Sample records for abnormalities including insulin

  1. Coronary vasomotor abnormalities in insulin-resistant individuals.

    PubMed

    Quiñones, Manuel J; Hernandez-Pampaloni, Miguel; Schelbert, Heinrich; Bulnes-Enriquez, Isabel; Jimenez, Xochitl; Hernandez, Gustavo; De La Rosa, Roxana; Chon, Yun; Yang, Huiying; Nicholas, Susanne B; Modilevsky, Tamara; Yu, Katherine; Van Herle, Katja; Castellani, Lawrence W; Elashoff, Robert; Hsueh, Willa A

    2004-05-04

    Insulin resistance is a metabolic spectrum that progresses from hyperinsulinemia to the metabolic syndrome, impaired glucose tolerance, and finally type 2 diabetes mellitus. It is unclear when vascular abnormalities begin in this spectrum of metabolic effects. To evaluate the association of insulin resistance with the presence and reversibility of coronary vasomotor abnormalities in young adults at low cardiovascular risk. Cross-sectional study followed by prospective, open-label treatment study. University hospital. 50 insulin-resistant and 22 insulin-sensitive, age-matched Mexican-American participants without glucose intolerance or traditional risk factors for or evidence of coronary artery disease. 3 months of thiazolidinedione therapy for 25 insulin-resistant patients. Glucose infusion rate in response to insulin infusion was used to define insulin resistance (glucose infusion rate < or = 4.00 mg/kg of body weight per minute [range, 0.90 to 3.96 mg/kg per minute]) and insulin sensitivity (glucose infusion rate > or = 7.50 mg/kg per minute [range, 7.52 to 13.92 mg/kg per minute]). Myocardial blood flow was measured by using positron emission tomography at rest, during cold pressor test (largely endothelium-dependent), and after dipyridamole administration (largely vascular smooth muscle-dependent). Myocardial blood flow responses to dipyridamole were similar in the insulin-sensitive and insulin-resistant groups. However, myocardial blood flow response to cold pressor test increased by 47.6% from resting values in insulin-sensitive patients and by 14.4% in insulin-resistant patients. During thiazolidinedione therapy in a subgroup of insulin-resistant patients, insulin sensitivity improved, fasting plasma insulin levels decreased, and myocardial blood flow responses to cold pressor test normalized. The study was not randomized, and it included only 1 ethnic group. Insulin-resistant patients who do not have hypercholesterolemia or hypertension and do not smoke

  2. Familial hyperinsulinemia associated with secretion of an abnormal insulin, and coexistence of insulin resistance in the propositus.

    PubMed

    Vinik, A I; Seino, S; Funakoshi, A; Schwartz, J; Matsumoto, M; Schteingart, D E; Fu, Z Z; Tsai, S T

    1986-04-01

    A 45-yr-old muscular nonobese white man who had a 9-yr history of syncopal episodes was studied on several occasions between April 1979 and August 1984. Fasting glucose concentrations ranged between 74-115 mg/dl, and those of insulin ranged between 14-64 microU/ml. Reactive hypoglycemia 3-4 h after ingestion of glucose occurred in the first 2 yr. Glucose tolerance was impaired in 1979, from February 1982 through September 1983, and again in August 1984. The maximum plasma insulin response to glucose ranged between 475-1630 microU/ml. When studied in November 1982, insulin (0.1 U/kg) caused a fall in blood glucose concentration of only 25% (normal, greater than 50%), and maximal glucose utilization during the euglycemic hyperinsulinemic clamp was 7.5 mg/kg . min (normal, greater than 12 mg/kg . min). Plasma counterregulatory hormone concentrations were normal, and antibodies to insulin and the insulin receptor were absent. Binding of exogenous insulin to the patient's cellular receptors (monocytes, red blood cells, and skin fibroblasts) was normal. Insulin was purified from plasma by immunoaffinity and molecular sieve chromatography and was found to elute later than human insulin on reversed phase high performance liquid chromatography. It was more hydrophobic than normal human insulin and had only 10% of the activity of normal insulin in terms of ability to bind to and stimulate glucose metabolism in isolated rat adipocytes. The abnormal insulin was identified in two of three sons and a sister, but not in the mother, brother, or niece. Sensitivity to insulin was normal in the two sons who had abnormal insulin. These results suggest that in this family the abnormal insulin was due to a biosynthetic defect, inherited as an autosomal dominant trait. The hyperinsulinemia was not associated with diabetes in family members who had no insulin resistance.

  3. Weight-adjusted lean body mass and calf circumference are protective against obesity-associated insulin resistance and metabolic abnormalities.

    PubMed

    Takamura, Toshinari; Kita, Yuki; Nakagen, Masatoshi; Sakurai, Masaru; Isobe, Yuki; Takeshita, Yumie; Kawai, Kohzo; Urabe, Takeshi; Kaneko, Shuichi

    2017-07-01

    To test the hypothesis that preserved muscle mass is protective against obesity-associated insulin resistance and metabolic abnormalities, we analyzed the relationship of lean body mass and computed tomography-assessed sectional areas of specific skeletal muscles with insulin resistance and metabolic abnormalities in a healthy cohort. A total of 195 subjects without diabetes who had completed a medical examination were included in this study. Various anthropometric indices such as circumferences of the arm, waist, hip, thigh, and calf were measured. Body composition (fat and lean body mass) was determined by bioelectrical impedance analysis. Sectional areas of specific skeletal muscles (iliopsoas, erector spinae, gluteus, femoris, and rectus abdominis muscles) were measured using computed tomography. Fat and lean body mass were significantly correlated with metabolic abnormalities and insulin resistance indices. When adjusted by weight, relationships of fat and lean body mass with metabolic parameters were mirror images of each other. The weight-adjusted lean body mass negatively correlated with systolic and diastolic blood pressures; fasting plasma glucose, HbA1c, alanine aminotransferase, and triglyceride, and insulin levels; and hepatic insulin resistance indices, and positively correlated with HDL-cholesterol levels and muscle insulin sensitivity indices. Compared with weight-adjusted lean body mass, weight-adjusted sectional areas of specific skeletal muscles showed similar, but not as strong, correlations with metabolic parameters. Among anthropometric measures, the calf circumference best reflected lean body mass, and weight-adjusted calf circumference negatively correlated with metabolic abnormalities and insulin resistance indices. Weight-adjusted lean body mass and skeletal muscle area are protective against weight-associated insulin resistance and metabolic abnormalities. The calf circumference reflects lean body mass and may be useful as a protective

  4. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice.

    PubMed

    Priyadarshini, Emayavaramban; Anuradha, Carani Venkatraman

    2017-02-01

    High intake of dietary fructose causes perturbation in lipid metabolism and provokes lipid-induced insulin resistance. A rise in glucocorticoids (GCs) has recently been suggested to be involved in fructose-induced insulin resistance. The objective of the study was to investigate the effect of GC blockade on lipid abnormalities in insulin-resistant mice. Insulin resistance was induced in mice by administering a high-fructose diet (HFrD) for 60 days. Mifepristone (RU486), a GC antagonist, was administered to HFrD-fed mice for the last 18 days, and the intracellular and extracellular GC levels, the glucocorticoid receptor (GR) activation and the expression of GC-regulated genes involved in lipid metabolism were examined. HFrD elevated the intracellular GC content in both liver and adipose tissue and enhanced the GR nuclear translocation. The plasma GC level remained unchanged. The levels of free fatty acids and triglycerides in plasma were elevated, accompanied by increased plasma insulin and glucose levels and decreased hepatic glycogen content. Treatment with RU486 reduced plasma lipid levels, tissue GC levels and the expression of GC-targeted genes involved in lipid accumulation, and it improved insulin sensitivity. This study demonstrated that HFrD-induced lipid accumulation and insulin resistance are mediated by enhanced GC in liver and adipose tissue and that GC antagonism might reduce fructose-induced lipid abnormalities and insulin resistance. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  5. Insulin resistance and endocrine-metabolic abnormalities in polycystic ovarian syndrome: Comparison between obese and non-obese PCOS patients.

    PubMed

    Layegh, Parvin; Mousavi, Zohreh; Farrokh Tehrani, Donya; Parizadeh, Seyed Mohammad Reza; Khajedaluee, Mohammad

    2016-04-01

    Insulin resistance has an important role in pathophysiology of polycystic ovarian syndrome (PCOS). Yet there are certain controversies regarding the presence of insulin resistance in non-obese patients. The aim was to compare the insulin resistance and various endocrine and metabolic abnormalities in obese and non-obese PCOS women. In this cross-sectional study which was performed from 2007-2010, 115 PCOS patients, aged 16-45 years were enrolled. Seventy patients were obese (BMI ≥25) and 45 patients were non-obese (BMI <25). Presence of insulin resistance and endocrine-metabolic abnormalities were compared between two groups. Collected data were analyzed with SPSS version 16.0 and p<0.05 was considered as statistically significant. There was no significant difference in presence of insulin resistance (HOMA-IR >2.3) between two groups (p=0.357). Waist circumference (p<0.001), waist/hip ratio (p<0.001), systolic (p<0.001) and diastolic (p<0.001) blood pressures, fasting blood sugar (p=0.003) and insulin (p=0.011), HOMA-IR (p=0.004), total cholesterol (p=0.001) and triglyceride (p<0.001) were all significantly higher in obese PCOS patients. There was no significant difference in total testosterone (p=0.634) and androstenedione (p=0.736) between groups whereas Dehydroepiandrotendione sulfate (DHEAS) was significantly higher in non-obese PCOS women (p=0.018). There was no case of fatty liver and metabolic syndrome in non-obese patients, whereas they were seen in 31.3% and 39.4% of obese PCOS women, respectively. Our study showed that metabolic abnormalities are more prevalent in obese PCOS women, but adrenal axis activity that is reflected in higher levels of DHEAS was more commonly pronounced in our non-obese PCOS patients.

  6. Insulin resistance: definition and consequences.

    PubMed

    Lebovitz, H E

    2001-01-01

    Insulin resistance is defined clinically as the inability of a known quantity of exogenous or endogenous insulin to increase glucose uptake and utilization in an individual as much as it does in a normal population. Insulin action is the consequence of insulin binding to its plasma membrane receptor and is transmitted through the cell by a series of protein-protein interactions. Two major cascades of protein-protein interactions mediate intracellular insulin action: one pathway is involved in regulating intermediary metabolism and the other plays a role in controlling growth processes and mitoses. The regulation of these two distinct pathways can be dissociated. Indeed, some data suggest that the pathway regulating intermediary metabolism is diminished in type 2 diabetes while that regulating growth processes and mitoses is normal.--Several mechanisms have been proposed as possible causes underlying the development of insulin resistance and the insulin resistance syndrome. These include: (1) genetic abnormalities of one or more proteins of the insulin action cascade (2) fetal malnutrition (3) increases in visceral adiposity. Insulin resistance occurs as part of a cluster of cardiovascular-metabolic abnormalities commonly referred to as "The Insulin Resistance Syndrome" or "The Metabolic Syndrome". This cluster of abnormalities may lead to the development of type 2 diabetes, accelerated atherosclerosis, hypertension or polycystic ovarian syndrome depending on the genetic background of the individual developing the insulin resistance.--In this context, we need to consider whether insulin resistance should be defined as a disease entity which needs to be diagnosed and treated with specific drugs to improve insulin action.

