Y2, ...) at meiosis via pseudoautosomal regions and segregate to form spermatozoa containing either X or Y chromosomes. The physical and epigenetic mechanisms involved in pairing and assembly of the complex sex chromosome chain in early meiotic prophase I are completely unknown. We have analysed the pairing dynamics of specific sex chromosome pseudoautosomal regions in platypus spermatocytes during prophase of meiosis I. Our data show a highly coordinated pairing process that begins at the terminal Y5 chromosome and completes with the union of sex chromosomes X1Y1. The consistency of this ordered assembly of the chain is remarkable and raises questions about the mechanisms and factors that regulate the differential pairing of sex chromosomes and how this relates to potential meiotic silencing mechanisms and alternate segregation. PMID:19874721

  8. Studies on Brahma rasayana in male swiss albino mice: Chromosomal aberrations and sperm abnormalities

    PubMed Central

    Guruprasad, K. P.; Mascarenhas, Roshan; Gopinath, P. M.; Satyamoorthy, K.

    2010-01-01

    Ayurveda, the Indian holistic healthcare system encompasses traditional medicines with a principle of creating harmony and maintaining balance within the natural rhythms of the body. Rasayana is one of the branches of Ayurveda frequently used as rejuvenant therapy to overcome many discomforts and prevent diseases. It has been reported that rasayanas have immunomodulatory, antioxidant and antitumor functions. However, the genotoxic potential of many rasayanas remains to be evaluated. The present study was undertaken to assess the role of Brahma rasayana(BR) on genotoxicity in vivo in a mouse test system. The older mice (9 months) were orally fed with rasayana for 8 weeks. The treated groups showed no signs of dose-dependent toxicity at the dosage levels tested. The body weight loss/gain and feed consumption were unaffected at tested doses. Furthermore, sperm abnormalities and chromosomal aberrations were insignificant in the treatment group when compared to controls. However, there was a marginal increase in sperm count in the BR treated animals. These findings clearly indicate that there are no observed adverse genotoxic effects elicited by BR in experimental animals such as mice. PMID:21829300

  9. Independent degeneration of W and Y sex chromosomes in frog Rana rugosa.

    PubMed

    Miura, Ikuo; Ohtani, Hiromi; Ogata, Mitsuaki

    2012-01-01

    The frog Rana rugosa uniquely possesses two different sex-determining systems of XX/XY and ZZ/ZW, separately in the geographic populations. The sex chromosomes of both types share the same origin at chromosome 7, and the structural differences between X and Y or Z and W were evolved through two inversions. In order to ascertain the mechanisms of degeneration of W and Y chromosomes, we gynogenetically produced homozygous diploids WW and YY and examined their viability. Tadpoles from geographic group N (W(N)W(N)) containing three populations died of edema at an early developmental stage within 10days after hatching, while tadpoles from the geographic group K (W(K)W(K)) that contained two populations died of underdeveloped growth at a much later stage, 40-50days after fertilization. On the contrary, W(N)W(K) and W(K)W(N) hybrid embryos were viable, successfully passed the two lethal stages, and survived till the attainment of adulthood. The observed survival implies that the lethal genes of the W chromosomes are not shared by the two groups and thus demonstrates their independent degeneration histories between the local groups. In sharp contrast, a sex-linked gene of androgen receptor gene (AR) from the W chromosome was down-regulated in expression in both the groups, suggesting that inactivation of the W-AR allele preceded divergence of the two groups and appearance of the lethal genes. Besides, the YY embryos died of cardiac edema immediately after hatching. The symptom of lethality and the stage of developmental arrest differed from those for either of WW lethal embryos. We therefore conclude that the W and Y chromosomes involve no evolutionary common scenario for degeneration. PMID:22143254

  10. Evidence for a Common Origin of Homomorphic and Heteromorphic Sex Chromosomes in Distinct Spinacia Species.

    PubMed

    Fujito, Satoshi; Takahata, Satoshi; Suzuki, Reimi; Hoshino, Yoichiro; Ohmido, Nobuko; Onodera, Yasuyuki

    2015-08-01

    The dioecious genus Spinacia is thought to include two wild relatives (S. turkestanica Ilj. and S. tetrandra Stev.) of cultivated spinach (S. oleracea L.). In this study, nuclear and chloroplast sequences from 21 accessions of Spinacia germplasm and six spinach cultivars or lines were subjected to phylogenetic analysis to define the relationships among the three species. Maximum-likelihood sequence analysis suggested that the Spinacia plant samples could be classified into two monophyletic groups (Group 1 and Group 2): Group 1 consisted of all accessions, cultivars, and lines of S. oleracea L. and S. turkestanica Ilj. and two of five S. tetrandra Stev. accessions, whereas Group 2 was composed of the three remaining S. tetrandra Stev. accessions. By using flow cytometry, we detected a distinct difference in nuclear genome size between the groups. Group 2 also was characterized by a sexual dimorphism in inflorescence structure, which was not observed in Group 1. Interspecific crosses between the groups produced hybrids with drastically reduced pollen fertility and showed that the male is the heterogametic sex (XY) in Group 2, as is the case in S. oleracea L. (Group 1). Cytogenetic and DNA marker analyses suggested that Group 1 and Group 2 have homomorphic and heteromorphic sex chromosome pairs (XY), respectively, and that the sex chromosome pairs of the two groups evolved from a common ancestral pair. Our data suggest that the Spinacia genus may serve as a good model for investigation of evolutionary mechanisms underlying the emergence of heteromorphic sex chromosome pairs from ancestral homomorphic pairs. PMID:26048564

  11. Evidence for a Common Origin of Homomorphic and Heteromorphic Sex Chromosomes in Distinct Spinacia Species

    PubMed Central

    Fujito, Satoshi; Takahata, Satoshi; Suzuki, Reimi; Hoshino, Yoichiro; Ohmido, Nobuko; Onodera, Yasuyuki

    2015-01-01

    The dioecious genus Spinacia is thought to include two wild relatives (S. turkestanica Ilj. and S. tetrandra Stev.) of cultivated spinach (S. oleracea L.). In this study, nuclear and chloroplast sequences from 21 accessions of Spinacia germplasm and six spinach cultivars or lines were subjected to phylogenetic analysis to define the relationships among the three species. Maximum-likelihood sequence analysis suggested that the Spinacia plant samples could be classified into two monophyletic groups (Group 1 and Group 2): Group 1 consisted of all accessions, cultivars, and lines of S. oleracea L. and S. turkestanica Ilj. and two of five S. tetrandra Stev. accessions, whereas Group 2 was composed of the three remaining S. tetrandra Stev. accessions. By using flow cytometry, we detected a distinct difference in nuclear genome size between the groups. Group 2 also was characterized by a sexual dimorphism in inflorescence structure, which was not observed in Group 1. Interspecific crosses between the groups produced hybrids with drastically reduced pollen fertility and showed that the male is the heterogametic sex (XY) in Group 2, as is the case in S. oleracea L. (Group 1). Cytogenetic and DNA marker analyses suggested that Group 1 and Group 2 have homomorphic and heteromorphic sex chromosome pairs (XY), respectively, and that the sex chromosome pairs of the two groups evolved from a common ancestral pair. Our data suggest that the Spinacia genus may serve as a good model for investigation of evolutionary mechanisms underlying the emergence of heteromorphic sex chromosome pairs from ancestral homomorphic pairs. PMID:26048564

  12. Laser microdissection-based analysis of the Y sex chromosome of the Antarctic fish Chionodraco hamatus (Notothenioidei, Channichthyidae)

    PubMed Central

    Cocca, Ennio; Petraccioli, Agnese; Morescalchi, Maria Alessandra; Odierna, Gaetano; Capriglione, Teresa

    2015-01-01

    Abstract Microdissection, DOP-PCR amplification and microcloning were used to study the large Y chromosome of Chionodraco hamatus, an Antarctic fish belonging to the Notothenioidei, the dominant component of the Southern Ocean fauna. The species has evolved a multiple sex chromosome system with digametic males showing an X1YX2 karyotype and females an X1X1X2X2 karyotype. Fluorescence in situ hybridization, performed with a painting probe made from microdissected Y chromosomes, allowed a deeper insight on the chromosomal rearrangement, which underpinned the fusion event that generated the Y. Then, we used a DNA library established by microdissection and microcloning of the whole Y chromosome of Chionodraco hamatus for searching sex-linked sequences. One clone provided preliminary information on the presence on the Y chromosome of the CHD1 gene homologue, which is sex-linked in birds but in no other vertebrates. Several clones from the Y-chromosome mini-library contained microsatellites and transposable elements, one of which mapped to the q arm putative fusion region of the Y chromosome. The findings confirm that interspersed repetitive sequences might have fostered chromosome rearrangements and the emergence of the Y chromosome in Chionodraco hamatus. Detection of the CHD1 gene in the Y sex-determining region could be a classical example of convergent evolution in action. PMID:25893071

  13. Sequence and gene content of a large fragment of a lizard sex chromosome and evaluation of candidate sex differentiating gene R-spondin 1

    PubMed Central

    2013-01-01

    Background Scant genomic information from non-avian reptile sex chromosomes is available, and for only a few lizards, several snakes and one turtle species, and it represents only a small fraction of the total sex chromosome sequences in these species. Results We report a 352 kb of contiguous sequence from the sex chromosome of a squamate reptile, Pogona vitticeps, with a ZZ/ZW sex microchromosome system. This contig contains five protein coding genes (oprd1, rcc1, znf91, znf131, znf180), and major families of repetitive sequences with a high number of copies of LTR and non-LTR retrotransposons, including the CR1 and Bov-B LINEs. The two genes, oprd1 and rcc1 are part of a homologous syntenic block, which is conserved among amniotes. While oprd1 and rcc1 have no known function in sex determination or differentiation in amniotes, this homologous syntenic block in mammals and chicken also contains R-spondin 1 (rspo1), the ovarian differentiating gene in mammals. In order to explore the probability that rspo1 is sex determining in dragon lizards, genomic BAC and cDNA clones were mapped using fluorescence in situ hybridisation. Their location on an autosomal microchromosome pair, not on the ZW sex microchromosomes, eliminates rspo1 as a candidate sex determining gene in P. vitticeps. Conclusion Our study has characterized the largest contiguous stretch of physically mapped sex chromosome sequence (352 kb) from a ZZ/ZW lizard species. Although this region represents only a small fraction of the sex chromosomes of P. vitticeps, it has revealed several features typically associated with sex chromosomes including the accumulation of large blocks of repetitive sequences. PMID:24344927

  14. Sex chromosome mosaicism and hybrid speciation among tiger swallowtail butterflies.

    PubMed

    Kunte, Krushnamegh; Shea, Cristina; Aardema, Matthew L; Scriber, J Mark; Juenger, Thomas E; Gilbert, Lawrence E; Kronforst, Marcus R

    2011-09-01

    Hybrid speciation, or the formation of a daughter species due to interbreeding between two parental species, is a potentially important means of diversification, because it generates new forms from existing variation. However, factors responsible for the origin and maintenance of hybrid species are largely unknown. Here we show that the North American butterfly Papilio appalachiensis is a hybrid species, with genomic admixture from Papilio glaucus and Papilio canadensis. Papilio appalachiensis has a mosaic phenotype, which is hypothesized to be the result of combining sex-linked traits from P. glaucus and P. canadensis. We show that P. appalachiensis' Z-linked genes associated with a cooler thermal habitat were inherited from P. canadensis, whereas its W-linked mimicry and mitochondrial DNA were inherited from P. glaucus. Furthermore, genome-wide AFLP markers showed nearly equal contributions from each parental species in the origin of P. appalachiensis, indicating that it formed from a burst of hybridization between the parental species, with little subsequent backcrossing. However, analyses of genetic differentiation, clustering, and polymorphism based on molecular data also showed that P. appalachiensis is genetically distinct from both parental species. Population genetic simulations revealed P. appalachiensis to be much younger than the parental species, with unidirectional gene flow from P. glaucus and P. canadensis into P. appalachiensis. Finally, phylogenetic analyses, combined with ancestral state reconstruction, showed that the two traits that define P. appalachiensis' mosaic phenotype, obligatory pupal diapause and mimicry, evolved uniquely in P. canadensis and P. glaucus, respectively, and were then recombined through hybridization to form P. appalachiensis. These results suggest that natural selection and sex-linked traits may have played an important role in the origin and maintenance of P. appalachiensis as a hybrid species. In particular, ecological barriers associated with a steep thermal cline appear to maintain the distinct, mosaic genome of P. appalachiensis despite contact and occasional hybridization with both parental species. PMID:21931567

  15. Sex Chromosome Mosaicism and Hybrid Speciation among Tiger Swallowtail Butterflies

    PubMed Central

    Kunte, Krushnamegh; Shea, Cristina; Aardema, Matthew L.; Scriber, J. Mark; Juenger, Thomas E.; Gilbert, Lawrence E.; Kronforst, Marcus R.

    2011-01-01

    Hybrid speciation, or the formation of a daughter species due to interbreeding between two parental species, is a potentially important means of diversification, because it generates new forms from existing variation. However, factors responsible for the origin and maintenance of hybrid species are largely unknown. Here we show that the North American butterfly Papilio appalachiensis is a hybrid species, with genomic admixture from Papilio glaucus and Papilio canadensis. Papilio appalachiensis has a mosaic phenotype, which is hypothesized to be the result of combining sex-linked traits from P. glaucus and P. canadensis. We show that P. appalachiensis' Z-linked genes associated with a cooler thermal habitat were inherited from P. canadensis, whereas its W-linked mimicry and mitochondrial DNA were inherited from P. glaucus. Furthermore, genome-wide AFLP markers showed nearly equal contributions from each parental species in the origin of P. appalachiensis, indicating that it formed from a burst of hybridization between the parental species, with little subsequent backcrossing. However, analyses of genetic differentiation, clustering, and polymorphism based on molecular data also showed that P. appalachiensis is genetically distinct from both parental species. Population genetic simulations revealed P. appalachiensis to be much younger than the parental species, with unidirectional gene flow from P. glaucus and P. canadensis into P. appalachiensis. Finally, phylogenetic analyses, combined with ancestral state reconstruction, showed that the two traits that define P. appalachiensis' mosaic phenotype, obligatory pupal diapause and mimicry, evolved uniquely in P. canadensis and P. glaucus, respectively, and were then recombined through hybridization to form P. appalachiensis. These results suggest that natural selection and sex-linked traits may have played an important role in the origin and maintenance of P. appalachiensis as a hybrid species. In particular, ecological barriers associated with a steep thermal cline appear to maintain the distinct, mosaic genome of P. appalachiensis despite contact and occasional hybridization with both parental species. PMID:21931567

  16. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for rapid diagnosis of sex chromosome aneuploidies.

