Sample records for abnormal sex chromosome

  1. Sex chromosome abnormalities and psychiatric diseases

    PubMed Central

    Zhang, Xinzhu; Yang, Jian; Li, Yuhong; Ma, Xin; Li, Rena

    2017-01-01

    Excesses of sex chromosome abnormalities in patients with psychiatric diseases have recently been observed. It remains unclear whether sex chromosome abnormalities are related to sex differences in some psychiatric diseases. While studies showed evidence of susceptibility loci over many sex chromosomal regions related to various mental diseases, others demonstrated that the sex chromosome aneuploidies may be the key to exploring the pathogenesis of psychiatric disease. In this review, we will outline the current evidence on the interaction of sex chromosome abnormalities with schizophrenia, autism, ADHD and mood disorders. PMID:27992373

  2. Chromosome abnormalities in sperm of individuals with constitutional sex chromosomal abnormalities.

    PubMed

    Ferlin, A; Garolla, A; Foresta, C

    2005-01-01

    The most common type of karyotype abnormality detected in infertile subjects is represented by Klinefelter's syndrome, and the most frequent non-chromosomal alteration is represented by Y chromosome long arm microdeletions. Here we report our experience and a review of the literature on sperm sex chromosome aneuploidies in these two conditions. Non mosaic 47,XXY Klinefelter patients (12 subjects) show a significantly lower percentage of normal Y-bearing sperm and slightly higher percentage of normal X-bearing sperm. Consistent with the hypothesis that 47,XXY germ cells may undergo and complete meiosis, aneuploidy rate for XX- and XY-disomies is also increased with respect to controls, whereas the percentage of YY-disomies is normal. Aneuploidy rates in men with mosaic 47,XXY/46,XY (11 subjects) are lower than those observed in men with non-mosaic Klinefelter's syndrome, and only the frequency of XY-disomic sperm is significantly higher with respect to controls. Although the great majority of children born by intracytoplasmic sperm injection from Klinefelter subjects are chromosomally normal, the risk of producing offspring with chromosome aneuploidies is significant. Men with Y chromosome microdeletions (14 subjects) showed a reduction of normal Y-bearing sperm, and an increase in nullisomic and XY-disomic sperm, suggesting an instability of the deleted Y chromosome causing its loss in germ cells, and meiotic alterations leading to XY non-disjunction. Intracytoplasmic injection of sperm from Y-deleted men will therefore transmit the deletion to male children, and therefore the spermatogenic impairment, but raises also concerns of generating 45,X and 47,XXY embryos. Copyright 2005 S. Karger AG, Basel.

  3. Sex chromosomal abnormalities associated with equine infertility: validation of a simple molecular screening tool in the Purebred Spanish Horse.

    PubMed

    Anaya, G; Molina, A; Valera, M; Moreno-Millán, M; Azor, P; Peral-García, P; Demyda-Peyrás, S

    2017-08-01

    Chromosomal abnormalities in the sex chromosome pair (ECAX and ECAY) are widely associated with reproductive problems in horses. However, a large proportion of these abnormalities remains undiagnosed due to the lack of an affordable diagnostic tool that allows for avoiding karyotyping tests. Hereby, we developed an STR (single-tandem-repeat)-based molecular method to determine the presence of the main sex chromosomal abnormalities in horses in a fast, cheap and reliable way. The frequency of five ECAX-linked (LEX026, LEX003, TKY38, TKY270 and UCDEQ502) and two ECAY-linked (EcaYH12 and SRY) markers was characterized in 261 Purebred Spanish Horses to determine the efficiency of the methodology developed to be used as a chromosomal diagnostic tool. All the microsatellites analyzed were highly polymorphic, with a sizeable number of alleles (polymorphic information content > 0.5). Based on this variability, the methodology showed 100% sensitivity and 99.82% specificity to detect the most important sex chromosomal abnormalities reported in horses (chimerism, Turner's syndrome and sex reversal syndromes). The method was also validated with 100% efficiency in 10 individuals previously diagnosed as chromosomally aberrant. This STR screening panel is an efficient and reliable molecular-cytogenetic tool for the early detection of sex chromosomal abnormalities in equines that could be included in breeding programs to save money, effort and time of veterinary practitioners and breeders. © 2017 Stichting International Foundation for Animal Genetics.

  4. Sex chromosome abnormalities and sterility in river buffalo.

    PubMed

    Di Meo, G P; Perucatti, A; Di Palo, R; Iannuzzi, A; Ciotola, F; Peretti, V; Neglia, G; Campanile, G; Zicarelli, L; Iannuzzi, L

    2008-01-01

    Thirteen male river buffaloes, 119 females with reproductive problems (which had reached reproductive age but had failed to become pregnant in the presence of bulls) and two male co-twins underwent both clinical and cytogenetic investigation. Clinical analyses performed by veterinary practitioners revealed normal body conformation and external genitalia for most females. However, some subjects showed some slight male traits such as large base horn circumference, prominent withers and tight pelvis. Rectal palpation revealed damage to internal sex adducts varying between atrophy of Mullerian ducts to complete lack of internal sex adducts (with closed vagina). All bulls had normal karyotypes at high resolution banding, while 25 animals (23 females and 2 male co-twins) (20.7%) with reproductive problems were found to carry the following sex chromosome abnormalities: X monosomy (2 females); X trisomy (1 female); sex reversal syndrome (2 females); and free-martinism (18 females and 2 males). All female carriers were sterile. Copyright 2008 S. Karger AG, Basel.

  5. Decision to abort after a prenatal diagnosis of sex chromosome abnormality: a systematic review of the literature.

    PubMed

    Jeon, Kwon Chan; Chen, Lei-Shih; Goodson, Patricia

    2012-01-01

    We performed a systematic review of factors affecting parental decisions to continue or terminate a pregnancy after prenatal diagnosis of a sex chromosome abnormality, as reported in published studies from 1987 to May 2011. Based on the Matrix Method for systematic reviews, 19 studies were found in five electronic databases, meeting specific inclusion/exclusion criteria. Abstracted data were organized in a matrix. Alongside the search for factors influencing parental decisions, each study was judged on its methodological quality and assigned a methodological quality score. Decisions either to terminate or to continue a sex chromosome abnormality-affected pregnancy shared five similar factors: specific type of sex chromosome abnormality, gestational week at diagnosis, parents' age, providers' genetic expertise, and number of children/desire for (more) children. Factors unique to termination decisions included parents' fear/anxiety and directive counseling. Factors uniquely associated with continuation decisions were parents' socioeconomic status and ethnicity. The studies' average methodological quality score was 10.6 (SD = 1.67; range, 8-14). Findings from this review can be useful in adapting and modifying guidelines for genetic counseling after prenatal diagnosis of a sex chromosome abnormality. Moreover, improving the quality of future studies on this topic may allow clearer understanding of the most influential factors affecting parental decisions.

  6. Function of the Sex Chromosomes in Mammalian Fertility

    PubMed Central

    Heard, Edith; Turner, James

    2011-01-01

    The sex chromosomes play a highly specialized role in germ cell development in mammals, being enriched in genes expressed in the testis and ovary. Sex chromosome abnormalities (e.g., Klinefelter [XXY] and Turner [XO] syndrome) constitute the largest class of chromosome abnormalities and the commonest genetic cause of infertility in humans. Understanding how sex-gene expression is regulated is therefore critical to our understanding of human reproduction. Here, we describe how the expression of sex-linked genes varies during germ cell development; in females, the inactive X chromosome is reactivated before meiosis, whereas in males the X and Y chromosomes are inactivated at this stage. We discuss the epigenetics of sex chromosome inactivation and how this process has influenced the gene content of the mammalian X and Y chromosomes. We also present working models for how perturbations in sex chromosome inactivation or reactivation result in subfertility in the major classes of sex chromosome abnormalities. PMID:21730045

  7. Clinical accuracy of abnormal cell-free fetal DNA results for the sex chromosomes.

    PubMed

    Scibetta, Emily W; Gaw, Stephanie L; Rao, Rashmi R; Silverman, Neil S; Han, Christina S; Platt, Lawrence D

    2017-12-01

    To investigate factors associated with abnormal cell-free DNA (cfDNA) results for sex chromosomes (SCs). This is a retrospective cohort study of abnormal cfDNA results for SC at a referral practice from March 2013 to July 2015. Cell-free DNA results were abnormal if they were positive for SC aneuploidy (SCA), inconclusive, or discordant with ultrasound (US) findings. Primary outcome was concordance with karyotype or postnatal evaluation. Of 50 abnormal cfDNA results for SC, 31 patients (62%) were positive for SCA, 13 (26%) were inconclusive, and 6 (12%) were sex discordant on US. Of SCA results, 19 (61%) were reported as 45,X and 12 (39%) were SC trisomy. Abnormal karyotypes were confirmed in 8/23 (35%) of SC aneuploidy and 1/5 (20%) of inconclusive results. Abnormal SC cfDNA results were associated with in vitro fertilization (P = .001) and twins (P < .001). Sex discordance between cfDNA and US was associated with twin gestation (P < .001). In our cohort, abnormal SC cfDNA results were associated with in vitro fertilization and twins. Our results indicate cfDNA for sex prediction in twins of limited utility. Positive predictive value and sensitivity for SC determination were lower than previously reported. © 2017 John Wiley & Sons, Ltd.

  8. Aplastic Anemia in Two Patients with Sex Chromosome Aneuploidies.

    PubMed

    Rush, Eric T; Schaefer, G Bradley; Sanger, Warren G; Coccia, Peter F

    2015-01-01

    Sex chromosome aneuploidies range in incidence from rather common to exceedingly rare and have a variable phenotype. We report 2 patients with sex chromosome aneuploidies who developed severe aplastic anemia requiring treatment. The first patient had tetrasomy X (48,XXXX) and presented at 9 years of age, and the second patient had trisomy X (47,XXX) and presented at 5 years of age. Although aplastic anemia has been associated with other chromosomal abnormalities, sex chromosome abnormalities have not been traditionally considered a risk factor for this condition. A review of the literature reveals that at least one other patient with a sex chromosome aneuploidy (45,X) has suffered from aplastic anemia and that other autosomal chromosomal anomalies have been described. Despite the uncommon nature of each condition, it is possible that the apparent association is coincidental. A better understanding of the genetic causes of aplastic anemia remains important. © 2015 S. Karger AG, Basel.

  9. Dosage Compensation of the Sex Chromosomes

    PubMed Central

    Disteche, Christine M.

    2013-01-01

    Differentiated sex chromosomes evolved because of suppressed recombination once sex became genetically controlled. In XX/XY and ZZ/ZW systems, the heterogametic sex became partially aneuploid after degeneration of the Y or W. Often, aneuploidy causes abnormal levels of gene expression throughout the entire genome. Dosage compensation mechanisms evolved to restore balanced expression of the genome. These mechanisms include upregulation of the heterogametic chromosome as well as repression in the homogametic sex. Remarkably, strategies for dosage compensation differ between species. In organisms where more is known about molecular mechanisms of dosage compensation, specific protein complexes containing noncoding RNAs are targeted to the X chromosome. In addition, the dosage-regulated chromosome often occupies a specific nuclear compartment. Some genes escape dosage compensation, potentially resulting in sex-specific differences in gene expression. This review focuses on dosage compensation in mammals, with comparisons to fruit flies, nematodes, and birds. PMID:22974302

  10. A Case of ADHD and a Major Y Chromosome Abnormality

    ERIC Educational Resources Information Center

    Mulligan, Aisling; Gill, Michael; Fitzgerald, Michael

    2008-01-01

    Background: ADHD is a common, heritable disorder of childhood. Sex chromosome abnormalities are relatively rare conditions that are sometimes associated with behavioral disorders. Method: The authors present a male child with ADHD and a major de-novo Y chromosome abnormality consisting of deletion of the long arm and duplication of the short arm.…

  11. The Sex Chromosomes in Evolution and in Medicine

    PubMed Central

    Barr, Murray L.

    1966-01-01

    The recent emergence of human cytogenetics has a firm foundation in studies on other forms of life. Historical highlights are Mendel's studies on the garden pea (published in 1865 but lost in an obscure journal until 1900); formulation of cytogenic postulates by Sutton and Boveri (1902-1903); Bridges' discovery of chromosome abnormalities in Drosophila (1916), followed by numerous similar studies in plants; and demonstration of the chromosomal basis of the syndromes of Down, Klinefelter and Turner in man (1959). The sex chromosomes (XX and XY) evolved from a pair of undifferentiated autosomes of a premammalian ancestor, the X chromosome changing less than the Y as they evolved. Eleven numerical abnormalities of the sex chromosomes are known in man, and knowledge of their effects on development is accumulating. The abnormal complexes range in size from the XO error of Turner's syndrome to the XXXXY error of a variant of Klinefelter's syndrome. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8 PMID:4224254

  12. Fetal karyotyping for chromosome abnormalities after an unexplained elevated maternal serum alpha-fetoprotein screening.

    PubMed

    Feuchtbaum, L B; Cunningham, G; Waller, D K; Lustig, L S; Tompkinson, D G; Hook, E B

    1995-08-01

    To study the chromosome abnormality rate among women with elevated levels of maternal serum alpha-fetoprotein (MSAFP) and the types of chromosome abnormalities in this population, and to compare this rate with reports in the literature and the rate observed in the general population. We studied 8097 women who chose to undergo amniocentesis and fetal karyotyping after having an elevated MSAFP test of 2.5 multiples of the median (MOM) or higher. All abnormal karyotypes were reviewed and grouped according to whether the elevated MSAFP value could be explained by a ventral wall or neural tube defect. The overall chromosome abnormality rate was 13.83 per 1000 amniocenteses. The rate in the "unexplained" group was 10.92 per 1000 amniocenteses. Just over half (53%) of the abnormal karyotypes were autosomal anomalies, and 47% were sex chromosome abnormalities. The autosomal aneuploidies observed most frequently were triploidy and trisomy 13. The sex chromosome abnormalities observed most frequently were the XXY and XYY karyotypes. Women who have unexplained elevated MSAFP values of 2.5 MOM or greater have a twofold increase in the rate of chromosome abnormalities in their fetuses compared with the general population (P < or = .001). This rate is consistent with other studies that used a 2.5 MOM cutoff. Studies that used a 2.0 MOM cutoff have reported chromosome abnormality rates that do not vary from general population estimates.

  13. The use of molecular and cytogenetic methods as a valuable tool in the detection of chromosomal abnormalities in horses: a case of sex chromosome chimerism in a Spanish purebred colt.

    PubMed

    Demyda-Peyrás, S; Membrillo, A; Bugno-Poniewierska, M; Pawlina, K; Anaya, G; Moreno-Millán, M

    2013-01-01

    Chromosomal abnormalities associated to sex chromosomes are reported as a problem more common than believed to be in horses. Most of them remain undiagnosed due to the complexity of the horse karyotype and the lack of interest of breeders and veterinarians in this type of diagnosis. Approximately 10 years ago, the Spanish Purebred Breeders Association implemented a DNA paternity test to evaluate the pedigree of every newborn foal. All candidates who showed abnormal or uncertain results are routinely submitted to cytogenetical analysis to evaluate the presence of chromosomal abnormalities. We studied the case of a foal showing 3 and even 4 different alleles in several loci in the short tandem repeat (STR) -based DNA parentage test. To confirm these results, a filiation test was repeated using follicular hair DNA showing normal results. A complete set of conventional and molecular cytogenetic analysis was performed to determine their chromosomal complements. C-banding and FISH had shown that the foal presents a sex chimerism 64,XX/64,XY with a cellular percentage of approximately 70/30, diagnosed in blood samples. The use of a diagnostic approach combining routine parentage QF-PCR-based STR screening tested with classical or molecular cytogenetic analysis could be a powerful tool that allows early detection of foals that will have a poor or even no reproductive performance due to chromosomal abnormalities, saving time, efforts and breeders' resources. Copyright © 2013 S. Karger AG, Basel.

  14. Prenatal diagnosis of sex chromosome abnormalities: the 8-year experience of a single medical center.

    PubMed

    Vaknin, Zvi; Reish, Orit; Ben-Ami, Ido; Heyman, Eli; Herman, Arie; Maymon, Ron

    2008-01-01

    To assess the indications for prenatal karyotyping of sex chromosomal abnormalities (SCAs) during pregnancy. All singleton pregnancies interrupted in our institute because of SCAs (1998-2005) were categorized into subgroups of 45,XO (Turner syndrome), 47,XXY (Klinefelter syndrome), 47,XXX and 47,XYY. The indications for prenatal diagnostic testing were recorded. There were 67 SCAs pregnancies: 33% Turner syndrome, 28% Klinefelter syndrome, 21% 47,XXX and 18% 47,XYY. Maternal age was similar among the 4 groups (34 +/- 5, range 25-42 years). The main indications for fetal karyotyping were abnormal Down's syndrome (DS) screening or ultrasound findings, advanced maternal age (> or =35 years), and parental request. About 2/3 of the Turner and 47,XYY cases had either abnormal DS screening tests or sonographic findings, such as: increased nuchal translucency, mainly cystic hygroma and fetal hydrops. However, fetal karyotyping in more than 2/3 of the 47,XXX and 47,XXY cases was mainly performed because of advanced maternal age, and the diagnosis of fetal SCAs was coincidental (p <0.03). Our recent suggestion to expand the DS screening capacity to other chromosomal abnormalities including SCAs is further supported. Prenatal detection seems to be promising for Turner syndrome and possibly for 47,XYY syndrome, while other SCAs are less likely to be detected either by ultrasound or biochemical screening. (c) 2007 S. Karger AG, Basel

  15. Detection of sex chromosome aneuploidies using quantitative fluorescent PCR in the Hungarian population.

    PubMed

    Nagy, Balint; Nagy, Richard Gyula; Lazar, Levente; Schonleber, Julianna; Papp, Csaba; Rigo, Janos

    2015-05-20

    Aneuploidies are the most frequent chromosomal abnormalities at birth. Autosomal aneuploidies cause serious malformations like trisomy 21, trisomy 18 and trisomy 13. However sex chromosome aneuploidies are causing less severe syndromes. For the detection of these aneuploidies, the "gold standard" method is the cytogenetic analysis of fetal cells, karyograms show all numerical and structural abnormalities, but it takes 2-4 weeks to get the reports. Molecular biological methods were developed to overcome the long culture time, thus, FISH and quantitative fluorescent PCR were introduced. In this work we show our experience with a commercial kit for the detection of sex chromosome aneuploidies. We analyzed 20.173 amniotic fluid samples for the period of 2006-2013 in our department. A conventional cytogenetic analysis was performed on the samples. We checked the reliability of quantitative fluorescent PCR and DNA fragment analysis on those samples where sex chromosomal aneuploidy was diagnosed. From the 20.173 amniotic fluid samples we found 50 samples with sex chromosome aneuploidy. There were 19 samples showing 46, XO, 17 samples with 46, XXY, 9 samples with 47, XXX and 5 samples with 47, XYY karyotypes. The applied quantitative fluorescent PCR and DNA fragment analyses method are suitable to detect all abnormal sex chromosome aneuploidies. Quantitative fluorescent PCR is a fast and reliable method for detection of sex chromosome aneuploidies. Copyright © 2015. Published by Elsevier B.V.

  16. Next generation sequencing identifies abnormal Y chromosome and candidate causal variants in premature ovarian failure patients.

    PubMed

    Lee, Yujung; Kim, Changshin; Park, YoungJoon; Pyun, Jung-A; Kwack, KyuBum

    2016-12-01

    Premature ovarian failure (POF) is characterized by heterogeneous genetic causes such as chromosomal abnormalities and variants in causal genes. Recently, development of techniques made next generation sequencing (NGS) possible to detect genome wide variants including chromosomal abnormalities. Among 37 Korean POF patients, XY karyotype with distal part deletions of Y chromosome, Yp11.32-31 and Yp12 end part, was observed in two patients through NGS. Six deleterious variants in POF genes were also detected which might explain the pathogenesis of POF with abnormalities in the sex chromosomes. Additionally, the two POF patients had no mutation in SRY but three non-synonymous variants were detected in genes regarding sex reversal. These findings suggest candidate causes of POF and sex reversal and show the propriety of NGS to approach the heterogeneous pathogenesis of POF. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Dandy-Walker syndrome and chromosomal abnormalities.

    PubMed

    Imataka, George; Yamanouchi, Hideo; Arisaka, Osamu

    2007-12-01

    Dandy-Walker syndrome (DWS) is a brain malformation of unknown etiology, but several reports have been published indicating that there is a causal relationship to various types of chromosomal abnormalities and malformation syndromes. In the present article, we present a bibliographical survey of several previously issued reports on chromosomal abnormalities associated with DWS, including our case of DWS found in trisomy 18. There are various types of chromosomal abnormalities associated with DWS; most of them are reported in chromosome 3, 9, 13 and 18. We also summarize some other chromosomal abnormalities and various congenital malformation syndromes.

  18. Numerically abnormal chromosome constitutions in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  19. Sex chromosome aneuploidies.

    PubMed

    Skuse, David; Printzlau, Frida; Wolstencroft, Jeanne

    2018-01-01

    Sex chromosome aneuploidies comprise a relatively common group of chromosome disorders characterized by the loss or gain of one or more sex chromosomes. We discuss five of the better-known sex aneuploidies: Turner syndrome (XO), Klinefelter syndrome (XXY), trisomy X (XXX), XYY, and XXYY. Despite their prevalence in the general population, these disorders are underdiagnosed and the specific genetic mechanisms underlying their phenotypes are poorly understood. Although there is considerable variation between them in terms of associated functional impairment, each disorder has a characteristic physical, cognitive, and neurologic profile. The most common cause of sex chromosome aneuploidies is nondisjunction, which can occur during meiosis or during the early stages of postzygotic development. The loss or gain of genetic material can affect all daughter cells or it may be partial, leading to tissue mosaicism. In both typical and atypical sex chromosome karyotypes, there is random inactivation of all but one X chromosome. The mechanisms by which a phenotype results from sex chromosome aneuploidies are twofold: dosage imbalance arising from a small number of genes that escape inactivation, and their endocrinologic consequences. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. X Chromosome Abnormalities and Cognitive Development: Implications for Understanding Normal Human Development.

    ERIC Educational Resources Information Center

    Walzer, Stanley

    1985-01-01

    Argues that knowledge from studies of individuals with sex chromosome abnormalities can further understanding of aspects of normal human development. Studies of XO girls, XXY boys, XXX girls, and males with a fragile X chromosome are summarized to demonstrate how results contribute to knowledge about normal cognitive development and about…

  1. Chromosomal abnormalities in human sperm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, R.H.

    1985-01-01

    The ability to analyze human sperm chromosome complements after penetration of zona pellucida-free hamster eggs provides the first opportunity to study the frequency and type of chromosomal abnormalities in human gametes. Two large-scale studies have provided information on normal men. We have studied 1,426 sperm complements from 45 normal men and found an abnormality rate of 8.9%. Brandriff et al. (5) found 8.1% abnormal complements in 909 sperm from 4 men. The distribution of numerical and structural abnormalities was markedly dissimilar in the 2 studies. The frequency of aneuploidy was 5% in our sample and only 1.6% in Brandriff's, perhapsmore » reflecting individual variability among donors. The frequency of 24,YY sperm was low: 0/1,426 and 1/909. This suggests that the estimates of nondisjunction based on fluorescent Y body data (1% to 5%) are not accurate. We have also studied men at increased risk of sperm chromosomal abnormalities. The frequency of chromosomally unbalanced sperm in 6 men heterozygous for structural abnormalities varied dramatically: 77% for t11;22, 32% for t6;14, 19% for t5;18, 13% for t14;21, and 0% for inv 3 and 7. We have also studied 13 cancer patients before and after radiotherapy and demonstrated a significant dose-dependent increase of sperm chromosome abnormalities (numerical and structural) 36 months after radiation treatment.« less

  2. The association between sperm sex chromosome disomy and semen concentration, motility and morphology.

    PubMed

    McAuliffe, M E; Williams, P L; Korrick, S A; Dadd, R; Perry, M J

    2012-10-01

    Is there an association between sex chromosome disomy and semen concentration, motility and morphology? Higher rates of XY disomy were associated with a significant increase in abnormal semen parameters, particularly low semen concentration. Although some prior studies have shown associations between sperm chromosomal abnormalities and reduced semen quality, results of others are inconsistent. Definitive findings have been limited by small sample sizes and lack of adjustment for potential confounders. Cross-sectional study of men from subfertile couples presenting at the Massachusetts General Hospital Fertility Clinic from January 2000 to May 2003. With a sample of 192 men, multiprobe fluorescence in situ hybridization for chromosomes X, Y and 18 was used to determine XX, YY, XY and total sex chromosome disomy in sperm nuclei. Sperm concentration and motility were measured using computer-assisted sperm analysis; morphology was scored using strict criteria. Logistic regression models were used to evaluate the odds of abnormal semen parameters [as defined by World Health Organization (WHO)] as a function of sperm sex chromosome disomy. The median percentage disomy was 0.3 for XX and YY, 0.9 for XY and 1.6 for total sex chromosome disomy. Men who had abnormalities in all three semen parameters had significantly higher median rates of XX, XY and total sex chromosome disomy than controls with normal semen parameters (0.43 versus 0.25%, 1.36 versus 0.87% and 2.37 versus 1.52%, respectively, all P< 0.05). In logistic regression models, each 0.1% increase in XY disomy was associated with a 7% increase (odds ratio: 1.07, 95% confidence interval: 1.02-1.13) in the odds of having below normal semen concentration (<20 million/ml) after adjustment for age, smoking status and abstinence time. Increases in XX, YY and total sex chromosome disomy were not associated with an increase in the odds of a man having abnormal semen parameters. In addition, autosomal chromosome disomy

  3. The association between sperm sex chromosome disomy and semen concentration, motility and morphology

    PubMed Central

    McAuliffe, M.E.; Williams, P.L.; Korrick, S.A.; Dadd, R.; Perry, M.J.

    2012-01-01

    STUDY QUESTION Is there an association between sex chromosome disomy and semen concentration, motility and morphology? SUMMARY ANSWER Higher rates of XY disomy were associated with a significant increase in abnormal semen parameters, particularly low semen concentration. WHAT IS KNOWN ALREADY Although some prior studies have shown associations between sperm chromosomal abnormalities and reduced semen quality, results of others are inconsistent. Definitive findings have been limited by small sample sizes and lack of adjustment for potential confounders. STUDY DESIGN, SIZE AND DURATION Cross-sectional study of men from subfertile couples presenting at the Massachusetts General Hospital Fertility Clinic from January 2000 to May 2003. PARTICIPANTS/MATERIALS, SETTING, METHODS With a sample of 192 men, multiprobe fluorescence in situ hybridization for chromosomes X, Y and 18 was used to determine XX, YY, XY and total sex chromosome disomy in sperm nuclei. Sperm concentration and motility were measured using computer-assisted sperm analysis; morphology was scored using strict criteria. Logistic regression models were used to evaluate the odds of abnormal semen parameters [as defined by World Health Organization (WHO)] as a function of sperm sex chromosome disomy. MAIN RESULTS AND THE ROLE OF CHANCE The median percentage disomy was 0.3 for XX and YY, 0.9 for XY and 1.6 for total sex chromosome disomy. Men who had abnormalities in all three semen parameters had significantly higher median rates of XX, XY and total sex chromosome disomy than controls with normal semen parameters (0.43 versus 0.25%, 1.36 versus 0.87% and 2.37 versus 1.52%, respectively, all P< 0.05). In logistic regression models, each 0.1% increase in XY disomy was associated with a 7% increase (odds ratio: 1.07, 95% confidence interval: 1.02–1.13) in the odds of having below normal semen concentration (<20 million/ml) after adjustment for age, smoking status and abstinence time. Increases in XX, YY and

  4. Plant Sex Chromosomes.

    PubMed

    Charlesworth, Deborah

    2016-04-29

    Although individuals in most flowering plant species, and in many haploid plants, have both sex functions, dioecious species-in which individuals have either male or female functions only-are scattered across many taxonomic groups, and many species have genetic sex determination. Among these, some have visibly heteromorphic sex chromosomes, and molecular genetic studies are starting to uncover sex-linked markers in others, showing that they too have fully sex-linked regions that are either too small or are located in chromosomes that are too small to be cytologically detectable from lack of pairing, lack of visible crossovers, or accumulation of heterochromatin. Detailed study is revealing that, like animal sex chromosomes, plant sex-linked regions show evidence for accumulation of repetitive sequences and genetic degeneration. Estimating when recombination stopped confirms the view that many plants have young sex-linked regions, making plants of great interest for studying the timescale of these changes.

  5. Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes.

    PubMed

    Veyrunes, Frédéric; Waters, Paul D; Miethke, Pat; Rens, Willem; McMillan, Daniel; Alsop, Amber E; Grützner, Frank; Deakin, Janine E; Whittington, Camilla M; Schatzkamer, Kyriena; Kremitzki, Colin L; Graves, Tina; Ferguson-Smith, Malcolm A; Warren, Wes; Marshall Graves, Jennifer A

    2008-06-01

    In therian mammals (placentals and marsupials), sex is determined by an XX female: XY male system, in which a gene (SRY) on the Y affects male determination. There is no equivalent in other amniotes, although some taxa (notably birds and snakes) have differentiated sex chromosomes. Birds have a ZW female: ZZ male system with no homology with mammal sex chromosomes, in which dosage of a Z-borne gene (possibly DMRT1) affects male determination. As the most basal mammal group, the egg-laying monotremes are ideal for determining how the therian XY system evolved. The platypus has an extraordinary sex chromosome complex, in which five X and five Y chromosomes pair in a translocation chain of alternating X and Y chromosomes. We used physical mapping to identify genes on the pairing regions between adjacent X and Y chromosomes. Most significantly, comparative mapping shows that, contrary to earlier reports, there is no homology between the platypus and therian X chromosomes. Orthologs of genes in the conserved region of the human X (including SOX3, the gene from which SRY evolved) all map to platypus chromosome 6, which therefore represents the ancestral autosome from which the therian X and Y pair derived. Rather, the platypus X chromosomes have substantial homology with the bird Z chromosome (including DMRT1) and to segments syntenic with this region in the human genome. Thus, platypus sex chromosomes have strong homology with bird, but not to therian sex chromosomes, implying that the therian X and Y chromosomes (and the SRY gene) evolved from an autosomal pair after the divergence of monotremes only 166 million years ago. Therefore, the therian X and Y are more than 145 million years younger than previously thought.

  6. Sex Chromosome Drive

    PubMed Central

    Helleu, Quentin; Gérard, Pierre R.; Montchamp-Moreau, Catherine

    2015-01-01

    Sex chromosome drivers are selfish elements that subvert Mendel's first law of segregation and therefore are overrepresented among the products of meiosis. The sex-biased progeny produced then fuels an extended genetic conflict between the driver and the rest of the genome. Many examples of sex chromosome drive are known, but the occurrence of this phenomenon is probably largely underestimated because of the difficulty to detect it. Remarkably, nearly all sex chromosome drivers are found in two clades, Rodentia and Diptera. Although very little is known about the molecular and cellular mechanisms of drive, epigenetic processes such as chromatin regulation could be involved in many instances. Yet, its evolutionary consequences are far-reaching, from the evolution of mating systems and sex determination to the emergence of new species. PMID:25524548

  7. Traditional karyotyping vs copy number variation sequencing for detection of chromosomal abnormalities associated with spontaneous miscarriage.

    PubMed

    Liu, S; Song, L; Cram, D S; Xiong, L; Wang, K; Wu, R; Liu, J; Deng, K; Jia, B; Zhong, M; Yang, F

    2015-10-01

    To compare the performance of traditional G-banding karyotyping with that of copy number variation sequencing (CNV-Seq) for detection of chromosomal abnormalities associated with miscarriage. Products of conception (POC) were collected from spontaneous miscarriages. Chromosomal abnormalities were detected using high-resolution G-banding karyotyping and CNV sequencing. Quantitative fluorescent polymerase chain reaction analysis of maternal and POC DNA for short tandem repeat (STR) markers was used to both monitor maternal cell contamination and confirm the chromosomal status and sex of the miscarriage tissue. A total of 64 samples of POC, comprising 16 with an abnormal and 48 with a normal karyotype, were selected and coded for analysis by CNV-Seq. CNV-Seq results were concordant for 14 (87.5%) of the 16 gross chromosomal abnormalities identified by karyotyping, including 11 autosomal trisomies and three sex chromosomal aneuploidies (45,X). Of the two discordant results, a 69,XXX polyploidy was missed by CNV-Seq, although supporting STR marker analysis confirmed the triploidy. In contrast, CNV-Seq identified a sample with 45,X karyotype as a 45,X/46,XY mosaic. In the remaining 48 samples of POC with a normal karyotype, CNV-Seq detected a 2.58-Mb 22q deletion associated with DiGeorge syndrome and nine different smaller CNVs of no apparent clinical significance. CNV-Seq used in parallel with STR profiling is a reliable and accurate alternative to karyotyping for identifying chromosome copy number abnormalities associated with spontaneous miscarriage. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  8. Sex chromosome drive.

    PubMed

    Helleu, Quentin; Gérard, Pierre R; Montchamp-Moreau, Catherine

    2014-12-18

    Sex chromosome drivers are selfish elements that subvert Mendel's first law of segregation and therefore are overrepresented among the products of meiosis. The sex-biased progeny produced then fuels an extended genetic conflict between the driver and the rest of the genome. Many examples of sex chromosome drive are known, but the occurrence of this phenomenon is probably largely underestimated because of the difficulty to detect it. Remarkably, nearly all sex chromosome drivers are found in two clades, Rodentia and Diptera. Although very little is known about the molecular and cellular mechanisms of drive, epigenetic processes such as chromatin regulation could be involved in many instances. Yet, its evolutionary consequences are far-reaching, from the evolution of mating systems and sex determination to the emergence of new species. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  9. Sex chromosomes in land plants.

    PubMed

    Ming, Ray; Bendahmane, Abdelhafid; Renner, Susanne S

    2011-01-01

    Sex chromosomes in land plants can evolve as a consequence of close linkage between the two sex determination genes with complementary dominance required to establish stable dioecious populations, and they are found in at least 48 species across 20 families. The sex chromosomes in hepatics, mosses, and gymnosperms are morphologically heteromorphic. In angiosperms, heteromorphic sex chromosomes are found in at least 19 species from 4 families, while homomorphic sex chromosomes occur in 20 species from 13 families. The prevalence of the XY system found in 44 out of 48 species may reflect the predominance of the evolutionary pathway from gynodioecy towards dioecy. All dioecious species have the potential to evolve sex chromosomes, and reversions back from dioecy to various forms of monoecy, gynodioecy, or androdioecy have also occurred. Such reversals may occur especially during the early stages of sex chromosome evolution before the lethality of the YY (or WW) genotype is established.

  10. Numerous Transitions of Sex Chromosomes in Diptera

    PubMed Central

    Vicoso, Beatriz; Bachtrog, Doris

    2015-01-01

    Many species groups, including mammals and many insects, determine sex using heteromorphic sex chromosomes. Diptera flies, which include the model Drosophila melanogaster, generally have XY sex chromosomes and a conserved karyotype consisting of six chromosomal arms (five large rods and a small dot), but superficially similar karyotypes may conceal the true extent of sex chromosome variation. Here, we use whole-genome analysis in 37 fly species belonging to 22 different families of Diptera and uncover tremendous hidden diversity in sex chromosome karyotypes among flies. We identify over a dozen different sex chromosome configurations, and the small dot chromosome is repeatedly used as the sex chromosome, which presumably reflects the ancestral karyotype of higher Diptera. However, we identify species with undifferentiated sex chromosomes, others in which a different chromosome replaced the dot as a sex chromosome or in which up to three chromosomal elements became incorporated into the sex chromosomes, and others yet with female heterogamety (ZW sex chromosomes). Transcriptome analysis shows that dosage compensation has evolved multiple times in flies, consistently through up-regulation of the single X in males. However, X chromosomes generally show a deficiency of genes with male-biased expression, possibly reflecting sex-specific selective pressures. These species thus provide a rich resource to study sex chromosome biology in a comparative manner and show that similar selective forces have shaped the unique evolution of sex chromosomes in diverse fly taxa. PMID:25879221

  11. Advances in understanding paternally transmitted Chromosomal Abnormalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, F; Sloter, E; Wyrobek, A J

    2001-03-01

    Multicolor FISH has been adapted for detecting the major types of chromosomal abnormalities in human sperm including aneuploidies for clinically-relevant chromosomes, chromosomal aberrations including breaks and rearrangements, and other numerical abnormalities. The various sperm FISH assays have been used to evaluate healthy men, men of advanced age, and men who have received mutagenic cancer therapy. The mouse has also been used as a model to investigate the mechanism of paternally transmitted genetic damage. Sperm FISH for the mouse has been used to detect chromosomally abnormal mouse sperm, while the PAINT/DAPI analysis of mouse zygotes has been used to evaluate themore » types of chromosomal defects that can be paternally transmitted to the embryo and their effects on embryonic development.« less

  12. Chromosomal abnormalities as a cause of recurrent abortions in Egypt

    PubMed Central

    El-Dahtory, Faeza Abdel Mogib

    2011-01-01

    BACKGROUND: In 4%-8% of couples with recurrent abortion, at least one of the partners has chromosomal abnormality. Most spontaneous miscarriages which happen in the first and second trimesters are caused by chromosomal abnormalities. These chromosomal abnormalities may be either numerical or structural. MATERIAL AND METHODS: Cytogenetic study was done for 73 Egyptian couples who presented with recurrent abortion at Genetic Unit of Children Hospital, Mansoura University. RESULTS: We found that the frequency of chromosomal abnormalities was not significantly different from that reported worldwide. Chromosomal abnormalities were detected in 9 (6.1%) of 73 couples. Seven of chromosomal abnormalities were structural and two of them were numerical. CONCLUSION: Our results showed that 6.1% of the couples with recurrent abortion had chromosomal abnormalities, with no other abnormalities. We suggest that it is necessary to perform cytogenetic in vestigation for couples who have recurrent abortion. PMID:22090718

  13. The prevalence of chromosomal abnormalities in subgroups of infertile men.

    PubMed

    Dul, E C; Groen, H; van Ravenswaaij-Arts, C M A; Dijkhuizen, T; van Echten-Arends, J; Land, J A

    2012-01-01

    The prevalence of chromosomal abnormalities is assumed to be higher in infertile men and inversely correlated with sperm concentration. Although guidelines advise karyotyping infertile men, karyotyping is costly, therefore it would be of benefit to identify men with the highest risk of chromosomal abnormalities, possibly by using parameters other than sperm concentration. The aim of this study was to evaluate several clinical parameters in azoospermic and non-azoospermic men, in order to assess the prevalence of chromosomal abnormalities in different subgroups of infertile men. In a retrospective cohort of 1223 azoospermic men and men eligible for ICSI treatment, we studied sperm parameters, hormone levels and medical history for an association with chromosomal abnormalities. The prevalence of chromosomal abnormalities in the cohort was 3.1%. No association was found between chromosomal abnormalities and sperm volume, concentration, progressive motility or total motile sperm count. Azoospermia was significantly associated with the presence of a chromosomal abnormality [15.2%, odds ratio (OR) 7.70, P < 0.001]. High gonadotrophin levels were also associated with an increased prevalence of chromosomal abnormalities (OR 2.96, P = 0.013). Azoospermic men with a positive andrologic history had a lower prevalence of chromosomal abnormalities than azoospermic men with an uneventful history (OR 0.28, P = 0.047). In non-azoospermic men, we found that none of the studied variables were associated with the prevalence of chromosomal abnormalities. We show that the highest prevalence of chromosomal abnormalities is found in hypergonadotrophic azoospermic men with an uneventful andrologic history.

  14. Cretaceous park of sex determination: sex chromosomes are conserved across iguanas

    PubMed Central

    Rovatsos, Michail; Pokorná, Martina; Altmanová, Marie; Kratochvíl, Lukáš

    2014-01-01

    Many poikilothermic vertebrate lineages, especially among amphibians and fishes, possess a rapid turnover of sex chromosomes, while in endotherms there is a notable stability of sex chromosomes. Reptiles in general exhibit variability in sex-determining systems; as typical poikilotherms, they might be expected to have a rapid turnover of sex chromosomes. However, molecular data which would enable the testing of the stability of sex chromosomes are lacking in most lineages. Here, we provide molecular evidence that sex chromosomes are highly conserved across iguanas, one of the most species-rich clade of reptiles. We demonstrate that members of the New World families Iguanidae, Tropiduridae, Leiocephalidae, Phrynosomatidae, Dactyloidae and Crotaphytidae, as well as of the family Opluridae which is restricted to Madagascar, all share homologous sex chromosomes. As our sampling represents the majority of the phylogenetic diversity of iguanas, the origin of iguana sex chromosomes can be traced back in history to the basal splitting of this group which occurred during the Cretaceous period. Iguanas thus show a stability of sex chromosomes comparable to mammals and birds and represent the group with the oldest sex chromosomes currently known among amniotic poikilothermic vertebrates. PMID:24598109

  15. Genetic conflict and sex chromosome evolution

    PubMed Central

    Meiklejohn, Colin D; Tao, Yun

    2009-01-01

    Chromosomal sex determination systems create the opportunity for the evolution of selfish genetic elements that increase the transmission of one sex chromosome at the expense of its homolog. Because such selfish elements on sex chromosomes can reduce fertility and distort the sex ratio of progeny, unlinked suppressors are expected to evolve, bringing different regions of the genome into conflict over the meiotic transmission of the sex chromosomes. Here we argue that recurrent genetic conflict over sex chromosome transmission is an important evolutionary force that has shaped a wide range of seemingly disparate phenomena including the epigenetic regulation of genes expressed in the germline, the distribution of genes in the genome, and the evolution of hybrid sterility between species. PMID:19931208

  16. Four families with immunodeficiency and chromosome abnormalities.

    PubMed Central

    Candy, D C; Hayward, A R; Hughes, D T; Layward, L; Soothill, J F

    1979-01-01

    Six children, with severe deficiency of some or all of the immunoglobulins and minor somatic abnormalities, had chromosomal abnormalities: (1) 45,XY,t(13q/18q), (2) 46,XY,21ps +, (3) two brothers 46,XY (inv. 7) (4) 45,X,t(11p/10p)/46X,iXq,t(11p/10p) and, (5) in addendum, 45,XX,-18;46,XX, r18. The chromosome abnormalities were detected in B- as well as T-lymphocytes (as evidenced by using both PHA- and PWM-stimulated cultures) in all probands, but one was mosaic in PHA culture, although all his PWM-stimulated cells were abnormal. Chromosomal variants were also detected in relatives of three and immunodeficiency in relatives of two. Images Fig. 1 Fig. 3 PMID:314782

  17. Sex Determination, Sex Chromosomes, and Karyotype Evolution in Insects.

    PubMed

    Blackmon, Heath; Ross, Laura; Bachtrog, Doris

    2017-01-01

    Insects harbor a tremendous diversity of sex determining mechanisms both within and between groups. For example, in some orders such as Hymenoptera, all members are haplodiploid, whereas Diptera contain species with homomorphic as well as male and female heterogametic sex chromosome systems or paternal genome elimination. We have established a large database on karyotypes and sex chromosomes in insects, containing information on over 13000 species covering 29 orders of insects. This database constitutes a unique starting point to report phylogenetic patterns on the distribution of sex determination mechanisms, sex chromosomes, and karyotypes among insects and allows us to test general theories on the evolutionary dynamics of karyotypes, sex chromosomes, and sex determination systems in a comparative framework. Phylogenetic analysis reveals that male heterogamety is the ancestral mode of sex determination in insects, and transitions to female heterogamety are extremely rare. Many insect orders harbor species with complex sex chromosomes, and gains and losses of the sex-limited chromosome are frequent in some groups. Haplodiploidy originated several times within insects, and parthenogenesis is rare but evolves frequently. Providing a single source to electronically access data previously distributed among more than 500 articles and books will not only accelerate analyses of the assembled data, but also provide a unique resource to guide research on which taxa are likely to be informative to address specific questions, for example, for genome sequencing projects or large-scale comparative studies. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Increased prevalence of sex chromosome aneuploidies in specific language impairment and dyslexia

    PubMed Central

    Simpson, Nuala H; Addis, Laura; Brandler, William M; Slonims, Vicky; Clark, Ann; Watson, Jocelynne; Scerri, Thomas S; Hennessy, Elizabeth R; Bolton, Patrick F; Conti-Ramsden, Gina; Fairfax, Benjamin P; Knight, Julian C; Stein, John; Talcott, Joel B; O'Hare, Anne; Baird, Gillian; Paracchini, Silvia; Fisher, Simon E; Newbury, Dianne F; Consortium, SLI

    2014-01-01

    Aim Sex chromosome aneuploidies increase the risk of spoken or written language disorders but individuals with specific language impairment (SLI) or dyslexia do not routinely undergo cytogenetic analysis. We assess the frequency of sex chromosome aneuploidies in individuals with language impairment or dyslexia. Method Genome-wide single nucleotide polymorphism genotyping was performed in three sample sets: a clinical cohort of individuals with speech and language deficits (87 probands: 61 males, 26 females; age range 4 to 23 years), a replication cohort of individuals with SLI, from both clinical and epidemiological samples (209 probands: 139 males, 70 females; age range 4 to 17 years), and a set of individuals with dyslexia (314 probands: 224 males, 90 females; age range 7 to 18 years). Results In the clinical language-impaired cohort, three abnormal karyotypic results were identified in probands (proband yield 3.4%). In the SLI replication cohort, six abnormalities were identified providing a consistent proband yield (2.9%). In the sample of individuals with dyslexia, two sex chromosome aneuploidies were found giving a lower proband yield of 0.6%. In total, two XYY, four XXY (Klinefelter syndrome), three XXX, one XO (Turner syndrome), and one unresolved karyotype were identified. Interpretation The frequency of sex chromosome aneuploidies within each of the three cohorts was increased over the expected population frequency (approximately 0.25%) suggesting that genetic testing may prove worthwhile for individuals with language and literacy problems and normal non-verbal IQ. Early detection of these aneuploidies can provide information and direct the appropriate management for individuals. PMID:24117048

  19. Chromosome chains and platypus sex: kinky connections.

    PubMed

    Ashley, Terry

    2005-07-01

    Mammal sex determination depends on an XY chromosome system, a gene for testis development and a means of activating the X chromosome. The duckbill platypus challenges these dogmas.(1,2) Gutzner et al.(1) find no recognizable SRY sequence and question whether the mammalian X was even the original sex chromosome in the platypus. Instead they suggest that the original platypus sex chromosomes were derived from the ZW chromosome system of birds and reptiles. Unraveling the puzzles of sex determination and dosage compensation in the platypus has been complicated by the fact that it has a surplus of sex chromosomes. Rather than a single X and Y chromosome, the male platypus has five Xs and five Ys. Copyright (c) 2005 Wiley Periodicals, Inc.

  20. Conservation of sex chromosomes in lacertid lizards.

    PubMed

    Rovatsos, Michail; Vukić, Jasna; Altmanová, Marie; Johnson Pokorná, Martina; Moravec, Jiří; Kratochvíl, Lukáš

    2016-07-01

    Sex chromosomes are believed to be stable in endotherms, but young and evolutionary unstable in most ectothermic vertebrates. Within lacertids, the widely radiated lizard group, sex chromosomes have been reported to vary in morphology and heterochromatinization, which may suggest turnovers during the evolution of the group. We compared the partial gene content of the Z-specific part of sex chromosomes across major lineages of lacertids and discovered a strong evolutionary stability of sex chromosomes. We can conclude that the common ancestor of lacertids, living around 70 million years ago (Mya), already had the same highly differentiated sex chromosomes. Molecular data demonstrating an evolutionary conservation of sex chromosomes have also been documented for iguanas and caenophidian snakes. It seems that differences in the evolutionary conservation of sex chromosomes in vertebrates do not reflect the distinction between endotherms and ectotherms, but rather between amniotes and anamniotes, or generally, the differences in the life history of particular lineages. © 2016 John Wiley & Sons Ltd.

  1. Association of MTHFR polymorphisms and chromosomal abnormalities in leukemia.

    PubMed

    Sinthuwiwat, Thivaratana; Poowasanpetch, Phanasit; Wongngamrungroj, Angsana; Soonklang, Kamonwan; Promso, Somying; Auewarakul, Chirayu; Tocharoentanaphol, Chintana

    2012-01-01

    Genetic variation in MTHFR gene might explain the interindividual differences in the reduction of DNA repaired and the increase of chromosome breakage and damage. Nowadays, chromosomal rearrangement is recognized as a major cause of lymphoid malignancies. In addition, the association of MTHFR polymorphisms with aneuploidy was found in several studies, making the MTHFR gene as a good candidate for leukemia etiology. Therefore, in this study, we investigated the common sequence variation, 677C>T and 1298A>C in the MTHFR gene of 350 fixed cell specimens archived after chromosome analysis. The distribution of the MTHFR polymorphisms frequency was compared in leukemic patients with structural chromosome abnormality and chromosome aneuploidy, as well as in those with no evidence of chromosome abnormalities. We observed a significant decrease in the distribution of T allele in 677C>T polymorphisms among patients with chromosomal abnormalities including both structural aberration and aneuploidy. The same significance result also found in patients with structural aberration when compare with the normal karyotype patients. Suggesting that polymorphism in the MTHFR gene was involved in chromosome abnormalities of leukemia. However, further investigation on the correlation with the specific types of chromosomal aberrations is needed.

  2. The sex-specific region of sex chromosomes in animals and plants.

    PubMed

    Gschwend, Andrea R; Weingartner, Laura A; Moore, Richard C; Ming, Ray

    2012-01-01

    Our understanding of the evolution of sex chromosomes has increased greatly in recent years due to a number of molecular evolutionary investigations in divergent sex chromosome systems, and these findings are reshaping theories of sex chromosome evolution. In particular, the dynamics of the sex-determining region (SDR) have been demonstrated by recent findings in ancient and incipient sex chromosomes. Radical changes in genomic structure and gene content in the male specific region of the Y chromosome between human and chimpanzee indicated rapid evolution in the past 6 million years, defying the notion that the pace of evolution in the SDR was fast at early stages but slowed down overtime. The chicken Z and the human X chromosomes appeared to have acquired testis-expressed genes and expanded in intergenic regions. Transposable elements greatly contributed to SDR expansion and aided the trafficking of genes in the SDR and its X or Z counterpart through retrotransposition. Dosage compensation is not a destined consequence of sex chromosomes as once thought. Most X-linked microRNA genes escape silencing and are expressed in testis. Collectively, these findings are challenging many of our preconceived ideas of the evolutionary trajectory and fates of sex chromosomes.

  3. Meiotic abnormalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  4. Replacing the combined test by cell-free DNA testing in screening for trisomies 21, 18 and 13: impact on the diagnosis of other chromosomal abnormalities.

    PubMed

    Syngelaki, Argyro; Pergament, Eugene; Homfray, Tessa; Akolekar, Ranjit; Nicolaides, Kypros H

    2014-01-01

    To estimate the proportion of other chromosomal abnormalities that could be missed if combined testing was replaced by cell-free (cf) DNA testing as the method of screening for trisomies 21, 18 and 13. The prevalence of trisomies 21, 18 or 13, sex chromosome aneuploidies, triploidy and other chromosomal abnormalities was examined in pregnancies undergoing first-trimester combined screening and chorionic villus sampling (CVS). In 1,831 clinically significant chromosomal abnormalities in pregnancies with combined risk for trisomies 21, 18 and 13≥1:100, the contribution of trisomies 21, 18 or 13, sex chromosome aneuploidies, triploidy and other chromosomal abnormalities at high risk of adverse outcome was 82.9, 8.2, 3.9 and 5.0%, respectively. Combined screening followed by CVS for risk≥1:10 and cfDNA testing for risk 1:11-1:2,500 could detect 97% of trisomy 21 and 98% of trisomies 18 and 13. Additionally, 86% of monosomy X, half of 47,XXY, 47,XYY or 47,XXX, half of other chromosomal abnormalities and one third of triploidies, which are currently detected by combined screening and CVS for risk≥1:100, could be detected. Screening by cfDNA testing, contingent on results of combined testing, improves detection of trisomies, but misses a few of the other chromosomal abnormalities detected by screening with the combined test. © 2014 S. Karger AG, Basel.

  5. XYY chromosome abnormality in sexual homicide perpetrators.

    PubMed

    Briken, Peer; Habermann, Niels; Berner, Wolfgang; Hill, Andreas

    2006-03-05

    In a retrospective investigation of the court reports about sexual homicide perpetrators chromosome analysis had been carried out in 13 of 166 (7.8%) men. Three men (1.8%) with XYY chromosome abnormality were found. This rate is much higher than that found in unselected samples of prisoners (0.7-0.9%) or in the general population (0.01%). The three men had shown prepubescent abnormalities, school problems, and had suffered from physical abuse. The chromosome analysis in all cases had been carried out in connection with the forensic psychiatric court report due to the sexual homicide. However, two men had earlier psychiatric referrals. All were diagnosed as sexual sadistic, showed a psychopathic syndrome or psychopathy according to the Psychopathy Checklist-Revised [Hare RD, 1991, The Hare Psychopathy Checklist-Revised, Toronto, Ontario, Canada: Multi-Health Systems]. Two were multiple murderers. Especially forensic psychiatrists should be vigilant of the possibility of XYY chromosome abnormalities in sexual offenders. (c) 2006 Wiley-Liss, Inc.

  6. The genomics of plant sex chromosomes.

    PubMed

    Vyskot, Boris; Hobza, Roman

    2015-07-01

    Around six percent of flowering species are dioecious, with separate female and male individuals. Sex determination is mostly based on genetics, but morphologically distinct sex chromosomes have only evolved in a few species. Of these, heteromorphic sex chromosomes have been most clearly described in the two model species - Silene latifolia and Rumex acetosa. In both species, the sex chromosomes are the largest chromosomes in the genome. They are hence easily distinguished, can be physically separated and analyzed. This review discusses some recent experimental data on selected model dioecious species, with a focus on S. latifolia. Phylogenetic analyses show that dioecy in plants originated independently and repeatedly even within individual genera. A cogent question is whether there is genetic degeneration of the non-recombining part of the plant Y chromosome, as in mammals, and, if so, whether reduced levels of gene expression in the heterogametic sex are equalized by dosage compensation. Current data provide no clear conclusion. We speculate that although some transcriptome analyses indicate the first signs of degeneration, especially in S. latifolia, the evolutionary processes forming plant sex chromosomes in plants may, to some extent, differ from those in animals. Copyright © 2015. Published by Elsevier Ireland Ltd.

  7. Why Do Sex Chromosomes Stop Recombining?

    PubMed

    Ponnikas, Suvi; Sigeman, Hanna; Abbott, Jessica K; Hansson, Bengt

    2018-04-28

    It is commonly assumed that sex chromosomes evolve recombination suppression because selection favours linkage between sex-determining and sexually antagonistic genes. However, although the role of sexual antagonism during sex chromosome evolution has attained strong support from theory, experimental and observational evidence is rare or equivocal. Here, we highlight alternative, often neglected, hypotheses for recombination suppression on sex chromosomes, which invoke meiotic drive, heterozygote advantage, and genetic drift, respectively. We contrast the hypotheses, the situations when they are likely to be of importance, and outline why it is surprisingly difficult to test them. Lastly, we discuss future research directions (including modelling, population genomics, comparative approaches, and experiments) to disentangle the different hypotheses of sex chromosome evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes

    PubMed Central

    Matsubara, Kazumi; Tarui, Hiroshi; Toriba, Michihisa; Yamada, Kazuhiko; Nishida-Umehara, Chizuko; Agata, Kiyokazu; Matsuda, Yoichi

    2006-01-01

    All snake species exhibit genetic sex determination with the ZZ/ZW type of sex chromosomes. To investigate the origin and evolution of snake sex chromosomes, we constructed, by FISH, a cytogenetic map of the Japanese four-striped rat snake (Elaphe quadrivirgata) with 109 cDNA clones. Eleven of the 109 clones were localized to the Z chromosome. All human and chicken homologues of the snake Z-linked genes were located on autosomes, suggesting that the sex chromosomes of snakes, mammals, and birds were all derived from different autosomal pairs of the common ancestor. We mapped the 11 Z-linked genes of E. quadrivirgata to chromosomes of two other species, the Burmese python (Python molurus bivittatus) and the habu (Trimeresurus flavoviridis), to investigate the process of W chromosome differentiation. All and 3 of the 11 clones were localized to both the Z and W chromosomes in P. molurus and E. quadrivirgata, respectively, whereas no cDNA clones were mapped to the W chromosome in T. flavoviridis. Comparative mapping revealed that the sex chromosomes are only slightly differentiated in P. molurus, whereas they are fully differentiated in T. flavoviridis, and E. quadrivirgata is at a transitional stage of sex-chromosome differentiation. The differentiation of sex chromosomes was probably initiated from the distal region on the short arm of the protosex chromosome of the common ancestor, and then deletion and heterochromatization progressed on the sex-specific chromosome from the phylogenetically primitive boids to the more advanced viperids. PMID:17110446

  9. Neo-sex chromosome inheritance across species in Silene hybrids.

    PubMed

    Weingartner, L A; Delph, L F

    2014-07-01

    Neo-sex chromosomes, which form through the major restructuring of ancestral sex chromosome systems, have evolved in various taxa. Such restructuring often consists of the fusion of an autosome to an existing sex chromosome, resulting in novel sex chromosome formations (e.g. X1X2Y or XY1Y2.). Comparative studies are often made between restructured sex chromosome systems of closely related species, and here we evaluate the consequences of variable sex chromosome systems to hybrids. If neo-sex chromosomes are improperly inherited across species, this could lead to aberrant development and reproductive isolation. In this study, we examine the fate of neo-sex chromosomes in hybrids of the flowering plants Silene diclinis and Silene latifolia. Silene diclinis has a neo-sex chromosome system (XY1Y2) that is thought to have evolved from an ancestral XY system that is still present in S. latifolia. These species do not hybridize naturally, and improper sex chromosome inheritance could contribute to reproductive isolation. We investigated whether this major restructuring of sex chromosomes prevents their proper inheritance in a variety of hybrid crosses, including some F2 - and later-generation hybrids, with sex chromosome-linked, species-specific, polymorphic markers and chromosome squashes. We discovered that despite the differences in sex chromosomes that exist between these two species, proper segregation had occurred in hybrids that made it to flowering, including later-generation hybrids, indicating that neo-sex chromosome formation alone does not result in complete reproductive isolation between these two species. Additionally, hybrids with aberrant sex expression (e.g. neuter, hermaphrodite) also inherited the restructured sex chromosomes properly, highlighting that issues with sexual development in hybrids can be caused by intrinsic genetic incompatibility rather than improper sex chromosome inheritance. © 2014 The Authors. Journal of Evolutionary Biology © 2014

  10. Current controversies in prenatal diagnosis 2: Cell-free DNA prenatal screening should be used to identify all chromosome abnormalities.

    PubMed

    Chitty, Lyn S; Hudgins, Louanne; Norton, Mary E

    2018-02-01

    Noninvasive prenatal testing (NIPT) using cell-free DNA (cfDNA) from maternal serum has been clinically available since 2011. This technology has revolutionized our ability to screen for the common aneuploidies trisomy 21 (Down syndrome), trisomy 18, and trisomy 13. More recently, clinical laboratories have offered screening for other chromosome abnormalities including sex chromosome abnormalities and copy number variants (CNV) without little published data on the sensitivity, specificity, and positive predictive value. In this debate, the pros and cons of performing prenatal screening via cfDNA for all chromosome abnormalities is discussed. At the time of the debate in 2017, the general consensus was that the literature does not yet support using this technology to screen for all chromosome abnormalities and that education is key for both providers and the patients so that the decision-making process is as informed as possible. © 2018 John Wiley & Sons, Ltd.

  11. Increased prevalence of sex chromosome aneuploidies in specific language impairment and dyslexia.

    PubMed

    Simpson, Nuala H; Addis, Laura; Brandler, William M; Slonims, Vicky; Clark, Ann; Watson, Jocelynne; Scerri, Thomas S; Hennessy, Elizabeth R; Bolton, Patrick F; Conti-Ramsden, Gina; Fairfax, Benjamin P; Knight, Julian C; Stein, John; Talcott, Joel B; O'Hare, Anne; Baird, Gillian; Paracchini, Silvia; Fisher, Simon E; Newbury, Dianne F

    2014-04-01

    Sex chromosome aneuploidies increase the risk of spoken or written language disorders but individuals with specific language impairment (SLI) or dyslexia do not routinely undergo cytogenetic analysis. We assess the frequency of sex chromosome aneuploidies in individuals with language impairment or dyslexia. Genome-wide single nucleotide polymorphism genotyping was performed in three sample sets: a clinical cohort of individuals with speech and language deficits (87 probands: 61 males, 26 females; age range 4 to 23 years), a replication cohort of individuals with SLI, from both clinical and epidemiological samples (209 probands: 139 males, 70 females; age range 4 to 17 years), and a set of individuals with dyslexia (314 probands: 224 males, 90 females; age range 7 to 18 years). In the clinical language-impaired cohort, three abnormal karyotypic results were identified in probands (proband yield 3.4%). In the SLI replication cohort, six abnormalities were identified providing a consistent proband yield (2.9%). In the sample of individuals with dyslexia, two sex chromosome aneuploidies were found giving a lower proband yield of 0.6%. In total, two XYY, four XXY (Klinefelter syndrome), three XXX, one XO (Turner syndrome), and one unresolved karyotype were identified. The frequency of sex chromosome aneuploidies within each of the three cohorts was increased over the expected population frequency (approximately 0.25%) suggesting that genetic testing may prove worthwhile for individuals with language and literacy problems and normal non-verbal IQ. Early detection of these aneuploidies can provide information and direct the appropriate management for individuals. © 2013 The Authors. Developmental Medicine & Child Neurology published by John Wiley & Sons Ltd on behalf of Mac Keith Press.

  12. Genetic counseling for men with recurrent pregnancy loss or recurrent implantation failure due to abnormal sperm chromosomal aneuploidy.

    PubMed

    Kohn, Taylor P; Kohn, Jaden R; Darilek, Sandra; Ramasamy, Ranjith; Lipshultz, Larry

    2016-05-01

    The purpose of this study is to review recurrent pregnancy loss (RPL) due to sperm chromosomal abnormalities and discuss the genetic counseling that is required for men with sperm chromosomal abnormalities. The literature was reviewed, and a genetic counselor lends her expertise as to how couples with RPL and sperm chromosomal abnormalities ought to be counseled. The review of the literature was performed using MEDLINE. Sperm fluorescence in situ hybridization (FISH) can be used to determine if disomy or unbalanced chromosomal translocations are present. In men with aneuploidy in sperm or who carry a chromosomal translocation, pre-implantation genetic screening (PGS) combined with in vitro fertilization (IVF) and intra-cytoplasmic sperm injection (ICSI) can increase chances of live birth. In men with abnormal sperm FISH results, the degree of increased risk of abnormal pregnancy remains unclear. Genetic counselors can provide information to couples about the risk for potential trisomies and sex chromosome aneuploidies and discuss their reproductive and testing options such as PGS, use of donor sperm, and adoption. The provision of genetic counseling also allows a couple to be educated about recommended prenatal testing since pregnancies conceived with a partner who has had abnormal sperm FISH are considered to be at increased risk for aneuploidy. We review the literature and discuss genetic counseling for couples with RPL or recurrent implantation failure due to increased sperm aneuploidy.

  13. The evolution of sex chromosomes in organisms with separate haploid sexes.

    PubMed

    Immler, Simone; Otto, Sarah Perin

    2015-03-01

    The evolution of dimorphic sex chromosomes is driven largely by the evolution of reduced recombination and the subsequent accumulation of deleterious mutations. Although these processes are increasingly well understood in diploid organisms, the evolution of dimorphic sex chromosomes in haploid organisms (U/V) has been virtually unstudied theoretically. We analyze a model to investigate the evolution of linkage between fitness loci and the sex-determining region in U/V species. In a second step, we test how prone nonrecombining regions are to degeneration due to accumulation of deleterious mutations. Our modeling predicts that the decay of recombination on the sex chromosomes and the addition of strata via fusions will be just as much a part of the evolution of haploid sex chromosomes as in diploid sex chromosome systems. Reduced recombination is broadly favored, as long as there is some fitness difference between haploid males and females. The degeneration of the sex-determining region due to the accumulation of deleterious mutations is expected to be slower in haploid organisms because of the absence of masking. Nevertheless, balancing selection often drives greater differentiation between the U/V sex chromosomes than in X/Y and Z/W systems. We summarize empirical evidence for haploid sex chromosome evolution and discuss our predictions in light of these findings. © 2015 The Author(s).

  14. Sex Chromosome Evolution in Amniotes: Applications for Bacterial Artificial Chromosome Libraries

    PubMed Central

    Janes, Daniel E.; Valenzuela, Nicole; Ezaz, Tariq; Amemiya, Chris; Edwards, Scott V.

    2011-01-01

    Variability among sex chromosome pairs in amniotes denotes a dynamic history. Since amniotes diverged from a common ancestor, their sex chromosome pairs and, more broadly, sex-determining mechanisms have changed reversibly and frequently. These changes have been studied and characterized through the use of many tools and experimental approaches but perhaps most effectively through applications for bacterial artificial chromosome (BAC) libraries. Individual BAC clones carry 100–200 kb of sequence from one individual of a target species that can be isolated by screening, mapped onto karyotypes, and sequenced. With these techniques, researchers have identified differences and similarities in sex chromosome content and organization across amniotes and have addressed hypotheses regarding the frequency and direction of past changes. Here, we review studies of sex chromosome evolution in amniotes and the ways in which the field of research has been affected by the advent of BAC libraries. PMID:20981143

  15. Chromosomal abnormalities, meiotic behavior and fertility in domestic animals.

    PubMed

    Villagómez, D A F; Pinton, A

    2008-01-01

    Since the advent of the surface microspreading technique for synaptonemal complex analysis, increasing interest in describing the synapsis patterns of chromosome abnormalities associated with fertility of domestic animals has been noticed during the past three decades. In spite of the number of scientific reports describing the occurrence of structural chromosome abnormalities, their meiotic behavior and gametic products, little is known in domestic animal species about the functional effects of such chromosome aberrations in the germ cell line of carriers. However, some interesting facts gained from recent and previous studies on the meiotic behavior of chromosome abnormalities of domestic animals permit us to discuss, in the frame of recent knowledge emerging from mouse and human investigations, the possible mechanism implicated in the well known association between meiotic disruption and chromosome pairing failure. New cytogenetic techniques, based on molecular and immunofluorescent analyses, are allowing a better description of meiotic processes, including gamete production. The present communication reviews the knowledge of the meiotic consequences of chromosome abnormalities in domestic animals. Copyright 2008 S. Karger AG, Basel.

  16. Chromosome Banding in Amphibia. XXXVI. Multimorphic Sex Chromosomes and an Enigmatic Sex Determination in Eleutherodactylus johnstonei (Anura, Eleutherodactylidae).

    PubMed

    Schmid, Michael; Steinlein, Claus

    2018-01-01

    A detailed cytogenetic study on the leaf litter frog Eleutherodactylus johnstonei from 14 different Caribbean islands and the mainlands of Venezuela and Guyana revealed the existence of multimorphic XY♂/XX♀ sex chromosomes 14. Their male sex determination and development depends either on the presence of 2 telocentric chromosomes 14 (XtYt), or on 1 submetacentric chromosome 14 (Xsm) plus 1 telocentric chromosome 14 (Yt), or on the presence of 2 submetacentric chromosomes 14 (XsmYsm). The female sex determination and development requires either the presence of 2 telocentric chromosomes 14 (XtXt) or 2 submetacentric chromosomes 14 (XsmXsm). In all individuals analyzed, the sex chromosomes 14 carry a prominent nucleolus organizer region in their long arms. An explanation is given for the origin of the (XtYt)♂, (XsmYt)♂, (XsmYsm)♂, (XtXt)♀, and (XsmXsm)♀ in the different populations of E. johnstonei. Furthermore, the present study gives detailed data on the chromosome banding patterns, in situ hybridization experiments, and the genome size of E. johnstonei. © 2018 S. Karger AG, Basel.

  17. Sex chromosome evolution: historical insights and future perspectives

    PubMed Central

    Nordén, Anna K.

    2017-01-01

    Many separate-sexed organisms have sex chromosomes controlling sex determination. Sex chromosomes often have reduced recombination, specialized (frequently sex-specific) gene content, dosage compensation and heteromorphic size. Research on sex determination and sex chromosome evolution has increased over the past decade and is today a very active field. However, some areas within the field have not received as much attention as others. We therefore believe that a historic overview of key findings and empirical discoveries will put current thinking into context and help us better understand where to go next. Here, we present a timeline of important conceptual and analytical models, as well as empirical studies that have advanced the field and changed our understanding of the evolution of sex chromosomes. Finally, we highlight gaps in our knowledge so far and propose some specific areas within the field that we recommend a greater focus on in the future, including the role of ecology in sex chromosome evolution and new multilocus models of sex chromosome divergence. PMID:28469017

  18. Chromosomal abnormalities in a psychiatric population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, K.E.; Lubetsky, M.J.; Wenger, S.L.

    Over a 3.5 year period of time, 345 patients hospitalized for psychiatric problems were evaluated cytogenetically. The patient population included 76% males and 94% children with a mean age of 12 years. The criteria for testing was an undiagnosed etiology for mental retardation and/or autism. Cytogenetic studies identified 11, or 3%, with abnormal karyotypes, including 4 fragile X positive individuals (2 males, 2 females), and 8 with chromosomal aneuploidy, rearrangements, or deletions. While individuals with chromosomal abnormalities do not demonstrate specific behavioral, psychiatric, or developmental problems relative to other psychiatric patients, our results demonstrate the need for an increased awarenessmore » to order chromosomal analysis and fragile X testing in those individuals who have combinations of behavioral/psychiatric, learning, communication, or cognitive disturbance. 5 refs., 1 fig., 2 tabs.« less

  19. Deciphering evolutionary strata on plant sex chromosomes and fungal mating-type chromosomes through compositional segmentation.

    PubMed

    Pandey, Ravi S; Azad, Rajeev K

    2016-03-01

    Sex chromosomes have evolved from a pair of homologous autosomes which differentiated into sex determination systems, such as XY or ZW system, as a consequence of successive recombination suppression between the gametologous chromosomes. Identifying the regions of recombination suppression, namely, the "evolutionary strata", is central to understanding the history and dynamics of sex chromosome evolution. Evolution of sex chromosomes as a consequence of serial recombination suppressions is well-studied for mammals and birds, but not for plants, although 48 dioecious plants have already been reported. Only two plants Silene latifolia and papaya have been studied until now for the presence of evolutionary strata on their X chromosomes, made possible by the sequencing of sex-linked genes on both the X and Y chromosomes, which is a requirement of all current methods that determine stratum structure based on the comparison of gametologous sex chromosomes. To circumvent this limitation and detect strata even if only the sequence of sex chromosome in the homogametic sex (i.e. X or Z chromosome) is available, we have developed an integrated segmentation and clustering method. In application to gene sequences on the papaya X chromosome and protein-coding sequences on the S. latifolia X chromosome, our method could decipher all known evolutionary strata, as reported by previous studies. Our method, after validating on known strata on the papaya and S. latifolia X chromosome, was applied to the chromosome 19 of Populus trichocarpa, an incipient sex chromosome, deciphering two, yet unknown, evolutionary strata. In addition, we applied this approach to the recently sequenced sex chromosome V of the brown alga Ectocarpus sp. that has a haploid sex determination system (UV system) recovering the sex determining and pseudoautosomal regions, and then to the mating-type chromosomes of an anther-smut fungus Microbotryum lychnidis-dioicae predicting five strata in the non

  20. Sex-chromosome turnovers: the hot-potato model.

    PubMed

    Blaser, Olivier; Neuenschwander, Samuel; Perrin, Nicolas

    2014-01-01

    Sex-determining systems often undergo high rates of turnover but for reasons that remain largely obscure. Two recent evolutionary models assign key roles, respectively, to sex-antagonistic (SA) mutations occurring on autosomes and to deleterious mutations accumulating on sex chromosomes. These two models capture essential but distinct key features of sex-chromosome evolution; accordingly, they make different predictions and present distinct limitations. Here we show that a combination of features from the two models has the potential to generate endless cycles of sex-chromosome transitions: SA alleles accruing on a chromosome after it has been co-opted for sex induce an arrest of recombination; the ensuing accumulation of deleterious mutations will soon make a new transition ineluctable. The dynamics generated by these interactions share several important features with empirical data, namely, (i) that patterns of heterogamety tend to be conserved during transitions and (ii) that autosomes are not recruited randomly, with some chromosome pairs more likely than others to be co-opted for sex.

  1. Conflict on the Sex Chromosomes: Cause, Effect, and Complexity

    PubMed Central

    Mank, Judith E.; Hosken, David J.; Wedell, Nina

    2014-01-01

    Intralocus sexual conflict and intragenomic conflict both affect sex chromosome evolution and can in extreme cases even cause the complete turnover of sex chromosomes. Additionally, established sex chromosomes often become the focus of heightened conflict. This creates a tangled relationship between sex chromosomes and conflict with respect to cause and effect. To further complicate matters, sexual and intragenomic conflict may exacerbate one another and thereby further fuel sex chromosome change. Different magnitudes and foci of conflict offer potential explanations for lineage-specific variation in sex chromosome evolution and answer long-standing questions as to why some sex chromosomes are remarkably stable, whereas others show rapid rates of evolutionary change. PMID:25280765

  2. On the origin of sex chromosomes from meiotic drive

    PubMed Central

    Úbeda, Francisco; Patten, Manus M.; Wild, Geoff

    2015-01-01

    Most animals and many plants make use of specialized chromosomes (sex chromosomes) to determine an individual's sex. Best known are the XY and ZW sex-determination systems. Despite having evolved numerous times, sex chromosomes present something of an evolutionary puzzle. At their origin, alleles that dictate development as one sex or the other (primitive sex chromosomes) face a selective penalty, as they will be found more often in the more abundant sex. How is it possible that primitive sex chromosomes overcome this disadvantage? Any theory for the origin of sex chromosomes must identify the benefit that outweighs this cost and enables a sex-determining mutation to establish in the population. Here we show that a new sex-determining allele succeeds when linked to a sex-specific meiotic driver. The new sex-determining allele benefits from confining the driving allele to the sex in which it gains the benefit of drive. Our model requires few special assumptions and is sufficiently general to apply to the evolution of sex chromosomes in outbreeding cosexual or dioecious species. We highlight predictions of the model that can discriminate between this and previous theories of sex-chromosome origins. PMID:25392470

  3. Factors influencing parental decision making in prenatal diagnosis of sex chromosome aneuploidy.

    PubMed

    Mezei, Gábor; Papp, Csaba; Tóth-Pál, Ernö; Beke, Artúr; Papp, Zoltán

    2004-07-01

    To evaluate factors influencing parental decisions toward continuing or terminating a pregnancy with prenatal diagnosis of sex chromosome aneuploidy. We reviewed the records of patients with fetuses with sex chromosome aneuploidy between 1990 and 2001. A questionnaire survey of women who chose to terminate such pregnancies was designed to examine aspects of their decision-making process. Forty-nine of 89 pregnancies with sex chromosome aneuploidy were terminated (termination rate 0.55; 95% confidence interval 0.45-0.65). Pregnancies with abnormal ultrasound findings (14/16, 87%), with 45,X or 47,XXY karyotypes (26/36, 72%), and with nonmosaic karyotypes (30/48, 63%) were terminated significantly more often than pregnancies with normal ultrasound findings (35/73, 48%; P <.01), with 47,XXX or 47,XYY karyotypes (4/12, 33%; P <.05), and with mosaic karyotypes (5/25, 20%; P =.01). There was a trend (P =.136) toward a lower rate of termination from 67% to 36% across time, with a significant decrease from 67% to 7% in pregnancies with 47,XXX; 47,XYY; and mosaic karyotypes (P <.01), and no change in cases with 45,X and 47,XXY karyotypes (67% compared with 69%; P = 1.0). Abnormal sexual development and infertility were the greatest parental concerns related to termination. Fear of having a child with abnormal sexual development or infertility remains the major determinant of parental decision toward terminating pregnancy, resulting in consistently high termination rates across time in pregnancies with 45,X and 47,XXY karyotypes. In cases with 47,XXX; 47,XYY; and mosaic karyotypes, the declining termination rate across time is a consequence of recent studies reporting normal sexual development and fertility.

  4. Sex differences in the human brain and the impact of sex chromosomes and sex hormones.

    PubMed

    Lentini, E; Kasahara, M; Arver, S; Savic, I

    2013-10-01

    While there has been increasing support for the existence of cerebral sex differences, the mechanisms underlying these differences are unclear. Based on animal data, it has long been believed that sexual differentiation of the brain is primarily linked to organizational effects of fetal testosterone. This view is, however, in question as more recent data show the presence of sex differences before the onset of testosterone production. The present study focuses on the impact that sex chromosomes might have on these differences. Utilizing the inherent differences in sex and X-chromosome dosage among XXY males, XY males, and XX females, comparative voxel-based morphometry was conducted using sex hormones and sex chromosomes as covariates. Sex differences in the cerebellar and precentral gray matter volumes (GMV) were found to be related to X-chromosome dosage, whereas sex differences in the amygdala, the parahippocamus, and the occipital cortex were linked to testosterone levels. An increased number of sex chromosomes was associated with reduced GMV in the amygdala, caudate, and the temporal and insular cortices, with increased parietal GMV and reduced frontotemporal white matter volume. No selective, testosterone independent, effect of the Y-chromosome was detected. Based on these observations, it was hypothesized that programming of the motor cortex and parts of cerebellum is mediated by processes linked to X-escapee genes, which do not have Y-chromosome homologs, and that programming of certain limbic structures involves testosterone and X-chromosome escapee genes with Y-homologs.

  5. Genetic Diversity on the Sex Chromosomes

    PubMed Central

    Wilson Sayres, Melissa A

    2018-01-01

    Abstract Levels and patterns of genetic diversity can provide insights into a population’s history. In species with sex chromosomes, differences between genomic regions with unique inheritance patterns can be used to distinguish between different sets of possible demographic and selective events. This review introduces the differences in population history for sex chromosomes and autosomes, provides the expectations for genetic diversity across the genome under different evolutionary scenarios, and gives an introductory description for how deviations in these expectations are calculated and can be interpreted. Predominantly, diversity on the sex chromosomes has been used to explore and address three research areas: 1) Mating patterns and sex-biased variance in reproductive success, 2) signatures of selection, and 3) evidence for modes of speciation and introgression. After introducing the theory, this review catalogs recent studies of genetic diversity on the sex chromosomes across species within the major research areas that sex chromosomes are typically applied to, arguing that there are broad similarities not only between male-heterogametic (XX/XY) and female-heterogametic (ZZ/ZW) sex determination systems but also any mating system with reduced recombination in a sex-determining region. Further, general patterns of reduced diversity in nonrecombining regions are shared across plants and animals. There are unique patterns across populations with vastly different patterns of mating and speciation, but these do not tend to cluster by taxa or sex determination system. PMID:29635328

  6. Visualizing how cancer chromosome abnormalities form in living cells

    Cancer.gov

    For the first time, scientists have directly observed events that lead to the formation of a chromosome abnormality that is often found in cancer cells. The abnormality, called a translocation, occurs when part of a chromosome breaks off and becomes attac

  7. Sex Hormones and Sex Chromosomes Cause Sex Differences in the Development of Cardiovascular Diseases.

    PubMed

    Arnold, Arthur P; Cassis, Lisa A; Eghbali, Mansoureh; Reue, Karen; Sandberg, Kathryn

    2017-05-01

    This review summarizes recent evidence concerning hormonal and sex chromosome effects in obesity, atherosclerosis, aneurysms, ischemia/reperfusion injury, and hypertension. Cardiovascular diseases occur and progress differently in the 2 sexes, because biological factors differing between the sexes have sex-specific protective and harmful effects. By comparing the 2 sexes directly, and breaking down sex into its component parts, one can discover sex-biasing protective mechanisms that might be targeted in the clinic. Gonadal hormones, especially estrogens and androgens, have long been found to account for some sex differences in cardiovascular diseases, and molecular mechanisms mediating these effects have recently been elucidated. More recently, the inherent sexual inequalities in effects of sex chromosome genes have also been implicated as contributors in animal models of cardiovascular diseases, especially a deleterious effect of the second X chromosome found in females but not in males. Hormonal and sex chromosome mechanisms interact in the sex-specific control of certain diseases, sometimes by opposing the action of the other. © 2017 American Heart Association, Inc.

  8. Who should be screened for chromosomal abnormalities before ICSI treatment?

    PubMed

    Dul, E C; van Ravenswaaij-Arts, C M A; Groen, H; van Echten-Arends, J; Land, J A

    2010-11-01

    Guidelines on karyotyping infertile men before ICSI treatment are not consistent. Most guidelines recommend chromosomal screening in azoospermic and severe oligozoospermic men, because they are assumed to have the highest risk of abnormalities. We performed a retrospective cohort study in azoospermic men and men eligible for ICSI. We determined the prevalence of chromosomal abnormalities in relation to sperm concentration and compared our data to studies in the literature. A high prevalence of chromosomal abnormalities in azoospermic men was found, but no difference in the prevalence of abnormalities was seen between different sperm concentration categories in non-azoospermic men. This raises the question of who should be screened for chromosomal abnormalities before ICSI treatment. Considering the costs and benefits, we would propose limiting screening to infertile couples with non-obstructive azoospermia.

  9. Persistence of chromosomal abnormalities additional to the Philadelphia chromosome after Philadelphia chromosome disappearance during imatinib therapy for chronic myeloid leukemia.

    PubMed

    Zaccaria, Alfonso; Valenti, Anna Maria; Donti, Emilio; Gozzetti, Alessandro; Ronconi, Sonia; Spedicato, Francesco

    2007-04-01

    Five Philadelphia chromosome positive (Ph+) chronic myeloid leukemia (CML) patients with additional chromosome abnormalities at diagnosis have been followed during Imatinib therapy. In all, the Ph chromosome disappeared, while the 5 cases, additional abnormalities [dup(1); del(5), +8 (2 patients) and +14] persisted in the subsequent studies, performed over a period of 11 to 49 months, either alone or together with a karyotypically normal cell population. This finding is consistent with a secondary origin of the Ph chromosome in these patients. It is still to early to evaluate the possible prognostic value of these additional abnormalities.

  10. A cytogenetic view of sex chromosome evolution in plants.

    PubMed

    Armstrong, S J; Filatov, D A

    2008-01-01

    The recent origin of sex chromosomes in plant species provides an opportunity to study the early stages of sex chromosome evolution. This review focuses on the cytogenetic aspects of the analysis of sex chromosome evolution in plants and in particular, on the best-studied case, the sex chromosomes in Silene latifolia. We discuss the emerging picture of sex chromosome evolution in plants and the further work that is required to gain better understanding of the similarities and differences between the trends in animal and plant sex chromosome evolution. Similar to mammals, suppression of recombination between the X and Y in S. latifolia species has occurred in several steps, however there is little evidence that inversions on the S. latifolia Y chromosome have played a role in cessation of X/Y recombination. Secondly, in S. latifolia there is a lack of evidence for genetic degeneration of the Y chromosome, unlike the events documented in mammalian sex chromosomes. The insufficient number of genes isolated from this and other plant sex chromosomes does not allow us to generalize whether the trends revealed on S. latifolia Y chromosome are general for other dioecious plants. Isolation of more plant sex-linked genes and their cytogenetic mapping with fluorescent in situ hybridisation (FISH) will ultimately lead to a much better understanding of the processes driving sex chromosome evolution in plants. 2008 S. Karger AG, Basel

  11. On the origin of sex chromosomes from meiotic drive.

    PubMed

    Úbeda, Francisco; Patten, Manus M; Wild, Geoff

    2015-01-07

    Most animals and many plants make use of specialized chromosomes (sex chromosomes) to determine an individual's sex. Best known are the XY and ZW sex-determination systems. Despite having evolved numerous times, sex chromosomes present something of an evolutionary puzzle. At their origin, alleles that dictate development as one sex or the other (primitive sex chromosomes) face a selective penalty, as they will be found more often in the more abundant sex. How is it possible that primitive sex chromosomes overcome this disadvantage? Any theory for the origin of sex chromosomes must identify the benefit that outweighs this cost and enables a sex-determining mutation to establish in the population. Here we show that a new sex-determining allele succeeds when linked to a sex-specific meiotic driver. The new sex-determining allele benefits from confining the driving allele to the sex in which it gains the benefit of drive. Our model requires few special assumptions and is sufficiently general to apply to the evolution of sex chromosomes in outbreeding cosexual or dioecious species. We highlight predictions of the model that can discriminate between this and previous theories of sex-chromosome origins. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. Evolutionary stability of sex chromosomes in snakes.

