Sample records for abnormal vascular development

  1. Pulmonary Hypertension and Vascular Abnormalities in Bronchopulmonary Dysplasia

    PubMed Central

    Mourani, Peter M.; Abman, Steven H.

    2015-01-01

    Advances in the care of preterm infants have improved survival of infants born at earlier gestational ages. Yet, these infants remain at risk for the chronic lung disease of infancy, bronchopulmonary dysplasia (BPD), which results in prolonged need for supplemental oxygen, recurrent respiratory exacerbations, and exercise intolerance. Recent investigations have highlighted the important contribution of the developing pulmonary circulation to lung development, demonstrating that these infants are also at risk for pulmonary vascular disease (PVD), including pulmonary hypertension (PH) and pulmonary vascular abnormalities, which contributes significantly to morbidity and mortality. In the past few years, several epidemiological studies have delineated the incidence of PH in preterm infants and the impact on outcomes. However, these studies have also highlighted gaps in our understanding of PVD in BPD, including universally accepted definitions, approaches to diagnosis and treatment, and patient outcomes. Associated pulmonary vascular and cardiac abnormalities are increasingly recognized complications contributing to PH in these infants, but incidence of these lesions and degree of contribution to disease remains unknown. Therapeutic strategies for PVD in BPD are largely untested, but recent evidence presents the rationale for the approach to diagnosis and treatment of BPD infants with PH that can be evaluated in future studies. PMID:26593082

  2. Oxidative and inflammatory signals in obesity-associated vascular abnormalities.

    PubMed

    Reho, John J; Rahmouni, Kamal

    2017-07-15

    Obesity is associated with increased cardiovascular morbidity and mortality in part due to vascular abnormalities such as endothelial dysfunction and arterial stiffening. The hypertension and other health complications that arise from these vascular defects increase the risk of heart diseases and stroke. Prooxidant and proinflammatory signaling pathways as well as adipocyte-derived factors have emerged as critical mediators of obesity-associated vascular abnormalities. Designing treatments aimed specifically at improving the vascular dysfunction caused by obesity may provide an effective therapeutic approach to prevent the cardiovascular sequelae associated with excessive adiposity. In this review, we discuss the recent evidence supporting the role of oxidative stress and cytokines and inflammatory signals within the vasculature as well as the impact of the surrounding perivascular adipose tissue (PVAT) on the regulation of vascular function and arterial stiffening in obesity. In particular, we focus on the highly plastic nature of the vasculature in response to altered oxidant and inflammatory signaling and highlight how weight management can be an effective therapeutic approach to reduce the oxidative stress and inflammatory signaling and improve vascular function. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. Pleiotrophin is a driver of vascular abnormalization in glioblastoma.

    PubMed

    Zhang, Lei; Dimberg, Anna

    2016-01-01

    In a recent report by Zhang et al. , pleiotrophin (PTN) was demonstrated to enhance glioma growth by promoting vascular abnormalization. PTN stimulates glioma vessels through anaplastic lymphoma kinase (Alk)-mediated perivascular deposition of vascular endothelial growth factor (VEGF). Targeting of Alk or VEGF signaling normalizes tumor vessels in PTN-expressing tumors.

  4. Prediction of vascular abnormalities on CT angiography in patients with acute headache.

    PubMed

    Alons, Imanda M E; Goudsmit, Ben F J; Jellema, Korné; van Walderveen, Marianne A A; Wermer, Marieke J H; Algra, Ale

    2018-05-09

    Patients with acute headache increasingly undergo CT-angiography (CTA) to evaluate underlying vascular causes. The aim of this study is to determine clinical and non-contrast CT (NCCT) criteria to select patients who might benefit from CTA. We retrospectively included patients with acute headache who presented to the emergency department of an academic medical center and large regional teaching hospital and underwent NCCT and CTA. We identified factors that increased the probability of finding a vascular abnormality on CTA, performed multivariable regression analyses and determined discrimination with the c-statistic. A total of 384 patients underwent NCCT and CTA due to acute headache. NCCT was abnormal in 194 patients. Among these, we found abnormalities in 116 cases of which 99 aneurysms. In the remaining 190 with normal NCCT we found abnormalities in 12 cases; four unruptured aneurysms, three cerebral venous thrombosis', two reversible cerebral vasoconstriction syndromes, two cervical arterial dissections and one cerebellar infarction. In multivariable analysis abnormal NCCT, lowered consciousness and presentation within 6 hr of headache onset were independently associated with abnormal CTA. The c-statistic of abnormal NCCT alone was 0.80 (95% CI: 0.75-0.80), that also including the other two variables was 0.84 (95% CI: 0.80-0.88). If NCCT was normal no other factors could help identify patients at risk for abnormalities. In patients with acute headache abnormal NCCT is the strongest predictor of a vascular abnormality on CTA. If NCCT is normal no other predictors increase the probability of finding an abnormality on CTA and diagnostic yield is low. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

  5. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development.

    PubMed

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H; Nagao, Masashi; Warman, Matthew L; Olsen, Bjorn R

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature.

  6. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development

    PubMed Central

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H.; Nagao, Masashi; Warman, Matthew L.; Olsen, Bjorn R.

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698

  7. Short-term treatment with VEGF receptor inhibitors induces retinopathy of prematurity-like abnormal vascular growth in neonatal rats.

    PubMed

    Nakano, Ayuki; Nakahara, Tsutomu; Mori, Asami; Ushikubo, Hiroko; Sakamoto, Kenji; Ishii, Kunio

    2016-02-01

    Retinal arterial tortuosity and venous dilation are hallmarks of plus disease, which is a severe form of retinopathy of prematurity (ROP). In this study, we examined whether short-term interruption of vascular endothelial growth factor (VEGF) signals leads to the formation of severe ROP-like abnormal retinal blood vessels. Neonatal rats were treated subcutaneously with the VEGF receptor (VEGFR) tyrosine kinase inhibitors, KRN633 (1, 5, or 10 mg/kg) or axitinib (10 mg/kg), on postnatal day (P) 7 and P8. The retinal vasculatures were examined on P9, P14, or P21 in retinal whole-mounts stained with an endothelial cell marker. Prevention of vascular growth and regression of some preformed capillaries were observed on P9 in retinas of rats treated with KRN633. However, on P14 and P21, density of capillaries, tortuosity index of arterioles, and diameter of veins significantly increased in KRN633-treated rats, compared to vehicle (0.5% methylcellulose)-treated animals. Similar observations were made with axitinib-treated rats. Expressions of VEGF and VEGFR-2 were enhanced on P14 in KRN633-treated rat retinas. The second round of KRN633 treatment on P11 and P12 completely blocked abnormal retinal vascular growth on P14, but thereafter induced ROP-like abnormal retinal blood vessels by P21. These results suggest that an interruption of normal retinal vascular development in neonatal rats as a result of short-term VEGFR inhibition causes severe ROP-like abnormal retinal vascular growth in a VEGF-dependent manner. Rats treated postnatally with VEGFR inhibitors could serve as an animal model for studying the mechanisms underlying the development of plus disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Comprehensive automatic assessment of retinal vascular abnormalities for computer-assisted retinopathy grading.

    PubMed

    Joshi, Vinayak; Agurto, Carla; VanNess, Richard; Nemeth, Sheila; Soliz, Peter; Barriga, Simon

    2014-01-01

    One of the most important signs of systemic disease that presents on the retina is vascular abnormalities such as in hypertensive retinopathy. Manual analysis of fundus images by human readers is qualitative and lacks in accuracy, consistency and repeatability. Present semi-automatic methods for vascular evaluation are reported to increase accuracy and reduce reader variability, but require extensive reader interaction; thus limiting the software-aided efficiency. Automation thus holds a twofold promise. First, decrease variability while increasing accuracy, and second, increasing the efficiency. In this paper we propose fully automated software as a second reader system for comprehensive assessment of retinal vasculature; which aids the readers in the quantitative characterization of vessel abnormalities in fundus images. This system provides the reader with objective measures of vascular morphology such as tortuosity, branching angles, as well as highlights of areas with abnormalities such as artery-venous nicking, copper and silver wiring, and retinal emboli; in order for the reader to make a final screening decision. To test the efficacy of our system, we evaluated the change in performance of a newly certified retinal reader when grading a set of 40 color fundus images with and without the assistance of the software. The results demonstrated an improvement in reader's performance with the software assistance, in terms of accuracy of detection of vessel abnormalities, determination of retinopathy, and reading time. This system enables the reader in making computer-assisted vasculature assessment with high accuracy and consistency, at a reduced reading time.

  9. Diabetic retinopathy: retina-specific methods for maintenance of diabetic rodents and evaluation of vascular histopathology and molecular abnormalities

    PubMed Central

    Veenstra, Alexander; Liu, Haitao; Lee, Chieh Allen; Du, Yunpeng; Tang, Jie; Kern, Timothy S.

    2015-01-01

    Diabetic retinopathy is a major cause of visual impairment, which continues to increase in prevalence as more and more people develop diabetes. Despite the importance of vision, the retina is one of the smallest tissues in the body, and specialized techniques to study the retinopathy have been developed. This chapter will summarize several methods used to (i) induce diabetes, (ii) maintain the diabetic animals throughout the months required for the development of typical vascular histopathology, (iii) evaluate vascular histopathology of diabetic retinopathy, and (iv) quantitate abnormalities implicated in the development of the retinopathy. PMID:26331759

  10. Pleiotrophin promotes vascular abnormalization in gliomas and correlates with poor survival in patients with astrocytomas.

    PubMed

    Zhang, Lei; Kundu, Soumi; Feenstra, Tjerk; Li, Xiujuan; Jin, Chuan; Laaniste, Liisi; El Hassan, Tamador Elsir Abu; Ohlin, K Elisabet; Yu, Di; Olofsson, Tommie; Olsson, Anna-Karin; Pontén, Fredrik; Magnusson, Peetra U; Nilsson, Karin Forsberg; Essand, Magnus; Smits, Anja; Dieterich, Lothar C; Dimberg, Anna

    2015-12-08

    Glioblastomas are aggressive astrocytomas characterized by endothelial cell proliferation and abnormal vasculature, which can cause brain edema and increase patient morbidity. We identified the heparin-binding cytokine pleiotrophin as a driver of vascular abnormalization in glioma. Pleiotrophin abundance was greater in high-grade human astrocytomas and correlated with poor survival. Anaplastic lymphoma kinase (ALK), which is a receptor that is activated by pleiotrophin, was present in mural cells associated with abnormal vessels. Orthotopically implanted gliomas formed from GL261 cells that were engineered to produce pleiotrophin showed increased microvessel density and enhanced tumor growth compared with gliomas formed from control GL261 cells. The survival of mice with pleiotrophin-producing gliomas was shorter than that of mice with gliomas that did not produce pleiotrophin. Vessels in pleiotrophin-producing gliomas were poorly perfused and abnormal, a phenotype that was associated with increased deposition of vascular endothelial growth factor (VEGF) in direct proximity to the vasculature. The growth of pleiotrophin-producing GL261 gliomas was inhibited by treatment with the ALK inhibitor crizotinib, the ALK inhibitor ceritinib, or the VEGF receptor inhibitor cediranib, whereas control GL261 tumors did not respond to either inhibitor. Our findings link pleiotrophin abundance in gliomas with survival in humans and mice, and show that pleiotrophin promotes glioma progression through increased VEGF deposition and vascular abnormalization. Copyright © 2015, American Association for the Advancement of Science.

  11. VASCULAR ABNORMALITIES IN DIABETIC RETINOPATHY ASSESSED WITH SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY WIDEFIELD IMAGING.

    PubMed

    Schaal, Karen B; Munk, Marion R; Wyssmueller, Iris; Berger, Lieselotte E; Zinkernagel, Martin S; Wolf, Sebastian

    2017-11-10

    To detect vascular abnormalities in diabetic retinopathy using swept-source optical coherence tomography angiography (SS-OCTA) widefield images, and to compare the findings with color fundus photographs (CFPs) using Early Treatment Diabetic Retinopathy Study severity grading. 3 mm × 3 mm and 12 mm × 12 mm scans were acquired to cover 70° to 80° of the posterior pole using a 100-kHz SS-OCTA instrument. Two masked graders assessed the presence of vascular abnormalities on SS-OCTA and the Early Treatment Diabetic Retinopathy Study level on CFP. The grading results were then compared. A total of 120 diabetic eyes (60 patients) were imaged with the SS-OCTA instrument. Cohort 1 (91 eyes; SS-OCTA grading only) showed microaneurysms in 91% (n = 83), intraretinal microvascular abnormalities in 79% (n = 72), and neovascularization in 21% (n = 19) of cases. Cohort 2 (52 eyes; CFP grading compared with SS-OCTA) showed microaneurysms on CFP in 90% (n = 47) and on SS-OCTA in 96% (n = 50) of cases. Agreement in intraretinal microvascular abnormality detection was fair (k = 0.2). Swept-source optical coherence tomography angiography detected 50% of intraretinal microvascular abnormality cases (n = 26), which were missed on CFP. Agreement in detecting neovascularization was moderate (k = 0.5). Agreement in detection of diabetic retinopathy features on CFP and SS-OCTA varies depending on the vascular changes examined. Swept-source optical coherence tomography angiography shows a higher detection rate of intraretinal microvascular abnormalities (P = 0.039), compared with Early Treatment Diabetic Retinopathy Study grading.

  12. Vascular alterations in PDAPP mice after anti-Aβ immunotherapy: Implications for amyloid-related imaging abnormalities.

    PubMed

    Zago, Wagner; Schroeter, Sally; Guido, Teresa; Khan, Karen; Seubert, Peter; Yednock, Ted; Schenk, Dale; Gregg, Keith M; Games, Dora; Bard, Frédérique; Kinney, Gene G

    2013-10-01

    Clinical studies of β-amyloid (Aβ) immunotherapy in Alzheimer's disease (AD) patients have demonstrated reduction of central Aβ plaque by positron emission tomography (PET) imaging and the appearance of amyloid-related imaging abnormalities (ARIA). To better understand the relationship between ARIA and the pathophysiology of AD, we undertook a series of studies in PDAPP mice evaluating vascular alterations in the context of central Aβ pathology and after anti-Aβ immunotherapy. We analyzed PDAPP mice treated with either 3 mg/kg/week of 3D6, the murine form of bapineuzumab, or isotype control antibodies for periods ranging from 1 to 36 weeks and evaluated the vascular alterations in the context of Aβ pathology and after anti-Aβ immunotherapy. The number of mice in each treatment group ranged from 26 to 39 and a total of 345 animals were analyzed. The central vasculature displayed morphological abnormalities associated with vascular Aβ deposits. Treatment with 3D6 antibody induced clearance of vascular Aβ that was spatially and temporally associated with a transient increase in microhemorrhage and in capillary Aβ deposition. Microhemorrhage resolved over a time period that was associated with a recovery of vascular morphology and a decrease in capillary Aβ accumulation. These data suggest that vascular leakage events, such as microhemorrhage, may be related to the removal of vascular Aβ. With continued treatment, this initial susceptibility period is followed by restoration of vascular morphology and reduced vulnerability to further vascular leakage events. The data collectively suggested a vascular amyloid clearance model of ARIA, which accounts for the currently known risk factors for the incidence of ARIA in clinical studies. Copyright © 2013. Published by Elsevier Inc.

  13. Primary hypertension is a disease of premature vascular aging associated with neuro-immuno-metabolic abnormalities.

    PubMed

    Litwin, Mieczysław; Feber, Janusz; Niemirska, Anna; Michałkiewicz, Jacek

    2016-02-01

    There is an increasing amount of data indicating that primary hypertension (PH) is not only a hemodynamic phenomenon but also a complex syndrome involving abnormal fat tissue distribution, over-activity of the sympathetic nervous system (SNS), metabolic abnormalities, and activation of the immune system. In children, PH usually presents with a typical phenotype of disturbed body composition, accelerated biological maturity, and subtle immunological and metabolic abnormalities. This stage of the disease is potentially reversible. However, long-lasting over-activity of the SNS and immuno-metabolic alterations usually lead to an irreversible stage of cardiovascular disease. We describe an intermediate phenotype of children with PH, showing that PH is associated with accelerated development, i.e., early premature aging of the immune, metabolic, and vascular systems. The associations and determinants of hypertensive organ damage, the principles of treatment, and the possibility of rejuvenation of the cardiovascular system are discussed.

  14. Forskolin modifies retinal vascular development in Mrp4-knockout mice.

    PubMed

    Matsumiya, Wataru; Kusuhara, Sentaro; Hayashibe, Keiko; Maruyama, Kazuichi; Kusuhara, Hiroyuki; Tagami, Mizuki; Schuetz, John D; Negi, Akira

    2012-12-07

    Multidrug resistance protein 4 (MRP4) effluxes a wide variety of endogenous compounds, including cyclic adenosine monophosphate (cAMP), and is exclusively expressed in vascular endothelial cells (ECs) of the retina. This study aimed to investigate the role of MRP4 in retinal vascular development. The retinal vascular phenotype of Mrp4(-/-) mice was examined by whole-mount immunohistochemistry at P3, P6, and P14. The retinas from P6 pups that received an intraperitoneal injection of either solvent control or forskolin, an inducer of intracellular cAMP formation, at P4 and P5 were analyzed in terms of their vascular formation (vascular length, vascular branching, vascular density, and the number of tip cells), cell proliferation and apoptosis, and vessel stability. The Mrp4(-/-) mice exhibited no overt abnormalities in the development of the retinal vasculature, but retinal vascular development in the Mrp4(-/-) mice was suppressed in response to forskolin administration. There was a significant decrease in the vascular length, vascular branching, and vascular density, and inhibited tip cell formation at the vascular front. The forskolin-treated Mrp4(-/-) mice showed an increased number of Ki67-positive and cleaved caspase 3-positive ECs, a significant decrease in the amount of pericyte coverage, and a reduced number of empty sleeves. In pups exposed to hyperoxia (75% oxygen) from P7 to P12, the Mrp4(-/-) mice showed a significant increase in the unvascularized retinal area. Mrp4(-/-) mice exhibited suppressed retinal vascular development in response to forskolin treatment. Thus, Mrp4 might have protective roles in retinal vascular development by regulating the intracellular cAMP level.

  15. Forskolin Modifies Retinal Vascular Development in Mrp4-Knockout Mice

    PubMed Central

    Matsumiya, Wataru; Kusuhara, Sentaro; Hayashibe, Keiko; Maruyama, Kazuichi; Kusuhara, Hiroyuki; Tagami, Mizuki; Schuetz, John D.; Negi, Akira

    2012-01-01

    Purpose. Multidrug resistance protein 4 (MRP4) effluxes a wide variety of endogenous compounds, including cyclic adenosine monophosphate (cAMP), and is exclusively expressed in vascular endothelial cells (ECs) of the retina. This study aimed to investigate the role of MRP4 in retinal vascular development. Methods. The retinal vascular phenotype of Mrp4−/− mice was examined by whole-mount immunohistochemistry at P3, P6, and P14. The retinas from P6 pups that received an intraperitoneal injection of either solvent control or forskolin, an inducer of intracellular cAMP formation, at P4 and P5 were analyzed in terms of their vascular formation (vascular length, vascular branching, vascular density, and the number of tip cells), cell proliferation and apoptosis, and vessel stability. Results. The Mrp4−/− mice exhibited no overt abnormalities in the development of the retinal vasculature, but retinal vascular development in the Mrp4−/− mice was suppressed in response to forskolin administration. There was a significant decrease in the vascular length, vascular branching, and vascular density, and inhibited tip cell formation at the vascular front. The forskolin-treated Mrp4−/− mice showed an increased number of Ki67-positive and cleaved caspase 3–positive ECs, a significant decrease in the amount of pericyte coverage, and a reduced number of empty sleeves. In pups exposed to hyperoxia (75% oxygen) from P7 to P12, the Mrp4−/− mice showed a significant increase in the unvascularized retinal area. Conclusions. Mrp4−/− mice exhibited suppressed retinal vascular development in response to forskolin treatment. Thus, Mrp4 might have protective roles in retinal vascular development by regulating the intracellular cAMP level. PMID:23154460

  16. Natural history of splenic vascular abnormalities after blunt injury: A Western Trauma Association multicenter trial.

    PubMed

    Zarzaur, Ben L; Dunn, Julie A; Leininger, Brian; Lauerman, Margaret; Shanmuganathan, Kathirkamanthan; Kaups, Krista; Zamary, Kirellos; Hartwell, Jennifer L; Bhakta, Ankur; Myers, John; Gordy, Stephanie; Todd, Samuel R; Claridge, Jeffrey A; Teicher, Erik; Sperry, Jason; Privette, Alicia; Allawi, Ahmed; Burlew, Clay Cothren; Maung, Adrian A; Davis, Kimberly A; Cogbill, Thomas; Bonne, Stephanie; Livingston, David H; Coimbra, Raul; Kozar, Rosemary A

    2017-12-01

    Following blunt splenic injury, there is conflicting evidence regarding the natural history and appropriate management of patients with vascular injuries of the spleen such as pseudoaneurysms or blushes. The purpose of this study was to describe the current management and outcomes of patients with pseudoaneurysm or blush. Data were collected on adult (aged ≥18 years) patients with blunt splenic injury and a splenic vascular injury from 17 trauma centers. Demographic, physiologic, radiographic, and injury characteristics were gathered. Management and outcomes were collected. Univariate and multivariable analyses were used to determine factors associated with splenectomy. Two hundred patients with a vascular abnormality on computed tomography scan were enrolled. Of those, 14.5% were managed with early splenectomy. Of the remaining patients, 59% underwent angiography and embolization (ANGIO), and 26.5% were observed. Of those who underwent ANGIO, 5.9% had a repeat ANGIO, and 6.8% had splenectomy. Of those observed, 9.4% had a delayed ANGIO, and 7.6% underwent splenectomy. There were no statistically significant differences between those observed and those who underwent ANGIO. There were 111 computed tomography scans with splenic vascular injuries available for review by an expert trauma radiologist. The concordance between the original classification of the type of vascular abnormality and the expert radiologist's interpretation was 56.3%. Based on expert review, the presence of an actively bleeding vascular injury was associated with a 40.9% risk of splenectomy. This was significantly higher than those with a nonbleeding vascular injury. In this series, the vast majority of patients are managed with ANGIO and usually embolization, whereas splenectomy remains a rare event. However, patients with a bleeding vascular injury of the spleen are at high risk of nonoperative failure, no matter the strategy used for management. This group may warrant closer observation or

  17. MiR-144 regulates hematopoiesis and vascular development by targeting meis1 during zebrafish development.

    PubMed

    Su, Zhenhong; Si, Wenxia; Li, Lei; Zhou, Bisheng; Li, Xiuchun; Xu, Yan; Xu, Chengqi; Jia, Haibo; Wang, Qing K

    2014-04-01

    Hematopoiesis is a dynamic process by which peripheral blood lineages are developed. It is a process tightly regulated by many intrinsic and extrinsic factors, including transcriptional factors and signaling molecules. However, the epigenetic regulation of hematopoiesis, for example, regulation via microRNAs (miRNAs), remains incompletely understood. Here we show that miR-144 regulates hematopoiesis and vascular development in zebrafish. Overexpression of miR-144 inhibited primitive hematopoiesis as demonstrated by a reduced number of circulating blood cells, reduced o-dianisidine staining of hemoglobin, and reduced expression of hbαe1, hbβe1, gata1 and pu.1. Overexpression of miR-144 also inhibited definitive hematopoiesis as shown by reduced expression of runx1 and c-myb. Mechanistically, miR-144 regulates hematopoiesis by repressing expression of meis1 involved in hematopoiesis. Both real-time RT-PCR and Western blot analyses showed that overexpression of miR-144 repressed expression of meis1. Bioinformatic analysis predicts a target binding sequence for miR-144 at the 3'-UTR of meis1. Deletion of the miR-144 target sequence eliminated the repression of meis1 expression mediated by miR-144. The miR-144-mediated abnormal phenotypes were partially rescued by co-injection of meis1 mRNA and could be almost completely rescued by injection of both meis1 and gata1 mRNA. Finally, because meis1 is involved in vascular development, we tested the effect of miR-144 on vascular development. Overexpression of miR-144 resulted in abnormal vascular development of intersegmental vessels in transgenic zebrafish with Flk1p-EGFP, and the defect was rescued by co-injection of meis1 mRNA. These findings establish miR-144 as a novel miRNA that regulates hematopoiesis and vascular development by repressing expression of meis1. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Lack of sensitivity of measurements of Vd/Vt at rest and during exercise in detection of hemodynamically significant pulmonary vascular abnormalities in collagen vascular disease.

    PubMed

    Mohsenifar, Z; Tashkin, D P; Levy, S E; Bjerke, R D; Clements, P J; Furst, D

    1981-05-01

    Wasted ventilation fraction (Vd/Vt) normally declines substantially during exercise in persons without lung disease. Failure of Vd/Vt to decrease during exercise has been reported to be one of the earliest abnormalities in patients with dyspnea caused by pulmonary vaso-occlusive disease, suggesting that measurement of Vd/Vt at rest and during exercise are useful in the diagnosis of pulmonary vascular disorders. We studied pulmonary hemodynamic and Vd/Vt responses to exercise in 11 patients in the supine position with suspected pulmonary vascular involvement caused by progressive systemic sclerosis, systemic lupus erythematosus, or recurrent pulmonary emboli, 10 of whom had dyspnea at rest and/or on exertion. In contrast to previous reports of no change or an increase in Vd/Vt during exercise in patients with pulmonary vascular disease, we found Vd/Vt to decrease significantly during exercise in 8 of 9 patients in whom mean pulmonary artery pressures were abnormally elevated at rest and/or during exercise. Our findings suggest that normal responses of Vd/Vt to exercise do not exclude hemodynamically significant pulmonary vaso-occlusive disease.

  19. Vascular signaling abnormalities in Alzheimer disease.

    PubMed

    Grammas, Paula; Sanchez, Alma; Tripathy, Debjani; Luo, Ester; Martinez, Joseph

    2011-08-01

    Our laboratory has documented that brain microvessels derived from patients with Alzheimer disease (AD) express or release a myriad of factors that have been implicated in vascular activation and angiogenesis. In addition, we have documented that signaling cascades associated with vascular activation and angiogenesis are upregulated in AD-derived brain microvessels. These results are consistent with emerging data suggesting that factors and processes characteristic of vascular activation and angiogenesis are found in the AD brain. Despite increases in proangiogenic factors and signals in the AD brain, however, evidence for increased vascularity in AD is lacking. Cerebral hypoperfusion/hypoxia, a potent stimulus for vascular activation and angiogenesis, triggers hypometabolic, cognitive, and degenerative changes in the brain. In our working model, hypoxia stimulates the angiogenic process; yet, there is no new vessel growth. Therefore, there are no feedback signals to shut off vascular activation, and endothelial cells become irreversibly activated. This activation results in release of a large number of proteases, inflammatory proteins, and other gene products with biologic activity that can injure or kill neurons. Pathologic activation of brain vasculature may contribute noxious mediators that lead to neuronal injury and disease processes in AD brains. This concept is supported by preliminary experiments in our laboratory, which show that pharmacologic blockade of vascular activation improves cognitive function in an animal model of AD. Thus, "vascular activation" could be a novel, unexplored therapeutic target in AD.

  20. Lysyl Oxidase Induces Vascular Oxidative Stress and Contributes to Arterial Stiffness and Abnormal Elastin Structure in Hypertension: Role of p38MAPK.

    PubMed

    Martínez-Revelles, Sonia; García-Redondo, Ana B; Avendaño, María S; Varona, Saray; Palao, Teresa; Orriols, Mar; Roque, Fernanda R; Fortuño, Ana; Touyz, Rhian M; Martínez-González, Jose; Salaices, Mercedes; Rodríguez, Cristina; Briones, Ana M

    2017-09-01

    Vascular stiffness, structural elastin abnormalities, and increased oxidative stress are hallmarks of hypertension. Lysyl oxidase (LOX) is an elastin crosslinking enzyme that produces H 2 O 2 as a by-product. We addressed the interplay between LOX, oxidative stress, vessel stiffness, and elastin. Angiotensin II (Ang II)-infused hypertensive mice and spontaneously hypertensive rats (SHR) showed increased vascular LOX expression and stiffness and an abnormal elastin structure. Mice over-expressing LOX in vascular smooth muscle cells (TgLOX) exhibited similar mechanical and elastin alterations to those of hypertensive models. LOX inhibition with β-aminopropionitrile (BAPN) attenuated mechanical and elastin alterations in TgLOX mice, Ang II-infused mice, and SHR. Arteries from TgLOX mice, Ang II-infused mice, and/or SHR exhibited increased vascular H 2 O 2 and O 2 .- levels, NADPH oxidase activity, and/or mitochondrial dysfunction. BAPN prevented the higher oxidative stress in hypertensive models. Treatment of TgLOX and Ang II-infused mice and SHR with the mitochondrial-targeted superoxide dismutase mimetic mito-TEMPO, the antioxidant apocynin, or the H 2 O 2 scavenger polyethylene glycol-conjugated catalase (PEG-catalase) reduced oxidative stress, vascular stiffness, and elastin alterations. Vascular p38 mitogen-activated protein kinase (p38MAPK) activation was increased in Ang II-infused and TgLOX mice and this effect was prevented by BAPN, mito-TEMPO, or PEG-catalase. SB203580, the p38MAPK inhibitor, normalized vessel stiffness and elastin structure in TgLOX mice. We identify LOX as a novel source of vascular reactive oxygen species and a new pathway involved in vascular stiffness and elastin remodeling in hypertension. LOX up-regulation is associated with enhanced oxidative stress that promotes p38MAPK activation, elastin structural alterations, and vascular stiffness. This pathway contributes to vascular abnormalities in hypertension. Antioxid. Redox Signal. 27

  1. Fluid shear stress as a regulator of gene expression in vascular cells: possible correlations with diabetic abnormalities

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Eskin, S. G.; Ruef, J.; Runge, M. S.; McIntire, L. V.

    1999-01-01

    Diabetes mellitus is associated with increased frequency, severity and more rapid progression of cardiovascular diseases. Metabolic perturbations from hyperglycemia result in disturbed endothelium-dependent relaxation, activation of coagulation pathways, depressed fibrinolysis, and other abnormalities in vascular homeostasis. Atherosclerosis is localized mainly at areas of geometric irregularity at which blood vessels branch, curve and change diameter, and where blood is subjected to sudden changes in velocity and/or direction of flow. Shear stress resulting from blood flow is a well known modulator of vascular cell function. This paper presents what is currently known regarding the molecular mechanisms responsible for signal transduction and gene regulation in vascular cells exposed to shear stress. Considering the importance of the hemodynamic environment of vascular cells might be vital to increasing our understanding of diabetes.

  2. Lysyl Oxidase Induces Vascular Oxidative Stress and Contributes to Arterial Stiffness and Abnormal Elastin Structure in Hypertension: Role of p38MAPK

    PubMed Central

    Martínez-Revelles, Sonia; García-Redondo, Ana B.; Avendaño, María S.; Varona, Saray; Palao, Teresa; Orriols, Mar; Roque, Fernanda R.; Fortuño, Ana; Touyz, Rhian M.; Martínez-González, Jose; Salaices, Mercedes

    2017-01-01

    Abstract Aims: Vascular stiffness, structural elastin abnormalities, and increased oxidative stress are hallmarks of hypertension. Lysyl oxidase (LOX) is an elastin crosslinking enzyme that produces H2O2 as a by-product. We addressed the interplay between LOX, oxidative stress, vessel stiffness, and elastin. Results: Angiotensin II (Ang II)-infused hypertensive mice and spontaneously hypertensive rats (SHR) showed increased vascular LOX expression and stiffness and an abnormal elastin structure. Mice over-expressing LOX in vascular smooth muscle cells (TgLOX) exhibited similar mechanical and elastin alterations to those of hypertensive models. LOX inhibition with β-aminopropionitrile (BAPN) attenuated mechanical and elastin alterations in TgLOX mice, Ang II-infused mice, and SHR. Arteries from TgLOX mice, Ang II-infused mice, and/or SHR exhibited increased vascular H2O2 and O2.− levels, NADPH oxidase activity, and/or mitochondrial dysfunction. BAPN prevented the higher oxidative stress in hypertensive models. Treatment of TgLOX and Ang II-infused mice and SHR with the mitochondrial-targeted superoxide dismutase mimetic mito-TEMPO, the antioxidant apocynin, or the H2O2 scavenger polyethylene glycol-conjugated catalase (PEG-catalase) reduced oxidative stress, vascular stiffness, and elastin alterations. Vascular p38 mitogen-activated protein kinase (p38MAPK) activation was increased in Ang II-infused and TgLOX mice and this effect was prevented by BAPN, mito-TEMPO, or PEG-catalase. SB203580, the p38MAPK inhibitor, normalized vessel stiffness and elastin structure in TgLOX mice. Innovation: We identify LOX as a novel source of vascular reactive oxygen species and a new pathway involved in vascular stiffness and elastin remodeling in hypertension. Conclusion: LOX up-regulation is associated with enhanced oxidative stress that promotes p38MAPK activation, elastin structural alterations, and vascular stiffness. This pathway contributes to vascular abnormalities in

  3. S1P1 inhibits sprouting angiogenesis during vascular development.

    PubMed

    Ben Shoham, Adi; Malkinson, Guy; Krief, Sharon; Shwartz, Yulia; Ely, Yona; Ferrara, Napoleone; Yaniv, Karina; Zelzer, Elazar

    2012-10-01

    Coordination between the vascular system and forming organs is essential for proper embryonic development. The vasculature expands by sprouting angiogenesis, during which tip cells form filopodia that incorporate into capillary loops. Although several molecules, such as vascular endothelial growth factor A (Vegfa), are known to induce sprouting, the mechanism that terminates this process to ensure neovessel stability is still unknown. Sphingosine-1-phosphate receptor 1 (S1P(1)) has been shown to mediate interaction between endothelial and mural cells during vascular maturation. In vitro studies have identified S1P(1) as a pro-angiogenic factor. Here, we show that S1P(1) acts as an endothelial cell (EC)-autonomous negative regulator of sprouting angiogenesis during vascular development. Severe aberrations in vessel size and excessive sprouting found in limbs of S1P(1)-null mouse embryos before vessel maturation imply a previously unknown, mural cell-independent role for S1P(1) as an anti-angiogenic factor. A similar phenotype observed when S1P(1) expression was blocked specifically in ECs indicates that the effect of S1P(1) on sprouting is EC-autonomous. Comparable vascular abnormalities in S1p(1) knockdown zebrafish embryos suggest cross-species evolutionary conservation of this mechanism. Finally, genetic interaction between S1P(1) and Vegfa suggests that these factors interplay to regulate vascular development, as Vegfa promotes sprouting whereas S1P(1) inhibits it to prevent excessive sprouting and fusion of neovessels. More broadly, because S1P, the ligand of S1P(1), is blood-borne, our findings suggest a new mode of regulation of angiogenesis, whereby blood flow closes a negative feedback loop that inhibits sprouting angiogenesis once the vascular bed is established and functional.

  4. Vascular Cambium Development

    PubMed Central

    Nieminen, Kaisa; Blomster, Tiina; Helariutta, Ykä; Mähönen, Ari Pekka

    2015-01-01

    Secondary phloem and xylem tissues are produced through the activity of vascular cambium, the cylindrical secondary meristem which arises among the primary plant tissues. Most dicotyledonous species undergo secondary development, among them Arabidopsis. Despite its small size and herbaceous nature, Arabidopsis displays prominent secondary growth in several organs, including the root, hypocotyl and shoot. Together with the vast genetic resources and molecular research methods available for it, this has made Arabidopsis a versatile and accessible model organism for studying cambial development and wood formation. In this review, we discuss and compare the development and function of the vascular cambium in the Arabidopsis root, hypocotyl, and shoot. We describe the current understanding of the molecular regulation of vascular cambium and compare it to the function of primary meristems. We conclude with a look at the future prospects of cambium research, including opportunities provided by phenotyping and modelling approaches, complemented by studies of natural variation and comparative genetic studies in perennial and woody plant species. PMID:26078728

  5. A null mutation of Hhex results in abnormal cardiac development, defective vasculogenesis and elevated Vegfa levels.

    PubMed

    Hallaq, Haifa; Pinter, Emese; Enciso, Josephine; McGrath, James; Zeiss, Caroline; Brueckner, Martina; Madri, Joseph; Jacobs, Harris C; Wilson, Christine M; Vasavada, Hemaxi; Jiang, Xiaobing; Bogue, Clifford W

    2004-10-01

    The homeobox gene Hhex has recently been shown to be essential for normal liver, thyroid and forebrain development. Hhex(-/-) mice die by mid-gestation (E14.5) and the cause of their early demise remains unclear. Because Hhex is expressed in the developing blood islands at E7.0 in the endothelium of the developing vasculature and heart at E9.0-9.5, and in the ventral foregut endoderm at E8.5-9.0, it has been postulated to play a critical role in heart and vascular development. We show here, for the first time, that a null mutation of Hhex results in striking abnormalities of cardiac and vascular development which include: (1) defective vasculogenesis, (2) hypoplasia of the right ventricle, (3) overabundant endocardial cushions accompanied by ventricular septal defects, outflow tract abnormalities and atrio-ventricular (AV) valve dysplasia and (4) aberrant development of the compact myocardium. The dramatic enlargement of the endocardial cushions in the absence of Hhex is due to decreased apoptosis and dysregulated epithelial-mesenchymal transformation (EMT). Interestingly, vascular endothelial growth factor A (Vegfa) levels in the hearts of Hhex(-/-) mice were elevated as much as three-fold between E9.5 and E11.5, and treatment of cultured Hhex(-/-) AV explants with truncated soluble Vegfa receptor 1, sFlt-1, an inhibitor of Vegf signaling, completely abolished the excessive epithelial-mesenchymal transformation seen in the absence of Hhex. Therefore, Hhex expression in the ventral foregut endoderm and/or the endothelium is necessary for normal cardiovascular development in vivo, and one function of Hhex is to repress Vegfa levels during development.

  6. Retinal vascular abnormalities and dragged maculae in a carrier with a new NDP mutation (c.268delC) that caused severe Norrie disease in the proband.

    PubMed

    Lin, Phoebe; Shankar, Suma P; Duncan, Jacque; Slavotinek, Anne; Stone, Edwin M; Rutar, Tina

    2010-02-01

    Norrie disease (ND) is caused by mutations in the ND pseudoglioma (NDP) gene (MIM 300658) located at chromosome Xp11.4-p11.3. ND is characterized by abnormal retinal vascular development and vitreoretinal disorganization presenting at birth. Systemic manifestations include sensorineural deafness, progressive mental disorder, behavioral and psychological problems, growth failure, and seizures. Other vitreoretinopathies that are associated with NDP gene mutations include X-linked familial exudative vitreoretinopathy, Coats disease, persistent fetal vasculature, and retinopathy of prematurity. Phenotypic variability associated with NDP gene mutations has been well documented in affected male patients. However, there are limited data on signs in female carriers, with mild peripheral retinal abnormalities reported in both carrier and noncarrier females of families with NDP gene mutations. Here, we report a family harboring a single base-pair deletion, c.268delC, in the NDP gene causing a severe ND phenotype in the male proband and peripheral retinal vascular abnormalities with dragged maculae similar to those observed in familial exudative vitreoretinopathy in his carrier mother. Copyright (c) 2010 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.

  7. Phosphate toxicity and vascular mineralization.

    PubMed

    Razzaque, Mohammed S

    2013-01-01

    Vascular calcification or mineralization is a major complication seen in patients with advanced stages of chronic kidney disease (CKD), and it is associated with markedly increased morbidity and mortality. Most of the CKD-related vascular mineralization is attributable to abnormal mineral ion metabolism. Elevated serum calcium and phosphate levels, along with increased calcium-phosphorus byproduct, and the use of active vitamin D metabolites are thought to be the predisposing factors for developing vascular mineralization in patients with CKD. Recent experimental studies have shown that vascular mineralization can be suppressed by reducing serum phosphate levels, even in the presence of extremely high serum calcium and 1,25-dihydroxyvitamin D levels, indicating that reducing 'phosphate toxicity' should be the important therapeutic priority in CKD patients for minimizing the risk of developing vascular mineralization and the disease progression. Copyright © 2013 S. Karger AG, Basel.

  8. A Review of Vascular Abnormalities of the Spine.

    PubMed

    Singh, Rahul; Lucke-Wold, Brandon; Gyure, Kymberly; Boo, Sohyun

    2016-01-01

    Patients with spinal vascular lesions present with unique symptoms and have important anatomical and physiologic changes that must be considered prior to treatment. In this mini-review, we provide an overview of normal spinal vascular anatomy and discuss several key spinal vascular lesions. We provide an overview of cavernous malformations, intradural arteriovenous malformations, perimedullary arteriovenous fistulas, and dural arteriovenous fistulas. Important considerations are addressed in terms of pathologic characterization, specific imaging findings, and treatment approaches.

  9. A Review of Vascular Abnormalities of the Spine

    PubMed Central

    Singh, Rahul; Lucke-Wold, Brandon; Gyure, Kymberly; Boo, Sohyun

    2017-01-01

    Patients with spinal vascular lesions present with unique symptoms and have important anatomical and physiologic changes that must be considered prior to treatment. In this mini-review, we provide an overview of normal spinal vascular anatomy and discuss several key spinal vascular lesions. We provide an overview of cavernous malformations, intradural arteriovenous malformations, perimedullary arteriovenous fistulas, and dural arteriovenous fistulas. Important considerations are addressed in terms of pathologic characterization, specific imaging findings, and treatment approaches. PMID:28191502

  10. A Mutant Receptor Tyrosine Phosphatase, CD148, Causes Defects in Vascular Development

    PubMed Central

    Takahashi, Takamune; Takahashi, Keiko; St. John, Patricia L.; Fleming, Paul A.; Tomemori, Takuya; Watanabe, Toshio; Abrahamson, Dale R.; Drake, Christopher J.; Shirasawa, Takuji; Daniel, Thomas O.

    2003-01-01

    Vascularization defects in genetic recombinant mice have defined critical roles for a number of specific receptor tyrosine kinases. Here we evaluated whether an endothelium-expressed receptor tyrosine phosphatase, CD148 (DEP-1/PTPη), participates in developmental vascularization. A mutant allele, CD148ΔCyGFP, was constructed to eliminate CD148 phosphatase activity by in-frame replacement of cytoplasmic sequences with enhanced green fluorescent protein sequences. Homozygous mutant mice died at midgestation, before embryonic day 11.5 (E11.5), with vascularization failure marked by growth retardation and disorganized vascular structures. Structural abnormalities were observed as early as E8.25 in the yolk sac, prior to the appearance of intraembryonic defects. Homozygous mutant mice displayed enlarged vessels comprised of endothelial cells expressing markers of early differentiation, including VEGFR2 (Flk1), Tal1/SCL, CD31, ephrin-B2, and Tie2, with notable lack of endoglin expression. Increased endothelial cell numbers and mitotic activity indices were demonstrated. At E9.5, homozygous mutant embryos showed homogeneously enlarged primitive vessels defective in vascular remodeling and branching, with impaired pericyte investment adjacent to endothelial structures, in similarity to endoglin-deficient embryos. Developing cardiac tissues showed expanded endocardial projections accompanied by defective endocardial cushion formation. These findings implicate a member of the receptor tyrosine phosphatase family, CD148, in developmental vascular organization and provide evidence that it regulates endothelial proliferation and endothelium-pericyte interactions. PMID:12588999

  11. Vascular uterine abnormalities: Comparison of imaging findings and clinical outcomes.

    PubMed

    Hugues, Clara; Le Bras, Yann; Coatleven, Frederic; Brun, Jean-Luc; Trillaud, Hervé; Grenier, Nicolas; Cornelis, François

    2015-12-01

    To retrospectively compare the imaging findings and the outcomes for patients with vascular uterine abnormalities (VUA) and to identify prognostic factors. Between 2007 and 2012, 38 patients with vaginal bleeding and abnormal ultrasonographic (US) findings consistent with acquired VUA were consecutively included (mean age 31.6 years, range 19-62). Follow-up was 32 months in mean (1-78 months). Seventeen women (44.7%) started bleeding immediately after curettage, spontaneous miscarriage, trophoblastic disease, or section scars, with the remainder starting bleeding after 8 days to 2 years. All US, CT (n=2), MR (n=5) and angiographic (n=26) images were reviewed and compared to medical reports in order to identify severe VUA requiring treatment, and predictive factors. No information about severity was provided by US, MRI or CT. Twelve patients were successfully managed conservatively. Angiography identified 6 non-severe VUA, corresponding to an isolated uterine hyperemia, and 20 severe VUA, corresponding to an association of a nidus and early venous drainage. Recurrences were more often observed for severe VUA (p=0.001). The hemoglobin level was significantly lower (below 11 g/L) in these cases (p=0.004). Recurrences were significantly more frequently observed for patients with history of dilatation and curettage (p=0.02). Hysterectomy was performed for three patients only (8%). Among the women who wished to have children, 14 (77.8%) were pregnant after 9 months in mean (range 2-23). Recurrence happens more frequently after curettage and in case of anemia or severe VUA findings on angiography, justifying adequate embolization for these patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Involvement of the VEP1 gene in vascular strand development in Arabidopsis thaliana.

    PubMed

    Jun, Ji Hyung; Ha, Chan Man; Nam, Hong Gil

    2002-03-01

    A dominant mutant line characterized by abnormal leaf venation pattern was isolated from a transgenic Arabidopsis plant pool that was generated with Agrobacterium culture harboring an Arabidopsis antisense cDNA library. In the mutant line, the phenotype was due to antisense suppression of a gene we named VEP1 (Vein Patterning). The predicted amino acid sequence of the gene contained a motif related to the mammalian death domain that is found in the apoptotic machinery. Reduced expression of the VEP1 gene resulted in the reduced complexity of the venation pattern of the cotyledons and foliar leaves, which was mainly due to the reduced number of the minor veins and their incomplete connection. The analysis of mutant embryos indicated that the phenotype was originated, at least in part, from a defect in the procambium patterning. In the mutant, the stem and root were thinner than those in wild type. This phenotype was associated with reduced vascular development. The promoter activity of the VEP1 gene was detected preferentially in the vascular regions. We propose that the death domain-containing protein VEP1 functions as a positive element required for vascular strand development in Arabidopsis thaliana.

  13. Sox17 is required for normal pulmonary vascular morphogenesis

    PubMed Central

    Lange, Alexander W.; Haitchi, Hans Michael; LeCras, Timothy D.; Sridharan, Anusha; Xu, Yan; Wert, Susan E.; James, Jeanne; Udell, Nicholas; Thurner, Philipp J.; Whitsett, Jeffrey A.

    2015-01-01

    The SRY-box containing transcription factor Sox17 is required for endoderm formation and vascular morphogenesis during embryonic development. In the lung, Sox17 is expressed in mesenchymal progenitors of the embryonic pulmonary vasculature and is restricted to vascular endothelial cells in the mature lung. Conditional deletion of Sox17 in splanchnic mesenchyme-derivatives using Dermo1-Cre resulted in substantial loss of Sox17 from developing pulmonary vascular endothelial cells and caused pulmonary vascular abnormalities before birth, including pulmonary vein varices, enlarged arteries, and decreased perfusion of the microvasculature. While survival of Dermo1-Cre;Sox17Δ/Δ mice (herein termed Sox17Δ/Δ) was unaffected at E18.5, most Sox17Δ/Δ mice died by 3 weeks of age. After birth, the density of the pulmonary microvasculature was decreased in association with alveolar simplification, biventricular cardiac hypertrophy, and valvular regurgitation. The severity of the postnatal cardiac phenotype was correlated with the severity of pulmonary vasculature abnormalities. Sox17 is required for normal formation of the pulmonary vasculature and postnatal cardiovascular homeostasis. PMID:24418654

  14. Effects of heavy ion radiation on the brain vascular system and embryonic development

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Tobias, C. A.

    1984-01-01

    The present investigation is concerned with the effects of heavy-ion radiation on the vascular system and the embryonic development, taking into account the results of experiments with neonatal rats and mouse embryos. It is found that heavy ions can be highly effective in producing brain hemorrhages and in causing body deformities. Attention is given to aspects of methodology, the induction of brain hemorrhages by X-rays and heavy ions, and the effect of iron particles on embryonic development. Reported results suggest that high linear energy transfer (LET) heavy ions can be very effective in producing developmental abnormalities.

  15. Poland syndrome associated with an aberrant subclavian artery and vascular abnormalities of the retina in a child exposed to misoprostol during pregnancy.

    PubMed

    Rosa, Rafael Fabiano Machado; Travi, Giovanni M; Valiatti, Fabiana; Zen, Paulo Ricardo Gazzola; Pinto, Louise Lapagesse; Kiss, Andrea; Graziadio, Carla; Paskulin, Giorgio Adriano

    2007-06-01

    Poland syndrome has been attributed to a process of vascular disruption, and exposure to misoprostol at 6-8 weeks of gestation has been shown to produce defects attributed to vascular disruption. Herein we report the first case of a patient with Poland syndrome associated with an aberrant subclavian artery and vascular abnormalities of the retina, whose mother used misoprostol during pregnancy. A White boy of 1 year and 7 months of age, whose mother used misoprostol during the second month of pregnancy, presented with bilateral epicanthal folds, aplasia of the sternocostal head of the pectoralis major muscle with a hypoplastic nipple on the right side, and asymmetry between the upper limbs. The results of an angiotomographic study showed the presence of an aberrant right subclavian artery. Ultrasonographic evaluation showed turbulence and a high peak in the diastolic velocity in both carotid arteries, suggesting stenosis. Ophthalmologic assessment disclosed an intense bilateral tortuosity of the retinal blood vessels, with arterialnarrowing and rarefaction of the retinal pigment epithelium. This case suggests that the mechanism of vascular disruption of misoprostol could be related to the aberrant subclavian artery and the observed Poland syndrome. His retinal findings are different from those in cases described thus far in the literature, and this pattern of anomaly has never been associated with a gestational exposure to misoprostol. The possibility of a relationship of the aberrant right subclavian artery and the pattern of blood flow verified in the carotid arteries with the eye fundus abnormalities could be causally related or simply coincidental.

  16. FGF-dependent metabolic control of vascular development.

    PubMed

    Yu, Pengchun; Wilhelm, Kerstin; Dubrac, Alexandre; Tung, Joe K; Alves, Tiago C; Fang, Jennifer S; Xie, Yi; Zhu, Jie; Chen, Zehua; De Smet, Frederik; Zhang, Jiasheng; Jin, Suk-Won; Sun, Lele; Sun, Hongye; Kibbey, Richard G; Hirschi, Karen K; Hay, Nissim; Carmeliet, Peter; Chittenden, Thomas W; Eichmann, Anne; Potente, Michael; Simons, Michael

    2017-05-11

    Blood and lymphatic vasculatures are intimately involved in tissue oxygenation and fluid homeostasis maintenance. Assembly of these vascular networks involves sprouting, migration and proliferation of endothelial cells. Recent studies have suggested that changes in cellular metabolism are important to these processes. Although much is known about vascular endothelial growth factor (VEGF)-dependent regulation of vascular development and metabolism, little is understood about the role of fibroblast growth factors (FGFs) in this context. Here we identify FGF receptor (FGFR) signalling as a critical regulator of vascular development. This is achieved by FGF-dependent control of c-MYC (MYC) expression that, in turn, regulates expression of the glycolytic enzyme hexokinase 2 (HK2). A decrease in HK2 levels in the absence of FGF signalling inputs results in decreased glycolysis, leading to impaired endothelial cell proliferation and migration. Pan-endothelial- and lymphatic-specific Hk2 knockouts phenocopy blood and/or lymphatic vascular defects seen in Fgfr1/Fgfr3 double mutant mice, while HK2 overexpression partly rescues the defects caused by suppression of FGF signalling. Thus, FGF-dependent regulation of endothelial glycolysis is a pivotal process in developmental and adult vascular growth and development.

  17. [Vascularization of the head and neck during development].

    PubMed

    Detrait, E; Etchevers, H C

    2005-06-01

    One of the earliest priorities of the embryonic vascular system is to ensure the metabolic needs of the head. This review covers some of the principles that govern the cellular assembly and localization of blood vessels in the head. In order to understand the development and organization of the cephalic vascular tree, one needs to recall the morphogenetic movements underlying vertebrate head formation and giving rise to the constituent cells of the vascular system. Some of the major signaling molecules involved in vascular development are discussed, including the angiopoietins, the endothelins, the FGFs, the Notch receptors, the PDGFs, Sonic hedgehog, the TGF family and the VEGFs, in order to underline similarities between embryonic and postnatal vascular development, even in the context of increasingly divergent form.

  18. FGF-dependent metabolic control of vascular development

    PubMed Central

    Yu, Pengchun; Alves, Tiago C.; Fang, Jennifer S.; Xie, Yi; Zhu, Jie; Chen, Zehua; De Smet, Frederik; Zhang, Jiasheng; Jin, Suk-Won; Sun, Lele; Sun, Hongye; Kibbey, Richard G.; Hirschi, Karen K.; Hay, Nissim; Carmeliet, Peter; Chittenden, Thomas W.; Eichmann, Anne; Potente, Michael; Simons, Michael

    2017-01-01

    Blood and lymphatic vasculatures are intimately involved in tissue oxygenation and fluid homeostasis maintenance. Assembly of these vascular networks involves sprouting, migration and proliferation of endothelial cells. Recent studies have suggested that changes in cellular metabolism are of importance to these processes1. While much is known about vascular endothelial growth factor (VEGF)-dependent regulation of vascular development and metabolism2,3, little is understood about the role of fibroblast growth factors (FGFs) in this context4. Here we identify FGF receptor (FGFR) signaling as a critical regulator of vascular development. This is achieved by FGF-dependent control of c-MYC (MYC) expression that, in turn, regulates expression of the glycolytic enzyme hexokinase 2 (HK2). A decrease in HK2 levels in the absence of FGF signaling inputs results in decreased glycolysis leading to impaired endothelial cell proliferation and migration. Pan-endothelial- and lymphatic-specific Hk2 knockouts phenocopy blood and/or lymphatic vascular defects seen in Fgfr1/r3 double mutant mice while HK2 overexpression partially rescues the defects caused by suppression of FGF signaling. Thus, FGF-dependent regulation of endothelial glycolysis is a pivotal process in developmental and adult vascular growth and development. PMID:28467822

  19. Pulmonary vascular anomalies: a review of clinical and radiological findings of cases presenting with different complaints in childhood.

    PubMed

    Nacaroğlu, Hikmet Tekin; Ünsal-Karkıner, Canan Şule; Bahçeci-Erdem, Semiha; Özdemir, Rahmi; Karkıner, Aytaç; Alper, Hüdaver; Can, Demet

    2016-01-01

    Congenital pulmonary vascular abnormalities arise from several etiologies. These anomalies are difficult to categorize and sorted into distinct classifications. Major pulmonary vascular abnormalities can be ranked as interruption of the main pulmonary artery or its absence, emergence of the left pulmonary artery in the right pulmonary artery, pulmonary venous drainage abnormalities, and pulmonary arteriovenous malformations (PAVMs). Some of the cases are asymptomatic and diagnosed by coincidence, whereas a few of them are diagnosed by typical findings in the newborn and infancy period, symptoms, and radiological appearances. Early diagnosis is important, since death may occur as a result of pulmonary and cardiac pathologies developed in patients with pulmonary vascular anomalies. In this case presentation, the clinical and radiological findings of patients that presented with different complaints and were diagnosed with pulmonary vascular anomalies were introduced.

  20. Abnormalities of vascular histology and collagen fiber configuration in patients with advanced chronic kidney disease.

    PubMed

    Allon, Michael; Litovsky, Silvio H; Tey, Jason Chieh Sheng; Sundberg, Chad A; Zhang, Yingying; Chen, Zhen; Fang, Yun; Cheung, Alfred K; Shiu, Yan-Ting

    2018-05-01

    Several histologic features have been identified in the upper-extremity arteries and veins of patients with advanced chronic kidney disease, which may affect arteriovenous fistula maturation. However, it is unclear whether these chronic kidney disease vascular features are abnormal. We obtained upper-extremity arterial and venous specimens from 125 advanced chronic kidney disease patients undergoing arteriovenous fistula creation and from 15 control subjects. We quantified medial fibrosis, micro-calcification, and intimal hyperplasia with appropriate histology stains. We characterized medial collagen fiber configuration in second-harmonic-generation microscopy images for the fiber anisotropy index and the dominant fiber direction. The advanced chronic kidney disease patients were significantly younger than control subjects (53 ± 14 years vs 76 ± 11 years, p < 0.001). After controlling for age, the chronic kidney disease patients had greater arterial medial fibrosis (69% ± 14% vs 51% ± 10%, p < 0.001) and greater arterial micro-calcification (3.03% ± 5.17% vs 0.01% ± 0.03%, p = 0.02), but less arterial intimal thickness (30 ± 25 µm vs 63 ± 25 µm, p < 0.001), as compared to control subjects. The anisotropy index of medial collagen fibers was lower in both arteries (0.24 ± 0.10 vs 0.44 ± 0.04, p < 0.001) and veins (0.28 ± 0.09 vs 0.53 ± 0.10, p < 0.001) in chronic kidney disease patients, indicating that orientation of the fibers was more disordered. The dominant direction of medial collagen fibers in chronic kidney disease patients was greater in the arteries (49.3° ± 23.6° vs 4.0° ± 2.0°, p < 0.001) and the veins (30.0° ± 19.6° vs 3.9° ± 2.1°, p < 0.001), indicating that the fibers in general were aligned more perpendicular to the lumen. Advanced chronic kidney disease is associated with several abnormalities in vascular histology and

  1. Nrf2/Keap1 system regulates vascular smooth muscle cell apoptosis for vascular homeostasis: role in neointimal formation after vascular injury

    PubMed Central

    Ashino, Takashi; Yamamoto, Masayuki; Numazawa, Satoshi

    2016-01-01

    Abnormal increases in vascular smooth muscle cells (VSMCs) in the intimal region after a vascular injury is a key event in developing neointimal hyperplasia. To maintain vascular function, proliferation and apoptosis of VSMCs is tightly controlled during vascular remodeling. NF-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) system, a key component of the oxidative stress response that acts in maintaining homeostasis, plays an important role in neointimal hyperplasia after a vascular injury; however, the role of Nrf2/Keap1 in VSMC apoptosis has not been clarified. Here we report that 14 days after arterial injury in mice, TUNEL-positive VSMCs are detected in both the neointimal and medial layers. These layers contain cells expressing high levels of Nrf2 but low Keap1 expression. In VSMCs, Keap1 depletion induces features of apoptosis, such as positive TUNEL staining and annexin V binding. These changes are associated with an increased expression of nuclear Nrf2. Simultaneous Nrf2 depletion inhibits Keap1 depletion-induced apoptosis. At 14 days after the vascular injury, Nrf2-deficient mice demonstrated fewer TUNEL-positive cells and increased neointimal formation in the neointimal and medial areas. The results suggest that the Nrf2/Keap1 system regulates VSMC apoptosis during neointimal formation, thereby inhibiting neointimal hyperplasia after a vascular injury. PMID:27198574

  2. A case report of spinal dural arteriovenous fistula: origins, determinants, and consequences of abnormal vascular malformations.

    PubMed

    Zakhary, Sherry M; Hoehmann, Christopher L; Cuoco, Joshua A; Hitscherich, Kyle; Alam, Hamid; Torres, German

    2017-06-01

    A spinal dural arteriovenous fistula is an abnormally layered connection between radicular arteries and venous plexus of the spinal cord. This vascular condition is relatively rare with an incidence of 5-10 cases per million in the general population. Diagnosis of spinal dural arteriovenous fistula is differentiated by contrast-enhanced magnetic resonance angiography or structural magnetic resonance imaging, but a definitive diagnosis requires spinal angiography methods. Here, we report a case of a 67-year-old female with a spinal dural arteriovenous fistula, provide a pertinent clinical history to the case nosology, and discuss the biology of adhesive proteins, chemotactic molecules, and transcription factors that modify the behavior of the vasculature to possibly cause sensorimotor deficits.

  3. Uterine Vascular Lesions

    PubMed Central

    Vijayakumar, Abhishek; Srinivas, Amruthashree; Chandrashekar, Babitha Moogali; Vijayakumar, Avinash

    2013-01-01

    Vascular lesions of the uterus are rare; most reported in the literature are arteriovenous malformations (AVMs). Uterine AVMs can be congenital or acquired. In recent years, there has been an increasing number of reports of acquired vascular lesions of the uterus following pregnancy, abortion, cesarean delivery, and curettage. It can be seen from these reports that there is confusion concerning the terminology of uterine vascular lesions. There is also a lack of diagnostic criteria and management guidelines, which has led to an increased number of unnecessary invasive procedures (eg, angiography, uterine artery embolization, hysterectomy for abnormal vaginal bleeding). This article familiarizes readers with various vascular lesions of the uterus and their management. PMID:24340126

  4. Toxicity of Vascular Disrupting Chemicals to Developing Zebrafish

    EPA Science Inventory

    Vascular development is integral to proper embryonic development and disruption of that process can have serious developmental consequences. We performed static 48-hr exposures of transgenic TG(kdr:EGFP)s843 zebrafish (Danio rerio) embryos with the known vascular inhibitors Vatal...

  5. [Orbito-palpebral vascular pathology].

    PubMed

    Heran Dreyfus, F; Galatoire, O; Koskas, P; Lafitte, F; Nau, E; Bergès, O

    2016-11-01

    Orbito-palpebral vascular pathology represents 10% of all the diseases of this area. The lesion may be discovered during a brain CT scan or MRI, or because it causes clinical symptoms such as orbital mass, visual or oculomotor alteration, pain, proptosis, or acute bleeding due to a complication of the lesion (hemorrhage, thrombosis). We present these lesions using an anatomical, clinical, imaging and therapeutic approach. We distinguish four different entities. Vascular tumors have common imaging characteristics (hypersignal on T2 sequence, contrast enhancement, abnormal vascularization well depicted with ultrasound and Doppler, and possible bleeding). The main lesions are cavernous hemangiomas, the most frequent lesion of that type during adulthood; infantile hemangiomas, the most frequent vascular tumor in children; and more seldomly, hemangioperitcytomas. True vascular malformations are divided according to their flow. Low flow lesions are venous (orbital varix), capillarovenous or lymphatic (lymphangioma). High flow malformations, more rare, are either arteriovenous or arterial malformations (aneurisms). Complex malformations include both low and high flow elements. Lesions leading to modifications of the orbito-palpebral blood flow are mainly due to cavernous sinus abnormalities, either direct carotid-cavernous fistula affecting young adults after severe head trauma, or dural fistula, more insidious, found in older adults. The last section is devoted to congenital syndromic vascular malformations (Sturge-Weber, Rendu-Olser…). This classification allows for a better understanding of these pathologies and their specific imaging features. Copyright © 2016. Published by Elsevier Masson SAS.

  6. Can microRNAs control vascular smooth muscle phenotypic modulation and the response to injury?

    PubMed Central

    Albinsson, Sebastian

    2011-01-01

    Vascular smooth muscle cell (VSMC) migration and proliferation are critical events in vascular proliferative diseases. Recent studies have established microRNAs (miRNAs) as important mediators for the modulation of VSMC phenotype by targeting transcription factors and the cytoskeleton, which act as molecular switches for VSMC differentiation. The importance of miRNAs for VSMC development, differentiation, and function is evident by the fact that loss of the miRNA processing enzyme Dicer in VSMCs results in embryonic lethality due to severe vascular abnormalities. Similar abnormalities are observed in adult miR-143/145 knockout mice, indicating that these miRNAs are important for VSMC differentiation and function. However, since miR-143/145 knockout is not embryonically lethal, additional miRNA must be required during embryonic development of VSMCs. In addition, specific miRNAs such as miR-145, miR-21, and miR-221 have been found to regulate neointimal hyperplasia following vascular injury, which provides interesting possibilities for future therapeutical targets against vascular disease. Herein, we summarize recent advances regarding the role of miRNAs in VSMC phenotype modulation and response to injury. PMID:20841497

  7. Abnormal vascular and neural retinal morphology in congenital lifetime isolated growth hormone deficiency.

    PubMed

    Pereira-Gurgel, Virginia M; Faro, Augusto C N; Salvatori, Roberto; Chagas, Thiago A; Carvalho-Junior, José F; Oliveira, Carla R P; Costa, Ursula M M; Melo, Gustavo B; Hellström, Ann; Aguiar-Oliveira, Manuel H

    Experimental models demonstrate an important role of GH in retinal development. However, the interactions between GH and the neuro-vascularization of the human retina are still not clear. A model of untreated congenital isolated GH deficiency (IGHD) may clarify the actions of GH on the retina. The purpose of this work was to assess the retinal neuro-vascularization in untreated congenital IGHD (cIGHD). In a cross sectional study, we performed an endocrine and ophthalmological assessment of 25 adult cIGHD subjects, homozygous for a null mutation (c.57+1G>A) in the GHRH receptor gene and 28 matched controls. Intraocular pressure measurement, retinography (to assess the number of retinal vascular branching points and the optic disc and cup size), and optical coherence tomography (to assess the thickness of macula) were performed. cIGHD subjects presented a more significant reduction of vascular branching points in comparison to controls (91% vs. 53% [p=0.049]). The percentage of moderate reduction was higher in cIGHD than in controls (p=0.01). The percentage of individuals with increased optic disc was higher in cIGHD subjects in comparison to controls (92.9% vs. 57.1%). The same occurred for cup size (92.9% vs. 66.7%), p<0.0001 in both cases. There was no difference in macula thickness. Most cIGHD individuals present moderate reduction of vascular branching points, increase of optic disc and cup size, but have similar thickness of the macula. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Adverse Outcome Pathway for Embryonic Vascular Disruption and Alternative Methods to Identify Chemical Vascular Disruptors During Development

    EPA Science Inventory

    Chemically induced vascular toxicity during embryonic development can result in a wide range of adverse prenatal outcomes. We used information from genetic mouse models linked to phenotypic outcomes and a vascular toxicity knowledge base to construct an embryonic vascular disrupt...

  9. Vascular anomalies of the head and neck.

    PubMed

    Donald, P J

    2001-02-01

    Vascular abnormalities of the head and neck are relatively uncommon lesions. An understanding of these anomalies based on their pathogenesis and natural history clearly divides them into hemangiomas and vascular malformations. Treatment strategies that are reasonable and predictable can then be devised based on the aforementioned factors.

  10. Coexistence of pheochromocytoma with uncommon vascular lesions

    PubMed Central

    Kota, Sunil Kumar; Kota, Siva Krishna; Meher, Lalit Kumar; Jammula, Sruti; Panda, Sandip; Modi, Kirtikumar D.

    2012-01-01

    Background: Pheochromocytoma/paragangliomas have been described to be associated with rare vascular abnormalities like renal artery stenosis. Coexistence of physiologically significant renal artery lesions is a compounding factor that alters management and prognosis of pheochromocytoma patients. Apart from individual case reports, data on such association in Indian population is not available. The aim of this study is to find the nature and prevalence of associated vascular abnormalities. Materials and Methods: From 1990 to 2010, a total of 50 patients were diagnosed with pheochromocytoma/paragangliomas. Hospital charts of these patients were reviewed retrospectively to identify those with unusual vascular abnormalities. Available literature was also reviewed. Results: Of the 50 patients with pheochromocytoma, 7 (14%) had coexisting vascular lesions including renal artery stenosis in 4, aortoarteritis in 1, aortic aneurysm in 1 and inferior vena cava thrombosis in 1. Pheochromocytoma was adrenal in 42 and extra adrenal in 8. Laparoscopic adrenalectomy was done in the patients. One patient with renal artery stenosis due to intimal fibrosis was subjected to percutaneous balloon angioplasty; the other three improved after adrenalectomy and lysis of fibrous adhesive bands. The patient with aortoarteritos was treated with oral steroids. Inferior vena cava thrombosis was reversed with anticoagulants. The patient with abdominal aortic aneurysm was advised for annual follow-up on account of its size of 4.5 cm and asymptomatic presentation. Conclusion: There are multiple mechanisms that can lead to renal artery stenosis and other vascular abnormalities in a case of pheochromocytoma. A high index of suspicion is necessary to enable both entities to be diagnosed preoperatively and allow proper planning of surgical therapy. Incomplete diagnosis may lead to persistent hypertension postoperatively in a case of associated renal artery stenosis. PMID:23226643

  11. Stem cell function during plant vascular development

    PubMed Central

    Miyashima, Shunsuke; Sebastian, Jose; Lee, Ji-Young; Helariutta, Yka

    2013-01-01

    The plant vascular system, composed of xylem and phloem, evolved to connect plant organs and transport various molecules between them. During the post-embryonic growth, these conductive tissues constitutively form from cells that are derived from a lateral meristem, commonly called procambium and cambium. Procambium/cambium contains pluripotent stem cells and provides a microenvironment that maintains the stem cell population. Because vascular plants continue to form new tissues and organs throughout their life cycle, the formation and maintenance of stem cells are crucial for plant growth and development. In this decade, there has been considerable progress in understanding the molecular control of the organization and maintenance of stem cells in vascular plants. Noticeable advance has been made in elucidating the role of transcription factors and major plant hormones in stem cell maintenance and vascular tissue differentiation. These studies suggest the shared regulatory mechanisms among various types of plant stem cell pools. In this review, we focus on two aspects of stem cell function in the vascular cambium, cell proliferation and cell differentiation. PMID:23169537

  12. Vascular development in the vertebrate pancreas

    PubMed Central

    Azizoglu, D. Berfin; Chong, Diana C.; Villasenor, Alethia; Magenheim, Judith; Barry, David M.; Lee, Simon; Marty-Santos, Leilani; Fu, Stephen; Dor, Yuval; Cleaver, Ondine

    2016-01-01

    The vertebrate pancreas is comprised of a highly branched tubular epithelium, which is intimately associated with an extensive and specialized vasculature. While we know a great deal about basic vascular anatomy of the adult pancreas, as well as islet capillaries, surprisingly little is known about the ontogeny of its blood vessels. Here, we analyze development of the pancreatic vasculature in the mouse embryo. We show that pancreatic epithelial branches intercalate with the fine capillary plexus of the surrounding pancreatic mesenchyme. Endothelial cells (ECs) within this mesenchyme are heterogeneous from the onset of organogenesis. Pancreatic arteries take shape before veins, in a manner analogous to early embryonic vessels. The main central artery forms during mid-gestation, as a result of vessel coalescence and remodeling of a vascular plexus. In addition, we show that vessels in the forming pancreas display a predictable architecture that is dependent on VEGF signaling. Over-expression of VEGF disrupts vascular patterning and arteriovenous differentiation within the developing pancreas. This study constitutes a first-time cellular and molecular characterization of pancreatic blood vessels, as they coordinately grow along with the pancreatic epithelium. PMID:27789228

  13. Vascular development in the vertebrate pancreas.

    PubMed

    Azizoglu, D Berfin; Chong, Diana C; Villasenor, Alethia; Magenheim, Judith; Barry, David M; Lee, Simon; Marty-Santos, Leilani; Fu, Stephen; Dor, Yuval; Cleaver, Ondine

    2016-12-01

    The vertebrate pancreas is comprised of a highly branched tubular epithelium, which is intimately associated with an extensive and specialized vasculature. While we know a great deal about basic vascular anatomy of the adult pancreas, as well as islet capillaries, surprisingly little is known about the ontogeny of its blood vessels. Here, we analyze development of the pancreatic vasculature in the mouse embryo. We show that pancreatic epithelial branches intercalate with the fine capillary plexus of the surrounding pancreatic mesenchyme. Endothelial cells (ECs) within this mesenchyme are heterogeneous from the onset of organogenesis. Pancreatic arteries take shape before veins, in a manner analogous to early embryonic vessels. The main central artery forms during mid-gestation, as a result of vessel coalescence and remodeling of a vascular plexus. In addition, we show that vessels in the forming pancreas display a predictable architecture that is dependent on VEGF signaling. Over-expression of VEGF disrupts vascular patterning and arteriovenous differentiation within the developing pancreas. This study constitutes a first-time in-depth cellular and molecular characterization of pancreatic blood vessels, as they coordinately grow along with the pancreatic epithelium. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Abnormal placental development and early embryonic lethality in EpCAM-null mice.

    PubMed

    Nagao, Keisuke; Zhu, Jianjian; Heneghan, Mallorie B; Hanson, Jeffrey C; Morasso, Maria I; Tessarollo, Lino; Mackem, Susan; Udey, Mark C

    2009-12-31

    EpCAM (CD326) is encoded by the tacstd1 gene and expressed by a variety of normal and malignant epithelial cells and some leukocytes. Results of previous in vitro experiments suggested that EpCAM is an intercellular adhesion molecule. EpCAM has been extensively studied as a potential tumor marker and immunotherapy target, and more recent studies suggest that EpCAM expression may be characteristic of cancer stem cells. To gain insights into EpCAM function in vivo, we generated EpCAM -/- mice utilizing an embryonic stem cell line with a tacstd1 allele that had been disrupted. Gene trapping resulted in a protein comprised of the N-terminus of EpCAM encoded by 2 exons of the tacstd1 gene fused in frame to betageo. EpCAM +/- mice were viable and fertile and exhibited no obvious abnormalities. Examination of EpCAM +/- embryos revealed that betageo was expressed in several epithelial structures including developing ears (otocysts), eyes, branchial arches, gut, apical ectodermal ridges, lungs, pancreas, hair follicles and others. All EpCAM -/- mice died in utero by E12.5, and were small, developmentally delayed, and displayed prominent placental abnormalities. In developing placentas, EpCAM was expressed throughout the labyrinthine layer and by spongiotrophoblasts as well. Placentas of EpCAM -/- embryos were compact, with thin labyrinthine layers lacking prominent vascularity. Parietal trophoblast giant cells were also dramatically reduced in EpCAM -/- placentas. EpCAM was required for differentiation or survival of parietal trophoblast giant cells, normal development of the placental labyrinth and establishment of a competent maternal-fetal circulation. The findings in EpCAM-reporter mice suggest involvement of this molecule in development of vital organs including the gut, kidneys, pancreas, lungs, eyes, and limbs.

  15. Canonical WNT signaling components in vascular development and barrier formation.

    PubMed

    Zhou, Yulian; Wang, Yanshu; Tischfield, Max; Williams, John; Smallwood, Philip M; Rattner, Amir; Taketo, Makoto M; Nathans, Jeremy

    2014-09-01

    Canonical WNT signaling is required for proper vascularization of the CNS during embryonic development. Here, we used mice with targeted mutations in genes encoding canonical WNT pathway members to evaluate the exact contribution of these components in CNS vascular development and in specification of the blood-brain barrier (BBB) and blood-retina barrier (BRB). We determined that vasculature in various CNS regions is differentially sensitive to perturbations in canonical WNT signaling. The closely related WNT signaling coreceptors LDL receptor-related protein 5 (LRP5) and LRP6 had redundant functions in brain vascular development and barrier maintenance; however, loss of LRP5 alone dramatically altered development of the retinal vasculature. The BBB in the cerebellum and pons/interpeduncular nuclei was highly sensitive to decrements in canonical WNT signaling, and WNT signaling was required to maintain plasticity of barrier properties in mature CNS vasculature. Brain and retinal vascular defects resulting from ablation of Norrin/Frizzled4 signaling were ameliorated by stabilizing β-catenin, while inhibition of β-catenin-dependent transcription recapitulated the vascular development and barrier defects associated with loss of receptor, coreceptor, or ligand, indicating that Norrin/Frizzled4 signaling acts predominantly through β-catenin-dependent transcriptional regulation. Together, these data strongly support a model in which identical or nearly identical canonical WNT signaling mechanisms mediate neural tube and retinal vascularization and maintain the BBB and BRB.

  16. Effects of vascularization on cancer nanochemotherapy outcomes

    NASA Astrophysics Data System (ADS)

    Paiva, L. R.; Ferreira, S. C.; Martins, M. L.

    2016-08-01

    Cancer therapy requires anticancer agents capable of efficient and uniform systemic delivery. One promising route to their development is nanotechnology. Here, a previous model for cancer chemotherapy based on a nanosized drug carrier (Paiva et al., 2011) is extended by including tissue vasculature and a three-dimensional growth. We study through computer simulations the therapy against tumors demanding either large or small nutrient supplies growing under different levels of tissue vascularization. Our results indicate that highly vascularized tumors demand more aggressive therapies (larger injected doses administrated at short intervals) than poorly vascularized ones. Furthermore, nanoparticle endocytic rate by tumor cells, not its selectivity, is the major factor that determines the therapeutic success. Finally, our finds indicate that therapies combining cytotoxic agents with antiangiogenic drugs that reduce the abnormal tumor vasculature, instead of angiogenic drugs that normalize it, can lead to successful treatments using feasible endocytic rates and administration intervals.

  17. The SK3 channel promotes placental vascularization by enhancing secretion of angiogenic factors.

    PubMed

    Rada, Cara C; Murray, Grace; England, Sarah K

    2014-11-15

    Proper placental perfusion is essential for fetal exchange of oxygen, nutrients, and waste with the maternal circulation. Impairment of uteroplacental vascular function can lead to pregnancy complications, including preeclampsia and intrauterine growth restriction (IUGR). Potassium channels have been recognized as regulators of vascular proliferation, angiogenesis, and secretion of vasoactive factors, and their dysfunction may underlie pregnancy-related vascular diseases. Overexpression of one channel in particular, the small-conductance calcium-activated potassium channel 3 (SK3), is known to increase vascularization in mice, and mice overexpressing the SK3 channel (SK3(T/T) mice) have a high rate of fetal demise and IUGR. Here, we show that overexpression of SK3 causes fetal loss through abnormal placental vascularization. We previously reported that, at pregnancy day 14, placentas isolated from SK3(T/T) mice are smaller than those obtained from wild-type mice. In this study, histological analysis reveals that SK3(T/-) placentas at this stage have abnormal placental morphology, and microcomputed tomography shows that these placentas have significantly larger and more blood vessels than those from wild-type mice. To identify the mechanism by which these vascularization defects occur, we measured levels of vascular endothelial growth factor (VEGF), placental growth factor, and the soluble form of VEGF receptor 1 (sFlt-1), which must be tightly regulated to ensure proper placental development. Our data reveal that overexpression of SK3 alters systemic and placental ratios of the angiogenic factor VEGF to antiangiogenic factor sFlt-1 throughout pregnancy. Additionally, we observe increased expression of hypoxia-inducing factor 2α in SK3(T/-) placentas. We conclude that the SK3 channel modulates placental vascular development and fetal health by altering VEGF signaling. Copyright © 2014 the American Physiological Society.

  18. Genetic and epigenetic mechanisms in the early development of the vascular system

    PubMed Central

    Ribatti, Domenico

    2006-01-01

    The cardiovascular system plays a critical role in vertebrate development and homeostasis. Vascular development is a highly organized sequence of events that requires the correct spatial and temporal expression of specific sets of genes leading to the development of a primary vascular network. There have been intensive efforts to determine the molecular mechanisms regulating vascular growth and development, and much of the rationale for this has stemmed from the increasing clinical importance and therapeutic potential of modulating vascular formation during various disease states. PMID:16441559

  19. 123I-FP-CIT SPECT imaging in early diagnosis of dementia in patients with and without a vascular component

    PubMed Central

    Garriga, Marina; Milà, Marta; Mir, Manzoor; Al-Baradie, Raid; Huertas, Sonia; Castejon, Cesar; Casas, Laura; Badenes, Dolors; Giménez, Nuria; Font, M. Angels; Gonzalez, Jose M.; Ysamat, Maria; Aguilar, Miguel; Slevin, Mark; Krupinski, Jerzy

    2015-01-01

    Alzheimer’s disease (AD) and vascular dementia (VaD) are the most common cause of dementia. Cerebral ischemia is a major risk factor for development of dementia. 123I-FP-CIT SPECT (DaTScan) is a complementary tool in the differential diagnoses of patients with incomplete or uncertain Parkinsonism. Additional application of DaTScan enables the categorization of Parkinsonian disease with dementia (PDD), and its differentiation from pure AD, and may further contribute to change the therapeutic decision. The aim of this study was to analyze the vascular contribution towards dementia and mild cognitive impairment (MCI). We evaluated the utility of DaTScan for the early diagnosis of dementia in patients with and without a clinical vascular component, and the association between neuropsychological function, vascular component and dopaminergic function on DaTScan. One-hundred and five patients with MCI or the initial phases of dementia were studied prospectively. We developed an initial assessment using neurologic examination, blood tests, cognitive function tests, structural neuroimaging and DaTScan. The vascular component was later quantified in two ways: clinically, according to the Framingham Risk Score (FRS) and by structural neuroimaging using Wahlund Scale Total Score (WSTS). Early diagnosis of dementia was associated with an abnormal DaTScan. A significant association was found between a high WSTS and an abnormal DaTScan (p < 0.01). Mixed AD was the group with the highest vascular component, followed by the VaD group, while MCI and pure AD showed similar WSTS. No significant associations were found between neuropsychological impairment and DaTScan independently of associated vascular component. DaTScan seems to be a good tool to discriminate, in a first clinical assessment, patients with MCI from those with established dementia. There was bigger general vascular affectation observable in MRI or CT in patients with abnormal dopaminergic uptake seen on Da

  20. Early Vascular Ageing - A Concept in Development.

    PubMed

    M Nilsson, Peter

    2015-04-01

    Cardiovascular disease (CVD) is a prevalent condition in the elderly, often associated with metabolic disturbance and type 2 diabetes. For a number of years, research dedicated to understand atherosclerosis dominated, and for many good reasons, this pathophysiological process being proximal to the CVD events. In recent years, research has been devoted to an earlier stage of vascular pathology named arteriosclerosis (arterial stiffness) and the new concept of early vascular ageing (EVA), developed by a group of mostly European researchers. This overview describes recent developments in research dedicated to EVA and new emerging aspects found in studies of families at high cardiovascular risk. There are new aspects related to genetics, telomere biology and the role of gut microbiota. However, there is still no unifying definition available of EVA and no direct treatment, but rather only recommendations for conventional cardiovascular risk factor control. New interventions are being developed - not only new antihypertensive drugs, but also new drugs for vascular protection - the selective angiotensin-II (AT2) agonist Compound 21 (C21). Human studies are eagerly awaited. Even new functional food products could have the potential to positively influence cardiometabolic regulation, to be confirmed.

  1. The evolution of development of vascular cambia and secondary growth

    Treesearch

    Andrew Groover; Rachel Spicer

    2010-01-01

    Secondary growth from vascular cambia results in radial, woody growth of stems. The innovation of secondary vascular development during plant evolution allowed the production of novel plant forms ranging from massive forest trees to flexible, woody lianas. We present examples of the extensive phylogenetic variation in secondary vascular growth and discuss current...

  2. Gross Motor Development, Movement Abnormalities, and Early Identification of Autism

    PubMed Central

    Young, Gregory S.; Goldring, Stacy; Greiss-Hess, Laura; Herrera, Adriana M.; Steele, Joel; Macari, Suzanne; Hepburn, Susan; Rogers, Sally J.

    2015-01-01

    Gross motor development (supine, prone, rolling, sitting, crawling, walking) and movement abnormalities were examined in the home videos of infants later diagnosed with autism (regression and no regression subgroups), developmental delays (DD), or typical development. Group differences in maturity were found for walking, prone, and supine, with the DD and Autism-No Regression groups both showing later developing motor maturity than typical children. The only statistically significant differences in movement abnormalities were in the DD group; the two autism groups did not differ from the typical group in rates of movement abnormalities or lack of protective responses. These findings do not replicate previous investigations suggesting that early motor abnormalities seen on home video can assist in early identification of autism. PMID:17805956

  3. Specialized mouse embryonic stem cells for studying vascular development.

    PubMed

    Glaser, Drew E; Burns, Andrew B; Hatano, Rachel; Medrzycki, Magdalena; Fan, Yuhong; McCloskey, Kara E

    2014-01-01

    Vascular progenitor cells are desirable in a variety of therapeutic strategies; however, the lineage commitment of endothelial and smooth muscle cell from a common progenitor is not well-understood. Here, we report the generation of the first dual reporter mouse embryonic stem cell (mESC) lines designed to facilitate the study of vascular endothelial and smooth muscle development in vitro. These mESC lines express green fluorescent protein (GFP) under the endothelial promoter, Tie-2, and Discomsoma sp. red fluorescent protein (RFP) under the promoter for alpha-smooth muscle actin (α-SMA). The lines were then characterized for morphology, marker expression, and pluripotency. The mESC colonies were found to exhibit dome-shaped morphology, alkaline phosphotase activity, as well as expression of Oct 3/4 and stage-specific embryonic antigen-1. The mESC colonies were also found to display normal karyotypes and are able to generate cells from all three germ layers, verifying pluripotency. Tissue staining confirmed the coexpression of VE (vascular endothelial)-cadherin with the Tie-2 GFP+ expression on endothelial structures and smooth muscle myosin heavy chain with the α-SMA RFP+ smooth muscle cells. Lastly, it was verified that the developing mESC do express Tie-2 GFP+ and α-SMA RFP+ cells during differentiation and that the GFP+ cells colocalize with the vascular-like structures surrounded by α-SMA-RFP cells. These dual reporter vascular-specific mESC permit visualization and cell tracking of individual endothelial and smooth muscle cells over time and in multiple dimensions, a powerful new tool for studying vascular development in real time.