    PubMed

    Xie, Xingmei; Liang, Qiaoyi

    2014-01-01

    Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR). Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY), five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377), one X/Y-common STR (X22), and two autosomal STRs (D13S305 and D21S11). Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied. PMID:25207978

  17. Moderate Ovarian Stimulation Does Not Increase the Incidence of Human Embryo Chromosomal Abnormalities in in Vitro Fertilization Cycles

    PubMed Central

    Bosch, Ernesto; Alamá, Pilar; Rubio, Carmen; Rodrigo, Lorena; Pellicer, Antonio

    2012-01-01

    Context: A high chromosomal abnormalities rate has been observed in human embryos derived from in vitro fertilization (IVF) treatments. The real incidence in natural cycles has been poorly studied, so whether this frequency may be induced by external factors, such as use of gonadotropins for ovarian stimulation, remains unknown. Design: We conducted a prospective cohort study in a University-affiliated private infertility clinic with a comparison between unstimulated and stimulated ovarian cycles in the same women. Preimplantation genetic screening by fluorescence in situ hybridization was performed in all viable d 3 embryos. Objective: The primary objective was to compare the incidence of embryo chromosomal abnormalities in an unstimulated cycle and in an ulterior moderate ovarian stimulated cycle. Secondary outcome measures were embryo quality, blastocyst rate of biopsied embryos, number of normal blastocysts per donor, type of chromosomal abnormalities, and clinical outcome. Results: One hundred eighty-five oocyte donors were initially recruited for the unstimulated cycle, and preimplantation genetic screening could be performed in 51 of them, showing 35.3% of embryo chromosomal abnormalities. Forty-six of them later completed a stimulated cycle. The sperm donor sample was the same for both cycles. The proportion of embryos displaying abnormalities in the unstimulated cycle was 34.8% (16 of 46), whereas it was 40.6% (123 of 303) in the stimulated cycle with risk difference = 5.8 [95% confidence interval (CI) = −20.6–9.0], and relative risk = 1.17 (95% CI = 0.77–1.77) (P = 0.45). When an intrasubject comparison was made, the abnormalities rate was 34.8% (95% CI = 20.5–49.1) in the unstimulated cycle and 38.2% (95% CI = 30.5–45.8) in the stimulated cycle [risk difference = 3.4 (95% CI = −17.9–11.2); P = 0.64]. No differences were observed for embryo quality and type of chromosomal abnormalities. Conclusions: Moderate ovarian stimulation in young normo-ovulatory women does not significantly increase the embryo aneuploidies rate in in vitro fertilization-derived human embryos as compared with an unstimulated cycle. Whether these results can be extrapolated to infertile patients is still unknown. PMID:22865900

  18. Possible influences on the expression of X chromosome-linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy

    SciTech Connect

    Beggs, A.H.; Neumann, P.E.; Anderson, M.S.; Kunkel, L.M. ); Arahata, Kiichi; Arikawa, Eri; Nonaka, Ikuya )

    1992-01-15

    Abnormalities of dystrophin, a cytoskeletal protein of muscle and nerve, are generally considered specific for Duchenne and Becker muscular dystrophy. However, several patients have recently been identified with dystrophin deficiency who, before dystrophin testing, were considered to have Fukuyama congenital muscular dystrophy (FCMD) on the basis of clinical findings. Epidemiologic data suggest that only 1/3,500 males with autosomal recessive FCMD should have abnormal dystrophin. To explain the observation of 3/23 FCMD males with abnormal dystrophin, the authors propose that dystrophin and the FCMD gene product interact and that the earlier onset and greater severity of these patients' phenotype (relative to Duchenne muscular dystrophy) are due to their being heterozygous for the FCMD mutation in addition to being hemizygous for Duchenne muscular dystrophy, a genotype that is predicted to occur in 1/175,000 Japanese males. This model may help explain the genetic basis for some of the clinical and pathological variability seen among patients with FCMD, and it has potential implications for understanding the inheritance of other autosomal recessive disorders in general. For example, sex ratios for rare autosomal recessive disorders caused by mutations in proteins that interact with X chromosome-linked gene products may display predictable deviation from 1:1.

  19. An Autosomal Gene That Affects X Chromosome Expression and Sex Determination in CAENORHABDITIS ELEGANS

    PubMed Central

    Meneely, Philip M.; Wood, William B.

    1984-01-01

    Recessive mutant alleles at the autosomal dpy-21 locus of C. elegans cause a dumpy phenotype in XX animals but not in XO animals. This dumpy phenotype is characteristic of X chromosome aneuploids with higher than normal X to autosome ratios and is proposed to result from overexpression of X-linked genes. We have isolated a new dpy-21 allele that also causes partial hermaphroditization of XO males, without causing the dumpy phenotype. All dpy-21 alleles show hermaphroditization effects in XO males that carry a duplication of part of the X chromosome and also partially suppress a transformer (tra-1) mutation that converts XX animals into males. Experiments with a set of X chromosome duplications show that the defects of dpy-21 mutants can result from interaction with several different regions of the X chromosome. We propose that dpy-21 regulates X chromosome expression and may be involved in interpreting X chromosome dose for the developmental decisions of both sex determination and dosage compensation. PMID:6537930

  20. Increased likelihood of post-polycythemia vera myelofibrosis in Ph-negative MPN patients with chromosome 12 abnormalities

    PubMed Central

    Benton, Christopher B; Tanaka, Maria; Wilson, Catherine; Pierce, Sherry; Zhou, Lingsha; Cortes, Jorge; Kantarjian, Hagop; Verstovsek, Srdan

    2016-01-01

    Chromosome 12 (Chr12) abnormalities have been described for individual patients with Philadelphia chromosome-negative myeloproliferative neoplasms (Ph-neg MPN), however the frequency, characteristics, and outcomes of such patients as a whole have not been investigated. We reviewed a database of 1787 consecutive Ph-neg MPN patients seen at our institution and determined that 2% of Ph-neg MPN patients harbored an alteration involving Chr12 by cytogenetic evaluation. Retrospective chart review revealed that patients with Chr12 abnormalities had a higher likelihood of having myelofibrosis (MF) compared to patients without a Chr12 abnormality, and were more likely to have post-polycythemia vera MF. The most common alterations in Chr12 in MF patients involved 12q13, 12q15, 12q24, and trisomy 12, and >40% of Chr12 Ph-neg MPN patients had cytogenetic evolution. Chr12 abnormalities did not significantly correlate with JAK2 status, progression to acute myeloid leukemia, or survival, however patients with 12q24 abnormalities trended towards poorer outcomes. PMID:25687833

  1. Molecular cytogenetic analysis of monoecious hemp (Cannabis sativa L.) cultivars reveals its karyotype variations and sex chromosomes constitution.

    PubMed

    Razumova, Olga V; Alexandrov, Oleg S; Divashuk, Mikhail G; Sukhorada, Tatiana I; Karlov, Gennady I

    2016-05-01

    Hemp (Cannabis sativa L., 2n = 20) is a dioecious plant. Sex expression is controlled by an X-to-autosome balance system consisting of the heteromorphic sex chromosomes XY for males and XX for females. Genetically monoecious hemp offers several agronomic advantages compared to the dioecious cultivars that are widely used in hemp cultivation. The male or female origin of monoecious maternal plants is unknown. Additionally, the sex chromosome composition of monoecious hemp forms remains unknown. In this study, we examine the sex chromosome makeup in monoecious hemp using a cytogenetic approach. Eight monoecious and two dioecious cultivars were used. The DNA of 210 monoecious plants was used for PCR analysis with the male-associated markers MADC2 and SCAR323. All monoecious plants showed female amplification patterns. Fluorescence in situ hybridization (FISH) with the subtelomeric CS-1 probe to chromosomes plates and karyotyping revealed a lack of Y chromosome and presence of XX sex chromosomes in monoecious cultivars with the chromosome number 2n = 20. There was a high level of intra- and intercultivar karyotype variation detected. The results of this study can be used for further analysis of the genetic basis of sex expression in plants. PMID:26149370

  2. Sexually dimorphic expression of the sex chromosome-linked genes cntfa and pdlim3a in the medaka brain.

    PubMed

    Maehiro, Sayaka; Takeuchi, Akio; Yamashita, Junpei; Hiraki, Towako; Kawabata, Yukika; Nakasone, Kiyoshi; Hosono, Kohei; Usami, Takeshi; Paul-Prasanth, Bindhu; Nagahama, Yoshitaka; Oka, Yoshitaka; Okubo, Kataaki

    2014-02-28

    In vertebrates, sex differences in the brain have been attributed to differences in gonadal hormone secretion; however, recent evidence in mammals and birds shows that sex chromosome-linked genes, independent of gonadal hormones, also mediate sex differences in the brain. In this study, we searched for genes that were differentially expressed between the sexes in the brain of a teleost fish, medaka (Oryzias latipes), and identified two sex chromosome genes with male-biased expression, cntfa (encoding ciliary neurotrophic factor a) and pdlim3a (encoding PDZ and LIM domain 3 a). These genes were found to be located 3-4 Mb from and on opposite sides of the Y chromosome-specific region containing the sex-determining gene (the medaka X and Y chromosomes are genetically identical, differing only in this region). The male-biased expression of both genes was evident prior to the onset of sexual maturity. Sex-reversed XY females, as well as wild-type XY males, had more pronounced expression of these genes than XX males and XX females, indicating that the Y allele confers higher expression than the X allele for both genes. In addition, their expression was affected to some extent by sex steroid hormones, thereby possibly serving as focal points of the crosstalk between the genetic and hormonal pathways underlying brain sex differences. Given that sex chromosomes of lower vertebrates, including teleost fish, have evolved independently in different genera or species, sex chromosome genes with sexually dimorphic expression in the brain may contribute to genus- or species-specific sex differences in a variety of traits. PMID:24491545

  3. Sex chromosomes in mitotic and polytene tissues of Anastrepha fraterculus (Diptera, Tephritidae) from Argentina: a review.

    PubMed

    Giardini, María Cecilia; Milla, Fabián H; Lanzavecchia, Silvia; Nieves, Mariela; Cladera, Jorge L

    2015-01-01

    Cytogenetics, which is considered a fundamental tool to understand basic genetic and genomic issues of species, has greatly contributed to the description of polymorphisms both at inter- and intra-specific level. In fact, cytogenetics was one of the first approaches used to propose Anastrepha fraterculus (Diptera: Tephritidae) as a complex of cryptic species. Different morphological variants of sex chromosomes have been reported among Argentinean populations of Anastrepha fraterculus. However, since this high structural variability in sex chromosomes does not pose a reproductive barrier, their role in speciation is yet to be unveiled. This review provides an update on general aspects of cytogenetics in Argentinean Anastrepha fraterculus populations, focused on the prevalence of X-Y arrangements. PMID:26798255

  4. Insights into Sex Chromosome Evolution and Aging from the Genome of a Short-Lived Fish.

    PubMed

    Reichwald, Kathrin; Petzold, Andreas; Koch, Philipp; Downie, Bryan R; Hartmann, Nils; Pietsch, Stefan; Baumgart, Mario; Chalopin, Domitille; Felder, Marius; Bens, Martin; Sahm, Arne; Szafranski, Karol; Taudien, Stefan; Groth, Marco; Arisi, Ivan; Weise, Anja; Bhatt, Samarth S; Sharma, Virag; Kraus, Johann M; Schmid, Florian; Priebe, Steffen; Liehr, Thomas; Görlach, Matthias; Than, Manuel E; Hiller, Michael; Kestler, Hans A; Volff, Jean-Nicolas; Schartl, Manfred; Cellerino, Alessandro; Englert, Christoph; Platzer, Matthias

    2015-12-01

    The killifish Nothobranchius furzeri is the shortest-lived vertebrate that can be bred in the laboratory. Its rapid growth, early sexual maturation, fast aging, and arrested embryonic development (diapause) make it an attractive model organism in biomedical research. Here, we report a draft sequence of its genome that allowed us to uncover an intra-species Y chromosome polymorphism representing-in real time-different stages of sex chromosome formation that display features of early mammalian XY evolution "in action." Our data suggest that gdf6Y, encoding a TGF-β family growth factor, is the master sex-determining gene in N. furzeri. Moreover, we observed genomic clustering of aging-related genes, identified genes under positive selection, and revealed significant similarities of gene expression profiles between diapause and aging, particularly for genes controlling cell cycle and translation. The annotated genome sequence is provided as an online resource (http://www.nothobranchius.info/NFINgb). PMID:26638077

  5. Sex chromosomes in mitotic and polytene tissues of Anastrepha fraterculus (Diptera, Tephritidae) from Argentina: a review

    PubMed Central

    Giardini, María Cecilia; Milla, Fabián H.; Lanzavecchia, Silvia; Nieves, Mariela; Cladera, Jorge L.

    2015-01-01

    Abstract Cytogenetics, which is considered a fundamental tool to understand basic genetic and genomic issues of species, has greatly contributed to the description of polymorphisms both at inter- and intra-specific level. In fact, cytogenetics was one of the first approaches used to propose Anastrepha fraterculus (Diptera: Tephritidae) as a complex of cryptic species. Different morphological variants of sex chromosomes have been reported among Argentinean populations of Anastrepha fraterculus. However, since this high structural variability in sex chromosomes does not pose a reproductive barrier, their role in speciation is yet to be unveiled. This review provides an update on general aspects of cytogenetics in Argentinean Anastrepha fraterculus populations, focused on the prevalence of X-Y arrangements. PMID:26798255

  6. Automated identification of abnormal metaphase chromosome cells for the detection of chronic myeloid leukemia using microscopic images

    NASA Astrophysics Data System (ADS)

    Wang, Xingwei; Zheng, Bin; Li, Shibo; Mulvihill, John J.; Chen, Xiaodong; Liu, Hong

    2010-07-01

    Karyotyping is an important process to classify chromosomes into standard classes and the results are routinely used by the clinicians to diagnose cancers and genetic diseases. However, visual karyotyping using microscopic images is time-consuming and tedious, which reduces the diagnostic efficiency and accuracy. Although many efforts have been made to develop computerized schemes for automated karyotyping, no schemes can get be performed without substantial human intervention. Instead of developing a method to classify all chromosome classes, we develop an automatic scheme to detect abnormal metaphase cells by identifying a specific class of chromosomes (class 22) and prescreen for suspicious chronic myeloid leukemia (CML). The scheme includes three steps: (1) iteratively segment randomly distributed individual chromosomes, (2) process segmented chromosomes and compute image features to identify the candidates, and (3) apply an adaptive matching template to identify chromosomes of class 22. An image data set of 451 metaphase cells extracted from bone marrow specimens of 30 positive and 30 negative cases for CML is selected to test the scheme's performance. The overall case-based classification accuracy is 93.3% (100% sensitivity and 86.7% specificity). The results demonstrate the feasibility of applying an automated scheme to detect or prescreen the suspicious cancer cases.

  7. The XX Sex Chromosome Complement in Mice is Associated with Increased Spontaneous Lupus as compared to XY

    PubMed Central

    Sasidhar, Manda V.; Itoh, Noriko; Gold, Stefan M.; Lawson, Gregory W.; Voskuhl, Rhonda R.

    2015-01-01

    Objectives Many autoimmune diseases are characterized by a female predominance. This may be caused by sex hormones, sex chromosomes or both. Here, we use a transgenic mouse model to investigate how sex chromosome complement, not confounded by differences in gonadal type, might contribute to lupus pathogenesis. Methods Transgenic NZM2328 mice were created by deletion of the Sry gene from the Y chromosome, thereby separating genetic from gonadal sex. We compared survival, renal histopathology, and markers of immune activation in mice carrying the XX versus the XY- sex chromosome complement, with each genotype being ovary bearing. Results Mice with XX sex chromosome complement as compared with XY- exhibited poorer survival rates and increased kidney pathology. Splenic T lymphocytes from XX mice demonstrated upregulated X-linked CD40Ligand expression and higher levels of activation markers ex vivo. We found increased MMPs, TGFβ and IL13 production, while IL2 was lower in XX mice. Finally, we observed an accumulation of splenic follicular B cells and peritoneal marginal zone B cells, coupled with upregulated costimulatory marker expression on B cells in the XX mice. Conclusion Together, these data show that the XX sex chromosome complement, as compared to XY-, is with associated accelerated spontaneous lupus. PMID:22580585

  8. Rainfall-driven sex-ratio genes in African buffalo suggested by correlations between Y-chromosomal haplotype frequencies and foetal sex ratio

    PubMed Central

    2010-01-01

    Background The Y-chromosomal diversity in the African buffalo (Syncerus caffer) population of Kruger National Park (KNP) is characterized by rainfall-driven haplotype frequency shifts between year cohorts. Stable Y-chromosomal polymorphism is difficult to reconcile with haplotype frequency variations without assuming frequency-dependent selection or specific interactions in the population dynamics of X- and Y-chromosomal genes, since otherwise the fittest haplotype would inevitably sweep to fixation. Stable Y-chromosomal polymorphism due one of these factors only seems possible when there are Y-chromosomal distorters of an equal sex ratio, which act by negatively affecting X-gametes, or Y-chromosomal suppressors of a female-biased sex ratio. These sex-ratio (SR) genes modify (suppress) gamete transmission in their own favour at a fitness cost, allowing for stable polymorphism. Results Here we show temporal correlations between Y-chromosomal haplotype frequencies and foetal sex ratios in the KNP buffalo population, suggesting SR genes. Frequencies varied by a factor of five; too high to be alternatively explained by Y-chromosomal effects on pregnancy loss. Sex ratios were male-biased during wet and female-biased during dry periods (male proportion: 0.47-0.53), seasonally and annually. Both wet and dry periods were associated with a specific haplotype indicating a SR distorter and SR suppressor, respectively. Conclusions The distinctive properties suggested for explaining Y-chromosomal polymorphism in African buffalo may not be restricted to this species alone. SR genes may play a broader and largely overlooked role in mammalian sex-ratio variation. PMID:20416038

  9. Detection of cryptic chromosomal abnormalities in unexplained mental retardation: A general strategy using hypervariable subtelomeric DNA polymorphisms

    SciTech Connect

    Wilkie, A.O.M.