  7. High prevalence of abnormal glucose homeostasis secondary to decreased insulin secretion in individuals with hereditary haemochromatosis.

    PubMed

    McClain, D A; Abraham, D; Rogers, J; Brady, R; Gault, P; Ajioka, R; Kushner, J P

    2006-07-01

    The prevalence and mechanisms of diabetes in hereditary haemochromatosis are not known. We therefore measured glucose tolerance, insulin secretory capacity and insulin sensitivity in adults with haemochromatosis. Subjects recruited from referrals to a haemochromatosis clinic underwent OGTT and frequently sampled IVGTT. A chart review of former clinic patients was also performed. The prevalence of diabetes (23%) and IGT (30%) was increased in haemochromatosis compared with matched control subjects (0% diabetes and 14% IGT). Subjects with haemochromatosis and diabetes were overweight (14%) or obese (86%). The prevalence of diabetes, as determined by chart review of fasting glucose values, in subjects who had haemochromatosis and were in the 40-79 years age range was 26%. Overall, patients with haemochromatosis and control subjects had similar values for acute insulin response to glucose and insulin sensitivity. However, patients with haemochromatosis and IGT had a 68% decrease in acute insulin response to glucose (p<0.02) compared with those with NGT. They were not insulin-resistant, exhibiting instead a 62% increase in insulin sensitivity (NS). Haemochromatosis subjects with diabetes exhibited further declines in acute insulin response to glucose, insulin resistance, or both. Diabetes and IGT are common in haemochromatosis, justifying screening for diabetes and therapeutic phlebotomy. The major abnormality associated with IGT is decreased insulin secretory capacity. Diabetes is usually associated with obesity and concomitant insulin resistance.

  8. Dietary Tributyrin Supplementation Attenuates Insulin Resistance and Abnormal Lipid Metabolism in Suckling Piglets with Intrauterine Growth Retardation

    PubMed Central

    He, Jintian; Dong, Li; Xu, Wen; Bai, Kaiwen; Lu, Changhui; Wu, Yanan; Huang, Qiang; Zhang, Lili; Wang, Tian

    2015-01-01

    Intrauterine growth retardation (IUGR) is associated with insulin resistance and lipid disorder. Tributyrin (TB), a pro-drug of butyrate, can attenuate dysfunctions in body metabolism. In this study, we investigated the effects of TB supplementation on insulin resistance and lipid metabolism in neonatal piglets with IUGR. Eight neonatal piglets with normal birth weight (NBW) and 16 neonatal piglets with IUGR were selected, weaned on the 7th day, and fed basic milk diets (NBW and IUGR groups) or basic milk diets supplemented with 0.1% tributyrin (IT group, IUGR piglets) until day 21 (n = 8). Relative parameters for lipid metabolism and mRNA expression were measured. Piglets with IUGR showed higher (P < 0.05) concentrations of insulin in the serum, higher (P < 0.05) HOMA-IR and total cholesterol, triglycerides (TG), non-esterified fatty acid (NEFA) in the liver, and lower (P < 0.05) enzyme activities (hepatic lipase [HL], lipoprotein lipase [LPL], total lipase [TL]) and concentration of glycogen in the liver than the NBW group. TB supplementation decreased (P < 0.05) the concentrations of insulin, HOMA-IR, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol in the serum, and the concentrations of TG and NEFA in the liver, and increased (P < 0.05) enzyme activities (HL, LPL, and TL) and concentration of glycogen in the liver of the IT group. The mRNA expression for insulin signal transduction pathway and hepatic lipogenic pathway (including transcription factors and nuclear factors) was significantly (P < 0.05) affected in the liver by IUGR, which was efficiently (P < 0.05) attenuated by diets supplemented with TB. TB supplementation has therapeutic potential for attenuating insulin resistance and abnormal lipid metabolism in IUGR piglets by increasing enzyme activities and upregulating mRNA expression, leading to an early improvement in the metabolic efficiency of IUGR piglets. PMID:26317832

  9. Abnormalities of serum potassium concentration in dialysis-associated hyperglycemia and their correction with insulin: review of published reports.

    PubMed

    Tzamaloukas, Antonios H; Ing, Todd S; Elisaf, Moses S; Raj, Dominic S C; Siamopoulos, Kostas C; Rohrscheib, Mark; Murata, Glen H

    2011-06-01

    The main difference between dialysis-associated hyperglycemia (DH) and diabetic ketoacidosis (DKA) or nonketotic hyperglycemia (NKH) occurring in patients with preserved renal function is the absence of osmotic diuresis in DH, which eliminates the need for large fluid and solute (including potassium) replacement. We analyzed published reports of serum potassium (K(+)) abnormalities and their treatment in DH. Hyperkalemia was often present at presentation of DH with higher frequency and severity than in hyperglycemic syndromes in patients with preserved renal function. The frequency and severity of hyperkalemia were higher in DH episodes with DKA than those with NKH in both hemodialysis and peritoneal dialysis. For DKA, the frequency and severity of hyperkalemia were similar in hemodialysis and peritoneal dialysis. For NKH, hyperkalemia was more severe and frequent in hemodialysis than in peritoneal dialysis. Insulin infusion corrected the hyperkalemia of DH in most cases. Additional measures for the management of hyperkalemia or modest potassium infusions for hypokalemia were needed in a few DH episodes. The predictors of the decrease in serum K(+) during treatment of DH with insulin included the starting serum K(+) level, the decreases in serum values of glucose concentration and tonicity, and the increase in serum total carbon dioxide level. DH represents a risk factor for hyperkalemia. Insulin infusion is the only treatment for hyperkalemia usually required.

  10. Insulin secretion and insulin action in non-insulin-dependent diabetes mellitus: which defect is primary?

    PubMed

    Reaven, G M

    1984-01-01

    Defects in both insulin secretion and insulin action exist in patients with non-insulin-dependent diabetes mellitus (NIDDM). The loss of the acute plasma insulin response to intravenous glucose is seen in patients with relatively mild degrees of fasting hyperglycemia, but patients with severe fasting hyperglycemia also demonstrate absolute hypoinsulinemia in response to an oral glucose challenge. In contrast, day-long circulating insulin levels are within normal limits even in severely hyperglycemic patients with NIDDM. The relationship between NIDDM and insulin action in NIDDM is less complex, and is a characteristic feature of the syndrome. This metabolic defect is independent of obesity, and the severity of the resistance to insulin-stimulated glucose uptake increases with magnitude of hyperglycemia. Control of hyperglycemia with exogenous insulin ameliorates the degree of insulin resistance, and reduction of insulin resistance with weight loss in obese patients with NIDDM leads to an enhanced insulin response. Since neither therapeutic intervention is capable of restoring all metabolic abnormalities to normal, these observations do not tell us which of these two defects is primarily responsible for the development of NIDDM. Similarly, the observation that most patients with impaired glucose tolerance are hyperinsulinemic and insulin resistant does not prove that insulin resistance is the primary defect in NIDDM. In conclusion, reduction in both insulin secretion and action is seen in patients with NIDDM, and the relationship between these two metabolic abnormalities is very complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Abnormal endocrine pancreas function at birth in cystic fibrosis ferrets

    PubMed Central

    Olivier, Alicia K.; Yi, Yaling; Sun, Xingshen; Sui, Hongshu; Liang, Bo; Hu, Shanming; Xie, Weiliang; Fisher, John T.; Keiser, Nicholas W.; Lei, Diana; Zhou, Weihong; Yan, Ziying; Li, Guiying; Evans, Turan I.A.; Meyerholz, David K.; Wang, Kai; Stewart, Zoe A.; Norris, Andrew W.; Engelhardt, John F.

    2012-01-01

    Diabetes is a common comorbidity in cystic fibrosis (CF) that worsens prognosis. The lack of an animal model for CF-related diabetes (CFRD) has made it difficult to dissect how the onset of pancreatic pathology influences the emergence of CFRD. We evaluated the structure and function of the neonatal CF endocrine pancreas using a new CFTR-knockout ferret model. Although CF kits are born with only mild exocrine pancreas disease, progressive exocrine and endocrine pancreatic loss during the first months of life was associated with pancreatic inflammation, spontaneous hyperglycemia, and glucose intolerance. Interestingly, prior to major exocrine pancreas disease, CF kits demonstrated significant abnormalities in blood glucose and insulin regulation, including diminished first-phase and accentuated peak insulin secretion in response to glucose, elevated peak glucose levels following glucose challenge, and variably elevated insulin and C-peptide levels in the nonfasted state. Although there was no difference in lobular insulin and glucagon expression between genotypes at birth, significant alterations in the frequencies of small and large islets were observed. Newborn cultured CF islets demonstrated dysregulated glucose-dependent insulin secretion in comparison to controls, suggesting intrinsic abnormalities in CF islets. These findings demonstrate that early abnormalities exist in the regulation of insulin secretion by the CF endocrine pancreas. PMID:22996690

  12. Sequence-specific 1H-NMR assignments for the aromatic region of several biologically active, monomeric insulins including native human insulin.

    PubMed

    Roy, M; Lee, R W; Kaarsholm, N C; Thøgersen, H; Brange, J; Dunn, M F

    1990-06-12

    The aromatic region of the 1H-FT-NMR spectrum of the biologically fully-potent, monomeric human insulin mutant, B9 Ser----Asp, B27 Thr----Glu has been investigated in D2O. At 1 to 5 mM concentrations, this mutant insulin is monomeric above pH 7.5. Coupling and amino acid classification of all aromatic signals is established via a combination of homonuclear one- and two-dimensional methods, including COSY, multiple quantum filters, selective spin decoupling and pH titrations. By comparisons with other insulin mutants and with chemically modified native insulins, all resonances in the aromatic region are given sequence-specific assignments without any reliance on the various crystal structures reported for insulin. These comparisons also give the sequence-specific assignments of most of the aromatic resonances of the mutant insulins B16 Tyr----Glu, B27 Thr----Glu and B25 Phe----Asp and the chemically modified species des-(B23-B30) insulin and monoiodo-Tyr A14 insulin. Chemical dispersion of the assigned resonances, ring current perturbations and comparisons at high pH have made possible the assignment of the aromatic resonances of human insulin, and these studies indicate that the major structural features of the human insulin monomer (including those critical to biological function) are also present in the monomeric mutant.

  13. Ovarian SAHA syndrome is associated with a more insulin-resistant profile and represents an independent risk factor for glucose abnormalities in women with polycystic ovary syndrome: a prospective controlled study.