  4. Diversification of Root Hair Development Genes in Vascular Plants.

    PubMed

    Huang, Ling; Shi, Xinhui; Wang, Wenjia; Ryu, Kook Hui; Schiefelbein, John

    2017-07-01

    The molecular genetic program for root hair development has been studied intensively in Arabidopsis ( Arabidopsis thaliana ). To understand the extent to which this program might operate in other plants, we conducted a large-scale comparative analysis of root hair development genes from diverse vascular plants, including eudicots, monocots, and a lycophyte. Combining phylogenetics and transcriptomics, we discovered conservation of a core set of root hair genes across all vascular plants, which may derive from an ancient program for unidirectional cell growth coopted for root hair development during vascular plant evolution. Interestingly, we also discovered preferential diversification in the structure and expression of root hair development genes, relative to other root hair- and root-expressed genes, among these species. These differences enabled the definition of sets of genes and gene functions that were acquired or lost in specific lineages during vascular plant evolution. In particular, we found substantial divergence in the structure and expression of genes used for root hair patterning, suggesting that the Arabidopsis transcriptional regulatory mechanism is not shared by other species. To our knowledge, this study provides the first comprehensive view of gene expression in a single plant cell type across multiple species. © 2017 American Society of Plant Biologists. All Rights Reserved.

  5. Vascular changes on fluorescein angiography of premature infants with low risk of retinopathy of prematurity after high oxygen exposure.

    PubMed

    Martinez-Castellanos, Maria Ana; Velez-Montoya, Raul; Price, Kenneth; Henaine-Berra, Andree; García-Aguirre, Gerardo; Morales-Canton, Virgilio; Cernichiaro-Espinosa, Linda Alejandra

    2017-01-01

    To describe a wide array of peripheral vascular changes using fluorescein angiography in preterm neonates, without high risk characteristics for developing retinopathy of prematurity, that were exposed to high oxygen concentration. Retrospective, two center, case series. Newborns at two different hospitals with ≥1500 g or gestational age of ≥32 weeks, fluorescein angiography performed, and with high oxygen exposure without adequate control were included. 294 infants diagnosed with ROP were analyzed. Only 28 eyes from 14 patients with peripheral vascular abnormalities in older and heavier babies were included. Two distinct type of peripheral vascular changes were observed: group 1 or non-proliferative: areas of capillary non-perfusion along with widespread arteriovenous shunting between adjacent primary vessels, tortuosity of primary vessels, abnormal budding of tertiary vessels and capillaries, abnormal capillary tufts and absence of foveal avascular zone; group 2 or proliferative: all of the characteristics of group 1 plus leakage of dye from the boundary between perfused and non-perfused retina and/or optic disc. Peripheral vascular abnormalities different from retinopathy of prematurity are observed in older than 32 weeks of gestational age, and heavier than 1500 g babies. This makes the authors classify these patients as having a disease caused solely by oxygen dysregulation at the neonatal intensive care unit similarly to the oxygen induced retinopathy in experimental studies.

  6. Immediate and long-term consequences of vascular toxicity during zebrafish development

    EPA Science Inventory

    Proper formation of the vascular system is necessary for embryogenesis, and chemical disruption of vascular development may be a key event driving developmental toxicity. In order to test the effect of environmental chemicals on this critical process, we developed a quantitative ...

  7. Prominent Intrapulmonary Bronchopulmonary Anastomoses and Abnormal Lung Development in Infants and Children with Down Syndrome.

    PubMed

    Bush, Douglas; Abman, Steven H; Galambos, Csaba

    2017-01-01

    To determine the frequency of histologic features of impaired lung vascular and alveolar development and to identify the presence of intrapulmonary bronchopulmonary anastomoses (IBA) in infants and children who died with Down syndrome. A retrospective review of autopsy reports and lung histology from 13 children with Down syndrome (ages: 0-8 years) was performed. Histologic features of abnormal lung development were identified and semiquantified, including the presence of IBA. Three-dimensional reconstructions of IBA were also performed. Comparisons were made with 4 age-matched patients without Down syndrome with congenital heart defects who underwent autopsies during this time period. Of the 13 subjects with Down syndrome, 69% died from cardiac events, 77% had a congenital heart defect, and 46% had a clinical diagnosis of pulmonary hypertension. Lung histology from all subjects with Down syndrome demonstrated alveolar simplification, and 92% had signs of persistence of a double capillary network in the distal lung. The lungs from the subjects with Down syndrome frequently had features of pulmonary arterial hypertensive remodeling (85%), and prominent bronchial vessels and IBA were observed in all subjects with Down syndrome. These features were more frequent in subjects with Down syndrome compared with control subjects. Children with Down syndrome who died of cardiopulmonary diseases often have histologic evidence of impaired lung alveolar and vascular development, including the presence of prominent IBA and pulmonary hypertension. We speculate that children with Down syndrome are at risk for reduced lung surface area and recruitment of IBA, which may worsen gas exchange in subjects with Down syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Protecting against vascular disease in brain

    PubMed Central

    2011-01-01

    Endothelial cells exert an enormous influence on blood vessels throughout the circulation, but their impact is particularly pronounced in the brain. New concepts have emerged recently regarding the role of this cell type and mechanisms that contribute to endothelial dysfunction and vascular disease. Activation of the renin-angiotensin system plays a prominent role in producing these abnormalities. Both oxidative stress and local inflammation are key mechanisms that underlie vascular disease of diverse etiology. Endogenous mechanisms of vascular protection are also present, including antioxidants, anti-inflammatory molecules, and peroxisome proliferator-activated receptor-γ. Despite their clear importance, studies of mechanisms that underlie cerebrovascular disease continue to lag behind studies of vascular biology in general. Identification of endogenous molecules and pathways that protect the vasculature may result in targeted approaches to prevent or slow the progression of vascular disease that causes stroke and contributes to the vascular component of dementia and Alzheimer's disease. PMID:21335467

  9. Embryonic exposure to sodium arsenite perturbs vascular development in zebrafish.

    PubMed

    McCollum, Catherine W; Hans, Charu; Shah, Shishir; Merchant, Fatima A; Gustafsson, Jan-Åke; Bondesson, Maria

    2014-07-01

    Exposure to arsenic in its inorganic form, arsenite, causes adverse effects to many different organs and tissues. Here, we have investigated arsenite-induced adverse effects on vascular tissues in the model organism zebrafish, Danio rerio. Zebrafish embryos were exposed to arsenite at different exposure windows and the susceptibility to vascular tissue damage was recorded at 72hours post fertilization (hpf). Intersegmental vessel sprouting and growth was most perturbed by exposure to arsenite during the 24-48hpf window, while disruption in the condensation of the caudal vein plexus was more often observed at the 48-72hpf exposure window, reflecting when these structures develop during normal embryogenesis. The vascular growth rate was decreased by arsenite exposure, and deviated from that of control embryos at around 24-26.5hpf. We further mapped changes in expression of key regulators of angiogenesis and vasculogenesis. Downregulation of vascular endothelial growth factor receptor 1/fms-related tyrosine kinase 1 (vegfr1/flt1) expression was evident already at 24hpf, coinciding with the decreased vascular growth rate. At later time points, matrix metalloproteinase 9 (mmp9) expression was upregulated, suggesting that arsenite affects the composition of the extracellular matrix. In total, the expression of eight key factors involved in different aspects of vascularization was significantly altered by arsenic exposure. In conclusion, our results show that arsenite is a potent vascular disruptor in the developing zebrafish embryo, a finding that calls for an evaluation of arsenite as a developmental vascular toxicant in mammalian model systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Design and development of multilayer vascular graft

    NASA Astrophysics Data System (ADS)

    Madhavan, Krishna

    2011-07-01

    strength, showed that the multilayer graft possessed properties mimicking those of native vessels. Achieving these FDA-required functional properties is essential because they play critical roles in graft performances in vivo such as thrombus formation, occlusion, healing, and bleeding. In addition, cell studies and animal studies have been performed on the multilayer graft. Our results show that the multilayer graft support mimetic vascular culture of cells and the acellular graft serves as an artery equivalent in vivo to sustain the physiological conditions and promote appropriate cellular activity. In conclusion, the newly-developed hybrid multilayer graft provides a proper balance of biomechanical and biochemical properties and demonstrates the potential for the use of vascular tissue engineering and regeneration.

  11. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling.

    PubMed

    Bertozzi, Cara C; Schmaier, Alec A; Mericko, Patricia; Hess, Paul R; Zou, Zhiying; Chen, Mei; Chen, Chiu-Yu; Xu, Bin; Lu, Min-min; Zhou, Diane; Sebzda, Eric; Santore, Matthew T; Merianos, Demetri J; Stadtfeld, Matthias; Flake, Alan W; Graf, Thomas; Skoda, Radek; Maltzman, Jonathan S; Koretzky, Gary A; Kahn, Mark L

    2010-07-29

    Although platelets appear by embryonic day 10.5 in the developing mouse, an embryonic role for these cells has not been identified. The SYK-SLP-76 signaling pathway is required in blood cells to regulate embryonic blood-lymphatic vascular separation, but the cell type and molecular mechanism underlying this regulatory pathway are not known. In the present study we demonstrate that platelets regulate lymphatic vascular development by directly interacting with lymphatic endothelial cells through C-type lectin-like receptor 2 (CLEC-2) receptors. PODOPLANIN (PDPN), a transmembrane protein expressed on the surface of lymphatic endothelial cells, is required in nonhematopoietic cells for blood-lymphatic separation. Genetic loss of the PDPN receptor CLEC-2 ablates PDPN binding by platelets and confers embryonic lymphatic vascular defects like those seen in animals lacking PDPN or SLP-76. Platelet factor 4-Cre-mediated deletion of Slp-76 is sufficient to confer lymphatic vascular defects, identifying platelets as the cell type in which SLP-76 signaling is required to regulate lymphatic vascular development. Consistent with these genetic findings, we observe SLP-76-dependent platelet aggregate formation on the surface of lymphatic endothelial cells in vivo and ex vivo. These studies identify a nonhemostatic pathway in which platelet CLEC-2 receptors bind lymphatic endothelial PDPN and activate SLP-76 signaling to regulate embryonic vascular development.

  12. Placental Growth Factor Contributes to Micro-Vascular Abnormalization and Blood-Retinal Barrier Breakdown in Diabetic Retinopathy

    PubMed Central

    Kowalczuk, Laura; Touchard, Elodie; Omri, Samy; Jonet, Laurent; Klein, Christophe; Valamanes, Fatemeh; Berdugo, Marianne; Bigey, Pascal; Massin, Pascale; Jeanny, Jean-Claude; Behar-Cohen, Francine

    2011-01-01

    Objective There are controversies regarding the pro-angiogenic activity of placental growth factor (PGF) in diabetic retinopathy (DR). For a better understanding of its role on the retina, we have evaluated the effect of a sustained PGF over-expression in rat ocular media, using ciliary muscle electrotransfer (ET) of a plasmid encoding rat PGF-1 (pVAX2-rPGF-1). Materials and Methods pVAX2-rPGF-1 ET in the ciliary muscle (200 V/cm) was achieved in non diabetic and diabetic rat eyes. Control eyes received saline or naked plasmid ET. Clinical follow up was carried out over three months using slit lamp examination and fluorescein angiography. After the control of rPGF-1 expression, PGF-induced effects on retinal vasculature and on the blood-external barrier were evaluated respectively by lectin and occludin staining on flat-mounts. Ocular structures were visualized through histological analysis. Results After fifteen days of rPGF-1 over-expression in normal eyes, tortuous and dilated capillaries were observed. At one month, microaneurysms and moderate vascular sprouts were detected in mid retinal periphery in vivo and on retinal flat-mounts. At later stages, retinal pigmented epithelial cells demonstrated morphological abnormalities and junction ruptures. In diabetic retinas, PGF expression rose between 2 and 5 months, and, one month after ET, rPGF-1 over-expression induced glial activation and proliferation. Conclusion This is the first demonstration that sustained intraocular PGF production induces vascular and retinal changes similar to those observed in the early stages of diabetic retinopathy. PGF and its receptor Flt-1 may therefore be looked upon as a potential regulatory target at this stage of the disease. PMID:21408222

  13. Decidualized Human Endometrial Stromal Cells Mediate Hemostasis, Angiogenesis, and Abnormal Uterine Bleeding

    PubMed Central

    Lockwood, Charles J.; Krikun, Graciela; Hickey, Martha; Huang, S. Joseph; Schatz, Frederick

    2011-01-01

    Factor VII binds trans-membrane tissue factor to initiate hemostasis by forming thrombin. Tissue factor expression is enhanced in decidualized human endometrial stromal cells during the luteal phase. Long-term progestin only contraceptives elicit: 1) abnormal uterine bleeding from fragile vessels at focal bleeding sites, 2) paradoxically high tissue factor expression at bleeding sites; 3) reduced endometrial blood flow promoting local hypoxia and enhancing reactive oxygen species levels; and 4) aberrant angiogenesis reflecting increased stromal cell-expressed vascular endothelial growth factor, decreased Angiopoietin-1 and increased endothelial cell-expressed Angiopoietin-2. Aberrantly high local vascular permeability enhances circulating factor VII to decidualized stromal cell-expressed tissue factor to generate excess thrombin. Hypoxia-thrombin interactions augment expression of vascular endothelial growth factor and interleukin-8 by stromal cells. Thrombin, vascular endothelial growth factor and interlerukin-8 synergis-tically augment angiogenesis in a milieu of reactive oxygen species-induced endothelial cell activation. The resulting enhanced vessel fragility promotes abnormal uterine bleeding. PMID:19208784

  14. Vascular determinants of cholinergic deficits in Alzheimer disease and vascular dementia.

    PubMed

    Román, Gustavo C; Kalaria, Raj N

    2006-12-01

    Alzheimer's disease (AD) and vascular dementia (VaD) are widely accepted as the most common forms of dementia. Cerebrovascular lesions frequently coexist with AD, creating an overlap in the clinical and pathological features of VaD and AD. This review assembles evidence for a role for cholinergic mechanisms in the pathogenesis of VaD, as has been established for AD. We first consider the anatomy and vascularization of the basal forebrain cholinergic neuronal system, emphasizing its susceptibility to the effects of arterial hypertension, sustained hypoperfusion, and ischemic cerebrovascular disease. The impact of aging and consequences of disruption of the cholinergic system in cognition and in control of cerebral blood flow are further discussed. We also summarize preclinical and clinical evidence supporting cholinergic deficits and the use of cholinesterase inhibitors in patients with VaD. We postulate that vascular pathology likely plays a common role in initiating cholinergic neuronal abnormalities in VaD and AD.

  15. Microcephalic osteodysplastic primordial dwarfism type II (MOPD II) with multiple vascular complications misdiagnosed as Dubowitz syndrome.

    PubMed

    Dieks, Jana-Katharina; Baumer, Alessandra; Wilichowski, Ekkehard; Rauch, Anita; Sigler, Matthias

    2014-09-01

    To date, the genetic basis of Dubowitz syndrome (short stature, microcephaly, facial abnormalities, eczema) is unknown and vascular complications are not known to be associated with this syndrome. In microcephalic osteodysplastic primordial dwarfism type II (MOPD II; disproportionate short statue, microcephaly, facial abnormalities), however, cerebral aneurysms and other vascular abnormalities are frequent complications. MOPD II is a genetic disorder caused by mutations in the pericentrin (PCNT) gene (21q22). We report on a patient who came to our attention as a 22-year-old with subarachnoid bleeding due to a ruptured cranial aneurysm. Until then, the patient was thought and published to have Dubowitz syndrome; previously, he was treated with coronary bypass surgery for extensive coronary angiopathy. Consecutive genetic testing revealed MOPD II. After clinical stabilization, the patient was discharged to a specialized rehabilitation center where he died due to re-rupture of a cranial aneurysm. In patients with short stature-especially when clinical features are accompanied by vascular complications-MOPD II should be considered as a differential diagnosis leading to consecutive genetic testing. After detection of mutations in the PCNT gene, a full vascular status including cerebral imaging and cardiac evaluation needs to be determined in order to analyze vascular abnormalities and initiate prophylactic treatment.

  16. The vascular and neurogenic factors associated with erectile dysfunction in patients after pelvic fractures.

    PubMed

    Guan, Yong; Wendong, Sun; Zhao, Shengtian; Liu, Tongyan; Liu, Yuqiang; Zhang, Xiulin; Yuan, Mingzhen

    2015-01-01

    Erectile dysfunction (ED) is a common complication of pelvic fractures. To identify the vascular and neurogenic factors associated with ED, 120 patients admitted with ED after traumatic pelvic fracture between January 2009 and June 2013 were enrolled in this study. All patients answered the International Index of Erectile Function (IIEF-5) questionnaire. Nocturnal penile tumescence (NPT) testing confirmed the occurrence of ED in 96 (80%) patients on whom penile duplex ultrasound and neurophysiological testing were further performed. Of these ED patients 29 (30%) were demonstrated only with vascular abnormality, 41 (42.7%) were detected only with neural abnormality, 26 (27.1%) revealed mixed abnormalities. Of the 55 patients (29+26) with vascular problems, 7 patients (12.7%) with abnormal arterial response to intracavernous injection of Bimix (15mg papaverine and 1mg phentolamine), 31 (56.4%) with corporal veno-occlusive dysfunction and 17 (30.9%) had both problems. Of the 67 (41+26) patients with abnormal neurophysiological outcomes, 51 (76.1%) with abnormal bulbocavernosus re?ex (BCR), 20 (29.9%) with pathological pudendal nerve evoked potentials (PDEPs) and 25 (37.3%) with abnormal posterior tibial somatosensory nerve evoked potentials (PTSSEPs). Our observation indicated that neurogenic factors are important for the generation of ED in patients with pelvic fracture; venous impotence is more common than arteriogenic ED.

  17. The vascular and neurogenic factors associated with erectile dysfunction in patients after pelvic fractures

    PubMed Central

    Guan, Yong; Wendong, Sun; Zhao, Shengtian; Liu, Tongyan; Liu, Yuqiang; Zhang, Xiulin; Yuan, Mingzhen

    2015-01-01

    ABSTRACT Erectile dysfunction (ED) is a common complication of pelvic fractures. To identify the vascular and neurogenic factors associated with ED, 120 patients admitted with ED after traumatic pelvic fracture between January 2009 and June 2013 were enrolled in this study. All patients answered the International Index of Erectile Function (IIEF-5) questionnaire. Nocturnal penile tumescence (NPT) testing confirmed the occurrence of ED in 96 (80%) patients on whom penile duplex ultrasound and neurophysiological testing were further performed. Of these ED patients 29 (30%) were demonstrated only with vascular abnormality, 41 (42.7%) were detected only with neural abnormality, 26 (27.1%) revealed mixed abnormalities. Of the 55 patients (29+26) with vascular problems, 7 patients (12.7%) with abnormal arterial response to intracavernous injection of Bimix (15mg papaverine and 1mg phentolamine), 31 (56.4%) with corporal veno-occlusive dysfunction and 17 (30.9%) had both problems. Of the 67 (41+26) patients with abnormal neurophysiological outcomes, 51 (76.1%) with abnormal bulbocavernosus reflex (BCR), 20 (29.9%) with pathological pudendal nerve evoked potentials (PDEPs) and 25 (37.3%) with abnormal posterior tibial somatosensory nerve evoked potentials (PTSSEPs). Our observation indicated that neurogenic factors are important for the generation of ED in patients with pelvic fracture; venous impotence is more common than arteriogenic ED. PMID:26689522

  18. Thrombospondin-2 Expression During Retinal Vascular Development and Neovascularization.

    PubMed

    Fei, Ping; Palenski, Tammy L; Wang, Shoujian; Gurel, Zafer; Hankenson, Kurt D; Sorenson, Christine M; Sheibani, Nader

    2015-09-01

    To determine thrombospondin-2 (TSP2) expression and its impact on postnatal retinal vascular development and retinal neovascularization. The TSP2-deficient (TSP2(-/-)) mice and a line of TSP2 reporter mice were used to assess the expression of TSP2 during postnatal retinal vascular development and neovascularization. The postnatal retinal vascularization was evaluated using immunostaining of wholemount retinas prepared at different postnatal days by collagen IV staining and/or TSP2 promoter driven green fluorescent protein (GFP) expression. The organization of astrocytes was evaluated by glial fibrillary acidic protein (GFAP) staining. Retinal vascular densities were determined using trypsin digestion preparation of wholemount retinas at 3- and 6-weeks of age. Retinal neovascularization was assessed during the oxygen-induced ischemic retinopathy (OIR). Choroidal neovascularization (CNV) was assessed using laser-induced CNV. Using the TSP2-GFP reporter mice, we observed significant expression of TSP2 mRNA in retinas of postnatal day 5 (P5) mice, which increased by P7 and remained high up to P42. Similar results were observed in retinal wholemount preparations, and western blotting for GFP with the highest level of GFP was observed at P21. In contrast to high level of mRNA at P42, the GFP fluorescence or protein level was dramatically downregulated. The primary retinal vasculature developed at a faster rate in TSP2(-/-) mice compared with TSP2(+/+) mice up to P5. However, the developing retinal vasculature in TSP2(+/+) mice caught up with that of TSP2(-/-) mice after P7. No significant differences in retinal vascular density were observed at 3- or 6-weeks of age. TSP2(-/-) mice also exhibited a similar sensitivity to the hyperoxia-mediated vessel obliteration and similar level of neovascularization during OIR as TSP2(+/+) mice. Lack of TSP2 expression minimally affected laser-induced CNV compared with TSP2(+/+) mice. Lack of TSP2 expression was associated with

  19. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications.

    PubMed

    Domingueti, Caroline Pereira; Dusse, Luci Maria Sant'Ana; Carvalho, Maria das Graças; de Sousa, Lirlândia Pires; Gomes, Karina Braga; Fernandes, Ana Paula

    2016-01-01

    Vascular complications are the leading cause of morbidity and mortality among patients with type 1 and type 2 diabetes mellitus. These vascular abnormalities result of a chronic hyperglycemic state, which leads to an increase in oxidative stress and inflammatory responses. This review addresses the relationships among endothelial dysfunction, hypercoagulability and inflammation and their biomarkers in the development of vascular complications in type 1 and type 2 diabetes. Inflammation, endothelial dysfunction, and hypercoagulability are correlated to each other, playing an important role in the development of vascular complications in diabetic patients. Moreover, it has been observed that several endothelial, inflammatory and pro-coagulant biomarkers, such as VWF, IL-6, TNF-α, D-dimer and PAI-1, are increased in diabetic patients who have microvascular and macrovascular complications, including nephropathy or cardiovascular disease. It is promising the clinical and laboratory use of endothelial, inflammatory and pro-coagulant biomarkers for predicting the risk of cardiovascular and renal complications in diabetic patients and for monitoring these patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Endothelial and Smooth Muscle Cell Ion Channels in Pulmonary Vasoconstriction and Vascular Remodeling

    PubMed Central

    Makino, Ayako; Firth, Amy L.; Yuan, Jason X.-J.

    2017-01-01

    The pulmonary circulation is a low resistance and low pressure system. Sustained pulmonary vasoconstriction and excessive vascular remodeling often occur under pathophysiological conditions such as in patients with pulmonary hypertension. Pulmonary vasoconstriction is a consequence of smooth muscle contraction. Many factors released from the endothelium contribute to regulating pulmonary vascular tone, while the extracellular matrix in the adventitia is the major determinant of vascular wall compliance. Pulmonary vascular remodeling is characterized by adventitial and medial hypertrophy due to fibroblast and smooth muscle cell proliferation, neointimal proliferation, intimal, and plexiform lesions that obliterate the lumen, muscularization of precapillary arterioles, and in situ thrombosis. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction, while increased release of mitogenic factors, upregulation (or downregulation) of ion channels and transporters, and abnormalities in intracellular signaling cascades are key to the remodeling of the pulmonary vasculature. Changes in the expression, function, and regulation of ion channels in PASMC and pulmonary arterial endothelial cells play an important role in the regulation of vascular tone and development of vascular remodeling. This article will focus on describing the ion channels and transporters that are involved in the regulation of pulmonary vascular function and structure and illustrating the potential pathogenic role of ion channels and transporters in the development of pulmonary vascular disease. PMID:23733654

  1. Mechanisms of Normal and Abnormal Endometrial Bleeding

    PubMed Central

    Lockwood, Charles J.

    2011-01-01

    Expression of tissue factor (TF), the primary initiator of coagulation, is enhanced in decidualized human endometrial stromal cells (HESC) during the progesterone-dominated luteal phase. Progesterone also augments a second HESC hemostatic factor, plasminogen activator inhibitor-1 (PAI-1). In contrast, progestins inhibit HESC matrix metalloproteinase (MMP)-1, 3 and 9 expression to stabilize endometrial stromal and vascular extracellular matrix. Through these mechanisms decidualized endometrium is rendered both hemostatic and resistant to excess trophoblast invasion in the mid-luteal phase and throughout gestation to prevent hemorrhage and accreta. In non-fertile cycles, progesterone withdrawal results in decreased HESC TF and PAI-expression and increased MMP activity and inflammatory cytokine production promoting the controlled hemorrhage of menstruation and related tissue sloughing. In contrast to these well ordered biochemical processes, unpredictable endometrial bleeding associated with anovulation reflects absence of progestational effects on TF, PAI-1 and MMP activity as well as unrestrained angiogenesis rendering the endometrium non-hemostatic, proteolytic and highly vascular. Abnormal bleeding associated with long-term progestin-only contraceptives results not from impaired hemostasis but from unrestrained angiogenesis leading to large fragile endometrial vessels. This abnormal angiogenesis reflects progestational inhibition of endometrial blood flow promoting local hypoxia and generation of reactive oxygen species that increase production of angiogenic factors such as vascular endothelial growth factor (VEGF) in HESCs and Angiopoietin-2 (Ang-2) in endometrial endothelial cells while decreasing HESC expression of angiostatic, Ang-1. The resulting vessel fragility promotes bleeding. Aberrant angiogenesis also underlies abnormal bleeding associated with myomas and endometrial polyps however there are gaps in our understanding of this pathology. PMID:21499503

  2. New therapies for vascular anomalies of the gastrointestinal tract.

    PubMed

    Fox, Victor L

    2018-06-01

    Vascular anomalies are a morphologically and biologically diverse group of vascular channel abnormalities that are often congenital but may evolve or change over time in the developing child. Classification is based on a combination of physical and biological properties and clinical behavior that differentiate primarily between tumors and malformations and includes a few provisionally unclassified lesions. Anomalies of the gastrointestinal (GI) tract may present clinically with GI bleeding, abdominal pain, high-output cardiac failure, and malabsorption. This review focuses on new therapies for the treatment of GI bleeding. Important new pharmacological therapies include treatment of hemangioma with non-selective and selective beta-antagonist agents, propranolol and atenolol, and treatment of blue rubber bleb nevus syndrome and cutaneo-visceral angiomatosis with thrombocytopenia (also known as multifocal lymphangioendotheliomatosis with thrombocytopenia) with sirolimus, an inhibitor of the mammalian target of rapamycin. Therapeutic endoscopy may offer an effective alternative to bowel resection for colonic varices and other focal vascular anomalies of the GI tract that fail to respond to pharmacological therapy.

  3. Aneurysms in vascular access: state of the art and future developments.

    PubMed

    Inston, Nicholas; Mistry, Hiren; Gilbert, James; Kingsmore, David; Raza, Zahid; Tozzi, Matteo; Azizzadeh, Ali; Jones, Robert; Deane, Colin; Wilkins, Jason; Davidson, Ingemar; Ross, John; Gibbs, Paul; Huang, Dean; Valenti, Domenico

    2017-11-17

    A master class was held at the Vascular Access at Charing Cross (VA@CX2017) conference in April 2017 with invited experts and active audience participation to discuss arteriovenous (AV) vascular access aneurysms, a serious and common complication of vascular access (VA). The natural history of aneurysms in VA is poorly defined, and although classifications exist they are not uniformly applied in studies or clinical practice. True and pseudo aneurysms of AV access occur. Whilst an AV fistula by definition is an abnormal dilatation of a blood vessel, an agreed definition of 18 mm, or 3 times accepted maturation diameter, is proposed. The mechanism of aneurysmal dilatation is unknown but appears to be a combination of excessive external remodeling, wall changes due to injury, and obstruction of outflow. Diagnosis of AV aneurysms is based on physical examination and ultrasound. Venography and cross-sectional imaging may assist and be required for the investigation of outflow stenosis. Treatment of pseudo aneurysms and true aneurysms of VA (AVA) is not evidence-based, but relies on clinical experience and available facilities. In many AVA, a conservative approach with surveillance is suitable, although intervals and modalities are unclear. Avoidance of rupture is imperative and preemptive treatment should aim for access preservation, ideally with avoidance of prosthetic materials. Different techniques of aneurysmorrhaphy are described with good results in published series. Although endovascular approaches and stenting are described with good short-term results, issues with cannulation of stented areas occur and, while possible, this is not recommended, and long-term access revision is recommended.

  4. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease.

    PubMed

    Khalil, Raouf A

    2013-12-15

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women's Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject's age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Estrogen, Vascular Estrogen Receptor and Hormone Therapy in Postmenopausal Vascular Disease

    PubMed Central

    Khalil, Raouf A.

    2013-01-01

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women’s Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject’s age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. PMID:24099797

  6. Vascular Cells in Blood Vessel Wall Development and Disease.

    PubMed

    Mazurek, R; Dave, J M; Chandran, R R; Misra, A; Sheikh, A Q; Greif, D M

    2017-01-01

    The vessel wall is composed of distinct cellular layers, yet communication among individual cells within and between layers results in a dynamic and versatile structure. The morphogenesis of the normal vascular wall involves a highly regulated process of cell proliferation, migration, and differentiation. The use of modern developmental biological and genetic approaches has markedly enriched our understanding of the molecular and cellular mechanisms underlying these developmental events. Additionally, the application of similar approaches to study diverse vascular diseases has resulted in paradigm-shifting insights into pathogenesis. Further investigations into the biology of vascular cells in development and disease promise to have major ramifications on therapeutic strategies to combat pathologies of the vasculature. © 2017 Elsevier Inc. All rights reserved.

  7. The anatomy and development of normal and abnormal coronary arteries.

    PubMed

    Spicer, Diane E; Henderson, Deborah J; Chaudhry, Bill; Mohun, Timothy J; Anderson, Robert H

    2015-12-01

    At present, there is significant interest in the morphology of the coronary arteries, not least due to the increasingly well-recognised association between anomalous origin of the arteries and sudden cardiac death. Much has also been learnt over the last decade regarding the embryology of the arteries. In this review, therefore, we provide a brief introduction into the recent findings regarding their development. In particular, we emphasise that new evidence, derived using the developing murine heart, points to the arterial stems growing out from the adjacent sinuses of the aortic root, rather than the arteries growing in, as is currently assumed. As we show, the concept of outgrowth provides an excellent explanation for several of the abnormal arrangements encountered in the clinical setting. Before summarising these abnormal features, we draw attention to the need to describe the heart in an attitudinally appropriate manner, following the basic rule of human anatomy, rather than describing the cardiac components with the heart in the "Valentine" orientation. We then show how the major abnormalities involving the coronary arteries in humans can be summarised in terms of abnormal origin from the pulmonary circulation, abnormal aortic origin, or fistulous communications between the coronary arteries and the cardiac cavities. In the case of abnormal aortic origin, we highlight those malformations known to be associated with sudden cardiac death.

  8. Abnormalities of tooth development in pituitary dwarfism.

    PubMed

    Kosowicz, J; Rzymski, K

    1977-12-01

    Roentgenographic studies of the jaws and teeth in a group of forty-eight pituitary dwarfs showed the following abnormalities in the development of the teeth: 1. Delayed shedding of the deciduous teeth. 2. Absence of resorption of the roots of the deciduous teeth at the usual time. 3. Marked delay in eruption of the permanent teeth. 4. Retention of permanent teeth in the maxillary and mandibular shafts. 5. Development of the apical parts of roots of the retained permanent teeth and their growth toward the lower mandibular edge. 6. Displacement of the first molars from the mandibular shaft to rami. 7. Tilting of some of the retained teeth. 8. Small size of the maxilla and mandible with overcrowding of the teeth in these bones. 9. Complete absence of buds of the wisdom teeth, even in patients in the fourth decade of life. 10. Stimulation of development and eruption of the teeth after administration of anabolic drugs. These abnormalities when present in combination depend on growth hormone deficiency since they do not occur in other types of dwarfism.

  9. Modeling human endothelial cell transformation in vascular neoplasias

    PubMed Central

    Wen, Victoria W.; MacKenzie, Karen L.

    2013-01-01

    Endothelial cell (EC)-derived neoplasias range from benign hemangioma to aggressive metastatic angiosarcoma, which responds poorly to current treatments and has a very high mortality rate. The development of treatments that are more effective for these disorders will be expedited by insight into the processes that promote abnormal proliferation and malignant transformation of human ECs. The study of primary endothelial malignancy has been limited by the rarity of the disease; however, there is potential for carefully characterized EC lines and animal models to play a central role in the discovery, development and testing of molecular targeted therapies for vascular neoplasias. This review describes molecular alterations that have been identified in EC-derived neoplasias, as well as the processes that underpin the immortalization and tumorigenic conversion of ECs. Human EC lines, established through the introduction of defined genetic elements or by culture of primary tumor tissue, are catalogued and discussed in relation to their relevance as models of vascular neoplasia. PMID:24046386

  10. Simultaneous imaging of blood flow dynamics and vascular remodelling during development.

    PubMed

    Ghaffari, Siavash; Leask, Richard L; Jones, Elizabeth A V

    2015-12-01

    Normal vascular development requires blood flow. Time-lapse imaging techniques have revolutionised our understanding of developmental biology, but measuring changes in blood flow dynamics has met with limited success. Ultrasound biomicroscopy and optical coherence tomography can concurrently image vascular structure and blood flow velocity, but these techniques lack the resolution to accurately calculate fluid forces such as shear stress. This is important because hemodynamic forces are biologically active and induce changes in the expression of genes important for vascular development. Regional variations in shear stress, rather than the overall level, control processes such as vessel enlargement and regression during vascular remodelling. We present a technique to concurrently visualise vascular remodelling and blood flow dynamics. We use an avian embryonic model and inject an endothelial-specific dye and fluorescent microspheres. The motion of the microspheres is captured with a high-speed camera and the velocity of the blood flow in and out of the region of interest is quantified by micro-particle image velocitymetry (µPIV). The vessel geometry and flow are used to numerically solve the flow physics with computational fluid dynamics (CFD). Using this technique, we can analyse changes in shear stress, pressure drops and blood flow velocities over a period of 10 to 16 h. We apply this to study the relationship between shear stress and chronic changes in vessel diameter during embryonic development, both in normal development and after TGFβ stimulation. This technique allows us to study the interaction of biomolecular and biomechanical signals during vascular remodelling using an in vivo developmental model. © 2015. Published by The Company of Biologists Ltd.

  11. Modelling the development and arrangement of the primary vascular structure in plants.

    PubMed

    Cartenì, Fabrizio; Giannino, Francesco; Schweingruber, Fritz Hans; Mazzoleni, Stefano

    2014-09-01

    The process of vascular development in plants results in the formation of a specific array of bundles that run throughout the plant in a characteristic spatial arrangement. Although much is known about the genes involved in the specification of procambium, phloem and xylem, the dynamic processes and interactions that define the development of the radial arrangement of such tissues remain elusive. This study presents a spatially explicit reaction-diffusion model defining a set of logical and functional rules to simulate the differentiation of procambium, phloem and xylem and their spatial patterns, starting from a homogeneous group of undifferentiated cells. Simulation results showed that the model is capable of reproducing most vascular patterns observed in plants, from primitive and simple structures made up of a single strand of vascular bundles (protostele), to more complex and evolved structures, with separated vascular bundles arranged in an ordered pattern within the plant section (e.g. eustele). The results presented demonstrate, as a proof of concept, that a common genetic-molecular machinery can be the basis of different spatial patterns of plant vascular development. Moreover, the model has the potential to become a useful tool to test different hypotheses of genetic and molecular interactions involved in the specification of vascular tissues.

  12. Diversification of Root Hair Development Genes in Vascular Plants1[OPEN

    PubMed Central

    Shi, Xinhui; Wang, Wenjia; Ryu, Kook Hui

    2017-01-01

    The molecular genetic program for root hair development has been studied intensively in Arabidopsis (Arabidopsis thaliana). To understand the extent to which this program might operate in other plants, we conducted a large-scale comparative analysis of root hair development genes from diverse vascular plants, including eudicots, monocots, and a lycophyte. Combining phylogenetics and transcriptomics, we discovered conservation of a core set of root hair genes across all vascular plants, which may derive from an ancient program for unidirectional cell growth coopted for root hair development during vascular plant evolution. Interestingly, we also discovered preferential diversification in the structure and expression of root hair development genes, relative to other root hair- and root-expressed genes, among these species. These differences enabled the definition of sets of genes and gene functions that were acquired or lost in specific lineages during vascular plant evolution. In particular, we found substantial divergence in the structure and expression of genes used for root hair patterning, suggesting that the Arabidopsis transcriptional regulatory mechanism is not shared by other species. To our knowledge, this study provides the first comprehensive view of gene expression in a single plant cell type across multiple species. PMID:28487476

  13. Hemorheological abnormalities in human arterial hypertension

    NASA Astrophysics Data System (ADS)

    Lo Presti, Rosalia; Hopps, Eugenia; Caimi, Gregorio

    2014-05-01

    Blood rheology is impaired in hypertensive patients. The alteration involves blood and plasma viscosity, and the erythrocyte behaviour is often abnormal. The hemorheological pattern appears to be related to some pathophysiological mechanisms of hypertension and to organ damage, in particular left ventricular hypertrophy and myocardial ischemia. Abnormalities have been observed in erythrocyte membrane fluidity, explored by fluorescence spectroscopy and electron spin resonance. This may be relevant for red cell flow in microvessels and oxygen delivery to tissues. Although blood viscosity is not a direct target of antihypertensive therapy, the rheological properties of blood play a role in the pathophysiology of arterial hypertension and its vascular complications.

  14. Vascular Permeability and Remodelling Coincide with Inflammatory and Reparative Processes after Joint Bleeding in Factor VIII-Deficient Mice.

    PubMed

    Cooke, Esther J; Zhou, Jenny Y; Wyseure, Tine; Joshi, Shweta; Bhat, Vikas; Durden, Donald L; Mosnier, Laurent O; Drygalski, Annette von

    2018-06-01

    Vascular remodelling is a prominent feature of haemophilic arthropathy (HA) that may underlie re-bleeding, yet the nature of vascular changes and underlying mechanisms remain largely unknown. Here, we aimed to characterize synovial vascular remodelling and vessel integrity after haemarthrosis, as well as temporal changes in inflammatory and tissue-reparative pathways. Thirty acutely painful joints in patients with haemophilia (PWH) were imaged by musculoskeletal ultrasound with Power Doppler (MSKUS/PD) to detect vascular abnormalities and bloody effusions. Nineteen out of 30 painful joint episodes in PWH were associated with haemarthrosis, and abnormal vascular perfusion was unique to bleeding joints. A model of induced haemarthrosis in factor VIII (FVIII)-deficient mice was used for histological assessment of vascular remodelling (α-smooth muscle actin [αSMA] expression), and monitoring of in vivo vascular perfusion and permeability by MSKUS/PD and albumin extravasation, respectively. Inflammatory (M1) and reparative (M2) macrophage markers were quantified in murine synovium over a 10-week time course by real-time polymerase chain reaction. The abnormal vascular perfusion observed in PWH was recapitulated in FVIII-deficient mice after induced haemarthrosis. Neovascularization and increased vessel permeability were apparent 2 weeks post-bleed in FVIII-deficient mice, after a transient elevation of inflammatory macrophage M1 markers. These vascular changes subsided by week 4, while vascular remodelling, evidenced by architectural changes and pronounced αSMA expression, persisted alongside a reparative macrophage M2 response. In conclusion, haemarthrosis leads to transient inflammation coupled with neovascularization and associated vascular permeability, while subsequent tissue repair mechanisms coincide with vascular remodelling. Together, these vascular changes may promote re-bleeding and HA progression. Schattauer GmbH Stuttgart.

  15. A Fourteen-Year Experience with Vascular Anomalies Encountered during Transaxillary Rib Resection for Thoracic Outlet Syndrome.

    PubMed

    Yi, Jeniann A; Johnston, Robert J; Nehler, Mark R; Gibula, Douglas R; Alix, Kristen; Glebova, Natalia O; Brantigan, Charles O

    2017-04-01

    Transaxillary approach to first rib resection and scalenectomy (TAFRRS) is a well-established technique for treatment of thoracic outlet syndrome (TOS). Although anatomic features encountered during TAFRRS are in general constant, vascular anomalies may be encountered but have not been described to date. Herein we describe vascular abnormalities encountered during TAFRRS. We performed a retrospective review of a prospective practice database of 224 operations for TOS performed in 172 patients from March 2000 to March 2014. We excluded 10 patients with missing operative reports, 3 reoperations on the same patient, and 8 non-transaxillary resections. We recorded vascular anomalies identified in operative reports and reviewed computed tomography imaging to delineate the nature of these abnormalities. The overall incidence of vascular anomalies was 11% (22 of 203 TAFRRS). Most patients with anomalies had venous TOS (vTOS) (9 patients, 41%), followed by 7 (32%) with neurogenic TOS (nTOS). The remainder of the patients had arterial TOS (aTOS) (6 patients, 27%). Seven patients (32%) had an abnormal subclavian artery (SCA) with 5 (23%) having an abnormal arterial course in the anterior scalene muscle (ASM); 6 patients (27%) had an abnormal internal mammary artery (IMA) originating from distal SCA; 4 (18%) had abnormalities in the supreme thoracic artery (bifurcation or duplication); 2 (9%) had an abnormal branch from the SCA with anomalous location in the operative field; and 3 (14%) had an abnormal large venous branch penetrating the ASM. In the 19 patients with arterial anomalies, 8 (42%) were recognized as arterial branches penetrating the ASM, and 11 (58%) were noticed as they had anomalous arterial locations within the operative field. Most arterial anomalies were seen in vTOS (9, 45%), followed by nTOS (7, 35%). No intraoperative vascular complications occurred. Perioperative complications included 1 occurrence of postoperative transfusion for bleeding following

  16. Guidance of vascular development: lessons from the nervous system.

    PubMed

    Larrivée, Bruno; Freitas, Catarina; Suchting, Steven; Brunet, Isabelle; Eichmann, Anne

    2009-02-27

    The vascular system of vertebrates consists of an organized, branched network of arteries, veins, and capillaries that penetrates all the tissues of the body. One of the most striking features of the vascular system is that its branching pattern is highly stereotyped, with major and secondary branches forming at specific sites and developing highly conserved organ-specific vascular patterns. The factors controlling vascular patterning are not yet completely understood. Recent studies have highlighted the anatomic and structural similarities between blood vessels and nerves. The 2 networks are often aligned, with nerve fibers and blood vessels following parallel routes. Furthermore, both systems require precise control over their guidance and growth. Several molecules with attractive and repulsive properties have been found to modulate the proper guidance of both nerves and blood vessels. These include the Semaphorins, the Slits, and the Netrins and their receptors. In this review, we describe the molecular mechanisms by which blood vessels and axons achieve proper path finding and the molecular cues that are involved in their guidance.

  17. Vascular involvement in systemic sclerosis (scleroderma)

    PubMed Central

    Pattanaik, Debendra; Brown, Monica; Postlethwaite, Arnold E

    2011-01-01

    Systemic sclerosis (SSc) is an acquired multiorgan connective tissue disease with variable mortality and morbidity dictated by clinical subset type. The etiology of the basic disease and pathogenesis of the systemic autoimmunity, fibrosis, and fibroproliferative vasculopathy are unknown and debated. In this review, the spectrum of vascular abnormalities and the options currently available to treat the vascular manifestations of SSc are discussed. Also discussed is how the hallmark pathologies (ie, how autoimmunity, vasculopathy, and fibrosis of the disease) might be effected and interconnected with modulatory input from lysophospholipids, sphingosine 1-phosphate, and lysophosphatidic acid. PMID:22096374

  18. The pathology and pathophysiology of vascular dementia.

    PubMed

    Kalaria, Raj N

    2017-12-19

    Vascular dementia (VaD) is widely recognised as the second most common type of dementia. Consensus and accurate diagnosis of clinically suspected VaD relies on wide-ranging clinical, neuropsychological and neuroimaging measures in life but more importantly pathological confirmation. Factors defining subtypes of VaD include the nature and extent of vascular pathologies, degree of involvement of extra and intracranial vessels and the anatomical location of tissue changes as well as time after the initial vascular event. Atherosclerotic and cardioembolic diseases combined appear the most common subtypes of vascular brain injury. In recent years, cerebral small vessel disease (SVD) has gained prominence worldwide as an important substrate of cognitive impairment. SVD is characterised by arteriolosclerosis, lacunar infarcts and cortical and subcortical microinfarcts and diffuse white matter changes, which involve myelin loss and axonal abnormalities. Global brain atrophy and focal degeneration of the cerebrum including medial temporal lobe atrophy are also features of VaD similar to Alzheimer's disease. Hereditary arteriopathies have provided insights into the mechanisms of dementia particularly how arteriolosclerosis, a major contributor of SVD promotes cognitive impairment. Recently developed and validated neuropathology guidelines indicated that the best predictors of vascular cognitive impairment were small or lacunar infarcts, microinfarcts, perivascular space dilation, myelin loss, arteriolosclerosis and leptomeningeal cerebral amyloid angiopathy. While these substrates do not suggest high specificity, VaD is likely defined by key neuronal and dendro-synaptic changes resulting in executive dysfunction and related cognitive deficits. Greater understanding of the molecular pathology is needed to clearly define microvascular disease and vascular substrates of dementia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Brain cytoplasmic RNA 1 suppresses smooth muscle differentiation and vascular development in mice.

    PubMed

    Wang, Yung-Chun; Chuang, Ya-Hui; Shao, Qiang; Chen, Jian-Fu; Chen, Shi-You

    2018-04-13

    The cardiovascular system develops during the early stages of embryogenesis, and differentiation of smooth muscle cells (SMCs) is essential for that process. SMC differentiation is critically regulated by transforming growth factor (TGF)-β/SMAD family member 3 (SMAD3) signaling, but other regulators may also play a role. For example, long noncoding RNAs (lncRNAs) regulate various cellular activities and events, such as proliferation, differentiation, and apoptosis. However, whether long noncoding RNAs also regulate SMC differentiation remains largely unknown. Here, using the murine cell line C3H10T1/2, we found that brain cytoplasmic RNA 1 (BC1) is an important regulator of SMC differentiation. BC1 overexpression suppressed, whereas BC1 knockdown promoted, TGF-β-induced SMC differentiation, as indicated by altered cell morphology and expression of multiple SMC markers, including smooth muscle α-actin (αSMA), calponin, and smooth muscle 22α (SM22α). BC1 appeared to block SMAD3 activity and inhibit SMC marker gene transcription. Mechanistically, BC1 bound to SMAD3 via RNA SMAD-binding elements (rSBEs) and thus impeded TGF-β-induced SMAD3 translocation to the nucleus. This prevented SMAD3 from binding to SBEs in SMC marker gene promoters, an essential event in SMC marker transcription. In vivo , BC1 overexpression in mouse embryos impaired vascular SMC differentiation, leading to structural defects in the artery wall, such as random breaks in the elastic lamina, abnormal collagen deposition on SM fibers, and disorganized extracellular matrix proteins in the media of the neonatal aorta. Our results suggest that BC1 is a suppressor of SMC differentiation during vascular development. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Ott1 (Rbm15) is essential for placental vascular branching morphogenesis and embryonic development of the heart and spleen.

    PubMed

    Raffel, Glen D; Chu, Gerald C; Jesneck, Jonathan L; Cullen, Dana E; Bronson, Roderick T; Bernard, Olivier A; Gilliland, D Gary

    2009-01-01

    The infant leukemia-associated gene Ott1 (Rbm15) has broad regulatory effects within murine hematopoiesis. However, germ line Ott1 deletion results in fetal demise prior to embryonic day 10.5, indicating additional developmental requirements for Ott1. The spen gene family, to which Ott1 belongs, has a transcriptional activation/repression domain and RNA recognition motifs and has a significant role in the development of the head and thorax in Drosophila melanogaster. Early Ott1-deficient embryos show growth retardation and incomplete closure of the notochord. Further analysis demonstrated placental defects in the spongiotrophoblast and syncytiotrophoblast layers, resulting in an arrest of vascular branching morphogenesis. The rescue of the placental defect using a conditional allele with a trophoblast-sparing cre transgene allowed embryos to form a normal placenta and survive gestation. This outcome showed that the process of vascular branching morphogenesis in Ott1-deficient animals was regulated by the trophoblast compartment rather than the fetal vasculature. Mice surviving to term manifested hyposplenia and abnormal cardiac development. Analysis of global gene expression of Ott1-deficient embryonic hearts showed an enrichment of hypoxia-related genes and a significant alteration of several candidate genes critical for cardiac development. Thus, Ott1-dependent pathways, in addition to being implicated in leukemogenesis, may also be important for the pathogenesis of placental insufficiency and cardiac malformations.

  1. Current drug therapies for rosacea: a chronic vascular and inflammatory skin disease.

    PubMed

    Feldman, Steven R; Huang, William W; Huynh, Tu T

    2014-06-01

    Rosacea is a chronic skin disorder that presents with abnormal vascular and inflammatory conditions. Clinical manifestations include flushing, facial erythema, inflammatory papules and pustules, telangiectasias, edema, and watery or irritated eyes. To discuss the evolving pathophysiology of rosacea, factors involved in promoting the chronic vascular and inflammatory abnormalities seen in rosacea, and the available drug therapies for the condition. Chronic inflammation and vascular changes are believed to be underlying factors in the pathophysiology of rosacea. Aberrant cathelicidin expression, elevated kallikrein 5 (KLK5) proteolytic activity, and altered toll-like receptor 2 (TLR2) expression have been reported in rosacea skin leading to the production of proinflammatory cytokines. Until recently, drug therapies only targeted the inflammatory lesions (papules and pustules) and transient erythema associated with these inflammatory lesions of rosacea. Brimonidine tartrate gel 0.5% was recently approved for the treatment of persistent (nontransient) facial erythema of rosacea, acting primarily on the cutaneous vascular component of the disease. Rosacea is a chronic vascular and inflammatory skin disease. Understanding the role of factors that trigger the onset of rosacea symptoms and exacerbate the condition is crucial in treating this skin disease.

  2. COMPARISON OF REAL-TIME MICROVASCULAR ABNORMALITIES IN PEDIATRIC AND ADULT SICKLE CELL ANEMIA PATIENTS

    PubMed Central

    Cheung, Anthony T.W.; Miller, Joshua W.; Craig, Sarah M.; To, Patricia L.; Lin, Xin; Samarron, Sandra L.; Chen, Peter C.Y.; Zwerdling, Theodore; Wun, Ted; Li, Chin-Shang; Green, Ralph

    2010-01-01

    The conjunctival microcirculation in 14 pediatric and 8 adult sickle cell anemia (SCA) patients was studied using computer-assisted intravital microscopy. The bulbar conjunctiva in SCA patients in both age groups exhibited a blanched/avascular appearance characterized by decreased vascularity. SCA patients from both age groups had many of the same abnormal morphometric {vessel diameter, vessel distribution, morphometry (shape), tortuosity, arteriole:venule (A:V) ratio, and hemosiderin deposits} and dynamic {vessel sludging/sludged flow, boxcar blood (trickled) flow and abnormal flow velocity} abnormalities. A severity index (SI) was computed to quantify the degree of vasculopathy for comparison between groups. The severity of vasculopathy differed significantly between the pediatric and adult patients (SI: 4.2 ± 1.8 vs 6.6 ± 2.4; p=0.028), indicative of a lesser degree of overall severity in the pediatric patients. Specific abnormalities that were less prominent in the pediatric patients included abnormal vessel morphometry and tortuosity. Sludged flow, abnormal vessel distribution, abnormal A:V ratio, and boxcar flow, appeared in high prevalence in both age groups. The results indicate that SCA microvascular abnormalities develop in childhood and the severity of vasculopathy likely progresses with age. Intervention and effective treatment/management modalities should target pediatric patients to ameliorate, slow down or prevent progressive microvascular deterioration. PMID:20872552

  3. Mechanosensitive β-catenin signaling regulates lymphatic vascular development

    PubMed Central

    Cha, Boksik; Srinivasan, R. Sathish

    2016-01-01

    The Wnt/β-catenin signaling is an evolutionarily conserved pathway that plays a pivotal role in embryonic development and adult homeostasis. However, we have limited information about the involvement of Wnt/β-catenin signaling in the lymphatic vascular system that regulates fluid homeostasis by absorbing interstitial fluid and returning it to blood circulation. In this recent publication we report that canonical Wnt/β-catenin signaling is highly active and critical for the formation of lymphovenus valves (LVVs) and lymphatic valves (LVs). β-catenin directly associates with the regulatory elements of the lymphedema-associated transcription factor, FOXC2 and activates its expression in an oscillatory shear stress (OSS)-dependent manner. The phenotype of β-catenin null embryos was rescued by FOXC2 overexpression. These results suggest that Wnt/β-catenin signaling is a mechanotransducer that links fluid force with lymphatic vascular development. [BMB Reports 2016; 49(8): 403-404] PMID:27418286

  4. X Chromosome Abnormalities and Cognitive Development: Implications for Understanding Normal Human Development.

    ERIC Educational Resources Information Center

    Walzer, Stanley

    1985-01-01

    Argues that knowledge from studies of individuals with sex chromosome abnormalities can further understanding of aspects of normal human development. Studies of XO girls, XXY boys, XXX girls, and males with a fragile X chromosome are summarized to demonstrate how results contribute to knowledge about normal cognitive development and about…

  5. Human Herpesvirus-8-Transformed Endothelial Cells Have Functionally Activated Vascular Endothelial Growth Factor/Vascular Endothelial Growth Factor Receptor

    PubMed Central

    Masood, Rizwan; Cesarman, Ethel; Smith, D. Lynne; Gill, Parkash S.; Flore, Ornella

    2002-01-01

    Kaposi’s sarcoma is a vascular tumor commonly associated with human immunodeficiency virus (HIV)-1 and human herpesvirus (HHV-8) also known as Kaposi’s sarcoma-associated herpesvirus. The principal features of this tumor are abnormal proliferation of vascular structures lined with spindle-shaped endothelial cells. HHV-8 may transform a subpopulation of endothelial cells in vitro via viral and cellular gene expression. We hypothesized that among the cellular genes, vascular endothelial growth factors (VEGFs) and their cognate receptors may be involved in viral-mediated transformation. We have shown that HHV-8-transformed endothelial cells (EC-HHV-8) express higher levels of VEGF, VEGF-C, VEGF-D, and PlGF in addition to VEGF receptors-1, -2, and -3. Furthermore, antibodies to VEGF receptor-2 inhibited cell proliferation and viability. Similarly, inhibition of VEGF gene expression with antisense oligonucleotides inhibited EC-HHV-8 cell proliferation/viability. The growth and viability of primary endothelial cells and a fibroblast cell line however were unaffected by either the VEGF receptor-2 antibody or the VEGF antisense oligodeoxynucleotides. VEGF and VEGF receptors are thus induced in EC-HHV-8 and participate in the transformation. Inhibitors of VEGF may thus modulate the disease process during development and progression. PMID:11786394

  6. The plant vascular system: Evolution, development and functions

    USDA-ARS?s Scientific Manuscript database

    The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of ...

  7. NgBR is essential for endothelial cell glycosylation and vascular development.

    PubMed

    Park, Eon Joo; Grabińska, Kariona A; Guan, Ziqiang; Sessa, William C

    2016-02-01

    NgBR is a transmembrane protein identified as a Nogo-B-interacting protein and recently has been shown to be a subunit required for cis-prenyltransferase (cisPTase) activity. To investigate the integrated role of NgBR in vascular development, we have characterized endothelial-specific NgBR knockout embryos. Here, we show that endothelial-specific NgBR knockout results in embryonic lethality due to vascular development defects in yolk sac and embryo proper. Loss of NgBR in endothelial cells reduces proliferation and promotes apoptosis of the cells largely through defects in the glycosylation of key endothelial proteins including VEGFR2, VE-cadherin, and CD31, and defective glycosylation can be rescued by treatment with the end product of cisPTase activity, dolichol phosphate. Moreover, NgBR functions in endothelial cells during embryogenesis are Nogo-B independent. These data uniquely show the importance of NgBR and protein glycosylation during vascular development. © 2016 The Authors.

  8. ALDOSTERONE DYSREGULATION WITH AGING PREDICTS RENAL-VASCULAR FUNCTION AND CARDIO-VASCULAR RISK

    PubMed Central

    Brown, Jenifer M.; Underwood, Patricia C.; Ferri, Claudio; Hopkins, Paul N.; Williams, Gordon H.; Adler, Gail K.; Vaidya, Anand

    2014-01-01

    Aging and abnormal aldosterone regulation are both associated with vascular disease. We hypothesized that aldosterone dysregulation influences the age-related risk of renal- and cardio-vascular disease. We conducted an analysis of 562 subjects who underwent detailed investigations under conditions of liberal and restricted dietary sodium intake (1,124 visits) in a Clinical Research Center. Aldosterone regulation was characterized by the ratio of maximal suppression-to-stimulation (supine serum aldosterone on a liberal sodium diet divided by the same measure on a restricted sodium diet). We previously demonstrated that higher levels of this Sodium-modulated Aldosterone Suppression-Stimulation Index (SASSI) indicate greater aldosterone dysregulation. Renal plasma flow (RPF) was determined via p-aminohippurate clearance to assess basal renal hemodynamics, and the renal-vascular responses to dietary sodium manipulation and angiotensin II (AngII) infusion. Cardiovascular risk was calculated using the Framingham Risk Score. In univariate linear regression, older age (β= -4.60, p<0.0001) and higher SASSI (β= -58.63, p=0.001) predicted lower RPF and a blunted RPF response to sodium loading and AngII infusion. We observed a continuous, independent, multivariate-adjusted interaction between age and SASSI, where the inverse relationship between SASSI and RPF was most apparent with older age (p<0.05). Higher SASSI and lower RPF independently predicted higher Framingham Risk Score (p<0.0001) and together displayed an additive effect. Aldosterone regulation and age may interact to mediate renal-vascular disease. Our findings suggest that the combination of aldosterone dysregulation and renal-vascular dysfunction could additively increase the risk of future cardiovascular outcomes; therefore, aldosterone dysregulation may represent a modifiable mechanism of age-related vascular disease. PMID:24664291

  9. Overgrowth syndromes with vascular anomalies.

    PubMed

    Blei, Francine

    2015-04-01

    Overgrowth syndromes with vascular anomalies encompass entities with a vascular anomaly as the predominant feature vs those syndromes with predominant somatic overgrowth and a vascular anomaly as a more minor component. The focus of this article is to categorize these syndromes phenotypically, including updated clinical criteria, radiologic features, evaluation, management issues, pathophysiology, and genetic information. A literature review was conducted in PubMed using key words "overgrowth syndromes and vascular anomalies" as well as specific literature reviews for each entity and supportive genetic information (e.g., somatic mosaicism). Additional searches in OMIM and Gene Reviews were conducted for each syndrome. Disease entities were categorized by predominant clinical features, known genetic information, and putative affected signaling pathway. Overgrowth syndromes with vascular anomalies are a heterogeneous group of disorders, often with variable clinical expression, due to germline or somatic mutations. Overgrowth can be focal (e.g., macrocephaly) or generalized, often asymmetrically (and/or mosaically) distributed. All germ layers may be affected, and the abnormalities may be progressive. Patients with overgrowth syndromes may be at an increased risk for malignancies. Practitioners should be attentive to patients having syndromes with overgrowth and vascular defects. These patients require proactive evaluation, referral to appropriate specialists, and in some cases, early monitoring for potential malignancies. Progress in identifying vascular anomaly-related overgrowth syndromes and their genetic etiology has been robust in the past decade and is contributing to genetically based prenatal diagnosis and new therapies targeting the putative causative genetic mutations. Copyright © 2015 Mosby, Inc. All rights reserved.

  10. Coronary vasomotor abnormalities in insulin-resistant individuals.

    PubMed

    Quiñones, Manuel J; Hernandez-Pampaloni, Miguel; Schelbert, Heinrich; Bulnes-Enriquez, Isabel; Jimenez, Xochitl; Hernandez, Gustavo; De La Rosa, Roxana; Chon, Yun; Yang, Huiying; Nicholas, Susanne B; Modilevsky, Tamara; Yu, Katherine; Van Herle, Katja; Castellani, Lawrence W; Elashoff, Robert; Hsueh, Willa A

    2004-05-04

    Insulin resistance is a metabolic spectrum that progresses from hyperinsulinemia to the metabolic syndrome, impaired glucose tolerance, and finally type 2 diabetes mellitus. It is unclear when vascular abnormalities begin in this spectrum of metabolic effects. To evaluate the association of insulin resistance with the presence and reversibility of coronary vasomotor abnormalities in young adults at low cardiovascular risk. Cross-sectional study followed by prospective, open-label treatment study. University hospital. 50 insulin-resistant and 22 insulin-sensitive, age-matched Mexican-American participants without glucose intolerance or traditional risk factors for or evidence of coronary artery disease. 3 months of thiazolidinedione therapy for 25 insulin-resistant patients. Glucose infusion rate in response to insulin infusion was used to define insulin resistance (glucose infusion rate < or = 4.00 mg/kg of body weight per minute [range, 0.90 to 3.96 mg/kg per minute]) and insulin sensitivity (glucose infusion rate > or = 7.50 mg/kg per minute [range, 7.52 to 13.92 mg/kg per minute]). Myocardial blood flow was measured by using positron emission tomography at rest, during cold pressor test (largely endothelium-dependent), and after dipyridamole administration (largely vascular smooth muscle-dependent). Myocardial blood flow responses to dipyridamole were similar in the insulin-sensitive and insulin-resistant groups. However, myocardial blood flow response to cold pressor test increased by 47.6% from resting values in insulin-sensitive patients and by 14.4% in insulin-resistant patients. During thiazolidinedione therapy in a subgroup of insulin-resistant patients, insulin sensitivity improved, fasting plasma insulin levels decreased, and myocardial blood flow responses to cold pressor test normalized. The study was not randomized, and it included only 1 ethnic group. Insulin-resistant patients who do not have hypercholesterolemia or hypertension and do not smoke

  11. Placental disease and abnormal umbilical artery Doppler waveforms in trisomy 21 pregnancy: A case-control study.

    PubMed

    Corry, Edward; Mone, Fionnuala; Segurado, Ricardo; Downey, Paul; McParland, Peter; McAuliffe, Fionnuala M; Mooney, Eoghan E

    2016-11-01

    The objectives of this study were firstly to determine the proportion of placental pathology in fetuses affected by trisomy 21 (T21) using current pathological descriptive terminology and secondly to examine if a correlation existed between the finding of an abnormal umbilical artery Doppler (UAD) waveform, the presence of T21 and defined placental pathological categories. This case-control study assessed singleton fetuses with karyotypically confirmed trisomy 21 where placental histopathology had been conducted from 2003 to 2015 inclusive, within a university tertiary obstetric centre. This was compared with unselected normal singleton control pregnancies matched within a week of gestation at delivery. Data included birthweight centiles and placental histopathology. Comparisons of Doppler findings across placental pathological categories were performed using statistical analysis. 104 cases were analysed; 52 cases of trisomy 21 and 52 controls. Fetal vascular malperfusion (48.1% vs. 5.8%, p = 0.001) and maturation defects (39.2% vs. 15.7%, p = 0.023) were more common in trisomy 21 placentas. Compared with controls, trisomy 21 fetuses were more likely to have shorter umbilical cords (p = 0.001) and had more UAD abnormalities. Amongst T21 pregnancies, umbilical artery Doppler abnormalities are associated with the presence of maternal vascular malperfusion. Fetal vascular malperfusion and maturation defects are more common in trisomy 21 placentas. Abnormal umbilical artery Doppler waveforms are more common in T21 and are associated with maternal vascular malperfusion. Placental disease may explain the increased rate of intrauterine death in T21. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Imaging features of non-traumatic vascular liver emergencies.

    PubMed

    Onur, Mehmet Ruhi; Karaosmanoglu, Ali Devrim; Akca, Onur; Ocal, Osman; Akpinar, Erhan; Karcaaltincaba, Musturay

    2017-05-01

    Acute non-traumatic liver disorders can originate from abnormalities of the hepatic artery, portal vein and hepatic veins. Ultrasonography and computed tomography can be used in non-traumatic acute vascular liver disorders according to patient status, indication and appropriateness of imaging modality. Awareness of the imaging findings, in the appropriate clinical context, is crucial for prompt and correct diagnosis, as delay may cause severe consequences with significant morbidity and mortality. This review article will discuss imaging algorithms, and multimodality imaging findings for suspected acute vascular disorders of the liver.

  13. Pulse oximetry in the evaluation of peripheral vascular disease.

    PubMed

    Jawahar, D; Rachamalla, H R; Rafalowski, A; Ilkhani, R; Bharathan, T; Anandarao, N

    1997-08-01

    The role of pulse oximetry in the evaluation of peripheral vascular disease (PVD) was investigated. In addition, the value of elevating the limb to improve the sensitivity of detection of PVD by the pulse oximeter was also determined. Pulse oximetry reading in the toes were obtained in 40 young, healthy volunteers and in 40 randomly selected patients referred to the vascular investigation laboratory over a period of two months. All 40 healthy volunteers had normal pulse oximetry readings. Normal pulse oximetry reading in the toes was defined as > 95% O2 Sat and +/-2 of finger pulse oximetry reading. In all 40 patients, pulse oximetry readings were either normal or not detected at all. Since there was no gradation in decrease in the pulse oximetry reading with severity of disease or with elevation of the patient's lower extremity, an absent or no reading was considered as an abnormal result from the test. The frequency of abnormal pulse oximetry readings increased significantly in groups with abnormal ankle-brachial pressure index (ABPI) and also varied significantly with elevation of the patients' lower limbs. In patients with no PVD detected by Doppler (ABPI > 0.9), pulse oximetry readings were normal in all. However, in patients with moderate PVD (ABPI, 0.5-0.9), 84% of the patients' lower limbs had normal pulse oximetry readings and 16% had an abnormal reading at baseline level (flat). An additional 12% of the lower limbs in this group had an abnormal reading on elevation of the limb to 12 inches. In patients with severe PVD (ABPI < 0.5), 54% of the patients' lower limbs had an abnormal reading at baseline and an additional 23% had an abnormal reading at elevation of the limb to 12 inches. In conclusion, pulse oximetry was not a sensitive test for detecting early PVD.

  14. WNTLESS IS REQUIRED FOR PERIPHERAL LUNG DIFFERENTIATION AND PULMONARY VASCULAR DEVELOPMENT

    PubMed Central

    Cornett, Bridget; Snowball, John; Varisco, Brian M.; Lang, Richard; Whitsett, Jeffrey; Sinner, Debora

    2013-01-01

    Wntless (Wls), a gene highly conserved across the animal kingdom, encodes for a transmembrane protein that mediates Wnt ligand secretion. Wls is expressed in developing lung, wherein Wnt signaling is necessary for pulmonary morphogenesis. We hypothesize that Wls plays a critical role in modulating Wnt signaling during lung development and therefore affects processes critical for pulmonary morphogenesis. We generated conditional Wls mutant mice utilizing Shh-Cre and Dermo1-Cre mice to delete Wls in the embryonic respiratory epithelium and mesenchyme, respectively. Epithelial deletion of Wls disrupted lung branching morphogenesis, peripheral lung development and pulmonary endothelial differentiation. Epithelial Wls mutant mice died at birth due to respiratory failure caused by lung hypoplasia and pulmonary hemorrhage. In the lungs of these mice, VEGF and Tie2-angiopoietin signaling pathways, which mediate vascular development, were downregulated from early stages of development. In contrast, deletion of Wls in mesenchymal cells of the developing lung did not alter branching morphogenesis or early mesenchymal differentiation. In vitro assays support the concept that Wls acts in part via Wnt5a to regulate pulmonary vascular development. We conclude that epithelial Wls modulates Wnt ligand activities critical for pulmonary vascular differentiation and peripheral lung morphogenesis. These studies provide a new framework for understanding the molecular mechanisms underlying normal pulmonary vasculature formation and the dysmorphic pulmonary vasculature development associated with congenital lung disease. PMID:23523683

  15. Congenital portosystemic vascular malformations.

    PubMed

    Guérin, Florent; Blanc, Thomas; Gauthier, Frédéric; Abella, Stephanie Franchi; Branchereau, Sophie

    2012-08-01

    Congenital portosystemic shunts are developmental abnormalities of the portal venous system resulting in the diversion of portal blood away from the liver to the systemic venous system. Such malformations are believed to come from an insult occurring between the fourth and eighth week of gestation during the development of hepatic and systemic venous systems, and could explain their frequent association with cardiac and other vascular anomalies. They are currently categorized into end-to-side shunts (type I) or side-to-side shunts (type II). This article aims to review the common symptoms and complications encountered in congenital portosystemic shunts, the surgical and endovascular treatment, and the role of liver transplantation in this disease. We will also focus on the current controversies and the areas where there is potential for future studies. Copyright © 2012. Published by Elsevier Inc.

  16. Abnormal vascularization in mouse retina with dysregulated retinal cholesterol homeostasis

    PubMed Central

    Omarova, Saida; Charvet, Casey D.; Reem, Rachel E.; Mast, Natalia; Zheng, Wenchao; Huang, Suber; Peachey, Neal S.; Pikuleva, Irina A.

    2012-01-01

    Several lines of evidence suggest a link between age-related macular degeneration and retinal cholesterol maintenance. Cytochrome P450 27A1 (CYP27A1) is a ubiquitously expressed mitochondrial sterol 27-hydroxylase that plays an important role in the metabolism of cholesterol and cholesterol-related compounds. We conducted a comprehensive ophthalmic evaluation of mice lacking CYP27A1. We found that the loss of CYP27A1 led to dysregulation of retinal cholesterol homeostasis, including unexpected upregulation of retinal cholesterol biosynthesis. Cyp27a1–/– mice developed retinal lesions characterized by cholesterol deposition beneath the retinal pigment epithelium. Further, Cyp27a1-null mice showed pathological neovascularization, which likely arose from both the retina and the choroid, that led to the formation of retinal-choroidal anastomosis. Blood flow alterations and blood vessel leakage were noted in the areas of pathology. The Cyp27a1–/– retina was hypoxic and had activated Müller cells. We suggest a mechanism whereby abolished sterol 27-hydroxylase activity leads to vascular changes and identify Cyp27a1–/– mice as a model for one of the variants of type 3 retinal neovascularization occurring in some patients with age-related macular degeneration. PMID:22820291

  17. Mixed vascular nevus syndrome: a report of four new cases and a literature review.

    PubMed

    Ruggieri, Martino; Polizzi, Agata; Strano, Serena; Schepis, Carmelo; Morano, Massimiliano; Belfiore, Giuseppe; Palmucci, Stefano; Foti, Pietro Valerio; Pirrone, Concetta; Sofia, Vito; David, Emanuele; Salpietro, Vincenzo; Mankad, Kshitij; Milone, Pietro

    2016-10-01

    of the sinuses (n=2); hypoplastic brain vessels (n=4); colpocephaly and malformation of cortical development (n=2). Follow-up data on our previous 2 cases revealed that the vascular abnormalities in the skin and nervous system were stable over years without neurological progression or deterioration. Pathogenically, this complex phenotype suggests that embryonic pairing and somatic recombination of recessive (didymotic) alleles controlling the balance between constriction (i.e., nevus anemicus) and dilatation (i.e., nevus telangiectaticus) of blood vessels could be the primary event causing the phenomena of cutaneous and brain vascular twin spotting and the paired phenomena of skull hyperpneumatisation vs . hypertrophy and brain megalencephaly/colpocephaly vs . cortical dysplasia. This association is likely more frequent than previously thought and should be investigated by means of: (I) brain and spinal cord imaging (combination of CT and MRI studies); (II) skeletal X-ray studies (when dictated by clinical findings); (III) systemic ultrasound studies; (IV) neurophysiologic studies (EEG); (V) psychomotor testing; (VI) and laboratory investigation (including immune-mediated dysfunction).

  18. EphrinA1 Inhibits Vascular Endothelial Growth Factor-Induced Intracellular Signaling and Suppresses Retinal Neovascularization and Blood-Retinal Barrier Breakdown

    PubMed Central

    Ojima, Tomonari; Takagi, Hitoshi; Suzuma, Kiyoshi; Oh, Hideyasu; Suzuma, Izumi; Ohashi, Hirokazu; Watanabe, Daisuke; Suganami, Eri; Murakami, Tomoaki; Kurimoto, Masafumi; Honda, Yoshihito; Yoshimura, Nagahisa

    2006-01-01

    The Eph receptor/ephrin system is a recently discovered regulator of vascular development during embryogenesis. Activation of EphA2, one of the Eph receptors, reportedly suppresses cell proliferation and adhesion in a wide range of cell types, including vascular endothelial cells. Vascular endothelial growth factor (VEGF) plays a primary role in both pathological angiogenesis and abnormal vascular leakage in diabetic retinopathy. In the study described herein, we demonstrated that EphA2 stimulation by ephrinA1 in cultured bovine retinal endothelial cells inhibits VEGF-induced VEGFR2 receptor phosphorylation and its downstream signaling cascades, including PKC (protein kinase C)-ERK (extracellular signal-regulated kinase) 1/2 and Akt. This inhibition resulted in the reduction of VEGF-induced angiogenic cell activity, including migration, tube formation, and cellular proliferation. These inhibitory effects were further confirmed in animal models. Intraocular injection of ephrinA1 suppressed ischemic retinal neovascularization in a dose-dependent manner in a mouse model. At a dose of 125 ng/eye, the inhibition was 36.0 ± 14.9% (P < 0.001). EphrinA1 also inhibited VEGF-induced retinal vascular permeability in a rat model by 46.0 ± 10.0% (P < 0.05). These findings suggest a novel therapeutic potential for EphA2/ephrinA1 in the treatment of neovascularization and vasopermeability abnormalities in diabetic retinopathy. PMID:16400034

  19. [Congenital abnormalities of the aorta in children and adolescents].

    PubMed

    Eichhorn, J G; Ley, S

    2007-11-01

    Aortic abnormalities are common cardiovascular malformations accounting for 15-20% of all congenital heart disease. Ultrafast CT and MR imaging are noninvasive, accurate and robust techniques that can be used in the diagnosis of aortic malformations. While their sensitivity in detecting vascular abnormalities seems to be as good as that of conventional catheter angiocardiography, at over 90%, they are superior in the diagnosis of potentially life-threatening complications, such as tracheal, bronchial, or esophageal compression. It has been shown that more than 80% of small children with aortic abnormalities benefit directly from the use of noninvasive imaging: either cardiac catheterization is no longer necessary or radiation doses and periods of general anesthesia for interventional catheterization procedures can be much reduced. The most important congenital abnormalities of the aorta in children and adolescents are presented with reference to examples, and the value of CT and MR angiography is documented.

  20. The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development.

    PubMed

    Kazanskaya, Olga; Ohkawara, Bisei; Heroult, Melanie; Wu, Wei; Maltry, Nicole; Augustin, Hellmut G; Niehrs, Christof

    2008-11-01

    The vertebrate embryonic vasculature develops from angioblasts, which are specified from mesodermal precursors and develop in close association with blood cells. The signals that regulate embryonic vasculogenesis and angiogenesis are incompletely understood. Here, we show that R-spondin 3 (Rspo3), a member of a novel family of secreted proteins in vertebrates that activate Wnt/beta-catenin signaling, plays a key role in these processes. In Xenopus embryos, morpholino antisense knockdown of Rspo3 induces vascular defects because Rspo3 is essential for regulating the balance between angioblast and blood cell specification. In mice, targeted disruption of Rspo3 leads to embryonic lethality caused by vascular defects. Specifically in the placenta, remodeling of the vascular plexus is impaired. In human endothelial cells, R-spondin signaling promotes proliferation and sprouting angiogenesis in vitro, indicating that Rspo3 can regulate endothelial cells directly. We show that vascular endothelial growth factor is an immediate early response gene and a mediator of R-spondin signaling. The results identify Rspo3 as a novel, evolutionarily conserved angiogenic factor in embryogenesis.

  1. Role of Nitric Oxide Isoforms in Vascular and Alveolar Development and Lung Injury in Vascular Endothelial Growth Factor Overexpressing Neonatal Mice Lungs.

    PubMed

    Syed, Mansoor A; Choo-Wing, Rayman; Homer, Robert J; Bhandari, Vineet

    2016-01-01

    The role of vascular endothelial growth factor (VEGF)-induced 3 different nitric oxide synthase (NOS) isoforms in lung development and injury in the newborn (NB) lung are not known. We hypothesized that VEGF-induced specific NOS pathways are critical regulators of lung development and injury. We studied NB wild type (WT), lung epithelial cell-targeted VEGF165 doxycycline-inducible overexpressing transgenic (VEGFTG), VEGFTG treated with a NOS1 inhibitor (L-NIO), VEGFTG x NOS2-/- and VEGFTG x NOS3+/- mice in room air (RA) for 7 postnatal (PN) days. Lung morphometry (chord length), vascular markers (Ang1, Ang2, Notch2, vWF, CD31 and VE-cadherin), cell proliferation (Ki67), vascular permeability, injury and oxidative stress markers (hemosiderin, nitrotyrosine and 8-OHdG) were evaluated. VEGF overexpression in RA led to increased chord length and vascular markers at PN7, which were significantly decreased to control values in VEGFTG x NOS2-/- and VEGFTG x NOS3+/- lungs. However, we found no noticeable effect on chord length and vascular markers in the VEGFTG / NOS1 inhibited group. In the NB VEGFTG mouse model, we found VEGF-induced vascular permeability in the NB murine lung was partially dependent on NOS2 and NOS3-signaling pathways. In addition, the inhibition of NOS2 and NOS3 resulted in a significant decrease in VEGF-induced hemosiderin, nitrotyrosine- and 8-OHdG positive cells at PN7. NOS1 inhibition had no significant effect. Our data showed that the complete absence of NOS2 and partial deficiency of NOS3 confers protection against VEGF-induced pathologic lung vascular and alveolar developmental changes, as well as injury markers. Inhibition of NOS1 does not have any modulating role on VEGF-induced changes in the NB lung. Overall, our data suggests that there is a significant differential regulation in the NOS-mediated effects of VEGF overexpression in the developing mouse lung.

  2. Soluble VEGF isoforms are essential for establishingepiphyseal vascularization and regulating chondrocyte development and survival

    PubMed Central

    Maes, Christa; Stockmans, Ingrid; Moermans, Karen; Van Looveren, Riet; Smets, Nico; Carmeliet, Peter; Bouillon, Roger; Carmeliet, Geert

    2004-01-01

    VEGF is crucial for metaphyseal bone vascularization. In contrast, the angiogenic factors required for vascularization of epiphyseal cartilage are unknown, although this represents a developmentally and clinically important aspect of bone growth. The VEGF gene is alternatively transcribed into VEGF120, VEGF164, and VEGF188 isoforms that differ in matrix association and receptor binding. Their role in bone development was studied in mice expressing single isoforms. Here we report that expression of only VEGF164 or only VEGF188 (in VEGF188/188 mice) was sufficient for metaphyseal development. VEGF188/188 mice, however, showed dwarfism, disrupted development of growth plates and secondary ossification centers, and knee joint dysplasia. This phenotype was at least partly due to impaired vascularization surrounding the epiphysis, resulting in ectopically increased hypoxia and massive chondrocyte apoptosis in the interior of the epiphyseal cartilage. In addition to the vascular defect, we provide in vitro evidence that the VEGF188 isoform alone is also insufficient to regulate chondrocyte proliferation and survival responses to hypoxia. Consistent herewith, chondrocytes in or close to the hypoxic zone in VEGF188/188 mice showed increased proliferation and decreased differentiation. These findings indicate that the insoluble VEGF188 isoform is insufficient for establishing epiphyseal vascularization and regulating cartilage development during endochondral bone formation. PMID:14722611

  3. Wntless is required for peripheral lung differentiation and pulmonary vascular development.

    PubMed

    Cornett, Bridget; Snowball, John; Varisco, Brian M; Lang, Richard; Whitsett, Jeffrey; Sinner, Debora

    2013-07-01

    Wntless (Wls), a gene highly conserved across the animal kingdom, encodes for a transmembrane protein that mediates Wnt ligand secretion. Wls is expressed in developing lung, wherein Wnt signaling is necessary for pulmonary morphogenesis. We hypothesize that Wls plays a critical role in modulating Wnt signaling during lung development and therefore affects processes critical for pulmonary morphogenesis. We generated conditional Wls mutant mice utilizing Shh-Cre and Dermo1-Cre mice to delete Wls in the embryonic respiratory epithelium and mesenchyme, respectively. Epithelial deletion of Wls disrupted lung branching morphogenesis, peripheral lung development and pulmonary endothelial differentiation. Epithelial Wls mutant mice died at birth due to respiratory failure caused by lung hypoplasia and pulmonary hemorrhage. In the lungs of these mice, VEGF and Tie2-angiopoietin signaling pathways, which mediate vascular development, were downregulated from early stages of development. In contrast, deletion of Wls in mesenchymal cells of the developing lung did not alter branching morphogenesis or early mesenchymal differentiation. In vitro assays support the concept that Wls acts in part via Wnt5a to regulate pulmonary vascular development. We conclude that epithelial Wls modulates Wnt ligand activities critical for pulmonary vascular differentiation and peripheral lung morphogenesis. These studies provide a new framework for understanding the molecular mechanisms underlying normal pulmonary vasculature formation and the dysmorphic pulmonary vasculature development associated with congenital lung disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. [Vascular Lesions of Vocal Folds - Part 2: Perpendicular Vascular Lesions].

    PubMed

    Arens, C; Glanz, H; Voigt-Zimmermann, S

    2015-11-01

    The present work aims at a systematic pathogenetic description of perpendicular vascular changes in the vocal folds. Unlike longitudinal vascular changes, like ectasia and meander, perpendicular vascular changes can be observed in bening lesions. They predominantly occur as typical vascular loops in exophytic lesions, especially in recurrent respiratory papillomatosis (RRP), pre-cancerous and cancerous diseases of the larynx and vocal folds. Neoangiogenesis is caused by an epithelial growth stimulus in the early phase of cancerous genesis. In RRP the VVC impress by a single, long vessel loop with a narrow angle turning point in the each single papilla of the papilloma. In pre- and cancerous lesions the vascular loop is located directly underneath the epithelium. During progressive tumor growth, vascular loops develop an increasingly irregular, convoluted, spirally shape. The arrangement of the vascular loops is primarily still symmetrical. In the preliminary stage of tumor development occurs by neoangiogenesis to a microvascular compression. In advanced vocal fold carcinoma the regular vascular vocal fold structure is destroyed. The various stages of tumor growth are also characterized by typical primary epithelial and secondary connective tissue changes. The characteristic triad of vascular, epithelial and connective tissue changes therefore plays an important role in differential diagnosis. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Vascular abnormalities of the distal deep digital flexor tendon in 8 draught horses identified on histological examination.

    PubMed

    Crişan, Melania Ioana; Damian, Aurel; Gal, Adrian; Miclăuş, Viorel; Cernea, Cristina L; Denoix, Jean-Marie

    2013-08-01

    The purpose of this study was to provide a detailed description of the vascular changes in the distal part of deep digital flexor tendon (DDFT). Eight isolated forelimbs were collected from 8 horses with DDF tendinopathy diagnosed post-mortem by ultrasound and gross anatomopathological examination. The samples were fixed in 10% neutral buffered formalin, softened in 4% phenol and dehydrated with ethylic alcohol. Goldner's Trichrome staining method was used. The histopathological examination revealed vascular proliferation associated with structural disorders of blood vessels. Angiogenesis, fibroplasia and consecutive hypertrophy of the vascular wall with or without vascular occlusion were the most common findings. Other histopathological findings were: endothelial cell edema, progressive metaplasia from squamous to cubic cells, vascular wall hyalinization, endothelial cells apoptosis/necrosis and endothelial desquamation. These results demonstrated damage of the distal deep digital flexor tendon vasculature which may progressively alter the structural integrity of the tendon and contribute to degenerative lesions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Redox-dependent impairment of vascular function in sickle cell disease.