    1993-09-01

    Given the availability of DNA from both parents, unusual segregation of hypervariable DNA polymorphisms (HVPs) in the offspring may be attributable to deletion, unbalanced chromosomal translocation, or uniparental disomy. The telomeric regions of chromosomes are rich in both genes and hypervariable minisatellite sequences and may also be particularly prone to cryptic breakage events. Here the author describes and analyzes a general approach to the detection of subtelomeric abnormalities and uniparental disomy in patients with unexplained mental retardation. With 29 available polymorphic systems, [approximately]50%-70% of these abnormalities could currently be detected. Development of subtelomeric HVPs physically localized with respect to their telomers should provide a valuable resource in routine diagnostics. 73 refs., 4 figs., 4 tabs.

  10. Triangulating the sexually dimorphic brain through high-resolution neuroimaging of murine sex chromosome aneuploidies.

    PubMed

    Raznahan, Armin; Lue, YanHe; Probst, Frank; Greenstein, Deanna; Giedd, Jay; Wang, Christina; Lerch, Jason; Swerdloff, Ronald

    2015-11-01

    Murine sex chromosome aneuploidies (SCAs) provide powerful models for charting sex chromosome influences on mammalian brain development. Here, building on prior work in X-monosomic (XO) mice, we use spatially non-biased high-resolution imaging to compare and contrast neuroanatomical alterations in XXY and XO mice relative to their wild-type XX and XY littermates. First, we show that carriage of a supernumerary X chromosome in XXY males (1) does not prevent normative volumetric masculinization of the bed nucleus of the stria terminalis (BNST) and medial amygdala, but (2) causes distributed anatomical alterations relative to XY males, which show a statistically unexpected tendency to be co-localized with and reciprocal to XO-XX differences in anatomy. These overlaps identify the lateral septum, BNST, ventral group thalamic nuclei and periaqueductal gray matter as regions with replicable sensitivity to X chromosome dose across two SCAs. We then harness anatomical variation across all four karyotype groups in our study--XO, XX, XY and XXY--to create an agnostic data-driven segmentation of the mouse brain into five distributed clusters which (1) recover fundamental properties of brain organization with high spatial precision, (2) define two previously uncharacterized systems of relative volume excess in females vs. males ("forebrain cholinergic" and "cerebelo-pontine-thalamo-cortical"), and (3) adopt stereotyped spatial motifs which delineate ordered gradients of sex chromosome and gonadal influences on volumetric brain development. Taken together, these data provide a new framework for the study of sexually dimorphic influences on brain development in health and disrupted brain development in SCA. PMID:25146308

  11. New approach data in electric fish (Teleostei: Gymnotus): sex chromosome evolution and repetitive DNA.

    PubMed

    da Silva, Maelin; Matoso, Daniele Aparecida; Artoni, Roberto Ferreira; Feldberg, Eliana

    2014-12-01

    Antagonist sexual selection is the driving force behind the origin and diversification of sex chromosomes such as XX/XY and ZZ/ZW. However, chromosome mobility, mainly in fishes, may result in the formation of chromosomes of recent origin, a process known as turnover. The family Gymnotidae, which is composed of the genera Electrophorus+Gymnotus, presents a multiple system of the type X1X1X2X2/X1X2Y, which has been described for Gymnotus pantanal. This article describes the karyotype of three Amazon Gymnotus species, revealing the presence of both simple and multiple systems: Gymnotus carapo "Catalão" 2n=40 XX/XY, Gymnotus coropinae 2n=49♂/50♀ X1X1X2X2/X1X2Y, and Gymnotus sp. "Negro" 2n=50 XX/XY. Our hypothesis is that the simple system present in G. carapo "Catalão" is ancestral in relation to G. pantanal's multiple system and that the diversification of the subsequent multiple system occurred after the final separation of the Amazon and Paraná basins. Moreover, G. coropinae's multiple system may have originated from the simple system present in Gymnotus sp. "Negro." The distant position between the species in the Gymnotidae family's phylogeny in addition to differences in sex chromosome formula and number between Clade G1 G. coropinae and G. sp. "Negro" species and "Carapo" Clade. G. carapo and G. pantanal species suggest that both sequences of sexual systems occurred independently, supporting other proposed models and highlighting the fact that species of the genus Gymnotus may serve as a model for studying sex chromosome turnover. PMID:25264714

  12. Triangulating the sexually dimorphic brain through high-resolution neuroimaging of murine sex chromosome aneuploidies

    PubMed Central

    Lue, YanHe; Probst, Frank; Greenstein, Deanna; Giedd, Jay; Wang, Christina; Lerch, Jason; Swerdloff, Ronald

    2016-01-01

    Murine sex chromosome aneuploidies (SCAs) provide powerful models for charting sex chromosome influences on mammalian brain development. Here, building on prior work in X-monosomic (XO) mice, we use spatially non-biased high-resolution imaging to compare and contrast neuroanatomical alterations in XXY and XO mice relative to their wild-type XX and XY littermates. First, we show that carriage of a supernumerary X chromosome in XXY males (1) does not prevent normative volumetric masculinization of the bed nucleus of the stria terminalis (BNST) and medial amygdala, but (2) causes distributed anatomical alterations relative to XY males, which show a statistically unexpected tendency to be colocalized with and reciprocal to XO-XX differences in anatomy. These overlaps identify the lateral septum, BNST, ventral group thalamic nuclei and periaqueductal gray matter as regions with replicable sensitivity to X chromosome dose across two SCAs. We then harness anatomical variation across all four karyotype groups in our study—XO, XX, XY and XXY—to create an agnostic data-driven segmentation of the mouse brain into five distributed clusters which (1) recover fundamental properties of brain organization with high spatial precision, (2) define two previously uncharacterized systems of relative volume excess in females vs. males (“forebrain cholinergic” and “cerebelo-pontine-thalamo-cortical”), and (3) adopt stereotyped spatial motifs which delineate ordered gradients of sex chromosome and gonadal influences on volumetric brain development. Taken together, these data provide a new framework for the study of sexually dimorphic influences on brain development in health and disrupted brain development in SCA. PMID:25146308

  13. Fluorescence in situ hybridization on single cells. (Sex determination and chromosome rearrangements).

    PubMed

    Scriven, Paul N; Ogilvie, Caroline Mackie

    2007-01-01

    Fluorescence in situ hybridization (FISH) is the technique of choice for preimplantation genetic diagnosis (PGD) selection of female embryos in families with X-linked disease, for which there is no mutation-specific test. FISH with target-specific DNA probes is also the primary technique used for PGD detection of chromosome imbalance associated with Robertsonian translocations, reciprocal translocations, inversions, and other chromosome rearrangements, because the DNA probes, labeled with different fluorochromes or haptens, detect the copy number of their target loci. The methods described outline strategies for PGD for sex determination and chromosome rearrangements. These methods are assessment of reproductive risks, the selection of suitable probes for interphase FISH, spreading techniques for blastomere nuclei, and in situ hybridization and signal scoring using directly labeled and indirectly labeled probes. PMID:17876073

  14. SNP-based non-invasive prenatal testing detects sex chromosome aneuploidies with high accuracy

    PubMed Central

    Samango-Sprouse, Carole; Banjevic, Milena; Ryan, Allison; Sigurjonsson, Styrmir; Zimmermann, Bernhard; Hill, Matthew; Hall, Megan P.; Westemeyer, Margaret; Saucier, Jennifer; Demko, Zachary; Rabinowitz, Matthew

    2013-01-01

    Objective To develop a single nucleotide polymorphism- and informatics-based non-invasive prenatal test that detects sex chromosome aneuploidies early in pregnancy. Methods Fifteen aneuploid samples, including thirteen 45,X, two 47,XXY, and one 47,XYY, along with 185 euploid controls, were analyzed. Cell-free DNA was isolated from maternal plasma, amplified in a single multiplex PCR assay that targeted 19,488 polymorphic loci covering chromosomes 13, 18, 21, X, and Y, and sequenced. Sequencing results were analyzed using a Bayesian-based maximum likelihood statistical method to determine copy number of interrogated chromosomes, calculating sample-specific accuracies. Results Of the samples that passed a stringent quality control metric (93%), the algorithm correctly identified copy number at all five chromosomes in all 187 samples, for 934/935 correct calls as early as 9.4 weeks of gestation. We detected 45,X with 91.7% sensitivity (CI: 61.5-99.8%) and 100% specificity (CI: 97.9-100%), and 47,XXY and 47,XYY. The average calculated accuracy was 99.78%. Conclusion This method non-invasively detected 45,X, 47,XXY, and 47,XYY fetuses from cfDNA isolated from maternal plasma with high calculated accuracies, and thus offers a non-invasive method with the potential to function as a routine screen allowing for early prenatal detection of rarely diagnosed yet commonly occurring sex aneuploidies. PMID:23712453

  15. Mapping the stability of human brain asymmetry across five sex-chromosome aneuploidies.

    PubMed

    Lin, Amy; Clasen, Liv; Lee, Nancy Raitano; Wallace, Gregory L; Lalonde, Francois; Blumenthal, Jonathan; Giedd, Jay N; Raznahan, Armin

    2015-01-01

    The human brain displays stereotyped and early emerging patterns of cortical asymmetry in health. It is unclear if these asymmetries are highly sensitive to genetic and environmental variation or fundamental features of the brain that can survive severe developmental perturbations. To address this question, we mapped cortical thickness (CT) asymmetry in a group of genetically defined disorders known to impact CT development. Participants included 137 youth with one of five sex-chromosome aneuploidies [SCAs; XXX (n = 28), XXY (n = 58), XYY (n = 26), XXYY (n = 20), and XXXXY (n = 5)], and 169 age-matched typically developing controls (80 female). In controls, we replicated previously reported rightward inferior frontal and leftward lateral parietal CT asymmetry. These opposing frontoparietal CT asymmetries were broadly preserved in all five SCA groups. However, we also detected foci of shifting CT asymmetry with aneuploidy, which fell almost exclusively within regions of significant CT asymmetry in controls. Specifically, X-chromosome aneuploidy accentuated normative rightward inferior frontal asymmetries, while Y-chromosome aneuploidy reversed normative rightward medial prefrontal and lateral temporal asymmetries. These findings indicate that (1) the stereotyped normative pattern of opposing frontoparietal CT asymmetry arises from developmental mechanisms that can withstand gross chromosomal aneuploidy and (2) X and Y chromosomes can exert focal, nonoverlapping and directionally opposed influences on CT asymmetry within cortical regions of significant asymmetry in health. Our study attests to the resilience of developmental mechanisms that support the global patterning of CT asymmetry in humans, and motivates future research into the molecular bases and functional consequences of sex chromosome dosage effects on CT asymmetry. PMID:25568109

  16. Mapping the Stability of Human Brain Asymmetry across Five Sex-Chromosome Aneuploidies

    PubMed Central

    Lin, Amy; Clasen, Liv; Lee, Nancy Raitano; Wallace, Gregory L.; Lalonde, Francois; Blumenthal, Jonathan; Giedd, Jay N.

    2015-01-01

    The human brain displays stereotyped and early emerging patterns of cortical asymmetry in health. It is unclear if these asymmetries are highly sensitive to genetic and environmental variation or fundamental features of the brain that can survive severe developmental perturbations. To address this question, we mapped cortical thickness (CT) asymmetry in a group of genetically defined disorders known to impact CT development. Participants included 137 youth with one of five sex-chromosome aneuploidies [SCAs; XXX (n = 28), XXY (n = 58), XYY (n = 26), XXYY (n = 20), and XXXXY (n = 5)], and 169 age-matched typically developing controls (80 female). In controls, we replicated previously reported rightward inferior frontal and leftward lateral parietal CT asymmetry. These opposing frontoparietal CT asymmetries were broadly preserved in all five SCA groups. However, we also detected foci of shifting CT asymmetry with aneuploidy, which fell almost exclusively within regions of significant CT asymmetry in controls. Specifically, X-chromosome aneuploidy accentuated normative rightward inferior frontal asymmetries, while Y-chromosome aneuploidy reversed normative rightward medial prefrontal and lateral temporal asymmetries. These findings indicate that (1) the stereotyped normative pattern of opposing frontoparietal CT asymmetry arises from developmental mechanisms that can withstand gross chromosomal aneuploidy and (2) X and Y chromosomes can exert focal, nonoverlapping and directionally opposed influences on CT asymmetry within cortical regions of significant asymmetry in health. Our study attests to the resilience of developmental mechanisms that support the global patterning of CT asymmetry in humans, and motivates future research into the molecular bases and functional consequences of sex chromosome dosage effects on CT asymmetry. PMID:25568109

  17. Detection of numerical chromosomal abnormalities (chr. 1 and 18) before and after photodynamic therapy of human bladder carcinoma cells in vitro

    NASA Astrophysics Data System (ADS)

    Bachor, Ruediger; Reich, Ella D.; Kleinschmidt, Klaus; Hautmann, Richard E.

    1997-12-01

    The application of nonradioactive in situ hybridization with chromosome-specific probes for cytogenetic analysis has increased significantly in recent years. In the field of photodynamic therapy (PDT) the hypothesis is that after PDT the remaining viable malignant cells are potentially metastatic cells. Therefore, we performed in vitro experiments on human bladder carcinoma cells to evaluate numerical chromosomal abnormalities before and after PDT. The possible genotoxic effect of PDT with porphycene (AamTPPn) appears to be small based on criteria such as numerical chromosomal abnormalities for chromosome 1 and 18.

  18. SASS6 overexpression is associated with mitotic chromosomal abnormalities and a poor prognosis in patients with colorectal cancer.

    PubMed

    Shinmura, Kazuya; Kato, Hisami; Kawanishi, Yuichi; Nagura, Kiyoko; Kamo, Takaharu; Okubo, Yusuke; Inoue, Yusuke; Kurabe, Nobuya; Du, Chunping; Iwaizumi, Moriya; Kurachi, Kiyotaka; Nakamura, Toshio; Sugimura, Haruhiko

    2015-08-01

    Spindle assembly abnormal protein 6 homolog (SASS6) plays an important role in the regulation of centriole duplication. To date, the genetic alteration of SASS6 has not been reported in human cancers. In the present study, we examined whether SASS6 expression is abnormally regulated in colorectal cancers (CRCs). Increased SASS6 mRNA and protein expression levels were observed in 49 (60.5%) of the 81 primary CRCs and 11 (57.9%) of the 19 primary CRCs, respectively. Moreover, the upregulation of SASS6 mRNA expression was statistically significant (P=0.0410). Next, using DLD-1 colon cancer cells inducibly expressing SASS6, SASS6 overexpression was shown to induce centrosome amplification, mitotic abnormalities such as chromosomal misalignment and lagging chromosome, and chromosomal numerical changes. Furthermore, SASS6 overexpression was associated with anaphase bridge formation, a type of mitotic structural abnormality, in primary CRCs (P<0.01). SASS6 upregulation in colon cancer was also revealed in the Cancer Genome Atlas (TCGA) data and was shown to be an independent predictor of poor survival (multivariate analysis: hazard ratio, 2.805; 95% confidence interval, 1.244‑7.512; P=0.0112). Finally, further analysis of the TCGA data demonstrated SASS6 upregulation in a modest manner in 8 of 11 cancer types other than colon cancer, and SASS6 upregulation was found to be associated with a poor survival outcome in patients with kidney renal cell carcinoma and lung adenocarcinoma. Our present findings revealed that the upregulation of SASS6 expression is involved in the pathogenesis of CRC and is associated with a poor prognosis among patients with colon cancer. They also suggest that SASS6 upregulation is a genetic abnormality relatively common in human cancer. PMID:26035073

  19. [Determination of fetal sex by amplification of Y-chromosome-specific DNA].