    PubMed

    Rovatsos, Michail; Vukić, Jasna; Lymberakis, Petros; Kratochvíl, Lukáš

    2015-12-22

    Amniote vertebrates possess various mechanisms of sex determination, but their variability is not equally distributed. The large evolutionary stability of sex chromosomes in viviparous mammals and birds was believed to be connected with their endothermy. However, some ectotherm lineages seem to be comparably conserved in sex determination, but previously there was a lack of molecular evidence to confirm this. Here, we document a stability of sex chromosomes in advanced snakes based on the testing of Z-specificity of genes using quantitative PCR (qPCR) across 37 snake species (our qPCR technique is suitable for molecular sexing in potentially all advanced snakes). We discovered that at least part of sex chromosomes is homologous across all families of caenophidian snakes (Acrochordidae, Xenodermatidae, Pareatidae, Viperidae, Homalopsidae, Colubridae, Elapidae and Lamprophiidae). The emergence of differentiated sex chromosomes can be dated back to about 60 Ma and preceded the extensive diversification of advanced snakes, the group with more than 3000 species. The Z-specific genes of caenophidian snakes are (pseudo)autosomal in the members of the snake families Pythonidae, Xenopeltidae, Boidae, Erycidae and Sanziniidae, as well as in outgroups with differentiated sex chromosomes such as monitor lizards, iguanas and chameleons. Along with iguanas, advanced snakes are therefore another example of ectothermic amniotes with a long-term stability of sex chromosomes comparable with endotherms. © 2015 The Author(s).

  13. Evolutionary stability of sex chromosomes in snakes

    PubMed Central

    Rovatsos, Michail; Vukić, Jasna; Lymberakis, Petros; Kratochvíl, Lukáš

    2015-01-01

    Amniote vertebrates possess various mechanisms of sex determination, but their variability is not equally distributed. The large evolutionary stability of sex chromosomes in viviparous mammals and birds was believed to be connected with their endothermy. However, some ectotherm lineages seem to be comparably conserved in sex determination, but previously there was a lack of molecular evidence to confirm this. Here, we document a stability of sex chromosomes in advanced snakes based on the testing of Z-specificity of genes using quantitative PCR (qPCR) across 37 snake species (our qPCR technique is suitable for molecular sexing in potentially all advanced snakes). We discovered that at least part of sex chromosomes is homologous across all families of caenophidian snakes (Acrochordidae, Xenodermatidae, Pareatidae, Viperidae, Homalopsidae, Colubridae, Elapidae and Lamprophiidae). The emergence of differentiated sex chromosomes can be dated back to about 60 Ma and preceded the extensive diversification of advanced snakes, the group with more than 3000 species. The Z-specific genes of caenophidian snakes are (pseudo)autosomal in the members of the snake families Pythonidae, Xenopeltidae, Boidae, Erycidae and Sanziniidae, as well as in outgroups with differentiated sex chromosomes such as monitor lizards, iguanas and chameleons. Along with iguanas, advanced snakes are therefore another example of ectothermic amniotes with a long-term stability of sex chromosomes comparable with endotherms. PMID:26702042

  14. Sex chromosome aneuploidies and copy-number variants: a further explanation for neurodevelopmental prognosis variability?

    PubMed

    Le Gall, Jessica; Nizon, Mathilde; Pichon, Olivier; Andrieux, Joris; Audebert-Bellanger, Séverine; Baron, Sabine; Beneteau, Claire; Bilan, Frédéric; Boute, Odile; Busa, Tiffany; Cormier-Daire, Valérie; Ferec, Claude; Fradin, Mélanie; Gilbert-Dussardier, Brigitte; Jaillard, Sylvie; Jønch, Aia; Martin-Coignard, Dominique; Mercier, Sandra; Moutton, Sébastien; Rooryck, Caroline; Schaefer, Elise; Vincent, Marie; Sanlaville, Damien; Le Caignec, Cédric; Jacquemont, Sébastien; David, Albert; Isidor, Bertrand

    2017-08-01

    Sex chromosome aneuploidies (SCA) is a group of conditions in which individuals have an abnormal number of sex chromosomes. SCA, such as Klinefelter's syndrome, XYY syndrome, and Triple X syndrome are associated with a large range of neurological outcome. Another genetic event such as another cytogenetic abnormality may explain a part of this variable expressivity. In this study, we have recruited fourteen patients with intellectual disability or developmental delay carrying SCA associated with a copy-number variant (CNV). In our cohort (four patients 47,XXY, four patients 47,XXX, and six patients 47,XYY), seven patients were carrying a pathogenic CNV, two a likely pathogenic CNV and five a variant of uncertain significance. Our analysis suggests that CNV might be considered as an additional independent genetic factor for intellectual disability and developmental delay for patients with SCA and neurodevelopmental disorder.

  15. Ever-Young Sex Chromosomes in European Tree Frogs

    PubMed Central

    Lindtke, Dorothea; Sermier, Roberto; Betto-Colliard, Caroline; Dufresnes, Christophe; Bonjour, Emmanuel; Dumas, Zoé; Luquet, Emilien; Maddalena, Tiziano; Sousa, Helena Clavero; Martinez-Solano, Iñigo; Perrin, Nicolas

    2011-01-01

    Non-recombining sex chromosomes are expected to undergo evolutionary decay, ending up genetically degenerated, as has happened in birds and mammals. Why are then sex chromosomes so often homomorphic in cold-blooded vertebrates? One possible explanation is a high rate of turnover events, replacing master sex-determining genes by new ones on other chromosomes. An alternative is that X-Y similarity is maintained by occasional recombination events, occurring in sex-reversed XY females. Based on mitochondrial and nuclear gene sequences, we estimated the divergence times between European tree frogs (Hyla arborea, H. intermedia, and H. molleri) to the upper Miocene, about 5.4–7.1 million years ago. Sibship analyses of microsatellite polymorphisms revealed that all three species have the same pair of sex chromosomes, with complete absence of X-Y recombination in males. Despite this, sequences of sex-linked loci show no divergence between the X and Y chromosomes. In the phylogeny, the X and Y alleles cluster according to species, not in groups of gametologs. We conclude that sex-chromosome homomorphy in these tree frogs does not result from a recent turnover but is maintained over evolutionary timescales by occasional X-Y recombination. Seemingly young sex chromosomes may thus carry old-established sex-determining genes, a result at odds with the view that sex chromosomes necessarily decay until they are replaced. This raises intriguing perspectives regarding the evolutionary dynamics of sexually antagonistic genes and the mechanisms that control X-Y recombination. PMID:21629756

  16. Cytogenetic Insights into the Evolution of Chromosomes and Sex Determination Reveal Striking Homology of Turtle Sex Chromosomes to Amphibian Autosomes.

    PubMed

    Montiel, Eugenia E; Badenhorst, Daleen; Lee, Ling S; Literman, Robert; Trifonov, Vladimir; Valenzuela, Nicole

    2016-01-01

    Turtle karyotypes are highly conserved compared to other vertebrates; yet, variation in diploid number (2n = 26-68) reflects profound genomic reorganization, which correlates with evolutionary turnovers in sex determination. We evaluate the published literature and newly collected comparative cytogenetic data (G- and C-banding, 18S-NOR, and telomere-FISH mapping) from 13 species spanning 2n = 28-68 to revisit turtle genome evolution and sex determination. Interstitial telomeric sites were detected in multiple lineages that underwent diploid number and sex determination turnovers, suggesting chromosomal rearrangements. C-banding revealed potential interspecific variation in centromere composition and interstitial heterochromatin at secondary constrictions. 18S-NORs were detected in secondary constrictions in a single chromosomal pair per species, refuting previous reports of multiple NORs in turtles. 18S-NORs are linked to ZW chromosomes in Apalone and Pelodiscus and to X (not Y) in Staurotypus. Notably, comparative genomics across amniotes revealed that the sex chromosomes of several turtles, as well as mammals and some lizards, are homologous to components of Xenopus tropicalis XTR1 (carrying Dmrt1). Other turtle sex chromosomes are homologous to XTR4 (carrying Wt1). Interestingly, all known turtle sex chromosomes, except in Trionychidae, evolved via inversions around Dmrt1 or Wt1. Thus, XTR1 appears to represent an amniote proto-sex chromosome (perhaps linked ancestrally to XTR4) that gave rise to turtle and other amniote sex chromosomes. © 2016 S. Karger AG, Basel.

  17. Turnover of Sex Chromosomes in the Stickleback Fishes (Gasterosteidae)

    PubMed Central

    Ross, Joseph A.; Urton, James R.; Boland, Jessica; Shapiro, Michael D.; Peichel, Catherine L.

    2009-01-01

    Diverse sex-chromosome systems are found in vertebrates, particularly in teleost fishes, where different systems can be found in closely related species. Several mechanisms have been proposed for the rapid turnover of sex chromosomes, including the transposition of an existing sex-determination gene, the appearance of a new sex-determination gene on an autosome, and fusions between sex chromosomes and autosomes. To better understand these evolutionary transitions, a detailed comparison of sex chromosomes between closely related species is essential. Here, we used genetic mapping and molecular cytogenetics to characterize the sex-chromosome systems of multiple stickleback species (Gasterosteidae). Previously, we demonstrated that male threespine stickleback fish (Gasterosteus aculeatus) have a heteromorphic XY pair corresponding to linkage group (LG) 19. In this study, we found that the ninespine stickleback (Pungitius pungitius) has a heteromorphic XY pair corresponding to LG12. In black-spotted stickleback (G. wheatlandi) males, one copy of LG12 has fused to the LG19-derived Y chromosome, giving rise to an X1X2Y sex-determination system. In contrast, neither LG12 nor LG19 is linked to sex in two other species: the brook stickleback (Culaea inconstans) and the fourspine stickleback (Apeltes quadracus). However, we confirmed the existence of a previously reported heteromorphic ZW sex-chromosome pair in the fourspine stickleback. The sex-chromosome diversity that we have uncovered in sticklebacks provides a rich comparative resource for understanding the mechanisms that underlie the rapid turnover of sex-chromosome systems. PMID:19229325

  18. Did Lizards Follow Unique Pathways in Sex Chromosome Evolution?

    PubMed Central

    Gleeson, Dianne; Georges, Arthur

    2018-01-01

    Reptiles show remarkable diversity in modes of reproduction and sex determination, including high variation in the morphology of sex chromosomes, ranging from homomorphic to highly heteromorphic. Additionally, the co-existence of genotypic sex determination (GSD) and temperature-dependent sex determination (TSD) within and among sister clades makes this group an attractive model to study and understand the evolution of sex chromosomes. This is particularly so with Lizards (Order Squamata) which, among reptiles, show extraordinary morphological diversity. They also show no particular pattern of sex chromosome degeneration of the kind observed in mammals, birds and or even in snakes. We therefore speculate that sex determination sensu sex chromosome evolution is labile and rapid and largely follows independent trajectories within lizards. Here, we review the current knowledge on the evolution of sex chromosomes in lizards and discuss how sex chromosome evolution within that group differs from other amniote taxa, facilitating unique evolutionary pathways. PMID:29751579

  19. Mechanisms and consequences of paternally transmitted chromosomal abnormalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, F; Wyrobek, A J

    Paternally transmitted chromosomal damage has been associated with pregnancy loss, developmental and morphological defects, infant mortality, infertility, and genetic diseases in the offspring including cancer. There is epidemiological evidence linking paternal exposure to occupational or environmental agents with an increased risk of abnormal reproductive outcomes. There is also a large body of literature on germ cell mutagenesis in rodents showing that treatment of male germ cells with mutagens has dramatic consequences on reproduction producing effects such as those observed in human epidemiological studies. However, we know very little about the etiology, transmission and early embryonic consequences of paternally-derived chromosomal abnormalities.more » The available evidence suggests that: (1) there are distinct patterns of germ cell-stage differences in the sensitivity of induction of transmissible genetic damage with male postmeiotic cells being the most sensitive; (2) cytogenetic abnormalities at first metaphase after fertilization are critical intermediates between paternal exposure and abnormal reproductive outcomes; and, (3) there are maternally susceptibility factors that may have profound effects on the amount of sperm DNA damage that is converted into chromosomal aberrations in the zygote and directly affect the risk for abnormal reproductive outcomes.« less

  20. Effects of sex chromosome dosage on corpus callosum morphology in supernumerary sex chromosome aneuploidies

    PubMed Central

    2014-01-01

    Background Supernumerary sex chromosome aneuploidies (sSCA) are characterized by the presence of one or more additional sex chromosomes in an individual’s karyotype; they affect around 1 in 400 individuals. Although there is high variability, each sSCA subtype has a characteristic set of cognitive and physical phenotypes. Here, we investigated the differences in the morphometry of the human corpus callosum (CC) between sex-matched controls 46,XY (N =99), 46,XX (N =93), and six unique sSCA karyotypes: 47,XYY (N =29), 47,XXY (N =58), 48,XXYY (N =20), 47,XXX (N =30), 48,XXXY (N =5), and 49,XXXXY (N =6). Methods We investigated CC morphometry using local and global area, local curvature of the CC boundary, and between-landmark distance analysis (BLDA). We hypothesized that CC morphometry would vary differentially along a proposed spectrum of Y:X chromosome ratio with supernumerary Y karyotypes having the largest CC areas and supernumerary X karyotypes having significantly smaller CC areas. To investigate this, we defined an sSCA spectrum based on a descending Y:X karyotype ratio: 47,XYY, 46,XY, 48,XXYY, 47,XXY, 48,XXXY, 49,XXXXY, 46,XX, 47,XXX. We similarly explored the effects of both X and Y chromosome numbers within sex. Results of shape-based metrics were analyzed using permutation tests consisting of 5,000 iterations. Results Several subregional areas, local curvature, and BLDs differed between groups. Moderate associations were found between area and curvature in relation to the spectrum and X and Y chromosome counts. BLD was strongly associated with X chromosome count in both male and female groups. Conclusions Our results suggest that X- and Y-linked genes have differential effects on CC morphometry. To our knowledge, this is the first study to compare CC morphometry across these extremely rare groups. PMID:25780557

  1. Effects of sex chromosome dosage on corpus callosum morphology in supernumerary sex chromosome aneuploidies.

    PubMed

    Wade, Benjamin S C; Joshi, Shantanu H; Reuter, Martin; Blumenthal, Jonathan D; Toga, Arthur W; Thompson, Paul M; Giedd, Jay N

    2014-01-01

    Supernumerary sex chromosome aneuploidies (sSCA) are characterized by the presence of one or more additional sex chromosomes in an individual's karyotype; they affect around 1 in 400 individuals. Although there is high variability, each sSCA subtype has a characteristic set of cognitive and physical phenotypes. Here, we investigated the differences in the morphometry of the human corpus callosum (CC) between sex-matched controls 46,XY (N =99), 46,XX (N =93), and six unique sSCA karyotypes: 47,XYY (N =29), 47,XXY (N =58), 48,XXYY (N =20), 47,XXX (N =30), 48,XXXY (N =5), and 49,XXXXY (N =6). We investigated CC morphometry using local and global area, local curvature of the CC boundary, and between-landmark distance analysis (BLDA). We hypothesized that CC morphometry would vary differentially along a proposed spectrum of Y:X chromosome ratio with supernumerary Y karyotypes having the largest CC areas and supernumerary X karyotypes having significantly smaller CC areas. To investigate this, we defined an sSCA spectrum based on a descending Y:X karyotype ratio: 47,XYY, 46,XY, 48,XXYY, 47,XXY, 48,XXXY, 49,XXXXY, 46,XX, 47,XXX. We similarly explored the effects of both X and Y chromosome numbers within sex. Results of shape-based metrics were analyzed using permutation tests consisting of 5,000 iterations. Several subregional areas, local curvature, and BLDs differed between groups. Moderate associations were found between area and curvature in relation to the spectrum and X and Y chromosome counts. BLD was strongly associated with X chromosome count in both male and female groups. Our results suggest that X- and Y-linked genes have differential effects on CC morphometry. To our knowledge, this is the first study to compare CC morphometry across these extremely rare groups.

  2. Genetic diagnosis of sex chromosome aberrations in horses based on parentage test by microsatellite DNA and analysis of X- and Y-linked markers.

    PubMed

    Kakoi, H; Hirota, K; Gawahara, H; Kurosawa, M; Kuwajima, M

    2005-03-01

    Sex chromosome aberrations are often associated with clinical signs that affect equine health and reproduction. However, abnormal manifestation with sex chromosome aberration usually appears at maturity and potential disorders may be suspected infrequently. A reliable survey at an early stage is therefore required. To detect and characterise sex chromosome aberrations in newborn foals by the parentage test and analysis using X- and Y-linked markers. We conducted a genetic diagnosis combined with a parentage test by microsatellite DNA and analysis of X- and Y-linked genetic markers in newborn light-breed foals (n = 17, 471). The minimum incidence of sex chromosome aberration in horses was estimated in the context of available population data. Eighteen cases with aberrations involving 63,XO, 65,XXY and 65,XXX were found. The XO, XXY (pure 65,XXY and/or mosaics/chimaeras) and XXX were found in 0.15, 0.02 and 0.01% of the population, respectively, based solely on detection of abnormal segregation of a single X chromosome marker, LEX003. Detection at an early age and understanding of the prevalence of sex chromosome aberrations should assist in the diagnosis and managment of horses kept for breeding. Further, the parental origin of the X chromosome of each disorder could be proved by the results of genetic analysis, thereby contributing to cytogenetic characterisation.

  3. Prevalence and consequences of chromosomal abnormalities in Canadian commercial swine herds.

    PubMed

    Quach, Anh T; Revay, Tamas; Villagomez, Daniel A F; Macedo, Mariana P; Sullivan, Alison; Maignel, Laurence; Wyss, Stefanie; Sullivan, Brian; King, W Allan

    2016-09-12

    Structural chromosome abnormalities are well known as factors that reduce fertility rate in domestic pigs. According to large-scale national cytogenetic screening programs that are implemented in France, it is estimated that new chromosome abnormalities occur at a rate of 0.5 % in fertility-unproven boars. This work aimed at estimating the prevalence and consequences of chromosome abnormalities in commercial swine operations in Canada. We found pig carriers at a frequency of 1.64 % (12 out of 732 boars). Carrier pigs consistently showed lower fertility values. The total number of piglets born for litters from carrier boars was between 4 and 46 % lower than the herd average. Similarly, carrier boars produced litters with a total number of piglets born alive that was between 6 and 28 % lower than the herd average. A total of 12 new structural chromosome abnormalities were identified. Reproductive performance is significantly reduced in sires with chromosome abnormalities. The incidence of such abnormal sires appears relatively high in populations without routine cytogenetic screening such as observed for Canada in this study. Systematic cytogenetic screening of potential breeding boars would minimise the risk of carriers of chromosome aberrations entering artificial insemination centres. This would avoid the large negative effects on productivity for the commercial sow herds and reduce the risk of transmitting abnormalities to future generations in nucleus farms.

  4. Signatures of Sex-Antagonistic Selection on Recombining Sex Chromosomes

    PubMed Central

    Kirkpatrick, Mark; Guerrero, Rafael F.

    2014-01-01

    Sex-antagonistic (SA) selection has major evolutionary consequences: it can drive genomic change, constrain adaptation, and maintain genetic variation for fitness. The recombining (or pseudoautosomal) regions of sex chromosomes are a promising setting in which to study SA selection because they tend to accumulate SA polymorphisms and because recombination allows us to deploy the tools of molecular evolution to locate targets of SA selection and quantify evolutionary forces. Here we use coalescent models to characterize the patterns of polymorphism expected within and divergence between recombining X and Y (or Z and W) sex chromosomes. SA selection generates peaks of divergence between X and Y that can extend substantial distances away from the targets of selection. Linkage disequilibrium between neutral sites is also inflated. We show how the pattern of divergence is altered when the SA polymorphism or the sex-determining region was recently established. We use data from the flowering plant Silene latifolia to illustrate how the strength of SA selection might be quantified using molecular data from recombining sex chromosomes. PMID:24578352

  5. Signatures of sex-antagonistic selection on recombining sex chromosomes.

    PubMed

    Kirkpatrick, Mark; Guerrero, Rafael F

    2014-06-01

    Sex-antagonistic (SA) selection has major evolutionary consequences: it can drive genomic change, constrain adaptation, and maintain genetic variation for fitness. The recombining (or pseudoautosomal) regions of sex chromosomes are a promising setting in which to study SA selection because they tend to accumulate SA polymorphisms and because recombination allows us to deploy the tools of molecular evolution to locate targets of SA selection and quantify evolutionary forces. Here we use coalescent models to characterize the patterns of polymorphism expected within and divergence between recombining X and Y (or Z and W) sex chromosomes. SA selection generates peaks of divergence between X and Y that can extend substantial distances away from the targets of selection. Linkage disequilibrium between neutral sites is also inflated. We show how the pattern of divergence is altered when the SA polymorphism or the sex-determining region was recently established. We use data from the flowering plant Silene latifolia to illustrate how the strength of SA selection might be quantified using molecular data from recombining sex chromosomes. Copyright © 2014 by the Genetics Society of America.

  6. Are some chromosomes particularly good at sex? Insights from amniotes.

    PubMed

    O'Meally, Denis; Ezaz, Tariq; Georges, Arthur; Sarre, Stephen D; Graves, Jennifer A Marshall

    2012-01-01

    Several recent studies have produced comparative maps of genes on amniote sex chromosomes, revealing homology of gene content and arrangement across lineages as divergent as mammals and lizards. For example, the chicken Z chromosome, which shares homology with the sex chromosomes of all birds, monotremes, and a gecko, is a striking example of stability of genome organization and retention, or independent acquisition, of function in sex determination. In other lineages, such as snakes and therian mammals, well conserved but independently evolved sex chromosome systems have arisen. Among lizards, novel sex chromosomes appear frequently, even in congeneric species. Here, we review recent gene mapping data, examine the evolutionary relationships of amniote sex chromosomes and argue that gene content can predispose some chromosomes to a specialized role in sex determination.

  7. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies.

    PubMed

    Pampalona, J; Soler, D; Genescà, A; Tusell, L

    2010-01-05

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16(INK4a) protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and nuclear

  8. Variation in the levels of pregnancy-specific beta-1-glycoprotein in maternal serum from chromosomally abnormal pregnancies.

    PubMed

    Graham, G W; Crossley, J A; Aitken, D A; Connor, J M

    1992-06-01

    Human pregnancy-specific beta-1-glycoprotein (SP1) was assayed retrospectively in stored maternal serum (MS) samples from 82 chromosomally abnormal pregnancies and 377 matched controls. The median MSSP1 concentration in 48 Down's syndrome pregnancies was significantly elevated at 1.17 multiples of the control median (MOM), and significantly reduced (0.5 MOM) in a group of eight cases of unbalanced translocations. There was no significant difference in median SP1 concentrations in cases of trisomy 18, trisomy 13, balanced translocations, or sex chromosome abnormalities. A comparison with human chorionic gonadotrophin results in the same series of samples indicates that SP1 is a less sensitive predictor of Down's syndrome pregnancies.

  9. Evolution of heteromorphic sex chromosomes in the order Aulopiformes.

    PubMed

    Ota, K; Kobayashi, T; Ueno, K; Gojobori, T

    2000-12-23

    The fish order Aulopiformes contains both synchronously hermaphroditic and gonochoristic species. From the cytogenetic viewpoint, few reports show that gonochoristic Aulopiformes have heteromorphic sex chromosomes. Because fish in this order give us a unique opportunity to elucidate the evolution of sex chromosomes, it is important to examine a phylogenetic relationship in Aulopiformes by both molecular evolutionary and cytogenetic methods. Thus, we conducted molecular phylogenetic and cytogenetic studies of six Aulopiform species. Our results suggested that hermaphroditic species were evolutionarily derived from gonochoristic species. It follows that the hermaphroditic species might have lost the heteromorphic sex chromosomes during evolution. Here, we suggest a possibility that heteromorphic sex chromosomes can disappear from the genome, even if they have appeared once in evolution. Taking into account Ohno's hypothesis that heteromorphic sex chromosomes might have emerged from autosomes, we propose the hypothesis that heteromorphic sex chromosomes may have undergone repeated events of appearance and disappearance during the course of fish evolution.

  10. Size and Content of the Sex-Determining Region of the Y Chromosome in Dioecious Mercurialis annua, a Plant with Homomorphic Sex Chromosomes.

    PubMed

    Veltsos, Paris; Cossard, Guillaume; Beaudoing, Emmanuel; Beydon, Genséric; Savova Bianchi, Dessislava; Roux, Camille; C González-Martínez, Santiago; R Pannell, John

    2018-05-29

    Dioecious plants vary in whether their sex chromosomes are heteromorphic or homomorphic, but even homomorphic sex chromosomes may show divergence between homologues in the non-recombining, sex-determining region (SDR). Very little is known about the SDR of these species, which might represent particularly early stages of sex-chromosome evolution. Here, we assess the size and content of the SDR of the diploid dioecious herb Mercurialis annua , a species with homomorphic sex chromosomes and mild Y-chromosome degeneration. We used RNA sequencing (RNAseq) to identify new Y-linked markers for M. annua. Twelve of 24 transcripts showing male-specific expression in a previous experiment could be amplified by polymerase chain reaction (PCR) only from males, and are thus likely to be Y-linked. Analysis of genome-capture data from multiple populations of M. annua pointed to an additional six male-limited (and thus Y-linked) sequences. We used these markers to identify and sequence 17 sex-linked bacterial artificial chromosomes (BACs), which form 11 groups of non-overlapping sequences, covering a total sequence length of about 1.5 Mb. Content analysis of this region suggests that it is enriched for repeats, has low gene density, and contains few candidate sex-determining genes. The BACs map to a subset of the sex-linked region of the genetic map, which we estimate to be at least 14.5 Mb. This is substantially larger than estimates for other dioecious plants with homomorphic sex chromosomes, both in absolute terms and relative to their genome sizes. Our data provide a rare, high-resolution view of the homomorphic Y chromosome of a dioecious plant.

  11. Association of recurrent pregnancy loss with chromosomal abnormalities and hereditary thrombophilias.

    PubMed

    Ocak, Z; Özlü, T; Ozyurt, O

    2013-06-01

    Recurrent pregnancy loss (RPL) which is generally known as >3 consecutive pregnancy losses before 20 weeks' gestation is seen in 0.5-2% of women. To evaluate the association of parental and fetal chromosomal abnormalities with recurrent pregnancy loss in our area and to analyze the frequency of three types of hereditary thrombophilia's; (MTHFR C677T polymorphisms, FV Leiden G1691A mutation and Prothrombin (factor II) G20210A mutation) in these female patients. The present case-control retrospective study was performed between February 2007 and December 2011 on 495 couples, who had two or more consecutive pregnancy losses before 20 weeks' gestation. We used conventional cytogenetic analysis and polymerase chain reaction-restriction fragment length polymorphism. Parental chromosomal abnormality was detected in 28 cases (2.8% of all cases, 5.7% of the couples) most of which (92.9%) were structural abnormalities. All of the structural abnormalities were balanced chromosomal translocations. Chromosomal analysis performed from the abortion materials detected a major chromosomal abnormality in 31.9% of the cases. The most frequently observed alteration in the hereditary thrombophilia genes was heterozygote mutation for the MTHFR C677T polymorphisms (n=55). Balanced translocations are the most commonly detected chromosomal abnormalities in couples being evaluated for recurrent pregnancy loss and these patients are the best candidates for offering prenatal genetic diagnosis by the help of which there is a possibility of obtaining a better reproductive outcome.

  12. Unique sex chromosome systems in Ellobius: How do male XX chromosomes recombine and undergo pachytene chromatin inactivation?

    PubMed

    Matveevsky, Sergey; Bakloushinskaya, Irina; Kolomiets, Oxana

    2016-07-18

    Most mammalian species have heteromorphic sex chromosomes in males, except for a few enigmatic groups such as the mole voles Ellobius, which do not have the Y chromosome and Sry gene. The Ellobius (XX ♀♂) system of sex chromosomes has no analogues among other animals. The structure and meiotic behaviour of the two X chromosomes were investigated for males of the sibling species Ellobius talpinus and Ellobius tancrei. Their sex chromosomes, despite their identical G-structure, demonstrate short synaptic fragments and crossover-associated MLH1 foci in both telomeric regions only. The chromatin undergoes modifications in the meiotic sex chromosomes. SUMO-1 marks a small nucleolus-like body of the meiotic XX. ATR and ubiH2A are localized in the asynaptic area and the histone γH2AFX covers the entire XX bivalent. The distribution of some markers of chromatin inactivation differentiates sex chromosomes of mole voles from those of other mammals. Sex chromosomes of both studied species have identical recombination and meiotic inactivation patterns. In Ellobius, similar chromosome morphology masks the functional heteromorphism of the male sex chromosomes, which can be seen at meiosis.

  13. Unique sex chromosome systems in Ellobius: How do male XX chromosomes recombine and undergo pachytene chromatin inactivation?

    PubMed Central

    Matveevsky, Sergey; Bakloushinskaya, Irina; Kolomiets, Oxana

    2016-01-01

    Most mammalian species have heteromorphic sex chromosomes in males, except for a few enigmatic groups such as the mole voles Ellobius, which do not have the Y chromosome and Sry gene. The Ellobius (XX ♀♂) system of sex chromosomes has no analogues among other animals. The structure and meiotic behaviour of the two X chromosomes were investigated for males of the sibling species Ellobius talpinus and Ellobius tancrei. Their sex chromosomes, despite their identical G-structure, demonstrate short synaptic fragments and crossover-associated MLH1 foci in both telomeric regions only. The chromatin undergoes modifications in the meiotic sex chromosomes. SUMO-1 marks a small nucleolus-like body of the meiotic XX. ATR and ubiH2A are localized in the asynaptic area and the histone γH2AFX covers the entire XX bivalent. The distribution of some markers of chromatin inactivation differentiates sex chromosomes of mole voles from those of other mammals. Sex chromosomes of both studied species have identical recombination and meiotic inactivation patterns. In Ellobius, similar chromosome morphology masks the functional heteromorphism of the male sex chromosomes, which can be seen at meiosis. PMID:27425629

  14. A role for a neo-sex chromosome in stickleback speciation

    PubMed Central

    Kitano, Jun; Ross, Joseph A.; Mori, Seiichi; Kume, Manabu; Jones, Felicity C.; Chan, Yingguang F.; Absher, Devin M.; Grimwood, Jane; Schmutz, Jeremy; Myers, Richard M.; Kingsley, David M.; Peichel, Catherine L.

    2009-01-01

    Sexual antagonism, or conflict between the sexes, has been proposed as a driving force in both sex chromosome turnover and speciation. Although closely related species often have different sex chromosome systems, it is unknown whether sex chromosome turnover contributes to the evolution of reproductive isolation between species. In this study, we show that a newly evolved sex chromosome harbours genes that contribute to speciation in threespine stickleback fish (Gasterosteus aculeatus). We first identified a neo-sex chromosome system found only in one member of a sympatric species pair in Japan. We then performed genetic linkage mapping of male-specific traits important for reproductive isolation between the Japanese species pair. The neo-X chromosome harbours loci for male courtship display traits that contribute to behavioural isolation, while the ancestral X chromosome contains loci for both behavioural isolation and hybrid male sterility. Our work not only provides strong evidence for a large-X effect on reproductive isolation in a vertebrate system, but also provides direct evidence that a young neo-X chromosome contributes to reproductive isolation between closely related species. Our data suggest that sex chromosome turnover might play a greater role in speciation than previously appreciated. PMID:19783981

  15. A role for a neo-sex chromosome in stickleback speciation.

    PubMed

    Kitano, Jun; Ross, Joseph A; Mori, Seiichi; Kume, Manabu; Jones, Felicity C; Chan, Yingguang F; Absher, Devin M; Grimwood, Jane; Schmutz, Jeremy; Myers, Richard M; Kingsley, David M; Peichel, Catherine L

    2009-10-22

    Sexual antagonism, or conflict between the sexes, has been proposed as a driving force in both sex-chromosome turnover and speciation. Although closely related species often have different sex-chromosome systems, it is unknown whether sex-chromosome turnover contributes to the evolution of reproductive isolation between species. Here we show that a newly evolved sex chromosome contains genes that contribute to speciation in threespine stickleback fish (Gasterosteus aculeatus). We first identified a neo-sex chromosome system found only in one member of a sympatric species pair in Japan. We then performed genetic linkage mapping of male-specific traits important for reproductive isolation between the Japanese species pair. The neo-X chromosome contains loci for male courtship display traits that contribute to behavioural isolation, whereas the ancestral X chromosome contains loci for both behavioural isolation and hybrid male sterility. Our work not only provides strong evidence for a large X-effect on reproductive isolation in a vertebrate system, but also provides direct evidence that a young neo-X chromosome contributes to reproductive isolation between closely related species. Our data indicate that sex-chromosome turnover might have a greater role in speciation than was previously appreciated.

  16. Transitions in sex determination and sex chromosomes across vertebrate species.

    PubMed

    Pennell, Matthew W; Mank, Judith E; Peichel, Catherine L

    2018-02-16

    Despite the prevalence of sexual reproduction across eukaryotes, there is a remarkable diversity of sex-determination mechanisms. The underlying causes of this diversity remain unclear, and it is unknown whether there are convergent trends in the directionality of turnover in sex-determination mechanisms. We used the recently assembled Tree of Sex database to assess patterns in the evolution of sex-determination systems in the remarkably diverse vertebrate clades of teleost fish, squamate reptiles and amphibians. Contrary to theoretical predictions, we find no evidence that the evolution of separate sexes is irreversible, as transitions from separate sexes to hermaphroditism occur at higher rates than the reverse in fish. We also find that transitions from environmental sex determination to genetic sex determination occur at higher rates than the reverse in both squamates and fish, suggesting that genetic sex determination is more stable. However, our data are not consistent with the hypothesis that heteromorphic sex chromosomes are an "evolutionary trap." Rather, we find similar transition rates between homomorphic and heteromorphic sex chromosomes in both fish and amphibians, and to environmental sex determination from heteromorphic vs. homomorphic sex chromosome systems in fish. Finally, we find that transitions between male and female heterogamety occur at similar rates in amphibians and squamates, while transitions to male heterogamety occur at higher rates in fish. Together, these results provide the most comprehensive view to date of the evolution of vertebrate sex determination in a phylogenetic context, providing new insight into long-standing questions about the evolution of sexual reproduction. © 2018 John Wiley & Sons Ltd.

  17. Evolution of vertebrate sex chromosomes and dosage compensation.

    PubMed

    Graves, Jennifer A Marshall

    2016-01-01

    Differentiated sex chromosomes in mammals and other vertebrates evolved independently but in strikingly similar ways. Vertebrates with differentiated sex chromosomes share the problems of the unequal expression of the genes borne on sex chromosomes, both between the sexes and with respect to autosomes. Dosage compensation of genes on sex chromosomes is surprisingly variable - and can even be absent - in different vertebrate groups. Systems that compensate for different gene dosages include a wide range of global, regional and gene-by-gene processes that differ in their extent and their molecular mechanisms. However, many elements of these control systems are similar across distant phylogenetic divisions and show parallels to other gene silencing systems. These dosage systems cannot be identical by descent but were probably constructed from elements of ancient silencing mechanisms that are ubiquitous among vertebrates and shared throughout eukaryotes.

  18. Sex Chromosome Translocations in the Evolution of Reproductive Isolation

    PubMed Central

    Tracey, Martin L.

    1972-01-01

    Haldane's rule states that in organisms with differentiated sex chromosomes, hybrid sterility or inviability is generally expressed more frequently in the heterogametic sex. This observation has been variously explained as due to either genic or chromosomal imbalance. The fixation probabilities and mean times to fixation of sex-chromosome translocations of the type necessary to explain Haldane's rule on the basis of chromosomal imbalance have been estimated in small populations of Drosophila melanogaster. The fixation probability of an X chromosome carrying the long arm of the Y(X·YL) is approximately 30% greater than expected under the assumption of no selection. No fitness differences associated with the attached YL segment were detected. The fixation probability of a deficient Y chromosome is 300% greater than expected when the X chromosome contains the deleted portion of the Y. It is suggested that sex-chromosome translocations may play a role in the establishment of reproductive isolation. PMID:4630586

  19. A neo-sex-chromosome that drives post-zygotic sex determiniation in the Hessian fly

    USDA-ARS?s Scientific Manuscript database

    Two nonoverlapping autosomal inversions defined unusual neo-sex chromosomes in the Hessian fly (Mayetiola destructor). Like other neo-sex chromosomes, these were normally heterozygous, present only in one sex, and suppressed recombination around a sex-determining master switch. Their unusual propert...

  20. The Discovery of XY Sex Chromosomes in a Boa and Python.

    PubMed

    Gamble, Tony; Castoe, Todd A; Nielsen, Stuart V; Banks, Jaison L; Card, Daren C; Schield, Drew R; Schuett, Gordon W; Booth, Warren

    2017-07-24

    For over 50 years, biologists have accepted that all extant snakes share the same ZW sex chromosomes derived from a common ancestor [1-3], with different species exhibiting sex chromosomes at varying stages of differentiation. Accordingly, snakes have been a well-studied model for sex chromosome evolution in animals [1, 4]. A review of the literature, however, reveals no compelling support that boas and pythons possess ZW sex chromosomes [2, 5]. Furthermore, phylogenetic patterns of facultative parthenogenesis in snakes and a sex-linked color mutation in the ball python (Python regius) are best explained by boas and pythons possessing an XY sex chromosome system [6, 7]. Here we demonstrate that a boa (Boa imperator) and python (Python bivittatus) indeed possess XY sex chromosomes, based on the discovery of male-specific genetic markers in both species. We use these markers, along with transcriptomic and genomic data, to identify distinct sex chromosomes in boas and pythons, demonstrating that XY systems evolved independently in each lineage. This discovery highlights the dynamic evolution of vertebrate sex chromosomes and further enhances the value of snakes as a model for studying sex chromosome evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Parental decisions to abort or continue a pregnancy following prenatal diagnosis of chromosomal abnormalities in a setting where termination of pregnancy is not legally available.

    PubMed

    Quadrelli, Roberto; Quadrelli, Andrea; Mechoso, Búrix; Laufer, Mauricio; Jaumandreu, Ciro; Vaglio, Alicia

    2007-03-01

    To learn about parental decisions to abort or continue a pregnancy after prenatal diagnosis of chromosomal abnormalities among the population in Uruguay. Between 1982 and 2003, 14 656 amniocentesis and 2740 chorionic villus samplings were performed in a referral Genetic Unit. Chromosomal anomalies were found in 376 cases (2.16%) and included Down syndrome, aneuploidies in which a severe prognosis was expected, sex chromosome aneuploidy and aneuploidies with a low risk of an abnormal clinical phenotype. The couples that received abnormal results were contacted by phone and asked if they had continued or interrupted the pregnancy after the diagnosis and genetic counseling. We contacted 207 couples (55%). When confronted with Down syndrome or an aneuploidy in which a severe prognosis was expected, 89% and 96% of patients, respectively, decided to terminate the pregnancy. When confronted with sex chromosome aneuploidy or aneuploidies with a low risk of an abnormal clinical phenotype, 79% and 90% of patients, respectively, decided to continue the pregnancy. The present study shows that when faced with an anomaly such as Down syndrome and aneuploidies in which a severe prognosis was expected, most of the couples decided to terminate the pregnancy, although TOP is not legally available in Uruguay. Copyright (c) 2007 John Wiley & Sons, Ltd.

  2. Avian sex, sex chromosomes, and dosage compensation in the age of genomics.

    PubMed

    Graves, Jennifer A Marshall

    2014-04-01

    Comparisons of the sex chromosome systems in birds and mammals are widening our view and deepening our understanding of vertebrate sex chromosome organization, function, and evolution. Birds have a very conserved ZW system of sex determination in which males have two copies of a large, gene-rich Z chromosome, and females have a single Z and a female-specific W chromosome. The avian ZW system is quite the reverse of the well-studied mammalian XY chromosome system, and evolved independently from different autosomal blocs. Despite the different gene content of mammal and bird sex chromosomes, there are many parallels. Genes on the bird Z and the mammal X have both undergone selection for male-advantage functions, and there has been amplification of male-advantage genes and accumulation of LINEs. The bird W and mammal Y have both undergone extensive degradation, but some birds retain early stages and some mammals terminal stages of the process, suggesting that the process is more advanced in mammals. Different sex-determining genes, DMRT1 and SRY, define the ZW and XY systems, but DMRT1 is involved in downstream events in mammals. Birds show strong cell autonomous specification of somatic sex differences in ZZ and ZW tissue, but there is growing evidence for direct X chromosome effects on sexual phenotype in mammals. Dosage compensation in birds appears to be phenotypically and molecularly quite different from X inactivation, being partial and gene-specific, but both systems use tools from the same molecular toolbox and there are some signs that galliform birds represent an early stage in the evolution of a coordinated system.

  3. Progressive Recombination Suppression and Differentiation in Recently Evolved Neo-sex Chromosomes

    PubMed Central

    Natri, Heini M.; Shikano, Takahito; Merilä, Juha

    2013-01-01

    Recombination suppression leads to the structural and functional differentiation of sex chromosomes and is thus a crucial step in the process of sex chromosome evolution. Despite extensive theoretical work, the exact processes and mechanisms of recombination suppression and differentiation are not well understood. In threespine sticklebacks (Gasterosteus aculeatus), a different sex chromosome system has recently evolved by a fusion between the Y chromosome and an autosome in the Japan Sea lineage, which diverged from the ancestor of other lineages approximately 2 Ma. We investigated the evolutionary dynamics and differentiation processes of sex chromosomes based on comparative analyses of these divergent lineages using 63 microsatellite loci. Both chromosome-wide differentiation patterns and phylogenetic inferences with X and Y alleles indicated that the ancestral sex chromosomes were extensively differentiated before the divergence of these lineages. In contrast, genetic differentiation appeared to have proceeded only in a small region of the neo-sex chromosomes. The recombination maps constructed for the Japan Sea lineage indicated that recombination has been suppressed or reduced over a large region spanning the ancestral and neo-sex chromosomes. Chromosomal regions exhibiting genetic differentiation and suppressed or reduced recombination were detected continuously and sequentially in the neo-sex chromosomes, suggesting that differentiation has gradually spread from the fusion point following the extension of recombination suppression. Our study illustrates an ongoing process of sex chromosome differentiation, providing empirical support for the theoretical model postulating that recombination suppression and differentiation proceed in a gradual manner in the very early stage of sex chromosome evolution. PMID:23436913

  4. Coexistence of Y, W, and Z sex chromosomes in Xenopus tropicalis

    PubMed Central

    Roco, Álvaro S.; Olmstead, Allen W.; Degitz, Sigmund J.; Amano, Tosikazu; Zimmerman, Lyle B.; Bullejos, Mónica

    2015-01-01

    Homomorphic sex chromosomes and rapid turnover of sex-determining genes can complicate establishing the sex chromosome system operating in a given species. This difficulty exists in Xenopus tropicalis, an anuran quickly becoming a relevant model for genetic, genomic, biochemical, and ecotoxicological research. Despite the recent interest attracted by this species, little is known about its sex chromosome system. Direct evidence that females are the heterogametic sex, as in the related species Xenopus laevis, has yet to be presented. Furthermore, X. laevis’ sex-determining gene, DM-W, does not exist in X. tropicalis, and the sex chromosomes in the two species are not homologous. Here we identify X. tropicalis’ sex chromosome system by integrating data from (i) breeding sex-reversed individuals, (ii) gynogenesis, (iii) triploids, and (iv) crosses among several strains. Our results indicate that at least three different types of sex chromosomes exist: Y, W, and Z, observed in YZ, YW, and ZZ males and in ZW and WW females. Because some combinations of parental sex chromosomes produce unisex offspring and other distorted sex ratios, understanding the sex-determination systems in X. tropicalis is critical for developing this flexible animal model for genetics and ecotoxicology. PMID:26216983

  5. The Evolution of Sex Chromosomes and Dosage Compensation in Plants

    PubMed Central

    Shearn, Rylan; Marais, Gabriel AB

    2017-01-01

    Plant sex chromosomes can be vastly different from those of the few historical animal model organisms from which most of our understanding of sex chromosome evolution is derived. Recently, we have seen several advancements from studies on green algae, brown algae, and land plants that are providing a broader understanding of the variable ways in which sex chromosomes can evolve in distant eukaryotic groups. Plant sex-determining genes are being identified and, as expected, are completely different from those in animals. Species with varying levels of differentiation between the X and Y have been found in plants, and these are hypothesized to be representing different stages of sex chromosome evolution. However, we are also finding that sex chromosomes can remain morphologically unchanged over extended periods of time. Where degeneration of the Y occurs, it appears to proceed similarly in plants and animals. Dosage compensation (a phenomenon that compensates for the consequent loss of expression from the Y) has now been documented in a plant system, its mechanism, however, remains unknown. Research has also begun on the role of sex chromosomes in sexual conflict resolution, and it appears that sex-biased genes evolve similarly in plants and animals, although the functions of these genes remain poorly studied. Because the difficulty in obtaining sex chromosome sequences is increasingly being overcome by methodological developments, there is great potential for further discovery within the field of plant sex chromosome evolution. PMID:28391324

  6. Sex chromosomes and speciation in Drosophila

    PubMed Central

    Presgraves, Daven C.

    2010-01-01

    Two empirical rules suggest that sex chromosomes play a special role in speciation. The first is Haldane's rule— the preferential sterility and inviability of species hybrids of the heterogametic (XY) sex. The second is the disproportionately large effect of the X chromosome in genetic analyses of hybrid sterility. Whereas the causes of Haldane's rule are well established, the causes of the ‘large X-effect’ have remained controversial. New genetic analyses in Drosophila confirm that the X is a hotspot for hybrid male sterility factors, providing a proximate explanation for the large X-effect. Several other new findings— on faster X evolution, X chromosome meiotic drive, and the regulation of the X chromosome in the male-germline— provide plausible evolutionary explanations for the large X-effect. PMID:18514967

  7. Reversal of an ancient sex chromosome to an autosome in Drosophila.

    PubMed

    Vicoso, Beatriz; Bachtrog, Doris

    2013-07-18

    Although transitions of sex-determination mechanisms are frequent in species with homomorphic sex chromosomes, heteromorphic sex chromosomes are thought to represent a terminal evolutionary stage owing to chromosome-specific adaptations such as dosage compensation or an accumulation of sex-specific mutations. Here we show that an autosome of Drosophila, the dot chromosome, was ancestrally a differentiated X chromosome. We analyse the whole genome of true fruitflies (Tephritidae), flesh flies (Sarcophagidae) and soldier flies (Stratiomyidae) to show that genes located on the dot chromosome of Drosophila are X-linked in outgroup species, whereas Drosophila X-linked genes are autosomal. We date this chromosomal transition to early drosophilid evolution by sequencing the genome of other Drosophilidae. Our results reveal several puzzling aspects of Drosophila dot chromosome biology to be possible remnants of its former life as a sex chromosome, such as its minor feminizing role in sex determination or its targeting by a chromosome-specific regulatory mechanism. We also show that patterns of biased gene expression of the dot chromosome during early embryogenesis, oogenesis and spermatogenesis resemble that of the current X chromosome. Thus, although sex chromosomes are not necessarily evolutionary end points and can revert back to an autosomal inheritance, the highly specialized genome architecture of this former X chromosome suggests that severe fitness costs must be overcome for such a turnover to occur.

  8. Recent Sex Chromosome Divergence despite Ancient Dioecy in the Willow Salix viminalis

    PubMed Central

    Pucholt, Pascal; Wright, Alison E.; Conze, Lei Liu; Mank, Judith E.; Berlin, Sofia

    2017-01-01

    Abstract Sex chromosomes can evolve when recombination is halted between a pair of chromosomes, and this can lead to degeneration of the sex-limited chromosome. In the early stages of differentiation sex chromosomes are homomorphic, and even though homomorphic sex chromosomes are very common throughout animals and plants, we know little about the evolutionary forces shaping these types of sex chromosomes. We used DNA- and RNA-Seq data from females and males to explore the sex chromosomes in the female heterogametic willow, Salix viminalis, a species with ancient dioecy but with homomorphic sex chromosomes. We detected no major sex differences in read coverage in the sex determination (SD) region, indicating that the W region has not significantly degenerated. However, single nucleotide polymorphism densities in the SD region are higher in females compared with males, indicating very recent recombination suppression, followed by the accumulation of sex-specific single nucleotide polymorphisms. Interestingly, we identified two female-specific scaffolds that likely represent W-chromosome-specific sequence. We show that genes located in the SD region display a mild excess of male-biased expression in sex-specific tissue, and we use allele-specific gene expression analysis to show that this is the result of masculinization of expression on the Z chromosome rather than degeneration of female-expression on the W chromosome. Together, our results demonstrate that insertion of small DNA fragments and accumulation of sex-biased gene expression can occur before the detectable decay of the sex-limited chromosome. PMID:28453634

  9. SEX-DETector: A Probabilistic Approach to Study Sex Chromosomes in Non-Model Organisms

    PubMed Central

    Muyle, Aline; Käfer, Jos; Zemp, Niklaus; Mousset, Sylvain; Picard, Franck; Marais, Gabriel AB

    2016-01-01

    We propose a probabilistic framework to infer autosomal and sex-linked genes from RNA-seq data of a cross for any sex chromosome type (XY, ZW, and UV). Sex chromosomes (especially the non-recombining and repeat-dense Y, W, U, and V) are notoriously difficult to sequence. Strategies have been developed to obtain partially assembled sex chromosome sequences. Most of them remain difficult to apply to numerous non-model organisms, either because they require a reference genome, or because they are designed for evolutionarily old systems. Sequencing a cross (parents and progeny) by RNA-seq to study the segregation of alleles and infer sex-linked genes is a cost-efficient strategy, which also provides expression level estimates. However, the lack of a proper statistical framework has limited a broader application of this approach. Tests on empirical Silene data show that our method identifies 20–35% more sex-linked genes than existing pipelines, while making reliable inferences for downstream analyses. Approximately 12 individuals are needed for optimal results based on simulations. For species with an unknown sex-determination system, the method can assess the presence and type (XY vs. ZW) of sex chromosomes through a model comparison strategy. The method is particularly well optimized for sex chromosomes of young or intermediate age, which are expected in thousands of yet unstudied lineages. Any organisms, including non-model ones for which nothing is known a priori, that can be bred in the lab, are suitable for our method. SEX-DETector and its implementation in a Galaxy workflow are made freely available. PMID:27492231

  10. New insights into sex chromosome evolution in anole lizards (Reptilia, Dactyloidae).

    PubMed

    Giovannotti, M; Trifonov, V A; Paoletti, A; Kichigin, I G; O'Brien, P C M; Kasai, F; Giovagnoli, G; Ng, B L; Ruggeri, P; Cerioni, P Nisi; Splendiani, A; Pereira, J C; Olmo, E; Rens, W; Caputo Barucchi, V; Ferguson-Smith, M A

    2017-03-01

    Anoles are a clade of iguanian lizards that underwent an extensive radiation between 125 and 65 million years ago. Their karyotypes show wide variation in diploid number spanning from 26 (Anolis evermanni) to 44 (A. insolitus). This chromosomal variation involves their sex chromosomes, ranging from simple systems (XX/XY), with heterochromosomes represented by either micro- or macrochromosomes, to multiple systems (X 1 X 1 X 2 X 2 /X 1 X 2 Y). Here, for the first time, the homology relationships of sex chromosomes have been investigated in nine anole lizards at the whole chromosome level. Cross-species chromosome painting using sex chromosome paints from A. carolinensis, Ctenonotus pogus and Norops sagrei and gene mapping of X-linked genes demonstrated that the anole ancestral sex chromosome system constituted by microchromosomes is retained in all the species with the ancestral karyotype (2n = 36, 12 macro- and 24 microchromosomes). On the contrary, species with a derived karyotype, namely those belonging to genera Ctenonotus and Norops, show a series of rearrangements (fusions/fissions) involving autosomes/microchromosomes that led to the formation of their current sex chromosome systems. These results demonstrate that different autosomes were involved in translocations with sex chromosomes in closely related lineages of anole lizards and that several sequential microautosome/sex chromosome fusions lead to a remarkable increase in size of Norops sagrei sex chromosomes.

  11. The Evolution of Sex Chromosomes and Dosage Compensation in Plants.

    PubMed

    Muyle, Aline; Shearn, Rylan; Marais, Gabriel Ab

    2017-03-01

    Plant sex chromosomes can be vastly different from those of the few historical animal model organisms from which most of our understanding of sex chromosome evolution is derived. Recently, we have seen several advancements from studies on green algae, brown algae, and land plants that are providing a broader understanding of the variable ways in which sex chromosomes can evolve in distant eukaryotic groups. Plant sex-determining genes are being identified and, as expected, are completely different from those in animals. Species with varying levels of differentiation between the X and Y have been found in plants, and these are hypothesized to be representing different stages of sex chromosome evolution. However, we are also finding that sex chromosomes can remain morphologically unchanged over extended periods of time. Where degeneration of the Y occurs, it appears to proceed similarly in plants and animals. Dosage compensation (a phenomenon that compensates for the consequent loss of expression from the Y) has now been documented in a plant system, its mechanism, however, remains unknown. Research has also begun on the role of sex chromosomes in sexual conflict resolution, and it appears that sex-biased genes evolve similarly in plants and animals, although the functions of these genes remain poorly studied. Because the difficulty in obtaining sex chromosome sequences is increasingly being overcome by methodological developments, there is great potential for further discovery within the field of plant sex chromosome evolution. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Using conventional F-statistics to study unconventional sex-chromosome differentiation.

    PubMed

    Rodrigues, Nicolas; Dufresnes, Christophe

    2017-01-01

    Species with undifferentiated sex chromosomes emerge as key organisms to understand the astonishing diversity of sex-determination systems. Whereas new genomic methods are widening opportunities to study these systems, the difficulty to separately characterize their X and Y homologous chromosomes poses limitations. Here we demonstrate that two simple F -statistics calculated from sex-linked genotypes, namely the genetic distance ( F st ) between sexes and the inbreeding coefficient ( F is ) in the heterogametic sex, can be used as reliable proxies to compare sex-chromosome differentiation between populations. We correlated these metrics using published microsatellite data from two frog species ( Hyla arborea and Rana temporaria ), and show that they intimately relate to the overall amount of X-Y differentiation in populations. However, the fits for individual loci appear highly variable, suggesting that a dense genetic coverage will be needed for inferring fine-scale patterns of differentiation along sex-chromosomes. The applications of these F -statistics, which implies little sampling requirement, significantly facilitate population analyses of sex-chromosomes.

  13. Down's Syndrome and Leukemia: Mechanism of Additional Chromosomal Abnormalities

    ERIC Educational Resources Information Center

    And Others; Goh, Kong-oo

    1978-01-01

    Chromosomal abnormalities, some appearing in a stepwise clonal evoluation, were found in five Down's syndrome patients (35 weeks to 12 years old), four with acute leukemia and one with abnormal regulation of leukopoiesis. (Author/SBH)

  14. How did the platypus get its sex chromosome chain? A comparison of meiotic multiples and sex chromosomes in plants and animals.

    PubMed

    Gruetzner, Frank; Ashley, Terry; Rowell, David M; Marshall Graves, Jennifer A

    2006-04-01

    The duck-billed platypus is an extraordinary mammal. Its chromosome complement is no less extraordinary, for it includes a system in which ten sex chromosomes form an extensive meiotic chain in males. Such meiotic multiples are unprecedented in vertebrates but occur sporadically in plant and invertebrate species. In this paper, we review the evolution and formation of meiotic multiples in plants and invertebrates to try to gain insights into the origin of the platypus meiotic multiple. We describe the meiotic hurdles that translocated mammalian chromosomes face, which make longer chains disadvantageous in mammals, and we discuss how sex chromosomes and dosage compensation might have affected the evolution of sex-linked meiotic multiples. We conclude that the evolutionary conservation of the chain in monotremes, the structural properties of the translocated chromosomes and the highly accurate segregation at meiosis make the platypus system remarkably different from meiotic multiples in other species. We discuss alternative evolutionary models, which fall broadly into two categories: either the chain is the result of a sequence of translocation events from an ancestral pair of sex chromosomes (Model I) or the entire chain came into being at once by hybridization of two populations with different chromosomal rearrangements sharing monobrachial homology (Model II).

  15. Recent Sex Chromosome Divergence despite Ancient Dioecy in the Willow Salix viminalis.

    PubMed

    Pucholt, Pascal; Wright, Alison E; Conze, Lei Liu; Mank, Judith E; Berlin, Sofia

    2017-08-01

    Sex chromosomes can evolve when recombination is halted between a pair of chromosomes, and this can lead to degeneration of the sex-limited chromosome. In the early stages of differentiation sex chromosomes are homomorphic, and even though homomorphic sex chromosomes are very common throughout animals and plants, we know little about the evolutionary forces shaping these types of sex chromosomes. We used DNA- and RNA-Seq data from females and males to explore the sex chromosomes in the female heterogametic willow, Salix viminalis, a species with ancient dioecy but with homomorphic sex chromosomes. We detected no major sex differences in read coverage in the sex determination (SD) region, indicating that the W region has not significantly degenerated. However, single nucleotide polymorphism densities in the SD region are higher in females compared with males, indicating very recent recombination suppression, followed by the accumulation of sex-specific single nucleotide polymorphisms. Interestingly, we identified two female-specific scaffolds that likely represent W-chromosome-specific sequence. We show that genes located in the SD region display a mild excess of male-biased expression in sex-specific tissue, and we use allele-specific gene expression analysis to show that this is the result of masculinization of expression on the Z chromosome rather than degeneration of female-expression on the W chromosome. Together, our results demonstrate that insertion of small DNA fragments and accumulation of sex-biased gene expression can occur before the detectable decay of the sex-limited chromosome. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Sex Chromosome Turnover Contributes to Genomic Divergence between Incipient Stickleback Species

    PubMed Central

    Yoshida, Kohta; Makino, Takashi; Yamaguchi, Katsushi; Shigenobu, Shuji; Hasebe, Mitsuyasu; Kawata, Masakado; Kume, Manabu; Mori, Seiichi; Peichel, Catherine L.; Toyoda, Atsushi; Fujiyama, Asao; Kitano, Jun

    2014-01-01

    Sex chromosomes turn over rapidly in some taxonomic groups, where closely related species have different sex chromosomes. Although there are many examples of sex chromosome turnover, we know little about the functional roles of sex chromosome turnover in phenotypic diversification and genomic evolution. The sympatric pair of Japanese threespine stickleback (Gasterosteus aculeatus) provides an excellent system to address these questions: the Japan Sea species has a neo-sex chromosome system resulting from a fusion between an ancestral Y chromosome and an autosome, while the sympatric Pacific Ocean species has a simple XY sex chromosome system. Furthermore, previous quantitative trait locus (QTL) mapping demonstrated that the Japan Sea neo-X chromosome contributes to phenotypic divergence and reproductive isolation between these sympatric species. To investigate the genomic basis for the accumulation of genes important for speciation on the neo-X chromosome, we conducted whole genome sequencing of males and females of both the Japan Sea and the Pacific Ocean species. No substantial degeneration has yet occurred on the neo-Y chromosome, but the nucleotide sequence of the neo-X and the neo-Y has started to diverge, particularly at regions near the fusion. The neo-sex chromosomes also harbor an excess of genes with sex-biased expression. Furthermore, genes on the neo-X chromosome showed higher non-synonymous substitution rates than autosomal genes in the Japan Sea lineage. Genomic regions of higher sequence divergence between species, genes with divergent expression between species, and QTL for inter-species phenotypic differences were found not only at the regions near the fusion site, but also at other regions along the neo-X chromosome. Neo-sex chromosomes can therefore accumulate substitutions causing species differences even in the absence of substantial neo-Y degeneration. PMID:24625862

  17. Patterns of molecular evolution of an avian neo-sex chromosome.

    PubMed

    Pala, Irene; Hasselquist, Dennis; Bensch, Staffan; Hansson, Bengt

    2012-12-01

    Newer parts of sex chromosomes, neo-sex chromosomes, offer unique possibilities for studying gene degeneration and sequence evolution in response to loss of recombination and population size decrease. We have recently described a neo-sex chromosome system in Sylvioidea passerines that has resulted from a fusion between the first half (10 Mb) of chromosome 4a and the ancestral sex chromosomes. In this study, we report the results of molecular analyses of neo-Z and neo-W gametologs and intronic parts of neo-Z and autosomal genes on the second half of chromosome 4a in three species within different Sylvioidea lineages (Acrocephalidea, Timaliidae, and Alaudidae). In line with hypotheses of neo-sex chromosome evolution, we observe 1) lower genetic diversity of neo-Z genes compared with autosomal genes, 2) moderate synonymous and weak nonsynonymous sequence divergence between neo-Z and neo-W gametologs, and 3) lower GC content on neo-W than neo-Z gametologs. Phylogenetic reconstruction of eight neo-Z and neo-W gametologs suggests that recombination continued after the split of Alaudidae from the rest of the Sylvioidea lineages (i.e., after ~42.2 Ma) and with some exceptions also after the split of Acrocephalidea and Timaliidae (i.e., after ~39.4 Ma). The Sylvioidea neo-sex chromosome shares classical evolutionary features with the ancestral sex chromosomes but, as expected from its more recent origin, shows weaker divergence between gametologs.

  18. The unique sex chromosome system in platypus and echidna.

    PubMed

    Ferguson-Smith, M A; Rens, W

    2010-10-01

    A striking example of the power of chromosome painting has been the resolution of the male platypus karyotype and the pairing relationships of the chain often sex chromosomes. We have extended our analysis to the nine sex chromosomes of the male echidna. Cross-species painting with platypus shows that the first five chromosomes in the chain are identical in both, but the order of the remainder are different and, in each species, a different autosome replaces one of the five X chromosomes. As the therian X is homologous mainly to platypus autosome 6 and echidna 16, and as SRY is absent in both, the sex determination mechanism in monotremes is currently unknown. Several of the X and Y chromosomes contain genes orthologous to those in the avian Z but the significance of this is also unknown. It seems likely that a novel testis determinant is carried by a Y chromosome common to platypus and echidna. We have searched for candidates for this determinant among the many genes known to be involved in vertebrate sex differentiation. So far fourteen such genes have been mapped, eleven are autosomal in platypus, two map to the differential regions of X chromosomes, and one maps to a pairing segment and is likewise excluded. Search for the platypus testis-determining gene continues, and the extension of comparative mapping between platypus and birds and reptiles may shed light on the ancestral origin of monotreme sex chromosomes.

  19. The incidence of chromosome abnormalities in neonates with structural heart disease.

    PubMed

    Dykes, John C; Al-mousily, Mohammad F; Abuchaibe, Eda-Cristina; Silva, Jennifer N; Zadinsky, Jennifer; Duarte, Daniel; Welch, Elizabeth

    2016-04-01

    This study was conducted to determine the prevalence of chromosomal anomalies in newborns with structural heart disease admitted to the cardiac intensive care unit (CICU) at Nicklaus Children's Hospital (NCH). A retrospective review identified newborns age 30 days or less admitted to NCH CICU between 2004 and 2010. Patients with structural heart disease who required admission to our CICU and received karyotype or karyotype and fluorescent in situ hybridization (FISH) testing were included in the study. All patients were examined for the presence of dysmorphic features. Four hundred and eighty-two patients met the criteria for the study; 405 (84%) received both karyotype and FISH. Chromosome abnormalities were present in 86 (17.8%) patients. Syndromes accounted for 20 (5.1%) of those with normal chromosomes. Dysmorphic features were seen in 79.1% of patients with abnormal chromosomes and 25.5% of those with normal chromosomes. All patients with syndromes were dysmorphic. Race and gender did not significantly affect the incidence of genetic abnormalities. Chromosome abnormalities, including syndromes, are prevalent in newborns with congenital heart disease. Further research is needed to evaluate the utility of cytogenetic screening in all children with congenital heart disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. Hidden chromosome 8 abnormalities detected by FISH in adult primary myelodysplastic syndromes.

    PubMed

    Panani, Anna D; Pappa, Vasiliki

    2005-01-01

    Acquired clonal chromosomal abnormalities are found in about 30-50% of primary myelodysplastic syndromes (MDS). These abnormalities are predominantly characterized by total/partial chromosomal losses or gains and rarely by balanced structural aberrations. Trisomy 8 represents the most common chromosomal gain. In the present study, the numerical aberration of chromosome 8 was evaluated by the fluorescence in situ hybridization (FISH) technique in MDS, and the results compared with those of conventional cytogenetics. Thirty adult patients with primary MDS, 17 with a normal karyotype and 13 with several chromosomal abnormalities except chromosome 8, were included in this study. On comparing the results of FISH and conventional cytogenetics, a superiority of FISH over the karyotype was detected in 3 cases. In one of them, further cytogenetic analysis confirmed the FISH results. Nevertheless, the FISH technique has limitations, detecting only abnormalities specific for the target FISH probe used In clinical practice, conventional cytogenetics continues to be the basic technique for MDS patient evaluation. However, a large number of metaphases, even those of poor quality, must be analyzed in each case. The FISH technique could be considered to be complementary to achieve a more accurate analysis.

  1. Dosage compensation, the origin and the afterlife of sex chromosomes.

    PubMed

    Larsson, Jan; Meller, Victoria H

    2006-01-01

    Over the past 100 years Drosophila has been developed into an outstanding model system for the study of evolutionary processes. A fascinating aspect of evolution is the differentiation of sex chromosomes. Organisms with highly differentiated sex chromosomes, such as the mammalian X and Y, must compensate for the imbalance in gene dosage that this creates. The need to adjust the expression of sex-linked genes is a potent force driving the rise of regulatory mechanisms that act on an entire chromosome. This review will contrast the process of dosage compensation in Drosophila with the divergent strategies adopted by other model organisms. While the machinery of sex chromosome compensation is different in each instance, all share the ability to direct chromatin modifications to an entire chromosome. This review will also explore the idea that chromosome-targeting systems are sometimes adapted for other purposes. This appears the likely source of a chromosome-wide targeting system displayed by the Drosophila fourth chromosome.

  2. Abnormal chromosome behavior in human oocytes which remained unfertilized during human in vitro fertilization.

    PubMed

    Spielmann, H; Krüger, C; Stauber, M; Vogel, R

    1985-09-01

    Chromosomal abnormalities and abnormal embryonic development have previously been observed after human in vitro fertilization (IVF). Chromosomal abnormalities may arise not only after fertilization but even earlier during meiotic maturation of human oocytes in culture. Since chromosomal analysis is simple in oocytes during meiotic maturation, the chromosomal status was analyzed in oocytes which remained unfertilized in a human in vitro fertilization program. In 50 fertilization attempts the chromosomes of 62 unfertilized oocytes could be analyzed; 45 of them were in the process of meiotic maturation. In three oocytes two small polar bodies were observed 16-18 hr after insemination in the absence of fertilization. In one oocyte abnormal chromosome behavior was found during the first meiotic division, and in four oocytes during metaphase of the second meiotic division. These data suggest that chromosomal analysis of unfertilized oocytes in human IVF may improve the understanding human oocyte maturation and fertilization.

  3. Divergent Evolutionary Trajectories of Two Young, Homomorphic, and Closely Related Sex Chromosome Systems

    PubMed Central

    Furman, Benjamin L S; Evans, Ben J

    2018-01-01

    Abstract There exists extraordinary variation among species in the degree and nature of sex chromosome divergence. However, much of our knowledge about sex chromosomes is based on comparisons between deeply diverged species with different ancestral sex chromosomes, making it difficult to establish how fast and why sex chromosomes acquire variable levels of divergence. To address this problem, we studied sex chromosome evolution in two species of African clawed frog (Xenopus), both of whom acquired novel systems for sex determination from a recent common ancestor, and both of whom have female (ZW/ZZ) heterogamy. Derived sex chromosomes of one species, X. laevis, have a small region of suppressed recombination that surrounds the sex determining locus, and have remained this way for millions of years. In the other species, X. borealis, a younger sex chromosome system exists on a different pair of chromosomes, but the region of suppressed recombination surrounding an unidentified sex determining gene is vast, spanning almost half of the sex chromosomes. Differences between these sex chromosome systems are also apparent in the extent of nucleotide divergence between the sex chromosomes carried by females. Our analyses also indicate that in autosomes of both of these species, recombination during oogenesis occurs more frequently and in different genomic locations than during spermatogenesis. These results demonstrate that new sex chromosomes can assume radically different evolutionary trajectories, with far-reaching genomic consequences. They also suggest that in some instances the origin of new triggers for sex determination may be coupled with rapid evolution sex chromosomes, including recombination suppression of large genomic regions. PMID:29608717

  4. Autosomal origin of sex chromosome in a polyploid plant

    USDA-ARS?s Scientific Manuscript database

    While theory on sex chromosome evolution is well developed, evidence of the early stages of this process remains elusive, in part because this process unfolded in many animals so long ago. The relatively recent and repeated evolution of separate sexes (dioecy) and sex chromosomes in plants, however,...

  5. Sex chromosome loss and the pseudoautosomal region genes in hematological malignancies

    PubMed Central

    Weng, Stephanie; Stoner, Samuel A.; Zhang, Dong-Er

    2016-01-01

    Cytogenetic aberrations, such as chromosomal translocations, aneuploidy, and amplifications, are frequently detected in hematological malignancies. For many of the common autosomal aberrations, the mechanisms underlying their roles in cancer development have been well-characterized. On the contrary, although loss of a sex chromosome is observed in a broad range of hematological malignancies, how it cooperates in disease development is less understood. Nevertheless, it has been postulated that tumor suppressor genes reside on the sex chromosomes. Although the X and Y sex chromosomes are highly divergent, the pseudoautosomal regions are homologous between both chromosomes. Here, we review what is currently known about the pseudoautosomal region genes in the hematological system. Additionally, we discuss implications for haploinsufficiency of critical pseudoautosomal region sex chromosome genes, driven by sex chromosome loss, in promoting hematological malignancies. Because mechanistic studies on disease development rely heavily on murine models, we also discuss the challenges and caveats of existing models, and propose alternatives for examining the involvement of pseudoautosomal region genes and loss of a sex chromosome in vivo. With the widespread detection of loss of a sex chromosome in different hematological malignances, the elucidation of the role of pseudoautosomal region genes in the development and progression of these diseases would be invaluable to the field. PMID:27655702

  6. The nuclear hormone receptor SEX-1 is an X-chromosome signal that determines nematode sex.

    PubMed

    Carmi, I; Kopczynski, J B; Meyer, B J

    1998-11-12

    Organisms in many phyla determine sexual fate by distinguishing one X chromosome from two. Here we use the model organism Caenorhabditis elegans to dissect such an X-chromosome-counting mechanism in molecular detail. In this nematode, several genes on the X chromosome called X signal elements communicate X-chromosome dose by controlling the activity of the sex-determination gene xol-1. xol-1 specifies male (XO) fate when active and hermaphrodite (XX) fate when inactive. The only X signal element described so far represses xol-1 post-transcriptionally, but xol-1 is repressed in XX animals by transcriptional and post-transcriptional mechanisms. Here we identify a nuclear-hormone-receptor homologue, SEX-1, that regulates the transcription of xol-1. We show that sex-1 is vital to X-chromosome counting: changing sex-1 gene dose in XX or XO embryos causes sexual transformation and death from inadequate dosage compensation (the hermaphrodite-specific process that equalizes X-gene expression between the sexes). The SEX-1 protein acts directly on xol-1, associating with its promoter in vivo and repressing xol-1 transcription in XX embryos. Thus, xol-1 is the direct molecular target of the primary sex-determination signal, and the dose of a nuclear hormone receptor helps to communicate X-chromosome number to determine nematode sex.

  7. Preliminary analysis of numerical chromosome abnormalities in reciprocal and Robertsonian translocation preimplantation genetic diagnosis cases with 24-chromosomal analysis with an aCGH/SNP microarray.

    PubMed

    Xie, Yanxin; Xu, Yanwen; Wang, Jing; Miao, Benyu; Zeng, Yanhong; Ding, Chenhui; Gao, Jun; Zhou, Canquan

    2018-01-01

    years, the aneuploidy rates were 10.7% for rcp carriers, 26.3% for RT carriers, and 57.1% for the control group. The cumulative aneuploidy rates of chromosome translocation carriers were significantly lower than the control group. No ICE was observed in cleavage and blastocyst stage embryos obtained from these carriers. Additionally, the risk of chromosomal numerical abnormalities was observed in each of the 23 pairs of autosomes or sex chromosomes from day 3 and day 5 embryos. There was not enough evidence to prove that ICE was present in embryos derived from both rcp and RT translocation carriers, regardless of the maternal age. However, chromosomal numerical abnormalities were noticed in 23 pairs of autosomes and sex chromosomes in parental structurally normal chromosomes. Thus, 24-chromosomal analysis with an aCGH/SNP microarray PGD protocol is required to decrease the risks of failure to diagnose aneuploidy in structurally normal chromosomes.

  8. Did sex chromosome turnover promote divergence of the major mammal groups?

    PubMed Central

    2016-01-01

    Comparative mapping and sequencing show that turnover of sex determining genes and chromosomes, and sex chromosome rearrangements, accompany speciation in many vertebrates. Here I review the evidence and propose that the evolution of therian mammals was precipitated by evolution of the male‐determining SRY gene, defining a novel XY sex chromosome pair, and interposing a reproductive barrier with the ancestral population of synapsid reptiles 190 million years ago (MYA). Divergence was reinforced by multiple translocations in monotreme sex chromosomes, the first of which supplied a novel sex determining gene. A sex chromosome‐autosome fusion may have separated eutherians (placental mammals) from marsupials 160 MYA. Another burst of sex chromosome change and speciation is occurring in rodents, precipitated by the degradation of the Y. And although primates have a more stable Y chromosome, it may be just a matter of time before the same fate overtakes our own lineage. Also watch the video abstract. PMID:27334831

  9. The Guppy Sex Chromosome System and the Sexually Antagonistic Polymorphism Hypothesis for Y Chromosome Recombination Suppression

    PubMed Central

    Charlesworth, Deborah

    2018-01-01

    Sex chromosomes regularly evolve suppressed recombination, distinguishing them from other chromosomes, and the reason for this has been debated for many years. It is now clear that non-recombining sex-linked regions have arisen in different ways in different organisms. A major hypothesis is that a sex-determining gene arises on a chromosome and that sexually antagonistic (SA) selection (sometimes called intra-locus sexual conflict) acting at a linked gene has led to the evolution of recombination suppression in the region, to reduce the frequency of low fitness recombinant genotypes produced. The sex chromosome system of the guppy (Poecilia reticulata) is often cited as supporting this hypothesis because SA selection has been demonstrated to act on male coloration in natural populations of this fish, and probably contributes to maintaining polymorphisms for the genetic factors involved. I review classical genetic and new molecular genetic results from the guppy, and other fish, including approaches for identifying the genome regions carrying sex-determining loci, and suggest that the guppy may exemplify a recently proposed route to sex chromosome evolution. PMID:29783761

  10. Effects of sex chromosome aneuploidy on male sexual behavior

    PubMed Central

    Park, J. H.; Burns-Cusato, M.; Dominguez-Salazar, E.; Riggan, A.; Shetty, S.; Arnold, A. P.; Rissman, E. F.

    2008-01-01

    Incidence of sex chromosome aneuploidy in men is as high as 1:500. The predominant conditions are an additional Y chromosome (47,XYY) or an additional X chromosome (47,XXY). Behavioral studies using animal models of these conditions are rare. To assess the role of sex chromosome aneuploidy on sexual behavior, we used mice with a spontaneous mutation on the Y chromosome in which the testis-determining gene Sry is deleted (referred to as Y−) and insertion of a Sry transgene on an autosome. Dams were aneuploid (XXY−) and the sires had an inserted Sry transgene (XYSry). Litters contained six male genotypes, XY, XYY−, XXSry, XXY−Sry, XYSry and XYY−Sry. In order to eliminate possible differences in levels of testosterone, all of the subjects were castrated and received testosterone implants prior to tests for male sex behavior. Mice with an additional copy of the Y− chromosome (XYY−) had shorter latencies to intromit and achieve ejaculations than XY males. In a comparison of the four genotypes bearing the Sry transgene, males with two copies of the X chromosome (XXSry and XXY−Sry) had longer latencies to mount and thrust than males with only one copy of the X chromosome (XYSry and XYY−Sry) and decreased frequencies of mounts and intromissions as compared with XYSry males. The results implicate novel roles for sex chromosome genes in sexual behaviors. PMID:18363850

  11. Effects of sex chromosome aneuploidy on male sexual behavior.

    PubMed

    Park, J H; Burns-Cusato, M; Dominguez-Salazar, E; Riggan, A; Shetty, S; Arnold, A P; Rissman, E F

    2008-08-01

    Incidence of sex chromosome aneuploidy in men is as high as 1:500. The predominant conditions are an additional Y chromosome (47,XYY) or an additional X chromosome (47,XXY). Behavioral studies using animal models of these conditions are rare. To assess the role of sex chromosome aneuploidy on sexual behavior, we used mice with a spontaneous mutation on the Y chromosome in which the testis-determining gene Sry is deleted (referred to as Y(-)) and insertion of a Sry transgene on an autosome. Dams were aneuploid (XXY(-)) and the sires had an inserted Sry transgene (XYSry). Litters contained six male genotypes, XY, XYY(-), XXSry, XXY(-)Sry, XYSry and XYY(-)Sry. In order to eliminate possible differences in levels of testosterone, all of the subjects were castrated and received testosterone implants prior to tests for male sex behavior. Mice with an additional copy of the Y(-) chromosome (XYY(-)) had shorter latencies to intromit and achieve ejaculations than XY males. In a comparison of the four genotypes bearing the Sry transgene, males with two copies of the X chromosome (XXSry and XXY(-)Sry) had longer latencies to mount and thrust than males with only one copy of the X chromosome (XYSry and XYY(-)Sry) and decreased frequencies of mounts and intromissions as compared with XYSry males. The results implicate novel roles for sex chromosome genes in sexual behaviors.

  12. Fertile offspring from sterile sex chromosome trisomic mice§

    PubMed Central

    Hirota, Takayuki; Ohta, Hiroshi; Powell, Benjamin E.; Mahadevaiah, Shantha K.; Ojarikre, Obah A.; Saitou, Mitinori; Turner, James M. A.

    2017-01-01

    Having the correct number of chromosomes is vital for normal development and health. Sex chromosome trisomy (SCT) affects 0.1% of the human population and is associated with infertility. We show that during reprogramming to induced pluripotent stem cells (iPSC), fibroblasts from sterile trisomic XXY and XYY mice lose the extra sex chromosome, by a phenomenon we term trisomy-biased chromosome loss (TCL). Resulting euploid XY iPSCs can be differentiated into the male germ cell lineage and functional sperm that can be used in intracytoplasmic sperm injection to produce chromosomally normal, fertile offspring. Sex chromosome loss is comparatively infrequent during mouse XX and XY iPSC generation. TCL also applies to other chromosomes, generating euploid iPSCs from cells of a Down syndrome mouse model. It can also create euploid iPSCs from human trisomic patient fibroblasts. The findings have relevance to overcoming infertility and other trisomic phenotypes. PMID:28818972

  13. Molecular cytogenetic studies in structural abnormalities of chromosome 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lozzio, C.B.; Bamberger, E.; Anderson, I.

    1994-09-01

    A partial trisomy 13 was detected prenatally in an amniocentesis performed due to the following ultrasound abnormalities: open sacral neural tube defect (NTD), a flattened cerebellum, and lumbar/thoracic hemivertebrae. Elevated AFP and positive acetylcholinesterase in amniotic fluid confirmed the open NTD. Chromosome analysis showed an extra acrocentric chromosome marker. FISH analysis with the painting probe 13 showed that most of the marker was derived from this chromosome. Chromosomes on the parents revealed that the mother had a balanced reciprocal translocation t(2;13)(q23;q21). Dual labeling with painting chromosomes 2 and 13 on cells from the mother and from the amniotic fluid identifiedmore » the marker as a der(13)t(2;13)(p23;q21). Thus, the fetus had a partial trisomy 13 and a small partial trisomy 2p. The maternal grandfather was found to be a carrier for this translocation. Fetal demise occurred a 29 weeks of gestation. The fetus had open lumbar NTD and showed dysmorphic features, overlapping fingers and imperforate anus. This woman had a subsequent pregnancy and chorionic villi sample showed that this fetus was normal. Another case with an abnormal chromosome 13 was a newborn with partial monosomy 13 due to the presence of a ring chromosome 13. This infant had severe intrauterine growth retardation, oligohydramnios, dysmorphic features and multiple congenital microphthalmia, congenital heart disease, absent thumbs and toes and cervical vertebral anomalies. Chromosome studies in blood and skin fibroblast cultures showed that one chromosome 3 was replaced by a ring chromosome of various sizes. This ring was confirmed to be derived from chromosome 13 using the centromeric 21/13 probe.« less

  14. Characterization and prognostic implication of 17 chromosome abnormalities in myelodysplastic syndrome.

    PubMed

    Sánchez-Castro, Judit; Marco-Betés, Víctor; Gómez-Arbonés, Xavier; Arenillas, Leonor; Valcarcel, David; Vallespí, Teresa; Costa, Dolors; Nomdedeu, Benet; Jimenez, María José; Granada, Isabel; Grau, Javier; Ardanaz, María T; de la Serna, Javier; Carbonell, Félix; Cervera, José; Sierra, Adriana; Luño, Elisa; Cervero, Carlos J; Falantes, José; Calasanz, María J; González-Porrás, José R; Bailén, Alicia; Amigo, M Luz; Sanz, Guillermo; Solé, Francesc

    2013-07-01

    The prognosis of chromosome 17 (chr17) abnormalities in patients with primary myelodysplastic syndrome (MDS) remains unclear. The revised International Prognostic Scoring System (IPSS-R) includes these abnormalities within the intermediate cytogenetic risk group. This study assessed the impact on overall survival (OS) and risk of acute myeloid leukemia transformation (AMLt) of chr17 abnormalities in 88 patients with primary MDS. We have compared this group with 1346 patients with primary MDS and abnormal karyotype without chr17 involved. The alterations of chr17 should be considered within group of poor prognosis. The different types of alterations of chromosome 17 behave different prognosis. The study confirms the intermediate prognostic impact of the i(17q), as stated in IPSS-R. The results of the study, however, provide valuable new information on the prognostic impact of alterations of chromosome 17 in complex karyotypes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Chromosome and molecular abnormalities in myelodysplastic syndromes.

    PubMed

    Fenaux, Pierre

    2001-06-01

    Cytogenetic abnormalities are seen in approximately 50% of cases of myelodysplastic syndrome (MDS) and 80% of cases of secondary MDS (following chemotherapy or radiotherapy). These abnormalities generally consist of partial or complete chromosome deletion or addition (del5q, -7, +8, -Y, del20q), whereas balanced or unbalanced translocations are rarely found in MDS. Fluorescence hybridization techniques (fluorescence in situ hybridization [FISH], multiplex FISH, and spectral karyotyping) are useful in detecting chromosomal anomalies in cases in which few mitoses are obtained or rearrangements are complex. Ras mutations are the molecular abnormalities most frequently found in MDS, followed by p15 gene hypermethylation, FLT3 duplications, and p53 mutations, but none of these abnormalities are specific for MDS. The rare cases of balanced translocations in MDS have allowed the identification of genes whose rearrangements appear to play a role in the pathogenesis of some cases of MDS. These genes include MDS1-EVI1 in t(3;3) or t(3;21) translocations, TEL in t(5;12), HIP1 in t(5;7), MLF1 in t(3;5), and MEL1 in t(1;3). Genes more frequently implicated in the pathogenesis of MDS cases, such as those involving del5q, remain unknown, although some candidate genes are currently being studied. Cytogenetic and known molecular abnormalities generally carry a poor prognosis in MDS and can be incorporated into prognostic scoring systems such as the International Prognostic Scoring System.

  16. XX/XY Sex Chromosomes in the South American Dwarf Gecko (Gonatodes humeralis).

    PubMed

    Gamble, Tony; McKenna, Erin; Meyer, Wyatt; Nielsen, Stuart V; Pinto, Brendan J; Scantlebury, Daniel P; Higham, Timothy E

    2018-05-11

    Sex-specific genetic markers identified using restriction site-associated DNA sequencing, or RADseq, permits the recognition of a species' sex chromosome system in cases where standard cytogenetic methods fail. Thus, species with male-specific RAD markers have an XX/XY sex chromosome system (male heterogamety) while species with female-specific RAD markers have a ZZ/ZW sex chromosome (female heterogamety). Here, we use RADseq data from 5 male and 5 female South American dwarf geckos (Gonatodes humeralis) to identify an XX/XY sex chromosome system. This is the first confidently known sex chromosome system in a Gonatodes species. We used a low-coverage de novo G. humeralis genome assembly to design PCR primers to validate the male-specificity of a subset of the sex-specific RADseq markers and describe how even modest genome assemblies can facilitate the design of sex-specific PCR primers in species with diverse sex chromosome systems.

  17. The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes.

    PubMed

    Ezaz, Tariq; Quinn, Alexander E; Miura, Ikuo; Sarre, Stephen D; Georges, Arthur; Marshall Graves, Jennifer A

    2005-01-01

    The bearded dragon, Pogona vitticeps (Agamidae: Reptilia) is an agamid lizard endemic to Australia. Like crocodilians and many turtles, temperature-dependent sex determination (TSD) is common in agamid lizards, although many species have genotypic sex determination (GSD). P. vitticeps is reported to have GSD, but no detectable sex chromosomes. Here we used molecular cytogenetic and differential banding techniques to reveal sex chromosomes in this species. Comparative genomic hybridization (CGH), GTG- and C-banding identified a highly heterochromatic microchromosome specific to females, demonstrating female heterogamety (ZZ/ZW) in this species. We isolated the P. vitticeps W chromosome by microdissection, re-amplified the DNA and used it to paint the W. No unpaired bivalents were detected in male synaptonemal complexes at meiotic pachytene, confirming male homogamety. We conclude that P. vitticeps has differentiated previously unidentifable W and Z micro-sex chromosomes, the first to be demonstrated in an agamid lizard. Our finding implies that heterochromatinization of the heterogametic chromosome occurred during sex chromosome differentiation in this species, as is the case in some lizards and many snakes, as well as in birds and mammals. Many GSD reptiles with cryptic sex chromosomes may also prove to have micro-sex chromosomes. Reptile microchromosomes, long dismissed as non-functional minutiae and often omitted from karyotypes, therefore deserve closer scrutiny with new and more sensitive techniques.