    PubMed

    Aslan, Mutay; Freeman, Bruce A

    2007-12-01

    The vascular pathophysiology of sickle cell disease (SCD) is influenced by many factors, including adhesiveness of red and white blood cells to endothelium, increased coagulation, and homeostatic perturbation. The vascular endothelium is central to disease pathogenesis because it displays adhesion molecules for blood cells, balances procoagulant and anticoagulant properties of the vessel wall, and regulates vascular homeostasis by synthesizing vasoconstricting and vasodilating substances. The occurrence of intermittent vascular occlusion in SCD leads to reperfusion injury associated with granulocyte accumulation and enhanced production of reactive oxygen species. The participation of nitric oxide (NO) in oxidative reactions causes a reduction in NO bioavailability and contributes to vascular dysfunction in SCD. Therapeutic strategies designed to counteract endothelial, inflammatory, and oxidative abnormalities may reduce the frequency of hospitalization and blood transfusion, the incidence of pain, and the occurrence of acute chest syndrome and pulmonary hypertension in patients with SCD.

  7. [Cutaneous hemangiomas and vascular malformations and associated pathology (Pascual-Castroviejo type II syndrome). Study of 41 patients].

    PubMed

    Pascual-Castroviejo, I; Pascual-Pascual, S I; Velázquez-Fragua, R; García, L; López-Gutiérrez, J C; Viaño-López, J; Martínez, V; Palencia, R

    To describe the clinical, diagnostic and therapeutic features of this angiomatous neurocutaneous syndrome, which is the most frequent one, and to report a personal series of 41 patients. Forty one patients--31 females and 10 males--were studied during childhood and then, several patients were followed during many years, which allowed us to learn about the evolution of the abnormalities. The cutaneous lesions were classified as hemangiomas in 30 patients (73%) and as vascular malformations in 11 patients (27%). A cerebellar anomaly (unilateral hemispheric hypoplasia and Dandy-Walker malformation) was seen in 13 patients (31.5%) cerebral cortical dysplasia in 4 patients (10%), aortic arch coarctation in 6 patients (15%), and congenital cardiopathy in 5 patients (12%). The most frequent abnormalities were intracranial and/or extracranial vascular malformations. Persistence of the trigeminal artery was observed in 7 patients (17%), absence or severe hypoplasia of an internal carotid artery in 13 patients (32%), absence of a vertebral artery in 7 patients (17%), hypoplasia of intracranial arteries in 6 patients (15%) and aneurysmal enlargement of carotid or vertebral arteries in 5 patients (12%). Also were observed 4 patients (10%) with intracranial hemangioma, 2 (5%) with hemangioma in mediastinum, and 3 (7.5%) with intestinal hemangioma, all of which disappeared during the first years of life. Aneurysmal enlargement of the carotid and vertebral arteries and intracranial branches also disappeared after a process of progressive narrowing of the arterial lumen that caused complete obstruction of these arteries. At the same time the cutaneous hemangioma regressed. During this process, collateral vascularization through branches of the external carotid artery and of the non-affected branches of the contralateral intracranial arteries developed. This neurocutaneous syndrome is the most frequent one and it is associated with several types of vascular and non-vascular

  8. The influence of the telomere-telomerase system on diabetes mellitus and its vascular complications.

    PubMed

    Qi Nan, Wu; Ling, Zhang; Bing, Chen

    2015-06-01

    The telomere-telomerase system plays an important role in the pathogenesis and disease progression of diabetes mellitus as well as in its vascular complications. Recent studies suggest that telomere shortening and abnormal telomerase activity occur in patients with diabetes mellitus, and targeting the telomere-telomerase system has become a prospective treatment for diabetes mellitus and its vascular complications. This review highlights the significance of the telomere-telomerase system and supports its role as a possible therapeutic target for patients with diabetes mellitus and its vascular complications Areas covered: This review covers the advances in understanding the telomere-telomerase system over the last 30 years and its significance in diabetes mellitus. In addition, it provides knowledge regarding the significance of the telomere-telomerase system in diabetes mellitus and its vascular complications as well as its role and mechanisms in oxidative stress, cell therapy and antioxidant activity Expert opinion: The telomere-telomerase system may be a potential therapeutic target that can protect against DNA damage and apoptosis in patients with diabetes mellitus and its vascular complications. DNA damage and apoptosis are associated with oxidative stress and are involved in the dysfunction of pancreatic β cells, insulin resistance, and its vascular complications. Abnormalities in the telomere-telomerase system may be associated with diabetes mellitus and its vascular complications. Therapies targeting telomere-telomerase system, telomerase reverse transcriptase transfection and alterative telomere lengthening must be identified before gene therapy can commence.

  9. Role of splenic reservoir monocytes in pulmonary vascular monocyte accumulation in experimental hepatopulmonary syndrome

    PubMed Central

    Wu, Wei; Zhang, Junlan; Yang, Wenli; Hu, Bingqian

    2016-01-01

    Abstract Background and Aim Pulmonary monocyte infiltration plays a significant role in the development of angiogenesis in experimental hepatopulmonary syndrome (HPS) after common bile duct ligation (CBDL). Hepatic monocytes are also increased after CBDL, but the origins remain unclear. Splenic reservoir monocytes have been identified as a major source of monocytes that accumulate in injured tissues. Whether splenic monocytes contribute to monocyte alterations after CBDL is unknown. This study evaluates monocyte distributions and assesses effects of splenectomy on monocyte levels and pulmonary vascular and hepatic abnormalities in experimental HPS. Methods Splenectomy was performed in CBDL animals. Monocyte levels in different tissues and circulation were assessed with CD68. Pulmonary alterations of HPS were evaluated with vascular endothelial growth factor‐A (VEGF‐A) levels, angiogenesis, and alveolar–arterial oxygen gradient (AaPO2). Liver abnormalities were evaluated with fibrosis (Sirius red), bile duct proliferation (CK‐19), and enzymatic changes. Results Monocyte levels increased in the lung and liver after CBDL and were accompanied by elevated circulating monocyte numbers. Splenectomy significantly decreased monocyte accumulation, VEGF‐A levels, and angiogenesis in CBDL animal lung and improved AaPO2 levels. In contrast, hepatic monocyte levels, fibrosis, and functional abnormalities were further exacerbated by spleen removal. Conclusions Splenic reservoir monocytes are a major source for lung monocyte accumulation after CBDL, and spleen removal attenuates the development of experimental HPS. Liver monocytes may have different origins, and accumulation is exacerbated after depletion of splenic reservoir monocytes. Tissue specific monocyte alterations, influenced by the spleen reservoir, have a significant impact on pulmonary complications of liver disease. PMID:27029414

  10. BMP signaling restricts hemato-vascular development from lateral mesoderm during somitogenesis.

    PubMed

    Gupta, Sunny; Zhu, Hao; Zon, Leonard I; Evans, Todd

    2006-06-01

    The bone morphogenetic protein (BMP) signaling pathway is essential during gastrulation for the generation of ventral mesoderm, which makes it a challenge to define functions for this pathway at later stages of development. We have established an approach to disrupt BMP signaling specifically in lateral mesoderm during somitogenesis, by targeting a dominant-negative BMP receptor to Lmo2+ cells in developing zebrafish embryos. This results in expansion of hematopoietic and endothelial cells, while restricting the expression domain of the pronephric marker pax2.1. Expression of a constitutively active receptor and transplantation experiments were used to confirm that BMP signaling in lateral mesoderm restricts subsequent hemato-vascular development. The results show that the BMP signaling pathway continues to function after cells are committed to a lateral mesoderm fate, and influences subsequent lineage decisions by restricting hemato-vascular fate in favor of pronephric development.

  11. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development.

    PubMed Central

    Hardtke, C S; Berleth, T

    1998-01-01

    The vascular tissues of flowering plants form networks of interconnected cells throughout the plant body. The molecular mechanisms directing the routes of vascular strands and ensuring tissue continuity within the vascular system are not known, but are likely to depend on general cues directing plant cell orientation along the apical-basal axis. Mutations in the Arabidopsis gene MONOPTEROS (MP) interfere with the formation of vascular strands at all stages and also with the initiation of the body axis in the early embryo. Here we report the isolation of the MP gene by positional cloning. The predicted protein product contains functional nuclear localization sequences and a DNA binding domain highly similar to a domain shown to bind to control elements of auxin inducible promoters. During embryogenesis, as well as organ development, MP is initially expressed in broad domains that become gradually confined towards the vascular tissues. These observations suggest that the MP gene has an early function in the establishment of vascular and body patterns in embryonic and post-embryonic development. PMID:9482737

  12. Vascular-Derived Vegfa Promotes Cortical Interneuron Migration and Proximity to the Vasculature in the Developing Forebrain

    PubMed Central

    Barber, Melissa; Andrews, William D; Memi, Fani; Gardener, Phillip; Ciantar, Daniel; Tata, Mathew; Ruhrberg, Christiana; Parnavelas, John G

    2018-01-01

    Abstract Vascular endothelial growth factor (Vegfa) is essential for promoting the vascularization of the embryonic murine forebrain. In addition, it directly influences neural development, although its role in the forming forebrain is less well elucidated. It was recently suggested that Vegfa may influence the development of GABAergic interneurons, inhibitory cells with crucial signaling roles in cortical neuronal circuits. However, the mechanism by which it affects interneuron development remains unknown. Here we investigated the developmental processes by which Vegfa may influence cortical interneuron development by analyzing transgenic mice that ubiquitously express the Vegfa120 isoform to perturb its signaling gradient. We found that interneurons reach the dorsal cortex at mid phases of corticogenesis despite an aberrant vascular network. Instead, endothelial ablation of Vegfa alters cortical interneuron numbers, their intracortical distribution and spatial proximity to blood vessels. We show for the first time that vascular-secreted guidance factors promote early-migrating interneurons in the intact forebrain in vivo and identify a novel role for vascular-Vegfa in this process. PMID:29901792

  13. Pulmonary Vascular Congestion: A Mechanism for Distal Lung Unit Dysfunction in Obesity.

    PubMed

    Oppenheimer, Beno W; Berger, Kenneth I; Ali, Saleem; Segal, Leopoldo N; Donnino, Robert; Katz, Stuart; Parikh, Manish; Goldring, Roberta M

    2016-01-01

    Obesity is characterized by increased systemic and pulmonary blood volumes (pulmonary vascular congestion). Concomitant abnormal alveolar membrane diffusion suggests subclinical interstitial edema. In this setting, functional abnormalities should encompass the entire distal lung including the airways. We hypothesize that in obesity: 1) pulmonary vascular congestion will affect the distal lung unit with concordant alveolar membrane and distal airway abnormalities; and 2) the degree of pulmonary congestion and membrane dysfunction will relate to the cardiac response. 54 non-smoking obese subjects underwent spirometry, impulse oscillometry (IOS), diffusion capacity (DLCO) with partition into membrane diffusion (DM) and capillary blood volume (VC), and cardiac MRI (n = 24). Alveolar-capillary membrane efficiency was assessed by calculation of DM/VC. Mean age was 45±12 years; mean BMI was 44.8±7 kg/m2. Vital capacity was 88±13% predicted with reduction in functional residual capacity (58±12% predicted). Despite normal DLCO (98±18% predicted), VC was elevated (135±31% predicted) while DM averaged 94±22% predicted. DM/VC varied from 0.4 to 1.4 with high values reflecting recruitment of alveolar membrane and low values indicating alveolar membrane dysfunction. The most abnormal IOS (R5 and X5) occurred in subjects with lowest DM/VC (r2 = 0.31, p<0.001; r2 = 0.34, p<0.001). Cardiac output and index (cardiac output / body surface area) were directly related to DM/VC (r2 = 0.41, p<0.001; r2 = 0.19, p = 0.03). Subjects with lower DM/VC demonstrated a cardiac output that remained in the normal range despite presence of obesity. Global dysfunction of the distal lung (alveolar membrane and distal airway) is associated with pulmonary vascular congestion and failure to achieve the high output state of obesity. Pulmonary vascular congestion and consequent fluid transudation and/or alterations in the structure of the alveolar capillary membrane may be considered often

  14. Mixed vascular nevus syndrome: a report of four new cases and a literature review

    PubMed Central

    Polizzi, Agata; Strano, Serena; Schepis, Carmelo; Morano, Massimiliano; Belfiore, Giuseppe; Palmucci, Stefano; Foti, Pietro Valerio; Pirrone, Concetta; Sofia, Vito; David, Emanuele; Salpietro, Vincenzo; Mankad, Kshitij; Milone, Pietro

    2016-01-01

    (n=4); hyperpneumatisation of the sinuses (n=2); hypoplastic brain vessels (n=4); colpocephaly and malformation of cortical development (n=2). Follow-up data on our previous 2 cases revealed that the vascular abnormalities in the skin and nervous system were stable over years without neurological progression or deterioration. Conclusions Pathogenically, this complex phenotype suggests that embryonic pairing and somatic recombination of recessive (didymotic) alleles controlling the balance between constriction (i.e., nevus anemicus) and dilatation (i.e., nevus telangiectaticus) of blood vessels could be the primary event causing the phenomena of cutaneous and brain vascular twin spotting and the paired phenomena of skull hyperpneumatisation vs. hypertrophy and brain megalencephaly/colpocephaly vs. cortical dysplasia. This association is likely more frequent than previously thought and should be investigated by means of: (I) brain and spinal cord imaging (combination of CT and MRI studies); (II) skeletal X-ray studies (when dictated by clinical findings); (III) systemic ultrasound studies; (IV) neurophysiologic studies (EEG); (V) psychomotor testing; (VI) and laboratory investigation (including immune-mediated dysfunction). PMID:27942471

  15. T wave abnormalities, high body mass index, current smoking and high lipoprotein (a) levels predict the development of major abnormal Q/QS patterns 20 years later. A population-based study

    PubMed Central

    Moller, Christina Strom; Byberg, Liisa; Sundstrom, Johan; Lind, Lars

    2006-01-01

    Background Most studies on risk factors for development of coronary heart disease (CHD) have been based on the clinical outcome of CHD. Our aim was to identify factors that could predict the development of ECG markers of CHD, such as abnormal Q/QS patterns, ST segment depression and T wave abnormalities, in 70-year-old men, irrespective of clinical outcome. Methods Predictors for development of different ECG abnormalities were identified in a population-based study using stepwise logistic regression. Anthropometrical and metabolic factors, ECG abnormalities and vital signs from a health survey of men at age 50 were related to ECG abnormalities identified in the same cohort 20 years later. Results At the age of 70, 9% had developed a major abnormal Q/QS pattern, but 63% of these subjects had not been previously hospitalized due to MI, while 57% with symptomatic MI between age 50 and 70 had no major Q/QS pattern at age 70. T wave abnormalities (Odds ratio 3.11, 95% CI 1.18–8.17), high lipoprotein (a) levels, high body mass index (BMI) and smoking were identified as significant independent predictors for the development of abnormal major Q/QS patterns. T wave abnormalities and high fasting glucose levels were significant independent predictors for the development of ST segment depression without abnormal Q/QS pattern. Conclusion T wave abnormalities on resting ECG should be given special attention and correlated with clinical information. Risk factors for major Q/QS patterns need not be the same as traditional risk factors for clinically recognized CHD. High lipoprotein (a) levels may be a stronger risk factor for silent myocardial infarction (MI) compared to clinically recognized MI. PMID:16519804

  16. Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival.

    PubMed

    Maes, Christa; Stockmans, Ingrid; Moermans, Karen; Van Looveren, Riet; Smets, Nico; Carmeliet, Peter; Bouillon, Roger; Carmeliet, Geert

    2004-01-01

    VEGF is crucial for metaphyseal bone vascularization. In contrast, the angiogenic factors required for vascularization of epiphyseal cartilage are unknown, although this represents a developmentally and clinically important aspect of bone growth. The VEGF gene is alternatively transcribed into VEGF(120), VEGF(164), and VEGF(188) isoforms that differ in matrix association and receptor binding. Their role in bone development was studied in mice expressing single isoforms. Here we report that expression of only VEGF(164) or only VEGF(188) (in VEGF(188/188) mice) was sufficient for metaphyseal development. VEGF(188/188) mice, however, showed dwarfism, disrupted development of growth plates and secondary ossification centers, and knee joint dysplasia. This phenotype was at least partly due to impaired vascularization surrounding the epiphysis, resulting in ectopically increased hypoxia and massive chondrocyte apoptosis in the interior of the epiphyseal cartilage. In addition to the vascular defect, we provide in vitro evidence that the VEGF(188) isoform alone is also insufficient to regulate chondrocyte proliferation and survival responses to hypoxia. Consistent herewith, chondrocytes in or close to the hypoxic zone in VEGF(188/188) mice showed increased proliferation and decreased differentiation. These findings indicate that the insoluble VEGF(188) isoform is insufficient for establishing epiphyseal vascularization and regulating cartilage development during endochondral bone formation.

  17. Abnormal splenic artery diameter/hepatic artery diameter ratio in cirrhosis-induced portal hypertension

    PubMed Central

    Zeng, Dao-Bing; Dai, Chuan-Zhou; Lu, Shi-Chun; He, Ning; Wang, Wei; Li, Hong-Jun

    2013-01-01

    AIM: To determine an optimal cutoff value for abnormal splenic artery diameter/proper hepatic artery diameter (S/P) ratio in cirrhosis-induced portal hypertension. METHODS: Patients with cirrhosis and portal hypertension (n = 770) and healthy volunteers (n = 31) underwent volumetric computed tomography three-dimensional vascular reconstruction to measure the internal diameters of the splenic artery and proper hepatic artery to calculate the S/P ratio. The cutoff value for abnormal S/P ratio was determined using receiver operating characteristic curve analysis, and the prevalence of abnormal S/P ratio and associations between abnormal S/P ratio and major complications of portal hypertension were studied using logistic regression. RESULTS: The receiver operating characteristic analysis showed that the cutoff points for abnormal splenic artery internal diameter and S/P ratio were > 5.19 mm and > 1.40, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value were 74.2%, 45.2%, 97.1%, and 6.6%, respectively. The prevalence of an abnormal S/P ratio in the patients with cirrhosis and portal hypertension was 83.4%. Patients with a higher S/P ratio had a lower risk of developing ascites [odds ratio (OR) = 0.708, 95%CI: 0.508-0.986, P = 0.041] and a higher risk of developing esophageal and gastric varices (OR = 1.483, 95%CI: 1.010-2.175, P = 0.044) and forming collateral circulation (OR = 1.518, 95%CI: 1.033-2.230, P = 0.034). After splenectomy, the portal venous pressure and maximum and mean portal venous flow velocities were reduced, while the flow rate and maximum and minimum flow velocities of the hepatic artery were increased (P < 0.05). CONCLUSION: The prevalence of an abnormal S/P ratio is high in patients with cirrhosis and portal hypertension, and it can be used as an important marker of splanchnic hemodynamic disturbances. PMID:23483462

  18. Death receptors DR6 and TROY regulate brain vascular development.

    PubMed

    Tam, Stephen J; Richmond, David L; Kaminker, Joshua S; Modrusan, Zora; Martin-McNulty, Baby; Cao, Tim C; Weimer, Robby M; Carano, Richard A D; van Bruggen, Nick; Watts, Ryan J

    2012-02-14

    Signaling events that regulate central nervous system (CNS) angiogenesis and blood-brain barrier (BBB) formation are only beginning to be elucidated. By evaluating the gene expression profile of mouse vasculature, we identified DR6/TNFRSF21 and TROY/TNFRSF19 as regulators of CNS-specific angiogenesis in both zebrafish and mice. Furthermore, these two death receptors interact both genetically and physically and are required for vascular endothelial growth factor (VEGF)-mediated JNK activation and subsequent human brain endothelial sprouting in vitro. Increasing beta-catenin levels in brain endothelium upregulate DR6 and TROY, indicating that these death receptors are downstream target genes of Wnt/beta-catenin signaling, which has been shown to be required for BBB development. These findings define a role for death receptors DR6 and TROY in CNS-specific vascular development. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Theories of schizophrenia: a genetic-inflammatory-vascular synthesis

    PubMed Central

    Hanson, Daniel R; Gottesman, Irving I

    2005-01-01

    Background Schizophrenia, a relatively common psychiatric syndrome, affects virtually all brain functions yet has eluded explanation for more than 100 years. Whether by developmental and/or degenerative processes, abnormalities of neurons and their synaptic connections have been the recent focus of attention. However, our inability to fathom the pathophysiology of schizophrenia forces us to challenge our theoretical models and beliefs. A search for a more satisfying model to explain aspects of schizophrenia uncovers clues pointing to genetically mediated CNS microvascular inflammatory disease. Discussion A vascular component to a theory of schizophrenia posits that the physiologic abnormalities leading to illness involve disruption of the exquisitely precise regulation of the delivery of energy and oxygen required for normal brain function. The theory further proposes that abnormalities of CNS metabolism arise because genetically modulated inflammatory reactions damage the microvascular system of the brain in reaction to environmental agents, including infections, hypoxia, and physical trauma. Damage may accumulate with repeated exposure to triggering agents resulting in exacerbation and deterioration, or healing with their removal. There are clear examples of genetic polymorphisms in inflammatory regulators leading to exaggerated inflammatory responses. There is also ample evidence that inflammatory vascular disease of the brain can lead to psychosis, often waxing and waning, and exhibiting a fluctuating course, as seen in schizophrenia. Disturbances of CNS blood flow have repeatedly been observed in people with schizophrenia using old and new technologies. To account for the myriad of behavioral and other curious findings in schizophrenia such as minor physical anomalies, or reported decreased rates of rheumatoid arthritis and highly visible nail fold capillaries, we would have to evoke a process that is systemic such as the vascular and immune

  20. Prospects for Vascular Access Education in Developing Countries: Current Situation in Cambodia.

    PubMed

    Naganuma, Toshihide; Takemoto, Yoshiaki

    2017-01-01

    We report our activities training doctors on vascular access procedures at International University (IU) Hospital in Cambodia through a program facilitated by Ubiquitous Blood Purification International, a nonprofit organization that provides medical support to developing countries in the field of dialysis medicine. Six doctors from Japan have been involved in the education of medical personnel at IU, and we have collectively visited Cambodia about 15 times from 2010 to 2016. In these visits, we have performed many operations, including 42 for arteriovenous fistula, 1 arteriovenous graft, and 1 percutaneous transluminal angioplasty. Stable development and management of vascular access is increasingly required in Cambodia due to increased use of dialysis therapy, and training of doctors in this technique is urgently required. However, we have encountered several difficulties that need to be addressed, including (1) the situation of personnel receiving this training, (2) problems with facilities, including medical equipment and drugs, (3) financial limitations, and (4) problems with management of vascular access. © 2017 S. Karger AG, Basel.

  1. Optical coherence tomography angiography retinal vascular network assessment in multiple sclerosis.

    PubMed

    Lanzillo, Roberta; Cennamo, Gilda; Criscuolo, Chiara; Carotenuto, Antonio; Velotti, Nunzio; Sparnelli, Federica; Cianflone, Alessandra; Moccia, Marcello; Brescia Morra, Vincenzo

    2017-09-01

    Optical coherence tomography (OCT) angiography is a new method to assess the density of the vascular networks. Vascular abnormalities are considered involved in multiple sclerosis (MS) pathology. To assess the presence of vascular abnormalities in MS and to evaluate their correlation to disease features. A total of 50 MS patients with and without history of optic neuritis (ON) and 46 healthy subjects were included. All underwent spectral domain (SD)-OCT and OCT angiography. Clinical history, Expanded Disability Status Scale (EDSS), Multiple Sclerosis Severity Score (MSSS) and disease duration were collected. Angio-OCT showed a vessel density reduction in eyes of MS patients when compared to controls. A statistically significant reduction in all SD-OCT and OCT angiography parameters was noticed both in eyes with and without ON when compared with control eyes. We found an inverse correlation between SD-OCT parameters and MSSS ( p = 0.003) and between vessel density parameters and EDSS ( p = 0.007). We report a vessel density reduction in retina of MS patients. We highlight the clinical correlation between vessel density and EDSS, suggesting that angio-OCT could be a good marker of disease and of disability in MS.

  2. The plant vascular system: Evolution, development and functions

    Treesearch

    William J. Lucas; Andrew Groover; Raffael Lichtenberger; Kaori Furuta; Shri-Ram Yadav; Yka Helariutta; Xin-Qiang He; Hiroo Fukuda; Julie Kang; Siobhan M. Brady; John W. Patrick; John Sperry; Akiko Yoshida; Ana-Flor Lopez-Millan; Michael A. Grusak; Pradeep Kachroo

    2013-01-01

    The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made...

  3. Extent of BOLD Vascular Dysregulation Is Greater in Diffuse Gliomas without Isocitrate Dehydrogenase 1 R132H Mutation.

    PubMed

    Englander, Zachary K; Horenstein, Craig I; Bowden, Stephen G; Chow, Daniel S; Otten, Marc L; Lignelli, Angela; Bruce, Jeffrey N; Canoll, Peter; Grinband, Jack

    2018-06-01

    Purpose To determine the effect that R132H mutation status of diffuse glioma has on extent of vascular dysregulation and extent of residual blood oxygen level-dependent (BOLD) abnormality after surgical resection. Materials and Methods This study was an institutional review board-approved retrospective analysis of an institutional database of patients, and informed consent was waived. From 2010 to 2017, 39 treatment-naïve patients with diffuse glioma underwent preoperative echo-planar imaging and BOLD functional magnetic resonance imaging. BOLD vascular dysregulation maps were made by identifying voxels with time series similar to tumor and dissimilar to healthy brain. The spatial overlap between tumor and vascular dysregulation was characterized by using the Dice coefficient, and areas of BOLD abnormality outside the tumor margins were quantified as BOLD-only fraction (BOF). Linear regression was used to assess effects of R132H status on the Dice coefficient, BOF, and residual BOLD abnormality after surgical resection. Results When compared with R132H wild-type (R132H-) gliomas, R132H-mutated (R132H+) gliomas showed greater spatial overlap between BOLD abnormality and tumor (mean Dice coefficient, 0.659 ± 0.02 [standard error] for R132H+ and 0.327 ± 0.04 for R132H-; P < .001), less BOLD abnormality beyond the tumor margin (mean BOF, 0.255 ± 0.03 for R132H+ and 0.728 ± 0.04 for R132H-; P < .001), and less postoperative BOLD abnormality (residual fraction, 0.046 ± 0.0047 for R132H+ and 0.397 ± 0.045 for R132H-; P < .001). Receiver operating characteristic curve analysis showed high sensitivity and specificity in the discrimination of R132H+ tumors from R132H- tumors with calculation of both Dice coefficient and BOF (area under the receiver operating characteristic curve, 0.967 and 0.977, respectively). Conclusion R132H mutation status is an important variable affecting the extent of tumor-associated vascular dysregulation and the residual vascular

  4. Pulmonary vascular dysfunction in ARDS

    PubMed Central

    2014-01-01

    Acute respiratory distress syndrome (ARDS) is characterised by diffuse alveolar damage and is frequently complicated by pulmonary hypertension (PH). Multiple factors may contribute to the development of PH in this setting. In this review, we report the results of a systematic search of the available peer-reviewed literature for papers that measured indices of pulmonary haemodynamics in patients with ARDS and reported on mortality in the period 1977 to 2010. There were marked differences between studies, with some reporting strong associations between elevated pulmonary arterial pressure or elevated pulmonary vascular resistance and mortality, whereas others found no such association. In order to discuss the potential reasons for these discrepancies, we review the physiological concepts underlying the measurement of pulmonary haemodynamics and highlight key differences between the concepts of resistance in the pulmonary and systemic circulations. We consider the factors that influence pulmonary arterial pressure, both in normal lungs and in the presence of ARDS, including the important effects of mechanical ventilation. Pulmonary arterial pressure, pulmonary vascular resistance and transpulmonary gradient (TPG) depend not alone on the intrinsic properties of the pulmonary vascular bed but are also strongly influenced by cardiac output, airway pressures and lung volumes. The great variability in management strategies within and between studies means that no unified analysis of these papers was possible. Uniquely, Bull et al. (Am J Respir Crit Care Med 182:1123–1128, 2010) have recently reported that elevated pulmonary vascular resistance (PVR) and TPG were independently associated with increased mortality in ARDS, in a large trial with protocol-defined management strategies and using lung-protective ventilation. We then considered the existing literature to determine whether the relationship between PVR/TPG and outcome might be causal. Although we could identify

  5. Vascular hand-arm vibration syndrome--magnetic resonance angiography.

    PubMed

    Poole, C J M; Cleveland, T J

    2016-01-01

    The diagnosis of vascular hand-arm vibration syndrome (HAVS) requires consistent symptoms, photographic evidence of digital blanching and sufficient exposure to hand-transmitted vibration (HTV; A(8) > 2.5 m/s2). There is no reliable quantitative investigation for distinguishing HAVS from other causes of Raynaud's phenomenon and from normal individuals. Hypothenar and thenar hammer syndromes produce similar symptoms to HAVS but are difficult to diagnose clinically and may be confused with HAVS. Magnetic resonance angiography (MRA) is a safe and minimally invasive method of visualizing blood vessels. Three cases of vascular HAVS are described in which MRA revealed occlusions of the ulnar, radial and superficial palmar arteries. It is proposed that HTV was the cause of these occlusions, rather than blows to the hand unrelated to vibration, the assumed mechanism for the hammer syndromes. All three cases were advised not to expose their hands to HTV despite one of them being at Stockholm vascular stage 2 (early). MRA should be the investigation of choice for stage 2 vascular HAVS or vascular HAVS with unusual features or for a suspected hammer syndrome. The technique is however technically challenging and best done in specialist centres in collaboration with an occupational physician familiar with the examination of HAVS cases. Staging for HAVS should be developed to include anatomical arterial abnormalities as well as symptoms and signs of blanching. Workers with only one artery supplying a hand, or with only one palmar arch, may be at increased risk of progression and therefore should not be exposed to HTV irrespective of their Stockholm stage. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish

    EPA Science Inventory

    Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish Tamara Tal, Integrated Systems Toxicology Division, U.S. EPA Background: There are tens of thousands of chemicals that have yet to be fully evaluated for their toxicity by validated in vivo testing ...

  7. Inhibition of Vascular Endothelial Growth Factor Receptor Signal Transduction Blocks Follicle Progression but Does Not Necessarily Disrupt Vascular Development in Perinatal Rat Ovaries1

    PubMed Central

    McFee, Renee M.; Artac, Robin A.; McFee, Ryann M.; Clopton, Debra T.; Smith, Robyn A. Longfellow; Rozell, Timothy G.; Cupp, Andrea S.

    2009-01-01

    We hypothesized that vascular endothelial growth factor A (VEGFA) angiogenic isoforms and their receptors, FLT1 and KDR, regulate follicular progression in the perinatal rat ovary. Each VEGFA angiogenic isoform has unique functions (based on its exons) that affect diffusibility, cell migration, branching, and development of large vessels. The Vegfa angiogenic isoforms (Vegfa_120, Vegfa_164, and Vegfa_188) were detected in developing rat ovaries, and quantitative RT-PCR determined that Vegfa_120 and Vegfa_164 mRNA was more abundant after birth, while Vegfa_188 mRNA was highest at Embryonic Day 16. VEGFA and its receptors were localized to pregranulosa and granulosa cells of all follicle stages and to theca cells of advanced-stage follicles. To determine the role of VEGFA in developing ovaries, Postnatal Day 3/4 rat ovaries were cultured with 8 μM VEGFR-TKI, a tyrosine kinase inhibitor that blocks FLT1 and KDR. Ovaries treated with VEGFR-TKI had vascular development reduced by 94% (P < 0.0001), with more primordial follicles (stage 0), fewer early primary, transitional, and secondary follicles (stages 1, 3, and 4, respectively), and greater total follicle numbers compared with control ovaries (P < 0.005). V1, an inhibitor specific for KDR, was utilized to determine the effects of only KDR inhibition. Treatment with 30 μM V1 had no effect on vascular density; however, treated ovaries had fewer early primary, transitional, and secondary follicles and more primary follicles (stage 2) compared with control ovaries (P < 0.05). We conclude that VEGFA may be involved in primordial follicle activation and in follicle maturation and survival, which are regulated through vascular-dependent and vascular-independent mechanisms. PMID:19605787

  8. Mild anemia during pregnancy upregulates placental vascularity development.

    PubMed

    Stangret, A; Skoda, M; Wnuk, A; Pyzlak, M; Szukiewicz, D

    2017-05-01

    The connection between maternal hematological status and pregnancy outcome has been shown by many independent researchers. Attention was initially focused on the adverse effects of moderate and severe anemia. Interestingly, some studies revealed that mild anemia was associated with optimal fetal development and was not affecting pregnancy outcome. The explanation for this phenomenon became a target for scientists. Hemodilution, physiologic anemia and relative decrease in hemoglobin concentration are the changes observed during pregnancy but they do not explain the reasons for the positive influence of mild anemia on a fetomaternal unit. It is hypothesized that hemodilution facilitates placental perfusion because blood viscosity is reduced. Subsequently, it may lead to a decline in hemoglobin concentration. Anemia from its definition implies decreased oxygen carrying capacity of the blood and can result in hypoxemia and even hypoxia, which is a common factor inducing new blood vessels formation. Therefore, we raised the hypothesis that the lowered hemoglobin concentration during pregnancy may upregulate vascular growth factor receptors expression such as VEGFR-1 (Flt-1) and VEGFR-2 (FLK-1/KDR). Consecutively, increased fetoplacental vasculogenesis and angiogenesis provide further expansion of vascular network development, better placental perfusion and hence neither fetus nor the mother are affected. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Abnormal Neural Progenitor Cells Differentiated from Induced Pluripotent Stem Cells Partially Mimicked Development of TSC2 Neurological Abnormalities.

    PubMed

    Li, Yaqin; Cao, Jiqing; Chen, Menglong; Li, Jing; Sun, Yiming; Zhang, Yu; Zhu, Yuling; Wang, Liang; Zhang, Cheng

    2017-04-11

    Tuberous sclerosis complex (TSC) is a disease featuring devastating and therapeutically challenging neurological abnormalities. However, there is a lack of specific neural progenitor cell models for TSC. Here, the pathology of TSC was studied using primitive neural stem cells (pNSCs) from a patient presenting a c.1444-2A>C mutation in TSC2. We found that TSC2 pNSCs had higher proliferative activity and increased PAX6 expression compared with those of control pNSCs. Neurons differentiated from TSC2 pNSCs showed enlargement of the soma, perturbed neurite outgrowth, and abnormal connections among cells. TSC2 astrocytes had increased saturation density and higher proliferative activity. Moreover, the activity of the mTOR pathway was enhanced in pNSCs and induced in neurons and astrocytes. Thus, our results suggested that TSC2 heterozygosity caused neurological malformations in pNSCs, indicating that its heterozygosity might be sufficient for the development of neurological abnormalities in patients. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Vinpocetine suppresses pathological vascular remodeling by inhibiting vascular smooth muscle cell proliferation and migration.

    PubMed

    Cai, Yujun; Knight, Walter E; Guo, Shujie; Li, Jian-Dong; Knight, Peter A; Yan, Chen

    2012-11-01

    Abnormal vascular smooth muscle cell (SMC) activation is associated with various vascular disorders such as atherosclerosis, in-stent restenosis, vein graft disease, and transplantation-associated vasculopathy. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. However, its role in pathological vascular remodeling remains unexplored. Herein, we show that systemic administration of vinpocetine significantly reduced neointimal formation in carotid arteries after ligation injury. Vinpocetine also markedly decreased spontaneous remodeling of human saphenous vein explants in ex vivo culture. In cultured SMCs, vinpocetine dose-dependently suppressed cell proliferation and caused G1-phase cell cycle arrest, which is associated with a decrease in cyclin D1 and an increase in p27Kip1 levels. In addition, vinpocetine dose-dependently inhibited platelet-derived growth factor (PDGF)-stimulated SMC migration as determined by the two-dimensional migration assays and three-dimensional aortic medial explant invasive assay. Moreover, vinpocetine significantly reduced PDGF-induced type I collagen and fibronectin expression. It is noteworthy that PDGF-stimulated phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), but not protein kinase B, was specifically inhibited by vinpocetine. Vinpocetine powerfully attenuated intracellular reactive oxidative species (ROS) production, which largely mediates the inhibitory effects of vinpocetine on ERK1/2 activation and SMC growth. Taken together, our results reveal a novel function of vinpocetine in attenuating neointimal hyperplasia and pathological vascular remodeling, at least partially through suppressing ROS production and ERK1/2 activation in SMCs. Given the safety profile of vinpocetine, this study provides insight into the therapeutic potential of vinpocetine in proliferative vascular disorders.

  11. Vinpocetine Suppresses Pathological Vascular Remodeling by Inhibiting Vascular Smooth Muscle Cell Proliferation and Migration

    PubMed Central

    Cai, Yujun; Knight, Walter E.; Guo, Shujie; Li, Jian-Dong; Knight, Peter A.

    2012-01-01

    Abnormal vascular smooth muscle cell (SMC) activation is associated with various vascular disorders such as atherosclerosis, in-stent restenosis, vein graft disease, and transplantation-associated vasculopathy. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. However, its role in pathological vascular remodeling remains unexplored. Herein, we show that systemic administration of vinpocetine significantly reduced neointimal formation in carotid arteries after ligation injury. Vinpocetine also markedly decreased spontaneous remodeling of human saphenous vein explants in ex vivo culture. In cultured SMCs, vinpocetine dose-dependently suppressed cell proliferation and caused G1-phase cell cycle arrest, which is associated with a decrease in cyclin D1 and an increase in p27Kip1 levels. In addition, vinpocetine dose-dependently inhibited platelet-derived growth factor (PDGF)-stimulated SMC migration as determined by the two-dimensional migration assays and three-dimensional aortic medial explant invasive assay. Moreover, vinpocetine significantly reduced PDGF-induced type I collagen and fibronectin expression. It is noteworthy that PDGF-stimulated phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), but not protein kinase B, was specifically inhibited by vinpocetine. Vinpocetine powerfully attenuated intracellular reactive oxidative species (ROS) production, which largely mediates the inhibitory effects of vinpocetine on ERK1/2 activation and SMC growth. Taken together, our results reveal a novel function of vinpocetine in attenuating neointimal hyperplasia and pathological vascular remodeling, at least partially through suppressing ROS production and ERK1/2 activation in SMCs. Given the safety profile of vinpocetine, this study provides insight into the therapeutic potential of vinpocetine in proliferative vascular disorders. PMID:22915768

  12. Vascular, inflammatory, and metabolic factors associated with cognition in aging persons with chronic epilepsy.

    PubMed

    Hermann, Bruce P; Sager, Mark A; Koscik, Rebecca L; Young, Kate; Nakamura, Keith

    2017-11-01

    We examined cognition in aging persons with chronic epilepsy; characterized targeted vascular, inflammatory, and metabolic risk factors associated with abnormal cognitive aging in the general population; and examined associations between cognition and vascular, inflammatory, and metabolic health. Participants included 40 persons with chronic localization-related epilepsy and 152 controls, aged 54.6 and 55.3, respectively. Participants underwent neuropsychological assessment, clinical examination, and fasting blood evaluation for quantification of vascular status (systolic and diastolic blood pressure, obesity/body mass index [BMI], total and high-density lipoprotein [HDL] cholesterol level, and homocysteine), inflammatory markers (high sensitivity C-reactive protein [hs-CRP], and interleukin-6 [IL-6]), and metabolic status (insulin resistance [Homeostatic Model Assessment of Insulin Resistance (HOMA-IR)], glucose). Epilepsy participants exhibited impairment across all cognitive factor scores (all p's < 0.0001); abnormalities in BMI (p = 0.049), hs-CRP (p = 0.046), HOMA-IR (p = 0.0040), and fasting glucose (p = 0.03), with significant relationships between higher HOMA-IR with poorer Immediate Memory (p = 0.03) and Visuospatial Ability (0.03); elevated hs-CRP with poorer Visuospatial (p = 0.035) and Verbal Ability (p = 0.06); elevated BMI with poorer Speed/Flexibility (p = 0.04), Visuospatial (p = 0.001) and Verbal Ability (p = 0.02); and lower HDL with poorer Verbal Learning/Delayed Memory (p = 0.01), Speed/Flexibility (p = 0.043), and Working Memory (p = 0.008). Aging persons with chronic epilepsy exhibit multiple abnormalities in metabolic, inflammatory, and vascular health that are associated with poorer cognitive function. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  13. Environmental Impact on Vascular Development Predicted by High-Throughput Screening

    PubMed Central

    Judson, Richard S.; Reif, David M.; Sipes, Nisha S.; Singh, Amar V.; Chandler, Kelly J.; DeWoskin, Rob; Dix, David J.; Kavlock, Robert J.; Knudsen, Thomas B.

    2011-01-01

    Background: Understanding health risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. High-throughput screening (HTS) in the U.S. Environmental Protection Agency (EPA) ToxCast™ project provides vast data on an expanding chemical library currently consisting of > 1,000 unique compounds across > 500 in vitro assays in phase I (complete) and Phase II (under way). This public data set can be used to evaluate concentration-dependent effects on many diverse biological targets and build predictive models of prototypical toxicity pathways that can aid decision making for assessments of human developmental health and disease. Objective: We mined the ToxCast phase I data set to identify signatures for potential chemical disruption of blood vessel formation and remodeling. Methods: ToxCast phase I screened 309 chemicals using 467 HTS assays across nine assay technology platforms. The assays measured direct interactions between chemicals and molecular targets (receptors, enzymes), as well as downstream effects on reporter gene activity or cellular consequences. We ranked the chemicals according to individual vascular bioactivity score and visualized the ranking using ToxPi (Toxicological Priority Index) profiles. Results: Targets in inflammatory chemokine signaling, the vascular endothelial growth factor pathway, and the plasminogen-activating system were strongly perturbed by some chemicals, and we found positive correlations with developmental effects from the U.S. EPA ToxRefDB (Toxicological Reference Database) in vivo database containing prenatal rat and rabbit guideline studies. We observed distinctly different correlative patterns for chemicals with effects in rabbits versus rats, despite derivation of in vitro signatures based on human cells and cell-free biochemical targets, implying conservation but potentially differential

  14. Vascular alterations underlie developmental problems manifested in cloned cattle before or after birth.

    PubMed

    Maiorka, Paulo Cesar; Favaron, Phelipe Oliveira; Mess, Andrea Maria; dos Santos, Caio Rodrigues; Alberto, Miryan Lanca; Meirelles, Flavio Vieira; Miglino, Maria Angelica

    2015-01-01

    Although assisted reproductive techniques are commonly applied in humans and animals, they are frequently associated with major developmental deficits and reduced viability. To explore abnormalities associated with cloning or nuclear transfer (NT) as the most invasive of these methods, we used a bovine model to characterize abnormalities. Detailed necropsy examinations were done on 13 calves that died soon after birth; in addition, we included data from embryos and fetuses (produced by NT) that terminated prematurely. Bovine clones that survived until the neonatal period differed quantitatively and qualitatively from in-vivo-derived cattle. Although alterations affected a variety of organs (e.g. heart, lung and liver), there was a clear association with abberant vascular developmental during the early intrauterine phase. Therefore, we concluded that vascular problems were key alterations induced by cloning (presumably via epigenetic modifications).

  15. O-GlcNAc on NOTCH1 EGF repeats regulates ligand-induced Notch signaling and vascular development in mammals.

    PubMed

    Sawaguchi, Shogo; Varshney, Shweta; Ogawa, Mitsutaka; Sakaidani, Yuta; Yagi, Hirokazu; Takeshita, Kyosuke; Murohara, Toyoaki; Kato, Koichi; Sundaram, Subha; Stanley, Pamela; Okajima, Tetsuya

    2017-04-11

    The glycosyltransferase EOGT transfers O-GlcNAc to a consensus site in epidermal growth factor-like (EGF) repeats of a limited number of secreted and membrane proteins, including Notch receptors. In EOGT-deficient cells, the binding of DLL1 and DLL4, but not JAG1, canonical Notch ligands was reduced, and ligand-induced Notch signaling was impaired. Mutagenesis of O-GlcNAc sites on NOTCH1 also resulted in decreased binding of DLL4. EOGT functions were investigated in retinal angiogenesis that depends on Notch signaling. Global or endothelial cell-specific deletion of Eogt resulted in defective retinal angiogenesis, with a mild phenotype similar to that caused by reduced Notch signaling in retina. Combined deficiency of different Notch1 mutant alleles exacerbated the abnormalities in Eogt -/- retina, and Notch target gene expression was decreased in Eogt -/- endothelial cells. Thus, O-GlcNAc on EGF repeats of Notch receptors mediates ligand-induced Notch signaling required in endothelial cells for optimal vascular development.

  16. Association Between Increased Vascular Density and Loss of Protective RAS in Early-Stage NPDR

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Raghunandan, Sneha; Vyas, Ruchi J.; Vu, Amanda C.; Bryant, Douglas; Yaqian, Duan; Knecht, Brenda E.; Grant, Maria B.; Chalam, K . V.; Parsons-Wingerter, Patricia

    2016-01-01

    Our hypothesis predicts that retinal blood vessels increase in density during early-stage progression to moderate nonproliferative diabetic retinopathy (NPDR). The prevailing paradigm of NPDR progression is that vessels drop out prior to abnormal, vision-impairing regrowth at late-stage proliferative diabetic retinopathy (DR). However, surprising results for our previous preliminary study 1 with NASA's VESsel GENeration Analysis (VESGEN) software showed that vessels proliferated considerably during moderate NPDR compared to drop out at both mild and severe NPDR. Validation of our hypothesis will support development of successful early-stage regenerative therapies such as vascular repair by circulating angiogenic cells (CACs). The renin-angiotensin system (RAS)is implicated in the pathogenesis of DR and in the function of CACs, a critical bone marrow-derived population that is instrumental in vascular repair.

  17. Vascular Aging: Lessons From Pediatric Hypertension.

    PubMed

    Litwin, Mieczyslaw; Feber, Janusz; Ruzicka, Marcel

    2016-05-01

    Hypertension (HTN) in children is associated with early vascular aging (EVA) and underlying immunologic-metabolic abnormalities and accelerated biological maturation. Morphologic and functional vascular changes underlying EVA and HTN in children resemble those seen in the elderly including but not limited to an increase in intima-media thickness (IMT) and arterial stiffness and endothelial dysfunction. Although progeria syndrome leading to EVA and the development of clinically manifested cardiovascular (CV) disease in the second decade of life is a rare hereditary disorder, primary HTN, which is also associated with EVA, is much more common (reported in up to 10% in adolescents). EVA associated with HTN in children leads to the premature development of target organ injury in childhood and CV events in early adulthood. Limited evidence from prospective observational studies in children and adolescents indicates that early lifestyle measures (low salt/low sugar intake and exercise) or pharmacologic treatment of HTN, or both, partially reverses morphologic and functional changes underlying EVA such as an increase in carotid IMT and pulse wave velocity, a decrease in flow-mediated dilation of the brachial artery, and an increase in oxidative stress and visceral fat. Future mechanistic and therapeutic clinical trials are desirable to assess the mechanisms and treatment strategies of EVA in the context of HTN in children and their effect on CV events in early adulthood. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  18. Infrared thermal imaging for detection of peripheral vascular disorders

    PubMed Central

    Bagavathiappan, S.; Saravanan, T.; Philip, John; Jayakumar, T.; Raj, Baldev; Karunanithi, R.; Panicker, T. M. R.; Korath, M. Paul; Jagadeesan, K.

    2009-01-01

    Body temperature is a very useful parameter for diagnosing diseases. There is a definite correlation between body temperature and diseases. We have used Infrared Thermography to study noninvasive diagnosis of peripheral vascular diseases. Temperature gradients are observed in the affected regions of patients with vascular disorders, which indicate abnormal blood flow in the affected region. Thermal imaging results are well correlated with the clinical findings. Certain areas on the affected limbs show increased temperature profiles, probably due to inflammation and underlying venous flow changes. In general the temperature contrast in the affected regions is about 0.7 to 1° C above the normal regions, due to sluggish blood circulation. The results suggest that the thermal imaging technique is an effective technique for detecting small temperature changes in the human body due to vascular disorders. PMID:20126565

  19. New vascular classification of port-wine stains: improving prediction of Sturge-Weber risk.

    PubMed

    Waelchli, R; Aylett, S E; Robinson, K; Chong, W K; Martinez, A E; Kinsler, V A

    2014-10-01

    Facial port-wine stains (PWSs) are usually isolated findings; however, when associated with cerebral and ocular vascular malformations they form part of the classical triad of Sturge-Weber syndrome (SWS). To evaluate the associations between the phenotype of facial PWS and the diagnosis of SWS in a cohort with a high rate of SWS. Records were reviewed of all 192 children with a facial PWS seen in 2011-13. Adverse outcome measures were clinical (seizures, abnormal neurodevelopment, glaucoma) and radiological [abnormal magnetic resonance imaging (MRI)], modelled by multivariate logistic regression. The best predictor of adverse outcomes was a PWS involving any part of the forehead, delineated at its inferior border by a line joining the outer canthus of the eye to the top of the ear, and including the upper eyelid. This involves all three divisions of the trigeminal nerve, but corresponds well to the embryonic vascular development of the face. Bilateral distribution was not an independently significant phenotypic feature. Abnormal MRI was a better predictor of all clinical adverse outcome measures than PWS distribution; however, for practical reasons guidelines based on clinical phenotype are proposed. Facial PWS distribution appears to follow the embryonic vasculature of the face, rather than the trigeminal nerve. We propose that children with a PWS on any part of the 'forehead' should have an urgent ophthalmology review and a brain MRI. A prospective study has been established to test the validity of these guidelines. © The Authors. British Journal of Dermatology published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists.

  20. From hemobiology to vascular disease: a review of the potential of gliclazide to influence the pathogenesis of diabetic vascular disease.

    PubMed

    Jennings, P E

    1994-01-01

    Patients with type II diabetes commonly die from thrombotic vascular disease. Large vessel occlusion due to thrombosis or atherosclerotic stenosis is a process accelerated by diabetes and results in premature death. Diabetic small vessel disease, with its unique microangiopathic process, underlies many of the large vessel changes as well as causing retinopathy and nephropathy. The microangiopathic changes produce a prothrombotic tendency that has been widely reported in type II diabetes. There is reduced endothelial cell production of prostacyclin and the activators of fibrinolysis, together with increased platelet reactivity. In addition, there is increased lipid peroxidation and oxidative stress due to excess free-radical activity and impaired antioxidant defenses particularly in the presence of microvascular disease. The development of many of these abnormalities is associated with poor long-term glycemic control. However, the changes are also seen in atherosclerosis in nondiabetic patients where the progression of the disease can be modified by antiplatelet agents and antioxidants. The process of vascular damage is accelerated by diabetes, often due to co-existing disease and aging, although it is not clear that improvement in long-term glycemic control by lowering blood glucose levels to near to the nondiabetic state reduces the development of small and large vessel disease. Although the biochemical mechanism underlying this observation remains uncertain, protein glycosylation and increased platelet reactivity are implicated and interrelated. Increased oxidative stress due to excess free-radical activity may be central to diabetic vascular disease as endothelial cell damage, lipoprotein oxidation, modification of both platelet reactivity and arachidonic acid cascade are all properties of free radicals and their reaction products lipid peroxides.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. High-throughput identification of small molecules that affect human embryonic vascular development

    PubMed Central

    Vazão, Helena; Rosa, Susana; Barata, Tânia; Costa, Ricardo; Pitrez, Patrícia R.; Honório, Inês; de Vries, Margreet R.; Papatsenko, Dimitri; Benedito, Rui; Saris, Daniel; Khademhosseini, Ali; Quax, Paul H. A.; Pereira, Carlos F.; Mercader, Nadia; Ferreira, Lino

    2017-01-01

    Birth defects, which are in part caused by exposure to environmental chemicals and pharmaceutical drugs, affect 1 in every 33 babies born in the United States each year. The current standard to screen drugs that affect embryonic development is based on prenatal animal testing; however, this approach yields low-throughput and limited mechanistic information regarding the biological pathways and potential adverse consequences in humans. To develop a screening platform for molecules that affect human embryonic development based on endothelial cells (ECs) derived from human pluripotent stem cells, we differentiated human pluripotent stem cells into embryonic ECs and induced their maturation under arterial flow conditions. These cells were then used to screen compounds that specifically affect embryonic vasculature. Using this platform, we have identified two compounds that have higher inhibitory effect in embryonic than postnatal ECs. One of them was fluphenazine (an antipsychotic), which inhibits calmodulin kinase II. The other compound was pyrrolopyrimidine (an antiinflammatory agent), which inhibits vascular endothelial growth factor receptor 2 (VEGFR2), decreases EC viability, induces an inflammatory response, and disrupts preformed vascular networks. The vascular effect of the pyrrolopyrimidine was further validated in prenatal vs. adult mouse ECs and in embryonic and adult zebrafish. We developed a platform based on human pluripotent stem cell-derived ECs for drug screening, which may open new avenues of research for the study and modulation of embryonic vasculature. PMID:28348206

  2. High-throughput identification of small molecules that affect human embryonic vascular development.

    PubMed

    Vazão, Helena; Rosa, Susana; Barata, Tânia; Costa, Ricardo; Pitrez, Patrícia R; Honório, Inês; de Vries, Margreet R; Papatsenko, Dimitri; Benedito, Rui; Saris, Daniel; Khademhosseini, Ali; Quax, Paul H A; Pereira, Carlos F; Mercader, Nadia; Fernandes, Hugo; Ferreira, Lino

    2017-04-11

    Birth defects, which are in part caused by exposure to environmental chemicals and pharmaceutical drugs, affect 1 in every 33 babies born in the United States each year. The current standard to screen drugs that affect embryonic development is based on prenatal animal testing; however, this approach yields low-throughput and limited mechanistic information regarding the biological pathways and potential adverse consequences in humans. To develop a screening platform for molecules that affect human embryonic development based on endothelial cells (ECs) derived from human pluripotent stem cells, we differentiated human pluripotent stem cells into embryonic ECs and induced their maturation under arterial flow conditions. These cells were then used to screen compounds that specifically affect embryonic vasculature. Using this platform, we have identified two compounds that have higher inhibitory effect in embryonic than postnatal ECs. One of them was fluphenazine (an antipsychotic), which inhibits calmodulin kinase II. The other compound was pyrrolopyrimidine (an antiinflammatory agent), which inhibits vascular endothelial growth factor receptor 2 (VEGFR2), decreases EC viability, induces an inflammatory response, and disrupts preformed vascular networks. The vascular effect of the pyrrolopyrimidine was further validated in prenatal vs. adult mouse ECs and in embryonic and adult zebrafish. We developed a platform based on human pluripotent stem cell-derived ECs for drug screening, which may open new avenues of research for the study and modulation of embryonic vasculature.

  3. Fluorescein angiography and retinal vascular development in premature infants.

    PubMed

    Purcaro, Velia; Velia, Purcaro; Baldascino, Antonio; Antonio, Baldascino; Papacci, Patrizia; Patrizia, Papacci; Giannantonio, Carmen; Carmen, Giannantonio; Molisso, Anna; Anna, Molisso; Molle, Fernando; Fernando, Molle; Lepore, Domenico; Domenico, Lepore; Romagnoli, Costantino; Costantino, Romagnoli

    2012-10-01

    To investigate the role of fluorescein angiography (FA) in the management of retinopathy of prematurity (ROP) in preterm newborns. An observational case series of 13 extremely low birth weight infants. From September 2009 to March 2010, 13 newborn infants with a gestational age <29 weeks end/or birth weight <1000 g underwent serial fluorescein angiography with RetCam (Clarity, Pleasanton, CA) every 2 weeks. The fluorescein angiograms were examined to optimize the timing of diagnosis of ROP and to investigate development of retinal and choroidal vascularization. There were no side effects related to FA. Variable features of retinal and choroidal circulation in preterm infants with a high risk of developing ROP were noted. FA allows vessels branching at the junction between vascular and avascular retina (V-Av junction) to be viewed easily and shows the ROP findings that sometimes cannot be seen by indirect ophthalmoscopy. Dye leakage is the most significant sign of progression to severe ROP or the need for surgery in newborn babies with ROP. RetCam-assisted intravenous FA is safe and allows a more objective assessment of the ROP stage and zone.

  4. Arterial complications of vascular Ehlers-Danlos syndrome.

    PubMed

    Eagleton, Matthew J

    2016-12-01

    Vascular Ehlers-Danlos syndrome (EDS) is a relatively rare genetic syndrome that occurs owing to disorders in the metabolism of fibrillary collagen. These defects affect the soft connective tissues resulting in abnormalities in the skin, joints, hollow organs, and blood vessels. Patients with these defects frequently present at a young age with spontaneous arterial complications involving the medium-sized arteries. Complications involving the hollow organs, such as spontaneous colonic perforation, are observed as well. Given the fragility of the soft tissue, open and endovascular intervention on patients with vascular EDS is fraught with high complication rates. A PubMed search was performed to identify manuscripts published related to vascular EDS. This search included more than 747 articles. These findings were cross-referenced using key terms, including endovascular, embolization, surgery, genetics, pathophysiology, connective tissue disorders, vascular complications, systematic review, type III collagen, and COL3A1. The references in key articles and review articles were evaluated for additional resources not identified in the PubMed search. Care must be taken to balance the risk of intervention vs the risk of continued observation. Life-threatening hemorrhage, however, mandates intervention. With careful, altered approaches to tissue handling, endovascular approaches may provide a safer option for managing the arterial complications observed in patients with vascular EDS. Additional hope may also be found in the use of pharmacologic agents that reduce the incidence and severity of the arterial complications. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  5. History and conceptual developments in vascular biology and angiogenesis research: a personal view.

    PubMed

    Bikfalvi, Andreas

    2017-11-01

    Vascular biology is an important scientific domain that has gradually penetrated many medical and scientific fields. Scientists are most often focused on present problems in their daily scientific work and lack awareness regarding the evolution of their domain throughout history and of how philosophical issues are related to their research field. In this article, I provide a personal view with an attempt to conceptualize vascular development research that articulates lessons taken from history, philosophy, biology and medicine. I discuss selected aspects related to the history and the philosophy of sciences that can be extracted from the study of vascular development and how conceptual progress in this research field has been made. I will analyze paradigm shifts, cross-fertilization of different fields, technological advances and its impact on angiogenesis and discuss issues related to evolutionary biology, proximity of different molecular systems and scientific methodologies. Finally, I discuss briefly my views where the field is heading in the future.

  6. Placental vascular dysfunction, fetal and childhood growth, and cardiovascular development: the generation R study.

    PubMed

    Gaillard, Romy; Steegers, Eric A P; Tiemeier, Henning; Hofman, Albert; Jaddoe, Vincent W V

    2013-11-12

    Suboptimal fetal nutrition may influence early growth and cardiovascular development. We examined whether umbilical and uterine artery resistance indices, as measures of feto-placental and utero-placental vascular function, respectively, are associated with fetal and childhood growth and cardiovascular development. This study was embedded in a population-based prospective cohort study among 6716 mothers and their children. Umbilical artery pulsatility index and uterine artery resistance index and fetal growth were measured in third trimester. Childhood growth was repeatedly assessed from birth to the age of 6 years. We measured body fat distribution, left ventricular mass, and blood pressure at the age of 6 years. Higher third trimester umbilical and uterine artery vascular resistance were associated with lower fetal length and weight growth in third trimester resulting in a smaller size at birth among boys and girls (P values < 0.05). These differences in length and weight growth became smaller from the age of 6 months onwards, but were still present at the age of 6 years. Higher third trimester umbilical artery vascular resistance, but not uterine artery vascular resistance, was associated with higher childhood body mass index, total fat mass, android/gynoid fat mass ratio, and systolic blood pressure, and with a lower left ventricular mass (P values<0.05). These associations were not explained by birth weight. Stronger associations tended to be present among girls as compared with boys. Higher third trimester feto-placental vascular resistance, but not utero-placental vascular resistance, was associated with slower fetal growth rates and cardiovascular adaptations in childhood.

  7. Risk factors of erectile dysfunction and penile vascular changes after surgical repair of penile fracture.

    PubMed

    El-Assmy, A; El-Tholoth, H S; Abou-El-Ghar, M E; Mohsen, T; Ibrahiem, E H I

    2012-01-01

    This study was conducted to determine the preoperative and intraoperative risk factors of ED and the underlying penile vascular abnormalities among patients with penile fracture treated surgically. In all, 180 patients with penile fracture were treated surgically and followed up in one center. None of our patients had ED before the penile trauma and only two of them had risk factors for systemic vascular diseases, such as diabetes mellitus (one patient) and hypertension (one patient). After a mean follow-up of 106 months, 11 patients (6.6%) developed ED, 7 had mild ED and 4 had moderate ED. The main risk factors for subsequent ED were aging, >50 years, and bilateral corporal involvement. Among the 11 patients with ED, color Doppler ultrasonography (CDU) showed normal Doppler indices in 4 (36.4%), veno-occlusive dysfunction in 4 (36.4%) and arterial insufficiency in the remaining 3 (27.2%) patients. CDU assessments from the injured and intact sides were comparable. ED of either a psychological or vascular origin can be encountered as a long-term sequel of surgical treatment of penile fracture. Aging, >50 years, at presentation and bilateral corporal involvement is the main risk factors for subsequent development of ED.

  8. Vascular Alterations Underlie Developmental Problems Manifested in Cloned Cattle before or after Birth

    PubMed Central

    Favaron, Phelipe Oliveira; dos Santos, Caio Rodrigues; Alberto, Miryan Lanca; Meirelles, Flavio Vieira; Miglino, Maria Angelica

    2015-01-01

    Although assisted reproductive techniques are commonly applied in humans and animals, they are frequently associated with major developmental deficits and reduced viability. To explore abnormalities associated with cloning or nuclear transfer (NT) as the most invasive of these methods, we used a bovine model to characterize abnormalities. Detailed necropsy examinations were done on 13 calves that died soon after birth; in addition, we included data from embryos and fetuses (produced by NT) that terminated prematurely. Bovine clones that survived until the neonatal period differed quantitatively and qualitatively from in-vivo-derived cattle. Although alterations affected a variety of organs (e.g. heart, lung and liver), there was a clear association with abberant vascular developmental during the early intrauterine phase. Therefore, we concluded that vascular problems were key alterations induced by cloning (presumably via epigenetic modifications). PMID:25584533

  9. Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity.

    PubMed

    Wang, Yanshu; Rattner, Amir; Zhou, Yulian; Williams, John; Smallwood, Philip M; Nathans, Jeremy

    2012-12-07

    Norrin/Frizzled4 (Fz4) signaling activates the canonical Wnt pathway to control retinal vascular development. Using genetically engineered mice, we show that precocious Norrin production leads to premature retinal vascular invasion and delayed Norrin production leads to characteristic defects in intraretinal vascular architecture. In genetic mosaics, wild-type endothelial cells (ECs) instruct neighboring Fz4(-/-) ECs to produce an architecturally normal mosaic vasculature, a cell nonautonomous effect. However, over the ensuing weeks, Fz4(-/-) ECs are selectively eliminated from the mosaic vasculature, implying the existence of a quality control program that targets defective ECs. In the adult retina and cerebellum, gain or loss of Norrin/Fz4 signaling results in a cell-autonomous gain or loss, respectively, of blood retina barrier and blood brain barrier function, indicating an ongoing requirement for Frizzled signaling in barrier maintenance and substantial plasticity in mature CNS vascular structure. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Abnormalities in the Regulators of Angiogenesis in Patients with Scleroderma

    PubMed Central

    HUMMERS, LAURA K.; HALL, AMY; WIGLEY, FREDRICK M.; SIMONS, MICHAEL

    2014-01-01

    Objective To determine plasma levels of regulators of angiogenesis in patients with scleroderma and to correlate those levels with manifestations of scleroderma-related vascular disease. Methods Plasma levels of vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), fibroblast growth factor-2 (FGF-2), matrix metalloproteinase-9 (MMP-9), endostatin, pro-MMP-1, hepatocyte growth factor (HGF), placental growth factor (PlGF), and FGF-4 were examined by ELISA in a cross-sectional study of 113 patients with scleroderma and 27 healthy controls. Simple and multivariate regression models were used to look for associations between factor levels and clinical disease characteristics. Results There were marked differences in the levels of pro-angiogenic growth factors between patients with scleroderma and controls, with significant elevations of VEGF, PDGF, FGF-2, and PlGF among patients with scleroderma (p < 0.0001). Levels of MMP were also higher in scleroderma patients compared to controls (MMP-9 and pro-MMP-1) (p < 0.0001). Levels of the pro-angiogenic and anti-fibrotic factor, HGF, were noted to be lower in patients with scleroderma, but had a positive correlation with right ventricular systolic pressure (RVSP) as measured by echocardiogram (p < 0.0001) and the Raynaud Severity Score (p = 0.05). Endostatin (an anti-angiogenic factor) was notably higher in patients with scleroderma (p < 0.0001) and also correlated positively with RVSP (p = 0.023). Conclusion These results demonstrate striking abnormalities in the circulating regulators of angiogenesis in patients with scleroderma. The levels of some factors correlate with measures of vascular disease among patients with scleroderma. Dysregulated angiogenesis may play a role in the development of scleroderma vascular disease. PMID:19228661

  11. [Vascular malformations in the Williams-Beuren syndrome: report of three new cases].

    PubMed

    Sator, Hicham; Rhouni, Fatima Ezzahra; Benjouad, Ibitihale; Rhouni, Fatima Ezzahra; Benjouad, Ibitihale; Dafiri, Rachida; Chat, Latifa

    2016-01-01

    The Williams-Beuren syndrome is a rare genetic disease. It combines classically specific facial dysmorphism, cardiovascular malformations and specific neuropsychological profile. We report three cases of Williams-Beuren syndrome in children with particular emphasis on vascular abnormalities observed on CT angiography and MR angiography.

  12. Iron is associated with the development of hypoxia-induced pulmonary vascular remodeling in mice.

    PubMed

    Naito, Yoshiro; Hosokawa, Manami; Sawada, Hisashi; Oboshi, Makiko; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Eguchi, Akiyo; Nishimura, Koichi; Soyama, Yuko; Hirotani, Shinichi; Mano, Toshiaki; Ishihara, Masaharu; Masuyama, Tohru

    2016-12-01

    Several recent observations provide the association of iron deficiency with pulmonary hypertension (PH) in human and animal studies. However, it remains completely unknown whether PH leads to iron deficiency or iron deficiency enhances the development of PH. In addition, it is obscure whether iron is associated with the development of pulmonary vascular remodeling in PH. In this study, we investigate the impacts of dietary iron restriction on the development of hypoxia-induced pulmonary vascular remodeling in mice. Eight- to ten-week-old male C57BL/6J mice were exposed to chronic hypoxia for 4 weeks. Mice exposed to hypoxia were randomly divided into two groups and were given a normal diet or an iron-restricted diet. Mice maintained in room air served as normoxic controls. Chronic hypoxia induced pulmonary vascular remodeling, while iron restriction led a modest attenuation of this change. In addition, chronic hypoxia exhibited increased RV systolic pressure, which was attenuated by iron restriction. Moreover, the increase in RV cardiomyocyte cross-sectional area and RV interstitial fibrosis was observed in mice exposed to chronic hypoxia. In contrast, iron restriction suppressed these changes. Consistent with these changes, RV weight to left ventricular + interventricular septum weight ratio was increased in mice exposed to chronic hypoxia, while this increment was inhibited by iron restriction. Taken together, these results suggest that iron is associated with the development of hypoxia-induced pulmonary vascular remodeling in mice.

  13. Vascular malformations: an update.

    PubMed

    Gloviczki, Peter; Duncan, Audra; Kalra, Manju; Oderich, Gustavo; Ricotta, Joseph; Bower, Thomas; McKusick, Michael; Bjarnason, Haraldur; Driscoll, David

    2009-06-01

    Vascular malformations occur as a result of an arrest in the development of the vascular system. The modified Hamburg classification distinguishes arterial, venous, arteriovenous, capillary, lymphatic, and mixed vascular malformations. Each malformation is further subdivided based on anatomy and on the time when arrest in development of the embryogenesis occurred; malformations can be truncular or extratruncular. Progress in the last decade in management has been significant because of improvements in open surgical procedures and perfection of percutaneous and hybrid endovascular interventions and devices, such as balloons, stents, and stent-grafts. There has been increasing use of embolization for the treatment of malformations with coils, other particles, glue, or with endovascular placement of occlusive plugs. Absolute alcohol, detergent liquids, or foam have been used for sclerotherapy with improved efficacy. The agents are delivered percutaneously or through a catheter placed either into the feeding arteries or the draining veins. This review aims to aid vascular and endovascular specialists in staying familiar with vascular malformations. These specialists need to be able to evaluate the patients, perform treatment if appropriate, or refer complex cases to multidisciplinary vascular malformation clinics and vascular centers.

  14. Abnormal branching and regression of the notochord and its relationship to foregut abnormalities.

    PubMed

    Vleesch Dubois, V N; Quan Qi, B; Beasley, S W; Williams, A

    2002-04-01

    An abnormally positioned notochord has been reported in embryos that develop foregut abnormalities, vertebral defects and other abnormalities of the VATER association. This study examines the patterns of regression of the abnormal notochord in the rat model of the VATER association and investigates the relationship between developmental abnormalities of the notochord and those of the vertebra and foregut. Timed-pregnant Sprague-Dawley rats were given daily intraperitoneal injections of 1.75 mg/kg adriamycin on gestational days 6 - 9 inclusive. Rats were sacrificed between days 14 and 20 and their embryos harvested, histologically sectioned and stained and examined serially. The location and appearance of the degenerating notochord and its relationship to regional structural defects were analysed. All 26 embryos exposed to adriamycin developed foregut abnormalities and had an abnormal notochord. The notochord disappeared by a process of apoptotic degeneration that lagged behind that of the normal embryo: the notochord persisted in the abnormal embryo beyond day 17, whereas in the normal rat it had already disappeared. Similarly, formation of the nucleus pulposus was delayed. Vertebral abnormalities occurred when the notochord was ventrally-positioned. The notochord disappears during day 16 in the normal embryo whereas abnormal branches of the notochord persist until day 19 in the adriamycin-treated embryo. Degeneration of the notochord is dominated by apoptosis. An excessively ventrally-placed notochord is closely associated with abnormalities of the vertebral column, especially hemivertebrae.

  15. ETS transcription factor ETV2/ER71/Etsrp in hematopoietic and vascular development, injury, and regeneration.

    PubMed

    Zhao, Haiyong; Xu, Canxin; Lee, Tae-Jin; Liu, Fang; Choi, Kyunghee

    2017-04-01

    The major goal in regenerative medicine is to repair and restore injured, diseased or aged tissue function, thereby promoting general health. As such, the field of regenerative medicine has great translational potential in undertaking many of the health concerns and needs that we currently face. In particular, hematopoietic and vascular systems supply oxygen and nutrients and thus play critical roles in tissue development and tissue regeneration. Additionally, tissue vasculature serves as a tissue stem cell niche and thus contributes to tissue homeostasis. Notably, hematopoietic and vascular systems are sensitive to injury and subject to regeneration. As such, successful hematopoietic and vascular regeneration is prerequisite for efficient tissue repair and organismal survival and health. Recent studies have established that the interplay among the ETS transcription factor ETV2, vascular endothelial growth factor, and its receptor VEGFR2/FLK1 is essential for hematopoietic and vascular development. Emerging studies also support the role of these three factors and possible interplay in hematopoietic and vascular regeneration. Comprehensive understanding of the molecular mechanisms involved in the regulation and function of these three factors may lead to more effective approaches in promoting tissue repair and regeneration. Developmental Dynamics 246:318-327, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. The morphological classification of normal and abnormal red blood cell using Self Organizing Map

    NASA Astrophysics Data System (ADS)

    Rahmat, R. F.; Wulandari, F. S.; Faza, S.; Muchtar, M. A.; Siregar, I.

    2018-02-01

    Blood is an essential component of living creatures in the vascular space. For possible disease identification, it can be tested through a blood test, one of which can be seen from the form of red blood cells. The normal and abnormal morphology of the red blood cells of a patient is very helpful to doctors in detecting a disease. With the advancement of digital image processing technology can be used to identify normal and abnormal blood cells of a patient. This research used self-organizing map method to classify the normal and abnormal form of red blood cells in the digital image. The use of self-organizing map neural network method can be implemented to classify the normal and abnormal form of red blood cells in the input image with 93,78% accuracy testing.

  17. The role of perivascular adipose tissue in vascular smooth muscle cell growth

    PubMed Central

    Miao, Chao-Yu; Li, Zhi-Yong

    2012-01-01

    Adipose tissue is the largest endocrine organ, producing various adipokines and many other substances. Almost all blood vessels are surrounded by perivascular adipose tissue (PVAT), which has not received research attention until recently. This review will discuss the paracrine actions of PVAT on the growth of underlying vascular smooth muscle cells (VSMCs). PVAT can release growth factors and inhibitors. Visfatin is the first identified growth factor derived from PVAT. Decreased adiponectin and increased tumour necrosis factor-α in PVAT play a pathological role for neointimal hyperplasia after endovascular injury. PVAT-derived angiotensin II, angiotensin 1–7, reactive oxygen species, complement component 3, NO and H2S have a paracrine action on VSMC contraction, endothelial or fibroblast function; however, their paracrine actions on VSMC growth remain to be directly verified. Factors such as monocyte chemoattractant protein-1, interleukin-6, interleukin-8, leptin, resistin, plasminogen activator inhibitor type-1, adrenomedullin, free fatty acids, glucocorticoids and sex hormones can be released from adipose tissue and can regulate VSMC growth. Most of them have been verified for their secretion by PVAT; however, their paracrine functions are unknown. Obesity, vascular injury, aging and infection may affect PVAT, causing adipocyte abnormality and inflammatory cell infiltration, inducing imbalance of PVAT-derived growth factors and inhibitors, leading to VSMC growth and finally resulting in development of proliferative vascular disease, including atherosclerosis, restenosis and hypertension. In the future, using cell-specific gene interventions and local treatments may provide definitive evidence for identification of key factor(s) involved in PVAT dysfunction-induced vascular disease and thus may help to develop new therapies. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section

  18. [Vascular lesions of vocal folds--part 1: horizontal vascular lesions].

    PubMed

    Voigt-Zimmermann, S; Arens, C

    2014-12-01

    In recent decades, the endoscopic methods and technologies for laryngeal examination have improved so much that not only epithelial changes, but also vascular changes are recognizable at earlier stages. When comparing newer and older literature, the associated increasingly differentiated descriptions of such visible vascular changes of the vocal folds lead to terminological blurring and shifts of meaning. This complicates the technical-scientific discourse. The aim of the present work is a theoretical and conceptual clarification of early vascular changes of vocal folds. Horizontal changes of benigne vascular diseases, e. g. vessel ectasia, meander, increasing number and branching of vessels, change of direction may develop in to manifest vascular lesions, like varicosis, polyps and in case of ruptures to haemorrhages of vocal folds. These beginning and reversible vascular changes, when early detected and discussed basing on etiological knowledge, may lead to more differentiated prognostic statements and adequate therapeutic decisions, e. g. phonosurgery, functional voice therapy, voice hygiene and voice rest. Vertical vascular changes, like vessel loops, occur primarily in laryngeal papilloma, pre-cancerous and cancerous changes of the vocal folds. Already in small cancerous lesions of the vocal folds the vascular architecture is completely destroyed. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Metabolic Vascular Syndrome: New Insights into a Multidimensional Network of Risk Factors and Diseases.

    PubMed

    Scholz, Gerhard H; Hanefeld, Markolf

    2016-10-01

    Since 1981, we have used the term metabolic syndrome to describe an association of a dysregulation in lipid metabolism (high triglycerides, low high-density lipoprotein cholesterol, disturbed glucose homeostasis (enhanced fasting and/or prandial glucose), gout, and hypertension), with android obesity being based on a common soil (overnutrition, reduced physical activity, sociocultural factors, and genetic predisposition). We hypothesized that main traits of the syndrome occur early and are tightly connected with hyperinsulinemia/insulin resistance, procoagulation, and cardiovascular diseases. To establish a close link between the traits of the metabolic vascular syndrome, we focused our literature search on recent original work and comprehensive reviews dealing with the topics metabolic syndrome, visceral obesity, fatty liver, fat tissue inflammation, insulin resistance, atherogenic dyslipidemia, arterial hypertension, and type 2 diabetes mellitus. Recent research supports the concept that the metabolic vascular syndrome is a multidimensional and interactive network of risk factors and diseases based on individual genetic susceptibility and epigenetic changes where metabolic dysregulation/metabolic inflexibility in different organs and vascular dysfunction are early interconnected. The metabolic vascular syndrome is not only a risk factor constellation but rather a life-long abnormality of a closely connected interactive cluster of developing diseases which escalate each other and should continuously attract the attention of every clinician.

  20. Congenital abnormalities of the inferior vena cava presenting clinically in adolescent males.

    PubMed

    Halparin, Jessica; Monagle, Paul; Newall, Fiona

    2015-04-01

    Congenital anatomic abnormality of the inferior vena cava (IVC) is an important risk factor for the development of spontaneous proximal lower extremity deep vein thrombosis (DVT) in young adults. The incidence of DVT associated with congenital IVC anomalies in paediatric populations has not been described, and the implications of IVC anomalies for treatment and outcomes of DVT are unknown. This study reports a series of five adolescent males with spontaneous lower extremity DVTs and underlying congenital IVC abnormalities. Cases were identified by searching the institutional database of patients treated with anticoagulation for venous thromboembolism at a tertiary children's hospital. The demographics, clinical presentations, imaging findings, treatment courses, and outcomes are described. All cases occurred in males, and accounted for approximately twenty percent of adolescent males presenting with DVT. IVC abnormality is likely an under-recognized risk factor for DVT in this age group, and detailed vascular imaging should be pursued in adolescents with spontaneous proximal lower extremity DVT when initial ultrasonography does not delineate the proximal clot extent. Management requires individual risk-benefit assessment in the context of providing developmentally appropriate care. Further research is required to establish long-term outcomes and determine optimal treatment strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. pitx2 Deficiency Results in Abnormal Ocular and Craniofacial Development in Zebrafish

    PubMed Central

    Liu, Yi; Semina, Elena V.

    2012-01-01

    Human PITX2 mutations are associated with Axenfeld-Rieger syndrome, an autosomal-dominant developmental disorder that involves ocular anterior segment defects, dental hypoplasia, craniofacial dysmorphism and umbilical abnormalities. Characterization of the PITX2 pathway and identification of the mechanisms underlying the anomalies associated with PITX2 deficiency is important for better understanding of normal development and disease; studies of pitx2 function in animal models can facilitate these analyses. A knockdown of pitx2 in zebrafish was generated using a morpholino that targeted all known alternative transcripts of the pitx2 gene; morphant embryos generated with the pitx2ex4/5 splicing-blocking oligomer produced abnormal transcripts predicted to encode truncated pitx2 proteins lacking the third (recognition) helix of the DNA-binding homeodomain. The morphological phenotype of pitx2ex4/5 morphants included small head and eyes, jaw abnormalities and pericardial edema; lethality was observed at ∼6–8-dpf. Cartilage staining revealed a reduction in size and an abnormal shape/position of the elements of the mandibular and hyoid pharyngeal arches; the ceratobranchial arches were also decreased in size. Histological and marker analyses of the misshapen eyes of the pitx2ex4/5 morphants identified anterior segment dysgenesis and disordered hyaloid vasculature. In summary, we demonstrate that pitx2 is essential for proper eye and craniofacial development in zebrafish and, therefore, that PITX2/pitx2 function is conserved in vertebrates. PMID:22303467

  2. Temporal and Embryonic Lineage-Dependent Regulation of Human Vascular SMC Development by NOTCH3

    PubMed Central

    Granata, Alessandra; Bernard, William G.; Zhao, Ning; Mccafferty, John; Lilly, Brenda

    2015-01-01

    Vascular smooth muscle cells (SMCs), which arise from multiple embryonic progenitors, have unique lineage-specific properties and this diversity may contribute to spatial patterns of vascular diseases. We developed in vitro methods to generate distinct vascular SMC subtypes from human pluripotent stem cells, allowing us to explore their intrinsic differences and the mechanisms involved in SMC development. Since Notch signaling is thought to be one of the several key regulators of SMC differentiation and function, we profiled the expression of Notch receptors, ligands, and downstream elements during the development of origin-specific SMC subtypes. NOTCH3 expression in our in vitro model varied in a lineage- and developmental stage-specific manner so that the highest expression in mature SMCs was in those derived from paraxial mesoderm (PM). This pattern was consistent with the high expression level of NOTCH3 observed in the 8–9 week human fetal descending aorta, which is populated by SMCs of PM origin. Silencing NOTCH3 in mature SMCs in vitro reduced SMC markers in cells of PM origin preferentially. Conversely, during early development, NOTCH3 was highly expressed in vitro in SMCs of neuroectoderm (NE) origin. Inhibition of NOTCH3 in early development resulted in a significant downregulation of specific SMC markers exclusively in the NE lineage. Corresponding to this prediction, the Notch3-null mouse showed reduced expression of Acta2 in the neural crest-derived SMCs of the aortic arch. Thus, Notch3 signaling emerges as one of the key regulators of vascular SMC differentiation and maturation in vitro and in vivo in a lineage- and temporal-dependent manner. PMID:25539150

  3. Long-term consequences of developmental vascular defects on retinal vessel homeostasis and function in a mouse model of Norrie disease.

    PubMed

    Beck, Susanne C; Feng, Yuxi; Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Tanimoto, Naoyuki; Acar, Niyazi; Shan, Shenliang; Seebauer, Britta; Berger, Wolfgang; Hammes, Hans-Peter; Seeliger, Mathias W

    2017-01-01

    Loss of Norrin signalling due to mutations in the Norrie disease pseudoglioma gene causes severe vascular defects in the retina, leading to visual impairment and ultimately blindness. While the emphasis of experimental work so far was on the developmental period, we focus here on disease mechanisms that induce progression into severe adult disease. The goal of this study was the comprehensive analysis of the long-term effects of the absence of Norrin on vascular homeostasis and retinal function. In a mouse model of Norrie disease retinal vascular morphology and integrity were studied by means of in vivo angiography; the vascular constituents were assessed in detailed histological analyses using quantitative retinal morphometry. Finally, electroretinographic analyses were performed to assess the retinal function in adult Norrin deficient animals. We could show that the primary developmental defects not only persisted but developed into further vascular abnormalities and microangiopathies. In particular, the overall vessel homeostasis, the vascular integrity, and also the cellular constituents of the vascular wall were affected in the adult Norrin deficient retina. Moreover, functional analyses indicated to persistent hypoxia in the neural retina which was suggested as one of the major driving forces of disease progression. In summary, our data provide evidence that the key to adult Norrie disease are ongoing vascular modifications, driven by the persistent hypoxic conditions, which are ineffective to compensate for the primary Norrin-dependent defects.

  4. Long-term consequences of developmental vascular defects on retinal vessel homeostasis and function in a mouse model of Norrie disease

    PubMed Central

    Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Tanimoto, Naoyuki; Acar, Niyazi; Shan, Shenliang; Seebauer, Britta; Berger, Wolfgang; Hammes, Hans-Peter; Seeliger, Mathias W.

    2017-01-01

    Loss of Norrin signalling due to mutations in the Norrie disease pseudoglioma gene causes severe vascular defects in the retina, leading to visual impairment and ultimately blindness. While the emphasis of experimental work so far was on the developmental period, we focus here on disease mechanisms that induce progression into severe adult disease. The goal of this study was the comprehensive analysis of the long-term effects of the absence of Norrin on vascular homeostasis and retinal function. In a mouse model of Norrie disease retinal vascular morphology and integrity were studied by means of in vivo angiography; the vascular constituents were assessed in detailed histological analyses using quantitative retinal morphometry. Finally, electroretinographic analyses were performed to assess the retinal function in adult Norrin deficient animals. We could show that the primary developmental defects not only persisted but developed into further vascular abnormalities and microangiopathies. In particular, the overall vessel homeostasis, the vascular integrity, and also the cellular constituents of the vascular wall were affected in the adult Norrin deficient retina. Moreover, functional analyses indicated to persistent hypoxia in the neural retina which was suggested as one of the major driving forces of disease progression. In summary, our data provide evidence that the key to adult Norrie disease are ongoing vascular modifications, driven by the persistent hypoxic conditions, which are ineffective to compensate for the primary Norrin-dependent defects. PMID:28575130

  5. A mechanical model predicts morphological abnormalities in the developing human brain

    NASA Astrophysics Data System (ADS)

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-07-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism.

  6. Adverse Outcome Pathways for Embryonic Vascular Disruption and Alternative Methods to Identify Chemical Vascular Disruptor

    EPA Science Inventory

    Chemically induced vascular toxicity during embryonic development can result in a wide range of adverse prenatal outcomes. We used information from genetic mouse models linked to phenotypic outcomes and a vascular toxicity knowledge base to construct an embryonic vascular disrupt...