    PubMed

    Huang, S Z

    1989-08-01

    This paper describes a rapid and highly sensitive method for determination of fetal sex. Y-chromosome-specific sequences as well as Alu-specific sequences were amplified with polymerase chain reaction (PCR). Then fetal sex was determined by comparison of the two amplified DNA sequences. Polymerase chain reaction can be performed on lysed amniotic fluid cells or chorionic villus samples or dried blood spots on filter paper blot without prior DNA extraction. The analysis of the amplified DNA was performed immediately by agarose gel electrophoresis without DNA hybridization with radioactive probe. By using this method, determination of sex was performed on 3 fetuses at risk for DMD, and on 2 fetuses at risk for hemophilia, prenatal detection was confirmed by examination of the neonates. PMID:2620273

  20. Sex chromosome linked genetic variance and the evolution of sexual dimorphism of quantitative traits.

    PubMed

    Husby, Arild; Schielzeth, Holger; Forstmeier, Wolfgang; Gustafsson, Lars; Qvarnström, Anna

    2013-03-01

    Theory predicts that sex chromsome linkage should reduce intersexual genetic correlations thereby allowing the evolution of sexual dimorphism. Empirical evidence for sex linkage has come largely from crosses and few studies have examined how sexual dimorphism and sex linkage are related within outbred populations. Here, we use data on an array of different traits measured on over 10,000 individuals from two pedigreed populations of birds (collared flycatcher and zebra finch) to estimate the amount of sex-linked genetic variance (h(2)z ). Of 17 traits examined, eight showed a nonzero h(2)Z estimate but only four were significantly different from zero (wing patch size and tarsus length in collared flycatchers, wing length and beak color in zebra finches). We further tested how sexual dimorphism and the mode of selection operating on the trait relate to the proportion of sex-linked genetic variance. Sexually selected traits did not show higher h(2)Z than morphological traits and there was only a weak positive relationship between h(2)Z and sexual dimorphism. However, given the relative scarcity of empirical studies, it is premature to make conclusions about the role of sex chromosome linkage in the evolution of sexual dimorphism. PMID:23461313

  1. Horse domestication and conservation genetics of Przewalski's horse inferred from sex chromosomal and autosomal sequences.

    PubMed

    Lau, Allison N; Peng, Lei; Goto, Hiroki; Chemnick, Leona; Ryder, Oliver A; Makova, Kateryna D

    2009-01-01

    Despite their ability to interbreed and produce fertile offspring, there is continued disagreement about the genetic relationship of the domestic horse (Equus caballus) to its endangered wild relative, Przewalski's horse (Equus przewalskii). Analyses have differed as to whether or not Przewalski's horse is placed phylogenetically as a separate sister group to domestic horses. Because Przewalski's horse and domestic horse are so closely related, genetic data can also be used to infer domestication-specific differences between the two. To investigate the genetic relationship of Przewalski's horse to the domestic horse and to address whether evolution of the domestic horse is driven by males or females, five homologous introns (a total of approximately 3 kb) were sequenced on the X and Y chromosomes in two Przewalski's horses and three breeds of domestic horses: Arabian horse, Mongolian domestic horse, and Dartmoor pony. Five autosomal introns (a total of approximately 6 kb) were sequenced for these horses as well. The sequences of sex chromosomal and autosomal introns were used to determine nucleotide diversity and the forces driving evolution in these species. As a result, X chromosomal and autosomal data do not place Przewalski's horses in a separate clade within phylogenetic trees for horses, suggesting a close relationship between domestic and Przewalski's horses. It was also found that there was a lack of nucleotide diversity on the Y chromosome and higher nucleotide diversity than expected on the X chromosome in domestic horses as compared with the Y chromosome and autosomes. This supports the hypothesis that very few male horses along with numerous female horses founded the various domestic horse breeds. Patterns of nucleotide diversity among different types of chromosomes were distinct for Przewalski's in contrast to domestic horses, supporting unique evolutionary histories of the two species. PMID:18931383

  2. Abnormalities of chromosome 16q in myeloid malignancy: 14 new cases and a review of the literature.

    PubMed

    Betts, D R; Rohatiner, A Z; Evans, M L; Rassam, S M; Lister, T A; Gibbons, B

    1992-12-01

    Fourteen patients with abnormalities of chromosome 16q, 13 with acute myelogenous leukaemia (AML), and one with refractory anaemia with excess of blasts (RAEB), are described. Seven patients had inv(16)(p13q22), two had del(16)(q22), and five had other abnormalities of 16q. Six of the seven patients with inv(16) had AML M4Eo and, following treatment with adriamycin, cytosine arabinoside, and 6-thioguanine, all achieved complete remission (CR). Neither patient with del(16)(q22) had typical M4Eo morphology at diagnosis; CR was achieved in one and one had resistant leukaemia. Patients with other abnormalities of 16q had blasts of diverse morphology and, although morphologically abnormal eosinophils were seen in three patients, this was not as marked as in the patients with inv(16). CR was achieved in two of the four patients with other abnormalities of 16q but duration of remission was short in both cases. These results suggest that most patients with del(16)(q22) and other abnormalities of 16q22 do not have typical AML M4Eo. Such patients tend to have a worse prognosis, and are more likely to have complex karyotypes typical of secondary leukaemia. PMID:1453770

  3. Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics.

    PubMed

    Gabory, Anne; Roseboom, Tessa J; Moore, Tom; Moore, Lorna G; Junien, Claudine

    2013-01-01

    Sex differences occur in most non-communicable diseases, including metabolic diseases, hypertension, cardiovascular disease, psychiatric and neurological disorders and cancer. In many cases, the susceptibility to these diseases begins early in development. The observed differences between the sexes may result from genetic and hormonal differences and from differences in responses to and interactions with environmental factors, including infection, diet, drugs and stress. The placenta plays a key role in fetal growth and development and, as such, affects the fetal programming underlying subsequent adult health and accounts, in part for the developmental origin of health and disease (DOHaD). There is accumulating evidence to demonstrate the sex-specific relationships between diverse environmental influences on placental functions and the risk of disease later in life. As one of the few tissues easily collectable in humans, this organ may therefore be seen as an ideal system for studying how male and female placenta sense nutritional and other stresses, such as endocrine disruptors. Sex-specific regulatory pathways controlling sexually dimorphic characteristics in the various organs and the consequences of lifelong differences in sex hormone expression largely account for such responses. However, sex-specific changes in epigenetic marks are generated early after fertilization, thus before adrenal and gonad differentiation in the absence of sex hormones and in response to environmental conditions. Given the abundance of X-linked genes involved in placentogenesis, and the early unequal gene expression by the sex chromosomes between males and females, the role of X- and Y-chromosome-linked genes, and especially those involved in the peculiar placenta-specific epigenetics processes, giving rise to the unusual placenta epigenetic landscapes deserve particular attention. However, even with recent developments in this field, we still know little about the mechanisms underlying the early sex-specific epigenetic marks resulting in sex-biased gene expression of pathways and networks. As a critical messenger between the maternal environment and the fetus, the placenta may play a key role not only in buffering environmental effects transmitted by the mother but also in expressing and modulating effects due to preconceptional exposure of both the mother and the father to stressful conditions. PMID:23514128

  4. Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics

    PubMed Central

    2013-01-01

    Sex differences occur in most non-communicable diseases, including metabolic diseases, hypertension, cardiovascular disease, psychiatric and neurological disorders and cancer. In many cases, the susceptibility to these diseases begins early in development. The observed differences between the sexes may result from genetic and hormonal differences and from differences in responses to and interactions with environmental factors, including infection, diet, drugs and stress. The placenta plays a key role in fetal growth and development and, as such, affects the fetal programming underlying subsequent adult health and accounts, in part for the developmental origin of health and disease (DOHaD). There is accumulating evidence to demonstrate the sex-specific relationships between diverse environmental influences on placental functions and the risk of disease later in life. As one of the few tissues easily collectable in humans, this organ may therefore be seen as an ideal system for studying how male and female placenta sense nutritional and other stresses, such as endocrine disruptors. Sex-specific regulatory pathways controlling sexually dimorphic characteristics in the various organs and the consequences of lifelong differences in sex hormone expression largely account for such responses. However, sex-specific changes in epigenetic marks are generated early after fertilization, thus before adrenal and gonad differentiation in the absence of sex hormones and in response to environmental conditions. Given the abundance of X-linked genes involved in placentogenesis, and the early unequal gene expression by the sex chromosomes between males and females, the role of X- and Y-chromosome-linked genes, and especially those involved in the peculiar placenta-specific epigenetics processes, giving rise to the unusual placenta epigenetic landscapes deserve particular attention. However, even with recent developments in this field, we still know little about the mechanisms underlying the early sex-specific epigenetic marks resulting in sex-biased gene expression of pathways and networks. As a critical messenger between the maternal environment and the fetus, the placenta may play a key role not only in buffering environmental effects transmitted by the mother but also in expressing and modulating effects due to preconceptional exposure of both the mother and the father to stressful conditions. PMID:23514128

  5. Transient pancytopenia preceding adult acute lymphoblastic leukemia with chromosomal abnormalities including the Philadelphia chromosome: A case report and review of the literature

    PubMed Central

    LIANG, YUN; DING, LUYIN; LI, XIAN; WANG, WEIQIN; ZHANG, XIAOHONG

    2015-01-01

    A preleukaemic phase, typified by transient pancytopenia, is a rare occurrence that usually affects children and adolescents. The present study reports the case of a 50-year-old woman with transient pancytopenia, which manifested as a fever, cough and severe anemia. Three weeks following treatment of pancytopenia with antibiotics, red blood cell and platelet transfusion, granulocyte colony-stimulating factor and human γ globulin, the condition of the patient was improved. However, 3 weeks following discharge from hospital, the patient was diagnosed with acute lymphoblastic leukemia (ALL) with complex chromosomal abnormalities, including Philadelphia chromosome and P190 breakpoint cluster region-ABL. Complete remission was achieved following one course of combination chemotherapy. In conclusion, adult ALL with pancytopenia as a preceding symptom is rare, difficult to diagnose early and easily misdiagnosed. In addition, the pathogenesis of ALL and the precipitating factors underlying this disease require further investigation. PMID:26788209

  6. The multicopy gene Sly represses the sex chromosomes in the male mouse germline after meiosis.

    PubMed

    Cocquet, Julie; Ellis, Peter J I; Yamauchi, Yasuhiro; Mahadevaiah, Shantha K; Affara, Nabeel A; Ward, Monika A; Burgoyne, Paul S

    2009-11-01

    Studies of mice with Y chromosome long arm deficiencies suggest that the male-specific region (MSYq) encodes information required for sperm differentiation and postmeiotic sex chromatin repression (PSCR). Several genes have been identified on MSYq, but because they are present in more than 40 copies each, their functions cannot be investigated using traditional gene targeting. Here, we generate transgenic mice producing small interfering RNAs that specifically target the transcripts of the MSYq-encoded multicopy gene Sly (Sycp3-like Y-linked). Microarray analyses performed on these Sly-deficient males and on MSYq-deficient males show a remarkable up-regulation of sex chromosome genes in spermatids. SLY protein colocalizes with the X and Y chromatin in spermatids of normal males, and Sly deficiency leads to defective repressive marks on the sex chromatin, such as reduced levels of the heterochromatin protein CBX1 and of histone H3 methylated at lysine 9. Sly-deficient mice, just like MSYq-deficient mice, have severe impairment of sperm differentiation and are near sterile. We propose that their spermiogenesis phenotype is a consequence of the change in spermatid gene expression following Sly deficiency. To our knowledge, this is the first successful targeted disruption of the function of a multicopy gene (or of any Y gene). It shows that SLY has a predominant role in PSCR, either via direct interaction with the spermatid sex chromatin or via interaction with sex chromatin protein partners. Sly deficiency is the major underlying cause of the spectrum of anomalies identified 17 y ago in MSYq-deficient males. Our results also suggest that the expansion of sex-linked spermatid-expressed genes in mouse is a consequence of the enhancement of PSCR that accompanies Sly amplification. PMID:19918361

  7. Complex chromosomal rearrangements leading to MECOM overexpression are recurrent in myeloid malignancies with various 3q abnormalities.

    PubMed

    Baldazzi, Carmen; Luatti, Simona; Zuffa, Elisa; Papayannidis, Cristina; Ottaviani, Emanuela; Marzocchi, Giulia; Ameli, Gaia; Bardi, Maria Antonella; Bonaldi, Laura; Paolini, Rossella; Gurrieri, Carmela; Rigolin, Gian Matteo; Cuneo, Antonio; Martinelli, Giovanni; Cavo, Michele; Testoni, Nicoletta

    2016-04-01

    Chromosomal rearrangements involving 3q26 are recurrent findings in myeloid malignancies leading to MECOM overexpression, which has been associated with a very poor prognosis. Other 3q abnormalities have been reported and cryptic MECOM rearrangements have been identified in some cases. By fluorescence in situ hybridization (FISH) analysis, we investigated 97 acute myeloid leukemia/myelodysplastic syndrome patients with various 3q abnormalities to determine the role and the frequency of the involvement of MECOM. We identified MECOM rearrangements in 51 patients, most of them showed 3q26 involvement by chromosome banding analysis (CBA): inv(3)/t(3;3) (n = 26) and other balanced 3q26 translocations (t(3q26)) (n = 15); the remaining cases (n = 10) showed various 3q abnormalities: five with balanced translocations involving 3q21 or 3q25; two with homogenously staining region (hsr) on 3q; and three with other various 3q abnormalities. Complex rearrangements with multiple breakpoints on 3q, masking 3q26 involvement, were identified in cases with 3q21/3q25 translocations. Furthermore, multiple breaks were observed in two cases with t(3q26), suggesting that complex rearrangement may also occur in apparently simple t(3q26). Intrachromosomal gene amplification was another mechanism leading to MECOM overexpression in two cases with hsr on 3q. In the last three cases, FISH analysis revealed 3q26 involvement that was missed by CBA because of metaphases' suboptimal quality. All cases with MECOM rearrangements showed overexpression by real-time quantitative PCR. Finally, MECOM rearrangements can occur in patients with 3q abnormalities even in the absence of specific 3q26 involvement, underlining that their frequency is underestimated. As MECOM rearrangement has been associated with very poor prognosis, its screening should be performed in patients with any 3q abnormalities. © 2016 Wiley Periodicals, Inc. PMID:26815134

  8. XX/XO, a rare sex chromosome system in Potamotrygon freshwater stingray from the Amazon Basin, Brazil.

    PubMed

    de Souza Valentim, Francisco Carlos; Porto, Jorge Ivan Rebelo; Bertollo, Luiz Antonio Carlos; Gross, Maria Claudia; Feldberg, Eliana

    2013-09-01

    Potamotrygonidae is a representative family of South American freshwater elasmobranchs. Cytogenetic studies were performed in a Potamotrygon species from the middle Negro River, Amazonas, Brazil, here named as Potamotrygon sp. C. Mitotic and meiotic chromosomes were analyzed using conventional staining techniques, C-banding, and detection of the nucleolus organizing regions (NOR) with Silver nitrate (Ag-NOR). The diploid number was distinct between sexes, with males having 2n = 67 chromosomes, karyotype formula 19m + 8sm + 10st + 30a, and fundamental number (FN) = 104, and females having 2n = 68 chromosomes, karyotype formula 20m + 8sm + 10st + 30a, and FN = 106. A large chromosome, corresponding to pair number two in the female karyotype, was missing in the male complement. Male meiotic cells had 33 bivalents plus a large univalent chromosome in metaphase I, and n = 33 and n = 34 chromosomes in metaphase II. These characteristics are consistent with a sex chromosome system of the XX/XO type. Several Ag-NOR sites were identified in both male and female karyotypes. Positive C-banding was located only in the centromeric regions of the chromosomes. This sex chromosome system, which rarely occurs in fish, is now being described for the first time among the freshwater rays of the Amazon basin. PMID:24068425