    PubMed

    Dalamaga, Maria; Papadavid, Evangelia; Basios, Georgios; Vaggopoulos, Vassilios; Rigopoulos, Dimitrios; Kassanos, Dimitrios; Trakakis, Eftihios

    2013-12-01

    SAHA syndrome is characterized by the tetrad: seborrhea, acne, hirsutism, and androgenetic alopecia. No previous study has examined the prevalence of glucose abnormalities in ovarian SAHA and explored whether it may be an independent risk factor for glucose abnormalities. In a prospective controlled study, we investigated the spectrum of glucose abnormalities in ovarian SAHA and explored whether it is associated with a more insulin-resistant profile. In all, 316 patients with a diagnosis of polycystic ovary syndrome (PCOS) (56 with SAHA) and 102 age-matched healthy women were examined and underwent a 2-hour oral glucose tolerance test. Serum glucose homeostasis parameters, hormones, and adipokines were determined. SAHA prevalence was 17.7% in patients with PCOS and predominance of the severe PCOS phenotype. Ovarian SAHA was independently associated with a more insulin-resistant profile (higher homeostatic model assessment of insulin resistance score, lower quantitative insulin sensitivity check index [QUICKI] and MATSUDA indices, and relative hypoadiponectinemia), and represented an independent risk factor for glucose abnormalities regardless of anthropometric features, age, and PCOS phenotype. There was no performance of skin biopsies. The prompt recognition of SAHA syndrome in women with PCOS permits an earlier diagnosis and surveillance of metabolic abnormalities, especially in Mediterranean PCOS population exhibiting a lower prevalence of glucose abnormalities. Copyright © 2013 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  14. Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance.

    PubMed

    Yang, Sae Jeong; Kim, Tae Nyun; Baik, Sei Hyun; Kim, Tae Sun; Lee, Kwan Woo; Nam, Moonsuk; Park, Yong Soo; Woo, Jeong-Teak; Kim, Young Seol; Kim, Sung-Hoon

    2013-05-01

    The aim was to compare the insulin sensitivity and secretion index of pregnant Korean women with normal glucose tolerance (NGT), gestational impaired glucose tolerance (GIGT; only one abnormal value according to the Carpenter and Coustan criteria), and gestational diabetes mellitus (GDM). A cross-sectional study was performed with 1,163 pregnant women with positive (1-hour plasma glucose ≥ 7.2 mmol/L) in a 50-g oral glucose challenge test (OGCT). The 100-g oral glucose tolerance test (OGTT) was used to stratify the participants into three groups: NGT (n = 588), GIGT (n = 294), and GDM (n = 281). The GDM group had higher homeostasis model assessment of insulin resistance and lower insulin sensitivity index (ISOGTT), quantitative insulin sensitivity check index, homeostasis model assessment for estimation of index β-cell secretion (HOMA-B), first and second phase insulin secretion, and insulin secretion-sensitivity index (ISSI) than the NGT group (p ≤ 0.001 for all). Moreover, the GIGT group had lower ISOGTT, HOMA-B, first and second phase insulin secretion, and ISSI than the NGT group (p < 0.001 for all). Among the GIGT subjects, the 1-hour plasma glucose abnormal levels group showed significantly greater weight gain during pregnancy and higher values in the 50-g OGCT than the other two groups. Moreover, the 1-hour and 2-hour abnormal levels groups had poorer insulin secretion status than the 3-hour abnormal levels group. Korean women with GDM show impairments of both insulin secretion and insulin sensitivity. In addition, GIGT is associated with both β-cell dysfunction and insulin resistance.

  15. Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance

    PubMed Central

    Yang, Sae Jeong; Kim, Tae Nyun; Baik, Sei Hyun; Kim, Tae Sun; Lee, Kwan Woo; Nam, Moonsuk; Park, Yong Soo; Woo, Jeong-Teak; Kim, Young Seol

    2013-01-01

    Background/Aims The aim was to compare the insulin sensitivity and secretion index of pregnant Korean women with normal glucose tolerance (NGT), gestational impaired glucose tolerance (GIGT; only one abnormal value according to the Carpenter and Coustan criteria), and gestational diabetes mellitus (GDM). Methods A cross-sectional study was performed with 1,163 pregnant women with positive (1-hour plasma glucose ≥ 7.2 mmol/L) in a 50-g oral glucose challenge test (OGCT). The 100-g oral glucose tolerance test (OGTT) was used to stratify the participants into three groups: NGT (n = 588), GIGT (n = 294), and GDM (n = 281). Results The GDM group had higher homeostasis model assessment of insulin resistance and lower insulin sensitivity index (ISOGTT), quantitative insulin sensitivity check index, homeostasis model assessment for estimation of index β-cell secretion (HOMA-B), first and second phase insulin secretion, and insulin secretion-sensitivity index (ISSI) than the NGT group (p ≤ 0.001 for all). Moreover, the GIGT group had lower ISOGTT, HOMA-B, first and second phase insulin secretion, and ISSI than the NGT group (p < 0.001 for all). Among the GIGT subjects, the 1-hour plasma glucose abnormal levels group showed significantly greater weight gain during pregnancy and higher values in the 50-g OGCT than the other two groups. Moreover, the 1-hour and 2-hour abnormal levels groups had poorer insulin secretion status than the 3-hour abnormal levels group. Conclusions Korean women with GDM show impairments of both insulin secretion and insulin sensitivity. In addition, GIGT is associated with both β-cell dysfunction and insulin resistance. PMID:23682224

  16. Determinants of High Fasting Insulin and Insulin Resistance Among Overweight/Obese Adolescents.

    PubMed

    Ling, Jerri Chiu Yun; Mohamed, Mohd Nahar Azmi; Jalaludin, Muhammad Yazid; Rampal, Sanjay; Zaharan, Nur Lisa; Mohamed, Zahurin

    2016-11-08

    Hyperinsulinaemia is the earliest subclinical metabolic abnormality, which precedes insulin resistance in obese children. An investigation was conducted on the potential predictors of fasting insulin and insulin resistance among overweight/obese adolescents in a developing Asian country. A total of 173 overweight/obese (BMI > 85 th percentile) multi-ethnic Malaysian adolescents aged 13 were recruited from 23 randomly selected schools in this cross-sectional study. Waist circumference (WC), body fat percentage (BF%), physical fitness score (PFS), fasting glucose and fasting insulin were measured. Insulin resistance was calculated using homeostasis model assessment of insulin resistance (HOMA-IR). Adjusted stepwise multiple regression analysis was performed to predict fasting insulin and HOMA-IR. Covariates included pubertal stage, socioeconomic status, nutritional and physical activity scores. One-third of our adolescents were insulin resistant, with girls having significantly higher fasting insulin and HOMA-IR than boys. Gender, pubertal stage, BMI, WC and BF% had significant, positive moderate correlations with fasting insulin and HOMA-IR while PFS was inversely correlated (p < 0.05). Fasting insulin was primarily predicted by gender-girls (Beta = 0.305, p < 0.0001), higher BMI (Beta = -0.254, p = 0.02) and greater WC (Beta = 0.242, p = 0.03). This study demonstrated that gender, BMI and WC are simple predictors of fasting insulin and insulin resistance in overweight/obese adolescents.

  17. Peripheral Insulin Resistance and Impaired Insulin Signaling Contribute to Abnormal Glucose Metabolism in Preterm Baboons

    PubMed Central

    McGill-Vargas, Lisa L.; Gastaldelli, Amalia; Seidner, Steven R.; McCurnin, Donald C.; Leland, Michelle M.; Anzueto, Diana G.; Johnson, Marney C.; Liang, Hanyu; DeFronzo, Ralph A.; Musi, Nicolas

    2015-01-01

    Premature infants develop hyperglycemia shortly after birth, increasing their morbidity and death. Surviving infants have increased incidence of diabetes as young adults. Our understanding of the biological basis for the insulin resistance of prematurity and developmental regulation of glucose production remains fragmentary. The objective of this study was to examine maturational differences in insulin sensitivity and the insulin-signaling pathway in skeletal muscle and adipose tissue of 30 neonatal baboons using the euglycemic hyperinsulinemic clamp. Preterm baboons (67% gestation) had reduced peripheral insulin sensitivity shortly after birth (M value 12.5 ± 1.5 vs 21.8 ± 4.4 mg/kg · min in term baboons) and at 2 weeks of age (M value 12.8 ± 2.6 vs 16.3 ± 4.2, respectively). Insulin increased Akt phosphorylation, but these responses were significantly lower in preterm baboons during the first week of life (3.2-fold vs 9.8-fold). Preterm baboons had lower glucose transporter-1 protein content throughout the first 2 weeks of life (8%-12% of term). In preterm baboons, serum free fatty acids (FFAs) did not decrease in response to insulin, whereas FFAs decreased by greater than 80% in term baboons; the impaired suppression of FFAs in the preterm animals was paired with a decreased glucose transporter-4 protein content in adipose tissue. In conclusion, peripheral insulin resistance and impaired non-insulin-dependent glucose uptake play an important role in hyperglycemia of prematurity. Impaired insulin signaling (reduced Akt) contributes to the defect in insulin-stimulated glucose disposal. Counterregulatory hormones are not major contributors. PMID:25560831

  18. Peripheral insulin resistance and impaired insulin signaling contribute to abnormal glucose metabolism in preterm baboons.

    PubMed

    Blanco, Cynthia L; McGill-Vargas, Lisa L; Gastaldelli, Amalia; Seidner, Steven R; McCurnin, Donald C; Leland, Michelle M; Anzueto, Diana G; Johnson, Marney C; Liang, Hanyu; DeFronzo, Ralph A; Musi, Nicolas

    2015-03-01

    Premature infants develop hyperglycemia shortly after birth, increasing their morbidity and death. Surviving infants have increased incidence of diabetes as young adults. Our understanding of the biological basis for the insulin resistance of prematurity and developmental regulation of glucose production remains fragmentary. The objective of this study was to examine maturational differences in insulin sensitivity and the insulin-signaling pathway in skeletal muscle and adipose tissue of 30 neonatal baboons using the euglycemic hyperinsulinemic clamp. Preterm baboons (67% gestation) had reduced peripheral insulin sensitivity shortly after birth (M value 12.5 ± 1.5 vs 21.8 ± 4.4 mg/kg · min in term baboons) and at 2 weeks of age (M value 12.8 ± 2.6 vs 16.3 ± 4.2, respectively). Insulin increased Akt phosphorylation, but these responses were significantly lower in preterm baboons during the first week of life (3.2-fold vs 9.8-fold). Preterm baboons had lower glucose transporter-1 protein content throughout the first 2 weeks of life (8%-12% of term). In preterm baboons, serum free fatty acids (FFAs) did not decrease in response to insulin, whereas FFAs decreased by greater than 80% in term baboons; the impaired suppression of FFAs in the preterm animals was paired with a decreased glucose transporter-4 protein content in adipose tissue. In conclusion, peripheral insulin resistance and impaired non-insulin-dependent glucose uptake play an important role in hyperglycemia of prematurity. Impaired insulin signaling (reduced Akt) contributes to the defect in insulin-stimulated glucose disposal. Counterregulatory hormones are not major contributors.