  7. Plus disease in retinopathy of prematurity: a continuous spectrum of vascular abnormality as basis of diagnostic variability

    PubMed Central

    Campbell, J. Peter; Kalpathy-Cramer, Jayashree; Erdogmus, Deniz; Tian, Peng; Kedarisetti, Dharanish; Moleta, Chace; Reynolds, James D.; Hutcheson, Kelly; Shapiro, Michael J.; Repka, Michael X.; Ferrone, Philip; Drenser, Kimberly; Horowitz, Jason; Sonmez, Kemal; Swan, Ryan; Ostmo, Susan; Jonas, Karyn E.; Chan, R.V. Paul; Chiang, Michael F.

    2016-01-01

    vascular abnormality required for presence of plus and pre-plus disease. This has important implications for research, teaching and patient care for ROP, and suggests that a continuous ROP plus disease severity score may more accurately reflect the behavior of expert ROP clinicians, and may better standardize classification in the future. PMID:27591053

  8. Anomalous vascularization in a Wnt medulloblastoma: a case report.

    PubMed

    Di Giannatale, Angela; Carai, Andrea; Cacchione, Antonella; Marrazzo, Antonio; Dell'Anna, Vito Andrea; Colafati, Giovanna Stefania; Diomedi-Camassei, Francesca; Miele, Evelina; Po, Agnese; Ferretti, Elisabetta; Locatelli, Franco; Mastronuzzi, Angela

    2016-07-15

    Medulloblastoma is the most common malignant brain tumor in children. To date only few cases of medulloblastoma with hemorrhages have been reported in the literature. Although some studies speculate on the pathogenesis of this anomalous increased vascularization in medulloblastoma, the specific mechanism is still far from clearly understood. A correlation between molecular medulloblastoma subgroups and hemorrhagic features has not been reported, although recent preliminary studies described that WNT-subtype tumors display increased vascularization and hemorrhaging. Herein, we describe a child with a Wnt-medulloblastoma presenting as cerebellar-vermian hemorrhagic lesion. Brain magnetic resonance imaging (MRI) showed the presence of a midline posterior fossa mass with a cystic hemorrhagic component. The differential diagnosis based on imaging included cavernous hemangioma, arteriovenous malformation and traumatic lesion. At surgery, the tumor appeared richly vascularized as documented by the preoperative angiography. The case we present showed that Wnt medulloblastoma may be associated with anomalous vascularization. Further studies are needed to elucidate if there is a link between the hypervascularization and the Wnt/β-catenin signaling activation and if this abnormal vasculature might influence drug penetration contributing to good prognosis of this medulloblastoma subgroup.

  9. [Therapeutic indications for percutaneous laser in patients with vascular malformations and tumors].

    PubMed

    Labau, D; Cadic, P; Ouroussoff, G; Ligeron, C; Laroche, J-P; Guillot, B; Dereure, O; Quéré, I; Galanaud, J-P

    2014-12-01

    Lasers are increasingly used to treat vascular abnormalities. Indeed, this technique is non-invasive and allows a specific treatment. The aim of this review is to present some biophysical principles of the lasers, to describe the different sorts of lasers available for treatment in vascular medicine indications. Three principal lasers exist in vascular medicine: the pulsed-dye laser, for the treatment of superficial pink lesions, the NdYAG-KTP laser for purple and bigger lesions, and the NdYAG long pulse laser for even deeper and bigger vascular lesions. In vascular malformations, port wine stains can also be treated by pulsed-dye laser, KTP or NdYAG when they are old and thick. Telangiectasias are good indications for the three sorts of lasers, depending on their depth, color and size. Microcystic lymphatic malformations can be improved by laser treatment. Arterio-venous malformations constitute a contraindication of laser treatment. In vascular tumors, involuted infantile hemangiomas constitute an excellent indication of pulsed-dye laser treatment. Controlled studies are necessary to evaluate and to compare the efficacy of each laser, in order to determine their optimal indications and optimal parameters for each machine. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. The BK(Ca) channels deficiency as a possible reason for radiation-induced vascular hypercontractility.

    PubMed

    Kyrychenko, Sergii; Tishkin, Sergey; Dosenko, Victor; Ivanova, Irina; Novokhatska, Tatiana; Soloviev, Anatoly

    2012-01-01

    It is likely that large-conductance Ca²⁺-activated K⁺ (BK(Ca)) channels channelopathy tightly involved in vascular malfunctions and arterial hypertension development. In the present study, we compared the results of siRNAs-induced α-BK(Ca) gene silencing and vascular abnormalities produced by whole-body ionized irradiation in rats. The experimental design comprised RT-PCR and patch clamp technique, thoracic aorta smooth muscle (SM) contractile recordings and arterial blood pressure (BP) measurements on the 30th day after whole body irradiation (6Gy) and following siRNAs KCNMA1 gene silencing in vivo. The expression profile of BK(Ca) mRNA transcripts in SM was significantly decreased in siRNAs-treated rats in a manner similar to irradiated SM. In contrast, the mRNA levels of K(v) and K(ATP) were significantly increased while L-type calcium channels mRNA transcripts demonstrated tendency to increment. The SMCs obtained from irradiated animals and after KCNMA1 gene silencing showed a significant decrease in total K⁺ current density amplitude. Paxilline (500 nM)-sensitive components of outward current were significantly decreased in both irradiated and gene silencing SMCs. KCNMA1 gene silencing increased SM sensitivity to norepinephrine while Ach-induced relaxation had decreased. The silencing of KCNMA1 had no significant effect on BP while radiation produced sustained arterial hypertension. Therefore, radiation alters the form and function of the BK(Ca) channel and this type of channelopathy may contribute to related vascular abnormalities. Nevertheless, it is unlikely that BK(Ca) can operate as a crucial factor for radiation-induced arterial hypertension. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. The CRC orthologue from Pisum sativum shows conserved functions in carpel morphogenesis and vascular development.

    PubMed

    Fourquin, Chloé; Primo, Amparo; Martínez-Fernández, Irene; Huet-Trujillo, Estefanía; Ferrándiz, Cristina

    2014-11-01

    CRABS CLAW (CRC) is a member of the YABBY family of transcription factors involved in carpel morphogenesis, floral determinacy and nectary specification in arabidopsis. CRC orthologues have been functionally characterized across angiosperms, revealing additional roles in leaf vascular development and carpel identity specification in Poaceae. These studies support an ancestral role of CRC orthologues in carpel development, while roles in vascular development and nectary specification appear to be derived. This study aimed to expand research on CRC functional conservation to the legume family in order to better understand the evolutionary history of CRC orthologues in angiosperms. CRC orthologues from Pisum sativum and Medicago truncatula were identified. RNA in situ hybridization experiments determined the corresponding expression patterns throughout flower development. The phenotypic effects of reduced CRC activity were investigated in P. sativum using virus-induced gene silencing. CRC orthologues from P. sativum and M. truncatula showed similar expression patterns, mainly restricted to carpels and nectaries. However, these expression patterns differed from those of other core eudicots, most importantly in a lack of abaxial expression in the carpel and in atypical expression associated with the medial vein of the ovary. CRC downregulation in pea caused defects in carpel fusion and style/stigma development, both typically associated with CRC function in eudicots, but also affected vascular development in the carpel. The data support the conserved roles of CRC orthologues in carpel fusion, style/stigma development and nectary development. In addition, an intriguing new aspect of CRC function in legumes was the unexpected role in vascular development, which could be shared by other species from widely diverged clades within the angiosperms, suggesting that this role could be ancestral rather than derived, as so far generally accepted. © The Author 2014. Published by

  12. The CRC orthologue from Pisum sativum shows conserved functions in carpel morphogenesis and vascular development

    PubMed Central

    Fourquin, Chloé; Primo, Amparo; Martínez-Fernández, Irene; Huet-Trujillo, Estefanía; Ferrándiz, Cristina

    2014-01-01

    Background and Aims CRABS CLAW (CRC) is a member of the YABBY family of transcription factors involved in carpel morphogenesis, floral determinacy and nectary specification in arabidopsis. CRC orthologues have been functionally characterized across angiosperms, revealing additional roles in leaf vascular development and carpel identity specification in Poaceae. These studies support an ancestral role of CRC orthologues in carpel development, while roles in vascular development and nectary specification appear to be derived. This study aimed to expand research on CRC functional conservation to the legume family in order to better understand the evolutionary history of CRC orthologues in angiosperms. Methods CRC orthologues from Pisum sativum and Medicago truncatula were identified. RNA in situ hybridization experiments determined the corresponding expression patterns throughout flower development. The phenotypic effects of reduced CRC activity were investigated in P. sativum using virus-induced gene silencing. Key Results CRC orthologues from P. sativum and M. truncatula showed similar expression patterns, mainly restricted to carpels and nectaries. However, these expression patterns differed from those of other core eudicots, most importantly in a lack of abaxial expression in the carpel and in atypical expression associated with the medial vein of the ovary. CRC downregulation in pea caused defects in carpel fusion and style/stigma development, both typically associated with CRC function in eudicots, but also affected vascular development in the carpel. Conclusions The data support the conserved roles of CRC orthologues in carpel fusion, style/stigma development and nectary development. In addition, an intriguing new aspect of CRC function in legumes was the unexpected role in vascular development, which could be shared by other species from widely diverged clades within the angiosperms, suggesting that this role could be ancestral rather than derived, as so far

  13. New insights into saccular development and vascular formation in lung allografts under the renal capsule

    PubMed Central

    Vu, Thiennu H.; Alemayehu, Yemisrach; Werb, Zena

    2009-01-01

    The study of distal lung morphogenesis and vascular development would be greatly facilitated by an in vitro or ex vivo experimental model. In this study we show that the growth of mouse embryonic day 12.5 lung rudiments implanted underneath the kidney capsules of syngeneic or immunodeficient hosts follows closely lung development in utero. The epithelium develops extensively with both proximal and distal differentiation to the saccular stage. The vasculature also develops extensively. Large blood vessels accompany large airways and capillaries develop within the saccular walls. Interestingly, vessels in the lung grafts develop from endothelial progenitor cells endogenous to the explants and host vessels do not vascularize the grafts independently. This suggests that embryonic lungs possess mechanisms to prevent the inappropriate ingrowth of surrounding vessels. However, vessels in the lung grafts do connect to host vessels, showing that embryonic lungs have the ability to stimulate host angiogenesis and recruit host vessel connections. These data support the hypothesis that the lung vasculature develops by both vasculogenic and angiogenic processes: a vascular network develops in situ in lung mesenchyme, which is then connected to angiogenic processes from central vessels. The lung renal capsule allograft is thus an excellent model to study the development of the pulmonary vasculature and of late fetal lung development that requires a functional blood supply. PMID:12591600

  14. Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction

    PubMed Central

    Barton, Matthias; Baretella, Oliver; Meyer, Matthias R

    2012-01-01

    Obesity has become a serious global health issue affecting both adults and children. Recent devolopments in world demographics and declining health status of the world's population indicate that the prevalence of obesity will continue to increase in the next decades. As a disease, obesity has deleterious effects on metabolic homeostasis, and affects numerous organ systems including heart, kidney and the vascular system. Thus, obesity is now regarded as an independent risk factor for atherosclerosis-related diseases such as coronary artery disease, myocardial infarction and stroke. In the arterial system, endothelial cells are both the source and target of factors contributing to atherosclerosis. Endothelial vasoactive factors regulate vascular homeostasis under physiological conditions and maintain basal vascular tone. Obesity results in an imbalance between endothelium-derived vasoactive factors favouring vasoconstriction, cell growth and inflammatory activation. Abnormal regulation of these factors due to endothelial cell dysfunction is both a consequence and a cause of vascular disease processes. Finally, because of the similarities of the vascular pathomechanisms activated, obesity can be considered to cause accelerated, ‘premature’ vascular aging. Here, we will review some of the pathomechanisms involved in obesity-related activation of endothelium-dependent vasoconstriction, the clinical relevance of obesity-associated vascular risk, and therapeutic interventions using ‘endothelial therapy’ aiming at maintaining or restoring vascular endothelial health. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3 PMID:21557734

  15. Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction.

    PubMed

    Barton, Matthias; Baretella, Oliver; Meyer, Matthias R

    2012-02-01

    Obesity has become a serious global health issue affecting both adults and children. Recent devolopments in world demographics and declining health status of the world's population indicate that the prevalence of obesity will continue to increase in the next decades. As a disease, obesity has deleterious effects on metabolic homeostasis, and affects numerous organ systems including heart, kidney and the vascular system. Thus, obesity is now regarded as an independent risk factor for atherosclerosis-related diseases such as coronary artery disease, myocardial infarction and stroke. In the arterial system, endothelial cells are both the source and target of factors contributing to atherosclerosis. Endothelial vasoactive factors regulate vascular homeostasis under physiological conditions and maintain basal vascular tone. Obesity results in an imbalance between endothelium-derived vasoactive factors favouring vasoconstriction, cell growth and inflammatory activation. Abnormal regulation of these factors due to endothelial cell dysfunction is both a consequence and a cause of vascular disease processes. Finally, because of the similarities of the vascular pathomechanisms activated, obesity can be considered to cause accelerated, 'premature' vascular aging. Here, we will review some of the pathomechanisms involved in obesity-related activation of endothelium-dependent vasoconstriction, the clinical relevance of obesity-associated vascular risk, and therapeutic interventions using 'endothelial therapy' aiming at maintaining or restoring vascular endothelial health. This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  16. Measurement of leukocyte rheology in vascular disease: clinical rationale and methodology. International Society of Clinical Hemorheology.

    PubMed

    Wautier, J L; Schmid-Schönbein, G W; Nash, G B

    1999-01-01

    The measurement of leukocyte rheology in vascular disease is a recent development with a wide range of new opportunities. The International Society of Clinical Hemorheology has asked an expert panel to propose guidelines for the investigation of leukocyte rheology in clinical situations. This article first discusses the mechanical, adhesive and related functional properties of leukocytes (especially neutrophils) which influence their circulation, and establishes the rationale for clinically-related measurements of parameters which describe them. It is concluded that quantitation of leukocyte adhesion molecules, and of their endothelial receptors may assist understanding of leukocyte behaviour in vascular disease, along with measurements of flow resistance of leukocytes, free radical production, degranulation and gene expression. For instance, vascular cell adhesion molecule (VCAM-1) is abnormally present on endothelial cells in atherosclerosis, diabetes mellitus and inflammatory conditions. Soluble forms of intercellular adhesion molecule (ICAM-1) or VCAM can be found elevated in the blood of patients with rheumatoid arthritis or infections disease. In the second part of the article, possible technical approaches are presented and possible avenues for leukocyte rheological investigations are discussed.

  17. Hepatic hilar and sectorial vascular and biliary anatomy in right graft adult live liver donor transplantation.

    PubMed

    Radtke, A; Sgourakis, G; Sotiropoulos, G C; Molmenti, E P; Nadalin, S; Fouzas, I; Schroeder, T; Saner, F H; Schenk, A; Cicinnati, V R; Malagó, M; Lang, H

    2008-11-01

    The aim of this study was to analyze vascular and biliary variants at the hilar and sectorial level in right graft adult living donor liver transplantation. From January 2003 to June 2007, 139 consecutive live liver donors underwent three-dimensional computed tomography (3-D CT) reconstructions and virtual 3-D liver partitioning. We evaluated the portal (PV), arterial (HA), and biliary (BD) anatomy. The hilar and sectorial biliary/vascular anatomy was predominantly normal (70%-85% and 67%-78%, respectively). BD and HA showed an equal incidence (30%) of hilar anomalies. BD and PV had a nearly identical incidence of sectorial abnormalities (64.7% and 66.2%, respectively). The most frequent "single" anomaly was seen centrally in HA (21%) and distally in BD (18%). A "double" anomaly involved BD/HA (7.2%) in the hilum, and HA/PV and BD/PV (6.5% each) sectorially. A "triple" anomaly involving all systems was found at the hilum in 1.4% of cases, and at the sectorial level in 9.4% of instances. Simultanous central and distal abnormalities were rare. In this study, 13.7% of all donor candidates showed normal hilar and sectorial anatomy involving all 3 systems. A simultaneous central and distal "triple" abnormality was not encountered. A combination of "triple" hilar anomaly with "triple" sectorial normality was observed in 2 cases (1.4%). A central "triple" normality associated with a distal "triple" abnormality occurred in 7 livers (5%). Our data showed a variety of "horizontal" (hilar or sectorial) and "vertical" (hilar and sectorial) vascular and biliary branching patterns, providing comprehensive assistance for surgical decision-making prior to right graft hepatectomy.

  18. NLRP3 Inflammasome Mediates Aldosterone-Induced Vascular Damage.

    PubMed

    Bruder-Nascimento, Thiago; Ferreira, Nathanne S; Zanotto, Camila Z; Ramalho, Fernanda; Pequeno, Isabela O; Olivon, Vania C; Neves, Karla B; Alves-Lopes, Rheure; Campos, Eduardo; Silva, Carlos Alberto A; Fazan, Rubens; Carlos, Daniela; Mestriner, Fabiola L; Prado, Douglas; Pereira, Felipe V; Braga, Tarcio; Luiz, Joao Paulo M; Cau, Stefany B; Elias, Paula C; Moreira, Ayrton C; Câmara, Niels O; Zamboni, Dario S; Alves-Filho, Jose Carlos; Tostes, Rita C

    2016-12-06

    Inflammation is a key feature of aldosterone-induced vascular damage and dysfunction, but molecular mechanisms by which aldosterone triggers inflammation remain unclear. The NLRP3 inflammasome is a pivotal immune sensor that recognizes endogenous danger signals triggering sterile inflammation. We analyzed vascular function and inflammatory profile of wild-type (WT), NLRP3 knockout (NLRP3 -/- ), caspase-1 knockout (Casp-1 -/- ), and interleukin-1 receptor knockout (IL-1R -/- ) mice treated with vehicle or aldosterone (600 µg·kg -1 ·d -1 for 14 days through osmotic mini-pump) while receiving 1% saline to drink. Here, we show that NLRP3 inflammasome plays a central role in aldosterone-induced vascular dysfunction. Long-term infusion of aldosterone in mice resulted in elevation of plasma interleukin-1β levels and vascular abnormalities. Mice lacking the IL-1R or the inflammasome components NLRP3 and caspase-1 were protected from aldosterone-induced vascular damage. In vitro, aldosterone stimulated NLRP3-dependent interleukin-1β secretion by bone marrow-derived macrophages by activating nuclear factor-κB signaling and reactive oxygen species generation. Moreover, chimeric mice reconstituted with NLRP3-deficient hematopoietic cells showed that NLRP3 in immune cells mediates aldosterone-induced vascular damage. In addition, aldosterone increased the expression of NLRP3, active caspase-1, and mature interleukin-1β in human peripheral blood mononuclear cells. Hypertensive patients with hyperaldosteronism or normal levels of aldosterone exhibited increased activity of NLRP3 inflammasome, suggesting that the effect of hyperaldosteronism on the inflammasome may be mediated through high blood pressure. Together, these data demonstrate that NLRP3 inflammasome, through activation of IL-1R, is critically involved in the deleterious vascular effects of aldosterone, placing NLRP3 as a potential target for therapeutic interventions in conditions with high aldosterone levels.

  19. [Association between neuropathy and peripheral vascular insufficiency in patients with diabetes mellitus type 2].

    PubMed

    Millán-Guerrero, Rebeca O; Vásquez, Clemente; Isaís-Millán, Sara; Trujillo-Hernández, Benjamín; Caballero-Hoyos, Ramiro

    2011-01-01

    Diabetes mellitus (DM) can present complications of neuropathy and peripheral arterial disease with high risk for developing foot ulcers and consequent amputations. To identify the association between peripheral vascular disease, and neuropathy in type 2 Diabetes mellitus patients from the Hospital General de Zona No. 1 IMSS in Colima, Mexico. Cross-sectional study of 80 patients with diabetes mellitus evaluated by means of the Edinburgh Claudication Questionnaire, Michigan Neuropathy Screening Instrument, ankle-arm index, Motor Nerve Conduction Velocity and H-reflex. 51 women and 29 men were studied. Mean age was 53.9 +/- 9.6 years, mean diabetes mellitus progression was 8 +/- 6.6 years and mean glucose level was 283 +/- 110 mg/mL. Neuropathy presented in 65 patients (81.2%). Ankle/arm index revealed 19% of patients presented with moderate peripheral vascular insufficiency. Motor Nerve Conduction Velocity was abnormal in 40% of patients and H-reflex was absent in 70%. Grade 2 motor-sensitive polyneuropathy was found in 70-80% of patients and moderate peripheral vascular insufficiency in 19%. It can thus be inferred that the complication of diabetic neuropathy appears before that of peripheral vessel damage.

  20. Histology atlas of the developing mouse hepatobiliary hemolymphatic vascular system with emphasis on embryonic days 11.5-18.5 and early postnatal development

    USDA-ARS?s Scientific Manuscript database

    A critical event in fetal development is the proper formation of the vascular system, of which the hepatobiliary system plays a pivotal role. This has lead pathologists and scientists to utilize transgenic mice to identify developmental disorders associated with the hepatobiliary vascular system. Va...

  1. Risk stratification for the development of respiratory adverse events following vascular surgery using the Society of Vascular Surgery's Vascular Quality Initiative.

    PubMed

    Genovese, Elizabeth A; Fish, Larry; Chaer, Rabih A; Makaroun, Michel S; Baril, Donald T

    2017-02-01

    disease severity, degree of renal insufficiency, ambulatory status, transfer status, urgency, and operative type. The predicted compared with the actual RAE incidence were highly correlated, with a correlation coefficient of 0.943 (P < .0001) and a c-statistic = 0.818. RAEs had a significantly higher rates of in-hospital mortality (25.4% vs 1.2%; P < .0001; adjusted odds ratio, 5.85; P < .0001), and discharge to a nursing facility (57.8% vs 19.0%; P < .0001; adjusted odds ratio, 3.14; P < .0001). RAEs are frequent and one of the strongest risk factors for in-hospital mortality and inability to be discharged home. Our risk prediction score accurately stratifies patients based on key demographics, comorbidities, presentation, and operative type that can be used to guide patient counseling, preoperative optimization, and postoperative management. Furthermore, it may be useful in developing quality benchmarks for RAE following major vascular surgery. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  2. Whole Organ Tissue Vascularization: Engineering the Tree to Develop the Fruits.

    PubMed

    Pellegata, Alessandro F; Tedeschi, Alfonso M; De Coppi, Paolo

    2018-01-01

    Tissue engineering aims to regenerate and recapitulate a tissue or organ that has lost its function. So far successful clinical translation has been limited to hollow organs in which rudimental vascularization can be achieved by inserting the graft into flaps of the omentum or muscle fascia. This technique used to stimulate vascularization of the graft takes advantage of angiogenesis from existing vascular networks. Vascularization of the engineered graft is a fundamental requirement in the process of engineering more complex organs, as it is crucial for the efficient delivery of nutrients and oxygen following in-vivo implantation. To achieve vascularization of the organ many different techniques have been investigated and exploited. The most promising results have been obtained by seeding endothelial cells directly into decellularized scaffolds, taking advantage of the channels remaining from the pre-existing vascular network. Currently, the main hurdle we need to overcome is achieving a fully functional vascular endothelium, stable over a long time period of time, which is engineered using a cell source that is clinically suitable and can generate, in vitro , a yield of cells suitable for the engineering of human sized organs. This review will give an overview of the approaches that have recently been investigated to address the issue of vascularization in the field of tissue engineering of whole organs, and will highlight the current caveats and hurdles that should be addressed in the future.

  3. Retrospective French nationwide survey of childhood aggressive vascular anomalies of bone, 1988-2009

    PubMed Central

    2010-01-01

    Objective To document the epidemiological, clinical, histological and radiological characteristics of aggressive vascular abnormalities of bone in children. Study design Correspondents of the French Society of Childhood Malignancies were asked to notify all cases of aggressive vascular abnormalities of bone diagnosed between January 1988 and September 2009. Results 21 cases were identified; 62% of the patients were boys. No familial cases were observed, and the disease appeared to be sporadic. Mean age at diagnosis was 8.0 years [0.8-16.9 years]. Median follow-up was 3 years [0.3-17 years]. The main presenting signs were bone fracture (n = 4) and respiratory distress (n = 7), but more indolent onset was observed in 8 cases. Lung involvement, with lymphangiectasies and pleural effusion, was the most frequent form of extraosseous involvement (10/21). Bisphosphonates, alpha interferon and radiotherapy were used as potentially curative treatments. High-dose radiotherapy appeared to be effective on pleural effusion but caused major late sequelae, whereas antiangiogenic drugs like alpha interferon and zoledrenate have had a limited impact on the course of pulmonary complications. The impact of bisphosphonates and alpha interferon on bone lesions was also difficult to assess, owing to insufficient follow-up in most cases, but it was occasionally positive. Six deaths were observed and the overall 10-year mortality rate was about 30%. The prognosis depended mainly on pulmonary and spinal complications. Conclusion Aggressive vascular abnormalities of bone are extremely rare in childhood but are lifethreatening. The impact of anti-angiogenic drugs on pulmonary complications seems to be limited, but they may improve bone lesions. PMID:20128925

  4. The influence of brain abnormalities on psychosocial development, criminal history and paraphilias in sexual murderers.

    PubMed

    Briken, Peer; Habermann, Niels; Berner, Wolfgang; Hill, Andreas

    2005-09-01

    The aim of this study was to investigate the number and type of brain abnormalities and their influence on psychosocial development, criminal history and paraphilias in sexual murderers. We analyzed psychiatric court reports of 166 sexual murderers and compared a group with notable signs of brain abnormalities (N = 50) with those without any signs (N = 116). Sexual murderers with brain abnormalities suffered more from early behavior problems. They were less likely to cohabitate with the victim at the time of the homicide and had more victims at the age of six years or younger. Psychiatric diagnoses revealed a higher total number of paraphilias: Transvestic fetishism and paraphilias not otherwise specified were more frequent in offenders with brain abnormalities. A binary logistic regression identified five predictors that accounted for 46.8% of the variance explaining the presence of brain abnormalities. Our results suggest the importance of a comprehensive neurological and psychological examination of this special offender group.

  5. An interesting case of peripheral vascular disease, vascular reperfusion, and subsequent development of pain due to Paget's disease of bone.

    PubMed

    Kwun, Sunna; Tucci, Joseph R

    2013-01-01

    To present a case of Paget's disease of bone that was unmasked after vascular reperfusion. In this case study, we review the presentation, evaluation, diagnosis, and management of a patient with Paget's disease and peripheral vascular disease. A 79-year-old-woman with a history of coronary artery heart disease and recent finding of a T5 compression fracture was hospitalized for evaluation of right lower extremity claudication. Angiography demonstrated a focal complete occlusion of the distal right femoral and popliteal arteries. A self-expanding stent was placed in the distal femoral and popliteal arteries. Approximately 48 hours after the procedure, the patient developed severe, right lower leg pain. On endocrine evaluation, the patient was found to have clinical signs suggesting Paget's disease of bone, which was subsequently confirmed by imaging. This patient's development of severe pain following reperfusion of distal femoral and popliteal arteries is in keeping with the known and aforementioned hypervascularity of pagetic bone. The finding of increased warmth over an area of skeletal deformation should always raise the possibility of Paget's disease of bone.

  6. Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis.

    PubMed

    De Rybel, Bert; Adibi, Milad; Breda, Alice S; Wendrich, Jos R; Smit, Margot E; Novák, Ondřej; Yamaguchi, Nobutoshi; Yoshida, Saiko; Van Isterdael, Gert; Palovaara, Joakim; Nijsse, Bart; Boekschoten, Mark V; Hooiveld, Guido; Beeckman, Tom; Wagner, Doris; Ljung, Karin; Fleck, Christian; Weijers, Dolf

    2014-08-08

    Coordination of cell division and pattern formation is central to tissue and organ development, particularly in plants where walls prevent cell migration. Auxin and cytokinin are both critical for division and patterning, but it is unknown how these hormones converge upon tissue development. We identify a genetic network that reinforces an early embryonic bias in auxin distribution to create a local, nonresponding cytokinin source within the root vascular tissue. Experimental and theoretical evidence shows that these cells act as a tissue organizer by positioning the domain of oriented cell divisions. We further demonstrate that the auxin-cytokinin interaction acts as a spatial incoherent feed-forward loop, which is essential to generate distinct hormonal response zones, thus establishing a stable pattern within a growing vascular tissue. Copyright © 2014, American Association for the Advancement of Science.

  7. ACR appropriateness criteria(®) on abnormal vaginal bleeding.

    PubMed

    Bennett, Genevieve L; Andreotti, Rochelle F; Lee, Susanna I; Dejesus Allison, Sandra O; Brown, Douglas L; Dubinsky, Theodore; Glanc, Phyllis; Mitchell, Donald G; Podrasky, Ann E; Shipp, Thomas D; Siegel, Cary Lynn; Wong-You-Cheong, Jade J; Zelop, Carolyn M

    2011-07-01

    In evaluating a woman with abnormal vaginal bleeding, imaging cannot replace definitive histologic diagnosis but often plays an important role in screening, characterization of structural abnormalities, and directing appropriate patient care. Transvaginal ultrasound (TVUS) is generally the initial imaging modality of choice, with endometrial thickness a well-established predictor of endometrial disease in postmenopausal women. Endometrial thickness measurements of ≤5 mm and ≤4 mm have been advocated as appropriate upper threshold values to reasonably exclude endometrial carcinoma in postmenopausal women with vaginal bleeding; however, the best upper threshold endometrial thickness in the asymptomatic postmenopausal patient remains a subject of debate. Endometrial thickness in a premenopausal patient is a less reliable indicator of endometrial pathology since this may vary widely depending on the phase of menstrual cycle, and an upper threshold value for normal has not been well-established. Transabdominal ultrasound is generally an adjunct to TVUS and is most helpful when TVUS is not feasible or there is poor visualization of the endometrium. Hysterosonography may also allow for better delineation of both the endometrium and focal abnormalities in the endometrial cavity, leading to hysteroscopically directed biopsy or resection. Color and pulsed Doppler may provide additional characterization of a focal endometrial abnormality by demonstrating vascularity. MRI may also serve as an important problem-solving tool if the endometrium cannot be visualized on TVUS and hysterosonography is not possible, as well as for pretreatment planning of patients with suspected endometrial carcinoma. CT is generally not warranted for the evaluation of patients with abnormal bleeding, and an abnormal endometrium incidentally detected on CT should be further evaluated with TVUS. Copyright © 2011 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  8. Endothelial dysfunction, abnormal vascular structure and lower urinary tract symptoms in men and women.

    PubMed

    Matsui, Shogo; Kajikawa, Masato; Maruhashi, Tatsuya; Iwamoto, Yumiko; Oda, Nozomu; Kishimoto, Shinji; Hashimoto, Haruki; Hidaka, Takayuki; Kihara, Yasuki; Chayama, Kazuaki; Hida, Eisuke; Goto, Chikara; Aibara, Yoshiki; Nakashima, Ayumu; Yusoff, Farina Mohamad; Noma, Kensuke; Kuwahara, Yoshitaka; Matsubara, Akio; Higashi, Yukihito

    2018-06-15

    Lower urinary tract symptoms (LUTS) is not only common symptoms in elderly men and women but also risk of future cardiovascular events. The purpose of this study was to evaluate the relationships of vascular function and structure with LUTS in men and women. We investigated flow-mediated vasodilation (FMD) and nitroglycerine-induced vasodilation (NID) as vascular function, brachial-ankle pulse wave velocity (baPWV) as vascular structure, and LUTS assessed by International Prostate Symptom Score (IPSS) in 287 men and 147 women. IPSS was significantly correlated with traditional cardiovascular risk factors, Framingham risk score, FMD, NID and baPWV. Moderate to severe LUTS was associated with the prevalence of coronary heart disease in men but not in women. In men, FMD and NID were significantly lower in the moderate to severe LUTS group than in the none to mild LUTS group (2.1 ± 2.0% vs. 4.0 ± 3.0% and 9.3 ± 6.1% vs. 12.8 ± 6.6%, P < 0.001, respectively). baPWV was significantly higher in the moderate to severe LUTS group than in the none to mild LUTS group (1722 ± 386 cm/s vs. 1509 ± 309 cm/s, P < 0.001). In multivariate analysis, FMD was independently associated with a decrease in the odds ratio of moderate to severe LUTS in men (OR: 0.83, 95% CI, 0.72-0.95; P = 0.008) but not in women. NID and baPWV were not independently associated with moderate to severe LUTS either in men or women. These findings suggest that endothelial dysfunction is associated with LUTS in men. LUTS in men may be useful for a predictor of cardiovascular events. URL for Clinical Trial: http://UMIN; Registration Number for Clinical Trial: UMIN000003409. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  10. Plus Disease in Retinopathy of Prematurity: A Continuous Spectrum of Vascular Abnormality as a Basis of Diagnostic Variability.

    PubMed

    Campbell, J Peter; Kalpathy-Cramer, Jayashree; Erdogmus, Deniz; Tian, Peng; Kedarisetti, Dharanish; Moleta, Chace; Reynolds, James D; Hutcheson, Kelly; Shapiro, Michael J; Repka, Michael X; Ferrone, Philip; Drenser, Kimberly; Horowitz, Jason; Sonmez, Kemal; Swan, Ryan; Ostmo, Susan; Jonas, Karyn E; Chan, R V Paul; Chiang, Michael F

    2016-11-01

    To identify patterns of interexpert discrepancy in plus disease diagnosis in retinopathy of prematurity (ROP). We developed 2 datasets of clinical images as part of the Imaging and Informatics in ROP study and determined a consensus reference standard diagnosis (RSD) for each image based on 3 independent image graders and the clinical examination results. We recruited 8 expert ROP clinicians to classify these images and compared the distribution of classifications between experts and the RSD. Eight participating experts with more than 10 years of clinical ROP experience and more than 5 peer-reviewed ROP publications who analyzed images obtained during routine ROP screening in neonatal intensive care units. Expert classification of images of plus disease in ROP. Interexpert agreement (weighted κ statistic) and agreement and bias on ordinal classification between experts (analysis of variance [ANOVA]) and the RSD (percent agreement). There was variable interexpert agreement on diagnostic classifications between the 8 experts and the RSD (weighted κ, 0-0.75; mean, 0.30). The RSD agreement ranged from 80% to 94% for the dataset of 100 images and from 29% to 79% for the dataset of 34 images. However, when images were ranked in order of disease severity (by average expert classification), the pattern of expert classification revealed a consistent systematic bias for each expert consistent with unique cut points for the diagnosis of plus disease and preplus disease. The 2-way ANOVA model suggested a highly significant effect of both image and user on the average score (dataset A: P < 0.05 and adjusted R 2  = 0.82; and dataset B: P < 0.05 and adjusted R 2  = 0.6615). There is wide variability in the classification of plus disease by ROP experts, which occurs because experts have different cut points for the amounts of vascular abnormality required for presence of plus and preplus disease. This has important implications for research, teaching, and patient care for ROP

  11. The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency.

    PubMed

    Sarkar, S; Salacinski, H J; Hamilton, G; Seifalian, A M

    2006-06-01

    When autologous vein is unavailable, prosthetic graft materials, particularly expanded polytetrafluoroethylene are used for peripheral arterial revascularisation. Poor long term patency of prosthetic materials is due to distal anastomotic intimal hyperplasia. Intimal hyperplasia is directly linked to shear stress abnormalities at the vessel wall. Compliance and calibre mismatch between native vessel and graft, as well as anastomotic line stress concentration contribute towards unnatural wall shear stress. High porosity reduces graft compliance by causing fibrovascular infiltration, whereas low porosity discourages the development of an endothelial lining and hence effective antithrombogenicity. Therefore, consideration of mechanical properties is necessary in graft development. Current research into synthetic vascular grafts concentrates on simulating the mechanical properties of native arteries and tissue engineering aims to construct a new biological arterial conduit.

  12. Preparation and features of polycaprolactone vascular grafts with the incorporated vascular endothelial growth factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevostyanova, V. V., E-mail: sevostyanova.victoria@gmail.com; Khodyrevskaya, Y. I.; Glushkova, T. V.

    The development of tissue-engineered small-diameter vascular grafts is an urgent issue in cardiovascular surgery. In this study, we assessed how the incorporation of the vascular endothelial growth factor (VEGF) affects morphological and mechanical properties of polycaprolactone (PCL) vascular grafts along with its release kinetics. Vascular grafts were prepared using two-phase electrospinning. In pursuing our aims, we performed scanning electron microscopy, mechanical testing, and enzyme-linked immunosorbent assay. Our results demonstrated the preservation of a highly porous structure and improvement of PCL/VEGF scaffold mechanical properties as compared to PCL grafts. A prolonged VEGF release testifies the use of this construct as amore » scaffold for tissue-engineered vascular grafts.« less

  13. Acquired partial lipodystrophy is associated with increased risk for developing metabolic abnormalities.

    PubMed

    Akinci, Baris; Koseoglu, Fatos Dilan; Onay, Huseyin; Yavuz, Sevgi; Altay, Canan; Simsir, Ilgin Yildirim; Ozisik, Secil; Demir, Leyla; Korkut, Meltem; Yilmaz, Nusret; Ozen, Samim; Akinci, Gulcin; Atik, Tahir; Calan, Mehmet; Secil, Mustafa; Comlekci, Abdurrahman; Demir, Tevfik

    2015-09-01

    Acquired partial lipodystrophy (APL) is a rare disorder characterized by progressive selective fat loss. In previous studies, metabolic abnormalities were reported to be relatively rare in APL, whilst they were quite common in other types of lipodystrophy syndromes. In this nationwide cohort study, we evaluated 21 Turkish patients with APL who were enrolled in a prospective follow-up protocol. Subjects were investigated for metabolic abnormalities. Fat distribution was assessed by whole body MRI. Hepatic steatosis was evaluated by ultrasound, MRI and MR spectroscopy. Patients with diabetes underwent a mix meal stimulated C-peptide/insulin test to investigate pancreatic beta cell functions. Leptin and adiponectin levels were measured. Fifteen individuals (71.4%) had at least one metabolic abnormality. Six patients (28.6%) had diabetes, 12 (57.1%) hypertrigylceridemia, 10 (47.6%) low HDL cholesterol, and 11 (52.4%) hepatic steatosis. Steatohepatitis was further confirmed in 2 patients with liver biopsy. Anti-GAD was negative in all APL patients with diabetes. APL patients with diabetes had lower leptin and adiponectin levels compared to patients with type 2 diabetes and healthy controls. However, contrary to what we observed in patients with congenital generalized lipodystrophy (CGL), we did not detect consistently very low leptin levels in APL patients. The mix meal test suggested that APL patients with diabetes had a significant amount of functional pancreatic beta cells, and their diabetes was apparently associated with insulin resistance. Our results show that APL is associated with increased risk for developing metabolic abnormalities. We suggest that close long-term follow-up is required to identify and manage metabolic abnormalities in APL. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Von Hippel-Lindau protein in the RPE is essential for normal ocular growth and vascular development.

    PubMed

    Lange, Clemens A K; Luhmann, Ulrich F O; Mowat, Freya M; Georgiadis, Anastasios; West, Emma L; Abrahams, Sabu; Sayed, Haroon; Powner, Michael B; Fruttiger, Marcus; Smith, Alexander J; Sowden, Jane C; Maxwell, Patrick H; Ali, Robin R; Bainbridge, James W B

    2012-07-01

    Molecular oxygen is essential for the development, growth and survival of multicellular organisms. Hypoxic microenvironments and oxygen gradients are generated physiologically during embryogenesis and organogenesis. In the eye, oxygen plays a crucial role in both physiological vascular development and common blinding diseases. The retinal pigment epithelium (RPE) is a monolayer of cells essential for normal ocular development and in the mature retina provides support for overlying photoreceptors and their vascular supply. Hypoxia at the level of the RPE is closely implicated in pathogenesis of age-related macular degeneration. Adaptive tissue responses to hypoxia are orchestrated by sophisticated oxygen sensing mechanisms. In particular, the von Hippel-Lindau tumour suppressor protein (pVhl) controls hypoxia-inducible transcription factor (HIF)-mediated adaptation. However, the role of Vhl/Hif1a in the RPE in the development of the eye and its vasculature is unknown. In this study we explored the function of Vhl and Hif1a in the developing RPE using a tissue-specific conditional-knockout approach. We found that deletion of Vhl in the RPE results in RPE apoptosis, aniridia and microphthalmia. Increased levels of Hif1a, Hif2a, Epo and Vegf are associated with a highly disorganised retinal vasculature, chorioretinal anastomoses and the persistence of embryonic vascular structures into adulthood. Additional inactivation of Hif1a in the RPE rescues the RPE morphology, aniridia, microphthalmia and anterior vasoproliferation, but does not rescue retinal vasoproliferation. These data demonstrate that Vhl-dependent regulation of Hif1a in the RPE is essential for normal RPE and iris development, ocular growth and vascular development in the anterior chamber, whereas Vhl-dependent regulation of other downstream pathways is crucial for normal development and maintenance of the retinal vasculature.

  15. Ultrastructural and cellular basis for the development of abnormal myocardial mechanics during the transition from hypertension to heart failure.

    PubMed

    Shah, Sanjiv J; Aistrup, Gary L; Gupta, Deepak K; O'Toole, Matthew J; Nahhas, Amanda F; Schuster, Daniel; Chirayil, Nimi; Bassi, Nikhil; Ramakrishna, Satvik; Beussink, Lauren; Misener, Sol; Kane, Bonnie; Wang, David; Randolph, Blake; Ito, Aiko; Wu, Megan; Akintilo, Lisa; Mongkolrattanothai, Thitipong; Reddy, Mahendra; Kumar, Manvinder; Arora, Rishi; Ng, Jason; Wasserstrom, J Andrew

    2014-01-01

    Although the development of abnormal myocardial mechanics represents a key step during the transition from hypertension to overt heart failure (HF), the underlying ultrastructural and cellular basis of abnormal myocardial mechanics remains unclear. We therefore investigated how changes in transverse (T)-tubule organization and the resulting altered intracellular Ca(2+) cycling in large cell populations underlie the development of abnormal myocardial mechanics in a model of chronic hypertension. Hearts from spontaneously hypertensive rats (SHRs; n = 72) were studied at different ages and stages of hypertensive heart disease and early HF and were compared with age-matched control (Wistar-Kyoto) rats (n = 34). Echocardiography, including tissue Doppler and speckle-tracking analysis, was performed just before euthanization, after which T-tubule organization and Ca(2+) transients were studied using confocal microscopy. In SHRs, abnormalities in myocardial mechanics occurred early in response to hypertension, before the development of overt systolic dysfunction and HF. Reduced longitudinal, circumferential, and radial strain as well as reduced tissue Doppler early diastolic tissue velocities occurred in concert with T-tubule disorganization and impaired Ca(2+) cycling, all of which preceded the development of cardiac fibrosis. The time to peak of intracellular Ca(2+) transients was slowed due to T-tubule disruption, providing a link between declining cell ultrastructure and abnormal myocardial mechanics. In conclusion, subclinical abnormalities in myocardial mechanics occur early in response to hypertension and coincide with the development of T-tubule disorganization and impaired intracellular Ca(2+) cycling. These changes occur before the development of significant cardiac fibrosis and precede the development of overt cardiac dysfunction and HF.

  16. Molecular parallels between neural and vascular development.

    PubMed

    Eichmann, Anne; Thomas, Jean-Léon

    2013-01-01

    The human central nervous system (CNS) features a network of ~400 miles of blood vessels that receives >20% of the body's cardiac output and uses most of its blood glucose. Many human diseases, including stroke, retinopathy, and cancer, are associated with the biology of CNS blood vessels. These vessels originate from extrinsic cell populations, including endothelial cells and pericytes that colonize the CNS and interact with glia and neurons to establish the blood-brain barrier and control cerebrovascular exchanges. Neurovascular interactions also play important roles in adult neurogenic niches, which harbor a unique population of neural stem cells that are intimately associated with blood vessels. We here review the cellular and molecular mechanisms required to establish the CNS vascular network, with a special focus on neurovascular interactions and the functions of vascular endothelial growth factors.

  17. Abnormal development of floral meristem triggers defective morphogenesis of generative system in transgenic tomatoes.

    PubMed

    Chaban, Inna; Khaliluev, Marat; Baranova, Ekaterina; Kononenko, Neonila; Dolgov, Sergey; Smirnova, Elena

    2018-04-21

    Parthenocarpy and fruit malformations are common among independent transgenic tomato lines, expressing genes encoding different pathogenesis-related (PR) protein and antimicrobal peptides. Abnormal phenotype developed independently of the expression and type of target genes, but distinctive features during flower and fruit development were detected in each transgenic line. We analyzed the morphology, anatomy, and cytoembryology of abnormal flowers and fruits from these transgenic tomato lines and compared them with flowers and fruits of wild tomatoes, line YaLF used for transformation, and transgenic plants with normal phenotype. We confirmed that the main cause of abnormal flower and fruit development was the alterations of determinate growth of generative meristem. These alterations triggered different types of anomalous growth, affecting the number of growing ectopic shoots and formation of new flowers. Investigation of the ovule ontogenesis did not show anomalies in embryo sac development, but fertilization did not occur and embryo sac degenerated. Nevertheless, the ovule continued to differentiate due to proliferation of endothelium cells. The latter substituted embryo sac and formed pseudoembryonic tissue. This process imitated embryogenesis and stimulated ovary growth, leading to the development of parthenocarpic fruit. We demonstrated that failed fertilization occurred due to defective male gametophyte formation, which was manifested in blocked division of the nucleus in the microspore and arrest of vegetative and generative cell formation. Maturing pollen grains were overgrown microspores, not competent for fertilization but capable to induce proliferation of endothelium and development of parthenocarpic ovary. Thus, our study provided new data on the structural transformations of reproductive organs during development of parthenocarpic fruits in transgenic tomato.

  18. Identification of Chemical Vascular Disruptors During Development Using An Integrative Predictive Toxicity Model and Zebrafish and in Vitro Functional Angiogenesis Assays.

    EPA Science Inventory

    Identification of chemical vascular disruptors during development using an integrative predictive toxicity model and zebrafish and in vitro functional angiogenesis assays Chemically-induced vascular toxicity during embryonic development can result in a wide range of adverse pre...

  19. Peripheral vascular tumors and vascular malformations: imaging (magnetic resonance imaging and conventional angiography), pathologic correlation and treatment options.

    PubMed

    El-Merhi, Fadi; Garg, Deepak; Cura, Marco; Ghaith, Ola

    2013-02-01

    Vascular anomalies are classified into vascular tumors (infantile hemangioma) and vascular malformations. Vascular malformations are divided into slow flow and high flow subtypes. Magnetic resonance imaging helps in classification and assessing extent and distribution. Conventional angiography also known as digital subtraction angiography is pivotal in assessment of fine vascular details and treatment planning. Imaging correlates well with histopathology. We review recent development in imaging techniques of various vascular anomalies most of which are affecting the peripheral system which potentially may broaden understanding of their diagnosis, classification and treatment.

  20. Vascular endothelial growth factor signaling regulates the segregation of artery and vein via ERK activity during vascular development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Se-Hee; Schmitt, Christopher E.; Woolls, Melissa J.

    Highlights: ► VEGF-A signaling regulates the segregation of axial vessels. ► VEGF-A signaling is mediated by PKC and ERK in this process. ► Ectopic activation of ERK is sufficient to rescue defects in vessel segregation. -- Abstract: Segregation of two axial vessels, the dorsal aorta and caudal vein, is one of the earliest patterning events occur during development of vasculature. Despite the importance of this process and recent advances in our understanding on vascular patterning during development, molecular mechanisms that coordinate the segregation of axial vessels remain largely elusive. In this report, we find that vascular endothelial growth factor-A (Vegf-A)more » signaling regulates the segregation of dorsal aorta and axial vein during development. Inhibition of Vegf-A pathway components including ligand Vegf-A and its cognate receptor Kdrl, caused failure in segregation of axial vessels in zebrafish embryos. Similarly, chemical inhibition of Mitogen-activated protein kinase kinase (Map2k1)/Extracellular-signal-regulated kinases (Erk) and phosphatidylinositol 3-kinases (PI3 K), which are downstream effectors of Vegf-A signaling pathway, led to the fusion of two axial vessels. Moreover, we find that restoring Erk activity by over-expression of constitutively active MEK in embryos with a reduced level of Vegf-A signaling can rescue the defects in axial vessel segregation. Taken together, our data show that segregation of axial vessels requires the function of Vegf-A signaling, and Erk may function as the major downstream effector in this process.« less

  1. Connective tissue spectrum abnormalities associated with spontaneous cerebrospinal fluid leaks: a prospective study.

    PubMed

    Reinstein, Eyal; Pariani, Mitchel; Bannykh, Serguei; Rimoin, David L; Schievink, Wouter I

    2013-04-01

    We aimed to assess the frequency of connective tissue abnormalities among patients with cerebrospinal fluid (CSF) leaks in a prospective study using a large cohort of patients. We enrolled a consecutive group of 50 patients, referred for consultation because of CSF leak. All patients have been carefully examined for the presence of connective tissue abnormalities, and based on findings, patients underwent genetic testing. Ancillary diagnostic studies included echocardiography, eye exam, and histopathological examinations of skin and dura biopsies in selected patients. We identified nine patients with heritable connective tissue disorders, including Marfan syndrome, Ehlers-Danlos syndrome and other unclassified forms. In seven patients, spontaneous CSF leak was the first noted manifestation of the genetic disorder. We conclude that spontaneous CSF leaks are associated with a spectrum of connective tissue abnormalities and may be the first noted clinical presentation of the genetic disorder. We propose that there is a clinical basis for considering spontaneous CSF leak as a clinical manifestation of heritable connective tissue disorders, and we suggest that patients with CSF leaks should be screened for connective tissue and vascular abnormalities.

  2. Novel Paradigms for Dialysis Vascular Access: Downstream Vascular Biology–Is There a Final Common Pathway?

    PubMed Central

    2013-01-01

    Summary Vascular access dysfunction is a major cause of morbidity and mortality in hemodialysis patients. The most common cause of vascular access dysfunction is venous stenosis from neointimal hyperplasia within the perianastomotic region of an arteriovenous fistula and at the graft-vein anastomosis of an arteriovenous graft. There have been few, if any, effective treatments for vascular access dysfunction because of the limited understanding of the pathophysiology of venous neointimal hyperplasia formation. This review will (1) describe the histopathologic features of hemodialysis access stenosis; (2) discuss novel concepts in the pathogenesis of neointimal hyperplasia development, focusing on downstream vascular biology; (3) highlight future novel therapies for treating downstream biology; and (4) discuss future research areas to improve our understanding of downstream biology and neointimal hyperplasia development. PMID:23990166

  3. Molecular Parallels between Neural and Vascular Development

    PubMed Central

    Eichmann, Anne; Thomas, Jean-Léon

    2013-01-01

    The human central nervous system (CNS) features a network of ∼400 miles of blood vessels that receives >20% of the body’s cardiac output and uses most of its blood glucose. Many human diseases, including stroke, retinopathy, and cancer, are associated with the biology of CNS blood vessels. These vessels originate from extrinsic cell populations, including endothelial cells and pericytes that colonize the CNS and interact with glia and neurons to establish the blood–brain barrier and control cerebrovascular exchanges. Neurovascular interactions also play important roles in adult neurogenic niches, which harbor a unique population of neural stem cells that are intimately associated with blood vessels. We here review the cellular and molecular mechanisms required to establish the CNS vascular network, with a special focus on neurovascular interactions and the functions of vascular endothelial growth factors. PMID:23024177

  4. Abnormal Canine Bone Development Associated with Hypergravity Exposure

    NASA Technical Reports Server (NTRS)

    Morgan, J. P.; Fisher, G. L.; McNeill, K. L.; Oyama, J.

    1979-01-01

    Chronic centrifugation of 85- to 92-day-old Beagles at 2.0 x g and 2.6 x g for 26 weeks during the time of active skeletal growth caused skeletal abnormalities in the radius and the ulna of ten of 11 dogs. The pattern of change mimicked that found in naturally occurring and experimentally induced premature distal ulnar physeal closure or delayed growth at this physis. Minimal changes in bone density were detected by sensitive photon absorptiometric techniques. Skeletal abnormalities also were found in five of the six cage-control dogs, although the run-control dogs were radiographically normal.

  5. Bioprinting for vascular and vascularized tissue biofabrication.

    PubMed

    Datta, Pallab; Ayan, Bugra; Ozbolat, Ibrahim T

    2017-03-15

    Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision

  6. High phosphate feeding promotes mineral and bone abnormalities in mice with chronic kidney disease.

    PubMed

    Lau, Wei Ling; Linnes, Michael; Chu, Emily Y; Foster, Brian L; Bartley, Bryan A; Somerman, Martha J; Giachelli, Cecilia M

    2013-01-01

    Chronic kidney disease-mineral bone disorder (CKD-MBD) is a systemic syndrome characterized by imbalances in mineral homeostasis, renal osteodystrophy (ROD) and ectopic calcification. The mechanisms underlying this syndrome in individuals with chronic kidney disease (CKD) are not yet clear. We examined the effect of normal phosphate (NP) or high phosphate (HP) feeding in the setting of CKD on bone pathology, serum biochemistry and vascular calcification in calcification-prone dilute brown non-agouti (DBA/2) mice. In both NP and HP-fed CKD mice, elevated serum parathyroid hormone and alkaline phosphatase (ALP) levels were observed, but serum phosphorus levels were equivalent compared with sham controls. CKD mice on NP diet showed trabecular alterations in the long bone consistent with high-turnover ROD, including increased trabecular number with abundant osteoblasts and osteoclasts. Despite trabecular bone and serum biochemical changes, CKD/NP mice did not develop vascular calcification. In contrast, CKD/HP mice developed arterial medial calcification (AMC), more severe trabecular bone alterations and cortical bone abnormalities that included decreased cortical thickness and density, and increased cortical porosity. Cortical bone porosity and trabecular number strongly correlated with the degree of aortic calcification. HP feeding was required to induce the full spectrum of CKD-MBD symptoms in CKD mice.

  7. Peripheral retinopathy in offspring of carriers of Norrie disease gene mutations. Possible transplacental effect of abnormal Norrin.

    PubMed

    Mintz-Hittner, H A; Ferrell, R E; Sims, K B; Fernandez, K M; Gemmell, B S; Satriano, D R; Caster, J; Kretzer, F L

    1996-12-01

    The Norrie disease (ND) gene (Xp11.3) (McKusick 310600) consists of one untranslated exon and two exons partially translated as the Norrie disease protein (Norrin). Norrin has sequence homology and computer-predicted tertiary structure of a growth factor containing a cystine knot motif, which affects endothelial cell migration and proliferation. Norrie disease (congenital retinal detachment), X-linked primary retinal dysplasia (congenital retinal fold), and X-linked exudative vitreoretinopathy (congenital macular ectopia) are allelic disorders. Blood was drawn for genetic studies from members of two families to test for ND gene mutations. Sixteen unaffected family members were examined ophthalmologically. If any retinal abnormality were identified, fundus photography and fluorescein angiography was performed. Family A had ND (R109stp), and family B had X-linked exudative vitreoretinopathy (R121L). The retinas of 11 offspring of carrier females were examined: three of seven carrier females, three of three otherwise healthy females, and one of one otherwise healthy male had peripheral inner retinal vascular abnormalities. The retinas of five offspring of affected males were examined: none of three carrier females and none of two otherwise healthy males had this peripheral retinal finding. Peripheral inner retinal vascular abnormalities similar to regressed retinopathy of prematurity were identified in seven offspring of carriers of ND gene mutations in two families. These ophthalmologic findings, especially in four genetically healthy offspring, strongly support the hypothesis that abnormal Norrin may have an adverse transplacental (environmental) effect on normal inner retinal vasculogenesis.

  8. Effect of abnormal notochord delamination on hindgut development in the Adriamycin mouse model.

    PubMed

    Sato, Hideaki; Hajduk, Piotr; Furuta, Shigeyuki; Wakisaka, Munechika; Murphy, Paula; Puri, Prem; Kitagawa, Hiroaki

    2013-11-01

    Adriamycin mouse model (AMM) is a model of VACTERL anomalies. Sonic hedgehog (Shh) pathway, sourced by the notochord, is implicated of anorectal malformations. We hypothesized hindgut anomalies observed in the AMM are the result of abnormal effect of the notochord. Time-mated CBA/Ca mice received two intraperitoneal injections of Adriamycin (6 mg/kg) or saline as control on embryonic day (E) 7 and 8. Fetuses were harvested from E9 to E11, stained following whole mount in situ hybridization with labeled RNA probes to detect Shh and Fork head box F1(Foxf1) transcripts. Immunolocalization with endoderm marker Hnf3β was used to visualize morphology. Embryos were scanned by OPT to obtain 3D representations of expressions. In AMM, the notochord was abnormally displaced ventrally with attachment to the hindgut endoderm in 71 % of the specimens. In 32 % of the treated embryos abnormal hindgut ended blindly in a cystic structure, and both of types were remarked in 29 % of treated embryos. Endodermal Shh and mesenchymal Foxf1 genes expression were preserved around the hindgut cystic malformation. The delamination of the developing notochord in the AMM is disrupted, which may influence signaling mechanisms from the notochord to the hindgut resulting in abnormal patterning of the hindgut.

  9. Polε Instability Drives Replication Stress, Abnormal Development, and Tumorigenesis.

    PubMed

    Bellelli, Roberto; Borel, Valerie; Logan, Clare; Svendsen, Jennifer; Cox, Danielle E; Nye, Emma; Metcalfe, Kay; O'Connell, Susan M; Stamp, Gordon; Flynn, Helen R; Snijders, Ambrosius P; Lassailly, François; Jackson, Andrew; Boulton, Simon J

    2018-05-17

    DNA polymerase ε (POLE) is a four-subunit complex and the major leading strand polymerase in eukaryotes. Budding yeast orthologs of POLE3 and POLE4 promote Polε processivity in vitro but are dispensable for viability in vivo. Here, we report that POLE4 deficiency in mice destabilizes the entire Polε complex, leading to embryonic lethality in inbred strains and extensive developmental abnormalities, leukopenia, and tumor predisposition in outbred strains. Comparable phenotypes of growth retardation and immunodeficiency are also observed in human patients harboring destabilizing mutations in POLE1. In both Pole4 -/- mouse and POLE1 mutant human cells, Polε hypomorphy is associated with replication stress and p53 activation, which we attribute to inefficient replication origin firing. Strikingly, removing p53 is sufficient to rescue embryonic lethality and all developmental abnormalities in Pole4 null mice. However, Pole4 -/- p53 +/- mice exhibit accelerated tumorigenesis, revealing an important role for controlled CMG and origin activation in normal development and tumor prevention. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Notch Signaling in Vascular Smooth Muscle Cells

    PubMed Central

    Baeten, J.T.; Lilly, B.

    2018-01-01

    The Notch signaling pathway is a highly conserved pathway involved in cell fate determination in embryonic development and also functions in the regulation of physiological processes in several systems. It plays an especially important role in vascular development and physiology by influencing angiogenesis, vessel patterning, arterial/venous specification, and vascular smooth muscle biology. Aberrant or dysregulated Notch signaling is the cause of or a contributing factor to many vascular disorders, including inherited vascular diseases, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, associated with degeneration of the smooth muscle layer in cerebral arteries. Like most signaling pathways, the Notch signaling axis is influenced by complex interactions with mediators of other signaling pathways. This complexity is also compounded by different members of the Notch family having both overlapping and unique functions. Thus, it is vital to fully understand the roles and interactions of each Notch family member in order to effectively and specifically target their exact contributions to vascular disease. In this chapter, we will review the Notch signaling pathway in vascular smooth muscle cells as it relates to vascular development and human disease. PMID:28212801

  11. IR imaging of blood circulation of patients with vascular disease

    NASA Astrophysics Data System (ADS)

    Wang, Hsin; Wade, Dwight R., Jr.; Kam, Jack

    2004-04-01

    We conducted a preliminary IR imaging study of blood circulation in patients with peripheral vascular diseases. Abnormal blood flow is common in older adults, especially those with elevated blood lipids, diabetes, hypertension, and a history of smoking. All of these conditions have a high prevalence in our population, often with more than one condition in the same individual. The differences in blood flow is revealed by temperature differences in areas of the extremities as well as other regions of the body. However, what is needed is an imaging technique that is relatively inexpensive and can reveal the blood flow in real time. The IR imaging can show detailed venous system and small tempearture changes associated with blood flow. Six patients with vascular diseases were tested in a clinic set up. Their legs and feet were imaged. We observed large temperature differences (cooling of more than 10° C) at the foot, especially toes. More valuable information were obtained from the temperature distribution maps. IR thermography is potentially a very valuable tool for medical application, especially for vascular diseases.

  12. Clozapine-induced EEG abnormalities and clinical response to clozapine.

    PubMed

    Risby, E D; Epstein, C M; Jewart, R D; Nguyen, B V; Morgan, W N; Risch, S C; Thrivikraman, K V; Lewine, R L

    1995-01-01

    The authors hypothesized that patients who develop gross EEG abnormalities during clozapine treatment would have a less favorable outcome than patients who did not develop abnormal EEGs. The clinical EEGs and the Brief Psychiatric Rating Scale (BPRS) scores of 12 patients with schizophrenia and 4 patients with schizoaffective disorder were compared before and during treatment with clozapine. Eight patients developed significant EEG abnormalities on clozapine; 1 showed worsening of an abnormal pre-clozapine EEG; none of these subjects had clinical seizures. BPRS scores improved significantly in the group of patients who developed abnormal EEGs but not in the group who did not. Findings are consistent with previous reports of a high incidence of clozapine-induced EEG abnormalities and a positive association between these abnormalities and clinical improvement.

  13. A Brief History of the Development of Abnormal Psychology: A Training Guide. Final Report.

    ERIC Educational Resources Information Center

    Phelps, William R.

    Presented for practitioners is a history of the development of abnormal psychology. Areas covered include the following: Early medical concepts, ideas carried over from literature, early treatment of the mentally ill, development of the psychological viewpoint, Freud's psychoanalytic theory, Jung's analytic theory, the individual psychology of…

  14. Alzheimer's disease and vascular dementia in developing countries: prevalence, management, and risk factors

    PubMed Central

    Kalaria, Raj N; Maestre, Gladys E; Arizaga, Raul; Friedland, Robert P; Galasko, Doug; Hall, Kathleen; Luchsinger, José A; Ogunniyi, Adesola; Perry, Elaine K; Potocnik, Felix; Prince, Martin; Stewart, Robert; Wimo, Anders; Zhang, Zhen-Xin; Antuono, Piero

    2010-01-01

    Despite mortality due to communicable diseases, poverty, and human conflicts, dementia incidence is destined to increase in the developing world in tandem with the ageing population. Current data from developing countries suggest that age-adjusted dementia prevalence estimates in 65 year olds are high (≥5%) in certain Asian and Latin American countries, but consistently low (1–3%) in India and sub-Saharan Africa; Alzheimer's disease accounts for 60% whereas vascular dementia accounts for ∼30% of the prevalence. Early-onset familial forms of dementia with single-gene defects occur in Latin America, Asia, and Africa. Illiteracy remains a risk factor for dementia. The APOE ε4 allele does not influence dementia progression in sub-Saharan Africans. Vascular factors, such as hypertension and type 2 diabetes, are likely to increase the burden of dementia. Use of traditional diets and medicinal plant extracts might aid prevention and treatment. Dementia costs in developing countries are estimated to be US$73 billion yearly, but care demands social protection, which seems scarce in these regions. PMID:18667359

  15. Phloem transport velocity varies over time and among vascular bundles during early cucumber seedling development.

    PubMed

    Savage, Jessica A; Zwieniecki, Maciej A; Holbrook, N Michele

    2013-11-01

    We use a novel dye-tracing technique to measure in vivo phloem transport velocity in cucumber (Cucumis sativus) plants during early seedling development. We focus on seedlings because of their importance in plant establishment and because they provide a simple source and sink model of phloem transport. The dye-tracing method uses a photodiode to track the movement of a bleach front of fluorescent dye traveling in the phloem from the cotyledons (source) to the roots (sink). During early seedling development, phloem transport velocity in this direction can change 2-fold depending on vascular connectivity and the number of actively growing sinks. Prior to leaf expansion, vascular bundles attached to the first developing leaf demonstrate a decline in basipetal phloem transport that can be alleviated by the leaf's removal. At this stage, seedlings appear carbon limited and phloem transport velocity is correlated with cotyledon area, a pattern that is apparent both during cotyledon expansion and after source area manipulation. When the first leaf transitions to a carbon source, seedling growth rate increases and basipetal phloem transport velocity becomes more stable. Because bundles appear to operate autonomously, transport velocity can differ among vascular bundles. Together, these results demonstrate the dynamic and heterogeneous nature of phloem transport and underline the need for a better understanding of how changes in phloem physiology impact growth and allocation at this critical stage of development.

  16. NASAs VESGEN: Systems Analysis of Vascular Phenotypes from Stress and Other Signaling Pathways Using GeneLab.

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.; Weitzel, Alexander; Vyas, Ruchi J.; Murray, Matthew C.; Wyatt, Sarah E.

    2016-01-01

    One fundamental requirement shared by humans with all higher terrestrial life forms, including insect wings, higher land plants and other vertebrates, is a complex, fractally branching vascular system. NASA's VESsel GENeration Analysis (VESGEN) software maps and quantifies vascular trees, networks, and tree-network composites according to weighted physiological rules such as vessel connectivity, tapering and bifurcational branching. According to fluid dynamics, successful vascular transport requires a complex distributed system of highly regulated laminar flow. Microvascular branching rules within vertebrates, dicot leaves and the other organisms therefore display many similarities. One unifying perspective is that vascular patterning offers a useful readout that necessarily integrates complex molecular signaling pathways. VESGEN has elucidated changes in vascular pattern resulting from inflammatory, stress response, developmental and other signaling within numerous tissues and major model organisms studied for Space Biology. For a new VESGEN systems approach, we analyzed differential gene expression in leaves of Arabidopsis thaliana reported by GeneLab (GLDS-7) for spaceflight. Vascular-related changes in leaf gene expression were identified that can potentially be phenocopied by mutants in ground-based experiments. To link transcriptional, protein and other molecular change with phenotype, alterations in the Euclidean and dynamic dimensions (x,y,t) of vascular patterns for Arabidopsis leaves and other model species are being co-localized with signaling patterns of single molecular expression analyzed as information dimensions (i,j,k,...). Previously, Drosophila microarray data returned from space suggested significant changes in genes related to wing venation development that include EGF, Notch, Hedghog, Wingless and Dpp signaling. Phenotypes of increasingly abnormal ectopic wing venation in the (non-spaceflight) Drosophila wing generated by overexpression of a

  17. Type 1 and 3 inositol trisphosphate receptors are required for extra-embryonic vascular development.

    PubMed

    Uchida, Keiko; Nakazawa, Maki; Yamagishi, Chihiro; Mikoshiba, Katsuhiko; Yamagishi, Hiroyuki

    2016-10-01

    The embryonic-maternal interface of the placental labyrinth, allantois, and yolk sac are vital during embryogenesis; however, the precise mechanism underlying the vascularization of these structures remains unknown. Herein we focus on the role of inositol 1,4,5-trisphosphate (IP3) receptors (IP3R), which are intracellular Ca(2+) release channels, in placentation. Double knockout (DKO) of type 1 and 3 IP3Rs (IP3R1 and IP3R3, respectively) in mice resulted in embryonic lethality around embryonic day (E) 11.5. Because IP3R1 and IP3R3 were co-expressed in endothelial cells in the labyrinth, allantois, and yolk sac, we investigated extra-embryonic vascular development in IP3R1- and IP3R3-DKO mice. The formation of chorionic plates and yolk sac vessels seemed dysregulated around the timing of the chorio-allantoic attachment, immediately followed by the disorganization of allantoic vessels, the decreased expression of the spongiotrophoblast cell marker Tpbpa and the growth retardation of the embryos in DKO mice. Fluorescent immunohistochemistry demonstrated downregulation of a vascular endothelial marker, CD31, in labyrinth embryonic vessels and poor elongation of extra-embryonic mesoderm into the labyrinth layer in DKO placenta, whereas the branching of the DKO chorionic trophoblast was initiated. In addition, allantoic and yolk sac vessels in extra-embryonic tissues were less remodeled in DKO mice. In vitro endothelial cord formation and migration activities of cultured vascular endothelial cells derived from human umbilical vein were downregulated under the inhibition of IP3R. Our results suggest that IP3R1 and IP3R3 are required for extra-embryonic vascularization in the placenta, allantois, and yolk sac. This is the first demonstration of the essential role of IP3/IP3Rs signaling in the development of the vasculature at the embryonic-maternal interface. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A microengineered model of RBC transfusion-induced pulmonary vascular injury.

    PubMed

    Seo, Jeongyun; Conegliano, David; Farrell, Megan; Cho, Minseon; Ding, Xueting; Seykora, Thomas; Qing, Danielle; Mangalmurti, Nilam S; Huh, Dongeun

    2017-06-13

    Red blood cell (RBC) transfusion poses significant risks to critically ill patients by increasing their susceptibility to acute respiratory distress syndrome. While the underlying mechanisms of this life-threatening syndrome remain elusive, studies suggest that RBC-induced microvascular injury in the distal lung plays a central role in the development of lung injury following blood transfusion. Here we present a novel microengineering strategy to model and investigate this key disease process. Specifically, we created a microdevice for culturing primary human lung endothelial cells under physiological flow conditions to recapitulate the morphology and hemodynamic environment of the pulmonary microvascular endothelium in vivo. Perfusion of the microengineered vessel with human RBCs resulted in abnormal cytoskeletal rearrangement and release of intracellular molecules associated with regulated necrotic cell death, replicating the characteristics of acute endothelial injury in transfused lungs in vivo. Our data also revealed the significant effect of hemodynamic shear stress on RBC-induced microvascular injury. Furthermore, we integrated the microfluidic endothelium with a computer-controlled mechanical stretching system to show that breathing-induced physiological deformation of the pulmonary microvasculature may exacerbate vascular injury during RBC transfusion. Our biomimetic microsystem provides an enabling platform to mechanistically study transfusion-associated pulmonary vascular complications in susceptible patient populations.

  19. Remote thalamic microstructural abnormalities related to cognitive function in ischemic stroke patients.

    PubMed

    Fernández-Andújar, Marina; Doornink, Fleur; Dacosta-Aguayo, Rosalía; Soriano-Raya, Juan José; Miralbell, Júlia; Bargalló, Núria; López-Cancio, Elena; Pérez de la Ossa, Natalia; Gomis, Meritxell; Millán, Mònica; Barrios, Maite; Cáceres, Cynthia; Pera, Guillem; Forés, Rosa; Clemente, Imma; Dávalos, Antoni; Mataró, Maria

    2014-11-01

    Ischemic stroke can lead to a continuum of cognitive sequelae, ranging from mild vascular cognitive impairment to vascular dementia. These cognitive deficits can be influenced by the disruption of cortico-subcortical circuits. We sought to explore remote thalamic microstructural abnormalities and their association with cognitive function after ischemic stroke. Seventeen patients with right hemispheric ischemic stroke and 17 controls matched for age, sex, and years of education were included. All participants underwent neurological, neuropsychological, and diffusion tensor image examination. Patients were assessed 3 months poststroke. Voxel-wise analysis was used to study thalamic diffusion differences between groups. Mean fractional anisotropy (FA) and mean diffusivity (MD) values in significant thalamic areas were calculated for each subject and correlated with cognitive performance. Stroke patients showed lower FA values and higher MD values in specific areas of both the left and right thalamus compared with controls. In patients, decreased FA values were associated with lower verbal fluency performance in the right thalamus (R(2) = 0.45, β = 0.74) and the left thalamus (R(2) = 0.57, β = 0.77) after adjusting for diabetes mellitus. Moreover, increased MD values were associated with lower verbal fluency performance in the right thalamus (R(2) = 0.27, β = -0.54) after adjusting for diabetes mellitus. In controls, thalamic FA and MD values were not related to any cognitive function. Our findings support the hypothesis that ischemic stroke lesions are associated with remote thalamic diffusion abnormalities, and that these abnormalities can contribute to cognitive dysfunction 3 months after a cerebrovascular event. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  20. Vascular gene expression: a hypothesis

    PubMed Central

    Martínez-Navarro, Angélica C.; Galván-Gordillo, Santiago V.; Xoconostle-Cázares, Beatriz; Ruiz-Medrano, Roberto

    2013-01-01

    The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a “primitive” vascular tissue (a lycophyte), as well as from others that lack a true vascular tissue (a bryophyte), and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non-vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT, and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants. PMID:23882276

  1. Abnormal brain development in newborns with congenital heart disease.

    PubMed

    Miller, Steven P; McQuillen, Patrick S; Hamrick, Shannon; Xu, Duan; Glidden, David V; Charlton, Natalie; Karl, Tom; Azakie, Anthony; Ferriero, Donna M; Barkovich, A James; Vigneron, Daniel B

    2007-11-08

    Congenital heart disease in newborns is associated with global impairment in development. We characterized brain metabolism and microstructure, as measures of brain maturation, in newborns with congenital heart disease before they underwent heart surgery. We studied 41 term newborns with congenital heart disease--29 who had transposition of the great arteries and 12 who had single-ventricle physiology--with the use of magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and diffusion tensor imaging (DTI) before cardiac surgery. We calculated the ratio of N-acetylaspartate to choline (which increases with brain maturation), the ratio of lactate to choline (which decreases with maturation), average diffusivity (which decreases with maturation), and fractional anisotropy of white-matter tracts (which increases with maturation). We compared these findings with those in 16 control newborns of a similar gestational age. As compared with control newborns, those with congenital heart disease had a decrease of 10% in the ratio of N-acetylaspartate to choline (P=0.003), an increase of 28% in the ratio of lactate to choline (P=0.08), an increase of 4% in average diffusivity (P<0.001), and a decrease of 12% in white-matter fractional anisotropy (P<0.001). Preoperative brain injury, as seen on MRI, was not significantly associated with findings on MRS or DTI. White-matter injury was observed in 13 newborns with congenital heart disease (32%) and in no control newborns. Term newborns with congenital heart disease have widespread brain abnormalities before they undergo cardiac surgery. The imaging findings in such newborns are similar to those in premature newborns and may reflect abnormal brain development in utero. Copyright 2007 Massachusetts Medical Society.

  2. Vascular loop in the cerebellopontine angle causing pulsatile tinnitus and headache: a case report

    PubMed Central

    Ramly, NA; Roslenda, AR; Suraya, A; Asma, A

    2014-01-01

    Tinnitus is a common disorder, it can be classified as pulsatile and non-pulsatile or objective and subjective. Pulsatile tinnitus is less common than non-pulsatile and can be due to vascular tumour such as glomus or vascular abnormality. We presented an interesting case of a 30 year-old Malay lady with a two-year history of pulsatile tinnitus which was worsening in three months duration. It was associated with intermittent headache. Clinical examination and tuning fork test were unremarkable. Apart from mild hearing loss at high frequency on the left ear, the pure tone audiogram (PTA) was otherwise normal. In view of the patient’s young age with no risk factor for high frequency loss, a magnetic resonance imaging (MRI) was performed to look for any abnormality in the cerebellopontine angle. It revealed a single vessel looping around the left vestibulocochlear and facial nerves at the cisternal portion, likely a branch of the anteroinferior cerebellar artery (AICA). Literature review on the pathophysiology and treatment option in this condition is discussed. PMID:26417253

  3. Chymase-producing cells of the innate immune system are required for decidual vascular remodeling and fetal growth

    PubMed Central

    Meyer, Nicole; Woidacki, Katja; Knöfler, Martin; Meinhardt, Gudrun; Nowak, Désirée; Velicky, Philipp; Pollheimer, Jürgen; Zenclussen, Ana C.

    2017-01-01

    Intrauterine growth restriction (IUGR) is caused by insufficient remodeling of spiral arteries (SAs). The mechanism underlying the relevance of natural killer cells (NKs) and mast cells (MCs) for SA remodeling and its effects on pregnancy outcome are not well understood. We show that NK depletion arrested SA remodeling without affecting pregnancy. MC depletion resulted in abnormally remodeled SAs and IUGR. Combined absence of NKs and MCs substantially affected SA remodeling and impaired fetal growth. We found that α-chymase mast cell protease (Mcpt) 5 mediates apoptosis of uterine smooth muscle cells, a key feature of SA remodeling. Additionally, we report a previously unknown source for Mcpt5: uterine (u) NKs. Mice with selective deletion of Mcpt5+ cells had un-remodeled SAs and growth-restricted progeny. The human α-chymase CMA1, phylogenetic homolog of Mcpt5, stimulated the ex vivo migration of human trophoblasts, a pre-requisite for SA remodeling. Our results show that chymases secreted by uMCs and uNKs are pivotal to the vascular changes required to support pregnancy. Understanding the mechanisms underlying pregnancy-induced vascular changes is essential for developing therapeutic options against pregnancy complications associated with poor vascular remodeling. PMID:28327604

  4. Mesodermal expression of integrin α5β1 regulates neural crest development and cardiovascular morphogenesis

    PubMed Central

    Liang, Dong; Wang, Xia; Mittal, Ashok; Dhiman, Sonam; Hou, Shuan-Yu; Degenhardt, Karl; Astrof, Sophie

    2014-01-01

    Integrin α5-null embryos die in mid-gestation from severe defects in cardiovascular morphogenesis, which stem from defective development of the neural crest, heart and vasculature. To investigate the role of integrin α5β1 in cardiovascular development, we used the Mesp1Cre knock-in strain of mice to ablate integrin α5 in the anterior mesoderm, which gives rise to all of the cardiac and many of the vascular and muscle lineages in the anterior portion of the embryo. Surprisingly, we found that mutant embryos displayed numerous defects related to the abnormal development of the neural crest such as cleft palate, ventricular septal defect, abnormal development of hypoglossal nerves, and defective remodeling of the aortic arch arteries. We found that defects in arch artery remodeling stem from the role of mesodermal integrin α5β1 in neural crest proliferation and differentiation into vascular smooth muscle cells, while proliferation of pharyngeal mesoderm and differentiation of mesodermal derivatives into vascular smooth muscle cells was not defective. Taken together our studies demonstrate a requisite role for mesodermal integrin α5β1 in signaling between the mesoderm and the neural crest, thereby regulating neural crest-dependent morphogenesis of essential embryonic structures. PMID:25242040

  5. CHRONIC PERCHLORATE EXPOSURE CAUSES MORPHOLOGICAL ABNORMALITIES IN DEVELOPING STICKLEBACK

    PubMed Central

    Bernhardt, Richard R.; Von Hippel, Frank A.; O’Hara, Todd M.

    2011-01-01

    Few studies have examined the effects of chronic perchlorate exposure during growth and development, and fewer still have analyzed the effects of perchlorate over multiple generations. We describe morphological and developmental characteristics for threespine stickleback (Gasterosteus aculeatus) that were spawned and raised to sexual maturity in perchlorate-treated water (G1,2003) and for their offspring (G2,2004) that were not directly treated with perchlorate. The G1,2003 displayed a variety of abnormalities, including impaired formation of calcified traits, slower growth rates, aberrant sexual development, poor survivorship, and reduced pigmentation that allowed internal organs to be visible. Yet these conditions were absent when the offspring of contaminated fish (G2,2004) were raised in untreated water, suggesting a lack of transgenerational effects and that surviving populations may be able to recover following remediation of perchlorate-contaminated sites PMID:21465539

  6. Differential diagnosis of bilateral parietal abnormalities in I-123 IMP SPECT imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwabara, Y.; Ichiya, Y.; Otsuka, M.

    1990-12-01

    This report discusses the clinical significance of bilateral parietal abnormalities on I-123 IMP SPECT imaging in 158 patients with cerebral disorders. This pattern was seen in 15 out of 21 patients with Alzheimer's disease; it was also seen in 4 out of 5 patients with Parkinson's disease with dementia, in 3 out of 17 patients with vascular dementia, in 1 out of 36 patients with cerebral infarction without dementia, in 1 out of 2 patients with hypoglycemia, and in 1 out of 2 patients with CO intoxication. Detection of bilateral parietal abnormalities is a useful finding in the diagnosis ofmore » Alzheimer's disease, but one should keep in mind that other cerebral disorders may also show a similar pattern with I-123 IMP SPECT imaging.« less

  7. Development of Embedded Vascular Networks in FRP for Active/Passive Thermal Management

    DTIC Science & Technology

    2015-04-01

    Passive Thermal Management Katarzyna...To) 30 September 2012 – 31 December 2014 4. TITLE AND SUBTITLE Development of Embedded Vascular Networks in FRP for Active/ Passive Thermal Management   5a...Active/ Passive   Thermal   Management   Reference:       EOARD  grant  (FA8655-­‐12-­‐1-­‐2144)   Investigators:    

  8. Coagulation abnormalities in pediatric and adult patients after sclerotherapy or embolization of vascular anomalies.

    PubMed

    Mason, K P; Neufeld, E J; Karian, V E; Zurakowski, D; Koka, B V; Burrows, P E

    2001-12-01

    The purpose of our study was to examine the coagulation status in patients with vascular anomalies who had undergone sclerotherapy or embolization. Ours was a prospective pilot study of 29 patients who had undergone sclerotherapy or embolization of large vascular anomalies. Fibrinogen, platelet, and d-dimer levels and prothrombin time were obtained before, immediately after, and on the day after the procedure. Five patients with venous malformations had positive d-dimer levels before the procedure. A subgroup analysis revealed a relationship between the type of agent used and the change in coagulation status. Specifically, a positive relationship was found between the use of dehydrated alcohol or sodium tetradecyl sulfate and a disruption in coagulation profiles as evidenced by a decrease in platelets and fibrinogen, an increase in prothrombin time, and a conversion from negative to positive d-dimers. In contrast, sclerotherapy or embolization with cyanoacrylic, polyvinyl alcohol foam particles, or platinum microcoils was not associated with coagulation disturbances. The coagulation disturbances that occur in response to dehydrated alcohol or sodium tetradecyl sulfate sclerotherapy or embolization could compromise the patient's clotting ability. Patients who receive dehydrated alcohol or sodium tetradecyl sulfate during a preoperative sclerotherapy or embolization may experience coagulation disturbances that could increase the risk of bleeding, thrombosis, or hematoma. This patient population may benefit from the use of glue, foam, or coils as a substitute for dehydrated alcohol or sodium tetradecyl sulfate.

  9. Stabilization of VEGFR2 signaling by cerebral cavernous malformation 3 is critical for vascular development.

    PubMed

    He, Yun; Zhang, Haifeng; Yu, Luyang; Gunel, Murat; Boggon, Titus J; Chen, Hong; Min, Wang

    2010-04-06

    Cerebral cavernous malformations (CCMs) are human vascular malformations caused by mutations in three genes of unknown function: CCM1, CCM2, and CCM3. CCM3, also known as PDCD10 (programmed cell death 10), was initially identified as a messenger RNA whose abundance was induced by apoptotic stimuli in vitro. However, the in vivo function of CCM3 has not been determined. Here, we describe mice with a deletion of the CCM3 gene either ubiquitously or specifically in the vascular endothelium, smooth muscle cells, or neurons. Mice with global or endothelial cell-specific deletion of CCM3 exhibited defects in embryonic angiogenesis and died at an early embryonic stage. CCM3 deletion reduced vascular endothelial growth factor receptor 2 (VEGFR2) signaling in embryos and endothelial cells. In response to VEGF stimulation, CCM3 was recruited to and stabilized VEGFR2, and the carboxyl-terminal domain of CCM3 was required for the stabilization of VEGFR2. Indeed, the CCM3 mutants found in human patients lacking the carboxyl-terminal domain were labile and were unable to stabilize and activate VEGFR2. These results demonstrate that CCM3 promotes VEGFR2 signaling during vascular development.