  18. Construction of physical maps for the sex-specific regions of papaya sex chromosomes.

    PubMed

    Na, Jong-Kuk; Wang, Jianping; Murray, Jan E; Gschwend, Andrea R; Zhang, Wenli; Yu, Qingyi; Navajas-Pérez, Rafael; Feltus, F Alex; Chen, Cuixia; Kubat, Zdenek; Moore, Paul H; Jiang, Jiming; Paterson, Andrew H; Ming, Ray

    2012-05-08

    Papaya is a major fruit crop in tropical and subtropical regions worldwide. It is trioecious with three sex forms: male, female, and hermaphrodite. Sex determination is controlled by a pair of nascent sex chromosomes with two slightly different Y chromosomes, Y for male and Yh for hermaphrodite. The sex chromosome genotypes are XY (male), XYh (hermaphrodite), and XX (female). The papaya hermaphrodite-specific Yh chromosome region (HSY) is pericentromeric and heterochromatic. Physical mapping of HSY and its X counterpart is essential for sequencing these regions and uncovering the early events of sex chromosome evolution and to identify the sex determination genes for crop improvement. A reiterate chromosome walking strategy was applied to construct the two physical maps with three bacterial artificial chromosome (BAC) libraries. The HSY physical map consists of 68 overlapped BACs on the minimum tiling path, and covers all four HSY-specific Knobs. One gap remained in the region of Knob 1, the only knob structure shared between HSY and X, due to the lack of HSY-specific sequences. This gap was filled on the physical map of the HSY corresponding region in the X chromosome. The X physical map consists of 44 BACs on the minimum tiling path with one gap remaining in the middle, due to the nature of highly repetitive sequences. This gap was filled on the HSY physical map. The borders of the non-recombining HSY were defined genetically by fine mapping using 1460 F2 individuals. The genetically defined HSY spanned approximately 8.5 Mb, whereas its X counterpart extended about 5.4 Mb including a 900 Kb region containing the Knob 1 shared by the HSY and X. The 8.5 Mb HSY corresponds to 4.5 Mb of its X counterpart, showing 4 Mb (89%) DNA sequence expansion. The 89% increase of DNA sequence in HSY indicates rapid expansion of the Yh chromosome after genetic recombination was suppressed 2-3 million years ago. The genetically defined borders coincide with the common

  19. Abnormalities at chromosome region 3p12-14 characterize clear cell renal carcinoma.

    PubMed

    Carroll, P R; Murty, V V; Reuter, V; Jhanwar, S; Fair, W R; Whitmore, W F; Chaganti, R S

    1987-06-01

    In an effort to determine whether or not any characteristic chromosomal abnormalities exist in renal cancer, cytogenetic findings were correlated with tumor histology in nine cases of renal adenocarcinoma. Metaphase preparations adequate for analysis were obtained from cultures harvested between day 3 and day 21. Model chromosome number was diploid in three cases, hypodiploid in three, and hyperdiploid in the remaining three. One clear cell adenocarcinoma failed to reveal any chromosomal abnormality. Two tumors, a tubular/papillary carcinoma and an acinar/papillary carcinoma, showed the clonal abnormalities del(1)(p2l),+2,+7,+8,+12,+13,+16,+17,-21 and t(2;10)(q14-21;q26),+7q,+11q,-18, respectively. Interestingly, five of six clear cell tumors studied had clonal abnormalities affecting the short arm of chromosome #3 in the 3p12-21 region, and in the remaining case, of 15 karyotyped metaphases suitable for interpretation, one showed a deletion in 3p. These data indicate that clear cell carcinoma of the kidney may be associated with a nonrandom chromosomal abnormality involving the 3p12-14 region.

  20. The origin and evolution of vertebrate sex chromosomes and dosage compensation

    PubMed Central

    Livernois, A M; Graves, J A M; Waters, P D

    2012-01-01

    In mammals, birds, snakes and many lizards and fish, sex is determined genetically (either male XY heterogamy or female ZW heterogamy), whereas in alligators, and in many reptiles and turtles, the temperature at which eggs are incubated determines sex. Evidently, different sex-determining systems (and sex chromosome pairs) have evolved independently in different vertebrate lineages. Homology shared by Xs and Ys (and Zs and Ws) within species demonstrates that differentiated sex chromosomes were once homologous, and that the sex-specific non-recombining Y (or W) was progressively degraded. Consequently, genes are left in single copy in the heterogametic sex, which results in an imbalance of the dosage of genes on the sex chromosomes between the sexes, and also relative to the autosomes. Dosage compensation has evolved in diverse species to compensate for these dose differences, with the stringency of compensation apparently differing greatly between lineages, perhaps reflecting the concentration of genes on the original autosome pair that required dosage compensation. We discuss the organization and evolution of amniote sex chromosomes, and hypothesize that dosage insensitivity might predispose an autosome to evolving function as a sex chromosome. PMID:22086077

  1. Chromosomal aneuploidies and copy number variations in posterior fossa abnormalities diagnosed by prenatal ultrasonography.

    PubMed

    Lei, Ting; Feng, Jie-Ling; Xie, Ying-Jun; Xie, Hong-Ning; Zheng, Ju; Lin, Mei-Fang

    2017-11-01

    To explore the genetic aetiology of fetal posterior fossa abnormalities (PFAs). This study involved cases of PFAs that were identified by prenatal ultrasonographic screening and confirmed postnatally between January 2012 and January 2016. Conventional cytogenetic analyses and chromosomal microarray analysis were performed, and chromosomal aneuploidies and copy number variations (CNVs) were identified. Among 74 cases included in this study, 8 were of Blake's pouch cyst; 7, Dandy-Walker malformation; 11, vermian hypoplasia; 32, enlarged cisterna magna; and 16, cerebellar hypoplasia. The rates of nonbenign chromosomal aberrations (including chromosomal aneuploidies, pathogenic CNVs, and variants of unknown significance) were 2/8 (25.0%), 2/7 (28.5%), 8/11 (72.7%), 7/32 (21.9%), and 6/16 (37.5%), respectively. Cases were also classified as isolated PFAs (30/74), PFAs with other central nervous system (CNS) abnormalities (13/74), or PFAs with extra-CNS structural abnormalities (31/74). No fetuses with isolated PFAs or PFAs accompanied by other CNS abnormalities exhibited chromosomal aneuploidies or pathogenic CNVs. The rate of pathogenic chromosomal aberrations in the remaining fetuses was 17/31 (22.9%). The combined use of chromosomal microarray analysis and karyotype analysis might assist the prenatal diagnosis and management of PFAs, with extra-CNS structural abnormalities being detected by ultrasonography. © 2017 John Wiley & Sons, Ltd.

  2. Mouse model systems to study sex chromosome genes and behavior: relevance to humans

    PubMed Central

    Cox, Kimberly H.; Bonthuis, Paul J.; Rissman, Emilie F.

    2014-01-01

    Sex chromosome genes directly influence sex differences in behavior. The discovery of the Sry gene on the Y chromosome (Gubbay et al., 1990; Koopman et al., 1990) substantiated the sex chromosome mechanistic link to sex differences. Moreover, the pronounced connection between X chromosome gene mutations and mental illness produces a strong sex bias in these diseases. Yet, the dominant explanation for sex differences continues to be the gonadal hormones. Here we review progress made on behavioral differences in mouse models that uncouple sex chromosome complement from gonadal sex. We conclude that many social and cognitive behaviors are modified by sex chromosome complement, and discuss the implications for human research. Future directions need to include identification of the genes involved and interactions with these genes and gonadal hormones. PMID:24388960

  3. Neo-sex Chromosomes in the Monarch Butterfly, Danaus plexippus

    PubMed Central

    Mongue, Andrew J.; Nguyen, Petr; Voleníková, Anna; Walters, James R.

    2017-01-01

    We report the discovery of a neo-sex chromosome in the monarch butterfly, Danaus plexippus, and several of its close relatives. Z-linked scaffolds in the D. plexippus genome assembly were identified via sex-specific differences in Illumina sequencing coverage. Additionally, a majority of the D. plexippus genome assembly was assigned to chromosomes based on counts of one-to-one orthologs relative to the butterfly Melitaea cinxia (with replication using two other lepidopteran species), in which genome scaffolds have been mapped to linkage groups. Sequencing coverage-based assessments of Z linkage combined with homology-based chromosomal assignments provided strong evidence for a Z-autosome fusion in the Danaus lineage, involving the autosome homologous to chromosome 21 in M. cinxia. Coverage analysis also identified three notable assembly errors resulting in chimeric Z-autosome scaffolds. Cytogenetic analysis further revealed a large W chromosome that is partially euchromatic, consistent with being a neo-W chromosome. The discovery of a neo-Z and the provisional assignment of chromosome linkage for >90% of D. plexippus genes lays the foundation for novel insights concerning sex chromosome evolution in this female-heterogametic model species for functional and evolutionary genomics. PMID:28839116

  4. Mammalian X homolog acts as sex chromosome in lacertid lizards

    PubMed Central

    Rovatsos, M; Vukić, J; Kratochvíl, L

    2016-01-01

    Among amniotes, squamate reptiles are especially variable in their mechanisms of sex determination; however, based largely on cytogenetic data, some lineages possess highly evolutionary stable sex chromosomes. The still very limited knowledge of the genetic content of squamate sex chromosomes precludes a reliable reconstruction of the evolutionary history of sex determination in this group and consequently in all amniotes. Female heterogamety with a degenerated W chromosome typifies the lizards of the family Lacertidae, the widely distributed Old World clade including several hundreds of species. From the liver transcriptome of the lacertid Takydromus sexlineatus female, we selected candidates for Z-specific genes as the loci lacking single-nucleotide polymorphisms. We validated the candidate genes through the comparison of the copy numbers in the female and male genomes of T. sexlineatus and another lacertid species, Lacerta agilis, by quantitative PCR that also proved to be a reliable technique for the molecular sexing of the studied species. We suggest that this novel approach is effective for the detection of Z-specific and X-specific genes in lineages with degenerated W, respectively Y chromosomes. The analyzed gene content of the Z chromosome revealed that lacertid sex chromosomes are not homologous with those of other reptiles including birds, but instead the genes have orthologs in the X-conserved region shared by viviparous mammals. It is possible that this part of the vertebrate genome was independently co-opted for the function of sex chromosomes in viviparous mammals and lacertids because of its content of genes involved in gonad differentiation. PMID:26980341

  5. An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans

    PubMed Central

    Clasen, Liv; Giedd, Jay N.; Blumenthal, Jonathan; Lerch, Jason P.; Chakravarty, M. Mallar; Raznahan, Armin

    2016-01-01

    Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings. SIGNIFICANCE STATEMENT Sex and sex-chromosome dosage (SCD) are known to modulate human brain size and cortical anatomy, but very little is known regarding their impact on subcortical structures that work with the cortex to subserve a range of behaviors in health and disease. Moreover

  6. The Number of X Chromosomes Causes Sex Differences in Adiposity in Mice

    PubMed Central

    Chen, Xuqi; McClusky, Rebecca; Chen, Jenny; Beaven, Simon W.; Tontonoz, Peter

    2012-01-01

    Sexual dimorphism in body weight, fat distribution, and metabolic disease has been attributed largely to differential effects of male and female gonadal hormones. Here, we report that the number of X chromosomes within cells also contributes to these sex differences. We employed a unique mouse model, known as the “four core genotypes,” to distinguish between effects of gonadal sex (testes or ovaries) and sex chromosomes (XX or XY). With this model, we produced gonadal male and female mice carrying XX or XY sex chromosome complements. Mice were gonadectomized to remove the acute effects of gonadal hormones and to uncover effects of sex chromosome complement on obesity. Mice with XX sex chromosomes (relative to XY), regardless of their type of gonad, had up to 2-fold increased adiposity and greater food intake during daylight hours, when mice are normally inactive. Mice with two X chromosomes also had accelerated weight gain on a high fat diet and developed fatty liver and elevated lipid and insulin levels. Further genetic studies with mice carrying XO and XXY chromosome complements revealed that the differences between XX and XY mice are attributable to dosage of the X chromosome, rather than effects of the Y chromosome. A subset of genes that escape X chromosome inactivation exhibited higher expression levels in adipose tissue and liver of XX compared to XY mice, and may contribute to the sex differences in obesity. Overall, our study is the first to identify sex chromosome complement, a factor distinguishing all male and female cells, as a cause of sex differences in obesity and metabolism. PMID:22589744

  7. Detection of chromosomal abnormalities, congenital abnormalities and transfusion syndrome in twins.

    PubMed

    Sperling, L; Kiil, C; Larsen, L U; Brocks, V; Wojdemann, K R; Qvist, I; Schwartz, M; Jørgensen, C; Espersen, G; Skajaa, K; Bang, J; Tabor, A

    2007-05-01

    To evaluate the outcome of screening for structural malformations in twins and the outcome of screening for twin-twin transfusion syndrome (TTTS) among monochorionic twins through a number of ultrasound scans from 12 weeks' gestation. Enrolled into this prospective multicenter observational study were women with twin pregnancies diagnosed before 14 + 6 gestational weeks. The monochorionic pregnancies were scanned every second week until 23 weeks in order to rule out early TTTS. All pregnancies had an anomaly scan in week 19 and fetal echocardiography in week 21 that was performed by specialists in fetal echocardiography. Zygosity was determined by DNA analysis in all twin pairs with the same sex. Among the 495 pregnancies the prenatal detection rate for severe structural abnormalities including chromosomal aneuploidies was 83% by the combination of a first-trimester nuchal translucency scan and the anomaly scan in week 19. The incidence of severe structural abnormalities was 2.6% and two-thirds of these anomalies were cardiac. There was no significant difference between the incidence in monozygotic and dizygotic twins, nor between twins conceived naturally or those conceived by assisted reproduction. The incidence of TTTS was 23% from 12 weeks until delivery, and all those monochorionic twin pregnancies that miscarried had signs of TTTS. Twin pregnancies have an increased risk of congenital malformations and one out of four monochorionic pregnancies develops TTTS. Ultrasound screening to assess chorionicity and follow-up of monochorionic pregnancies to detect signs of TTTS, as well as malformation screening, are therefore essential in the antenatal care of twin pregnancies. Copyright (c) 2007 ISUOG.

  8. Recent gene-capture on the UV sex chromosomes of the moss Ceratodon purpureus.

    PubMed

    McDaniel, Stuart F; Neubig, Kurt M; Payton, Adam C; Quatrano, Ralph S; Cove, David J

    2013-10-01

    Sex chromosomes evolve from ordinary autosomes through the expansion and subsequent degeneration of a region of suppressed recombination that is inherited through one sex. Here we investigate the relative timing of these processes in the UV sex chromosomes of the moss Ceratodon purpureus using molecular population genetic analyses of eight newly discovered sex-linked loci. In this system, recombination is suppressed on both the female-transmitted (U) sex chromosome and the male-transmitted (V) chromosome. Genes on both chromosomes therefore should show the deleterious effects of suppressed recombination and sex-limited transmission, while purifying selection should maintain homologs of genes essential for both sexes on both sex chromosomes. Based on analyses of eight sex-linked loci, we show that the nonrecombining portions of the U and V chromosomes expanded in at least two events (~0.6-1.3 MYA and ~2.8-3.5 MYA), after the divergence of C. purpureus from its dioecious sister species, Trichodon cylindricus and Cheilothela chloropus. Both U- and V-linked copies showed reduced nucleotide diversity and limited population structure, compared to autosomal loci, suggesting that the sex chromosomes experienced more recent selective sweeps that the autosomes. Collectively these results highlight the dynamic nature of gene composition and molecular evolution on nonrecombining portions of the U and V sex chromosomes. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  9. Female phenotype and multiple abnormalities in sibs with a Y chromosome and partial X chromosome duplication: H--Y antigen and Xg blood group findings.

    PubMed Central

    Bernstein, R; Jenkins, T; Dawson, B; Wagner, J; Dewald, G; Koo, G C; Wachtel, S S

    1980-01-01

    A mentally retarded female child with multiple congenital abnormalities had an abnormal X chromosome and a Y chromosome; the karyotype was interpreted as 46,dup(X)(p21 leads to pter)Y. Prenatal chromosome studies in a later pregnancy indicated the same chromosomal abnormality in the fetus. The fetus and proband had normal female genitalia and ovarian tissue. H--Y antigen was virtually absent in both sibs, a finding consistent with the view that testis-determining genes of the Y chromosome may be suppressed by regulatory elements of the X. The abnormal X chromosome was present in the mother, the maternal grandmother, and a female sib: all were phenotypically normal and showed the karyotype 46,Xdup(X)(p21 leads to pter) with non-random inactivation of the abnormal X. Anomalous segregation of the Xga allele suggests that the Xg locus was involved in the inactivation process or that crossing-over at meiosis occurred. Images PMID:7193738

  10. Different autosomes evolved into sex chromosomes in the sister genera of Salix and Populus

    PubMed Central

    Hou, Jing; Ye, Ning; Zhang, Defang; Chen, Yingnan; Fang, Lecheng; Dai, Xiaogang; Yin, Tongming

    2015-01-01

    Willows (Salix) and poplars (Populus) are dioecious plants in Salicaceae family. Sex chromosome in poplar genome was consistently reported to be associated with chromosome XIX. In contrast to poplar, this study revealed that chromosome XV was sex chromosome in willow. Previous studies revealed that both ZZ/ZW and XX/XY sex-determining systems could be present in some species of Populus. In this study, sex of S. suchowensis was found to be determined by the ZW system in which the female was the heterogametic gender. Gene syntenic and collinear comparisons revealed macrosynteny between sex chromosomes and the corresponding autosomes between these two lineages. By contrast, no syntenic segments were found to be shared between poplar's and willow's sex chromosomes. Syntenic analysis also revealed substantial chromosome rearrangements between willow's alternate sex chromatids. Since willow and poplar originate from a common ancestor, we proposed that evolution of autosomes into sex chromosomes in these two lineages occurred after their divergence. Results of this study indicate that sex chromosomes in Salicaceae are still at the early stage of evolutionary divergence. Additionally, this study provided valuable information for better understanding the genetics and evolution of sex chromosome in dioecious plants. PMID:25766834

  11. Increased HDL cholesterol levels in mice with XX versus XY sex chromosomes

    PubMed Central

    Link, Jenny C.; Chen, Xuqi; Prien, Christopher; Borja, Mark S.; Hammerson, Bradley; Oda, Michael N.; Arnold, Arthur P.; Reue, Karen

    2015-01-01

    Objective The molecular mechanisms underlying sex differences in dyslipidemia are poorly understood. We aimed to distinguish genetic and hormonal regulators of sex differences in plasma lipid levels. Approach and Results We assessed the role of gonadal hormones and sex chromosome complement on lipid levels using the Four Core Genotypes mouse model (XX females, XX males, XY females, and XY males). In gonadally intact mice fed a chow diet, lipid levels were influenced by both male–female gonadal sex and XX–XY chromosome complement. Gonadectomy of adult mice revealed that the male–female differences are dependent on acute effects of gonadal hormones. In both intact and gonadectomized animals, XX mice had higher HDL cholesterol (HDL-C) levels than XY mice, regardless of male–female sex. Feeding a cholesterol-enriched diet produced distinct patterns of sex differences in lipid levels compared to a chow diet, revealing the interaction of gonadal and chromosomal sex with diet. Notably, under all dietary and gonadal conditions, HDL-C levels were higher in mice with two X chromosomes compared to mice with an X and Y chromosome. By generating mice with XX, XY and XXY chromosome complements, we determined that the presence of two X chromosomes, and not the absence of the Y chromosome, influences HDL-C concentration. Conclusions We demonstrate that having two X chromosomes versus an X and Y chromosome complement drives sex differences in HDL-C. It is conceivable that increased expression of genes escaping X-inactivation in XX mice regulates downstream processes to establish sexual dimorphism in plasma lipid levels. PMID:26112012

  12. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution

    PubMed Central

    Wang, Jianping; Na, Jong-Kuk; Yu, Qingyi; Gschwend, Andrea R.; Han, Jennifer; Zeng, Fanchang; Aryal, Rishi; VanBuren, Robert; Murray, Jan E.; Zhang, Wenli; Navajas-Pérez, Rafael; Feltus, F. Alex; Lemke, Cornelia; Tong, Eric J.; Chen, Cuixia; Man Wai, Ching; Singh, Ratnesh; Wang, Ming-Li; Min, Xiang Jia; Alam, Maqsudul; Charlesworth, Deborah; Moore, Paul H.; Jiang, Jiming; Paterson, Andrew H.; Ming, Ray

    2012-01-01

    Sex determination in papaya is controlled by a recently evolved XY chromosome pair, with two slightly different Y chromosomes controlling the development of males (Y) and hermaphrodites (Yh). To study the events of early sex chromosome evolution, we sequenced the hermaphrodite-specific region of the Yh chromosome (HSY) and its X counterpart, yielding an 8.1-megabase (Mb) HSY pseudomolecule, and a 3.5-Mb sequence for the corresponding X region. The HSY is larger than the X region, mostly due to retrotransposon insertions. The papaya HSY differs from the X region by two large-scale inversions, the first of which likely caused the recombination suppression between the X and Yh chromosomes, followed by numerous additional chromosomal rearrangements. Altogether, including the X and/or HSY regions, 124 transcription units were annotated, including 50 functional pairs present in both the X and HSY. Ten HSY genes had functional homologs elsewhere in the papaya autosomal regions, suggesting movement of genes onto the HSY, whereas the X region had none. Sequence divergence between 70 transcripts shared by the X and HSY revealed two evolutionary strata in the X chromosome, corresponding to the two inversions on the HSY, the older of which evolved about 7.0 million years ago. Gene content differences between the HSY and X are greatest in the older stratum, whereas the gene content and order of the collinear regions are identical. Our findings support theoretical models of early sex chromosome evolution. PMID:22869747

  13. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution.

    PubMed

    Wang, Jianping; Na, Jong-Kuk; Yu, Qingyi; Gschwend, Andrea R; Han, Jennifer; Zeng, Fanchang; Aryal, Rishi; VanBuren, Robert; Murray, Jan E; Zhang, Wenli; Navajas-Pérez, Rafael; Feltus, F Alex; Lemke, Cornelia; Tong, Eric J; Chen, Cuixia; Wai, Ching Man; Singh, Ratnesh; Wang, Ming-Li; Min, Xiang Jia; Alam, Maqsudul; Charlesworth, Deborah; Moore, Paul H; Jiang, Jiming; Paterson, Andrew H; Ming, Ray

    2012-08-21

    Sex determination in papaya is controlled by a recently evolved XY chromosome pair, with two slightly different Y chromosomes controlling the development of males (Y) and hermaphrodites (Y(h)). To study the events of early sex chromosome evolution, we sequenced the hermaphrodite-specific region of the Y(h) chromosome (HSY) and its X counterpart, yielding an 8.1-megabase (Mb) HSY pseudomolecule, and a 3.5-Mb sequence for the corresponding X region. The HSY is larger than the X region, mostly due to retrotransposon insertions. The papaya HSY differs from the X region by two large-scale inversions, the first of which likely caused the recombination suppression between the X and Y(h) chromosomes, followed by numerous additional chromosomal rearrangements. Altogether, including the X and/or HSY regions, 124 transcription units were annotated, including 50 functional pairs present in both the X and HSY. Ten HSY genes had functional homologs elsewhere in the papaya autosomal regions, suggesting movement of genes onto the HSY, whereas the X region had none. Sequence divergence between 70 transcripts shared by the X and HSY revealed two evolutionary strata in the X chromosome, corresponding to the two inversions on the HSY, the older of which evolved about 7.0 million years ago. Gene content differences between the HSY and X are greatest in the older stratum, whereas the gene content and order of the collinear regions are identical. Our findings support theoretical models of early sex chromosome evolution.

  14. Sex Chromosome Dosage Compensation in Heliconius Butterflies: Global yet Still Incomplete?

    PubMed Central

    Walters, James R.; Hardcastle, Thomas J.; Jiggins, Chris D.

    2015-01-01

    The evolution of heterogametic sex chromosomes is often—but not always—accompanied by the evolution of dosage compensating mechanisms that mitigate the impact of sex-specific gene dosage on levels of gene expression. One emerging view of this process is that such mechanisms may only evolve in male-heterogametic (XY) species but not in female-heterogametic (ZW) species, which will consequently exhibit “incomplete” sex chromosome dosage compensation. However, recent results suggest that at least some Lepidoptera (moths and butterflies) may prove to be an exception to this prediction. Studies in bombycoid moths indicate the presence of a chromosome-wide epigenetic mechanism that effectively balances Z chromosome gene expression between the sexes by reducing Z-linked expression in males. In contrast, strong sex chromosome dosage effects without any reduction in male Z-linked expression were previously reported in a pyralid moth, suggesting a lack of any such dosage compensating mechanism. Here we report an analysis of sex chromosome dosage compensation in Heliconius butterflies, sampling multiple individuals for several different adult tissues (head, abdomen, leg, mouth, and antennae). Methodologically, we introduce a novel application of linear mixed-effects models to assess dosage compensation, offering a unified statistical framework that can estimate effects specific to chromosome, to sex, and their interactions (i.e., a dosage effect). Our results show substantially reduced Z-linked expression relative to autosomes in both sexes, as previously observed in bombycoid moths. This observation is consistent with an increasing body of evidence that some lepidopteran species possess an epigenetic dosage compensating mechanism that reduces Z chromosome expression in males to levels comparable with females. However, this mechanism appears to be imperfect in Heliconius, resulting in a modest dosage effect that produces an average 5–20% increase in male expression

  15. Counseling parents before prenatal diagnosis: do we need to say more about the sex chromosome aneuploidies?

    PubMed

    Lalatta, Faustina; Tint, G Stephen

    2013-11-01

    Sex chromosome trisomies (SCT), an extra X chromosome in females (triple X, XXX), males with an extra X chromosome (Klinefelter syndrome, XXY) or an extra Y chromosome (XYY) occur because of errors during meiosis and are relatively frequent in humans. Their identification has never been the goal of prenatal diagnosis (PD) but they almost never escape detection by any of the methods commonly in use. Despite recommendations and guide-lines which emphasize the importance of structured counseling before and after PD, most women remain unaware that testing for serious genetic abnormalities is more likely to uncover these trisomies. With the increasing use of PD more and more prospective parents receive a diagnosis of sex chromosome trisomies and are faced with the dilemma of whether to terminate the pregnancy or to carry it to term. Despite the dramatic and emotionally devastating consequences of having to make such a decision, they have little opportunity to consider in advance the possible outcomes of such a pregnancy and, rather than relying on their own feelings and judgements, are forced to depend on the advice of counseling professionals who may or may not themselves be fully aware of what having an extra sex chromosome can mean to the development of a child. We address here the principles of reproductive autonomy together with an analysis of the major issues that ought to be discussed with the parents before a PD is carried out in order to minimize detrimental effects caused by this unexpected finding. © 2013 Wiley Periodicals, Inc.

  16. Sex chromosomes and speciation in birds and other ZW systems.

    PubMed

    Irwin, Darren E

    2018-02-14

    Theory and empirical patterns suggest a disproportionate role for sex chromosomes in evolution and speciation. Focusing on ZW sex determination (females ZW, males ZZ; the system in birds, many snakes, and lepidopterans), I review how evolutionary dynamics are expected to differ between the Z, W and the autosomes, discuss how these differences may lead to a greater role of the sex chromosomes in speciation and use data from birds to compare relative evolutionary rates of sex chromosomes and autosomes. Neutral mutations, partially or completely recessive beneficial mutations, and deleterious mutations under many conditions are expected to accumulate faster on the Z than on autosomes. Sexually antagonistic polymorphisms are expected to arise on the Z, raising the possibility of the spread of preference alleles. The faster accumulation of many types of mutations and the potential for complex evolutionary dynamics of sexually antagonistic traits and preferences contribute to a role for the Z chromosome in speciation. A quantitative comparison among a wide variety of bird species shows that the Z tends to have less within-population diversity and greater between-species differentiation than the autosomes, likely due to both adaptive evolution and a greater rate of fixation of deleterious alleles. The W chromosome also shows strong potential to be involved in speciation, in part because of its co-inheritance with the mitochondrial genome. While theory and empirical evidence suggest a disproportionate role for sex chromosomes in speciation, the importance of sex chromosomes is moderated by their small size compared to the whole genome. © 2018 John Wiley & Sons Ltd.

  17. Untangling the Contributions of Sex-Specific Gene Regulation and X-Chromosome Dosage to Sex-Biased Gene Expression in Caenorhabditis elegans

    PubMed Central

    Kramer, Maxwell; Rao, Prashant; Ercan, Sevinc

    2016-01-01

    Dosage compensation mechanisms equalize the level of X chromosome expression between sexes. Yet the X chromosome is often enriched for genes exhibiting sex-biased, i.e., imbalanced expression. The relationship between X chromosome dosage compensation and sex-biased gene expression remains largely unexplored. Most studies determine sex-biased gene expression without distinguishing between contributions from X chromosome copy number (dose) and the animal’s sex. Here, we uncoupled X chromosome dose from sex-specific gene regulation in Caenorhabditis elegans to determine the effect of each on X expression. In early embryogenesis, when dosage compensation is not yet fully active, X chromosome dose drives the hermaphrodite-biased expression of many X-linked genes, including several genes that were shown to be responsible for hermaphrodite fate. A similar effect is seen in the C. elegans germline, where X chromosome dose contributes to higher hermaphrodite X expression, suggesting that lack of dosage compensation in the germline may have a role in supporting higher expression of X chromosomal genes with female-biased functions in the gonad. In the soma, dosage compensation effectively balances X expression between the sexes. As a result, somatic sex-biased expression is almost entirely due to sex-specific gene regulation. These results suggest that lack of dosage compensation in different tissues and developmental stages allow X chromosome copy number to contribute to sex-biased gene expression and function. PMID:27356611

  18. Plant contributions to our understanding of sex chromosome evolution.

    PubMed

    Charlesworth, Deborah

    2015-10-01

    A minority of angiosperms have male and female flowers separated in distinct individuals (dioecy), and most dioecious plants do not have cytologically different (heteromorphic) sex chromosomes. Plants nevertheless have several advantages for the study of sex chromosome evolution, as genetic sex determination has evolved repeatedly and is often absent in close relatives. I review sex-determining regions in non-model plant species, which may help us to understand when and how (and, potentially, test hypotheses about why) recombination suppression evolves within young sex chromosomes. I emphasize high-throughput sequencing approaches that are increasingly being applied to plants to test for non-recombining regions. These data are particularly illuminating when combined with sequence data that allow phylogenetic analyses, and estimates of when these regions evolved. Together with comparative genetic mapping, this has revealed that sex-determining loci and sex-linked regions evolved independently in many plant lineages, sometimes in closely related dioecious species, and often within the past few million years. In reviewing recent progress, I suggest areas for future work, such as the use of phylogenies to allow the informed choice of outgroup species suitable for inferring the directions of changes, including testing whether Y chromosome-like regions are undergoing genetic degeneration, a predicted consequence of losing recombination. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  19. Sex-biased chromatin and regulatory cross-talk between sex chromosomes, autosomes, and mitochondria

    PubMed Central

    2014-01-01

    Several autoimmune and neurological diseases exhibit a sex bias, but discerning the causes and mechanisms of these biases has been challenging. Sex differences begin to manifest themselves in early embryonic development, and gonadal differentiation further bifurcates the male and female phenotypes. Even at this early stage, however, there is evidence that males and females respond to environmental stimuli differently, and the divergent phenotypic responses may have consequences later in life. The effect of prenatal nutrient restriction illustrates this point, as adult women exposed to prenatal restrictions exhibited increased risk factors of cardiovascular disease, while men exposed to the same condition did not. Recent research has examined the roles of sex-specific genes, hormones, chromosomes, and the interactions among them in mediating sex-biased phenotypes. Such research has identified testosterone, for example, as a possible protective agent against autoimmune disorders and an XX chromosome complement as a susceptibility factor in murine models of lupus and multiple sclerosis. Sex-biased chromatin is an additional and likely important component. Research suggesting a role for X and Y chromosome heterochromatin in regulating epigenetic states of autosomes has highlighted unorthodox mechanisms of gene regulation. The crosstalk between the Y chromosomes and autosomes may be further mediated by the mitochondria. The organelles have solely maternal transmission and exert differential effects on males and females. Altogether, research supports the notion that the interaction between sex-biased elements might exert novel regulatory functions in the genome and contribute to sex-specific susceptibilities to autoimmune and neurological diseases. PMID:24422881

  20. Chromosome Abnormalities

    MedlinePlus

    ... chromosome has attached to another at the centromere. Inversions: A portion of the chromosome has broken off, ... individual and was not inherited from the parents. Inversion: A portion of the chromosome has broken off, ...

  1. The induction of chromosomal abnormalities by inhalational anaesthetics.

    PubMed

    Grant, C J; Powell, J N; Radford, S G

    1977-06-01

    When Vicia faba root tips are exposed for 2 h to clinically useful concentrations of halothane or methoxyflurane in air, or to halothane in 80% nitrous oxide/20% oxygen, there is a transient increase in mitotic index and then abnormal interphase cells are produced in proportion to the anaesthetic concentrations. After exposure there is a period of mitotic inhibition during which the cells become partially synchronised. When colchicine-metaphase cells collected 28 h after exposure are compared with controls and with metaphases collected only 4 h after exposure, they show a significant increase in the incidence of aneuploidy, tetraploidy and the results of chromosome breakage. It is suggested that all the abnormalities seen can be accounted for by the effects of the anaesthetics on spindle movements, and that at the concentrations used the anaesthetics have no mutagenic effects on chromosomes in interphase.

  2. AB020. Chromosome rearrangement in patients with 46,XY disorders of sex development

    PubMed Central

    Vu, Dung Chi; Nguyen, Khanh Ngoc; Can, Ngoc Bich; Bui, Thao Phuong; Fukami, Maki

    2017-01-01

    Background Disorders of sex development (DSD) is defined by congenital conditions in which development of chromosomal, gonadal, or anatomical sex is atypical. Causative mutations have not been identified in more than 50% 46,XY DSD cases. We aimed to identify chromosomal rearrangement in the development of 46,XY DSD in Vietnamese patients. Methods Case series report including clinical presentations and data from array-based comparative genomic hybridization analysis for six genetic males with genital abnormalities combines with mental disability and other congenital anomalies. Results Heterozygous submicroscopic deletions and/or duplications were identified in six cases. A 7.2 Mb terminal deletion at chromosome 9 including deletion of DMRT1 gene and a 2.7 Mb terminal duplication at chromosome 17 were detected in case 1 that presented with prematurity, dysmorphism and ambiguous genitalia. A terminal deletion affects DMRT1-3 at 9p22-23 was identified in case 2 with ambiguous genitalia, mental disability and dysmorphism. An 18 Mb terminal duplication at chromosome 5 was detected in case 3 with DSD, growth retardation, microcephaly and dysmorphism, ptosis, ventricular septal defect and craniosynostosis. An interstitial deletion including deletions of WT1, PAX6, and PRRG4 genes at chromosome 11 was detected in case 4 with WAGR syndrome. A terminal duplication at chromosome 7 was detected in case 5 with DSD, severe hypospadias, small phallus size (1 cm at 3 years of age), and no testis found clinically. A 5 Mb terminal deletion at chromosome 4 and a 6 Mb terminal duplication of chromosome 16 were detected in case 6 with severe motor-mental retardation, microcephaly (head circumference −3.5 SD), micrognathia, and DSD. Conclusions The results indicate that chromosomal rearrangements constitute an important part of the molecular bases of 46,XY DSD and that submicroscopic deletions and/or duplication can lead to various types of 46,XY DSD combined with other congenital

  3. The Sex Chromosomes of Frogs: Variability and Tolerance Offer Clues to Genome Evolution and Function

    PubMed Central

    Malcom, Jacob W.; Kudra, Randal S.; Malone, John H.

    2014-01-01

    Frog sex chromosomes offer an ideal system for advancing our understanding of genome evolution and function because of the variety of sex determination systems in the group, the diversity of sex chromosome maturation states, the ease of experimental manipulation during early development. After briefly reviewing sex chromosome biology generally, we focus on what is known about frog sex determination, sex chromosome evolution, and recent, genomics-facilitated advances in the field. In closing we highlight gaps in our current knowledge of frog sex chromosomes, and suggest priorities for future research that can advance broad knowledge of gene dose and sex chromosome evolution. PMID:25031658

  4. A Large Pseudoautosomal Region on the Sex Chromosomes of the Frog Silurana tropicalis

    PubMed Central

    Bewick, Adam J.; Chain, Frédéric J.J.; Zimmerman, Lyle B.; Sesay, Abdul; Gilchrist, Michael J.; Owens, Nick D.L.; Seifertova, Eva; Krylov, Vladimir; Macha, Jaroslav; Tlapakova, Tereza; Kubickova, Svatava; Cernohorska, Halina; Zarsky, Vojtech; Evans, Ben J.

    2013-01-01

    Sex chromosome divergence has been documented across phylogenetically diverse species, with amphibians typically having cytologically nondiverged (“homomorphic”) sex chromosomes. With an aim of further characterizing sex chromosome divergence of an amphibian, we used “RAD-tags” and Sanger sequencing to examine sex specificity and heterozygosity in the Western clawed frog Silurana tropicalis (also known as Xenopus tropicalis). Our findings based on approximately 20 million genotype calls and approximately 200 polymerase chain reaction-amplified regions across multiple male and female genomes failed to identify a substantially sized genomic region with genotypic hallmarks of sex chromosome divergence, including in regions known to be tightly linked to the sex-determining region. We also found that expression and molecular evolution of genes linked to the sex-determining region did not differ substantially from genes in other parts of the genome. This suggests that the pseudoautosomal region, where recombination occurs, comprises a large portion of the sex chromosomes of S. tropicalis. These results may in part explain why African clawed frogs have such a high incidence of polyploidization, shed light on why amphibians have a high rate of sex chromosome turnover, and raise questions about why homomorphic sex chromosomes are so prevalent in amphibians. PMID:23666865

  5. Sex Chromosome Evolution, Heterochiasmy, and Physiological QTL in the Salmonid Brook Charr Salvelinus fontinalis

    PubMed Central

    Sutherland, Ben J.G.; Rico, Ciro; Audet, Céline; Bernatchez, Louis

    2017-01-01

    Whole-genome duplication (WGD) can have large impacts on genome evolution, and much remains unknown about these impacts. This includes the mechanisms of coping with a duplicated sex determination system and whether this has an impact on increasing the diversity of sex determination mechanisms. Other impacts include sexual conflict, where alleles having different optimums in each sex can result in sequestration of genes into nonrecombining sex chromosomes. Sex chromosome development itself may involve sex-specific recombination rate (i.e., heterochiasmy), which is also poorly understood. The family Salmonidae is a model system for these phenomena, having undergone autotetraploidization and subsequent rediploidization in most of the genome at the base of the lineage. The salmonid master sex determining gene is known, and many species have nonhomologous sex chromosomes, putatively due to transposition of this gene. In this study, we identify the sex chromosome of Brook Charr Salvelinus fontinalis and compare sex chromosome identities across the lineage (eight species and four genera). Although nonhomology is frequent, homologous sex chromosomes and other consistencies are present in distantly related species, indicating probable convergence on specific sex and neo-sex chromosomes. We also characterize strong heterochiasmy with 2.7-fold more crossovers in maternal than paternal haplotypes with paternal crossovers biased to chromosome ends. When considering only rediploidized chromosomes, the overall heterochiasmy trend remains, although with only 1.9-fold more recombination in the female than the male. Y chromosome crossovers are restricted to a single end of the chromosome, and this chromosome contains a large interspecific inversion, although its status between males and females remains unknown. Finally, we identify quantitative trait loci (QTL) for 21 unique growth, reproductive, and stress-related phenotypes to improve knowledge of the genetic architecture of these

  6. Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs.

    PubMed

    Schartl, Manfred; Schmid, Michael; Nanda, Indrajit

    2016-06-01

    The Y and W chromosomes of mammals and birds are known to be small because most of their genetic content degenerated and were lost due to absence of recombination with the X or Z, respectively. Thus, a picture has emerged of ever-shrinking Ys and Ws that may finally even fade into disappearance. We review here the large amount of literature on sex chromosomes in vertebrate species and find by taking a closer look, particularly at the sex chromosomes of fishes, amphibians and reptiles where several groups have evolutionary younger chromosomes than those of mammals and birds, that the perception of sex chromosomes being doomed to size reduction is incomplete. Here, sex-determining mechanisms show a high turnover and new sex chromosomes appear repeatedly. In many species, Ys and Ws are larger than their X and Z counterparts. This brings up intriguing perspectives regarding the evolutionary dynamics of sex chromosomes. It can be concluded that, due to accumulation of repetitive DNA and transposons, the Y and W chromosomes can increase in size during the initial phase of their differentiation.

  7. Comparative Sex Chromosome Genomics in Snakes: Differentiation, Evolutionary Strata, and Lack of Global Dosage Compensation

    PubMed Central

    Zektser, Yulia; Mahajan, Shivani; Bachtrog, Doris

    2013-01-01

    Snakes exhibit genetic sex determination, with female heterogametic sex chromosomes (ZZ males, ZW females). Extensive cytogenetic work has suggested that the level of sex chromosome heteromorphism varies among species, with Boidae having entirely homomorphic sex chromosomes, Viperidae having completely heteromorphic sex chromosomes, and Colubridae showing partial differentiation. Here, we take a genomic approach to compare sex chromosome differentiation in these three snake families. We identify homomorphic sex chromosomes in boas (Boidae), but completely heteromorphic sex chromosomes in both garter snakes (Colubridae) and pygmy rattlesnake (Viperidae). Detection of W-linked gametologs enables us to establish the presence of evolutionary strata on garter and pygmy rattlesnake sex chromosomes where recombination was abolished at different time points. Sequence analysis shows that all strata are shared between pygmy rattlesnake and garter snake, i.e., recombination was abolished between the sex chromosomes before the two lineages diverged. The sex-biased transmission of the Z and its hemizygosity in females can impact patterns of molecular evolution, and we show that rates of evolution for Z-linked genes are increased relative to their pseudoautosomal homologs, both at synonymous and amino acid sites (even after controlling for mutational biases). This demonstrates that mutation rates are male-biased in snakes (male-driven evolution), but also supports faster-Z evolution due to differential selective effects on the Z. Finally, we perform a transcriptome analysis in boa and pygmy rattlesnake to establish baseline levels of sex-biased expression in homomorphic sex chromosomes, and show that heteromorphic ZW chromosomes in rattlesnakes lack chromosome-wide dosage compensation. Our study provides the first full scale overview of the evolution of snake sex chromosomes at the genomic level, thus greatly expanding our knowledge of reptilian and vertebrate sex chromosomes

  8. Analysis and visualization of chromosomal abnormalities in SNP data with SNPscan

    PubMed Central

    Ting, Jason C; Ye, Ying; Thomas, George H; Ruczinski, Ingo; Pevsner, Jonathan

    2006-01-01

    Background A variety of diseases are caused by chromosomal abnormalities such as aneuploidies (having an abnormal number of chromosomes), microdeletions, microduplications, and uniparental disomy. High density single nucleotide polymorphism (SNP) microarrays provide information on chromosomal copy number changes, as well as genotype (heterozygosity and homozygosity). SNP array studies generate multiple types of data for each SNP site, some with more than 100,000 SNPs represented on each array. The identification of different classes of anomalies within SNP data has been challenging. Results We have developed SNPscan, a web-accessible tool to analyze and visualize high density SNP data. It enables researchers (1) to visually and quantitatively assess the quality of user-generated SNP data relative to a benchmark data set derived from a control population, (2) to display SNP intensity and allelic call data in order to detect chromosomal copy number anomalies (duplications and deletions), (3) to display uniparental isodisomy based on loss of heterozygosity (LOH) across genomic regions, (4) to compare paired samples (e.g. tumor and normal), and (5) to generate a file type for viewing SNP data in the University of California, Santa Cruz (UCSC) Human Genome Browser. SNPscan accepts data exported from Affymetrix Copy Number Analysis Tool as its input. We validated SNPscan using data generated from patients with known deletions, duplications, and uniparental disomy. We also inspected previously generated SNP data from 90 apparently normal individuals from the Centre d'Étude du Polymorphisme Humain (CEPH) collection, and identified three cases of uniparental isodisomy, four females having an apparently mosaic X chromosome, two mislabelled SNP data sets, and one microdeletion on chromosome 2 with mosaicism from an apparently normal female. These previously unrecognized abnormalities were all detected using SNPscan. The microdeletion was independently confirmed by

  9. Chromosomal abnormalities are associated with aging and cancer

    Cancer.gov

    Two new studies have found that large structural abnormalities in chromosomes, some of which have been associated with increased risk of cancer, can be detected in a small fraction of people without a prior history of cancer. The studies found that these

  10. Small but mighty: the evolutionary dynamics of W and Y sex chromosomes.

    PubMed

    Mank, Judith E

    2012-01-01

    Although sex chromosomes have been the focus of a great deal of scientific scrutiny, most interest has centred on understanding the evolution and relative importance of X and Z chromosomes. By contrast, the sex-limited W and Y chromosomes have received far less attention, both because of their generally degenerate nature and the difficulty in studying non-recombining and often highly heterochromatic genomic regions. However, recent theory and empirical evidence suggest that the W and Y chromosomes play a far more important role in sex-specific fitness traits than would be expected based on their size alone, and this importance may explain the persistence of some Y and W chromosomes in the face of powerful degradative forces. In addition to their role in fertility and fecundity, the sex-limited nature of these genomic regions results in unique evolutionary forces acting on Y and W chromosomes, implicating them as potentially major contributors to sexual selection and speciation. Recent empirical studies have borne out these predictions and revealed that some W and Y chromosomes play a vital role in key sex-specific evolutionary processes.

  11. Sex-determining mechanisms in insects based on imprinting and elimination of chromosomes.

    PubMed

    Sánchez, L

    2014-01-01

    As a rule, the sex of an individual is fixed at fertilization, and the chromosomal constitution of the zygote is a direct consequence of the chromosomal constitution of the gametes. However, there are cases in which the chromosomal differences determining sex are brought about by elimination or inactivation of chromosomes in the embryo. In Sciaridae insects, all zygotes start with the XXX constitution; the loss of either 1 or 2 X chromosomes determines whether the zygote becomes XX (female) or X0 (male). In Cecydomyiidae and Collembola insects, all zygotes start with the XXXX constitution. If the embryo does not eliminate any X chromosome, this remains XXXX and develops as female, whereas if 2 X chromosomes are eliminated, the embryo becomes XX0 and develops as a male. In the coccids (scale insects), the chromosomal differences between the sexes result from either the elimination or the heterochromatinization (inactivation) of half of the chromosomes giving rise to haploid males and diploid females. The chromosomes that are eliminated or inactivated are those inherited from the father. Therefore, in the formation of the sex-determining chromosomal signal in those insects, a marking ('imprinting') process must occur in one of the parents, which determines that the chromosomes to be eliminated or inactivated are of paternal origin. In this article, the sex determination mechanism of these insects and the associated imprinting process are reviewed. © 2013 S. Karger AG, Basel.

  12. An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans.

    PubMed

    Reardon, Paul Kirkpatrick; Clasen, Liv; Giedd, Jay N; Blumenthal, Jonathan; Lerch, Jason P; Chakravarty, M Mallar; Raznahan, Armin

    2016-02-24

    Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings. Copyright © 2016 the authors 0270-6474/16/362438-11$15.00/0.

  13. Lack of sex chromosome specific meiotic silencing in platypus reveals origin of MSCI in therian mammals.

    PubMed

    Daish, Tasman J; Casey, Aaron E; Grutzner, Frank

    2015-12-10

    In therian mammals heteromorphic sex chromosomes are subject to meiotic sex chromosome inactivation (MSCI) during meiotic prophase I while the autosomes maintain transcriptional activity. The evolution of this sex chromosome silencing is thought to result in retroposition of genes required in spermatogenesis from the sex chromosomes to autosomes. In birds sex chromosome specific silencing appears to be absent and global transcriptional reductions occur through pachytene and sex chromosome-derived autosomal retrogenes are lacking. Egg laying monotremes are the most basal mammalian lineage, feature a complex and highly differentiated XY sex chromosome system with homology to the avian sex chromosomes, and also lack autosomal retrogenes. In order to delineate the point of origin of sex chromosome specific silencing in mammals we investigated whether MSCI exists in platypus. Our results show that platypus sex chromosomes display only partial or transient colocalisation with a repressive histone variant linked to therian sex chromosome silencing and surprisingly lack a hallmark MSCI epigenetic signature present in other mammals. Remarkably, platypus instead feature an avian like period of general low level transcription through prophase I with the sex chromosomes and the future mammalian X maintaining association with a nucleolus-like structure. Our work demonstrates for the first time that in mammals meiotic silencing of sex chromosomes evolved after the divergence of monotremes presumably as a result of the differentiation of the therian XY sex chromosomes. We provide a novel evolutionary scenario on how the future therian X chromosome commenced the trajectory toward MSCI.

  14. Dissociable Effects of Sry and Sex Chromosome Complement on Activity, Feeding and Anxiety-Related Behaviours in Mice

    PubMed Central

    Kopsida, Eleni; Lynn, Phoebe M.; Humby, Trevor; Wilkinson, Lawrence S.; Davies, William

    2013-01-01

    Whilst gonadal hormones can substantially influence sexual differentiation of the brain, recent findings have suggested that sex-linked genes may also directly influence neurodevelopment. Here we used the well-established murine ‘four core genotype’ (FCG) model on a gonadally-intact, outbred genetic background to characterise the contribution of Sry-dependent effects (i.e. those arising from the expression of the Y-linked Sry gene in the brain, or from hormonal sequelae of gonadal Sry expression) and direct effects of sex-linked genes other than Sry (‘sex chromosome complement’ effects) to sexually dimorphic mouse behavioural phenotypes. Over a 24 hour period, XX and XY gonadally female mice (lacking Sry) exhibited greater horizontal locomotor activity and reduced food consumption per unit bodyweight than XX and XY gonadally male mice (possessing Sry); in two behavioural tests (the elevated plus and zero mazes) XX and XY gonadally female mice showed evidence for increased anxiety-related behaviours relative to XX and XY gonadally male mice. Exploratory correlational analyses indicated that these Sry-dependent effects could not be simply explained by brain expression of the gene, nor by circulating testosterone levels. We also noted a sex chromosome complement effect on food (but not water) consumption whereby XY mice consumed more over a 24hr period than XX mice, and a sex chromosome complement effect in a third test of anxiety-related behaviour, the light-dark box. The present data suggest that: i) the male-specific factor Sry may influence activity and feeding behaviours in mice, and ii) dissociable feeding and anxiety-related murine phenotypes may be differentially modulated by Sry and by other sex-linked genes. Our results may have relevance for understanding the molecular underpinnings of sexually dimorphic behavioural phenotypes in healthy men and women, and in individuals with abnormal sex chromosome constitutions. PMID:24009762

  15. Artificial Neural Network for the Prediction of Chromosomal Abnormalities in Azoospermic Males.

    PubMed

    Akinsal, Emre Can; Haznedar, Bulent; Baydilli, Numan; Kalinli, Adem; Ozturk, Ahmet; Ekmekçioğlu, Oğuz

    2018-02-04

    To evaluate whether an artifical neural network helps to diagnose any chromosomal abnormalities in azoospermic males. The data of azoospermic males attending to a tertiary academic referral center were evaluated retrospectively. Height, total testicular volume, follicle stimulating hormone, luteinising hormone, total testosterone and ejaculate volume of the patients were used for the analyses. In artificial neural network, the data of 310 azoospermics were used as the education and 115 as the test set. Logistic regression analyses and discriminant analyses were performed for statistical analyses. The tests were re-analysed with a neural network. Both logistic regression analyses and artificial neural network predicted the presence or absence of chromosomal abnormalities with more than 95% accuracy. The use of artificial neural network model has yielded satisfactory results in terms of distinguishing patients whether they have any chromosomal abnormality or not.

  16. Sex chromosomes: platypus genome suggests a recent origin for the human X.

    PubMed

    Ellegren, Hans

    2008-07-08

    The unusual sex chromosomes of platypus are not homologous to the human X and Y chromosomes, implying that the sex chromosomes of placental mammals evolved after the monotreme and placental mammal lineages split about 165 million years ago.

  17. Female heterogamety in Madagascar chameleons (Squamata: Chamaeleonidae: Furcifer): differentiation of sex and neo-sex chromosomes

    PubMed Central

    Rovatsos, Michail; Pokorná, Martina Johnson; Altmanová, Marie; Kratochvíl, Lukáš

    2015-01-01

    Amniotes possess variability in sex determining mechanisms, however, this diversity is still only partially known throughout the clade and sex determining systems still remain unknown even in such a popular and distinctive lineage as chameleons (Squamata: Acrodonta: Chamaeleonidae). Here, we present evidence for female heterogamety in this group. The Malagasy giant chameleon (Furcifer oustaleti) (chromosome number 2n = 22) possesses heteromorphic Z and W sex chromosomes with heterochromatic W. The panther chameleon (Furcifer pardalis) (2n = 22 in males, 21 in females), the second most popular chameleon species in the world pet trade, exhibits a rather rare Z1Z1Z2Z2/Z1Z2W system of multiple sex chromosomes, which most likely evolved from W-autosome fusion. Notably, its neo-W chromosome is partially heterochromatic and its female-specific genetic content has expanded into the previously autosomal region. Showing clear evidence for genotypic sex determination in the panther chameleon, we resolve the long-standing question of whether or not environmental sex determination exists in this species. Together with recent findings in other reptile lineages, our work demonstrates that female heterogamety is widespread among amniotes, adding another important piece to the mosaic of knowledge on sex determination in amniotes needed to understand the evolution of this important trait. PMID:26286647

  18. Parental decisions regarding prenatally detected fetal sex chromosomal abnormality and the impact of genetic counselling: an analysis of 57 cases in Taiwan.

    PubMed

    Shaw, Sheng-Wen; Chueh, Ho-Yen; Chang, Shuenn-Dyh; Cheng, Po-Jen; Hsieh, T'sang-T'ang; Soong, Yung-Kuei

    2008-04-01

    To analyse parental decisions regarding pregnancies with sex chromosome abnormalities (SCA). Collected and reviewed records from our hospital for 1991-2005. Genetic counselling was provided by obstetricians or perinatologists. Among 57 fetuses with SCA were 36 non-mosaic cases (four of 36, 45,X; 12 of 36, 47,XXY; seven of 36, 47,XYY, 13 of 36, 47,XXX) and 21 mosaic cases (15 of 21, 45,X mosaicism). Only 20% of 45,X mosaic pregnancies were continued, whereas all other mosaic pregnancies (100%) were continued (P = 0.004). Of 32 SCA cases counselled by a perinatologist, 66% (21 of 32) were continued. In contrast, 36% (nine of 25) of cases counselled by a general obstetrician were continued, a barely significant difference (P = 0.048). More couples chose to continue pregnancies in recent years. Genetic counselling by well-trained specialists is valuable, and the trend towards fewer terminations at our centre suggests improved parental knowledge of pathology associated with SCA.

  19. Allometric Analysis Detects Brain Size-Independent Effects of Sex and Sex Chromosome Complement on Human Cerebellar Organization

    PubMed Central

    Mankiw, Catherine; Park, Min Tae M.; Reardon, P.K.; Fish, Ari M.; Clasen, Liv S.; Greenstein, Deanna; Blumenthal, Jonathan D.; Lerch, Jason P.; Chakravarty, M. Mallar

    2017-01-01

    The cerebellum is a large hindbrain structure that is increasingly recognized for its contribution to diverse domains of cognitive and affective processing in human health and disease. Although several of these domains are sex biased, our fundamental understanding of cerebellar sex differences—including their spatial distribution, potential biological determinants, and independence from brain volume variation—lags far behind that for the cerebrum. Here, we harness automated neuroimaging methods for cerebellar morphometrics in 417 individuals to (1) localize normative male–female differences in raw cerebellar volume, (2) compare these to sex chromosome effects estimated across five rare sex (X/Y) chromosome aneuploidy (SCA) syndromes, and (3) clarify brain size-independent effects of sex and SCA on cerebellar anatomy using a generalizable allometric approach that considers scaling relationships between regional cerebellar volume and brain volume in health. The integration of these approaches shows that (1) sex and SCA effects on raw cerebellar volume are large and distributed, but regionally heterogeneous, (2) human cerebellar volume scales with brain volume in a highly nonlinear and regionally heterogeneous fashion that departs from documented patterns of cerebellar scaling in phylogeny, and (3) cerebellar organization is modified in a brain size-independent manner by sex (relative expansion of total cerebellum, flocculus, and Crus II-lobule VIIIB volumes in males) and SCA (contraction of total cerebellar, lobule IV, and Crus I volumes with additional X- or Y-chromosomes; X-specific contraction of Crus II-lobule VIIIB). Our methods and results clarify the shifts in human cerebellar organization that accompany interwoven variations in sex, sex chromosome complement, and brain size. SIGNIFICANCE STATEMENT Cerebellar systems are implicated in diverse domains of sex-biased behavior and pathology, but we lack a basic understanding of how sex differences in the

  20. Allometric Analysis Detects Brain Size-Independent Effects of Sex and Sex Chromosome Complement on Human Cerebellar Organization.

    PubMed

    Mankiw, Catherine; Park, Min Tae M; Reardon, P K; Fish, Ari M; Clasen, Liv S; Greenstein, Deanna; Giedd, Jay N; Blumenthal, Jonathan D; Lerch, Jason P; Chakravarty, M Mallar; Raznahan, Armin

    2017-05-24

    The cerebellum is a large hindbrain structure that is increasingly recognized for its contribution to diverse domains of cognitive and affective processing in human health and disease. Although several of these domains are sex biased, our fundamental understanding of cerebellar sex differences-including their spatial distribution, potential biological determinants, and independence from brain volume variation-lags far behind that for the cerebrum. Here, we harness automated neuroimaging methods for cerebellar morphometrics in 417 individuals to (1) localize normative male-female differences in raw cerebellar volume, (2) compare these to sex chromosome effects estimated across five rare sex (X/Y) chromosome aneuploidy (SCA) syndromes, and (3) clarify brain size-independent effects of sex and SCA on cerebellar anatomy using a generalizable allometric approach that considers scaling relationships between regional cerebellar volume and brain volume in health. The integration of these approaches shows that (1) sex and SCA effects on raw cerebellar volume are large and distributed, but regionally heterogeneous, (2) human cerebellar volume scales with brain volume in a highly nonlinear and regionally heterogeneous fashion that departs from documented patterns of cerebellar scaling in phylogeny, and (3) cerebellar organization is modified in a brain size-independent manner by sex (relative expansion of total cerebellum, flocculus, and Crus II-lobule VIIIB volumes in males) and SCA (contraction of total cerebellar, lobule IV, and Crus I volumes with additional X- or Y-chromosomes; X-specific contraction of Crus II-lobule VIIIB). Our methods and results clarify the shifts in human cerebellar organization that accompany interwoven variations in sex, sex chromosome complement, and brain size. SIGNIFICANCE STATEMENT Cerebellar systems are implicated in diverse domains of sex-biased behavior and pathology, but we lack a basic understanding of how sex differences in the human

  1. A genetic method for sex determination in Ovis spp. by interruption of the zinc finger protein, Y-linked (ZFY) gene on the Y chromosome.

    PubMed

    Zhang, Yong Sheng; Du, Ying Chun; Sun, Li Rong; Wang, Xu Hai; Liu, Shuai Bing; Xi, Ji Feng; Li, Chao Cheng; Ying, Rui Wen; Jiang, Song; Wang, Xiang Zu; Shen, Hong; Jia, Bin

    2018-03-06

    The mammalian Y chromosome plays a critical role in spermatogenesis. However, the exact functions of each gene on the Y chromosome have not been completely elucidated, due, in part, to difficulties in gene targeting analysis of the Y chromosome. The zinc finger protein, Y-linked (ZFY) gene was first proposed to be a sex determination factor, although its function in spermatogenesis has recently been elucidated. Nevertheless, ZFY gene targeting analysis has not been performed to date. In the present study, RNA interference (RNAi) was used to generate ZFY-interrupted Hu sheep by injecting short hairpin RNA (shRNA) into round spermatids. The resulting spermatozoa exhibited abnormal sperm morphology, including spermatozoa without tails and others with head and tail abnormalities. Quantitative real-time polymerase chain reaction analysis showed that ZFY mRNA expression was decreased significantly in Hu sheep with interrupted ZFY compared with wild-type Hu sheep. The sex ratio of lambs also exhibited a bias towards females. Together, the experimental strategy and findings of the present study reveal that ZFY also functions in spermatogenesis in Hu sheep and facilitate the use of RNAi in the control of sex in Hu sheep.

  2. Implications of monotreme and marsupial chromosome evolution on sex determination and differentiation.

    PubMed

    Deakin, Janine E

    2017-04-01

    Studies of chromosomes from monotremes and marsupials endemic to Australasia have provided important insight into the evolution of their genomes as well as uncovering fundamental differences in their sex determination/differentiation pathways. Great advances have been made this century into solving the mystery of the complicated sex chromosome system in monotremes. Monotremes possess multiple different X and Y chromosomes and a candidate sex determining gene has been identified. Even greater advancements have been made for marsupials, with reconstruction of the ancestral karyotype enabling the evolutionary history of marsupial chromosomes to be determined. Furthermore, the study of sex chromosomes in intersex marsupials has afforded insight into differences in the sexual differentiation pathway between marsupials and eutherians, together with experiments showing the insensitivity of the mammary glands, pouch and scrotum to exogenous hormones, led to the hypothesis that there is a gene (or genes) on the X chromosome responsible for the development of either pouch or scrotum. This review highlights the major advancements made towards understanding chromosome evolution and how this has impacted on our understanding of sex determination and differentiation in these interesting mammals. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Small but mighty: the evolutionary dynamics of W and Y sex chromosomes

    PubMed Central

    2012-01-01

    Although sex chromosomes have been the focus of a great deal of scientific scrutiny, most interest has centred on understanding the evolution and relative importance of X and Z chromosomes. By contrast, the sex-limited W and Y chromosomes have received far less attention, both because of their generally degenerate nature and the difficulty in studying non-recombining and often highly heterochromatic genomic regions. However, recent theory and empirical evidence suggest that the W and Y chromosomes play a far more important role in sex-specific fitness traits than would be expected based on their size alone, and this importance may explain the persistence of some Y and W chromosomes in the face of powerful degradative forces. In addition to their role in fertility and fecundity, the sex-limited nature of these genomic regions results in unique evolutionary forces acting on Y and W chromosomes, implicating them as potentially major contributors to sexual selection and speciation. Recent empirical studies have borne out these predictions and revealed that some W and Y chromosomes play a vital role in key sex-specific evolutionary processes. PMID:22038285

  4. Independent Evolution of Transcriptional Inactivation on Sex Chromosomes in Birds and Mammals

    PubMed Central

    Livernois, Alexandra M.; Waters, Shafagh A.; Deakin, Janine E.; Marshall Graves, Jennifer A.; Waters, Paul D.

    2013-01-01

    X chromosome inactivation in eutherian mammals has been thought to be tightly controlled, as expected from a mechanism that compensates for the different dosage of X-borne genes in XX females and XY males. However, many X genes escape inactivation in humans, inactivation of the X in marsupials is partial, and the unrelated sex chromosomes of monotreme mammals have incomplete and gene-specific inactivation of X-linked genes. The bird ZW sex chromosome system represents a third independently evolved amniote sex chromosome system with dosage compensation, albeit partial and gene-specific, via an unknown mechanism (i.e. upregulation of the single Z in females, down regulation of one or both Zs in males, or a combination). We used RNA-fluorescent in situ hybridization (RNA-FISH) to demonstrate, on individual fibroblast cells, inactivation of 11 genes on the chicken Z and 28 genes on the X chromosomes of platypus. Each gene displayed a reproducible frequency of 1Z/1X-active and 2Z/2X-active cells in the homogametic sex. Our results indicate that the probability of inactivation is controlled on a gene-by-gene basis (or small domains) on the chicken Z and platypus X chromosomes. This regulatory mechanism must have been exapted independently to the non-homologous sex chromosomes in birds and mammals in response to an over-expressed Z or X in the homogametic sex, highlighting the universal importance that (at least partial) silencing plays in the evolution on amniote dosage compensation and, therefore, the differentiation of sex chromosomes. PMID:23874231

  5. Genetic mapping of sex determination in a wild strawberry, Fragaria virginiana, reveals earliest form of sex chromosome.

    PubMed

    Spigler, R B; Lewers, K S; Main, D S; Ashman, T-L

    2008-12-01

    The evolution of separate sexes (dioecy) from hermaphroditism is one of the major evolutionary transitions in plants, and this transition can be accompanied by the development of sex chromosomes. Studies in species with intermediate sexual systems are providing unprecedented insight into the initial stages of sex chromosome evolution. Here, we describe the genetic mechanism of sex determination in the octoploid, subdioecious wild strawberry, Fragaria virginiana Mill., based on a whole-genome simple sequence repeat (SSR)-based genetic map and on mapping sex determination as two qualitative traits, male and female function. The resultant total map length is 2373 cM and includes 212 markers on 42 linkage groups (mean marker spacing: 14 cM). We estimated that approximately 70 and 90% of the total F. virginiana genetic map resides within 10 and 20 cM of a marker on this map, respectively. Both sex expression traits mapped to the same linkage group, separated by approximately 6 cM, along with two SSR markers. Together, our phenotypic and genetic mapping results support a model of gender determination in subdioecious F. virginiana with at least two linked loci (or gene regions) with major effects. Reconstruction of parental genotypes at these loci reveals that both female and hermaphrodite heterogamety exist in this species. Evidence of recombination between the sex-determining loci, an important hallmark of incipient sex chromosomes, suggest that F. virginiana is an example of the youngest sex chromosome in plants and thus a novel model system for the study of sex chromosome evolution.

  6. The influence of sex chromosome aneuploidy on brain asymmetry.

    PubMed

    Rezaie, Roozbeh; Daly, Eileen M; Cutter, William J; Murphy, Declan G M; Robertson, Dene M W; DeLisi, Lynn E; Mackay, Clare E; Barrick, Thomas R; Crow, Timothy J; Roberts, Neil

    2009-01-05

    The cognitive deficits present in individuals with sex chromosome aneuploidies suggest that hemispheric differentiation of function is determined by an X-Y homologous gene [Crow (1993); Lancet 342:594-598]. In particular, females with Turner's syndrome (TS) who have only one X-chromosome exhibit deficits of spatial ability whereas males with Klinefelter's syndrome (KS) who possess a supernumerary X-chromosome are delayed in acquiring words. Since spatial and verbal abilities are generally associated with right and left hemispheric function, such deficits may relate to anomalies of cerebral asymmetry. We therefore applied a novel image analysis technique to investigate the relationship between sex chromosome dosage and structural brain asymmetry. Specifically, we tested Crow's prediction that the magnitude of the brain torque (i.e., a combination of rightward frontal and leftward occipital asymmetry) would, as a function of sex chromosome dosage, be respectively decreased in TS women and increased in KS men, relative to genotypically normal controls. We found that brain torque was not significantly different in TS women and KS men, in comparison to controls. However, TS women exhibited significantly increased leftward brain asymmetry, restricted to the posterior of the brain and focused on the superior temporal and parietal-occipital association cortex, while KS men showed a trend for decreased brain asymmetry throughout the frontal lobes. The findings suggest that the number of sex chromosomes influences the development of brain asymmetry not simply to modify the torque but in a complex pattern along the antero-posterior axis. 2008 Wiley-Liss, Inc.

  7. Outcome of chromosomally abnormal pregnancies in Lebanon: obstetricians' roles during and after prenatal diagnosis.

    PubMed

    Eldahdah, Lama T; Ormond, Kelly E; Nassar, Anwar H; Khalil, Tayma; Zahed, Laila F

    2007-06-01

    To better understand obstetrician experiences in Lebanon when disclosing abnormal amniocentesis results. Structured interviews with 38 obstetricians identified as caregivers from the American University of Beirut Medical Center Cytogenetics Laboratory database of patients with abnormal amniocentesis results between 1999 and 2005. Obstetricians were primarily male, Christian, and with an average of 14 years of experience. They reported doing most pre-amniocentesis counseling, including discussion of risk for common autosomal aneuplodies (95%), and procedure-related risk (95%). Obstetricians reported that 80% of patients at risk for aneuploidy underwent amniocentesis. The study population reported on 143 abnormal test results (124 autosomal abnormalities). When disclosing results, obstetricians reportedly discussed primarily physical and cognitive features of the diagnosis. They varied in levels of directiveness and comfort in providing information. Our records showed that 59% of pregnancies with sex chromosome abnormalities were terminated compared to 90% of those with autosomal aneuploidies; various reasons were proposed by obstetricians. This study is among the few to assess prenatal diagnosis practices in the Middle East, with a focus on the role of the obstetrician. Given the influence of culture and social norms on prenatal decision-making, it remains important to understand the various impacts on clinical practice in many nations. (c) 2007 John Wiley & Sons, Ltd.

  8. Cytogenetic studies of 1232 patients with different sexual development abnormalities from the Sultanate of Oman.

    PubMed

    Al-Alawi, Intisar; Goud, Tadakal Mallana; Al-Harasi, Salma; Rajab, Anna

    2016-02-01

    The aim of this study was to evaluate cytogenetic findings in Omani patients who had been referred for suspicion of sex chromosome abnormalities that resulted in different clinical disorders. Furthermore, it sought to examine the frequency of chromosomal anomalies in these patients and to compare the obtained results with those reported elsewhere. Cytogenetic analysis was performed on 1232 cases with variant characteristics of sexual development disorders who had been referred to the cytogenetic department, National Genetic Centre, Ministry of Health, from different hospitals in the Sultanate of Oman between 1999 and 2014. The karyotype results demonstrated chromosomal anomalies in 24.2% of the cases, where 67.5% of abnormalities were identified in referral females, whereas only 32.6% were in referral males. Of all sex chromosome anomalies detected, Turner syndrome was the most frequent (38.2%) followed by Klinefelter syndrome (24.9%) and XY phenotypic females (16%). XXX syndrome and XX phenotypic males represented 6.8% and 3.8% of all sex chromosome anomalies, respectively. Cytogenetic analysis of patients referred with various clinical suspicions of chromosomal abnormalities revealed a high rate of chromosomal anomalies. This is the first broad cytogenetic study reporting combined frequencies of sex chromosome anomalies in sex development disorders in Oman. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  9. Increased number of sex chromosomes affects height in a nonlinear fashion: a study of 305 patients with sex chromosome aneuploidy.

    PubMed

    Ottesen, Anne Marie; Aksglaede, Lise; Garn, Inger; Tartaglia, Nicole; Tassone, Flora; Gravholt, Claus H; Bojesen, Anders; Sørensen, Kaspar; Jørgensen, Niels; Rajpert-De Meyts, Ewa; Gerdes, Tommy; Lind, Anne-Marie; Kjaergaard, Susanne; Juul, Anders

    2010-05-01

    Tall stature and eunuchoid body proportions characterize patients with 47,XXY Klinefelter syndrome, whereas patients with 45,X Turner syndrome are characterized by impaired growth. Growth is relatively well characterized in these two syndromes, while few studies describe the growth of patients with higher grade sex chromosome aneuploidies. It has been proposed that tall stature in sex chromosome aneuploidy is related to an overexpression of SHOX, although the copy number of SHOX has not been evaluated in previous studies. Our aims were therefore: (1) to assess stature in 305 patients with sex chromosome aneuploidy and (2) to determine the number of SHOX copies in a subgroup of these patients (n = 255) these patients and 74 healthy controls. Median height standard deviation scores in 46,XX males (n = 6) were -1.2 (-2.8 to 0.3), +0.9 (-2.2 to +4.6) in 47,XXY (n = 129), +1.3 (-1.8 to +4.9) in 47,XYY (n = 44), +1.1 (-1.9 to +3.4) in 48,XXYY (n = 45), +1.8 (-2.0 to +3.2) in 48,XXXY (n = 9), and -1.8 (-4.2 to -0.1) in 49,XXXXY (n = 10). Median height standard deviation scores in patients with 45,X (n = 6) were -2.6 (-4.1 to -1.6), +0.7 (-0.9 to +3.2) in 47,XXX (n = 40), -0.6 (-1.9 to +2.1) in 48,XXXX (n = 13), and -1.0 (-3.5 to -0.8) in 49,XXXXX (n = 3). Height increased with an increasing number of extra X or Y chromosomes, except in males with five, and in females with four or five sex chromosomes, consistent with a nonlinear effect on height. Copyright 2010 Wiley-Liss, Inc.

  10. Increased Number of Sex Chromosomes Affects Height in a Nonlinear Fashion: A Study of 305 Patients With Sex Chromosome Aneuploidy

    PubMed Central

    Ottesen, Anne Marie; Aksglaede, Lise; Garn, Inger; Tartaglia, Nicole; Tassone, Flora; Gravholt, Claus H.; Bojesen, Anders; Sørensen, Kaspar; Jørgensen, Niels; Meyts, Ewa Rajpert-De; Gerdes, Tommy; Lind, Anne-Marie; Kjaergaard, Susanne; Juul, Anders

    2017-01-01

    Tall stature and eunuchoid body proportions characterize patients with 47,XXY Klinefelter syndrome, whereas patients with 45,X Turner syndrome are characterized by impaired growth. Growth is relatively well characterized in these two syndromes, while few studies describe the growth of patients with higher grade sex chromosome aneuploidies. It has been proposed that tall stature in sex chromosome aneuploidy is related to an overexpression of SHOX, although the copy number of SHOX has not been evaluated in previous studies. Our aims were therefore: (1) to assess stature in 305 patients with sex chromosome aneuploidy and (2) to determine the number of SHOX copies in a subgroup of these patients (n =255) these patients and 74 healthy controls. Median height standard deviation scores in 46,XX males (n =6) were −1.2 (−2.8 to 0.3), +0.9 (−2.2 to + 4.6) in 47,XXY (n =129), +1.3 (−1.8 to +4.9) in 47,XYY (n =44), +1.1 (−1.9 to +3.4) in 48,XXYY (n =45), +1.8 (−2.0 to +3.2) in 48,XXXY (n =9), and −1.8 (−4.2 to −0.1) in 49,XXXXY (n =10). Median height standard deviation scores in patients with 45,X (n =6) were −2.6 (−4.1 to −1.6), +0.7 (−0.9 to +3.2) in 47,XXX (n =−40), −0.6 (−1.9 to +2.1) in 48,XXXX (n =13), and −1.0 (−3.5 to −0.8) in 49,XXXXX (n =3). Height increased with an increasing number of extra X or Y chromosomes, except in males with five, and in females with four or five sex chromosomes, consistent with a nonlinear effect on height. PMID:20425825

  11. Chromosome banding in Amphibia. XXVIII. Homomorphic XY sex chromosomes and a derived Y-autosome translocation in Eleutherodactylus riveroi (Anura, Leptodactylidae).

    PubMed

    Schmid, M; Feichtinger, W; Steinlein, C; Visbal García, R; Fernández Badillo, A

    2003-01-01

    Extensive cytogenetic analyses on a population of the leptodactylid frog Eleutherodactylus riveroi in northern Venezuela revealed the existence of multiple XXAA male/XYAA female/XAA(Y) female sex chromosomes. The XAA(Y) karyotype originated by a centric (Robertsonian) fusion between the original, free Y chromosome and an autosome. 46.2% of the male individuals in this population are carriers of this Y-autosome fusion. In male meiosis the XAA(Y) sex chromosomes pair in the expected trivalent configuration. In the same population 53.8% of the male animals still possess the original, free XY sex chromosomes. E. riveroi is only the second vertebrate species discovered in which a derived Y-autosome fusion coexists with the ancestral free XY sex chromosomes. The free XY sex chromosomes, as well as the multiple XA(Y) sex chromosomes are still in a very primitive (homomorphic) stage of differentiation. With no banding technique applied it is possible to distinguish the Y from the X. Various banding techniques and in situ hybridizations have been carried out to characterize the karyotypes. DNA flow cytometric measurements show that the genome size of E. riveroi resembles that of other Eleutherodactylus species. The cytogenetic data obtained in E. riveroi are compared with those of the sole other vertebrate known to possess the extremely rare, multiple XXAA male/XYAA female/XAA(Y) female sex chromosomes. Surprisingly enough, this vertebrate again is a frog belonging to the genus Eleutherodactylus [E. ((maussi) biporcatus] which lives exactly in the same habitat in northern Venezuela as does E. riveroi. Copyright 2003 S. Karger AG, Basel

  12. Microarray-Based Comparative Genomic Hybridization Using Sex-Matched Reference DNA Provides Greater Sensitivity for Detection of Sex Chromosome Imbalances than Array-Comparative Genomic Hybridization with Sex-Mismatched Reference DNA

    PubMed Central

    Yatsenko, Svetlana A.; Shaw, Chad A.; Ou, Zhishuo; Pursley, Amber N.; Patel, Ankita; Bi, Weimin; Cheung, Sau Wai; Lupski, James R.; Chinault, A. Craig; Beaudet, Arthur L.

    2009-01-01

    In array-comparative genomic hybridization (array-CGH) experiments, the measurement of DNA copy number of sex chromosomal regions depends on the sex of the patient and the reference DNAs used. We evaluated the ability of bacterial artificial chromosomes/P1-derived artificial and oligonucleotide array-CGH analyses to detect constitutional sex chromosome imbalances using sex-mismatched reference DNAs. Twenty-two samples with imbalances involving either the X or Y chromosome, including deletions, duplications, triplications, derivative or isodicentric chromosomes, and aneuploidy, were analyzed. Although concordant results were obtained for approximately one-half of the samples when using sex-mismatched and sex-matched reference DNAs, array-CGH analyses with sex-mismatched reference DNAs did not detect genomic imbalances that were detected using sex-matched reference DNAs in 6 of 22 patients. Small duplications and deletions of the X chromosome were most difficult to detect in female and male patients, respectively, when sex-mismatched reference DNAs were used. Sex-matched reference DNAs in array-CGH analyses provides optimal sensitivity and enables an automated statistical evaluation for the detection of sex chromosome imbalances when compared with an experimental design using sex-mismatched reference DNAs. Using sex-mismatched reference DNAs in array-CGH analyses may generate false-negative, false-positive, and ambiguous results for sex chromosome-specific probes, thus masking potential pathogenic genomic imbalances. Therefore, to optimize both detection of clinically relevant sex chromosome imbalances and ensure proper experimental performance, we suggest that alternative internal controls be developed and used instead of using sex-mismatched reference DNAs. PMID:19324990

  13. Differentiation of sex chromosomes and karyotypic evolution in the eye-lid geckos (Squamata: Gekkota: Eublepharidae), a group with different modes of sex determination.

    PubMed

    Pokorná, Martina; Rábová, Marie; Ráb, Petr; Ferguson-Smith, Malcolm A; Rens, Willem; Kratochvíl, Lukáš

    2010-11-01

    The eyelid geckos (family Eublepharidae) include both species with temperature-dependent sex determination and species where genotypic sex determination (GSD) was suggested based on the observation of equal sex ratios at several incubation temperatures. In this study, we present data on karyotypes and chromosomal characteristics in 12 species (Aeluroscalabotes felinus, Coleonyx brevis, Coleonyx elegans, Coleonyx variegatus, Eublepharis angramainyu, Eublepharis macularius, Goniurosaurus araneus, Goniurosaurus lichtenfelderi, Goniurosaurus luii, Goniurosaurus splendens, Hemitheconyx caudicinctus, and Holodactylus africanus) covering all genera of the family, and search for the presence of heteromorphic sex chromosomes. Phylogenetic mapping of chromosomal changes showed a long evolutionary stasis of karyotypes with all acrocentric chromosomes followed by numerous chromosomal rearrangements in the ancestors of two lineages. We have found heteromorphic sex chromosomes in only one species, which suggests that sex chromosomes in most GSD species of the eyelid geckos are not morphologically differentiated. The sexual difference in karyotype was detected only in C. elegans which has a multiple sex chromosome system (X(1)X(2)Y). The metacentric Y chromosome evolved most likely via centric fusion of two acrocentric chromosomes involving loss of interstitial telomeric sequences. We conclude that the eyelid geckos exhibit diversity in sex determination ranging from the absence of any sexual differences to heteromorphic sex chromosomes, which makes them an interesting system for exploring the evolutionary origin of sexually dimorphic genomes.

  14. Chromosome-wide mechanisms to decouple gene expression from gene dose during sex-chromosome evolution

    PubMed Central

    Wheeler, Bayly S; Anderson, Erika; Frøkjær-Jensen, Christian; Bian, Qian; Jorgensen, Erik; Meyer, Barbara J

    2016-01-01

    Changes in chromosome number impair fitness by disrupting the balance of gene expression. Here we analyze mechanisms to compensate for changes in gene dose that accompanied the evolution of sex chromosomes from autosomes. Using single-copy transgenes integrated throughout the Caenorhabditis elegans genome, we show that expression of all X-linked transgenes is balanced between XX hermaphrodites and XO males. However, proximity of a dosage compensation complex (DCC) binding site (rex site) is neither necessary to repress X-linked transgenes nor sufficient to repress transgenes on autosomes. Thus, X is broadly permissive for dosage compensation, and the DCC acts via a chromosome-wide mechanism to balance transcription between sexes. In contrast, no analogous X-chromosome-wide mechanism balances transcription between X and autosomes: expression of compensated hermaphrodite X-linked transgenes is half that of autosomal transgenes. Furthermore, our results argue against an X-chromosome dosage compensation model contingent upon rex-directed positioning of X relative to the nuclear periphery. DOI: http://dx.doi.org/10.7554/eLife.17365.001 PMID:27572259

  15. CYTOGENETIC ABNORMALITY IN MAN—Wider Implications of Theories of Sex Chromatin Origin

    PubMed Central

    Miles, Charles P.

    1962-01-01

    Female nuclei may be identified by means of sex chromatin. In general the number of sex chromatin bodies is one less than the number of X chromosomes. An exception to this rule is a case of sex chromatin-positive XO Turner's syndrome. This case suggests the possibility of sex chromatin-positive XY males, and it may be evidence for chromosomal differentiation. PMID:14473851

  16. Repetitive DNA and meiotic behavior of sex chromosomes in Gymnotus pantanal (Gymnotiformes, Gymnotidae).

    PubMed

    da Silva, M; Matoso, D A; Vicari, M R; de Almeida, M C; Margarido, V P; Artoni, R F

    2011-01-01

    Neotropical fishes have a low rate of chromosome differentiation between sexes. The present study characterizes the first meiotic analysis of sex chromosomes in the order Gymnotiformes. Gymnotus pantanal - females had 40 chromosomes (14m/sm, 26st/a) and males had 39 chromosomes (15m/sm, 24st/a), with a fundamental number of 54 - showed a multiple sexual determination chromosome system of the type X(1)X(1)X(2)X(2)/X(1)X(2)Y. The heterochromatin is restricted to centromeres of all chromosomes of the karyotype. The meiotic behavior of sex chromosomes involved in this system in males is from a trivalent totally pared in the pachytene stage, with a high degree of similarity. The cells of metaphase II exhibit 19 and 20 chromosomes, normal disjunction of sex chromosomes and the formation of balanced gametes with 18 + Y and 18 + X(1)X(2) chromosomes, respectively. The small amount of heterochromatin and repetitive DNA involved in this system and the high degree of chromosome similarity indicated a recent origin of the X(1)X(1)X(2)X(2)/X(1)X(2)Y system in G. pantanal and suggests the existence of a simple ancestral system with morphologically undifferentiated chromosomes. Copyright © 2011 S. Karger AG, Basel.

  17. Increased high-density lipoprotein cholesterol levels in mice with XX versus XY sex chromosomes.

    PubMed

    Link, Jenny C; Chen, Xuqi; Prien, Christopher; Borja, Mark S; Hammerson, Bradley; Oda, Michael N; Arnold, Arthur P; Reue, Karen

    2015-08-01

    The molecular mechanisms underlying sex differences in dyslipidemia are poorly understood. We aimed to distinguish genetic and hormonal regulators of sex differences in plasma lipid levels. We assessed the role of gonadal hormones and sex chromosome complement on lipid levels using the four core genotypes mouse model (XX females, XX males, XY females, and XY males). In gonadally intact mice fed a chow diet, lipid levels were influenced by both male-female gonadal sex and XX-XY chromosome complement. Gonadectomy of adult mice revealed that the male-female differences are dependent on acute effects of gonadal hormones. In both intact and gonadectomized animals, XX mice had higher HDL cholesterol (HDL-C) levels than XY mice, regardless of male-female sex. Feeding a cholesterol-enriched diet produced distinct patterns of sex differences in lipid levels compared with a chow diet, revealing the interaction of gonadal and chromosomal sex with diet. Notably, under all dietary and gonadal conditions, HDL-C levels were higher in mice with 2 X chromosomes compared with mice with an X and Y chromosome. By generating mice with XX, XY, and XXY chromosome complements, we determined that the presence of 2 X chromosomes, and not the absence of the Y chromosome, influences HDL-C concentration. We demonstrate that having 2 X chromosomes versus an X and Y chromosome complement drives sex differences in HDL-C. It is conceivable that increased expression of genes escaping X-inactivation in XX mice regulates downstream processes to establish sexual dimorphism in plasma lipid levels. © 2015 American Heart Association, Inc.