  19. Induced Pluripotent Stem Cell-Derived Endothelial Cells in Insulin Resistance and Metabolic Syndrome.

    PubMed

    Carcamo-Orive, Ivan; Huang, Ngan F; Quertermous, Thomas; Knowles, Joshua W

    2017-11-01

    Insulin resistance leads to a number of metabolic and cellular abnormalities including endothelial dysfunction that increase the risk of vascular disease. Although it has been particularly challenging to study the genetic determinants that predispose to abnormal function of the endothelium in insulin-resistant states, the possibility of deriving endothelial cells from induced pluripotent stem cells generated from individuals with detailed clinical phenotyping, including accurate measurements of insulin resistance accompanied by multilevel omic data (eg, genetic and genomic characterization), has opened new avenues to study this relationship. Unfortunately, several technical barriers have hampered these efforts. In the present review, we summarize the current status of induced pluripotent stem cell-derived endothelial cells for modeling endothelial dysfunction associated with insulin resistance and discuss the challenges to overcoming these limitations. © 2017 American Heart Association, Inc.

  20. Insulin response dysregulation explains abnormal fat storage and increased risk of diabetes mellitus type 2 in Cohen Syndrome.

    PubMed

    Limoge, Floriane; Faivre, Laurence; Gautier, Thomas; Petit, Jean-Michel; Gautier, Elodie; Masson, David; Jego, Gaëtan; El Chehadeh-Djebbar, Salima; Marle, Nathalie; Carmignac, Virginie; Deckert, Valérie; Brindisi, Marie-Claude; Edery, Patrick; Ghoumid, Jamal; Blair, Edward; Lagrost, Laurent; Thauvin-Robinet, Christel; Duplomb, Laurence

    2015-12-01

    Cohen Syndrome (CS) is a rare autosomal recessive disorder, with defective glycosylation secondary to mutations in the VPS13B gene, which encodes a protein of the Golgi apparatus. Besides congenital neutropenia, retinopathy and intellectual deficiency, CS patients are faced with truncal obesity. Metabolism investigations showed abnormal glucose tolerance tests and low HDL values in some patients, and these could be risk factors for the development of diabetes mellitus and/or cardiovascular complications. To understand the mechanisms involved in CS fat storage, we used two models of adipogenesis differentiation: (i) SGBS pre-adipocytes with VPS13B invalidation thanks to siRNA delivery and (ii) CS primary fibroblasts. In both models, VPS13B invalidation led to accelerated differentiation into fat cells, which was confirmed by the earlier and increased expression of specific adipogenic genes, consequent to the increased response of cells to insulin stimulation. At the end of the differentiation protocol, these fat cells exhibited decreased AKT2 phosphorylation after insulin stimulation, which suggests insulin resistance. This study, in association with the in-depth analysis of the metabolic status of the patients, thus allowed us to recommend appropriate nutritional education to prevent the occurrence of diabetes mellitus and to put forward recommendations for the follow-up of CS patients, in particular with regard to the development of metabolic syndrome. We also suggest replacing the term obesity by abnormal fat distribution in CS, which should reduce the number of inappropriate diagnoses in patients who are referred only on the basis of intellectual deficiency associated with obesity. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Insulin Resistance and Prognosis of Nondiabetic Patients With Ischemic Stroke: The ACROSS-China Study (Abnormal Glucose Regulation in Patients With Acute Stroke Across China).

    PubMed

    Jing, Jing; Pan, Yuesong; Zhao, Xingquan; Zheng, Huaguang; Jia, Qian; Mi, Donghua; Chen, Weiqi; Li, Hao; Liu, Liping; Wang, Chunxue; He, Yan; Wang, David; Wang, Yilong; Wang, Yongjun

    2017-04-01

    Insulin resistance was common in patients with stroke. This study investigated the association between insulin resistance and outcomes in nondiabetic patients with first-ever acute ischemic stroke. Patients with ischemic stroke without history of diabetes mellitus in the ACROSS-China registry (Abnormal Glucose Regulation in Patients With Acute Stroke Across China) were included. Insulin resistance was defined as a homeostatis model assessment-insulin resistance (HOMA-IR) index in the top quartile (Q4). HOMA-IR was calculated as fasting insulin (μU/mL)×fasting glucose (mmol/L)/22.5. Multivariable logistic regression or Cox regression was performed to estimate the association between HOMA-IR and 1-year prognosis (mortality, stroke recurrence, poor functional outcome [modified Rankin scale score 3-6], and dependence [modified Rankin scale score 3-5]). Among the 1245 patients with acute ischemic stroke enrolled in this study, the median HOMA-IR was 1.9 (interquartile range, 1.1-3.1). Patients with insulin resistance were associated with a higher mortality risk than those without (adjusted hazard ratio, 1.68; 95% confidence interval, 1.12-2.53; P =0.01), stroke recurrence (adjusted hazard ratio, 1.57, 95% confidence interval, 1.12-2.19; P =0.008), and poor outcome (adjusted odds ratio, 1.42; 95% confidence interval, 1.03-1.95; P =0.03) but not dependence after adjustment for potential confounders. Higher HOMA-IR quartile categories were associated with a higher risk of 1-year death, stroke recurrence, and poor outcome ( P for trend =0.005, 0.005, and 0.001, respectively). Insulin resistance was associated with an increased risk of death, stroke recurrence, and poor outcome but not dependence in nondiabetic patients with acute ischemic stroke. © 2017 American Heart Association, Inc.

  2. Clinical utility of insulin and insulin analogs

    PubMed Central

    Sanlioglu, Ahter D.; Altunbas, Hasan Ali; Balci, Mustafa Kemal; Griffith, Thomas S.; Sanlioglu, Salih

    2013-01-01

    Diabetes is a pandemic disease characterized by autoimmune, genetic and metabolic abnormalities. While insulin deficiency manifested as hyperglycemia is a common sequel of both Type-1 and Type-2 diabetes (T1DM and T2DM), it does not result from a single genetic defect—rather insulin deficiency results from the functional loss of pancreatic β cells due to multifactorial mechanisms. Since pancreatic β cells of patients with T1DM are destroyed by autoimmune reaction, these patients require daily insulin injections. Insulin resistance followed by β cell dysfunction and β cell loss is the characteristics of T2DM. Therefore, most patients with T2DM will require insulin treatment due to eventual loss of insulin secretion. Despite the evidence of early insulin treatment lowering macrovascular (coronary artery disease, peripheral arterial disease and stroke) and microvascular (diabetic nephropathy, neuropathy and retinopathy) complications of T2DM, controversy exists among physicians on how to initiate and intensify insulin therapy. The slow acting nature of regular human insulin makes its use ineffective in counteracting postprandial hyperglycemia. Instead, recombinant insulin analogs have been generated with a variable degree of specificity and action. Due to the metabolic variability among individuals, optimum blood glucose management is a formidable task to accomplish despite the presence of novel insulin analogs. In this article, we present a recent update on insulin analog structure and function with an overview of the evidence on the various insulin regimens clinically used to treat diabetes. PMID:23584214

  3. 45Obesity, Insulin Resistance and Free Fatty Acids

    PubMed Central

    Boden, Guenther

    2011-01-01

    Purpose of Review to describe the role of FFA as a cause for insulin resistance in obese people. Recent Findings elevated plasma FFA levels can account for a large part of insulin resistance in obese patients with type 2 diabetes. Insulin resistance is clinically important because it is closely associated with several diseases including T2DM, hypertension, dyslipidemia and abnormalities in blood coagulation and fibrinolysis. These disorders are all independent risk factors for cardiovascular disease (heart attacks, strokes and peripheral arterial disease). The mechanism by which FFA can cause insulin resistance, although not completely known, include generation of lipid metabolites (diacylglycerol), proinflammatory cytokines (TNF-α, IL1β, IL6, MCP1) and cellular stress including oxidative and endoplasmic reticulum stress. Summary increased plasma FFA levels are an important cause of obesity associated insulin resistance and cardiovascular disease. Therapeutic application of this knowledge is hampered by the lack of readily accessible methods to measure FFA and by the lack of medications to lower plasma FFA levels. PMID:21297467

  4. Insulin and Glucagon Secretion In Vitro

    NASA Technical Reports Server (NTRS)

    Rajan, Arun S.

    1998-01-01

    Long-duration space flight is associated with many physiological abnormalities in astronauts. In particular, altered regulation of the hormones insulin and glucagon may contribute to metabolic disturbances such as increased blood sugar levels, which if persistently elevated result in toxic effects. These changes are also observed in the highly prevalent disease diabetes, which affects 16 million Americans and consumes over $100 billion in annual healthcare costs. By mimicking the microgravity environment of space in the research laboratory using a NASA-developed bioreactor, one can study the physiology of insulin and glucagon secretion and determine if there are alterations in these cellular processes. The original specific objectives of the project included: (1) growing ('cell culture') of pancreatic islet beta and alpha cells that secrete insulin and glucagon respectively, in the NASA bioreactor; (2) examination of the effects of microgravity on insulin and glucagon secretion; and (3) study of molecular mechanisms of insulin and glucagon secretion if altered by microgravity.

  5. Relations of insulin resistance and glycemic abnormalities to cardiovascular magnetic resonance measures of cardiac structure and function: the Framingham Heart Study.

    PubMed

    Velagaleti, Raghava S; Gona, Philimon; Chuang, Michael L; Salton, Carol J; Fox, Caroline S; Blease, Susan J; Yeon, Susan B; Manning, Warren J; O'Donnell, Christopher J

    2010-05-01

    Data regarding the relationships of diabetes, insulin resistance, and subclinical hyperinsulinemia/hyperglycemia with cardiac structure and function are conflicting. We sought to apply volumetric cardiovascular magnetic resonance (CMR) in a free-living cohort to potentially clarify these associations. A total of 1603 Framingham Heart Study Offspring participants (age, 64+/-9 years; 55% women) underwent CMR to determine left ventricular mass (LVM), LVM to end-diastolic volume ratio (LVM/LVEDV), relative wall thickness (RWT), ejection fraction, cardiac output, and left atrial size. Data regarding insulin resistance (homeostasis model, HOMA-IR) and glycemia categories (normal, impaired insulinemia or glycemia, prediabetes, and diabetes) were determined. In a subgroup (253 men, 290 women) that underwent oral glucose tolerance testing, we related 2-hour insulin and glucose with CMR measures. In both men and women, all age-adjusted CMR measures increased across HOMA-IR quartiles, but multivariable-adjusted trends were significant only for LVM/ht(2.7) and LVM/LVEDV. LVM/LVEDV and RWT were higher in participants with prediabetes and diabetes (in both sexes) in age-adjusted models, but these associations remained significant after multivariable adjustment only in men. LVM/LVEDV was significantly associated with 2-hour insulin in men only, and RWT was significantly associated with 2-hour glucose in women only. In multivariable stepwise selection analyses, the inclusion of body mass index led to a loss in statistical significance. Although insulin and glucose indices are associated with abnormalities in cardiac structure, insulin resistance and worsening glycemia are consistently and independently associated with LVM/LVEDV. These data implicate hyperglycemia and insulin resistance in concentric LV remodeling.