  10. Risk Stratification for the Development of Respiratory Adverse Events Following Vascular Surgery Using the Society of Vascular Surgery’s Vascular Quality Initiative

    PubMed Central

    Genovese, Elizabeth A; Fish, Larry; Chaer, Rabih A; Makaroun, Michel S; Baril, Donald T

    2017-01-01

    , ambulatory status, transfer status, urgency and operative type. The predicted compared to the actual RAE incidence were highly correlated, with a correlation coefficient of 0.943 (P<.0001) and a c-statistic=0.818. RAEs had a significantly higher rates of in-hospital mortality (25.4% vs. 1.2%, P<.0001, adjusted OR=5.85, P<.0001) and discharge to a nursing facility (57.8% vs. 19.0%, P<.0001, adjusted OR=3.14, P<.0001). Conclusions RAEs are frequent and one of the strongest risk factors for in-hospital mortality and inability to be discharged home. Our risk prediction score accurately stratifies patients based on key demographics, comorbidities, presentation, and operative type that can be used to guide patient counseling, preoperative optimization, and post-operative management. Furthermore, it may be useful in developing quality benchmarks for RAE following major vascular surgery. PMID:27832989

  11. VEGFR tyrosine kinase inhibitor II (VRI) induced vascular insufficiency in zebrafish as a model for studying vascular toxicity and vascular preservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shang; Dang, Yuan Ye; Oi Lam Che, Ginny

    In ischemic disorders such as chronic wounds and myocardial ischemia, there is inadequate tissue perfusion due to vascular insufficiency. Besides, it has been observed that prolonged use of anti-angiogenic agents in cancer therapy produces cardiovascular toxicity caused by impaired vessel integrity and regeneration. In the present study, we used VEGFR tyrosine kinase inhibitor II (VRI) to chemically induce vascular insufficiency in zebrafish in vivo and human umbilical vein endothelial cells (HUVEC) in vitro to further study the mechanisms of vascular morphogenesis in these pathological conditions. We also explored the possibility of treating vascular insufficiency by enhancing vascular regeneration and repairmore » with pharmacological intervention. We observed that pretreatment of VRI induced blood vessel loss in developing zebrafish by inhibiting angiogenesis and increasing endothelial cell apoptosis, accompanied by down-regulation of kdr, kdrl and flt-1 genes expression. The VRI-induced blood vessel loss in zebrafish could be restored by post-treatment of calycosin, a cardiovascular protective isoflavone. Similarly, VRI induced cytotoxicity and apoptosis in HUVEC which could be rescued by calycosin post-treatment. Further investigation of the underlying mechanisms showed that the PI3K/AKT/Bad cell survival pathway was a main contributor of the vascular regenerative effect of calycosin. These findings indicated that the cardiovascular toxicity in anti-angiogenic therapy was mainly caused by insufficient endothelial cell survival, suggesting its essential role in vascular integrity, repair and regeneration. In addition, we showed that VRI-induced blood vessel loss in zebrafish represented a simple and effective in vivo model for studying vascular insufficiency and evaluating cancer drug vascular toxicities. - Highlights: • In vivo VRI model • Rescue effects of calycosin • Calycosin EC survival pathways.« less

  12. Strategies for the Segmentation of Subcutaneous Vascular Patterns in Thermographic Images

    NASA Astrophysics Data System (ADS)

    Chan, Eric K. Y.; Pearce, John A.

    1989-05-01

    Computer-assisted segmentation of vascular patterns in thermographic images provides the clinician with graphic outlines of thermally significant subcutaneous blood vessels. Segmentation strategies compared here consist of image smoothing protocols followed by thresholding and zero-crossing edge detectors. Median prefiltering followed by the Frei-Chen algorithm gave the most reproducible results, with an execution time of 143 seconds for 256 X 256 images. The Laplacian of Gaussian operator was not suitable due to streak artifacts in the thermographic imaging system. This computerized process may be adopted in a fast paced clinical environment to aid in the diagnosis and assessment of peripheral circulatory diseases, Raynaud's Disease3, phlebitis, varicose veins, as well as diseases of the autonomic nervous system. The same methodology may be applied to enhance the appearance of abnormal breast vascular patterns, and hence serve as an adjunct to mammography in the diagnosis of breast cancer. The automatically segmented vascular patterns, which have a hand drawn appearance, may also be used as a data reduction precursor to higher level pattern analysis and classification tasks.

  13. A prospective study for the detection of vascular injury in adult and pediatric patients with cervicothoracic seat belt signs.

    PubMed

    Rozycki, Grace S; Tremblay, Lorraine; Feliciano, David V; Tchorz, Kathryn; Hattaway, Aaron; Fountain, Jack; Pettitt, Barbara J

    2002-04-01

    A delayed diagnosis of injury to cervicothoracic vessels from blunt trauma may cause significant adverse sequelae. The association of a cervicothoracic seat belt sign with such an injury is unknown. Algorithms were prospectively studied for the detection of occult vascular injury in patients with cervicothoracic seat belt signs. Patients with neck seat belt signs underwent arteriography or computed tomographic angiography (CTA). Those with thoracic seat belt signs underwent aortography/arteriography if a ruptured thoracic aorta or injury to a great vessel was suspected or a neurovascular abnormality was present. During a 17-month period, 797 patients were admitted to the trauma service secondary to motor vehicle crashes. One hundred thirty-one (16.4%) had cervical or thoracic seat belt signs. Four (3%) of the patients had carotid artery injuries, the presence of which was strongly associated with a Glasgow Coma Scale score < 14, an Injury Severity Score > 16 (p < 0.0001), and the presence of a clavicle and/or first rib fracture (p < 0.0037). Of the remaining patients, 17 had thoracic trauma. There were no vascular injuries in the children and only one had thoracic trauma. The algorithms are safe and accurate for the detection of cervicothoracic vascular injury in adult and pediatric patients with seat belt signs. The cervicothoracic seat belt mark and an abnormal physical examination are an effective combination in screening for cervicothoracic vascular injury.

  14. Metabolic Abnormalities and Viral Replication is Associated with Biomarkers of Vascular Dysfunction in HIV-Infected Children

    PubMed Central

    Miller, Tracie L.; Borkowsky, William; DiMeglio, Linda A.; Dooley, Laurie; Geffner, Mitchell E.; Hazra, Rohan; McFarland, Elizabeth J.; Mendez, Armando J.; Patel, Kunjal; Siberry, George K.; Van Dyke, Russell B.; Worrell, Carol J.; Jacobson, Denise L.

    2011-01-01

    Objectives Human immunodeficiency virus (HIV)-infected children may be at risk for premature cardiovascular disease. We compared levels of biomarkers of vascular dysfunction among HIV-infected children with and without hyperlipidemia to HIV-exposed, uninfected children (HEU) enrolled in the Pediatric HIV/AIDS Cohort Study (PHACS), and determined factors associated with these biomarkers. Design Prospective cohort study Methods Biomarkers of inflammation (C-reactive protein (CRP), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP1)); coagulant dysfunction (fibrinogen and P-selectin); endothelial dysfunction (soluble intracellular cell adhesion molecule-1 (sICAM), soluble vascular cell adhesion molecule-1 (sVCAM), and E-selectin); and metabolic dysfunction (adiponectin) were measured in 226 HIV-infected and 140 HEU children. Anthropometry, body composition, lipids, glucose, insulin, HIV disease severity, and antiretroviral therapy were recorded. Results The median ages were 12.3 y (HIV-infected) and 10.1 y (HEU). Body mass index (BMI) Z-scores, waist and hip circumference, and percent body fat were lower among HIV-infected. Total and non-HDL cholesterol and triglycerides were higher in HIV-infected children. HIV-infected children had higher MCP-1, fibrinogen, sICAM, and sVCAM levels. In multivariable analyses in the HIV-infected children alone, BMI z-score was associated with higher CRP and fibrinogen, but lower MCP-1 and sVCAM. Unfavorable lipid profiles were positively associated with IL6, MCP1, fibrinogen, and P- and E-selectin, whereas increased HIV viral load was associated with markers of inflammation (MCP1 and CRP) and endothelial dysfunction (sICAM and sVCAM). Conclusions HIV-infected children have higher levels of biomarkers of vascular dysfunction than do HEU children. Risk factors associated with higher biomarkers include unfavorable lipid levels and active HIV replication. PMID:22136114

  15. Comparison of external catheters with subcutaneous vascular access ports for chronic vascular access in a porcine model.

    PubMed

    Chuang, Marc; Orvieto, Marcelo; Laven, Brett; Gerber, Glenn; Wardrip, Craig; Ritch, Chad; Shalhav, Arieh

    2005-03-01

    We sought to compare the outcomes of two chronic vascular access techniques, the externalized catheter and the subcutaneous vascular access port, in pigs. Female farm pigs (n = 30) underwent placement of a chronic vascular access device in the jugular vein for a research protocol: 18 of the animals underwent placement of a tunneled Hickman catheter (THC), and the remaining 12 animals underwent placement of a subcutaneous vascular access port (VAP) without external components. After placement of the devices, animals underwent serial blood sampling. All animals were given identical antibiotic prophylaxis. VAP access required the use of a restraint sling for Huber needle insertion, whereas THC access required no additional equipment. Animals were euthanatized 1 month after placement of the device. In the VAP group, the port was retrieved, cleaned, and steam-autoclaved for reuse. In the THC group, 13 (72%) animals developed infectious complications, and blood and wound cultures were often polymicrobial. One animal was euthanatized secondary to overwhelming sepsis. In addition, three (17%) animals developed thromboembolic complications. In contrast, no thromboembolic complications were noted in the VAP group, and only one animal developed a transient fever which resolved spontaneously; no septic complications or abscesses developed. Blood draws with no anesthesia were successful in both groups. We conclude that subcutaneous vascular access ports are a safe and efficient method for obtaining reliable chronic vascular access for a 1-month period in pigs. The subcutaneous devices were associated with low morbidity. In contrast, externalized catheters can be associated with considerable morbidity.

  16. Vascular Anomalies (Part I): Classification and Diagnostics of Vascular Anomalies.

    PubMed

    Sadick, Maliha; Müller-Wille, René; Wildgruber, Moritz; Wohlgemuth, Walter A

    2018-06-06

    Vascular anomalies are a diagnostic and therapeutic challenge. They require dedicated interdisciplinary management. Optimal patient care relies on integral medical evaluation and a classification system established by experts in the field, to provide a better understanding of these complex vascular entities.  A dedicated classification system according to the International Society for the Study of Vascular Anomalies (ISSVA) and the German Interdisciplinary Society of Vascular Anomalies (DiGGefA) is presented. The vast spectrum of diagnostic modalities, ranging from ultrasound with color Doppler, conventional X-ray, CT with 4 D imaging and MRI as well as catheter angiography for appropriate assessment is discussed.  Congenital vascular anomalies are comprised of vascular tumors, based on endothelial cell proliferation and vascular malformations with underlying mesenchymal and angiogenetic disorder. Vascular tumors tend to regress with patient's age, vascular malformations increase in size and are subdivided into capillary, venous, lymphatic, arterio-venous and combined malformations, depending on their dominant vasculature. According to their appearance, venous malformations are the most common representative of vascular anomalies (70 %), followed by lymphatic malformations (12 %), arterio-venous malformations (8 %), combined malformation syndromes (6 %) and capillary malformations (4 %).  The aim is to provide an overview of the current classification system and diagnostic characterization of vascular anomalies in order to facilitate interdisciplinary management of vascular anomalies.   · Vascular anomalies are comprised of vascular tumors and vascular malformations, both considered to be rare diseases.. · Appropriate treatment depends on correct classification and diagnosis of vascular anomalies, which is based on established national and international classification systems, recommendations and guidelines.. · In the classification

  17. c-Met–mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma

    PubMed Central

    Huang, Menggui; Liu, Tianrun; Ma, Peihong; Mitteer, R. Alan; Zhang, Zhenting; Kim, Hyun Jun; Yeo, Eujin; Zhang, Duo; Cai, Peiqiang; Li, Chunsheng; Zhang, Lin; Zhao, Botao; Roccograndi, Laura; O’Rourke, Donald M.; Dahmane, Nadia; Gong, Yanqing; Koumenis, Constantinos

    2016-01-01

    Aberrant vascularization is a hallmark of cancer progression and treatment resistance. Here, we have shown that endothelial cell (EC) plasticity drives aberrant vascularization and chemoresistance in glioblastoma multiforme (GBM). By utilizing human patient specimens, as well as allograft and genetic murine GBM models, we revealed that a robust endothelial plasticity in GBM allows acquisition of fibroblast transformation (also known as endothelial mesenchymal transition [Endo-MT]), which is characterized by EC expression of fibroblast markers, and determined that a prominent population of GBM-associated fibroblast-like cells have EC origin. Tumor ECs acquired the mesenchymal gene signature without the loss of EC functions, leading to enhanced cell proliferation and migration, as well as vessel permeability. Furthermore, we identified a c-Met/ETS-1/matrix metalloproteinase–14 (MMP-14) axis that controls VE-cadherin degradation, Endo-MT, and vascular abnormality. Pharmacological c-Met inhibition induced vessel normalization in patient tumor–derived ECs. Finally, EC-specific KO of Met inhibited vascular transformation, normalized blood vessels, and reduced intratumoral hypoxia, culminating in suppressed tumor growth and prolonged survival in GBM-bearing mice after temozolomide treatment. Together, these findings illustrate a mechanism that controls aberrant tumor vascularization and suggest that targeting Endo-MT may offer selective and efficient strategies for antivascular and vessel normalization therapies in GBM, and possibly other malignant tumors. PMID:27043280

  18. Emotional withdrawal, CT abnormalities and drug response in late life depression.

    PubMed

    Altamura, A Carlo; Bassetti, Roberta; Santini, Annalisa; Frisoni, G B; Mundo, Emanuela

    2004-03-01

    In this study, the authors investigated if CNS degenerative abnormalities could correlate with depressive symptoms in elderly patients, if the presence of mild/moderate cognitive impairment could be related to the response to treatment and the role of peculiar clinical features in influencing the response to treatment. Fifty-three patients (60-75 years) diagnosed as affected by late onset (after 60 years) Major Depressive Episodes according to DSM-IV criteria were studied. Brain vascular and degenerative markers were assessed by computed tomography (CT) through measurements of a lateralized version of the bifrontal index and a rating scale addressing subcortical disease. The presence of mild/moderate cognitive impairment [(24-28 total score at the Mini-Mental State Examination (MMSE)], and of specific symptoms were assessed at baseline and evaluated with respect to the antidepressant response. Patients with CT abnormalities showed higher baseline scores on Hamilton Rating Scale for Depression (HAM-D) items "late insomnia" (t=-2.674, P=.002), "somatic symptoms" (t=-3.355 P=.002), and Brief Psychiatric Rating Scale (BPRS) item "emotional withdrawal" (t=-3.355, P=.002). No significant correlation was found between the vascular index and baseline clinical symptoms, while the HAM-D "depressed mood" item was negatively correlated to the right frontal index (R=-0.692, P=.006). Patients with CT abnormalities showed a lower reduction of HAM-D total scores than patients with normal CT (time effect: F=29.277, P<.0001; group effect: F=5.154, P<.03), while a significant reduction of symptoms in time (time effect: F=33.33, P<.0001) but no differences between groups were found on Hamilton Rating Scale for Anxiety (HAM-A). Both patients with and without mild cognitive impairment improved on the HAM-D (time effect: F=19.668, P<.0001), BPRS (time effect: F=18.345, P<.0001), and HAM-A (time effect: F=17.959, P<.0001) total scores. Patients with emotional withdrawal showed lower

  19. Double-filter identification of vascular-expressed genes using Arabidopsis plants with vascular hypertrophy and hypotrophy.

    PubMed

    Ckurshumova, Wenzislava; Scarpella, Enrico; Goldstein, Rochelle S; Berleth, Thomas

    2011-08-01

    Genes expressed in vascular tissues have been identified by several strategies, usually with a focus on mature vascular cells. In this study, we explored the possibility of using two opposite types of altered tissue compositions in combination with a double-filter selection to identify genes with a high probability of vascular expression in early organ primordia. Specifically, we generated full-transcriptome microarray profiles of plants with (a) genetically strongly reduced and (b) pharmacologically vastly increased vascular tissues and identified a reproducible cohort of 158 transcripts that fulfilled the dual requirement of being underrepresented in (a) and overrepresented in (b). In order to assess the predictive value of our identification scheme for vascular gene expression, we determined the expression patterns of genes in two unbiased subsamples. First, we assessed the expression patterns of all twenty annotated transcription factor genes from the cohort of 158 genes and found that seventeen of the twenty genes were preferentially expressed in leaf vascular cells. Remarkably, fifteen of these seventeen vascular genes were clearly expressed already very early in leaf vein development. Twelve genes with published leaf expression patterns served as a second subsample to monitor the representation of vascular genes in our cohort. Of those twelve genes, eleven were preferentially expressed in leaf vascular tissues. Based on these results we propose that our compendium of 158 genes represents a sample that is highly enriched for genes expressed in vascular tissues and that our approach is particularly suited to detect genes expressed in vascular cell lineages at early stages of their inception. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Vascularized bone graft for scaphoid nonunions.

    PubMed

    Mih, Alexander D

    2004-09-01

    Scaphoid fracture nonunion remains a challenging problem that may persist despite traditional methods of bone grafting and internal fixation. The alteration of wrist mechanics created by nonunion as well as the development of avascular necrosis leads to degenerative change of the radiocarpal joint accompanied by loss of motion and pain. The use of a vascularized bone graft has the theoretical benefit of increased blood flow that exceeds that of nonvascularized grafts. Numerous sources of vascularized bone graft have been described, including those from remote sites as well as from the carpus and distal radius. Knowledge of the blood supply to the distal radius has allowed for development of several vascularized bone graft harvest sites. The results of vascularized bone grafting from the distal radius have been encouraging, with numerous authors reporting the successful treatment of scaphoid nonunions.

  1. Long-term Renal Function in Living Kidney Donors Who Had Histological Abnormalities at Donation.

    PubMed

    Fahmy, Lara M; Massie, Allan B; Muzaale, Abimereki D; Bagnasco, Serena M; Orandi, Babak J; Alejo, Jennifer L; Boyarsky, Brian J; Anjum, Saad K; Montgomery, Robert A; Dagher, Nabil N; Segev, Dorry L

    2016-06-01

    Recent evidence suggests that living kidney donors are at an increased risk of end-stage renal disease. However, predicting which donors will have renal dysfunction remains challenging, particularly among those with no clinical evidence of disease at the time of donation. Although renal biopsies are not routinely performed as part of the donor evaluation process, they may yield valuable information that improves the ability to predict renal function in donors. We used implantation protocol biopsies to evaluate the association between histological abnormalities in the donated kidney and postdonation renal function (estimated glomerular filtration rate, eGFR) of the remaining kidney in living kidney donors. Longitudinal analysis using mixed-effects linear regression was used to account for multiple eGFR measures per donor. Among 310 donors between 1997 and 2012, median (IQR) follow-up was 6.2 (2.5-8.7; maximum 14.0) years. In this cohort, the overall prevalence of histological abnormalities was 65.8% (19.7% abnormal glomerulosclerosis, 23.9% abnormal interstitial fibrosis and tubular atrophy (IFTA), 4.8% abnormal mesangial matrix increase, 32.0% abnormal arteriolar hyalinosis, and 32.9% abnormal vascular intimal thickening). IFTA was associated with a 5-mL/min/1.73 m decrease of postdonation eGFR after adjusting for donor age at donation, sex, race, preoperative systolic blood pressure, preoperative eGFR, and time since donation (P < 0.01). In this single-center study, among healthy individuals cleared for living donation, IFTA was associated with decreased postdonation eGFR, whereas no other subclinical histological abnormalities provided additional information.

  2. Abnormal expression of ephrin-A5 affects brain development of congenital hypothyroidism rats.

    PubMed

    Suo, Guihai; Shen, Feifei; Sun, Baolan; Song, Honghua; Xu, Meiyu; Wu, Youjia

    2018-05-14

    EphA5 and its ligand ephrin-A5 interaction can trigger synaptogenesis during early hippocampus development. We have previously reported that abnormal EphA5 expression can result in synaptogenesis disorder in congenital hypothyroidism (CH) rats. To better understand its precise molecular mechanism, we further analyzed the characteristics of ephrin-A5 expression in the hippocampus of CH rats. Our study revealed that ephrin-A5 expression was downregulated by thyroid hormone deficiency in the developing hippocampus and hippocampal neurons in rats. Thyroxine treatment for hypothyroid hippocampus and triiodothyronine treatment for hypothyroid hippocampal neurons significantly improved ephrin-A5 expression but could not restore its expression to control levels. Hypothyroid hippocampal neurons in-vitro showed synaptogenesis disorder characterized by a reduction in the number and length of neurites. Furthermore, the synaptogenesis-associated molecular expressions of NMDAR-1 (NR1), PSD95 and CaMKII were all downregulated correspondingly. These results suggest that ephrin-A5 expression may be decreased in CH, and abnormal activation of ephrin-A5/EphA5 signaling affects synaptogenesis during brain development. Such findings provide an important basis for exploring the pathogenesis of CH genetically.

  3. Stabiliztin of VEGFR2 Signaling by Cerebral Cavernous Malformation 3 is Critical for Vascular Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y He; H Zhang; L Yu

    2011-12-31

    Cerebral cavernous malformations (CCMs) are human vascular malformations caused by mutations in three genes of unknown function: CCM1, CCM2, and CCM3. CCM3, also known as PDCD10 (programmed cell death 10), was initially identified as a messenger RNA whose abundance was induced by apoptotic stimuli in vitro. However, the in vivo function of CCM3 has not been determined. Here, we describe mice with a deletion of the CCM3 gene either ubiquitously or specifically in the vascular endothelium, smooth muscle cells, or neurons. Mice with global or endothelial cell-specific deletion of CCM3 exhibited defects in embryonic angiogenesis and died at an earlymore » embryonic stage. CCM3 deletion reduced vascular endothelial growth factor receptor 2 (VEGFR2) signaling in embryos and endothelial cells. In response to VEGF stimulation, CCM3 was recruited to and stabilized VEGFR2, and the carboxyl-terminal domain of CCM3 was required for the stabilization of VEGFR2. Indeed, the CCM3 mutants found in human patients lacking the carboxyl-terminal domain were labile and were unable to stabilize and activate VEGFR2. These results demonstrate that CCM3 promotes VEGFR2 signaling during vascular development.« less

  4. Transcriptome Analysis for Abnormal Spike Development of the Wheat Mutant dms

    PubMed Central

    Zhu, Xin-Xin; Li, Qiao-Yun; Shen, Chun-Cai; Duan, Zong-Biao; Yu, Dong-Yan; Niu, Ji-Shan; Ni, Yong-Jing; Jiang, Yu-Mei

    2016-01-01

    Background Wheat (Triticum aestivum L.) spike development is the foundation for grain yield. We obtained a novel wheat mutant, dms, characterized as dwarf, multi-pistil and sterility. Although the genetic changes are not clear, the heredity of traits suggests that a recessive gene locus controls the two traits of multi-pistil and sterility in self-pollinating populations of the medium plants (M), such that the dwarf genotype (D) and tall genotype (T) in the progeny of the mutant are ideal lines for studies regarding wheat spike development. The objective of this study was to explore the molecular basis for spike abnormalities of dwarf genotype. Results Four unigene libraries were assembled by sequencing the mRNAs of the super-bulked differentiating spikes and stem tips of the D and T plants. Using integrative analysis, we identified 419 genes highly expressed in spikes, including nine typical homeotic genes of the MADS-box family and the genes TaAP2, TaFL and TaDL. We also identified 143 genes that were significantly different between young spikes of T and D, and 26 genes that were putatively involved in spike differentiation. The result showed that the expression levels of TaAP1-2, TaAP2, and other genes involved in the majority of biological processes such as transcription, translation, cell division, photosynthesis, carbohydrate transport and metabolism, and energy production and conversion were significantly lower in D than in T. Conclusions We identified a set of genes related to wheat floral organ differentiation, including typical homeotic genes. Our results showed that the major causal factors resulting in the spike abnormalities of dms were the lower expression homeotic genes, hormonal imbalance, repressed biological processes, and deficiency of construction materials and energy. We performed a series of studies on the homeotic genes, however the other three causal factors for spike abnormal phenotype of dms need further study. PMID:26982202

  5. Redox Abnormalities as a Vulnerability Phenotype for Autism and Related Alterations in CNS Development

    DTIC Science & Technology

    2011-10-01

    the hypothesis that SJL mice would have impaired neuronal dendrite generation, as has been observed in autism . This was our prediction due to the...phenotype for Autism and related alterations in CNS development PRINCIPAL INVESTIGATOR: Mark D. Noble, Ph.D. CONTRACTING...SUBTITLE Redox abnormalities as a vulnerability phenotype for Autism 5a. CONTRACT NUMBER And related alterations in CNS development 5b. GRANT

  6. Association of vascular physical examination findings and arteriographic lesions in large vessel vasculitis.

    PubMed

    Grayson, Peter C; Tomasson, Gunnar; Cuthbertson, David; Carette, Simon; Hoffman, Gary S; Khalidi, Nader A; Langford, Carol A; McAlear, Carol A; Monach, Paul A; Seo, Philip; Warrington, Kenneth J; Ytterberg, Steven R; Merkel, Peter A

    2012-02-01

    To assess the utility of the vascular physical examination to detect arteriographic lesions in patients with established large vessel vasculitis (LVV), including Takayasu's arteritis (TAK) and giant cell arteritis (GCA). In total, 100 patients (TAK = 68, GCA = 32) underwent standardized physical examination and angiography of the carotid, subclavian, and axillary arteries. Sensitivity and specificity were calculated for the association between findings on physical examination focusing on the vascular system (absent pulse, bruit, and blood pressure difference) and arteriographic lesions defined as stenosis, occlusion, or aneurysm. We found 67% of patients had at least 1 abnormality on physical examination (74% TAK, 53% GCA). Arteriographic lesions were seen in 76% of patients (82% TAK, 63% GCA). Individual physical examination findings had poor sensitivity (range 14%-50%) and good-excellent specificity (range 71%-98%) to detect arteriographic lesions. Even when considering physical examination findings in combination, at least 30% of arteriographic lesions were missed. Specificity improved (range 88%-100%) if individual physical examination findings were compared to a broader region of vessels rather than specific anatomically correlated vessels and if ≥ 1 physical examination findings were combined. In patients with established LVV, physical examination alone is worthwhile to detect arterial disease but does not always localize or reveal the full extent of arteriographic lesions. Abnormal vascular system findings on physical examination are highly associated with the presence of arterial lesions, but normal findings on physical examination do not exclude the possibility of arterial disease. Serial angiographic assessment is advisable to monitor arterial disease in patients with established LVV.

  7. Pediatric head and neck lesions: assessment of vascularity by MR digital subtraction angiography.

    PubMed

    Chooi, Weng Kong; Woodhouse, Neil; Coley, Stuart C; Griffiths, Paul D

    2004-08-01

    Pediatric head and neck lesions can be difficult to characterize on clinical grounds alone. We investigated the use of dynamic MR digital subtraction angiography as a noninvasive adjunct for the assessment of the vascularity of these abnormalities. Twelve patients (age range, 2 days to 16 years) with known or suspected vascular abnormalities were studied. Routine MR imaging, time-of-flight MR angiography, and MR digital subtraction angiography were performed in all patients. The dynamic sequence was acquired in two planes at one frame per second by using a thick section (6-10 cm) selective radio-frequency spoiled fast gradient-echo sequence and an IV administered bolus of contrast material. The images were subtracted from a preliminary mask sequence and viewed as a video-inverted cine loop. In all cases, MR digital subtraction angiography was successfully performed. The technique showed the following: 1) slow flow lesions (two choroidal angiomas, eyelid hemangioma, and scalp venous malformation); 2) high flow lesions that were not always suspected by clinical examination alone (parotid hemangioma, scalp, occipital, and eyelid arteriovenous malformations plus a palatal teratoma); 3) a hypovascular tumor for which a biopsy could be safely performed (Burkitt lymphoma); and 4) a hypervascular tumor of the palate (cystic teratoma). Our early experience suggests that MR digital subtraction angiography can be reliably performed in children of all ages without complication. The technique provided a noninvasive assessment of the vascularity of each lesion that could not always have been predicted on the basis of clinical examination or routine MR imaging alone.

  8. Abnormal myocardial fluid retention as an early manifestation of ischemic injury.

    PubMed Central

    Willerson, J. T.; Scales, F.; Mukherjee, A.; Platt, M.; Templeton, G. H.; Fink, G. S.; Buja, L. M.

    1977-01-01

    Fifty-seven isolated, blood perfused, continuously weighed canine hearts have been utilized to study the development of abnormal myocardial fluid retention during early myocardial ischemic injury. Inflatable balloon catheters were positioned around the left anterior descending coronary arteries (LAD) of 54 hearts or the proximal left circumflex coronary arteries of three hearts for study of the following intervals of coronary occlusion: a) 10 minutes followed by 20 minutes of reflow, b) 40 minutes followed by either no reflow or by 20 minutes of reflow, and c) 60 minutes without reflow. After 60 minutes of fixed coronary occlusion, histologic and ultrastructural examination revealed mild swelling of many ischemic cardiac muscle cells in the absence of interstitial edema, cardiac weight gain, and obvious structural defects in cell membrane integrity. After 40 minutes of coronary occlusion and 20 minutes of reflow, significant cardiac weight gain occurred in association with characteristic alterations in the ischemic region, including widespread interstitial edema and focal vascular congestion and hemorrhage and swelling of cardiac muscle cells. Focal structural defects in cell membrane integrity were also noted. The development of abnormal myocardial fluid retention after 40 minutes of LAD occlusion occurred in association with a significant reduction in sodium-potassium-ATPase activity in the ischemic area, but with no significant alteration in either creatine phosphokinase or citrate synthase activity in the same region. Despite the abnormal myocardial fluid retention in these hearts, it was possible pharmacologically to vasodilate coronary vessels with adenosine and nitroglycerin infusion to maintain a consistently high coronary flow following release of the coronary occlusion after 40 minutes and to even exceed initial hyperemic flow values following release of the occlusion when adenosine and nitroglycerin infusion was delayed until 15 minutes after reflow

  9. Aldosterone dysregulation with aging predicts renal vascular function and cardiovascular risk.

    PubMed

    Brown, Jenifer M; Underwood, Patricia C; Ferri, Claudio; Hopkins, Paul N; Williams, Gordon H; Adler, Gail K; Vaidya, Anand

    2014-06-01

    Aging and abnormal aldosterone regulation are both associated with vascular disease. We hypothesized that aldosterone dysregulation influences the age-related risk of renal vascular and cardiovascular disease. We conducted an analysis of 562 subjects who underwent detailed investigations under conditions of liberal and restricted dietary sodium intake (1124 visits) in the General Clinical Research Center. Aldosterone regulation was characterized by the ratio of maximal suppression to stimulation (supine serum aldosterone on a liberal sodium diet divided by the same measure on a restricted sodium diet). We previously demonstrated that higher levels of this Sodium-modulated Aldosterone Suppression-Stimulation Index (SASSI) indicate greater aldosterone dysregulation. Renal plasma flow (RPF) was determined via p-aminohippurate clearance to assess basal renal hemodynamics and the renal vascular responses to dietary sodium manipulation and angiotensin II infusion. Cardiovascular risk was calculated using the Framingham Risk Score. In univariate linear regression, older age (β=-4.60; P<0.0001) and higher SASSI (β=-58.63; P=0.001) predicted lower RPF and a blunted RPF response to sodium loading and angiotensin II infusion. We observed a continuous, independent, multivariate-adjusted interaction between age and SASSI, where the inverse relationship between SASSI and RPF was most apparent with older age (P<0.05). Higher SASSI and lower RPF independently predicted higher Framingham Risk Score (P<0.0001) and together displayed an additive effect. Aldosterone regulation and age may interact to mediate renal vascular disease. Our findings suggest that the combination of aldosterone dysregulation and renal vascular dysfunction could additively increase the risk of future cardiovascular outcomes; therefore, aldosterone dysregulation may represent a modifiable mechanism of age-related vascular disease.

  10. Development of Abnormality Detection System for Bathers using Ultrasonic Sensors

    NASA Astrophysics Data System (ADS)

    Ohnishi, Yosuke; Abe, Takehiko; Nambo, Hidetaka; Kimura, Haruhiko; Ogoshi, Yasuhiro

    This paper proposes an abnormality detection system for bather sitting in bathtub. Increasing number of in-bathtub drowning accidents in Japan draws attention. Behind this large number of bathing accidents, Japan's unique social and cultural background come surface. For majority of people in Japan, bathing serves purpose in deep warming up of body, relax and enjoyable time. Therefore it is the custom for the Japanese to soak in bathtub. However overexposure to hot water may cause dizziness or fainting, which is possible to cause in-bathtub drowning. For drowning prevention, the system detects bather's abnormal state using an ultrasonic sensor array. The array, which has many ultrasonic sensors, is installed on the ceiling of bathroom above bathtub. The abnormality detection system uses the following two methods: posture detection and behavior detection. The function of posture detection is to estimate the risk of drowning by monitoring bather's posture. Meanwhile, the function of behavior detection is to estimate the risk of drowning by monitoring bather's behavior. By using these methods, the system detects bathers' different state from normal. As a result of experiment with a subject in the bathtub, the system was possible to detect abnormal state using subject's posture and behavior. Therefore the system is useful for monitoring bather to prevent drowning in bathtub.

  11. [Aspects of vascular physiology in clinical and vascular surgical practice: basic principles of vascular mechanics].

    PubMed

    Nocke, H; Meyer, F; Lessmann, V

    2014-10-01

    To be able to evaluate properly a vascular problem, basic concepts of vascular physiology need to be considered, as they have been taught in physiology for a long time. This article deals with selected definitions and laws of passive vascular mechanics, subdivided into parameters of vascular filling and parameters of vascular flow. PARAMETERS OF VASCULAR FILLING: During vascular filling the transmural pressure distends the vascular wall until it is balanced by the wall tension. The extent of this distension up to the point of balance depends on the elasticity of the wall. Transmural pressure, wall tension and elasticity are defined, and their respective importance is described by clinical examples, e.g. aneurysm and varix. PARAMETERS OF VASCULAR FLOW: The vascular flow can be divided into stationary and pulsating components. Both components are relevant for the bloodstream. Since the blood flow is directed in the circuit, it can be understood in first approximation as stationary ("direct current").The direct current model uses only the average values of the pulsating variables. The great advantage of the direct current model is that it can be described with simple laws, which are not valid without reservation, but often allow a first theoretical approach to a vascular problem: Ohm's law, driving pressure, flow resistance, Hagen-Poiseuille law, wall shear stress, law of continuity, Bernoulli's equation and Reynold's number are described and associated with clinical examples.The heart is a pressure-suction pump and produces a pulsating flow, the pulse. The pulse runs with pulse wave velocity, which is much larger than the blood flow velocity, through the arterial vascular system. During propagation, the pulse has to overcome the wave resistance (impedance). Wherever the wave resistance changes, e.g., at vascular bifurcations and in the periphery, it comes to reflections. The incident (forward) and reflected (backward) waves are superimposed to yield the resulting

  12. Digital image processing of vascular angiograms

    NASA Technical Reports Server (NTRS)

    Selzer, R. H.; Beckenbach, E. S.; Blankenhorn, D. H.; Crawford, D. W.; Brooks, S. H.

    1975-01-01

    The paper discusses the estimation of the degree of atherosclerosis in the human femoral artery through the use of a digital image processing system for vascular angiograms. The film digitizer uses an electronic image dissector camera to scan the angiogram and convert the recorded optical density information into a numerical format. Another processing step involves locating the vessel edges from the digital image. The computer has been programmed to estimate vessel abnormality through a series of measurements, some derived primarily from the vessel edge information and others from optical density variations within the lumen shadow. These measurements are combined into an atherosclerosis index, which is found in a post-mortem study to correlate well with both visual and chemical estimates of atherosclerotic disease.

  13. Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs.

    PubMed

    Elomaa, Laura; Yang, Yunzhi Peter

    2017-10-01

    There is a great need for engineered vascular grafts among patients with cardiovascular diseases who are in need of bypass therapy and lack autologous healthy blood vessels. In addition, because of the severe worldwide shortage of organ donors, there is an increasing need for engineered vascularized tissue constructs as an alternative to organ transplants. Additive manufacturing (AM) offers great advantages and flexibility of fabrication of cell-laden, multimaterial, and anatomically shaped vascular grafts and vascularized tissue constructs. Various inkjet-, extrusion-, and photocrosslinking-based AM techniques have been applied to the fabrication of both self-standing vascular grafts and porous, vascularized tissue constructs. This review discusses the state-of-the-art research on the use of AM for vascular applications and the key criteria for biomaterials in the AM of both acellular and cellular constructs. We envision that new smart printing materials that can adapt to their environment and encourage rapid endothelialization and remodeling will be the key factor in the future for the successful AM of personalized and dynamic vascular tissue applications.

  14. Vascular aging: Chronic oxidative stress and impairment of redox signaling—consequences for vascular homeostasis and disease

    PubMed Central

    Bachschmid, Markus M.; Schildknecht, Stefan; Matsui, Reiko; Zee, Rebecca; Haeussler, Dagmar; Cohen, Richard A.; Pimental, David; van der Loo, Bernd

    2013-01-01

    Characteristic morphological and molecular alterations such as vessel wall thickening and reduction of nitric oxide occur in the aging vasculature leading to the gradual loss of vascular homeostasis. Consequently, the risk of developing acute and chronic cardiovascular diseases increases with age. Current research of the underlying molecular mechanisms of endothelial function demonstrates a duality of reactive oxygen and nitrogen species in contributing to vascular homeostasis or leading to detrimental effects when formed in excess. Furthermore, changes in function and redox status of vascular smooth muscle cells contribute to age-related vascular remodeling. The age-dependent increase in free radical formation causes deterioration of the nitric oxide signaling cascade, alters and activates prostaglandin metabolism, and promotes novel oxidative posttranslational protein modifications that interfere with vascular and cell signaling pathways. As a result, vascular dysfunction manifests. Compensatory mechanisms are initially activated to cope with age-induced oxidative stress, but become futile, which results in irreversible oxidative modifications of biological macromolecules. These findings support the ‘free radical theory of aging’ but also show that reactive oxygen and nitrogen species are essential signaling molecules, regulating vascular homeostasis. PMID:22380696

  15. Hepatic vascular shunts: embryology and imaging appearances

    PubMed Central

    Bhargava, P; Vaidya, S; Kolokythas, O; Katz, D S; Dighe, M

    2011-01-01

    The purpose of this pictorial review is to understand the embryological basis of the development of congenital hepatic vascular shunts and to review the multimodality imaging appearances of congenital and acquired hepatic vascular shunts. Hepatic vascular shunts are commonly seen in imaging. Familiarity with their characteristic appearances is important in order to accurately characterise these shunts and diagnose the underlying disorders. PMID:22101582

  16. Using NASA's GeneLab for VESGEN Systems Analysis of Vascular Phenotypes from Stress and Other Signaling Pathways

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, P.; Weitzel, Alexander; Vyas, R. J.; Murray, M. C.; Vickerman, M. B.; Bhattacharya, S.; Wyatt, S. E.

    2016-01-01

    One fundamental requirement shared by humans with all higher terrestrial life forms, including other vertebrates, insects, and higher land plants, is a complex, fractally branching vascular system. NASA's VESsel GENeration Analysis (VESGEN) software maps and quantifies vascular trees, networks, and tree-network composites according to weighted physiological rules such as vessel connectivity, tapering and bifurcational branching. According to fluid dynamics, successful vascular transport requires a complex distributed system of highly regulated laminar flow. Microvascular branching rules within vertebrates, dicot leaves and the other organisms therefore display many similarities. A unifying perspective is that vascular patterning offers a useful readout of molecular signaling that necessarily integrates these complex pathways. VESGEN has elucidated changes in vascular pattern resulting from inflammatory, developmental and other signaling within numerous tissues and major model organisms studied for Space Biology. For a new VESGEN systems approach, we analyzed differential gene expression in leaves of Arabidopsis thaliana reported by GeneLab (GLDS-7) for spaceflight. Vascularrelated changes in leaf gene expression were identified that can potentially be phenocopied by mutants in ground-based experiments. To link transcriptional, protein and other molecular change with phenotype, alterations in the spatial and dynamic dimensions of vascular patterns for Arabidopsis leaves and other model species are being co-localized with signaling patterns of single molecular expression analyzed as information dimensions. Previously, Drosophila microarray data returned from space suggested significant changes in genes related to wing venation development that include EGF, Notch, Hedghog, Wingless and Dpp signaling. Phenotypes of increasingly abnormal ectopic wing venation in the (non-spaceflight) Drosophila wing generated by overexpression of a Notch antagonist were analyzed by

  17. Long-Term Renal Function in Living Kidney Donors who had Histological Abnormalities at Donation

    PubMed Central

    Fahmy, Lara M.; Massie, Allan B.; Muzaale, Abimereki D.; Bagnasco, Serena M.; Orandi, Babak J.; Alejo, Jennifer L.; Boyarsky, Brian J.; Anjum, Saad K.; Montgomery, Robert A.; Dagher, Nabil N.; Segev, Dorry L.

    2016-01-01

    Background Recent evidence suggests that living kidney donors are at an increased risk of end-stage renal disease. However, predicting which donors will have renal dysfunction remains challenging, particularly among those with no clinical evidence of disease at the time of donation. Although renal biopsies are not routinely performed as part of the donor evaluation process, they may yield valuable information that improves the ability to predict renal function in donors. Methods We used implantation protocol biopsies to evaluate the association between histological abnormalities in the donated kidney and postdonation renal function (estimated glomerular filtration rate, eGFR) of the remaining kidney in living kidney donors. Longitudinal analysis using mixed-effects linear regression was used to account for multiple eGFR measures per donor. Results Among 310 donors between 1997 and 2012, median (IQR) follow-up was 6.2 (2.5–8.7; maximum 14.0) years. In this cohort, the overall prevalence of histological abnormalities was 65.8% (19.7% abnormal glomerulosclerosis, 23.9% abnormal interstitial fibrosis and tubular atrophy (IFTA), 4.8% abnormal mesangial matrix increase, 32.0% abnormal arteriolar hyalinosis, and 32.9% abnormal vascular intimal thickening). IFTA was associated with a 5-mL/min/1.73m2 decrease of postdonation eGFR after adjusting for donor age at donation, sex, race, preoperative systolic blood pressure, preoperative eGFR, and time since donation (p<0.01). Conclusions In this single-center study, among healthy individuals cleared for living donation, IFTA was associated with decreased postdonation eGFR, while no other subclinical histological abnormalities provided additional information. PMID:27152920

  18. Effects of antibacterial nanostructured composite films on vascular stents: hemodynamic behaviors, microstructural characteristics, and biomechanical properties.

    PubMed

    Cheng, Han-Yi; Hsiao, Wen-Tien; Lin, Li-Hsiang; Hsu, Ya-Ju; Sinrang, Andi Wardihan; Ou, Keng-Liang

    2015-01-01

    The purpose of this research was to investigate stresses resulting from different thicknesses and compositions of hydrogenated Cu-incorporated diamond-like carbon (a-C:H/Cu) films at the interface between vascular stent and the artery using three-dimensional reversed finite element models (FEMs). Blood flow velocity variation in vessels with plaques was examined by angiography, and the a-C:H/Cu films were characterized by transmission electron microscopy to analyze surface morphology. FEMs were constructed using a computer-aided reverse design system, and the effects of antibacterial nanostructured composite films in the stress field were investigated. The maximum stress in the vascular stent occurred at the intersections of net-like structures. Data analysis indicated that the stress decreased by 15% in vascular stents with antibacterial nanostructured composite films compared to the control group, and the stress decreased with increasing film thickness. The present results confirmed that antibacterial nanostructured composite films improve the biomechanical properties of vascular stents and release abnormal stress to prevent restenosis. The results of the present study offer the clinical benefit of inducing superior biomechanical behavior in vascular stents. © 2014 Wiley Periodicals, Inc.

  19. E-learning resources for vascular surgeons: a needs analysis study.

    PubMed

    Mâtheiken, Seán J; Verstegen, Daniëlle; Beard, Jonathan; van der Vleuten, Cees

    2012-01-01

    To obtain the views of vascular surgeons about online resources in their specialty as a guide to future e-learning development. A focused questionnaire regarding e-learning resources in vascular surgery was circulated online. A combination of structured and open-ended questions addressed users' ranking of various resource types, examples of presently used websites, suggestions for future growth, and the opportunity to become actively involved in e-learning development. The responses were collected over a 4-week period and remained anonymous. The study was conducted online at http://www.vasculareducation.com as part of an ongoing project on e-learning for vascular surgeons by the Department of Educational Development and Research, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands. The survey population consisted of vascular surgeons and surgical trainees in Europe. The participants were contacted via their membership of the European Society for Vascular Surgery and national academic or administrative vascular surgical organizations. Demographic information was collected about clinical seniority and country of work. In all, 252 responses were obtained. Respondents favored the development of a variety of online resources in vascular surgery. The strongest demand was for illustrations and videos of surgical techniques, followed by an interactive calendar and peer-reviewed multiple-choice questions. Overall, 46% of respondents wished to contribute actively toward e-learning development, with consultants being more willing than trainees to do so. Members of the vascular surgical community value online resources in their specialty, especially for procedural techniques. Vascular surgeons would like to be actively involved in subsequent development of e-learning resources. Copyright © 2012 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  20. Murrayafoline A Induces a G0/G1-Phase Arrest in Platelet-Derived Growth Factor-Stimulated Vascular Smooth Muscle Cells

    PubMed Central

    Han, Joo-Hui; Kim, Yohan; Jung, Sang-Hyuk; Lee, Jung-Jin; Park, Hyun-Soo; Song, Gyu-Yong; Cuong, Nguyen Manh; Kim, Young Ho

    2015-01-01

    The increased potential for vascular smooth muscle cell (VSMC) growth is a key abnormality in the development of atherosclerosis and post-angioplasty restenosis. Abnormally high activity of platelet-derived growth factor (PDGF) is believed to play a central role in the etiology of these pathophysiological situations. Here, we investigated the anti-proliferative effects and possible mechanism(s) of murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa Guillamin (Rutaceae), on PDGF-BB-stimulated VSMCs. Murrayafoline A inhibited the PDGF-BB-stimulated proliferation of VSMCs in a concentration-dependent manner, as measured using a non-radioactive colorimetric WST-1 assay and direct cell counting. Furthermore, murrayafoline A suppressed the PDGF-BB-stimulated progression through G0/G1 to S phase of the cell cycle, as measured by [3H]-thymidine incorporation assay and cell cycle progression analysis. This anti-proliferative action of murrayafoline A, arresting cell cycle progression at G0/G1 phase in PDGF-BB-stimulated VSMCs, was mediated via down-regulation of the expression of cyclin D1, cyclin E, cyclin-dependent kinase (CDK)2, CDK4, and proliferating cell nuclear antigen (PCNA), and the phosphorylation of retinoblastoma protein (pRb). These results indicate that murrayafoline A may be useful in preventing the progression of vascular complications such as restenosis after percutaneous transluminal coronary angioplasty and atherosclerosis. PMID:26330754

  1. Measurements of pulmonary vascular permeability with PET and gallium-68 transferrin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mintun, M.A.; Dennis, D.R.; Welch, M.J.

    1987-11-01

    We quantified pulmonary vascular permeability with positron emission tomography (PET) and gallium-68-(/sup 68/Ga) labeled transferrin. Six dogs with oleic acid-induced lung injury confined to the left lower lobe, two normal human volunteers, and two patients with the adult respiratory distress syndrome (ARDS) were evaluated. Lung tissue-activity measurements were obtained from sequential 1-5 min PET scans collected over 60 min, after in vivo labeling of transferrin through intravenous administration of (/sup 68/Ga)citrate. Blood-activity measurements were measured from simultaneously obtained peripheral blood samples. A forward rate constant describing the movement of transferrin from pulmonary vascular to extravascular compartments, the pulmonary transcapillary escapemore » rate (PTCER), was then calculated from these data using a two-compartment model. In dogs, PTCER was 49 +/- 18 in normal lung tissue and 485 +/- 114 10(-4) min-1 in injured lung. A repeat study in these dogs 4 hr later showed no significant change. Values in the human subjects showed similarly marked differences between normal and abnormal lung tissue. We conclude that PET will be a useful method of evaluating vascular permeability changes after acute lung injury.« less

  2. Luminal epithelium in endometrial fragments affects their vascularization, growth and morphological development into endometriosis-like lesions in mice.

    PubMed

    Feng, Dilu; Menger, Michael D; Wang, Hongbo; Laschke, Matthias W

    2014-02-01

    In endometriosis research, endometriosis-like lesions are usually induced in rodents by transplantation of isolated endometrial tissue fragments to ectopic sites. In the present study, we investigated whether this approach is affected by the cellular composition of the grafts. For this purpose, endometrial tissue fragments covered with luminal epithelium (LE(+)) and without luminal epithelium (LE(-)) were transplanted from transgenic green-fluorescent-protein-positive (GFP(+)) donor mice into the dorsal skinfold chamber of GFP(-) wild-type recipient animals to analyze their vascularization, growth and morphology by means of repetitive intravital fluorescence microscopy, histology and immunohistochemistry during a 14-day observation period. LE(-) fragments developed into typical endometriosis-like lesions with cyst-like dilated endometrial glands and a well-vascularized endometrial stroma. In contrast, LE(+) fragments exhibited a polypoid morphology and a significantly reduced blood perfusion after engraftment, because the luminal epithelium prevented the vascular interconnection with the microvasculature of the surrounding host tissue. This was associated with a markedly decreased growth rate of LE(+) lesions compared with LE(-) lesions. In addition, we found that many GFP(+) microvessels grew outside the LE(-) lesions and developed interconnections to the host microvasculature, indicating that inosculation is an important mechanism in the vascularization process of endometriosis-like lesions. Our findings demonstrate that the luminal epithelium crucially affects the vascularization, growth and morphology of endometriosis-like lesions. Therefore, it is of major importance to standardize the cellular composition of endometrial grafts in order to increase the validity and reliability of pre-clinical rodent studies in endometriosis research.

  3. Mechanisms of vascular aging: What can we learn from Hutchinson-Gilford progeria syndrome?

    PubMed

    Del Campo, Lara; Hamczyk, Magda R; Andrés, Vicente; Martínez-González, José; Rodríguez, Cristina

    Aging is the main risk factor for cardiovascular disease (CVD). The increased prevalence of CVD is partly due to the global increase in life expectancy. In this context, it is essential to identify the mechanisms by which aging induces CVD, with the ultimate aim of reducing its incidence. Both atherosclerosis and heart failure significantly contribute to age-associated CVD morbidity and mortality. Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder caused by the synthesis of progerin, which is noted for accelerated aging and CVD. This mutant form of prelamin A induces generalised atherosclerosis, vascular calcification, and cardiac electrophysiological abnormalities, leading to premature aging and death, mainly due to myocardial infarction and stroke. This review discusses the main vascular structural and functional abnormalities during physiological and premature aging, as well as the mechanisms involved in the exacerbated CVD and accelerated aging induced by the accumulation of progerin and prelamin A. Both proteins are expressed in non-HGPS individuals, and physiological aging shares many features of progeria. Research into HGPS could therefore shed light on novel mechanisms involved in the physiological aging of the cardiovascular system. Copyright © 2018 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development

    PubMed Central

    Li, Yuge; Ouyang, Jie; Wang, Ya-Yun; Hu, Rui; Xia, Kuaifei; Duan, Jun; Wang, Yaqin; Tsay, Yi-Fang; Zhang, Mingyong

    2015-01-01

    Plants have evolved to express some members of the nitrate transporter 1/peptide transporter family (NPF) to uptake and transport nitrate. However, little is known of the physiological and functional roles of this family in rice (Oryza sativa L.). Here, we characterized the vascular specific transporter OsNPF2.2. Functional analysis using cDNA-injected Xenopus laevis oocytes revealed that OsNPF2.2 is a low-affinity, pH-dependent nitrate transporter. Use of a green fluorescent protein tagged OsNPF2.2 showed that the transporter is located in the plasma membrane in the rice protoplast. Expression analysis showed that OsNPF2.2 is nitrate inducible and is mainly expressed in parenchyma cells around the xylem. Disruption of OsNPF2.2 increased nitrate concentration in the shoot xylem exudate when nitrate was supplied after a deprivation period; this result suggests that OsNPF2.2 may participate in unloading nitrate from the xylem. Under steady-state nitrate supply, the osnpf2.2 mutants maintained high levels of nitrate in the roots and low shoot:root nitrate ratios; this observation suggests that OsNPF2.2 is involved in root-to-shoot nitrate transport. Mutation of OsNPF2.2 also caused abnormal vasculature and retarded plant growth and development. Our findings demonstrate that OsNPF2.2 can unload nitrate from the xylem to affect the root-to-shoot nitrate transport and plant development. PMID:25923512

  5. Tumor Vessel Development and Expansion in Ewing's Sarcoma: A Review of the Vasculogenesis Process and Clinical Trials with Vascular-Targeting Agents

    PubMed Central

    Stewart, Keri S.; Kleinerman, Eugenie S.

    2011-01-01

    Ewing's sarcoma accounts for a disproportionately high portion of the overall pediatric mortality rate compared to its rare incidence in the pediatric population. Little progress has been made since the introduction of traditional chemotherapies, and understanding the biology of the tumor is critical for developing new therapies. Ewing's sarcomas rely on a functional vascular supply, which is formed by a combination of angiogenesis and vasculogenesis. Recent insights into the molecular regulation of bone marrow (BM) cell participation in vascular development have identified VEGF, SDF-1α, and DLL4 as critical players in the vasculogenesis process. Clinical trials using vascular targeting agents, specifically targeting VEGF or DLL4, are underway. PMID:21785569

  6. A mutation in Ccdc39 causes neonatal hydrocephalus with abnormal motile cilia development in mice.

    PubMed

    Abdelhamed, Zakia; Vuong, Shawn M; Hill, Lauren; Shula, Crystal; Timms, Andrew; Beier, David; Campbell, Kenneth; Mangano, Francesco T; Stottmann, Rolf W; Goto, June

    2018-01-09

    Pediatric hydrocephalus is characterized by an abnormal accumulation of cerebrospinal fluid (CSF) and is one of the most common congenital brain abnormalities. However, little is known about the molecular and cellular mechanisms regulating CSF flow in the developing brain. Through whole-genome sequencing analysis, we report that a homozygous splice site mutation in coiled-coil domain containing 39 ( Ccdc39 ) is responsible for early postnatal hydrocephalus in the progressive hydrocephal us ( prh ) mouse mutant. Ccdc39 is selectively expressed in embryonic choroid plexus and ependymal cells on the medial wall of the forebrain ventricle, and the protein is localized to the axoneme of motile cilia. The Ccdc39 prh/prh ependymal cells develop shorter cilia with disorganized microtubules lacking the axonemal inner arm dynein. Using high-speed video microscopy, we show that an orchestrated ependymal ciliary beating pattern controls unidirectional CSF flow on the ventricular surface, which generates bulk CSF flow in the developing brain. Collectively, our data provide the first evidence for involvement of Ccdc39 in hydrocephalus and suggest that the proper development of medial wall ependymal cilia is crucial for normal mouse brain development. © 2018. Published by The Company of Biologists Ltd.

  7. Investigating the Development of Abnormal Subauroral Ion Drift (ASAID) and Abnormal Subauroral Polarization Stream (ASAPS) During the Magnetically Active Times of September 2003

    NASA Astrophysics Data System (ADS)

    Horvath, Ildiko; Lovell, Brian C.

    2018-02-01

    This study investigates two recently reported subauroral phenomena: the abnormal subauroral ion drift (ASAID) appearing as an inverted SAID and the shielding-E—SAID structure depicting a SAID feature on the poleward side of a small eastward or antisunward flow channel that is the shielding electric (E) field's signature. We have analyzed polar cross sections, constructed with multi-instrument Defense Meteorological Satellite Program data, for the development of these subauroral phenomena. New results show the features of abnormal subauroral polarization stream (ASAPS) and ASAID-ASAPS comprised by a narrow ASAID embedded in a wider ASAPS. We have identified undershielding, perfect shielding, and overshielding events. Our observational results demonstrate SAPS development during undershielding, the absence of subauroral flow channel during perfect shielding, and ASAID/ASAPS and shielding-E—SAID/SAPS development during overshielding. The appearance of an ASAID-ASAPS structure together with a pair of dayside-nightside eastward auroral flow channels implies the intensification of region 2 field-aligned currents via the westward traveling surge and thus the strengthening of overshielding conditions. From the observational results presented we conclude for the magnetically active time period studied that (i) the shielding E field drove the wider ASAPS flow channel, (ii) the ASAID-ASAPS structure's narrow antisunward flow channel developed due to the injections of hot ring current ions in a short-circuited system wherein the hot ring current plasma was closer to the Earth than the cold plasmaspheric plasma, and (iii) overshielding created this hot-cold plasma configuration via the development of a plasmaspheric shoulder.

  8. Silencing Of Circular RNA-ZNF609 Ameliorates Vascular Endothelial Dysfunction.

    PubMed

    Liu, Chang; Yao, Mu-Di; Li, Chao-Peng; Shan, Kun; Yang, Hong; Wang, Jia-Jian; Liu, Ban; Li, Xiu-Miao; Yao, Jin; Jiang, Qin; Yan, Biao

    2017-01-01

    Vascular dysfunction is a hallmark of ischemic, cancer, and inflammatory diseases, contributing to disease progression. Circular RNAs (circRNAs) are endogenous non-coding RNAs, which have been reported to be abnormally expressed in many human diseases. In this study, we used retinal vasculature to determine the role of circular RNA in vascular dysfunction. We revealed that cZNF609 was significantly up-regulated upon high glucose and hypoxia stress in vivo and in vitro . cZNF609 silencing decreased retinal vessel loss and suppressed pathological angiogenesis in vivo . cZNF609 silencing increased endothelial cell migration and tube formation, and protected endothelial cell against oxidative stress and hypoxia stress in vitro . By contrast, transgenic overexpression of cZNF609 showed an opposite effects. cZNF609 acted as an endogenous miR-615-5p sponge to sequester and inhibit miR-615-5p activity, which led to increased MEF2A expression. MEF2A overexpression could rescue cZNF609 silencing-mediated effects on endothelial cell migration, tube formation, and apoptosis. Moreover, dysregulated cZNF609 expression was detected in the clinical samples of the patients with diabetes, hypertension, and coronary artery disease. Intervention of cZNF609 expression is promising therapy for vascular dysfunction.

  9. Bioengineered vascular scaffolds: the state of the art.

    PubMed

    Palumbo, Vincenzo D; Bruno, Antonio; Tomasello, Giovanni; Damiano, Giuseppe; Lo Monte, Attilio I

    2014-07-31

    To date, there is increasing clinical need for vascular substitutes due to accidents, malformations, and ischemic diseases. Over the years, many approaches have been developed to solve this problem, starting from autologous native vessels to artificial vascular grafts; unfortunately, none of these have provided the perfect vascular substitute. All have been burdened by various complications, including infection, thrombogenicity, calcification, foreign body reaction, lack of growth potential, late stenosis and occlusion from intimal hyperplasia, and pseudoaneurysm formation. In the last few years, vascular tissue engineering has emerged as one of the most promising approaches for producing mechanically competent vascular substitutes. Nanotechnologies have contributed their part, allowing extraordinarily biostable and biocompatible materials to be developed. Specifically, the use of electrospinning to manufacture conduits able to guarantee a stable flow of biological fluids and guide the formation of a new vessel has revolutionized the concept of the vascular substitute. The electrospinning technique allows extracellular matrix (ECM) to be mimicked with high fidelity, reproducing its porosity and complexity, and providing an environment suitable for cell growth. In the future, a better knowledge of ECM and the manufacture of new materials will allow us to "create" functional biological vessels - the base required to develop organ substitutes and eventually solve the problem of organ failure.

  10. Pseudo-low Frequency Hearing Loss and Its Improvement After Treatment May Be Objective Signs of Significant Vascular Pathology in Patients With Pulsatile Tinnitus.

    PubMed

    Jeon, Hyoung Won; Kim, So Young; Choi, Byung Se; Bae, Yun Jung; Koo, Ja-Won; Song, Jae-Jin

    2016-10-01

    In patients with pulsatile tinnitus (PT), physical examination such as auscultation with head position change or digital compression over the ipsilateral jugular vein provides physicians with important information. However, objective diagnosis of PT is sometimes limited because 1) audible bruit is absent on auscultation in some patients, 2) abnormal vascular structures found in radiologic evaluation is not always pathognomonic because they can be found in asymptomatic subjects as well, and 3) although an objective diagnostic tool using transcanal sound recording has recently been introduced, special equipment is needed. In this regard, recent studies that have reported ipsilateral low-frequency hearing loss (LFHL) on pure-tone audiometry (PTA) in some patients with PT, and its recovery after successful management, prompted us to conduct a retrospective observational study on the characteristics of the audiometric profile, the association between the audiometric profile and radiologic findings, and pre- and posttreatment changes in low-frequency hearing thresholds in PT patients. We tested two hypotheses: PT patients with marked vascular pathologies located close to the cochlea may show ipsilateral pseudo-LFHL (PLFHL) because of the masking effects of the PT itself, and their PLFHL may disappear if their vascular pathology is successfully managed by surgical or endovascular intervention. Retrospective case review. Tertiary referral center. A total of 85 PT subjects who underwent both audiologic and radiologic examinations. All patients' pre- and posttreatment PTA thresholds and radiologic findings were analyzed. By comparing the LFHL (an ipsilateral hearing threshold greater than 10 dB HL at both 250 and 500 Hz or greater than 20 dB HL at either 250 or 500 Hz compared with the contralateral side) group and a non-LFHL group with regard to the incidence of vascular structural abnormalities, we evaluated the incidence of abnormal vascular structures in the head

  11. Transient abnormal Q waves during exercise electrocardiography

    PubMed Central

    Alameddine, F F; Zafari, A M

    2004-01-01

    Myocardial ischaemia during exercise electrocardiography is usually manifested by ST segment depression or elevation. Transient abnormal Q waves are rare, as Q waves indicate an old myocardial infarction. The case of a patient with exercise induced transient abnormal Q waves is reported. The potential mechanisms involved in the development of such an abnormality and its clinical implications are discussed. PMID:14676264

  12. Association of Vascular Physical Examination Findings and Arteriographic Lesions in Large Vessel Vasculitis

    PubMed Central

    GRAYSON, PETER C.; TOMASSON, GUNNAR; CUTHBERTSON, DAVID; CARETTE, SIMON; HOFFMAN, GARY S.; KHALIDI, NADER A.; LANGFORD, CAROL A.; McALEAR, CAROL A.; MONACH, PAUL A.; SEO, PHILIP; WARRINGTON, KENNETH J.; YTTERBERG, STEVEN R.; MERKEL, PETER A.

    2013-01-01

    Objective To assess the utility of the vascular physical examination to detect arteriographic lesions in patients with established large vessel vasculitis (LVV), including Takayasu’s arteritis (TAK) and giant cell arteritis (GCA). Methods In total, 100 patients (TAK = 68, GCA = 32) underwent standardized physical examination and angiography of the carotid, subclavian, and axillary arteries. Sensitivity and specificity were calculated for the association between findings on physical examination focusing on the vascular system (absent pulse, bruit, and blood pressure difference) and arteriographic lesions defined as stenosis, occlusion, or aneurysm. Results We found 67% of patients had at least 1 abnormality on physical examination (74% TAK, 53% GCA). Arteriographic lesions were seen in 76% of patients (82% TAK, 63% GCA). Individual physical examination findings had poor sensitivity (range 14%–50%) and good-excellent specificity (range 71%–98%) to detect arteriographic lesions. Even when considering physical examination findings in combination, at least 30% of arteriographic lesions were missed. Specificity improved (range 88%–100%) if individual physical examination findings were compared to a broader region of vessels rather than specific anatomically correlated vessels and if ≥ 1 physical examination findings were combined. Conclusion In patients with established LVV, physical examination alone is worthwhile to detect arterial disease but does not always localize or reveal the full extent of arteriographic lesions. Abnormal vascular system findings on physical examination are highly associated with the presence of arterial lesions, but normal findings on physical examination do not exclude the possibility of arterial disease. Serial angiographic assessment is advisable to monitor arterial disease in patients with established LVV. PMID:22174204

  13. Thymic Stromal-Cell Abnormalities and Dysregulated T-Cell Development in IL-2-Deficient Mice

    PubMed Central

    Reya, Tannishtha; Bassiri, Hamid; Biancaniello, Renée

    1998-01-01

    The role that interleukin-2 (IL-2) plays in T-cell development is not known. To address this issue, we have investigated the nature of the abnormal thymic development and autoimmune disorders that occurs in IL-2-deficient (IL-2–/–) mice. After 4 to 5 weeks of birth, IL-2–/– mice progressively develop a thymic disorder resulting in the disruption of thymocyte maturation. This disorder is characterized by a dramatic reduction in cellularity, the selective loss of immature CD4-8- (double negative; DN) and CD4+8+ (double positive; DP) thymocytes and defects in the thymic stromal-cell compartment. Immunohistochemical staining of sections of thymuses from specific pathogen-free and germ-free IL-2–/– mice of various ages showed a progressive ,loss of cortical epithelial cells, MHC class II-expressing cells, monocytes, and macrophages. Reduced numbers of macrophages were apparent as early as week after birth. Since IL-2–/– thymocyte progenitor populations could mature normally on transfer into a normal thymus, the thymic defect in IL-2–/– mice appears to be due to abnormalities among thymic stromal cells. These results underscore the role of IL-2 in maintaining functional microenvironments that are necessary to support thymocyte growth, development, and selection. PMID:9814585

  14. Sensorineural hearing loss and ischemic injury: Development of animal models to assess vascular and oxidative effects.

    PubMed

    Olivetto, E; Simoni, E; Guaran, V; Astolfi, L; Martini, A

    2015-09-01

    Hearing loss may be genetic, associated with aging or exposure to noise or ototoxic substances. Its aetiology can be attributed to vascular injury, trauma, tumours, infections or autoimmune response. All these factors could be related to alterations in cochlear microcirculation resulting in hypoxia, which in turn may damage cochlear hair cells and neurons, leading to deafness. Hypoxia could underlie the aetiology of deafness, but very few data about it are presently available. The aim of this work is to develop animal models of hypoxia and ischemia suitable for study of cochlear vascular damage, characterizing them by electrophysiology and gene/protein expression analyses. The effects of hypoxia in infarction were mimicked in rat by partial permanent occlusion of the left coronary artery, and those of ischemia in thrombosis by complete temporary carotid occlusion. In our models both hypoxia and ischemia caused a small but significant hearing loss, localized at the cochlear apex. A slight induction of the coagulation cascade and of oxidative stress pathways was detected as cell survival mechanism, and cell damages were found on the cuticular plate of outer hair cells only after carotid ischemia. Based on these data, the two developed models appear suitable for in vivo studies of cochlear vascular damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. NADPH Oxidases in Vascular Pathology

    PubMed Central

    Konior, Anna; Schramm, Agata; Czesnikiewicz-Guzik, Marta

    2014-01-01

    Abstract Significance: Reactive oxygen species (ROS) play a critical role in vascular disease. While there are many possible sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases play a central role. They are a source of “kindling radicals,” which affect other enzymes, such as nitric oxide synthase endothelial nitric oxide synthase or xanthine oxidase. This is important, as risk factors for atherosclerosis (hypertension, diabetes, hypercholesterolemia, and smoking) regulate the expression and activity of NADPH oxidases in the vessel wall. Recent Advances: There are seven isoforms in mammals: Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and Duox2. Nox1, Nox2, Nox4, and Nox5 are expressed in endothelium, vascular smooth muscle cells, fibroblasts, or perivascular adipocytes. Other homologues have not been found or are expressed at very low levels; their roles have not been established. Nox1/Nox2 promote the development of endothelial dysfunction, hypertension, and inflammation. Nox4 may have a role in protecting the vasculature during stress; however, when its activity is increased, it may be detrimental. Calcium-dependent Nox5 has been implicated in oxidative damage in human atherosclerosis. Critical Issues: NADPH oxidase-derived ROS play a role in vascular pathology as well as in the maintenance of normal physiological vascular function. We also discuss recently elucidated mechanisms such as the role of NADPH oxidases in vascular protection, vascular inflammation, pulmonary hypertension, tumor angiogenesis, and central nervous system regulation of vascular function and hypertension. Future Directions: Understanding the role of individual oxidases and interactions between homologues in vascular disease is critical for efficient pharmacological regulation of vascular NADPH oxidases in both the laboratory and clinical practice. Antioxid. Redox Signal. 20, 2794–2814. PMID:24180474

  16. Folic Acid Supplementation Improves Vascular Function in Professional Dancers With Endothelial Dysfunction

    PubMed Central

    Hoch, Anne Z.; Papanek, Paula; Szabo, Aniko; Widlansky, Michael E.; Gutterman, David D.

    2012-01-01

    Objective To determine if folic acid supplementation improves vascular function (brachial artery flow-mediated dilation [FMD]) in professional dancers with known endothelial dysfunction. Design Prospective cross-sectional study. Setting Academic institution in the Midwestern United States. Subjects Twenty-two professional ballet dancers volunteered for this study. Main Outcome Measures Subjects completed a 3-day food record to determine caloric and micronutrient intake. Menstrual status was determined by interview and questionnaire. Endothelial function was determined as flow-induced vasodilation measured by high-frequency ultrasound of the brachial artery. A change in brachial diameter of <5% to hyperemic flow stimulus was defined a priori as endothelial dysfunction. Subjects with abnormal FMD took 10 mg of folic acid daily for 4 weeks, and FMD testing was then repeated. Serum whole blood was measured for folic acid levels before and after supplementation. Results Sixty-four percent of dancers (n = 14) had abnormal brachial artery FMD (<5%) (mean ± standard deviation, 2.9% ± 1.5%). After 4 weeks of folic acid supplementation (10 mg/day), FMD improved in all the subjects (7.1% ± 2.3%; P < .0001). Conclusions This study reveals that vascular endothelial function improves in dancers after supplementation with folic acid (10 mg/day) for at least 4 weeks. This finding may have clinically important implications for future cardiovascular disease risk prevention. PMID:21715240

  17. notch3 is essential for oligodendrocyte development and vascular integrity in zebrafish

    PubMed Central

    Zaucker, Andreas; Mercurio, Sara; Sternheim, Nitzan; Talbot, William S.; Marlow, Florence L.

    2013-01-01

    abnormalities observed in heterozygous larvae and adults. Our analysis of zebrafish notch3 mutants indicates that Notch3 regulates OPC development and mbp gene expression in larvae, and maintains vascular integrity in adults. PMID:23720232

  18. Hedgehog and Resident Vascular Stem Cell Fate

    PubMed Central

    Mooney, Ciaran J.; Hakimjavadi, Roya; Fitzpatrick, Emma; Kennedy, Eimear; Walls, Dermot; Morrow, David; Redmond, Eileen M.; Cahill, Paul A.

    2015-01-01

    The Hedgehog pathway is a pivotal morphogenic driver during embryonic development and a key regulator of adult stem cell self-renewal. The discovery of resident multipotent vascular stem cells and adventitial progenitors within the vessel wall has transformed our understanding of the origin of medial and neointimal vascular smooth muscle cells (SMCs) during vessel repair in response to injury, lesion formation, and overall disease progression. This review highlights the importance of components of the Hh and Notch signalling pathways within the medial and adventitial regions of adult vessels, their recapitulation following vascular injury and disease progression, and their putative role in the maintenance and differentiation of resident vascular stem cells to vascular lineages from discrete niches within the vessel wall. PMID:26064136

  19. Vascular oxidative stress: a key factor in the development of hypertension associated with ethanol consumption.

    PubMed

    Ceron, Carla S; Marchi, Katia C; Muniz, Jaqueline J; Tirapelli, Carlos R

    2014-01-01

    The observation that the excessive consumption of ethyl alcohol (ethanol) is associated with high blood pressure is nearing its centennial mark. Mechanisms linking ethanol consumption and hypertension are complex and not fully understood. It is established that chronic ethanol consumption leads to hypertension and that this process is a multimediated event involving increased sympathetic activity, stimulation of the renin-angiotensin-aldosterone system with a subsequent increase in vascular oxidative stress and endothelial dysfunction. Under physiological conditions, reactive oxygen species (ROS) play an important role as a signaling molecule in the control of vascular tone and endothelial function. Increased ROS bioavailability is associated with important processes underlying vascular injury in cardiovascular disease such as endothelial dysfunction, vascular remodeling, and inflammation. Studies focusing on molecular mechanisms showed a link between overproduction of ROS in the vasculature and ethanol-induced hypertension. Of the ROS generated in vascular cells, superoxide anion (O2(-)) and hydrogen peroxide (H2O2) appear to be especially important. Ethanol-mediated generation of O2(-) and H2O2 in vascular tissues is associated with elevations in intracellular calcium ([Ca(2+)]i), reduced nitric oxide (NO) bioavailability, endothelial dysfunction and vasoconstriction. O2(-) can also act as a vascular signaling molecule regulating signaling pathways that lead to vascular contraction. Thus, through increased generation of ROS and activation of redox-sensitive pathways, ethanol induces vascular dysfunction, a response that might contribute to the hypertension associated with ethanol consumption. The present article reviews the role of ROS in vascular (patho)biology of ethanol.

  20. A Vascular Anastomosis Simulation Can Provide a Safe and Effective Environment for Resident Skills Development.

    PubMed

    Heelan Gladden, Alicia A; Conzen, Kendra D; Benge, Michael J; Gralla, Jane; Kennealey, Peter T

    2018-04-09

    Vascular anastomoses are complex surgical procedures, performed in time-sensitive circumstances, making intraoperative teaching more challenging. We sought to evaluate whether a vascular anastomosis simulation was effective in developing resident skills. General surgery residents participated in a vascular anastomosis simulation for 1 to 2hours during their transplant rotation. An attending transplant surgeon at the University of Colorado guided the resident through end-to-end and end-to-side anastomoses using bovine carotid artery (Artegraft). The residents completed a presimulation and postsimulation survey which quantitated their confidence. They also completed the MiSSES scale, which assessed the validity of the simulation. Twenty residents participated in the simulation and completed the surveys. The residents reported increased understanding in how to set up an end-to-end anastomosis and an end-to-side anastomosis (p = 0.001 and p = 0.009, respectively). They reported increased ability to suture, forehand and backhand with a Castro-Viejo needle driver (both p < 0.001). The residents reported increased ability to manipulate the needle (p = 0.006), and increased ability to manipulate tissue without causing trauma (p = 0.021). They reported increased confidence in tying a surgical knot with 6-0 Prolene and in operating while wearing loupes (p = 0.002, and p < 0.001, respectively). Overall, the residents reported increased confidence when asked to perform part of a vascular anastomosis in the operating room (p < 0.001). Seventeen residents completed the MiSSES scale with median scores of "somewhat agree" to "strongly agree" on all domains of the scale. The use of a simple, inexpensive vascular anastomosis simulation is an effective and safe environment to improve residents' surgical skills and the residents felt that the simulation was valid. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  1. Integrated Fellowship in Vascular Surgery and Intervention Radiology

    PubMed Central

    Messina, Louis M.; Schneider, Darren B.; Chuter, Timothy A. M.; Reilly, Linda M.; Kerlan, Robert K.; LaBerge, Jeane M.; Wilson, Mark W.; Ring, Ernest J.; Gordon, Roy L.

    2002-01-01

    Objective To evaluate an integrated fellowship in vascular surgery and interventional radiology initiated to train vascular surgeons in endovascular techniques and to train radiology fellows in clinical aspects of vascular diseases. Summary Background Data The rapid evolution of endovascular techniques for the treatment of vascular diseases requires that vascular surgeons develop proficiency in these techniques and that interventional radiologists develop proficiency in the clinical evaluation and management of patients who are best treated with endovascular techniques. In response to this need the authors initiated an integrated fellowship in vascular surgery and interventional radiology and now report their interim results. Methods Since 1999 vascular fellows and radiology fellows performed an identical year-long fellowship in interventional radiology. During the fellowship, vascular surgery and radiology fellows perform both vascular and nonvascular interventional procedures. Both vascular surgery and radiology-based fellows spend one quarter of the year on the vascular service performing endovascular aortic aneurysm repairs and acquiring clinical experience in the vascular surgery inpatient and outpatient services. Vascular surgery fellows then complete an additional year-long fellowship in vascular surgery. To evaluate the type and number of interventional radiology procedures, the authors analyzed records of cases performed by all interventional radiology and vascular surgery fellows from a prospectively maintained database. The attitudes of vascular surgery and interventional radiology faculty and fellows toward the integrated fellowship were surveyed using a formal questionnaire. Results During the fellowship each fellow performed an average of 1,201 procedures, including 808 vascular procedures (236 diagnostic angiograms, 70 arterial interventions, 59 diagnostic venograms, 475 venous interventions, and 43 hemodialysis graft interventions) and 393

  2. Red cell 2, 3-diphosphoglycerate levels among diabetic patents with and without vascular complications.

    PubMed

    Kanter, Y; Bessman, S P; Bessman, A

    1975-08-01

    There have been differences of opinion among authors concening in the levels of red cell 2,3-diphosphoglycerate (2,3-DPG) and nucleotides in nonacidotic diabetic patients. Our data suggest that abnormal levels of 2, 3-DPG in diabetic patients are related to the presence of vascular complications and not to the duration of the disease per sec. 2,3-DPG levels are normal in diabetic patients with no evidence of vascular complications (group A). In ambulatory patients with vascular complications (group B), significantly higher levels of 2,3-DPG are found than in normal subjects and patients in group A. In hospitalized diabetic patients with active peripheral vascular complications (group C), levels of 2,3-DPG are likewise significantly increased over those of normal subjects and patients of group A. 2,3-DPG was found to be significantly elevated in patients of group C as compared with group B. 2,3-DPG levels in venous blood from infected legs as compared with those of the peripheral venous blood were not significantly different, thereby ruling out local factors. There were no differences in the blood lactate levels in any of the group studied. The elevation of the 2,3-DPG levels may be a reflection of attempted red blood cell compensation for tissue hypoxia in the diabetic with vascular disease.

  3. Cytogenetic studies of 1232 patients with different sexual development abnormalities from the Sultanate of Oman.

    PubMed

    Al-Alawi, Intisar; Goud, Tadakal Mallana; Al-Harasi, Salma; Rajab, Anna

    2016-02-01

    The aim of this study was to evaluate cytogenetic findings in Omani patients who had been referred for suspicion of sex chromosome abnormalities that resulted in different clinical disorders. Furthermore, it sought to examine the frequency of chromosomal anomalies in these patients and to compare the obtained results with those reported elsewhere. Cytogenetic analysis was performed on 1232 cases with variant characteristics of sexual development disorders who had been referred to the cytogenetic department, National Genetic Centre, Ministry of Health, from different hospitals in the Sultanate of Oman between 1999 and 2014. The karyotype results demonstrated chromosomal anomalies in 24.2% of the cases, where 67.5% of abnormalities were identified in referral females, whereas only 32.6% were in referral males. Of all sex chromosome anomalies detected, Turner syndrome was the most frequent (38.2%) followed by Klinefelter syndrome (24.9%) and XY phenotypic females (16%). XXX syndrome and XX phenotypic males represented 6.8% and 3.8% of all sex chromosome anomalies, respectively. Cytogenetic analysis of patients referred with various clinical suspicions of chromosomal abnormalities revealed a high rate of chromosomal anomalies. This is the first broad cytogenetic study reporting combined frequencies of sex chromosome anomalies in sex development disorders in Oman. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Retinal vascular changes are a marker for cerebral vascular diseases

    PubMed Central

    Moss, Heather E.

    2016-01-01

    The retinal circulation is a potential marker of cerebral vascular disease because it shares origin and drainage with the intracranial circulation and because it can be directly visualized using ophthalmoscopy. Cross sectional and cohort studies have demonstrated associations between chronic retinal and cerebral vascular disease, acute retinal and cerebral vascular disease and chronic retinal vascular disease and acute cerebral vascular disease. In particular, certain qualitative features of retinopathy, retinal artery occlusion and increased retinal vein caliber are associated with concurrent and future cerebrovascular events. These associations persist after accounting for confounding variables known to be disease-causing in both circulations, which supports the potential use of retinal vasculature findings to stratify individuals with regards to cerebral vascular disease risk. PMID:26008809

  5. Retinal Vascular Changes and Prospective Risk of Disabling Dementia: the Circulatory Risk in Communities Study (CIRCS)

    PubMed Central

    Jinnouchi, Hiroshige; Kitamura, Akihiko; Yamagishi, Kazumasa; Kiyama, Masahiko; Imano, Hironori; Okada, Takeo; Cui, Renzhe; Umesawa, Mitsumasa; Muraki, Isao; Hayama-Terada, Mina; Kawasaki, Ryo; Sankai, Tomoko; Ohira, Tetsuya

    2017-01-01

    Aim: To investigate the association of retinal vascular changes with a risk of dementia in longitudinal population-based study. Methods: We performed a nested case-control study of 3,718 persons, aged 40–89 years, enrolled between 1983 and 2004. Retinal vascular changes were observed in 351 cases with disabling dementia (average period before the onset, 11.2 years) and in 702 controls matched for sex, age, and baseline year. Incidence of disabling dementia was defined as individuals who received cares for disabilities including dementia-related symptoms and/or behavioral disturbance. Conditional logistic regression analysis was used to calculate odds ratio (OR) and multivariable adjusted OR (Models 1 and 2) for incidence of disabling dementia according to each retinal vascular change. Regarding confounding variables, Model 1 included overweight status, hypertension, hyperglycemia, dyslipidemia, and smoking status, whereas Model 2 also included incidence of stroke prior to disabling dementia for further analysis. Results: The proportion of cases (controls) with retinal vascular changes was 23.1 (15.7)% for generalized arteriolar narrowing, 7.7 (7.5)% for focal arteriolar narrowing, 15.7 (11.8)% for arteriovenous nicking, 10.5 (9.3)% for increased arteriolar wall reflex, and 11.4 (9.8)% for any other retinopathy. Generalized arteriolar narrowing was associated with an increased risk of disabling dementia: crude OR, 1.66 (95% confidence interval, 1.19–2.31); Model 1: OR, 1.58 (1.12–2.23); Model 2: OR, 1.48 (1.04–2.10). The number of retinal abnormalities was associated in a dose–response manner with the risk. Conclusion: Generalized arteriolar narrowing and total number of retinal abnormalities may be useful markers for identifying persons at higher risks of disabling dementia. PMID:27904027

  6. Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering.

    PubMed

    Henry, Jeffrey J D; Yu, Jian; Wang, Aijun; Lee, Randall; Fang, Jun; Li, Song

    2017-08-17

    Synthetic small diameter vascular grafts have a high failure rate, and endothelialization is critical for preventing thrombosis and graft occlusion. A promising approach is in situ tissue engineering, whereby an acellular scaffold is implanted and provides stimulatory cues to guide the in situ remodeling into a functional blood vessel. An ideal scaffold should have sufficient binding sites for biomolecule immobilization and a mechanical property similar to native tissue. Here we developed a novel method to blend low molecular weight (LMW) elastic polymer during electrospinning process to increase conjugation sites and to improve the mechanical property of vascular grafts. LMW elastic polymer improved the elasticity of the scaffolds, and significantly increased the amount of heparin conjugated to the micro/nanofibrous scaffolds, which in turn increased the loading capacity of vascular endothelial growth factor (VEGF) and prolonged the release of VEGF. Vascular grafts were implanted into the carotid artery of rats to evaluate the in vivo performance. VEGF treatment significantly enhanced endothelium formation and the overall patency of vascular grafts. Heparin coating also increased cell infiltration into the electrospun grafts, thus increasing the production of collagen and elastin within the graft wall. This work demonstrates that LMW elastic polymer blending is an approach to engineer the mechanical and biological property of micro/nanofibrous vascular grafts for in situ vascular tissue engineering.

  7. The effect of interstitial pressure on therapeutic agent transport: coupling with the tumor blood and lymphatic vascular systems

    PubMed Central

    Wu, Min; Frieboes, Hermann B.; Chaplain, Mark A.J.; McDougall, Steven R.; Cristini, Vittorio; Lowengrub, John

    2014-01-01

    Vascularized tumor growth is characterized by both abnormal interstitial fluid flow and the associated interstitial fluid pressure (IFP). Here, we study the effect that these conditions have on the transport of therapeutic agents during chemotherapy. We apply our recently developed vascular tumor growth model which couples a continuous growth component with a discrete angiogenesis model to show that hypertensive IFP is a physical barrier that may hinder vascular extravasation of agents through transvascular fluid flux convection, which drives the agents away from the tumor. This result is consistent with previous work using simpler models without blood flow or lymphatic drainage. We consider the vascular/interstitial/lymphatic fluid dynamics to show that tumors with larger lymphatic resistance increase the agent concentration more rapidly while also experiencing faster washout. In contrast, tumors with smaller lymphatic resistance accumulate less agents but are able to retain them for a longer time. The agent availability (area-under-the curve, or AUC) increases for less permeable agents as lymphatic resistance increases, and correspondingly decreases for more permeable agents. We also investigate the effect of vascular pathologies on agent transport. We show that elevated vascular hydraulic conductivity contributes to the highest AUC when the agent is less permeable, but leads to lower AUC when the agent is more permeable. We find that elevated interstitial hydraulic conductivity contributes to low AUC in general regardless of the transvascular agent transport capability. We also couple the agent transport with the tumor dynamics to simulate chemotherapy with the same vascularized tumor under different vascular pathologies. We show that tumors with an elevated interstitial hydraulic conductivity alone require the strongest dosage to shrink. We further show that tumors with elevated vascular hydraulic conductivity are more hypoxic during therapy and that the

  8. Mid-gestation brain Doppler and head biometry in fetuses with congenital heart disease predict abnormal brain development at birth.