  18. Repetitive sequences and epigenetic modification: inseparable partners play important roles in the evolution of plant sex chromosomes.

    PubMed

    Li, Shu-Fen; Zhang, Guo-Jun; Yuan, Jin-Hong; Deng, Chuan-Liang; Gao, Wu-Jun

    2016-05-01

    The present review discusses the roles of repetitive sequences played in plant sex chromosome evolution, and highlights epigenetic modification as potential mechanism of repetitive sequences involved in sex chromosome evolution. Sex determination in plants is mostly based on sex chromosomes. Classic theory proposes that sex chromosomes evolve from a specific pair of autosomes with emergence of a sex-determining gene(s). Subsequently, the newly formed sex chromosomes stop recombination in a small region around the sex-determining locus, and over time, the non-recombining region expands to almost all parts of the sex chromosomes. Accumulation of repetitive sequences, mostly transposable elements and tandem repeats, is a conspicuous feature of the non-recombining region of the Y chromosome, even in primitive one. Repetitive sequences may play multiple roles in sex chromosome evolution, such as triggering heterochromatization and causing recombination suppression, leading to structural and morphological differentiation of sex chromosomes, and promoting Y chromosome degeneration and X chromosome dosage compensation. In this article, we review the current status of this field, and based on preliminary evidence, we posit that repetitive sequences are involved in sex chromosome evolution probably via epigenetic modification, such as DNA and histone methylation, with small interfering RNAs as the mediator.

  19. Fetal sex chromosome testing by maternal plasma DNA sequencing: clinical laboratory experience and biology.

    PubMed

    Bianchi, Diana W; Parsa, Saba; Bhatt, Sucheta; Halks-Miller, Meredith; Kurtzman, Kathryn; Sehnert, Amy J; Swanson, Amy

    2015-02-01

    To describe the clinical experience with noninvasive prenatal testing for fetal sex chromosomes using sequencing of maternal plasma cell-free DNA in a commercial laboratory. A noninvasive prenatal testing laboratory data set was examined for samples in which fetal sex chromosomes were reported. Available clinical outcomes were reviewed. Of 18,161 samples with sex chromosome results, no sex chromosome aneuploidy was detected in 98.9% and the fetal sex was reported as XY (9,236) or XX (8,721). In 4 of 32 cases in which the fetal sex was reportedly discordant between noninvasive prenatal testing and karyotype or ultrasonogram, a potential biological reason for the discordance exists, including two cases of documented co-twin demise, one case of a maternal kidney transplant from a male donor, and one case of fetal ambiguous genitalia. In the remaining 204 samples (1.1%), one of four sex chromosome aneuploidies (monosomy X, XXX, XXY, or XYY) was detected. The frequency of false positive results for sex chromosome aneuploidies is a minimum of 0.26% and a maximum of 1.05%. All but one of the discordant sex chromosome aneuploidy results involved the X chromosome. In two putative false-positive XXX cases, maternal XXX was confirmed by karyotype. For the false-positive cases, mean maternal age was significantly higher in monosomy X (P<.001) and lower in XXX (P=.008). Noninvasive prenatal testing results for sex chromosome aneuploidy can be confounded by maternal or fetal biological phenomena. When a discordant noninvasive prenatal testing result is encountered, resolution requires additional maternal history, detailed fetal ultrasonography, and determination of fetal and possibly maternal karyotypes.

  20. Chromosome banding in Amphibia. XXVI. Coexistence of homomorphic XY sex chromosomes and a derived Y-autosome translocation in Eleutherodactylus maussi (Anura, Leptodactylidae).

    PubMed

    Schmid, M; Feichtinger, W; Steinlein, C; Haaf, T; Schartl, M; Visbal García, R; Manzanilla Pupo, J; Fernández Badillo, A

    2002-01-01

    A 15-year cytogenetic survey on one population of the leaf litter frog Eleutherodactylus maussi in northern Venezuela confirmed the existence of multiple XXAA male symbol /XAA(Y) female symbol sex chromosomes which originated by a centric (Robertsonian) fusion between the original Y chromosome and an autosome. 95% of the male individuals in this population are carriers of this Y-autosome fusion. In male meiosis the XAA(Y) sex chromosomes pair in the expected trivalent configuration. In the same population, 5% of the male animals still possess the original, free XY sex chromosomes. In a second population of E. maussi analyzed, all male specimens are characterized by these ancestral XY chromosomes which form normal bivalents in meiosis. E. maussi apparently represents the first vertebrate species discovered in which a derived Y-autosome fusion still coexists with the ancestral free XY sex chromosomes. The free XY sex chromosomes, as well as the multiple XA(Y) sex chromosomes are still in a very primitive (homomorphic) stage of differentiation. With no banding technique applied it is possible to distinguish the Y from the X. DNA flow cytometric measurements show that the genome of E. maussi is among the largest in the anuran family Leptodactylidae. The present study also supplies further data on differential chromosome banding and fluorescence in situ hybridization experiments in this amphibian species. Copyright 2003 S. Karger AG, Basel

  1. 46,XX T testicular disorder of sex development. Case report.

    PubMed

    Pastor Guzmán, José María; Pastor Navarro, Hector; Quintanilla Mata, María Luisa; Carrión López, Pedro; Martínez Ruíz, Jesús; Martínez Sanchiz, Carlos; Perán Teruel, Miguel; Virseda Rodríguez, Julio Antonio

    2011-06-01

    We present a case of X-Y translocation with male phenotype (46,XX testicular disorder of sex development) and review the literature. Disorders of sex development with mismatch of genetic, gonadal and phenotypic sex are quite rare, and some are due to genetic or chromosomal abnormalities. The karyotype was investigated by a cytogenetic study of peripheral blood (phytohemagglutinin-timulated lymphocyte culture over 72 hours). G-banding analysis of 25 metaphases showed a 46,XX chromosome constitution (46 chromosomes with XX sexual composition). Fluorescence in situ hybridization (FISH) analysis with probes for X centromeres and the sex-determining region of the Y chromosome (SRY) (testis-determining factor gene) showed two X chromosomes. The analysis also showed the SRY signal in the telomeric region of the short arm of one of the chromosomes. In recent years, a number of other genes involved in disorders of sex development in animals and humans have also been identified. Genetic defects in the peptide hormone receptors, members of the steroid receptor superfamily, and other transcription factors, as well as any of a series of enzymes and cofactors involved in steroid biosynthesis can cause abnormal determination and differentiation. Although chromosomal abnormalities are rarely present in patients with apparently normal external genitalia, they should be considered in urology consultations by adolescents and adults, particularly in the investigation of gynecomastia or infertility.

  2. Total alpha-fetoprotein and Lens culinaris agglutinin-reactive alpha-fetoprotein in fetal chromosomal abnormalities.

    PubMed

    Yamamoto, R; Azuma, M; Kishida, T; Yamada, H; Satomura, S; Fujimoto, S

    2001-11-01

    To examine the differences in multiples of the median (MoM) of total alpha-fetoprotein, and the proportion of Lens culinaris agglutinin reactive alpha-fetoprotein (% alpha-fetoprotein-L2 + L3) in the maternal serum and amniotic fluid of pregnant women whose fetuses were diagnosed with autosomal or sex chromosomal abnormalities. Prospective consecutive series. University hospital. Maternal sera and amniotic fluids from 46 pregnant women with trisomy 21 fetuses, 10 pregnant women with trisomy 18 fetuses, one pregnant woman with a trisomy 13 fetus, six pregnant women with fetal sex chromosomal abnormalities, and 100 pregnant women for whom the fetal karyotype was diagnosed as normal following a genetic amniocentesis. The proportion of alpha-fetoprotein-L2 + L3 in maternal serum for trisomy 21 (40.3%. P < 0.0001) and trisomy 18 (39.8%, P < 0.05) showed a significantly higher value compared with normal (32.6%). The proportion of alpha-fetoprotein-L2 + L3 in amniotic fluid was significantly higher (P < 0.0001) for trisomy 21 (46.6%) than for a normal karyotype (41.5%). Only for the trisomy 21 group was there a strong correlation in the % alpha-fetoprotein-L2 + L3 between maternal serum and amniotic fluid (r = 0.840, P < 0.0001). For all groups, there was no correlation between alpha-fetoprotein MoM and % alpha-fetoprotein-L2 + L3 in maternal serum and amniotic fluid. The proportion of alpha-fetoprotein-L2 + L3 in maternal serum is an appropriate choice for a trisomy 21 biochemical marker, and it is possible that combining alpha-fetoprotein-L2 + L3 analysis with assays of alpha-fetoprotein in maternal serum could further improve the sensitivity and specificity of multiple marker screening.

  3. Effects of sex chromosome aneuploidies on brain development: evidence from neuroimaging studies.

    PubMed

    Lenroot, Rhoshel K; Lee, Nancy Raitano; Giedd, Jay N

    2009-01-01

    Variation in the number of sex chromosomes is a relatively common genetic condition, affecting as many as 1/400 individuals. The sex chromosome aneuploidies (SCAs) are associated with characteristic behavioral and cognitive phenotypes, although the degree to which specific individuals are affected can fall within a wide range. Understanding the effects of different dosages of sex chromosome genes on brain development may help to understand the basis for functional differences in affected individuals. It may also be informative regarding how sex chromosomes contribute to typical sexual differentiation. Studies of 47,XXY males make up the bulk of the current literature of neuroimaging studies in individuals with supernumerary sex chromosomes, with a few small studies or case reports of the other SCAs. Findings in 47,XXY males typically include decreased gray and white matter volumes, with most pronounced effects in the frontal and temporal lobes. Functional studies have shown evidence of decreased lateralization. Although the hypogonadism typically found in 47,XXY males may contribute to the decreased brain volume, the observation that 47,XXX females also show decreased brain volume in the presence of normal pubertal maturation suggests a possible direct dosage effect of X chromosome genes. Additional X chromosomes, such as in 49,XXXXY males, are associated with more markedly decreased brain volume and increased incidence of white matter hyperintensities. The limited data regarding effects of having two Y chromosomes (47,XYY) do not find significant differences in brain volume, although there are some reports of increased head size.

  4. Effects of Sex Chromosome Aneuploidies on Brain Development: Evidence From Neuroimaging Studies

    PubMed Central

    Lenroot, Rhoshel K.; Lee, Nancy Raitano; Giedd, Jay N.

    2010-01-01

    Variation in the number of sex chromosomes is a relatively common genetic condition, affecting as many as 1/400 individuals. The sex chromosome aneuploidies (SCAs) are associated with characteristic behavioral and cognitive phenotypes, although the degree to which specific individuals are affected can fall within a wide range. Understanding the effects of different dosages of sex chromosome genes on brain development may help to understand the basis for functional differences in affected individuals. It may also be informative regarding how sex chromosomes contribute to typical sexual differentiation. Studies of 47,XXY males make up the bulk of the current literature of neuroimaging studies in individuals with supernumerary sex chromosomes, with a few small studies or case reports of the other SCAs. Findings in 47,XXY males typically include decreased gray and white matter volumes, with most pronounced effects in the frontal and temporal lobes. Functional studies have shown evidence of decreased lateralization. Although the hypogonadism typically found in 47,XXY males may contribute to the decreased brain volume, the observation that 47,XXX females also show decreased brain volume in the presence of normal pubertal maturation suggests a possible direct dosage effect of X chromosome genes. Additional X chromosomes, such as in 49,XXXXY males, are associated with more markedly decreased brain volume and increased incidence of white matter hyperintensities. The limited data regarding effects of having two Y chromosomes (47,XYY) do not find significant differences in brain volume, although there are some reports of increased head size. PMID:20014372

  5. Y fuse? Sex chromosome fusions in fishes and reptiles.

    PubMed

    Pennell, Matthew W; Kirkpatrick, Mark; Otto, Sarah P; Vamosi, Jana C; Peichel, Catherine L; Valenzuela, Nicole; Kitano, Jun

    2015-05-01

    Chromosomal fusion plays a recurring role in the evolution of adaptations and reproductive isolation among species, yet little is known of the evolutionary drivers of chromosomal fusions. Because sex chromosomes (X and Y in male heterogametic systems, Z and W in female heterogametic systems) differ in their selective, mutational, and demographic environments, those differences provide a unique opportunity to dissect the evolutionary forces that drive chromosomal fusions. We estimate the rate at which fusions between sex chromosomes and autosomes become established across the phylogenies of both fishes and squamate reptiles. Both the incidence among extant species and the establishment rate of Y-autosome fusions is much higher than for X-autosome, Z-autosome, or W-autosome fusions. Using population genetic models, we show that this pattern cannot be reconciled with many standard explanations for the spread of fusions. In particular, direct selection acting on fusions or sexually antagonistic selection cannot, on their own, account for the predominance of Y-autosome fusions. The most plausible explanation for the observed data seems to be (a) that fusions are slightly deleterious, and (b) that the mutation rate is male-biased or the reproductive sex ratio is female-biased. We identify other combinations of evolutionary forces that might in principle account for the data although they appear less likely. Our results shed light on the processes that drive structural changes throughout the genome.

  6. Y Fuse? Sex Chromosome Fusions in Fishes and Reptiles

    PubMed Central

    Vamosi, Jana C.; Peichel, Catherine L.; Valenzuela, Nicole; Kitano, Jun

    2015-01-01

    Chromosomal fusion plays a recurring role in the evolution of adaptations and reproductive isolation among species, yet little is known of the evolutionary drivers of chromosomal fusions. Because sex chromosomes (X and Y in male heterogametic systems, Z and W in female heterogametic systems) differ in their selective, mutational, and demographic environments, those differences provide a unique opportunity to dissect the evolutionary forces that drive chromosomal fusions. We estimate the rate at which fusions between sex chromosomes and autosomes become established across the phylogenies of both fishes and squamate reptiles. Both the incidence among extant species and the establishment rate of Y-autosome fusions is much higher than for X-autosome, Z-autosome, or W-autosome fusions. Using population genetic models, we show that this pattern cannot be reconciled with many standard explanations for the spread of fusions. In particular, direct selection acting on fusions or sexually antagonistic selection cannot, on their own, account for the predominance of Y-autosome fusions. The most plausible explanation for the observed data seems to be (a) that fusions are slightly deleterious, and (b) that the mutation rate is male-biased or the reproductive sex ratio is female-biased. We identify other combinations of evolutionary forces that might in principle account for the data although they appear less likely. Our results shed light on the processes that drive structural changes throughout the genome. PMID:25993542

  7. X inactivation in a mammal species with three sex chromosomes.

    PubMed

    Veyrunes, Frédéric; Perez, Julie

    2018-06-01

    X inactivation is a fundamental mechanism in eutherian mammals to restore a balance of X-linked gene products between XY males and XX females. However, it has never been extensively studied in a eutherian species with a sex determination system that deviates from the ubiquitous XX/XY. In this study, we explore the X inactivation process in the African pygmy mouse Mus minutoides, that harbours a polygenic sex determination with three sex chromosomes: Y, X, and a feminizing mutant X, named X*; females can thus be XX, XX*, or X*Y, and all males are XY. Using immunofluorescence, we investigated histone modification patterns between the two X chromosome types. We found that the X and X* chromosomes are randomly inactivated in XX* females, while no histone modifications were detected in X*Y females. Furthermore, in M. minutoides, X and X* chromosomes are fused to different autosomes, and we were able to show that the X inactivation never spreads into the autosomal segments. Evaluation of X inactivation by immunofluorescence is an excellent quantitative procedure, but it is only applicable when there is a structural difference between the two chromosomes that allows them to be distinguished.

  8. Genomic imprinting as a probable explanation for variable intrafamilial phenotypic expression of an unusual chromosome 3 abnormality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fryburg, J.S.; Shashi, V.; Kelly, T.E.

    1994-09-01

    We present a 4 generation family in which an abnormal chromosome 3 with dup(3)(q25) segregated from great-grandmother to grandmother to son without phenotypic effect. The son`s 2 daughters have dysmorphic features, mild developmental delays and congenital heart disease. Both girls have the abnormal chr. 3 but are the only family members with the abnormality to have phenotypic effects. An unaffected son of the father has normal chromosomes. FISH with whole chromosome paints for chromosomes 1, 2, 6, 7, 8, 14, 18, and 22 excluded these as the origin of the extra material. Chromosome 3-specific paint revealed a uniform pattern, suggestingmore » that the extra material is from chromosome 3. Comparative genomic hybridization and DNA studies are pending. Possible explanations for the discordance in phenotypes between the 4th generation offspring and the first 3 generations include: an undetected rearrangement in the previous generations that is unbalanced in the two affected individuals; the chromosome abnormality may be a benign variant and unrelated to the phenotype; or, most likely, genomic imprinting. Genomic imprinting is suggested by the observation that a phenotypic effect was only seen after the chromosome was inherited from the father. The mothers in the first two generations appear to have passed the abnormal chr. 3 on without effect. This is an opportunity to delineate a region of the human genome affected by paternal imprinting.« less

  9. Genome structure and primitive sex chromosome revealed in Populus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuskan, Gerald A; Yin, Tongming; Gunter, Lee E

    We constructed a comprehensive genetic map for Populus and ordered 332 Mb of sequence scaffolds along the 19 haploid chromosomes in order to compare chromosomal regions among diverse members of the genus. These efforts lead us to conclude that chromosome XIX in Populus is evolving into a sex chromosome. Consistent segregation distortion in favor of the sub-genera Tacamahaca alleles provided evidence of divergent selection among species, particularly at the proximal end of chromosome XIX. A large microsatellite marker (SSR) cluster was detected in the distorted region even though the genome-wide distribute SSR sites was uniform across the physical map. Themore » differences between the genetic map and physical sequence data suggested recombination suppression was occurring in the distorted region. A gender-determination locus and an overabundance of NBS-LRR genes were also co-located to the distorted region and were put forth as the cause for divergent selection and recombination suppression. This hypothesis was verified by using fine-scale mapping of an integrated scaffold in the vicinity of the gender-determination locus. As such it appears that chromosome XIX in Populus is in the process of evolving from an autosome into a sex chromosome and that NBS-LRR genes may play important role in the chromosomal diversification process in Populus.« less

  10. Neo-sex chromosomes and adaptive potential in tortricid pests

    PubMed Central

    Nguyen, Petr; Sýkorová, Miroslava; Šíchová, Jindra; Kůta, Václav; Dalíková, Martina; Čapková Frydrychová, Radmila; Neven, Lisa G.; Sahara, Ken; Marec, František

    2013-01-01

    Changes in genome architecture often have a significant effect on ecological specialization and speciation. This effect may be further enhanced by involvement of sex chromosomes playing a disproportionate role in reproductive isolation. We have physically mapped the Z chromosome of the major pome fruit pest, the codling moth, Cydia pomonella (Tortricidae), and show that it arose by fusion between an ancestral Z chromosome and an autosome corresponding to chromosome 15 in the Bombyx mori reference genome. We further show that the fusion originated in a common ancestor of the main tortricid subfamilies, Olethreutinae and Tortricinae, comprising almost 700 pest species worldwide. The Z–autosome fusion brought two major genes conferring insecticide resistance and clusters of genes involved in detoxification of plant secondary metabolites under sex-linked inheritance. We suggest that this fusion significantly increased the adaptive potential of tortricid moths and thus contributed to their radiation and subsequent speciation. PMID:23569222

  11. Contrasting patterns of X/Y polymorphism distinguish Carica papaya from other sex chromosome systems.

    PubMed

    Weingartner, Laura A; Moore, Richard C

    2012-12-01

    The sex chromosomes of the tropical crop papaya (Carica papaya) are evolutionarily young and consequently allow for the examination of evolutionary mechanisms that drive early sex chromosome divergence. We conducted a molecular population genetic analysis of four X/Y gene pairs from a collection of 45 wild papaya accessions. These population genetic analyses reveal striking differences in the patterns of polymorphism between the X and Y chromosomes that distinguish them from other sex chromosome systems. In most sex chromosome systems, the Y chromosome displays significantly reduced polymorphism levels, whereas the X chromosome maintains a level of polymorphism that is comparable to autosomal loci. However, the four papaya sex-linked loci that we examined display diversity patterns that are opposite this trend: the papaya X alleles exhibit significantly reduced polymorphism levels, whereas the papaya Y alleles maintain greater than expected levels of diversity. Our analyses suggest that selective sweeps in the regions of the X have contributed to this pattern while also revealing geographically restricted haplogroups on the Y. We discuss the possible role sexual selection and/or genomic conflict have played in shaping the contrasting patterns of polymorphism found for the papaya X and Y chromosomes.

  12. A novel method for sex determination by detecting the number of X chromosomes.

    PubMed

    Nakanishi, Hiroaki; Shojo, Hideki; Ohmori, Takeshi; Hara, Masaaki; Takada, Aya; Adachi, Noboru; Saito, Kazuyuki

    2015-01-01

    A novel method for sex determination, based on the detection of the number of X chromosomes, was established. Current methods, based on the detection of the Y chromosome, can directly identify an unknown sample as male, but female gender is determined indirectly, by not detecting the Y chromosome. Thus, a direct determination of female gender is important because the quality (e.g., fragmentation and amelogenin-Y null allele) of the Y chromosome DNA may lead to a false result. Thus, we developed a novel sex determination method by analyzing the number of X chromosomes using a copy number variation (CNV) detection technique (the comparative Ct method). In this study, we designed a primer set using the amelogenin-X gene without the CNV region as the target to determine the X chromosome copy number, to exclude the influence of the CNV region from the comparative Ct value. The number of X chromosomes was determined statistically using the CopyCaller software with real-time PCR. All DNA samples from participants (20 males, 20 females) were evaluated correctly using this method with 1-ng template DNA. A minimum of 0.2-ng template DNA was found to be necessary for accurate sex determination with this method. When using ultraviolet-irradiated template DNA, as mock forensic samples, the sex of the samples could not be determined by short tandem repeat (STR) analysis but was correctly determined using our method. Thus, we successfully developed a method of sex determination based on the number of X chromosomes. Our novel method will be useful in forensic practice for sex determination.

  13. Sex chromosome diversity in Armenian toad grasshoppers (Orthoptera, Acridoidea, Pamphagidae)

    PubMed Central

    Bugrov, Alexander G.; Jetybayev, Ilyas E.; Karagyan, Gayane H.; Rubtsov, Nicolay B.

    2016-01-01

    Abstract Although previous cytogenetic analysis of Pamphagidae grasshoppers pointed to considerable karyotype uniformity among most of the species in the family, our study of species from Armenia has discovered other, previously unknown karyotypes, differing from the standard for Pamphagidae mainly in having unusual sets of sex chromosomes. Asiotmethis turritus (Fischer von Waldheim, 1833), Paranocaracris rubripes (Fischer von Waldheim, 1846), and Nocaracris cyanipes (Fischer von Waldheim, 1846) were found to have the karyotype 2n♂=16+neo-XY and 2n♀=16+neo-XX, the neo-X chromosome being the result of centromeric fusion of an ancient acrocentric X chromosome and a large acrocentric autosome. The karyotype of Paranothrotes opacus (Brunner von Wattenwyl, 1882) was found to be 2n♂=14+X1X2Y and 2n♀=14+X1X1X2X2., the result of an additional chromosome rearrangement involving translocation of the neo-Y and another large autosome. Furthermore, evolution of the sex chromosomes in these species has involved different variants of heterochromatinization and miniaturization of the neo-Y. The karyotype of Eremopeza festiva (Saussure, 1884), in turn, appeared to have the standard sex determination system described earlier for Pamphagidae grasshoppers, 2n♂=18+X0 and 2n♀=18+XX, but all the chromosomes of this species were found to have small second C-positive arms. Using fluorescent in situ hybridization (FISH) with 18S rDNA and telomeric (TTAGG)n DNA repeats to yield new data on the structural organization of chromosomes in the species studied, we found that for most of them, clusters of repeats homologous to 18S rDNA localize on two, three or four pairs of autosomes and on the X. In Eremopeza festiva, however, FISH with labelled 18S rDNA painted C-positive regions of all autosomes and the X chromosome; clusters of telomeric repeats localized primarily on the ends of the chromosome arms. Overall, we conclude that the different stages of neo-Y degradation revealed in

  14. Neo-sex chromosomes and adaptive potential in tortricid pests

    USDA-ARS?s Scientific Manuscript database

    Changes in genome architecture often have a significant effect on ecological specialization and speciation. This effect may be further enhanced by involvement of sex chromosomes playing a disproportionate role in reproductive isolation. We have physically mapped the Z chromosome of the major pome fr...

  15. Interchromosomal Duplications on the Bactrocera oleae Y Chromosome Imply a Distinct Evolutionary Origin of the Sex Chromosomes Compared to Drosophila

    PubMed Central

    Gabrieli, Paolo; Gomulski, Ludvik M.; Bonomi, Angelica; Siciliano, Paolo; Scolari, Francesca; Franz, Gerald; Jessup, Andrew; Malacrida, Anna R.; Gasperi, Giuliano

    2011-01-01

    Background Diptera have an extraordinary variety of sex determination mechanisms, and Drosophila melanogaster is the paradigm for this group. However, the Drosophila sex determination pathway is only partially conserved and the family Tephritidae affords an interesting example. The tephritid Y chromosome is postulated to be necessary to determine male development. Characterization of Y sequences, apart from elucidating the nature of the male determining factor, is also important to understand the evolutionary history of sex chromosomes within the Tephritidae. We studied the Y sequences from the olive fly, Bactrocera oleae. Its Y chromosome is minute and highly heterochromatic, and displays high heteromorphism with the X chromosome. Methodology/Principal Findings A combined Representational Difference Analysis (RDA) and fluorescence in-situ hybridization (FISH) approach was used to investigate the Y chromosome to derive information on its sequence content. The Y chromosome is strewn with repetitive DNA sequences, the majority of which are also interdispersed in the pericentromeric regions of the autosomes. The Y chromosome appears to have accumulated small and large repetitive interchromosomal duplications. The large interchromosomal duplications harbour an importin-4-like gene fragment. Apart from these importin-4-like sequences, the other Y repetitive sequences are not shared with the X chromosome, suggesting molecular differentiation of these two chromosomes. Moreover, as the identified Y sequences were not detected on the Y chromosomes of closely related tephritids, we can infer divergence in the repetitive nature of their sequence contents. Conclusions/Significance The identification of Y-linked sequences may tell us much about the repetitive nature, the origin and the evolution of Y chromosomes. We hypothesize how these repetitive sequences accumulated and were maintained on the Y chromosome during its evolutionary history. Our data reinforce the idea that the

  16. Sex differences in ischemic stroke sensitivity are influenced by gonadal hormones, not by sex chromosome complement.

    PubMed

    Manwani, Bharti; Bentivegna, Kathryn; Benashski, Sharon E; Venna, Venugopal Reddy; Xu, Yan; Arnold, Arthur P; McCullough, Louise D

    2015-02-01

    Epidemiologic studies have shown sex differences in ischemic stroke. The four core genotype (FCG) mouse model, in which the testes determining gene, Sry, has been moved from Y chromosome to an autosome, was used to dissociate the effects of sex hormones from sex chromosome in ischemic stroke outcome. Middle cerebral artery occlusion (MCAO) in gonad intact FCG mice revealed that gonadal males (XXM and XYM) had significantly higher infarct volumes as compared with gonadal females (XXF and XYF). Serum testosterone levels were equivalent in adult XXM and XYM, as was serum estrogen in XXF and XYF mice. To remove the effects of gonadal hormones, gonadectomized FCG mice were subjected to MCAO. Gonadectomy significantly increased infarct volumes in females, while no change was seen in gonadectomized males, indicating that estrogen loss increases ischemic sensitivity. Estradiol supplementation in gonadectomized FCG mice rescued this phenotype. Interestingly, FCG male mice were less sensitive to effects of hormones. This may be due to enhanced expression of the transgene Sry in brains of FCG male mice. Sex differences in ischemic stroke sensitivity appear to be shaped by organizational and activational effects of sex hormones, rather than sex chromosomal complement.

  17. Alterations and Abnormal Mitosis of Wheat Chromosomes Induced by Wheat-Rye Monosomic Addition Lines

    PubMed Central

    Fu, Shulan; Yang, Manyu; Fei, Yunyan; Tan, Feiquan; Ren, Zhenglong; Yan, Benju; Zhang, Huaiyu; Tang, Zongxiang

    2013-01-01

    Background Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported. Methodology/Principal Findings Octoploid triticale was derived from common wheat T. aestivum L. ‘Mianyang11’×rye S. cereale L. ‘Kustro’ and some progeny were obtained by the controlled backcrossing of triticale with ‘Mianyang11’ followed by self-fertilization. Genomic in situ hybridization (GISH) using rye genomic DNA and fluorescence in situ hybridization (FISH) using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in ‘Mianyang11’. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line. Conclusions/Significance These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat. PMID:23936213

  18. Rapid neo-sex chromosome evolution and incipient speciation in a major forest pest.

    PubMed

    Bracewell, Ryan R; Bentz, Barbara J; Sullivan, Brian T; Good, Jeffrey M

    2017-11-17

    Genome evolution is predicted to be rapid following the establishment of new (neo) sex chromosomes, but it is not known if neo-sex chromosome evolution plays an important role in speciation. Here we combine extensive crossing experiments with population and functional genomic data to examine neo-XY chromosome evolution and incipient speciation in the mountain pine beetle. We find a broad continuum of intrinsic incompatibilities in hybrid males that increase in strength with geographic distance between reproductively isolated populations. This striking progression of reproductive isolation is coupled with extensive gene specialization, natural selection, and elevated genetic differentiation on both sex chromosomes. Closely related populations isolated by hybrid male sterility also show fixation of alternative neo-Y haplotypes that differ in structure and male-specific gene content. Our results suggest that neo-sex chromosome evolution can drive rapid functional divergence between closely related populations irrespective of ecological drivers of divergence.

  19. Periventricular heterotopia and white matter abnormalities in a girl with mosaic ring chromosome 6.

    PubMed

    Nishigaki, Satsuki; Hamazaki, Takashi; Saito, Mika; Yamamoto, Toshiyuki; Seto, Toshiyuki; Shintaku, Haruo

    2015-01-01

    Ring chromosome 6 is a rare chromosome abnormality that arises typically de novo. The phenotypes can be highly variable, ranging from almost normal to severe malformations and neurological defects. We report a case of a 3-year-old girl with mosaic ring chromosome 6 who presented with being small for gestational age and intellectual disability, and whose brain MRI later revealed periventricular heterotopia and white matter abnormalities. Mosaicism was identified in peripheral blood cells examined by standard G-bands, mos 46,XX,r(6)(p25q27)[67]/45,XX,-6[25]/46,XX,dic r(6:6)(p25q27:p25q27)[6]/47,XX,r(6)(p25q27) × 2[2]. Using array-comparative genomic hybridization, we identified terminal deletion of 6q27 (1.5 Mb) and no deletion on 6p. To our knowledge, this is the first report of periventricular heterotopia and white matter abnormalities manifested in a patient with ring chromosome 6. These central nervous system malformations are further discussed in relation to molecular genetics.

  20. Maternal mosaicism is a significant contributor to discordant sex chromosomal aneuploidies associated with noninvasive prenatal testing.

    PubMed

    Wang, Yanlin; Chen, Yan; Tian, Feng; Zhang, Jianguang; Song, Zhuo; Wu, Yi; Han, Xu; Hu, Wenjing; Ma, Duan; Cram, David; Cheng, Weiwei

    2014-01-01

    In the human fetus, sex chromosome aneuploidies (SCAs) are as prevalent as the common autosomal trisomies 21, 18, and 13. Currently, most noninvasive prenatal tests (NIPTs) offer screening only for chromosomes 21, 18, and 13, because the sensitivity and specificity are markedly higher than for the sex chromosomes. Limited studies suggest that the reduced accuracy associated with detecting SCAs is due to confined placental, placental, or true fetal mosaicism. We hypothesized that an altered maternal karyotype may also be an important contributor to discordant SCA NIPT results. We developed a rapid karyotyping method that uses massively parallel sequencing to measure the degree of chromosome mosaicism. The method was validated with DNA models mimicking XXX and XO mosaicism and then applied to maternal white blood cell (WBC) DNA from patients with discordant SCA NIPT results. Sequencing karyotyping detected chromosome X (ChrX) mosaicism as low as 5%, allowing an accurate assignment of the maternal X karyotype. In a prospective NIPT study, we showed that 16 (8.6%) of 181 positive SCAs were due to an abnormal maternal ChrX karyotype that masked the true contribution of the fetal ChrX DNA fraction. The accuracy of NIPT for ChrX and ChrY can be improved substantially by integrating the results of maternal-plasma sequencing with those for maternal-WBC sequencing. The relatively high frequency of maternal mosaicism warrants mandatory WBC testing in both shotgun sequencing- and single-nucleotide polymorphism-based clinical NIPT after the finding of a potential fetal SCA.

  1. Clinical application of chromosomal microarray analysis for the prenatal diagnosis of chromosomal abnormalities and copy number variations in fetuses with congenital heart disease.

    PubMed

    Xia, Yu; Yang, Yongchao; Huang, Shufang; Wu, Yueheng; Li, Ping; Zhuang, Jian

    2018-03-24

    This study aimed to determine chromosomal abnormalities and copy number variations (CNVs) in fetuses with congenital heart disease (CHD) by chromosomal microarray analysis (CMA). One hundred and ten cases with CHD detected by prenatal echocardiography were enrolled in the study; 27 cases were simple CHDs, and 83 were complex CHDs. Chromosomal microarray analysis was performed on the Affymetrix CytoScan HD platform. All annotated CNVs were validated by quantitative PCR. Chromosomal microarray analysis identified 6 cases with chromosomal abnormalities, including 2 cases with trisomy 21, 2 cases with trisomy 18, 1 case with trisomy 13, and 1 unusual case of mosaic trisomy 21. Pathogenic CNVs were detected in 15.5% (17/110) of the fetuses with CHDs, including 13 cases with CHD-associated CNVs. We further identified 10 genes as likely novel CHD candidate genes through gene functional enrichment analysis. We also found that pathogenic CMA results impacted the rate of pregnancy termination. This study shows that CMA is particularly effective for identifying chromosomal abnormalities and CNVs in fetuses with CHDs as well as having an effect on obstetrical outcomes. The elucidation of the genetic basis of CHDs will continue to expand our understanding of the etiology of CHDs. © 2018 John Wiley & Sons, Ltd.

  2. Identification of the sex-determining locus in grass puffer (Takifugu niphobles) provides evidence for sex-chromosome turnover in a subset of Takifugu species

    PubMed Central

    Atsumi, Kazufumi; Kamiya, Takashi; Nozawa, Aoi; Aoki, Yuma; Tasumi, Satoshi; Koyama, Takashi; Nakamura, Osamu; Suzuki, Yuzuru

    2018-01-01

    There is increasing evidence for frequent turnover in sex chromosomes in vertebrates. Yet experimental systems suitable for tracing the detailed process of turnover are rare. In theory, homologous turnover is possible if the new sex-determining locus is established on the existing sex-chromosome. However, there is no empirical evidence for such an event. The genus Takifugu includes fugu (Takifugu rubripes) and its two closely-related species whose sex is most likely determined by a SNP at the Amhr2 locus. In these species, males are heterozygous, with G and C alleles at the SNP site, while females are homozygous for the C allele. To determine if a shift in the sex-determining locus occurred in another member of this genus, we used genetic mapping to characterize the sex-chromosome systems of Takifugu niphobles. We found that the G allele of Amhr2 is absent in T. niphobles. Nevertheless, our initial mapping suggests a linkage between the phenotypic sex and the chromosome 19, which harbors the Amhr2 locus. Subsequent high-resolution analysis using a sex-reversed fish demonstrated that the sex-determining locus maps to the proximal end of chromosome 19, far from the Amhr2 locus. Thus, it is likely that homologous turnover involving these species has occurred. The data also showed that there is a male-specific reduction of recombination around the sex-determining locus. Nevertheless, no evidence for sex-chromosome differentiation was detected: the reduced recombination depended on phenotypic sex rather than genotypic sex; no X- or Y-specific maker was obtained; the YY individual was viable. Furthermore, fine-scale mapping narrowed down the new sex-determining locus to the interval corresponding to approximately 300-kb of sequence in the fugu genome. Thus, T. niphobles is determined to have a young and small sex-determining region that is suitable for studying an early phase of sex-chromosome evolution and the mechanisms underlying turnover of sex chromosome. PMID

  3. Rapid neo-sex chromosome evolution and incipient speciation in a major forest pest

    Treesearch

    Ryan R. Bracewell; Barbara J. Bentz; Brian T. Sullivan; Jeffrey M. Good

    2017-01-01

    Genome evolution is predicted to be rapid following the establishment of new (neo) sex chromosomes, but it is not known if neo-sex chromosome evolution plays an important role in speciation. Here we combine extensive crossing experiments with population and functional genomic data to examine neo-XY chromosome evolution and incipient speciation in the mountain pine...

  4. Psychoeducational Implications of Sex Chromosome Anomalies

    ERIC Educational Resources Information Center

    Wodrich, David L.; Tarbox, Jennifer

    2008-01-01

    Numerous anomalies involving the sex chromosomes (X or Y) have been documented and their impact on development, learning, and behavior studied. This article reviews three of these disorders, Turner syndrome, Klinefelter syndrome, and Lesch-Nyhan disease. Each of these three is associated with one or more selective impairments or behavioral…

  5. Detection of chromosomal abnormalities and the 22q11 microdeletion in fetuses with congenital heart defects.

    PubMed

    Lv, Wei; Wang, Shuyu

    2014-11-01

    Chromosomal abnormalities and the 22q11 microdeletion are implicated in congenital heart defects (CHDs). This study was designed to detect these abnormalities in fetuses and determine the effect of genetic factors on CHD etiology. Between January 2010 and December 2011, 113 fetuses with CHD treated at the Beijing Obstetrics and Gynecology Hospital were investigated, using chromosome karyotyping of either amniotic fluid cell or umbilical cord blood cell samples. Fetuses with a normal result were then investigated for the 22q11 microdeletion by fluorescence in situ hybridization. Of the 113 patients, 12 (10.6%) exhibited chromosomal abnormalities, while 6 (5.3%) of the remaining 101 cases presented with a 22q11 microdeletion. The incidence of chromosomal abnormalities was significantly higher in the group of fetuses presenting with extracardiac malformations in addition to CHD (P<0.001), although the detection of the 22q11 microdeletion was not significantly different between the two groups (P=0.583). In addition, all fetuses with the 22q11 microdeletion occurred de novo. In conclusion, genetic factors are important in the etiology of CHD. Where fetuses present with cardiac defects, additional chromosomal analysis is required to detect extracardiac abnormalities. Fetuses with heart defects should also be considered for 22q11 microdeletion detection to evaluate fetal prognosis, particularly prior to surgery.

  6. High frequency of X chromosome abnormalities in women with short stature and elevated liver enzymes.

    PubMed

    Roulot, Dominique; Malan, Valérie; Ziol, Marianne; Linglart, Agnès; Bourcier, Valérie; Beaugrand, Michel; Benzacken, Brigitte

    2014-08-01

    Paucisymptomatic forms of Turner's syndrome (TS), in which short stature is the predominant clinical abnormality, remain underdiagnosed. Abnormal liver tests are extremely frequent in adult TS patients reflecting various types of hepatic lesions. The objective of the study was to investigate whether unexplained elevated liver enzymes in women with short stature could reveal X chromosome abnormalities of undiagnosed TS. Thirty-one consecutive short stature women displaying elevated liver enzymes and no previous diagnosis of TS were compared with 31 age-matched controls in a prospective study. Liver biopsy was performed in 26 patients. Systematic karyotype analysis and fluorescence in situ hybridization. X chromosome abnormalities were found in 27 patients and one control (87.0% vs 3.2%, P < .0001), including a 45,X/46,XX mosaicism in 24 patients and isochromosome of the long arm in three. Liver histological analysis showed architectural changes in 17 patients with nodular regenerative hyperplasia in 12. Biliary lesions were present in 13 patients and liver steatosis in 20. X chromosome abnormalities indicative of cryptic TS are extremely frequent in short-stature women with unexplained elevated liver enzymes. In short-stature women, abnormal liver tests should lead to systematic karyotype analysis.

  7. Multiple Sex-Associated Regions and a Putative Sex Chromosome in Zebrafish Revealed by RAD Mapping and Population Genomics

    PubMed Central

    Anderson, Jennifer L.; Rodríguez Marí, Adriana; Braasch, Ingo; Amores, Angel; Hohenlohe, Paul; Batzel, Peter; Postlethwait, John H.

    2012-01-01

    Within vertebrates, major sex determining genes can differ among taxa and even within species. In zebrafish (Danio rerio), neither heteromorphic sex chromosomes nor single sex determination genes of large effect, like Sry in mammals, have yet been identified. Furthermore, environmental factors can influence zebrafish sex determination. Although progress has been made in understanding zebrafish gonad differentiation (e.g. the influence of germ cells on gonad fate), the primary genetic basis of zebrafish sex determination remains poorly understood. To identify genetic loci associated with sex, we analyzed F2 offspring of reciprocal crosses between Oregon *AB and Nadia (NA) wild-type zebrafish stocks. Genome-wide linkage analysis, using more than 5,000 sequence-based polymorphic restriction site associated (RAD-tag) markers and population genomic analysis of more than 30,000 single nucleotide polymorphisms in our *ABxNA crosses revealed a sex-associated locus on the end of the long arm of chr-4 for both cross families, and an additional locus in the middle of chr-3 in one cross family. Additional sequencing showed that two SNPs in dmrt1 previously suggested to be functional candidates for sex determination in a cross of ABxIndia wild-type zebrafish, are not associated with sex in our AB fish. Our data show that sex determination in zebrafish is polygenic and that different genes may influence sex determination in different strains or that different genes become more important under different environmental conditions. The association of the end of chr-4 with sex is remarkable because, unique in the karyotype, this chromosome arm shares features with known sex chromosomes: it is highly heterochromatic, repetitive, late replicating, and has reduced recombination. Our results reveal that chr-4 has functional and structural properties expected of a sex chromosome. PMID:22792396

  8. First Description of the Karyotype and Sex Chromosomes in the Komodo Dragon (Varanus komodoensis).

    PubMed

    Johnson Pokorná, Martina; Altmanová, Marie; Rovatsos, Michail; Velenský, Petr; Vodička, Roman; Rehák, Ivan; Kratochvíl, Lukáš

    2016-01-01

    The Komodo dragon (Varanus komodoensis) is the largest lizard in the world. Surprisingly, it has not yet been cytogenetically examined. Here, we present the very first description of its karyotype and sex chromosomes. The karyotype consists of 2n = 40 chromosomes, 16 macrochromosomes and 24 microchromosomes. Although the chromosome number is constant for all species of monitor lizards (family Varanidae) with the currently reported karyotype, variability in the morphology of the macrochromosomes has been previously documented within the group. We uncovered highly differentiated ZZ/ZW sex microchromosomes with a heterochromatic W chromosome in the Komodo dragon. Sex chromosomes have so far only been described in a few species of varanids including V. varius, the sister species to Komodo dragon, whose W chromosome is notably larger than that of the Komodo dragon. Accumulations of several microsatellite sequences in the W chromosome have recently been detected in 3 species of monitor lizards; however, these accumulations are absent from the W chromosome of the Komodo dragon. In conclusion, although varanids are rather conservative in karyotypes, their W chromosomes exhibit substantial variability at the sequence level, adding further evidence that degenerated sex chromosomes may represent the most dynamic genome part. © 2016 S. Karger AG, Basel.

  9. Dosage compensation of the sex chromosomes and autosomes

    PubMed Central

    Disteche, Christine M.

    2016-01-01

    Males are XY and females are XX in most mammalian species. Other species such as birds have a different sex chromosome make-up: ZZ in males and ZW in females. In both types of organisms one of the sex chromosomes, Y or W, has degenerated due to lack of recombination with its respective homolog X or Z. Since autosomes are present in two copies in diploid organisms the heterogametic sex has become a natural "aneuploid" with haploinsufficiency for X- or Z-linked genes. Specific mechanisms have evolved to restore a balance between critical gene products throughout the genome and between males and females. Some of these mechanisms were co-opted from and/or added to compensatory processes that alleviate autosomal aneuploidy. Surprisingly, several modes of dosage compensation have evolved. In this review we will consider the evidence for dosage compensation and the molecular mechanisms implicated. PMID:27112542

  10. Chromosomal abnormalities in azoospermic and non-azoospermic infertile men: numbers needed to be screened to prevent adverse pregnancy outcomes.

    PubMed

    Dul, E C; van Echten-Arends, J; Groen, H; Dijkhuizen, T; Land, J A; van Ravenswaaij-Arts, C M A

    2012-09-01

    How many infertile men who wish to conceive need to be screened for chromosomal abnormalities to prevent one miscarriage or the birth of one child with congenital anomalies (CAs)? In azoospermic men, the prevalence of chromosomal abnormalities is 15.2% and the number needed to be screened (NNS; minimum-maximum estimate) for a miscarriage is 80-88 and for a child with CAs is 790-3951. The prevalence of chromosomal abnormalities in non-azoospermic men is 2.3% and the NNS are 315-347 and 2543-12 723, respectively. Guidelines advise the screening of infertile men for chromosomal abnormalities to prevent miscarriages and children with congenital abnormalities, but no studies have been published on the effectiveness of this screening strategy. Retrospective cohort study of 1223 infertile men between 1994 and 2007. Men with azoospermia and men eligible for ICSI treatment visiting a university hospital fertility clinic in The Netherlands who underwent chromosomal analysis between 1994 and 2007 were identified retrospectively in a registry. Only cases of which at least one sperm analysis was available were included. Data were collected by chart review, with a follow-up of pregnancies and their outcomes until 2010. The chromosomal abnormalities were categorized according to their risk of unbalanced offspring, i.e. miscarriage and/or child with CAs. Multi-level analysis was used to estimate the impact of chromosomal abnormalities on the outcome of pregnancies in the different subgroups of our cohort. NNS for miscarriages and children with CAs were calculated based on data from our cohort and data published in the literature. A chromosomal abnormality was found in 12 of 79 men with azoospermia (15.2%) and in 26 of 1144 non-azoospermic men (2.3%). The chromosomal abnormalities were categorized based on the literature, into abnormalities with and abnormalities without increased risk for miscarriage and/or child with CAs. In our study group, there was no statistically significant

  11. Discovery of the youngest sex chromosomes reveals first case of convergent co-option of ancestral autosomes in turtles.

    PubMed

    Montiel, E E; Badenhorst, D; Tamplin, J; Burke, R L; Valenzuela, N

    2017-02-01

    Most turtle species possess temperature-dependent sex determination (TSD), but genotypic sex determination (GSD) has evolved multiple times independently from the TSD ancestral condition. GSD in animals typically involves sex chromosomes, yet the sex chromosome system of only 9 out of 18 known GSD turtles has been characterized. Here, we combine comparative genome hybridization (CGH) and BAC clone fluorescent in situ hybridization (BAC FISH) to identify a macro-chromosome XX/XY system in the GSD wood turtle Glyptemys insculpta (GIN), the youngest known sex chromosomes in chelonians (8-20 My old). Comparative analyses show that GIN-X/Y is homologous to chromosome 4 of Chrysemys picta (CPI) painted turtles, chromosome 5 of Gallus gallus chicken, and thus to the X/Y sex chromosomes of Siebenrockiella crassicollis black marsh turtles. We tentatively assign the gene content of the mapped BACs from CPI chromosome 4 (CPI-4) to GIN-X/Y. Chromosomal rearrangements were detected in G. insculpta sex chromosome pair that co-localize with the male-specific region of GIN-Y and encompass a gene involved in sexual development (Wt1-a putative master gene in TSD turtles). Such inversions may have mediated the divergence of G. insculpta sex chromosome pair and facilitated GSD evolution in this turtle. Our results illuminate the structure, origin, and evolution of sex chromosomes in G. insculpta and reveal the first case of convergent co-option of an autosomal pair as sex chromosomes within chelonians.

  12. Origin of sex chromosomes in six groups of Rana rugosa frogs inferred from a sex-linked DNA marker.

    PubMed

    Oike, Akira; Watanabe, Koichiro; Min, Mi-Sook; Tojo, Koji; Kumagai, Masahide; Kimoto, Yuya; Yamashiro, Tadashi; Matsuo, Takanori; Kodama, Maho; Nakamura, Yoriko; Notsu, Masaru; Tochimoto, Takeyoshi; Fujita, Hiroyuki; Ota, Maki; Ito, Etsuro; Yasumasu, Shigeki; Nakamura, Masahisa

    2017-08-01

    Each vertebrate species, as a general rule, has either the XX/XY or ZZ/ZW chromosomes by which sex is determined. However, the Japanese Rana (R.) rugosa frog is an exception, possessing both sex-determining combinations within one species, varying with region of origin. We collected R. rugosa frogs from 104 sites around Japan and South Korea and determined the nucleotide sequences of the mitochondrial 12S ribosomal RNA gene. Based on the sequences, R. rugosa frogs were divided into four groups from Japan and one from South Korea. The ZZ/ZW type is reportedly derived from the XX/XY type, although recently a new ZZ/ZW type of R. rugosa was reported. However, it still remains unclear from where the sex chromosomes in the five groups of this species were derived. In this study, we successfully isolated a sex-linked DNA maker and used it to classify R. rugosa frogs into several groupings. From the DNA marker as well as from nucleotide analysis of the promoter region of the androgen receptor (AR) gene, we identified another female heterogametic group, designated, West-Central. The sex chromosomes in the West-Central originated from the West and Central groups. The results indicate that a sex-linked DNA marker is a verifiable tool to determine the origin of the sex chromosomes in R. rugosa frogs in which the sex-determining system has changed, during two independent events, from the male to female heterogamety. © 2017 Wiley Periodicals, Inc.

  13. Sex determining gene on the X chromosome short arm: dosage sensitive sex reversal.

    PubMed

    Ogata, T; Matsuo, N

    1996-08-01

    The present review article summarizes current knowledge concerning the sex determining gene on Xp21, termed DSS (dosage sensitive sex reversal). The presence of DSS has been based on the finding that, in the presence of SRY, partial active Xp duplications encompassing the middle part of Xp result in sex reversal, whereas those of the distal or proximal part of Xp permit male sex development. Because Klinefelter patients develop as males, it is believed that DSS is normally subject to X-inactivation, and that two active copies of DSS override the function of SRY, resulting in gonadal dysgenesis because of meiotic pairing failure. It may be possible that DSS encodes a target sequence for repressing function of SRY or that DSS is involved in an X chromosome-counting mechanism. Molecular approaches have localized DSS to a 160 kb region and isolated candidate genes such as DAX-1 and MAGE-Xp, but there has been no formal evidence equating the candidate gene with DSS. In addition to its clinical importance, the exploration of DSS must provide a useful clue to phylogenetic studies of sex chromosomes and dosage compensation.

  14. Effects of Sex Chromosome Aneuploidies on Brain Development: Evidence from Neuroimaging Studies

    ERIC Educational Resources Information Center

    Lenroot, Rhoshel K.; Lee, Nancy Raitano; Giedd, Jay N.

    2009-01-01

    Variation in the number of sex chromosomes is a relatively common genetic condition, affecting as many as 1/400 individuals. The sex chromosome aneuploidies (SCAs) are associated with characteristic behavioral and cognitive phenotypes, although the degree to which specific individuals are affected can fall within a wide range. Understanding the…

  15. Weird mammals provide insights into the evolution of mammalian sex chromosomes and dosage compensation.

    PubMed

    Graves, Jennifer A Marshall

    2015-12-01

    The deep divergence of mammalian groups 166 and 190 million years ago (MYA) provide genetic variation to explore the evolution of DNA sequence, gene arrangement and regulation of gene expression in mammals. With encouragement from the founder of the field, Mary Lyon, techniques in cytogenetics and molecular biology were progressively adapted to characterize the sex chromosomes of kangaroos and other marsupials, platypus and echidna-and weird rodent species. Comparative gene mapping reveals the process of sex chromosome evolution from their inception 190 MYA (they are autosomal in platypus) to their inevitable end (the Y has disappeared in two rodent lineages). Our X and Y are relatively young, getting their start with the evolution of the sex-determining SRY gene, which triggered progressive degradation of the Y chromosome. Even more recently, sex chromosomes of placental mammals fused with an autosomal region which now makes up most of the Y. Exploration of gene activity patterns over four decades showed that dosage compensation via X-chromosome inactivation is unique to therian mammals, and that this whole chromosome control process is different in marsupials and absent in monotremes and reptiles, and birds. These differences can be exploited to deduce how mammalian sex chromosomes and epigenetic silencing evolved.

  16. Genetic Diversity in the UV Sex Chromosomes of the Brown Alga Ectocarpus.

    PubMed

    Avia, Komlan; Lipinska, Agnieszka P; Mignerot, Laure; Montecinos, Alejandro E; Jamy, Mahwash; Ahmed, Sophia; Valero, Myriam; Peters, Akira F; Cock, J Mark; Roze, Denis; Coelho, Susana M

    2018-06-06

    Three types of sex chromosome system exist in nature: diploid XY and ZW systems and haploid UV systems. For many years, research has focused exclusively on XY and ZW systems, leaving UV chromosomes and haploid sex determination largely neglected. Here, we perform a detailed analysis of DNA sequence neutral diversity levels across the U and V sex chromosomes of the model brown alga Ectocarpus using a large population dataset. We show that the U and V non-recombining regions of the sex chromosomes (SDR) exhibit about half as much neutral diversity as the autosomes. This difference is consistent with the reduced effective population size of these regions compared with the rest of the genome, suggesting that the influence of additional factors such as background selection or selective sweeps is minimal. The pseudoautosomal region (PAR) of this UV system, in contrast, exhibited surprisingly high neutral diversity and there were several indications that genes in this region may be under balancing selection. The PAR of Ectocarpus is known to exhibit unusual genomic features and our results lay the foundation for further work aimed at understanding whether, and to what extent, these structural features underlie the high level of genetic diversity. Overall, this study fills a gap between available information on genetic diversity in XY/ZW systems and UV systems and significantly contributes to advancing our knowledge of the evolution of UV sex chromosomes.

  17. Karyological characterization of the endemic Iberian rock lizard, Iberolacerta monticola (Squamata, Lacertidae): insights into sex chromosome evolution.

    PubMed

    Rojo, V; Giovannotti, M; Naveira, H; Nisi Cerioni, P; González-Tizón, A M; Caputo Barucchi, V; Galán, P; Olmo, E; Martínez-Lage, A

    2014-01-01

    Rock lizards of the genus Iberolacerta constitute a promising model to examine the process of sex chromosome evolution, as these closely related taxa exhibit remarkable diversity in the degree of sex chromosome differentiation with no clear phylogenetic segregation, ranging from cryptic to highly heteromorphic ZW chromosomes and even multiple chromosome systems (Z1Z1Z2Z2/Z1Z2W). To gain a deeper insight into the patterns of karyotype and sex chromosome evolution, we performed a cytogenetic analysis based on conventional staining, banding techniques and fluorescence in situ hybridization in the species I. monticola, for which previous cytogenetic investigations did not detect differentiated sex chromosomes. The karyotype is composed of 2n = 36 acrocentric chromosomes. NORs and the major ribosomal genes were located in the subtelomeric region of chromosome pair 6. Hybridization signals of the telomeric sequences (TTAGGG)n were visualized at the telomeres of all chromosomes and interstitially in 5 chromosome pairs. C-banding showed constitutive heterochromatin at the centromeres of all chromosomes, as well as clear pericentromeric and light telomeric C-bands in several chromosome pairs. These results highlight some chromosomal markers which can be useful to identify species-specific diagnostic characters, although they may not accurately reflect the phylogenetic relationships among the taxa. In addition, C-banding revealed the presence of a heteromorphic ZW sex chromosome pair, where W is smaller than Z and almost completely heterochromatic. This finding sheds light on sex chromosome evolution in the genus Iberolacerta and suggests that further comparative cytogenetic analyses are needed to understand the processes underlying the origin, differentiation and plasticity of sex chromosome systems in lacertid lizards. © 2013 S. Karger AG, Basel.

  18. Chromosomal abnormalities in HPV-16-immortalized oral epithelial cells.

    PubMed

    Oda, D; Bigler, L; Mao, E J; Disteche, C M

    1996-09-01

    Human papilloma virus (HPV) type 16 has an established association with anogenital carcinoma, and to some extent with human oral squamous cell carcinoma. We hypothesize that HPV type 16 is capable of inducing chromosomal and cell cycle changes in cultured oral epithelial cells. Normal human oral epithelia] cells were immortalized with recombinant retrovirus containing the E6/E7 open reading frames of HPV type 16. These cells have been in culture for more than 350 passages and over 4 years. Flow cytometry demonstrated an average of 42% nuclear aneuploidy in HPV 16-immortalized cells; 16% in normal controls (probably tetrasomy). Cytogenetic analysis demonstrated significant progression of chromosomal abnormalities. Cells at early passage (p10) showed trisomy 20, with no other major changes. At passage 18, trisomy 1q and monosomy 13 were seen in addition to trisomy 20. At passage 61 there were two distinct cell populations ('a' and 'b'), with multiple chromosomal changes including trisomy 5q,14,20 in one line and 7p,9q,llq in the other. Both populations had monosomy 3p, with monosomy 8p in one population and monosomy 13 in the other. At passage 136, the cells were essentially identical to population 'b' of passage 61. At this passage, mutation of the p53 gene was detected at codon 273 of exon 8, with G to T conversion (Arg to Leu). This was absent in the normal cells from which this line was developed. Passage 262 contained the two major cell populations, each with a sub-group with additional chromosomal changes such as 10p monosomy. Cells from passages 217 and 305 were injected into nude mice a year apart. Both failed to produce tumors, as did normal cells. In conclusion, we present an HPV type 16-immortalized oral epithelial cell line (IHGK) with extensive and progressive chromosomal abnormalities, invasive growth in culture and yet no tumor formation in nude mice. We suggest that the question as to whether HPV alone can induce transformation is still open.

  19. Platypus chain reaction: directional and ordered meiotic pairing of the multiple sex chromosome chain in Ornithorhynchus anatinus.

    PubMed

    Daish, Tasman; Casey, Aaron; Grützner, Frank

    2009-01-01

    Monotremes are phylogenetically and phenotypically unique animals with an unusually complex sex chromosome system that is composed of ten chromosomes in platypus and nine in echidna. These chromosomes are alternately linked (X1Y1, X2Y2, ...) at meiosis via pseudoautosomal regions and segregate to form spermatozoa containing either X or Y chromosomes. The physical and epigenetic mechanisms involved in pairing and assembly of the complex sex chromosome chain in early meiotic prophase I are completely unknown. We have analysed the pairing dynamics of specific sex chromosome pseudoautosomal regions in platypus spermatocytes during prophase of meiosis I. Our data show a highly coordinated pairing process that begins at the terminal Y5 chromosome and completes with the union of sex chromosomes X1Y1. The consistency of this ordered assembly of the chain is remarkable and raises questions about the mechanisms and factors that regulate the differential pairing of sex chromosomes and how this relates to potential meiotic silencing mechanisms and alternate segregation.

  20. Sex Chromosomes and Karyotype of the (Nearly) Mythical Creature, the Gila Monster, Heloderma suspectum (Squamata: Helodermatidae)

    PubMed Central

    Pokorná, Martina Johnson; Rovatsos, Michail; Kratochvíl, Lukáš

    2014-01-01

    A wide variety of sex determination systems exist among squamate reptiles. They can therefore serve as an important model for studies of evolutionary transitions among particular sex determination systems. However, we still have only a limited knowledge of sex determination in certain important lineages of squamates. In this respect, one of the most understudied groups is the family Helodermatidae (Anguimorpha) encompassing the only two venomous species of lizards which are potentially lethal to human beings. We uncovered homomorphic ZZ/ZW sex chromosomes in the Gila monster (Heloderma suspectum) with a highly heterochromatic W chromosome. The sex chromosomes are morphologically similar to the ZZ/ZW sex chromosomes of monitor lizards (Varanidae). If the sex chromosomes of helodermatids and varanids are homologous, female heterogamety may be ancestral for the whole Anguimorpha group. Moreover, we found that the karyotype of the Gila monster consists of 2n = 36 chromosomes (14 larger metacentric chromosomes and 22 acrocentric microchromosomes). 2n = 36 is the widely distributed chromosomal number among squamates. In his pioneering works representing the only previous cytogenetic examination of the family Helodermatidae, Matthey reported the karyotype as 2n = 38 and suggested a different chromosomal morphology for this species. We believe that this was probably erroneously. We also discovered a strong accumulation of telomeric sequences on several pairs of microchromosomes in the Gila monster, which is a trait documented relatively rarely in vertebrates. These new data fill an important gap in our understanding of the sex determination and karyotype evolution of squamates. PMID:25119263

  1. On the maintenance of sex chromosome polymorphism by sex-antagonistic selection.

    PubMed

    Blaser, Olivier; Neuenschwander, Samuel; Perrin, Nicolas

    2011-10-01

    Complex sex determination systems are a priori unstable and require specific selective forces for their maintenance. Analytical derivations suggest that sex antagonistic selection may play such a role, but this assumes absence of recombination between the sex-determining and sex-antagonistic genes. Using individual-based simulations and focusing on the sex chromosome and coloration polymorphisms of platy fishes as a case study, we show that the conditions for polymorphism maintenance induce female biases in primary sex ratios, so that sex ratio selection makes the system collapse toward male or female heterogamety as soon as recombinant genotypes appear. However, a polymorphism can still be maintained under scenarios comprising strong sexual selection against dull males, mild natural selection against bright females, and low recombination rates. Though such conditions are plausibly met in natural populations of fishes harboring such polymorphisms, quantitative empirical evaluations are required to properly test whether sex antagonistic selection is a causal agent or whether other selective processes are required (such as local mate competition favoring female-biased sex ratios).

  2. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for Rapid Diagnosis of Sex Chromosome Aneuploidies

    PubMed Central

    Xie, Xingmei; Liang, Qiaoyi

    2014-01-01

    Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR). Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY), five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377), one X/Y-common STR (X22), and two autosomal STRs (D13S305 and D21S11). Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied. PMID:25207978

  3. Tissue Specificity and Dynamics of Sex-Biased Gene Expression in a Common Frog Population with Differentiated, Yet Homomorphic, Sex Chromosomes.

    PubMed

    Ma, Wen-Juan; Veltsos, Paris; Toups, Melissa A; Rodrigues, Nicolas; Sermier, Roberto; Jeffries, Daniel L; Perrin, Nicolas

    2018-06-12

    Sex-biased genes are central to the study of sexual selection, sexual antagonism, and sex chromosome evolution. We describe a comprehensive de novo assembled transcriptome in the common frog Rana temporaria based on five developmental stages and three adult tissues from both sexes, obtained from a population with karyotypically homomorphic but genetically differentiated sex chromosomes. This allows the study of sex-biased gene expression throughout development, and its effect on the rate of gene evolution while accounting for pleiotropic expression, which is known to negatively correlate with the evolutionary rate. Overall, sex-biased genes had little overlap among developmental stages and adult tissues. Late developmental stages and gonad tissues had the highest numbers of stage- or tissue-specific genes. We find that pleiotropic gene expression is a better predictor than sex bias for the evolutionary rate of genes, though it often interacts with sex bias. Although genetically differentiated, the sex chromosomes were not enriched in sex-biased genes, possibly due to a very recent arrest of XY recombination. These results extend our understanding of the developmental dynamics, tissue specificity, and genomic localization of sex-biased genes.

  4. Rapid Y degeneration and dosage compensation in plant sex chromosomes

    PubMed Central

    Papadopulos, Alexander S. T.; Chester, Michael; Ridout, Kate; Filatov, Dmitry A.

    2015-01-01

    The nonrecombining regions of animal Y chromosomes are known to undergo genetic degeneration, but previous work has failed to reveal large-scale gene degeneration on plant Y chromosomes. Here, we uncover rapid and extensive degeneration of Y-linked genes in a plant species, Silene latifolia, that evolved sex chromosomes de novo in the last 10 million years. Previous transcriptome-based studies of this species missed unexpressed, degenerate Y-linked genes. To identify sex-linked genes, regardless of their expression, we sequenced male and female genomes of S. latifolia and integrated the genomic contigs with a high-density genetic map. This revealed that 45% of Y-linked genes are not expressed, and 23% are interrupted by premature stop codons. This contrasts with X-linked genes, in which only 1.3% of genes contained stop codons and 4.3% of genes were not expressed in males. Loss of functional Y-linked genes is partly compensated for by gene-specific up-regulation of X-linked genes. Our results demonstrate that the rate of genetic degeneration of Y-linked genes in S. latifolia is as fast as in animals, and that the evolutionary trajectories of sex chromosomes are similar in the two kingdoms. PMID:26438872

  5. Associations of recurrent miscarriages with chromosomal abnormalities, thrombophilia allelic polymorphisms and/or consanguinity in Saudi Arabia.

    PubMed

    Turki, Rola F; Assidi, Mourad; Banni, Huda A; Zahed, Hanan A; Karim, Sajjad; Schulten, Hans-Juergen; Abu-Elmagd, Muhammad; Rouzi, Abdulrahim A; Bajouh, Osama; Jamal, Hassan S; Al-Qahtani, Mohammed H; Abuzenadah, Adel M

    2016-10-10

    Recurrent pregnancy loss (RPL) or recurrent spontaneous abortion is an obstetric complication that affects couples at reproductive age. Previous reports documented a clear relationship between parents with chromosomal abnormalities and both recurrent miscarriages and infertility. However, limited data is available from the Arabian Peninsula which is known by higher rates of consanguineous marriages. The main goal of this study was to determine the prevalence of chromosomal abnormalities and thrombophilic polymorphisms, and to correlate them with RPL and consanguinity in Saudi Arabia. Cytogenetic analysis of 171 consent patients with RPL was performed by the standard method of 72-h lymphocyte culture and GTG banding. Allelic polymorphisms of three thrombophilic genes (Factor V Leiden, Prothrombin A20210G, MTHFR C677T) were performed using PCR-RFLP (restriction fragment length polymorphism) and gel electrophoresis. Data analysis revealed that 7.6 % of patients were carrier of numerical or structural chromosomal abnormalities. A high rate of translocations (46 %) was associated to increased incidence of RPL. A significant correlation between consanguineous RPL patients and chromosomal abnormalities (P < 0.05) was found. Both Factor V Leiden and Prothrombin A20210G allelic polymorphisms were significantly associated with a higher prevalence of RPL. This study demonstrated a strong association between RPL and the prevalence of chromosomal abnormalities and inherited thrombophilia. Given the high rate of consanguineous marriages in the Saudi population, these results underline the importance of systematic cytogenetic investigation and genetic counseling preferably at the premarital stage or at least during early pregnancy phase through preimplantation genetic diagnosis (PGD).

  6. The XX sex chromosome complement in mice is associated with increased spontaneous lupus compared with XY.

    PubMed

    Sasidhar, Manda V; Itoh, Noriko; Gold, Stefan M; Lawson, Gregory W; Voskuhl, Rhonda R

    2012-08-01

    Many autoimmune diseases are characterised by a female predominance. This may be caused by sex hormones, sex chromosomes or both. This report uses a transgenic mouse model to investigate how sex chromosome complement, not confounded by differences in gonadal type, might contribute to lupus pathogenesis. Transgenic NZM2328 mice were created by deletion of the Sry gene from the Y chromosome, thereby separating genetic from gonadal sex. Survival, renal histopathology and markers of immune activation were compared in mice carrying the XX versus the XY(-) sex chromosome complement, with each genotype being ovary bearing. Mice with XX sex chromosome complement compared with XY(-) exhibited poorer survival rates and increased kidney pathology. Splenic T lymphocytes from XX mice demonstrated upregulated X-linked CD40 ligand expression and higher levels of activation markers ex vivo. Increased MMP, TGF and IL-13 production was found, while IL-2 was lower in XX mice. An accumulation of splenic follicular B cells and peritoneal marginal zone B cells was observed, coupled with upregulated costimulatory marker expression on B cells in XX mice. These data show that the XX sex chromosome complement, compared with XY(-), is associated with accelerated spontaneous lupus.

  7. Molecular cytogenetic characterization of the dioecious Cannabis sativa with an XY chromosome sex determination system.

    PubMed

    Divashuk, Mikhail G; Alexandrov, Oleg S; Razumova, Olga V; Kirov, Ilya V; Karlov, Gennady I

    2014-01-01

    Hemp (Cannabis sativa L.) was karyotyped using by DAPI/C-banding staining to provide chromosome measurements, and by fluorescence in situ hybridization with probes for 45 rDNA (pTa71), 5S rDNA (pCT4.2), a subtelomeric repeat (CS-1) and the Arabidopsis telomere probes. The karyotype has 18 autosomes plus a sex chromosome pair (XX in female and XY in male plants). The autosomes are difficult to distinguish morphologically, but three pairs could be distinguished using the probes. The Y chromosome is larger than the autosomes, and carries a fully heterochromatic DAPI positive arm and CS-1 repeats only on the less intensely DAPI-stained, euchromatic arm. The X is the largest chromosome of all, and carries CS-1 subtelomeric repeats on both arms. The meiotic configuration of the sex bivalent locates a pseudoautosomal region of the Y chromosome at the end of the euchromatic CS-1-carrying arm. Our molecular cytogenetic study of the C. sativa sex chromosomes is a starting point for helping to make C. sativa a promising model to study sex chromosome evolution.

  8. The influence of parity and gravidity on first trimester markers of chromosomal abnormality.

    PubMed

    Spencer, K; Ong, C Y; Liao, A W; Nicolaides, K H

    2000-10-01

    We have studied changes in first trimester fetal nuchal translucency (NT) and maternal serum free beta-hCG and PAPP-A with gravidity and parity in 3252 singleton pregnancies unaffected by chromosomal abnormality or major pregnancy complications. We have shown that gravidity and parity is associated with a small but progressive decrease in fetal NT and a small but progressive increase in free beta-hCG and PAPP-A. None of these small changes with increasing gravidity or parity are statistically significant and hence correction for these variables is not necessary when considering first trimester screening for chromosomal abnormalities. Copyright 2000 John Wiley & Sons, Ltd.

  9. Health-related quality of life experienced by children with chromosomal abnormalities and congenital heart defects.

    PubMed

    Garcia Guerra, Gonzalo; Joffe, Ari R; Robertson, Charlene M T; Atallah, Joseph; Alton, Gwen; Sauve, Reg S; Dinu, Irina A; Ross, David B; Rebeyka, Ivan M

    2014-03-01

    Long-term outcomes are fundamental in advising parents about the potential future of their children with congenital heart disease (CHD). No published reports have described the health-related quality of life (HRQL) experienced by children with chromosomal abnormalities who had surgery in early infancy for CHD. A study was undertaken to assess HRQL among children with chromosomal abnormalities and CHD. The authors hypothesized that these children have a worse HRQL than healthy children or a cohort of children matched for CHD diagnosis. Infants with chromosomal abnormalities undergoing cardiac surgery for CHD at 6 weeks of age or younger at the Stollery Children's Hospital between July 2000 and June 2005 were included in the study. The HRQL of these infants was assessed using the Pediatric Quality of Life Inventory (PedsQL) 4.0 Generic Core Scales completed by their parents at a 4-year follow-up evaluation. The study compared the scores for 16 children with normative data. The children with chromosomal abnormalities and CHD had significantly lower mean total PedsQL (71.3 vs. 87.3; p < 0.0001), Psychosocial Summary (70.3 vs. 86.1; p < 0.0001), and Physical Summary (74.3 vs. 89.2; p = 0.0006) scores. Compared with the matched children, those with chromosomal abnormalities had a significantly lower median total PedsQL (75.0 vs. 84.6; p = 0.03), Physical Summary (79.5 vs. 96.9; p = 0.007), and School Functioning (68.5 vs. 83.0; p = 0.03) scores. A better understanding of the mechanisms and determinants of HRQL in these children has the potential to yield important implications for clinical practice including clarity for treatment decision making as well as determination of targeted supports and services to meet the needs of these children and their families differentially.

  10. Determinants of parental decisions to abort for chromosome abnormalities.

    PubMed

    Drugan, A; Greb, A; Johnson, M P; Krivchenia, E L; Uhlmann, W R; Moghissi, K S; Evans, M I

    1990-08-01

    Parental decisions concerning the continuation of pregnancy following prenatal detection of abnormal chromosomes were evaluated for 80 patients whose diagnosis and prenatal counselling were performed in our centre. Twenty-two anomalies were diagnosed by chorionic villus sampling (CVS) and 58 by amniocentesis. The severity of the chromosome anomaly and associated ultrasound findings in the first vs. second trimester were correlated with patients' decisions. No difference was found in the likelihood of parental decisions to interrupt or continue a pregnancy between CVS and amniocentesis for either the 'severe' or the 'questionable' group of chromosome anomalies. Ninety-three per cent of patients with severe prognosis and 27 per cent with questionable prognosis opted for pregnancy termination (p less than 0.0001). The association of ultrasound anomalies and termination was highly significant (p less than 0.001). The severity of the chromosome anomaly, and, to a lesser extent, the visualization of anomalies on ultrasound were the major determinants of parental decisions to terminate the pregnancy. The diagnosis of an anomaly in the first trimester was no more likely ito lead to a termination of pregnancy than in the second trimester.

  11. Chromosomal abnormalities in infertile men with azoospermia and severe oligozoospermia in Qatar and their association with sperm retrieval intracytoplasmic sperm injection outcomes.

    PubMed

    Arafa, Mohamed M; Majzoub, Ahmad; AlSaid, Sami S; ElAnsari, Walid; Al Ansari, Abdulla; Elbardisi, Yara; Elbardisi, Haitham T

    2018-03-01

    To study the types and incidence of chromosomal abnormalities in infertile men with azoospermia and severe oligozoospermia in Qatar, and to compare the hormonal changes, testicular sperm retrieval rate, and intracytoplasmic sperm injection (ICSI) outcome between patients with chromosomal abnormalities and patients with idiopathic infertility. This study involved the retrospective chart review of 625 infertile male patients attending an academic tertiary medical centre in Qatar. Retrieved information included data on medical history, family history, clinical examination, semen analysis, initial hormonal profiles, and genetic studies, ICSI, and sperm retrieval results. The incidence of chromosomal abnormalities was 9.59% (10.6% amongst Qatari patients, 9.04% amongst non-Qataris). About 63.6% of the sample had azoospermia, of whom 10.8% had chromosomal abnormalities. Roughly 36.4% of the sample had oligozoospermia, of whom 7.5% had chromosomal abnormalities. There were no differences between patients with chromosomal abnormalities and those with idiopathic infertility for demographic and infertility features; but for the hormonal profiles, patients with idiopathic infertility had significantly lower luteinising hormone and follicle-stimulating hormone values. For ICSI outcomes, patients with chromosomal abnormalities had a significantly lower total sperm retrieval rate (47.4% vs 65.8%), surgical sperm retrieval rate (41.2% vs 58.1%), and lower clinical pregnancy rate (16.7% vs 26.6%) when compared to the idiopathic infertility group. The incidence of chromosomal abnormalities in Qatar as a cause of severe male infertility is within a similar range as their prevalence internationally.

  12. The potential impact of NIPT as a second-tier screen on the outcomes of high-risk pregnancies with rare chromosomal abnormalities.

    PubMed

    Maxwell, Susannah; Dickinson, Jan E; Murch, Ashleigh; O'Leary, Peter

    2015-10-01

    To describe the potential impact of using noninvasive prenatal testing (NIPT) as a second-tier test, on the diagnosis and outcomes of pregnancies identified as high risk through first trimester screening (FTS) in a cohort of real pregnancies. Western Australian FTS and diagnostic data (2007-2009) were linked to pregnancy outcomes. Karyotype results from invasive prenatal testing in high-risk women were analysed. The outcomes of abnormal results that would not be detected by NIPT, assuming a panel of trisomy 21/18/13 and sex chromosome aneuploidies, and the likelihood of diagnosis in a screening model using NIPT as a second-tier test are described. Abnormal karyotype results were reported in 224 of 1488 (15%) women with high-risk pregnancies having invasive diagnostic testing. NIPT potentially would have identified 85%. The 33 abnormalities unidentifiable by NIPT were triploidies (n = 7, 21%), balanced (n = 8, 24%) and unbalanced rearrangements (n = 10, 30%) and level III mosaicisms (n = 8, 24%). For conditions not identifiable by NIPT, fetal sonographic appearance was likely to have led to invasive testing for 10 of 17 (59%) pathogenic abnormalities. If a policy was adopted recommending invasive testing for FTS risk >1:50 and/or ultrasound detected abnormality, the residual risk of an unidentified pathogenic chromosomal abnormality in those without a diagnosis would have been 0.33% (95% CI 0.01-0.65%). A screening model with NIPT as a second-tier for high-risk pregnancies would be unlikely to have changed the outcome for the majority of pregnancies. Optimising the diagnosis of rare pathogenic abnormalities requires clear indicators for invasive testing over NIPT. © 2015 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.

  13. The two "rules of speciation" in species with young sex chromosomes.

    PubMed

    Filatov, Dmitry A

    2018-05-21

    The two "rules of speciation," Haldane's rule (HR) and the large-X effect (LXE), are thought to be caused by recessive species incompatibilities exposed in the phenotype due to the hemizygosity of X-linked genes in the heterogametic sex. Thus, the reports of HR and the LXE in species with recently evolved non- or partially degenerate Y-chromosomes, such as Silene latifolia and its relatives, were surprising. Here, I argue that rapid species-specific degeneration of Y-linked genes and associated adjustment of expression of X-linked gametologs (dosage compensation) may lead to rapid evolution of sex-linked species incompatibilities. This process is likely to be too slow in species with old degenerate Y-chromosomes (e.g., in mammals), but Y-degeneration in species with young gene-rich sex chromosomes may be fast enough to play a significant role in speciation. To illustrate this point, I report the analysis of Y-degeneration and the associated evolution of gene expression on the X-chromosome of S. latifolia and Silene dioica, a close relative that shares the same recently evolved sex chromosomes. Despite the recent (≤1MY) divergence of the two species, ~7% of Y-linked genes have undergone degeneration in one but not the other species. This species-specific degeneration appears to drive faster expression divergence of X-linked genes, which may account for HR and the LXE reported for these species. Furthermore, I suggest that "exposure" of autosomal or sex-linked recessive species incompatibilities in the haploid plant gametophyte may mimic the presence of HR in plants. Both haploid expression and species-specific Y-degeneration need to receive more attention if we are to understand the role of these processes in speciation. © 2018 John Wiley & Sons Ltd.

  14. Recognition and modification of seX chromosomes.

    PubMed

    Nusinow, Dmitri A; Panning, Barbara

    2005-04-01

    Flies, worms and mammals employ dosage compensation complexes that alter chromatin or chromosome structure to equalize X-linked gene expression between the sexes. Recent work has improved our understanding of how dosage compensation complexes achieve X chromosome-wide association and has provided significant insight into the epigenetic modifications directed by these complexes to modulate gene expression. In flies, the prevailing view that dosage compensation complexes assemble on the X chromosome at approximately 35 chromatin-entry sites and then spread in cis to cover the chromosome has been re-evaluated in light of the evidence that these chromatin-entry sites are not required for localization of the complex. By contrast, identification of discrete recruitment elements indicates that nucleation at and spread from a limited number of sites directs dosage compensation complex localization on the worm X-chromosome. Studies in flies and mammals have extended our understanding of how ribonucleoprotein complexes are used to modify X chromatin, for either activation or repression of transcription. Finally, evidence from mammals suggests that the chromatin modifications that mediate dosage compensation are very dynamic, because they are established, reversed and re-established early in development.

  15. Conserved Patterns of Sex Chromosome Dosage Compensation in the Lepidoptera (WZ/ZZ): Insights from a Moth Neo-Z Chromosome

    PubMed Central

    Walters, James R.; Knipple, Douglas C.

    2017-01-01

    Where previously described, patterns of sex chromosome dosage compensation in the Lepidoptera (moths and butterflies) have several unusual characteristics. Other female-heterogametic (ZW/ZZ) species exhibit female Z-linked expression that is reduced compared with autosomal expression and male Z expression. In the Lepidoptera, however, Z expression typically appears balanced between sexes but overall reduced relative to autosomal expression, that is Z ≈ ZZ < AA. This pattern is not easily reconciled with theoretical expectations for the evolution of sex chromosome dosage compensation. Moreover, conflicting results linger due to discrepancies in data analyses and tissues sampled among lepidopterans. To address these issues, we performed RNA-seq to analyze sex chromosome dosage compensation in the codling moth, Cydia pomonella, which is a species from the earliest diverging lepidopteran lineage yet examined for dosage compensation and has a neo-Z chromosome resulting from an ancient Z:autosome fusion. While supported by intraspecific analyses, the Z ≈ ZZ < AA pattern was further evidenced by comparative study using autosomal orthologs of C. pomonella neo-Z genes in outgroup species. In contrast, dosage compensation appears to be absent in reproductive tissues. We thus argue that inclusion of reproductive tissues may explain the incongruence from a prior study on another moth species and that patterns of dosage compensation are likely conserved in the Lepidoptera. Notably, this pattern appears convergent with patterns in eutherian mammals (X ≈ XX < AA). Overall, our results contribute to the notion that the Lepidoptera present challenges both to classical theories regarding the evolution of sex chromosome dosage compensation and the emerging view of the association of dosage compensation with sexual heterogamety. PMID:28338816

  16. Sex differences in circadian food anticipatory activity are not altered by individual manipulations of sex hormones or sex chromosome copy number in mice

    PubMed Central

    Huddy, Timothy F.; Ogawa-Okada, Maya; Adkins, Jamie L.

    2018-01-01

    Recent studies in mice have demonstrated a sexual dimorphism in circadian entrainment to scheduled feeding. On a time restricted diet, males tend to develop food anticipatory activity (FAA) sooner than females and with a higher amplitude of activity. The underlying cause of this sex difference remains unknown. One study suggests that sex hormones, both androgens and estrogens, modulate food anticipatory activity in mice. Here we present results suggesting that the sex difference in FAA is unrelated to gonadal sex hormones. While a sex difference between males and females in FAA on a timed, calorie restricted diet was observed there were no differences between intact and gonadectomized mice in the onset or magnitude of FAA. To test other sources of the sex difference in circadian entrainment to scheduled feeding, we used sex chromosome copy number mutants, but there was no difference in FAA when comparing XX, XY-, XY-;Sry Tg, and XX;Sry Tg mice, demonstrating that gene dosage of sex chromosomes does not mediate the sex difference in FAA. Next, we masculinized female mice by treating them with 17-beta estradiol during the neonatal period; yet again, we saw no difference in FAA between control and masculinized females. Finally, we observed that there was no longer a sex difference in FAA for older mice, suggesting that the sex difference in FAA is age-dependent. Thus, our study demonstrates that singular manipulations of gonadal hormones, sex chromosomes, or developmental patterning are not able to explain the difference in FAA between young male and female mice. PMID:29385171

  17. Sex differences in circadian food anticipatory activity are not altered by individual manipulations of sex hormones or sex chromosome copy number in mice.

    PubMed

    Aguayo, Antonio; Martin, Camille S; Huddy, Timothy F; Ogawa-Okada, Maya; Adkins, Jamie L; Steele, Andrew D

    2018-01-01

    Recent studies in mice have demonstrated a sexual dimorphism in circadian entrainment to scheduled feeding. On a time restricted diet, males tend to develop food anticipatory activity (FAA) sooner than females and with a higher amplitude of activity. The underlying cause of this sex difference remains unknown. One study suggests that sex hormones, both androgens and estrogens, modulate food anticipatory activity in mice. Here we present results suggesting that the sex difference in FAA is unrelated to gonadal sex hormones. While a sex difference between males and females in FAA on a timed, calorie restricted diet was observed there were no differences between intact and gonadectomized mice in the onset or magnitude of FAA. To test other sources of the sex difference in circadian entrainment to scheduled feeding, we used sex chromosome copy number mutants, but there was no difference in FAA when comparing XX, XY-, XY-;Sry Tg, and XX;Sry Tg mice, demonstrating that gene dosage of sex chromosomes does not mediate the sex difference in FAA. Next, we masculinized female mice by treating them with 17-beta estradiol during the neonatal period; yet again, we saw no difference in FAA between control and masculinized females. Finally, we observed that there was no longer a sex difference in FAA for older mice, suggesting that the sex difference in FAA is age-dependent. Thus, our study demonstrates that singular manipulations of gonadal hormones, sex chromosomes, or developmental patterning are not able to explain the difference in FAA between young male and female mice.