  6. Relations of Insulin Resistance and Glycemic Abnormalities to Cardiovascular Magnetic Resonance Measures of Cardiac Structure and Function: the Framingham Heart Study

    PubMed Central

    Velagaleti, Raghava S.; Gona, Philimon; Chuang, Michael L.; Salton, Carol J.; Fox, Caroline S.; Blease, Susan J.; Yeon, Susan B.; Manning, Warren J.; O’Donnell, Christopher J.

    2011-01-01

    Background Data regarding the relationships of diabetes, insulin resistance and sub-clinical hyperinsulinemia/hyperglycemia with cardiac structure and function are conflicting. We sought to apply volumetric cardiovascular magnetic resonance (CMR) in a free-living cohort to potentially clarify these associations. Methods and Results A total of 1603 Framingham Heart Study Offspring participants (age 64±9 years; 55% women) underwent CMR to determine left ventricular mass (LVM), LVM to end-diastolic volume ratio (LVM/LVEDV), relative wall thickness (RWT), ejection fraction (EF), cardiac output (CO) and left atrial size (LAD). Data regarding insulin resistance (homeostasis model, HOMA-IR) and glycemia categories (normal, impaired insulinemia or glycemia, pre-diabetes and diabetes) were determined. In a subgroup (253 men, 290 women) that underwent oral glucose tolerance testing, we related 2-hr insulin and glucose with CMR measures. In both men and women, all age-adjusted CMR measures increased across HOMA-IR quartiles, but multivariable-adjusted trends were significant only for LVM/ht2.7 and LVM/LVEDV. LVM/LVEDV and RWT were higher in participants with pre-diabetes and diabetes (in both sexes) in age-adjusted models, but these associations remained significant after multivariable-adjustment only in men. LVM/LVEDV was significantly associated with 2-hr insulin in men only, and RWT was significantly associated with 2-hr glucose in women only. In multivariable stepwise selection analyses, the inclusion of BMI led to a loss in statistical significance. Conclusions While insulin and glucose indices are associated with abnormalities in cardiac structure, insulin resistance and worsening glycemia are consistently and independently associated with LVM/LVEDV. These data implicate hyperglycemia and insulin resistance in concentric LV remodeling. PMID:20208015

  7. Homeostatic Model Assessment for Insulin Resistance (HOMA-IR): A Better Marker for Evaluating Insulin Resistance Than Fasting Insulin in Women with Polycystic Ovarian Syndrome.

    PubMed

    Majid, Hafsa; Masood, Qamar; Khan, Aysha Habib

    2017-03-01

    To assess the utility of HOMA-IR in assessing insulin resistance in patients with polycystic ovary syndrome (PCOS) and compare it with fasting insulin for assessing insulin resistance (IR). Observational study. Section of Clinical Chemistry, Department of Pathology and Laboratory Medicine, The Aga Khan University Hospital, Karachi, from January 2009 to September 2012. Medical chart review of all women diagnosed with PCOS was performed. Of the 400 PCOS women reviewed, 91 met the inclusion criteria. Insulin resistance was assessed by calculating HOMA-IR using the formula (fasting glucose x fasting insulin)/405, taking normal value <2 in adults and hyperinsulinemia based on fasting insulin levels ≥12 µIU/ml. A total of 91 premenopausal women diagnosed with PCOS were included. Mean age was 30 ±5.5 years. Mean HOMA-IR of women was 3.1 ±1.7, respectively with IR in 69% (n=63) women, while hyperinsulinemia was present in 60% (n=55) women (fasting Insulin 18.5 ±5.8 µIU/ml). Hyperandrogenism was present in 53.8% (n=49), whereas 38.5% (n=35) women had primary infertility or subfertility, while 65.9% (n=60) had menstrual irregularities; and higher frequencies were observed in women with IR. Eight subjects with IR and endocrine abnormalities were missed by fasting insulin. Insulin resistance is common in PCOS and it is likely a pathogenic factor for development of PCOS. HOMAIR model performed better than hyperinsulinemia alone for diagnosing IR.

  8. A cross-sectional study on the associations of insulin resistance with sex hormone, abnormal lipid metabolism in T2DM and IGT patients

    PubMed Central

    Wang, Xiaoxia; Xian, Tongzhang; Jia, Xiaofan; Zhang, Lina; Liu, Li; Man, Fuli; Zhang, Xianbo; Zhang, Jie; Pan, Qi; Guo, Lixin

    2017-01-01

    Abstract Type 2 diabetes mellitus (T2DM) is a long-term metabolic disorder. It is characterized by hyperglycemia, insulin resistance (IR), and relative impairment in insulin secretion. IR plays a major role in the pathogenesis of T2DM. Many previous studies have investigated the relationship between estrogen, androgen, and obesity, but few focused on the relationship between sex hormones, abnormal lipid metabolism, and IR. The goal for the present study was to identify the association of IR with sex hormone, abnormal lipid metabolism in type 2 diabetes, and impaired glucose tolerance (IGT) patients. In total 13,400 participants were analyzed based on the results of the glucose tolerance test. Using a cross-sectional study, we showed the relationship between IR and the level of sex hormones among 3 different glucose tolerance states: normal control people, IGT, and T2DM patients. We also analyzed the relationship between IR and abnormal lipid metabolism. Significantly, luteinizing, progesterone, estradiol, prolactin, and follicle-stimulating hormone levels decreased in T2DM and IGT patients compared with those in normal control people. The association between IR and lipid metabolism disorders in T2DM and IGT patients was also observed. Our clinical findings may offer new insights into understanding the mechanism of metabolic disorders and in new therapeutic methods for the treatment of the prevalence of type 2 diabetes. PMID:28658166

  9. Endocrine Abnormalities in Patients with Chronic Kidney Disease.

    PubMed

    Kuczera, Piotr; Adamczak, Marcin; Wiecek, Andrzej

    2015-01-01

    In patients with chronic kidney disease the alterations of the endocrine system may arise from several causes. The kidney is the site of degradation as well as synthesis of many different hormones. Moreover, a number of concomitant pathological conditions such as inflammation, metabolic acidosis and malnutrition may participate in the pathogenesis of endocrine abnormalities in this group of patients. The most pronounced endocrine abnormalities in patients with chronic kidney disease are the deficiencies of: calcitriol, testosterone, insulin-like growth factor and, erythropoietin (EPO). Additionally accumulation of several hormones, such as: prolactin, growth hormone and insulin frequently also occur. The clinical consequences of the abovementioned endocrine abnormalities are among others: anemia, infertility and bone diseases.

  10. Current concepts of metabolic abnormalities in HIV patients: focus on lipodystrophy.

    PubMed

    Kolter, Donald P

    2003-12-01

    HIV infection is associated with a number of metabolic abnormalities, including lipodystrophy, a difficult-to-define disorder whose characteristics include hyperlipidemia, insulin resistance, and fat redistribution. Current data suggest that lipodystrophy is caused by multiple factors. Dual-nucleoside reverse transcriptase inhibitor therapy combined with protease inhibitor therapy has been shown to increase the risk of metabolic abnormalities, but susceptibility independent of drug effects has also been shown. While many of the treatments for the broad range of signs and symptoms of lipodystrophy bring about improvements in patient status, none have been demonstrated to bring about a return to baseline levels.

  11. How does brain insulin resistance develop in Alzheimer's disease?

    PubMed

    De Felice, Fernanda G; Lourenco, Mychael V; Ferreira, Sergio T

    2014-02-01

    Compelling preclinical and clinical evidence supports a pathophysiological connection between Alzheimer's disease (AD) and diabetes. Altered metabolism, inflammation, and insulin resistance are key pathological features of both diseases. For many years, it was generally considered that the brain was insensitive to insulin, but it is now accepted that this hormone has central neuromodulatory functions, including roles in learning and memory, that are impaired in AD. However, until recently, the molecular mechanisms accounting for brain insulin resistance in AD have remained elusive. Here, we review recent evidence that sheds light on how brain insulin dysfunction is initiated at a molecular level and why abnormal insulin signaling culminates in synaptic failure and memory decline. We also discuss the cellular basis underlying the beneficial effects of stimulation of brain insulin signaling on cognition. Discoveries summarized here provide pathophysiological background for identification of novel molecular targets and for development of alternative therapeutic approaches in AD. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  12. Insulin protects against hepatic damage postburn.

    PubMed

    Jeschke, Marc G; Kraft, Robert; Song, Juquan; Gauglitz, Gerd G; Cox, Robert A; Brooks, Natasha C; Finnerty, Celeste C; Kulp, Gabriela A; Herndon, David N; Boehning, Darren

    2011-01-01

    Burn injury causes hepatic dysfunction associated with endoplasmic reticulum (ER) stress and induction of the unfolded protein response (UPR). ER stress/UPR leads to hepatic apoptosis and activation of the Jun-N-terminal kinase (JNK) signaling pathway, leading to vast metabolic alterations. Insulin has been shown to attenuate hepatic damage and to improve liver function. We therefore hypothesized that insulin administration exerts its effects by attenuating postburn hepatic ER stress and subsequent apoptosis. Male Sprague Dawley rats received a 60% total body surface area (TBSA) burn injury. Animals were randomized to receive saline (controls) or insulin (2.5 IU/kg q. 24 h) and euthanized at 24 and 48 h postburn. Burn injury induced dramatic changes in liver structure and function, including induction of the ER stress response, mitochondrial dysfunction, hepatocyte apoptosis, and up-regulation of inflammatory mediators. Insulin decreased hepatocyte caspase-3 activation and apoptosis significantly at 24 and 48 h postburn. Furthermore, insulin administration decreased ER stress significantly and reversed structural and functional changes in hepatocyte mitochondria. Finally, insulin attenuated the expression of inflammatory mediators IL-6, MCP-1, and CINC-1. Insulin alleviates burn-induced ER stress, hepatocyte apoptosis, mitochondrial abnormalities, and inflammation leading to improved hepatic structure and function significantly. These results support the use of insulin therapy after traumatic injury to improve patient outcomes.