    PubMed

    Masoller, N; Sanz-CortéS, M; Crispi, F; Gómez, O; Bennasar, M; Egaña-Ugrinovic, G; Bargalló, N; Martínez, J M; Gratacós, E

    2016-01-01

    Fetuses with congenital heart disease (CHD) show evidence of abnormal brain development before birth, which is thought to contribute to adverse neurodevelopment during childhood. Our aim was to evaluate whether brain development in late pregnancy can be predicted by fetal brain Doppler, head biometry and the clinical form of CHD at the time of diagnosis. This was a prospective cohort study including 58 fetuses with CHD, diagnosed at 20-24 weeks' gestation, and 58 normal control fetuses. At the time of diagnosis, we recorded fetal head circumference (HC), biparietal diameter, middle cerebral artery pulsatility index (MCA-PI), cerebroplacental ratio (CPR) and brain perfusion by fractional moving blood volume. We classified cases into one of two clinical types defined by the expected levels (high or low) of placental (well-oxygenated) blood perfusion, according to the anatomical defect. All fetuses underwent subsequent 3T-magnetic resonance imaging (MRI) at 36-38 weeks' gestation. Abnormal prenatal brain development was defined by a composite score including any of the following findings on MRI: total brain volume <  10(th) centile, parietoccipital or cingulate fissure depth <  10(th) centile or abnormal metabolic profile in the frontal lobe. Logistic regression analysis demonstrated that MCA-PI (odds ratio (OR), 12.7; P = 0.01), CPR (OR, 8.7; P = 0.02) and HC (OR, 6.2; P = 0.02) were independent predictors of abnormal neurodevelopment; however, the clinical type of CHD was not. Fetal brain Doppler and head biometry at the time of CHD diagnosis are independent predictors of abnormal brain development at birth, and could be used in future algorithms to improve counseling and targeted interventions. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  9. Developing software to "track and catch" missed follow-up of abnormal test results in a complex sociotechnical environment.

    PubMed

    Smith, M; Murphy, D; Laxmisan, A; Sittig, D; Reis, B; Esquivel, A; Singh, H

    2013-01-01

    Abnormal test results do not always receive timely follow-up, even when providers are notified through electronic health record (EHR)-based alerts. High workload, alert fatigue, and other demands on attention disrupt a provider's prospective memory for tasks required to initiate follow-up. Thus, EHR-based tracking and reminding functionalities are needed to improve follow-up. The purpose of this study was to develop a decision-support software prototype enabling individual and system-wide tracking of abnormal test result alerts lacking follow-up, and to conduct formative evaluations, including usability testing. We developed a working prototype software system, the Alert Watch And Response Engine (AWARE), to detect abnormal test result alerts lacking documented follow-up, and to present context-specific reminders to providers. Development and testing took place within the VA's EHR and focused on four cancer-related abnormal test results. Design concepts emphasized mitigating the effects of high workload and alert fatigue while being minimally intrusive. We conducted a multifaceted formative evaluation of the software, addressing fit within the larger socio-technical system. Evaluations included usability testing with the prototype and interview questions about organizational and workflow factors. Participants included 23 physicians, 9 clinical information technology specialists, and 8 quality/safety managers. Evaluation results indicated that our software prototype fit within the technical environment and clinical workflow, and physicians were able to use it successfully. Quality/safety managers reported that the tool would be useful in future quality assurance activities to detect patients who lack documented follow-up. Additionally, we successfully installed the software on the local facility's "test" EHR system, thus demonstrating technical compatibility. To address the factors involved in missed test results, we developed a software prototype to account for

  10. Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of Hereditary Hemorrhagic Telangiectasia.

    PubMed

    Crist, Angela M; Lee, Amanda R; Patel, Nehal R; Westhoff, Dawn E; Meadows, Stryder M

    2018-05-01

    Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disorder that leads to abnormal connections between arteries and veins termed arteriovenous malformations (AVM). Mutations in TGFβ pathway members ALK1, ENG and SMAD4 lead to HHT. However, a Smad4 mouse model of HHT does not currently exist. We aimed to create and characterize a Smad4 endothelial cell (EC)-specific, inducible knockout mouse (Smad4 f/f ;Cdh5-Cre ERT2 ) that could be used to study AVM development in HHT. We found that postnatal ablation of Smad4 caused various vascular defects, including the formation of distinct AVMs in the neonate retina. Our analyses demonstrated that increased EC proliferation and size, altered mural cell coverage and distorted artery-vein gene expression are associated with Smad4 deficiency in the vasculature. Furthermore, we show that depletion of Smad4 leads to decreased Vegfr2 expression, and concurrent loss of endothelial Smad4 and Vegfr2 in vivo leads to AVM enlargement. Our work provides a new model in which to study HHT-associated phenotypes and links the TGFβ and VEGF signaling pathways in AVM pathogenesis.

  11. Blood Flow Modulation of Vascular Dynamics

    PubMed Central

    Lee, Juhyun; Sevag Packard, René R.; Hsiai, Tzung K.

    2015-01-01

    Purpose of review Blood flow is intimately linked with cardiovascular development, repair, and dysfunction. The current review will build on the fluid mechanical principle underlying hemodynamic shear forces, mechanotransduction, and metabolic effects. Recent findings Pulsatile flow produces both time- (∂τ /∂t)and spatial-varying shear stress (∂τ /∂x) to modulate vascular oxidative stress and inflammatory response with pathophysiological significance to atherosclerosis. The characteristics of hemodynamic shear forces; namely, steady laminar (∂τ /∂t= 0), pulsatile (PSS: unidirectional forward flow), and oscillatory shear stress (OSS: bidirectional with a near net 0 forward flow) modulate mechano-signal transduction to influence metabolic effects on vascular endothelial function. Atheroprotective PSS promotes anti-oxidant, anti-inflammatory, and anti-thrombotic responses, whereas atherogenic OSS induces NADPH oxidase–JNK signaling to increase mitochondrial superoxide production, protein degradation of manganese superoxide dismutase (MnSOD), and post-translational protein modifications of LDL particles in the disturbed flow-exposed regions of vasculature. In the era of tissue regeneration, shear stress has been implicated in re-activation of developmental genes; namely, Wnt and Notch signaling, for vascular development and repair. Summary Blood flow imparts a dynamic continuum from vascular development to repair. Augmentation of PSS confers atheroprotection and re-activation of developmental signaling pathways for regeneration. PMID:26218416

  12. Three-dimensional ultrasonography and power Doppler for discrimination between benign and malignant endometrium in premenopausal women with abnormal uterine bleeding.

    PubMed

    El-Sharkawy, Mohamed; El-Mazny, Akmal; Ramadan, Wafaa; Hatem, Dina; Abdel-Hafiz, Aly; Hammam, Mohamed; Nada, Adel

    2016-03-16

    Ultrasonography has been extensively used in women suspected of having a gynecological malignancy. The aim of this study is to evaluate the efficacy of 3D ultrasonography and power Doppler for discrimination between benign and malignant endometrium in premenopausal women with abnormal uterine bleeding. This cross-sectional study included 78 premenopausal women with abnormal uterine bleeding scheduled for hysteroscopy and endometrial curettage. The endometrial thickness (ET), uterine artery pulsatility index (PI) and resistance index (RI), and endometrial volume (EV) and 3D power Doppler vascularization index (VI), flow index (FI), and vascularization flow index (VFI) were measured and compared with hysteroscopic and histopathologic findings. The ET (P <0.001), EV (P <0.001), and endometrial VI (P <0.001) and VFI (P = 0.043) were significantly increased in patients with atypical endometrial hyperplasia and endometrial carcinoma (n = 10) than those with benign endometrium (n = 68); whereas, the uterine artery PI and RI and endometrial FI were not significantly different between the two groups. The best marker for discrimination between benign and malignant endometrium was the VI with an area under the ROC curve of 0.88 at a cutoff value of 0.81%. 3D ultrasonography and power Doppler, especially endometrial VI, may be useful for discrimination between benign and malignant endometrium in premenopausal women with abnormal uterine bleeding.

  13. Melatonin prevents retinal oxidative stress and vascular changes in diabetic rats

    PubMed Central

    Özdemir, G; Ergün, Y; Bakariş, S; Kılınç, M; Durdu, H; Ganiyusufoğlu, E

    2014-01-01

    Purpose To evaluate the role of melatonin, an antioxidant agent, in diabetic oxidative stress and vascular damage. Methods Diabetes was induced in 21 male Wistar rats by intraperitoneal (IP) administration of streptozotocin and then the rats were equally and randomly allocated to diabetic, melatonin, and vehicle groups. Seven healthy normal rats with similar features comprised the control group as the fourth group. All animals were followed for 12 weeks. The melatonin group received IP melatonin daily and the vehicle group received 2.5% ethanol IP at the last month. At the end of 12 weeks, the rats were killed and retinas were harvested. The retinas were investigated for the existence of hypoxia-inducible factor 1-α (HIF-1α), vascular endothelial growth factor A (VEGF-A), and pigment epithelium-derived factor (PEDF) by ELISA. Retinal oxidative stress is quantitated by measuring nitrotyrosine and malondialdehyde levels. Retinal immunohistochemistry with antibody against CD31 antigen was carried out on retinal cross-sections. For statistics, ANOVA test was used for multiple comparisons. Results Hyperglycemia increased retinal oxidation as measured through levels of nitrotyrosine and malondialdehyde. Diabetic retinas are also associated with abnormal vascular changes such as dilatation and deformation. HIF-1α, VEGF-A, and PEDF were all increased because of diabetic injury. Melatonin showed a potential beneficial effect on retinopathy in diabetic rats. It decreased retinal nitrotyrosine and malondialdehyde levels, showing an antioxidative support. The vasculomodulator cytokines are decreased accordingly by melatonin therapy. Melatonin normalized retinal vascular changes as well. Conclusion Melatonin may show some advantage on diabetic vascular changes through decreasing oxidative stress and vessel-related cytokines. PMID:24924441

  14. Sildenafil Citrate Increases Fetal Weight in a Mouse Model of Fetal Growth Restriction with a Normal Vascular Phenotype

    PubMed Central

    Dilworth, Mark Robert; Andersson, Irene; Renshall, Lewis James; Cowley, Elizabeth; Baker, Philip; Greenwood, Susan; Sibley, Colin Peter; Wareing, Mark

    2013-01-01

    Fetal growth restriction (FGR) is defined as the inability of a fetus to achieve its genetic growth potential and is associated with a significantly increased risk of morbidity and mortality. Clinically, FGR is diagnosed as a fetus falling below the 5th centile of customised growth charts. Sildenafil citrate (SC, Viagra™), a potent and selective phosphodiesterase-5 inhibitor, corrects ex vivo placental vascular dysfunction in FGR, demonstrating potential as a therapy for this condition. However, many FGR cases present without an abnormal vascular phenotype, as assessed by Doppler measures of uterine/umbilical artery blood flow velocity. Thus, we hypothesized that SC would not increase fetal growth in a mouse model of FGR, the placental-specific Igf2 knockout mouse, which has altered placental exchange capacity but normal placental blood flow. Fetal weights were increased (by 8%) in P0 mice following maternal SC treatment (0.4 mg/ml) via drinking water. There was also a trend towards increased placental weight in treated P0 mice (P = 0.056). Additionally, 75% of the P0 fetal weights were below the 5th centile, the criterion used to define human FGR, of the non-treated WT fetal weights; this was reduced to 51% when dams were treated with SC. Umbilical artery and vein blood flow velocity measures confirmed the lack of an abnormal vascular phenotype in the P0 mouse; and were unaffected by SC treatment. 14C-methylaminoisobutyric acid transfer (measured to assess effects on placental nutrient transporter activity) per g placenta was unaffected by SC, versus untreated, though total transfer was increased, commensurate with the trend towards larger placentas in this group. These data suggest that SC may improve fetal growth even in the absence of an abnormal placental blood flow, potentially affording use in multiple sub-populations of individuals presenting with FGR. PMID:24204949

  15. Vascular endothelial growth factor is upregulated by l-dopa in the parkinsonian brain: implications for the development of dyskinesia

    PubMed Central

    Francardo, Veronica; Lindgren, Hanna S.; Sillivan, Stephanie E.; O’Sullivan, Sean S.; Luksik, Andrew S.; Vassoler, Fair M.; Lees, Andrew J.; Konradi, Christine

    2011-01-01

    Angiogenesis and increased permeability of the blood–brain barrier have been reported to occur in animal models of Parkinson’s disease and l-dopa-induced dyskinesia, but the significance of these phenomena has remained unclear. Using a validated rat model of l-dopa-induced dyskinesia, this study demonstrates that chronic treatment with l-dopa dose dependently induces the expression of vascular endothelial growth factor in the basal ganglia nuclei. Vascular endothelial growth factor was abundantly expressed in astrocytes and astrocytic processes in the proximity of blood vessels. When co-administered with l-dopa, a small molecule inhibitor of vascular endothelial growth factor signalling significantly attenuated the development of dyskinesia and completely blocked the angiogenic response and associated increase in blood–brain barrier permeability induced by the treatment. The occurrence of angiogenesis and vascular endothelial growth factor upregulation was verified in post-mortem basal ganglia tissue from patients with Parkinson’s disease with a history of dyskinesia, who exhibited increased microvascular density, microvascular nestin expression and an upregulation of vascular endothelial growth factor messenger ribonucleic acid. These congruent findings in the rat model and human patients indicate that vascular endothelial growth factor is implicated in the pathophysiology of l-dopa-induced dyskinesia and emphasize an involvement of the microvascular compartment in the adverse effects of l-dopa pharmacotherapy in Parkinson’s disease. PMID:21771855

  16. Redox Abnormalities as a Vulnerability Phenotype for Autism and Related Alterations in CNS Development

    DTIC Science & Technology

    2011-10-01

    ming during pre- and post-natal neurodevelopment . Previously, we reported that many children with autism have abnormal plasma levels of metabolites...dysregulation in autism . 1. Introduction Autism is a behaviorally defined neurodevelopmental disor- der that usually presents in early childhood and is charac...Phenotype for Autism and Related Alterations in CNS Development PRINCIPAL INVESTIGATOR: Sandra Jill James, Ph.D

  17. Using biplanar fluoroscopy to guide radiopaque vascular injections: a new method for vascular imaging.

    PubMed

    O'Brien, Haley D; Williams, Susan H

    2014-01-01

    Studying vascular anatomy, especially in the context of relationships with hard tissues, is of great interest to biologists. Vascular studies have provided significant insight into physiology, function, phylogenetic relationships, and evolutionary patterns. Injection of resin or latex into the vascular system has been a standard technique for decades. There has been a recent surge in popularity of more modern methods, especially radiopaque latex vascular injection followed by CT scanning and digital "dissection." This technique best displays both blood vessels and bone, and allows injections to be performed on cadaveric specimens. Vascular injection is risky, however, because it is not a standardizable technique, as each specimen is variable with regard to injection pressure and timing. Moreover, it is not possible to view the perfusion of injection medium throughout the vascular system of interest. Both data and rare specimens can therefore be lost due to poor or excessive perfusion. Here, we use biplanar video fluoroscopy as a technique to guide craniovascular radiopaque latex injection. Cadaveric domestic pigs (Sus scrofa domestica) and white-tailed deer (Odocoileus virginianus) were injected with radiopaque latex under guidance of fluoroscopy. This method was found to enable adjustments, in real-time, to the rate, location, and pressure at which latex is injected in order to avoid data and specimen loss. In addition to visualizing the injection process, this technique can be used to determine flow patterns, and has facilitated the development of consistent markers for complete perfusion.

  18. Nailfold capillaroscopy abnormalities correlate with cutaneous and visceral involvement in systemic sclerosis patients.

    PubMed

    Sato, Lucy T; Kayser, Cristiane; Andrade, Luís E C

    2009-01-01

    The aim of this study was to correlate quantitative and semiquantitative nailfold capillaroscopy (NFC) parameters with the extent of cutaneous and visceral involvement in systemic sclerosis (SSc) patients. The presence of clinical and serological alterations was evaluated retrospectively and correlated with NFC findings (number of capillary loops/mm, vascular deletion score and number of enlarged and giant capillary loops). For evaluation of disease extension five manifestations were analyzed: finger pad lesions, skin involvement, esophageal involvement, interstitial lung disease, and pulmonary hypertension. There were 105 NFC examinations in 92 patients, 13 of whom were evaluated at two different time points. Patients with diffuse cutaneous SSc had a higher vascular deletion score than patients with limited cutaneous SSc, sine scleroderma SSc, and overlap syndrome (1.67+/-0.91 vs 0.99+/-0.82; p=0.0005). Modified Rodnan's skin score correlated positively with capillary deletion, evaluated by the vascular deletion score and the number of capillary loops/mm (p<0.001 and p=0.012; respectively). Patients with three or more involved tracts presented lower number of capillary loops/mm (8.00+/-1.69 vs 9.23+/-1.31 capillary loops/mm; p=0.025) and a higher vascular deletion score (1.41+/-0.95 vs 0.73+/-0.76; p=0.027) when compared to patients with less than three affected tracts. Vascular deletion score was significantly higher in patients with anti-Scl-70 antibodies that in patients without anti-Scl-70 antibodies (p=0.02). NFC abnormalities correlated positively with the diffuse form of SSc, the degree of cutaneous involvement, the number of affected tracts, and the presence of anti-Scl-70 antibodies.

  19. Vascular Remodelling and Mesenchymal Transition in Systemic Sclerosis

    PubMed Central

    Nicolosi, Pier Andrea; Tombetti, Enrico; Maugeri, Norma; Rovere-Querini, Patrizia; Brunelli, Silvia; Manfredi, Angelo A.

    2016-01-01

    Fibrosis of the skin and of internal organs, autoimmunity, and vascular inflammation are hallmarks of Systemic Sclerosis (SSc). The injury and activation of endothelial cells, with hyperplasia of the intima and eventual obliteration of the vascular lumen, are early features of SSc. Reduced capillary blood flow coupled with deficient angiogenesis leads to chronic hypoxia and tissue ischemia, enforcing a positive feed-forward loop sustaining vascular remodelling, further exacerbated by extracellular matrix accumulation due to fibrosis. Despite numerous developments and a growing number of controlled clinical trials no treatment has been shown so far to alter SSc natural history, outlining the need of further investigation in the molecular pathways involved in the pathogenesis of the disease. We review some processes potentially involved in SSc vasculopathy, with attention to the possible effect of sustained vascular inflammation on the plasticity of vascular cells. Specifically we focus on mesenchymal transition, a key phenomenon in the cardiac and vascular development as well as in the remodelling of injured vessels. Recent work supports the role of transforming growth factor-beta, Wnt, and Notch signaling in these processes. Importantly, endothelial-mesenchymal transition may be reversible, possibly offering novel cues for treatment. PMID:27069480

  20. Treating vascular lesions.

    PubMed

    Astner, Susanne; Anderson, R Rox

    2005-01-01

    The treatment of acquired vascular lesions is one of the most commonly requested and performed cutaneous laser procedures. Furthermore, every year, 40,000 children are born in the United States each with congenital vascular lesions and malformations. Laser treatment of vascular lesion is based on the principle of selective photothermolysis, conceived in the 1980s. A variety of different lasers and light sources have since been used in the treatment of vascular lesions: lasers with wavelengths between green and yellow, near infrared lasers, and broadband light sources. Despite limitations, this remains the treatment of choice today. This publication addresses acquired and congenital vascular lesions as different entities and proposes a separation of vascular lesions into those that can easily be treated from those where clearance is difficult. Different treatment modalities and the various endpoints of individual vascular lesions will be discussed.

  1. VEGF signaling inside vascular endothelial cells and beyond

    PubMed Central

    Eichmann, Anne; Simons, Michael

    2014-01-01

    Vascular endothelial growth factor-A (VEGF-A) has long been recognized as the key regulator of vascular development and function in health and disease. VEGF is a secreted polypeptide that binds to transmembrane tyrosine kinase VEGF receptors on the plasma membrane, inducing their dimerization, activation and assembly of a membrane-proximal signaling complex. Recent studies have revealed that many key events of VEGFR signaling occur inside the endothelial cell and are regulated by endosomal receptor trafficking. Plasma membrane VEGFR interacting molecules, including vascular guidance receptors Neuropilins and Ephrins also regulate VEGFR endocytosis and trafficking. VEGF signaling is increasingly recognized for its roles outside of the vascular system, notably during neural development, and blood vessels regulate epithelial branching morphogenesis. We review here recent advances in our understanding of VEGF signaling and its biological roles. PMID:22366328

  2. A vascular disease educational program in the preclinical years of medical school increases student interest in vascular disease.

    PubMed

    Godshall, Christopher J; Moore, Phillip S; Fleming, Shawn H; Andrews, Jeanette S; Hansen, Kimberley J; Hoyle, John R; Edwards, Matthew S

    2010-09-01

    New training paradigms in vascular surgery necessitate medical student interest in vascular disease. We examined the effects of incorporation of a vascular disease educational program during the second year of the medical school curriculum on student acquisition of knowledge and interest in the treatment of vascular disease. We developed and administered a new educational program on vascular disease and delivered the program to all second-year medical students. The new program encompassed 9 didactic hours, including 7 traditional lecture hours and 2 hours of problem-based learning. After completing the program, students were surveyed regarding vascular disease-specific knowledge, interest in treating vascular disease, and career choices. Third-year students who were not exposed to the program were surveyed as a control group. We recorded the voluntary student enrollment in the vascular and endovascular surgery rotation during the following academic year. Voluntary enrollment of the students exposed to the vascular disease education program was compared with enrollment for the previous 8 years. Before the introduction of the new educational program, 946 total lecture hours were delivered to first- and second-year medical students, comprising 490 hours (52%) given by nonsurgeon physicians, 445 (47%) by nonphysicians, and 11 (1%) by surgeons. Survey response rate was 93% (112 of 121) for second-year students and 95% (39 of 41) for third-year students. After the vascular disease program, second-year students answered 7.1 +/- 1.4 of 9 vascular disease questions correctly, whereas unexposed third-year students answered 7.2 +/- 1.7 questions correctly (P = .96). Most second-year medical students described a "somewhat" or "much greater" interest in the medical (63%), procedural (59%), and overall (63%) management of vascular disease after exposure to the program. Most also had a "somewhat" or "much greater" interest in a vascular medicine (64%) or vascular and endovascular

  3. Overexpression of a cytosolic NADP+-isocitrate dehydrogenase causes alterations in the vascular development of hybrid poplars.

    PubMed

    Pascual, María Belén; Molina-Rueda, Juan Jesús; Cánovas, Francisco M; Gallardo, Fernando

    2018-06-15

    Cytosolic NADP+-isocitrate dehydrogenase (ICDH) is one of the major enzymes involved in the production of 2-oxoglutarate for amino acid biosynthesis in plants. In most plants studied, ICDH is encoded by either one gene or a small gene family, and the protein sequence has been highly conserved during evolution, suggesting it plays different and essential roles in metabolism and differentiation. To elucidate the role of ICDH in hybrid poplar (Populus tremula x P. alba), transgenic plants overexpressing the Pinus pinaster gene were generated. Overexpression of ICDH resulted in hybrid poplar (Populus tremula × P. alba) trees with higher expression levels of the endogenous ICDH gene and higher enzyme content than control untransformed plants. Transgenic poplars also showed an increased expression of glutamine synthetase (GS1.3), glutamate decarboxylase (GAD) and other genes associated with vascular differentiation. Furthermore, these plants exhibited increased growth in height, longer internodes and enhanced vascular development in young leaves and the apical region of stem. Modifications in amino acid and organic acid content were observed in young leaves of the transgenic lines, suggesting an increased biosynthesis of amino acids for building new structures and also for transport to other sink organs, as expanding leaves or young stems. Taken together, these results support an important role of ICDH in plant growth and vascular development.

  4. Genetically induced abnormal cranial development in human trisomy 18 with holoprosencephaly: comparisons with the normal tempo of osteogenic-neural development.

    PubMed

    Reid, Shaina N; Ziermann, Janine M; Gondré-Lewis, Marjorie C

    2015-07-01

    Craniofacial malformations are common congenital defects caused by failed midline inductive signals. These midline defects are associated with exposure of the fetus to exogenous teratogens and with inborn genetic errors such as those found in Down, Patau, Edwards' and Smith-Lemli-Opitz syndromes. Yet, there are no studies that analyze contributions of synchronous neurocranial and neural development in these disorders. Here we present the first in-depth analysis of malformations of the basicranium of a holoprosencephalic (HPE) trisomy 18 (T18; Edwards' syndrome) fetus with synophthalmic cyclopia and alobar HPE. With a combination of traditional gross dissection and state-of-the-art computed tomography, we demonstrate the deleterious effects of T18 caused by a translocation at 18p11.31. Bony features included a single developmentally unseparated frontal bone, and complete dual absence of the anterior cranial fossa and ethmoid bone. From a superior view with the calvarium plates removed, there was direct visual access to the orbital foramen and hard palate. Both the eyes and the pituitary gland, normally protected by bony structures, were exposed in the cranial cavity and in direct contact with the brain. The middle cranial fossa was shifted anteriorly, and foramina were either missing or displaced to an abnormal location due to the absence or misplacement of its respective cranial nerve (CN). When CN development was conserved in its induction and placement, the respective foramen developed in its normal location albeit with abnormal gross anatomical features, as seen in the facial nerve (CNVII) and the internal acoustic meatus. More anteriorly localized CNs and their foramina were absent or heavily disrupted compared with posterior ones. The severe malformations exhibited in the cranial fossae, orbital region, pituitary gland and sella turcica highlight the crucial involvement of transcription factors such as TGIF, which is located on chromosome 18 and contributes

  5. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development.

    PubMed

    Covassin, L D; Siekmann, A F; Kacergis, M C; Laver, E; Moore, J C; Villefranc, J A; Weinstein, B M; Lawson, N D

    2009-05-15

    In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development.

  6. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development

    PubMed Central

    Covassin, L. D.; Siekmann, A. F.; Kacergis, M. C.; Laver, E.; Moore, J. C.; Villefranc, J. A.; Weinstein, B. M.; Lawson, N. D.

    2009-01-01

    In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development. PMID:19269286

  7. Evaluation of vascular variations at cerebellopontine angle by 3D T2WI magnetic-resonance imaging in patients with vertigo.

    PubMed

    Beyazal Celiker, Fatma; Dursun, Engin; Celiker, Metin; Durakoglugil, Tugba; Beyazal, Mehmet; Inecikli, Mehmet Fatih; Ozgur, Abdulkadir; Terzi, Suat

    2017-01-01

    Vascular loops of the anterior-inferior cerebellar artery (AICA) at the cerebellopontine angle (CPA) are considered related to auditory-vestibular symptoms. Clinical association of these anatomical aberrations, which can be grouped together as vascular compression syndromes, is controversial. Magnetic resonance imaging (MRI) is widely used to visualize this anatomical region, given its high sensitivity and specificity. To elucidate the clinical relationship of vertigo symptoms with vascular loop compression syndrome by evaluating the neurovascular contacts of the vestibulocochlear nerve (VCN) and AICA at the CPA and internal auditory canal via high-resolution MRI. The study included 417 patients (178 with vertigo and 239 without vertigo) undergoing MRI for various clinical causes. MRI scans were assessed to study the presence of vascular abnormalities at the CPA. According to our findings, type 1 vascular variation was observed most frequently in both sides. MRI findings were similar for the patients with and without vertigo. Identifying the prevalence of the vascular loops of the AICA primarily depends on diagnostic technique, and our results identified a slightly higher prevalence than those of previous studies, which might be partly related to the high-sensitivity of 3-dimensional T2-weighted MRI.

  8. NEW FRONTIER IN UNDERSTANDING THE MECHANISMS OF DEVELOPMENTAL ABNORMALITIES

    EPA Science Inventory

    Recent advancements in molecular developmental biology afford an opportunity to apply newly developed tools for understanding the mechanisms of both normal and abnormal development. lthough a number of agents have been identified as causing developmental abnormalities, knowledge ...

  9. Ion channel remodeling in vascular smooth muscle during hypertension: Implications for novel therapeutic approaches

    PubMed Central

    Joseph, Biny K.; Thakali, Keshari M.; Moore, Christopher L.; Rhee, Sung W.

    2013-01-01

    Ion channels are multimeric, transmembrane proteins that selectively mediate ion flux across the plasma membrane in a variety of cells including vascular smooth muscle cells (VSMCs). The dynamic interplay of Ca2+ and K+ channels on the plasma membrane of VSMCs plays a pivotal role in modulating the vascular tone of small arteries and arterioles. The abnormally-elevated arterial tone observed in hypertension thus points to an aberrant expression and function of Ca2+ and K+ channels in the VSMCs. In this short review, we focus on the three well-studied ion channels in VSMCs, namely the L-type Ca2+ (CaV1.2) channels, the voltage-gated K+ (KV) channels, and the large-conductance Ca2+-activated K+ (BK) channels. First, we provide a brief overview on the physiological role of vascular CaV1.2, KV and BK channels in regulating arterial tone. Second, we discuss the current understanding of the expression changes and regulation of CaV1.2, KV and BK channels in the vasculature during hypertension. Third, based on available proof-of-concept studies, we describe the potential therapeutic approaches targeting these vascular ion channels in order to restore blood pressure to normotensive levels. PMID:23376354

  10. Doppler ultrasonography in living donor liver transplantation recipients: Intra- and post-operative vascular complications

    PubMed Central

    Abdelaziz, Omar; Attia, Hussein

    2016-01-01

    Living-donor liver transplantation has provided a solution to the severe lack of cadaver grafts for the replacement of liver afflicted with end-stage cirrhosis, fulminant disease, or inborn errors of metabolism. Vascular complications remain the most serious complications and a common cause for graft failure after hepatic transplantation. Doppler ultrasound remains the primary radiological imaging modality for the diagnosis of such complications. This article presents a brief review of intra- and post-operative living donor liver transplantation anatomy and a synopsis of the role of ultrasonography and color Doppler in evaluating the graft vascular haemodynamics both during surgery and post-operatively in accurately defining the early vascular complications. Intra-operative ultrasonography of the liver graft provides the surgeon with useful real-time diagnostic and staging information that may result in an alteration in the planned surgical approach and corrections of surgical complications during the procedure of vascular anastomoses. The relevant intra-operative anatomy and the spectrum of normal and abnormal findings are described. Ultrasonography and color Doppler also provides the clinicians and surgeons early post-operative potential developmental complications that may occur during hospital stay. Early detection and thus early problem solving can make the difference between graft survival and failure. PMID:27468207

  11. Interactions between mural cells and endothelial cells stabilize the developing zebrafish dorsal aorta

    PubMed Central

    Stratman, Amber N.; Pezoa, Sofia A.; Farrelly, Olivia M.; Castranova, Daniel; Dye, Louis E.; Butler, Matthew G.; Sidik, Harwin; Talbot, William S.

    2017-01-01

    Mural cells (vascular smooth muscle cells and pericytes) play an essential role in the development of the vasculature, promoting vascular quiescence and long-term vessel stabilization through their interactions with endothelial cells. However, the mechanistic details of how mural cells stabilize vessels are not fully understood. We have examined the emergence and functional role of mural cells investing the dorsal aorta during early development using the zebrafish. Consistent with previous literature, our data suggest that cells ensheathing the dorsal aorta emerge from a sub-population of cells in the adjacent sclerotome. Inhibition of mural cell recruitment to the dorsal aorta through disruption of pdgfr signaling leads to a reduced vascular basement membrane, which in turn results in enhanced dorsal aorta vessel elasticity and failure to restrict aortic diameter. Our results provide direct in vivo evidence for a functional role for mural cells in patterning and stabilization of the early vasculature through production and maintenance of the vascular basement membrane to prevent abnormal aortic expansion and elasticity. PMID:27913637

  12. Engineering Pre-vascularized Scaffolds for Bone Regeneration.

    PubMed

    Barabaschi, Giada D G; Manoharan, Vijayan; Li, Qing; Bertassoni, Luiz E

    2015-01-01

    Survival of functional tissue constructs of clinically relevant size depends on the formation of an organized and uniformly distributed network of blood vessels and capillaries. The lack of such vasculature leads to spatio-temporal gradients in oxygen, nutrients and accumulation of waste products inside engineered tissue constructs resulting in negative biological events at the core of the scaffold. Unavailability of a well-defined vasculature also results in ineffective integration of scaffolds to the host vasculature upon implantation. Arguably, one of the greatest challenges in engineering clinically relevant bone substitutes, therefore, has been the development of vascularized bone scaffolds. Various approaches ranging from peptide and growth factor functionalized biomaterials to hyper-porous scaffolds have been proposed to address this problem with reasonable success. An emerging alternative to address this challenge has been the fabrication of pre-vascularized scaffolds by taking advantage of biomanufacturing techniques, such as soft- and photo-lithography or 3D bioprinting, and cell-based approaches, where functional capillaries are engineered in cell-laden scaffolds prior to implantation. These strategies seek to engineer pre-vascularized tissues in vitro, allowing for improved anastomosis with the host vasculature upon implantation, while also improving cell viability and tissue development in vitro. This book chapter provides an overview of recent methods to engineer pre-vascularized scaffolds for bone regeneration. We first review the development of functional blood capillaries in bony structures and discuss controlled delivery of growth factors, co-culture systems, and on-chip studies to engineer vascularized cell-laden biomaterials. Lastly, we review recent studies using microfabrication techniques and 3D printing to engineer pre-vascularized scaffolds for bone tissue engineering.

  13. Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization.

    PubMed

    Weigand, Annika; Beier, Justus P; Hess, Andreas; Gerber, Thomas; Arkudas, Andreas; Horch, Raymund E; Boos, Anja M

    2015-05-01

    During the last decades, a range of excellent and promising strategies in Bone Tissue Engineering have been developed. However, the remaining major problem is the lack of vascularization. In this study, extrinsic and intrinsic vascularization strategies were combined for acceleration of vascularization. For optimal biomechanical stability of the defect site and simplifying future transition into clinical application, a primary stable and approved nanostructured bone substitute in clinically relevant size was used. An arteriovenous (AV) loop was microsurgically created in sheep and implanted, together with the bone substitute, in either perforated titanium chambers (intrinsic/extrinsic) for different time intervals of up to 18 weeks or isolated Teflon(®) chambers (intrinsic) for 18 weeks. Over time, magnetic resonance imaging and micro-computed tomography (CT) analyses illustrate the dense vascularization arising from the AV loop. The bone substitute was completely interspersed with newly formed tissue after 12 weeks of intrinsic/extrinsic vascularization and after 18 weeks of intrinsic/extrinsic and intrinsic vascularization. Successful matrix change from an inorganic to an organic scaffold could be demonstrated in vascularized areas with scanning electron microscopy and energy dispersive X-ray spectroscopy. Using the intrinsic vascularization method only, the degradation of the scaffold and osteoclastic activity was significantly lower after 18 weeks, compared with 12 and 18 weeks in the combined intrinsic-extrinsic model. Immunohistochemical staining revealed an increase in bone tissue formation over time, without a difference between intrinsic/extrinsic and intrinsic vascularization after 18 weeks. This study presents the combination of extrinsic and intrinsic vascularization strategies for the generation of an axially vascularized bone substitute in clinically relevant size using a large animal model. The additional extrinsic vascularization promotes tissue

  14. Abnormal Mammary Development in 129:STAT1-Null Mice is Stroma-Dependent

    PubMed Central

    Cardiff, Robert D.; Trott, Josephine F.; Hovey, Russell C.; Hubbard, Neil E.; Engelberg, Jesse A.; Tepper, Clifford G.; Willis, Brandon J.; Khan, Imran H.; Ravindran, Resmi K.; Chan, Szeman R.; Schreiber, Robert D.; Borowsky, Alexander D.

    2015-01-01

    Female 129:Stat1-null mice (129S6/SvEvTac-Stat1tm1Rds homozygous) uniquely develop estrogen-receptor (ER)-positive mammary tumors. Herein we report that the mammary glands (MG) of these mice have altered growth and development with abnormal terminal end buds alongside defective branching morphogenesis and ductal elongation. We also find that the 129:Stat1-null mammary fat pad (MFP) fails to sustain the growth of 129S6/SvEv wild-type and Stat1-null epithelium. These abnormalities are partially reversed by elevated serum progesterone and prolactin whereas transplantation of wild-type bone marrow into 129:Stat1-null mice does not reverse the MG developmental defects. Medium conditioned by 129:Stat1-null epithelium-cleared MFP does not stimulate epithelial proliferation, whereas it is stimulated by medium conditioned by epithelium-cleared MFP from either wild-type or 129:Stat1-null females having elevated progesterone and prolactin. Microarrays and multiplexed cytokine assays reveal that the MG of 129:Stat1-null mice has lower levels of growth factors that have been implicated in normal MG growth and development. Transplanted 129:Stat1-null tumors and their isolated cells also grow slower in 129:Stat1-null MG compared to wild-type recipient MG. These studies demonstrate that growth of normal and neoplastic 129:Stat1-null epithelium is dependent on the hormonal milieu and on factors from the mammary stroma such as cytokines. While the individual or combined effects of these factors remains to be resolved, our data supports the role of STAT1 in maintaining a tumor-suppressive MG microenvironment. PMID:26075897

  15. Increased atherosclerosis in mice with increased vascular biglycan content.

    PubMed

    Thompson, Joel C; Tang, Tao; Wilson, Patricia G; Yoder, Meghan H; Tannock, Lisa R

    2014-07-01

    The response to retention hypothesis of atherogenesis proposes that atherosclerosis is initiated via the retention of atherogenic lipoproteins by vascular proteoglycans. Co-localization studies suggest that of all the vascular proteoglycans, biglycan is the one most closely co-localized with LDL. The goal of this study was to determine if over-expression of biglycan in hyperlipidemic mice would increase atherosclerosis development. Transgenic mice were developed by expressing biglycan under control of the smooth muscle actin promoter, and were crossed to the LDL receptor deficient (C57BL/6 background) atherosclerotic mouse model. Biglycan transgenic and non-transgenic control mice were fed an atherogenic Western diet for 4-12 weeks. LDL receptor deficient mice overexpressing biglycan under control of the smooth muscle alpha actin promoter had increased atherosclerosis development that correlated with vascular biglycan content. Increased vascular biglycan content predisposes to increased lipid retention and increased atherosclerosis development. Published by Elsevier Ireland Ltd.

  16. Risk factors and prevention of vascular complications in polycythemia vera.

    PubMed

    Barbui, T; Finazzi, G

    1997-01-01

    Risk factors for vascular complications in polycythemia vera (PV) include laboratory and clinical findings. Among laboratory values, the hematocrit has been clearly associated with thrombosis, particularly in the cerebral circulation. Platelet count is a possible but not yet clearly established predictor of vascular complications. Platelet function tests are of little help in prognostic evaluation because most attempts to correlate these abnormalities with clinical events have been disappointing. Clinical predictors of thrombosis include increasing age and a previous history of vascular events. Identifying risk factors for thrombosis is important to initiate therapy. Phlebotomy is associated with an increased incidence of thrombosis in the first 3 to 5 years, whereas chemotherapy may induce a higher risk of secondary malignancies after 7 to 10 years of follow-up. New cytoreductive drugs virtually devoid of mutagenic risk include interferon-alpha and anagrelide, but their role in reducing thrombotic complications remains to be demonstrated. Antithrombotic drugs, such as aspirin, are frequently used in PV, despite doubts regarding safety and efficacy. Two recent studies from the Gruppo Italiano Studio Policitemia Vera (GISP) assessed the rate of major thrombosis as well as the tolerability of low-dose aspirin in PV patients. These investigations created a favorable scenario for launching a European collaborative clinical trial (ECLAP study) aimed at testing the efficacy of low-dose aspirin in preventing thrombosis and prolonging survival in patients with PV.

  17. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptotic cell death and cytochrome P4501A expression in developing Fundulus heteroclitus embryos

    USGS Publications Warehouse

    Toomey, B.H.; Bello, S.; Hahn, M.E.; Cantrell, S.; Wright, P.; Tillitt, D.E.; Di Giulio, R.T.

    2001-01-01

    Fundulus heteroclitus embryos were exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during early development using nanoinjection or water bath exposure. TCDD caused developmental abnormalities that included hemorrhaging, loss of vascular integrity, edema, stunted development and death. The LC50 and LD50 of TCDD for Fundulus embryos were ???19.7??9.5 pg TCDD/??l (water bath) and 0.25??0.09 ng TCDD/g embryo (nanoinjection). To identify a possible cause for these developmental abnormalities we analyzed the effects of TCDD on apoptotic cell death and cytochrome P4501A (CYP1A) expression in the embryos. TCDD exposure increased apoptotic cell death in several tissues including brain, eye, gill, kidney, tail, intestine, heart, and vascular tissue. CYP1A expression was also increased in the TCDD-exposed embryos predominantly in liver, kidney, gill, heart, intestine, and in vascular tissues throughout the embryo. There was co-occurrence of TCDD-induced apoptosis and CYP1A expression in some, but not all, cell types. In addition the dose response relationships for apoptosis and mortality were similar, while CYP1A expression appeared more sensitive to TCDD induction. Copyright ?? 2001 Elsevier Science B.V.

  18. Vascular Cognitive Impairment.

    PubMed

    Dichgans, Martin; Leys, Didier

    2017-02-03

    Cerebrovascular disease typically manifests with stroke, cognitive impairment, or both. Vascular cognitive impairment refers to all forms of cognitive disorder associated with cerebrovascular disease, regardless of the specific mechanisms involved. It encompasses the full range of cognitive deficits from mild cognitive impairment to dementia. In principle, any of the multiple causes of clinical stroke can cause vascular cognitive impairment. Recent work further highlights a role of microinfarcts, microhemorrhages, strategic white matter tracts, loss of microstructural tissue integrity, and secondary neurodegeneration. Vascular brain injury results in loss of structural and functional connectivity and, hence, compromise of functional networks within the brain. Vascular cognitive impairment is common both after stroke and in stroke-free individuals presenting to dementia clinics, and vascular pathology frequently coexists with neurodegenerative pathology, resulting in mixed forms of mild cognitive impairment or dementia. Vascular dementia is now recognized as the second most common form of dementia after Alzheimer's disease, and there is increasing awareness that targeting vascular risk may help to prevent dementia, even of the Alzheimer type. Recent advances in neuroimaging, neuropathology, epidemiology, and genetics have led to a deeper understanding of how vascular disease affects cognition. These new findings provide an opportunity for the present reappraisal of vascular cognitive impairment. We further briefly address current therapeutic concepts. © 2017 American Heart Association, Inc.

  19. Placental growth factor deficiency is associated with impaired cerebral vascular development in mice.

    PubMed

    Luna, Rayana Leal; Kay, Vanessa R; Rätsep, Matthew T; Khalaj, Kasra; Bidarimath, Mallikarjun; Peterson, Nichole; Carmeliet, Peter; Jin, Albert; Croy, B Anne

    2016-02-01

    Placental growth factor (PGF) is expressed in the developing mouse brain and contributes to vascularization and vessel patterning. PGF is dynamically expressed in fetal mouse brain, particularly forebrain, and is essential for normal cerebrovascular development. PGF rises in maternal plasma over normal human and mouse pregnancy but is low in many women with the acute onset hypertensive syndrome, pre-eclampsia (PE). Little is known about the expression of PGF in the fetus during PE. Pgf  (-/-) mice appear normal but recently cerebral vascular defects were documented in adult Pgf  (-/-) mice. Here, temporal-spatial expression of PGF is mapped in normal fetal mouse brains and cerebral vasculature development is compared between normal and congenic Pgf  (-/-) fetuses to assess the actions of PGF during cerebrovascular development. Pgf/PGF, Vegfa/VEGF, Vegf receptor (Vegfr)1 and Vegfr2 expression were examined in the brains of embryonic day (E)12.5, 14.5, 16.5 and 18.5 C57BL/6 (B6) mice using quantitative PCR and immunohistochemistry. The cerebral vasculature was compared between Pgf  (-/-) and B6 embryonic and adult brains using whole mount techniques. Vulnerability to cerebral ischemia was investigated using a left common carotid ligation assay. Pgf/PGF and Vegfr1 are highly expressed in E12.5-14.5 forebrain relative to VEGF and Vegfr2. Vegfa/VEGF is relatively more abundant in hindbrain (HB). PGF and VEGF expression were similar in midbrain. Delayed HB vascularization was seen at E10.5 and 11.5 in Pgf  (-/-) brains. At E14.5, Pgf  (-/-) circle of Willis showed unilateral hypoplasia and fewer collateral vessels, defects that persisted post-natally. Functionally, adult Pgf  (-/-) mice experienced cerebral ischemia after left common carotid arterial occlusion while B6 mice did not. Since Pgf  (-/-) mice were used, consequences of complete absence of maternal and fetal PGF were defined. Therefore, the effects of maternal versus fetal PGF

  20. VEGF signaling inside vascular endothelial cells and beyond.

    PubMed

    Eichmann, Anne; Simons, Michael

    2012-04-01

    Vascular endothelial growth factor-A (VEGF-A) has long been recognized as the key regulator of vascular development and function in health and disease. VEGF is a secreted polypeptide that binds to transmembrane tyrosine kinase VEGF receptors on the plasma membrane, inducing their dimerization, activation and assembly of a membrane-proximal signaling complex. Recent studies have revealed that many key events of VEGFR signaling occur inside the endothelial cell and are regulated by endosomal receptor trafficking. Plasma membrane VEGFR interacting molecules, including vascular guidance receptors Neuropilins and Ephrins also regulate VEGFR endocytosis and trafficking. VEGF signaling is increasingly recognized for its roles outside of the vascular system, notably during neural development, and blood vessels regulate epithelial branching morphogenesis. We review here recent advances in our understanding of VEGF signaling and its biological roles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Branding of vascular surgery.

    PubMed

    Perler, Bruce A

    2008-03-01

    The Society for Vascular Surgery surveyed primary care physicians (PCPs) to understand how PCPs make referral decisions for their patients with peripheral vascular disease. Responses were received from 250 PCPs in 44 states. More than 80% of the respondents characterized their experiences with vascular surgeons as positive or very positive. PCPs perceive that vascular surgeons perform "invasive" procedures and refer patients with the most severe vascular disease to vascular surgeons but were more than twice as likely to refer patients to cardiologists, believing they are better able to perform minimally invasive procedures. Nevertheless, PCPs are receptive to the notion of increasing referrals to vascular surgeons. A successful branding campaign will require considerable education of referring physicians about the totality of traditional vascular and endovascular care increasingly provided by the contemporary vascular surgical practice and will be most effective at the local grassroots level.

  2. The making of indigenous vascular prosthesis

    PubMed Central

    Unnikrishnan, Madathipat; Viswanathan, Sidharth; Balasubramaniam, K.; Muraleedharan, C.V.; Lal, Arthur Vijayan; Mohanan, P.V.; Mohanty, Meera; Kapilamoorthy, Tirur Raman

    2016-01-01

    Background & objectives: Vascular illnesses are on the rise in India, due to increase in lifestyle diseases and demographic transition, requiring intervention to save life, organ or limbs using vascular prosthesis. The aim of this study was to develop indigenous large diameter vascular graft for treatment of patients with vascular pathologies. Methods: The South India Textile Research Association, at Coimbatore, Tamil Nadu, India, developed seamless woven polyester (Polyethylene terephthalate) graft at its research wing. Further characterization and testing followed by clinical trials were conducted at Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India. Fifteen in vivo experiments were carried out in 1992-1994 in pigs as animal model. Controlled (phase I) clinical trial in ten patients was performed along with control graft. Thereafter, phase II trial involved 22 patients who underwent multi-centre clinical trial in four centres across India. Results: Laboratory testing showed that polyester graft was non-toxic, non-leeching and non-haemolytic with preserved long-term quality, further confirming in pigs by implanting in thoracic aorta, comparable to control Dacron grafts. Perigraft incorporation and smooth neointima formation which are prime features of excellent healing characteristics, were noted at explantation at planned intervals. Subsequently in the phase I and II clinical trials, all patients had excellent recovery without mortality or device-related adverse events. Patients receiving the test graft were followed up for 10 and 5 years, respectively. Serial clinical, duplex scans and CT angiograms performed periodically confirmed excellent graft performance. Interpretation & conclusions: Indigenously developed Chitra vascular graft was comparable to commercially available Dacron graft, ready for clinical use at affordable cost to patients as against costly imported grafts. PMID:27748302

  3. The development of depressive symptoms during medical internship stress predicts worsening vascular function.

    PubMed

    Fiedorowicz, Jess G; Ellingrod, Vicki L; Kaplan, Mariana J; Sen, Srijan

    2015-09-01

    We sought to prospectively determine whether the onset of internship stress and any subsequent depression alters physiological markers of early vascular disease We explored potential mechanisms linking stress and depression to vascular disease in a prospective cohort of 37 participants exposed to medical internship stress, an established precipitant of depressive symptomatology. Change in depressive symptom score from baseline over one year of internship stress was inversely correlated with change in the reactive hyperemia index (RHI), a measure of peripheral endothelial function (r=0.41, p=0.01). The change in depressive symptoms in the first six months of internship was similarly related to change in RHI over one year (r=0.38, p=0.02). While the development of depressive symptoms did not significantly impact changes in endothelial progenitor cells (EPCs), EPCs did significantly decrease with the year of internship stress (11.9 to 3.4cells/ml blood; p=0.01). Endothelial function may be a critical link between stress, depression, and cardiovascular disease and a feasible surrogate outcome for prospective studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The Development of Depressive Symptoms During Medical Internship Stress Predicts Worsening Vascular Function

    PubMed Central

    Fiedorowicz, Jess G.; Ellingrod, Vicki L.; Kaplan, Mariana J.; Sen, Srijan

    2015-01-01

    Objective We sought to prospectively determine whether the onset of internship stress and any subsequent depression alters physiological markers of early vascular disease Methods We explored potential mechanisms linking stress and depression to vascular disease in a prospective cohort of 37 participants exposed to medical internship stress, an established precipitant of depressive symptomatology. Results Change in depressive symptom score from baseline over one year of internship stress was inversely correlated with change in the reactive hyperemia index (RHI), a measure of peripheral endothelial function (r=0.41, p=0.01). The change in depressive symptoms in the first six months of internship was similarly related to change in RHI over one year (r=0.38, p=0.02). While the development of depressive symptoms did not significantly impact changes in endothelial progenitor cells (EPCs), EPCs did significantly decrease with the year of internship stress (11.9 to 3.4 cells/ml blood; p=0.01). Conclusion Endothelial function may be a critical link between stress, depression, and cardiovascular disease and a feasible surrogate outcome for prospective studies. PMID:26115588

  5. Fetal magnetic resonance imaging (MRI): a tool for a better understanding of normal and abnormal brain development.

    PubMed

    Saleem, Sahar N

    2013-07-01

    Knowledge of the anatomy of the developing fetal brain is essential to detect abnormalities and understand their pathogenesis. Capability of magnetic resonance imaging (MRI) to visualize the brain in utero and to differentiate between its various tissues makes fetal MRI a potential diagnostic and research tool for the developing brain. This article provides an approach to understand the normal and abnormal brain development through schematic interpretation of fetal brain MR images. MRI is a potential screening tool in the second trimester of pregnancies in fetuses at risk for brain anomalies and helps in describing new brain syndromes with in utero presentation. Accurate interpretation of fetal MRI can provide valuable information that helps genetic counseling, facilitates management decisions, and guides therapy. Fetal MRI can help in better understanding the pathogenesis of fetal brain malformations and can support research that could lead to disease-specific interventions.

  6. Role of kinase-independent and -dependent functions of FAK in endothelial cell survival and barrier function during embryonic development.

    PubMed

    Zhao, Xiaofeng; Peng, Xu; Sun, Shaogang; Park, Ann Y J; Guan, Jun-Lin

    2010-06-14

    Focal adhesion kinase (FAK) is essential for vascular development as endothelial cell (EC)-specific knockout of FAK (conditional FAK knockout [CFKO] mice) leads to embryonic lethality. In this study, we report the differential kinase-independent and -dependent functions of FAK in vascular development by creating and analyzing an EC-specific FAK kinase-defective (KD) mutant knockin (conditional FAK knockin [CFKI]) mouse model. CFKI embryos showed apparently normal development through embryonic day (E) 13.5, whereas the majority of CFKO embryos died at the same stage. Expression of KD FAK reversed increased EC apoptosis observed with FAK deletion in embryos and in vitro through suppression of up-regulated p21. However, vessel dilation and defective angiogenesis of CFKO embryos were not rescued in CFKI embryos. ECs without FAK or expressing KD FAK showed increased permeability, abnormal distribution of vascular endothelial cadherin (VE-cadherin), and reduced VE-cadherin Y658 phosphorylation. Together, our data suggest that kinase-independent functions of FAK can support EC survival in vascular development through E13.5 but are insufficient for maintaining EC function to allow for completion of embryogenesis.

  7. Predicting vascular complications in percutaneous coronary interventions.

    PubMed

    Piper, Winthrop D; Malenka, David J; Ryan, Thomas J; Shubrooks, Samuel J; O'Connor, Gerald T; Robb, John F; Farrell, Karen L; Corliss, Mary S; Hearne, Michael J; Kellett, Mirle A; Watkins, Matthew W; Bradley, William A; Hettleman, Bruce D; Silver, Theodore M; McGrath, Paul D; O'Mears, John R; Wennberg, David E

    2003-06-01

    Using a large, current, regional registry of percutaneous coronary interventions (PCI), we identified risk factors for postprocedure vascular complications and developed a scoring system to estimate individual patient risk. A vascular complication (access-site injury requiring treatment or bleeding requiring transfusion) is a potentially avoidable outcome of PCI. Data were collected on 18,137 consecutive patients undergoing PCI in northern New England from January 1997 to December 1999. Multivariate regression was used to identify characteristics associated with vascular complications and to develop a scoring system to predict risk. The rate of vascular complication was 2.98% (541 cases). Variables associated with increased risk in the multivariate analysis included age >or=70, odds ratio (OR) 2.7, female sex (OR 2.4), body surface area <1.6 m(2) (OR 1.9), history of congestive heart failure (OR 1.4), chronic obstructive pulmonary disease (OR 1.5), renal failure (OR 1.9), lower extremity vascular disease (OR 1.4), bleeding disorder (OR 1.68), emergent priority (OR 2.3), myocardial infarction (OR 1.7), shock (1.86), >or=1 type B2 (OR 1.32) or type C (OR 1.7) lesions, 3-vessel PCI (OR 1.5), use of thienopyridines (OR 1.4) or use of glycoprotein IIb/IIIa receptor inhibitors (OR 1.9). The model performed well in tests for significance, discrimination, and calibration. The scoring system captured 75% of actual vascular complications in its highest quintiles of predicted risk. Predicting the risk of post-PCI vascular complications is feasible. This information may be useful for clinical decision-making and institutional efforts at quality improvement.

  8. Vascular Complications After Liver Transplantation

    PubMed Central

    Wozney, Paul; Bron, Klaus M.; Point, Stuart; Starzl, Thomas E.

    2011-01-01

    During the past 5 years, 104 angiographic studies were performed in 87 patients (45 children and 42 adults) with 92 transplanted livers for evaluation of possible vascular complications. Seventy percent of the studies were abnormal. Hepatic artery thrombosis was the most common complication (seen in 42% of children studied, compared with only 12% of adults) and was a major complication that frequently resulted in graft failure, usually necessitating retransplantation. In six children, reconstitution of the intrahepatic arteries by collaterals was seen. Three survived without retransplant. Arterial stenosis at the anastomosis or in the donor hepatic artery was observed in 11% of patients. Portal vein thrombosis or stenosis occurred in 13% of patients. Two children and one adult with portal vein thrombosis demonstrated hepatopetal collaterals that reconstituted the intrahepatic portal vessels. Uncommon complications included anastomotic and donor hepatic artery pseudoaneurysms, a hepatic artery–dissecting aneurysm, pancreaticoduodenal mycotic aneurysms, hepatic artery–portal vein fistula, biliary–portal vein fistula, hepatic vein occlusion, and inferior vena cava thrombosis. PMID:3529892

  9. Systemic vascular load in calcific degenerative aortic valve stenosis: insight from percutaneous valve replacement.

    PubMed

    Yotti, Raquel; Bermejo, Javier; Gutiérrez-Ibañes, Enrique; Pérez del Villar, Candelas; Mombiela, Teresa; Elízaga, Jaime; Benito, Yolanda; González-Mansilla, Ana; Barrio, Alicia; Rodríguez-Pérez, Daniel; Martínez-Legazpi, Pablo; Fernández-Avilés, Francisco

    2015-02-10

    Systemic arterial load impacts the symptomatic status and outcome of patients with calcific degenerative aortic stenosis (AS). However, assessing vascular properties is challenging because the arterial tree's behavior could be influenced by the valvular obstruction. This study sought to characterize the interaction between valvular and vascular functions in patients with AS by using transcatheter aortic valve replacement (TAVR) as a clinical model of isolated intervention. Aortic pressure and flow were measured simultaneously using high-fidelity sensors in 23 patients (mean 79 ± 7 years of age) before and after TAVR. Blood pressure and clinical response were registered at 6-month follow-up. Systolic and pulse arterial pressures, as well as indices of vascular function (vascular resistance, aortic input impedance, compliance, and arterial elastance), were significantly modified by TAVR, exhibiting stiffer vascular behavior post-intervention (all, p < 0.05). Peak left ventricular pressure decreased after TAVR (186 ± 36 mm Hg vs. 162 ± 23 mm Hg, respectively; p = 0.003) but remained at >140 mm Hg in 70% of patients. Wave intensity analysis showed abnormally low forward and backward compression waves at baseline, increasing significantly after TAVR. Stroke volume decreased (-21 ± 19%; p < 0.001) and correlated with continuous and pulsatile indices of arterial load. In the 48 h following TAVR, a hypertensive response was observed in 12 patients (52%), and after 6-month follow-up, 5 patients required further intensification of discharge antihypertensive therapy. Vascular function in calcific degenerative AS is conditioned by the upstream valvular obstruction that dampens forward and backward compression waves in the arterial tree. An increase in vascular load after TAVR limits the procedure's acute afterload relief. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  10. Vascular development of the grapevine (Vitis vinifera L.) inflorescence rachis in response to flower number, plant growth regulators and defoliation.

    PubMed

    Gourieroux, Aude M; Holzapfel, Bruno P; McCully, Margaret E; Scollary, Geoffrey R; Rogiers, Suzy Y

    2017-09-01

    The grapevine inflorescence is a determinate panicle and as buds emerge, shoot, flower and rachis development occur simultaneously. The growth and architecture of the rachis is determined by genetic and environmental factors but here we examined the role of flower and leaf number as well as hormones on its elongation and vascular development. The consequences of rachis morphology and vascular area on berry size and composition were also assessed. One week prior to anthesis, Merlot and Cabernet Sauvignon field vines were exposed to manual flower removal, exogenous plant growth regulators or pre-bloom leaf removal. Manual removal of half the flowers along the vertical axis of the inflorescence resulted in a shorter rachis in both cultivars. Conversely, inflorescences treated with gibberellic acid (GA 3 ) and the synthetic cytokinin, 6-benzylaminopurine (BAP) resulted in a longer rachis while pre-bloom removal of all leaves on the inflorescence-bearing shoot did not alter rachis length relative to untreated inflorescences. Across the treatments, the cross-sectional areas of the conducting xylem and phloem in the rachis were positively correlated to rachis girth, flower number at anthesis, bunch berry number, bunch berry fresh mass and bunch sugar content at harvest. Conversely, average berry size and sugar content were not linked to rachis vascular area. These data indicate that the morphological and vascular development of the rachis was more responsive to flower number and plant growth regulators than to leaf removal.

  11. Vascular dysfunction in women with a history of preeclampsia and intrauterine growth restriction: insights into future vascular risk.

    PubMed

    Yinon, Yoav; Kingdom, John C P; Odutayo, Ayodele; Moineddin, Rahim; Drewlo, Sascha; Lai, Vesta; Cherney, David Z I; Hladunewich, Michelle A

    2010-11-02

    Women with a history of placental disease are at increased risk for the future development of vascular disease. It is unknown whether preexisting endothelial dysfunction underlies both the predisposition to placental disease and the later development of vascular disease. The aim of this study was to assess vascular function in postpartum women and to determine whether differences emerged depending on the presentation of placental disease. Women with a history of early-onset preeclampsia (n=15), late-onset preeclampsia (n=9), intrauterine growth restriction without preeclampsia (n=9), and prior normal pregnancy (n=16) were studied 6 to 24 months postpartum. Flow-mediated vasodilatation and flow-independent (glyceryl trinitrate-induced) vasodilatation were studied through the use of high-resolution vascular ultrasound examination of the brachial artery. Arterial stiffness was assessed by pulse-wave analysis (augmentation index). Laboratory assessment included circulating angiogenic factors (vascular endothelial growth factor, soluble fms-like tyrosine kinase 1, placental growth factor, and soluble endoglin). Flow-mediated vasodilatation was significantly reduced in women with previous early-onset preeclampsia and intrauterine growth restriction compared with women with previous late-onset preeclampsia and control subjects (3.2±2.7% and 2.1±1.2% versus 7.9±3.8% and 9.1±3.5%, respectively; P<0.0001). Flow-independent vasodilatation was similar among all groups. Similarly, the radial augmentation index was significantly increased among women with previous early-onset preeclampsia and intrauterine growth restriction, but not among late preeclamptic women and control subjects (P=0.0105). Circulating angiogenic factors were similar in all groups. Only women with a history of early-onset preeclampsia or intrauterine growth restriction without preeclampsia exhibit impaired vascular function, which might explain their predisposition to placental disease and their higher

  12. Scanning electron microscopy observation of vascularization around hydroxyapatite using vascular corrosion casts.

    PubMed

    Chang, C S; Su, C Y; Lin, T C

    1999-01-01

    An intimate relationship exists between the regenerative response of the vascular and osseous elements following hydroxyapatite (HA) implantation. In order to fully comprehend the 3-dimensional vascular architecture around HA, dense HA particles were implanted into the tibiae of dogs. Following healing periods of 2 weeks, 1 month, and 3 months, the tibiae were prepared by the corrosion cast technique. Under scanning electron microscopy (SEM) observation, the characteristic vascular morphology of the HA-implanted cavity was successfully demonstrated. The initial vascularization began in the form of loose sinusoidal capillaries. Many sinusoids formed a complex network by anastomosing with each other. The newly formed vessels extended centripetally from the peripheral cavity wall and from the periosteal surface. Under greater magnification, the tapered vascular sprouting was shown to project into the space that was previously occupied by an HA particle. The presence of vascular sprouting is clearly an important indicator of angiogenesis. Increasing vascularization was demonstrated with time. The presence of vessels in the Haversian's canal indicated the more established vascularization. Almost full vascularization of the HA-implanted cavity was seen 3 months after implantation. The vascular organizational layout of the cavity was also clearly shown in the fractured transverse-sectioned sample. In the control without HA implantation, the central region of the cavity showed a hollow pattern in the initial stage. The vascularization looked like it was collapsing and not fully filling the cavity. However, remarkable differences of the final vascular pattern could not be found between the study and control group after 3-month implantation. The study provides the time-lapsed 3-dimensional vascular changes of the HA-implanted cavity, as well as the value of the corrosion cast technique in examining the bony circulation. Copyright 1999 John Wiley & Sons, Inc.

  13. THE VASCULAR PATHOPHYSIOLOGY OF AN IRRADIATED GRAFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, P.; Casarett, G.; Grise, J.W.

    1960-06-01

    The difference in the vascularization of grafted and normal skin forms a reasonable basis for explaining the differences in the radiation reactions of these structures. The radioisotope half time of disappearance following subcutaneous injection is an index of vascular integrity of the graft and serves as a parameter to predict its radioresponsiveness. In developing a concept of the spectrum of reactions of grafted skin to ionizing irradiation, knowledge of the radiopathologic changes in capillaries must be utilized with knowledge of the histophysiology of the vascularity of an autograft. (auth)

  14. Vascular Endothelial Cell-Specific Connective Tissue Growth Factor (CTGF) Is Necessary for Development of Chronic Hypoxia-Induced Pulmonary Hypertension.

    PubMed

    Pi, Liya; Fu, Chunhua; Lu, Yuanquing; Zhou, Junmei; Jorgensen, Marda; Shenoy, Vinayak; Lipson, Kenneth E; Scott, Edward W; Bryant, Andrew J

    2018-01-01

    Chronic hypoxia frequently complicates the care of patients with interstitial lung disease, contributing to the development of pulmonary hypertension (PH), and premature death. Connective tissue growth factor (CTGF), a matricellular protein of the Cyr61/CTGF/Nov (CCN) family, is known to exacerbate vascular remodeling within the lung. We have previously demonstrated that vascular endothelial-cell specific down-regulation of CTGF is associated with protection against the development of PH associated with hypoxia, though the mechanism for this effect is unknown. In this study, we generated a transgenic mouse line in which the Ctgf gene was floxed and deleted in vascular endothelial cells that expressed Cre recombinase under the control of VE-Cadherin promoter (eCTGF KO mice). Lack of vascular endothelial-derived CTGF protected against the development of PH secondary to chronic hypoxia, as well as in another model of bleomycin-induced pulmonary hypertension. Importantly, attenuation of PH was associated with a decrease in infiltrating inflammatory cells expressing CD11b or integrin α M (ITGAM), a known adhesion receptor for CTGF, in the lungs of hypoxia-exposed eCTGF KO mice. Moreover, these pathological changes were associated with activation of-Rho GTPase family member-cell division control protein 42 homolog (Cdc42) signaling, known to be associated with alteration in endothelial barrier function. These data indicate that endothelial-specific deletion of CTGF results in protection against development of chronic-hypoxia induced PH. This protection is conferred by both a decrease in inflammatory cell recruitment to the lung, and a reduction in lung Cdc42 activity. Based on our studies, CTGF inhibitor treatment should be investigated in patients with PH associated with chronic hypoxia secondary to chronic lung disease.

  15. YAP and TAZ regulate adherens junction dynamics and endothelial cell distribution during vascular development

    PubMed Central

    Neto, Filipa; Klaus-Bergmann, Alexandra; Ong, Yu Ting; Alt, Silvanus; Vion, Anne-Clémence; Szymborska, Anna; Carvalho, Joana R; Hollfinger, Irene; Bartels-Klein, Eireen; Franco, Claudio A

    2018-01-01

    Formation of blood vessel networks by sprouting angiogenesis is critical for tissue growth, homeostasis and regeneration. How endothelial cells arise in adequate numbers and arrange suitably to shape functional vascular networks is poorly understood. Here we show that YAP/TAZ promote stretch-induced proliferation and rearrangements of endothelial cells whilst preventing bleeding in developing vessels. Mechanistically, YAP/TAZ increase the turnover of VE-Cadherin and the formation of junction associated intermediate lamellipodia, promoting both cell migration and barrier function maintenance. This is achieved in part by lowering BMP signalling. Consequently, the loss of YAP/TAZ in the mouse leads to stunted sprouting with local aggregation as well as scarcity of endothelial cells, branching irregularities and junction defects. Forced nuclear activity of TAZ instead drives hypersprouting and vascular hyperplasia. We propose a new model in which YAP/TAZ integrate mechanical signals with BMP signaling to maintain junctional compliance and integrity whilst balancing endothelial cell rearrangements in angiogenic vessels. PMID:29400648

  16. Developing Software to “Track and Catch” Missed Follow-up of Abnormal Test Results in a Complex Sociotechnical Environment

    PubMed Central

    Smith, M.; Murphy, D.; Laxmisan, A.; Sittig, D.; Reis, B.; Esquivel, A.; Singh, H.

    2013-01-01

    Summary Background Abnormal test results do not always receive timely follow-up, even when providers are notified through electronic health record (EHR)-based alerts. High workload, alert fatigue, and other demands on attention disrupt a provider’s prospective memory for tasks required to initiate follow-up. Thus, EHR-based tracking and reminding functionalities are needed to improve follow-up. Objectives The purpose of this study was to develop a decision-support software prototype enabling individual and system-wide tracking of abnormal test result alerts lacking follow-up, and to conduct formative evaluations, including usability testing. Methods We developed a working prototype software system, the Alert Watch And Response Engine (AWARE), to detect abnormal test result alerts lacking documented follow-up, and to present context-specific reminders to providers. Development and testing took place within the VA’s EHR and focused on four cancer-related abnormal test results. Design concepts emphasized mitigating the effects of high workload and alert fatigue while being minimally intrusive. We conducted a multifaceted formative evaluation of the software, addressing fit within the larger socio-technical system. Evaluations included usability testing with the prototype and interview questions about organizational and workflow factors. Participants included 23 physicians, 9 clinical information technology specialists, and 8 quality/safety managers. Results Evaluation results indicated that our software prototype fit within the technical environment and clinical workflow, and physicians were able to use it successfully. Quality/safety managers reported that the tool would be useful in future quality assurance activities to detect patients who lack documented follow-up. Additionally, we successfully installed the software on the local facility’s “test” EHR system, thus demonstrating technical compatibility. Conclusion To address the factors involved in missed

  17. Regulatory mechanisms for specification and patterning of plant vascular tissues.

    PubMed

    Caño-Delgado, Ana; Lee, Ji-Young; Demura, Taku

    2010-01-01

    Plant vascular tissues, the conduits of water, nutrients, and small molecules, play important roles in plant growth and development. Vascular tissues have allowed plants to successfully adapt to various environmental conditions since they evolved 450 Mya. The majority of plant biomass, an important source of renewable energy, comes from the xylem of the vascular tissues. Efforts have been made to identify the underlying mechanisms of cell specification and patterning of plant vascular tissues and their proliferation. The formation of the plant vascular system is a complex process that integrates signaling and gene regulation at transcriptional and posttranscriptional levels. Recently, a wealth of molecular genetic studies and the advent of cell biology and genomic tools have enabled important progress toward understanding its underlying mechanisms. Here, we provide a comprehensive review of the cell and developmental processes of plant vascular tissue and resources recently available for studying them that will enable the discovery of new ways to develop sustainable energy using plant biomass.

  18. Prevalence of endocrine and genetic abnormalities in boys evaluated systematically for a disorder of sex development.

    PubMed

    Nixon, R; Cerqueira, V; Kyriakou, A; Lucas-Herald, A; McNeilly, J; McMillan, M; Purvis, A I; Tobias, E S; McGowan, R; Ahmed, S F

    2017-10-01

    What is the likelihood of identifying genetic or endocrine abnormalities in a group of boys with 46, XY who present to a specialist clinic with a suspected disorder of sex development (DSD)? An endocrine abnormality of the gonadal axis may be present in a quarter of cases and copy number variants (CNVs) or single gene variants may be present in about half of the cases. Evaluation of 46, XY DSD requires a combination of endocrine and genetic tests but the prevalence of these abnormalities in a sufficiently large group of boys presenting to one specialist multidisciplinary service is unclear. This study was a retrospective review of investigations performed on 122 boys. All boys who attended the Glasgow DSD clinic, between 2010 and 2015 were included in the study. The median external masculinization score (EMS) of this group was 9 (range 1-11). Details of phenotype, endocrine and genetic investigations were obtained from case records. An endocrine abnormality of gonadal function was present in 28 (23%) with a median EMS of 8.3 (1-10.5) whilst the median EMS of boys with normal endocrine investigations was 9 (1.5-11) (P = 0.03). Endocrine abnormalities included a disorder of gonadal development in 19 (16%), LH deficiency in 5 (4%) and a disorder of androgen synthesis in 4 (3%) boys. Of 43 cases who had array-comparative genomic hybridization (array-CGH), CNVs were reported in 13 (30%) with a median EMS of 8.5 (1.5-11). Candidate gene analysis using a limited seven-gene panel in 64 boys identified variants in 9 (14%) with a median EMS of 8 (1-9). Of the 21 boys with a genetic abnormality, 11 (52%) had normal endocrine investigations. A selection bias for performing array-CGH in cases with multiple congenital malformations may have led to a high yield of CNVs. It is also possible that the yield of single gene variants may have been higher than reported if the investigators had used a more extended gene panel. The lack of a clear association between the extent of under

  19. Theoretical models for coronary vascular biomechanics: Progress & challenges

    PubMed Central

    Waters, Sarah L.; Alastruey, Jordi; Beard, Daniel A.; Bovendeerd, Peter H.M.; Davies, Peter F.; Jayaraman, Girija; Jensen, Oliver E.; Lee, Jack; Parker, Kim H.; Popel, Aleksander S.; Secomb, Timothy W.; Siebes, Maria; Sherwin, Spencer J.; Shipley, Rebecca J.; Smith, Nicolas P.; van de Vosse, Frans N.

    2013-01-01

    A key aim of the cardiac Physiome Project is to develop theoretical models to simulate the functional behaviour of the heart under physiological and pathophysiological conditions. Heart function is critically dependent on the delivery of an adequate blood supply to the myocardium via the coronary vasculature. Key to this critical function of the coronary vasculature is system dynamics that emerge via the interactions of the numerous constituent components at a range of spatial and temporal scales. Here, we focus on several components for which theoretical approaches can be applied, including vascular structure and mechanics, blood flow and mass transport, flow regulation, angiogenesis and vascular remodelling, and vascular cellular mechanics. For each component, we summarise the current state of the art in model development, and discuss areas requiring further research. We highlight the major challenges associated with integrating the component models to develop a computational tool that can ultimately be used to simulate the responses of the coronary vascular system to changing demands and to diseases and therapies. PMID:21040741

  20. The use of breast ultrasound color Doppler vascular pattern morphology improves diagnostic sensitivity with minimal change in specificity.

    PubMed

    Svensson, W E; Pandian, A J; Hashimoto, H

    2010-10-01

    The aim of this study was to evaluate the use of vascular morphology, around and within the B-mode region of abnormality, for improving the diagnostic accuracy of two of the most common solid breast pathologies. The B-mode and Doppler images of 117 breast cancers and 366 fibroadenomas and lesions with a fibroadenoma-like appearance were reviewed retrospectively and the morphology of the vascular pattern was evaluated. The ratio of external to internal color Doppler, the external vascular pattern and the connecting vessels to internal vessels were assessed and differentiated into benign and malignant vascular patterns. These patterns were correlated with the histological diagnosis. Vascularity was demonstrated in 95 % of cancers and in 46 % of benign lesions with a trend to increasing vascularity in cancers. This provided poor specificity for excluding cancer in fibroadenomas. Variations in vascular pattern were recorded. The observed benign vascular patterns were avascularity, vascularity in the periphery and peripheral marginal vessels connecting with internal vascularity. The observed malignant vascular patterns were radially aligned external vessels with internal vessels being more numerous than external vessels which connected to radial vessels. (Fisher exact test p < 0.0001). Analysis of the vascular morphology improved the sensitivity for identifying cancers from 97 % (B-mode) to 99 % (B-mode and color Doppler) with a minimal reduction in specificity (93.7 to 92.6 %) or accuracy (94.6 to 94.2 %). The presence of vascularity within a lesion, by itself, is no longer a good predictor of malignancy because of the increase in Doppler sensitivity associated with improvements in ultrasound technology. The color Doppler ultrasound vascular pattern morphology improves the accuracy and sensitivity of B-mode image diagnosis, breast cancers and fibroadenomas with a minimal loss of specificity. Any breast lesion with radial rather than marginal connecting vessels should

  1. VESGEN Software for Mapping and Quantification of Vascular Regulators

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.; Vickerman, Mary B.; Keith, Patricia A.

    2012-01-01

    VESsel GENeration (VESGEN) Analysis is an automated software that maps and quantifies effects of vascular regulators on vascular morphology by analyzing important vessel parameters. Quantification parameters include vessel diameter, length, branch points, density, and fractal dimension. For vascular trees, measurements are reported as dependent functions of vessel branching generation. VESGEN maps and quantifies vascular morphological events according to fractal-based vascular branching generation. It also relies on careful imaging of branching and networked vascular form. It was developed as a plug-in for ImageJ (National Institutes of Health, USA). VESGEN uses image-processing concepts of 8-neighbor pixel connectivity, skeleton, and distance map to analyze 2D, black-and-white (binary) images of vascular trees, networks, and tree-network composites. VESGEN maps typically 5 to 12 (or more) generations of vascular branching, starting from a single parent vessel. These generations are tracked and measured for critical vascular parameters that include vessel diameter, length, density and number, and tortuosity per branching generation. The effects of vascular therapeutics and regulators on vascular morphology and branching tested in human clinical or laboratory animal experimental studies are quantified by comparing vascular parameters with control groups. VESGEN provides a user interface to both guide and allow control over the users vascular analysis process. An option is provided to select a morphological tissue type of vascular trees, network or tree-network composites, which determines the general collections of algorithms, intermediate images, and output images and measurements that will be produced.

  2. Abnormal cerebellar development and ataxia in CARP VIII morphant zebrafish.

    PubMed

    Aspatwar, Ashok; Tolvanen, Martti E E; Jokitalo, Eija; Parikka, Mataleena; Ortutay, Csaba; Harjula, Sanna-Kaisa E; Rämet, Mika; Vihinen, Mauno; Parkkila, Seppo

    2013-02-01

    Congenital ataxia and mental retardation are mainly caused by variations in the genes that affect brain development. Recent reports have shown that mutations in the CA8 gene are associated with mental retardation and ataxia in humans and ataxia in mice. The gene product, carbonic anhydrase-related protein VIII (CARP VIII), is predominantly present in cerebellar Purkinje cells, where it interacts with the inositol 1,4,5-trisphosphate receptor type 1, a calcium channel. In this study, we investigated the effects of the loss of function of CARP VIII during embryonic development in zebrafish using antisense morpholino oligonucleotides against the CA8 gene. Knockdown of CA8 in zebrafish larvae resulted in a curved body axis, pericardial edema and abnormal movement patterns. Histologic examination revealed gross morphologic defects in the cerebellar region and in the muscle. Electron microscopy studies showed increased neuronal cell death in developing larvae injected with CA8 antisense morpholinos. These data suggest a pivotal role for CARP VIII during embryonic development. Furthermore, suppression of CA8 expression leads to defects in motor and coordination functions, mimicking the ataxic human phenotype. This work reveals an evolutionarily conserved function of CARP VIII in brain development and introduces a novel zebrafish model in which to investigate the mechanisms of CARP VIII-related ataxia and mental retardation in humans.

  3. Deletion of chromosome 9p21 noncoding cardiovascular risk interval in mice alters Smad2 signaling and promotes vascular aneurysm.

    PubMed

    Loinard, Céline; Basatemur, Gemma; Masters, Leanne; Baker, Lauren; Harrison, James; Figg, Nichola; Vilar, José; Sage, Andrew P; Mallat, Ziad

    2014-12-01

    Vascular aneurysm is an abnormal local dilatation of an artery that can lead to vessel rupture and sudden death. The only treatment involves surgical or endovascular repair or exclusion. There is currently no approved medical therapy for this condition. Recent data established a strong association between genetic variants in the 9p21 chromosomal region in humans and the presence of cardiovascular diseases, including aneurysms. However, the mechanisms linking this 9p21 DNA variant to cardiovascular risk are still unknown. Here, we show that deletion of the orthologous 70-kb noncoding interval on mouse chromosome 4 (chr4(Δ70kb/Δ70kb) mice) is associated with reduced aortic expression of cyclin-dependent kinase inhibitor genes p19Arf and p15Inkb. Vascular smooth muscle cells from chr4(Δ70kb/Δ70kb) mice show reduced transforming growth factor-β-dependent canonical Smad2 signaling but increased cyclin-dependent kinase-dependent Smad2 phosphorylation at linker sites, a phenotype previously associated with tumor growth and consistent with the mechanistic link between reduced canonical transforming growth factor-β signaling and susceptibility to vascular diseases. We also show that targeted deletion of the 9p21 risk interval promotes susceptibility to aneurysm development and rupture when mice are subjected to a validated model of aneurysm formation. The vascular disease of chr4(Δ70kb/Δ70kb) mice is prevented by treatment with a cyclin-dependent kinase inhibitor. The results establish a direct mechanistic link between 9p21 noncoding risk interval and susceptibility to aneurysm and may have important implications for the understanding and treatment of vascular diseases. © 2014 American Heart Association, Inc.

  4. Vascular lumen formation.

    PubMed

    Lammert, Eckhard; Axnick, Jennifer

    2012-04-01

    The vascular system developed early in evolution. It is required in large multicellular organisms for the transport of nutrients, oxygen, and waste products to and from tissues. The vascular system is composed of hollow tubes, which have a high level of complexity in vertebrates. Vasculogenesis describes the de novo formation of blood vessels, e.g., aorta formation in vertebrate embryogenesis. In contrast, angiogenesis is the formation of blood vessels from preexisting ones, e.g., sprouting of intersomitic blood vessels from the aorta. Importantly, the lumen of all blood vessels in vertebrates is lined and formed by endothelial cells. In both vasculogenesis and angiogenesis, lumen formation takes place in a cord of endothelial cells. It involves a complex molecular mechanism composed of endothelial cell repulsion at the cell-cell contacts within the endothelial cell cords, junctional rearrangement, and endothelial cell shape change. As the vascular system also participates in the course of many diseases, such as cancer, stroke, and myocardial infarction, it is important to understand and make use of the molecular mechanisms of blood vessel formation to better understand and manipulate the pathomechanisms involved.

  5. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  6. Quantitative analysis of vascular parameters for micro-CT imaging of vascular networks with multi-resolution.

    PubMed

    Zhao, Fengjun; Liang, Jimin; Chen, Xueli; Liu, Junting; Chen, Dongmei; Yang, Xiang; Tian, Jie

    2016-03-01

    Previous studies showed that all the vascular parameters from both the morphological and topological parameters were affected with the altering of imaging resolutions. However, neither the sensitivity analysis of the vascular parameters at multiple resolutions nor the distinguishability estimation of vascular parameters from different data groups has been discussed. In this paper, we proposed a quantitative analysis method of vascular parameters for vascular networks of multi-resolution, by analyzing the sensitivity of vascular parameters at multiple resolutions and estimating the distinguishability of vascular parameters from different data groups. Combining the sensitivity and distinguishability, we designed a hybrid formulation to estimate the integrated performance of vascular parameters in a multi-resolution framework. Among the vascular parameters, degree of anisotropy and junction degree were two insensitive parameters that were nearly irrelevant with resolution degradation; vascular area, connectivity density, vascular length, vascular junction and segment number were five parameters that could better distinguish the vascular networks from different groups and abide by the ground truth. Vascular area, connectivity density, vascular length and segment number not only were insensitive to multi-resolution but could also better distinguish vascular networks from different groups, which provided guidance for the quantification of the vascular networks in multi-resolution frameworks.

  7. Abnormal Uterine Bleeding

    MedlinePlus

    ... abnormal uterine bleeding? Abnormal uterine bleeding is any heavy or unusual bleeding from the uterus (through your ... one symptom of abnormal uterine bleeding. Having extremely heavy bleeding during your period can also be considered ...

  8. Gastroschisis, destructive brain lesions, and placental infarction in the second trimester suggest a vascular pathogenesis.

    PubMed

    Folkerth, Rebecca D; Habbe, Donald M; Boyd, Theonia K; McMillan, Kristin; Gromer, Jessica; Sens, Mary Ann; Elliott, Amy J

    2013-01-01

    The cause and pathogenesis of gastroschisis are uncertain. We report the autopsy and placental pathology of a stillbirth at 20 gestational weeks, in which gastroschisis was accompanied by destructive lesions in the cerebral cortex and brainstem, as well as cardiac calcification, consistent with ischemic injury during the 2nd trimester. An important potential underlying mechanism explaining the fetal abnormalities is the presence of infarcts in the placenta, indicative at this gestational age of maternal vascular underperfusion. The association of gastroschisis with ischemic lesions in the brain, heart, and placenta in this case supports the concept that gastroschisis, at least in some instances, may result from vascular event(s) causing disruption of the fetal abdominal wall and resulting in the extrusion of the abdominal organs, as well as hypoxic-ischemic brain and cardiac injury.

  9. Therapeutic strategies to combat neointimal hyperplasia in vascular grafts

    PubMed Central

    Collins, Michael J; Li, Xin; Lv, Wei; Yang, Chenzi; Protack, Clinton D; Muto, Akihito; Jadlowiec, Caroline C; Shu, Chang; Dardik, Alan

    2012-01-01

    Neointimal hyperplasia (NIH) in bypass conduits such as veins and prosthetic grafts is an important clinical entity that limits the long-term success of vascular interventions. Although the development of NIH in the conduits shares many of the same features of NIH that develops in native arteries after injury, vascular grafts are exposed to unique circumstances that predispose them to NIH, including surgical trauma related to vein handling, hemodynamic changes creating areas of low flow, and differences in biocompatibility between the conduit and the host environment. Multiple different approaches, including novel surgical techniques and targeted gene therapies, have been developed to target and prevent the causes of NIH. Recently, the PREVENT trials, the first molecular biology trials in vascular surgery aimed at preventing NIH, have failed to produce improved clinical outcomes, highlighting the incomplete knowledge of the pathways leading to NIH in vascular grafts. In this review, we aim to summarize the pathophysiologic pathways that underlie the formation of NIH in both vein and synthetic grafts and discuss current and potential mechanical and molecular approaches under investigation that may limit NIH in vascular grafts. PMID:22651839

  10. Latrunculin A treatment prevents abnormal chromosome segregation for successful development of cloned embryos.

    PubMed

    Terashita, Yukari; Yamagata, Kazuo; Tokoro, Mikiko; Itoi, Fumiaki; Wakayama, Sayaka; Li, Chong; Sato, Eimei; Tanemura, Kentaro; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer to an enucleated oocyte is used for reprogramming somatic cells with the aim of achieving totipotency, but most cloned embryos die in the uterus after transfer. While modifying epigenetic states of cloned embryos can improve their development, the production rate of cloned embryos can also be enhanced by changing other factors. It has already been shown that abnormal chromosome segregation (ACS) is a major cause of the developmental failure of cloned embryos and that Latrunculin A (LatA), an actin polymerization inhibitor, improves F-actin formation and birth rate of cloned embryos. Since F-actin is important for chromosome congression in embryos, here we examined the relation between ACS and F-actin in cloned embryos. Using LatA treatment, the occurrence of ACS decreased significantly whereas cloned embryo-specific epigenetic abnormalities such as dimethylation of histone H3 at lysine 9 (H3K9me2) could not be corrected. In contrast, when H3K9me2 was normalized using the G9a histone methyltransferase inhibitor BIX-01294, the Magea2 gene-essential for normal development but never before expressed in cloned embryos-was expressed. However, this did not increase the cloning success rate. Thus, non-epigenetic factors also play an important role in determining the efficiency of mouse cloning.