  18. Sequence and gene content of a large fragment of a lizard sex chromosome and evaluation of candidate sex differentiating gene R-spondin 1

    PubMed Central

    2013-01-01

    Background Scant genomic information from non-avian reptile sex chromosomes is available, and for only a few lizards, several snakes and one turtle species, and it represents only a small fraction of the total sex chromosome sequences in these species. Results We report a 352 kb of contiguous sequence from the sex chromosome of a squamate reptile, Pogona vitticeps, with a ZZ/ZW sex microchromosome system. This contig contains five protein coding genes (oprd1, rcc1, znf91, znf131, znf180), and major families of repetitive sequences with a high number of copies of LTR and non-LTR retrotransposons, including the CR1 and Bov-B LINEs. The two genes, oprd1 and rcc1 are part of a homologous syntenic block, which is conserved among amniotes. While oprd1 and rcc1 have no known function in sex determination or differentiation in amniotes, this homologous syntenic block in mammals and chicken also contains R-spondin 1 (rspo1), the ovarian differentiating gene in mammals. In order to explore the probability that rspo1 is sex determining in dragon lizards, genomic BAC and cDNA clones were mapped using fluorescence in situ hybridisation. Their location on an autosomal microchromosome pair, not on the ZW sex microchromosomes, eliminates rspo1 as a candidate sex determining gene in P. vitticeps. Conclusion Our study has characterized the largest contiguous stretch of physically mapped sex chromosome sequence (352 kb) from a ZZ/ZW lizard species. Although this region represents only a small fraction of the sex chromosomes of P. vitticeps, it has revealed several features typically associated with sex chromosomes including the accumulation of large blocks of repetitive sequences. PMID:24344927

  19. The genetic contribution to sex determination and number of sex chromosomes vary among populations of common frogs (Rana temporaria).

    PubMed

    Rodrigues, N; Vuille, Y; Brelsford, A; Merilä, J; Perrin, N

    2016-07-01

    The patterns of sex determination and sex differentiation have been shown to differ among geographic populations of common frogs. Notably, the association between phenotypic sex and linkage group 2 (LG2) has been found to be perfect in a northern Swedish population, but weak and variable among families in a southern one. By analyzing these populations with markers from other linkage groups, we bring two new insights: (1) the variance in phenotypic sex not accounted for by LG2 in the southern population could not be assigned to genetic factors on other linkage groups, suggesting an epigenetic component to sex determination; (2) a second linkage group (LG7) was found to co-segregate with sex and LG2 in the northern population. Given the very short timeframe since post-glacial colonization (in the order of 1000 generations) and its seemingly localized distribution, this neo-sex chromosome system might be the youngest one described so far. It does not result from a fusion, but more likely from a reciprocal translocation between the original Y chromosome (LG2) and an autosome (LG7), causing their co-segregation during male meiosis. By generating a strict linkage between several important genes from the sex-determination cascade (Dmrt1, Amh and Amhr2), this neo-sex chromosome possibly contributes to the 'differentiated sex race' syndrome (strictly genetic sex determination and early gonadal development) that characterizes this northern population.

  20. Prevalence of chromosomal aberrations in Mexican women with primary amenorrhoea.

    PubMed

    Cortés-Gutiérrez, Elva I; Dávila-Rodríguez, Martha I; Vargas-Villarreal, Javier; Cerda-Flores, Ricardo M

    2007-10-01

    Primary amenorrhoea refers to the absence of menarche by the age of 16-18 years in the presence of secondary sexual characteristics, and occurs in 1-3% of women of reproductive age. To study the prevalence of chromosomal abnormalities and the different options available for clinical management of women in Mexico with primary amenorrhoea, a cross-sectional study was conducted in 187 women with primary amenorrhoea referred from Department of Reproductive Medicine of Morones Prieto Hospital, IMSS in Monterrey, Mexico during 1995-2003. Peripheral blood lymphocytes were cultured for chromosomal studies by the standard methods. Numerical or structural abnormalities of the sex chromosome were found in 78 women (41.71%). These women were classified into four categories: X-chromosome aneuploidies (22.99%: 12.83% pure line and 10.16% mosaicism association with a 45, X cell line); presence of chromosome Y (10.70%); structural anomalies of the X chromosome (4.28%); and marker chromosomes (3.74%). In conclusion, the prevalence of chromosomal abnormalities in Mexican women with primary amenorrhoea is within the range (24-46%) reported in world literature. Chromosomal analysis is absolutely necessary for appropriate clinical management of these patients.

  1. Higher-order genome organization in platypus and chicken sperm and repositioning of sex chromosomes during mammalian evolution.

    PubMed

    Tsend-Ayush, Enkhjargal; Dodge, Natasha; Mohr, Julia; Casey, Aaron; Himmelbauer, Heinz; Kremitzki, Colin L; Schatzkamer, Kyriena; Graves, Tina; Warren, Wesley C; Grützner, Frank

    2009-02-01

    In mammals, chromosomes occupy defined positions in sperm, whereas previous work in chicken showed random chromosome distribution. Monotremes (platypus and echidnas) are the most basal group of living mammals. They have elongated sperm like chicken and a complex sex chromosome system with homology to chicken sex chromosomes. We used platypus and chicken genomic clones to investigate genome organization in sperm. In chicken sperm, about half of the chromosomes investigated are organized non-randomly, whereas in platypus chromosome organization in sperm is almost entirely non-random. The use of genomic clones allowed us to determine chromosome orientation and chromatin compaction in sperm. We found that in both species chromosomes maintain orientation of chromosomes in sperm independent of random or non-random positioning along the sperm nucleus. The distance of loci correlated with the total length of sperm nuclei, suggesting that chromatin extension depends on sperm elongation. In platypus, most sex chromosomes cluster in the posterior region of the sperm nucleus, presumably the result of postmeiotic association of sex chromosomes. Chicken and platypus autosomes sharing homology with the human X chromosome located centrally in both species suggesting that this is the ancestral position. This suggests that in some therian mammals a more anterior position of the X chromosome has evolved independently.

  2. Higher-order genome organization in platypus and chicken sperm and repositioning of sex chromosomes during mammalian evolution

    PubMed Central

    Tsend-Ayush, Enkhjargal; Dodge, Natasha; Mohr, Julia; Casey, Aaron; Himmelbauer, Heinz; Kremitzki, Colin L.; Schatzkamer, Kyriena; Graves, Tina; Warren, Wesley C.

    2013-01-01

    In mammals, chromosomes occupy defined positions in sperm, whereas previous work in chicken showed random chromosome distribution. Monotremes (platypus and echidnas) are the most basal group of living mammals. They have elongated sperm like chicken and a complex sex chromosome system with homology to chicken sex chromosomes. We used platypus and chicken genomic clones to investigate genome organization in sperm. In chicken sperm, about half of the chromosomes investigated are organized non-randomly, whereas in platypus chromosome organization in sperm is almost entirely non-random. The use of genomic clones allowed us to determine chromosome orientation and chromatin compaction in sperm. We found that in both species chromosomes maintain orientation of chromosomes in sperm independent of random or non-random positioning along the sperm nucleus. The distance of loci correlated with the total length of sperm nuclei, suggesting that chromatin extension depends on sperm elongation. In platypus, most sex chromosomes cluster in the posterior region of the sperm nucleus, presumably the result of postmeiotic association of sex chromosomes. Chicken and platypus autosomes sharing homology with the human X chromosome located centrally in both species suggesting that this is the ancestral position. This suggests that in some therian mammals a more anterior position of the X chromosome has evolved independently. PMID:18726609

  3. Rapid Karyotype Evolution in Lasiopodomys Involved at Least Two Autosome – Sex Chromosome Translocations

    PubMed Central

    Lemskaya, Natalya A.; Serdyukova, Natalya A.; O’Brien, Patricia C. M.; Kovalskaya, Julia M.; Smorkatcheva, Antonina V.; Golenishchev, Feodor N.; Perelman, Polina L.; Trifonov, Vladimir A.; Ferguson-Smith, Malcolm A.; Yang, Fengtang; Graphodatsky, Alexander S.

    2016-01-01

    The generic status of Lasiopodomys and its division into subgenera Lasiopodomys (L. mandarinus, L. brandtii) and Stenocranius (L. gregalis, L. raddei) are not generally accepted because of contradictions between the morphological and molecular data. To obtain cytogenetic evidence for the Lasiopodomys genus and its subgenera and to test the autosome to sex chromosome translocation hypothesis of sex chromosome complex origin in L. mandarinus proposed previously, we hybridized chromosome painting probes from the field vole (Microtus agrestis, MAG) and the Arctic lemming (Dicrostonyx torquatus, DTO) onto the metaphases of a female Mandarin vole (L. mandarinus, 2n = 47) and a male Brandt's vole (L. brandtii, 2n = 34). In addition, we hybridized Arctic lemming painting probes onto chromosomes of a female narrow-headed vole (L. gregalis, 2n = 36). Cross-species painting revealed three cytogenetic signatures (MAG12/18, 17a/19, and 22/24) that could validate the genus Lasiopodomys and indicate the evolutionary affinity of L. gregalis to the genus. Moreover, all three species retained the associations MAG1bc/17b and 2/8a detected previously in karyotypes of all arvicolins studied. The associations MAG2a/8a/19b, 8b/21, 9b/23, 11/13b, 12b/18, 17a/19a, and 5 fissions of ancestral segments appear to be characteristic for the subgenus Lasiopodomys. We also validated the autosome to sex chromosome translocation hypothesis on the origin of complex sex chromosomes in L. mandarinus. Two translocations of autosomes onto the ancestral X chromosome in L. mandarinus led to a complex of neo-X1, neo-X2, and neo-X3 elements. Our results demonstrate that genus Lasiopodomys represents a striking example of rapid chromosome evolution involving both autosomes and sex chromosomes. Multiple reshuffling events including Robertsonian fusions, chromosomal fissions, inversions and heterochromatin expansion have led to the formation of modern species karyotypes in a very short time, about 2.4 MY. PMID

  4. Chromosomal phylogeny of Vampyressine bats (Chiroptera, Phyllostomidae) with description of two new sex chromosome systems.

    PubMed

    Gomes, Anderson José Baia; Nagamachi, Cleusa Yoshiko; Rodrigues, Luis Reginaldo Ribeiro; Benathar, Thayse Cristine Melo; Ribas, Talita Fernanda Augusto; O'Brien, Patricia Caroline Mary; Yang, Fengtang; Ferguson-Smith, Malcolm Andrew; Pieczarka, Julio Cesar

    2016-06-04

    The subtribe Vampyressina (sensu Baker et al. 2003) encompasses approximately 43 species and seven genera and is a recent and diversified group of New World leaf-nosed bats specialized in fruit eating. The systematics of this group continues to be debated mainly because of the lack of congruence between topologies generated by molecular and morphological data. We analyzed seven species of all genera of vampyressine bats by multidirectional chromosome painting, using whole-chromosome-painting probes from Carollia brevicauda and Phyllostomus hastatus. Phylogenetic analyses were performed using shared discrete chromosomal segments as characters and the Phylogenetic Analysis Using Parsimony (PAUP) software package, using Desmodontinae as outgroup. We also used the Tree Analysis Using New Technology (TNT) software. The result showed a well-supported phylogeny congruent with molecular topologies regarding the sister taxa relationship of Vampyressa and Mesophylla genera, as well as the close relationship between the genus Chiroderma and Vampyriscus. Our results supported the hypothesis that all genera of this subtribe have compound sex chromosome systems that originated from an X-autosome translocation, an ancestral condition observed in the Stenodermatinae. Additional rearrangements occurred independently in the genus Vampyressa and Mesophylla yielding the X1X1X2X2/X1X2Y sex chromosome system. This work presents additional data supporting the hypothesis based on molecular studies regarding the polyphyly of the genus Vampyressa and its sister relationship to Mesophylla.

  5. Sex chromosome-specific regulation in the Drosophila male germline but little evidence for chromosomal dosage compensation or meiotic inactivation.

    PubMed

    Meiklejohn, Colin D; Landeen, Emily L; Cook, Jodi M; Kingan, Sarah B; Presgraves, Daven C

    2011-08-01

    The evolution of heteromorphic sex chromosomes (e.g., XY in males or ZW in females) has repeatedly elicited the evolution of two kinds of chromosome-specific regulation: dosage compensation--the equalization of X chromosome gene expression in males and females--and meiotic sex chromosome inactivation (MSCI)--the transcriptional silencing and heterochromatinization of the X during meiosis in the male (or Z in the female) germline. How the X chromosome is regulated in the Drosophila melanogaster male germline is unclear. Here we report three new findings concerning gene expression from the X in Drosophila testes. First, X chromosome-wide dosage compensation appears to be absent from most of the Drosophila male germline. Second, microarray analysis provides no evidence for X chromosome-specific inactivation during meiosis. Third, we confirm the previous discovery that the expression of transgene reporters driven by autosomal spermatogenesis-specific promoters is strongly reduced when inserted on the X chromosome versus the autosomes; but we show that this chromosomal difference in expression is established in premeiotic cells and persists in meiotic cells. The magnitude of the X-autosome difference in transgene expression cannot be explained by the absence of dosage compensation, suggesting that a previously unrecognized mechanism limits expression from the X during spermatogenesis in Drosophila. These findings help to resolve several previously conflicting reports and have implications for patterns of genome evolution and speciation in Drosophila.

  6. Sex chromosome differentiation and the W- and Z-specific loci in Xenopus laevis.

    PubMed

    Mawaribuchi, Shuuji; Takahashi, Shuji; Wada, Mikako; Uno, Yoshinobu; Matsuda, Yoichi; Kondo, Mariko; Fukui, Akimasa; Takamatsu, Nobuhiko; Taira, Masanori; Ito, Michihiko

    2017-06-15

    Genetic sex-determining systems in vertebrates include two basic types of heterogamety; XX (female)/XY (male) and ZZ (male)/ZW (female) types. The African clawed frog Xenopus laevis has a ZZ/ZW-type sex-determining system. In this species, we previously identified a W-specific sex (female)-determining gene dmw, and specified W and Z chromosomes, which could be morphologically indistinguishable (homomorphic). In addition to dmw, we most recently discovered two genes, named scanw and ccdc69w, and one gene, named capn5z in the W- and Z-specific regions, respectively. In this study, we revealed the detail structures of the W/Z-specific loci and genes. Sequence analysis indicated that there is almost no sequence similarity between 278kb W-specific and 83kb Z-specific sequences on chromosome 2Lq32-33, where both the transposable elements are abundant. Synteny and phylogenic analyses indicated that all the W/Z-specific genes might have emerged independently. Expression analysis demonstrated that scanw and ccdc69w or capn5z are expressed in early differentiating ZW gonads or testes, thereby suggesting possible roles in female or male development, respectively. Importantly, the sex-determining gene (SDG) dmw might have been generated after allotetraploidization, thereby indicating the construction of the new sex-determining system by dmw after species hybridization. Furthermore, by direct genotyping, we confirmed that diploid WW embryos developed into normal female frogs, which indicate that the Z-specific region is not essential for female development. Overall, these findings indicate that sex chromosome differentiation has started, although no heteromorphic sex chromosomes are evident yet, in X. laevis. Homologous recombination suppression might have promoted the accumulation of mutations and transposable elements, and enlarged the W/Z-specific regions, thereby resulting in differentiation of the W/Z chromosomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Chromosome banding in amphibia. XXIII. Giant W sex chromosomes and extremely small genomes in Eleutherodactylus euphronides and Eleutherodactylus shrevei (Anura, Leptodactylidae).

    PubMed

    Schmid, M; Feichtinger, W; Steinlein, C; Rupprecht, A; Haaf, T; Kaiser, H

    2002-01-01

    Highly differentiated, heteromorphic ZZ female symbol /ZW male symbol sex chromosomes were found in the karyotypes of the neotropical leptodactylid frogs Eleutherodactylus euphronides and E. shrevei. The W chromosomes are the largest heterochromatic, female-specific chromosomes so far discovered in the class Amphibia. The analyses of the banding patterns with AT- and GC base-pair specific fluorochromes show that the constitutive heterochromatin in the giant W chromosomes consists of various categories of repetitive DNA sequences. The W chromosomes of both species are similar in size, morphology and banding patterns, whereas their Z chromosomes exhibit conspicuous differences. In the cell nuclei of female animals, the W chromosomes form very prominent chromatin bodies (W chromatin). DNA flow cytometric measurements demonstrate clear differences in the DNA content of male and female erythrocytes caused by the giant W chromosome, and also shows that these Eleutherodactylus genomes are among the smallest of all amphibian genomes. The importance of the heteromorphic ZW sex chromosomes for the study of Z-linked genes, the similarities and differences of the two karyotypes, and the significance of the exceptionally small genomes are discussed. Copyright 2002 S. Karger AG, Basel

  8. Constitutional abnormalities of chromosome 21 predispose to iAMP21-acute lymphoblastic leukaemia.

    PubMed

    Harrison, Christine J; Schwab, Claire

    2016-03-01

    In addition to Down syndrome, individuals with other constitutional abnormalities of chromosome 21 have an increased risk of developing childhood acute lymphoblastic leukaemia (ALL). Specifically, carriers of the Robertsonian translocation between chromosomes 15 and 21, rob(15;21) (q10; q10)c, have ∼2,700 increased risk of developing ALL with iAMP21 (intrachromosomal amplification of chromosome 21). In these patients, chromosome 15 as well as chromosome 21 is involved in the formation of iAMP21, referred to here as der(21)(15;21). Individuals with constitutional ring chromosomes involving chromosome 21, r(21)c, are also predisposed to iAMP21-ALL, involving the same series of mutational processes as seen in sporadic- and der(21)(15;21)-iAMP21 ALL. Evidence is accumulating that the dicentric nature of the Robertsonian and ring chromosome is the initiating factor in the formation of the complex iAMP21 structure. Unravelling these intriguing predispositions to iAMP21-ALL may provide insight into how other complex rearrangements arise in cancer. Copyright © 2016. Published by Elsevier Masson SAS.

  9. X-chromosome-counting mechanisms that determine nematode sex.

    PubMed

    Nicoll, M; Akerib, C C; Meyer, B J

    1997-07-10

    Sex is determined in Caenorhabditis elegans by an X-chromosome-counting mechanism that reliably distinguishes the twofold difference in X-chromosome dose between males (1X) and hermaphrodites (2X). This small quantitative difference is translated into the 'on/off' response of the target gene, xol-1, a switch that specifies the male fate when active and the hermaphrodite fate when inactive. Specific regions of X contain counted signal elements whose combined dose sets the activity of xol-1. Here we ascribe the dose effects of one region to a discrete, protein-encoding gene, fox-1. We demonstrate that the dose-sensitive signal elements on chromosome X control xol-1 through two different molecular mechanisms. One involves the transcriptional repression of xol-1 in XX animals. The other uses the putative RNA-binding protein encoded by fox-1 to reduce the level of xol-1 protein. These two mechanisms of repression act together to ensure the fidelity of the X-chromosome counting process.

  10. Assessment of fetal sex chromosome aneuploidy using directed cell-free DNA analysis.

    PubMed

    Nicolaides, Kypros H; Musci, Thomas J; Struble, Craig A; Syngelaki, Argyro; Gil, M M

    2014-01-01

    To examine the performance of chromosome-selective sequencing of cell-free (cf) DNA in maternal blood for assessment of fetal sex chromosome aneuploidies. This was a case-control study of 177 stored maternal plasma samples, obtained before fetal karyotyping at 11-13 weeks of gestation, from 59 singleton pregnancies with fetal sex chromosome aneuploidies (45,X, n = 49; 47,XXX, n = 6; 47,XXY, n = 1; 47,XYY, n = 3) and 118 with euploid fetuses (46,XY, n = 59; 46,XX, n = 59). Digital analysis of selected regions (DANSR™) on chromosomes 21, 18, 13, X and Y was performed and the fetal-fraction optimized risk of trisomy evaluation (FORTE™) algorithm was used to estimate the risk for non-disomic genotypes. Performance was calculated at a risk cut-off of 1:100. Analysis of cfDNA provided risk scores for 172 (97.2%) samples; 4 samples (45,X, n = 2; 46,XY, n = 1; 46,XX, n = 1) had an insufficient fetal cfDNA fraction for reliable testing and 1 case (47,XXX) failed laboratory quality control metrics. The classification was correct in 43 (91.5%) of 47 cases of 45,X, all 5 of 47,XXX, 1 of 47,XXY and 3 of 47,XYY. There were no false-positive results for monosomy X. Analysis of cfDNA by chromosome-selective sequencing can correctly classify fetal sex chromosome aneuploidy with reasonably high sensitivity. © 2013 S. Karger AG, Basel.

  11. Postzygotic isolation involves strong mitochondrial and sex-specific effects in Tigriopus californicus, a species lacking heteromorphic sex chromosomes.

    PubMed

    Foley, B R; Rose, C G; Rundle, D E; Leong, W; Edmands, S

    2013-11-01

    Detailed studies of the genetics of speciation have focused on a few model systems, particularly Drosophila. The copepod Tigriopus californicus offers an alternative that differs from standard animal models in that it lacks heteromorphic chromosomes (instead, sex determination is polygenic) and has reduced opportunities for sexual conflict, because females mate only once. Quantitative trait loci (QTL) mapping was conducted on reciprocal F2 hybrids between two strongly differentiated populations, using a saturated linkage map spanning all 12 autosomes and the mitochondrion. By comparing sexes, a possible sex ratio distorter was found but no sex chromosomes. Although studies of standard models often find an excess of hybrid male sterility factors, we found no QTL for sterility and multiple QTL for hybrid viability (indicated by non-Mendelian adult ratios) and other characters. Viability problems were found to be stronger in males, but the usual explanations for weaker hybrid males (sex chromosomes, sensitivity of spermatogenesis, sexual selection) cannot fully account for these male viability problems. Instead, higher metabolic rates may amplify deleterious effects in males. Although many studies of standard speciation models find the strongest genetic incompatibilities to be nuclear-nuclear (specifically X chromosome-autosome), we found the strongest deleterious interaction in this system was mito-nuclear. Consistent with the snowball theory of incompatibility accumulation, we found that trigenic interactions in this highly divergent cross were substantially more frequent (>6×) than digenic interactions. This alternative system thus allows important comparisons to studies of the genetics of reproductive isolation in more standard model systems.

  12. [Characteristics of pregnancy and delivery of fetuses affected by either central nervous system malformations or chromosomal abnormalities].

    PubMed

    Friedler, Jordana Mashiach; Mazor, Moshe; Shoham-Vardi, Ilana; Bashiri, Asher

    2011-11-01

    To determine whether fetuses affected by either chromosomal abnormalities or central nervous system (CNS) malformations are prone to complications during pregnancy and delivery. In this study, 320 singleton pregnancies with CNS malformations and 133 singleton pregnancies with chromosomal abnormaLities were compared with 149,112 singleton births without any known congenital anomalies. Exclusion criteria were: births with other congenital anomalies or malformations, pregnancies Lacking prenatal care and multiple pregnancies. Data was obtained using the computerized birth discharge records. The statistical analysis was performed with the SPSS package. There were no statistically significant differences in maternal age, ethnicity, uterine anomalies or parity. The ratio of general anesthesia was almost double in the study groups compared to the control group: 25% in the CNS malformation group (RR 2.617, CI 2.031-3.372) and 25.6% in the chromosomal abnormality group (RR 2.696, CI 1.825-3.982) and 11.3% in the control group (p < 0.001). There were nearly double cesarean sections (CS) rates in both study groups: 21.5% in the CNS malformation group, 20.3% in the chromosomal abnormaLity group and 12% in the control group. A logistic regression model that included previous CS, maLpresentation, non-reassuring fetal heart monitor (NRFHR) and presence of a malformation, concluded that the presence of a malformation was not an independent risk factor for CS. However, indirect causes, such as malpresentation (4.34 OR), were independently associated with the malformations. Fetuses affected by either CNS malformations or chromosomal abnormalities have a higher rate of pregnancy and delivery complications, including those which increase the risk of maternal morbidity and mortality.

  13. Anthropometric study with emphasis on hand and foot measurements in the Prader-Willi syndrome: sex, age and chromosome effects.

    PubMed

    Butler, M G; Haynes, J L; Meaney, F J

    1991-01-01

    Age, sex and chromosome effects on weight, height, sitting height, three head dimensions, and five hand and three foot measurements were analyzed from 57 patients (35 males and 22 females) with the Prader-Willi syndrome (PWS). No significant differences were observed in anthropometric data between PWS patients with the 15q chromosome deletion and those with normal chromosomes. Preschool children were found to have dolichocephaly, while hand and foot measurements, stature and sitting height were within normal range, although foot size was smaller than hand size in females when compared with PWS males. However, anthropometric measurements, excluding weight, head length and ankle breadth, were less than -2 SD in adult patients. Abnormal growth patterns apparently exist with significant negative correlations with age, particularly in PWS males, for height, sitting height, head circumference, and hand and foot measurements, but a significant positive correlation for weight was found in patients below 10 years of age.

  14. The (r)evolution of SINE versus LINE distributions in primate genomes: Sex chromosomes are important

    PubMed Central

    Kvikstad, Erika M.; Makova, Kateryna D.

    2010-01-01

    The densities of transposable elements (TEs) in the human genome display substantial variation both within individual chromosomes and among chromosome types (autosomes and the two sex chromosomes). Finding an explanation for this variability has been challenging, especially in light of genome landscapes unique to the sex chromosomes. Here, using a multiple regression framework, we investigate primate Alu and L1 densities shaped by regional genome features and location on a particular chromosome type. As a result of our analysis, first, we build statistical models explaining up to 79% and 44% of variation in Alu and L1 element density, respectively. Second, we analyze sex chromosome versus autosome TE densities corrected for regional genomic effects. We discover that sex-chromosome bias in Alu and L1 distributions not only persists after accounting for these effects, but even presents differences in patterns, confirming preferential Alu integration in the male germline, yet likely integration of L1s in both male and female germlines or in early embryogenesis. Additionally, our models reveal that local base composition (measured by GC content and density of L1 target sites) and natural selection (inferred via density of most conserved elements) are significant to predicting densities of L1s. Interestingly, measurements of local double-stranded breaks (a 13-mer associated with genome instability) strongly correlate with densities of Alu elements; little evidence was found for the role of recombination-driven deletion in driving TE distributions over evolutionary time. Thus, Alu and L1 densities have been influenced by the combination of distinct local genome landscapes and the unique evolutionary dynamics of sex chromosomes. PMID:20219940

  15. The genomic signature of sexual selection in the genetic diversity of the sex chromosomes and autosomes.

    PubMed

    Corl, Ammon; Ellegren, Hans

    2012-07-01

    Genomic levels of variation can help reveal the selective and demographic forces that have affected a species during its history. The relative amount of genetic diversity observed on the sex chromosomes as compared to the autosomes is predicted to differ among monogamous and polygynous species. Many species show departures from the expectation for monogamy, but it can be difficult to conclude that this pattern results from variation in mating system because forces other than sexual selection can act upon sex chromosome genetic diversity. As a critical test of the role of mating system, we compared levels of genetic diversity on the Z chromosome and autosomes of phylogenetically independent pairs of shorebirds that differed in their mating systems. We found general support for sexual selection shaping sex chromosome diversity because most polygynous species showed relatively reduced genetic variation on their Z chromosomes as compared to monogamous species. Differences in levels of genetic diversity between the sex chromosomes and autosomes may therefore contribute to understanding the long-term history of sexual selection experienced by a species. © 2012 The Author(s).

  16. Chromosomal Mapping of Repetitive DNAs in Myiopsitta monachus and Amazona aestiva (Psittaciformes, Psittacidae) with Emphasis on the Sex Chromosomes.

    PubMed

    de Oliveira Furo, Ivanete; Kretschmer, Rafael; Dos Santos, Michelly S; de Lima Carvalho, Carlos A; Gunski, Ricardo J; O'Brien, Patrícia C M; Ferguson-Smith, Malcolm A; Cioffi, Marcelo B; de Oliveira, Edivaldo H C

    2017-01-01

    Here, for the first time, we describe the karyotype of Myiopsitta monachus (Psittacidae, Arini). We found 2n = 48, corresponding to the lowest diploid number observed in Neotropical Psittaciformes so far, with an uncommonly large W chromosome homomorphic to the Z. In order to better understand the evolution of the sex chromosomes in this species, we applied several molecular cytogenetic approaches, including C-banding, FISH mapping of repetitive DNAs (several microsatellite repeats), and whole-chromosome painting on metaphases of M. monachus. For comparison, another species belonging to the same tribe but with a smaller W chromosome (A. aestiva) was also analyzed. The results show that the constitutive heterochromatin has a very diverse distribution pattern in these species revealing heterochromatic blocks in the centromeric region of all chromosomes and in most of the length of the W chromosome in A. aestiva, while in M. monachus they were found in interstitial and telomeric regions. Concerning the microsatellites, only the sequence (CG)n produced signals on the W chromosome of A. aestiva, in the distal region of both arms. However, in M. monachus, (CAA)n, (CAG)n, and (CG)n probes were accumulated on the W chromosome, and, in addition, the sequence (CAG)n also hybridized to heterochromatic regions in macrochromosomes, as well as in microchromosomes. Based on these results, we suggest that the increase in length of the W chromosome in M. monachus is due to the amplification of repetitive elements, which highlights their significant role in the evolutionary process of sex chromosome differentiation. © 2017 S. Karger AG, Basel.

  17. Genetics of dioecy and causal sex chromosomes in plants.

    PubMed

    Kumar, Sushil; Kumari, Renu; Sharma, Vishakha

    2014-04-01

    Dioecy (separate male and female individuals) ensures outcrossing and is more prevalent in animals than in plants. Although it is common in bryophytes and gymnosperms, only 5% of angiosperms are dioecious. In dioecious higher plants, flowers borne on male and female individuals are, respectively deficient in functional gynoecium and androecium. Dioecy is inherited via three sex chromosome systems: XX/XY, XX/X0 and WZ/ZZ, such that XX or WZ is female and XY, X0 or ZZ are males. The XX/XY system generates the rarer XX/X0 and WZ/ZZ systems. An autosome pair begets XY chromosomes. A recessive loss-of-androecium mutation (ana) creates X chromosome and a dominant gynoecium-suppressing (GYS) mutation creates Y chromosome. The ana/ANA and gys/GYS loci are in the sex-determining region (SDR) of the XY pair. Accumulation of inversions, deleterious mutations and repeat elements, especially transposons, in the SDR of Y suppresses recombination between X and Y in SDR, making Y labile and increasingly degenerate and heteromorphic from X. Continued recombination between X and Y in their pseudoautosomal region located at the ends of chromosomal arms allows survival of the degenerated Y and of the species. Dioecy is presumably a component of the evolutionary cycle for the origin of new species. Inbred hermaphrodite species assume dioecy. Later they suffer degenerate-Y-led population regression. Cross-hybridization between such extinguishing species and heterologous species, followed by genome duplication of segregants from hybrids, give rise to new species.

  18. Environmental Exposure of Sperm Sex-Chromosomes: A Gender Selection Technique.

    PubMed

    Oyeyipo, Ibukun P; van der Linde, Michelle; du Plessis, Stefan S

    2017-10-01

    Preconceptual sex selection is still a highly debatable process whereby X- and Y-chromosome-bearing spermatozoa are isolated prior to fertilization of the oocyte. Although various separation techniques are available, none can guarantee 100% accuracy. The aim of this study was to separate X- and Y-chromosome-bearing spermatozoa using methods based on the viability difference between the X- and Y-chromosome-bearing spermatozoa. A total of 18 experimental semen samples were used, written consent was obtained from all donors and results were analysed in a blinded fashion. Spermatozoa were exposed to different pH values (5.5, 6.5, 7.5, 8.5, and 9.5), increased temperatures (37°C, 41°C, and 45°C) and ROS level (50 μM, 750 μM, and 1,000 μM). The live and dead cell separation was done through a modified swim-up technique. Changes in the sex-chromosome ratio of samples were established by double-label fluorescent in situ hybridization (FISH) before and after processing. The results indicated successful enrichment of Xchromosome-bearing spermatozoa upon incubation in acidic media, increased temperatures, and elevated H 2 O 2 . This study demonstrated the potential role for exploring the physiological differences between X-and Y-chromosome-bearing spermatozoa in the development of preconceptual gender selection.

  19. Genome structure and emerging evidence of an incipient sex chromosome in Populus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Tongming; DiFazio, Stephen P; Gunter, Lee E

    The genus Populus consists of dioecious woody species with largely unknown genetic mechanisms for gender determination. We have discovered genetic and genomic features in the peritelomeric region of chromosome XIX that suggest this region of the Populus genome is in the process of developing characteristics of a sex chromosome. We have identified a gender-associated locus that consistently maps to this region. Furthermore, comparison of genetic maps across multiple Populus families reveals consistently distorted segregation within this region. We have intensively characterized this region using an F1 interspecific cross involving the female genotype that was used for genome sequencing. This regionmore » shows suppressed recombination and high divergence between the alternate haplotypes, as revealed by dense map-based genome assembly using microsatellite markers. The suppressed recombination, distorted segregation, and haplotype divergence were observed only for the maternal parent in this cross. Furthermore, the progeny of this cross showed a strongly male-biased sex ratio, in agreement with Haldane's rule that postulates that the heterogametic sex is more likely to be absent, rare, or sterile in interspecific crosses. Together, these results support the role of chromosome XIX in sex determination and suggest that sex determination in Populus occurs through a ZW system in which the female is the heterogametic gender.« less

  20. Non-invasive risk assessment of fetal sex chromosome aneuploidy through directed analysis and incorporation of fetal fraction.

    PubMed

    Hooks, J; Wolfberg, A J; Wang, E T; Struble, C A; Zahn, J; Juneau, K; Mohseni, M; Huang, S; Bogard, P; Song, K; Oliphant, A; Musci, T J

    2014-05-01

    To assess the performance of a directed chromosomal analysis approach in the prenatal evaluation of fetal sex chromosome aneuploidy. We analyzed 432 frozen maternal plasma samples obtained from patients prior to undergoing fetal diagnostic testing. The cohort included women greater than 18 years of age with a singleton pregnancy of greater than 10 weeks gestation. Samples were analyzed using a chromosome-selective approach (DANSR(TM) ) and a risk algorithm that incorporates fetal fraction (FORTE(TM) ). The cohort included 34 cases of sex chromosome aneuploidy. The assay correctly identified 26 of 27 (92.6%) cases of Monosomy X, one case of XXX, and all six cases of XXY. There were four false positive cases of sex chromosome aneuploidy among 380 euploid cases for an overall false positive rate of less than 1%. Analysis of the risk for sex chromosome aneuploidies can be accomplished with a targeted assay with high sensitivity. © 2014 John Wiley & Sons, Ltd.

  1. Shifting syndromes: Sex chromosome variations and intersex classifications

    PubMed Central

    Griffiths, David Andrew

    2018-01-01

    The 2006 ‘Consensus statement on management of intersex disorders’ recommended moving to a new classification of intersex variations, framed in terms of ‘disorders of sex development’ or DSD. Part of the rationale for this change was to move away from associations with gender, and to increase clarity by grounding the classification system in genetics. While the medical community has largely accepted the move, some individuals from intersex activist communities have condemned it. In addition, people both inside and outside the medical community have disagreed about what should be covered by the classification system, in particular whether sex chromosome variations and the related diagnoses of Turner and Klinefelter’s syndromes should be included. This article explores initial descriptions of Turner and Klinefelter’s syndromes and their subsequent inclusion in intersex classifications, which were increasingly grounded in scientific understandings of sex chromosomes that emerged in the 1950s. The article questions the current drive to stabilize and ‘sort out’ intersex classifications through a grounding in genetics. Alternative social and historical definitions of intersex – such as those proposed by the intersex activists – have the potential to do more justice to the lived experience of those affected by such classifications and their consequences. PMID:29424285

  2. Comparative cytogenetic analysis of sex chromosomes in several Canidae species using zoo-FISH.

    PubMed

    Bugno-Poniewierska, Monika; Sojecka, Agnieszka; Pawlina, Klaudia; Jakubczak, Andrzej; Jezewska-Witkowska, Grazyna

    2012-01-01

    Sex chromosome differentiation began early during mammalian evolution. The karyotype of almost all placental mammals living today includes a pair of heterosomes: XX in females and XY in males. The genomes of different species may contain homologous synteny blocks indicating that they share a common ancestry. One of the tools used for their identification is the Zoo-FISH technique. The aim of the study was to determine whether sex chromosomes of some members of the Canidae family (the domestic dog, the red fox, the arctic fox, an interspecific hybrid: arctic fox x red fox and the Chinese raccoon dog) are evolutionarily conservative. Comparative cytogenetic analysis by Zoo-FISH using painting probes specific to domestic dog heterosomes was performed. The results show the presence of homologous synteny covering the entire structures of the X and the Y chromosomes. This suggests that sex chromosomes are conserved in the Canidae family. The data obtained through Zoo-FISH karyotype analysis append information obtained using other comparative genomics methods, giving a more complete depiction of genome evolution.

  3. The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z

    PubMed Central

    Rens, Willem; O'Brien, Patricia CM; Grützner, Frank; Clarke, Oliver; Graphodatskaya, Daria; Tsend-Ayush, Enkhjargal; Trifonov, Vladimir A; Skelton, Helen; Wallis, Mary C; Johnston, Steve; Veyrunes, Frederic; Graves, Jennifer AM; Ferguson-Smith, Malcolm A

    2007-01-01

    Background Sex-determining systems have evolved independently in vertebrates. Placental mammals and marsupials have an XY system, birds have a ZW system. Reptiles and amphibians have different systems, including temperature-dependent sex determination, and XY and ZW systems that differ in origin from birds and placental mammals. Monotremes diverged early in mammalian evolution, just after the mammalian clade diverged from the sauropsid clade. Our previous studies showed that male platypus has five X and five Y chromosomes, no SRY, and DMRT1 on an X chromosome. In order to investigate monotreme sex chromosome evolution, we performed a comparative study of platypus and echidna by chromosome painting and comparative gene mapping. Results Chromosome painting reveals a meiotic chain of nine sex chromosomes in the male echidna and establishes their order in the chain. Two of those differ from those in the platypus, three of the platypus sex chromosomes differ from those of the echidna and the order of several chromosomes is rearranged. Comparative gene mapping shows that, in addition to bird autosome regions, regions of bird Z chromosomes are homologous to regions in four platypus X chromosomes, that is, X1, X2, X3, X5, and in chromosome Y1. Conclusion Monotreme sex chromosomes are easiest to explain on the hypothesis that autosomes were added sequentially to the translocation chain, with the final additions after platypus and echidna divergence. Genome sequencing and contig anchoring show no homology yet between platypus and therian Xs; thus, monotremes have a unique XY sex chromosome system that shares some homology with the avian Z. PMID:18021405

  4. The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z.

    PubMed

    Rens, Willem; O'Brien, Patricia C M; Grützner, Frank; Clarke, Oliver; Graphodatskaya, Daria; Tsend-Ayush, Enkhjargal; Trifonov, Vladimir A; Skelton, Helen; Wallis, Mary C; Johnston, Steve; Veyrunes, Frederic; Graves, Jennifer A M; Ferguson-Smith, Malcolm A

    2007-01-01

    Sex-determining systems have evolved independently in vertebrates. Placental mammals and marsupials have an XY system, birds have a ZW system. Reptiles and amphibians have different systems, including temperature-dependent sex determination, and XY and ZW systems that differ in origin from birds and placental mammals. Monotremes diverged early in mammalian evolution, just after the mammalian clade diverged from the sauropsid clade. Our previous studies showed that male platypus has five X and five Y chromosomes, no SRY, and DMRT1 on an X chromosome. In order to investigate monotreme sex chromosome evolution, we performed a comparative study of platypus and echidna by chromosome painting and comparative gene mapping. Chromosome painting reveals a meiotic chain of nine sex chromosomes in the male echidna and establishes their order in the chain. Two of those differ from those in the platypus, three of the platypus sex chromosomes differ from those of the echidna and the order of several chromosomes is rearranged. Comparative gene mapping shows that, in addition to bird autosome regions, regions of bird Z chromosomes are homologous to regions in four platypus X chromosomes, that is, X1, X2, X3, X5, and in chromosome Y1. Monotreme sex chromosomes are easiest to explain on the hypothesis that autosomes were added sequentially to the translocation chain, with the final additions after platypus and echidna divergence. Genome sequencing and contig anchoring show no homology yet between platypus and therian Xs; thus, monotremes have a unique XY sex chromosome system that shares some homology with the avian Z.

  5. The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities.

    PubMed

    Naim, Valeria; Rosselli, Filippo

    2009-06-01

    Loss-of-function of caretaker genes characterizes a group of cancer predisposition diseases that feature cellular hypersensitivity to DNA damage and chromosome fragility; this group includes Fanconi anaemia and Bloom syndrome. The products of the 13 FANC genes (mutated in Fanconi anaemia), which constitute the 'FANC' pathway, and BLM (the RecQ helicase mutated in Bloom syndrome) are thought to collaborate during the S phase of the cell cycle, preventing chromosome instability. Recently, BLM has been implicated in the completion of sister chromatid separation during mitosis, a complex process in which precise regulation and execution is crucial to preserve genomic stability. Here we show for the first time a role for the FANC pathway in chromosome segregation during mitotic cell division. FANCD2, a key component of the pathway, localizes to discrete spots on mitotic chromosomes. FANCD2 chromosomal localization is responsive to replicative stress and specifically targets aphidicolin (APH)-induced chromatid gaps and breaks. Our data indicate that the FANC pathway is involved in rescuing abnormal anaphase and telophase (ana-telophase) cells, limiting aneuploidy and reducing chromosome instability in daughter cells. We further address a cooperative role for the FANC pathway and BLM in preventing micronucleation, through FANC-dependent targeting of BLM to non-centromeric abnormal structures induced by replicative stress. We reveal new crosstalk between FANC and BLM proteins, extending their interaction beyond the S-phase rescue of damaged DNA to the safeguarding of chromosome stability during mitosis.

  6. Molecular cytogenetic analysis of monoecious hemp (Cannabis sativa L.) cultivars reveals its karyotype variations and sex chromosomes constitution.

    PubMed

    Razumova, Olga V; Alexandrov, Oleg S; Divashuk, Mikhail G; Sukhorada, Tatiana I; Karlov, Gennady I

    2016-05-01

    Hemp (Cannabis sativa L., 2n = 20) is a dioecious plant. Sex expression is controlled by an X-to-autosome balance system consisting of the heteromorphic sex chromosomes XY for males and XX for females. Genetically monoecious hemp offers several agronomic advantages compared to the dioecious cultivars that are widely used in hemp cultivation. The male or female origin of monoecious maternal plants is unknown. Additionally, the sex chromosome composition of monoecious hemp forms remains unknown. In this study, we examine the sex chromosome makeup in monoecious hemp using a cytogenetic approach. Eight monoecious and two dioecious cultivars were used. The DNA of 210 monoecious plants was used for PCR analysis with the male-associated markers MADC2 and SCAR323. All monoecious plants showed female amplification patterns. Fluorescence in situ hybridization (FISH) with the subtelomeric CS-1 probe to chromosomes plates and karyotyping revealed a lack of Y chromosome and presence of XX sex chromosomes in monoecious cultivars with the chromosome number 2n = 20. There was a high level of intra- and intercultivar karyotype variation detected. The results of this study can be used for further analysis of the genetic basis of sex expression in plants.

  7. Sex determination in mythology and history.

    PubMed

    Mittwoch, Ursula

    2005-02-01

    The history of ideas on how the sexes became divided spans at least three thousand years. The biblical account of the origin of Eve, and the opinions of the philosophers of classical Greece, have unexpected bearings on present-day ideas. The scientific study of sex determination can be said to have begun in the 17th century with the discovery of spermatozoa, but the origin and function of the "spermatic animalcules" eluded investigators until 1841. The mammalian egg was discovered in 1827, and in the last quarter of the century fertilization was observed. The view current at that time, that sex determination was under environmental control, gave way to the idea of chromosomal determination in the first quarter of the 20th century. The study of human and other mammalian chromosomes during the third quarter of the century, and the discovery of sex-chromosome abnormalities, emphasized the importance of the Y chromosome for male sex determination. The last quarter of the century witnessed a hunt for the "testis-determining" gene, thought to be responsible for the differentiation of Sertoli cells, and culminating in the isolation of SRY (Sry in the mouse). However, an increasing number of additional genes and growth factors were found to be required for the establishment of male sex. During the same period evidence emerged that male development was accompanied by enhanced growth, both of gonads and whole embryos. An unexpected finding was the demonstration of temperature-dependent sex determination in reptiles. With the advent of the 21st century, it was shown that Sry induces cell proliferation in fetal mouse gonads, and it has been suggested that male sex differentiation in mammals requires a higher metabolic rate. These insights could lead to a better understanding and improved treatment of abnormalities of sexual development.

  8. Cryptic deletions and inversions of chromosome 21 in a phenotypically normal infant with transient abnormal myelopoiesis: a molecular cytogenetic study.

    PubMed

    Kempski, H M; Craze, J L; Chessells, J M; Reeves, B R

    1998-11-01

    A case of transient abnormal myelopoiesis in a normal newborn without features of Down syndrome is described. The majority of bone marrow cells analysed belonged to a chromosomally abnormal clone with trisomy for chromosomes 18 and 21. Complex intrachromosomal rearrangements of one chromosome 21, demonstrated by fluorescence in situ hybridization using locus-specific probes, were found in a minor population of the clonal cells. These rearrangements involved loci previously shown to be rearranged in the leukaemic cells from patients with Down syndrome and leukaemia. However, the child's myeloproliferation resolved rapidly, with disappearance of the abnormal clone, and 3.5 years later she remains well.

  9. Expression pattern of X-linked genes in sex chromosome aneuploid bovine cells.

    PubMed

    Basrur, Parvathi K; Farazmand, Ali; Stranzinger, Gerald; Graphodatskaya, Daria; Reyes, Ed R; King, W Allan

    2004-01-01

    Expression of the X-inactive specific transcript (XIST) gene is a prerequisite step for dosage compensation in mammals, accomplished by silencing one of the two X chromosomes in normal female diploid cells or all X chromosomes in excess of one in sex chromosome aneuploids. Our previous studies showing that XIST expression does not eventuate the inactivation of X-linked genes in fetal bovine testis had suggested that XIST expression may not be an indicator of X inactivation in this species. In this study, we used a semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) approach on cultures of bovine cells with varying sex chromosome constitution (XY, XX, XXY and XXX) to test whether the levels of XIST expressed conform to the number of late replicating (inactive) X chromosomes displayed by proliferating cells in these cultures. Expression patterns of four X-linked genes, including hypoxanthine phosphorybosyl transferase (HPRT), glucose-6-phosphate dehydrogenase (G6PD), zinc finger protein locus on the X (ZFX). and 'selected mouse cDNA on the X' (SMCX), in all these cells were also tested. Results showed that XIST expression was significantly higher (p < 0.05) in XXX cells compared to XX and XXY cells and that G6PD. HPRT, and SMCX loci are subject to X inactivation. The significantly higher levels of ZFX expressed in XXX cells compared to XX and XXY cells (p < 0.05) confirmed that this bovine locus, as human ZFX, escapes X inactivation. However, the levels of XIST and ZFX expressed were not proportional to the X chromosome load in these cells suggesting that X-linked loci escaping inactivation may be regulated at transcription (or post-transcription) level by mechanisms that prevent gene-specific product accumulation beyond certain levels in sex chromosome aneuploids.

  10. Simultaneous regression of Philadelphia chromosome and multiple nonrecurrent clonal chromosomal abnormalities with imatinib mesylate in a patient autografted 22 years before for chronic myelogenous leukemia.

    PubMed

    Van Den Akker, J; Coppo, P; Portnoï, M F; Barbu, V; Bories, D; Gorin, N C

    2007-09-01

    A 31-year-old patient developed chronic myelogenous leukemia (CML) in November, 1983. In November 1984, following a diagnosis of acceleration, he received an autologous hemopoietic transplant after conditioning with cyclophosphamide and total body irradiation. The autologous marrow was purged with mafosfamide. Over 20 years, the patient remained in chronic phase of CML. Multiple nonrecurrent clonal chromosomal abnormalities appeared leading to a very complex karyotype, including among others involvement of chromosomes 1, 7, 9, 13, 19, and X. Fluorescent in situ hybridization showed that the two chromosomes 9 were involved. Acute myeloid crisis was diagnosed in February, 2004. Treatment with imatinib mesylate resulted within 6 months in a total disappearance of all chromosomal abnormalities with a complete cytogenetic and molecular response, which persists 3 years later. We question whether the ex vivo purging procedure with mafosfamide has favored the occurrence of these particular cytogenetic abnormalities (with no independent oncogenic potential) within the original leukemic stem cell pool. It remains unclear whether the autologous transplantation has indeed resulted into some prolongation of the duration of the chronic phase, which lasted for 20 years. At time of acute crisis, the dramatic response to imatinib mesylate leading to a complete cytogenetic and molecular response is noteworthy.

  11. Identifying homomorphic sex chromosomes from wild-caught adults with limited genomic resources.

    PubMed

    Brelsford, Alan; Lavanchy, Guillaume; Sermier, Roberto; Rausch, Anna; Perrin, Nicolas

    2017-07-01

    We demonstrate a genotyping-by-sequencing approach to identify homomorphic sex chromosomes and their homolog in a distantly related reference genome, based on noninvasive sampling of wild-caught individuals, in the moor frog Rana arvalis. Double-digest RADseq libraries were generated using buccal swabs from 30 males and 21 females from the same population. Search for sex-limited markers from the unfiltered data set (411 446 RAD tags) was more successful than searches from a filtered data set (33 073 RAD tags) for markers showing sex differences in heterozygosity or in allele frequencies. Altogether, we obtained 292 putatively sex-linked RAD loci, 98% of which point to male heterogamety. We could map 15 of them to the Xenopus tropicalis genome, all but one on chromosome pair 1, which seems regularly co-opted for sex determination among amphibians. The most efficient mapping strategy was a three-step hierarchical approach, where R. arvalis reads were first mapped to a low-coverage genome of Rana temporaria (17 My divergence), then the R. temporaria scaffolds to the Nanorana parkeri genome (90 My divergence), and finally the N. parkeri scaffolds to the X. tropicalis genome (210 My). We validated our conclusions with PCR primers amplifying part of Dmrt1, a candidate sex determination gene mapping to chromosome 1: a sex-diagnostic allele was present in all 30 males but in none of the 21 females. Our approach is likely to be productive in many situations where biological samples and/or genomic resources are limited. © 2016 John Wiley & Sons Ltd.

  12. [Combined G-banded karyotyping and multiplex ligation-dependent probe amplification for the detection of chromosomal abnormalities in fetuses with congenital heart defects].

    PubMed

    Liu, Yang; Xie, Jiansheng; Geng, Qian; Xu, Zhiyong; Wu, Weiqin; Luo, Fuwei; Li, Suli; Wang, Qin; Chen, Wubin; Tan, Hongxi; Zhang, Hu

    2017-02-10

    To assess the value of G-banded karyotyping in combination with multiplex ligation-dependent probe amplification (MLPA) as a tool for the detection of chromosomal abnormalities in fetuses with congenital heart defects. The combined method was used to analyze 104 fetuses with heart malformations identified by ultrasonography. Abnormal findings were confirmed with chromosomal microarray analysis (CMA). Nineteen (18%) fetuses were found to harbor chromosomal aberrations by G-banded karyotyping and MLPA. For 93 cases, CMA has detected abnormalities in 14 cases including 10 pathogenic copy number variations (CNVs) and 4 CNVs of uncertain significance (VOUS). MLPA was able to detect all of the pathogenic CNVs and 1 VOUS CNV. Combined use of G-banded karyotyping and MLPA is a rapid, low-cost and effective method to detect chromosomal abnormalities in fetuses with various heart malformations.

  13. Is there an association with constitutional structural chromosomal abnormalities and hematologic neoplastic process? A short review.

    PubMed

    Panani, Anna D

    2009-04-01

    The occasional observation of constitutional chromosomal abnormalities in patients with a malignant disease has led to a number of studies on their potential role in cancer development. Investigations of families with hereditary cancers and constitutional chromosomal abnormalities have been key observations leading to the molecular identification of specific genes implicated in tumorigenesis. Large studies have been reported on the incidence of constitutional chromosomal aberrations in patients with hematologic malignancies, but they could not confirm an increased risk for hematologic malignancy among carriers of structural chromosomal changes. However, it is of particular interest that constitutional structural aberrations with breakpoints similar to leukemia-associated specific breakpoints have been reported in patients with hematologic malignancies. Because of insufficient data, it remains still unclear if these aberrations represent random events or are associated with malignancy. There has been a substantial discussion about mechanisms involved in constitutional structural chromosomal changes in the literature. The documentation of more patients with constitutional structural chromosomal changes could be of major importance. Most importantly, the molecular investigation of chromosomal regions involved in rearrangements could give useful information on the genetic events underlying constitutional anomalies, contributing to isolation of genes important in the development of the neoplastic process. Regarding constitutional anomalies in patients with hematologic disorders, a survey of the cytogenetic data of our cytogenetics unit is herein also presented.

  14. Novel rapid molecular diagnosis of fetal chromosomal abnormalities associated with recurrent pregnancy loss.

    PubMed

    Yang, Lan; Tang, Ye; Lu, Mudan; Yang, Yuefen; Xiao, Jianping; Wang, Qiaoxia; Yang, Canfeng; Tao, Hehua; Xiang, Jingying

    2016-12-01

    Labor-intensive karyotyping is used as the reference standard diagnostic test to identify copy number variants (CNVs) in the fetal genome after recurrent pregnancy loss. Our aim was to present and evaluate a novel molecular assay called CNVplex that could potentially be used as an alternative method to conventional karyotyping for diagnosing fetal chromosomal abnormalities associated with recurrent pregnancy loss. Using karyotyping as the reference standard, CNVplex was performed to identify fetal chromosomal abnormalities in the chorionic villus samples from 76 women experiencing at least two pregnancy losses. Its diagnostic accuracy, sensitivity, and specificity were evaluated to detect aneuploidies associated with recurrent pregnancy loss. Turnaround time and costs of CNVplex were also measured. Diagnostic accuracy of CNVplex in aneuploidies that are associated with recurrent pregnancy loss was 1.0 (95% CI 0.94-1.0), sensitivity was 100% (95% CI 0.89-1.0), and specificity was 100% (95% CI 0.875-1.0). Diagnostic accuracy of CNVplex was similar to that of karyotyping. Both karyotyping and CNVplex assay detected 27 autosomal trisomies, three 45,X monosomies, and three polyploidies. CNVplex also detected additional novel structural abnormalities of the fetal genome. Compared with karyotyping, CNVplex significantly (p = 0.001) reduced the waiting time by 13.98 days (95% CI 13.88-14.08) and the cost by US $241 (95% CI 234.53-247.47). CNVplex is a novel effective assay for diagnosing fetal chromosomal abnormalities associated with recurrent pregnancy loss. In the routine clinical work-up of recurrent pregnancy loss, diagnostic accuracy of CNVplex is comparable to that of conventional karyotyping but it requires less waiting time and has lower cost. © 2016 Nordic Federation of Societies of Obstetrics and Gynecology.

  15. The fate of W chromosomes in hybrids between wild silkmoths, Samia cynthia ssp.: no role in sex determination and reproduction

    PubMed Central

    Yoshido, A; Marec, F; Sahara, K

    2016-01-01

    Moths and butterflies (Lepidoptera) have sex chromosome systems with female heterogamety (WZ/ZZ or derived variants). The maternally inherited W chromosome is known to determine female sex in the silkworm, Bombyx mori. However, little is known about the role of W chromosome in other lepidopteran species. Here we describe two forms of the W chromosome, W and neo-W, that are transmitted to both sexes in offspring of hybrids from reciprocal crosses between subspecies of wild silkmoths, Samia cynthia. We performed crosses between S. c. pryeri (2n=28, WZ/ZZ) and S. c. walkeri (2n=26, neo-Wneo-Z/neo-Zneo-Z) and examined fitness and sex chromosome constitution in their hybrids. The F1 hybrids of both reciprocal crosses had reduced fertility. Fluorescence in situ hybridization revealed not only the expected sex chromosome constitutions in the backcross and F2 hybrids of both sexes but also females without the W (or neo-W) chromosome and males carrying the W (or neo-W) chromosome. Furthermore, crosses between the F2 hybrids revealed no association between the presence or absence of W (or neo-W) chromosome and variations in the hatchability of their eggs. Our results clearly suggest that the W (or neo-W) chromosome of S. cynthia ssp. plays no role in sex determination and reproduction, and thus does not contribute to the formation of reproductive barriers between different subspecies. PMID:26758188

  16. The fate of W chromosomes in hybrids between wild silkmoths, Samia cynthia ssp.: no role in sex determination and reproduction.

    PubMed

    Yoshido, A; Marec, F; Sahara, K

    2016-05-01

    Moths and butterflies (Lepidoptera) have sex chromosome systems with female heterogamety (WZ/ZZ or derived variants). The maternally inherited W chromosome is known to determine female sex in the silkworm, Bombyx mori. However, little is known about the role of W chromosome in other lepidopteran species. Here we describe two forms of the W chromosome, W and neo-W, that are transmitted to both sexes in offspring of hybrids from reciprocal crosses between subspecies of wild silkmoths, Samia cynthia. We performed crosses between S. c. pryeri (2n=28, WZ/ZZ) and S. c. walkeri (2n=26, neo-Wneo-Z/neo-Zneo-Z) and examined fitness and sex chromosome constitution in their hybrids. The F1 hybrids of both reciprocal crosses had reduced fertility. Fluorescence in situ hybridization revealed not only the expected sex chromosome constitutions in the backcross and F2 hybrids of both sexes but also females without the W (or neo-W) chromosome and males carrying the W (or neo-W) chromosome. Furthermore, crosses between the F2 hybrids revealed no association between the presence or absence of W (or neo-W) chromosome and variations in the hatchability of their eggs. Our results clearly suggest that the W (or neo-W) chromosome of S. cynthia ssp. plays no role in sex determination and reproduction, and thus does not contribute to the formation of reproductive barriers between different subspecies.

  17. Unraveling the Sex Chromosome Heteromorphism of the Paradoxical Frog Pseudis tocantins

    PubMed Central

    Gatto, Kaleb Pretto; Busin, Carmen Silvia; Lourenço, Luciana Bolsoni

    2016-01-01

    The paradoxical frog Pseudis tocantins is the only species in the Hylidae family with known heteromorphic Z and W sex chromosomes. The Z chromosome is metacentric and presents an interstitial nucleolar organizer region (NOR) on the long arm that is adjacent to a pericentromeric heterochromatic band. In contrast, the submetacentric W chromosome carries a pericentromeric NOR on the long arm, which is adjacent to a clearly evident heterochromatic band that is larger than the band found on the Z chromosome and justify the size difference observed between these chromosomes. Here, we provide evidence that the non-centromeric heterochromatic bands in Zq and Wq differ not only in size and location but also in composition, based on comparative genomic hybridization (CGH) and an analysis of the anuran PcP190 satellite DNA. The finding of PcP190 sequences in P. tocantins extends the presence of this satellite DNA, which was previously detected among Leptodactylidae and Hylodidae, suggesting that this family of repetitive DNA is even older than it was formerly considered. Seven groups of PcP190 sequences were recognized in the genome of P. tocantins. PcP190 probes mapped to the heterochromatic band in Wq, and a Southern blot analysis indicated the accumulation of PcP190 in the female genome of P. tocantins, which suggests the involvement of this satellite DNA in the evolution of the sex chromosomes of this species. PMID:27214234

  18. Allelic interaction of F1 pollen sterility loci and abnormal chromosome behaviour caused pollen sterility in intersubspecific autotetraploid rice hybrids.

    PubMed

    He, J H; Shahid, M Q; Li, Y J; Guo, H B; Cheng, X A; Liu, X D; Lu, Y G

    2011-08-01

    The intersubspecific hybrids of autotetraploid rice has many features that increase rice yield, but lower seed set is a major hindrance in its utilization. Pollen sterility is one of the most important factors which cause intersubspecific hybrid sterility. The hybrids with greater variation in seed set were used to study how the F(1) pollen sterile loci (S-a, S-b, and S-c) interact with each other and how abnormal chromosome behaviour and allelic interaction of F(1) sterility loci affect pollen fertility and seed set of intersubspecific autotetraploid rice hybrids. The results showed that interaction between pollen sterility loci have significant effects on the pollen fertility of autotetraploid hybrids, and pollen fertility further decreased with an increase in the allelic interaction of F(1) pollen sterility loci. Abnormal ultra-structure and microtubule distribution patterns during pollen mother cell (PMC) meiosis were found in the hybrids with low pollen fertility in interphase and leptotene, suggesting that the effect-time of pollen sterility loci interaction was very early. There were highly significant differences in the number of quadrivalents and bivalents, and in chromosome configuration among all the hybrids, and quadrivalents decreased with an increase in the seed set of autotetraploid hybrids. Many different kinds of chromosomal abnormalities, such as chromosome straggling, chromosome lagging, asynchrony of chromosome disjunction, and tri-fission were found during the various developmental stages of PMC meiosis. All these abnormalities were significantly higher in sterile hybrids than in fertile hybrids, suggesting that pollen sterility gene interactions tend to increase the chromosomal abnormalities which cause the partial abortion of male gametes and leads to the decline in the seed set of the autotetraploid rice hybrids. © 2011 The Author(s).

  19. Comparative genetic mapping in Fragaria virginiana reveals autosomal origin of sex chromosome

    USDA-ARS?s Scientific Manuscript database

    Although most flowering plants are hermaphrodite, separate sexes (dioecy) have evolved repeatedly. The evolution of sex chromosomes from autosomes can often, but not always, accompany this transition. Thus, many have argued that plant genera that contain both hermaphroditic and dioecious members pro...

  20. Clinical and molecular cytogenetic studies in ring chromosome 5: report of a child with congenital abnormalities.

    PubMed

    Basinko, Audrey; Giovannucci Uzielli, Maria Luisa; Scarselli, Gloria; Priolo, Manuela; Timpani, Giuseppina; De Braekeleer, Marc

    2012-02-01

    We report here a child with a ring chromosome 5 (r(5)) associated with facial dysmorphology and multiple congenital abnormalities. Fluorescent in situ hybridization (FISH) using bacterial artificial chromosome (BAC) clones was performed to determine the breakpoints involved in the r(5). The 5p deletion extended from 5p13.2-3 to 5pter and measured 34.61 Mb (range: 33.7-35.52 Mb) while the 5q deletion extended from 5q35.3 to 5qter and measured 2.44 Mb (range: 2.31-2.57 Mb). The patient presented signs such as microcephaly, hypertelorism, micrognathia and epicanthal folds, partially recalling those of a deletion of the short arm of chromosome 5 and the "cri-du-chat" syndrome. The most striking phenotypic features were the congenital heart abnormalities which have been frequently reported in deletions of the distal part of the long arm of chromosome 5 and in rings leading to a 5q35-5qter deletion. However, the NKX2-5 gene, which has been related to congenital heart defects, was not deleted in our patient, nor presumably to some other patients with 5q35.3-5qter deletion. We propose that VEGFR3, deleted in our patient, could be a candidate gene for the congenital heart abnormalities observed. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  1. Separate effects of sex hormones and sex chromosomes on brain structure and function revealed by high-resolution magnetic resonance imaging and spatial navigation assessment of the Four Core Genotype mouse model.

    PubMed

    Corre, Christina; Friedel, Miriam; Vousden, Dulcie A; Metcalf, Ariane; Spring, Shoshana; Qiu, Lily R; Lerch, Jason P; Palmert, Mark R

    2016-03-01

    Males and females exhibit several differences in brain structure and function. To examine the basis for these sex differences, we investigated the influences of sex hormones and sex chromosomes on brain structure and function in mice. We used the Four Core Genotype (4CG) mice, which can generate both male and female mice with XX or XY sex chromosome complement, allowing the decoupling of sex chromosomes from hormonal milieu. To examine whole brain structure, high-resolution ex vivo MRI was performed, and to assess differences in cognitive function, mice were trained on a radial arm maze. Voxel-wise and volumetric analyses of MRI data uncovered a striking independence of hormonal versus chromosomal influences in 30 sexually dimorphic brain regions. For example, the bed nucleus of the stria terminalis and the parieto-temporal lobe of the cerebral cortex displayed steroid-dependence while the cerebellar cortex, corpus callosum, and olfactory bulbs were influenced by sex chromosomes. Spatial learning and memory demonstrated strict hormone-dependency with no apparent influence of sex chromosomes. Understanding the influences of chromosomes and hormones on brain structure and function is important for understanding sex differences in brain structure and function, an endeavor that has eventual implications for understanding sex biases observed in the prevalence of psychiatric disorders.

  2. A polymorphic pseudoautosomal boundary in the Carica papaya sex chromosomes.

    PubMed

    Lappin, Fiona M; Medert, Charles M; Hawkins, Kevin K; Mardonovich, Sandra; Wu, Meng; Moore, Richard C

    2015-08-01

    Sex chromosomes are defined by a non-recombining sex-determining region (SDR) flanked by one or two pseudoautosomal regions (PARs). The genetic composition and evolutionary dynamics of the PAR is also influenced by its linkage to the differentiated non-recombining SDR; however, understanding the effects of this linkage requires a precise definition of the PAR boundary. Here, we took a molecular population genetic approach to further refine the location of the PAR boundary of the evolutionary young sex chromosomes of the tropical plant, Carica papaya. We were able to map the position of the papaya PAR boundary A to a 100-kb region between two genetic loci approximately 2 Mb upstream of the previously genetically identified PAR boundary. Furthermore, this boundary is polymorphic within natural populations of papaya, with an approximately 100-130 kb expansion of the non-recombining SDR found in 16 % of individuals surveyed. The expansion of the PAR boundary in one Y haplotype includes at least one additional gene. Homologs of this gene are involved in male gametophyte and pollen development in other plant species.

  3. Human sperm sex chromosome disomy and sperm DNA damage assessed by the neutral comet assay.

    PubMed

    McAuliffe, M E; Williams, P L; Korrick, S A; Dadd, R; Marchetti, F; Martenies, S E; Perry, M J

    2014-10-10

    Is there an association between human sperm sex chromosome disomy and sperm DNA damage? An increase in human sperm XY disomy was associated with higher comet extent; however, there was no other consistent association of sex chromosome disomies with DNA damage. There is limited published research on the association between sex chromosome disomy and sperm DNA damage and the findings are not consistent across studies. We conducted a cross-sectional study of 190 men (25% ever smoker, 75% never smoker) from subfertile couples presenting at the Massachusetts General Hospital Fertility Clinic from January 2000 to May 2003. Multiprobe fluorescence in situ hybridization for chromosomes X, Y and 18 was used to determine XX, YY, XY and total sex chromosome disomy in sperm nuclei using an automated scoring method. The neutral comet assay was used to measure sperm DNA damage, as reflected by comet extent, percentage DNA in the comet tail, and tail distributed moment. Univariate and multiple linear regression models were constructed with sex chromosome disomy (separate models for each of the four disomic conditions) as the independent variable, and DNA damage parameters (separate models for each measure of DNA damage) as the dependent variable. Men with current or past smoking history had significantly greater comet extent (µm: regression coefficients with 95% CI) [XX18: 15.17 (1.98, 28.36); YY18: 14.68 (1.50, 27.86); XY18: 15.41 (2.37, 28.45); Total Sex Chromosome Disomy: 15.23 (2.09, 28.38)], and tail distributed moment [XX18: 3.01 (0.30, 5.72); YY18: 2.95 (0.24, 5.67); XY18: 3.04 (0.36, 5.72); Total Sex Chromosome Disomy: 3.10 (0.31, 5.71)] than men who had never smoked. In regression models adjusted for age and smoking, there was a positive association between XY disomy and comet extent. For an increase in XY disomy from 0.56 to 1.47% (representing the 25th to 75th percentile), there was a mean increase of 5.08 µm in comet extent. No other statistically significant

  4. Gender-Specific Gene Expression in Post-Mortem Human Brain: Localization to Sex Chromosomes

    PubMed Central

    Vawter, Marquis P; Evans, Simon; Choudary, Prabhakara; Tomita, Hiroaki; Meador-Woodruff, Jim; Molnar, Margherita; Li, Jun; Lopez, Juan F; Myers, Rick; Cox, David; Watson, Stanley J; Akil, Huda; Jones, Edward G; Bunney, William E

    2011-01-01

    Gender differences in brain development and in the prevalence of neuropsychiatric disorders such as depression have been reported. Gender differences in human brain might be related to patterns of gene expression. Microarray technology is one useful method for investigation of gene expression in brain. We investigated gene expression, cell types, and regional expression patterns of differentially expressed sex chromosome genes in brain. We profiled gene expression in male and female dorsolateral prefrontal cortex, anterior cingulate cortex, and cerebellum using the Affymetrix oligonucleotide microarray platform. Differentially expressed genes between males and females on the Y chromosome (DBY, SMCY, UTY, RPS4Y, and USP9Y) and X chromosome (XIST) were confirmed using real-time PCR measurements. In situ hybridization confirmed the differential expression of gender-specific genes and neuronal expression of XIST, RPS4Y, SMCY, and UTY in three brain regions examined. The XIST gene, which silences gene expression on regions of the X chromosome, is expressed in a subset of neurons. Since a subset of neurons express gender-specific genes, neural subpopulations may exhibit a subtle sexual dimorphism at the level of differences in gene regulation and function. The distinctive pattern of neuronal expression of XIST, RPS4Y, SMCY, and UTY and other sex chromosome genes in neuronal subpopulations may possibly contribute to gender differences in prevalence noted for some neuropsychiatric disorders. Studies of the protein expression of these sex- chromosome-linked genes in brain tissue are required to address the functional consequences of the observed gene expression differences. PMID:14583743

  5. Independent degeneration of W and Y sex chromosomes in frog Rana rugosa.

    PubMed

    Miura, Ikuo; Ohtani, Hiromi; Ogata, Mitsuaki

    2012-01-01

    The frog Rana rugosa uniquely possesses two different sex-determining systems of XX/XY and ZZ/ZW, separately in the geographic populations. The sex chromosomes of both types share the same origin at chromosome 7, and the structural differences between X and Y or Z and W were evolved through two inversions. In order to ascertain the mechanisms of degeneration of W and Y chromosomes, we gynogenetically produced homozygous diploids WW and YY and examined their viability. Tadpoles from geographic group N (W(N)W(N)) containing three populations died of edema at an early developmental stage within 10 days after hatching, while tadpoles from the geographic group K (W(K)W(K)) that contained two populations died of underdeveloped growth at a much later stage, 40-50 days after fertilization. On the contrary, W(N)W(K) and W(K)W(N) hybrid embryos were viable, successfully passed the two lethal stages, and survived till the attainment of adulthood. The observed survival implies that the lethal genes of the W chromosomes are not shared by the two groups and thus demonstrates their independent degeneration histories between the local groups. In sharp contrast, a sex-linked gene of androgen receptor gene (AR) from the W chromosome was down-regulated in expression in both the groups, suggesting that inactivation of the W-AR allele preceded divergence of the two groups and appearance of the lethal genes. Besides, the YY embryos died of cardiac edema immediately after hatching. The symptom of lethality and the stage of developmental arrest differed from those for either of WW lethal embryos. We therefore conclude that the W and Y chromosomes involve no evolutionary common scenario for degeneration.

  6. Characterization of a complex chromosomal rearrangement using chromosome, FISH, and microarray assays in a girl with multiple congenital abnormalities and developmental delay.

    PubMed

    Hemmat, Morteza; Yang, Xiaojing; Chan, Patricia; McGough, Robert A; Ross, Leslie; Mahon, Loretta W; Anguiano, Arturo L; Boris, Wang T; Elnaggar, Mohamed M; Wang, Jia-Chi J; Strom, Charles M; Boyar, Fatih Z

    2014-01-01

    Complex chromosomal rearrangements (CCRs) are balanced or unbalanced structural rearrangements involving three or more cytogenetic breakpoints on two or more chromosomal pairs. The phenotypic anomalies in such cases are attributed to gene disruption, superimposed cryptic imbalances in the genome, and/or position effects. We report a 14-year-old girl who presented with multiple congenital anomalies and developmental delay. Chromosome and FISH analysis indicated a highly complex chromosomal rearrangement involving three chromosomes (3, 7 and 12), seven breakpoints as a result of one inversion, two insertions, and two translocations forming three derivative chromosomes. Additionally, chromosomal microarray study (CMA) revealed two submicroscopic deletions at 3p12.3 (467 kb) and 12q13.12 (442 kb). We postulate that microdeletion within the ROBO1 gene at 3p12.3 may have played a role in the patient's developmental delay, since it has potential activity-dependent role in neurons. Additionally, factors other than genomic deletions such as loss of function or position effects may also contribute to the abnormal phenotype in our patient.

  7. Characterization of a complex chromosomal rearrangement using chromosome, FISH, and microarray assays in a girl with multiple congenital abnormalities and developmental delay

    PubMed Central

    2014-01-01

    Complex chromosomal rearrangements (CCRs) are balanced or unbalanced structural rearrangements involving three or more cytogenetic breakpoints on two or more chromosomal pairs. The phenotypic anomalies in such cases are attributed to gene disruption, superimposed cryptic imbalances in the genome, and/or position effects. We report a 14-year-old girl who presented with multiple congenital anomalies and developmental delay. Chromosome and FISH analysis indicated a highly complex chromosomal rearrangement involving three chromosomes (3, 7 and 12), seven breakpoints as a result of one inversion, two insertions, and two translocations forming three derivative chromosomes. Additionally, chromosomal microarray study (CMA) revealed two submicroscopic deletions at 3p12.3 (467 kb) and 12q13.12 (442 kb). We postulate that microdeletion within the ROBO1 gene at 3p12.3 may have played a role in the patient’s developmental delay, since it has potential activity-dependent role in neurons. Additionally, factors other than genomic deletions such as loss of function or position effects may also contribute to the abnormal phenotype in our patient. PMID:25478007

  8. Sex differences in juvenile mouse social behavior are influenced by sex chromosomes and social context.

    PubMed

    Cox, K H; Rissman, E F

    2011-06-01

    Play behavior in juvenile primates, rats and other species is sexually dimorphic, with males showing more play than females. In mice, sex differences in juvenile play have only been examined in out-bred CD-1 mice. In this strain, contrary to other animals, male mice display less play soliciting than females. Using an established same-sex dyadic interaction test, we examined play in in-bred C57BL/6J (B6) 21-day-old mice. When paired with non-siblings, males tended to be more social than females, spending more time exploring the test cage. Females displayed significantly more anogenital sniffing and solicited play more frequently than did males. To determine if the origin of the sex difference was sex chromosome genes or gonadal sex, next we used the four core genotype mouse. We found significant interactions between gonadal sex and genotype for several behaviors. Finally, we asked if sibling pairs (as compared to non-siblings) would display qualitatively or quantitatively different behavior. In fact, XX females paired with a sibling were more social and less exploratory or investigative, whereas XY males exhibited less investigative and play soliciting behaviors in tests with siblings. Many neurobehavioral disorders, like autism spectrum disorder (ASD), are sexually dimorphic in incidence and patients interact less than normal with other children. Our results suggest that sex chromosome genes interact with gonadal hormones to shape the development of juvenile social behavior, and that social context can drastically alter sex differences. These data may have relevance for understanding the etiology of sexually dimorphic disorders such as ASD. © 2011 The Authors. Genes, Brain and Behavior © 2011 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  9. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis

    PubMed Central

    Du, Sienmi; Itoh, Noriko; Askarinam, Sahar; Hill, Haley; Arnold, Arthur P.; Voskuhl, Rhonda R.

    2014-01-01

    Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease. PMID:24550311

  10. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis.

    PubMed

    Du, Sienmi; Itoh, Noriko; Askarinam, Sahar; Hill, Haley; Arnold, Arthur P; Voskuhl, Rhonda R

    2014-02-18

    Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease.

  11. Implication of sperm chromosomal abnormalities in recurrent abortion and multiple implantation failure.

    PubMed

    Caseiro, Ana Lara; Regalo, Ana; Pereira, Elisa; Esteves, Telma; Fernandes, Fernando; Carvalho, Joaquim

    2015-10-01

    Currently, some infertility treatment centres provide sperm karyotype analysis, although the impact of sperm chromosomal abnormalities on fertility is not yet fully understood. Several studies using fluorescence in-situ hybridization (FISH) to analyse sperm chromosomal constitution discovered that the incidence of aneuploidy is increased in individuals with a history of repeated abortion or implantation failure and is even higher in cases of oligoasthenoteratozoospermia (OAT), abnormal somatic karyotype or in spermatozoa retrieved directly from the testis or epididymis, showing that the application of FISH in these cases may be of some benefit for improving the reproductive outcome. This article presents the results of clinical trials of FISH analysis on spermatozoa, the medical indications for performing this examination, its results in infertile patients and the advantages when performing genetic counselling prior to treatment. Also discussed is the possibility of applying the latest techniques of genetic analysis in these cases and the potential benefits for improving the prognosis of male infertility. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  12. Arrested human embryos are more likely to have abnormal chromosomes than developing embryos from women of advanced maternal age.

    PubMed

    Qi, Shu-Tao; Liang, Li-Feng; Xian, Ye-Xing; Liu, Jian-Qiao; Wang, Weihua

    2014-01-01

    Aneuploidy is one of the major factors that result in low efficiency in human infertility treatment by in vitro fertilization (IVF). The development of DNA microarray technology allows for aneuploidy screening by analyzing all 23 pairs of chromosomes in human embryos. All chromosome screening for aneuploidy is more accurate than partial chromosome screening, as errors can occur in any chromosome. Currently, chromosome screening for aneuploidy is performed in developing embryos, mainly blastocysts. It has not been performed in arrested embryos and/or compared between developing embryos and arrested embryos from the same IVF cycle. The present study was designed to examine all chromosomes in blastocysts and arrested embryos from the same cycle in patients of advanced maternal ages. Embryos were produced by routine IVF procedures. A total of 90 embryos (45 blastocysts and 45 arrested embryos) from 17 patients were biopsied and analyzed by the Agilent DNA array platform. It was found that 50% of the embryos developed to blastocyst stage; however, only 15.6% of the embryos (both blastocyst and arrested) were euploid, and most (84.4%) of the embryos had chromosomal abnormalities. Further analysis indicated that 28.9% of blastocysts were euploid and 71.1% were aneuploid. By contrast, only one (2.2%) arrested embryo was euploid while others (97.8%) were aneuploid. The prevalence of multiple chromosomal abnormalities in the aneuploid embryos was also higher in the arrested embryos than in the blastocysts. These results indicate that high proportions of human embryos from patients of advanced maternal age are aneuploid, and the arrested embryos are more likely to have abnormal chromosomes than developing embryos.

  13. Moderate Ovarian Stimulation Does Not Increase the Incidence of Human Embryo Chromosomal Abnormalities in in Vitro Fertilization Cycles

    PubMed Central

    Bosch, Ernesto; Alamá, Pilar; Rubio, Carmen; Rodrigo, Lorena; Pellicer, Antonio

    2012-01-01

    Context: A high chromosomal abnormalities rate has been observed in human embryos derived from in vitro fertilization (IVF) treatments. The real incidence in natural cycles has been poorly studied, so whether this frequency may be induced by external factors, such as use of gonadotropins for ovarian stimulation, remains unknown. Design: We conducted a prospective cohort study in a University-affiliated private infertility clinic with a comparison between unstimulated and stimulated ovarian cycles in the same women. Preimplantation genetic screening by fluorescence in situ hybridization was performed in all viable d 3 embryos. Objective: The primary objective was to compare the incidence of embryo chromosomal abnormalities in an unstimulated cycle and in an ulterior moderate ovarian stimulated cycle. Secondary outcome measures were embryo quality, blastocyst rate of biopsied embryos, number of normal blastocysts per donor, type of chromosomal abnormalities, and clinical outcome. Results: One hundred eighty-five oocyte donors were initially recruited for the unstimulated cycle, and preimplantation genetic screening could be performed in 51 of them, showing 35.3% of embryo chromosomal abnormalities. Forty-six of them later completed a stimulated cycle. The sperm donor sample was the same for both cycles. The proportion of embryos displaying abnormalities in the unstimulated cycle was 34.8% (16 of 46), whereas it was 40.6% (123 of 303) in the stimulated cycle with risk difference = 5.8 [95% confidence interval (CI) = −20.6–9.0], and relative risk = 1.17 (95% CI = 0.77–1.77) (P = 0.45). When an intrasubject comparison was made, the abnormalities rate was 34.8% (95% CI = 20.5–49.1) in the unstimulated cycle and 38.2% (95% CI = 30.5–45.8) in the stimulated cycle [risk difference = 3.4 (95% CI = −17.9–11.2); P = 0.64]. No differences were observed for embryo quality and type of chromosomal abnormalities. Conclusions: Moderate ovarian stimulation in young

  14. CAFE: an R package for the detection of gross chromosomal abnormalities from gene expression microarray data.

    PubMed

    Bollen, Sander; Leddin, Mathias; Andrade-Navarro, Miguel A; Mah, Nancy

    2014-05-15

    The current methods available to detect chromosomal abnormalities from DNA microarray expression data are cumbersome and inflexible. CAFE has been developed to alleviate these issues. It is implemented as an R package that analyzes Affymetrix *.CEL files and comes with flexible plotting functions, easing visualization of chromosomal abnormalities. CAFE is available from https://bitbucket.org/cob87icW6z/cafe/ as both source and compiled packages for Linux and Windows. It is released under the GPL version 3 license. CAFE will also be freely available from Bioconductor. sander.h.bollen@gmail.com or nancy.mah@mdc-berlin.de Supplementary data are available at Bioinformatics online.

  15. Karyotypic complexity rather than chromosome 8 abnormalities aggravates the outcome of chronic lymphocytic leukemia patients with TP53 aberrations

    PubMed Central

    Blanco, Gonzalo; Puiggros, Anna; Baliakas, Panagiotis; Athanasiadou, Anastasia; García-Malo, MªDolores; Collado, Rosa; Xochelli, Aliki; Rodríguez-Rivera, María; Ortega, Margarita; Calasanz, Mª José; Luño, Elisa; Vargas, MªTeresa; Grau, Javier; Martínez-Laperche, Carolina; Valiente, Alberto; Cervera, José; Anagnostopoulos, Achilles; Gimeno, Eva; Abella, Eugènia; Stalika, Evangelia; Hernández-Rivas, Jesús Mª; Ortuño, Francisco José; Robles, Diego; Ferrer, Ana; Ivars, David; González, Marcos; Bosch, Francesc; Abrisqueta, Pau; Stamatopoulos, Kostas; Espinet, Blanca

    2016-01-01

    Patients with chronic lymphocytic leukemia (CLL) harboring TP53 aberrations (TP53abs; chromosome 17p deletion and/or TP53 mutation) exhibit an unfavorable clinical outcome. Chromosome 8 abnormalities, namely losses of 8p (8p−) and gains of 8q (8q+) have been suggested to aggravate the outcome of patients with TP53abs. However, the reported series were small, thus hindering definitive conclusions. To gain insight into this issue, we assessed a series of 101 CLL patients harboring TP53 disruption. The frequency of 8p− and 8q+ was 14.7% and 17.8% respectively. Both were associated with a significantly (P < 0.05) higher incidence of a complex karyotype (CK, ≥3 abnormalities) detected by chromosome banding analysis (CBA) compared to cases with normal 8p (N-8p) and 8q (N-8q), respectively. In univariate analysis for 10-year overall survival (OS), 8p− (P = 0.002), 8q+ (P = 0.012) and CK (P = 0.009) were associated with shorter OS. However, in multivariate analysis only CK (HR = 2.47, P = 0.027) maintained independent significance, being associated with a dismal outcome regardless of chromosome 8 abnormalities. In conclusion, our results highlight the association of chromosome 8 abnormalities with CK amongst CLL patients with TP53abs, while also revealing that CK can further aggravate the prognosis of this aggressive subgroup. PMID:27821812

  16. Human sperm chromosome analysis after subzonal sperm insemination of hamster oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, J.

    1994-09-01

    Sperm microinjection techniques, subzonal sperm insemination (SUZI) and intracytoplasmic sperm injection (ICSI), have achieved a wide spread clinical application for the treatment of male infertility. To date, only one study has focused on sperm karyotypes after microinjection. Martin et al. reported a very high incidence of abnormal human sperm complements after ICSI into hamster oocytes. In the present study, are reported the first human sperm karyotypes after SUZI of hamster oocytes. Spermatozoa from two control donors were treated by calcium ionophore A23187 and injected under the zona of hamster eggs. The microinjected eggs were then cultured for cytogenetic analysis ofmore » the pronuclei. Out of 47 analyzed sperm chromosome metaphases, 5 (10.6%) were abnormal, 4 (8.5%) were hypohaploid and 1 (2.1%) had a structural abnormality. The sex ratio was not significantly different from the expected 1:1 ratio. Rates of chromosomal abnormalities in microinjected spermatozoa were similar to those observed in spermatozoa inseminated with zona free eggs, suggesting that SUZI procedure per se does not increase sperm chromosomal abnormalities.« less

  17. Cataract in a patient with 47,XYY sex chromosome aneuploidy.

    PubMed

    Medina-Andrade, A; Villanueva-Mendoza, C; Arenas, S; Cortés-González, V

    2018-06-01

    The case concerns a 16 year-old boy with a history of high myopia and unilateral congenital cataract, tall stature for age, facial dysmorphism, hypermobile metacarpal-phalangeal joints, as well as behavioural problems. The mother had a history of recurrent pregnancy loss. Chromosomal analysis of the peripheral blood lymphocytes reported 47,XYY. Patients with sex chromosome aneuploidy 47,XYY have higher risk of congenital malformations, although ophthalmological anomalies are unusual. Evaluation of patients with tall stature and behavioural problems should include a chromosomal analysis in order to determine the aetiology. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Genetic Mapping and Phylogenetic Analysis Reveal Intraspecific Variation in Sex Chromosomes of the Virginian Strawberry.