  9. Construction of Papaya Male and Female BAC Libraries and Application in Physical Mapping of the Sex Chromosomes

    PubMed Central

    Gschwend, Andrea R.; Yu, Qingyi; Moore, Paul; Saski, Christopher; Chen, Cuixia; Wang, Jianping; Na, Jong-Kuk; Ming, Ray

    2011-01-01

    Papaya is a major fruit crop in the tropics and has recently evolved sex chromosomes. Towards sequencing the papaya sex chromosomes, two bacterial artificial chromosome (BAC) libraries were constructed from papaya male and female genomic DNA. The female BAC library was constructed using restriction enzyme BstY I and consists of 36,864 clones with an average insert size of 104 kb, providing 10.3x genome equivalents. The male BAC library was constructed using restriction enzyme EcoR I and consists of 55,296 clones with an average insert size of 101 kb, providing 15.0x genome equivalents. The male BAC library was used in constructing the physical map of the male-specific region of the male Y chromosome (MSY) and in filling gaps and extending the physical map of the hermaphrodite-specific region of the Yh chromosome (HSY) and the X chromosome physical map. The female BAC library was used to extend the X physical map gap. The MSY, HSY, and X physical maps offer a unique opportunity to study chromosomal rearrangements, Y chromosome degeneration, and dosage compensation of the papaya nascent sex chromosomes. PMID:21765640

  10. Getting a full dose? Reconsidering sex chromosome dosage compensation in the silkworm, Bombyx mori.

    PubMed

    Walters, James R; Hardcastle, Thomas J

    2011-01-01

    Dosage compensation--equalizing gene expression levels in response to differences in gene dose or copy number--is classically considered to play a critical role in the evolution of heteromorphic sex chromosomes. As the X and Y diverge through degradation and gene loss on the Y (or the W in female-heterogametic ZW taxa), it is expected that dosage compensation will evolve to correct for sex-specific differences in gene dose. Although this is observed in some organisms, recent genome-wide expression studies in other taxa have revealed striking exceptions. In particular, reports that both birds and the silkworm moth (Bombyx mori) lack dosage compensation have spurred speculation that this is the rule for all female-heterogametic taxa. Here, we revisit the issue of dosage compensation in silkworm by replicating and extending the previous analysis. Contrary to previous reports, our efforts reveal a pattern typically associated with dosage compensated taxa: the global male:female expression ratio does not differ between the Z and autosomes. We believe the previous report of unequal male:female ratios on the Z reflects artifacts of microarray normalization in conjunction with not testing a major assumption that the male:female global expression ratio was unbiased for autosomal loci. However, we also find that the global Z chromosome expression is significantly reduced relative to autosomes, a pattern not expected in dosage compensated taxa. This combination of male:female parity with an overall reduction in expression for sex-linked loci is not consistent with the prevailing evolutionary theory of sex chromosome evolution and dosage compensation. PMID:21508430

  11. Inherited structural cytogenetic abnormalities detected incidentally in fetuses diagnosed prenatally: frequency, parental-age associations, sex-ratio trends, and comparisons with rates of mutants.

    PubMed Central

    Hook, E B; Schreinemachers, D M; Willey, A M; Cross, P K

    1984-01-01

    Rates of structural chromosome abnormalities were analyzed in 24,951 fetuses studied prenatally in which there were no grounds to suspect an inherited abnormality. In about one in 200 prenatal cytogenetic diagnoses, an unexpected structural abnormality was found. The observed rate was 5.3 per 1,000, of which 1.7 per 1,000 were unbalanced and 3.6 per 1,000 balanced. The rate of inherited abnormalities was 3.1-3.7 per 1,000 (0.4-0.9 per 1,000 for unbalanced abnormalities and 2.6-2.8 per 1,000 for balanced abnormalities). The rate of mutants in this series was, by contrast, 1.6-2.2 per 1,000 (0.8-1.2 per 1,000 for unbalanced abnormalities and 0.8-1.0 per 1,000 for balanced abnormalities). The rate of balanced Robertsonian translocation carriers was 0.6 per 1,000 (about 0.25 per 1,000 for mutants and 0.35 per 1,000 for inherited abnormalities), and for other balanced abnormalities, 3.0 per 1,000 (about 0.6 per 1,000 for mutants and 2.4 per 1,000 for inherited abnormalities). The rates of unbalanced Robertsonian translocations was about 0.1 per 1,000, almost all of which were mutants. For supernumerary rearrangements, the rate was 0.9 per 1,000 (about 0.4 per 1,000 inherited and 0.5 per 1,000 mutant). The rates of all unbalanced (nonmosaic) inherited abnormalities (4.0-5.2 per 10,000) were intermediate between higher rates estimated in all conceptuses (9.1-15.8 per 10,000) and rates observed in newborns (1.5-2.5 per 10,000). This trend is probably attributable to fetal mortality associated with unbalanced rearrangements. The rates of balanced (nonmosaic) inherited abnormalities (26.0-28.0 per 10,000), however, were considerably higher than the rates in all conceptuses (13-16.7 per 10,000) or in all live births (12.2-16.0 per 10,000). The major difference was in the rate of inversions. The use of "banding" methods in the studies of amniocentesis but not in most of the live births or abortus studies probably contributes to at least some of these differences. One trend in parental age among the inherited abnormalities was noteworthy. Paternal age was elevated for inherited balanced reciprocal structural abnormalities of paternal origin but not of maternal origin. With regard to sex ratio, there was a greater proportion of females than males among the unbalanced rearrangements both inherited and mutant. There was no obvious sex difference among the balanced rearrangements. PMID:6711562

  12. Assessment of chromosomal abnormalities in sperm of infertile men using sperm karyotyping and multicolour fluorescence in situ hybridization (FISH)

    SciTech Connect

    Moosani, N.; Martin, R.H.

    1994-09-01

    Individuals with male factor infertility resulting from idiopathic oligo-, astheno- or teratozoospermia are frequently offered IVF in an attempt to increase their chances of having a child. A concern remains whether these infertile males have an elevated risk of transmitting chromosomal abnormalities to their offspring. Sperm chromosomal complements from these men were assayed using the human sperm/hamster oocyte fusion system and fluorescence in situ hybridization (FISH) on sperm nuclei. For each of 5 infertile patients, 100 sperm karyotypes were analyzed and multicolour FISH analysis was performed on a minimum of 10,000 sperm nuclei for each chromosome-specific DNA probe for chromosomes 1 (pUC1.77), 12 (D12Z3), X (XC) and Y (DYZ3). As a group, the infertile patients showed increased frequencies of both numerical ({chi}{sup 2}=17.26, {proportional_to} <0.001) and total abnormalities ({chi}{sup 2}=7.78, {proportional_to} <0.01) relative to control donors when assessed by sperm karyotypes. Analysis of sperm nuclei by FISH indicated a significant increase in the frequency of disomy for chromosome 1 in three of the five patients as compared to control donors ({chi}{sup 2}>8.35, {proportional_to} <0.005). In addition, the frequency of XY disomy was significantly higher in four of the five patients studied by FISH ({chi}{sup 2}>10.58, {proportional_to}<0.005), suggesting that mis-segregation caused by the failure of the XY bivalent to pair may play a role in idiopathic male infertility.

  13. Evolutionary history of novel genes on the tammar wallaby Y chromosome: Implications for sex chromosome evolution.

    PubMed

    Murtagh, Veronica J; O'Meally, Denis; Sankovic, Natasha; Delbridge, Margaret L; Kuroki, Yoko; Boore, Jeffrey L; Toyoda, Atsushi; Jordan, Kristen S; Pask, Andrew J; Renfree, Marilyn B; Fujiyama, Asao; Graves, Jennifer A Marshall; Waters, Paul D

    2012-03-01

    We report here the isolation and sequencing of 10 Y-specific tammar wallaby (Macropus eugenii) BAC clones, revealing five hitherto undescribed tammar wallaby Y genes (in addition to the five genes already described) and several pseudogenes. Some genes on the wallaby Y display testis-specific expression, but most have low widespread expression. All have partners on the tammar X, along with homologs on the human X. Nonsynonymous and synonymous substitution ratios for nine of the tammar XY gene pairs indicate that they are each under purifying selection. All 10 were also identified as being on the Y in Tasmanian devil (Sarcophilus harrisii; a distantly related Australian marsupial); however, seven have been lost from the human Y. Maximum likelihood phylogenetic analyses of the wallaby YX genes, with respective homologs from other vertebrate representatives, revealed that three marsupial Y genes (HCFC1X/Y, MECP2X/Y, and HUWE1X/Y) were members of the ancestral therian pseudoautosomal region (PAR) at the time of the marsupial/eutherian split; three XY pairs (SOX3/SRY, RBMX/Y, and ATRX/Y) were isolated from each other before the marsupial/eutherian split, and the remaining three (RPL10X/Y, PHF6X/Y, and UBA1/UBE1Y) have a more complex evolutionary history. Thus, the small marsupial Y chromosome is surprisingly rich in ancient genes that are retained in at least Australian marsupials and evolved from testis-brain expressed genes on the X. PMID:22128133

  14. Evolutionary history of novel genes on the tammar wallaby Y chromosome: Implications for sex chromosome evolution

    PubMed Central

    Murtagh, Veronica J.; O'Meally, Denis; Sankovic, Natasha; Delbridge, Margaret L.; Kuroki, Yoko; Boore, Jeffrey L.; Toyoda, Atsushi; Jordan, Kristen S.; Pask, Andrew J.; Renfree, Marilyn B.; Fujiyama, Asao; Graves, Jennifer A. Marshall; Waters, Paul D.

    2012-01-01

    We report here the isolation and sequencing of 10 Y-specific tammar wallaby (Macropus eugenii) BAC clones, revealing five hitherto undescribed tammar wallaby Y genes (in addition to the five genes already described) and several pseudogenes. Some genes on the wallaby Y display testis-specific expression, but most have low widespread expression. All have partners on the tammar X, along with homologs on the human X. Nonsynonymous and synonymous substitution ratios for nine of the tammar XY gene pairs indicate that they are each under purifying selection. All 10 were also identified as being on the Y in Tasmanian devil (Sarcophilus harrisii; a distantly related Australian marsupial); however, seven have been lost from the human Y. Maximum likelihood phylogenetic analyses of the wallaby YX genes, with respective homologs from other vertebrate representatives, revealed that three marsupial Y genes (HCFC1X/Y, MECP2X/Y, and HUWE1X/Y) were members of the ancestral therian pseudoautosomal region (PAR) at the time of the marsupial/eutherian split; three XY pairs (SOX3/SRY, RBMX/Y, and ATRX/Y) were isolated from each other before the marsupial/eutherian split, and the remaining three (RPL10X/Y, PHF6X/Y, and UBA1/UBE1Y) have a more complex evolutionary history. Thus, the small marsupial Y chromosome is surprisingly rich in ancient genes that are retained in at least Australian marsupials and evolved from testis–brain expressed genes on the X. PMID:22128133

  15. Human papillomavirus prevalence, cervical abnormalities and risk factors among female sex workers in Lima, Peru

    PubMed Central

    Brown, B; Blas, M M; Cabral, A; Byraiah, G; Guerra-Giraldez, C; Sarabia-Vega, V; Carcamo, C; Gravitt, P E; Halsey, N A

    2015-01-01

    Summary Female sex workers (FSWs) are at high risk of human papillomavirus (HPV) infection. Questionnaires were administered to 200 FSWs aged 1826 years in Lima, Peru, to gather risk behaviours, and cervical swab samples were collected for Pap smears and HPV DNA testing as part of a longitudinal study. Participants reported a median of 120 clients in the past month, and 99.2% reported using condoms with clients. The prevalence of any HPV in cervical samples was 66.8%; 34 (17.1%) participants had prevalent HPV 16 or 18, and 92 (46.2%) had one or more oncogenic types. Fifteen women had abnormal Pap smears, 13 of which were HPV DNA positive. Fewer years since first sex was associated with oncogenic HPV prevalence in a model adjusted for previous sexually transmitted infection (STI) status and condom use with partners (prevalence ratio = 0.77, 95% confidence interval [CI] = 0.600.97). Our data confirm the high rates of HPV transmission among FSWs in Peru, highlighting the need for early and effective strategies to prevent cervical cancer. PMID:22581946

  16. Cytogenetic studies in Eigenmannia virescens (Sternopygidae, Gymnotiformes) and new inferences on the origin of sex chromosomes in the Eigenmannia genus

    PubMed Central

    2009-01-01

    Background Cytogenetic studies were carried out on samples of Eigenmannia virescens (Sternopygidae, Gymnotiformes) obtained from four river systems of the Eastern Amazon region (Para, Brazil). Results All four populations had 2n = 38, with ZZ/ZW sex chromosomes (Z, acrocentric; W, submetacentric). Constitutive heterochromatin (CH) was found at the centromeric regions of all chromosomes. The W chromosome had a heterochromatic block in the proximal region of the short arm; this CH was positive for DAPI staining, indicating that it is rich in A-T base pairs. The nucleolar organizer region (NOR) was localized to the short arm of chromosome pair 15; this result was confirmed by fluorescent in situ hybridization (FISH) with human 45S rDNA, and CMA3 staining indicated that the region is G-C rich. FISH with telomeric probes did not show any evidence of interstitial telomeric sequences (ITS). Conclusion Previous studies have shown that the species Eigenmannia sp. 2 and E. virescens have differentiated sex chromosomes, and diverse sex chromosome systems have been described for E. virescens specimens obtained from different Brazilian rivers. A comparative analysis of the present data and prior reports suggests that the sex chromosomes of Eigenmannia may have arisen independently in the different populations. PMID:19930594

  17. Impaired imprinted X chromosome inactivation is responsible for the skewed sex ratio following in vitro fertilization.

    PubMed

    Tan, Kun; An, Lei; Miao, Kai; Ren, Likun; Hou, Zhuocheng; Tao, Li; Zhang, Zhenni; Wang, Xiaodong; Xia, Wei; Liu, Jinghao; Wang, Zhuqing; Xi, Guangyin; Gao, Shuai; Sui, Linlin; Zhu, De-Sheng; Wang, Shumin; Wu, Zhonghong; Bach, Ingolf; Chen, Dong-Bao; Tian, Jianhui

    2016-03-22

    Dynamic epigenetic reprogramming occurs during normal embryonic development at the preimplantation stage. Erroneous epigenetic modifications due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF) are linked to various short- or long-term consequences. Among these, the skewed sex ratio, an indicator of reproductive hazards, was reported in bovine and porcine embryos and even human IVF newborns. However, since the first case of sex skewing reported in 1991, the underlying mechanisms remain unclear. We reported herein that sex ratio is skewed in mouse IVF offspring, and this was a result of female-biased peri-implantation developmental defects that were originated from impaired imprinted X chromosome inactivation (iXCI) through reduced ring finger protein 12 (Rnf12)/X-inactive specific transcript (Xist) expression. Compensation of impaired iXCI by overexpression ofRnf12to up-regulateXistsignificantly rescued female-biased developmental defects and corrected sex ratio in IVF offspring. Moreover, supplementation of an epigenetic modulator retinoic acid in embryo culture medium up-regulatedRnf12/Xistexpression, improved iXCI, and successfully redeemed the skewed sex ratio to nearly 50% in mouse IVF offspring. Thus, our data show that iXCI is one of the major epigenetic barriers for the developmental competence of female embryos during preimplantation stage, and targeting erroneous epigenetic modifications may provide a potential approach for preventing IVF-associated complications. PMID:26951653

  18. Fluorescence in situ hybridization of TP53 for the detection of chromosome 17 abnormalities in myelodysplastic syndromes.