  13. Insulin Protects against Hepatic Damage Postburn

    PubMed Central

    Jeschke, Marc G; Kraft, Robert; Song, Juquan; Gauglitz, Gerd G; Cox, Robert A; Brooks, Natasha C; Finnerty, Celeste C; Kulp, Gabriela A; Herndon, David N; Boehning, Darren

    2011-01-01

    Burn injury causes hepatic dysfunction associated with endoplasmic reticulum (ER) stress and induction of the unfolded protein response (UPR). ER stress/UPR leads to hepatic apoptosis and activation of the Jun-N-terminal kinase (JNK) signaling pathway, leading to vast metabolic alterations. Insulin has been shown to attenuate hepatic damage and to improve liver function. We therefore hypothesized that insulin administration exerts its effects by attenuating postburn hepatic ER stress and subsequent apoptosis. Male Sprague Dawley rats received a 60% total body surface area (TBSA) burn injury. Animals were randomized to receive saline (controls) or insulin (2.5 IU/kg q. 24 h) and euthanized at 24 and 48 h postburn. Burn injury induced dramatic changes in liver structure and function, including induction of the ER stress response, mitochondrial dysfunction, hepatocyte apoptosis, and up-regulation of inflammatory mediators. Insulin decreased hepatocyte caspase-3 activation and apoptosis significantly at 24 and 48 h postburn. Furthermore, insulin administration decreased ER stress significantly and reversed structural and functional changes in hepatocyte mitochondria. Finally, insulin attenuated the expression of inflammatory mediators IL-6, MCP-1, and CINC-1. Insulin alleviates burn-induced ER stress, hepatocyte apoptosis, mitochondrial abnormalities, and inflammation leading to improved hepatic structure and function significantly. These results support the use of insulin therapy after traumatic injury to improve patient outcomes. PMID:21267509

  14. Fine-mapping diabetes-related traits, including insulin resistance, in heterogeneous stock rats

    PubMed Central

    Holl, Katie L.; Oreper, Daniel; Xie, Yuying; Tsaih, Shirng-Wern; Valdar, William

    2012-01-01

    Type 2 diabetes (T2D) is a disease of relative insulin deficiency resulting from both insulin resistance and beta cell failure. We have previously used heterogeneous stock (HS) rats to fine-map a locus for glucose tolerance. We show here that glucose intolerance in the founder strains of the HS colony is mediated by different mechanisms: insulin resistance in WKY and an insulin secretion defect in ACI, and we demonstrate a high degree of variability for measures of insulin resistance and insulin secretion in HS rats. As such, our goal was to use HS rats to fine-map several diabetes-related traits within a region on rat chromosome 1. We measured blood glucose and plasma insulin levels after a glucose tolerance test in 782 male HS rats. Using 97 SSLP markers, we genotyped a 68 Mb region on rat chromosome 1 previously implicated in glucose and insulin regulation. We used linkage disequilibrium mapping by mixed model regression with inferred descent to identify a region from 198.85 to 205.9 that contains one or more quantitative trait loci (QTL) for fasting insulin and a measure of insulin resistance, the quantitative insulin sensitivity check index. This region also encompasses loci identified for fasting glucose and Insulin_AUC (area under the curve). A separate <3 Mb QTL was identified for body weight. Using a novel penalized regression method we then estimated effects of alternative haplotype pairings under each locus. These studies highlight the utility of HS rats for fine-mapping genetic loci involved in the underlying causes of T2D. PMID:22947656

  15. A Drosophila model for fetal alcohol syndrome disorders: role for the insulin pathway

    PubMed Central

    McClure, Kimberly D.; French, Rachael L.; Heberlein, Ulrike

    2011-01-01

    SUMMARY Prenatal exposure to ethanol in humans results in a wide range of developmental abnormalities, including growth deficiency, developmental delay, reduced brain size, permanent neurobehavioral abnormalities and fetal death. Here we describe the use of Drosophila melanogaster as a model for exploring the effects of ethanol exposure on development and behavior. We show that developmental ethanol exposure causes reduced viability, developmental delay and reduced adult body size. We find that flies reared on ethanol-containing food have smaller brains and imaginal discs, which is due to reduced cell division rather than increased apoptosis. Additionally, we show that, as in mammals, flies reared on ethanol have altered responses to ethanol vapor exposure as adults, including increased locomotor activation, resistance to the sedating effects of the drug and reduced tolerance development upon repeated ethanol exposure. We have found that the developmental and behavioral defects are largely due to the effects of ethanol on insulin signaling; specifically, a reduction in Drosophila insulin-like peptide (Dilp) and insulin receptor expression. Transgenic expression of Dilp proteins in the larval brain suppressed both the developmental and behavioral abnormalities displayed by ethanol-reared adult flies. Our results thus establish Drosophila as a useful model system to uncover the complex etiology of fetal alcohol syndrome. PMID:21303840

  16. Abnormality of adipokines and endothelial dysfunction in Mexican obese adolescents with insulin resistance.

    PubMed

    Ortiz Segura, Maria Del Carmen; Del Río Navarro, Blanca Estela; Rodríguez Espino, Benjamín Antonio; Marchat, Laurence A; Sánchez Muñoz, Fausto; Villafaña, Santiago; Hong, Enrique; Meza-Cuenca, Fabián; Mailloux Salinas, Patrick; Bolaños-Jiménez, Francisco; Zambrano, Elena; Arredondo-López, Abel Armando; Bravo, Guadalupe; Huang, Fengyang

    2017-08-01

    The aim of this study was to investigate the possible relationship among insulin resistance (IR), endothelial dysfunction, and alteration of adipokines in Mexican obese adolescents and their association with metabolic syndrome (MetS). Two hundred and twenty-seven adolescents were classified according to the body mass index (BMI) (control: N=104; obese: N=123) and homeostasis model of the assessment-insulin resistance index (HOMA-IR) (obese with IR: N=65). The circulating concentrations of leptin, adiponectin, soluble intercellular adhesion molecule-1 (sICAM-1), and IR were determined by standard methods. The obese adolescents with IR presented increased presence of MetS and higher circulating concentrations in sICAM-1 in comparison with the obese subjects without IR. The lowest concentrations of adiponectin were observed in the obese with IR. In multivariate linear regression models, sICAM-1 along with triglycerides, total cholesterol, and waist circumference was strongly associated with HOMA-IR (R 2 =0.457, P=0.008). Similarly, after adjustment for age, BMI-SDS, lipids, and adipokines, HOMA-IR remained associated with sICAM-1 (R 2 =0.372, P=0.008). BMI-SDS was mildly associated with leptin (R 2 =0.176, P=0.002) and the waist circumference was mild and independent determinant of adiponectin (R 2 =0.136, P=0.007). Our findings demonstrated that the obese adolescents, particularly the obese subjects with IR exhibited increased presence of MetS, abnormality of adipokines, and endothelial dysfunction. The significant interaction between IR and endothelial dysfunction may suggest a novel therapeutic approach to prevent or delay systemic IR and the genesis of cardiovascular diseases in obese patients.

  17. Treating type 1 diabetes: from strategies for insulin delivery to dual hormonal control

    PubMed Central

    McCall, A. L.; Farhy, L. S.

    2014-01-01

    Type 1 diabetes is a disorder where slow destruction of pancreatic β-cells occurs through autoimmune mechanisms. The result is a progressive and ultimately complete lack of endogenous insulin. Due to β-cell lack, secondary abnormalities in glucagon and likely in incretins occur. These multiple hormonal abnormalities cause metabolic instability and extreme glycemic variability, which is the primary phenotype. As the disease progresses patients often develop hypoglycemia unawareness and defects in their counterregulatory defenses. Intensive insulin therapy may thus lead to 3-fold excess of severe hypoglycemia and severely hinder the effective and safe control of hyperglycemia. The main goal of the therapy for type 1 diabetes has long been physiological mimicry of normal insulin secretion based on monitoring which requires considerable effort and understanding of the underlying physiology. Attainment of this goal is challenged by the nature of the disease and our current lack of means to fully repair the abnormal endocrine pancreas interactive functions. As a result, various insulin preparations has been developed to partially compensate for the inability to deliver timely exogenous insulin directly to the portal/intrapancreatic circulation. It remains an ongoing task to identify the ideal routes and regimens of their delivery and potentially that of other hormones to restore the deficient and disordered hormonal environment of the pancreas to achieve a near normal metabolic state. Several recent technological advances help addressing these goals, including the rapid progress in insulin pumps, continuous glucose sensors, and ultimately the artificial pancreas closed-loop technology and the recent start of dual-hormone therapies. PMID:23732369

  18. Exploration of the Performance of a Hybrid Closed Loop Insulin Delivery Algorithm That Includes Insulin Delivery Limits Designed to Protect Against Hypoglycemia.

    PubMed

    de Bock, Martin; Dart, Julie; Roy, Anirban; Davey, Raymond; Soon, Wayne; Berthold, Carolyn; Retterath, Adam; Grosman, Benyamin; Kurtz, Natalie; Davis, Elizabeth; Jones, Timothy

    2017-01-01

    Hypoglycemia remains a risk for closed loop insulin delivery particularly following exercise or if the glucose sensor is inaccurate. The aim of this study was to test whether an algorithm that includes a limit to insulin delivery is effective at protecting against hypoglycemia under those circumstances. An observational study on 8 participants with type 1 diabetes was conducted, where a hybrid closed loop system (HCL) (Medtronic™ 670G) was challenged with hypoglycemic stimuli: exercise and an overreading glucose sensor. There was no overnight or exercise-induced hypoglycemia during HCL insulin delivery. All daytime hypoglycemia was attributable to postmeal bolused insulin in those participants with a more aggressive carbohydrate factor. HCL systems rely on accurate carbohydrate ratios and carbohydrate counting to avoid hypoglycemia. The algorithm that was tested against moderate exercise and an overreading glucose sensor performed well in terms of hypoglycemia avoidance. Algorithm refinement continues in preparation for long-term outpatient trials.

  19. Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data

    PubMed Central

    Griesdale, Donald E.G.; de Souza, Russell J.; van Dam, Rob M.; Heyland, Daren K.; Cook, Deborah J.; Malhotra, Atul; Dhaliwal, Rupinder; Henderson, William R.; Chittock, Dean R.; Finfer, Simon; Talmor, Daniel

    2009-01-01

    Background Hyperglycemia is associated with increased mortality in critically ill patients. Randomized trials of intensive insulin therapy have reported inconsistent effects on mortality and increased rates of severe hypoglycemia. We conducted a meta-analysis to update the totality of evidence regarding the influence of intensive insulin therapy compared with conventional insulin therapy on mortality and severe hypoglycemia in the intensive care unit (ICU). Methods We conducted searches of electronic databases, abstracts from scientific conferences and bibliographies of relevant articles. We included published randomized controlled trials conducted in the ICU that directly compared intensive insulin therapy with conventional glucose management and that documented mortality. We included in our meta-analysis the data from the recent NICE-SUGAR (Normoglycemia in Intensive Care Evaluation — Survival Using Glucose Algorithm Regulation) study. Results We included 26 trials involving a total of 13 567 patients in our meta-analysis. Among the 26 trials that reported mortality, the pooled relative risk (RR) of death with intensive insulin therapy compared with conventional therapy was 0.93 (95% confidence interval [CI] 0.83–1.04). Among the 14 trials that reported hypoglycemia, the pooled RR with intensive insulin therapy was 6.0 (95% CI 4.5–8.0). The ICU setting was a contributing factor, with patients in surgical ICUs appearing to benefit from intensive insulin therapy (RR 0.63, 95% CI 0.44–0.91); patients in the other ICU settings did not (medical ICU: RR 1.0, 95% CI 0.78–1.28; mixed ICU: RR 0.99, 95% CI 0.86–1.12). The different targets of intensive insulin therapy (glucose level ≤ 6.1 mmol/L v. ≤ 8.3 mmol/L) did not influence either mortality or risk of hypoglycemia. Interpretation Intensive insulin therapy significantly increased the risk of hypoglycemia and conferred no overall mortality benefit among critically ill patients. However, this therapy may

  20. Insulin Activates Vagal Afferent Neurons Including those Innervating Pancreas via Insulin Cascade and Ca(2+) Influx: Its Dysfunction in IRS2-KO Mice with Hyperphagic Obesity.