    PubMed

    Wei, Na; Govindarajulu, Rajanikanth; Tennessen, Jacob A; Liston, Aaron; Ashman, Tia-Lynn

    2017-10-30

    With their extraordinary diversity in sexual systems, flowering plants offer unparalleled opportunities to understand sex determination and to reveal generalities in the evolution of sex chromosomes. Comparative genetic mapping of related taxa with good phylogenetic resolution can delineate the extent of sex chromosome diversity within plant groups, and lead the way to understanding the evolutionary drivers of such diversity. The North American octoploid wild strawberries provide such an opportunity. We performed linkage mapping using targeted sequence capture for the subdioecious western Fragaria virginiana ssp. platypetala and compared the location of its sex-determining region (SDR) to those of 2 other (sub)dioecious species, the eastern subspecies, F. virginiana ssp. virginiana (whose SDR is at 0-5.5 Mb on chromosome VI of the B2 subgenome), and the sister species F. chiloensis (whose SDR is at 37 Mb on chromosome VI of the Av subgenome). Male sterility was dominant in F. virginiana ssp. platypetala and mapped to a chromosome also in homeologous group VI. Likewise, one major quantitative trait locus (QTL) for female fertility overlapped the male sterility region. However, the SDR mapped to yet another subgenome (B1), and to a different location (13 Mb), but similar to the location inferred in one population of the naturally occurring hybrid between F. chiloensis and F. virginiana (F. ×ananassa ssp. cuneifolia). Phylogenetic analysis of chromosomes across the octoploid taxa showed consistent subgenomic composition reflecting shared evolutionary history but also reinforced within-species variation in the SDR-carrying chromosome, suggesting either repeated evolution, or recent turnovers in SDR. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Preferential accumulation of sex and Bs chromosomes in biarmed karyotypes by meiotic drive and rates of chromosomal changes in fishes.

    PubMed

    Molina, Wagner F; Martinez, Pablo A; Bertollo, Luiz A C; Bidau, Claudio J

    2014-12-01

    Mechanisms of accumulation based on typical centromeric drive or of chromosomes carrying pericentric inversions are adjusted to the general karyotype differentiation in the principal Actinopterygii orders. Here, we show that meiotic drive in fish is also supported by preferential establishment of sex chromosome systems and B chromosomes in orders with predominantly bi-brachial chromosomes. The mosaic of trends acting at an infra-familiar level in fish could be explained as the interaction of the directional process of meiotic drive as background, modulated on a smaller scale by adaptive factors or specific karyotypic properties of each group, as proposed for the orthoselection model.

  20. Preferential accumulation of sex and Bs chromosomes in biarmed karyotypes by meiotic drive and rates of chromosomal changes in fishes.

    PubMed

    Molina, Wagner F; Martinez, Pablo A; Bertollo, Luiz A C; Bidau, Claudio J

    2014-11-14

    Mechanisms of accumulation based on typical centromeric drive or of chromosomes carrying pericentric inversions are adjusted to the general karyotype differentiation in the principal Actinopterygii orders. Here, we show that meiotic drive in fish is also supported by preferential establishment of sex chromosome systems and B chromosomes in orders with predominantly bi-brachial chromosomes. The mosaic of trends acting at an infra-familiar level in fish could be explained as the interaction of the directional process of meiotic drive as background, modulated on a smaller scale by adaptive factors or specific karyotypic properties of each group, as proposed for the orthoselection model.

  1. Sex-chromosome differentiation parallels postglacial range expansion in European tree frogs (Hyla arborea).

    PubMed

    Dufresnes, Christophe; Bertholet, Youna; Wassef, Jérôme; Ghali, Karim; Savary, Romain; Pasteur, Baptiste; Brelsford, Alan; Rozenblut-Kościsty, Beata; Ogielska, Maria; Stöck, Matthias; Perrin, Nicolas

    2014-12-01

    Occasional XY recombination is a proposed explanation for the sex-chromosome homomorphy in European tree frogs. Numerous laboratory crosses, however, failed to detect any event of male recombination, and a detailed survey of NW-European Hyla arborea populations identified male-specific alleles at sex-linked loci, pointing to the absence of XY recombination in their recent history. Here, we address this paradox in a phylogeographic framework by genotyping sex-linked microsatellite markers in populations and sibships from the entire species range. Contrasting with postglacial populations of NW Europe, which display complete absence of XY recombination and strong sex-chromosome differentiation, refugial populations of the southern Balkans and Adriatic coast show limited XY recombination and large overlaps in allele frequencies. Geographically and historically intermediate populations of the Pannonian Basin show intermediate patterns of XY differentiation. Even in populations where X and Y occasionally recombine, the genetic diversity of Y haplotypes is reduced below the levels expected from the fourfold drop in copy numbers. This study is the first in which X and Y haplotypes could be phased over the distribution range in a species with homomorphic sex chromosomes; it shows that XY-recombination patterns may differ strikingly between conspecific populations, and that recombination arrest may evolve rapidly (<5000 generations). © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  2. Sexual dimorphism in mammalian autosomal gene regulation is determined not only by Sry but by sex chromosome complement as well.

    PubMed

    Wijchers, Patrick J; Yandim, Cihangir; Panousopoulou, Eleni; Ahmad, Mushfika; Harker, Nicky; Saveliev, Alexander; Burgoyne, Paul S; Festenstein, Richard

    2010-09-14

    Differences between males and females are normally attributed to developmental and hormonal differences between the sexes. Here, we demonstrate differences between males and females in gene silencing using a heterochromatin-sensitive reporter gene. Using "sex-reversal" mouse models with varying sex chromosome complements, we found that this differential gene silencing was determined by X chromosome complement, rather than sex. Genome-wide transcription profiling showed that the expression of hundreds of autosomal genes was also sensitive to sex chromosome complement. These genome-wide analyses also uncovered a role for Sry in modulating autosomal gene expression in a sex chromosome complement-specific manner. The identification of this additional layer in the establishment of sexual dimorphisms has implications for understanding sexual dimorphisms in physiology and disease. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Human sperm sex chromosome disomy and sperm DNA damage assessed by the neutral comet assay

    PubMed Central

    McAuliffe, M.E.; Williams, P.L.; Korrick, S.A.; Dadd, R.; Marchetti, F.; Martenies, S.E.; Perry, M.J.

    2014-01-01

    STUDY QUESTION Is there an association between human sperm sex chromosome disomy and sperm DNA damage? SUMMARY ANSWER An increase in human sperm XY disomy was associated with higher comet extent; however, there was no other consistent association of sex chromosome disomies with DNA damage. WHAT IS KNOWN ALREADY There is limited published research on the association between sex chromosome disomy and sperm DNA damage and the findings are not consistent across studies. STUDY DESIGN, SIZE, AND DURATION We conducted a cross-sectional study of 190 men (25% ever smoker, 75% never smoker) from subfertile couples presenting at the Massachusetts General Hospital Fertility Clinic from January 2000 to May 2003. PARTICIPANTS/MATERIALS, SETTING, METHODS Multiprobe fluorescence in situ hybridization for chromosomes X, Y and 18 was used to determine XX, YY, XY and total sex chromosome disomy in sperm nuclei using an automated scoring method. The neutral comet assay was used to measure sperm DNA damage, as reflected by comet extent, percentage DNA in the comet tail, and tail distributed moment. Univariate and multiple linear regression models were constructed with sex chromosome disomy (separate models for each of the four disomic conditions) as the independent variable, and DNA damage parameters (separate models for each measure of DNA damage) as the dependent variable. MAIN RESULTS AND THE ROLE OF CHANCE Men with current or past smoking history had significantly greater comet extent (µm: regression coefficients with 95% CI) [XX18: 15.17 (1.98, 28.36); YY18: 14.68 (1.50, 27.86); XY18: 15.41 (2.37, 28.45); Total Sex Chromosome Disomy: 15.23 (2.09, 28.38)], and tail distributed moment [XX18: 3.01 (0.30, 5.72); YY18: 2.95 (0.24, 5.67); XY18: 3.04 (0.36, 5.72); Total Sex Chromosome Disomy: 3.10 (0.31, 5.71)] than men who had never smoked. In regression models adjusted for age and smoking, there was a positive association between XY disomy and comet extent. For an increase in XY

  4. Rapid molecular sexing of three-spined sticklebacks, Gasterosteus aculeatus L., based on large Y-chromosomal insertions.

    PubMed

    Bakker, Theo C M; Giger, Thomas; Frommen, Joachim G; Largiadèr, Carlo R

    2017-08-01

    There is a need for rapid and reliable molecular sexing of three-spined sticklebacks, Gasterosteus aculeatus, the supermodel species for evolutionary biology. A DNA region at the 5' end of the sex-linked microsatellite Gac4202 was sequenced for the X chromosome of six females and the Y chromosome of five males from three populations. The Y chromosome contained two large insertions, which did not recombine with the phenotype of sex in a cross of 322 individuals. Genetic variation (SNPs and indels) within the insertions was smaller than on flanking DNA sequences. Three molecular PCR-based sex tests were developed, in which the first, the second or both insertions were covered. In five European populations (from DE, CH, NL, GB) of three-spined sticklebacks, tests with both insertions combined showed two clearly separated bands on agarose minigels in males and one band in females. The tests with the separate insertions gave similar results. Thus, the new molecular sexing method gave rapid and reliable results for sexing three-spined sticklebacks and is an improvement and/or alternative to existing methods.

  5. Only a minority of sex chromosome abnormalities are detected by a national prenatal screening program for Down syndrome.

    PubMed

    Viuff, Mette Hansen; Stochholm, Kirstine; Uldbjerg, Niels; Nielsen, Birgitte Bruun; Gravholt, Claus Højbjerg

    2015-10-01

    How does a national prenatal screening program for Down syndrome (DS) perform in detecting sex chromosome abnormalities (SCAs)-Turner syndrome (TS), Klinefelter syndrome, 47,XXX and 47,XYY syndromes. The SCA detection rate resulting from DS screening was below 50% for all four groups of SCAs. The detection rates of SCAs are higher in countries with DS screening. TS is associated with greater nuchal translucency (NT) and lower pregnancy-associated plasma protein-A (PAPP-A). However, specific detection rates of SCAs using prenatal DS screening have not been determined. No clear trend in PAPP-A, free beta human chorionic gonadotropin (β-hCG) and NT has been found in the remaining SCAs. Several lines of inquiry suggest that it would be advantageous for individuals with SCA to be detected early in life, leading to prevention or treatment of accompanying conditions. There is limited information about pre- and perinatal status that distinguishes SCA embryogenesis from normal fetal development. A register-based case-control study from the Danish Central Cytogenetic Register (DCCR), cross-linked with the Danish Fetal Medicine Database (DFMD), was performed from 2008 to 2012. Groups of SCAs were compared with DS and then matched with non-SCA controls to assess differences between these groups in prenatal markers and birth outcomes. We included cases with prenatal and post-natal SCA karyotypes (n = 213), DS (n = 802) and 168 056 controls. We screened 275 037 individuals examined prenatally. We retrieved information regarding maternal age, NT, β-hCG and PAPP-A, as well as details regarding maternal and newborn characteristics. The DS screening procedure detected 87 per 100 000 TS (42% of expected), 19 per 100 000 Klinefelter syndrome (13% of expected), 16 per 100 000 47,XXX (16% of cases) and 5 per 100 000 47,XYY (5% of expected) SCAs, with an overall detection rate of 27%. Compared with controls, all four SCA groups showed significantly higher NT and lower PAPP-A compared

  6. To Break or Not To Break: Sex Chromosome Hemizygosity During Meiosis in Caenorhabditis.

    PubMed

    Van, Mike V; Larson, Braden J; Engebrecht, JoAnne

    2016-11-01

    Meiotic recombination establishes connections between homologous chromosomes to promote segregation. Hemizygous regions of sex chromosomes have no homologous chromosome to recombine with, yet must be transmitted through meiosis. An extreme case of hemizygosity exists in the genus Caenorhabditis, where males have a single X chromosome that completely lacks a homologous partner. To determine whether similar strategies have evolved to accommodate hemizygosity of the X during male meiosis in Caenorhabditis with distinct modes of sexual reproduction, we examined induction and processing of meiotic double strand breaks (DSBs) in androdioecious (hermaphrodite/male) Caenorhabditis elegans and C. briggsae, and gonochoristic (female/male) C. remanei and C. brenneri Analysis of the recombinase RAD-51 suggests more meiotic DSBs are induced in gonochoristic vs. androdioecious species. However, in late prophase in all species, chromosome pairs are restructured into bivalents around a single axis, suggesting that the holocentric nature of Caenorhabditis chromosomes dictates a single crossover per bivalent regardless of the number of DSBs induced. Interestingly, RAD-51 foci were readily observed on the X chromosome of androdioecious male germ cells, while very few were detected in gonochoristic male germ cells. As in C. elegans, the X chromosome in C. briggsae male germ cells undergoes transient pseudosynapsis and flexibility in DSB repair pathway choice. In contrast, in C. remanei and C. brenneri male germ cells, the X chromosome does not undergo pseudosynapsis and appears refractory to SPO-11-induced breaks. Together our results suggest that distinct strategies have evolved to accommodate sex chromosome hemizygosity during meiosis in closely related Caenorhabditis species. Copyright © 2016 by the Genetics Society of America.

  7. Neural Activation During Mental Rotation in Complete Androgen Insensitivity Syndrome: The Influence of Sex Hormones and Sex Chromosomes.

    PubMed

    van Hemmen, Judy; Veltman, Dick J; Hoekzema, Elseline; Cohen-Kettenis, Peggy T; Dessens, Arianne B; Bakker, Julie

    2016-03-01

    Sex hormones, androgens in particular, are hypothesized to play a key role in the sexual differentiation of the human brain. However, possible direct effects of the sex chromosomes, that is, XX or XY, have not been well studied in humans. Individuals with complete androgen insensitivity syndrome (CAIS), who have a 46,XY karyotype but a female phenotype due to a complete androgen resistance, enable us to study the separate effects of gonadal hormones versus sex chromosomes on neural sex differences. Therefore, in the present study, we compared 46,XY men (n = 30) and 46,XX women (n = 29) to 46,XY individuals with CAIS (n = 21) on a mental rotation task using functional magnetic resonance imaging. Previously reported sex differences in neural activation during mental rotation were replicated in the control groups, with control men showing more activation in the inferior parietal lobe than control women. Individuals with CAIS showed a female-like neural activation pattern in the parietal lobe, indicating feminization of the brain in CAIS. Furthermore, this first neuroimaging study in individuals with CAIS provides evidence that sex differences in regional brain function during mental rotation are most likely not directly driven by genetic sex, but rather reflect gonadal hormone exposure. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Overview of Epidemiology, Genetics, Birth Defects, and Chromosome Abnormalities Associated With CDH

    PubMed Central

    Pober, Barbara R.

    2010-01-01

    Congenital diaphragmatic hernia (CDH) is a common and well-studied birth defect. The etiology of most cases remains unknown but increasing evidence points to genetic causation. The data supporting genetic etiologies which are detailed below include the association of CDH with recurring chromosome abnormalities, the existence of CDH-multiplex families, and the co-occurrence of CDH with additional congenital malformations. PMID:17436298

  9. [Chromosome examination of missed abortion patients].

    PubMed

    Hu, Haomei; Yang, Hua; Yin, Zhenhui; Zhao, Lu

    2015-09-15

    To investigate the relationship between the missed abortion and chromosome abnormality and guide the healthy birth. From June 2014 to April 2015 in Tianjin central hospital of gynecology and obstetrics, we examined venous blood from 90 missed abortion couples for chromosome karyotype by lymphocyte culture method and we also examined their chromosome karyotype of abortion villus samples by high-throughput sequencing technologies. Out of the 90 couples' blood chromosome examinations, 7 were abnormal, and the abnormal rate was 3.89%, including 3 cases reciprocal translocation, 2 cases robertsonian translocation and 2 cases inversion. Abortion villus samples from the same population were also checked, of which 85 cases succeeded, with the success rate of 94.4%. Among them, villi chromosome abnormalities were found in 50 cases, including 39 cases with abnormal chromosome numbers, 11 cases with abnormal chromosome structure, and the total abnormal rate was 58.8%. In addition, the villi chromosome abnormality rate of patients with recurrent missed abortion (≥2 times) and first missed abortion were 61.7% and 55.2%, respectively, and the difference was not significant (P>0.05). The villi chromosome abnormality rate of pregnant women with age≥35 years old was 71.1%, while the pregnant women with aged <35 years old was 45% (P<0.05). Chromosome abnormality is an important cause of missed abortion; villi chromosome abnormality rate has nothing to do with the number of missed abortion; pregnant woman with age≥35 years old is risk factor of the villi chromosome abnormality.

  10. Prader-Willi-like phenotypes: a systematic review of their chromosomal abnormalities.

    PubMed

    Rocha, C F; Paiva, C L A

    2014-03-31

    Prader-Willi syndrome (PWS) is caused by the lack of expression of genes located on paternal chromosome 15q11-q13. This lack of gene expression may be due to a deletion in this chromosomal segment, to maternal uniparental disomy of chromosome 15, or to a defect in the imprinting center on 15q11-q13. PWS is characterized by hypotonia during the neonatal stage and in childhood, accompanied by a delay in neuropsychomotor development. Overeating, obesity, and mental deficiency arise later on. The syndrome has a clinical overlap with other diseases, which makes it difficult to accurately diagnose. The purpose of this article is to review the Prader-Willi-like phenotype in the scientific literature from 2000 to 2013, i.e., to review the cases of PWS caused by chromosomal abnormalities different from those found on chromosome 15. A search was carried out using the "National Center for Biotechnology Information" (www.pubmed.com) and "Scientific Electronic Library Online (www.scielo.br) databases and combinations of key words such as "Prader-Willi-like phenotype" and "Prader-Willi syndrome phenotype". Editorials, letters, reviews, and guidelines were excluded. Articles chosen contained descriptions of patients diagnosed with the PWS phenotype but who were negative for alterations on 15q11-q13. Our search found 643 articles about PWS, but only 14 of these matched with the Prader-Willi-like phenotype and with the selected years of publication (2000-2013). If two or more articles reported the same chromosomal alterations for Prader-Willi-like phenotype, the most recent was chosen. Twelve articles of 14 were case reports and 2 reported series of cases.

  11. A major locus on mouse chromosome 18 controls XX sex reversal in Odd Sex (Ods) mice.

    PubMed

    Qin, Yangjun; Poirier, Christophe; Truong, Cavatina; Schumacher, Armin; Agoulnik, Alexander I; Bishop, Colin E

    2003-03-01

    We have previously reported a dominant mouse mutant, Odd sex (Ods), in which XX Ods/+ mice on the FVB/N background show complete sex reversal, associated with expression of Sox9 in the fetal gonads. Remarkably, when crossed to the A/J strain approximately 95% of the (AXFVB) F(1) XX Ods/+ mice developed as fully fertile, phenotypic females, the remainder developing as males or hermaphrodites. Using a (AXFVB) F(2) population, we conducted a genome-wide linkage scan to identify the number and chromosomal location of potential Ods modifier genes. A single major locus termed Odsm1 was mapped to chromosome 18, tightly linked to D18Mit189 and D18Mit210. Segregation at this locus could account for the presence of sex reversal in 100% of XX Ods/+ mice which develop as males, for the absence of sex reversal in approximately 92% of XX Ods/+ mice which develop as females, and for the mixed sexual phenotype in approximately 72% of XX Ods/+ mice that develop with ambiguous genitalia. We propose that homozygosity for the FVB-derived allele strongly favors Ods sex reversal, whereas homozygosity for the A/J-derived allele inhibits it. In mice heterozygous at Odsm1, the phenotypic outcome, male, female or hermaphrodite, is determined by a complex interaction of several minor modifying loci. The close proximity of Smad2, Smad7 and Smad4 to D18Mit189/210 provides a potential mechanism through which Odsm1 might act.

  12. Sex, rebellion and decadence: the scandalous evolutionary history of the human Y chromosome.

    PubMed

    Navarro-Costa, Paulo

    2012-12-01

    It can be argued that the Y chromosome brings some of the spirit of rock&roll to our genome. Equal parts degenerate and sex-driven, the Y has boldly rebelled against sexual recombination, one of the sacred pillars of evolution. In evolutionary terms this chromosome also seems to have adopted another of rock&roll's mottos: living fast. Yet, it appears to have refused to die young. In this manuscript the Y chromosome will be analyzed from the intersection between structural, evolutionary and functional biology. Such integrative approach will present the Y as a highly specialized product of a series of remarkable evolutionary processes. These led to the establishment of a sex-specific genomic niche that is maintained by a complex balance between selective pressure and the genetic diversity introduced by intrachromosomal recombination. Central to this equilibrium is the "polish or perish" dilemma faced by the male-specific Y genes: either they are polished by the acquisition of male-related functions or they perish via the accumulation of inactivating mutations. Thus, understanding to what extent the idiosyncrasies of Y recombination may impact this chromosome's role in sex determination and male germline functions should be regarded as essential for added clinical insight into several male infertility phenotypes. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Non-invasive prenatal testing for fetal chromosomal abnormalities by low-coverage whole-genome sequencing of maternal plasma DNA: review of 1982 consecutive cases in a single center.

    PubMed

    Lau, T K; Cheung, S W; Lo, P S S; Pursley, A N; Chan, M K; Jiang, F; Zhang, H; Wang, W; Jong, L F J; Yuen, O K C; Chan, H Y C; Chan, W S K; Choy, K W

    2014-03-01

    To review the performance of non-invasive prenatal testing (NIPT) by low-coverage whole-genome sequencing of maternal plasma DNA at a single center. The NIPT result and pregnancy outcome of 1982 consecutive cases were reviewed. NIPT was based on low coverage (0.1×) whole-genome sequencing of maternal plasma DNA. All subjects were contacted for pregnancy and fetal outcome. Of the 1982 NIPT tests, a repeat blood sample was required in 23 (1.16%). In one case, a conclusive report could not be issued, probably because of an abnormal vanished twin fetus. NIPT was positive for common trisomies in 29 cases (23 were trisomy 21, four were trisomy 18 and two were trisomy 13); all were confirmed by prenatal karyotyping (specificity=100%). In addition, 11 cases were positive for sex-chromosomal abnormalities (SCA), and nine cases were positive for other aneuploidies or deletion/duplication. Fourteen of these 20 subjects agreed to undergo further investigations, and the abnormality was found to be of fetal origin in seven, confined placental mosaicism (CPM) in four, of maternal origin in two and not confirmed in one. Overall, 85.7% of the NIPT-suspected SCA were of fetal origin, and 66.7% of the other abnormalities were caused by CPM. Two of the six cases suspected or confirmed to have CPM were complicated by early-onset growth restriction requiring delivery before 34 weeks. Fetal outcome of the NIPT-negative cases was ascertained in 1645 (85.15%). Three chromosomal abnormalities were not detected by NIPT, including one case each of a balanced translocation, unbalanced translocation and triploidy. There were no known false negatives involving the common trisomies (sensitivity=100%). Low-coverage whole-genome sequencing of maternal plasma DNA was highly accurate in detecting common trisomies. It also enabled the detection of other aneuploidies and structural chromosomal abnormalities with high positive predictive value. Copyright © 2013 ISUOG. Published by John Wiley & Sons

  14. Second-trimester IL-15 and IL-18 levels in the amniotic fluid of fetuses with normal karyotypes and with chromosome abnormalities.

    PubMed

    Klimkiewicz-Blok, Dominika; Florjański, Jerzy; Zalewski, Jerzy; Blok, Radosław

    2012-01-01

    Little is known about the behavior of interleukin 15 (IL-15) and 18 (IL-18) in the amniotic fluid in the second trimester of gestations complicated by chromosomal defects in the fetus. Likewise, it has not yet been established whether a fetus with chromosome abnormalities creates its immunity mechanisms in the same way as a fetus with a normal karyotype. The aim of this work was to assess the concentration of IL-15 and IL-18 in the amniotic fluid in the second trimester of gestation in fetuses with normal karyotypes and with chromosome abnormalities. The material consisted of 51 samples of amniotic fluid obtained from genetic amniocenteses carried out between the 15th and the 19th weeks of gestation. On the basis of cytogenetic screening, two groups were singled out: Group I--45 fetuses with normal karyotypes, and Group II--6 fetuses with abnormal karyotypes. The concentrations of IL-15 and IL-18 in the amniotic fluid were assessed with ready-made assays and analyzed, and the results from both groups were compared. The differences between the IL-15 levels in the amniotic fluid from Groups I and II proved to be statistically insignificant (p = 0.054). However, the average IL-18 levels in the amniotic fluid of the fetuses with normal karyotypes were significantly higher than in the amniotic fluid of the fetuses with chromosome abnormalities (p = 0.032). Some defense mechanisms in the second trimester of gestation in fetuses with chromosome abnormalities may develop in a different way than in fetuses with normal karyotypes.

  15. What a difference an X or Y makes: sex chromosomes, gene dose, and epigenetics in sexual differentiation

    PubMed Central

    Arnold, Arthur P.; Chen, Xuqi; Itoh, Yuichiro

    2014-01-01

    Summary A modern general theory of sex determination and sexual differentiation identifies the factors that cause sexual bias in gene networks, leading to sex differences in physiology and disease. The primary sex-biasing factors are those encoded on the sex chromosomes that are inherently different in the male and female zygote. These factors, and downstream factors such as gonadal hormones, act directly on tissues to produce sex differences, and to antagonize each other to reduce sex differences. Recent study of mouse models such as the Four Core Genotypes has begun to distinguish between direct effects of sex chromosome complement (XX vs. XY) and hormonal effects. Several lines of evidence implicate epigenetic processes in the control of sex differences, although a great deal of more information is needed about sex differences in the epigenome. PMID:23027446

  16. Frequency of chromosome healing and interstitial telomeres in 40 cases of constitutional abnormalities.

    PubMed

    Fortin, F; Beaulieu Bergeron, M; Fetni, R; Lemieux, N

    2009-01-01

    Human telomeres play a major role in stabilizing chromosome ends and preventing fusions. Chromosomes bearing a broken end are rescued by the acquisition of a new telomeric cap without any subtelomeric sequences being present at the breakpoint, a process referred to as chromosome healing. Conversely, a loss of telomeric function or integrity can lead to the presence of interstitial telomeres at the junction site in translocations or ring chromosomes. In order to determine the frequency at which interstitial telomeres or chromosome healing events are observed in target chromosome abnormalities, we conducted a retrospective FISH study using pan-telomeric and chromosome-specific subtelomeric probes on archival material from 40 cases of terminal deletions, translocations or ring chromosomes. Of the 19 terminal deletions investigated, 17 were negative for the subtelomeric probe specific to the deleted arm despite being positive for the pan-telomeric probe. These 17 cases were thus considered as having been rescued through chromosome healing, suggesting that this process is frequent in terminal deletions. In addition, as 2 of these cases were inherited from a parent bearing the same deletion, chromosomes healed by this process are thus stable through mitosis and meiosis. Regarding the 13 cases of translocations and 8 ring chromosomes, 4 and 2 cases respectively demonstrated pan-telomeric sequences at the interstitial junction point. Furthermore, 2 cases of translocations and 1 ring chromosome had both interstitial pan-telomeres and subtelomeres, whereas 2 other cases of ring chromosomes and 1 case of translocation only showed interstitial subtelomeres. Therefore, interstitial (sub)telomeric sequences in translocations and ring chromosomes are more common than previously thought, as we found a frequency of 43% in this study. Moreover, our results illustrate the necessity of performing FISH with both subtelomeric and pan-telomeric probes when investigating these

  17. Integrated gene mapping and synteny studies give insights into the evolution of a sex proto-chromosome in Solea senegalensis.

    PubMed

    Portela-Bens, Silvia; Merlo, Manuel Alejandro; Rodríguez, María Esther; Cross, Ismael; Manchado, Manuel; Kosyakova, Nadezda; Liehr, Thomas; Rebordinos, Laureana

    2017-03-01

    The evolution of genes related to sex and reproduction in fish shows high plasticity and, to date, the sex determination system has only been identified in a few species. Solea senegalensis has 42 chromosomes and an XX/XY chromosome system for sex determination, while related species show the ZZ/ZW system. Next-generation sequencing (NGS), multi-color fluorescence in situ hybridization (mFISH) techniques, and bioinformatics analysis have been carried out, with the objective of revealing new information about sex determination and reproduction in S. senegalensis. To that end, several bacterial artificial chromosome (BAC) clones that contain candidate genes involved in such processes (dmrt1, dmrt2, dmrt3, dmrt4, sox3, sox6, sox8, sox9, lh, cyp19a1a, amh, vasa, aqp3, and nanos3) were analyzed and compared with the same region in other related species. Synteny studies showed that the co-localization of dmrt1-dmrt2-drmt3 in the largest metacentric chromosome of S. senegalensis is coincident with that found in the Z chromosome of Cynoglossus semilaevis, which would potentially make this a sex proto-chromosome. Phylogenetic studies show the close proximity of S. senegalensis to Oryzias latipes, a species with an XX/XY system and a sex master gene. Comparative mapping provides evidence of the preferential association of these candidate genes in particular chromosome pairs. By using the NGS and mFISH techniques, it has been possible to obtain an integrated genetic map, which shows that 15 out of 21 chromosome pairs of S. senegalensis have at least one BAC clone. This result is important for distinguishing those chromosome pairs of S. senegalensis that are similar in shape and size. The mFISH analysis shows the following co-localizations in the same chromosomes: dmrt1-dmrt2-dmrt3, dmrt4-sox9-thrb, aqp3-sox8, cyp19a1a-fshb, igsf9b-sox3, and lysg-sox6.

  18. Chromatin configuration and epigenetic landscape at the sex chromosome bivalent during equine spermatogenesis

    PubMed Central

    Baumann, Claudia; Daly, Christopher M.; McDonnell, Sue M.; Viveiros, Maria M.; De La Fuente, Rabindranath

    2011-01-01

    Pairing of the sex chromosomes during mammalian meiosis is characterized by the formation of a unique heterochromatin structure at the XY body. The mechanisms underlying the formation of this nuclear domain are reportedly highly conserved from marsupials to mammals. In this study, we demonstrate that in contrast to all eutherian species studied to date, partial synapsis of the heterologous sex chromosomes during pachytene stage in the horse is not associated with the formation of a typical macrochromatin domain at the XY body. While phosphorylated histone H2AX (γH2AX) and macroH2A1.2 are present as a diffuse signal over the entire macrochromatin domain in mouse pachytene spermatocytes, γH2AX, macroH2A1.2, and the cohesin subunit SMC3 are preferentially enriched at meiotic sex chromosome cores in equine spermatocytes. Moreover, although several histone modifications associated with this nuclear domain in the mouse such as H3K4me2 and ubH2A are conspicuously absent in the equine XY body, prominent RNA polymerase II foci persist at the sex chromosomes. Thus, the localization of key marker proteins and histone modifications associated with the XY body in the horse differs significantly from all other mammalian systems described. These results demonstrate that the epigenetic landscape and heterochromatinization of the equine XY body might be regulated by alternative mechanisms and that some features of XY body formation may be evolutionary divergent in the domestic horse. We propose equine spermatogenesis as a unique model system for the study of the regulatory networks leading to the epigenetic control of gene expression during XY body formation. PMID:21274552

  19. Cytological and cytogenetical studies on brain tumors. V. Preferential loss of sex chromosomes in human meningiomas.

    PubMed

    Zankl, H; Seidel, H; Zang, K D

    1975-01-01

    Twelve out of 88 cytogenetically examined meningiomas of female patients showed, in addition to the typical loss of a chromosome 22, a loss of 1 or more chromosomes of group C. Among them 8 tumors had less than 8% cells with Barr-body-like particles, whereas in one tumor 12% and in 3 others over 20% Barr bodies were found, which, based on control studies, were classified as sex-chromatin negative, partly positive, and positive, respectively. In one case the loss of an X chromosome was verified by Giemsa banding. In 6 out of 24 meningiomas of male origin, the chromosomal morphology and association pattern strongly indicated that besides the loss of a chromosome 22, the Y chromosome was also missing. Moreover, the loss of the male sex chromosome could be ascertained in 4 tumors by the conspicuous absence of Y fluorescence in interphase nuclei and in metaphase plates after fluorescence staining. The findings are discussed in connection with the gonosomal loss in other human tumors and in old age.

  20. Systematic chromosome examination of two families with schizophrenia and two families with manic depressive illness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, U.; Mors, O.; Ewald, H.

    1996-02-16

    Systematic and detailed chromosome analysis, combined with a semistructured interview, was performed in 2 families with schizophrenia and in 2 families with manic depressive illness. Prometaphase technique did not reveal any subtle structural chromosome abnormalities. However, in standard techniques, gain and loss of sex chromosomes were observed. This occurred in patients at a younger age than in unaffected persons. This gives rise to the suspicion that sex chromosome aneuploidy may somehow be related to the development of psychosis. But since the data set is small, especially with respect to schizophrenia, further studies are needed to elucidate this observation. In onemore » family, cosegregation of the disease locus with a marker on chromosome 21 was seen. Therefore, further research should determine if chromosome 21 contains a gene for manic depressive illness. 10 refs., 3 figs., 2 tabs.« less

  1. Multiple sex chromosome system in penguins (Pygoscelis, Spheniscidae)

    PubMed Central

    Gunski, Ricardo José; Cañedo, Andrés Delgado; Garnero, Analía Del Valle; Ledesma, Mario Angel; Coria, Nestor; Montalti, Diego; Degrandi, Tiago Marafiga

    2017-01-01

    Abstract Penguins are classified in the order Sphenisciformes into a single family, Spheniscidae. The genus Pygoscelis Wagler, 1832, is composed of three species, Pygoscelis antarcticus Forster, 1781, P. papua Forster, 1781 and P. adeliae Hombron & Jacquinot, 1841. In this work, the objective was to describe and to compare the karyotypes of Pygoscelis penguins contributing genetic information to Sphenisciformes. The metaphases were obtained by lymphocyte culture, and the diploid number and the C-banding pattern were determined. P. antarcticus has 2n = 92, P. papua 2n = 94 and P. adeliae exhibited 2n = 96 in males and 2n = 95 in females. The difference of diploid number in P. adeliae was identified as a multiple sex chromosome system where males have Z1Z1Z2Z2 and females Z1Z2W. The C-banding showed the presence of a heterochromatic block in the long arm of W chromosome and Z2 was almost entirely heterochromatic. The probable origin of a multiple system in P. adeliae was a translocation involving the W chromosome and the chromosome ancestral to Z2. The comparison made possible the identification of a high karyotype homology in Sphenisciformes which can be seen in the conservation of macrochromosomes and in the Z chromosome. The karyotypic divergences in Pygoscelis are restricted to the number of microchromosomes and W, which proved to be highly variable in size and morphology. The data presented in this work corroborate molecular phylogenetic proposals, supporting the monophyletic origin of penguins and intraspecific relations. PMID:29093802

  2. Evolution of Sex Chromosome Dosage Compensation in Animals: A Beautiful Theory, Undermined by Facts and Bedeviled by Details

    PubMed Central

    Gu, Luiqi

    2017-01-01

    Abstract Many animals with genetic sex determination harbor heteromorphic sex chromosomes, where the heterogametic sex has half the gene dose of the homogametic sex. This imbalance, if reflected in the abundance of transcripts or proteins, has the potential to deleteriously disrupt interactions between X-linked and autosomal loci in the heterogametic sex. Classical theory predicts that molecular mechanisms will evolve to provide dosage compensation that recovers expression levels comparable to ancestral expression prior to sex chromosome divergence. Such dosage compensating mechanisms may also, secondarily, result in balanced sex-linked gene expression between males and females. However, numerous recent studies addressing sex chromosome dosage compensation (SCDC) in a diversity of animals have yielded a surprising array of patterns concerning dosage compensation in the heterogametic sex, as well as dosage balance between sexes. These results substantially contradict longstanding theory, catalyzing both novel perspectives and new approaches in dosage compensation research. In this review, we summarize the theory, analytical approaches, and recent results concerning evolutionary patterns of SCDC in animals. We also discuss methodological challenges and discrepancies encountered in this research, which often underlie conflicting results. Finally, we discuss what outstanding questions and opportunities exist for future research on SCDC. PMID:28961969

  3. A Sex Chromosome piRNA Promotes Robust Dosage Compensation and Sex Determination in C. elegans.

    PubMed

    Tang, Wen; Seth, Meetu; Tu, Shikui; Shen, En-Zhi; Li, Qian; Shirayama, Masaki; Weng, Zhiping; Mello, Craig C

    2018-03-26

    In metazoans, Piwi-related Argonaute proteins engage piRNAs (Piwi-interacting small RNAs) to defend the genome against invasive nucleic acids, such as transposable elements. Yet many organisms-including worms and humans-express thousands of piRNAs that do not target transposons, suggesting that piRNA function extends beyond genome defense. Here, we show that the X chromosome-derived piRNA 21ux-1 downregulates XOL-1 (XO Lethal), a master regulator of X chromosome dosage compensation and sex determination in Caenorhabditis elegans. Mutations in 21ux-1 and several Piwi-pathway components sensitize hermaphrodites to dosage compensation and sex determination defects. We show that the piRNA pathway also targets xol-1 in C. briggsae, a nematode species related to C. elegans. Our findings reveal physiologically important piRNA-mRNA interactions, raising the possibility that piRNAs function broadly to ensure robust gene expression and germline development. Copyright © 2018. Published by Elsevier Inc.

  4. Cytomixis and meiotic abnormalities during microsporogenesis are responsible for male sterility and chromosome variations in Houttuynia cordata.

    PubMed

    Guan, J-Z; Wang, J-J; Cheng, Z-H; Liu, Y; Li, Z-Y

    2012-01-17

    Houttuynia cordata (Saururaceae) is a leaf vegetable and a medicinal herb througout much of Asia. Cytomixis and meiotic abnormalities during microsporogenesis were found in two populations of H. cordata with different ploidy levels (2n = 38, 96). Cytomixis occurred in pollen mother cells during meiosis at high frequencies and with variable degrees of chromatin/chromosome transfer. Meiotic abnormalities, such as chromosome laggards, asymmetric segregation and polyads, also prevailed in pollen mother cells at metaphase of the first division and later stages. They were caused by cytomixis and resulted in very low pollen viability and male sterility. Pollen mother cells from the population with 2n = 38 showed only simultaneous cytokinesis, but most pollen mother cells from the population with 2n = 96 showed successive cytokinesis; a minority underwent simultaneous cytokinesis. Cytomixis and irregular meiotic divisions appear to be the origin of the intraspecific polyploidy in this species, which has large variations in chromosome numbers.

  5. A Role for the X Chromosome in Sex Differences in Variability in General Intelligence?

    PubMed

    Johnson, Wendy; Carothers, Andrew; Deary, Ian J

    2009-11-01

    There is substantial evidence that males are more variable than females in general intelligence. In recent years, researchers have presented this as a reason that, although there is little, if any, mean sex difference in general intelligence, males tend to be overrepresented at both ends of its overall distribution. Part of the explanation could be the presence of genes on the X chromosome related both to syndromal disorders involving mental retardation and to population variation in general intelligence occurring normally. Genes on the X chromosome appear overrepresented among genes with known involvement in mental retardation, which is consistent with a model we developed of the population distribution of general intelligence as a mixture of two normal distributions. Using this model, we explored the expected ratios of males to females at various points in the distribution and estimated the proportion of variance in general intelligence potentially due to genes on the X chromosome. These estimates provide clues to the extent to which biologically based sex differences could be manifested in the environment as sex differences in displayed intellectual abilities. We discuss these observations in the context of sex differences in specific cognitive abilities and evolutionary theories of sexual selection. © 2009 Association for Psychological Science.

  6. Possible influences on the expression of X chromosome-linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beggs, A.H.; Neumann, P.E.; Anderson, M.S.

    1992-01-15

    Abnormalities of dystrophin, a cytoskeletal protein of muscle and nerve, are generally considered specific for Duchenne and Becker muscular dystrophy. However, several patients have recently been identified with dystrophin deficiency who, before dystrophin testing, were considered to have Fukuyama congenital muscular dystrophy (FCMD) on the basis of clinical findings. Epidemiologic data suggest that only 1/3,500 males with autosomal recessive FCMD should have abnormal dystrophin. To explain the observation of 3/23 FCMD males with abnormal dystrophin, the authors propose that dystrophin and the FCMD gene product interact and that the earlier onset and greater severity of these patients' phenotype (relative tomore » Duchenne muscular dystrophy) are due to their being heterozygous for the FCMD mutation in addition to being hemizygous for Duchenne muscular dystrophy, a genotype that is predicted to occur in 1/175,000 Japanese males. This model may help explain the genetic basis for some of the clinical and pathological variability seen among patients with FCMD, and it has potential implications for understanding the inheritance of other autosomal recessive disorders in general. For example, sex ratios for rare autosomal recessive disorders caused by mutations in proteins that interact with X chromosome-linked gene products may display predictable deviation from 1:1.« less

  7. Mapping the stability of human brain asymmetry across five sex-chromosome aneuploidies.

    PubMed

    Lin, Amy; Clasen, Liv; Lee, Nancy Raitano; Wallace, Gregory L; Lalonde, Francois; Blumenthal, Jonathan; Giedd, Jay N; Raznahan, Armin

    2015-01-07

    The human brain displays stereotyped and early emerging patterns of cortical asymmetry in health. It is unclear if these asymmetries are highly sensitive to genetic and environmental variation or fundamental features of the brain that can survive severe developmental perturbations. To address this question, we mapped cortical thickness (CT) asymmetry in a group of genetically defined disorders known to impact CT development. Participants included 137 youth with one of five sex-chromosome aneuploidies [SCAs; XXX (n = 28), XXY (n = 58), XYY (n = 26), XXYY (n = 20), and XXXXY (n = 5)], and 169 age-matched typically developing controls (80 female). In controls, we replicated previously reported rightward inferior frontal and leftward lateral parietal CT asymmetry. These opposing frontoparietal CT asymmetries were broadly preserved in all five SCA groups. However, we also detected foci of shifting CT asymmetry with aneuploidy, which fell almost exclusively within regions of significant CT asymmetry in controls. Specifically, X-chromosome aneuploidy accentuated normative rightward inferior frontal asymmetries, while Y-chromosome aneuploidy reversed normative rightward medial prefrontal and lateral temporal asymmetries. These findings indicate that (1) the stereotyped normative pattern of opposing frontoparietal CT asymmetry arises from developmental mechanisms that can withstand gross chromosomal aneuploidy and (2) X and Y chromosomes can exert focal, nonoverlapping and directionally opposed influences on CT asymmetry within cortical regions of significant asymmetry in health. Our study attests to the resilience of developmental mechanisms that support the global patterning of CT asymmetry in humans, and motivates future research into the molecular bases and functional consequences of sex chromosome dosage effects on CT asymmetry. Copyright © 2015 the authors 0270-6474/15/350140-06$15.00/0.

  8. The human sex ratio from conception to birth

    PubMed Central

    Orzack, Steven Hecht; Stubblefield, J. William; Akmaev, Viatcheslav R.; Colls, Pere; Munné, Santiago; Scholl, Thomas; Steinsaltz, David; Zuckerman, James E.

    2015-01-01

    We describe the trajectory of the human sex ratio from conception to birth by analyzing data from (i) 3- to 6-d-old embryos, (ii) induced abortions, (iii) chorionic villus sampling, (iv) amniocentesis, and (v) fetal deaths and live births. Our dataset is the most comprehensive and largest ever assembled to estimate the sex ratio at conception and the sex ratio trajectory and is the first, to our knowledge, to include all of these types of data. Our estimate of the sex ratio at conception is 0.5 (proportion male), which contradicts the common claim that the sex ratio at conception is male-biased. The sex ratio among abnormal embryos is male-biased, and the sex ratio among normal embryos is female-biased. These biases are associated with the abnormal/normal state of the sex chromosomes and of chromosomes 15 and 17. The sex ratio may decrease in the first week or so after conception (due to excess male mortality); it then increases for at least 10–15 wk (due to excess female mortality), levels off after ∼20 wk, and declines slowly from 28 to 35 wk (due to excess male mortality). Total female mortality during pregnancy exceeds total male mortality. The unbiased sex ratio at conception, the increase in the sex ratio during the first trimester, and total mortality during pregnancy being greater for females are fundamental insights into early human development. PMID:25825766

  9. Undetected sex chromosome aneuploidy by chromosomal microarray.

    PubMed

    Markus-Bustani, Keren; Yaron, Yuval; Goldstein, Myriam; Orr-Urtreger, Avi; Ben-Shachar, Shay

    2012-11-01

    We report on a case of a female fetus found to be mosaic for Turner syndrome (45,X) and trisomy X (47,XXX). Chromosomal microarray analysis (CMA) failed to detect the aneuploidy because of a normal average dosage of the X chromosome. This case represents an unusual instance in which CMA may not detect chromosomal aberrations. Such a possibility should be taken into consideration in similar cases where CMA is used in a clinical setting. © 2012 John Wiley & Sons, Ltd.

  10. Male only progeny in Anastrepha suspensa by RNAi-induced sex reversion of chromosomal females

    USDA-ARS?s Scientific Manuscript database

    In Tephritidae sex determination is established by orthologs to the Drosophila melanogaster transformer and transformer-2 genes. In contrast, primary signals for sex determination are different in these species corresponding to the number of X chromosomes (XSE) in Drosophilidae species and to the pr...

  11. Sex-dependent selection differentially shapes genetic variation on and off the guppy Y chromosome.

    PubMed

    Postma, Erik; Spyrou, Nicolle; Rollins, Lee Ann; Brooks, Robert C

    2011-08-01

    Because selection is often sex-dependent, alleles can have positive effects on fitness in one sex and negative effects in the other, resulting in intralocus sexual conflict. Evolutionary theory predicts that intralocus sexual conflict can drive the evolution of sex limitation, sex-linkage, and sex chromosome differentiation. However, evidence that sex-dependent selection results in sex-linkage is limited. Here, we formally partition the contribution of Y-linked and non-Y-linked quantitative genetic variation in coloration, tail, and body size of male guppies (Poecilia reticulata)-traits previously implicated as sexually antagonistic. We show that these traits are strongly genetically correlated, both on and off the Y chromosome, but that these correlations differ in sign and magnitude between both parts of the genome. As predicted, variation in attractiveness was found to be associated with the Y-linked, rather than with the non-Y-linked component of genetic variation in male ornamentation. These findings show how the evolution of Y-linkage may be able to resolve sexual conflict. More generally, they provide unique insight into how sex-specific selection has the potential to differentially shape the genetic architecture of fitness traits across different parts of the genome. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  12. Studies on metatherian sex chromosomes. IX. Sex chromosomes of the greater glider (Marsupialia: Petauridae).

    PubMed

    Murray, J D; McKay, G M; Sharman, G B

    1979-06-01

    The greater glider, currently but incorrectly known as Schoinobates volans, is widely distributed in forested regions in eastern Australia. All animals studied from six different localities had 20 autosomes but there were four chromosomally distinct populations. At Royal National Park, N.S.W., all female greater gliders studied had 22 chromosomes including two large submetacentric X chromosomes with subterminal secondary constrictions in their longer arms. This form of X chromosome occurred also at Bondo State Forest, Myall Lakes and Coff's Harbour, N.S.W., and at Eidsvold, Qld. At Coomooboolaroo, Qld, the X chromosome was also a large submetacentric but a secondary constriction occurred in the shorter arm. Two chromosomally distinct types apparently occur in Royal National Park, one with XY males as in all other populations, and one with XY1Y2 males. Y or Y1, but not Y2, chromosomes were eliminated from the bone marrow in all populations but were present in spermatogonia, primary spermatocytes and cultured fibroblasts. Animals from Bondo State Forest had three or more acrocentric or metacentric supernumerary chromosomes.

  13. Cytogenetic studies in Eigenmannia virescens (Sternopygidae, Gymnotiformes) and new inferences on the origin of sex chromosomes in the Eigenmannia genus

    PubMed Central

    2009-01-01

    Background Cytogenetic studies were carried out on samples of Eigenmannia virescens (Sternopygidae, Gymnotiformes) obtained from four river systems of the Eastern Amazon region (Para, Brazil). Results All four populations had 2n = 38, with ZZ/ZW sex chromosomes (Z, acrocentric; W, submetacentric). Constitutive heterochromatin (CH) was found at the centromeric regions of all chromosomes. The W chromosome had a heterochromatic block in the proximal region of the short arm; this CH was positive for DAPI staining, indicating that it is rich in A-T base pairs. The nucleolar organizer region (NOR) was localized to the short arm of chromosome pair 15; this result was confirmed by fluorescent in situ hybridization (FISH) with human 45S rDNA, and CMA3 staining indicated that the region is G-C rich. FISH with telomeric probes did not show any evidence of interstitial telomeric sequences (ITS). Conclusion Previous studies have shown that the species Eigenmannia sp. 2 and E. virescens have differentiated sex chromosomes, and diverse sex chromosome systems have been described for E. virescens specimens obtained from different Brazilian rivers. A comparative analysis of the present data and prior reports suggests that the sex chromosomes of Eigenmannia may have arisen independently in the different populations. PMID:19930594

  14. Rapid rise and fall of selfish sex-ratio X chromosomes in Drosophila simulans: spatiotemporal analysis of phenotypic and molecular data.

    PubMed

    Bastide, Héloïse; Cazemajor, Michel; Ogereau, David; Derome, Nicolas; Hospital, Frédéric; Montchamp-Moreau, Catherine

    2011-09-01

    Sex-ratio drive, which has been documented in several Drosophila species, is induced by X-linked segregation distorters. Contrary to Mendel's law of independent assortment, the sex-ratio chromosome (X(SR)) is inherited by more than half the offspring of carrier males, resulting in a female-biased sex ratio. This segregation advantage allows X(SR) to spread in populations, even if it is not beneficial for the carriers. In the cosmopolitan species D. simulans, the Paris sex-ratio is caused by recently emerged selfish X(SR) chromosomes. These chromosomes have triggered an intragenomic conflict, and their propagation has been halted over a large area by the evolution of complete drive suppression. Previous molecular population genetics analyses revealed a selective sweep indicating that the invasion of X(SR) chromosomes was very recent in Madagascar (likely less than 100 years ago). Here, we show that X(SR) chromosomes are now declining at this location as well as in Mayotte and Kenya. Drive suppression is complete in the three populations, which display little genetic differentiation and share swept haplotypes, attesting to a common and very recent ancestry of the X(SR) chromosomes. Patterns of DNA sequence variation also indicate a fitness cost of the segmental duplication involved in drive. The data suggest that X(SR) chromosomes started declining first on the African continent, then in Mayotte, and finally in Madagascar and strongly support a scenario of rapid cycling of X chromosomes. Once drive suppression has evolved, standard X(ST) chromosomes locally replace costly X(SR) chromosomes in a few decades.

  15. [Fetal malformations and chromosome abnormalities diagnosed at the Center of Prenatal Diagnosis of the University of Aquila in the 1995-1998 triennium].

    PubMed

    Carta, G; Iovenitti, P; D'Alfonso, A; Mascaretti, G; Moscarini, M

    1999-10-01

    Over the past few years numerous techniques have been developed, allowing an evaluation of fetal physiopathology that was unthinkable until recently. The authors describe 20 cases of fetal malformations and chromosomal abnormalities diagnosed by scan and amniocentesis at the Centre for Diagnosis and Obstetric Prophylaxis at L'Aquila University. Between January 1995 and April 1998 a total of 1180 amniocentesis and 4000 obstetric scans were performed in a group of 1650 pregnant women. Of the patients examined using ultrasound scan, 8 presented manifest fetal pathologies, of which 5 were associated with chromosome abnormalities: 1) left ventricular hypoplasia, common atrium, tricuspid dysplasia; 2) omphalocele; 3) Morgagni-Stewart-Morel syndrome; 4) plurilobate cystic hygroma; 5) duodenal atresia; 6) Dandy-Walker syndrome; 7) cystic hygroma and hydrops; 8) cystic hygroma, hydrops, cardiopathy and Dandy-Walker syndrome. Among the pregnant women undergoing amniocentesis without a prior diagnosis of fetal malformation, 12 presented pathological fetal karyotypes: 2 cases of Turner's syndrome; 2 cases of Edward's syndrome; 2 cases of Klinefelter's syndrome, of deletion of a stretch of chromosome 8; 1 case of Down's syndrome; 2 cases of supernumerary marker chromosome; 1 twin pregnancy with Klinefelter's syndrome in one twin and paracentric inversion of chromosome 13 in the other; 1 twin pregnancy with a small supernumerary marker chromosome in both twins. Ultrasonography often enables the diagnosis of congenital abnormalities not associated with chromosome pathologies. However, karyotype studies play an essential role in pregnancies with a high genetic risk.

  16. Array-Based Comparative Genomic Hybridization for the Genomewide Detection of Submicroscopic Chromosomal Abnormalities

    PubMed Central

    Vissers, Lisenka E. L. M. ; de Vries, Bert B. A. ; Osoegawa, Kazutoyo ; Janssen, Irene M. ; Feuth, Ton ; Choy, Chik On ; Straatman, Huub ; van der Vliet, Walter ; Huys, Erik H. L. P. G. ; van Rijk, Anke ; Smeets, Dominique ; van Ravenswaaij-Arts, Conny M. A. ; Knoers, Nine V. ; van der Burgt, Ineke ; de Jong, Pieter J. ; Brunner, Han G. ; van Kessel, Ad Geurts ; Schoenmakers, Eric F. P. M. ; Veltman, Joris A. 

    2003-01-01

    Microdeletions and microduplications, not visible by routine chromosome analysis, are a major cause of human malformation and mental retardation. Novel high-resolution, whole-genome technologies can improve the diagnostic detection rate of these small chromosomal abnormalities. Array-based comparative genomic hybridization allows such a high-resolution screening by hybridizing differentially labeled test and reference DNAs to arrays consisting of thousands of genomic clones. In this study, we tested the diagnostic capacity of this technology using ∼3,500 flourescent in situ hybridization–verified clones selected to cover the genome with an average of 1 clone per megabase (Mb). The sensitivity and specificity of the technology were tested in normal-versus-normal control experiments and through the screening of patients with known microdeletion syndromes. Subsequently, a series of 20 cytogenetically normal patients with mental retardation and dysmorphisms suggestive of a chromosomal abnormality were analyzed. In this series, three microdeletions and two microduplications were identified and validated. Two of these genomic changes were identified also in one of the parents, indicating that these are large-scale genomic polymorphisms. Deletions and duplications as small as 1 Mb could be reliably detected by our approach. The percentage of false-positive results was reduced to a minimum by use of a dye-swap-replicate analysis, all but eliminating the need for laborious validation experiments and facilitating implementation in a routine diagnostic setting. This high-resolution assay will facilitate the identification of novel genes involved in human mental retardation and/or malformation syndromes and will provide insight into the flexibility and plasticity of the human genome. PMID:14628292

  17. Incomplete sex chromosome dosage compensation in the Indian meal moth, Plodia interpunctella, based on de novo transcriptome assembly.

    PubMed

    Harrison, Peter W; Mank, Judith E; Wedell, Nina

    2012-01-01

    Males and females experience differences in gene dose for loci in the nonrecombining region of heteromorphic sex chromosomes. If not compensated, this leads to expression imbalances, with the homogametic sex on average exhibiting greater expression due to the doubled gene dose. Many organisms with heteromorphic sex chromosomes display global dosage compensation mechanisms, which equalize gene expression levels between the sexes. However, birds and Schistosoma have been previously shown to lack chromosome-wide dosage compensation mechanisms, and the status in other female heterogametic taxa including Lepidoptera remains unresolved. To further our understanding of dosage compensation in female heterogametic taxa and to resolve its status in the lepidopterans, we assessed the Indian meal moth, Plodia interpunctella. As P. interpunctella lacks a complete reference genome, we conducted de novo transcriptome assembly combined with orthologous genomic location prediction from the related silkworm genome, Bombyx mori, to compare Z-linked and autosomal gene expression levels for each sex. We demonstrate that P. interpunctella lacks complete Z chromosome dosage compensation, female Z-linked genes having just over half the expression level of males and autosomal genes. This finding suggests that the Lepidoptera and possibly all female heterogametic taxa lack global dosage compensation, although more species will need to be sampled to confirm this assertion.

  18. Incomplete Sex Chromosome Dosage Compensation in the Indian Meal Moth, Plodia interpunctella, Based on De Novo Transcriptome Assembly

    PubMed Central

    Harrison, Peter W.; Mank, Judith E.; Wedell, Nina

    2012-01-01

    Males and females experience differences in gene dose for loci in the nonrecombining region of heteromorphic sex chromosomes. If not compensated, this leads to expression imbalances, with the homogametic sex on average exhibiting greater expression due to the doubled gene dose. Many organisms with heteromorphic sex chromosomes display global dosage compensation mechanisms, which equalize gene expression levels between the sexes. However, birds and Schistosoma have been previously shown to lack chromosome-wide dosage compensation mechanisms, and the status in other female heterogametic taxa including Lepidoptera remains unresolved. To further our understanding of dosage compensation in female heterogametic taxa and to resolve its status in the lepidopterans, we assessed the Indian meal moth, Plodia interpunctella. As P. interpunctella lacks a complete reference genome, we conducted de novo transcriptome assembly combined with orthologous genomic location prediction from the related silkworm genome, Bombyx mori, to compare Z-linked and autosomal gene expression levels for each sex. We demonstrate that P. interpunctella lacks complete Z chromosome dosage compensation, female Z-linked genes having just over half the expression level of males and autosomal genes. This finding suggests that the Lepidoptera and possibly all female heterogametic taxa lack global dosage compensation, although more species will need to be sampled to confirm this assertion. PMID:23034217

  19. [Prevalence of congenital abnormalities identified in fetuses with 13, 18 and 21 chromosomal trisomy].

    PubMed

    Emer, Caroline Soares Cristofari; Duque, Julio Alejandro Peña; Müller, Ana Lúcia Letti; Gus, Rejane; Sanseverino, Maria Teresa Vieira; da Silva, André Anjos; Magalhães, José Antonio de Azevedo

    2015-07-01

    To describe the prevalence of malformations found in fetuses with trisomy of chromosomes 13, 18 and 21 by identifying the most frequent within each condition. A retrospective cross-sectional study with the analysis of trisomy cases of chromosomes 13, 18 and 21 diagnosed through fetal karyotype obtained by amniocentesis/cordocentesis, between October 1994 and May 2014, at a Teaching Hospital in Brazil Southern Region. Malformations identified through morphological ultrasonography were described and, subsequently, confirmed in newborn examinations and/or fetal autopsy. The results were analyzed using Fisher's test and analysis of variance (ANOVA), with a 5% level of significance (p=0.05). Sixty-nine cases of trisomy were diagnosed among 840 exams; nine were excluded due to outcome outside Hospital de Clínicas de Porto Alegre or incomplete records, remaining 60 cases (nine cases of chromosome 13 trisomy, 26 of chromosome 18, and 25 of chromosome 21). In all three groups, heart disease occurred in most cases; the ventricular septal defect was more prevalent and occurred in 66.7% of the trisomy 13 group. Gastrointestinal abnormalities were more prevalent in the trisomy 18 group, especially omphalocele (38.5%; p<0.01). Genitourinary anomalies were more significantly frequent in the trisomy 13 group (pyelectasis, 55.6% - p<0.01; ambiguous genitalia, 33.3% - p=0.01). Central nervous system defects were identified in all cases of trisomy 13. Facial cracks were significantly more prevalent among fetuses with trisomy 13 (66.7%; p<0.01). Hand and feet malformations significantly differed among the trisomy groups. Hand defects occurred in 50% of trisomy 18 cases, and in 44.4% of all trisomy 13 cases (p<0.01); congenital clubfoot was more common in the trisomy 18 group, being detected in 46.2% of fetuses (p<0.01). The abnormalities were found in 50.9, 27.3 and 21.7% of trisomy 18, 13 and 21 cases respectively. Many fetal malformations identified at ultrasound are suggestive of

  20. Karyotype and sex chromosome differentiation in two Nalassus species (Coleoptera, Tenebrionidae)

    PubMed Central

    Şendoğan, Dirim; Alpagut-Keskin, Nurşen

    2016-01-01

    Abstract Cytogenetic features of Nalassus bozdagus Nabozhenko & Keskin, 2010 and Nalassus plebejus Küster, 1850 were analysed using conventional and differential staining. Mitotic and meiotic chromosomal analysis revealed the diploid number as 2n = 20 (9+Xyp) in both species. Besides the general resemblance of two Nalassus Mulsant, 1854 karyotypes, important differences related to variations in the number of metacentric/submetacentric chromosomes, localization of highly impregnated regions which are considered as NOR and heterochromatin distribution are clearly observed. The most prominent difference between two species is found related to the X chromosome which is clearly larger in Nalassus bozdagus and has a conspicuous secondary constriction on the long arm. As a result of silver staining, the existence of highly impregnated areas associated with Xyp of Nalassus bozdagus in both prophase I and metaphase I, suggests that NORs are seemingly located on sex chromosomes. On the other hand, the potential NORs of Nalassus plebejus were observed only in prophase I nuclei. With the application of fluorescence dye DAPI, the AT rich chromosome regions and Xyp which forms the parachute configuration were shown in both species. PMID:27830047

  1. Molecular cytogenetics and characterization of a ZZ/ZW sex chromosome system in Triportheus nematurus (Characiformes, Characidae).

    PubMed

    Diniz, Débora; Moreira-Filho, Orlando; Bertollo, Luiz Antonio Carlos

    2008-05-01

    Chromosomes of Triportheus nematurus, a fish species from family Characidae, were analyzed in order to establish the conventional karyotype, location of C-band positive heterochromatin, Ag-NORs, GC- and AT-rich sites, and mapping of 18S and 5S rDNA with fluorescence in situ hybridization (FISH). The diploid number found was 2n = 52 chromosomes in both males and females. However, the females presented a pair of differentiated heteromorphic chromosomes, characterizing a ZZ/ZW sex chromosome system. The Z chromosome was metacentric and the largest one in the karyotype, bearing C-positive heterochromatin at pericentromeric and telomeric regions. The W chromosome was middle-sized submetacentric, appearing mostly heterochromatic after C-banding and presenting heterogeneous heterochromatin composed of GC- and AT-rich regions revealed by fluorochrome staining. Ag-NORs were also GC-rich and surrounded by heterochromatic regions, being located at the secondary constriction on the short arms of the second chromosome pair, in agreement with 18S rDNA sites detected with FISH. The 18S and 5S rDNA were aligned in tandem, representing an uncommon situation in fishes. The results obtained reinforce the basal condition of the ZZ/ZW sex system in the genus Triportheus, probably arisen prior to speciation in the group.

  2. Chromosomes

    MedlinePlus

    ... Sheets A Brief Guide to Genomics About NHGRI Research About the International HapMap Project Biological Pathways Chromosome Abnormalities Chromosomes Cloning Comparative Genomics DNA Microarray Technology DNA Sequencing Deoxyribonucleic Acid ( ...

  3. Rare X Chromosome Abnormalities in Systemic Lupus Erythematosus and Sjögren's Syndrome.

    PubMed

    Sharma, Rohan; Harris, Valerie M; Cavett, Joshua; Kurien, Biji T; Liu, Ke; Koelsch, Kristi A; Fayaaz, Anum; Chaudhari, Kaustubh S; Radfar, Lida; Lewis, David; Stone, Donald U; Kaufman, C Erick; Li, Shibo; Segal, Barbara; Wallace, Daniel J; Weisman, Michael H; Venuturupalli, Swamy; Kelly, Jennifer A; Pons-Estel, Bernardo; Jonsson, Roland; Lu, Xianglan; Gottenberg, Jacques-Eric; Anaya, Juan-Manuel; Cunninghame-Graham, Deborah S; Huang, Andrew J W; Brennan, Michael T; Hughes, Pamela; Alevizos, Ilias; Miceli-Richard, Corinne; Keystone, Edward C; Bykerk, Vivian P; Hirschfield, Gideon; Nordmark, Gunnel; Bucher, Sara Magnusson; Eriksson, Per; Omdal, Roald; Rhodus, Nelson L; Rischmueller, Maureen; Rohrer, Michael; Wahren-Herlenius, Marie; Witte, Torsten; Alarcón-Riquelme, Marta; Mariette, Xavier; Lessard, Christopher J; Harley, John B; Ng, Wan-Fai; Rasmussen, Astrid; Sivils, Kathy L; Scofield, R Hal

    2017-11-01

    Sjögren's syndrome (SS) and systemic lupus erythematosus (SLE) are related by clinical and serologic manifestations as well as genetic risks. Both diseases are more commonly found in women than in men, at a ratio of ~10 to 1. Common X chromosome aneuploidies, 47,XXY and 47,XXX, are enriched among men and women, respectively, in either disease, suggesting a dose effect on the X chromosome. We examined cohorts of SS and SLE patients by constructing intensity plots of X chromosome single-nucleotide polymorphism alleles, along with determining the karyotype of selected patients. Among ~2,500 women with SLE, we found 3 patients with a triple mosaic, consisting of 45,X/46,XX/47,XXX. Among ~2,100 women with SS, 1 patient had 45,X/46,XX/47,XXX, with a triplication of the distal p arm of the X chromosome in the 47,XXX cells. Neither the triple mosaic nor the partial triplication was found among the controls. In another SS cohort, we found a mother/daughter pair with partial triplication of this same region of the X chromosome. The triple mosaic occurs in ~1 in 25,000-50,000 live female births, while partial triplications are even rarer. Very rare X chromosome abnormalities are present among patients with either SS or SLE and may inform the location of a gene(s) that mediates an X dose effect, as well as critical cell types in which such an effect is operative. © 2017, American College of Rheumatology.

  4. Complex chromosomal abnormalities in a patient with HTLV-1 positive T-cell leukemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyde, P.; Macera, M.J.; Gogineni, S.K.

    HTLV-1 positive adult T-cell leukemia (ATL) is associated with numerous chromosomal abnormalities. The chromosomal rearrangements can be extremely complex and additional material is often present, making precise identification by routine cytogenetic techniques difficult. We report a case of ATL that was established of bone marrow cells by both QFQ and GTG banding techniques revealed a highly complex 49,XX,der(2)t(2;?)(q37;?),+5,+2mar karyotype in the dividing cells. The identical cytogenetic findings were also seen in unstimulated peripheral blood collected one week later. Using the FISH-technique, we applied spectrum green-labeled No. 1- and No. 7-specific WCP, spectrum orange-labeled No. 2- and No. 5-specific WCP (GIBCO/BRL,more » Gaithersburg, MD) and biotin-labeled No. 18-specific WCP (Oncor, Gaithersburg, MD) to metaphase chromosomes. The large marker chromosome was identified as an extra 1q arm, the material attached to the distal 2q was additional 7q. The presence of three No. 5 chromosomes was verified and the small marker was determined to be an extra partial 5p in Robertsonian translocation with an additional partial 18q arm. The karyotype was revised to 49,XX,+1q,der(2)t(2;7)(q37;q22),+5,+t(5;18)(p14{r_arrow}p11::q11{r_arrow}q12). Identification of the numerous chromosomal anomalies associated with the disease by molecular techniques shall lead to a better understanding of this deadly cancer.« less

  5. Chromosome abnormalities additional to the Philadelphia chromosome at the diagnosis of chronic myelogenous leukemia: pathogenetic and prognostic implications.

    PubMed

    Zaccaria, Alfonso; Testoni, Nicoletta; Valenti, Anna Maria; Luatti, Simona; Tonelli, Michela; Marzocchi, Giulia; Cipriani, Raffaella; Baldazzi, Carmen; Giannini, Barbara; Stacchini, Monica; Gamberini, Carla; Castagnetti, Fausto; Rosti, Gianantonio; Azzena, Annalisa; Cavazzini, Francesco; Cianciulli, Anna Maria; Dalsass, Alessia; Donti, Emilio; Giugliano, Emilia; Gozzetti, Alessandro; Grimoldi, Maria Grazia; Ronconi, Sonia; Santoro, Alessandra; Spedicato, Francesco; Zanatta, Lucia; Baccarani, Michele

    2010-06-01

    Additional chromosome abnormalities (ACAs) occur in less than 10% of cases at diagnosis of Philadelphia chromosome (Ph)-positive chronic myelogenous leukemia (CML). In some cases, on the basis of the persistence of the ACAs in Ph-negative cells after response to imatinib, a secondary origin of the Ph chromosome has been demonstrated. In this study, the possible prognostic value of this phenomenon was evaluated. Thirty-six Ph-positive CML patients were included in the study. In six patients, ACAs persisted after the disappearance of the Ph. A complete cytogenetic response (CCR) was obtained in five of these six patients, and five of six also had a high Sokal score. In all the other cases, ACAs disappeared together (in cases of response to therapy with imatinib) or persisted with the Ph (in cases of no response to imatinib). In the former cases, the primary origin of the Ph was demonstrated. CCR was obtained in 22 cases (17 with low to intermediate Sokal scores), while no response was observed in 8 patients (5 with a high Sokal score). Sokal score seems to maintain its prognostic value for patients in whom the Ph occurs as a primary event, but not in those in whom it occurs as a secondary one. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Sexually Antagonistic Zygotic Drive: A New Form of Genetic Conflict between the Sex Chromosomes

    PubMed Central

    Friberg, Urban; Rice, William R.

    2015-01-01

    Sisters and brothers are completely unrelated with respect to the sex chromosomes they inherit from their heterogametic parent. This has the potential to result in a previously unappreciated form of genetic conflict between the sex chromosomes, called sexually antagonistic zygotic drive (SA-ZD). SA-ZD can arise whenever brothers and sisters compete over limited resources or there is brother–sister mating coupled with inbreeding depression. Although theory predicts that SA-ZD should be common and influence important evolutionary processes, there is little empirical evidence for its existence. Here we discuss the current understanding of SA-ZD, why it would be expected to elude empirical detection when present, and how it relates to other forms of genetic conflict. PMID:25573714

  7. Range-Wide Sex-Chromosome Sequence Similarity Supports Occasional XY Recombination in European Tree Frogs (Hyla arborea)

    PubMed Central

    Brelsford, Alan; Perrin, Nicolas

    2014-01-01

    In contrast with mammals and birds, most poikilothermic vertebrates feature structurally undifferentiated sex chromosomes, which may result either from frequent turnovers, or from occasional events of XY recombination. The latter mechanism was recently suggested to be responsible for sex-chromosome homomorphy in European tree frogs (Hyla arborea). However, no single case of male recombination has been identified in large-scale laboratory crosses, and populations from NW Europe consistently display sex-specific allelic frequencies with male-diagnostic alleles, suggesting the absence of recombination in their recent history. To address this apparent paradox, we extended the phylogeographic scope of investigations, by analyzing the sequences of three sex-linked markers throughout the whole species distribution. Refugial populations (southern Balkans and Adriatic coast) show a mix of X and Y alleles in haplotypic networks, and no more within-individual pairwise nucleotide differences in males than in females, testifying to recurrent XY recombination. In contrast, populations of NW Europe, which originated from a recent postglacial expansion, show a clear pattern of XY differentiation; the X and Y gametologs of the sex-linked gene Med15 present different alleles, likely fixed by drift on the front wave of expansions, and kept differentiated since. Our results support the view that sex-chromosome homomorphy in H. arborea is maintained by occasional or historical events of recombination; whether the frequency of these events indeed differs between populations remains to be clarified. PMID:24892652

  8. Multiple marker screening test: identification of fetal cystic hygroma, hydrops, and sex chromosome aneuploidy.

    PubMed

    Wenstrom, K D; Boots, L R; Cosper, P C

    1996-01-01

    The goal of this study was to determine if the multiple marker screening test (maternal serum alpha-fetoprotein, unconjugated estriol, human chorionic gonadotrophin, and maternal age) detects fetal Turner syndrome or just cystic hygroma/hydrops. Multiple marker screening tests from 4 groups were compared: 1) Turner syndrome with hydrops/ hygroma group (n = 10) = fetuses with cystic hygroma/hydrops and a 45X karyotype, 2) Turner syndrome without hydrops/hygroma (n = 9) = sonographically unremarkable fetal Turner syndrome or Turner mosaic, 3) hydrops group (n = 8) = all cases of fetal cystic hygroma/hydrops excluding Turner syndrome, 4) sex chromosome aneuploidy group (n = 16) = other sonographically normal fetal sex chromosome aneuploidies. Positive screening tests (Down syndrome risk > or = 1:190 or MSAFP > or = 2.5 MOM) were found in 60% (6/10) of the Turner syndrome with hydrops/hygroma group, but only 11% (1/9) of the Turner syndrome without hydrops/hygroma group (P = .04). The incidence of positive screening tests in the Hydrops group was 75% (6/8), while it was only 12.5% (2/16) in the other sex chromosome aneuploidy group. We conclude that the multiple marker screening test identifies fetuses with cystic hygroma/hydrops, and may do so independently of the etiology of the hydrops.

  9. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome

    NASA Astrophysics Data System (ADS)

    Kazama, Yusuke; Ishii, Kotaro; Aonuma, Wataru; Ikeda, Tokihiro; Kawamoto, Hiroki; Koizumi, Ayako; Filatov, Dmitry A.; Chibalina, Margarita; Bergero, Roberta; Charlesworth, Deborah; Abe, Tomoko; Kawano, Shigeyuki

    2016-01-01

    Sex chromosomes are particularly interesting regions of the genome for both molecular genetics and evolutionary studies; yet, for most species, we lack basic information, such as the gene order along the chromosome. Because they lack recombination, Y-linked genes cannot be mapped genetically, leaving physical mapping as the only option for establishing the extent of synteny and homology with the X chromosome. Here, we developed a novel and general method for deletion mapping of non-recombining regions by solving “the travelling salesman problem”, and evaluate its accuracy using simulated datasets. Unlike the existing radiation hybrid approach, this method allows us to combine deletion mutants from different experiments and sources. We applied our method to a set of newly generated deletion mutants in the dioecious plant Silene latifolia and refined the locations of the sex-determining loci on its Y chromosome map.

  10. Regulatory and evolutionary signatures of sex-biased genes on both the X chromosome and the autosomes.

    PubMed

    Shen, Jiangshan J; Wang, Ting-You; Yang, Wanling

    2017-11-02

    Sex is an important but understudied factor in the genetics of human diseases. Analyses using a combination of gene expression data, ENCODE data, and evolutionary data of sex-biased gene expression in human tissues can give insight into the regulatory and evolutionary forces acting on sex-biased genes. In this study, we analyzed the differentially expressed genes between males and females. On the X chromosome, we used a novel method and investigated the status of genes that escape X-chromosome inactivation (escape genes), taking into account the clonality of lymphoblastoid cell lines (LCLs). To investigate the regulation of sex-biased differentially expressed genes (sDEG), we conducted pathway and transcription factor enrichment analyses on the sDEGs, as well as analyses on the genomic distribution of sDEGs. Evolutionary analyses were also conducted on both sDEGs and escape genes. Genome-wide, we characterized differential gene expression between sexes in 462 RNA-seq samples and identified 587 sex-biased genes, or 3.2% of the genes surveyed. On the X chromosome, sDEGs were distributed in evolutionary strata in a similar pattern as escape genes. We found a trend of negative correlation between the gene expression breadth and nonsynonymous over synonymous mutation (dN/dS) ratios, showing a possible pleiotropic constraint on evolution of genes. Genome-wide, nine transcription factors were found enriched in binding to the regions surrounding the transcription start sites of female-biased genes. Many pathways and protein domains were enriched in sex-biased genes, some of which hint at sex-biased physiological processes. These findings lend insight into the regulatory and evolutionary forces shaping sex-biased gene expression and their involvement in the physiological and pathological processes in human health and diseases.

  11. v-Src-driven transformation is due to chromosome abnormalities but not Src-mediated growth signaling.

    PubMed

    Honda, Takuya; Morii, Mariko; Nakayama, Yuji; Suzuki, Ko; Yamaguchi, Noritaka; Yamaguchi, Naoto

    2018-01-18

    v-Src is the first identified oncogene product and has a strong tyrosine kinase activity. Much of the literature indicates that v-Src expression induces anchorage-independent and infinite cell proliferation through continuous stimulation of growth signaling by v-Src activity. Although all of v-Src-expressing cells are supposed to form transformed colonies, low frequencies of v-Src-induced colony formation have been observed so far. Using cells that exhibit high expression efficiencies of inducible v-Src, we show that v-Src expression causes cell-cycle arrest through p21 up-regulation despite ERK activation. v-Src expression also induces chromosome abnormalities and unexpected suppression of v-Src expression, leading to p21 down-regulation and ERK inactivation. Importantly, among v-Src-suppressed cells, only a limited number of cells gain the ability to re-proliferate and form transformed colonies. Our findings provide the first evidence that v-Src-driven transformation is attributed to chromosome abnormalities, but not continuous stimulation of growth signaling, possibly through stochastic genetic alterations.

  12. Regulation of aromatase expression in the anterior amygdala of the developing mouse brain depends on ERβ and sex chromosome complement.

    PubMed

    Cisternas, Carla Daniela; Cabrera Zapata, Lucas Ezequiel; Arevalo, María Angeles; Garcia-Segura, Luis Miguel; Cambiasso, María Julia

    2017-07-13

    During development sex differences in aromatase expression in limbic regions of mouse brain depend on sex chromosome factors. Genes on the sex chromosomes may affect the hormonal regulation of aromatase expression and this study was undertaken to explore that possibility. Male E15 anterior amygdala neuronal cultures expressed higher levels of aromatase (mRNA and protein) than female cultures. Furthermore, treatment with oestradiol (E2) or dihydrotestosterone (DHT) increased Cyp19a1 expression and aromatase protein levels only in female neuronal cultures. The effect of E2 on aromatase expression was not imitated by oestrogen receptor (ER) α agonist PPT or the GPER agonist G1, but it was fully reproduced by DPN, a specific ligand of ERβ. By contrast, the effect of DHT on aromatase expression was not blocked by the anti-androgen flutamide, but completely abrogated by the ERβ antagonist PHTPP. Experiments using the four core genotype model showed a sex chromosome effect in ERβ expression (XY > XX) and regulation by E2 or DHT (only XX respond) in amygdala neurons. In conclusion, sex chromosome complement governs the hormonal regulation of aromatase expression through activation of ERβ in developing mouse brain.

  13. Inter- and Intraspecies Phylogenetic Analyses Reveal Extensive X–Y Gene Conversion in the Evolution of Gametologous Sequences of Human Sex Chromosomes

    PubMed Central

    Trombetta, Beniamino; Sellitto, Daniele; Scozzari, Rosaria; Cruciani, Fulvio

    2014-01-01

    It has long been believed that the male-specific region of the human Y chromosome (MSY) is genetically independent from the X chromosome. This idea has been recently dismissed due to the discovery that X–Y gametologous gene conversion may occur. However, the pervasiveness of this molecular process in the evolution of sex chromosomes has yet to be exhaustively analyzed. In this study, we explored how pervasive X–Y gene conversion has been during the evolution of the youngest stratum of the human sex chromosomes. By comparing about 0.5 Mb of human–chimpanzee gametologous sequences, we identified 19 regions in which extensive gene conversion has occurred. From our analysis, two major features of these emerged: 1) Several of them are evolutionarily conserved between the two species and 2) almost all of the 19 hotspots overlap with regions where X–Y crossing-over has been previously reported to be involved in sex reversal. Furthermore, in order to explore the dynamics of X–Y gametologous conversion in recent human evolution, we resequenced these 19 hotspots in 68 widely divergent Y haplogroups and used publicly available single nucleotide polymorphism data for the X chromosome. We found that at least ten hotspots are still active in humans. Hence, the results of the interspecific analysis are consistent with the hypothesis of widespread reticulate evolution within gametologous sequences in the differentiation of hominini sex chromosomes. In turn, intraspecific analysis demonstrates that X–Y gene conversion may modulate human sex-chromosome-sequence evolution to a greater extent than previously thought. PMID:24817545

  14. XX male sex reversal with genital abnormalities associated with a de novo SOX3 gene duplication.

    PubMed

    Moalem, Sharon; Babul-Hirji, Riyana; Stavropolous, Dmitri J; Wherrett, Diane; Bägli, Darius J; Thomas, Paul; Chitayat, David

    2012-07-01

    Differentiation of the bipotential gonad into testis is initiated by the Y chromosome-linked gene SRY (Sex-determining Region Y) through upregulation of its autosomal direct target gene SOX9 (Sry-related HMG box-containing gene 9). Sequence and chromosome homology studies have shown that SRY most probably evolved from SOX3, which in humans is located at Xq27.1. Mutations causing SOX3 loss-of-function do not affect the sex determination in mice or humans. However, transgenic mouse studies have shown that ectopic expression of Sox3 in the bipotential gonad results in upregulation of Sox9, resulting in testicular induction and XX male sex reversal. However, the mechanism by which these rearrangements cause sex reversal and the frequency with which they are associated with disorders of sex development remains unclear. Rearrangements of the SOX3 locus were identified recently in three cases of human XX male sex reversal. We report on a case of XX male sex reversal associated with a novel de novo duplication of the SOX3 gene. These data provide additional evidence that SOX3 gain-of-function in the XX bipotential gonad causes XX male sex reversal and further support the hypothesis that SOX3 is the evolutionary antecedent of SRY. Copyright © 2012 Wiley Periodicals, Inc.

  15. An Autosomal Gene That Affects X Chromosome Expression and Sex Determination in CAENORHABDITIS ELEGANS

    PubMed Central

    Meneely, Philip M.; Wood, William B.

    1984-01-01

    Recessive mutant alleles at the autosomal dpy-21 locus of C. elegans cause a dumpy phenotype in XX animals but not in XO animals. This dumpy phenotype is characteristic of X chromosome aneuploids with higher than normal X to autosome ratios and is proposed to result from overexpression of X-linked genes. We have isolated a new dpy-21 allele that also causes partial hermaphroditization of XO males, without causing the dumpy phenotype. All dpy-21 alleles show hermaphroditization effects in XO males that carry a duplication of part of the X chromosome and also partially suppress a transformer (tra-1) mutation that converts XX animals into males. Experiments with a set of X chromosome duplications show that the defects of dpy-21 mutants can result from interaction with several different regions of the X chromosome. We propose that dpy-21 regulates X chromosome expression and may be involved in interpreting X chromosome dose for the developmental decisions of both sex determination and dosage compensation. PMID:6537930

  16. A pseudoautosomal random amplified polymorphic DNA marker for the sex chromosomes of Silene dioica.

    PubMed Central

    Di Stilio, V S; Kesseli, R V; Mulcahy, D L

    1998-01-01

    The segregation pattern of an 810-bp random amplified polymorphic DNA (RAPD) band in the F1 and backcross generations of a Silene dioica (L.) Clairv. family provides evidence that this molecular marker is located in the pseudoautosomal region (PAR) of the X and Y chromosomes. The marker was found through a combination of bulked segregant analysis (BSA) and RAPD techniques. Recombination rates between this pseudoautosomal marker and the differentiating portion of the Y chromosome are 15% in both generations. Alternative explanations involving nondisjunction or autosomal inheritance are presented and discussed. Chromosome counts provide evidence against the nondisjunction hypothesis, and probability calculations argue against the possibility of autosomal inheritance. This constitutes the first report of a pseudoautosomal DNA marker for plant sex chromosomes. PMID:9691057

  17. Comparison of Spinach Sex Chromosomes with Sugar Beet Autosomes Reveals Extensive Synteny and Low Recombination at the Male-Determining Locus.

    PubMed

    Takahata, Satoshi; Yago, Takumi; Iwabuchi, Keisuke; Hirakawa, Hideki; Suzuki, Yutaka; Onodera, Yasuyuki

    2016-01-01

    Spinach (Spinacia oleracea, 2n = 12) and sugar beet (Beta vulgaris, 2n = 18) are important crop members of the family Chenopodiaceae ss Sugar beet has a basic chromosome number of 9 and a cosexual breeding system, as do most members of the Chenopodiaceae ss. family. By contrast, spinach has a basic chromosome number of 6 and, although certain cultivars and genotypes produce monoecious plants, is considered to be a dioecious species. The loci determining male and monoecious sexual expression were mapped to different loci on the spinach sex chromosomes. In this study, a linkage map with 46 mapped protein-coding sequences was constructed for the spinach sex chromosomes. Comparison of the linkage map with a reference genome sequence of sugar beet revealed that the spinach sex chromosomes exhibited extensive synteny with sugar beet chromosomes 4 and 9. Tightly linked protein-coding genes linked to the male-determining locus in spinach corresponded to genes located in or around the putative pericentromeric and centromeric regions of sugar beet chromosomes 4 and 9, supporting the observation that recombination rates were low in the vicinity of the male-determining locus. The locus for monoecism was confined to a chromosomal segment corresponding to a region of approximately 1.7Mb on sugar beet chromosome 9, which may facilitate future positional cloning of the locus. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Asymmetry of cerebral gray and white matter and structural volumes in relation to sex hormones and chromosomes.