    PubMed

    Sánchez-Castro, Judit; Marco-Betés, Víctor; Gómez-Arbonés, Xavier; García-Cerecedo, Tomás; López, Ricard; Talavera, Elisabeth; Fernández-Ruiz, Sara; Ademà, Vera; Marugan, Isabel; Luño, Elisa; Sanzo, Carmen; Vallespí, Teresa; Arenillas, Leonor; Marco Buades, Josefa; Batlle, Ana; Buño, Ismael; Martín Ramos, María Luisa; Blázquez Rios, Beatriz; Collado Nieto, Rosa; Vargas, Ma Teresa; González Martínez, Teresa; Sanz, Guillermo; Solé, Francesc

    2015-01-01

    Conventional G-banding cytogenetics (CC) detects chromosome 17 (chr17) abnormalities in 2% of patients with de novo myelodysplastic syndromes (MDS). We used CC and fluorescence in situ hybridization (FISH) (LSI p53/17p13.1) to assess deletion of 17p in 531 patients with de novo MDS from the Spanish Group of Hematological Cytogenetics. FISH detected - 17 or 17p abnormalities in 13 cases (2.6%) in whom no 17p abnormalities were revealed by CC: 0.9% of patients with a normal karyotype, 0% in non-informative cytogenetics, 50% of patients with a chr17 abnormality without loss of 17p and 4.7% of cases with an abnormal karyotype not involving chr17. Our results suggest that applying FISH of 17p13 to identify the number of copies of the TP53 gene could be beneficial in patients with a complex karyotype. We recommend using FISH of 17p13 in young patients with a normal karyotype or non-informative cytogenetics, and always in isolated del(17p). PMID:25754580

  19. Normal Female Germ Cell Differentiation Requires the Female X Chromosome to Autosome Ratio and Expression of Sex-Lethal in DROSOPHILA MELANOGASTER

    PubMed Central

    Schüpbach, Trudi

    1985-01-01

    In somatic cells of Drosophila, the ratio of X chromosomes to autosomes (X:A ratio) determines sex and dosage compensation. The present paper addresses the question of whether germ cells also use the X:A ratio for sex determination and dosage compensation. Triploid female embryos were generated which, through the loss of an unstable ring-X chromosome, contained some germ cells of 2X;3A constitution in their ovaries. Such germ cells were shown to differentiate along one of two alternative pathways: a minority developed into normal female oocytes and eggs; the majority developed into abnormal multicellular cysts. An X:A ratio of 1 is, therefore, required in female germ cell development, at least in the mature ovary after stem cell division.—Abnormal development of female germ cells was also observed when 2X;2A germ cells which were homozygous or trans -heterozygous for mutant alleles at the Sex-lethal locus were transplanted into normal female host embryos at the blastoderm stage. Germ cells homozygous for amorphic alleles failed to give rise to normal eggs. Instead, they formed multicellular cysts, very similar to those formed by 2X;3A cells. Zygotic Sxl+ activity is, therefore, also necessary for the development of normal female germ cells. No abnormalities were detected in transplanted germ cells from female embryos whose mothers had been homozygous for the mutation daughterless. When normal XY germ cells were transplanted into female embryos, no traces of such cells could be found in the adult ovary. XY germ cells seem, therefore, not to develop as far as 2X;3A or Sxl homozygous cells in a female gonad. This indicates that neither 2X;3A nor Sxl homozygous germ cells are equivalent to normal XY germ cells. PMID:3920120

  20. Beyond 2/3 and 1/3: The Complex Signatures of Sex-Biased Admixture on the X Chromosome

    PubMed Central

    Goldberg, Amy; Rosenberg, Noah A.

    2015-01-01

    Sex-biased demography, in which parameters governing migration and population size differ between females and males, has been studied through comparisons of X chromosomes, which are inherited sex-specifically, and autosomes, which are not. A common form of sex bias in humans is sex-biased admixture, in which at least one of the source populations differs in its proportions of females and males contributing to an admixed population. Studies of sex-biased admixture often examine the mean ancestry for markers on the X chromosome in relation to the autosomes. A simple framework noting that in a population with equally many females and males, two-thirds of X chromosomes appear in females, suggests that the mean X-chromosomal admixture fraction is a linear combination of female and male admixture parameters, with coefficients 2/3 and 1/3, respectively. Extending a mechanistic admixture model to accommodate the X chromosome, we demonstrate that this prediction is not generally true in admixture models, although it holds in the limit for an admixture process occurring as a single event. For a model with constant ongoing admixture, we determine the mean X-chromosomal admixture, comparing admixture on female and male X chromosomes to corresponding autosomal values. Surprisingly, in reanalyzing African-American genetic data to estimate sex-specific contributions from African and European sources, we find that the range of contributions compatible with the excess African ancestry on the X chromosome compared to autosomes has a wide spread, permitting scenarios either without male-biased contributions from Europe or without female-biased contributions from Africa. PMID:26209245

  1. Msh2 deficiency leads to chromosomal abnormalities, centrosome amplification, and telomere capping defect

    SciTech Connect

    Wang, Yisong; Liu, Yie

    2006-01-01

    Msh2 is a key mammalian DNA mismatch repair (MMR) gene and mutations or deficiencies in mammalian Msh2 gene result in microsatellite instability (MSI+) and the development of cancer. Here, we report that primary mouse embryonic fibroblasts (MEFs) deficient in the murine MMR gene Msh2 (Msh2-/-) showed a significant increase in chromosome aneuploidy, centrosome amplification, and defective mitotic spindle organization and unequal chromosome segregation. Although Msh2-/- mouse tissues or primary MEFs had no apparent change in telomerase activity, telomere length, or recombination at telomeres, Msh2-/- MEFs showed an increase in chromosome end-to-end fusions or chromosome ends without detectable telomeric DNA. These data suggest that MSH2 helps to maintain genomic stability through the regulation of the centrosome and normal telomere capping in vivo and that defects in MMR can contribute to oncogenesis through multiple pathways.

  2. Marker chromosomes lacking {alpha}-satellite DNA: A new intriguing class of abnormalities

    SciTech Connect

    Becker, L.A.; Zinn, A.B.; Stallard, J.R.

    1994-09-01

    Recent studies have implicated {alpha}-satellite DNA as an integral part of the centromere and important for the normal segregation of chromosomes. We analyzed four supernumerary marker chromosomes in which fluorescence in situ hybridization (FISH) could detect neither pancentromeric or chromosome specific {alpha}-satellite DNA. Mosaicism of the markers existed, but each was present in the majority of cells indicating that they segregated normally. FISH with chromosome-specific libraries identified the origins of these markers as chromosomes 13 (1 case) and 15 (3 cases). High resolution analysis, combined with hybridization of a series of cosmid probes, revealed that each marker was a symmetrical duplication of the terminal long arm of the parent chromosome. Telomeric sequences were detected by FISH indicating linear structures. Breakpoint heterogeneity, as defined by cosmid probes, was demonstrated in the three cases involving chromosome 15. No pericentromeric satellite III DNA could be detected on three markers. Studies with anti-centromere antibodies are in progress to assay for centromeric antigens on the markers, as expected at functional centromeric sites. Our results demonstrate that the precise structural identification and heterogeneity of these markers can be easily elucidated using FISH with unique sequence cosmid probes. We conclude from our studies and others in the literature: (1) there is a newly defined class of markers lacking {alpha}-satellite DNA and containing duplications of terminal sequences; (2)neither {alpha}-satellite nor satellite III DNA at levels detectable by FISH is necessary for fidelity in the normal segregation of chromosomes; and (3) these markers were most likely formed by recombination of the long arms during meiosis.

  3. Abnormal meiotic recombination with complex chromosomal rearrangement in an azoospermic man.

    PubMed

    Wang, Liu; Iqbal, Furhan; Li, Guangyuan; Jiang, Xiaohua; Bukhari, Ihtisham; Jiang, Hanwei; Yang, Qingling; Zhong, Liangwen; Zhang, Yuanwei; Hua, Juan; Cooke, Howard J; Shi, Qinghua

    2015-06-01

    Spermatocyte spreading and immunostaining were applied to detect meiotic prophase I progression, homologous chromosome pairing, synapsis and recombination in an azoospermic reciprocal translocation 46, XY, t(5;7;9;13)(5q11;7p11;7p15;9q12;13p12) carrier. Histological examination of the haematoxylin and eosin stained testicular sections revealed reduced germ cells with no spermatids or sperm in the patient. TdT (terminal deoxynucleotidyl transferase)-mediated dUDP nick-end labelling assay showed apoptotic cells in testicular sections of translocation carrier. Immnunofluorescence analysis indicated the presence of an octavalent in all the pachytene spermatocytes analysed in the patient. Meiotic progression was disturbed, as an increase in zygotene (P < 0.001) and decrease in the pachytene spermatocytes (P < 0.001) were observed in the t(5;7;9;13) carrier compared with controls. It was further observed that 93% of octavalents were found partially asynapsed between homologous chromosomes. A significant decrease in the recombination frequency was observed on 5p, 5q, 7q, 9p and 13q in the translocation carrier compared with the reported controls. A significant reduction in XY recombination frequency was also found in the participants. Our results indicated that complex chromosomal rearrangements can impair synaptic integrity of translocated chromosomes, which may reduce chromosomal recombination on translocated as well as non-translocated chromosomes, a phenomenon commonly known as interchromosomal effect. PMID:25892501

  4. Analysis of a novel gene, Sdgc, reveals sex chromosome-dependent differences of medaka germ cells prior to gonad formation.

    PubMed

    Nishimura, Toshiya; Herpin, Amaury; Kimura, Tetsuaki; Hara, Ikuyo; Kawasaki, Toshihiro; Nakamura, Shuhei; Yamamoto, Yasuhiro; Saito, Taro L; Yoshimura, Jun; Morishita, Shinichi; Tsukahara, Tatsuya; Kobayashi, Satoru; Naruse, Kiyoshi; Shigenobu, Shuji; Sakai, Noriyoshi; Schartl, Manfred; Tanaka, Minoru

    2014-09-01

    In vertebrates that have been examined to date, the sexual identity of germ cells is determined by the sex of gonadal somatic cells. In the teleost fish medaka, a sex-determination gene on the Y chromosome, DMY/dmrt1bY, is expressed in gonadal somatic cells and regulates the sexual identity of germ cells. Here, we report a novel mechanism by which sex chromosomes cell-autonomously confer sexually different characters upon germ cells prior to gonad formation in a genetically sex-determined species. We have identified a novel gene, Sdgc (sex chromosome-dependent differential expression in germ cells), whose transcripts are highly enriched in early XY germ cells. Chimeric analysis revealed that sexually different expression of Sdgc is controlled in a germ cell-autonomous manner by the number of Y chromosomes. Unexpectedly, DMY/dmrt1bY was expressed in germ cells prior to gonad formation, but knockdown and overexpression of DMY/dmrt1bY did not affect Sdgc expression. We also found that XX and XY germ cells isolated before the onset of DMY/dmrt1bY expression in gonadal somatic cells behaved differently in vitro and were affected by Sdgc. Sdgc maps close to the sex-determination locus, and recombination around the two loci appears to be repressed. Our results provide important insights into the acquisition and plasticity of sexual differences at the cellular level even prior to the developmental stage of sex determination. PMID:25078651

  5. Expansion of the Pseudo-autosomal Region and Ongoing Recombination Suppression in the Silene latifolia Sex Chromosomes

    PubMed Central

    Bergero, Roberta; Qiu, Suo; Forrest, Alan; Borthwick, Helen; Charlesworth, Deborah

    2013-01-01

    There are two very interesting aspects to the evolution of sex chromosomes: what happens after recombination between these chromosome pairs stops and why suppressed recombination evolves. The former question has been intensively studied in a diversity of organisms, but the latter has been studied largely theoretically. To obtain empirical data, we used codominant genic markers in genetic mapping of the dioecious plant Silene latifolia, together with comparative mapping of S. latifolia sex-linked genes in S. vulgaris (a related hermaphrodite species without sex chromosomes). We mapped 29 S. latifolia fully sex-linked genes (including 21 newly discovered from transcriptome sequencing), plus 6 genes in a recombining pseudo-autosomal region (PAR) whose genetic map length is ∼25 cM in both male and female meiosis, suggesting that the PAR may contain many genes. Our comparative mapping shows that most fully sex-linked genes in S. latifolia are located on a single S. vulgaris linkage group and were probably inherited from a single autosome of an ancestor. However, unexpectedly, our maps suggest that the S. latifolia PAR region expanded through translocation events. Some genes in these regions still recombine in S. latifolia, but some genes from both addition events are now fully sex-linked. Recombination suppression is therefore still ongoing in S. latifolia, and multiple recombination suppression events have occurred in a timescale of few million years, much shorter than the timescale of formation of the most recent evolutionary strata of mammal and bird sex chromosomes. PMID:23733786

  6. Low rates of pregnancy termination for prenatally diagnosed Klinefelter syndrome and other sex chromosome polysomies.

    PubMed

    Meschede, D; Louwen, F; Nippert, I; Holzgreve, W; Miny, P; Horst, J

    1998-12-01

    Over the past 9 years we counseled 55 couples whose unborn child was found to carry a sex chromosome polysomy. We performed a survey of postcounseling parental decisions about continuation or termination of these pregnancies. Of the 55 embryos or fetuses, 23 had the karyotype 47,XXY, 10 had 47,XYY, and 12 had 47,XXX. In addition, there were 10 instances of true mosaicism, i.e. 47,XXY/46,XY (n = 5), 47,XYY/46,XY (n = 2), or 47,XXX/46,XX (n = 3). Mean gestational age (+/-standard deviation) at diagnosis was 18.3+/-3.0 weeks. After comprehensive genetic counseling 48 (87.3%) of these pregnancies were carried to term. In seven cases (12.7%) the parents elected a pregnancy termination. Two of 31 pregnancies (6.5%) primarily ascertained at our center were aborted, whereas amongst the 24 referred cases, 5 couples (20.8%) opted for a termination. The mean gestational age of the terminated pregnancies was 19.7 weeks. The overall termination rate of 12.7% appears low in comparison with literature data. Most reports from other institutions present termination rates between 32 and 66%. The reason for the low rate of induced abortions in our study cohort is not clear. Cultural differences in parental perception of sex chromosomal polysomies may be of importance, and peculiarities of genetic counseling at our institution could also play a role. Although counseling was nondirective, we did put emphasis on providing prospective parents with information from unbiased follow-up studies of children with Klinefelter syndrome and other sex chromosome polysomies. PMID:9856559

  7. X and Y chromosome behavior in brain tumors: Pieces in a puzzle

    SciTech Connect

    Hecht, B.K.; Chatel, M; Gioanni, J.

    1994-09-01

    Sex chromosome behavior in selected somatic cells is baffling. We serendipitously encountered this sex chromosome shuffle while studying malignant gliomas. Tumor specimens from 3/10 (30%) females and 15/27 (56%) males had sex chromosome abnormalities. Specimens from females showed X loss in 2 cases and possible X gain in 1 case. In 2 cases with autosomal abnormalities, only XX cells were found, suggesting that sex chromosome changes are independent of autosomal changes. Specimens from males showed Y rearrangements in 3 cases, Y loss in 15 cases, XX in 3 cases and autosomal abnormalities in 9 cases. The Y rearrangements may provide a route to Y loss whereas the advent of XX clones in male tumors bespeaks X isodisomy, a mechanism for adding an extra active X. The autosomal changes were rearrangements against a pseudo-diploid background in 5 cases and near-triploidy/tetraploidy in 4 cases. The cases with autosomal changes tended not to have sex chromosome abnormalities (p<0.01) and, the converse, cases with sex chromosome anomalies were without autosomal abnormalities (p<0.05). The process of sex chromosome changes appears independent of the process of autosomal changes. The conventional interpretation: the sex chromosome changes in brain tumors are in non-malignant cells. An unconventional interpretation: sex chromosome changes represent an alternative avenue to malignancy.