    PubMed

    Iwasaki, Yusaku; Shimomura, Kenju; Kohno, Daisuke; Dezaki, Katsuya; Ayush, Enkh-Amar; Nakabayashi, Hajime; Kubota, Naoto; Kadowaki, Takashi; Kakei, Masafumi; Nakata, Masanori; Yada, Toshihiko

    2013-01-01

    Some of insulin's functions, including glucose/lipid metabolism, satiety and neuroprotection, involve the alteration of brain activities. Insulin could signal to the brain via penetrating through the blood-brain barrier and acting on the vagal afferents, while the latter remains unproved. This study aimed to clarify whether insulin directly regulates the nodose ganglion neurons (NGNs) of vagal afferents in mice. NGs expressed insulin receptor (IR) and insulin receptor substrate-2 (IRS2) mRNA, and some of NGNs were immunoreactive to IR. In patch-clamp and fura-2 microfluorometric studies, insulin (10(-12)∼10(-6) M) depolarized and increased cytosolic Ca(2+) concentration ([Ca(2+)]i) in single NGNs. The insulin-induced [Ca(2+)]i increases were attenuated by L- and N-type Ca(2+) channel blockers, by phosphatidylinositol 3 kinase (PI3K) inhibitor, and in NGNs from IRS2 knockout mice. Half of the insulin-responsive NGNs contained cocaine- and amphetamine-regulated transcript. Neuronal fibers expressing IRs were distributed in/around pancreatic islets. The NGNs innervating the pancreas, identified by injecting retrograde tracer into the pancreas, responded to insulin with much greater incidence than unlabeled NGNs. Insulin concentrations measured in pancreatic vein was 64-fold higher than that in circulation. Elevation of insulin to 10(-7) M recruited a remarkably greater population of NGNs to [Ca(2+)]i increases. Systemic injection of glibenclamide rapidly released insulin and phosphorylated AKT in NGs. Furthermore, in IRS2 knockout mice, insulin action to suppress [Ca(2+)]i in orexigenic ghrelin-responsive neurons in hypothalamic arcuate nucleus was intact while insulin action on NGN was markedly attenuated, suggesting a possible link between impaired insulin sensing by NGNs and hyperphagic obese phenotype in IRS2 knockout mice These data demonstrate that insulin directly activates NGNs via IR-IRS2-PI3K-AKT-cascade and depolarization-gated Ca(2+) influx. Pancreas

  1. [Insulin resistance--a physiopathological condition with numerous sequelae: non-insulin-dependent diabetes mellitus (NIDDM), android obesity, essential hypertension, dyslipidemia and atherosclerosis].

    PubMed

    Pedersen, O

    1992-05-11

    Recent research has demonstrated that reduced insulin-stimulated glucose metabolism in skeletal muscle (insulin resistance) and hyperinsulinism are common features in widespread diseases such as essential hypertension, android obesity, non-insulin dependent diabetes mellitus, dyslipidemia (in the form of raised serum triglyceride and reduced serum high-density lipoprotein (HDL) cholesterol) and arteriosclerosis. Simultaneously, investigations in a comprehensive group of healthy middle-aged men have revealed insulin resistance in one fourth. On the basis of these observations, a working hypothesis is suggested which postulates that genetic abnormalities in one or more of the candidate genes in the modes of action of insulin occur in a great proportion of the population. These may result in insulin resistance (primary genetic insulin resistance). Primary insulin resistance may be potentiated by a series of circumstances such as ageing, high-fat diet, lack of physical activity, hormonal and metabolic abnormalities or drugs (secondary insulin resistance). As a consequence of the reduced effect of insulin on muscle tissue, compensatory hyperinsulinism develops. Depending on the remaining vulnerability of the individual the hyperinsulinism is presumed to result in development of one or more phenotypes. For example if the beta-cells of the pancreas are unable to secrete sufficient insulin to compensate the insulin resistance on account of genetic defects, glucose intolerance will develop. In a similar manner, hyperinsulinism in insulin-resistant individuals who are predisposed to essential hypertension is presumed to reveal genetic defects in the blood pressure regulating mechanisms and thus contribute to development of the disease.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Chromium (d-Phenylalanine)3 Alleviates High Fat-Induced Insulin Resistance and Lipid Abnormalities

    PubMed Central

    Kandadi, Machender Reddy; Unnikrishnan, MK; Warrier, Ajaya Kumar Sankara; Du, Min; Ren, Jun; Sreejayan, Nair

    2010-01-01

    High-fat diet has been implicated as a major cause of insulin resistance and dyslipidemia. The objective of this study was to evaluate the impact of dietary-supplementation of chromium (d-phenylalanine)3 [Cr(d-Phe)3] on -glucose and -insulin tolerance in high-fat diet fed mice. C57BL/6-mice were randomly assigned to orally receive vehicle or Cr(d-Phe)3 (45 μg of elemental chromium/kg/day) for 8-weeks. High-fat-fed mice exhibited impaired whole-body -glucose and- insulin tolerance and elevated serum triglyceride levels compared to normal chow-fed mice. Insulin-stimulated glucose up- take in the gastrocnemius muscles, assessed as 2-[3H-deoxyglucose] incorporation was markedly diminished in high-fat fed mice compared to control mice. Treatment with chromium reconciled the high-fat diet-induced alterations in carbohydrate and lipid metabolism. Treatment of cultured, differentiated myotubes with palmitic acid evoked insulin resistance as evidenced by lower levels of insulin-stimulated Akt-phosphorylation, elevated JNK-phosphorylation, (assessed by Western blotting), attenuation of phosphoinositol-3-kinase activity (determined in the insulin-receptor substrate-1-immunoprecipitates by measuring the extent of phosphorylation of phosphatidylinositol by γ-32P-ATP), and impairment in cellular glucose up-take, all of which were inhibited by Cr(d-Phe)3. These results suggest a beneficial effect of chromium-supplementation in insulin resistant conditions. It is likely that these effects of chromium may be mediated by augmenting downstream insulin signaling. PMID:21134603

  3. The importance of sensitive screening for abnormal glucose metabolism in patients with IgA nephropathy.

    PubMed

    Jia, Xiaoyuan; Pan, Xiaoxia; Xie, Jingyuan; Shen, Pingyan; Wang, Zhaohui; Li, Ya; Wang, Weiming; Chen, Nan

    2016-01-01

    To investigate the prevalence of abnormal glucose metabolism, insulin resistance (IR) and the related risk factors in IgA nephropathy (IgAN) patients. We analyzed oral glucose tolerance test (OGTT) and clinical data of 107 IgAN patients and 106 healthy controls. Glucose metabolism, homeostasis model assessment of insulin resistance (HOMA-IR) and the insulin sensitivity index (ISI) of both groups were evaluated. The prevalence of abnormal glucose metabolism was significantly higher in the IgAN group than in the control group (41.12% vs. 9.43%, p < 0.001), while the prevalence of IR between the two groups was not significantly different. IgAN patients have significantly higher fasting blood glucose, fasting insulin, OGTT 2-hour blood glucose, OGTT 2-hour insulin, HOMA-IR, and lower ISI than healthy controls. Triglyceride (OR = 2.55), 24-hour urine protein excretion (OR = 1.39), and age (OR = 1.06) were independent risk factors for abnormal glucose metabolism in IgAN patients. BMI, eGFR, 24-hour urine protein excretion, triglyceride, fasting blood glucose, fasting insulin, OGTT 2-hour blood glucose, and OGTT 2-hour insulin were significantly higher in IgAN patients with IR than in IgAN patients without IR, while HDL and ISI were significantly lower. BMI, serum albumin, and 24-hour urine protein excretion were correlated factors of IR in IgAN patients. Our study highlighted that abnormal glucose metabolism was common in IgAN patients. Triglyceride and 24-hour urine protein excretion were significant risk factors for abnormal glucose metabolism. Therefore, sensitive screening for glucose metabolism status and timely intervention should be carried out in clinical work.

  4. Chromium (D-phenylalanine)3 alleviates high fat-induced insulin resistance and lipid abnormalities.

    PubMed

    Kandadi, Machender Reddy; Unnikrishnan, M K; Warrier, Ajaya Kumar Sankara; Du, Min; Ren, Jun; Sreejayan, Nair

    2011-01-01

    High-fat diet has been implicated as a major cause of insulin resistance and dyslipidemia. The objective of this study was to evaluate the impact of dietary-supplementation of chromium (D-phenylalanine)(3) [Cr(D-Phe)(3)] on glucose and insulin tolerance in high-fat diet fed mice. C57BL/6-mice were randomly assigned to orally receive vehicle or Cr(D-Phe)(3) (45 μg of elemental chromium/kg/day) for 8-weeks. High-fat-fed mice exhibited impaired whole-body-glucose and -insulin tolerance and elevated serum triglyceride levels compared to normal chow-fed mice. Insulin-stimulated glucose up-take in the gastrocnemius muscles, assessed as 2-[(3)H-deoxyglucose] incorporation was markedly diminished in high-fat fed mice compared to control mice. Treatment with chromium reconciled the high-fat diet-induced alterations in carbohydrate and lipid metabolism. Treatment of cultured, differentiated myotubes with palmitic acid evoked insulin resistance as evidenced by lower levels of insulin-stimulated Akt-phosphorylation, elevated JNK-phosphorylation, (assessed by Western blotting), attenuation of phosphoinositol-3-kinase activity (determined in the insulin-receptor substrate-1-immunoprecipitates by measuring the extent of phosphorylation of phosphatidylinositol by γ-(32)P-ATP), and impairment in cellular glucose up-take, all of which were inhibited by Cr(d-Phe)(3). These results suggest a beneficial effect of chromium-supplementation in insulin resistant conditions. It is likely that these effects of chromium may be mediated by augmenting downstream insulin signaling. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Branched-Chain Amino Acids and Insulin Metabolism: The Insulin Resistance Atherosclerosis Study (IRAS).