  11. Latrunculin A Treatment Prevents Abnormal Chromosome Segregation for Successful Development of Cloned Embryos

    PubMed Central

    Terashita, Yukari; Yamagata, Kazuo; Tokoro, Mikiko; Itoi, Fumiaki; Wakayama, Sayaka; Li, Chong; Sato, Eimei; Tanemura, Kentaro; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer to an enucleated oocyte is used for reprogramming somatic cells with the aim of achieving totipotency, but most cloned embryos die in the uterus after transfer. While modifying epigenetic states of cloned embryos can improve their development, the production rate of cloned embryos can also be enhanced by changing other factors. It has already been shown that abnormal chromosome segregation (ACS) is a major cause of the developmental failure of cloned embryos and that Latrunculin A (LatA), an actin polymerization inhibitor, improves F-actin formation and birth rate of cloned embryos. Since F-actin is important for chromosome congression in embryos, here we examined the relation between ACS and F-actin in cloned embryos. Using LatA treatment, the occurrence of ACS decreased significantly whereas cloned embryo-specific epigenetic abnormalities such as dimethylation of histone H3 at lysine 9 (H3K9me2) could not be corrected. In contrast, when H3K9me2 was normalized using the G9a histone methyltransferase inhibitor BIX-01294, the Magea2 gene—essential for normal development but never before expressed in cloned embryos—was expressed. However, this did not increase the cloning success rate. Thus, non-epigenetic factors also play an important role in determining the efficiency of mouse cloning. PMID:24205216

  12. [Reseach development of vascular anatomy and preoperative design technology of anterolateral thigh flap].

    PubMed

    Duan, Jiazhang; He, Xiaoqing; Xu, Yongqing

    2016-07-08

    ?To summarize the present status and progress of vascular anatomy and preoperative design technology of the anterolateral thigh flap. ?The relative researches focused on vascular anatomy and preoperative design technology of the anterolateral thigh flap were extensively reviewed, analyzed, and summarized. ?Vascular anatomy of the anterolateral thigh flap has been reported by numerous researchers, but perforators' location, origin, course, and the variation of the quantity have been emphasized. Meanwhile, the variation of descending branch, oblique branch, and lateral circumflex femoral artery has also been widely reported. Preoperative design technology of the anterolateral thigh flap includes hand-held Doppler, Color Doppler, CT angiography (CTA), magnetic resonance angiography, digital subtraction angiography, and digital technology, among which the hand-held Doppler is most widely used, and CTA is the most ideal, but each method has its own advantages and disadvantages. ?There is multiple variation of vascular anatomy of the anterolateral thigh flap. Though all kinds of preoperative design technologies can offer strong support to operation of anterolateral thigh flap, a simple, quick, precise, and noninvasive technology is the direction of further research.

  13. Prediction of heart abnormality using MLP network

    NASA Astrophysics Data System (ADS)

    Hashim, Fakroul Ridzuan; Januar, Yulni; Mat, Muhammad Hadzren; Rizman, Zairi Ismael; Awang, Mat Kamil

    2018-02-01

    Heart abnormality does not choose gender, age and races when it strikes. With no warning signs or symptoms, it can result to a sudden death of the patient. Generally, heart's irregular electrical activity is defined as heart abnormality. Via implementation of Multilayer Perceptron (MLP) network, this paper tries to develop a program that allows the detection of heart abnormality activity. Utilizing several training algorithms with Purelin activation function, an amount of heartbeat signals received through the electrocardiogram (ECG) will be employed to condition the MLP network.

  14. Whole-mount Confocal Microscopy for Adult Ear Skin: A Model System to Study Neuro-vascular Branching Morphogenesis and Immune Cell Distribution.

    PubMed

    Yamazaki, Tomoko; Li, Wenling; Mukouyama, Yoh-Suke

    2018-03-29

    Here, we present a protocol of a whole-mount adult ear skin imaging technique to study comprehensive three-dimensional neuro-vascular branching morphogenesis and patterning, as well as immune cell distribution at a cellular level. The analysis of peripheral nerve and blood vessel anatomical structures in adult tissues provides some insights into the understanding of functional neuro-vascular wiring and neuro-vascular degeneration in pathological conditions such as wound healing. As a highly informative model system, we have focused our studies on adult ear skin, which is readily accessible for dissection. Our simple and reproducible protocol provides an accurate depiction of the cellular components in the entire skin, such as peripheral nerves (sensory axons, sympathetic axons, and Schwann cells), blood vessels (endothelial cells and vascular smooth muscle cells), and inflammatory cells. We believe this protocol will pave the way to investigate morphological abnormalities in peripheral nerves and blood vessels as well as the inflammation in the adult ear skin under different pathological conditions.

  15. Effect of a High-sucrose Diet on Abdominal Aortic Aneurysm Development in a Hypoperfusion-induced Animal Model.

    PubMed

    Miyamoto, Chie; Kugo, Hirona; Hashimoto, Keisuke; Sawaragi, Ayaka; Zaima, Nobuhiro; Moriyama, Tatsuya

    2018-05-01

    Abdominal aortic aneurysm (AAA) is a vascular disease that results in rupture of the abdominal aorta. The risk factors for the development of AAA include smoking, male sex, hypertension, and age. AAA has a high mortality rate, but therapy for AAA is restricted to surgery in cases of large aneurysms. Clarifying the effect of dietary food on the development of AAA would be helpful for patients with AAAs. However, the relationship between dietary habits and the development of AAA is largely unknown. In our previous study, we demonstrated that adipocytes in vascular wall can induce the rupture of AAA. Therefore, we focused on the diet-induced abnormal triglyceride metabolism, which has the potential to drive AAA development. In this study, we have evaluated the effects of a high-sucrose diet on the development of AAA in a vascular hypoperfusion-induced animal model. A high sucrose diet induced high serum TG level and fatty liver. However, the AAA rupture risk and the AAA diameter were not significantly different between the control and high-sucrose groups. The intergroup differences in the elastin degradation score and collagen-positive area were insignificant. Moreover, matrix metalloproteinases, macrophages, and monocyte chemoattractant protein-1-positive areas did not differ significantly between groups. These results suggest that a high-sucrose diet does not affect the appearance of vascular adipocyte and AAA development under the vascular hypoperfusion condition.

  16. Retrospective analysis of the incidence of epidural haematoma in patients with epidural catheters and abnormal coagulation parameters.

    PubMed

    Gulur, P; Tsui, B; Pathak, R; Koury, K M; Lee, H

    2015-05-01

    Epidural haematoma is a rare but potentially catastrophic complication associated with epidural catheterization. The times of insertion and removal of epidural catheters are high-risk periods for epidural haematoma formation, especially with abnormal coagulation parameters. There is a lack of data on the incidence of epidural haematoma in patients with abnormal coagulation parameters. A retrospective analysis was undertaken from 2002 to 2009 on patients with an epidural catheter. Queries were performed on the coagulation parameters for the dates of placement and removal of the catheters and on all documented epidural haematoma cases. During the study period, 11 600 epidural catheters were placed. In the setting of abnormal coagulation parameters, 278 (2.4%) epidural catheters were placed and 351 (3%) were removed. Two epidural haematomas occurred; both patients had epidural catheters and spinal drains placed for vascular procedures with abnormal coagulation parameters after operatation. The haematomas occurred after removal of the catheters. Based on our study, the incidence of epidural haematoma in patients with abnormal coagulation parameters is 1 in 315 patients, with the lower limit of the 95% confidence interval at 87 and the upper limit at 2597. The risk of epidural haematoma is clearly elevated with abnormal coagulation parameters. Our data suggest that as the incidence of epidural haematoma with neuraxial access in patients with abnormal coagulation is not 100%, individual risk-benefit evaluations are warranted. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Positioning Vascularized Composite Allotransplantation within the Spectrum of Transplantation

    DTIC Science & Technology

    2015-10-01

    1 AWARD NUMBER: W81XWH-13-2-0057 TITLE: Positioning Vascularized Composite Allotransplantation within the Spectrum of Transplantation...Positioning Vascularized Composite Allotransplantation within the Spectrum of Transplantation 5b. GRANT NUMBER W81XWH-13-2-0057 5c. PROGRAM ELEMENT...Finally in Aim 8 we will develop standardization of protocols and clinical monitoring and treatment for VCA targeting vascular health. hand and face

  18. The effect of interstitial pressure on therapeutic agent transport: coupling with the tumor blood and lymphatic vascular systems.

    PubMed

    Wu, Min; Frieboes, Hermann B; Chaplain, Mark A J; McDougall, Steven R; Cristini, Vittorio; Lowengrub, John S

    2014-08-21

    Vascularized tumor growth is characterized by both abnormal interstitial fluid flow and the associated interstitial fluid pressure (IFP). Here, we study the effect that these conditions have on the transport of therapeutic agents during chemotherapy. We apply our recently developed vascular tumor growth model which couples a continuous growth component with a discrete angiogenesis model to show that hypertensive IFP is a physical barrier that may hinder vascular extravasation of agents through transvascular fluid flux convection, which drives the agents away from the tumor. This result is consistent with previous work using simpler models without blood flow or lymphatic drainage. We consider the vascular/interstitial/lymphatic fluid dynamics to show that tumors with larger lymphatic resistance increase the agent concentration more rapidly while also experiencing faster washout. In contrast, tumors with smaller lymphatic resistance accumulate less agents but are able to retain them for a longer time. The agent availability (area-under-the curve, or AUC) increases for less permeable agents as lymphatic resistance increases, and correspondingly decreases for more permeable agents. We also investigate the effect of vascular pathologies on agent transport. We show that elevated vascular hydraulic conductivity contributes to the highest AUC when the agent is less permeable, but to lower AUC when the agent is more permeable. We find that elevated interstitial hydraulic conductivity contributes to low AUC in general regardless of the transvascular agent transport capability. We also couple the agent transport with the tumor dynamics to simulate chemotherapy with the same vascularized tumor under different vascular pathologies. We show that tumors with an elevated interstitial hydraulic conductivity alone require the strongest dosage to shrink. We further show that tumors with elevated vascular hydraulic conductivity are more hypoxic during therapy and that the response

  19. Self-Replenishing Vascularized Fouling-Release Surfaces

    DOE PAGES

    Howell, Caitlin; Vu, Thy L.; Lin, Jennifer J.; ...

    2014-08-13

    Inspired by the long-term effectiveness of living antifouling materials, we have developed a method for the selfreplenishment of synthetic biofouling-release surfaces. These surfaces are created by either molding or directly embedding 3D vascular systems into polydimethylsiloxane (PDMS) and filling them with a silicone oil to generate a nontoxic oil-infused material. When replenished with silicone oil from an outside source, these materials are capable of self-lubrication and continuous renewal of the interfacial fouling-release layer. Under accelerated lubricant loss conditions, fully infused vascularized samples retained significantly more lubricant than equivalent nonvascularized controls. Tests of lubricant-infused PDMS in static cultures of the infectiousmore » bacteria Staphylococcus aureus and Escherichia coli as well as the green microalgae Botryococcus braunii, Chlamydomonas reinhardtii, Dunaliella salina, and Nannochloropsis oculata showed a significant reduction in biofilm adhesion compared to PDMS and glass controls containing no lubricant. Further experiments on vascularized versus nonvascularized samples that had been subjected to accelerated lubricant evaporation conditions for up to 48 h showed significantly less biofilm adherence on the vascularized surfaces. These results demonstrate the ability of an embedded lubricant-filled vascular network to improve the longevity of fouling-release surfaces.« less

  20. Vascular ring

    MedlinePlus

    ... with aberrant subclavian and left ligamentum ateriosus; Congenital heart defect - vascular ring; Birth defect heart - vascular ring ... accounts for less than 1% of all congenital heart problems. The condition occurs as often in males ...

  1. Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication.

    PubMed

    Mironov, Vladimir; Kasyanov, Vladimir; Markwald, Roger R

    2008-06-01

    The existing methods of biofabrication for vascular tissue engineering are still bioreactor-based, extremely expensive, laborious and time consuming and, furthermore, not automated, which would be essential for an economically successful large-scale commercialization. The advances in nanotechnology can bring additional functionality to vascular scaffolds, optimize internal vascular graft surface and even help to direct the differentiation of stem cells into the vascular cell phenotype. The development of rapid nanotechnology-based methods of vascular tissue biofabrication represents one of most important recent technological breakthroughs in vascular tissue engineering because it dramatically accelerates vascular tissue assembly and, importantly, also eliminates the need for a bioreactor-based scaffold cellularization process.

  2. Scaffold Composition Determines the Angiogenic Outcome of Cell-Based Vascular Endothelial Growth Factor Expression by Modulating Its Microenvironmental Distribution.

    PubMed

    Gaudiello, Emanuele; Melly, Ludovic; Cerino, Giulia; Boccardo, Stefano; Jalili-Firoozinezhad, Sasan; Xu, Lifen; Eckstein, Friedrich; Martin, Ivan; Kaufmann, Beat A; Banfi, Andrea; Marsano, Anna

    2017-12-01

    Delivery of genetically modified cells overexpressing Vascular Endothelial Growth Factor (VEGF) is a promising approach to induce therapeutic angiogenesis in ischemic tissues. The effect of the protein is strictly modulated by its interaction with the components of the extracellular matrix. Its therapeutic potential depends on a sustained but controlled release at the microenvironmental level in order to avoid the formation of abnormal blood vessels. In this study, it is hypothesized that the composition of the scaffold plays a key role in modulating the binding, hence the therapeutic effect, of the VEGF released by 3D-cell constructs. It is found that collagen sponges, which poorly bind VEGF, prevent the formation of localized hot spots of excessive concentration, therefore, precluding the development of aberrant angiogenesis despite uncontrolled expression by a genetically engineered population of adipose tissue-derived stromal cells. On the contrary, after seeding on VEGF-binding egg-white scaffolds, the same cell population caused aberrantly enlarged vascular structures after 14 d. Collagen-based engineered tissues also induced a safe and efficient angiogenesis in both the patch itself and the underlying myocardium in rat models. These findings open new perspectives on the control and the delivery of proangiogenic stimuli, and are fundamental for the vascularization of engineered tissues/organs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The current role of vascular stents.

    PubMed

    Busquet, J

    1993-09-01

    The limitations of percutaneous balloon angioplasty have favoured the development and the use of vascular endoprostheses or stents. These thin-walled metal devices maintain after expansion, an optimal and constant diameter for the vascular lumen. Restenosis, dissection, abrupt closure, residual stenosis or re-opened total occlusion represent appropriate indications for stenting. A large experience with non-coronary application of stents is currently available in iliac, femoro-popliteal and renal arteries, aorta, large veins.

  4. HIV-1, Reactive Oxygen Species and Vascular Complications

    PubMed Central

    Porter, Kristi M.; Sutliff, Roy L.

    2012-01-01

    Over 1 million people in the United States and 33 million individuals worldwide suffer from HIV/AIDS. Since its discovery, HIV/AIDS has been associated with an increased susceptibility to opportunistic infection due to immune dysfunction. Highly active antiretroviral therapies (HAART) restore immune function and, as a result, people infected with HIV-1 are living longer. This improved survival of HIV-1 patients has revealed a previously unrecognized risk of developing vascular complications, such as atherosclerosis and pulmonary hypertension. The mechanisms underlying these HIV-associated vascular disorders are poorly understood. However, HIV-induced elevations in reactive oxygen species, including superoxide and hydrogen peroxide, may contribute to vascular disease development and progression by altering cell function and redox-sensitive signaling pathways. In this review, we summarize the clinical and experimental evidence demonstrating HIV- and HIV antiretroviral therapy-induced alterations in reactive oxygen species (ROS) and how these effects likely contribute to vascular dysfunction and disease. PMID:22564529

  5. Biomaterial-mediated strategies targeting vascularization for bone repair.

    PubMed

    García, José R; García, Andrés J

    2016-04-01

    Repair of non-healing bone defects through tissue engineering strategies remains a challenging feat in the clinic due to the aversive microenvironment surrounding the injured tissue. The vascular damage that occurs following a bone injury causes extreme ischemia and a loss of circulating cells that contribute to regeneration. Tissue-engineered constructs aimed at regenerating the injured bone suffer from complications based on the slow progression of endogenous vascular repair and often fail at bridging the bone defect. To that end, various strategies have been explored to increase blood vessel regeneration within defects to facilitate both tissue-engineered and natural repair processes. Developments that induce robust vascularization will need to consolidate various parameters including optimization of embedded therapeutics, scaffold characteristics, and successful integration between the construct and the biological tissue. This review provides an overview of current strategies as well as new developments in engineering biomaterials to induce reparation of a functional vascular supply in the context of bone repair.

  6. Brain and bone abnormalities of thanatophoric dwarfism.

    PubMed

    Miller, Elka; Blaser, Susan; Shannon, Patrick; Widjaja, Elysa

    2009-01-01

    The purpose of this article is to present the imaging findings of skeletal and brain abnormalities in thanatophoric dwarfism, a lethal form of dysplastic dwarfism. The bony abnormalities associated with thanatophoric dwarfism include marked shortening of the tubular bones and ribs. Abnormal temporal lobe development is a common associated feature and can be visualized as early as the second trimester. It is important to assess the brains of fetuses with suspected thanatophoric dwarfism because the presence of associated brain malformations can assist in the antenatal diagnosis of thanatophoric dwarfism.

  7. Skin integrated with perfusable vascular channels on a chip.

    PubMed

    Mori, Nobuhito; Morimoto, Yuya; Takeuchi, Shoji

    2017-02-01

    This paper describes a method for fabricating perfusable vascular channels coated with endothelial cells within a cultured skin-equivalent by fixing it to a culture device connected to an external pump and tubes. A histological analysis showed that vascular channels were constructed in the skin-equivalent, which showed a conventional dermal/epidermal morphology, and the endothelial cells formed tight junctions on the vascular channel wall. The barrier function of the skin-equivalent was also confirmed. Cell distribution analysis indicated that the vascular channels supplied nutrition to the skin-equivalent. Moreover, the feasibility of a skin-equivalent containing vascular channels as a model for studying vascular absorption was demonstrated by measuring test molecule permeation from the epidermal layer into the vascular channels. The results suggested that this skin-equivalent can be used for skin-on-a-chip applications including drug development, cosmetics testing, and studying skin biology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. [Hemangiomas and vascular malformations of the head and neck].

    PubMed

    Hassmann-Poznańska, Elibieta; Kurzyna, Agnieszka

    2006-01-01

    This paper presents the review of current knowledge regarding vascular lesions of the head and neck. For many years the term hemangioma was used to describe all vascular lesions. Mulliken and Glowacki classified congenital vascular lesions and recognized two distinct entities, hemangiomas-vascular tumors and vascular malformations. Hemangiomas are usually not present at birth, proliferate during first year of life and then involute. They are composed of proliferating endothelial cells. Vascular malformations are always present at birth although not always apparent, increase slowly in size throughout whole life and never involute. They enlarge by hypertrophy of malformed vessels. Vascular malformations can be further subdivided according to the type of involved vessels as arterial, arteriovenous, venous, capillary or lymphatic. Accurate diagnosis of hemangiomas and vascular malformations remains a challenge for physicians. Although majority of hemangiomas are self limiting lesions some of them may develop complications such as; ulceration, airway obstruction, ophthalmic complications, psychosocial consequences. Segmental hemangiomas are associated with the risk of structural anomalies such as those that occur in PHACE syndrome. Clinical presentation and forms of treatment of various forms of vascular malformations are presented. Vascular malformations have to be treated according to their histopathology and location, as well as their hemodynamic features shown by radiological examinations.

  9. The vascular surgeon-scientist: a 15-year report of the Society for Vascular Surgery Foundation/National Heart, Lung, and Blood Institute-mentored Career Development Award Program.

    PubMed

    Kibbe, Melina R; Dardik, Alan; Velazquez, Omaida C; Conte, Michael S

    2015-04-01

    The Society for Vascular Surgery (SVS) Foundation partnered with the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health (NIH) in 1999 to initiate a competitive career development program that provides a financial supplement to surgeon-scientists receiving NIH K08 or K23 career development awards. Because the program has been in existence for 15 years, a review of the program's success has been performed. Between 1999 and 2013, 41 faculty members applied to the SVS Foundation program, and 29 from 21 different institutions were selected as awardees, resulting in a 71% success rate. Three women (10%) were among the 29 awardees. Nine awardees (31%) were supported by prior NIH F32 or T32 training grants. Awardees received their K award at an average of 3.5 years from the start of their faculty position, at the average age of 39.8 years. Thirteen awardees (45%) have subsequently received NIH R01 awards and five (17%) have received Veterans Affairs Merit Awards. Awardees received their first R01 at an average of 5.8 years after the start of their K award at the average age of 45.2 years. The SVS Foundation committed $9,350,000 to the Career Development Award Program. Awardees subsequently secured $45,108,174 in NIH and Veterans Affairs funds, resulting in a 4.8-fold financial return on investment for the SVS Foundation program. Overall, 23 awardees (79%) were promoted from assistant to associate professor in an average of 5.9 years, and 10 (34%) were promoted from associate professor to professor in an average of 5.2 years. Six awardees (21%) hold endowed professorships and four (14%) have secured tenure. Many of the awardees hold positions of leadership, including 12 (41%) as division chief and two (7%) as vice chair within a department of surgery. Eight (28%) awardees have served as president of a regional or national society. Lastly, 47 postdoctoral trainees have been mentored by recipients of the SVS Foundation Career Development

  10. Vascular endothelial growth factor and its relationship to the prognosis and treatment of breast, ovarian, and cervical cancer.

    PubMed

    Delli Carpini, Jennifer; Carpini, Jennifer Delli; Karam, Amer K; Montgomery, Leslie

    2010-03-01

    Tumor neovascularization is a complex process that plays a crucial role in the development of many different types of cancer. Vascular endothelial growth factor (VEGF) is a potent mitogen that is involved with mitogenesis, angiogenesis, endothelial survival, and the induction of hematopoiesis. By increasing vascular permeability in endothelial cells, it helps tumors recruit wound-healing proteins fibrin and fibrinogen from the plasma, suggesting that tumor formation is a process of abnormal wound healing dependent on the ability to generate a blood supply. The human female reproductive tract is highly dependent on VEGF for normal functions such as endometrial proliferation and development of the corpus luteum. The unique influence of female sex steroid hormones on the expression and activity of VEGF deems angiogenesis an important facet of the development of breast and ovarian cancer. Additionally, the up-regulation of VEGF by the E6 oncoprotein of the human papillomavirus suggests that VEGF plays an important role in the development of cervical cancer. Clinical trials have investigated the humanized monoclonal antibody bevacizumab as potential treatment for all three forms of cancer; the data show that in breast cancer, the use of bevacizumab may lengthen the disease-free survival for women with advanced breast cancer, but does not appear to change their overall survival. It may have a role as salvage chemotherapy for ovarian and cervical cancer, though further research is needed to establish it as a definitive form of treatment.

  11. Imaginal Disc Abnormalities in Lethal Mutants of Drosophila

    PubMed Central

    Shearn, Allen; Rice, Thomas; Garen, Alan; Gehring, Walter

    1971-01-01

    Late lethal mutants of Drosophila melanogaster, dying after the larval stage of development, were isolated. The homozygous mutant larvae were examined for abnormal imaginal disc morphology, and the discs were injected into normal larval hosts to test their capacities to differentiate into adult structures. In about half of the mutants analyzed, disc abnormalities were found. Included among the abnormalities were missing discs, small discs incapable of differentiating, morphologically normal discs with limited capacities for differentiation, and discs with homeotic transformations. In some mutants all discs were affected, and in others only certain discs. The most extreme abnormal phenotype is a class of “discless” mutants. The viability of these mutant larvae indicates that the discs are essential only for the development of an adult and not of a larva. The late lethals are therefore a major source of mutants for studying the genetic control of disc formation. Images PMID:5002822

  12. Prevalence of endocrine and genetic abnormalities in boys evaluated systematically for a disorder of sex development

    PubMed Central

    Nixon, R.; Cerqueira, V.; Kyriakou, A.; Lucas-Herald, A.; McNeilly, J.; McMillan, M.; Purvis, A.I.; Tobias, E.S.; McGowan, R.

    2017-01-01

    Abstract STUDY QUESTION What is the likelihood of identifying genetic or endocrine abnormalities in a group of boys with 46, XY who present to a specialist clinic with a suspected disorder of sex development (DSD)? SUMMARY ANSWER An endocrine abnormality of the gonadal axis may be present in a quarter of cases and copy number variants (CNVs) or single gene variants may be present in about half of the cases. WHAT IS KNOWN ALREADY Evaluation of 46, XY DSD requires a combination of endocrine and genetic tests but the prevalence of these abnormalities in a sufficiently large group of boys presenting to one specialist multidisciplinary service is unclear. STUDY, DESIGN, SIZE, DURATION This study was a retrospective review of investigations performed on 122 boys. PARTICIPANTS/MATERIALS, SETTING, METHODS All boys who attended the Glasgow DSD clinic, between 2010 and 2015 were included in the study. The median external masculinization score (EMS) of this group was 9 (range 1–11). Details of phenotype, endocrine and genetic investigations were obtained from case records. MAIN RESULTS AND THE ROLE OF CHANCE An endocrine abnormality of gonadal function was present in 28 (23%) with a median EMS of 8.3 (1–10.5) whilst the median EMS of boys with normal endocrine investigations was 9 (1.5–11) (P = 0.03). Endocrine abnormalities included a disorder of gonadal development in 19 (16%), LH deficiency in 5 (4%) and a disorder of androgen synthesis in 4 (3%) boys. Of 43 cases who had array-comparative genomic hybridization (array-CGH), CNVs were reported in 13 (30%) with a median EMS of 8.5 (1.5–11). Candidate gene analysis using a limited seven-gene panel in 64 boys identified variants in 9 (14%) with a median EMS of 8 (1–9). Of the 21 boys with a genetic abnormality, 11 (52%) had normal endocrine investigations. LIMITATIONS, REASONS FOR CAUTION A selection bias for performing array-CGH in cases with multiple congenital malformations may have led to a high yield of CNVs. It

  13. Cardiac abnormality prediction using HMLP network

    NASA Astrophysics Data System (ADS)

    Adnan, Ja'afar; Ahmad, K. A.; Mat, Muhamad Hadzren; Rizman, Zairi Ismael; Ahmad, Shahril

    2018-02-01

    Cardiac abnormality often occurs regardless of gender, age and races but depends on the lifestyle. This problem sometimes does not show any symptoms and usually detected once it already critical which lead to a sudden death to the patient. Basically, cardiac abnormality is the irregular electrical signal that generate by the pacemaker of the heart. This paper attempts to develop a program that can detect cardiac abnormality activity through implementation of Hybrid Multilayer Perceptron (HMLP) network. A certain amount of data of the heartbeat signals from the electrocardiogram (ECG) will be used in this project to train the MLP and HMLP network by using Modified Recursive Prediction Error (MRPE) algorithm and to test the network performance.

  14. Effects of leptin administration on development, vascularization and function of Corpus luteum in alpacas submitted to pre-ovulatory fasting.

    PubMed

    Norambuena, María Cecilia; Hernández, Francisca; Maureira, Jonathan; Rubilar, Carolina; Alfaro, Jorge; Silva, Gonzalo; Silva, Mauricio; Ulloa-Leal, César

    2017-07-01

    The objective of this study was to determine the effect of leptin administration on the development, vascularization and function of Corpus luteum (CL) in alpacas submitted to pre-ovulatory fasting. Fourteen alpacas were kept in fasting conditions for 72h and received five doses of o-leptin (2μg/kg e.v.; Leptin group) or saline (Control group) every 12h. Ovulation was induced with a GnRH dose (Day 0). The ovaries were examined every other day by trans-rectal ultrasonography (7.5MHz; mode B and power Doppler) from Day 0 to 13 to determine the pre-ovulatory follicle diameter and ovulation, and then to monitor CL diameter and vascularization until the regression phase. Serial blood samples were taken after GnRH treatment to determine plasma LH concentration; and every other day from Days 1 to 13 to determine plasma progesterone and leptin concentrations. The pre-ovulatory follicle and CL diameter, LH, progesterone and leptin plasma concentrations were not affected by treatment (P>0.05). The vascularization area of the CL was, nevertheless, affected by the treatment (P<0.01) with significant differences between groups at Days 3, 7 and 9 (P<0.05). The Leptin group had a larger maximum vascularization area (0.67±0.1 compared with 0.35±0.1cm 2 ; P<0.05). In addition, there was a positive correlation between CL vascularization, CL diameter and plasma progesterone. The exogenous administration of leptin during pre-ovulatory fasting increased the vascularization of the CL in alpacas in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Phloem Transport Velocity Varies over Time and among Vascular Bundles during Early Cucumber Seedling Development1[C][W][OPEN

    PubMed Central

    Savage, Jessica A.; Zwieniecki, Maciej A.; Holbrook, N. Michele

    2013-01-01

    We use a novel dye-tracing technique to measure in vivo phloem transport velocity in cucumber (Cucumis sativus) plants during early seedling development. We focus on seedlings because of their importance in plant establishment and because they provide a simple source and sink model of phloem transport. The dye-tracing method uses a photodiode to track the movement of a bleach front of fluorescent dye traveling in the phloem from the cotyledons (source) to the roots (sink). During early seedling development, phloem transport velocity in this direction can change 2-fold depending on vascular connectivity and the number of actively growing sinks. Prior to leaf expansion, vascular bundles attached to the first developing leaf demonstrate a decline in basipetal phloem transport that can be alleviated by the leaf’s removal. At this stage, seedlings appear carbon limited and phloem transport velocity is correlated with cotyledon area, a pattern that is apparent both during cotyledon expansion and after source area manipulation. When the first leaf transitions to a carbon source, seedling growth rate increases and basipetal phloem transport velocity becomes more stable. Because bundles appear to operate autonomously, transport velocity can differ among vascular bundles. Together, these results demonstrate the dynamic and heterogeneous nature of phloem transport and underline the need for a better understanding of how changes in phloem physiology impact growth and allocation at this critical stage of development. PMID:24072581

  16. Vascular pattern of the dentate gyrus is regulated by neural progenitors.

    PubMed

    Pombero, Ana; Garcia-Lopez, Raquel; Estirado, Alicia; Martinez, Salvador

    2018-05-01

    Neurogenesis is a vital process that begins during early embryonic development and continues until adulthood, though in the latter case, it is restricted to the subventricular zone and the subgranular zone of the dentate gyrus (DG). In particular, the DG's neurogenic properties are structurally and functionally unique, which may be related to its singular vascular pattern. Neurogenesis and angiogenesis share molecular signals and act synergistically, supporting the concept of a neurogenic niche as a functional unit between neural precursors cells and their environment, in which the blood vessels play an important role. Whereas it is well known that vascular development controls neural proliferation in the embryonary and in the adult brain, by releasing neurotrophic factors; the potential influence of neural cells on vascular components during angiogenesis is largely unknown. We have demonstrated that the reduction of neural progenitors leads to a significant impairment of vascular development. Since VEGF is a potential regulator in the neurogenesis-angiogenesis crosstalk, we were interested in assessing the possible role of this molecule in the hippocampal neurovascular development. Our results showed that VEGF is the molecule involved in the regulation of vascular development by neural progenitor cells in the DG.

  17. Assessment of risk of peripheral vascular disease and vascular care capacity in low- and middle-income countries.

    PubMed

    Gyedu, A; Stewart, B T; Nakua, E; Quansah, R; Donkor, P; Mock, C; Hardy, M; Yangni-Angate, K H

    2016-01-01

    This study aimed to describe national peripheral vascular disease (PVD) risk and health burden, and vascular care capacity in Ghana. The gap between PVD burden and vascular care capacity in low- and middle-income countries was defined, and capacity improvement priorities were identified. Data to estimate PVD risk factor burden were obtained from the World Health Organization Study on Global Ageing and Adult Health (SAGE), Ghana, and the Institute of Health Metrics and Evaluation Global Burden of Disease (IHME GBD) database. In addition, a novel nationwide assessment of vascular care capacity was performed, with 20 vascular care items assessed at 40 hospitals in Ghana. Factors contributing to specific item deficiency were described. From the SAGE database, there were 4305 respondents aged at least 50 years with data to estimate PVD risk. Of these, 57·4 per cent were at moderate to risk high of PVD with at least three risk factors; extrapolating nationally, the estimate was 1 654 557 people. Based on IHME GBD data, the estimated disability-adjusted life-years incurred from PVD increased fivefold from 1990 to 2010 (from 6·3 to 31·7 per 100 000 persons respectively). Vascular care capacity assessment demonstrated marked deficiencies in items for diagnosis, and in perioperative and vascular surgical care. Deficiencies were most often due to absence of equipment, lack of training and technology breakage. Risk factor reduction and management as well as optimization of current resources are paramount to avoid the large burden of PVD falling on healthcare systems in low- and middle-income countries. These countries are not well equipped to handle vascular surgical care, and rapid development of such capacity would be difficult and expensive. © 2015 BJS Society Ltd Published by John Wiley & Sons Ltd.

  18. Tissue-nonspecific Alkaline Phosphatase Deficiency Causes Abnormal Craniofacial Bone Development in the Alpl−/− Mouse Model of Infantile Hypophosphatasia

    PubMed Central

    Liu, Jin; Nam, Hwa Kyung; Campbell, Cassie; Gasque, Kellen Cristina da Silva; Millán, José Luis; Hatch, Nan E.

    2014-01-01

    Tissue-nonspecific alkaline phosphatase (TNAP) is an enzyme present on the surface of mineralizing cells and their derived matrix vesicles that promotes hydroxyapatite crystal growth. Hypophosphatasia (HPP) is an inborn-error-of-metabolism that, dependent upon age of onset, features rickets or osteomalacia due to loss-of function mutations in the gene (Alpl) encoding TNAP. Craniosynostosis is prevalent in infants with HPP and other forms of rachitic disease but how craniosynostosis develops in these disorders is unknown. Objectives: Because craniosynostosis carries high morbidity, we are investigating craniofacial skeletal abnormalities in Alpl−/− mice to establish these mice as a model of HPP-associated craniosynostosis and determine mechanisms by which TNAP influences craniofacial skeletal development. Methods: Cranial bone, cranial suture and cranial base abnormalities were analyzed by micro-CT and histology. Craniofacial shape abnormalities were quantified using digital calipers. TNAP expression was suppressed in MC3T3E1(C4) calvarial cells by TNAP-specific shRNA. Cells were analyzed for changes in mineralization, gene expression, proliferation, apoptosis, matrix deposition and cell adhesion. Results: Alpl−/− mice feature craniofacial shape abnormalities suggestive of limited anterior-posterior growth. Craniosynostosis in the form of bony coronal suture fusion is present by three weeks after birth. Alpl−/− mice also exhibit marked histologic abnormalities of calvarial bones and the cranial base involving growth plates, cortical and trabecular bone within two weeks of birth. Analysis of calvarial cells in which TNAP expression was suppressed by shRNA indicates that TNAP deficiency promotes aberrant osteoblastic gene expression, diminished matrix deposition, diminished proliferation, increased apoptosis and increased cell adhesion. Conclusions: These findings demonstrate that Alpl−/− mice exhibit a craniofacial skeletal phenotype similar to that

  19. Arf Suppresses Hepatic Vascular Neoplasia in a Carcinogen-Exposed Murine Model

    PubMed Central

    Busch, Stephanie E; Gurley, Kay E; Moser, Russell D; Kemp, Christopher J

    2013-01-01

    Hepatic haemangiosarcoma is a deadly malignancy whose aetiology remains poorly understood. Inactivation of the CDKN2A locus, which houses the ARF and p16INK4a tumour suppressor genes, is a common event in haemangiosarcoma patients, but the precise role of ARF in vascular tumourigenesis is unknown. To determine the extent to which ARF suppresses vascular neoplasia, we examined the incidence of hepatic vascular lesions in Arf-deficient mice exposed to the carcinogen urethane (i.p. 1 mg/g). Loss of Arf resulted in elevated morbidity and increased the incidence of both haemangiomas and incipient haemangiosarcomas. Suppression of vascular lesion development by ARF was heavily dependent on both Arf gene-dosage and the genetic strain of the mouse. Trp53-deficient mice also developed hepatic vascular lesions after exposure to urethane, suggesting that ARF signals through a p53-dependent pathway to inhibit the development of hepatic haemangiosarcoma. Our findings provide strong evidence that inactivation of Arf is a causative event in vascular neoplasia and suggest that the ARF pathway may be a novel molecular target for therapeutic intervention in haemangiosarcoma patients. PMID:22430984

  20. Aging and vascular endothelial function in humans

    PubMed Central

    SEALS, Douglas R.; JABLONSKI, Kristen L.; DONATO, Anthony J.

    2012-01-01

    Advancing age is the major risk factor for the development of CVD (cardiovascular diseases). This is attributable, in part, to the development of vascular endothelial dysfunction, as indicated by reduced peripheral artery EDD (endothelium-dependent dilation) in response to chemical [typically ACh (acetylcholine)] or mechanical (intravascular shear) stimuli. Reduced bioavailability of the endothelium-synthesized dilating molecule NO (nitric oxide) as a result of oxidative stress is the key mechanism mediating reduced EDD with aging. Vascular oxidative stress increases with age as a consequence of greater production of reactive oxygen species (e.g. superoxide) without a compensatory increase in antioxidant defences. Sources of increased superoxide production include up-regulation of the oxidant enzyme NADPH oxidase, uncoupling of the normally NO-producing enzyme, eNOS (endothelial NO synthase) (due to reduced availability of the cofactor tetrahydrobiopterin) and increased mitochondrial synthesis during oxidative phosphorylation. Increased bioactivity of the potent endothelial-derived constricting factor ET-1 (endothelin-1), reduced endothelial production of/responsiveness to dilatory prostaglandins, the development of vascular inflammation, formation of AGEs (advanced glycation end-products), an increased rate of endothelial apoptosis and reduced expression of oestrogen receptor α (in postmenopausal females) also probably contribute to impaired EDD with aging. Several lifestyle and biological factors modulate vascular endothelial function with aging, including regular aerobic exercise, dietary factors (e.g. processed compared with non-processed foods), body weight/fatness, vitamin D status, menopause/oestrogen deficiency and a number of conventional and non-conventional risk factors for CVD. Given the number of older adults now and in the future, more information is needed on effective strategies for the prevention and treatment of vascular endothelial aging. PMID

  1. Single and Compound Knock-outs of MicroRNA (miRNA)-155 and Its Angiogenic Gene Target CCN1 in Mice Alter Vascular and Neovascular Growth in the Retina via Resident Microglia.

    PubMed

    Yan, Lulu; Lee, Sangmi; Lazzaro, Douglas R; Aranda, Jacob; Grant, Maria B; Chaqour, Brahim

    2015-09-18

    The response of the retina to ischemic insult typically leads to aberrant retinal neovascularization, a major cause of blindness. The epigenetic regulation of angiogenic gene expression by miRNAs provides new prospects for their therapeutic utility in retinal neovascularization. Here, we focus on miR-155, a microRNA functionally important in inflammation, which is of paramount importance in the pathogenesis of retinal neovascularization. Whereas constitutive miR-155-deficiency in mice results in mild vascular defects, forced expression of miR-155 causes endothelial hyperplasia and increases microglia count and activation. The mouse model of oxygen-induced retinopathy, which recapitulates ischemia-induced aberrant neovessel growth, is characterized by increased expression of miR-155 and localized areas of microglia activation. Interestingly, miR-155 deficiency in mice reduces microglial activation, curtails abnormal vessel growth, and allows for rapid normalization of the retinal vasculature following ischemic insult. miR-155 binds to the 3'-UTR and represses the expression of the CCN1 gene, which encodes an extracellular matrix-associated integrin-binding protein that both promotes physiological angiogenesis and harnesses growth factor-induced abnormal angiogenic responses. Single CCN1 deficiency or double CCN1 and miR-155 knock-out in mice causes retinal vascular malformations typical of faulty maturation, mimicking the vascular alterations of miR-155 gain of function. During development, the miR-155/CCN1 regulatory axis balances the proangiogenic and proinflammatory activities of microglia to allow for their function as guideposts for sprout fusion and anastomosis. Under ischemic conditions, dysregulated miR-155 and CCN1 expression increases the inflammatory load and microglial activation, prompting aberrant angiogenic responses. Thus, miR-155 functions in tandem with CCN1 to modulate inflammation-induced vascular homeostasis and repair. © 2015 by The American

  2. Single and Compound Knock-outs of MicroRNA (miRNA)-155 and Its Angiogenic Gene Target CCN1 in Mice Alter Vascular and Neovascular Growth in the Retina via Resident Microglia*

    PubMed Central

    Yan, Lulu; Lee, Sangmi; Lazzaro, Douglas R.; Aranda, Jacob; Grant, Maria B.; Chaqour, Brahim

    2015-01-01

    The response of the retina to ischemic insult typically leads to aberrant retinal neovascularization, a major cause of blindness. The epigenetic regulation of angiogenic gene expression by miRNAs provides new prospects for their therapeutic utility in retinal neovascularization. Here, we focus on miR-155, a microRNA functionally important in inflammation, which is of paramount importance in the pathogenesis of retinal neovascularization. Whereas constitutive miR-155-deficiency in mice results in mild vascular defects, forced expression of miR-155 causes endothelial hyperplasia and increases microglia count and activation. The mouse model of oxygen-induced retinopathy, which recapitulates ischemia-induced aberrant neovessel growth, is characterized by increased expression of miR-155 and localized areas of microglia activation. Interestingly, miR-155 deficiency in mice reduces microglial activation, curtails abnormal vessel growth, and allows for rapid normalization of the retinal vasculature following ischemic insult. miR-155 binds to the 3′-UTR and represses the expression of the CCN1 gene, which encodes an extracellular matrix-associated integrin-binding protein that both promotes physiological angiogenesis and harnesses growth factor-induced abnormal angiogenic responses. Single CCN1 deficiency or double CCN1 and miR-155 knock-out in mice causes retinal vascular malformations typical of faulty maturation, mimicking the vascular alterations of miR-155 gain of function. During development, the miR-155/CCN1 regulatory axis balances the proangiogenic and proinflammatory activities of microglia to allow for their function as guideposts for sprout fusion and anastomosis. Under ischemic conditions, dysregulated miR-155 and CCN1 expression increases the inflammatory load and microglial activation, prompting aberrant angiogenic responses. Thus, miR-155 functions in tandem with CCN1 to modulate inflammation-induced vascular homeostasis and repair. PMID:26242736

  3. High expression of ubiquitin-specific peptidase 39 is associated with the development of vascular remodeling

    PubMed Central

    He, Shuai; Zhong, Wei; Yin, Li; Wang, Yifei; Qiu, Zhibing; Song, Gang

    2017-01-01

    Vascular remodeling is the primary cause underlying the failure of angioplasty surgeries, including vascular stenting, transplant vasculopathy and vein grafts. Multiple restenosis-associated proteins and genes have been identified to account for this. In the present study, the functions of ubiquitin-specific peptidase 39 (USP39) were investigated in the context of two vascular remodeling models (a mouse common carotid artery ligation and a pig bilateral saphenous vein-carotid artery interposition graft). USP39 has previously been observed to be upregulated in ligated arteries, and this result was confirmed in the pig vein graft model. In addition, Transwell assay results demonstrated that vascular smooth muscle cell (VSMC) migration was suppressed by lentiviral vector-mediated downregulation of USP39 and enhanced by upregulation of USP39. Furthermore, knockdown of USP39 inhibited VSMC cell proliferation and the expression of cyclin D1 and cyclin-dependent kinase 4, as analyzed via cell counting, MTT assay and western blotting. These results suggest that USP39 may represent a novel therapeutic target for treating vascular injury and preventing vein-graft failure. PMID:28447728

  4. Markers of Vascular Perturbation Correlate with Airway Structural Change in Asthma

    PubMed Central

    Kruger, Stanley J.; Schiebler, Mark L.; Evans, Michael D.; Sorkness, Ronald L.; Denlinger, Loren C.; Busse, William W.; Jarjour, Nizar N.; Montgomery, Robert R.; Mosher, Deane F.; Fain, Sean B.

    2013-01-01

    Rationale: Air trapping and ventilation defects on imaging are characteristics of asthma. Airway wall thickening occurs in asthma and is associated with increased bronchial vascularity and vascular permeability. Vascular endothelial cell products have not been explored as a surrogate to mark structural airway changes in asthma. Objectives: Determine whether reporters of vascular endothelial cell perturbation correlate with airway imaging metrics in patients with asthma of varying severity. Methods: Plasma from Severe Asthma Research Program subjects was analyzed by ELISAs for soluble von Willebrand factor mature protein (VWF:Ag) and propeptide (VWFpp), P-selectin, and platelet factor 4. Additional subjects were analyzed over 48 hours after whole-lung antigen challenge. We calculated ventilation defect volume by hyperpolarized helium-3 magnetic resonance imaging and areas of low signal density by multidetector computed tomography (less than −856 Hounsfield units [HU] at functional residual capacity and −950 HU at total lung capacity [TLC]). Measurements and Main Results: VWFpp and VWFpp/Ag ratio correlated with and predicted greater percentage defect volume on hyperpolarized helium-3 magnetic resonance imaging. P-selectin correlated with and predicted greater area of low density on chest multidetector computed tomography less than −950 HU at TLC. Platelet factor 4 did not correlate. Following whole-lung antigen challenge, variation in VWFpp, VWFpp/Ag, and P-selectin among time-points was less than that among subjects, indicating stability and repeatability of the measurements. Conclusions: Plasma VWFpp and P-selectin may be useful as surrogates of functional and structural defects that are evident on imaging. The results raise important questions about why VWFpp and P-selectin are associated specifically with different imaging abnormalities. PMID:23855693

  5. 2011 Vascular Research Initiatives Conference: basic foundations of translational research in vascular disease.

    PubMed

    Ziegler, Kenneth R; Dardik, Alan

    2011-07-01

    The Vascular Research Initiatives Conference (VRIC) is an annual conference organized by the Society for Vascular Surgery (SVS). The 2011 VRIC was held in Chicago (IL, USA) to precede and coincide with the first day of the meeting of the Council on Arteriosclerosis, Thrombosis and Vascular Biology (ATVB) of the American Heart Association. The event is designed to present world class vascular research results, encourage collaboration between vascular surgeons and basic scientists in related disciplines, as well as to stimulate interest in research among aspiring academic vascular surgeons. The 2011 VRIC featured plenary sessions addressing peripheral arterial disease, vascular endothelium and thrombosis, aneurysms, and stem cells and tissue engineering. Recipients of the SVS partner grants with the National Institutes of Health K08 awardees presented their progress reports, and keynote addresses were given by Linda Graham and Frank LoGerfo.

  6. Vascular wall progenitor cells in health and disease.

    PubMed

    Psaltis, Peter J; Simari, Robert D

    2015-04-10

    The vasculature plays an indispensible role in organ development and maintenance of tissue homeostasis, such that disturbances to it impact greatly on developmental and postnatal health. Although cell turnover in healthy blood vessels is low, it increases considerably under pathological conditions. The principle sources for this phenomenon have long been considered to be the recruitment of cells from the peripheral circulation and the re-entry of mature cells in the vessel wall back into cell cycle. However, recent discoveries have also uncovered the presence of a range of multipotent and lineage-restricted progenitor cells in the mural layers of postnatal blood vessels, possessing high proliferative capacity and potential to generate endothelial, smooth muscle, hematopoietic or mesenchymal cell progeny. In particular, the tunica adventitia has emerged as a progenitor-rich compartment with niche-like characteristics that support and regulate vascular wall progenitor cells. Preliminary data indicate the involvement of some of these vascular wall progenitor cells in vascular disease states, adding weight to the notion that the adventitia is integral to vascular wall pathogenesis, and raising potential implications for clinical therapies. This review discusses the current body of evidence for the existence of vascular wall progenitor cell subpopulations from development to adulthood and addresses the gains made and significant challenges that lie ahead in trying to accurately delineate their identities, origins, regulatory pathways, and relevance to normal vascular structure and function, as well as disease. © 2015 American Heart Association, Inc.

  7. Abnormal Behavior in Relation to Cage Size in Rhesus Monkeys

    ERIC Educational Resources Information Center

    Paulk, H. H.; And Others

    1977-01-01

    Examines the effects of cage size on stereotyped and normal locomotion and on other abnormal behaviors in singly caged animals, whether observed abnormal behaviors tend to co-occur, and if the development of an abnormal behavior repertoire leads to reduction in the number of normal behavior categories. (Author/RK)

  8. Mice that lack the angiogenesis inhibitor, thrombospondin 2, mount an altered foreign body reaction characterized by increased vascularity

    PubMed Central

    Kyriakides, Themis R.; Leach, Kathleen J.; Hoffman, Allan S.; Ratner, Buddy D.; Bornstein, Paul

    1999-01-01

    Disruption of the thrombospondin 2 gene (Thbs2) in mice results in a complex phenotype characterized chiefly by abnormalities in fibroblasts, connective tissues, and blood vessels. Consideration of this phenotype suggested to us that the foreign body reaction (FBR) might be altered in thrombospondin 2 (TSP2)-null mice. To investigate the participation of TSP2 in the FBR, polydimethylsiloxane (PDMS) and oxidized PDMS (ox-PDMS) disks were implanted in TSP2-null and control mice. Growth of TSP2-null and control skin fibroblasts in vitro also was evaluated on both types of disks. Normal fibroblasts grew as a monolayer on both surfaces, but attachment of the cells to ox-PDMS was weak and sensitive to movement. TSP2-null fibroblasts grew as aggregates on both surfaces, and their attachment was further compromised on ox-PDMS. After a 4-week implantation period, both types of PDMS elicited a similar FBR with a collagenous capsule in both TSP2-null and control mice. However, strikingly, the collagenous capsule that formed in TSP2-null mice was highly vascularized and thicker than that formed in normal mice. In addition, abnormally shaped collagen fibers were observed in capsules from mutant mice. These observations indicate that the presence or absence of an extracellular matrix component, TSP2, can influence the nature of the FBR, in particular its vascularity. The expression of TSP2 therefore could represent a molecular target for local inhibitory measures when vascularization of the tissue surrounding an implanted device is desired. PMID:10200282

  9. Can Vascular Injury be Appropriately Assessed With Physical Examination After Knee Dislocation?

    PubMed

    Weinberg, Douglas S; Scarcella, Nicholas R; Napora, Joshua K; Vallier, Heather A

    2016-06-01

    Knee dislocations are rare injuries with potentially devastating vascular complications. An expeditious and accurate diagnosis is necessary, as failing to diagnose vascular injury can result in amputation; however, the best diagnostic approach remains controversial. We asked: (1) What patient factors are predictors of vascular injury after knee dislocation? (2) What are the diagnostic utilities of palpable dorsalis pedis or posterior tibial pulses, and the presence of an ankle-brachial index (ABI) of 0.9 or greater? A database at a Level I trauma center was queried for patients with evidence of knee dislocation, demographic information (age at the time of injury, sex, Injury Severity Score, BMI, mechanism of injury), and the presence of open injury were recorded. One-hundred forty-one patients underwent screening at initial presentation, of whom 26 (24%) underwent early vascular exploration based on an abnormal physical examination. One-hundred five (91%) of the remaining 115 patients were available at a minimum followup of 6 months (mean, 19 ± 10 months). In total, 31 unique patients were excluded, including 10 patients (7%) who were lost to followup before 6 months. Among the 110 patients who met inclusion criteria, the mean age and SD was 37 ± 13 years, and the Injury Severity Score was 15 ± 9. There were 71 males (65%). Logistic regression was used to determine independent correlates of vascular injury. The vascular examination was reviewed for the presence of a palpable pulse in the dorsalis pedis artery, the presence of a palpable pulse in the posterior tibial artery, and whether the ABI in the dorsalis pedis was 0.9 or greater. Contingency tables were generated to assess the sensitivity, specificity, and accuracy of physical examination maneuvers. The physical examination was collectively regarded as "normal" when both pulses were palpable and the ABI was 0.9 or greater. The initial physical examination as just described was considered the diagnostic test

  10. Recent Developments in Vascular Imaging Techniques in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Upputuri, Paul Kumar; Sivasubramanian, Kathyayini; Mark, Chong Seow Khoon; Pramanik, Manojit

    2015-01-01

    Adequate vascularisation is key in determining the clinical outcome of stem cells and engineered tissue in regenerative medicine. Numerous imaging modalities have been developed and used for the visualization of vascularisation in tissue engineering. In this review, we briefly discuss the very recent advances aiming at high performance imaging of vasculature. We classify the vascular imaging modalities into three major groups: nonoptical methods (X-ray, magnetic resonance, ultrasound, and positron emission imaging), optical methods (optical coherence, fluorescence, multiphoton, and laser speckle imaging), and hybrid methods (photoacoustic imaging). We then summarize the strengths and challenges of these methods for preclinical and clinical applications. PMID:25821821

  11. Meiotic abnormalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  12. Neural retina-specific Aldh1a1 controls dorsal choroidal vascular development via Sox9 expression in retinal pigment epithelial cells.

    PubMed

    Goto, So; Onishi, Akishi; Misaki, Kazuyo; Yonemura, Shigenobu; Sugita, Sunao; Ito, Hiromi; Ohigashi, Yoko; Ema, Masatsugu; Sakaguchi, Hirokazu; Nishida, Kohji; Takahashi, Masayo

    2018-04-03

    VEGF secreted from retinal pigment epithelial (RPE) cells is responsible for the choroidal vascular development; however, the molecular regulatory mechanism is unclear. We found that Aldh1a1 -/- mice showed choroidal hypoplasia with insufficient vascularization in the dorsal region, although Aldh1a1, an enzyme that synthesizes retinoic acids (RAs), is expressed in the dorsal neural retina, not in the RPE/choroid complex. The level of VEGF in the RPE/choroid was significantly decreased in Aldh1a1 -/- mice, and RA-dependent enhancement of VEGF was observed in primary RPE cells. An RA-deficient diet resulted in dorsal choroidal hypoplasia, and simple RA treatment of Aldh1a1 -/- pregnant females suppressed choroid hypoplasia in their offspring. We also found downregulation of Sox9 in the dorsal neural retina and RPE of Aldh1a1 -/- mice and RPE-specific disruption of Sox9 phenocopied Aldh1a1 -/- choroidal development. These results suggest that RAs produced by Aldh1a1 in the neural retina directs dorsal choroidal vascular development via Sox9 upregulation in the dorsal RPE cells to enhance RPE-derived VEGF secretion. © 2018, Goto et al.

  13. Dual-fibular reconstruction of a massive tibial defect after Ewing's sarcoma resection in a pediatric patient with a vascular variation.

    PubMed

    Saridis, Alkis G; Megas, Panagiotis D; Georgiou, Christos S; Diamantakis, Georgios M; Tyllianakis, Minos E

    2011-01-01

    In the management of malignancies of the extremities, limb salvage procedures have recently taken on greater significance. For those patients under intense adjuvant chemotherapy and with massive bone loss, free vascularized fibular grafting is currently advocated as a reliable reconstructive option, maybe because of the controversial results of bone transport in similar situations. However, when there is a vascular abnormality of either the recipient or donor extremity, microsurgical procedures are not feasible, further limiting potential reconstructive alternatives. We present the case of a 13-year-old female patient with Ewing's sarcoma of the right tibia. Preoperative angiography showed that vascularity of the affected side depended totally on a single peroneal artery. The patient was treated initially with multiagent chemotherapy, followed by an excision of 23 cm. The defect was bridged by a gradual medial transportation of the ipsilateral fibula with the Ilizarov technique and strengthened by nonvascularized transfer of the contralateral fibula. Total external fixation time was 162 days. After the removal of the Ilizarov frame a walking cast was applied for another month. At 5 years postoperatively there was no recurrence of the malignancy. The patient had full weight-bearing ability on the affected limb, with preservation of the ankle and knee joints motion and without any limb length discrepancy or axial deformity. The functional outcome that was visible was graded excellent. Transverse distraction osteogenesis of the ipsilateral fibula performed well under chemotherapy, showing unproblematic callus formation. Supplemented with nonvascularized transfer of the contralateral fibula, provided a reconstructive option with biological affinity, sufficient biomechanical strength and durability, and with a decreased complication rate. This case report presents a viable option, especially in cases in which vascular abnormalities of either the donor or the recipient

  14. Medical adhesive-related skin injuries associated with vascular access.

    PubMed

    Hitchcock, Jan; Savine, Louise

    2017-04-27

    Establishing vascular access and preventing infection, both at insertion and during ongoing care is generally the top priority; the maintenance of optimal skin integrity is often a distant secondary consideration. Skin can react to different types of dressings or adhesives, or problems can arise relating to the securement of lines or the development of sensitivities to cleaning solutions. Clearly, these scenarios are not limited to the securement of vascular access devices; however, a patient with a long-term vascular access device may not have other options for vascular access, which makes this a very important and yet largely unrecognised area. A review of the limited literature that existed up to March 2015 showed it was typically concerned with skin tears connected with dressings and removal, and contact irritant dermatitis. The tissue viability team and vascular access team reviewed the current products associated with a typical vascular access dressing to ensure it was fit for purpose and where at all possible had good scientific literature for validation. The team worked proactively to recognise those patients at risk with the early identification of potential medical adhesive-related skin injuries (MARSI). To facilitate this an algorithm was developed that offers a step-by-step approach, clearly outlining what to do to prevent MARSI and its treatment should it develop. These reactions can result from other factors than the dressing alone, and an increase in these kinds of skin reaction in patients who are on chemotherapy regimens is being explored further. Through the implementation of an algorithm, education for both staff and patients and collaborative working between vascular access and tissue viability teams, a reduction in these phenomena has been seen despite an increasing number of at-risk patients.

  15. Vascular Corrosion Casting: Review of Advantages and Limitations in the Application of Some Simple Quantitative Methods.

    PubMed

    Hossler, Fred E.; Douglas, John E.

    2001-05-01

    Vascular corrosion casting has been used for about 40 years to produce replicas of normal and abnormal vasculature and microvasculature of various tissues and organs that could be viewed at the ultrastructural level. In combination with scanning electron microscopy (SEM), the primary application of corrosion casting has been to describe the morphology and anatomical distribution of blood vessels in these tissues. However, such replicas should also contain quantitative information about that vasculature. This report summarizes some simple quantitative applications of vascular corrosion casting. Casts were prepared by infusing Mercox resin or diluted Mercox resin into the vasculature. Surrounding tissues were removed with KOH, hot water, and formic acid, and the resulting dried casts were observed with routine SEM. The orientation, size, and frequency of vascular endothelial cells were determined from endothelial nuclear imprints on various cast surfaces. Vascular volumes of heart, lung, and avian salt gland were calculated using tissue and resin densities, and weights. Changes in vascular volume and functional capillary density in an experimentally induced emphysema model were estimated from confocal images of casts. Clearly, corrosion casts lend themselves to quantitative analysis. However, because blood vessels differ in their compliances, in their responses to the toxicity of casting resins, and in their response to varying conditions of corrosion casting procedures, it is prudent to use care in interpreting this quantitative data. Some of the applications and limitations of quantitative methodology with corrosion casts are reviewed here.

  16. Light and Dark of Reactive Oxygen Species for Vascular Function: 2014 ASVB (Asian Society of Vascular Biology).

    PubMed

    Shimokawa, Hiroaki; Satoh, Kimio

    2015-05-01

    Vascular-derived hydrogen peroxide (H2O2) serves as an important signaling molecule in the cardiovascular system and contributes to vascular homeostasis. H2O2 is a second messenger, transducing the oxidative signal into biological responses through posttranslational protein modification. The balance between oxidant and antioxidant systems regulates intracellular redox status, and their imbalance causes oxidative or reductive stress, leading to cellular damage in cardiovascular systems. Excessive H2O2 deteriorates vascular functions and promotes vascular disease through multiple pathways. The RhoA/Rho-kinase pathway plays an important role in various fundamental cellular functions, including production of excessive reactive oxygen species, leading to the development of cardiovascular diseases. Rho-kinase (ROCK1 and ROCK2) belongs to the family of serine/threonine kinases and is an important downstream effector of the small GTP-binding protein RhoA. Rho-kinase plays a crucial role in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, stroke, and heart failure. Thus, Rho-kinase inhibitors may be useful for the treatment of cardiovascular diseases in humans. In this review, we will briefly discuss the roles of vascular-derived H2O2 and review the recent progress in the translational research on the therapeutic importance of the Rho-kinase pathway in cardiovascular medicine.

  17. Initial evaluation of vascular ingrowth into superporous hydrogels.

    PubMed

    Keskar, Vandana; Gandhi, Milind; Gemeinhart, Ernest J; Gemeinhart, Richard A

    2009-08-01

    There is a need for new materials and architectures for tissue engineering and regenerative medicine. Based upon our recent results developing novel scaffold architecture, we hypothesized that this new architecture would foster vascularization, a particular need for tissue engineering. We report on the potential of superporous hydrogel (SPH) scaffolds for in vivo cellular infiltration and vascularization. Poly(ethylene glycol) diacrylate (PEGDA) SPH scaffolds were implanted in the dorsum of severe combined immunodeficient (SCID) mice and harvested after 4 weeks of in vivo implantation. The SPHs were visibly red and vascularized, as apparent when compared to the non-porous hydrogel controls, which were macroscopically avascular. Host cell infiltration was observed throughout the SPHs. Blood cells and vascular structures, confirmed through staining for CD34 and smooth muscle alpha-actin, were observed throughout the scaffolds. This novel soft material may be utilized for cell transplantation, tissue engineering and in combination with cell therapies. The neovasularization and limited fibrotic response suggest that the architecture may be conducive to cell survival and rapid vessel development.

  18. Oscillation of Angiogenesis and Vascular Dropout in Progressive Human Vascular Disease. [Vascular Pattern as Useful Read-Out of Complex Molecular Signaling

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia

    2010-01-01

    When analyzed by VESsel GENeration Analysis (VESGEN) software, vascular patterns provide useful integrative read-outs of complex, interacting molecular signaling pathways. Using VESGEN, we recently discovered and published our innovative, surprising findings that angiogenesis oscillated with vascular dropout throughout progression of diabetic retinopathy, a blinding vascular disease. Our findings provide a potential paradigm shift in the current prevailing view on progression and treatment of this disease, and a new early-stage window of regenerative therapeutic opportunities. The findings also suggest that angiogenesis may oscillate with vascular disease in a homeostatic-like manner during early stages of other inflammatory progressive diseases such as cancer and coronary vascular disease.

  19. [A case of neurofibromatosis type I associated with basal meningocele and abnormal vessels].

    PubMed

    Yoshioka, H; Sakoda, K; Kohno, H; Hada, H; Hanaya, R; Arita, K; Kurisu, K

    1998-03-01

    A 21-year-old man with neurofibromatosis type 1 (NF 1) had many widespread cutaneous neurofibroma on his right face. Magnetic resonance imaging (MRI) revealed basal meningocele due to dysplasia of the skull base. Carotid and vertebral angiograms revealed occlusion of the right internal carotid artery, persistent primitive trigeminal artery. We have reviewed the clinical and radiographic features of this case of neurofibromatosis, meningocele and cerebral arterial abnormalities. NF associated with both intracranial vascular malformation and meningocele is very rare, and in our case both were thought to arise congenitally as a manifestation of mesodermal dysplasia. Careful follow up using MRI and MR angiography should be performed for such patients.

  20. Impact of maternal metabolic abnormalities in pregnancy on human milk and subsequent infant metabolic development: methodology and design.

    PubMed

    Ley, Sylvia H; O'Connor, Deborah L; Retnakaran, Ravi; Hamilton, Jill K; Sermer, Mathew; Zinman, Bernard; Hanley, Anthony J

    2010-10-06

    Childhood obesity is on the rise and is a major risk factor for type 2 diabetes later in life. Recent evidence indicates that abnormalities that increase risk for diabetes may be initiated early in infancy. Since the offspring of women with diabetes have an increased long-term risk for obesity and type 2 diabetes, the impact of maternal metabolic abnormalities on early nutrition and infant metabolic trajectories is of considerable interest. Human breast milk, the preferred food during infancy, contains not only nutrients but also an array of bioactive substances including metabolic hormones. Nonetheless, only a few studies have reported concentrations of metabolic hormones in human milk specifically from women with metabolic abnormalities. We aim to investigate the impact of maternal metabolic abnormalities in pregnancy on human milk hormones and subsequently on infant development over the first year of life. The objective of this report is to present the methodology and design of this study. The current investigation is a prospective study conducted within ongoing cohort studies of women and their offspring. Pregnant women attending outpatient obstetrics clinics in Toronto, Canada were recruited. Between April 2009 and July 2010, a total of 216 pregnant women underwent a baseline oral glucose tolerance test and provided medical and lifestyle history. Follow-up visits and telephone interviews are conducted and expected to be completed in October 2011. Upon delivery, infant birth anthropometry measurements and human breast milk samples are collected. At 3 and 12 months postpartum, mothers and infants are invited for follow-up assessments. Interim telephone interviews are conducted during the first year of offspring life to characterize infant feeding and supplementation behaviors. An improved understanding of the link between maternal metabolic abnormalities in pregnancy and early infant nutrition may assist in the development of optimal prevention and intervention

  1. Experience with latrogenic pediatric vascular injuries. Incidence, etiology, management, and results.

    PubMed Central

    Flanigan, D P; Keifer, T J; Schuler, J J; Ryan, T J; Castronuovo, J J

    1983-01-01

    During a 32-month period, 79 extremities in 76 children (age 1 day-13 years, mean = 31 months) were evaluated with regard to iatrogenic vascular injuries. Prospectively, 42 children were studied pre- and post-cardiac catheterization. Ten of these children sustained vascular injuries (incidence = 24%). Thirty-four additional children were referred because of 35 iatrogenic vascular injuries as a result of transfemoral cardiac catheterization (n = 20), umbilical artery catheterization (n = 10), or recent surgery (n = 5). All 45 injuries were evaluated by lower extremity segmental Doppler pressure measurements in addition to routine physical examination at the time of injury and at frequent follow-up. An ankle/brachial pressure index (ABI) less than 0.9 was considered abnormal. Selected children (ABI less than 0.9 for greater than 30 days) underwent orthoroentgenograms to assess limb growth. The average ABI immediately following injury was 0.34 +/- 0.33. Thirty-four injuries were treated nonoperatively. Twelve injuries were excluded from further study due to death (n = 7) or being lost to follow-yp (n = 5). A return of ABI to normal was seen from 1 day to 2 years in 93% of children treated with heparin (n = 14) compared to 63% of children who were simply observed (n = 8) (p less than 0.10). The initial severity of ischemia did not correlate with the subsequent rate of improvement. Only patients with absent femoral pulses were selected for operative intervention, which consisted of aortic thrombectomy (n = 2), femorofemoral bypass (n = 2), femoral artery patch angioplasty (n = 1), or femoral artery thrombectomy (n = 7) with no mortality. Nine patients had immediate return of a normal ABI after surgery. A delayed return of ABI to normal occurred in the other two. Nine per cent of surgically treated children and 23% of nonsurgically treated children developed leg length discrepancies (0.5-3.0 cm) as a result of ischemia lasting greater than 30 days. Overall, 91% of the

  2. Potential Therapeutics for Vascular Cognitive Impairment and Dementia.

    PubMed

    Sun, Miao-Kun

    2017-10-16

    As the human lifespan increases, the number of people affected by age-related dementia is growing at an epidemic pace. Vascular pathology dramatically affects cognitive profiles, resulting in dementia and cognitive impairment. While vascular dementia itself constitutes a medical challenge, hypoperfusion/vascular risk factors enhance amyloid toxicity and other memory-damaging factors and hasten Alzheimer's disease (AD) and other memory disorders' progression, as well as negatively affect treatment outcome. Few therapeutic options are, however, currently available to improve the prognosis of patients with vascular dementia and cognitive impairment, mixed AD dementia with vascular pathology, or other memory disorders. Emerging evidence, however, indicates that, like AD and other memory disorders, synaptic impairment underlies much of the memory impairment in the cognitive decline of vascular cognitive impairment and vascular dementia. Effective rescues of the memory functions might be achieved through synaptic and memory therapeutics, targeting distinct molecular signaling pathways that support the formation of new synapses and maintaining their connections. Potential therapeutic agents include: 1) memory therapeutic agents that rescue synaptic and memory functions after the brain insults; 2) anti-pathologic therapeutics and an effective management of vascular risk factors; and 3) preventative therapeutic agents that achieve memory therapy through functional enhancement. Their development and potential as clinically effective memory therapeutics for vascular cognitive impairment and dementia are discussed in this review. These therapeutic agents are also likely to benefit patients with AD and/or other types of memory disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. [Vascular Calcification - Pathological Mechanism and Clinical Application - . Role of vascular smooth muscle cells in vascular calcification].

    PubMed

    Kurabayashi, Masahiko

    2015-05-01

    Vascular calcification is commonly seen with aging, chronic kidney disese (CKD), diabetes, and atherosclerosis, and is closely associated with cardiovascular morbidity and mortality. Vascular calcification has long been regarded as the final stage of degeneration and necrosis of arterial wall and a passive, unregulated process. However, it is now known to be an active and tightly regulated process involved with phenotypic transition of vascular smooth muscle cells (VSMC) that resembles bone mineralization. Briefly, calcium deposits of atherosclerotic plaque consist of hydroxyapatite and may appear identical to fully formed lamellar bone. By using a genetic fate mapping strategy, VSMC of the vascular media give rise to the majority of the osteochondrogenic precursor- and chondrocyte-like cells observed in the calcified arterial media of MGP (- / -) mice. Osteogenic differentiation of VSMC is characterized by the expression of bone-related molecules including bone morphogenetic protein (BMP) -2, Msx2 and osteopontin, which are produced by osteoblasts and chondrocytes. Our recent findings are that (i) Runx2 and Notch1 induce osteogenic differentiation, and (ii) advanced glycation end-product (AGE) /receptor for AGE (RAGE) and palmitic acid promote osteogenic differentiation of VSMC. To understand of the molecular mechanisms of vascular calcification is now under intensive research area.

  4. Predictors of electrocardiographic abnormalities in type 1 Diabetes: the Wisconsin Epidemiologic Study of Diabetic Retinopathy.

    PubMed

    O'Neal, Wesley T; Lee, Kristine E; Soliman, Elsayed Z; Klein, Ronald; Klein, Barbara E K

    2017-03-01

    To determine the incidence and determinants of developing abnormalities on the 12-lead electrocardiogram (ECG) in persons with type 1 diabetes. We evaluated the distribution of ECG abnormalities and risk factors for developing new abnormalities in 266 (mean age = 44 years ± 9.0; 50 % female) people with type 1 diabetes from the Wisconsin Epidemiologic Study of Diabetic Retinopathy. This analysis included participants with complete ECG data from study visit 5 (2000-2001) and follow-up ECGs from study visit 7 (2012-2014). ECG abnormalities were classified as major and minor according to Minnesota Code Classification. At baseline, 94 (35 %) participants had at least one ECG abnormality, including 13 major ECG abnormalities. At follow-up, 117 (44 %) participants developed at least one new ECG abnormality, including 35 new major ECG abnormalities. In a multivariable logistic regression model, older age (per 5-year increase: OR = 1.31, 95 % CI = 1.08, 1.60) was associated with the development of at least one new ECG abnormality, while serum HDL cholesterol (per 10-unit increase: OR = 0.98, 95 % CI = 0.96, 1.00) was protective against developing new ECG abnormalities. The development of new ECG abnormalities is common in type 1 diabetes. Older age and HDL cholesterol are independent risk factors for developing new ECG abnormalities. Further research is needed to determine whether routine ECG screening is indicated in people with type 1 diabetes to identify those with underlying subclinical coronary heart disease.

  5. Endothelial cell expression of adhesion molecules is induced by fetal plasma from pregnancies with umbilical placental vascular disease.

    PubMed

    Wang, Xin; Athayde, Neil; Trudinger, Brian

    2002-07-01

    To test the hypothesis that local production with spill into the fetal circulation of factor(s) injurious to endothelium is responsible for the vascular pathology present when the umbilical artery Doppler study is abnormal. Expression of adhesion molecules is a feature of endothelial cell activation. Case-control study. University teaching hospital. Fetal plasma was collected from 27 normal pregnancies, 39 pregnancies with umbilical placental vascular disease defined by abnormal umbilical artery Doppler and 11 pregnancies with pre-eclampsia and normal umbilical artery Doppler. Isolated and cultured human umbilical vein endothelial cells from normal pregnancies were incubated with fetal plasma from three study groups. mRNA expression of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1) were assessed by reverse transcription-polymerase chain reaction. To confirm the occurrence of this in vivo, we measured the levels of soluble fractions of sICAM-1, sVCAM-1 and sPECAM-1 in the fetal circulation in the fetal plasma used for endothelial cell incubation. The mRNA expression of ICAM-1 [median 1.1 (interquartile range 0.5-1.9) vs 0.7 (0.3-1.2), P < 0.05] and PECAM-1 [2.1 (1.2-3.0) vs 1.5 (0.7-2.1), P < 0.05] was significantly higher following incubation with fetal plasma from umbilical placental vascular disease compared with the normal group. There was no difference in the expression of VCAM-1 [1.2 (0.9-1.8) vs 1.1 (0.8-1.6), ns]. The group with maternal pre-eclampsia and normal umbilical artery Doppler did not differ from the normal group. In the umbilical placental vascular disease group, the results were similar in the presence or absence of pre-eclampsia. For soluble fractions of the adhesion molecules released into the fetal circulation, we found the levels (ng/mL) of sICAM- I [median 248.5 (interquartile range 197.3-315.7) vs 174.2 (144.5-212.9), P < 0.05] and s

  6. Nestin in the epididymis is expressed in vascular wall cells and is regulated during postnatal development and in case of testosterone deficiency.

    PubMed

    Reckmann, Ansgar N; Tomczyk, Claudia U M; Davidoff, Michail S; Michurina, Tatyana V; Arnhold, Stefan; Müller, Dieter; Mietens, Andrea; Middendorff, Ralf

    2018-01-01

    Vascular smooth muscle cells (SMCs), distinguished by the expression of the neuronal stem cell marker nestin, may represent stem cell-like progenitor cells in various organs including the testis. We investigated epididymal tissues of adult nestin-GFP mice, rats after Leydig cell depletion via ethane dimethane sulfonate (EDS), rats and mice during postnatal development and human tissues. By use of Clarity, a histochemical method to illustrate a three-dimensional picture, we could demonstrate nestin-GFP positive cells within the vascular network. We localized nestin in the epididymis in proliferating vascular SMCs by colocalization with both smooth muscle actin and PCNA, and it was distinct from CD31-positive endothelial cells. The same nestin localization was found in the human epididymis. However, nestin was not found in SMCs of the epididymal duct. Nestin expression is high during postnatal development of mouse and rat and down-regulated towards adulthood when testosterone levels increase. Nestin increases dramatically in rats after Leydig cell ablation with EDS and subsequently low testosterone levels. Interestingly, during this period, the expression of androgen receptor in the epididymis is low and increases until nestin reaches normal levels of adulthood. Here we show that nestin, a common marker for neuronal stem cells, is also expressed in the vasculature of the epididymis. Our results give new insights into the yet underestimated role of proliferating nestin-expressing vascular SMCs during postnatal development and repair of the epididymis.

  7. Late onset canonical babbling: a possible early marker of abnormal development.

    PubMed

    Oller, D K; Eilers, R E; Neal, A R; Cobo-Lewis, A B

    1998-11-01

    By their 10th month of life, typically developing infants produce canonical babbling, which includes the well-formed syllables required for meaningful speech. Research suggests that emerging speech or language-related disorders might be associated with late onset of canonical babbling. Onset of canonical babbling was investigated for 1,536 high-risk infants, at about 10-months corrected age. Parental report by open-ended questionnaire was found to be an efficient method for ascertaining babbling status. Although delays were infrequent, they were often associated with genetic, neurological, anatomical, and/or physiological abnormalities. Over half the cases of late canonical babbling were not, at the time they were discovered associated with prior significant medical diagnoses. Late canonical-babbling onset may be a predictor of later developmental disabilities, including problems in speech, language, and reading.

  8. Complex patterns of abnormal heartbeats

    NASA Technical Reports Server (NTRS)

    Schulte-Frohlinde, Verena; Ashkenazy, Yosef; Goldberger, Ary L.; Ivanov, Plamen Ch; Costa, Madalena; Morley-Davies, Adrian; Stanley, H. Eugene; Glass, Leon

    2002-01-01

    Individuals having frequent abnormal heartbeats interspersed with normal heartbeats may be at an increased risk of sudden cardiac death. However, mechanistic understanding of such cardiac arrhythmias is limited. We present a visual and qualitative method to display statistical properties of abnormal heartbeats. We introduce dynamical "heartprints" which reveal characteristic patterns in long clinical records encompassing approximately 10(5) heartbeats and may provide information about underlying mechanisms. We test if these dynamics can be reproduced by model simulations in which abnormal heartbeats are generated (i) randomly, (ii) at a fixed time interval following a preceding normal heartbeat, or (iii) by an independent oscillator that may or may not interact with the normal heartbeat. We compare the results of these three models and test their limitations to comprehensively simulate the statistical features of selected clinical records. This work introduces methods that can be used to test mathematical models of arrhythmogenesis and to develop a new understanding of underlying electrophysiologic mechanisms of cardiac arrhythmia.

  9. Convergent evolution of vascular optimization in kelp (Laminariales).

    PubMed

    Drobnitch, Sarah Tepler; Jensen, Kaare H; Prentice, Paige; Pittermann, Jarmila

    2015-10-07

    Terrestrial plants and mammals, although separated by a great evolutionary distance, have each arrived at a highly conserved body plan in which universal allometric scaling relationships govern the anatomy of vascular networks and key functional metabolic traits. The universality of allometric scaling suggests that these phyla have each evolved an 'optimal' transport strategy that has been overwhelmingly adopted by extant species. To truly evaluate the dominance and universality of vascular optimization, however, it is critical to examine other, lesser-known, vascularized phyla. The brown algae (Phaeophyceae) are one such group--as distantly related to plants as mammals, they have convergently evolved a plant-like body plan and a specialized phloem-like transport network. To evaluate possible scaling and optimization in the kelp vascular system, we developed a model of optimized transport anatomy and tested it with measurements of the giant kelp, Macrocystis pyrifera, which is among the largest and most successful of macroalgae. We also evaluated three classical allometric relationships pertaining to plant vascular tissues with a diverse sampling of kelp species. Macrocystis pyrifera displays strong scaling relationships between all tested vascular parameters and agrees with our model; other species within the Laminariales display weak or inconsistent vascular allometries. The lack of universal scaling in the kelps and the presence of optimized transport anatomy in M. pyrifera raises important questions about the evolution of optimization and the possible competitive advantage conferred by optimized vascular systems to multicellular phyla. © 2015 The Author(s).

  10. Vitamins E and C - effects on matrix components in the vascular system

    USDA-ARS?s Scientific Manuscript database

    The connective tissue in the vascular system, consisting mainly of vascular smooth muscle cells (VSMC) and the interstitial extracellular matrix (ECM), plays important roles in the maintenance of an intact vascular wall as well as in the repair of atherosclerotic lesions during disease development. ...

  11. Graph analysis of cell clusters forming vascular networks

    NASA Astrophysics Data System (ADS)

    Alves, A. P.; Mesquita, O. N.; Gómez-Gardeñes, J.; Agero, U.

    2018-03-01

    This manuscript describes the experimental observation of vasculogenesis in chick embryos by means of network analysis. The formation of the vascular network was observed in the area opaca of embryos from 40 to 55 h of development. In the area opaca endothelial cell clusters self-organize as a primitive and approximately regular network of capillaries. The process was observed by bright-field microscopy in control embryos and in embryos treated with Bevacizumab (Avastin), an antibody that inhibits the signalling of the vascular endothelial growth factor (VEGF). The sequence of images of the vascular growth were thresholded, and used to quantify the forming network in control and Avastin-treated embryos. This characterization is made by measuring vessels density, number of cell clusters and the largest cluster density. From the original images, the topology of the vascular network was extracted and characterized by means of the usual network metrics such as: the degree distribution, average clustering coefficient, average short path length and assortativity, among others. This analysis allows to monitor how the largest connected cluster of the vascular network evolves in time and provides with quantitative evidence of the disruptive effects that Avastin has on the tree structure of vascular networks.

  12. The Renin-Angiotensin-Aldosterone System in Vascular Inflammation and Remodeling

    PubMed Central

    Pacurari, Maricica; Kafoury, Ramzi; Tchounwou, Paul B.; Ndebele, Kenneth

    2014-01-01

    The RAAS through its physiological effectors plays a key role in promoting and maintaining inflammation. Inflammation is an important mechanism in the development and progression of CVD such as hypertension and atherosclerosis. In addition to its main role in regulating blood pressure and its role in hypertension, RAAS has proinflammatory and profibrotic effects at cellular and molecular levels. Blocking RAAS provides beneficial effects for the treatment of cardiovascular and renal diseases. Evidence shows that inhibition of RAAS positively influences vascular remodeling thus improving CVD outcomes. The beneficial vascular effects of RAAS inhibition are likely due to decreasing vascular inflammation, oxidative stress, endothelial dysfunction, and positive effects on regeneration of endothelial progenitor cells. Inflammatory factors such as ICAM-1, VCAM-1, TNFα, IL-6, and CRP have key roles in mediating vascular inflammation and blocking RAAS negatively modulates the levels of these inflammatory molecules. Some of these inflammatory markers are clinically associated with CVD events. More studies are required to establish long-term effects of RAAS inhibition on vascular inflammation, vascular cells regeneration, and CVD clinical outcomes. This review presents important information on RAAS's role on vascular inflammation, vascular cells responses to RAAS, and inhibition of RAAS signaling in the context of vascular inflammation, vascular remodeling, and vascular inflammation-associated CVD. Nevertheless, the review also equates the need to rethink and rediscover new RAAS inhibitors. PMID:24804145

  13. Developmental abnormalities of the posterior pituitary gland.

    PubMed

    di Iorgi, Natascia; Secco, Andrea; Napoli, Flavia; Calandra, Erika; Rossi, Andrea; Maghnie, Mohamad

    2009-01-01

    While the molecular mechanisms of anterior pituitary development are now better understood than in the past, both in animals and in humans, little is known about the mechanisms regulating posterior pituitary development. The posterior pituitary gland is formed by the evagination of neural tissue from the floor of the third ventricle. It consists of the distal axons of the hypothalamic magnocellular neurones that shape the neurohypophysis. After its downward migration, it is encapsulated together with the ascending ectodermal cells of Rathke's pouch which form the anterior pituitary. By the end of the first trimester, this development is completed and vasopressin and oxytocin can be detected in neurohypophyseal tissue. Abnormal posterior pituitary migration such as the ectopic posterior pituitary lobe appearing at the level of median eminence or along the pituitary stalk have been reported in idiopathic GH deficiency or in subjects with HESX1, LHX4 and SOX3 gene mutations. Another intriguing feature of abnormal posterior pituitary development involves genetic forms of posterior pituitary neurodegeneration that have been reported in autosomal-dominant central diabetes insipidus and Wolfram disease. Defining the phenotype of the posterior pituitary gland can have significant clinical implications for management and counseling, as well as providing considerable insight into normal and abnormal mechanisms of posterior pituitary development in humans.

  14. Melatonin Decreases Pulmonary Vascular Remodeling and Oxygen Sensitivity in Pulmonary Hypertensive Newborn Lambs

    PubMed Central

    Astorga, Cristian R.; González-Candia, Alejandro; Candia, Alejandro A.; Figueroa, Esteban G.; Cañas, Daniel; Ebensperger, Germán; Reyes, Roberto V.; Llanos, Aníbal J.; Herrera, Emilio A.