    PubMed

    Savic, Ivanka

    2014-01-01

    Whilst many studies show sex differences in cerebral asymmetry, their mechanisms are still unknown. This report describes the potential impact of sex hormones and sex chromosomes by comparing MR data from 39 male and 47 female controls and 33 men with an extra X-chromosome (47,XXY). Regional asymmetry in gray and white matter volumes (GMV and WMV) was calculated using voxel based moprhometry (SPM5), by contrasting the unflipped and flipped individual GMV and WMV images. In addition, structural volumes were calculated for the thalamus, caudate, putamen, amygdala, and hippocampus, using the FreeSurfer software. Effects of plasma testosterone and estrogen on the GMV and WMV, as well on the right/left ratios of the subcortical volumes were tested by multi-regression analysis. All three groups showed a leftward asymmetry in the motor cortex and the planum temporale, and a rightward asymmetry of the middle occipital cortex. Both asymmetries were more pronounced in 46,XY males than 46,XX females and 47,XXY males, and were positively correlated with testosterone levels. There was also a rightward asymmetry of the vermis and leftward GMV asymmetry in the cerebellar hemispheres in all groups. Notably, cerebellar asymmetries were larger in 46,XX females and 47,XXY males, but were not related to sex hormone levels. No asymmetry differences between 46,XX females and 47,XXY males, and no overall effects of brain size were detected. The asymmetry in the planum temporale area and the occipital cortex seem related to processes associated with testosterone, whereas the observed cerebellar asymmetries suggest a link with X-chromosome escapee genes. Sex differences in cerebral asymmetry are moderated by sex hormones and X-chromosome genes, in a regionally differentiated manner.

  19. Asymmetry of cerebral gray and white matter and structural volumes in relation to sex hormones and chromosomes

    PubMed Central

    Savic, Ivanka

    2014-01-01

    Whilst many studies show sex differences in cerebral asymmetry, their mechanisms are still unknown. This report describes the potential impact of sex hormones and sex chromosomes by comparing MR data from 39 male and 47 female controls and 33 men with an extra X-chromosome (47,XXY). Methods: Regional asymmetry in gray and white matter volumes (GMV and WMV) was calculated using voxel based moprhometry (SPM5), by contrasting the unflipped and flipped individual GMV and WMV images. In addition, structural volumes were calculated for the thalamus, caudate, putamen, amygdala, and hippocampus, using the FreeSurfer software. Effects of plasma testosterone and estrogen on the GMV and WMV, as well on the right/left ratios of the subcortical volumes were tested by multi-regression analysis. Results: All three groups showed a leftward asymmetry in the motor cortex and the planum temporale, and a rightward asymmetry of the middle occipital cortex. Both asymmetries were more pronounced in 46,XY males than 46,XX females and 47,XXY males, and were positively correlated with testosterone levels. There was also a rightward asymmetry of the vermis and leftward GMV asymmetry in the cerebellar hemispheres in all groups. Notably, cerebellar asymmetries were larger in 46,XX females and 47,XXY males, but were not related to sex hormone levels. No asymmetry differences between 46,XX females and 47,XXY males, and no overall effects of brain size were detected. Conclusion: The asymmetry in the planum temporale area and the occipital cortex seem related to processes associated with testosterone, whereas the observed cerebellar asymmetries suggest a link with X-chromosome escapee genes. Sex differences in cerebral asymmetry are moderated by sex hormones and X-chromosome genes, in a regionally differentiated manner. PMID:25505869

  20. Chromosome abnormalities and the genetics of congenital corneal opacification.

    PubMed

    Mataftsi, A; Islam, L; Kelberman, D; Sowden, J C; Nischal, K K

    2011-01-01

    Congenital corneal opacification (CCO) encompasses a broad spectrum of disorders that have different etiologies, including genetic and environmental. Terminology used in clinical phenotyping is commonly not specific enough to describe separate entities, for example both the terms Peters anomaly and sclerocornea have been ascribed to a clinical picture of total CCO, without investigating the presence or absence of iridocorneal adhesions. This is not only confusing but also unhelpful in determining valid genotype-phenotype correlations, and thereby revealing clues for pathogenesis. We undertook a systematic review of the literature focusing on CCO as part of anterior segment developmental anomalies (ASDA), and analyzed its association specifically with chromosomal abnormalities. Genes previously identified as being associated with CCO are also summarized. All reports were critically appraised to classify phenotypes according to described features, rather than the given diagnosis. Some interesting associations were found, and are discussed.

  1. Amniotic fluid-AFP in Down syndrome and other chromosome abnormalities.

    PubMed

    Crandall, B F; Matsumoto, M; Perdue, S

    1988-05-01

    80.2 Per cent of 111 Down syndrome pregnancies had anmiotic fluid (AF) alpha fetoprotein (AFP) levels on or below the median and 10.8 per cent at or below 0.5 MoM compared with 41.9 and 1.4 per cent of controls. These differences were even more striking when the gestational age was less than 18 weeks compared with greater than or equal to 18 weeks. No such association was seen for other chromosome abnormalities including trisomy 18,45,X and mosaics, 47,XXY,47,XXX, and other structural abnormalities and triploidy, even when high levels due to defects such as omphalocele and cystic hygroma were excluded. All cases of trisomy 13 and 80 per cent with 47,XYY had AF-AFP levels above the median. Selection of cases for karyotyping by a low level of AF-AFP would clearly fail to detect aneuploidies other than Down syndrome and is not recommended. A possible weak association between low maternal serum (MS) and AF-AFPs in Down syndrome was most evident at less than 18 weeks, suggesting that MS screening between 16 and 18 weeks may be the most informative time.

  2. IDENTIFICATION OF SEX CHROMOSOME MOLECULAR MARKERS USING RAPDS AND FLUORESCENT IN SITU HYBRIDIZATION IN RAINBOW TROUT

    EPA Science Inventory

    The goal of this work is to identify molecular markers associated with the sex chromosomes in rainbow trout to study the mode of sex determination mechanisms in this species. Using the RAPD assay and bulked segregant analysis, two markers were identified that generated polymorphi...

  3. Nuclear abnormalities in aspirated thyroid cells and chromosome aberrations in lymphocytes of residents near the Semipalatinsk nuclear test site.

    PubMed

    Takeichi, Nobuo; Hoshi, Masaharu; Iida, Shozo; Tanaka, Kimio; Harada, Yuka; Zhumadilov, Zhaxybay; Chaizhunusova, Nailya; Apsalikov, Kazbek N; Noso, Yoshihiro; Inaba, Toshiya; Tanaka, Kenichi; Endo, Satoru

    2006-02-01

    Chromosomal studies in peripheral lymphocytes from 63 residents near the Semipalatinsk nuclear test site, at ages of 52-63 years old, were performed in 2001-2002. A higher rate of chromosome aberrations was observed in the two contaminated villages, Dolon and Sarjal, compared with the control village, Kokpekti. Moreover, a relationship of frequency of cells with radiation induced chromosome aberrations and the previously estimated exposure dose was observed. Furthermore, apparent nuclear abnormalities (ANA) of thyroid follicular cells were studied in 30 out of 63 residents, who were examined for chromosome aberrations. A higher rate of ANA was also found in the residents in the exposed villages compared with those in the control village. These results suggest radiation effects both on the chromosomes in peripheral lymphocytes and on the follicular cells in the thyroid.

  4. Latrunculin A treatment prevents abnormal chromosome segregation for successful development of cloned embryos.

    PubMed

    Terashita, Yukari; Yamagata, Kazuo; Tokoro, Mikiko; Itoi, Fumiaki; Wakayama, Sayaka; Li, Chong; Sato, Eimei; Tanemura, Kentaro; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer to an enucleated oocyte is used for reprogramming somatic cells with the aim of achieving totipotency, but most cloned embryos die in the uterus after transfer. While modifying epigenetic states of cloned embryos can improve their development, the production rate of cloned embryos can also be enhanced by changing other factors. It has already been shown that abnormal chromosome segregation (ACS) is a major cause of the developmental failure of cloned embryos and that Latrunculin A (LatA), an actin polymerization inhibitor, improves F-actin formation and birth rate of cloned embryos. Since F-actin is important for chromosome congression in embryos, here we examined the relation between ACS and F-actin in cloned embryos. Using LatA treatment, the occurrence of ACS decreased significantly whereas cloned embryo-specific epigenetic abnormalities such as dimethylation of histone H3 at lysine 9 (H3K9me2) could not be corrected. In contrast, when H3K9me2 was normalized using the G9a histone methyltransferase inhibitor BIX-01294, the Magea2 gene-essential for normal development but never before expressed in cloned embryos-was expressed. However, this did not increase the cloning success rate. Thus, non-epigenetic factors also play an important role in determining the efficiency of mouse cloning.

  5. Latrunculin A Treatment Prevents Abnormal Chromosome Segregation for Successful Development of Cloned Embryos

    PubMed Central

    Terashita, Yukari; Yamagata, Kazuo; Tokoro, Mikiko; Itoi, Fumiaki; Wakayama, Sayaka; Li, Chong; Sato, Eimei; Tanemura, Kentaro; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer to an enucleated oocyte is used for reprogramming somatic cells with the aim of achieving totipotency, but most cloned embryos die in the uterus after transfer. While modifying epigenetic states of cloned embryos can improve their development, the production rate of cloned embryos can also be enhanced by changing other factors. It has already been shown that abnormal chromosome segregation (ACS) is a major cause of the developmental failure of cloned embryos and that Latrunculin A (LatA), an actin polymerization inhibitor, improves F-actin formation and birth rate of cloned embryos. Since F-actin is important for chromosome congression in embryos, here we examined the relation between ACS and F-actin in cloned embryos. Using LatA treatment, the occurrence of ACS decreased significantly whereas cloned embryo-specific epigenetic abnormalities such as dimethylation of histone H3 at lysine 9 (H3K9me2) could not be corrected. In contrast, when H3K9me2 was normalized using the G9a histone methyltransferase inhibitor BIX-01294, the Magea2 gene—essential for normal development but never before expressed in cloned embryos—was expressed. However, this did not increase the cloning success rate. Thus, non-epigenetic factors also play an important role in determining the efficiency of mouse cloning. PMID:24205216

  6. Sequential Cross-Species Chromosome Painting among River Buffalo, Cattle, Sheep and Goat: A Useful Tool for Chromosome Abnormalities Diagnosis within the Family Bovidae

    PubMed Central

    Pauciullo, Alfredo; Perucatti, Angela; Cosenza, Gianfranco; Iannuzzi, Alessandra; Incarnato, Domenico; Genualdo, Viviana; Di Berardino, Dino; Iannuzzi, Leopoldo

    2014-01-01

    The main goal of this study was to develop a comparative multi-colour Zoo-FISH on domestic ruminants metaphases using a combination of whole chromosome and sub-chromosomal painting probes obtained from the river buffalo species (Bubalus bubalis, 2n = 50,XY). A total of 13 DNA probes were obtained through chromosome microdissection and DOP-PCR amplification, labelled with two fluorochromes and sequentially hybridized on river buffalo, cattle (Bos taurus, 2n = 60,XY), sheep (Ovis aries, 2n = 54,XY) and goat (Capra hircus, 2n = 60,XY) metaphases. The same set of paintings were then hybridized on bovine secondary oocytes to test their potential use for aneuploidy detection during in vitro maturation. FISH showed excellent specificity on metaphases and interphase nuclei of all the investigated species. Eight pairs of chromosomes were simultaneously identified in buffalo, whereas the same set of probes covered 13 out 30 chromosome pairs in the bovine and goat karyotypes and 40% of the sheep karyotype (11 out of 27 chromosome pairs). This result allowed development of the first comparative M-FISH karyotype within the domestic ruminants. The molecular resolution of complex karyotypes by FISH is particularly useful for the small chromosomes, whose similarity in the banding patterns makes their identification very difficult. The M-FISH karyotype also represents a practical tool for structural and numerical chromosome abnormalities diagnosis. In this regard, the successful hybridization on bovine secondary oocytes confirmed the potential use of this set of probes for the simultaneous identification on the same germ cell of 12 chromosome aneuploidies. This is a fundamental result for monitoring the reproductive health of the domestic animals in relation to management errors and/or environmental hazards. PMID:25330006

  7. Sex- and Gamete-Specific Patterns of X Chromosome Segregation in a Trioecious Nematode.

    PubMed

    Tandonnet, Sophie; Farrell, Maureen C; Koutsovoulos, Georgios D; Blaxter, Mark L; Parihar, Manish; Sadler, Penny L; Shakes, Diane C; Pires-daSilva, Andre

    2018-01-08

    Three key steps in meiosis allow diploid organisms to produce haploid gametes: (1) homologous chromosomes (homologs) pair and undergo crossovers; (2) homologs segregate to opposite poles; and (3) sister chromatids segregate to opposite poles. The XX/XO sex determination system found in many nematodes [1] facilitates the study of meiosis because variation is easily recognized [2-4]. Here we show that meiotic segregation of X chromosomes in the trioecious nematode Auanema rhodensis [5] varies according to sex (hermaphrodite, female, or male) and type of gametogenesis (oogenesis or spermatogenesis). In this species, XO males exclusively produce X-bearing sperm [6, 7]. The unpaired X precociously separates into sister chromatids, which co-segregate with the autosome set to generate a functional haplo-X sperm. The other set of autosomes is discarded into a residual body. Here we explore the X chromosome behavior in female and hermaphrodite meioses. Whereas X chromosomes segregate following the canonical pattern during XX female oogenesis to yield haplo-X oocytes, during XX hermaphrodite oogenesis they segregate to the first polar body to yield nullo-X oocytes. Thus, crosses between XX hermaphrodites and males yield exclusively male progeny. During hermaphrodite spermatogenesis, the sister chromatids of the X chromosomes separate during meiosis I, and homologous X chromatids segregate to the functional sperm to create diplo-X sperm. Given these intra-species, intra-individual, and intra-gametogenesis variations in the meiotic program, A. rhodensis is an ideal model for studying the plasticity of meiosis and how it can be modulated. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Parental decisions following prenatal diagnosis of sex chromosome aneuploidy in Hong Kong.

    PubMed

    So, Po Lam; Cheng, Kwun Yue Yvonne; Cheuk, Kwan Yiu; Chiu, Wan Kam; Mak, Shui Lam; Mok, Sau Lan; Lo, Tsz Kin; Yung, Wai Kuen; Lo, Fai Man; Chung, Hon Yin Brian; Kan, Sik Yau Anita; Lee, Chin Peng; Tang, Hoi Yin Mary

    2017-12-01

    According to the published work, pregnancy termination rates due to prenatal diagnosis of fetal sex chromosome aneuploidies (SCA) vary widely. Some potentially modifiable and non-modifiable factors have been reported to be associated with parental decision. This study aimed to evaluate the rate of pregnancy termination for fetal SCA and the factors influencing parents' decisions in Hong Kong. This was a 21-year retrospective cohort study of parents' decisions following prenatal diagnosis of SCA. Univariate and multivariate analyses for the association between demographic factors, prenatal factors, or counseling provided and decision-making were conducted. The study included 399 pregnancies with prenatal diagnosis of SCA and the overall termination rate was 55.6% (91.7%, 48.0%, 23.4%, 4.8%, and 22.7% for 45,X, 47,XXY, 47,XXX, 47,XYY, and mosaicism, respectively). Pregnancies with ultrasound abnormalities were associated with higher termination rates than pregnancies with normal ultrasound findings (91.3% vs 28.3%, P < 0.0001). From multivariate regression analysis on 226 pregnancies with normal ultrasound examination, a higher likelihood to terminate was found in pregnancies affected by 45,X and 47,XXY (adjusted odds ratio, 4.72, P < 0.0001). Increased maternal age and history of infertility were associated with lower likelihood to terminate (adjusted odds ratio, 0.9, P = 0.012; and 5.12, P = 0.038, respectively). The pregnancy termination rate declined over time. A significant correlation was found between the termination of SCA-affected pregnancy and the presence of fetal sonographic abnormalities, type of SCA, maternal age, and presence of infertility. © 2017 Japan Society of Obstetrics and Gynecology.

  9. Karyotype and identification of sex in two endangered crane species

    USGS Publications Warehouse

    Goodpasture, C.; Seluja, G.; Gee, G.; Wood, Don A.

    1992-01-01

    A laboratory procedure for sex identification of monomorphic birds was developed using modern cytological methods of detecting chromosome abnormalities in human amniotic fluid samples. A pin feather is taken from a pre-fledging bird for tissue culture and karyotype analysis. Through this method, the sex was identified and the karyotype described of the whooping crane (Grus americana) and the Mississippi sandhill crane (G. canadensis pulla). Giemsa-stained karyotypes of these species showed an identical chromosome constitution with 2n = 78 + 2. However, differences in the amount of centromeric heterochromatin were observed in the Mississippi sandhill crane when compared to the whooping crane C-banded karyotype.

  10. A small XY chromosomal region explains sex determination in wild dioecious V. vinifera and the reversal to hermaphroditism in domesticated grapevines.

    PubMed

    Picq, Sandrine; Santoni, Sylvain; Lacombe, Thierry; Latreille, Muriel; Weber, Audrey; Ardisson, Morgane; Ivorra, Sarah; Maghradze, David; Arroyo-Garcia, Rosa; Chatelet, Philippe; This, Patrice; Terral, Jean-Frédéric; Bacilieri, Roberto

    2014-09-03

    In Vitis vinifera L., domestication induced a dramatic change in flower morphology: the wild sylvestris subspecies is dioecious while hermaphroditism is largely predominant in the domesticated subsp. V. v. vinifera. The characterisation of polymorphisms in genes underlying the sex-determining chromosomal region may help clarify the history of domestication in grapevine and the evolution of sex chromosomes in plants. In the genus Vitis, sex determination is putatively controlled by one major locus with three alleles, male M, hermaphrodite H and female F, with an allelic dominance M > H > F. Previous genetic studies located the sex locus on chromosome 2. We used DNA polymorphisms of geographically diverse V. vinifera genotypes to confirm the position of this locus, to characterise the genetic diversity and traces of selection in candidate genes, and to explore the origin of hermaphroditism. In V. v. sylvestris, a sex-determining region of 154.8 kb, also present in other Vitis species, spans less than 1% of chromosome 2. It displays haplotype diversity, linkage disequilibrium and differentiation that typically correspond to a small XY sex-determining region with XY males and XX females. In male alleles, traces of purifying selection were found for a trehalose phosphatase, an exostosin and a WRKY transcription factor, with strikingly low polymorphism levels between distant geographic regions. Both diversity and network analysis revealed that H alleles are more closely related to M than to F alleles. Hermaphrodite alleles appear to derive from male alleles of wild grapevines, with successive recombination events allowing import of diversity from the X into the Y chromosomal region and slowing down the expansion of the region into a full heteromorphic chromosome. Our data are consistent with multiple domestication events and show traces of introgression from other Asian Vitis species into the cultivated grapevine gene pool.

  11. Purifying and Positive Selection Influence Patterns of Gene Loss and Gene Expression in the Evolution of a Plant Sex Chromosome System.

    PubMed

    Crowson, Daisy; Barrett, Spencer C H; Wright, Stephen I

    2017-05-01

    Sex chromosomes are unique regions of the genome, with a host of properties that distinguish them from autosomes and from each other. Although there is extensive theory describing sex chromosome formation and subsequent degeneration of the Y chromosome, the relative importance of processes governing degeneration is poorly understood. In particular, it is not known whether degeneration occurs solely as a direct result of inefficient selection due to loss of recombination, or whether adaptive gene silencing on the Y chromosome results in most degeneration occurring neutrally. We used comparative transcriptome data from two related annual plants with highly heteromorphic sex chromosomes, Rumex rothschildianus and Rumex hastatulus, to investigate the patterns and processes underlying Y chromosome degeneration. The rate of degeneration varied greatly between the two species. In R. rothschildianus, we infer widespread gene loss, higher than previously reported for any plant. Gene loss was not random: genes with lower constraint and those not expressed during the haploid phase were more likely to be lost. There was indirect evidence of adaptive evolution on the Y chromosome from the over-expression of Y alleles in certain genes with sex-biased gene expression. There was no complete dosage compensation, but there was evidence for targeted dosage compensation occurring in more selectively constrained genes. Overall, our results are consistent with selective interference playing the dominant role in the degeneration of the Y chromosome, rather than adaptive gene silencing. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Chromosome abnormalities and the genetics of congenital corneal opacification

    PubMed Central

    Mataftsi, A.; Islam, L.; Kelberman, D.; Sowden, J.C.

    2011-01-01

    Congenital corneal opacification (CCO) encompasses a broad spectrum of disorders that have different etiologies, including genetic and environmental. Terminology used in clinical phenotyping is commonly not specific enough to describe separate entities, for example both the terms Peters anomaly and sclerocornea have been ascribed to a clinical picture of total CCO, without investigating the presence or absence of iridocorneal adhesions. This is not only confusing but also unhelpful in determining valid genotype-phenotype correlations, and thereby revealing clues for pathogenesis. We undertook a systematic review of the literature focusing on CCO as part of anterior segment developmental anomalies (ASDA), and analyzed its association specifically with chromosomal abnormalities. Genes previously identified as being associated with CCO are also summarized. All reports were critically appraised to classify phenotypes according to described features, rather than the given diagnosis. Some interesting associations were found, and are discussed. PMID:21738392

  13. Siblings with opposite chromosome constitutions, dup(2q)/del(7q) and del(2q)/dup(7q).

    PubMed

    Shim, Sung Han; Shim, Jae Sun; Min, Kyunghoon; Lee, Hee Song; Park, Ji Eun; Park, Sang Hee; Hwang, Euna; Kim, Minyoung

    2014-01-15

    Chromosome 7q36 microdeletion syndrome is a rare genomic disorder characterized by underdevelopment of the brain, microcephaly, anomalies of the sex organs, and language problems. Developmental delay, intellectual disability, autistic spectrum disorders, BDMR syndrome, and unusual facial morphology are the key features of the chromosome 2q37 microdeletion syndrome. A genetic screening for two brothers with global developmental delay using high-resolution chromosomal analysis and subtelomeric multiplex ligation-dependent probe amplification revealed subtelomeric rearrangements on the same sites of 2q37.2 and 7q35, with reversed deletion and duplication. Both of them showed dysmorphic facial features, severe disability of physical and intellectual development, and abnormal genitalia with differential abnormalities in their phenotypes. The family did not have abnormal genetic phenotypes. According to the genetic analysis of their parents, adjacent-1 segregation from their mother's was suggested as a mechanism of their gene mutation. By comparing the phenotypes of our patients with previous reports on similar patients, we tried to obtain the information of related genes and their chromosomal locations. © 2013.

  14. Sex reversal in the mouse (Mus musculus) is caused by a recurrent nonreciprocal crossover involving the x and an aberrant y chromosome.

    PubMed

    Singh, L; Jones, K W

    1982-02-01

    Satellite DNA (Bkm) from the W sex-determining chromosome of snakes, which is related to sequences on the mouse Y chromosome, has been used to analyze the DNA and chromosomes of sex-reversed (Sxr) XXSxr male mice. Such mice exhibit a male-specific Southern blot Bkm hybridization pattern, consistent with the presence of Y-chromosome DNA. In situ hybridization of Bkm to chromosomes of XXSxr mice shows an aberrant concentration of related sequences on the distal terminus of a large mouse chromosome. The XYSxr carrier male, however, shows a pair of small chromosomes, which are presumed to be aberrant Y derivatives. Meiosis in the XYSxr mouse involves transfer of chromatin rich in Bkm-related DNA from the Y-Y1 complex to the X distal terminus. We suggest that this event is responsible for the transmission of the Sxr trait.

  15. Evidence for a Common Origin of Homomorphic and Heteromorphic Sex Chromosomes in Distinct Spinacia Species

    PubMed Central

    Fujito, Satoshi; Takahata, Satoshi; Suzuki, Reimi; Hoshino, Yoichiro; Ohmido, Nobuko; Onodera, Yasuyuki

    2015-01-01

    The dioecious genus Spinacia is thought to include two wild relatives (S. turkestanica Ilj. and S. tetrandra Stev.) of cultivated spinach (S. oleracea L.). In this study, nuclear and chloroplast sequences from 21 accessions of Spinacia germplasm and six spinach cultivars or lines were subjected to phylogenetic analysis to define the relationships among the three species. Maximum-likelihood sequence analysis suggested that the Spinacia plant samples could be classified into two monophyletic groups (Group 1 and Group 2): Group 1 consisted of all accessions, cultivars, and lines of S. oleracea L. and S. turkestanica Ilj. and two of five S. tetrandra Stev. accessions, whereas Group 2 was composed of the three remaining S. tetrandra Stev. accessions. By using flow cytometry, we detected a distinct difference in nuclear genome size between the groups. Group 2 also was characterized by a sexual dimorphism in inflorescence structure, which was not observed in Group 1. Interspecific crosses between the groups produced hybrids with drastically reduced pollen fertility and showed that the male is the heterogametic sex (XY) in Group 2, as is the case in S. oleracea L. (Group 1). Cytogenetic and DNA marker analyses suggested that Group 1 and Group 2 have homomorphic and heteromorphic sex chromosome pairs (XY), respectively, and that the sex chromosome pairs of the two groups evolved from a common ancestral pair. Our data suggest that the Spinacia genus may serve as a good model for investigation of evolutionary mechanisms underlying the emergence of heteromorphic sex chromosome pairs from ancestral homomorphic pairs. PMID:26048564

  16. Chromosomal abnormalities and copy number variations in fetal left-sided congenital heart defects.

    PubMed

    Jansen, Fenna A R; Hoffer, Mariette J V; van Velzen, Christine L; Plati, Stephani Klingeman; Rijlaarsdam, Marry E B; Clur, Sally-Ann B; Blom, Nico A; Pajkrt, Eva; Bhola, Shama L; Knegt, Alida C; de Boer, Marion A; Haak, Monique C

    2016-02-01

    To demonstrate the spectrum of copy number variants (CNVs) in fetuses with isolated left-sided congenital heart defects (CHDs), and analyse genetic content. Between 2003 and 2012, 200 fetuses were identified with left-sided CHD. Exclusion criteria were chromosomal rearrangements, 22q11.2 microdeletion and/or extra-cardiac malformations (n = 64). We included cases with additional minor anomalies (n = 39), such as single umbilical artery. In 54 of 136 eligible cases, stored material was available for array analysis. CNVs were categorized as either (likely) benign, (likely) pathogenic or of unknown significance. In 18 of the 54 isolated left-sided CHDs we found 28 rare CNVs (prevalence 33%, average 1.6 CNV per person, size 10.6 kb-2.2 Mb). Our interpretation yielded clinically significant CNVs in two of 54 cases (4%) and variants of unknown significance in three other cases (6%). In left-sided CHDs that appear isolated, with normal chromosome analysis and 22q11.2 FISH analysis, array analysis detects clinically significant CNVs. When counselling parents of a fetus with a left-sided CHD it must be taken into consideration that aside from the cardiac characteristics, the presence of extra-cardiac malformations and chromosomal abnormalities influence the treatment plan and prognosis. © 2015 John Wiley & Sons, Ltd.

  17. Sex Reversal and Comparative Data Undermine the W Chromosome and Support Z-linked DMRT1 as the Regulator of Gonadal Sex Differentiation in Birds.

    PubMed

    Hirst, Claire E; Major, Andrew T; Ayers, Katie L; Brown, Rosie J; Mariette, Mylene; Sackton, Timothy B; Smith, Craig A

    2017-09-01

    The exact genetic mechanism regulating avian gonadal sex differentiation has not been completely resolved. The most likely scenario involves a dosage mechanism, whereby the Z-linked DMRT1 gene triggers testis development. However, the possibility still exists that the female-specific W chromosome may harbor an ovarian determining factor. In this study, we provide evidence that the universal gene regulating gonadal sex differentiation in birds is Z-linked DMRT1 and not a W-linked (ovarian) factor. Three candidate W-linked ovarian determinants are HINTW, female-expressed transcript 1 (FET1), and female-associated factor (FAF). To test the association of these genes with ovarian differentiation in the chicken, we examined their expression following experimentally induced female-to-male sex reversal using the aromatase inhibitor fadrozole (FAD). Administration of FAD on day 3 of embryogenesis induced a significant loss of aromatase enzyme activity in female gonads and masculinization. However, expression levels of HINTW, FAF, and FET1 were unaltered after experimental masculinization. Furthermore, comparative analysis showed that FAF and FET1 expression could not be detected in zebra finch gonads. Additionally, an antibody raised against the predicted HINTW protein failed to detect it endogenously. These data do not support a universal role for these genes or for the W sex chromosome in ovarian development in birds. We found that DMRT1 (but not the recently identified Z-linked HEMGN gene) is male upregulated in embryonic zebra finch and emu gonads, as in the chicken. As chicken, zebra finch, and emu exemplify the major evolutionary clades of birds, we propose that Z-linked DMRT1, and not the W sex chromosome, regulates gonadal sex differentiation in birds. Copyright © 2017 Endocrine Society.

  18. Clinical implications of chromosomal abnormalities in gastric adenocarcinomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chew-Wun; Chen, Gen-Der; Fann, Cathy S.-J.

    2003-06-23

    Gastric carcinoma (GC) is one of the most common malignancies worldwide and has a very poor prognosis. Genetic imbalances in 62 primary gastric adenocarcinomas of various histopathologic types and pathologic stages and six gastric cancer-derived cell lines were analyzed by comparative genomic hybridization, and the relationship of genomic abnormalities to clinical features in primary GC was evaluated at a genome-wide level. Eighty-four percent of the tumors and all six cell lines showed DNA copy number changes. The recurrent chromosomal abnormalities including gains at 15 regions and losses at 8 regions were identified. Statistical analyses revealed that gains at 17q24-qter (53more » percent), 20q13-qter (48 percent), 1p32-p36 (42 percent), 22q12-qter (27 percent), 17p13-pter (24 percent), 16p13-pter (21 percent), 6p21-pter (19 percent), 20p12-pter (19 percent), 7p21-pter (18 percent), 3q28-qter (8 percent), and 13q13-q14 (8 percent), and losses at 18q12-qter (11 percent), 3p12 (8 percent), 3p25-pter (8 percent), 5q14-q23 (8 percent), and 9p21-p23 (5 percent), are associated with unique patient or tumor-related features. GCs of differing histopathologic features were shown to be associated with distinct patterns of genetic alterations, supporting the notion that they evolve through distinct genetic pathways. Metastatic tumors were also associated with specific genetic changes. These regions may harbor candidate genes involved in the pathogenesis of this malignancy.« less

  19. Dosage Effects of X and Y Chromosomes on Language and Social Functioning in Children with Supernumerary Sex Chromosome Aneuploidies: Implications for Idiopathic Language Impairment and Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Lee, Nancy Raitano; Wallace, Gregory L.; Adeyemi, Elizabeth I.; Lopez, Katherine C.; Blumenthal, Jonathan D.; Clasen, Liv S.; Giedd, Jay N.

    2012-01-01

    Background: Supernumerary sex chromosome aneuploidies (X/Y-aneuploidies), the presence of extra X and/or Y chromosomes, are associated with heightened rates of language impairments and social difficulties. However, no single study has examined different language domains and social functioning in the same sample of children with tri-, tetra-, and…

  20. Müllerian Agenesis in Cat Eye Syndrome and 22q11 Chromosome Abnormalities: A Case Report and Literature Review.

    PubMed

    AlSubaihin, Abdulmajeed; VanderMeulen, John; Harris, Kate; Duck, John; McCready, Elizabeth

    2018-04-01

    Although Müllerian agenesis is the second most common cause of primary amenorrhea the underlying etiology in most cases is unknown. Müllerian agenesis has been reported as a rare finding associated with chromosomal aberrations of the 22q11 chromosomal region including at least 1 individual with cat eye syndrome (CES) and 10 individuals with deletions or duplications of the 22q11.2 region. However, a potential link between 22q11 abnormalities and uterine malformations has been difficult to adequately ascertain because of the limited case reports in the literature. We report a second case of Müllerian agenesis in a girl with CES. A 16-year-old girl presented with bilateral colobomata, primary amenorrhea, and absence of the uterus and upper vagina on pelvic magnetic resonance imaging. Microarray analysis showed tetrasomy of the pericentromeric region of chromosome 22 diagnostic of CES. Müllerian aplasia/hypoplasia might represent a rare feature in CES and should be considered in the investigation of young girls with this syndrome. An increasing number of cases with 22q11 chromosome abnormalities and Müllerian agenesis further highlights the possibility of a gene within the 22q11 region that might mediate normal Müllerian development in girls. Copyright © 2017 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  1. Sex chromosomes in mitotic and polytene tissues of Anastrepha fraterculus (Diptera, Tephritidae) from Argentina: a review.

    PubMed

    Giardini, María Cecilia; Milla, Fabián H; Lanzavecchia, Silvia; Nieves, Mariela; Cladera, Jorge L

    2015-01-01

    Cytogenetics, which is considered a fundamental tool to understand basic genetic and genomic issues of species, has greatly contributed to the description of polymorphisms both at inter- and intra-specific level. In fact, cytogenetics was one of the first approaches used to propose Anastrepha fraterculus (Diptera: Tephritidae) as a complex of cryptic species. Different morphological variants of sex chromosomes have been reported among Argentinean populations of Anastrepha fraterculus. However, since this high structural variability in sex chromosomes does not pose a reproductive barrier, their role in speciation is yet to be unveiled. This review provides an update on general aspects of cytogenetics in Argentinean Anastrepha fraterculus populations, focused on the prevalence of X-Y arrangements.

  2. Sex chromosomes in mitotic and polytene tissues of Anastrepha fraterculus (Diptera, Tephritidae) from Argentina: a review

    PubMed Central

    Giardini, María Cecilia; Milla, Fabián H.; Lanzavecchia, Silvia; Nieves, Mariela; Cladera, Jorge L.

    2015-01-01

    Abstract Cytogenetics, which is considered a fundamental tool to understand basic genetic and genomic issues of species, has greatly contributed to the description of polymorphisms both at inter- and intra-specific level. In fact, cytogenetics was one of the first approaches used to propose Anastrepha fraterculus (Diptera: Tephritidae) as a complex of cryptic species. Different morphological variants of sex chromosomes have been reported among Argentinean populations of Anastrepha fraterculus. However, since this high structural variability in sex chromosomes does not pose a reproductive barrier, their role in speciation is yet to be unveiled. This review provides an update on general aspects of cytogenetics in Argentinean Anastrepha fraterculus populations, focused on the prevalence of X-Y arrangements. PMID:26798255

  3. The development of functional mapping by three sex-related loci on the third whorl of different sex types of Carica papaya L.

    PubMed Central

    Lin, Hui-Jun; Viswanath, Kotapati Kasi; Lin, Chih-Peng; Chang, Bill Chia-Han; Chiu, Pei-Hsun; Chiu, Chan-Tai; Wang, Ren-Huang; Chin, Shih-Wen; Chen, Fure-Chyi

    2018-01-01

    Carica papaya L. is an important economic crop worldwide and is used as a model plant for sex-determination research. To study the different flower sex types, we screened sex-related genes using alternative splicing sequences (AS-seqs) from a transcriptome database of the three flower sex types, i.e., males, females, and hermaphrodites, established at 28 days before flowering using 15 bacterial artificial chromosomes (BACs) of C. papaya L. After screening, the cDNA regions of the three sex-related loci, including short vegetative phase-like (CpSVPL), the chromatin assembly factor 1 subunit A-like (CpCAF1AL), and the somatic embryogenesis receptor kinase (CpSERK), which contained eight sex-related single-nucleotide polymorphisms (SNPs) from the different sex types of C. papaya L., were genotyped using high-resolution melting (HRM). The three loci were examined regarding the profiles of the third whorl, as described below. CpSVPL, which had one SNP associated with the three sex genotypes, was highly expressed in the male and female sterile flowers (abnormal hermaphrodite flowers) that lacked the fourth whorl structure. CpCAF1AL, which had three SNPs associated with the male genotype, was highly expressed in male and normal hermaphrodite flowers, and had no AS-seqs, whereas it exhibited low expression and an AS-seqs in intron 11 in abnormal hermaphrodite flowers. Conversely, carpellate flowers (abnormal hermaphrodite flowers) showed low expression of CpSVPL and AS-seqs in introns 5, 6, and 7 of CpSERK, which contained four SNPs associated with the female genotype. Specifically, the CpSERK and CpCAF1AL loci exhibited no AS-seq expression in the third whorl of the male and normal hermaphrodite flowers, respectively, and variance in the AS-seq expression of all other types of flowers. Functional mapping of the third whorl of normal hermaphrodites indicated no AS-seq expression in CpSERK, low CpSVPL expression, and, for CpCAF1AL, high expression and no AS-seq expression

  4. Automated identification of abnormal metaphase chromosome cells for the detection of chronic myeloid leukemia using microscopic images

    NASA Astrophysics Data System (ADS)

    Wang, Xingwei; Zheng, Bin; Li, Shibo; Mulvihill, John J.; Chen, Xiaodong; Liu, Hong

    2010-07-01

    Karyotyping is an important process to classify chromosomes into standard classes and the results are routinely used by the clinicians to diagnose cancers and genetic diseases. However, visual karyotyping using microscopic images is time-consuming and tedious, which reduces the diagnostic efficiency and accuracy. Although many efforts have been made to develop computerized schemes for automated karyotyping, no schemes can get be performed without substantial human intervention. Instead of developing a method to classify all chromosome classes, we develop an automatic scheme to detect abnormal metaphase cells by identifying a specific class of chromosomes (class 22) and prescreen for suspicious chronic myeloid leukemia (CML). The scheme includes three steps: (1) iteratively segment randomly distributed individual chromosomes, (2) process segmented chromosomes and compute image features to identify the candidates, and (3) apply an adaptive matching template to identify chromosomes of class 22. An image data set of 451 metaphase cells extracted from bone marrow specimens of 30 positive and 30 negative cases for CML is selected to test the scheme's performance. The overall case-based classification accuracy is 93.3% (100% sensitivity and 86.7% specificity). The results demonstrate the feasibility of applying an automated scheme to detect or prescreen the suspicious cancer cases.

  5. Abnormal chromosome complement resulting from a familial inversion of chromosome 2.

    PubMed Central

    Richter, S; Lockwood, B; Lockwood, D; Allanson, J

    1989-01-01

    It has been suggested that pericentric inversions of chromosome 2 increase the risk for spontaneous abortion but do not increase the risk for unbalanced recombinant offspring. We report our experience of a familial pericentric inversion of chromosome 2 resulting in two unbalanced recombinant offspring. Both subjects have 46,XX,rec(2),dup q,inv(2)(p25q35). Images PMID:2479747

  6. Vocal and Gestural Productions of 24-Month-Old Children with Sex Chromosome Trisomies

    ERIC Educational Resources Information Center

    Zampini, Laura; Draghi, Lara; Silibello, Gaia; Dall'Ara, Francesca; Rigamonti, Claudia; Suttora, Chiara; Zanchi, Paola; Salerni, Nicoletta; Lalatta, Faustina; Vizziello, Paola

    2018-01-01

    Background: Children with sex chromosome trisomies (SCT) frequently show problems in language development. However, a clear description of the communicative patterns of these children is still lacking. Aims: To describe the first stages of language development in children with SCT in comparison with those in typically developing (TD) children. The…

  7. X-Chromosome dosage compensation.

    PubMed

    Meyer, Barbara J

    2005-06-25

    In mammals, flies, and worms, sex is determined by distinctive regulatory mechanisms that cause males (XO or XY) and females (XX) to differ in their dose of X chromosomes. In each species, an essential X chromosome-wide process called dosage compensation ensures that somatic cells of either sex express equal levels of X-linked gene products. The strategies used to achieve dosage compensation are diverse, but in all cases, specialized complexes are targeted specifically to the X chromosome(s) of only one sex to regulate transcript levels. In C. elegans, this sex-specific targeting of the dosage compensation complex (DCC) is controlled by the same developmental signal that establishes sex, the ratio of X chromosomes to sets of autosomes (X:A signal). Molecular components of this chromosome counting process have been defined. Following a common step of regulation, sex determination and dosage compensation are controlled by distinct genetic pathways. C. elegans dosage compensation is implemented by a protein complex that binds both X chromosomes of hermaphrodites to reduce transcript levels by one-half. The dosage compensation complex resembles the conserved 13S condensin complex required for both mitotic and meiotic chromosome resolution and condensation, implying the recruitment of ancient proteins to the new task of regulating gene expression. Within each C. elegans somatic cell, one of the DCC components also participates in the separate mitotic/meiotic condensin complex. Other DCC components play pivotal roles in regulating the number and distribution of crossovers during meiosis. The strategy by which C. elegans X chromosomes attract the condensin-like DCC is known. Small, well-dispersed X-recognition elements act as entry sites to recruit the dosage compensation complex and to nucleate spreading of the complex to X regions that lack recruitment sites. In this manner, a repressed chromatin state is spread in cis over short or long distances, thus establishing the

  8. Sustained trilineage recovery and disappearance of abnormal chromosome clone in a patient with myelodysplastic syndrome following combination therapy with cytokines (granulocyte colony-stimulating factor and erythropoietin) and high-dose methylprednisolone.

    PubMed

    Imai, Y; Fukuoka, T; Nakatani, A; Ohsaka, A; Takahashi, A

    1996-04-01

    We report a case of hypoplastic myelodyplastic syndrome (MDS) (refractory anemia (RA)) in which sustained trilineage haematological response and persistent disappearance of an abnormal chromosome clone were achieved after treatment with combination therapy of cytokines (granulocyte colony-stimulating factor (G-CSF) and erythropoietin (Epo)) and methylprednisolone (mPSL) pulse dose. The patient's haematological recovery was rapid and maintained even after cessation of the therapy. In addition, the predominant chromosome clone 13q- in bone marrow cells disappeared in the fourth week. The patient's improved bone marrow haemopoiesis and disappearance of the abnormal chromosome has continued to the present, 13 months after treatment. The occurrence of both trilineage response and abnormal chromosome disappearance in MDS patients treated with cytokine(s) or steroids is rare. Combination therapy might therefore be advantageous in MDS.

  9. Silencing of X-Linked MicroRNAs by Meiotic Sex Chromosome Inactivation

    PubMed Central

    Royo, Hélène; Seitz, Hervé; ElInati, Elias; Peters, Antoine H. F. M.; Stadler, Michael B.; Turner, James M. A.

    2015-01-01

    During the pachytene stage of meiosis in male mammals, the X and Y chromosomes are transcriptionally silenced by Meiotic Sex Chromosome Inactivation (MSCI). MSCI is conserved in therian mammals and is essential for normal male fertility. Transcriptomics approaches have demonstrated that in mice, most or all protein-coding genes on the X chromosome are subject to MSCI. However, it is unclear whether X-linked non-coding RNAs behave in a similar manner. The X chromosome is enriched in microRNA (miRNA) genes, with many exhibiting testis-biased expression. Importantly, high expression levels of X-linked miRNAs (X-miRNAs) have been reported in pachytene spermatocytes, indicating that these genes may escape MSCI, and perhaps play a role in the XY-silencing process. Here we use RNA FISH to examine X-miRNA expression in the male germ line. We find that, like protein-coding X-genes, X-miRNAs are expressed prior to prophase I and are thereafter silenced during pachynema. X-miRNA silencing does not occur in mouse models with defective MSCI. Furthermore, X-miRNAs are expressed at pachynema when present as autosomally integrated transgenes. Thus, we conclude that silencing of X-miRNAs during pachynema in wild type males is MSCI-dependent. Importantly, misexpression of X-miRNAs during pachynema causes spermatogenic defects. We propose that MSCI represents a chromosomal mechanism by which X-miRNAs, and other potential X-encoded repressors, can be silenced, thereby regulating genes with critical late spermatogenic functions. PMID:26509798

  10. The Evolutionary Tempo of Sex Chromosome Degradation in Carica papaya.

    PubMed

    Wu, Meng; Moore, Richard C

    2015-06-01

    Genes on non-recombining heterogametic sex chromosomes may degrade over time through the irreversible accumulation of deleterious mutations. In papaya, the non-recombining male-specific region of the Y (MSY) consists of two evolutionary strata corresponding to chromosomal inversions occurring approximately 7.0 and 1.9 MYA. The step-wise recombination suppression between the papaya X and Y allows for a temporal examination of the degeneration progress of the young Y chromosome. Comparative evolutionary analyses of 55 X/Y gene pairs showed that Y-linked genes have more unfavorable substitutions than X-linked genes. However, this asymmetric evolutionary pattern is confined to the oldest stratum, and is only observed when recently evolved pseudogenes are included in the analysis, indicating a slow degeneration tempo of the papaya Y chromosome. Population genetic analyses of coding sequence variation of six Y-linked focal loci in the oldest evolutionary stratum detected an excess of nonsynonymous polymorphism and reduced codon bias relative to autosomal loci. However, this pattern was also observed for corresponding X-linked loci. Both the MSY and its corresponding X-specific region are pericentromeric where recombination has been shown to be greatly reduced. Like the MSY region, overall selective efficacy on the X-specific region may be reduced due to the interference of selective forces between highly linked loci, or the Hill-Robertson effect, that is accentuated in regions of low or suppressed recombination. Thus, a pattern of gene decay on the X-specific region may be explained by relaxed purifying selection and widespread genetic hitchhiking due to its pericentromeric location.

  11. Characterizing the chromosomes of the platypus (Ornithorhynchus anatinus).

    PubMed

    McMillan, Daniel; Miethke, Pat; Alsop, Amber E; Rens, Willem; O'Brien, Patricia; Trifonov, Vladimir; Veyrunes, Frederic; Schatzkamer, Kyriena; Kremitzki, Colin L; Graves, Tina; Warren, Wesley; Grützner, Frank; Ferguson-Smith, Malcolm A; Graves, Jennifer A Marshall

    2007-01-01

    Like the unique platypus itself, the platypus genome is extraordinary because of its complex sex chromosome system, and is controversial because of difficulties in identification of small autosomes and sex chromosomes. A 6-fold shotgun sequence of the platypus genome is now available and is being assembled with the help of physical mapping. It is therefore essential to characterize the chromosomes and resolve the ambiguities and inconsistencies in identifying autosomes and sex chromosomes. We have used chromosome paints and DAPI banding to identify and classify pairs of autosomes and sex chromosomes. We have established an agreed nomenclature and identified anchor BAC clones for each chromosome that will ensure unambiguous gene localizations.

  12. Chromosomal Aneuploidies and Early Embryonic Developmental Arrest.

    PubMed

    Maurer, Maria; Ebner, Thomas; Puchner, Manuela; Mayer, Richard Bernhard; Shebl, Omar; Oppelt, Peter; Duba, Hans-Christoph

    2015-01-01

    Selecting the best embryo for transfer, with the highest chance of achieving a vital pregnancy, is a major goal in current in vitro fertilization (IVF) technology. The high rate of embryonic developmental arrest during IVF treatment is one of the limitations in achieving this goal. Chromosomal abnormalities are possibly linked with chromosomal arrest and selection against abnormal fertilization products. The objective of this study was to evaluate the frequency and type of chromosomal abnormalities in preimplantation embryos with developmental arrest. This cohort study included blastomeres of embryos with early developmental arrest that were biopsied and analyzed by fluorescence in-situ hybridization (FISH) with probes for chromosomes 13, 16, 18, 21 and 22. Forty-five couples undergoing IVF treatment were included, and 119 arrested embryos were biopsied. All probes were obtained from the Kinderwunsch Zentrum, Linz, Austria, between August 2009 and August 2011. Of these embryos, 31.6% were normal for all chromosomes tested, and 68.4% were abnormal. Eleven embryos were uniformly aneuploid, 20 were polyploid, 3 were haploid, 11 displayed mosaicism and 22 embryos exhibited chaotic chromosomal complement. Nearly 70% of arrested embryos exhibit chromosomal errors, making chromosomal abnormalities a major cause of embryonic arrest and may be a further explanation for the high developmental failure rates during culture of the embryos in the IVF setting.

  13. Chromosomal Aneuploidies and Early Embryonic Developmental Arrest

    PubMed Central

    Maurer, Maria; Ebner, Thomas; Puchner, Manuela; Mayer, Richard Bernhard; Shebl, Omar; Oppelt, Peter; Duba, Hans-Christoph

    2015-01-01

    Background Selecting the best embryo for transfer, with the highest chance of achieving a vital pregnancy, is a major goal in current in vitro fertilization (IVF) technology. The high rate of embryonic developmental arrest during IVF treatment is one of the limitations in achieving this goal. Chromosomal abnormalities are possibly linked with chromosomal arrest and selection against abnormal fertilization products. The objective of this study was to evaluate the frequency and type of chromosomal abnormalities in preimplantation embryos with developmental arrest. Materials and Methods This cohort study included blastomeres of embryos with early developmental arrest that were biopsied and analyzed by fluorescence in-situ hybridization (FISH) with probes for chromosomes 13, 16, 18, 21 and 22. Forty-five couples undergoing IVF treatment were included, and 119 arrested embryos were biopsied. All probes were obtained from the Kinderwunsch Zentrum, Linz, Austria, between August 2009 and August 2011. Results Of these embryos, 31.6% were normal for all chromosomes tested, and 68.4% were abnormal. Eleven embryos were uniformly aneuploid, 20 were polyploid, 3 were haploid, 11 displayed mosaicism and 22 embryos exhibited chaotic chromosomal complement. Conclusion Nearly 70% of arrested embryos exhibit chromosomal errors, making chromosomal abnormalities a major cause of embryonic arrest and may be a further explanation for the high developmental failure rates during culture of the embryos in the IVF setting. PMID:26644858

  14. Pseudosynapsis and Decreased Stringency of Meiotic Repair Pathway Choice on the Hemizygous Sex Chromosome of Caenorhabditis elegans Males

    PubMed Central

    Checchi, Paula M.; Lawrence, Katherine S.; Van, Mike V.; Larson, Braden J.; Engebrecht, JoAnne

    2014-01-01

    During meiosis, accurate chromosome segregation relies on homology to mediate chromosome pairing, synapsis, and crossover recombination. Crossovers are dependent upon formation and repair of double-strand breaks (DSBs) by homologous recombination (HR). In males of many species, sex chromosomes are largely hemizygous, yet DSBs are induced along nonhomologous regions. Here we analyzed the genetic requirements for meiotic DSB repair on the completely hemizygous X chromosome of Caenorhabditis elegans males. Our data reveal that the kinetics of DSB formation, chromosome pairing, and synapsis are tightly linked in the male germ line. Moreover, DSB induction on the X is concomitant with a brief period of pseudosynapsis that may allow X sister chromatids to masquerade as homologs. Consistent with this, neither meiotic kleisins nor the SMC-5/6 complex are essential for DSB repair on the X. Furthermore, early processing of X DSBs is dependent on the CtIP/Sae2 homolog COM-1, suggesting that as with paired chromosomes, HR is the preferred pathway. In contrast, the X chromosome is refractory to feedback mechanisms that ensure crossover formation on autosomes. Surprisingly, neither RAD-54 nor BRC-2 are essential for DSB repair on the X, suggesting that unlike autosomes, the X is competent for repair in the absence of HR. When both RAD-54 and the structure-specific nuclease XPF-1 are abrogated, X DSBs persist, suggesting that single-strand annealing is engaged in the absence of HR. Our findings indicate that alteration in sister chromatid interactions and flexibility in DSB repair pathway choice accommodate hemizygosity on sex chromosomes. PMID:24939994

  15. Chromosomal location and gene paucity of the male specific region on papaya Y chromosome.

    PubMed

    Yu, Qingyi; Hou, Shaobin; Hobza, Roman; Feltus, F Alex; Wang, Xiue; Jin, Weiwei; Skelton, Rachel L; Blas, Andrea; Lemke, Cornelia; Saw, Jimmy H; Moore, Paul H; Alam, Maqsudul; Jiang, Jiming; Paterson, Andrew H; Vyskot, Boris; Ming, Ray

    2007-08-01

    Sex chromosomes in flowering plants evolved recently and many of them remain homomorphic, including those in papaya. We investigated the chromosomal location of papaya's small male specific region of the hermaphrodite Y (Yh) chromosome (MSY) and its genomic features. We conducted chromosome fluorescence in situ hybridization mapping of Yh-specific bacterial artificial chromosomes (BACs) and placed the MSY near the centromere of the papaya Y chromosome. Then we sequenced five MSY BACs to examine the genomic features of this specialized region, which resulted in the largest collection of contiguous genomic DNA sequences of a Y chromosome in flowering plants. Extreme gene paucity was observed in the papaya MSY with no functional gene identified in 715 kb MSY sequences. A high density of retroelements and local sequence duplications were detected in the MSY that is suppressed for recombination. Location of the papaya MSY near the centromere might have provided recombination suppression and fostered paucity of genes in the male specific region of the Y chromosome. Our findings provide critical information for deciphering the sex chromosomes in papaya and reference information for comparative studies of other sex chromosomes in animals and plants.

  16. The Chromosome 18 Clinical Resource Center.

    PubMed

    Cody, Jannine D; Hasi-Zogaj, Minire; Heard, Patricia; Hill, Annice; Rupert, David; Sebold, Courtney; Soileau, Bridgette; Hale, Daniel E

    2018-05-01

    The Chromosome 18 Clinical Research Center has created a pediatrician-friendly virtual resource center for managing patients with chromosome 18 abnormalities. To date, children with rare chromosome abnormalities have been cared for either symptomatically or palliatively as a reaction to the presenting medical problems. As we enter an era of genomic-informed medicine, we can provide children, even those with individually unique chromosome abnormalities, with proactive medical care and management based on the most contemporary data on their specific genomic change. It is problematic for practicing physicians to obtain and use the emerging data on specific genes because this information is derived from diverse sources (e.g., animal studies, case reports, in vitro explorations) and is often published in sources that are not easily accessible in the clinical setting. The Chromosome 18 Clinical Resource Center remedies this challenging problem by curating and synthesizing the data with clinical implications. The data are collected from our database of over 26 years of natural history and medical data from over 650 individuals with chromosome 18 abnormalities. The resulting management guides and video presentations are a first edition of this collated data specifically oriented to guide clinicians toward the optimization of care for each child. The chromosome 18 data and guides also serve as models for an approach to the management of any individual with a rare chromosome abnormality of which there are over 1,300 born every year in the US alone. © 2018 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  17. Prenatal diagnosis of a de novo 9p terminal chromosomal deletion in a fetus with major congenital anomalies.

    PubMed

    Hou, Wen-Chien; Chen, Chih-Ping; Hwang, Kwei-Shuai; Chen, Ying-Chieh; Lai, Yu-Ju; Tien, Chau-Yang; Su, Her-Young

    2014-12-01

    We describe a prenatal ultrasonography diagnosis of omphalocele and symbrachydactyly in a fetus and review the literature on prenatal diagnosis of 9p terminal chromosomal deletions. A 31-year-old woman (gravida 3, para 1) was referred for genetic counseling because a fetal omphalocele had been detected. Prenatal ultrasonography at 17+ weeks of gestational age revealed a singleton female fetus with biometry equivalent to 18 weeks with an omphalocele. In addition, symbrachydactyly was also noted in the right arm; the wrist bones as well as the metacarpals were missing. A chromosomal study was arranged for a congenital anomaly involving omphalocele. We obtained Giemsa-banded chromosomes from fetal tissue cells, and an abnormal male karyotype with a terminal deletion of the short arm of chromosome 9 at band 9p13 was noted. After delivery, the fetus showed omphalocele, symbrachydactyly, trigonocephaly, sex reversal, a long philtrum, low-set ears, telecanthus, and a frontal prominence. Prenatal diagnosis of abnormal ultrasound findings with omphalocele and symbrachydactyly should include the differential diagnosis of a chromosome 9p deletion. Copyright © 2014. Published by Elsevier B.V.

  18. Sex-dependent mechanisms for expansions and contractions of the CAG repeat on affected Huntington disease chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kremer, B.; Theilmann, J.; Spence, N.

    1995-08-01

    A total of 254 affected parent-child pairs with Huntington disease (HD) and 440 parent-child pairs with CAG size in the normal range were assessed to determine the nature and frequency of intergenerational CAG changes in the HD gene. Intergenerational CAG changes are extremely rare (3/440 [0.68%]) on normal chromosomes. In contrast, on HD chromosomes, changes in CAG size occur in {approximately}70% of meioses on HD chromosomes, with expansions accounting for 73% of these changes. These intergenerational CAG changes make a significant but minor contribution to changes in age at onset (r{sup 2}=.19). The size of the CAG repeat influenced largermore » intergenerational expansions (>7 CAG repeats), but the likelihood of smaller expansions or contractions was not influenced by CAG size. Large expansions (>7 CAG repeats) occur almost exclusively through paternal transmission (0.96%; P<10{sub -7}), while offspring of affected mothers are more likely to show no change (P=.01) or contractions in CAG size (P=.002). This study demonstrates that sex of the transmitting parent is the major determinant for CAG intergenerational changes in the HD gene. Similar paternal sex effects are seen in the evolution of new mutations for HD from intermediate alleles and for large expansions on affected chromosomes. Affected mothers almost never transmit a significantly expanded CAG repeat, despite the fact that many have similar large-sized alleles, compared with affected fathers. The sex-dependent effects of major expansion and contractions of the CAG repeat in the HD gene implicate different effects of gametogenesis, in males versus females, on intergenerational CAG repeat stability. 22 refs., 4 figs., 3 tabs.« less

  19. Down syndrome-associated haematopoiesis abnormalities created by chromosome transfer and genome editing technologies.

    PubMed

    Kazuki, Yasuhiro; Yakura, Yuwna; Abe, Satoshi; Osaki, Mitsuhiko; Kajitani, Naoyo; Kazuki, Kanako; Takehara, Shoko; Honma, Kazuhisa; Suemori, Hirofumi; Yamazaki, Satoshi; Sakuma, Tetsushi; Toki, Tsutomu; Shimizu, Ritsuko; Nakauchi, Hiromitsu; Yamamoto, Takashi; Oshimura, Mitsuo

    2014-08-27

    Infants with Down syndrome (DS) are at a high risk of developing transient abnormal myelopoiesis (TAM). A GATA1 mutation leading to the production of N-terminally truncated GATA1 (GATA1s) in early megakaryocyte/erythroid progenitors is linked to the onset of TAM and cooperated with the effect of trisomy 21 (Ts21). To gain insights into the underlying mechanisms of the progression to TAM in DS patients, we generated human pluripotent stem cells harbouring Ts21 and/or GATA1s by combining microcell-mediated chromosome transfer and genome editing technologies. In vitro haematopoietic differentiation assays showed that the GATA1s mutation blocked erythropoiesis irrespective of an extra chromosome 21, while Ts21 and the GATA1s mutation independently perturbed megakaryopoiesis and the combination of Ts21 and the GATA1s mutation synergistically contributed to an aberrant accumulation of skewed megakaryocytes. Thus, the DS model cells generated by these two technologies are useful in assessing how GATA1s mutation is involved in the onset of TAM in patients with DS.

  20. Embryo Sexing and Sex Chromosomal Chimerism Analysis by Loop-Mediated Isothermal Amplification in Cattle and Water Buffaloes

    PubMed Central

    HIRAYAMA, Hiroki; KAGEYAMA, Soichi; MORIYASU, Satoru; SAWAI, Ken; MINAMIHASHI, Akira

    2013-01-01

    Abstract In domestic animals of the family Bovidae, sex preselection of offspring has been demanded for convenience of milk/beef production and animal breeding. Development of the nonsurgical embryo transfer technique and sexing methods of preimplantation embryos made it possible. Sexing based on detection of Y chromosome-specific DNA sequences is considered the most reliable method to date. PCR enables amplification of a target sequence from a small number of blastomeres. However, it requires technical skill and is time consuming. Furthermore, PCR has the risk of false positives because of DNA contamination during handling of the PCR products in duplicate PCR procedures and/or electrophoresis. Therefore, for embryo sexing to become widely used in the cattle embryo transfer industry, a simple, rapid and precise sexing method needs to be developed. Loop-mediated isothermal amplification (LAMP) is a novel DNA amplification method, and the reaction is carried out under isothermal conditions (range, 60 to 65 C) using DNA polymerase with strand displacement activity. When the target DNA is amplified by LAMP, a white precipitate derived from magnesium pyrophosphate (a by-product of the LAMP reaction) is observed. It is noteworthy that LAMP does not need special reagents or electrophoresis to detect the amplified DNA. This review describes the development and application of an embryo sexing method using LAMP in cattle and water buffaloes. PMID:23965599

  1. Fluorescence in situ hybridization of TP53 for the detection of chromosome 17 abnormalities in myelodysplastic syndromes.

    PubMed

    Sánchez-Castro, Judit; Marco-Betés, Víctor; Gómez-Arbonés, Xavier; García-Cerecedo, Tomás; López, Ricard; Talavera, Elisabeth; Fernández-Ruiz, Sara; Ademà, Vera; Marugan, Isabel; Luño, Elisa; Sanzo, Carmen; Vallespí, Teresa; Arenillas, Leonor; Marco Buades, Josefa; Batlle, Ana; Buño, Ismael; Martín Ramos, María Luisa; Blázquez Rios, Beatriz; Collado Nieto, Rosa; Vargas, Ma Teresa; González Martínez, Teresa; Sanz, Guillermo; Solé, Francesc

    2015-01-01

    Conventional G-banding cytogenetics (CC) detects chromosome 17 (chr17) abnormalities in 2% of patients with de novo myelodysplastic syndromes (MDS). We used CC and fluorescence in situ hybridization (FISH) (LSI p53/17p13.1) to assess deletion of 17p in 531 patients with de novo MDS from the Spanish Group of Hematological Cytogenetics. FISH detected - 17 or 17p abnormalities in 13 cases (2.6%) in whom no 17p abnormalities were revealed by CC: 0.9% of patients with a normal karyotype, 0% in non-informative cytogenetics, 50% of patients with a chr17 abnormality without loss of 17p and 4.7% of cases with an abnormal karyotype not involving chr17. Our results suggest that applying FISH of 17p13 to identify the number of copies of the TP53 gene could be beneficial in patients with a complex karyotype. We recommend using FISH of 17p13 in young patients with a normal karyotype or non-informative cytogenetics, and always in isolated del(17p).

  2. Sex ratio of congenital abnormalities in the function of maternal age: a population-based study.

    PubMed

    Csermely, Gyula; Urbán, Robert; Czeizel, Andrew E; Veszprémi, Béla

    2015-05-01

    Maternal age effect is well-known in the origin of numerical chromosomal aberrations and some isolated congenital abnormalities (CAs). The sex ratio (SR), i.e. number of males divided by the number of males and females together, of most CAs deviates from the SR of newborn population (0.51). The objective of this analysis was to evaluate the possible association of maternal age with the SR of isolated CAs in a population-based large dataset of the Hungarian Case-Control Surveillance of Congenital Abnormalities, 1980-1996. First, SR of 24 CA entities/groups was estimated in 21,494 patients with isolated CA. In the next step SR of different maternal age groups was compared to the mean SR of the given CA-groups. The SR of four CA-groups showed some deviation in certain maternal age groups. Cases with anencephaly had female excess in young mothers (<25 years). Cases with skull's CAs particularly craniosynostosis had a male excess in cases born to women over 30 years. Two other CA groups (cleft lip ± palate and valvar pulmonic stenosis within the group of right-sided obstructive defect of heart) had significant deviation in SR of certain maternal age groups from the mean SR, but these deviations were not harmonized with joining age groups and thus were considered as a chance effect due to multiple testing. In conclusion, our study did not suggest that in general SR of isolated CAs might be modified by certain maternal age groups with some exception such as anencephaly and craniosynostosis. © 2014 Japanese Teratology Society.

  3. First-trimester screening for chromosomal abnormalities: advantages of an instant results approach.

    PubMed

    Norton, Mary E

    2010-09-01

    Protocols that include first trimester screening for fetal chromosome abnormalities have become standard of care throughout the United States. Earlier screening allows for first trimester diagnostic testing in cases found to be at increased risk. However, first trimester screening requires coordination of the nuchal translucency ultrasound screening (NT) and biochemical screening, during early, specific, narrow, but slightly different gestational age ranges. Instant results can often be provided at the time of the NT ultrasound if preceded by the programs that perform the biochemical analyses; this optimizes the benefits of the first trimester approach while improving efficiency and communication with the patient. This article discusses the benefits and logistics of such an approach. Copyright 2010 Elsevier Inc. All rights reserved.

  4. MECHANISMS IN ENDOCRINOLOGY: Aberrations of the X chromosome as cause of male infertility.

    PubMed

    Röpke, Albrecht; Tüttelmann, Frank

    2017-11-01

    Male infertility is most commonly caused by spermatogenetic failure, clinically noted as oligo- or a-zoospermia. Today, in approximately 20% of azoospermic patients, a causal genetic defect can be identified. The most frequent genetic causes of azoospermia (or severe oligozoospermia) are Klinefelter syndrome (47,XXY), structural chromosomal abnormalities and Y-chromosomal microdeletions. Consistent with Ohno's law, the human X chromosome is the most stable of all the chromosomes, but contrary to Ohno's law, the X chromosome is loaded with regions of acquired, rapidly evolving genes, which are of special interest because they are predominantly expressed in the testis. Therefore, it is not surprising that the X chromosome, considered as the female counterpart of the male-associated Y chromosome, may actually play an essential role in male infertility and sperm production. This is supported by the recent description of a significantly increased copy number variation (CNV) burden on both sex chromosomes in infertile men and point mutations in X-chromosomal genes responsible for male infertility. Thus, the X chromosome seems to be frequently affected in infertile male patients. Four principal X-chromosomal aberrations have been identified so far: (1) aneuploidy of the X chromosome as found in Klinefelter syndrome (47,XXY or mosaicism for additional X chromosomes). (2) Translocations involving the X chromosome, e.g. nonsyndromic 46,XX testicular disorders of sex development (XX-male syndrome) or X-autosome translocations. (3) CNVs affecting the X chromosome. (4) Point mutations disrupting X-chromosomal genes. All these are reviewed herein and assessed concerning their importance for the clinical routine diagnostic workup of the infertile male as well as their potential to shape research on spermatogenic failure in the next years. © 2017 European Society of Endocrinology.

  5. Transcriptome profiling of Nasonia vitripennis testis reveals novel transcripts expressed from the selfish B chromosome, paternal sex ratio.

    PubMed

    Akbari, Omar S; Antoshechkin, Igor; Hay, Bruce A; Ferree, Patrick M

    2013-09-04

    A widespread phenomenon in nature is sex ratio distortion of arthropod populations caused by microbial and genetic parasites. Currently little is known about how these agents alter host developmental processes to favor one sex or the other. The paternal sex ratio (PSR) chromosome is a nonessential, paternally transmitted centric fragment that segregates in natural populations of the jewel wasp, Nasonia vitripennis. To persist, PSR is thought to modify the hereditary material of the developing sperm, with the result that all nuclear DNA other than the PSR chromosome is destroyed shortly after fertilization. This results in the conversion of a fertilized embryo--normally a female--into a male, thereby insuring transmission of the "selfish" PSR chromosome, and simultaneously leading to wasp populations that are male-biased. To begin to understand this system at the mechanistic level, we carried out transcriptional profiling of testis from WT and PSR-carrying males. We identified a number of transcripts that are differentially expressed between these conditions. We also discovered nine transcripts that are uniquely expressed from the PSR chromosome. Four of these PSR-specific transcripts encode putative proteins, whereas the others have very short open reading frames and no homology to known proteins, suggesting that they are long noncoding RNAs. We propose several different models for how these transcripts could facilitate PSR-dependent effects. Our analyses also revealed 15.71 MB of novel transcribed regions in the N. vitripennis genome, thus increasing the current annotation of total transcribed regions by 53.4%. Finally, we detected expression of multiple meiosis-related genes in the wasp testis, despite the lack of conventional meiosis in the male sex.

  6. Transcriptome Profiling of Nasonia vitripennis Testis Reveals Novel Transcripts Expressed from the Selfish B Chromosome, Paternal Sex Ratio

    PubMed Central

    Akbari, Omar S.; Antoshechkin, Igor; Hay, Bruce A.; Ferree, Patrick M.

    2013-01-01

    A widespread phenomenon in nature is sex ratio distortion of arthropod populations caused by microbial and genetic parasites. Currently little is known about how these agents alter host developmental processes to favor one sex or the other. The paternal sex ratio (PSR) chromosome is a nonessential, paternally transmitted centric fragment that segregates in natural populations of the jewel wasp, Nasonia vitripennis. To persist, PSR is thought to modify the hereditary material of the developing sperm, with the result that all nuclear DNA other than the PSR chromosome is destroyed shortly after fertilization. This results in the conversion of a fertilized embryo—normally a female—into a male, thereby insuring transmission of the “selfish” PSR chromosome, and simultaneously leading to wasp populations that are male-biased. To begin to understand this system at the mechanistic level, we carried out transcriptional profiling of testis from WT and PSR-carrying males. We identified a number of transcripts that are differentially expressed between these conditions. We also discovered nine transcripts that are uniquely expressed from the PSR chromosome. Four of these PSR-specific transcripts encode putative proteins, whereas the others have very short open reading frames and no homology to known proteins, suggesting that they are long noncoding RNAs. We propose several different models for how these transcripts could facilitate PSR-dependent effects. Our analyses also revealed 15.71 MB of novel transcribed regions in the N. vitripennis genome, thus increasing the current annotation of total transcribed regions by 53.4%. Finally, we detected expression of multiple meiosis-related genes in the wasp testis, despite the lack of conventional meiosis in the male sex. PMID:23893741

  7. MECP2 duplications in six patients with complex sex chromosome rearrangements

    PubMed Central

    Breman, Amy M; Ramocki, Melissa B; Kang, Sung-Hae L; Williams, Misti; Freedenberg, Debra; Patel, Ankita; Bader, Patricia I; Cheung, Sau Wai

    2011-01-01

    Duplications of the Xq28 chromosome region resulting in functional disomy are associated with a distinct clinical phenotype characterized by infantile hypotonia, severe developmental delay, progressive neurological impairment, absent speech, and proneness to infections. Increased expression of the dosage-sensitive MECP2 gene is considered responsible for the severe neurological impairments observed in affected individuals. Although cytogenetically visible duplications of Xq28 are well documented in the published literature, recent advances using array comparative genomic hybridization (CGH) led to the detection of an increasing number of microduplications spanning MECP2. In rare cases, duplication results from intrachromosomal rearrangement between the X and Y chromosomes. We report six cases with sex chromosome rearrangements involving duplication of MECP2. Cases 1–4 are unbalanced rearrangements between X and Y, resulting in MECP2 duplication. The additional Xq material was translocated to Yp in three cases (cases 1–3), and to the heterochromatic region of Yq12 in one case (case 4). Cases 5 and 6 were identified by array CGH to have a loss in copy number at Xp and a gain in copy number at Xq28 involving the MECP2 gene. In both cases, fluorescent in situ hybridization (FISH) analysis revealed a recombinant X chromosome containing the duplicated material from Xq28 on Xp, resulting from a maternal pericentric inversion. These cases add to a growing number of MECP2 duplications that have been detected by array CGH, while demonstrating the value of confirmatory chromosome and FISH studies for the localization of the duplicated material and the identification of complex rearrangements. PMID:21119712

  8. Origin and domestication of papaya Yh chromosome

    USDA-ARS?s Scientific Manuscript database

    Sex in papaya is controlled by a pair of nascent sex chromosomes. Females are XX, and two slightly different Y chromosomes distinguish males (XY) and hermaphrodites (XYh). The hermaphrodite-specific region of the Yh chromosome (HSY) and its X chromosome counterpart were sequenced and analyzed previo...

  9. Analysis of chromosomal abnormalities by CGH-array in patients with dysmorphic and intellectual disability with normal karyotype

    PubMed Central

    Pratte-Santos, Rodrigo; Ribeiro, Katyanne Heringer; Santos, Thainá Altoe; Cintra, Terezinha Sarquis

    2016-01-01

    ABSTRACT Objective To investigate chromosomal abnormalities by CGH-array in patients with dysmorphic features and intellectual disability with normal conventional karyotype. Methods Retrospective study, carried out from January 2012 to February 2014, analyzing the CGH-array results of 39 patients. Results Twenty-six (66.7%) patients had normal results and 13 (33.3%) showed abnormal results - in that, 6 (15.4%) had pathogenic variants, 6 (15.4%) variants designated as uncertain and 1 (2.5%) non-pathogenic variants. Conclusion The characterization of the genetic profile by CGH-array in patients with intellectual disability and dysmorphic features enabled making etiologic diagnosis, followed by genetic counseling for families and specific treatment. PMID:27074231

  10. Sex-linked dominant

    MedlinePlus

    Inheritance - sex-linked dominant; Genetics - sex-linked dominant; X-linked dominant; Y-linked dominant ... can be either an autosomal chromosome or a sex chromosome. It also depends on whether the trait ...

  11. Assessment of chromosomal abnormalities in sperm of infertile men using sperm karyotyping and multicolour fluorescence in situ hybridization (FISH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moosani, N.; Martin, R.H.

    1994-09-01

    Individuals with male factor infertility resulting from idiopathic oligo-, astheno- or teratozoospermia are frequently offered IVF in an attempt to increase their chances of having a child. A concern remains whether these infertile males have an elevated risk of transmitting chromosomal abnormalities to their offspring. Sperm chromosomal complements from these men were assayed using the human sperm/hamster oocyte fusion system and fluorescence in situ hybridization (FISH) on sperm nuclei. For each of 5 infertile patients, 100 sperm karyotypes were analyzed and multicolour FISH analysis was performed on a minimum of 10,000 sperm nuclei for each chromosome-specific DNA probe for chromosomesmore » 1 (pUC1.77), 12 (D12Z3), X (XC) and Y (DYZ3). As a group, the infertile patients showed increased frequencies of both numerical ({chi}{sup 2}=17.26, {proportional_to} <0.001) and total abnormalities ({chi}{sup 2}=7.78, {proportional_to} <0.01) relative to control donors when assessed by sperm karyotypes. Analysis of sperm nuclei by FISH indicated a significant increase in the frequency of disomy for chromosome 1 in three of the five patients as compared to control donors ({chi}{sup 2}>8.35, {proportional_to} <0.005). In addition, the frequency of XY disomy was significantly higher in four of the five patients studied by FISH ({chi}{sup 2}>10.58, {proportional_to}<0.005), suggesting that mis-segregation caused by the failure of the XY bivalent to pair may play a role in idiopathic male infertility.« less

  12. Nuclear organization in human sperm: preliminary evidence for altered sex chromosome centromere position in infertile males.

    PubMed

    Finch, K A; Fonseka, K G L; Abogrein, A; Ioannou, D; Handyside, A H; Thornhill, A R; Hickson, N; Griffin, D K

    2008-06-01

    Many genetic defects with a chromosomal basis affect male reproduction via a range of different mechanisms. Chromosome position is a well-known marker of nuclear organization, and alterations in standard patterns can lead to disease phenotypes such as cancer, laminopathies and epilepsy. It has been demonstrated that normal mammalian sperm adopt a pattern with the centromeres aligning towards the nuclear centre. The purpose of this study was to test the hypothesis that altered chromosome position in the sperm head is associated with male infertility. The average nuclear positions of fluorescence in-situ hybridization signals for three centromeric probes (for chromosomes X, Y and 18) were compared in normoozoospermic men and in men with compromised semen parameters. In controls, the centromeres of chromosomes X, Y and 18 all occupied a central nuclear location. In infertile men the sex chromosomes appeared more likely to be distributed in a pattern not distinguishable from a random model. Our findings cast doubt on the reliability of centromeric probes for aneuploidy screening. The analysis of chromosome position in sperm heads should be further investigated for the screening of infertile men.

  13. Sex chromosome-dependent differential viability of human spermatozoa during prolonged incubation.

    PubMed

    You, Young-Ah; Kwon, Woo-Sung; Saidur Rahman, Md; Park, Yoo-Jin; Kim, Young-Ju; Pang, Myung-Geol

    2017-06-01

    Are there significant differences in the ability of X chromosome-bearing (X) spermatozoa and Y chromosome-bearing (Y) spermatozoa to survive incubation under stressful conditions? Y spermatozoa are more vulnerable to stress than their X counterparts depending on culture period and temperature, and show higher expression of apoptotic proteins. The primary sex ratio is determined by there being an equal number of spermatozoa carrying X and Y chromosomes. This balance can be skewed by exposure to stressful environmental conditions such as changes in pH, pollutants or endocrine disruptors. However, less is known about the ability of sperm carrying either sex chromosome to withstand environmental stress. The difference in survival between X and Y spermatozoa was evaluated by measuring motility, viability and Y:X chromosome ratio during incubation for 5 days, at three temperatures (4, 22 and 37°C), and three pH conditions (6.5, 7.5 and 8.5). To identify the critical factors that determine the survival of X and Y bearing spermatozoa, we analysed the expression levels of apoptosis-related proteins (Bcl, Bax and Caspase-3), as well as the extent of DNA damage under a subset of conditions. Semen samples were obtained by masturbation from normozoospermic donors after 3 days of sexual abstinence. Four samples with >60% motility from different donors were mixed to obtain sufficient semen and eliminate sampling-related bias. Data are presented as mean ± SD of three independent experiments. Mean age of donors was 28.7 ± 3.2 years. In total, 58 489 spermatozoa were scored. The viability of Y spermatozoa was lower after exposure to different temperatures and culture periods than that of X spermatozoa (P < 0.05). Increased expression of apoptotic proteins in live Y spermatozoa was observed, despite the addition of tocopherol to the culture medium (P < 0.05). Spermatozoa were cultured in vitro during the treatment period. It is difficult to extrapolate the observed lifespan

  14. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries

    PubMed Central

    Talkowski, Michael E.; Rosenfeld, Jill A.; Blumenthal, Ian; Pillalamarri, Vamsee; Chiang, Colby; Heilbut, Adrian; Ernst, Carl; Hanscom, Carrie; Rossin, Elizabeth; Lindgren, Amelia; Pereira, Shahrin; Ruderfer, Douglas; Kirby, Andrew; Ripke, Stephan; Harris, David; Lee, Ji-Hyun; Ha, Kyungsoo; Kim, Hyung-Goo; Solomon, Benjamin D.; Gropman, Andrea L.; Lucente, Diane; Sims, Katherine; Ohsumi, Toshiro K.; Borowsky, Mark L.; Loranger, Stephanie; Quade, Bradley; Lage, Kasper; Miles, Judith; Wu, Bai-Lin; Shen, Yiping; Neale, Benjamin; Shaffer, Lisa G.; Daly, Mark J.; Morton, Cynthia C.; Gusella, James F.

    2012-01-01

    SUMMARY Balanced chromosomal abnormalities (BCAs) represent a reservoir of single gene disruptions in neurodevelopmental disorders (NDD). We sequenced BCAs in autism and related NDDs, revealing disruption of 33 loci in four general categories: 1) genes associated with abnormal neurodevelopment (e.g., AUTS2, FOXP1, CDKL5), 2) single gene contributors to microdeletion syndromes (MBD5, SATB2, EHMT1, SNURF-SNRPN), 3) novel risk loci (e.g., CHD8, KIRREL3, ZNF507), and 4) genes associated with later onset psychiatric disorders (e.g., TCF4, ZNF804A, PDE10A, GRIN2B, ANK3). We also discovered profoundly increased burden of copy number variants among 19,556 neurodevelopmental cases compared to 13,991 controls (p = 2.07×10−47) and enrichment of polygenic risk alleles from autism and schizophrenia genome-wide association studies (p = 0.0018 and 0.0009, respectively). Our findings suggest a polygenic risk model of autism incorporating loci of strong effect and indicate that some neurodevelopmental genes are sensitive to perturbation by multiple mutational mechanisms, leading to variable phenotypic outcomes that manifest at different life stages. PMID:22521361

  15. Chromosomal Translocations: Chicken or Egg? | Center for Cancer Research

    Cancer.gov

    Many tumor cells have abnormal chromosomes. Some of these abnormalities are caused by chromosomal translocations, which occur when two chromosomes break and incorrectly rejoin, resulting in an exchange of genetic material. Translocations can activate oncogenes, silence tumor suppressor genes, or result in the creation of completely new fusion gene products. While there is little doubt that chromosomal translocations can contribute to cancer, there is an active "chicken and the egg" discussion about the role translocations and other chromosomal abnormalities play—do they actually cause cancer or merely occur because of other changes within the cancer cell.  

  16. Arsenic Exposure, Dermatological Lesions, Hypertension, and Chromosomal Abnormalities among People in a Rural Community of Northwest Iran

    PubMed Central

    Dastgiri, Saeed; Fizi, Mohammad A.H.; Olfati, Nahid; Zolali, Shahin; Pouladi, Nasser; Azarfam, Parvin

    2010-01-01

    Chronic exposure to arsenic compounds is one of the major public-health problems in many developing and some developed countries. The aim of this study was to investigate the effects of chronic exposure to arsenic on dermatological lesions, hypertension, and chromosomal abnormalities among people in a community in the northwest of Iran. The occurrence of dermatological lesions, hypertension, and chromosomal abnormalities was investigated in two groups: Ghopuz village, including 101 subjects with chronic exposure to arsenic in drinking-water and Mayan village, including 107 subjects with no exposure. Daily/yearly absorbed amounts of arsenic were calculated for all subjects. Cumulative arsenic index for each individual was then estimated on the basis of age, water consumption, and location of residence. Arsenic concentration in drinking-water sources in Ghopuz and Mayan villages was 1031±1103 μg/L and non-detectable respectively. The mean systolic blood pressure in the exposure group [n=137, 95% confidence interval (CI 132–142)] was significantly higher than that in the control group (n=107, 95% CI 99.9–114). A similar significant difference was observed for diastolic blood pressure (exposed: n=82, 95% CI 79–85 vs non-exposed: n=71, 95% CI 66–75). The incidence of hyperkeratosis was 34 times higher among the exposure group compared to the control subjects [odds ratio (OR)=34, p<0.001)]. A significant difference was also observed in the occurrence of skin-pigmentation between the two groups (OR=2.4, p<0.007). Location and severity of the pigmentations were statistically different between the two groups. Twenty-five percent of the subjects in the exposure group showed chromosomal abnormalities (p=0.05). Arsenic exposure was a serious health problem in the region. More studies are needed to investigate the long-term effects and dose-response relationship of arsenic in the region and similar areas. Wide-ranging monitoring programmes for drinking-water sources

  17. First-trimester maternal serum alpha-fetoprotein as a marker for fetal chromosomal disorders. Dutch Working Party on Prenatal Diagnosis.

    PubMed

    Van Lith, J M

    1994-10-01

    We evaluated first-trimester maternal serum alpha-fetoprotein (MS-AFP) as a marker for fetal chromosomal disorders. The multicentre study was performed under the auspices of the Dutch Working Party on Prenatal Diagnosis. MS-AFP was measured in 2404 normal pregnancies and 72 chromosomally abnormal pregnancies. The median multiple of the normal median (MOM) in 32 Down's syndrome pregnancies was 0.83 with a 95 per cent confidence interval ranging from 0.60 to 1.04. The difference between the distributions of first-trimester MS-AFP in normal and Down's syndrome pregnancies was statistically significant (t-test: t = 2.34, P < 0.05). Thirty-one per cent of the Down's syndrome pregnancies were found below the tenth percentile. We found no difference between normal pregnancies and pregnancies with other chromosomal disorders (eight cases with trisomy 18, MOM = 1.26; seven cases with sex chromosome abnormalities, MOM = 1.07; 22 cases with a chromosomal mosaic pattern in chorionic villi, MOM = 1.08). We conclude that first-trimester MS-AFP can discriminate between normal and Down's syndrome pregnancies, but is not an effective marker. First-trimester MS-AFP has no value as a marker for other fetal chromosomal disorders.

  18. A Dominantly Acting Murine Allele of Mcm4 Causes Chromosomal Abnormalities and Promotes Tumorigenesis

    PubMed Central

    Bagley, Bruce N.; Keane, Thomas M.; Maklakova, Vilena I.; Marshall, Jonathon G.; Lester, Rachael A.; Cancel, Michelle M.; Paulsen, Alex R.; Bendzick, Laura E.; Been, Raha A.; Kogan, Scott C.; Cormier, Robert T.; Kendziorski, Christina; Adams, David J.; Collier, Lara S.