  8. Use of laser microdissection for the construction of Humulus japonicus Siebold et Zuccarini, 1846 (Cannabaceae) sex chromosome-specific DNA library and cytogenetics analysis

    PubMed Central

    Yakovin, Nickolay A.; Divashuk, Mikhail G.; Razumova, Olga V.; Soloviev, Alexander A.; Karlov, Gennady I.

    2014-01-01

    Abstract Dioecy is relatively rare among plant species, and distinguishable sex chromosomes have been reported in few dioecious species. The multiple sex chromosome system (XX/XY1Y2) of Humulus japonicus Siebold et Zuccarini, 1846 differs from that of other members of the family Cannabaceae, in which the XX/XY chromosome system is present. Sex chromosomes of Humulus japonicus were isolated from meiotic chromosome spreads of males by laser microdissection with the P.A.L.M. MicroLaser system. The chromosomal DNA was directly amplified by degenerate oligonucleotide primed polymerase chain reaction (DOP-PCR). Fast fluorescence in situ hybridization (FAST-FISH) using a labeled, chromosome-specific DOP-PCR product as a probe showed preferential hybridization to sex chromosomes. In addition, the DOP-PCR product was used to construct a short-insert, Humulus japonicus sex chromosomes-specific DNA library. The randomly sequenced clones showed that about 12% of them have significant homology to Humulus lupulus and 88% to Cannabis sativa Linnaeus, 1753 sequences from GenBank database. Forty-four percent of the sequences show homology to plant retroelements. It was concluded that laser microdissection is a useful tool for isolating the DNA of sex chromosomes of Humulus japonicus and for the construction of chromosome-specific DNA libraries for the study of the structure and evolution of sex chromosomes. The results provide the potential for identifying unique or sex chromosome-specific sequence elements in Humulus japonicus and could aid in the identification of sex chromosome-specific repeat and coding regions through chromosome isolation and genome complexity reduction. PMID:25610546

  9. First evidence for (TTAGG)n telomeric sequence and sex chromosome post-reduction in Coleorrhyncha (Insecta, Hemiptera)

    PubMed Central

    Kuznetsova, Valentina G.; Grozeva, Snejana M.; Hartung, Viktor; Anokhin, Boris A.

    2015-01-01

    Abstract Telomeric repeats are general and significant structures of eukaryotic chromosomes. However, nothing is known about the molecular structure of telomeres in the enigmatic hemipteran suborder Coleorrhyncha (moss bugs) commonly considered as the sister group to the suborder Heteroptera (true bugs). The true bugs are known to differ from the rest of the Hemiptera in that they display an inverted sequence of sex chromosome divisions in male meiosis, the so-called sex chromosome post-reduction. To date, there has been no information about meiosis in Coleorrhyncha. Here we report a cytogenetic observation of Peloridium pomponorum, a representative of the single extant coleorrhynchan family Peloridiidae, using the standard chromosome staining and fluorescence in situ hybridization (FISH) with a (TTAGG)n telomeric probe. We show that Peloridium pomponorum displays 2n = 31 (30A + X) in males, the classical insect (TTAGG)n telomere organization and sex chromosome post-reduction during spermatocyte meiosis. The plesiomorphic insect-type (TTAGG)n telomeric sequence is suggested to be preserved in Coleorrhyncha and in a basal heteropteran infraorder Nepomorpha, but absent (lost) in the advanced heteropteran lineages Cimicomorpha and Pentatomomorpha. The telomere structure in other true bug infraorders is currently unknown. We consider here the inverted sequence of sex chromosome divisions as a synapomorphy of the group Coleorrhyncha + Heteroptera. PMID:26753072

  10. Silencing of X-Linked MicroRNAs by Meiotic Sex Chromosome Inactivation

    PubMed Central

    Royo, Hélène; Seitz, Hervé; ElInati, Elias; Peters, Antoine H. F. M.; Stadler, Michael B.; Turner, James M. A.

    2015-01-01

    During the pachytene stage of meiosis in male mammals, the X and Y chromosomes are transcriptionally silenced by Meiotic Sex Chromosome Inactivation (MSCI). MSCI is conserved in therian mammals and is essential for normal male fertility. Transcriptomics approaches have demonstrated that in mice, most or all protein-coding genes on the X chromosome are subject to MSCI. However, it is unclear whether X-linked non-coding RNAs behave in a similar manner. The X chromosome is enriched in microRNA (miRNA) genes, with many exhibiting testis-biased expression. Importantly, high expression levels of X-linked miRNAs (X-miRNAs) have been reported in pachytene spermatocytes, indicating that these genes may escape MSCI, and perhaps play a role in the XY-silencing process. Here we use RNA FISH to examine X-miRNA expression in the male germ line. We find that, like protein-coding X-genes, X-miRNAs are expressed prior to prophase I and are thereafter silenced during pachynema. X-miRNA silencing does not occur in mouse models with defective MSCI. Furthermore, X-miRNAs are expressed at pachynema when present as autosomally integrated transgenes. Thus, we conclude that silencing of X-miRNAs during pachynema in wild type males is MSCI-dependent. Importantly, misexpression of X-miRNAs during pachynema causes spermatogenic defects. We propose that MSCI represents a chromosomal mechanism by which X-miRNAs, and other potential X-encoded repressors, can be silenced, thereby regulating genes with critical late spermatogenic functions. PMID:26509798

  11. MECP2 duplications in six patients with complex sex chromosome rearrangements

    PubMed Central

    Breman, Amy M; Ramocki, Melissa B; Kang, Sung-Hae L; Williams, Misti; Freedenberg, Debra; Patel, Ankita; Bader, Patricia I; Cheung, Sau Wai

    2011-01-01

    Duplications of the Xq28 chromosome region resulting in functional disomy are associated with a distinct clinical phenotype characterized by infantile hypotonia, severe developmental delay, progressive neurological impairment, absent speech, and proneness to infections. Increased expression of the dosage-sensitive MECP2 gene is considered responsible for the severe neurological impairments observed in affected individuals. Although cytogenetically visible duplications of Xq28 are well documented in the published literature, recent advances using array comparative genomic hybridization (CGH) led to the detection of an increasing number of microduplications spanning MECP2. In rare cases, duplication results from intrachromosomal rearrangement between the X and Y chromosomes. We report six cases with sex chromosome rearrangements involving duplication of MECP2. Cases 1–4 are unbalanced rearrangements between X and Y, resulting in MECP2 duplication. The additional Xq material was translocated to Yp in three cases (cases 1–3), and to the heterochromatic region of Yq12 in one case (case 4). Cases 5 and 6 were identified by array CGH to have a loss in copy number at Xp and a gain in copy number at Xq28 involving the MECP2 gene. In both cases, fluorescent in situ hybridization (FISH) analysis revealed a recombinant X chromosome containing the duplicated material from Xq28 on Xp, resulting from a maternal pericentric inversion. These cases add to a growing number of MECP2 duplications that have been detected by array CGH, while demonstrating the value of confirmatory chromosome and FISH studies for the localization of the duplicated material and the identification of complex rearrangements. PMID:21119712

  12. Meiotic Sex Chromosome Inactivation Is Disrupted in Sterile Hybrid Male House Mice

    PubMed Central

    Campbell, Polly; Good, Jeffrey M.; Nachman, Michael W.

    2013-01-01

    In male mammals, the X and Y chromosomes are transcriptionally silenced in primary spermatocytes by meiotic sex chromosome inactivation (MSCI) and remain repressed for the duration of spermatogenesis. Here, we test the longstanding hypothesis that disrupted MSCI might contribute to the preferential sterility of heterogametic hybrid males. We studied a cross between wild-derived inbred strains of Mus musculus musculus and M. m. domesticus in which sterility is asymmetric: F1 males with a M. m. musculus mother are sterile or nearly so while F1 males with a M. m. domesticus mother are normal. In previous work, we discovered widespread overexpression of X-linked genes in the testes of sterile but not fertile F1 males. Here, we ask whether this overexpression is specifically a result of disrupted MSCI. To do this, we isolated cells from different stages of spermatogenesis and measured the expression of several genes using quantitative PCR. We found that X overexpression in sterile F1 primary spermatocytes is coincident with the onset of MSCI and persists in postmeiotic spermatids. Using a series of recombinant X genotypes, we then asked whether X overexpression in hybrids is controlled by cis-acting loci across the X chromosome. We found that it is not. Instead, one large interval in the proximal portion of the M. m. musculus X chromosome is associated with both overexpression and the severity of sterility phenotypes in hybrids. These results demonstrate a strong association between X-linked hybrid male sterility and disruption of MSCI and suggest that trans-acting loci on the X are important for the transcriptional regulation of the X chromosome during spermatogenesis. PMID:23307891

  13. Silencing of X-Linked MicroRNAs by Meiotic Sex Chromosome Inactivation.

    PubMed

    Royo, Hélène; Seitz, Hervé; ElInati, Elias; Peters, Antoine H F M; Stadler, Michael B; Turner, James M A

    2015-10-01

    During the pachytene stage of meiosis in male mammals, the X and Y chromosomes are transcriptionally silenced by Meiotic Sex Chromosome Inactivation (MSCI). MSCI is conserved in therian mammals and is essential for normal male fertility. Transcriptomics approaches have demonstrated that in mice, most or all protein-coding genes on the X chromosome are subject to MSCI. However, it is unclear whether X-linked non-coding RNAs behave in a similar manner. The X chromosome is enriched in microRNA (miRNA) genes, with many exhibiting testis-biased expression. Importantly, high expression levels of X-linked miRNAs (X-miRNAs) have been reported in pachytene spermatocytes, indicating that these genes may escape MSCI, and perhaps play a role in the XY-silencing process. Here we use RNA FISH to examine X-miRNA expression in the male germ line. We find that, like protein-coding X-genes, X-miRNAs are expressed prior to prophase I and are thereafter silenced during pachynema. X-miRNA silencing does not occur in mouse models with defective MSCI. Furthermore, X-miRNAs are expressed at pachynema when present as autosomally integrated transgenes. Thus, we conclude that silencing of X-miRNAs during pachynema in wild type males is MSCI-dependent. Importantly, misexpression of X-miRNAs during pachynema causes spermatogenic defects. We propose that MSCI represents a chromosomal mechanism by which X-miRNAs, and other potential X-encoded repressors, can be silenced, thereby regulating genes with critical late spermatogenic functions. PMID:26509798

  14. Morphometric differentiation in Cornops aquaticum (Orthoptera: Acrididae): associations with sex, chromosome, and geographic conditions.

    PubMed

    Romero, María Luciana; Colombo, Pablo César; Remis, María Isabel

    2014-01-01

    The water-hyacinth grasshopper Cornops aquaticum (Bruner) (Orthoptera: Acrididae) is native to South America and inhabits lowlands from southern Mexico to central Argentina and Uruguay. This grasshopper feeds and lays eggs on species from the genera Eichhornia and Pontederia. Particularly, Eichhornia crassipes is considered "the world's worst water weed," and the release of C. aquaticum was proposed as a form of biological control. Morphometric variation on the chromosomally differentiated populations from the middle and lower Paraná River and its possible association with geographic, sex, and chromosomal conditions was analyzed. Significant phenotype variation in C. aquaticum population was detected. C. aquaticum presents body-size sexual dimorphism, females being bigger than males. Female-biased sexual size dimorphism for all five analyzed traits was detected. The assessment of variation in sexual size dimorphism for tegmen length showed that this trait scaled allometrically, indicating that males and females did not vary in a similar fashion. The detected allometry was consistent with Rensch's rule demonstrating greater evolutionary divergence in male size than in female size and suggests that males are more sensitive to environmental condition. The analysis of morphometric variation in the context of chromosome constitution showed that the presence of fusion 1/6 was related to body-size variation. Fusion carriers displayed bigger body size than standard homozygotes. Besides, a positive relationship between tegmen length and the number of fused chromosomes was detected, showing a chromosome dose effect. Because the highest frequency of fusions has been found in the lower Paraná River, a marginal environment for this species, the results found would support the hypothesis that some supergenes located in the fusions may be favored in the southern populations, thus contributing to the establishment and maintenance of the polymorphism. PMID:25399431

  15. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis

    PubMed Central

    Du, Sienmi; Itoh, Noriko; Askarinam, Sahar; Hill, Haley; Arnold, Arthur P.; Voskuhl, Rhonda R.

    2014-01-01

    Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease. PMID:24550311

  16. Sexual differentiation of the zebra finch song system: potential roles for sex chromosome genes

    PubMed Central

    Tomaszycki, Michelle L; Peabody, Camilla; Replogle, Kirstin; Clayton, David F; Tempelman, Robert J; Wade, Juli

    2009-01-01

    Background Recent evidence suggests that some sex differences in brain and behavior might result from direct genetic effects, and not solely the result of the organizational effects of steroid hormones. The present study examined the potential role for sex-biased gene expression during development of sexually dimorphic singing behavior and associated song nuclei in juvenile zebra finches. Results A microarray screen revealed more than 2400 putative genes (with a false discovery rate less than 0.05) exhibiting sex differences in the telencephalon of developing zebra finches. Increased expression in males was confirmed in 12 of 20 by qPCR using cDNA from the whole telencephalon; all of these appeared to be located on the Z sex chromosome. Six of the genes also showed increased expression in one or more of the song control nuclei of males at post-hatching day 25. Although the function of half of the genes is presently unknown, we have identified three as: 17-beta-hydroxysteroid dehydrogenase type IV, methylcrotonyl-CoA carboxylase, and sorting nexin 2. Conclusion The data suggest potential influences of these genes in song learning and/or masculinization of song system morphology, both of which are occurring at this developmental stage. PMID:19309515

  17. X1X1X2X2/X1X2Y sex chromosome systems in the Neotropical Gymnotiformes electric fish of the genus Brachyhypopomus

    PubMed Central

    Cardoso, Adauto Lima; Pieczarka, Julio Cesar; Nagamachi, Cleusa Yoshiko

    2015-01-01

    Several types of sex chromosome systems have been recorded among Gymnotiformes, including male and female heterogamety, simple and multiple sex chromosomes, and different mechanisms of origin and evolution. The X1X1X2X2/X1X2Y systems identified in three species of this order are considered homoplasic for the group. In the genus Brachyhypopomus, only B. gauderio presented this type of system. Herein we describe the karyotypes of Brachyhypopomus pinnicaudatus and B. n. sp. FLAV, which have an X1X1X2X2/X1X2Y sex chromosome system that evolved via fusion between an autosome and the Y chromosome. The morphology of the chromosomes and the meiotic pairing suggest that the sex chromosomes of B. gauderio and B. pinnicaudatus have a common origin, whereas in B . n. sp. FLAV the sex chromosome system evolved independently. However, we cannot discard the possibility of common origin followed by distinct processes of differentiation. The identification of two new karyotypes with an X1X1X2X2/X1X2Y sex chromosome system in Gymnotiformes makes it the most common among the karyotyped species of the group. Comparisons of these karyotypes and the evolutionary history of the taxa indicate independent origins for their sex chromosomes systems. The recurrent emergence of the X1X1X2X2/X1X2Y system may represent sex chromosomes turnover events in Gymnotiformes. PMID:26273225

  18. Sensitive and specific detection of mosaic chromosomal abnormalities using the Parent-of-Origin-based Detection (POD) method

    PubMed Central

    2013-01-01

    Background Mosaic somatic alterations are present in all multi-cellular organisms, but the physiological effects of low-level mosaicism are largely unknown. Most mosaic alterations remain undetectable with current analytical approaches, although the presence of such alterations is increasingly implicated as causative for disease. Results Here, we present the Parent-of-Origin-based Detection (POD) method for chromosomal abnormality detection in trio-based SNP microarray data. Our software implementation, triPOD, was benchmarked using a simulated dataset, outperformed comparable software for sensitivity of abnormality detection, and displayed substantial improvement in the detection of low-level mosaicism while maintaining comparable specificity. Examples of low-level mosaic abnormalities from a large autism dataset demonstrate the benefits of the increased sensitivity provided by triPOD. The triPOD analyses showed robustness across multiple types of Illumina microarray chips. Two large, clinically-relevant datasets were characterized and compared. Conclusions Our method and software provide a significant advancement in the ability to detect low-level mosaic abnormalities, thereby opening new avenues for research into the implications of mosaicism in pathogenic and non-pathogenic processes. PMID:23724825

  19. FDA Approves New Drug for Chronic Lymphocytic Leukemia in Patients with a Specific Chromosomal Abnormality

    MedlinePlus

    ... diagnosed each year. CLL is characterized by the progressive accumulation of abnormal lymphocytes, a type of white ... orphan drug designation, which provides incentives such as tax credits, user fee waivers and eligibility for exclusivity ...