    2018-01-01

    Background: Chronic hypoxia and oxidative stress during gestation lead to pulmonary hypertension of the neonate (PHN), a condition characterized by abnormal pulmonary arterial reactivity and remodeling. Melatonin has strong antioxidant properties and improves pulmonary vascular function. Here, we aimed to study the effects of melatonin on the function and structure of pulmonary arteries from PHN lambs. Methods: Twelve lambs (Ovis aries) gestated and born at highlands (3,600 m) were instrumented with systemic and pulmonary catheters. Six of them were assigned to the control group (CN, oral vehicle) and 6 were treated with melatonin (MN, 1 mg.kg−1.d−1) during 10 days. At the end of treatment, we performed a graded oxygenation protocol to assess cardiopulmonary responses to inspired oxygen variations. Further, we obtained lung and pulmonary trunk samples for histology, molecular biology, and immunohistochemistry determinations. Results: Melatonin reduced the in vivo pulmonary pressor response to oxygenation changes. In addition, melatonin decreased cellular density of the media and diminished the proliferation marker KI67 in resistance vessels and pulmonary trunk (p < 0.05). This was associated with a decreased in the remodeling markers α-actin (CN 1.28 ± 0.18 vs. MN 0.77 ± 0.04, p < 0.05) and smoothelin-B (CN 2.13 ± 0.31 vs. MN 0.88 ± 0.27, p < 0.05). Further, melatonin increased vascular density by 134% and vascular luminal surface by 173% (p < 0.05). Finally, melatonin decreased nitrotyrosine, an oxidative stress marker, in small pulmonary vessels (CN 5.12 ± 0.84 vs. MN 1.14 ± 0.34, p < 0.05). Conclusion: Postnatal administration of melatonin blunts the cardiopulmonary response to hypoxia, reduces the pathological vascular remodeling, and increases angiogenesis in pulmonary hypertensive neonatal lambs.These effects improve the pulmonary vascular structure and function in the neonatal period under chronic hypoxia. PMID:29559926

  15. Incidence of abnormal liver biochemical tests in hyperthyroidism.

    PubMed

    Lin, Tiffany Y; Shekar, Anshula O; Li, Ning; Yeh, Michael W; Saab, Sammy; Wilson, Mark; Leung, Angela M

    2017-05-01

    Abnormal serum liver function tests are common in patients with untreated thyrotoxicosis, even prior to the initiation of antithyroidal medications that may worsen the severity of the abnormal serum liver biochemistries. There is a wide range of the incidence of these abnormalities in the published literature. The aim of this study was to assess the risks factors and threshold of thyrotoxicosis severity for developing an abnormal liver biochemical test upon the diagnosis of new thyrotoxicosis. Single-institution retrospective cohort study. Patients of ≥18 years old receiving medical care at a large, academic, urban US medical centre between 2002-2016. Inclusion criteria were a serum thyroid stimulating hormone (TSH) concentration of <0·3 mIU/l or ICD-9 code for thyrotoxicosis, with thyrotoxicosis confirmed by either a concurrent elevated serum triiodothyronine (T3) or thyroxine (T4) concentration ([total or free] within 3 months), and an available liver biochemical test(s) within 6 months of thyrotoxicosis. The biochemical liver tests assessed were serum aspartate transaminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AP), gamma-glutamyltransferase (GGT), total bilirubin, and conjugated bilirubin concentrations. In this cohort of 1514 subjects, the overall incidence of any biochemical liver test abnormality within 6 months of thyrotoxicosis was 39%. An initial serum TSH concentration <0·02 mIU/l, male gender, and African-American race were significant predictors of an abnormal serum liver biochemical test within 6 months of the diagnosis of new-onset untreated thyrotoxicosis. This study identifies risk factors for patients who develop an abnormal serum liver biochemical test result within 6 months of a diagnosis of untreated thyrotoxicosis. © 2017 John Wiley & Sons Ltd.

  16. Diagnosis and treatment of vascular damage in dementia.

    PubMed

    Biessels, Geert Jan

    2016-05-01

    This paper provides an overview of cognitive impairment due to vascular brain damage, which is referred to as vascular cognitive impairment (VCI). Over the past decades, we have seen marked progress in detecting VCI, both through maturation of diagnostic concepts and through advances in brain imaging, especially MRI. Yet in daily practice, it is often challenging to establish the diagnosis, particularly in patients where there is no evident temporal relation between a cerebrovascular event and cognitive dysfunction. Because vascular damage is such a common cause of cognitive dysfunction, it provides an obvious target for treatment. In patients whose cognitive dysfunction follows directly after a stroke, the etiological classification of this stroke will direct treatment. In many patients however, VCI develops due to so-called "silent vascular damage," without evident cerebrovascular events. In these patients, small vessel diseases (SVDs) are the most common cause. Yet no SVD-specific treatments currently exist, which is due to incomplete understanding of the pathophysiology. This review addresses developments in this field. It offers a framework to translate diagnostic criteria to daily practice, addresses treatment, and highlights some future perspectives. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia, edited by M. Paul Murphy, Roderick A. Corriveau, and Donna M. Wilcock. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Fetoplacental Vascular Endothelial Dysfunction as an Early Phenomenon in the Programming of Human Adult Diseases in Subjects Born from Gestational Diabetes Mellitus or Obesity in Pregnancy

    PubMed Central

    Leiva, Andrea; Pardo, Fabián; Ramírez, Marco A.; Farías, Marcelo; Casanello, Paola; Sobrevia, Luis

    2011-01-01

    Gestational diabetes mellitus (GDM) and obesity in pregnancy (OP) are pathological conditions associated with placenta vascular dysfunction coursing with metabolic changes at the fetoplacental microvascular and macrovascular endothelium. These alterations are seen as abnormal expression and activity of the cationic amino acid transporters and endothelial nitric oxide synthase isoform, that is, the “endothelial L-arginine/nitric oxide signalling pathway.” Several studies suggest that the endogenous nucleoside adenosine along with insulin, and potentially arginases, are factors involved in GDM-, but much less information regards their role in OP-associated placental vascular alterations. There is convincing evidence that GDM and OP prone placental endothelium to an “altered metabolic state” leading to fetal programming evidenced at birth, a phenomenon associated with future development of chronic diseases. In this paper it is suggested that this pathological state could be considered as a metabolic marker that could predict occurrence of diseases in adulthood, such as cardiovascular disease, obesity, diabetes mellitus (including gestational diabetes), and metabolic syndrome. PMID:22144986

  18. Direct injection of vascular endothelial growth factor into the ovary of mice promotes follicular development.

    PubMed

    Quintana, Ramiro; Kopcow, Laura; Sueldo, Carlos; Marconi, Guillermo; Rueda, Nidia Gomez; Barañao, Rosa Inés

    2004-10-01

    To investigate the effects of an ovarian injection of vascular endothelial growth factor (VEGF) on antral follicle development, neoangiogenesis, and apoptosis. Controlled laboratory study. University-affiliated fertility center. Balb/c female mice (n = 32) were studied. Mice were divided into four groups: control group (C) n = 6, no treatment; hyperstimulated group (HS), n = 8, ovaries were stimulated with 7.5 IU pregnant mare serum gonadotropin (PMSG) and 10 IU of hCG; VEGF group (V), n = 8, injected with 0.1 mL of VEGF (0.2 microg) in each ovary; V+HS, n = 8 injected with VEGF and 2 weeks later hyperstimulated. Number of antral and luteinized follicles, number of vessels, and percentage of Bcl-2-positive cells. The number of antral follicles with VEGF was higher than in the C and HS groups (16.0 +/- 2.5 vs. 6.0 +/- 0.9 and 11.3 +/- 0.6, respectively, p<0.005). All treatments significantly increased the number of vessels (C: 5.0 +/- 0.5 vs. V: 20.0 +/- 4.8, p<0.005 and V+HS: 22.2 +/- 1.2, p<0.01), as well as increased Bcl-2-positive cells compared to controls (C: 0; V: 11.8 +/- 3.5, p<0.005; V+HS: 12.5 +/- 3.7, p<0.005). Our findings demonstrated that a direct injection of VEGF into the mouse ovary results in the development of an enhanced vascular network promoting follicular development and diminishing apoptosis.

  19. Vascularization strategies for tissue engineers.

    PubMed

    Dew, Lindsey; MacNeil, Sheila; Chong, Chuh Khiun

    2015-01-01

    All tissue-engineered substitutes (with the exception of cornea and cartilage) require a vascular network to provide the nutrient and oxygen supply needed for their survival in vivo. Unfortunately the process of vascular ingrowth into an engineered tissue can take weeks to occur naturally and during this time the tissues become starved of essential nutrients, leading to tissue death. This review initially gives a brief overview of the processes and factors involved in the formation of new vasculature. It then summarizes the different approaches that are being applied or developed to overcome the issue of slow neovascularization in a range of tissue-engineered substitutes. Some potential future strategies are then discussed.

  20. Development and experimental validation of computational methods to simulate abnormal thermal and structural environments

    NASA Astrophysics Data System (ADS)

    Moya, J. L.; Skocypec, R. D.; Thomas, R. K.

    1993-09-01

    Over the past 40 years, Sandia National Laboratories (SNL) has been actively engaged in research to improve the ability to accurately predict the response of engineered systems to abnormal thermal and structural environments. These engineered systems contain very hazardous materials. Assessing the degree of safety/risk afforded the public and environment by these engineered systems, therefore, is of upmost importance. The ability to accurately predict the response of these systems to accidents (to abnormal environments) is required to assess the degree of safety. Before the effect of the abnormal environment on these systems can be determined, it is necessary to ascertain the nature of the environment. Ascertaining the nature of the environment, in turn, requires the ability to physically characterize and numerically simulate the abnormal environment. Historically, SNL has demonstrated the level of safety provided by these engineered systems by either of two approaches: a purely regulatory approach, or by a probabilistic risk assessment (PRA). This paper will address the latter of the two approaches.

  1. Chronic hyperglicemia and nitric oxide bioavailability play a pivotal role in pro-atherogenic vascular modifications

    PubMed Central

    De Filippis, Elena Anna

    2007-01-01

    Diabetes is associated with accelerated atherosclerosis and macrovascular complications are a major cause of morbidity and mortality in this disease. Although our understanding of vascular pathology has lately greatly improved, the mechanism(s) underlying enhanced atherosclerosis in diabetes remain unclear. Endothelial cell dysfunction is emerging as a key component in the pathophysiology of cardiovascular abnormalities associated with diabetes. Although it has been established that endothelium plays a critical role in overall homeostasis of the vessels, vascular smooth muscle cells (vSMC) in the arterial intima have a relevant part in the development of atherosclerosis in diabetes. However, high glucose induced alterations in vSMC behaviour are not fully characterized. Several studies have reported that impaired nitric oxide (NO) synthesis and/or actions are often present in diabetes and endothelial dysfunction. Furthermore, although endothelial cells are by far the main site of vascular NO synthesis, vSMC do express nitric oxyde synthases (NOSs) and NO synthesis in vSMC might be important in vessel’s function. Although it is known that vSMC contribute to vascular pathology in diabetes by their change from a quiescent state to an activated proliferative and migratory phenotype (termed phenotypic modulation), whether this altered phenotypic modulation might also involve alterations in the nitrergic systems is still controversial. Our recent data indicate that, in vivo, chronic hyperglycemia might induce an increased number of vSMC proliferative clones which persist in culture and are associated with increased eNOS expression and activity. However, upregulation of eNOS and increased NO synthesis occur in the presence of a marked concomitant increase of O2− production. Since NO bioavailabilty might not be increased in high glucose stimulated vSMC, it is tempting to hypothesize that the proliferative phenotype observed in cells from diabetic rats is associated

  2. Diverticular Disease of the Colon: Neuromuscular Function Abnormalities.

    PubMed

    Bassotti, Gabrio; Villanacci, Vincenzo; Bernardini, Nunzia; Dore, Maria P

    2016-10-01

    Colonic diverticular disease is a frequent finding in daily clinical practice. However, its pathophysiological mechanisms are largely unknown. This condition is likely the result of several concomitant factors occurring together to cause anatomic and functional abnormalities, leading as a result to the outpouching of the colonic mucosa. A pivotal role seems to be played by an abnormal colonic neuromuscular function, as shown repeatedly in these patients, and by an altered visceral perception. There is recent evidence that these abnormalities might be related to the derangement of the enteric innervation, to an abnormal distribution of mucosal neuropeptides, and to low-grade mucosal inflammation. The latter might be responsible for the development of visceral hypersensitivity, often causing abdominal pain in a subset of these patients.

  3. SimVascular: An Open Source Pipeline for Cardiovascular Simulation.

    PubMed

    Updegrove, Adam; Wilson, Nathan M; Merkow, Jameson; Lan, Hongzhi; Marsden, Alison L; Shadden, Shawn C

    2017-03-01

    Patient-specific cardiovascular simulation has become a paradigm in cardiovascular research and is emerging as a powerful tool in basic, translational and clinical research. In this paper we discuss the recent development of a fully open-source SimVascular software package, which provides a complete pipeline from medical image data segmentation to patient-specific blood flow simulation and analysis. This package serves as a research tool for cardiovascular modeling and simulation, and has contributed to numerous advances in personalized medicine, surgical planning and medical device design. The SimVascular software has recently been refactored and expanded to enhance functionality, usability, efficiency and accuracy of image-based patient-specific modeling tools. Moreover, SimVascular previously required several licensed components that hindered new user adoption and code management and our recent developments have replaced these commercial components to create a fully open source pipeline. These developments foster advances in cardiovascular modeling research, increased collaboration, standardization of methods, and a growing developer community.

  4. Neural retina-specific Aldh1a1 controls dorsal choroidal vascular development via Sox9 expression in retinal pigment epithelial cells

    PubMed Central

    Goto, So; Misaki, Kazuyo; Yonemura, Shigenobu; Sugita, Sunao; Ito, Hiromi; Ohigashi, Yoko; Ema, Masatsugu; Sakaguchi, Hirokazu; Nishida, Kohji; Takahashi, Masayo

    2018-01-01

    VEGF secreted from retinal pigment epithelial (RPE) cells is responsible for the choroidal vascular development; however, the molecular regulatory mechanism is unclear. We found that Aldh1a1–/– mice showed choroidal hypoplasia with insufficient vascularization in the dorsal region, although Aldh1a1, an enzyme that synthesizes retinoic acids (RAs), is expressed in the dorsal neural retina, not in the RPE/choroid complex. The level of VEGF in the RPE/choroid was significantly decreased in Aldh1a1–/– mice, and RA-dependent enhancement of VEGF was observed in primary RPE cells. An RA-deficient diet resulted in dorsal choroidal hypoplasia, and simple RA treatment of Aldh1a1–/– pregnant females suppressed choroid hypoplasia in their offspring. We also found downregulation of Sox9 in the dorsal neural retina and RPE of Aldh1a1–/– mice and RPE-specific disruption of Sox9 phenocopied Aldh1a1–/– choroidal development. These results suggest that RAs produced by Aldh1a1 in the neural retina directs dorsal choroidal vascular development via Sox9 upregulation in the dorsal RPE cells to enhance RPE-derived VEGF secretion. PMID:29609731

  5. Abnormal global and local event detection in compressive sensing domain

    NASA Astrophysics Data System (ADS)

    Wang, Tian; Qiao, Meina; Chen, Jie; Wang, Chuanyun; Zhang, Wenjia; Snoussi, Hichem

    2018-05-01

    Abnormal event detection, also known as anomaly detection, is one challenging task in security video surveillance. It is important to develop effective and robust movement representation models for global and local abnormal event detection to fight against factors such as occlusion and illumination change. In this paper, a new algorithm is proposed. It can locate the abnormal events on one frame, and detect the global abnormal frame. The proposed algorithm employs a sparse measurement matrix designed to represent the movement feature based on optical flow efficiently. Then, the abnormal detection mission is constructed as a one-class classification task via merely learning from the training normal samples. Experiments demonstrate that our algorithm performs well on the benchmark abnormal detection datasets against state-of-the-art methods.

  6. Vascular repair strategies in type 2 diabetes: novel insights

    PubMed Central

    Kuschnerus, Kira; Landmesser, Ulf

    2015-01-01

    Impaired functions of vascular cells are responsible for the majority of complications in patients with type 2 diabetes (T2D). Recently a better understanding of mechanisms contributing to development of vascular dysfunction and the role of systemic inflammatory activation and functional alterations of several secretory organs, of which adipose tissue has more recently been investigated, has been achieved. Notably, the progression of vascular disease within the context of T2D appears to be driven by a multitude of incremental signaling shifts. Hence, successful therapies need to target several mechanisms in parallel, and over a long time period. This review will summarize the latest molecular strategies and translational developments of cardiovascular therapy in patients with T2D. PMID:26543824

  7. Aerobic exercise and other healthy lifestyle factors that influence vascular aging

    PubMed Central

    Santos-Parker, Jessica R.; LaRocca, Thomas J.

    2014-01-01

    Cardiovascular diseases (CVDs) remain the leading cause of death in the United States and other modern societies. Advancing age is the major risk factor for CVD, primarily due to stiffening of the large elastic arteries and the development of vascular endothelial dysfunction. In contrast, regular aerobic exercise protects against the development of large elastic artery stiffness and vascular endothelial dysfunction with advancing age. Moreover, aerobic exercise interventions reduce arterial stiffness and restore vascular endothelial function in previously sedentary middle-aged/older adults. Aerobic exercise exerts its beneficial effects on arterial function by modulating structural proteins, reducing oxidative stress and inflammation, and restoring nitric oxide bioavailability. Aerobic exercise may also promote “resistance” against factors that reduce vascular function and increase CVD risk with age. Preventing excessive increases in abdominal adiposity, following healthy dietary practices, maintaining a low CVD risk factor profile, and, possibly, selective use of pharmaceuticals and nutraceuticals also play a major role in preserving vascular function with aging. PMID:25434012

  8. Aerobic exercise and other healthy lifestyle factors that influence vascular aging.

    PubMed

    Santos-Parker, Jessica R; LaRocca, Thomas J; Seals, Douglas R

    2014-12-01

    Cardiovascular diseases (CVDs) remain the leading cause of death in the United States and other modern societies. Advancing age is the major risk factor for CVD, primarily due to stiffening of the large elastic arteries and the development of vascular endothelial dysfunction. In contrast, regular aerobic exercise protects against the development of large elastic artery stiffness and vascular endothelial dysfunction with advancing age. Moreover, aerobic exercise interventions reduce arterial stiffness and restore vascular endothelial function in previously sedentary middle-aged/older adults. Aerobic exercise exerts its beneficial effects on arterial function by modulating structural proteins, reducing oxidative stress and inflammation, and restoring nitric oxide bioavailability. Aerobic exercise may also promote "resistance" against factors that reduce vascular function and increase CVD risk with age. Preventing excessive increases in abdominal adiposity, following healthy dietary practices, maintaining a low CVD risk factor profile, and, possibly, selective use of pharmaceuticals and nutraceuticals also play a major role in preserving vascular function with aging. Copyright © 2014 The American Physiological Society.

  9. Abnormal Uterine Bleeding FAQ

    MedlinePlus

    ... Abnormal Uterine Bleeding • What is a normal menstrual cycle? • When is bleeding abnormal? • At what ages is ... abnormal bleeding? •Glossary What is a normal menstrual cycle? The normal length of the menstrual cycle is ...

  10. The relationship of photoreceptor degeneration to retinal vascular development and loss in mutant rhodopsin transgenic and RCS rats.

    PubMed

    Pennesi, Mark E; Nishikawa, Shimpei; Matthes, Michael T; Yasumura, Douglas; LaVail, Matthew M

    2008-12-01

    The early loss of photoreceptors in some retinal degenerations in mice has been shown to have a profound effect on vascular development of the retina. To better characterize this relationship, we have examined the formation of retinal blood vessels during the first month of life in 8 lines of transgenic rats with different ages of onset and rates of photoreceptor cell loss mediated by the expression of mutant rhodopsin (P23H and S334ter). The number of capillary profiles in the superficial plexus (SP) and deep capillary plexus (DCP) of the retina were quantified in retinal sections taken at postnatal day (P) 8, 10, 12, 15 and 30. In normal wild-type rats, the SP and DCP had mostly established mature, adult patterns by P15, as previously shown. In the transgenic rats, the loss of photoreceptors had relatively little effect on the SP. By contrast, the loss of photoreceptors during vascular development had a major impact on the DCP. In the two lines with early and most rapid photoreceptor loss, S334ter-7 and S334ter-3, where about 90% and 65%, respectively, of the photoreceptors were already lost by P15, the DCP either failed to form (S334ter-7) or the number of capillary profiles was less than 7% of controls (S334ter-3). In lines where almost all photoreceptors were still present at P15 (S334ter-4, S334ter-9, P23H-2 and P23H-3), the number of profiles in the DCP were the same as in wild-type controls at P30. In two lines with an intermediate rate of degeneration (S334ter-5 and P23H-1), where only about 25% of the photoreceptors were lost by P15, there was an intermediate number of vascular profiles in the DCP at P30. Thus, a very close relationship between the number of photoreceptors and vessel profiles in the DCP during its development exists in the transgenic rats, and the loss of photoreceptors results in the failure or inhibition of the DCP to develop. Several mechanisms may explain this relationship including changes in the level of physiological oxygen tension

  11. Plant Vascular Biology 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Biao

    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes.more » The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.« less

  12. Vascular pattern formation in plants.

    PubMed

    Scarpella, Enrico; Helariutta, Ykä

    2010-01-01

    Reticulate tissue systems exist in most multicellular organisms, and the principles underlying the formation of cellular networks have fascinated philosophers, mathematicians, and biologists for centuries. In particular, the beautiful and varied arrangements of vascular tissues in plants have intrigued mankind since antiquity, yet the organizing signals have remained elusive. Plant vascular tissues form systems of interconnected cell files throughout the plant body. Vascular cells are aligned with one another along continuous lines, and vascular tissues differentiate at reproducible positions within organ environments. However, neither the precise path of vascular differentiation nor the exact geometry of vascular networks is fixed or immutable. Several recent advances converge to reconcile the seemingly conflicting predictability and plasticity of vascular tissue patterns. A control mechanism in which an apical-basal flow of signal establishes a basic coordinate system for body axis formation and vascular strand differentiation, and in which a superimposed level of radial organizing cues elaborates cell patterns, would generate a reproducible tissue configuration in the context of an underlying robust, self-organizing structure, and account for the simultaneous regularity and flexibility of vascular tissue patterns. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Evidence for altered placental blood flow and vascularity in compromised pregnancies

    PubMed Central

    Reynolds, Lawrence P; Caton, Joel S; Redmer, Dale A; Grazul-Bilska, Anna T; Vonnahme, Kimberly A; Borowicz, Pawel P; Luther, Justin S; Wallace, Jacqueline M; Wu, Guoyao; Spencer, Thomas E

    2006-01-01

    The placenta is the organ that transports nutrients, respiratory gases, and wastes between the maternal and fetal systems. Consequently, placental blood flow and vascular development are essential components of normal placental function and are critical to fetal growth and development. Normal fetal growth and development are important to ensure optimum health of offspring throughout their subsequent life course. In numerous sheep models of compromised pregnancy, in which fetal or placental growth, or both, are impaired, utero-placental blood flows are reduced. In the models that have been evaluated, placental vascular development also is altered. Recent studies found that treatments designed to increase placental blood flow can ‘rescue’ fetal growth that was reduced due to low maternal dietary intake. Placental blood flow and vascular development are thus potential therapeutic targets in compromised pregnancies. PMID:16469783

  14. Design of biomimetic vascular grafts with magnetic endothelial patterning.

    PubMed

    Fayol, Delphine; Le Visage, Catherine; Ino, Julia; Gazeau, Florence; Letourneur, Didier; Wilhelm, Claire

    2013-01-01

    The development of small diameter vascular grafts with a controlled pluricellular organization is still needed for effective vascular tissue engineering. Here, we describe a technological approach combining a tubular scaffold and magnetically labeled cells to create a pluricellular and organized vascular graft, the endothelialization of which could be monitored by MRI prior to transplantation. A novel type of scaffold was developed with a tubular geometry and a porous bulk structure enabling the seeding of cells in the scaffold pores. A homogeneous distribution of human mesenchymal stem cells in the macroporous structure was obtained by seeding the freeze-dried scaffold with the cell suspension. The efficient covering of the luminal surface of the tube was then made possible thanks to the implementation of a magnetic-based patterning technique. Human endothelial cells or endothelial progenitors were magnetically labeled with iron oxide nanoparticles and successfully attracted to the 2-mm lumen where they attached and formed a continuous endothelium. The combination of imaging modalities [fluorescence imaging, histology, and 3D magnetic resonance imaging (MRI)] evidenced the integrity of the vascular construct. In particular, the observation of different cell organizations in a vascular scaffold within the range of resolution of single cells by 4.7 T MRI is reported.

  15. A survey of abnormalities in the colon and rectum in patients with haemorrhoids.

    PubMed

    Koning, Mark V; Loffeld, Ruud J L F

    2010-07-07

    Haemorrhoids are a common problem in daily practice. However, symptoms may also be caused by other abnormalities in the rectum or colon. Data on the presence of these abnormalities in patients with haemorrhoids is sparse. To examine the prevalence of abnormalities of the colon or rectum in patients with and without haemorrhoids, stratified for age. In a 17-year period 1910 consecutive patients with haemorrhoids and 7936 patients without haemorrhoids were analysed retrospectively. All of these patients had an endoscopic examination for different clinical reasons. All significant endoscopic co-findings (diverticuli, polyps, cancer, angiodysplasia and varices, or colitis) were recorded. The patients were divided in 2 groups. Group 1 (n = 861 (45.1%)) consisted of patients with only haemorrhoids, group 2 (n = 1049 (54.9%)) consisted of patients with haemorrhoids and another endoscopic diagnosis. Patients in group 1 were significantly younger, mean age 55.3 +/- 14.1 years versus 67.4 +/- 12.1 years (p < 0.001), and underwent significantly more often a sigmoidoscopy, 11% versus 2% (p < 0.0001). Furthermore, endoscopic co-findings were found with increasing age. The majority of diverticuli, polyps, cancer and vascular lesions were detected in the age group above 50 years, while only colitis was more often present in the younger group. There was no significant difference in gender when group 1 and 2 were compared with the reference group. Diverticuli and angiodysplasia/varices occurred significantly more often in group 2. The other significant diagnoses were diagnosed more often in the reference group. In patients with haemorrhoids other abnormalities can be present. Especially in older patients the clinician must be cautious to attribute complaints solely to haemorrhoids.

  16. Vascular defects and sensorineural deafness in a mouse model of Norrie disease.

    PubMed

    Rehm, Heidi L; Zhang, Duan-Sun; Brown, M Christian; Burgess, Barbara; Halpin, Chris; Berger, Wolfgang; Morton, Cynthia C; Corey, David P; Chen, Zheng-Yi

    2002-06-01

    Norrie disease is an X-linked recessive syndrome of blindness, deafness, and mental retardation. A knock-out mouse model with an Ndp gene disruption was studied. We examined the hearing phenotype, including audiological, histological, and vascular evaluations. As is seen in humans, the mice had progressive hearing loss leading to profound deafness. The primary lesion was localized to the stria vascularis, which houses the main vasculature of the cochlea. Fluorescent dyes showed an abnormal vasculature in this region and eventual loss of two-thirds of the vessels. We propose that one of the principal functions of norrin in the ear is to regulate the interaction of the cochlea with its vasculature.

  17. Collagen vascular disease

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/001223.htm Collagen vascular disease To use the sharing features on ... were previously said to have "connective tissue" or "collagen vascular" disease. We now have names for many ...

  18. Arrested human embryos are more likely to have abnormal chromosomes than developing embryos from women of advanced maternal age.

    PubMed

    Qi, Shu-Tao; Liang, Li-Feng; Xian, Ye-Xing; Liu, Jian-Qiao; Wang, Weihua

    2014-01-01

    Aneuploidy is one of the major factors that result in low efficiency in human infertility treatment by in vitro fertilization (IVF). The development of DNA microarray technology allows for aneuploidy screening by analyzing all 23 pairs of chromosomes in human embryos. All chromosome screening for aneuploidy is more accurate than partial chromosome screening, as errors can occur in any chromosome. Currently, chromosome screening for aneuploidy is performed in developing embryos, mainly blastocysts. It has not been performed in arrested embryos and/or compared between developing embryos and arrested embryos from the same IVF cycle. The present study was designed to examine all chromosomes in blastocysts and arrested embryos from the same cycle in patients of advanced maternal ages. Embryos were produced by routine IVF procedures. A total of 90 embryos (45 blastocysts and 45 arrested embryos) from 17 patients were biopsied and analyzed by the Agilent DNA array platform. It was found that 50% of the embryos developed to blastocyst stage; however, only 15.6% of the embryos (both blastocyst and arrested) were euploid, and most (84.4%) of the embryos had chromosomal abnormalities. Further analysis indicated that 28.9% of blastocysts were euploid and 71.1% were aneuploid. By contrast, only one (2.2%) arrested embryo was euploid while others (97.8%) were aneuploid. The prevalence of multiple chromosomal abnormalities in the aneuploid embryos was also higher in the arrested embryos than in the blastocysts. These results indicate that high proportions of human embryos from patients of advanced maternal age are aneuploid, and the arrested embryos are more likely to have abnormal chromosomes than developing embryos.

  19. Diagnosis and management of hemangiomas and vascular malformations of the head and neck.

    PubMed

    Buckmiller, L M; Richter, G T; Suen, J Y

    2010-07-01

    Vascular anomalies are congenital errors in vascular development. They frequently involve the head, neck, and oral cavity. Subdivided into vascular tumors (hemangiomas) and vascular malformations, vascular anomalies remain poorly understood. However, growing interest and recent advances in the diagnosis, management, and molecular characterization of these lesions are improving treatment strategies. The role of the multidisciplinary team cannot be overstated. This review provides both basic and up-to-date knowledge on the most common vascular anomalies encountered by physicians and practitioners. Because treatment options for vascular anomalies are widely variable and often debated, this report aims to provide a comprehensive approach to these lesions based upon current concepts and practical clinical experience.

  20. Review of gestational diabetes mellitus effects on vascular structure and function.

    PubMed

    Jensen, Louise A; Chik, Constance L; Ryan, Edmond A

    2016-05-01

    Vascular dysfunction has been described in women with a history of gestational diabetes mellitus. Furthermore, previous gestational diabetes mellitus increases the risk of developing Type 2 diabetes mellitus, a risk factor for cardiovascular disease. Factors contributing to vascular changes remain uncertain. The aim of this review was to summarize vascular structure and function changes found to occur in women with previous gestational diabetes mellitus and to identify factors that contribute to vascular dysfunction. A systematic search of electronic databases yielded 15 publications from 1998 to March 2014 that met the inclusion criteria. Our review confirmed that previous gestational diabetes mellitus contributes to vascular dysfunction, and the most consistent risk factor associated with previous gestational diabetes mellitus and vascular dysfunction was elevated body mass index. Heterogeneity existed across studies in determining the relationship of glycaemic levels and insulin resistance to vascular dysfunction. © The Author(s) 2016.

  1. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult

    PubMed Central

    Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr -/- and in utero TCDD-exposed Ahr +/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr -/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  2. Dietary potassium regulates vascular calcification and arterial stiffness.

    PubMed

    Sun, Yong; Byon, Chang Hyun; Yang, Youfeng; Bradley, Wayne E; Dell'Italia, Louis J; Sanders, Paul W; Agarwal, Anupam; Wu, Hui; Chen, Yabing

    2017-10-05

    Vascular calcification is a risk factor that predicts adverse cardiovascular complications of several diseases including atherosclerosis. Reduced dietary potassium intake has been linked to cardiovascular diseases such as hypertension and incidental stroke, although the underlying molecular mechanisms remain largely unknown. Using the ApoE-deficient mouse model, we demonstrated for the first time to our knowledge that reduced dietary potassium (0.3%) promoted atherosclerotic vascular calcification and increased aortic stiffness, compared with normal (0.7%) potassium-fed mice. In contrast, increased dietary potassium (2.1%) attenuated vascular calcification and aortic stiffness. Mechanistically, reduction in the potassium concentration to the lower limit of the physiological range increased intracellular calcium, which activated a cAMP response element-binding protein (CREB) signal that subsequently enhanced autophagy and promoted vascular smooth muscle cell (VSMC) calcification. Inhibition of calcium signals and knockdown of either CREB or ATG7, an autophagy regulator, attenuated VSMC calcification induced by low potassium. Consistently, elevated autophagy and CREB signaling were demonstrated in the calcified arteries from low potassium diet-fed mice as well as aortic arteries exposed to low potassium ex vivo. These studies established a potentially novel causative role of dietary potassium intake in regulating atherosclerotic vascular calcification and stiffness, and uncovered mechanisms that offer opportunities to develop therapeutic strategies to control vascular disease.

  3. Urine - abnormal color

    MedlinePlus

    ... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  4. Can Signal Abnormalities Detected with MR Imaging in Knee Articular Cartilage Be Used to Predict Development of Morphologic Cartilage Defects? 48-Month Data from the Osteoarthritis Initiative

    PubMed Central

    Gersing, Alexandra S.; Mbapte Wamba, John; Nevitt, Michael C.; McCulloch, Charles E.; Link, Thomas M.

    2016-01-01

    Purpose To determine the incidence with which morphologic articular cartilage defects develop over 48 months in cartilage with signal abnormalities at baseline magnetic resonance (MR) imaging in comparison with the incidence in articular cartilage without signal abnormalities at baseline. Materials and Methods The institutional review boards of all participating centers approved this HIPAA-compliant study. Right knees of 90 subjects from the Osteoarthritis Initiative (mean age, 55 years ± 8 [standard deviation]; 51% women) with cartilage signal abnormalities but without morphologic cartilage defects at 3.0-T MR imaging and without radiographic osteoarthritis (Kellgren-Lawrence score, 0–1) were frequency matched for age, sex, Kellgren-Lawrence score, and body mass index with right knees in 90 subjects without any signal abnormalities or morphologic defects in the articular cartilage (mean age, 54 years ± 5; 51% women). Individual signal abnormalities (n = 126) on intermediate-weighted fast spin-echo MR images were categorized into four subgrades: subgrade A, hypointense; subgrade B, inhomogeneous; subgrade C, hyperintense; and subgrade D, hyperintense with swelling. The development of morphologic articular cartilage defects (Whole-Organ MR Imaging Score ≥2) at 48 months was analyzed on a compartment level and was compared between groups by using generalized estimating equation logistic regression models. Results Cartilage signal abnormalities were more frequent in the patellofemoral joint than in the tibiofemoral joint (59.5% vs 39.5%). Subgrade A was seen more frequently than were subgrades C and D (36% vs 22%). Incidence of morphologic cartilage defects at 48 months was 57% in cartilage with baseline signal abnormalities, while only 4% of compartments without baseline signal abnormalities developed morphologic defects at 48 months (all compartments combined and each compartment separately, P < .01). The development of morphologic defects was not

  5. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair.

    PubMed

    Xu, Qiang; Wang, Yanshu; Dabdoub, Alain; Smallwood, Philip M; Williams, John; Woods, Chad; Kelley, Matthew W; Jiang, Li; Tasman, William; Zhang, Kang; Nathans, Jeremy

    2004-03-19

    Incomplete retinal vascularization occurs in both Norrie disease and familial exudative vitreoretinopathy (FEVR). Norrin, the protein product of the Norrie disease gene, is a secreted protein of unknown biochemical function. One form of FEVR is caused by defects in Frizzled-4 (Fz4), a presumptive Wnt receptor. We show here that Norrin and Fz4 function as a ligand-receptor pair based on (1) the similarity in vascular phenotypes caused by Norrin and Fz4 mutations in humans and mice, (2) the specificity and high affinity of Norrin-Fz4 binding, (3) the high efficiency with which Norrin induces Fz4- and Lrp-dependent activation of the classical Wnt pathway, and (4) the signaling defects displayed by disease-associated variants of Norrin and Fz4. These data define a Norrin-Fz4 signaling system that plays a central role in vascular development in the eye and ear, and they indicate that ligands unrelated to Wnts can act through Fz receptors.

  6. The role played by serine proteases in the development and worsening of vascular complications in type 1 diabetes mellitus.

    PubMed

    Finotti, Paola

    2006-08-01

    Much attention has been given to the role played by serine proteases in the development and worsening of vascular complications in Type 1 diabetes mellitus. A generalized increase in proteolytic activity, either due to a true increase in concentration of specific proteases or defects of their protease inhibitors, represents an early marker of diabetes. However, the precise molecular mechanism whereby an unopposed proteolytic activity leads to overt vascular alterations has not fully been elucidated as yet. The picture is further complicated by the fact that, although sharing the same function, serine proteases constitute a structurally heterogeneous class of molecules. Besides classical proteases, for most part belonging to coagulative and fibrinolytic systems, other unrelated molecules exhibit serine-like protease activity and are capable of triggering both inflammatory and immune reactions. The specific role of these non classical serine proteases in the complex pathogenesis of diabetes and its vascular complications is attracting a new investigative interest, as these molecules may represent additional therapeutic targets. This review will focus on most recent acquisitions on this issue relevant to Type 1 diabetes.

  7. WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation.

    PubMed

    Etchells, J Peter; Provost, Claire M; Mishra, Laxmi; Turner, Simon R

    2013-05-01

    In plants, the cambium and procambium are meristems from which vascular tissue is derived. In contrast to most plant cells, stem cells within these tissues are thin and extremely long. They are particularly unusual as they divide down their long axis in a highly ordered manner, parallel to the tangential axis of the stem. CLAVATA3-LIKE/ESR-RELATED 41 (CLE41) and PHLOEM INTERCALATED WITH XYLEM (PXY) are a multifunctional ligand-receptor pair that regulate vascular cell division, vascular organisation and xylem differentiation in vascular tissue. A transcription factor gene, WUSCHEL HOMEOBOX RELATED 4 (WOX4) has been shown to act downstream of PXY. Here we show that WOX4 acts redundantly with WOX14 in the regulation of vascular cell division, but that these genes have no function in regulating vascular organisation. Furthermore, we identify an interaction between PXY and the receptor kinase ERECTA (ER) that affects the organisation of the vascular tissue but not the rate of cell division, suggesting that cell division and vascular organisation are genetically separable. Our observations also support a model whereby tissue organisation and cell division are integrated via PXY and ER signalling, which together coordinate development of different cell types that are essential for normal stem formation.

  8. Principles of Biomimetic Vascular Network Design Applied to a Tissue-Engineered Liver Scaffold

    PubMed Central

    Hoganson, David M.; Pryor, Howard I.; Spool, Ira D.; Burns, Owen H.; Gilmore, J. Randall

    2010-01-01

    Branched vascular networks are a central component of scaffold architecture for solid organ tissue engineering. In this work, seven biomimetic principles were established as the major guiding technical design considerations of a branched vascular network for a tissue-engineered scaffold. These biomimetic design principles were applied to a branched radial architecture to develop a liver-specific vascular network. Iterative design changes and computational fluid dynamic analysis were used to optimize the network before mold manufacturing. The vascular network mold was created using a new mold technique that achieves a 1:1 aspect ratio for all channels. In vitro blood flow testing confirmed the physiologic hemodynamics of the network as predicted by computational fluid dynamic analysis. These results indicate that this biomimetic liver vascular network design will provide a foundation for developing complex vascular networks for solid organ tissue engineering that achieve physiologic blood flow. PMID:20001254

  9. Principles of biomimetic vascular network design applied to a tissue-engineered liver scaffold.

    PubMed

    Hoganson, David M; Pryor, Howard I; Spool, Ira D; Burns, Owen H; Gilmore, J Randall; Vacanti, Joseph P

    2010-05-01

    Branched vascular networks are a central component of scaffold architecture for solid organ tissue engineering. In this work, seven biomimetic principles were established as the major guiding technical design considerations of a branched vascular network for a tissue-engineered scaffold. These biomimetic design principles were applied to a branched radial architecture to develop a liver-specific vascular network. Iterative design changes and computational fluid dynamic analysis were used to optimize the network before mold manufacturing. The vascular network mold was created using a new mold technique that achieves a 1:1 aspect ratio for all channels. In vitro blood flow testing confirmed the physiologic hemodynamics of the network as predicted by computational fluid dynamic analysis. These results indicate that this biomimetic liver vascular network design will provide a foundation for developing complex vascular networks for solid organ tissue engineering that achieve physiologic blood flow.

  10. Melbourne vascular surgical association audit.

    PubMed

    Beiles, C Barry

    2003-01-01

    The formation of the Melbourne Vascular Surgical Association has led to the establishment of a vascular surgical audit programme that commenced in January 1999. This has allowed establishment of a benchmark for quality assurance in vascular surgery in Australia. A consultative process allowed widespread adoption of the audit across all public hospital vascular units in Melbourne and the two largest regional centres in Victoria. Data were collected at two points during admission: at operation and at discharge. Risk stratification, using logistic regression and risk-adjusted ratios for adverse events was assessed for comparison of outcomes between units for the first 3 years of data collection. There is regular contact with all participants for data feedback and quality control. The standard of vascular surgery across Victoria is consistent, and there has been excellent compliance by all academic vascular units. Private practice data are less complete, and only half of the vascular surgeons have participated. A statewide audit process is feasible and viable. Coordination by the Melbourne Vascular Surgical Association is crucial for its continued success.

  11. Skeletal development and abnormalities of the vertebral column and of the fins in hatchery-reared turbot Scophthalmus maximus.

    PubMed

    Tong, X H; Liu, Q H; Xu, S H; Ma, D Y; Xiao, Z Z; Xiao, Y S; Li, J

    2012-03-01

    To describe the skeletal development and abnormalities in turbot Scophthalmus maximus, samples were collected every day from hatching to 60 days after hatching (DAH). A whole-mount cartilage and bone-staining technique was used. Vertebral ontogeny started with the formation of anterior haemal arches at 5·1 mm standard length (L(S) ) c. 11 DAH, and was completed by the full attainment of parapophyses at 16·9 mm L(S) c. 31 DAH. Vertebral centra started to develop at 6·3 mm L(S) c. 16 DAH and ossification in all centra was visible at 11·0 mm L(S) c. 25 DAH. The caudal fin appeared at 5·1 mm L(S) c. 11 DAH and ossification was visible at 20·6 mm L(S) c. 37 DAH. The onset of dorsal and anal fin elements appeared at 5·8 mm L(S) c. 15 DAH and 6·3 mm L(S) c. 16 DAH, respectively. Ossifications of both dorsal fin and anal fin were visible at 20·6 mm L(S) c. 37 DAH. The pectorals were the only fins present before first feeding, their ossifications were completed at 23·5 mm L(S) c. 48 DAH. Pelvic fins began forming at 7·2 mm L(S) c. 19 DAH and calcification of the whole structure was visible at 19·8 mm L(S) c. 36 DAH. In the present study, 24 types of skeletal abnormalities were observed. About 51% of individuals presented skeletal abnormalities, and the highest occurrence was found in the haemal region of the vertebral column. As for each developmental stage, the most common abnormalities were in the dorsal fin during early metamorphic period (stage 2), vertebral fusion during climax metamorphosis (stage 3) and caudal fin abnormality during both late-metamorphic period (stage 4) and post-metamorphic period (stage 5). Such research will be useful for early detection of skeletal malformations during different growth periods of reared S. maximus. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  12. Endothelial dysfunction in metabolic and vascular disorders.

    PubMed

    Polovina, Marija M; Potpara, Tatjana S

    2014-03-01

    Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.

  13. Evidence for Post-Translational Processing of Vascular Endothelial (VE)-Cadherin in Brain Tumors: Towards a Candidate Biomarker

    PubMed Central

    Vilgrain, Isabelle; Sidibé, Adama; Polena, Helena; Cand, Francine; Mannic, Tiphaine; Arboleas, Mélanie; Boccard, Sandra; Baudet, Antoine; Gulino-Debrac, Danielle; Bouillet, Laurence; Quesada, Jean-Louis; Mendoza, Christophe; Lebas, Jean-François; Pelletier, Laurent; Berger, François

    2013-01-01

    Vessel abnormalities are among the most important features in malignant glioma. Vascular endothelial (VE)-cadherin is of major importance for vascular integrity. Upon cytokine challenge, VE-cadherin structural modifications have been described including tyrosine phosphorylation and cleavage. The goal of this study was to examine whether these events occurred in human glioma vessels. We demonstrated that VE-cadherin is highly expressed in human glioma tissue and tyrosine phosphorylated at site Y685, a site previously found phosphorylated upon VEGF challenge, via Src activation. In vitro experiments showed that VEGF-induced VE-cadherin phosphorylation, preceded the cleavage of its extracellular adhesive domain (sVE, 90 kDa). Interestingly, metalloproteases (MMPs) secreted by glioma cell lines were responsible for sVE release. Because VEGF and MMPs are important components of tumor microenvironment, we hypothesized that VE-cadherin proteolysis might occur in human brain tumors. Analysis of glioma patient sera prior treatment confirmed the presence of sVE in bloodstream. Furthermore, sVE levels studied in a cohort of 53 glioma patients were significantly predictive of the overall survival at three years (HR 0.13 [0.04; 0.40] p≤0.001), irrespective to histopathological grade of tumors. Altogether, these results suggest that VE-cadherin structural modifications should be examined as candidate biomarkers of tumor vessel abnormalities, with promising applications in oncology. PMID:24358106

  14. Perinatal hypoxia increases susceptibility to high-altitude polycythemia and attendant pulmonary vascular dysfunction

    PubMed Central

    Gonzales, Marcelino; Rodriguez, Armando; Bellido, Diva; Salmon, Carlos Salinas; Ladenburger, Anne; Reardon, Lindsay; Vargas, Enrique; Moore, Lorna G.

    2015-01-01

    Perinatal exposures exert a profound influence on physiological function, including developmental processes vital for efficient pulmonary gas transfer throughout the lifespan. We extend the concept of developmental programming to chronic mountain sickness (CMS), a debilitating syndrome marked by polycythemia, ventilatory impairment, and pulmonary hypertension that affects ∼10% of male high-altitude residents. We hypothesized that adverse perinatal oxygenation caused abnormalities of ventilatory and/or pulmonary vascular function that increased susceptibility to CMS in adulthood. Subjects were 67 male high-altitude (3,600–4,100 m) residents aged 18–25 yr with excessive erythrocytosis (EE, Hb concentration ≥18.3 g/dl), a preclinical form of CMS, and 66 controls identified from a community-based survey (n = 981). EE subjects not only had higher Hb concentrations and erythrocyte counts, but also lower alveolar ventilation, impaired pulmonary diffusion capacity, higher systolic pulmonary artery pressure, lower pulmonary artery acceleration time, and more frequent right ventricular hypertrophy, than controls. Compared with controls, EE subjects were more often born to mothers experiencing hypertensive complications of pregnancy and hypoxia during the perinatal period, with each increasing the risk of developing EE (odds ratio = 5.25, P = 0.05 and odds ratio = 6.44, P = 0.04, respectively) after other factors known to influence EE status were taken into account. Adverse perinatal oxygenation is associated with increased susceptibility to EE accompanied by modest abnormalities of the pulmonary circulation that are independent of increased blood viscosity. The association between perinatal hypoxia and EE may be due to disrupted alveolarization and microvascular development, leading to impaired gas exchange and/or pulmonary hypertension. PMID:26092986

  15. Perinatal hypoxia increases susceptibility to high-altitude polycythemia and attendant pulmonary vascular dysfunction.

    PubMed

    Julian, Colleen Glyde; Gonzales, Marcelino; Rodriguez, Armando; Bellido, Diva; Salmon, Carlos Salinas; Ladenburger, Anne; Reardon, Lindsay; Vargas, Enrique; Moore, Lorna G

    2015-08-15

    Perinatal exposures exert a profound influence on physiological function, including developmental processes vital for efficient pulmonary gas transfer throughout the lifespan. We extend the concept of developmental programming to chronic mountain sickness (CMS), a debilitating syndrome marked by polycythemia, ventilatory impairment, and pulmonary hypertension that affects ∼10% of male high-altitude residents. We hypothesized that adverse perinatal oxygenation caused abnormalities of ventilatory and/or pulmonary vascular function that increased susceptibility to CMS in adulthood. Subjects were 67 male high-altitude (3,600-4,100 m) residents aged 18-25 yr with excessive erythrocytosis (EE, Hb concentration ≥18.3 g/dl), a preclinical form of CMS, and 66 controls identified from a community-based survey (n = 981). EE subjects not only had higher Hb concentrations and erythrocyte counts, but also lower alveolar ventilation, impaired pulmonary diffusion capacity, higher systolic pulmonary artery pressure, lower pulmonary artery acceleration time, and more frequent right ventricular hypertrophy, than controls. Compared with controls, EE subjects were more often born to mothers experiencing hypertensive complications of pregnancy and hypoxia during the perinatal period, with each increasing the risk of developing EE (odds ratio = 5.25, P = 0.05 and odds ratio = 6.44, P = 0.04, respectively) after other factors known to influence EE status were taken into account. Adverse perinatal oxygenation is associated with increased susceptibility to EE accompanied by modest abnormalities of the pulmonary circulation that are independent of increased blood viscosity. The association between perinatal hypoxia and EE may be due to disrupted alveolarization and microvascular development, leading to impaired gas exchange and/or pulmonary hypertension. Copyright © 2015 the American Physiological Society.

  16. Descriptive study of relationship between cardio-ankle vascular index and biomarkers in vascular-related diseases.

    PubMed

    Liu, Jinbo; Liu, Huan; Zhao, Hongwei; Shang, Guangyun; Zhou, Yingyan; Li, Lihong; Wang, Hongyu

    2017-01-01

    Cardio-ankle vascular index (CAVI) was supposed to be an independent predictor for vascular-related events. Biomarkers such as homocysteine (Hcy), N-terminal pro-brain natriuretic peptide (NT-proBNP), and urine albumin(microalbumin) (UAE) have involved the pathophysiological development of arteriosclerosis. The present study was to investigate relationship between CAVI and biomarkers in vascular-related diseases. A total of 656 subjects (M/F 272/384) from department of Vascular Medicine were enrolled into our study. They were divided into four groups according to the numbers of suffered diseases, healthy group (group 0: subjects without diseases of hypertension, diabetes mellitus (DM), coronary heart disease (CHD); n = 186), group 1 (with one of diseases of hypertension, CHD, DM; n = 237), group 2 (with two of diseases of hypertension, CHD, DM; n = 174), and group 3 (with all diseases of hypertension, CHD, DM; n = 59). CAVI was measured by VS-1000 apparatus. CAVI was increasing with increasing numbers of suffered vascular-related diseases. Similar results were found in the parameters of biomarkers such as Hcy, log NT-ProBNP, and log UAE. There were positive correlation between log NT-proBNP, Hcy, log UAE, and CAVI in the entire study group and nonhealthy group. Positive correlation between log UAE and CAVI were found in the entire study group after adjusting for age, body mass index (BMI), blood pressure, uric acid, and lipids. Multivariate analysis showed that log UAE was an independent associating factor of CAVI in all subjects. CAVI was significantly higher in subjects with hypertension, CHD, and DM. There was correlation between arterial stiffness and biomarkers such as NT-proBNP, Hcy, and UAE.

  17. Natural history of echocardiographic abnormalities in mucopolysaccharidosis III.

    PubMed

    Wilhelm, Carolyn M; Truxal, Kristen V; McBride, Kim L; Kovalchin, John P; Flanigan, Kevin M

    2018-06-01

    Mucopolysaccharidosis (MPS) type III, Sanfilippo Syndrome, is an autosomal recessive lysosomal storage disorder. MPS I and II patients often develop cardiac involvement leading to early mortality, however there are limited data in MPS III. The objective of this study is to describe cardiac abnormalities in a large group of MPS III patients followed in a longitudinal natural history study designed to determine outcome measures for gene transfer trials. A single center study of MPS III patients who were enrolled in the Nationwide Children's Hospital natural history study in 2014. Two cardiologists reviewed all patient echocardiograms for anatomic, valvular, and functional abnormalities. Valve abnormalities were defined as abnormal morphology, trivial mitral regurgitation (MR) with abnormal morphology or at least mild MR, and any aortic regurgitation (AR). Abnormal left ventricular (LV) function was defined as ejection fraction < 50%. Group comparisons were assessed using two-sample t-tests or Wilcoxon rank sum tests for continuous variables and chi-square or Fisher's exact tests for categorical variables. Twenty-five patients, 15 Type A and 10 Type B MPS III, underwent 45 echocardiograms. Fifteen patients (60%) demonstrated an abnormal echocardiographic finding with age at first abnormal echocardiogram within the study being 6.8 ± 2.8 years. Left-sided valve abnormalities were common over time: 7 mitral valve thickening, 2 mitral valve prolapse, 16 MR (8 mild, 8 trivial), 3 aortic valve thickening, and 9 AR (7 mild, 2 trivial). Two patients had asymmetric LV septal hypertrophy. No valvular stenosis or ventricular function abnormalities were noted. Incidental findings included: mild aortic root dilation (2), bicommissural aortic valve (1), and mild tricuspid regurgitation (3). Individuals with Sanfilippo A and B demonstrate a natural history of cardiac involvement with valvular abnormalities most common. In short-term follow up, patients demonstrated only

  18. Interleukin 10 knockout frail mice develop cardiac and vascular dysfunction with increased age☆

    PubMed Central

    Sikka, Gautam; Miller, Karen L.; Steppan, Jochen; Pandey, Deepesh; Jung, Sung M.; Fraser, Charles D.; Ellis, Carla; Ross, Daniel; Vandegaer, Koenraad; Bedja, Djahida; Gabrielson, Kathleen; Walston, Jeremy D.; Berkowitz, Dan E.; Barouch, Lili A.

    2013-01-01

    -10(tm/tm) mice have stiffer vessels and decreased vascular relaxation due to an increase in eicosanoids, specifically COX-2 activity and resultant thromboxane A2 receptor activation. Our results also suggest that aging IL-10(tm/tm) mice have an increased heart size and impaired cardiac function compared to age-matched WT mice. While further studies will be necessary to determine if this age-related phenotype develops as a result of inflammatory pathway activation or lack of IL-10, it is essential for maintaining the vascular compliance and endothelial function during the aging process. Given that a similar cardiovascular phenotype is present in frail, older adults, these findings further support the utility of the IL-10(tm/tm) mouse as a model of frailty. PMID:23159957

  19. Bio-chemo-mechanical models of vascular mechanics

    PubMed Central

    Kim, Jungsil; Wagenseil, Jessica E.

    2014-01-01

    Models of vascular mechanics are necessary to predict the response of an artery under a variety of loads, for complex geometries, and in pathological adaptation. Classic constitutive models for arteries are phenomenological and the fitted parameters are not associated with physical components of the wall. Recently, microstructurally-linked models have been developed that associate structural information about the wall components with tissue-level mechanics. Microstructurally-linked models are useful for correlating changes in specific components with pathological outcomes, so that targeted treatments may be developed to prevent or reverse the physical changes. However, most treatments, and many causes, of vascular disease have chemical components. Chemical signaling within cells, between cells, and between cells and matrix constituents affects the biology and mechanics of the arterial wall in the short- and long-term. Hence, bio-chemo-mechanical models that include chemical signaling are critical for robust models of vascular mechanics. This review summarizes bio-mechanical and bio-chemo-mechanical models with a focus on large elastic arteries. We provide applications of these models and challenges for future work. PMID:25465618

  20. Cardiovascular alterations at different stages of hypertension development during ethanol consumption: Time-course of vascular and autonomic changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crestani, Carlos C.; Lopes da Silva, Andréia; Scopinho, América A.

    The aim of the present work was to establish a time-course correlation between vascular and autonomic changes that contribute to the development of hypertension during ethanol ingestion in rats. For this, male Wistar rats were subjected to the intake of increasing ethanol concentrations in their drinking water during four weeks. Ethanol effects were investigated at the end of each week. Mild hypertension was already observed at the first week of treatment, and a progressive blood pressure increase was observed along the evaluation period. Increased pressor response to phenylephrine was observed from first to fourth week. α{sub 1}-adrenoceptor protein in themore » mesenteric bed was enhanced at the first week, whereas β{sub 2}-adrenoceptor protein in the aorta was reduced after the second week. In the third week, ethanol intake facilitated the depressor response to sodium nitroprusside, whereas in the fourth week it reduced nitrate content in aorta and increased it plasma. The bradycardic component of the baroreflex was impaired, whereas baroreflex tachycardia was enhanced at the third and fourth weeks. AT{sub 1A} receptor and C-type natriuretic peptide (CNP) mRNAs in the nucleus tractus solitarius were increased at the fourth week. These findings suggest that increased vascular responsiveness to vasoconstrictor agents is possibly a link factor in the development and maintenance of the progressive hypertension induced by ethanol consumption. Additionally, baroreflex changes are possibly mediated by alterations in angiotensinergic mechanisms and CNP content within the brainstem, which contribute to maintaining the hypertensive state in later phases of ethanol ingestion. Facilitated vascular responsiveness to nitric oxide seems to counteract ethanol-induced hypertension. - Highlights: • Mild hypertension was observed during the entire period of ethanol ingestion. • Ethanol facilitated vascular reactivity to vasoactive agents. • Changes in baroreflex activity

  1. Abnormal Head Position in Infantile Nystagmus Syndrome

    PubMed Central

    Noval, Susana; González-Manrique, Mar; Rodríguez-Del Valle, José María; Rodríguez-Sánchez, José María

    2011-01-01

    Infantile nystagmus is an involuntary, bilateral, conjugate, and rhythmic oscillation of the eyes which is present at birth or develops within the first 6 months of life. It may be pendular or jerk-like and, its intensity usually increases in lateral gaze, decreasing with convergence. Up to 64% of all patients with nystagmus also present strabismus, and even more patients have an abnormal head position. The abnormal head positions are more often horizontal, but they may also be vertical or take the form of a tilt, even though the nystagmus itself is horizontal. The aim of this article is to review available information about the origin and treatment of the abnormal head position associated to nystagmus, and to describe our treatment strategies. PMID:24533187

  2. Advances in understanding paternally transmitted Chromosomal Abnormalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, F; Sloter, E; Wyrobek, A J

    2001-03-01

    Multicolor FISH has been adapted for detecting the major types of chromosomal abnormalities in human sperm including aneuploidies for clinically-relevant chromosomes, chromosomal aberrations including breaks and rearrangements, and other numerical abnormalities. The various sperm FISH assays have been used to evaluate healthy men, men of advanced age, and men who have received mutagenic cancer therapy. The mouse has also been used as a model to investigate the mechanism of paternally transmitted genetic damage. Sperm FISH for the mouse has been used to detect chromosomally abnormal mouse sperm, while the PAINT/DAPI analysis of mouse zygotes has been used to evaluate themore » types of chromosomal defects that can be paternally transmitted to the embryo and their effects on embryonic development.« less

  3. Bioactive coating with low-fouling polymers for the development of biocompatible vascular implants

    NASA Astrophysics Data System (ADS)

    Thalla, Pradeep Kumar

    The replacement of occluded blood vessels and endovascular aneurysm repair (EVAR) are performed with the use of synthetic vascular grafts and stent grafts, respectively. Both implants lead to frequent clinical complications that are different but due to a similar problem, namely the inadequate surface properties of the polymeric biomaterials used (generally polyethylene terephthalate (PET) or expanded polytetrafluoroethylene (ePTFE)). Therefore the general objective of this thesis was to create a versatile bioactive coating on vascular biomaterials that reduce material-induced thrombosis and promote desired cell interactions favorable to tissue healing around implants. The use of low-fouling backgrounds was decided in order to reduce platelet adhesion as well as the non-specific protein adsorption and thus increase the bioactivity of immobilized biomolecules. As part of the preliminary objective, a multi-arm polyethylene glycol (PEG) was chosen to create a versatile low-fouling surface, since the current coating methods are far from being versatile and rely on the availability of compatible functional groups on both PEG and the host surface. This PEG coating method was developed by taking advantage of novel primary amine-rich plasma polymerized coatings (LP). As demonstrated by quartz crystal microbalance with dissipation (QCM-D), fluorescence measurements and platelet adhesion assays, our PEG coatings exhibited low protein adsorption and almost no platelet adhesion after 15 min perfusion in whole blood. Although protein adsorption was not completely abrogated and short-term platelet adhesion assay was clearly insufficient to draw conclusions for long-term prevention of thrombosis in vivo, the low-fouling properties of this PEG coating were sufficient to be exploited for further coupling of bioactive molecules to create bioactive coatings. Therefore, as a part of the second objective, an innovative and versatile bioactive coating was developed on PEG and

  4. High lifetime probability of screen-detected cervical abnormalities.

    PubMed

    Pankakoski, Maiju; Heinävaara, Sirpa; Sarkeala, Tytti; Anttila, Ahti

    2017-12-01

    Objective Regular screening and follow-up is an important key to cervical cancer prevention; however, screening inevitably detects mild or borderline abnormalities that would never progress to a more severe stage. We analysed the cumulative probability and recurrence of cervical abnormalities in the Finnish organized screening programme during a 22-year follow-up. Methods Screening histories were collected for 364,487 women born between 1950 and 1965. Data consisted of 1 207,017 routine screens and 88,143 follow-up screens between 1991 and 2012. Probabilities of cervical abnormalities by age were estimated using logistic regression and generalized estimating equations methodology. Results The probability of experiencing any abnormality at least once at ages 30-64 was 34.0% (95% confidence interval [CI]: 33.3-34.6%) . Probability was 5.4% (95% CI: 5.0-5.8%) for results warranting referral and 2.2% (95% CI: 2.0-2.4%) for results with histologically confirmed findings. Previous occurrences were associated with an increased risk of detecting new ones, specifically in older women. Conclusion A considerable proportion of women experience at least one abnormal screening result during their lifetime, and yet very few eventually develop an actual precancerous lesion. Re-evaluation of diagnostic criteria concerning mild abnormalities might improve the balance of harms and benefits of screening. Special monitoring of women with recurrent abnormalities especially at older ages may also be needed.

  5. [Abnormal cervicovaginal cytology in women with rheumatoid arthritis].

    PubMed

    Mercado, Ulises

    2010-02-01

    Patients with rheumatoid arthritis (RA) are at increased risk of infections and cancer. A link between RA and abnormal cervicovaginal cytology has rarely been reported. The aim of this study was to review cervicovaginal cytology results in women with RA and compare them with a control population. Sexual behavior also was investigated. Cervicovaginal cytology results of 95 women with RA were compared to those of a control population of 1,719 women attending at the same hospital and followed until June 2009. Records of RA patients were reviewed to obtain clinical data, particularly sexual behavior. Of 95 RA patients, 13/95 had an abnormal cervicovaginal cytology result, compared with 120/1,719 controls. Twelve/13 had squamous intraepithelial lesions (SIL), compared with 27/120 controls. There was no significant difference in sexual partners between women with RA and controls. Women with RA without abnormal cervicovaginal cytology had less sexual partners than those with RA and abnormal cytology. Two women with RA and abnormal cervicovaginal cytology had a history of condylomata and herpes genital. Three/13 women with RA developed abnormal cervicovaginal cytology after 12 to 36 months initiating their illness. None from them had ever received immunosuppressants. Women with RA have an increased prevalence of abnormal cervical cytology, compared with a control population. It may be related to chronic inflammatory disease and sexual behavior.

  6. Multiscale modelling and nonlinear simulation of vascular tumour growth

    PubMed Central

    Macklin, Paul; Anderson, Alexander R. A.; Chaplain, Mark A. J.; Cristini, Vittorio

    2011-01-01

    In this article, we present a new multiscale mathematical model for solid tumour growth which couples an improved model of tumour invasion with a model of tumour-induced angiogenesis. We perform nonlinear simulations of the multi-scale model that demonstrate the importance of the coupling between the development and remodeling of the vascular network, the blood flow through the network and the tumour progression. Consistent with clinical observations, the hydrostatic stress generated by tumour cell proliferation shuts down large portions of the vascular network dramatically affecting the flow, the subsequent network remodeling, the delivery of nutrients to the tumour and the subsequent tumour progression. In addition, extracellular matrix degradation by tumour cells is seen to have a dramatic affect on both the development of the vascular network and the growth response of the tumour. In particular, the newly developing vessels tend to encapsulate, rather than penetrate, the tumour and are thus less effective in delivering nutrients. PMID:18781303

  7. Abnormal angiopoietins 1&2, angiopoietin receptor Tie-2 and vascular endothelial growth factor levels in hypertension: relationship to target organ damage [a sub-study of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT)].

    PubMed

    Nadar, S K; Blann, A; Beevers, D G; Lip, G Y H

    2005-10-01

    The increased risk of target organ damage (TOD) in hypertension may be related to a prothrombotic or hypercoagulable state, with abnormalities in platelet activation. Altered angiogenesis, possibly related to increased plasma vascular endothelial growth factor (VEGF) is also a feature of hypertension. We hypothesized a link between altered angiogenesis and TOD in hypertension. Accordingly, the angiogenic growth factors VEGF, angiopoietin 1 and 2 (Ang 1 & 2) and soluble angiopoietin receptor Tie-2 in plasma and in platelets were assessed in terms of the presence or absence of hypertensive TOD. We studied 199 patients (75% men; mean age 68 years) with hypertension. Of these, 125 had evidence of hypertensive TOD (stroke, previous myocardial infarction, angina, left ventricular hypertrophy and mild renal failure). Patients were compared with 74 healthy normotensive controls (69% men; mean age 68 years). Plasma VEGF, Ang 1 & 2 and Tie-2, and total platelet levels of VEGF and Ang-1 (obtained by lysing a known number of platelets with 0.5% Tween) were measured by an enzyme-linked immunosorbent assay. Hypertensive patients had higher levels of plasma VEGF, Ang-1, Ang-2, Tie-2 and platelet VEGF (all Pabnormal angiogenesis seen in hypertension.

  8. Incidence of Abnormal Liver Biochemical Tests in Hyperthyroidism

    PubMed Central

    Lin, Tiffany Y.; Shekar, Anshula O.; Li, Ning; Yeh, Michael W.; Saab, Sammy; Wilson, Mark; Leung, Angela M.

    2017-01-01

    Objective Abnormal serum liver function tests are common in patients with untreated thyrotoxicosis, even prior to the initiation of antithyroidal medications that may worsen their severity. There is a wide range of the incidence of these abnormalities in the published literature. The aim of this study was to assess the risks factors and threshold of thyrotoxicosis severity for developing an abnormal liver biochemical test upon the diagnosis of new thyrotoxicosis. Design Single-institution retrospective cohort study. Patients Patients ≥18 years old receiving medical care at a large, academic, urban U.S. medical center between 2002–2016. Measurements Inclusion criteria were a serum thyroid stimulating hormone [TSH] concentration < 0.3 mIU/L or ICD-9 code for thyrotoxicosis, with thyrotoxicosis confirmed by either a concurrent elevated serum triiodothyronine (T3) and/or thyroxine (T4) concentration [total or free] within 3 months), and an available liver biochemical test(s) within 6 months of thyrotoxicosis. The biochemical liver tests assessed were serum aspartate transaminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AP), gamma-glutamyltransferase (GGT), total bilirubin, and conjugated bilirubin concentrations. Results In this cohort of 1,514 subjects, the overall incidence of any biochemical liver test abnormality within 6 months of thyrotoxicosis was 39%. An initial serum TSH concentration <0.02 mIU/L, male gender, and African-American race were significant predictors of an abnormal serum liver biochemical test within 6 months of the diagnosis of new-onset untreated thyrotoxicosis. Conclusions This study identifies risk factors for patients who develop an abnormal serum liver biochemical test result within 6 months of a diagnosis of untreated thyrotoxicosis. PMID:28199740

  9. Development of syndrome of inappropriate antidiuretic hormone secretion (SIADH) after Onyx embolisation of a cavernous carotid fistula

    PubMed Central

    Chen, Tsinsue; Kalani, M Yashar S; Ducruet, Andrew F; Albuquerque, Felipe C; McDougall, Cameron G

    2016-01-01

    Patients with cavernous carotid fistulas (CCFs) can present with pituitary hypoperfusion and hypopituitarism; however, there are no previous reports of pituitary or hormonal abnormalities developing after CCF embolisation in an asymptomatic patient. We describe a patient with no hormonal abnormalities who developed syndrome of inappropriate antidiuretic hormone (SIADH) secretion after CCF embolisation. The patient had bilateral indirect CCFs, which were completely embolised via a transvenous approach, and was neurologically stable postoperatively and discharged. In the subsequent 2 weeks the patient was readmitted twice for acute hyponatraemia and a tonic-clonic seizure. Laboratory studies revealed severe SIADH. Clinical status and sodium levels improved after treatment. One year later the patient was weaned off all medications and remained neurologically stable. SIADH may be a delayed phenomenon after CCF embolisation. Given the proximity of embolised vessels to the pituitary's vascular supply, CCF treatment may result in flow disturbance, ischaemia and hormonal abnormalities. PMID:27001597

  10. Maintenance of airway epithelium in acutely rejected orthotopic vascularized mouse lung transplants.

    PubMed

    Okazaki, Mikio; Gelman, Andrew E; Tietjens, Jeremy R; Ibricevic, Aida; Kornfeld, Christopher G; Huang, Howard J; Richardson, Steven B; Lai, Jiaming; Garbow, Joel R; Patterson, G Alexander; Krupnick, Alexander S; Brody, Steven L; Kreisel, Daniel

    2007-12-01

    Lung transplantation remains the only therapeutic option for many patients suffering from end-stage pulmonary disease. Long-term success after lung transplantation is severely limited by the development of bronchiolitis obliterans. The murine heterotopic tracheal transplantation model has been widely used for studies investigating pathogenesis of obliterative airway disease and immunosuppressive strategies to prevent its development. Despite its utility, this model employs proximal airway that lacks airflow and is not vascularized. We have developed a novel model of orthotopic vascularized lung transplantation in the mouse, which leads to severe vascular rejection in allogeneic strain combinations. Here we characterize differences in the fate of airway epithelial cells in nonimmunosuppressed heterotopic tracheal and vascularized lung allograft models over 28 days. Up-regulation of growth factors that are thought to be critical for the development of airway fibrosis and interstitial collagen deposition were similar in both models. However, while loss of airway epithelial cells occurred in the tracheal model, airway epithelium remained intact and fully differentiated in lung allografts, despite profound vascular rejection. Moreover, we demonstrate expression of the anti-apoptotic protein Bcl-2 in airway epithelial cells of acutely rejected lung allografts. These findings suggest that in addition to alloimmune responses, other stimuli may be required for the destruction of airway epithelial cells. Thus, the model of vascularized mouse lung transplantation may provide a new and more physiologic experimental tool to study the interaction between immune and nonimmune mechanisms affecting airway pathology in lung allografts.

  11. Prenatal ketamine exposure causes abnormal development of prefrontal cortex in rat

    PubMed Central

    Zhao, Tianyun; Li, Chuanxiang; Wei, Wei; Zhang, Haixing; Ma, Daqing; Song, Xingrong; Zhou, Libing

    2016-01-01

    Ketamine is commonly used for anesthesia and as a recreational drug. In pregnant users, a potential neurotoxicity in offspring has been noted. Our previous work demonstrated that ketamine exposure of pregnant rats induces affective disorders and cognitive impairments in offspring. As the prefrontal cortex (PFC) is critically involved in emotional and cognitive processes, here we studied whether maternal ketamine exposure influences the development of the PFC in offspring. Pregnant rats on gestational day 14 were treated with ketamine at a sedative dose for 2 hrs, and pups were studied at postnatal day 0 (P0) or P30. We found that maternal ketamine exposure resulted in cell apoptosis and neuronal loss in fetal brain. Upon ketamine exposure in utero, PFC neurons at P30 showed more dendritic branching, while cultured neurons from P0 PFC extended shorter neurites than controls. In addition, maternal ketamine exposure postponed the switch of NR2B/2A expression, and perturbed pre- and postsynaptic protein expression in the PFC. These data suggest that prenatal ketamine exposure impairs neuronal development of the PFC, which may be associated with abnormal behavior in offsprings. PMID:27226073

  12. Non-invasive dynamic near-infrared imaging and quantification of vascular leakage in vivo.

    PubMed

    Proulx, Steven T; Luciani, Paola; Alitalo, Annamari; Mumprecht, Viviane; Christiansen, Ailsa J; Huggenberger, Reto; Leroux, Jean-Christophe; Detmar, Michael

    2013-07-01

    Preclinical vascular research has been hindered by a lack of methods that can sensitively image and quantify vascular perfusion and leakage in vivo. In this study, we have developed dynamic near-infrared imaging methods to repeatedly visualize and quantify vascular leakage in mouse skin in vivo, and we have applied these methods to transgenic mice with overexpression of vascular endothelial growth factors VEGF-A or -C. Near-infrared dye conjugates were developed to identify a suitable vascular tracer that had a prolonged circulation lifetime and slow leakage into normal tissue after intravenous injection. Dynamic simultaneous imaging of ear skin and a large blood vessel in the leg enabled determination of the intravascular signal (blood volume fraction) from the tissue signal shortly after injection and quantifications of vascular leakage into the extravascular tissue over time. This method allowed for the sensitive detection of increased blood vascularity and leakage rates in K14-VEGF-A transgenic mice and also reliably measured inflammation-induced changes of vascularity and leakage over time in the same mice. Measurements after injection of recombinant VEGF-A surprisingly revealed increased blood vascular leakage and lymphatic clearance in K14-VEGF-C transgenic mice which have an expanded cutaneous lymphatic vessel network, potentially indicating unanticipated effects of lymphatic drainage on vascular leakage. Increased vascular leakage was also detected in subcutaneous tumors, confirming that the method can also be applied to deeper tissues. This new imaging method might facilitate longitudinal investigations of the in vivo effects of drug candidates, including angiogenesis inhibitors, in preclinical disease models.

  13. Non-invasive dynamic near-infrared imaging and quantification of vascular leakage in vivo

    PubMed Central

    Proulx, Steven T.; Luciani, Paola; Alitalo, Annamari; Mumprecht, Viviane; Christiansen, Ailsa J.; Huggenberger, Reto

    2013-01-01

    Preclinical vascular research has been hindered by a lack of methods that can sensitively image and quantify vascular perfusion and leakage in vivo. In this study, we have developed dynamic near-infrared imaging methods to repeatedly visualize and quantify vascular leakage in mouse skin in vivo, and we have applied these methods to transgenic mice with overexpression of vascular endothelial growth factors VEGF-A or -C. Near-infrared dye conjugates were developed to identify a suitable vascular tracer that had a prolonged circulation lifetime and slow leakage into normal tissue after intravenous injection. Dynamic simultaneous imaging of ear skin and a large blood vessel in the leg enabled determination of the intravascular signal (blood volume fraction) from the tissue signal shortly after injection and quantifications of vascular leakage into the extravascular tissue over time. This method allowed for the sensitive detection of increased blood vascularity and leakage rates in K14-VEGF-A transgenic mice and also reliably measured inflammation-induced changes of vascularity and leakage over time in the same mice. Measurements after injection of recombinant VEGF-A surprisingly revealed increased blood vascular leakage and lymphatic clearance in K14-VEGF-C transgenic mice which have an expanded cutaneous lymphatic vessel network, potentially indicating unanticipated effects of lymphatic drainage on vascular leakage. Increased vascular leakage was also detected in subcutaneous tumors, confirming that the method can also be applied to deeper tissues. This new imaging method might facilitate longitudinal investigations of the in vivo effects of drug candidates, including angiogenesis inhibitors, in preclinical disease models. PMID:23325334

  14. Effect of Caffeic Acid Phenethyl Ester on Vascular Damage Caused by Consumption of High Fructose Corn Syrup in Rats

    PubMed Central

    Gun, Aburrahman; Bilgic, Sedat; Kocaman, Nevin; Ozan, Gonca

    2016-01-01

    Fructose corn syrup is cheap sweetener and prolongs the shelf life of products, but fructose intake causes hyperinsulinemia, hypertriglyceridemia, and hypertension. All of them are referred to as metabolic syndrome and they are risk factors for cardiovascular diseases. Hence, the harmful effects of increased fructose intake on health and their prevention should take greater consideration. Caffeic Acid Phenethyl Ester (CAPE) has beneficial effects on metabolic syndrome and vascular function which is important in the prevention of cardiovascular disease. However, there are no known studies about the effect of CAPE on fructose-induced vascular dysfunction. In this study, we examined the effect of CAPE on vascular dysfunction due to high fructose corn syrup (HFCS). HFCS (6 weeks, 30% fed with drinking water) caused vascular dysfunction, but treatment with CAPE (50 micromol/kg i.p. for the last two weeks) effectively restored this problem. Additionally, hypertension in HFCS-fed rats was also decreased in CAPE supplemented rats. CAPE supplements lowered HFCS consumption-induced raise in blood glucose, homocysteine, and cholesterol levels. The aorta tissue endothelial nitric oxide synthase (eNOS) production was decreased in rats given HFCS and in contrast CAPE supplementation efficiently increased its production. The presented results showed that HFCS-induced cardiovascular abnormalities could be prevented by CAPE treatment. PMID:27042260

  15. Effect of Caffeic Acid Phenethyl Ester on Vascular Damage Caused by Consumption of High Fructose Corn Syrup in Rats.

    PubMed

    Gun, Aburrahman; Ozer, Mehmet Kaya; Bilgic, Sedat; Kocaman, Nevin; Ozan, Gonca

    2016-01-01

    Fructose corn syrup is cheap sweetener and prolongs the shelf life of products, but fructose intake causes hyperinsulinemia, hypertriglyceridemia, and hypertension. All of them are referred to as metabolic syndrome and they are risk factors for cardiovascular diseases. Hence, the harmful effects of increased fructose intake on health and their prevention should take greater consideration. Caffeic Acid Phenethyl Ester (CAPE) has beneficial effects on metabolic syndrome and vascular function which is important in the prevention of cardiovascular disease. However, there are no known studies about the effect of CAPE on fructose-induced vascular dysfunction. In this study, we examined the effect of CAPE on vascular dysfunction due to high fructose corn syrup (HFCS). HFCS (6 weeks, 30% fed with drinking water) caused vascular dysfunction, but treatment with CAPE (50 micromol/kg i.p. for the last two weeks) effectively restored this problem. Additionally, hypertension in HFCS-fed rats was also decreased in CAPE supplemented rats. CAPE supplements lowered HFCS consumption-induced raise in blood glucose, homocysteine, and cholesterol levels. The aorta tissue endothelial nitric oxide synthase (eNOS) production was decreased in rats given HFCS and in contrast CAPE supplementation efficiently increased its production. The presented results showed that HFCS-induced cardiovascular abnormalities could be prevented by CAPE treatment.

  16. Abnormal uterine bleeding in reproductive-aged women.

    PubMed

    Matthews, Michelle L

    2015-03-01

    Abnormal uterine bleeding is a common medical condition with several causes. The International Federation of Gynecology and Obstetrics published guidelines in 2011 to develop universally accepted nomenclature and a classification system. In addition, the American College of Obstetrics and Gynecology recently updated recommendations on evaluation of abnormal uterine bleeding and indications for endometrial biopsies. This article reviews both medical and surgical treatments, including meta-analysis reviews of the most effective treatment options. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. [Malignant vascular tumors of the vulva].

    PubMed

    Chokoeva, A; Tchernev, G

    2015-01-01

    Due to the increased vascularity as well as the unique anatomical structure, vascular lesions, which occur in the female reproductive system are common observed and diverse by their morphology. The majority of them are benign, including vascular malformations, lesions due to vascular hyperplasia, tumors with significant vascular component and others. Malignant vascular tumors are rare in the area of the vulva accounting about 1% of all vulvar lesions with vascular origin. Kaposi sarcoma, epithelioid hemangioepithelioma and epithelioid angiosarcoma have been reported with vulvar localization. With a view to their rare incidence, nonspecific clinical manifestation and aggressive behavior associated with high mortality, we present the most common malignant tumors of vascular origin arising in the vulva, as we emphasize on their epidemiology and clinical features, differential diagnosis and therapeutic algorithms for this rare type of malignancies.

  18. Stroke injury, cognitive impairment and vascular dementia☆

    PubMed Central

    Kalaria, Raj N.; Akinyemi, Rufus; Ihara, Masafumi

    2016-01-01

    The global burden of ischaemic strokes is almost 4-fold greater than haemorrhagic strokes. Current evidence suggests that 25–30% of ischaemic stroke survivors develop immediate or delayed vascular cognitive impairment (VCI) or vascular dementia (VaD). Dementia after stroke injury may encompass all types of cognitive disorders. States of cognitive dysfunction before the index stroke are described under the umbrella of pre-stroke dementia, which may entail vascular changes as well as insidious neurodegenerative processes. Risk factors for cognitive impairment and dementia after stroke are multifactorial including older age, family history, genetic variants, low educational status, vascular comorbidities, prior transient ischaemic attack or recurrent stroke and depressive illness. Neuroimaging determinants of dementia after stroke comprise silent brain infarcts, white matter changes, lacunar infarcts and medial temporal lobe atrophy. Until recently, the neuropathology of dementia after stroke was poorly defined. Most of post-stroke dementia is consistent with VaD involving multiple substrates. Microinfarction, microvascular changes related to blood–brain barrier damage, focal neuronal atrophy and low burden of co-existing neurodegenerative pathology appear key substrates of dementia after stroke injury. The elucidation of mechanisms of dementia after stroke injury will enable establishment of effective strategy for symptomatic relief and prevention. Controlling vascular disease risk factors is essential to reduce the burden of cognitive dysfunction after stroke. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock. PMID:26806700

  19. Microvascular and Macrovascular Abnormalities and Cognitive and Physical Function in Older Adults: Cardiovascular Health Study.

    PubMed

    Kim, Dae Hyun; Grodstein, Francine; Newman, Anne B; Chaves, Paulo H M; Odden, Michelle C; Klein, Ronald; Sarnak, Mark J; Lipsitz, Lewis A

    2015-09-01

    To evaluate and compare the associations between microvascular and macrovascular abnormalities and cognitive and physical function Cross-sectional analysis of the Cardiovascular Health Study (1998-1999). Community. Individuals with available data on three or more of five microvascular abnormalities (brain, retina, kidney) and three or more of six macrovascular abnormalities (brain, carotid artery, heart, peripheral artery) (N = 2,452; mean age 79.5). Standardized composite scores derived from three cognitive tests (Modified Mini-Mental State Examination, Digit-Symbol Substitution Test, Trail-Making Test (TMT)) and three physical tests (gait speed, grip strength, 5-time sit to stand) Participants with high microvascular and macrovascular burden had worse cognitive (mean score difference = -0.30, 95% confidence interval (CI) = -0.37 to -0.24) and physical (mean score difference = -0.32, 95% CI = -0.38 to -0.26) function than those with low microvascular and macrovascular burden. Individuals with high microvascular burden alone had similarly lower scores than those with high macrovascular burden alone (cognitive function: -0.16, 95% CI = -0.24 to -0.08 vs -0.13, 95% CI = -0.20 to -0.06; physical function: -0.15, 95% CI = -0.22 to -0.08 vs -0.12, 95% CI = -0.18 to -0.06). Psychomotor speed and working memory, assessed using the TMT, were only impaired in the presence of high microvascular burden. Of the 11 vascular abnormalities considered, white matter hyperintensity, cystatin C-based glomerular filtration rate, large brain infarct, and ankle-arm index were independently associated with cognitive and physical function. Microvascular and macrovascular abnormalities assessed using noninvasive tests of the brain, kidney, and peripheral artery were independently associated with poor cognitive and physical function in older adults. Future research should evaluate the usefulness of these tests in prognostication. © 2015, Copyright the Authors Journal compilation © 2015

  20. Dietary potassium regulates vascular calcification and arterial stiffness

    PubMed Central

    Sun, Yong; Byon, Chang Hyun; Yang, Youfeng; Bradley, Wayne E.; Dell’Italia, Louis J.; Agarwal, Anupam; Wu, Hui

    2017-01-01

    Vascular calcification is a risk factor that predicts adverse cardiovascular complications of several diseases including atherosclerosis. Reduced dietary potassium intake has been linked to cardiovascular diseases such as hypertension and incidental stroke, although the underlying molecular mechanisms remain largely unknown. Using the ApoE-deficient mouse model, we demonstrated for the first time to our knowledge that reduced dietary potassium (0.3%) promoted atherosclerotic vascular calcification and increased aortic stiffness, compared with normal (0.7%) potassium–fed mice. In contrast, increased dietary potassium (2.1%) attenuated vascular calcification and aortic stiffness. Mechanistically, reduction in the potassium concentration to the lower limit of the physiological range increased intracellular calcium, which activated a cAMP response element–binding protein (CREB) signal that subsequently enhanced autophagy and promoted vascular smooth muscle cell (VSMC) calcification. Inhibition of calcium signals and knockdown of either CREB or ATG7, an autophagy regulator, attenuated VSMC calcification induced by low potassium. Consistently, elevated autophagy and CREB signaling were demonstrated in the calcified arteries from low potassium diet–fed mice as well as aortic arteries exposed to low potassium ex vivo. These studies established a potentially novel causative role of dietary potassium intake in regulating atherosclerotic vascular calcification and stiffness, and uncovered mechanisms that offer opportunities to develop therapeutic strategies to control vascular disease. PMID:28978809