    2012-01-01

    Here we report the isolation of a murine model for heritable T cell lymphoblastic leukemia/lymphoma (T-ALL) called Spontaneous dominant leukemia (Sdl). Sdl heterozygous mice develop disease with a short latency and high penetrance, while mice homozygous for the mutation die early during embryonic development. Sdl mice exhibit an increase in the frequency of micronucleated reticulocytes, and T-ALLs from Sdl mice harbor small amplifications and deletions, including activating deletions at the Notch1 locus. Using exome sequencing it was determined that Sdl mice harbor a spontaneously acquired mutation in Mcm4 (Mcm4D573H). MCM4 is part of the heterohexameric complex of MCM2–7 that is important for licensing of DNA origins prior to S phase and also serves as the core of the replicative helicase that unwinds DNA at replication forks. Previous studies in murine models have discovered that genetic reductions of MCM complex levels promote tumor formation by causing genomic instability. However, Sdl mice possess normal levels of Mcms, and there is no evidence for loss-of-heterozygosity at the Mcm4 locus in Sdl leukemias. Studies in Saccharomyces cerevisiae indicate that the Sdl mutation produces a biologically inactive helicase. Together, these data support a model in which chromosomal abnormalities in Sdl mice result from the ability of MCM4D573H to incorporate into MCM complexes and render them inactive. Our studies indicate that dominantly acting alleles of MCMs can be compatible with viability but have dramatic oncogenic consequences by causing chromosomal abnormalities. PMID:23133403

  19. A dominantly acting murine allele of Mcm4 causes chromosomal abnormalities and promotes tumorigenesis.

    PubMed

    Bagley, Bruce N; Keane, Thomas M; Maklakova, Vilena I; Marshall, Jonathon G; Lester, Rachael A; Cancel, Michelle M; Paulsen, Alex R; Bendzick, Laura E; Been, Raha A; Kogan, Scott C; Cormier, Robert T; Kendziorski, Christina; Adams, David J; Collier, Lara S

    2012-01-01

    Here we report the isolation of a murine model for heritable T cell lymphoblastic leukemia/lymphoma (T-ALL) called Spontaneous dominant leukemia (Sdl). Sdl heterozygous mice develop disease with a short latency and high penetrance, while mice homozygous for the mutation die early during embryonic development. Sdl mice exhibit an increase in the frequency of micronucleated reticulocytes, and T-ALLs from Sdl mice harbor small amplifications and deletions, including activating deletions at the Notch1 locus. Using exome sequencing it was determined that Sdl mice harbor a spontaneously acquired mutation in Mcm4 (Mcm4(D573H)). MCM4 is part of the heterohexameric complex of MCM2-7 that is important for licensing of DNA origins prior to S phase and also serves as the core of the replicative helicase that unwinds DNA at replication forks. Previous studies in murine models have discovered that genetic reductions of MCM complex levels promote tumor formation by causing genomic instability. However, Sdl mice possess normal levels of Mcms, and there is no evidence for loss-of-heterozygosity at the Mcm4 locus in Sdl leukemias. Studies in Saccharomyces cerevisiae indicate that the Sdl mutation produces a biologically inactive helicase. Together, these data support a model in which chromosomal abnormalities in Sdl mice result from the ability of MCM4(D573H) to incorporate into MCM complexes and render them inactive. Our studies indicate that dominantly acting alleles of MCMs can be compatible with viability but have dramatic oncogenic consequences by causing chromosomal abnormalities.

  20. Chromosomal Context Affects the Molecular Evolution of Sex-linked Genes and Their Autosomal Counterparts in Turtles and Other Vertebrates.

    PubMed

    Radhakrishnan, Srihari; Valenzuela, Nicole

    2017-10-30

    Sex chromosomes evolve differently from autosomes because natural selection acts distinctly on them given their reduced recombination and smaller population size. Various studies of sex-linked genes compared with different autosomal genes within species support these predictions. Here, we take a novel alternative approach by comparing the rate of evolution between subsets of genes that are sex-linked in selected reptiles/vertebrates and the same genes located in autosomes in other amniotes. We report for the first time the faster evolution of Z-linked genes in a turtle (the Chinese softshell turtle Pelodiscus sinensis) relative to autosomal orthologs in other taxa, including turtles with temperature-dependent sex determination (TSD). This faster rate was absent in its close relative, the spiny softshell turtle (Apalone spinifera), thus revealing important lineage effects, and was only surpassed by mammalian-X linked genes. In contrast, we found slower evolution of X-linked genes in the musk turtle Staurotypus triporcatus (XX/XY) and homologous Z-linked chicken genes. TSD lineages displayed overall faster sequence evolution than taxa with genotypic sex determination (GSD), ruling out global effects of GSD on molecular evolution beyond those by sex-linkage. Notably, results revealed a putative selective sweep around two turtle genes involved in vertebrate gonadogenesis (Pelodiscus-Z-linked Nf2 and Chrysemys-autosomal Tspan7). Our observations reveal important evolutionary changes at the gene level mediated by chromosomal context in turtles despite their low overall evolutionary rate and illuminate sex chromosome evolution by empirically testing expectations from theoretical models. Genome-wide analyses are warranted to test the generality and prevalence of the observed patterns. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Identification of mediator complex 26 (Crsp7) gametologs on platypus X1 and Y5 sex chromosomes: a candidate testis-determining gene in monotremes?

    PubMed

    Tsend-Ayush, Enkhjargal; Kortschak, R Daniel; Bernard, Pascal; Lim, Shu Ly; Ryan, Janelle; Rosenkranz, Ruben; Borodina, Tatiana; Dohm, Juliane C; Himmelbauer, Heinz; Harley, Vincent R; Grützner, Frank

    2012-01-01

    The basal lineage of monotremes features an extraordinarily complex sex chromosome system which has provided novel insights into the evolution of mammalian sex chromosomes. Recently, sequence information from autosomes, X chromosomes, and XY-shared pseudoautosomal regions has become available. However, no gene has so far been described on any of the Y chromosome-specific regions. We analyzed sequences derived from Y-specific BAC clones to identify genes with potentially male-specific function. Here, we report the identification and characterization of the mediator complex protein gametologs on platypus Y5 (Crspy). We also identified the X-chromosomal copy which unexpectedly maps to X1 (Crspx). Sequence comparison shows extensive divergence between the X and Y copy, but we found no significant positive selection on either gametolog. Expression analysis shows widespread expression of Crspx. Crspy is expressed exclusively in males with particularly strong expression in testis and kidney. Reporter gene assays to investigate whether Crspx/y can act on the recently discovered mouse Sox9 testis-specific enhancer element did reveal a modest effect together with mouse Sox9 + Sf1, but showed overall no significant upregulation of the reporter gene. This is the first report of a differentiated functional male-specific gene on platypus Y chromosomes, providing new insights into sex chromosome evolution and a candidate gene for male-specific function in monotremes.

  2. Normal female phenotype and ovarian development despite the ovarian expression of the sex-determining region of Y chromosome (SRY) in a 46,XX/69,XXY diploid/triploid mosaic child conceived after in vitro fertilization-intracytoplasmic sperm injection.

    PubMed

    Oktem, Ozgur; Paduch, Darius A; Xu, Kangpu; Mielnik, Anna; Oktay, Kutluk

    2007-03-01

    Diploid/triploid mosaicism (mixoploidy) is a rare chromosomal abnormality characterized by mental and growth retardation, hypotonia, and dysmorphic features such as facial asymmetry, low-set ears, and syndactyly. All 46,XX/69,XXY cases fall into three phenotypic groups: male with testicular development, ovotestis disorder of sex development (DSD), or undervirilized male DSD. All phenotypic females with diploid/triploid mosaic reported so far had 46,XX/69,XXX karyotype. We report an 8-year-old girl conceived after in vitro fertilization-intracytoplasmic sperm injection with normal internal/external genital and ovarian development despite 46,XX/69,XXY mosaicism and normal expression of sex-determining region of Y chromosome (SRY) in her gonads. Because of the increased risk of gonadoblastoma resulting from Y chromosome mosaicism, her ovaries were removed by laparoscopy. Ovarian tissue was analyzed histologically as well as by fluorescence in situ hybridization, PCR, and RT-PCR amplification to determine the localization of Y chromosome and expression of SRY and DAX1 mRNA. Methylation-specific PCR was used to assess the inactivation pattern of X chromosomes. By laparoscopy, internal female genital anatomy appeared to be normal. Cytogenetic and molecular methods confirmed the presence of intact and functionally active Y chromosome in the ovary. Strikingly, histological assessment of the gonads showed normal ovarian architecture with abundant primordial follicles despite the presence of the Y chromosome in ovarian follicles and the expression of SRY mRNA in gonadal tissue. This case illustrates that normal ovarian development is possible in the presence of Y chromosome in ovarian follicles and despite the expression of SRY in ovarian tissue. Furthermore, this is the first documented case of mixoploidy after in vitro fertilization-intracytoplasmic sperm injection and the only phenotypic female with 46,XX/69,XXY karyotype.

  3. Statistics for X-chromosome associations.

    PubMed

    Özbek, Umut; Lin, Hui-Min; Lin, Yan; Weeks, Daniel E; Chen, Wei; Shaffer, John R; Purcell, Shaun M; Feingold, Eleanor

    2018-06-13

    In a genome-wide association study (GWAS), association between genotype and phenotype at autosomal loci is generally tested by regression models. However, X-chromosome data are often excluded from published analyses of autosomes because of the difference between males and females in number of X chromosomes. Failure to analyze X-chromosome data at all is obviously less than ideal, and can lead to missed discoveries. Even when X-chromosome data are included, they are often analyzed with suboptimal statistics. Several mathematically sensible statistics for X-chromosome association have been proposed. The optimality of these statistics, however, is based on very specific simple genetic models. In addition, while previous simulation studies of these statistics have been informative, they have focused on single-marker tests and have not considered the types of error that occur even under the null hypothesis when the entire X chromosome is scanned. In this study, we comprehensively tested several X-chromosome association statistics using simulation studies that include the entire chromosome. We also considered a wide range of trait models for sex differences and phenotypic effects of X inactivation. We found that models that do not incorporate a sex effect can have large type I error in some cases. We also found that many of the best statistics perform well even when there are modest deviations, such as trait variance differences between the sexes or small sex differences in allele frequencies, from assumptions. © 2018 WILEY PERIODICALS, INC.

  4. Effects of chromosomal sex and hormonal influences on shaping sex differences in brain and behavior: Lessons from cases of disorders of sex development.

    PubMed

    Bramble, Matthew S; Lipson, Allen; Vashist, Neerja; Vilain, Eric

    2017-01-02

    Sex differences in brain development and postnatal behavior are determined largely by genetic sex and in utero gonadal hormone secretions. In humans however, determining the weight that each of these factors contributes remains a challenge because social influences should also be considered. Cases of disorders of sex development (DSD) provide unique insight into how mutations in genes responsible for gonadal formation can perturb the subsequent developmental hormonal milieu and elicit changes in normal human brain maturation. Specific forms of DSDs such as complete androgen insensitivity syndrome (CAIS), congenital adrenal hyperplasia (CAH), and 5α-reductase deficiency syndrome have variable effects between males and females, and the developmental outcomes of such conditions are largely dependent on sex chromosome composition. Medical and psychological works focused on CAH, CAIS, and 5α-reductase deficiency have helped form the foundation for understanding the roles of genetic and hormonal factors necessary for guiding human brain development. Here we highlight how the three aforementioned DSDs contribute to brain and behavioral phenotypes that can uniquely affect 46,XY and 46,XX individuals in dramatically different fashions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Meiotic Sex Chromosome Inactivation Is Disrupted in Sterile Hybrid Male House Mice

    PubMed Central

    Campbell, Polly; Good, Jeffrey M.; Nachman, Michael W.

    2013-01-01

    In male mammals, the X and Y chromosomes are transcriptionally silenced in primary spermatocytes by meiotic sex chromosome inactivation (MSCI) and remain repressed for the duration of spermatogenesis. Here, we test the longstanding hypothesis that disrupted MSCI might contribute to the preferential sterility of heterogametic hybrid males. We studied a cross between wild-derived inbred strains of Mus musculus musculus and M. m. domesticus in which sterility is asymmetric: F1 males with a M. m. musculus mother are sterile or nearly so while F1 males with a M. m. domesticus mother are normal. In previous work, we discovered widespread overexpression of X-linked genes in the testes of sterile but not fertile F1 males. Here, we ask whether this overexpression is specifically a result of disrupted MSCI. To do this, we isolated cells from different stages of spermatogenesis and measured the expression of several genes using quantitative PCR. We found that X overexpression in sterile F1 primary spermatocytes is coincident with the onset of MSCI and persists in postmeiotic spermatids. Using a series of recombinant X genotypes, we then asked whether X overexpression in hybrids is controlled by cis-acting loci across the X chromosome. We found that it is not. Instead, one large interval in the proximal portion of the M. m. musculus X chromosome is associated with both overexpression and the severity of sterility phenotypes in hybrids. These results demonstrate a strong association between X-linked hybrid male sterility and disruption of MSCI and suggest that trans-acting loci on the X are important for the transcriptional regulation of the X chromosome during spermatogenesis. PMID:23307891

  6. Meiotic sex chromosome inactivation is disrupted in sterile hybrid male house mice.

    PubMed

    Campbell, Polly; Good, Jeffrey M; Nachman, Michael W

    2013-03-01

    In male mammals, the X and Y chromosomes are transcriptionally silenced in primary spermatocytes by meiotic sex chromosome inactivation (MSCI) and remain repressed for the duration of spermatogenesis. Here, we test the longstanding hypothesis that disrupted MSCI might contribute to the preferential sterility of heterogametic hybrid males. We studied a cross between wild-derived inbred strains of Mus musculus musculus and M. m. domesticus in which sterility is asymmetric: F1 males with a M. m. musculus mother are sterile or nearly so while F1 males with a M. m. domesticus mother are normal. In previous work, we discovered widespread overexpression of X-linked genes in the testes of sterile but not fertile F1 males. Here, we ask whether this overexpression is specifically a result of disrupted MSCI. To do this, we isolated cells from different stages of spermatogenesis and measured the expression of several genes using quantitative PCR. We found that X overexpression in sterile F1 primary spermatocytes is coincident with the onset of MSCI and persists in postmeiotic spermatids. Using a series of recombinant X genotypes, we then asked whether X overexpression in hybrids is controlled by cis-acting loci across the X chromosome. We found that it is not. Instead, one large interval in the proximal portion of the M. m. musculus X chromosome is associated with both overexpression and the severity of sterility phenotypes in hybrids. These results demonstrate a strong association between X-linked hybrid male sterility and disruption of MSCI and suggest that trans-acting loci on the X are important for the transcriptional regulation of the X chromosome during spermatogenesis.

  7. X chromosome dosage and presence of SRY shape sex-specific differences in DNA methylation at an autosomal region in human cells.

    PubMed

    Ho, Bianca; Greenlaw, Keelin; Al Tuwaijri, Abeer; Moussette, Sanny; Martínez, Francisco; Giorgio, Elisa; Brusco, Alfredo; Ferrero, Giovanni Battista; Linhares, Natália D; Valadares, Eugênia R; Svartman, Marta; Kalscheuer, Vera M; Rodríguez Criado, Germán; Laprise, Catherine; Greenwood, Celia M T; Naumova, Anna K

    2018-02-20

    Sexual dimorphism in DNA methylation levels is a recurrent epigenetic feature in different human cell types and has been implicated in predisposition to disease, such as psychiatric and autoimmune disorders. To elucidate the genetic origins of sex-specific DNA methylation, we examined DNA methylation levels in fibroblast cell lines and blood cells from individuals with different combinations of sex chromosome complements and sex phenotypes focusing on a single autosomal region--the differentially methylated region (DMR) in the promoter of the zona pellucida binding protein 2 (ZPBP2) as a reporter. Our data show that the presence of the sex determining region Y (SRY) was associated with lower methylation levels, whereas higher X chromosome dosage in the absence of SRY led to an increase in DNA methylation levels at the ZPBP2 DMR. We mapped the X-linked modifier of DNA methylation to the long arm of chromosome X (Xq13-q21) and tested the impact of mutations in the ATRX and RLIM genes, located in this region, on methylation levels. Neither ATRX nor RLIM mutations influenced ZPBP2 methylation in female carriers. We conclude that sex-specific methylation differences at the autosomal locus result from interaction between a Y-linked factor SRY and at least one X-linked factor that acts in a dose-dependent manner.

  8. Abnormally banded chromosomal regions in doxorubicin-resistant B16-BL6 murine melanoma cells.

    PubMed

    Slovak, M L; Hoeltge, G A; Ganapathi, R

    1986-08-01

    B16-BL6 murine melanoma cells were selected for cytogenetic evaluation during the stepwise development of increasing resistance in vitro to the antitumor antibiotic, doxorubicin (DOX). Karyotypic studies demonstrated extensive heteroploidy with both numerical and structural abnormalities which were not present in the parental DOX-sensitive B16-BL6 cells. Trypsin-Giemsa banding revealed the presence of several marker chromosomes containing abnormally banding regions (ABRs) in the 44-fold B16-BL6 DOX-resistant subline. These ABRs appeared to be more homogeneously staining at the higher DOX concentrations. Length measurements (ABR index) in seven banded metaphases indicated a direct correlation with increasing DOX concentration. When the DOX-resistant cells were grown in drug-free medium for 1 yr, the drug-resistant phenotype gradually declined in parallel with the level of resistance and the ABR index. DOX-induced cytogenetic damage examined by sister chromatid exchange methodology in parental B16-BL6 cells indicated a linear sister chromatid exchange:DOX dose-response relationship. However, after continuous treatment of parental B16-BL6 cells with DOX (0.01 microgram/ml) for 30 days, sister chromatid exchange scores were found to return to base-line values. The B16-BL6 resistant cells demonstrated a cross-resistant phenotype with N-trifluoroacetyladriamycin-14-valerate, actinomycin D, and the Vinca alkaloids but not with 1-beta-D-arabinofuranosylcytosine. The results suggest that ABR-containing chromosomes in DOX-resistant sublines may represent cytogenetic alterations of specific amplified genes involved in the expression of DOX resistance. Further studies are required to identify and define the possible gene products and to correlate their relationship to the cytotoxic action of doxorubicin.

  9. Y-autosome translocation interferes with meiotic sex inactivation and expression of autosomal genes: a case study in the pig.

    PubMed

    Barasc, H; Mary, N; Letron, R; Calgaro, A; Dudez, A M; Bonnet, N; Lahbib-Mansais, Y; Yerle, M; Ducos, A; Pinton, A

    2012-01-01

    Y-autosome translocations are rare in humans and pigs. In both species, these rearrangements can be responsible for meiotic arrest and subsequent infertility. Chromosome pairing abnormalities on the SSCX, SSCY and SSC1 chromatin domains were identified by analyzing pachytene spermatocytes from a boar carrying a (Y;1) translocation by immunolocalization of specific meiotic protein combined with FISH. Disturbance of the meiotic sex chromosome inactivation (MSCI) was observed by Cot-RNA-FISH and analysis of ZFY gene expression by sequential RNA- and DNA-FISH on spermatocytes. We hypothesized that the meiotic arrest observed in this boar might be due to the silencing of critical autosomal genes and/or the reactivation of some sex chromosome genes. Copyright © 2011 S. Karger AG, Basel.

  10. Influences of Brain Size, Sex, and Sex Chromosome Complement on the Architecture of Human Cortical Folding.

    PubMed

    Fish, Ari M; Cachia, Arnaud; Fischer, Clara; Mankiw, Catherine; Reardon, P K; Clasen, Liv S; Blumenthal, Jonathan D; Greenstein, Deanna; Giedd, Jay N; Mangin, Jean-François; Raznahan, Armin

    2017-12-01

    Gyrification is a fundamental property of the human cortex that is increasingly studied by basic and clinical neuroscience. However, it remains unclear if and how the global architecture of cortical folding varies with 3 interwoven sources of anatomical variation: brain size, sex, and sex chromosome dosage (SCD). Here, for 375 individuals spanning 7 karyotype groups (XX, XY, XXX, XYY, XXY, XXYY, XXXXY), we use structural neuroimaging to measure a global sulcation index (SI, total sulcal/cortical hull area) and both determinants of sulcal area: total sulcal length and mean sulcal depth. We detail large and patterned effects of sex and SCD across all folding metrics, but show that these effects are in fact largely consistent with the normative scaling of cortical folding in health: larger human brains have disproportionately high SI due to a relative expansion of sulcal area versus hull area, which arises because disproportionate sulcal lengthening overcomes a lack of proportionate sulcal deepening. Accounting for these normative allometries reveals 1) brain size-independent sulcal lengthening in males versus females, and 2) insensitivity of overall folding architecture to SCD. Our methodology and findings provide a novel context for future studies of human cortical folding in health and disease. Published by Oxford University Press 2016.

  11. The Y Chromosome

    ERIC Educational Resources Information Center

    Offner, Susan

    2010-01-01

    The Y chromosome is of great interest to students and can be used to teach about many important biological concepts in addition to sex determination. This paper discusses mutation, recombination, mammalian sex determination, sex determination in general, and the evolution of sex determination in mammals. It includes a student activity that…

  12. Cytogenetic analysis of CpG-oligonucleotide DSP30 plus Interleukin-2-Stimulated canine B-Cell lymphoma cells reveals the loss of one X Chromosome as the sole abnormality.

    PubMed

    Reimann-Berg, N; Murua Escobar, H; Kiefer, Y; Mischke, R; Willenbrock, S; Eberle, N; Nolte, I; Bullerdiek, J

    2011-01-01

    Human and canine lymphoid neoplasms are characterized by non-random cytogenetic abnormalities. However, due to the low mitotic activity of the B cells, cytogenetic analyses of B-cell lymphoid proliferations are difficult to perform. In the present study we stimulated canine B-cell lymphoma cells with the immunostimulatory CpG-oligonucleotide DSP30 in combination with interleukin-2 (IL-2) and obtained an adequate number of metaphases. Cytogenetic analyses revealed the loss of one X chromosome as the sole cytogenetic aberration. Chromosome analysis of the corresponding blood showed a normal female karyotype. Monosomy X as the sole clonal chromosomal abnormality is found in human hematopoietic malignancies as well, thus the dog may serve as a promising animal model. Copyright © 2011 S. Karger AG, Basel.

  13. Chromosomal Translocations: Chicken or Egg? | Center for Cancer Research

    Cancer.gov

    Many tumor cells have abnormal chromosomes. Some of these abnormalities are caused by chromosomal translocations, which occur when two chromosomes break and incorrectly rejoin, resulting in an exchange of genetic material. Translocations can activate oncogenes, silence tumor suppressor genes, or result in the creation of completely new fusion gene products. While there is

  14. Male infertility associated with de novo pericentric inversion of chromosome 1.

    PubMed

    Balasar, Özgür; Zamani, Ayşe Gül; Balasar, Mehmet; Acar, Hasan

    2017-12-01

    Inversion occurs after two breaks in a chromosome have happened and the segment rotates 180° before reinserting. Inversion carriers have produced abnormal gametes if there is an odd number crossing- over between the inverted and the normal homologous chromosomes causing a duplication or deletion. Reproductive risks such as infertility, abortion, stillbirth and birth of malformed child would be expected in that case. A 54-year- old male patient was consulted to our clinic for primary infertility. The routine chromosome study were applied using peripheral blood lymphocyte cultures and analyzed by giemsa-trypsin-giemsa (GTG) banding, and centromer banding (C-banding) stains. Y chromosome microdeletions in the azoospermia factor (AZF) regions were analyzed with polymerase chain reaction. Additional test such as fluorescence in situ hybridization (FISH) was used to detect the sex-determining region of the Y chromosome (SRY). Semen analysis showed azoospermia. A large pericentric inversion of chromosome 1 46,XY, inv(1) (p22q32) was found in routine chromosome analysis. No microdeletions were seen in AZF regions. In our patient the presence of SRY region was observed by using FISH technique with SRY-specific probe. Men who have pericentric inversion of chromosome 1, appear to be at risk for infertility brought about by spermatogenic breakdown. The etiopathogenic relationship between azoospermia and pericentric inversion of chromosome 1 is discussed.

  15. Y-chromosome analysis confirms highly sex-biased dispersal and suggests a low male effective population size in bonobos (Pan paniscus).

    PubMed

    Eriksson, Jonas; Siedel, Heike; Lukas, Dieter; Kayser, Manfred; Erler, Axel; Hashimoto, Chie; Hohmann, Gottfried; Boesch, Christophe; Vigilant, Linda

    2006-04-01

    Dispersal is a rare event that is difficult to observe in slowly maturing, long-lived wild animal species such as the bonobo. In this study we used sex-linked (mitochondrial DNA sequence and Y-chromosome microsatellite) markers from the same set of individuals to estimate the magnitude of difference in effective dispersal between the sexes and to investigate the long-term demographic history of bonobos. We sampled 34 males from four distinct geographical areas across the bonobo distribution range. As predicted for a female-dispersing species, we found much higher levels of differentiation among local bonobo populations based upon Y-chromosomal than mtDNA genetic variation. Specifically, almost all of the Y-chromosomal variation distinguished populations, while nearly all of the mtDNA variation was shared between populations. Furthermore, genetic distance correlated with geographical distance for mtDNA but not for the Y chromosome. Female bonobos have a much higher migration rate and/or effective population size as compared to males, and the estimate for the mitochondrial TMRCA (time to most recent common ancestor) was approximately 10 times greater than the estimate for the Y chromosome (410,000 vs. 40,000-45,000). For humans the difference is merely a factor of two, suggesting a more stable demographic history in bonobos in comparison to humans.

  16. Cell-autonomous sex determination outside of the gonad

    PubMed Central

    Arnold, Arthur P.; Chen, Xuqi; Link, Jenny C.; Itoh, Yuichiro; Reue, Karen

    2013-01-01

    The classic model of sex determination in mammals states that the sex of the individual is determined by the type of gonad that develops, which in turn determines the gonadal hormonal milieu that creates sex differences outside of the gonads. However, XX and XY cells are intrinsically different because of the cell-autonomous sex-biasing action of X and Y genes. Recent studies of mice, in which sex chromosome complement is independent of gonadal sex, reveal that sex chromosome complement has strong effects contributing to sex differences in phenotypes such as metabolism. Adult mice with two X chromosomes (relative to mice with one X chromosome) show dramatically greater increases in body weight and adiposity after gonadectomy, irrespective of their gonadal sex. When fed a high fat diet, XX mice develop striking hyperinsulinemia and fatty liver, relative to XY mice. The sex chromosome effects are modulated by the presence of gonadal hormones, indicating an interaction of the sex-biasing effects of gonadal hormones and sex chromosome genes. Other cell-autonomous sex chromosome effects are detected in mice in many phenotypes. Birds (relative to eutherian mammals) are expected to show more widespread cell-autonomous sex determination in non-gonadal tissues, because of ineffective sex chromosome dosage compensation mechanisms. PMID:23361913

  17. 46, XX true hermaphroditism associated with a terminal deletion of the short arm of the X chromosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbaux, S.; Vilain, E.; McElreavey, K.

    1994-09-01

    Testes are determined by the activity of the SRY gene product encoded by the Y chromosome. Mutations in SRY can lead to XY sex reversal (XY females) and the presence of the SRY gene in some XX individuals can lead either to complete (XX males) or incomplete (XX true hermaphrodites) sex reversal. Approximately 10% of XX true hermaphrodites contain a portion of the Y chromosome, including SRY, in their genome. The etiology of the remaining cases is unestablished but may be caused by mutations in other as yet unidentied sex determining genes downstream of SRY. Here we describe an SRY-negativemore » true hermaphrodite with a 46,X,del(X)(p21.1-pter). The patient also presented with severe mental retardation, abnormal skin pigmentation and below average height. Histological examination of the gonad revealed bilateral ovotestis. We postulate that the Xp deletion has unmasked a recessive allele on the apparently normal X chromosome generating the intersex phenotype. This observation together with recent findings of certain XY females carrying duplications of Xp21.3 suggests that there may be a loci on Xp which acts as a switch in the testis/ovarian determination pathways.« less

  18. Sexual Dimorphism of Body Size Is Controlled by Dosage of the X-Chromosomal Gene Myc and by the Sex-Determining Gene tra in Drosophila.

    PubMed

    Mathews, Kristina Wehr; Cavegn, Margrith; Zwicky, Monica

    2017-03-01

    Drosophila females are larger than males. In this article, we describe how X -chromosome dosage drives sexual dimorphism of body size through two means: first, through unbalanced expression of a key X -linked growth-regulating gene, and second, through female-specific activation of the sex-determination pathway. X -chromosome dosage determines phenotypic sex by regulating the genes of the sex-determining pathway. In the presence of two sets of X -chromosome signal elements (XSEs), Sex-lethal ( Sxl ) is activated in female ( XX ) but not male ( XY ) animals. Sxl activates transformer ( tra ), a gene that encodes a splicing factor essential for female-specific development. It has previously been shown that null mutations in the tra gene result in only a partial reduction of body size of XX animals, which shows that other factors must contribute to size determination. We tested whether X dosage directly affects animal size by analyzing males with duplications of X -chromosomal segments. Upon tiling across the X chromosome, we found four duplications that increase male size by >9%. Within these, we identified several genes that promote growth as a result of duplication. Only one of these, Myc , was found not to be dosage compensated. Together, our results indicate that both Myc dosage and tra expression play crucial roles in determining sex-specific size in Drosophila larvae and adult tissue. Since Myc also acts as an XSE that contributes to tra activation in early development, a double dose of Myc in females serves at least twice in development to promote sexual size dimorphism. Copyright © 2017 by the Genetics Society of America.

  19. Chromosomal instability in the lymphocytes of breast cancer patients

    PubMed Central

    Harsimran, Kaur; Kaur, Monga Gaganpreet; Nitika, Setia; Meena, Sudan; M. S., Uppal; Yamini; A. P. S., Batra; Vasudha, Sambyal

    2009-01-01

    Genomic instability in the tumor tissue has been correlated with tumor progression. In the present study, chromosomal aberrations (CAs) in peripheral blood lymphocytes (PBLs) of breast tumor patients were studied to assess whether chromosomal instability (CIN) in PBLs correlates with aggressiveness of breast tumor (i.e., disease stage) and has any prognostic utility. Cultured blood lymphocyte metaphases were scored for aberrations in 31 breast cancer patients and 20 healthy age and sex-matched controls. A variety of CAs, including aneuploidy, polyploidy, terminal deletions, acentric fragments, double minutes, chromatid separations, ring chromosome, marker chromosome, chromatid gaps, and breaks were seen in PBLs of the patients. The CAs in patients were higher than in controls. A comparison of the frequency of metaphases with aberrations by grouping the patients according to the stage of advancement of disease did not reveal any consistent pattern of variation in lymphocytic CIN. Neither was any specific chromosomal abnormality found to be associated with the stage of cancer. This might be indicative of the fact that cancer patients have constitutional CIN, which predisposes them to the disease, and this inherent difference in the level of genomic instability might play a role in disease progression and response to treatment. PMID:20407644

  20. Conditional ablation of Raptor in the male germline causes infertility due to meiotic arrest and impaired inactivation of sex chromosomes.

    PubMed

    Xiong, Mengneng; Zhu, Zhiping; Tian, Suwen; Zhu, Ruping; Bai, Shun; Fu, Kaiqiang; Davis, James G; Sun, Zheng; Baur, Joseph A; Zheng, Ke; Ye, Lan

    2017-09-01

    Rapamycin is a clinically important drug that is used in transplantation and cancer therapy but which causes a number of side effects, including male infertility. Its canonical target, mammalian target of rapamycin complex 1 (mTORC1), plays a key role in metabolism and binds chromatin; however, its precise role in the male germline has not been elucidated. Here, we inactivate the core component, Raptor, to show that mTORC1 function is critical for male meiosis and the inactivation of sex chromosomes. Disruption of the Raptor gene impairs chromosomal synapsis and prevents the efficient spreading of silencing factors into the XY chromatin. Accordingly, mRNA for XY-linked genes remains inappropriately expressed in Raptor -deficient mice. Molecularly, the failure to suppress gene expression corresponded with deficiencies in 2 repressive chromatin markers, H3K9 dimethylation and H3K9 trimethylation, in the XY body. Together, these results demonstrate that mTORC1 has an essential role in the meiotic progression and silencing of sex chromosomes in the male germline, which may explain the infertility that has been associated with such inhibitors as rapamycin.-Xiong, M., Zhu, Z., Tian, S., Zhu, R., Bai, S., Fu, K., Davis, J. G., Sun, Z., Baur, J. A., Zheng, K., Ye, L. Conditional ablation of Raptor in the male germline causes infertility due to meiotic arrest and impaired inactivation of sex chromosomes. © FASEB.

  1. Philadelphia chromosome-positive adult acute leukemia with monosomy of chromosome number seven: a subgroup with poor response to therapy.

    PubMed

    Maddox, A M; Keating, M J; Trujillo, J; Cork, A; Youness, E; Ahearn, M J; McCredie, K B; Freireich, E J

    1983-01-01

    Thirty-four adult patients were seen at the University of Texas M. D. Anderson Hospital and Tumor Institute at Houston, Texas between 1969 and 1980 with acute leukemia (AL) and a deleted G-group chromosome that was shown by Giemsa banding to be a Philadelphia (Ph1) chromosome t(9;22) in 21 patients. Fourteen had the Ph1 chromosome as the sole abnormality, 12 had the Ph1 chromosome and loss of one chromosome of the C-group (identified by Giemsa banding analysis as number 7 in eight patients), while eight had the Ph1 chromosome and other changes. These three groups were similar in sex, age distribution and hematologic parameters. The median age of 40 was lower than usually seen in AL. The distribution of the morphologic subtypes was similar to that seen at this institution, with 50% being acute myeloblastic, 12% acute myelomonocytic, 20% lymphoblastic and 18% acute undifferentiated. The complete remission rate with chemotherapy was low: 25% in the Ph1 +/- 7, 50% in the Ph1 +/other group and 43% in the Ph1 +/other group. Median survival time was 8 months for the Ph1 +/- 7 group, 5.5 months for the Ph1 +/other group and 9.0 months for the Ph1 +/alone group. These patients with Ph1 + AL had higher white blood cell counts, increased extramedullary disease and poorer responses to therapy than usual for patients with AL. The deletion of chromosome 7 and the acquisition of the Ph1 chromosome identifies a group of patients with characteristics similar to all the patients with Ph1 + AL but a poor response to therapy and short remission duration.

  2. Childhood-onset schizophrenia case with 2.2 Mb deletion at chromosome 3p12.2-p12.1 and two large chromosomal abnormalities at 16q22.3-q24.3 and Xq23-q28.

    PubMed

    Rudd, Danielle; Axelsen, Michael; Epping, Eric A; Andreasen, Nancy; Wassink, Thomas

    2015-04-01

    Childhood-onset schizophrenia is rare, comprising 1% of known schizophrenia cases. Here, we report a patient with childhood-onset schizophrenia who has three large chromosomal abnormalities: an inherited 2.2 Mb deletion of chromosome 3p12.2-p12.1, a de novo 16.7 Mb duplication of 16q22.3-24.3, and a de novo 43 Mb deletion of Xq23-q28.

  3. ZZ/ZW sex chromosome system in the endangered fish Lignobrycon myersi Miranda-Ribeiro, 1956 (Teleostei, Characiformes, Triportheidae).

    PubMed

    Rodrigues, Alexandre Dos Santos; Medrado, Aline Souza; Diniz, Débora; Oliveira, Claudio; Affonso, Paulo Roberto Antunes de Mello

    2016-01-01

    Lignobrycon myersi is an endemic fish species from a few coastal rivers in northeastern Brazil. Based on molecular evidence, Lignobrycon myersi and genera Triportheus Cope, 1872, Agoniates Müller & Troschel, 1845, Clupeacharax Pearson, 1924 and Engraulisoma Castro, 1981 were placed in the family Triportheidae. In the present work, we report the first cytogenetic data for Lignobrycon myersi to test the hypothesis that Lignobrycon and Triportheus are closely related. Studied specimens presented 2n=52 with 28 metacentric (m), 18 submetacentric (sm) and six subtelocentric (st) chromosomes for males and 27 m, 19 sm and 6 st for females, characterizing a ZZ/ZW sex chromosome system. The Z chromosome corresponds to the largest chromosome in karyotype while the W is about 50% smaller than the Z and largely heterochromatic. Terminal nucleolus organizer regions, GC-rich sites and 18S rDNA signals were detected on pair 14. However, additional 18S rDNA sites were observed in the W chromosome. The 5S rDNA was mainly detected on long arms of pair 7. The apparent synapomorphic chromosomal traits of Triportheus and Lignobrycon myersi reinforce their close phylogenetic relationship, suggesting that the ZZ/ZW chromosome system in both genera has arisen before cladogenic events.

  4. Spermatozoa with numerical chromosomal abnormalities are more prone to be retained by Annexin V-MACS columns.

    PubMed

    Esbert, M; Godo, A; Soares, S R; Florensa, M; Amorós, D; Ballesteros, A; Vidal, F

    2017-07-01

    Colloidal super-paramagnetic microbeads conjugated with annexin V are effective for separating apoptotic spermatozoa by MACS as a result of the high affinity of annexin V for externalized PS molecules. The effectiveness of the procedure in reducing the percentage of sperm with fragmented DNA and abnormal morphology has also been reported. However, it is still unknown if it could decrease the percentage of aneuploid spermatozoa. The objective of our prospective study, performed on 16 males with abnormal FISH on spermatozoa, was to assess if MACS columns were useful tools to retain spermatozoa carrying chromosomal abnormalities in semen samples processed after density gradient centrifugation (DGC). The pellet obtained after DGC was subjected to MACS, and sperm FISH analyses were performed both in the eluded fraction and in the fraction retained in the column. The observed frequencies of disomy and nullisomy 13, 18, and 21, X and Y, as well as the diploidy rates in the MACS eluded fraction and the fraction retained in the MACS column were recorded. We observed that the frequencies of aneuploidies in the eluded fraction were lower than in the fraction retained in the MACS column (0.59% vs. 0.75%; p = 0.010). DGC determined a significant reduction in sperm concentration (z-ratio = 2.83; p = 0.005) and a significant increase in sperm progressive motility (z-ratio = -3.5; p < 0.001). MACS also led to a significant reduction in sperm concentration (z-ratio = 3.14; p = 0.002) and a significant increase in progressive motility (z-ratio = -2.59; p = 0.01) when compared with the post-DGC sample. Sperm concentration was similar in the two fractions generated by MACS (z-ratio = 0.63; p = 0.52), while progressive motility was significantly higher in the MACS eluded fraction (z-ratio = 2.42; p = 0.02). According to our results, MACS columns are able to selectively retain spermatozoa carrying chromosomal abnormalities. Furthermore, the performance of DGC

  5. Genomics of sex determination.

    PubMed

    Zhang, Jisen; Boualem, Adnane; Bendahmane, Abdelhafid; Ming, Ray

    2014-04-01

    Sex determination is a major switch in the evolutionary history of angiosperm, resulting 11% monoecious and dioecious species. The genomic sequences of papaya sex chromosomes unveiled the molecular basis of recombination suppression in the sex determination region, and candidate genes for sex determination. Identification and analyses of sex determination genes in cucurbits and maize demonstrated conservation of sex determination mechanism in one lineage and divergence between the two systems. Epigenetic control and hormonal influence of sex determination were elucidated in both plants and animals. Intensive investigation of potential sex determination genes in model species will improve our understanding of sex determination gene network. Such network will in turn accelerate the identification of sex determination genes in dioecious species with sex chromosomes, which are burdensome due to no recombination in sex determining regions. The sex determination genes in dioecious species are crucial for understanding the origin of dioecy and sex chromosomes, particularly in their early stage of evolution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Maternal serum free beta-hCG and PAPP-A in fetal sex chromosome defects in the first trimester.

    PubMed

    Spencer, K; Tul, N; Nicolaides, K H

    2000-05-01

    We have studied maternal serum free beta-hCG and PAPP-A, and fetal nuchal translucency (NT) in a series of 46 cases of fetal Turner's syndrome, 13 cases of other sex chromosomal anomalies and compared these with 947 control pregnancies in the first trimester. In cases of Turner's syndrome (45,X) the median fetal NT was significantly higher than in controls (4.76 MoM), the median PAPP-A was significantly lower (0.49 MoM), whilst the free beta-hCG was not significantly different (1.11 MoM). For NT, 93% (43/46) of cases were equal to or greater than the 95th centile of controls, for PAPP-A 35% (16/46) of cases were less than or equal to the 5th centile of controls and for free beta-hCG 15% (7/46) of cases were equal to or greater than the 95th centile of controls. For other sex chromosomal anomalies (47XXX, XXY, XYY) the median NT was increased (2.07 MoM) whilst PAPP-A was not significantly decreased (0.88 MoM) and free beta-hCG was not significantly different (1.07 MoM) from controls. Using a previously derived multivariate risk algorithm for trisomy 21, incorporating NT, PAPP-A, free beta-hCG and maternal age, 96% of the Turner's cases and 62% of the other sex chromosomal anomalies would have been identified. Copyright 2000 John Wiley & Sons, Ltd.

  7. Neurocognitive Outcomes of Individuals with a Sex Chromosome Trisomy: XXX, XYY, or XXY--A Systematic Review

    ERIC Educational Resources Information Center

    Leggett, Victoria; Jacobs, Patricia; Nation, Kate; Scerif, Gaia; Bishop, Dorothy V. M.

    2010-01-01

    Aim: To review systematically the neurodevelopmental characteristics of individuals with sex chromosome trisomies (SCTs). Method: A bibliographic search identified English-language articles on SCTs. The focus was on studies unbiased by clinical referral, with power of at least 0.69 to detect an effect size of 1.0. Results: We identified 35…

  8. Sex differences in life span: Females homozygous for the X chromosome do not suffer the shorter life span predicted by the unguarded X hypothesis.

    PubMed

    Brengdahl, Martin; Kimber, Christopher M; Maguire-Baxter, Jack; Friberg, Urban

    2018-03-01

    Life span differs between the sexes in many species. Three hypotheses to explain this interesting pattern have been proposed, involving different drivers: sexual selection, asymmetrical inheritance of cytoplasmic genomes, and hemizygosity of the X(Z) chromosome (the unguarded X hypothesis). Of these, the unguarded X has received the least experimental attention. This hypothesis suggests that the heterogametic sex suffers a shortened life span because recessive deleterious alleles on its single X(Z) chromosome are expressed unconditionally. In Drosophila melanogaster, the X chromosome is unusually large (∼20% of the genome), providing a powerful model for evaluating theories involving the X. Here, we test the unguarded X hypothesis by forcing D. melanogaster females from a laboratory population to express recessive X-linked alleles to the same degree as males, using females exclusively made homozygous for the X chromosome. We find no evidence for reduced life span or egg-to-adult viability due to X homozygozity. In contrast, males and females homozygous for an autosome both suffer similar, significant reductions in those traits. The logic of the unguarded X hypothesis is indisputable, but our results suggest that the degree to which recessive deleterious X-linked alleles depress performance in the heterogametic sex appears too small to explain general sex differences in life span. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  9. Compositions for chromosome-specific staining

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    1998-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Further, methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. Still further, the invention provides for automated means to detect and analyse chromosomal abnormalities.

  10. Compositions for chromosome-specific staining

    DOEpatents

    Gray, J.W.; Pinkel, D.

    1998-05-26

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. The methods produce staining patterns that can be tailored for specific cytogenetic analyses. The probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. The invention provides for automated means to detect and analyze chromosomal abnormalities. 17 figs.

  11. Sex chromosome linked genetic variance and the evolution of sexual dimorphism of quantitative traits.

    PubMed

    Husby, Arild; Schielzeth, Holger; Forstmeier, Wolfgang; Gustafsson, Lars; Qvarnström, Anna

    2013-03-01

    Theory predicts that sex chromsome linkage should reduce intersexual genetic correlations thereby allowing the evolution of sexual dimorphism. Empirical evidence for sex linkage has come largely from crosses and few studies have examined how sexual dimorphism and sex linkage are related within outbred populations. Here, we use data on an array of different traits measured on over 10,000 individuals from two pedigreed populations of birds (collared flycatcher and zebra finch) to estimate the amount of sex-linked genetic variance (h(2)z ). Of 17 traits examined, eight showed a nonzero h(2)Z estimate but only four were significantly different from zero (wing patch size and tarsus length in collared flycatchers, wing length and beak color in zebra finches). We further tested how sexual dimorphism and the mode of selection operating on the trait relate to the proportion of sex-linked genetic variance. Sexually selected traits did not show higher h(2)Z than morphological traits and there was only a weak positive relationship between h(2)Z and sexual dimorphism. However, given the relative scarcity of empirical studies, it is premature to make conclusions about the role of sex chromosome linkage in the evolution of sexual dimorphism. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  12. Dosage effects of X and Y chromosomes on language and social functioning in children with supernumerary sex chromosome aneuploidies: Implications for idiopathic language impairment and autism spectrum disorders

    PubMed Central

    Lee, Nancy Raitano; Wallace, Gregory L.; Adeyemi, Elizabeth I.; Lopez, Katherine C.; Blumenthal, Jonathan D.; Clasen, Liv S.; Giedd, Jay N.

    2012-01-01

    Background Supernumerary sex chromosome aneuploidies (X/Y-aneuploidies), the presence of extra X- and/or Y-chromosomes, are associated with heightened rates of language impairments and social difficulties. However, no single study has examined different language domains and social functioning in the same sample of children with tri-, tetra-, and pentasomy X/Y-aneuploidy. The current research sought to fill this gap in the literature and to examine dosage effects of X- and Y-chromosomes on language and social functioning. Methods Participants included 110 youth with X/Y-aneuploidies (32 female) and 52 with typical development (25 female) matched on age (mean~12 years; range 4–22) and maternal education. Participants completed the Wechsler intelligence scales and parents completed the Children’s Communication Checklist-2 and the Social Responsiveness Scale to assess language skills and autistic traits, respectively. Results Both supernumerary X- and Y-chromosomes were related to depressed structural and pragmatic language skills and increased autistic traits. The addition of a Y-chromosome had a disproportionately greater impact on pragmatic language; the addition of one or more X-chromosomes had a disproportionately greater impact on structural language. Conclusions Given that we link extra X-chromosomes with structural language impairments and an extra Y-chromosome with pragmatic language impairments, X/Y-aneuploidies may provide clues to genetic mechanisms contributing to idiopathic language impairment and autism spectrum disorders. PMID:22827287

  13. First-trimester maternal serum human chorionic gonadotrophin as a marker for fetal chromosomal disorders. The Dutch Working Party on Prenatal Diagnosis.

    PubMed

    Van Lith, J M

    1992-06-01

    The Dutch Working Party on Prenatal Diagnosis has initiated a study on the possibilities of first-trimester screening for fetal chromosomal disorders. We report on maternal serum human chorionic gonadotrophin (MS-hCG) measurements in 1348 pregnancies with a chromosomally normal fetus and 53 pregnancies with a chromosomally abnormal fetus. The median MS-hCG concentration in 24 pregnancies with Down's syndrome was 1.19 multiples of the normal median (MoM). The MS-hCG distributions in normal and Down's syndrome pregnancies did not differ significantly (t-test: t = 1.945, p greater than 0.05). We also found no difference between normal pregnancies and pregnancies with other chromosomal disorders (six cases of trisomy 18, MoM = 0.80; four cases of sex chromosome abnormality, MoM = 1.01; 17 cases of chromosomal mosaicism in chorionic villi, MoM = 1.11). Selecting an upper limit at the 90th centile could detect 25 per cent of pregnancies with Down's syndrome. We conclude that, in the first trimester, MS-hCG as a screening factor for Down's syndrome is of minor value. However, MS-hCG could be a useful factor in a first-trimester screening programme based on a combination of markers.

  14. X and Y Chromosome Complement Influence Adiposity and Metabolism in Mice

    PubMed Central

    Chen, Xuqi; McClusky, Rebecca; Itoh, Yuichiro; Reue, Karen

    2013-01-01

    Three different models of MF1 strain mice were studied to measure the effects of gonadal secretions and sex chromosome type and number on body weight and composition, and on related metabolic variables such as glucose homeostasis, feeding, and activity. The 3 genetic models varied sex chromosome complement in different ways, as follows: 1) “four core genotypes” mice, comprising XX and XY gonadal males, and XX and XY gonadal females; 2) the XY* model comprising groups similar to XO, XX, XY, and XXY; and 3) a novel model comprising 6 groups having XO, XX, and XY chromosomes with either testes or ovaries. In gonadally intact mice, gonadal males were heavier than gonadal females, but sex chromosome complement also influenced weight. The male/female difference was abolished by adult gonadectomy, after which mice with 2 sex chromosomes (XX or XY) had greater body weight and percentage of body fat than mice with 1 X chromosome. A second sex chromosome of either type, X or Y, had similar effects, indicating that the 2 sex chromosomes each possess factors that influence body weight and composition in the MF1 genetic background. Sex chromosome complement also influenced metabolic variables such as food intake and glucose tolerance. The results reveal a role for the Y chromosome in metabolism independent of testes and gonadal hormones and point to a small number of X–Y gene pairs with similar coding sequences as candidates for causing these effects. PMID:23397033

  15. Degeneration of the Y chromosome in evolutionary aging models

    NASA Astrophysics Data System (ADS)

    Lobo, M. P.; Onody, R. N.

    2005-06-01

    The Y chromosomes are genetically degenerated and do not recombine with their matching partners X. Recombination of XX pairs is pointed out as the key factor for the Y chromosome degeneration. However, there is an additional evolutionary force driving sex-chromosomes evolution. Here we show this mechanism by means of two different evolutionary models, in which sex chromosomes with non-recombining XX and XY pairs of chromosomes is considered. Our results show three curious effects. First, we observed that even when both XX and XY pairs of chromosomes do not recombine, the Y chromosomes still degenerate. Second, the accumulation of mutations on Y chromosomes followed a completely different pattern then those accumulated on X chromosomes. And third, the models may differ with respect to sexual proportion. These findings suggest that a more primeval mechanism rules the evolution of Y chromosomes due exclusively to the sex-chromosomes asymmetry itself, i.e., the fact that Y chromosomes never experience female bodies. Over aeons, natural selection favored X chromosomes spontaneously, even if at the very beginning of evolution, both XX and XY pairs of chromosomes did not recombine.

  16. Three loci on mouse chromosome 5 and 10 modulate sex determination in XX Ods/+ mice.

    PubMed

    Poirier, Christophe; Moran, Jennifer L; Kovanci, Ertug; Petit, Deborah C; Beier, David R; Bishop, Colin E

    2007-07-01

    In mouse, XY embryos are committed to the male sex determination pathway after the transient expression of the Y-linked Sry gene in the Sertoli cell lineage between 10.5 and 12.5 dpc. In the C57BL/6J strain, male sex determination program can be modulated by some autosomal genes. The C57BL/6J alleles at these autosomal loci can antagonize male sex determination in combination with specific Sry alleles. In this report, the authors have identified an effect of these C57BL/6J specific alleles in combination with a mutated Sox9 allele, Sox9(Ods). Authors report the mapping of three of these genetic loci on mouse chromosome 5 and 10 in a backcross of the Ods mutation to the C57BL/6J background. Our study confirms the importance of the strain C57BL/6J for the investigation of the genetic mechanisms that control sex determination.

  17. A novel morphological approach to gonads in disorders of sex development.

    PubMed

    Lepais, Laureline; Morel, Yves; Mouriquand, Pierre; Gorduza, Daniela; Plotton, Ingrid; Collardeau-Frachon, Sophie; Dijoud, Frédérique

    2016-11-01

    Disorders of sex development are defined as congenital conditions with discordance between the phenotype, the genotype, the karyotype, and the hormonal profile. The disorders of sex development consensus classification established in 2005 are mainly based on chromosomal and biological data. However, histological anomalies are not considered. The aims of this study were to define the specific pathological features of gonads in various groups of disorders of sex development in order to clarify the nosology of histological findings and to evaluate the tumor risk in case of a conservative approach. One hundred and seventy-five samples from 86 patients with disorders of sex development were analyzed following a strict histological reading protocol. The term 'gonadal dysgenesis' for the histological analysis was found confusing and therefore excluded. The concept of 'dysplasia' was subsequently introduced in order to describe the architectural disorganization of the gonad (various degrees of irregular seminiferous tubules, thin albuginea, fibrous interstitium). Five histological types were identified: normal gonad, hypoplastic testis, dysplastic testis, streak gonad, and ovotestis. The analysis showed an association between undifferentiated gonadal tissue, a potential precursor of gonadoblastoma, and dysplasia. Dysplasia and undifferentiated gonadal tissue were only encountered in cases of genetic or chromosomal abnormality ('dysgenesis' groups in the disorders of sex development consensus classification). 'Dysgenetic testes', related to an embryonic malformation of the gonad, have variable histological presentations, from normal to streak. Conversely, gonads associated with hormonal deficiencies always display a normal architecture. A loss of expression of AMH and α-inhibin was identified in dysplastic areas. Foci of abnormal expression of the CD117 and OCT4 immature germ cells markers in dysplasia and undifferentiated gonadal tissue were associated with an increased

  18. Mammalian X Chromosome Dosage Compensation: Perspectives From the Germ Line.

    PubMed

    Sangrithi, Mahesh N; Turner, James M A

    2018-06-01

    Sex chromosomes are advantageous to mammals, allowing them to adopt a genetic rather than environmental sex determination system. However, sex chromosome evolution also carries a burden, because it results in an imbalance in gene dosage between females (XX) and males (XY). This imbalance is resolved by X dosage compensation, which comprises both X chromosome inactivation and X chromosome upregulation. X dosage compensation has been well characterized in the soma, but not in the germ line. Germ cells face a special challenge, because genome wide reprogramming erases epigenetic marks responsible for maintaining the X dosage compensated state. Here we explain how evolution has influenced the gene content and germ line specialization of the mammalian sex chromosomes. We discuss new research uncovering unusual X dosage compensation states in germ cells, which we postulate influence sexual dimorphisms in germ line development and cause infertility in individuals with sex chromosome aneuploidy. © 2018 The Authors. BioEssays Published by Periodicals, Inc.

  19. Long-Term Fragility of Y Chromosomes Is Dominated by Short-Term Resolution of Sexual Antagonism

    PubMed Central

    Blackmon, Heath; Brandvain, Yaniv

    2017-01-01

    The evolution of heteromorphic sex chromosomes has fascinated biologists, inspiring theoretical models, experimental studies, and studies of genome structure. This work has produced a clear model, in which heteromorphic sex chromosomes result from repeated fixations of inversions (or other recombination suppression mechanisms) that tether sexually antagonistic alleles to sex-determining regions, followed by the degeneration of these regions induced by the lack of sex chromosome recombination in the heterogametic sex. However, current models do not predict if inversions are expected to preferentially accumulate on one sex-chromosome or another, and do not address if inversions can accumulate even when they cause difficulties in pairing between heteromorphic chromosomes in the heterogametic sex increasing aneuploidy or meiotic arrest. To address these questions, we developed a population genetic model in which the sex chromosome aneuploidy rate is elevated when males carry an inversion on either the X or Y chromosome. We show that inversions fix more easily when male-beneficial alleles are dominant, and that inversions on the Y chromosome fix with lower selection coefficients than comparable X chromosome inversions. We further show that sex-chromosome inversions can often invade and fix despite causing a substantial increase in the risk of aneuploidy. As sexual antagonism can lead to the fixation of inversions that increase sex chromosomes aneuploidy (which underlies genetic diseases including Klinefelter and Turner syndrome in humans) selection could subsequently favor diverse mechanisms to reduce aneuploidy—including alternative meiotic mechanisms, translocations to, and fusions with, the sex chromosomes, and sex chromosome turnover. PMID:29021279

  20. An Unusual Accumulation of Ribosomal Multigene Families and Microsatellite DNAs in the XX/XY Sex Chromosome System in the Trans-Andean Catfish Pimelodella cf. chagresi (Siluriformes:Heptapteridae).

    PubMed

    Conde-Saldaña, Cristhian Camilo; Barreto, Cynthia Aparecida Valiati; Villa-Navarro, Francisco Antonio; Dergam, Jorge Abdala

    2018-02-01

    This work constitutes the first cytogenetic characterization of a trans-Andean species of Heptapteridae. The catfish Pimelodella cf. chagresi from the Upper Rio Magdalena was studied, applying standard cytogenetic techniques (Giemsa, C-banding, and argyrophilic nucleolar organizer region [Ag-NOR]) and fluorescence in situ hybridization techniques using repetitive DNA probes: microsatellites (CA 15 and GA 15 ) and ribosomal RNA (rRNA) multigene families (18S and 5S recombinant DNA [rDNA] probes). The species showed a unique diploid chromosome number 2n = 50 (32m [metacentrics] +14sm [submetacentrics] +4st [subtelocentrics]) and a XX/XY sex chromosomal system, where the heteromorphic Y-chromosome revealed a conspicuous accumulation of all the assayed domains of repetitive DNA. P. cf. chagresi karyotype shares common features with other Heptapteridae, such as the predominance of metacentric and submetacentric chromosomes, and one pair of subtelomeric nucleolar organizer regions (NORs). These results reflect an independent karyological identity of a trans-Andean species and the relevance of repetitive DNA sequences in the process of sex chromosome differentiation in fish; it is the first case of syntenic accumulation of rRNA multigene families (18S and 5S rDNA) and microsatellite sequences (CA 15 and GA 15 ) in a differentiated sex chromosome in Neotropical fish.

  1. [Microarrays in 236 patients with neurodevelopmental disorders and congenital abnormalities].

    PubMed

    Faundes, Víctor; Santa María, Lorena; Morales, Paulina; Curotto, Bianca; Alliende, María Angélica

    2017-07-01

    In 20% of neurodevelopmental disorders (NDD) and congenital abnormalities (CA) the cause would be a genomic imbalance detectable only by chromosomal microarrays (CMA). To analyze the results of CMA performed at the INTA Laboratory of Molecular Cytogenetics, during a period of four years in patients with NDD or CA. Retrospective study that included all CMA reports of Chilean patients. Age, sex, clinical diagnosis and origin were analyzed, as well as the characteristics of the finding. The percentage of cases diagnosed by CMA was calculated considering all patients with pathogenic (PV) or probably pathogenic variants (VLP). Finally, we studied the association between patients' characteristics and a positive CMA outcome. A total of 236 reports were analyzed. The median age was 5.41 (range 2.25-9.33) years, and 59% were men. Ninety chromosomal imbalances were found, which corresponded mainly to deletions (53.3%), with a median size of 1.662 (range 0.553-6.673) Megabases. The diagnostic rate of CMA in Chilean patients from all over the country was 19.2%. There was a close relationship between the patient's sex and the detection of VLP/VP (p = 0.034). Our diagnostic rate and the association between female sex and a higher percentage of diagnosed cases are concordant with other international studies. Therefore, CMA is a valid diagnostic tool in the Chilean population.

  2. The Contribution of the Y Chromosome to Hybrid Male Sterility in House Mice

    PubMed Central

    Campbell, Polly; Good, Jeffrey M.; Dean, Matthew D.; Tucker, Priscilla K.; Nachman, Michael W.

    2012-01-01

    Hybrid sterility in the heterogametic sex is a common feature of speciation in animals. In house mice, the contribution of the Mus musculus musculus X chromosome to hybrid male sterility is large. It is not known, however, whether F1 male sterility is caused by X–Y or X-autosome incompatibilities or a combination of both. We investigated the contribution of the M. musculus domesticus Y chromosome to hybrid male sterility in a cross between wild-derived strains in which males with a M. m. musculus X chromosome and M. m. domesticus Y chromosome are partially sterile, while males from the reciprocal cross are reproductively normal. We used eight X introgression lines to combine different X chromosome genotypes with different Y chromosomes on an F1 autosomal background, and we measured a suite of male reproductive traits. Reproductive deficits were observed in most F1 males, regardless of Y chromosome genotype. Nonetheless, we found evidence for a negative interaction between the M. m. domesticus Y and an interval on the M. m. musculus X that resulted in abnormal sperm morphology. Therefore, although F1 male sterility appears to be caused mainly by X-autosome incompatibilities, X–Y incompatibilities contribute to some aspects of sterility. PMID:22595240

  3. The contribution of the Y chromosome to hybrid male sterility in house mice.

    PubMed

    Campbell, Polly; Good, Jeffrey M; Dean, Matthew D; Tucker, Priscilla K; Nachman, Michael W

    2012-08-01

    Hybrid sterility in the heterogametic sex is a common feature of speciation in animals. In house mice, the contribution of the Mus musculus musculus X chromosome to hybrid male sterility is large. It is not known, however, whether F1 male sterility is caused by X-Y or X-autosome incompatibilities or a combination of both. We investigated the contribution of the M. musculus domesticus Y chromosome to hybrid male sterility in a cross between wild-derived strains in which males with a M. m. musculus X chromosome and M. m. domesticus Y chromosome are partially sterile, while males from the reciprocal cross are reproductively normal. We used eight X introgression lines to combine different X chromosome genotypes with different Y chromosomes on an F1 autosomal background, and we measured a suite of male reproductive traits. Reproductive deficits were observed in most F1 males, regardless of Y chromosome genotype. Nonetheless, we found evidence for a negative interaction between the M. m. domesticus Y and an interval on the M. m. musculus X that resulted in abnormal sperm morphology. Therefore, although F1 male sterility appears to be caused mainly by X-autosome incompatibilities, X-Y incompatibilities contribute to some aspects of sterility.

  4. Sex-related effects of imidacloprid modulated by piperonyl butoxide and menadione in rats. Part II: genotoxic and cytotoxic potential.

    PubMed

    Arslan, Mehmet; Sevgiler, Yusuf; Buyukleyla, Mehmet; Yardimci, Mustafa; Yilmaz, Mehmet; Rencuzogullari, Eyyup

    2016-01-01

    Despite its intended use, imidacloprid causes genotoxic and cytotoxic effects in mammals, especially in the presence of metabolic activation systems. The aim of this study was to determine to which extent these effects are sex related and how its metabolism modulators piperonyl butoxide and menadione affect its toxicity. Male and female Sprague-Dawley rats were injected with the intraperitoneal LD50 dose of imidacloprid alone (170 mg/kg) or pretreated with piperonyl butoxide (100 mg/kg) and menadione (25 mg/kg) for 12 and 24 h. Structural chromosome aberrations, abnormal cells and mitotic index were determined microscopically in bone marrow cells. Male rats showed susceptibility to the genotoxic effects of imidacloprid. Piperonyl butoxide was effective in countering this effect only at 24 h, whereas menadione exacerbated imidacloprid-induced genotoxicity. Piperonyl butoxide and menadione pretreatments increased the percentage of structural chromosome aberrations and abnormal cells in females. Imidacloprid decreased the mitotic index, whereas pretreatment with piperonyl butoxide and menadione showed improvement in both sexes. We believe that CYP450-mediated metabolism of imidacloprid is under the hormonal control and therefore that its genotoxicity is sex related. Piperonyl butoxide pretreatment also showed sex-related modulation. The hormonal effects on imidacloprid biotransformation require further investigation.

  5. Rapid prenatal diagnosis of chromosomal aneuploidies by fluorescence in situ hybridization: clinical experience with 4,500 specimens.

    PubMed Central

    Ward, B E; Gersen, S L; Carelli, M P; McGuire, N M; Dackowski, W R; Weinstein, M; Sandlin, C; Warren, R; Klinger, K W

    1993-01-01

    Detection of chromosome aneuploidies in uncultured amniocytes is possible using fluorescence in situ hybridization (FISH). We herein describe the results of the first clinical program which utilized FISH for the rapid detection of chromosome aneuploidies in uncultured amniocytes. FISH was performed on physician request, as an adjunct to cytogenetics in 4,500 patients. Region-specific DNA probes to chromosomes 13, 18, 21, X, and Y were used to determine ploidy by analysis of signal number in hybridized nuclei. A sample was considered to be euploid when all autosomal probes generated two hybridization signals and when a normal sex chromosome pattern was observed in greater than or equal to 80% of hybridized nuclei. A sample was considered to be aneuploid when greater than or equal to 70% of hybridized nuclei displayed the same abnormal hybridization pattern for a specific probe. Of the attempted analyses, 90.2% met these criteria and were reported as informative to referring physicians within 2 d of receipt. Based on these reporting parameters, the overall detection rate for aneuploidies was 73.3% (107/146), with an accuracy of informative results for aneuploidies of 93.9% (107/114). Compared to cytogenetics, the accuracy of all informative FISH results, euploid and aneuploid, was 99.8%, and the specificity was 99.9%. In those pregnancies where fetal abnormalities had been observed by ultrasound, referring physicians requested FISH plus cytogenetics at a significantly higher rate than they requested cytogenetics alone. The current prenatal FISH protocol is not designed to detect all chromosome abnormalities and should only be utilized as an adjunctive test to cytogenetics. This experience demonstrates that FISH can provide a rapid and accurate clinical method for prenatal identification of chromosome aneuploidies. PMID:8488836

  6. Dialkyl phosphate urinary metabolites and chromosomal abnormalities in human sperm.

    PubMed

    Figueroa, Zaida I; Young, Heather A; Meeker, John D; Martenies, Sheena E; Barr, Dana Boyd; Gray, George; Perry, Melissa J

    2015-11-01

    The past decade has seen numerous human health studies seeking to characterize the impacts of environmental exposures, such as organophosphate (OP) insecticides, on male reproduction. Despite an extensive literature on OP toxicology, many hormone-mediated effects on the testes are not well understood. This study investigated environmental exposures to OPs and their association with the frequency of sperm chromosomal abnormalities (i.e., disomy) among adult men. Men (n=159) from a study assessing the impact of environmental exposures on male reproductive health were included in this investigation. Multi-probe fluorescence in situ hybridization (FISH) for chromosomes X, Y, and 18 was used to determine XX18, YY18, XY18 and total disomy in sperm nuclei. Urine was analyzed using gas chromatography coupled with mass spectrometry for concentrations of dialkyl phosphate (DAP) metabolites of OPs [dimethylphosphate (DMP); dimethylthiophosphate (DMTP); dimethyldithiophosphate (DMDTP); diethylphosphate (DEP); diethylthiophosphate (DETP); and diethyldithiophosphate (DEDTP)]. Poisson regression was used to model the association between OP exposures and disomy measures. Incidence rate ratios (IRRs) were calculated for each disomy type by exposure quartiles for most metabolites, controlling for age, race, BMI, smoking, specific gravity, total sperm concentration, motility, and morphology. A significant positive trend was seen for increasing IRRs by exposure quartiles of DMTP, DMDTP, DEP and DETP in XX18, YY18, XY18 and total disomy. A significant inverse association was observed between DMP and total disomy. Findings for total sum of DAP metabolites concealed individual associations as those results differed from the patterns observed for each individual metabolite. Dose-response relationships appeared nonmonotonic, with most of the increase in disomy rates occurring between the second and third exposure quartiles and without additional increases between the third and fourth

  7. FANCB is essential in the male germline and regulates H3K9 methylation on the sex chromosomes during meiosis

    PubMed Central

    Kato, Yasuko; Alavattam, Kris G.; Sin, Ho-Su; Meetei, Amom Ruhikanta; Pang, Qishen; Andreassen, Paul R.; Namekawa, Satoshi H.

    2015-01-01

    Fanconi anemia (FA) is a recessive X-linked and autosomal genetic disease associated with bone marrow failure and increased cancer, as well as severe germline defects such as hypogonadism and germ cell depletion. Although deficiencies in FA factors are commonly associated with germ cell defects, it remains unknown whether the FA pathway is involved in unique epigenetic events in germ cells. In this study, we generated Fancb mutant mice, the first mouse model of X-linked FA, and identified a novel function of the FA pathway in epigenetic regulation during mammalian gametogenesis. Fancb mutant mice were infertile and exhibited primordial germ cell (PGC) defects during embryogenesis. Further, Fancb mutation resulted in the reduction of undifferentiated spermatogonia in spermatogenesis, suggesting that FANCB regulates the maintenance of undifferentiated spermatogonia. Additionally, based on functional studies, we dissected the pathway in which FANCB functions during meiosis. The localization of FANCB on sex chromosomes is dependent on MDC1, a binding partner of H2AX phosphorylated at serine 139 (γH2AX), which initiates chromosome-wide silencing. Also, FANCB is required for FANCD2 localization during meiosis, suggesting that the role of FANCB in the activation of the FA pathway is common to both meiosis and somatic DNA damage responses. H3K9me2, a silent epigenetic mark, was decreased on sex chromosomes, whereas H3K9me3 was increased on sex chromosomes in Fancb mutant spermatocytes. Taken together, these results indicate that FANCB functions at critical stages of germ cell development and reveal a novel function of the FA pathway in the regulation of H3K9 methylation in the germline. PMID:26123487

  8. Avian W and mammalian Y chromosomes convergently retained dosage-sensitive regulators

    PubMed Central

    Bellott, Daniel W.; Skaletsky, Helen; Cho, Ting-Jan; Brown, Laura; Locke, Devin; Chen, Nancy; Galkina, Svetlana; Pyntikova, Tatyana; Koutseva, Natalia; Graves, Tina; Kremitzki, Colin; Warren, Wesley C.; Clark, Andrew G.; Gaginskaya, Elena; Wilson, Richard K.; Page, David C.

    2017-01-01

    After birds diverged from mammals, different ancestral autosomes evolved into sex chromosomes in each lineage. In birds, females are ZW and males ZZ, but in mammals females are XX and males XY. We sequenced the chicken W chromosome, compared its gene content with our reconstruction of the ancestral autosomes, and followed the evolutionary trajectory of ancestral W-linked genes across birds. Avian W chromosomes evolved in parallel with mammalian Y chromosomes, preserving ancestral genes through selection to maintain the dosage of broadly-expressed regulators of key cellular processes. We propose that, like the human Y chromosome, the chicken W chromosome is essential for embryonic viability of the heterogametic sex. Unlike other sequenced sex chromosomes, the chicken W did not acquire and amplify genes specifically expressed in reproductive tissues. We speculate that the pressures that drive the acquisition of reproduction related genes on sex chromosomes may be specific to the male germ line. PMID:28135246

  9. Sex determination in papaya.

    PubMed

    Ming, Ray; Yu, Qingyi; Moore, Paul H

    2007-06-01

    Sex determination is an intriguing system in trioecious papaya. Over the past seven decades various hypotheses, based on the knowledge and information available at the time, have been proposed to explain the genetics of the papaya's sex determination. These include a single gene with three alleles, a group of closely linked genes, a genic balance of sex chromosome over autosomes, classical XY chromosomes, and regulatory elements of the flower development pathway. Recent advancements in genomic technology make it possible to characterize the genomic region involved in sex determination at the molecular level. High density linkage mapping validated the hypothesis that predicted recombination suppression at the sex determination locus. Physical mapping and sample sequencing of the non-recombination region led to the conclusion that sex determination is controlled by a pair of primitive sex chromosomes with a small male-specific region (MSY) of the Y chromosome. We now postulate that two sex determination genes control the sex determination pathway. One, a feminizing or stamen suppressor gene, causes stamen abortion before or at flower inception while the other, a masculinizing or carpel suppressor gene, causes carpel abortion at a later flower developmental stage. Detailed physical mapping is beginning to reveal structural details about the sex determination region and sequencing is expected to uncover candidate sex determining genes. Cloning of the sex determination genes and understanding the sex determination process could have profound application in papaya production.

  10. Chromosome rearrangements in canine fibrosarcomas.

    PubMed

    Sargan, D R; Milne, B S; Hernandez, J Aguirre; O'Brien, P C M; Ferguson-Smith, M A; Hoather, T; Dobson, J M

    2005-01-01

    We have previously reported the use of six- and seven-color paint sets in the analysis of canine soft tissue sarcomas. Here we combine this technique with flow sorting of translocation chromosomes, reverse painting, and polymerase chain reaction (PCR) analysis of the gene content of the reverse paint in order to provide a more detailed analysis of cytogenetic abnormalities in canine tumors. We examine two fibrosarcomas, both from female Labrador retrievers, and show abnormalities in chromosomes 11 and 30 in both cases. Evidence of involvement of TGFBR1 is presented for one tumor.

  11. Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition.

    PubMed

    Bellott, Daniel W; Skaletsky, Helen; Pyntikova, Tatyana; Mardis, Elaine R; Graves, Tina; Kremitzki, Colin; Brown, Laura G; Rozen, Steve; Warren, Wesley C; Wilson, Richard K; Page, David C

    2010-07-29

    In birds, as in mammals, one pair of chromosomes differs between the sexes. In birds, males are ZZ and females ZW. In mammals, males are XY and females XX. Like the mammalian XY pair, the avian ZW pair is believed to have evolved from autosomes, with most change occurring in the chromosomes found in only one sex--the W and Y chromosomes. By contrast, the sex chromosomes found in both sexes--the Z and X chromosomes--are assumed to have diverged little from their autosomal progenitors. Here we report findings that challenge this assumption for both the chicken Z chromosome and the human X chromosome. The chicken Z chromosome, which we sequenced essentially to completion, is less gene-dense than chicken autosomes but contains a massive tandem array containing hundreds of duplicated genes expressed in testes. A comprehensive comparison of the chicken Z chromosome with the finished sequence of the human X chromosome demonstrates that each evolved independently from different portions of the ancestral genome. Despite this independence, the chicken Z and human X chromosomes share features that distinguish them from autosomes: the acquisition and amplification of testis-expressed genes, and a low gene density resulting from an expansion of intergenic regions. These features were not present on the autosomes from which the Z and X chromosomes originated but were instead acquired during the evolution of Z and X as sex chromosomes. We conclude that the avian Z and mammalian X chromosomes followed convergent evolutionary trajectories, despite their evolving with opposite (female versus male) systems of heterogamety. More broadly, in birds and mammals, sex chromosome evolution involved not only gene loss in sex-specific chromosomes, but also marked expansion and gene acquisition in sex chromosomes common to males and females.

  12. The eXtroardinarY Babies Study: Natural History of Health and Neurodevelopment in Infants and Young Children With Sex Chromosome Trisomy

    ClinicalTrials.gov

    2018-01-10

    Klinefelter Syndrome; Trisomy X; XYY Syndrome; XXXY and XXXXY Syndrome; Xxyy Syndrome; Xyyy Syndrome; Xxxx Syndrome; Xxxxx Syndrome; Xxxyy Syndrome; Xxyyy Syndrome; Xyyyy Syndrome; Male With Sex Chromosome Mosaicism

  13. A highly polymorphic insertion in the Y-chromosome amelogenin gene can be used for evolutionary biology, population genetics and sexing in Cetacea and Artiodactyla

    PubMed Central

    Macé, Matthias; Crouau-Roy, Brigitte

    2008-01-01

    Background The early radiation of the Cetartiodactyla is complex, and unambiguous molecular characters are needed to clarify the positions of hippotamuses, camels and pigs relative to the remaining taxa (Cetacea and Ruminantia). There is also a need for informative genealogic markers for Y-chromosome population genetics as well as a sexing method applicable to all species from this group. We therefore studied the sequence variation of a partial sequence of the evolutionary conserved amelogenin gene to assess its potential use in each of these fields. Results and discussion We report a large interstitial insertion in the Y amelogenin locus in most of the Cetartiodactyla lineages (cetaceans and ruminants). This sex-linked size polymorphism is the result of a 460–465 bp inserted element in intron 4 of the amelogenin gene of Ruminants and Cetaceans. Therefore, this polymorphism can easily be used in a sexing assay for these species. When taking into account this shared character in addition to nucleotide sequence, gene genealogy follows sex-chromosome divergence in Cetartiodactyla whereas it is more congruent with zoological history when ignoring these characters. This could be related to a loss of homology between chromosomal copies given the old age of the insertion. The 1 kbp Amel-Y amplified fragment is also characterized by high nucleotide diversity (64 polymorphic sites spanning over 1 kbp in seven haplotypes) which is greater than for other Y-chromosome sequence markers studied so far but less than the mitochondrial control region. Conclusion The gender-dependent polymorphism we have identified is relevant not only for phylogenic inference within the Cetartiodactyla but also for Y-chromosome based population genetics and gender determination in cetaceans and ruminants. One single protocol can therefore be used for studies in population and evolutionary genetics, reproductive biotechnologies, and forensic science. PMID:18925953

  14. Y Chromosome DNA in Women's Vaginal Samples as a Biomarker of Recent Vaginal Sex and Condom Use With Male Partners in the HPV Infection and Transmission Among Couples Through Heterosexual Activity Cohort Study.

    PubMed

    Malagón, Talía; Burchell, Ann; El-Zein, Mariam; Guénoun, Julie; Tellier, Pierre-Paul; Coutlée, François; Franco, Eduardo L

    2018-01-01

    Y chromosome DNA from male epithelial and sperm cells was detected in vaginal samples after unprotected sex in experimental studies. We assessed the strength of this association in an observational setting to examine the utility of Y chromosome DNA as a biomarker of recent sexual behaviors in epidemiological studies. The HPV (human papillomavirus) Infection and Transmission Among Couples Through Heterosexual Activity cohort study enrolled 502 women attending a university or college in Montréal, Canada, and their male partners from 2005 to 2010. Participants completed self-administered questionnaires. We used real-time polymerase chain reaction to test women's baseline vaginal samples for Y chromosome DNA and assessed which sexual behaviors were independent predictors of Y chromosome DNA positivity and quantity with logistic and negative binomial regression. Y chromosome DNA positivity decreased from 77% in women in partnerships reporting vaginal sex 0 to 1 day ago to 13% in women in partnerships reporting last vaginal sex of 15 or more days ago (adjusted odds ratio, 0.09; 95% confidence interval, 0.02-0.36). The mean proportion of exfoliated vaginal sample cells with Y chromosome DNA was much lower for women who reported always using condoms (0.01%) than for women who reported never using condoms (2.07%) (adjusted ratio, 26.8; 95% confidence interval, 8.9-80.5). No association was found with reported oral/digital sex frequency or concurrency of partnerships. Y chromosome DNA quantity is strongly associated with days since last vaginal sex and lack of condom use in observational settings. Y chromosome DNA quantity may prove useful as a correlate of recent vaginal sex in observational studies lacking data on sexual behavior, such as surveillance studies of human papillomavirus infection prevalence.

  15. Analysis of SINE and LINE repeat content of Y chromosomes in the platypus, Ornithorhynchus anatinus.

    PubMed

    Kortschak, R Daniel; Tsend-Ayush, Enkhjargal; Grützner, Frank

    2009-01-01

    Monotremes feature an extraordinary sex-chromosome system that consists of five X and five Y chromosomes in males. These sex chromosomes share homology with bird sex chromosomes but no homology with the therian X. The genome of a female platypus was recently completed, providing unique insights into sequence and gene content of autosomes and X chromosomes, but no Y-specific sequence has so far been analysed. Here we report the isolation, sequencing and analysis of approximately 700 kb of sequence of the non-recombining regions of Y2, Y3 and Y5, which revealed differences in base composition and repeat content between autosomes and sex chromosomes, and within the sex chromosomes themselves. This provides the first insights into repeat content of Y chromosomes in platypus, which overall show similar patterns of repeat composition to Y chromosomes in other species. Interestingly, we also observed differences between the various Y chromosomes, and in combination with timing and activity patterns we provide an approach that can be used to examine the evolutionary history of the platypus sex-chromosome chain.

  16. Disappearance of enlarged nuchal translucency before 14 weeks' gestation: relationship with chromosomal abnormalities and pregnancy outcome.

    PubMed

    Müller, M A; Pajkrt, E; Bleker, O P; Bonsel, G J; Bilardo, C M

    2004-08-01

    The aim of this study was to investigate the natural course of enlarged nuchal translucency (NT) and to determine if its disappearance before 14 weeks' gestation is a favorable prognostic sign in relation to fetal karyotype and pregnancy outcome. A total of 147 women with increased NT (> 95th centile) at first measurement were included in this study. A second measurement was performed in all cases, at an interval of at least 2 days. Both measurements were taken between 10 + 3 and 14 + 0 weeks. All women underwent chorionic villus sampling or amniocentesis for subsequent karyotyping. In those women with a normal karyotype, a fetal anomaly scan was performed at 20 weeks' gestation. Pregnancy outcome was recorded in all cases. The finding of persistent or disappearing NT enlargement was analyzed in relation to fetal karyotype and pregnancy outcome. Of the 147 paired measurements, NT remained enlarged at the second measurement in 121 (82%) cases. An abnormal karyotype was found in 35% of these cases. In 26 (18%) fetuses the NT measurement was found to be below the 95th percentile at the second measurement and in only two of them an abnormal karyotype was found (8%). In the 103 chromosomally normal fetuses an adverse outcome (i.e. fetal loss or structural defects) was recorded in 22 fetuses with persistent enlargement (28%) and in four fetuses with disappearing enlargement (17%). Disappearance of an enlarged NT before 14 weeks' gestation is not a rare phenomenon and seems to be a favorable prognostic sign with respect to fetal karyotype. Overall, no significant difference in pregnancy outcome was found between chromosomally normal fetuses with persisting or disappearing NT enlargement. Copyright 2004 ISUOG

  17. Convergent evolution of Y chromosome gene content in flies.

    PubMed

    Mahajan, Shivani; Bachtrog, Doris

    2017-10-04

    Sex-chromosomes have formed repeatedly across Diptera from ordinary autosomes, and X-chromosomes mostly conserve their ancestral genes. Y-chromosomes are characterized by abundant gene-loss and an accumulation of repetitive DNA, yet the nature of the gene repertoire of fly Y-chromosomes is largely unknown. Here we trace gene-content evolution of Y-chromosomes across 22 Diptera species, using a subtraction pipeline that infers Y genes from male and female genome, and transcriptome data. Few genes remain on old Y-chromosomes, but the number of inferred Y-genes varies substantially between species. Young Y-chromosomes still show clear evidence of their autosomal origins, but most genes on old Y-chromosomes are not simply remnants of genes originally present on the proto-sex-chromosome that escaped degeneration, but instead were recruited secondarily from autosomes. Despite almost no overlap in Y-linked gene content in different species with independently formed sex-chromosomes, we find that Y-linked genes have evolved convergent gene functions associated with testis expression. Thus, male-specific selection appears as a dominant force shaping gene-content evolution of Y-chromosomes across fly species.While X-chromosome gene content tends to be conserved, Y-chromosome evolution is dynamic and difficult to reconstruct. Here, Mahajan and Bachtrog use a subtraction pipeline to identify Y-linked genes in 22 Diptera species, revealing patterns of Y-chromosome gene-content evolution.

  18. Uterine cavity lavage: adding FISH to conventional cytogenetics for embryonic sexing and diagnosing common chromosomal aberrations.

    PubMed

    Ishai, D; Amiel, A; Diukman, R; Cogan, O; Lichtenstein, Z; Abramovici, H; Fejgin, M D

    1995-10-01

    This study was undertaken to examine the efficacy for early prenatal diagnosis of uterine cavity lavage at the level of the internal os and to assess the rate of maternal contamination. In phase I, uterine cavity lavage was performed in 38 women scheduled for pregnancy termination between 6 and 12 weeks. In addition to short- and long-term cultures, one-colour FISH (fluorescence in situ hybridization) with Y and X probes was used for fetal sexing. Two-colour FISH was used in all known male fetuses for the assessment of maternal contamination. In phase II, lavage was performed on 16 women. Fetal sex was diagnosed with direct labelled X and Y probes and common numerical chromosomal aberration was attempted with 18 and 21 direct labelled probes. Fetal sexing was successful in all cases in phases I and II. Out of 34 patients in which tissue was obtained, only FISH was done in six. Long-term cell cultures were successful in the other 28 cases, but complete karyotyping in 19 (56 per cent). No chromosomal aberration was found with the direct labelled probes 18 and 21 in FISH. Maternal contamination was assessed to be 5-10 per cent. This simple and easy-to-master technique is very effective in obtaining fetal cells early in pregnancy for genetic diagnosis, especially by FISH. However, the safety of the procedure must be tested in ongoing pregnancies.

  19. The importance of having two X chromosomes

    PubMed Central

    Arnold, Arthur P.; Reue, Karen; Eghbali, Mansoureh; Vilain, Eric; Chen, Xuqi; Ghahramani, Negar; Itoh, Yuichiro; Li, Jingyuan; Link, Jenny C.; Ngun, Tuck; Williams-Burris, Shayna M.

    2016-01-01

    Historically, it was thought that the number of X chromosomes plays little role in causing sex differences in traits. Recently, selected mouse models have been used increasingly to compare mice with the same type of gonad but with one versus two copies of the X chromosome. Study of these models demonstrates that mice with one X chromosome can be strikingly different from those with two X chromosomes, when the differences are not attributable to confounding group differences in gonadal hormones. The number of X chromosomes affects adiposity and metabolic disease, cardiovascular ischaemia/reperfusion injury and behaviour. The effects of X chromosome number are likely the result of inherent differences in expression of X genes that escape inactivation, and are therefore expressed from both X chromosomes in XX mice, resulting in a higher level of expression when two X chromosomes are present. The effects of X chromosome number contribute to sex differences in disease phenotypes, and may explain some features of X chromosome aneuploidies such as in Turner and Klinefelter syndromes. PMID:26833834

  20. Sex-specific hip osteoarthritis-associated gait abnormalities: Alterations in dynamic hip abductor function differ in men and women.

    PubMed

    Foucher, Kharma C

    2017-10-01

    Hip osteoarthritis results in abnormal gait mechanics, but it is not known whether abnormalities are the same in men and women. The hypothesis tested was that gait abnormalities are different in men and women with hip osteoarthritis vs. sex-specific asymptomatic groups. 150 subjects with mild through severe radiographic hip osteoarthritis and 159 asymptomatic subjects were identified from an Institutional Review Board-approved motion analysis data repository. Sagittal plane hip range of motion and peak external moments about the hip, in all three planes, averaged from normal speed walking trials, were compared for men and women, with and without hip osteoarthritis using analysis of variance. There were significant sex by group interactions for the external peak hip adduction and external rotation moments (P=0.009-0.045). Although asymptomatic women had peak adduction and external rotation moments that were respectively 12% higher and 23% lower than asymptomatic men (P=0.026-0.037), these variables did not differ between men and women with hip osteoarthritis (P≥0.684). The osteoarthritis vs. asymptomatic group difference in the peak hip adduction moment was 45% larger in women than in men. The osteoarthritis vs. asymptomatic group difference in the peak hip external rotation moment was 55% larger for men than for women (P<0.001). Sex did not influence the association between radiographic severity and gait variables. Normal sex differences in gait were not seen in hip osteoarthritis. Sex-specific adaptations may reflect different aspects of hip abductor function. Men and women with hip osteoarthritis may require different interventions to improve function. Copyright © 2017 Elsevier Ltd. All rights reserved.