  20. Characterization of the temporal persistence of chromosomal abnormalities in the semen of Hodkin`s disease patients after treatment with NOVP chemotherapy using multi-chromosome fluorescence in situ hybridization

    SciTech Connect

    Cassel, M.J.; Robbins, W.A.; Wyrobek, A.J.; Meistrich, M.L.

    1994-12-31

    Three-chromosome fluorescence in situ hybridization (FISH) was applied to sperm of men with Hodgkin`s disease to measure the persistence of chromosomally abnormal sperm within the time interval of 3 to 33 months after the end of treatment. NOVP chemotherapy includes the agents novantrone, oncovin, vinblastine, and prednisone, two of which are spindle poisons expected to induce aneuploidy. Semen samples were evaluated for the frequencies of fluorescence phenotypes representing hyperhaploidy, hypohaploidy, and genomic duplications using DNA probes specific for repetitive sequences on chromosomes X,Y, and 8. Using this procedure, NOVP was previously shown to induce chromosomally abnormal sperm in treated patients. In a longitudinal assessment of 11 semen samples from 2 men, frequencies of abnormal sperm appeared to return to pre-treatment levels at {approximately}6 months after the end of treatment and remained at these levels up to 33 months after the end of treatment. However, pre-treatment frequencies of chromosomally abnormal cells in Hodgkin`s patients were elevated above those found in normal healthy men. Additional patients are being evaluated to determine how long after therapy Hodgkin`s disease patients remain at increased risk for producing chromosomally abnormal sperm.

  1. Presence of chromosomal abnormalities and lack of AIDS retrovirus DNA sequences in AIDS-associated Kaposi's sarcoma.

    PubMed

    Delli Bovi, P; Donti, E; Knowles, D M; Friedman-Kien, A; Luciw, P A; Dina, D; Dalla-Favera, R; Basilico, C

    1986-12-01

    The frequent occurrence of Kaposi's sarcoma (KS) in association with the acquired immune deficiency syndrome (AIDS) could be due to the fact that the etiological agent of this tumor is the same retrovirus causing AIDS, to another oncogenic virus frequently found in AIDS patients, or to the unmasking of the tumorigenic potential of KS cells by immunosuppression. We have therefore investigated the presence of DNA sequences homologous to the AIDS retrovirus, cytomegalovirus (CMV), and hepatitis B virus in 13 KS necropsies and biopsies from AIDS patients. All KS DNA samples were negative for AIDS retrovirus or hepatitis B DNA sequences. Two DNAs from necropsies contained CMV DNA, but the data suggested the presence of replicating CMV DNA due to generalized infection. We have also studied cell cultures derived from KS skin biopsies of AIDS patients. These cultures had a short lifetime in vitro and expressed some markers of endothelial cells. The cells were not tumorigenic in nude mice but contained a number of chromosomal rearrangements which were often monoclonal within the same culture. However, these abnormalities were different from culture to culture and even in cultures from the same biopsy. The presence of these chromosomal abnormalities seemed to correlate with the cell positivity for endothelial markers. Taken together these results indicate that neither the AIDS retrovirus, CMV, or hepatitis B virus is directly responsible for the altered growth of KS cells, that KS may be polyclonal even within the same lesion, and that KS cells have a tendency to karyotypic rearrangements. PMID:3022918

  2. Prenatal diagnosis of chromosomal abnormalities using array-based comparative genomic hybridization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to evaluate the feasibility of using a targeted array-CGH strategy for prenatal diagnosis of genomic imbalances in a clinical setting of current pregnancies. Women undergoing prenatal diagnosis were counseled and offered array-CGH (BCM V4.0) in addition to routine chromosome ...

  3. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome

    PubMed Central

    Kazama, Yusuke; Ishii, Kotaro; Aonuma, Wataru; Ikeda, Tokihiro; Kawamoto, Hiroki; Koizumi, Ayako; Filatov, Dmitry A.; Chibalina, Margarita; Bergero, Roberta; Charlesworth, Deborah; Abe, Tomoko; Kawano, Shigeyuki

    2016-01-01

    Sex chromosomes are particularly interesting regions of the genome for both molecular genetics and evolutionary studies; yet, for most species, we lack basic information, such as the gene order along the chromosome. Because they lack recombination, Y-linked genes cannot be mapped genetically, leaving physical mapping as the only option for establishing the extent of synteny and homology with the X chromosome. Here, we developed a novel and general method for deletion mapping of non-recombining regions by solving “the travelling salesman problem”, and evaluate its accuracy using simulated datasets. Unlike the existing radiation hybrid approach, this method allows us to combine deletion mutants from different experiments and sources. We applied our method to a set of newly generated deletion mutants in the dioecious plant Silene latifolia and refined the locations of the sex-determining loci on its Y chromosome map. PMID:26742857

  4. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome

    NASA Astrophysics Data System (ADS)

    Kazama, Yusuke; Ishii, Kotaro; Aonuma, Wataru; Ikeda, Tokihiro; Kawamoto, Hiroki; Koizumi, Ayako; Filatov, Dmitry A.; Chibalina, Margarita; Bergero, Roberta; Charlesworth, Deborah; Abe, Tomoko; Kawano, Shigeyuki

    2016-01-01

    Sex chromosomes are particularly interesting regions of the genome for both molecular genetics and evolutionary studies; yet, for most species, we lack basic information, such as the gene order along the chromosome. Because they lack recombination, Y-linked genes cannot be mapped genetically, leaving physical mapping as the only option for establishing the extent of synteny and homology with the X chromosome. Here, we developed a novel and general method for deletion mapping of non-recombining regions by solving “the travelling salesman problem”, and evaluate its accuracy using simulated datasets. Unlike the existing radiation hybrid approach, this method allows us to combine deletion mutants from different experiments and sources. We applied our method to a set of newly generated deletion mutants in the dioecious plant Silene latifolia and refined the locations of the sex-determining loci on its Y chromosome map.

  5. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome.

    PubMed

    Kazama, Yusuke; Ishii, Kotaro; Aonuma, Wataru; Ikeda, Tokihiro; Kawamoto, Hiroki; Koizumi, Ayako; Filatov, Dmitry A; Chibalina, Margarita; Bergero, Roberta; Charlesworth, Deborah; Abe, Tomoko; Kawano, Shigeyuki

    2016-01-01

    Sex chromosomes are particularly interesting regions of the genome for both molecular genetics and evolutionary studies; yet, for most species, we lack basic information, such as the gene order along the chromosome. Because they lack recombination, Y-linked genes cannot be mapped genetically, leaving physical mapping as the only option for establishing the extent of synteny and homology with the X chromosome. Here, we developed a novel and general method for deletion mapping of non-recombining regions by solving "the travelling salesman problem", and evaluate its accuracy using simulated datasets. Unlike the existing radiation hybrid approach, this method allows us to combine deletion mutants from different experiments and sources. We applied our method to a set of newly generated deletion mutants in the dioecious plant Silene latifolia and refined the locations of the sex-determining loci on its Y chromosome map. PMID:26742857

  6. Intragenic sex-chromosomal crossovers of Xmrk oncogene alleles affect pigment pattern formation and the severity of melanoma in Xiphophorus.

    PubMed Central

    Gutbrod, H; Schartl, M

    1999-01-01

    The X and Y chromosomes of the platyfish (Xiphophorus maculatus) contain a region that encodes several important traits, including the determination of sex, pigment pattern formation, and predisposition to develop malignant melanoma. Several sex-chromosomal crossovers were identified in this region. As the melanoma-inducing oncogene Xmrk is the only molecularly identified constituent, its genomic organization on both sex chromosomes was analyzed in detail. Using X and Y allele-specific sequence differences a high proportion of the crossovers was found to be intragenic in the oncogene Xmrk, concentrating in the extracellular domain-encoding region. The genetic and molecular data allowed establishment of an order of loci over approximately 0.6 cM. It further revealed a sequence located within several kilobases of the extracellular domain-encoding region of Xmrk that regulates overexpression of the oncogene. PMID:9927468

  7. Abnormal chromosome segregation at early cleavage is a major cause of the full-term developmental failure of mouse clones.

    PubMed

    Mizutani, Eiji; Yamagata, Kazuo; Ono, Tetsuo; Akagi, Satoshi; Geshi, Masaya; Wakayama, Teruhiko

    2012-04-01

    To clarify the causes of the poor success rate of somatic cell nuclear transfer (SCNT), we addressed the impact of abnormalities observed at early cleavage stages of development on further full-term development using 'less-damage' imaging technology. To visualize the cellular and nuclear division processes, SCNT embryos were injected with a mixture of mRNAs encoding enhanced green fluorescent protein coupled with α-tubulin (EGFP-α-tubulin) and monomeric red fluorescent protein 1 coupled with histone H2B (H2B-mRFP1) and monitored until the morula/blastocyst stage three-dimensionally. First, the rate of development of SCNT embryos and its effect on the full-term developmental ability were analyzed. The speed of development was retarded and varied in SCNT embryos. Despite the rate of development, SCNT morulae having more than eight cells at 70h after activation could develop to term. Next, chromosomal segregation was investigated in SCNT embryos during early embryogenesis. To our surprise, more than 90% of SCNT embryos showed abnormal chromosomal segregation (ACS) before they developed to morula stage. Importantly, ACS per se did not affect the rate of development, morphology or cellular differentiation in preimplantation development. However, ACS occurring before the 8-cell stage severely inhibited postimplantation development. Thus, the morphology and/or rate of development are not significant predictive markers for the full-term development of SCNT embryos. Moreover, the low efficiency of animal cloning may be caused primarily by genetic abnormalities such as ACS, in addition to the epigenetic errors described previously. PMID:22266425

  8. Two permanent linear chains of sex chromosomes in Neotermes fulvescens and karyotypes of two other neotropical Kalotermitidae species (Insecta, Isoptera).

    PubMed

    Martins, V G; Mesa, A

    1995-10-01

    Meiosis and (or) mitosis of males and females of Cryptotermes brevis, Eucryptotermes wheeleri, and Neotermes fulvescens, all of them from the neotropical region, were analyzed. Cryptotermes brevis showed a similar karyotype to that obtained by other authors for specimens of the neartic and Australian regions (2n = 36 for females and 2n = 37 for males, with XX and XYY sex mechanisms, respectively). Eucryptotermes wheeleri, the only species that has been described in this genus, showed the lowest number of chromosomes reported for Isoptera (2n = 22) until now. The male meiosis of this species presents a linear chain of six sex chromosomes, three of them being X and three of them Y chromosomes. Neotermes fulvescens showed a diploid number of 40 for males and 42 for females and, in the first male meiosis, two linear chains of chromosomes, both related to sex. One of the chains, named A, presented nine chromosomes and the other, named B, seven chromosomes. Hypotheses to explain these mechanisms are formulated in this paper and putative ancestral relationships with other species of Kalotermitidae are presented. PMID:18470219

  9. Identification of putative sex chromosomes in the blue tilapia, Oreochromis aureus, through synaptonemal complex and FISH analysis.

    PubMed

    Campos-Ramos, R; Harvey, S C; Masabanda, J S; Carrasco, L A; Griffin, D K; McAndrew, B J; Bromage, N R; Penman, D J

    2001-01-01

    Sex determination in the blue tilapia, Oreochromis aureus, is primarily a ZW female-ZZ male system. Here, by analysis of the pachytene meiotic chromosomes of O. aureus, we demonstrate the presence of two distinct regions of restricted pairing present only in heterogametic fish. The first, a subterminal region of the largest bivalent is located near to the region of unpairing found in the closely related species O. niloticus, while the second is in a small bivalent, most of which was unpaired. These results suggest that O. aureus has two separate pairs of sex chromosomes. PMID:11841163

  10. Molecular antagonism between X-chromosome and autosome signals determines nematode sex

    PubMed Central

    Farboud, Behnom; Nix, Paola; Jow, Margaret M.; Gladden, John M.; Meyer, Barbara J.

    2013-01-01

    Sex is determined in Caenorhabditis elegans by the ratio of X chromosomes to the sets of autosomes, the X:A signal. A set of genes called X signal elements (XSEs) communicates X-chromosome dose by repressing the masculinizing sex determination switch gene xol-1 (XO lethal) in a dose-dependent manner. xol-1 is active in 1X:2A embryos (males) but repressed in 2X:2A embryos (hermaphrodites). Here we showed that the autosome dose is communicated by a set of autosomal signal elements (ASEs) that act in a cumulative, dose-dependent manner to counter XSEs by stimulating xol-1 transcription. We identified new ASEs and explored the biochemical basis by which ASEs antagonize XSEs to determine sex. Multiple antagonistic molecular interactions carried out on a single promoter explain how different X:A values elicit different sexual fates. XSEs (nuclear receptors and homeodomain proteins) and ASEs (T-box and zinc finger proteins) bind directly to several sites on xol-1 to counteract each other's activities and thereby regulate xol-1 transcription. Disrupting ASE- and XSE-binding sites in vivo recapitulated the misregulation of xol-1 transcription caused by disrupting cognate signal element genes. XSE- and ASE-binding sites are distinct and nonoverlapping, suggesting that direct competition for xol-1 binding is not how XSEs counter ASEs. Instead, XSEs likely antagonize ASEs by recruiting cofactors with reciprocal activities that induce opposite transcriptional states. Most ASE- and XSE-binding sites overlap xol-1's −1 nucleosome, which carries activating chromatin marks only when xol-1 is turned on. Coactivators and corepressors tethered by proteins similar to ASEs and XSEs are known to deposit and remove such marks. The concept of a sex signal comprising competing XSEs and ASEs arose as a theory for fruit flies a century ago. Ironically, while the recent work of others showed that the fly sex signal does not fit this simple paradigm, our work shows that the worm signal does. PMID:23666922

  11. Flow Cytometric Chromosomal Sex Sorting of Stallion Spermatozoa Induces Oxidative Stress on Mitochondria and Genomic DNA.

    PubMed

    Balao da Silva, C M; Ortega-Ferrusola, C; Morrell, J M; Rodriguez Martínez, H; Peña, F J

    2016-02-01

    To date, the only repeatable method to select spermatozoa for chromosomal sex is the Beltsville sorting technology using flow cytometry. Improvement of this technology in the equine species requires increasing awareness of the modifications that the sorting procedure induces on sperm intactness. Oxidative stress is regarded as the major damaging phenomenon, and increasing evidence regards handling of spermatozoa - including sex sorting - as basic ground for oxidative damage. The aim of this study was to disclose whether the flow cytometric sorting procedure increases the production of reactive oxygen species (ROS), and to identify if ROS production relates to DNA damage in sorted spermatozoa using specific flow cytometry-based assays. After sorting, oxidative stress increased from 26% to 33% in pre- and post-incubation controls, to 46% after sex sorting (p < 0.05). Proportions of DNA fragmentation index post-sorting were approximately 10% higher (31.3%); an effect apparently conduced via oxidative DNA damage as revealed by the oxyDNA assay. The probable origin of this increased oxidative stress owes the removal of enough seminal plasma due to the unphysiological sperm extension, alongside a deleterious effect of high pressure on mitochondria during the sorting procedure. PMID:26592367