    PubMed

    Lee, C Christine; Watkins, Steve M; Lorenzo, Carlos; Wagenknecht, Lynne E; Il'yasova, Dora; Chen, Yii-Der I; Haffner, Steven M; Hanley, Anthony J

    2016-04-01

    Recent studies using untargeted metabolomics approaches have suggested that plasma branched-chain amino acids (BCAAs) are associated with incident diabetes. However, little is known about the role of plasma BCAAs in metabolic abnormalities underlying diabetes and whether these relationships are consistent across ethnic populations at high risk for diabetes. We investigated the associations of BCAAs with insulin sensitivity (SI), acute insulin response (AIR), and metabolic clearance of insulin (MCRI) in a multiethnic cohort. In 685 participants without diabetes of the Insulin Resistance Atherosclerosis Study (IRAS) (290 Caucasians, 165 African Americans, and 230 Hispanics), we measured plasma BCAAs (sum of valine, leucine, and isoleucine) by mass spectrometry and SI, AIR, and MCRI by frequently sampled intravenous glucose tolerance tests. Elevated plasma BCAAs were inversely associated with SI and MCRI and positively associated with fasting insulin in regression models adjusted for potential confounders (β = -0.0012 [95% CI -0.0018, -0.00059], P < 0.001 for SI; β = -0.0013 [95% CI -0.0018, -0.00082], P < 0.001 for MCRI; and β = 0.0015 [95% CI 0.0008, 0.0023], P < 0.001 for fasting insulin). The association of BCAA with SI was significantly modified by ethnicity, with the association only being significant in Caucasians and Hispanics. Elevated plasma BCAAs were associated with incident diabetes in Caucasians and Hispanics (multivariable-adjusted odds ratio per 1-SD increase in plasma BCAAs: 1.67 [95% CI 1.21, 2.29], P = 0.002) but not in African Americans. Plasma BCAAs were not associated with SI-adjusted AIR. Plasma BCAAs are associated with incident diabetes and underlying metabolic abnormalities, although the associations were generally stronger in Caucasians and Hispanics. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  6. Intranasal Insulin Therapy for Cognitive Impairment and Neurodegeneration: Current State of the Art

    PubMed Central

    de la Monte, Suzanne M.

    2015-01-01

    Introduction Growing evidence supports the concept that insulin resistance plays an important role in the pathogenesis of cognitive impairment and neurodegeneration, including in Alzheimer's disease (AD). The metabolic hypothesis has led to the development and utilization of insulin- and insulin agonist-based treatments. Therapeutic challenges faced include the ability to provide effective treatments that do not require repeated injections and also minimize potentially hazardous off-target effects. Areas covered This review covers the role of intra-nasal insulin therapy for cognitive impairment and neurodegeneration, particularly Alzheimer's disease. The literature reviewed focuses on data published within the past 5 years as this field is evolving rapidly. The author provides evidence that brain insulin resistance is an important and early abnormality in Alzheimer's disease, and that increasing brain supply and utilization of insulin improves cognition and memory. Emphasis was placed on discussing outcomes of clinical trials and interpreting discordant results to clarify the benefits and limitations of intranasal insulin therapy. Expert Opinion Intranasal insulin therapy can efficiently and directly target the brain to support energy metabolism, myelin maintenance, cell survival, and neuronal plasticity, which begin to fail in the early stages of neurodegeneration. Efforts must continue toward increasing the safety, efficacy, and specificity of intranasal insulin therapy. PMID:24215447

  7. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance.

    PubMed

    Højlund, Kurt

    2014-07-01

    Type 2 diabetes, obesity and polycystic ovary syndrome (PCOS) are common metabolic disorders which are observed with increasing prevalences, and which are caused by a complex interplay between genetic and environmental factors, including increased calorie intake and physical inactivity. These metabolic disorders are all characterized by reduced plasma adiponectin and insulin resistance in peripheral tissues. Quantitatively skeletal muscle is the major site of insulin resistance. Both low plasma adiponectin and insulin resistance contribute to an increased risk of type 2 diabetes and cardiovascular disease. In several studies, we have investigated insulin action on glucose and lipid metabolism, and at the molecular level, insulin signaling to glucose transport and glycogen synthesis in skeletal muscle from healthy individuals and in obesity, PCOS and type 2 diabetes. Moreover, we have described a novel syndrome characterized by postprandial hyperinsulinemic hypoglycemia and insulin resistance. This syndrome is caused by a mutation in the tyrosine kinase domain of the insulin receptor gene (INSR). We have studied individuals with this mutation as a model of inherited insulin resistance. Type 2 diabetes, obesity and PCOS are characterized by pronounced defects in the insulin-stimulated glucose uptake, in particular glycogen synthesis and to a lesser extent glucose oxidation, and the ability of insulin to suppress lipid oxidation. In inherited insulin resistance, however, only insulin action on glucose uptake and glycogen synthesis is impaired. This suggests that the defects in glucose and lipid oxidation in the common metabolic disorders are secondary to other factors. In young women with PCOS, the degree of insulin resistance was similar to that seen in middle-aged patients with type 2 diabetes. This supports the hypothesis of an unique pathogenesis of insulin resistance in PCOS. Insulin in physiological concentrations stimulates glucose uptake in human skeletal

  8. Endothelial function varies according to insulin resistance disease type.

    PubMed

    Beckman, Joshua A; Goldfine, Allison B; Dunaif, Andrea; Gerhard-Herman, Marie; Creager, Mark A

    2007-05-01

    We examined the relationship between insulin resistance and vascular function in three insulin-resistant states (type 2 diabetes, non-HIV lipodystrophic diabetes, and nondiabetic polycystic ovary syndrome [PCOS]) and in healthy control subjects. The population included 12 women with type 2 diabetes, 6 with lipodystrophic diabetes, 10 with PCOS, and 19 healthy female subjects. Metabolic measures included insulin sensitivity by the homeostasis model assessment, lipids, free fatty acids, and adiponectin. High-resolution B-mode ultrasound was used to determine endothelium-dependent and -independent vasodilation. Type 2 diabetic, liposdystrophic, and PCOS subjects were insulin resistant compared with control subjects (P = 0.001). Flow-mediated vasodilation was reduced in diabetic (3.4 +/- 1.3%) compared with control (7.3 +/- 1.1%) subjects but not in lipodystrophic (7.7 +/- 1.2%) or PCOS (9.9 +/- 0.7%) subjects (P = 0.005). Nitroglycerin-mediated vasodilation was attenuated in both diabetic (15.2 +/- 2.0%) and lipodystrophic (16.7 +/- 3.6%) subjects compared with healthy control (24.6 +/- 2.4%) and PCOS (23.2 +/- 1.8%) subjects (P = 0.019). Insulin resistance, free fatty acids, adiponectin, or C-reactive protein did not associate with vascular dysfunction. Among these different types of patients with insulin resistance, we found abnormal endothelium-dependent vasodilation only in the patients with type 2 diabetes. We postulate that variations in the mechanism of insulin resistance may affect endothelial function differently than glucose homeostasis.

  9. Effects and mechanisms of caffeine to improve immunological and metabolic abnormalities in diet-induced obese rats.

    PubMed

    Liu, Chih-Wei; Tsai, Hung-Cheng; Huang, Chia-Chang; Tsai, Chang-Youh; Su, Yen-Bo; Lin, Ming-Wei; Lee, Kuei-Chuan; Hsieh, Yun-Cheng; Li, Tzu-Hao; Huang, Shiang-Fen; Yang, Ying-Ying; Hou, Ming-Chih; Lin, Han-Chieh; Lee, Fa-Yauh; Lee, Shou-Dong

    2018-05-01

    In obesity, there are no effective therapies for parallel immune and metabolic abnormalities, including systemic/tissue insulin-resistance/inflammation, adiposity and hepatic steatosis. Caffeine has anti-inflammation, antihepatic steatosis, and anti-insulin resistance effects. In this study, we evaluated the effects and molecular mechanisms of 6 wk of caffeine treatment (HFD-caf) on immunological and metabolic abnormalities of high-fat diet (HFD)-induced obese rats. Compared with HFD vehicle (HFD-V) rats, in HFD-caf rats the suppressed circulating immune cell inflammatory [TNFα, MCP-1, IL-6, intercellular adhesion molecule 1 (ICAM-1), and nitrite] profiles were accompanied by decreased liver, white adipose tissue (WAT), and muscle macrophages and their intracellular cytokine levels. Metabolically, the increase in metabolic rates reduced lipid accumulation in various tissues, resulting in reduced adiposity, lower fat mass, decreased body weight, amelioration of hepatic steatosis, and improved systemic/muscle insulin resistance. Further mechanistic approaches revealed an upregulation of tissue lipogenic [(SREBP1c, fatty acid synthase, acetyl-CoA carboxylase)/insulin-sensitizing (GLUT4 and p-IRS1)] markers in HFD-caf rats. Significantly, ex vivo experiments revealed that the cytokine release by the cocultured peripheral blood mononuclear cell (monocyte) and WAT (adipocyte), which are known to stimulate macrophage migration and hepatocyte lipogenesis, were lower in HFD-V groups than HFD-caf groups. Caffeine treatment simultaneously ameliorates immune and metabolic pathogenic signals present in tissue to normalize immunolgical and metabolic abnormalities found in HFD-induced obese rats.

  10. Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects.

    PubMed

    Reyna, Sara M; Ghosh, Sangeeta; Tantiwong, Puntip; Meka, C S Reddy; Eagan, Phyllis; Jenkinson, Christopher P; Cersosimo, Eugenio; Defronzo, Ralph A; Coletta, Dawn K; Sriwijitkamol, Apiradee; Musi, Nicolas

    2008-10-01

    OBJECTIVE- Tall-like receptor (TLR)4 has been implicated in the pathogenesis of free fatty acid (FFA)-induced insulin resistance by activating inflammatory pathways, including inhibitor of kappaB (IkappaB)/nuclear factor kappaB (NFkappaB). However, it is not known whether insulin-resistant subjects have abnormal TLR4 signaling. We examined whether insulin-resistant subjects have abnormal TLR4 expression and TLR4-driven (IkappaB/NFkappaB) signaling in skeletal muscle. RESEARCH DESIGN AND METHODS- TLR4 gene expression and protein content were measured in muscle biopsies in 7 lean, 8 obese, and 14 type 2 diabetic subjects. A primary human myotube culture system was used to examine whether FFAs stimulate IkappaB/NFkappaB via TLR4 and whether FFAs increase TLR4 expression/content in muscle. RESULTS- Obese and type 2 diabetic subjects had significantly elevated TLR4 gene expression and protein content in muscle. TLR4 muscle protein content correlated with the severity of insulin resistance. Obese and type 2 diabetic subjects also had lower IkappaBalpha content, an indication of elevated IkappaB/NFkappaB signaling. The increase in TLR4 and NFkappaB signaling was accompanied by elevated expression of the NFkappaB-regulated genes interleukin (IL)-6 and superoxide dismutase (SOD)2. In primary human myotubes, acute palmitate treatment stimulated IkappaB/NFkappaB, and blockade of TLR4 prevented the ability of palmitate to stimulate the IkappaB/NFkappaB pathway. Increased TLR4 content and gene expression observed in muscle from insulin-resistant subjects were reproduced by treating myotubes from lean, normal-glucose-tolerant subjects with palmitate. Palmitate also increased IL-6 and SOD2 gene expression, and this effect was prevented by inhibiting NFkappaB. CONCLUSIONS- Abnormal TLR4 expression and signaling, possibly caused by elevated plasma FFA levels, may contribute to the pathogenesis of insulin resistance in humans.

  11. Preliminary evidence for obesity and elevations in fasting insulin mediating associations between cortisol awakening response and hippocampal volumes and frontal atrophy.

    PubMed

    Ursache, Alexandra; Wedin, William; Tirsi, Aziz; Convit, Antonio

    2012-08-01

    Recent studies have demonstrated alterations in the cortisol awakening response (CAR) and brain abnormalities in adults with obesity and type 2 diabetes mellitus (T2DM). While adolescents with T2DM exhibit similar brain abnormalities, less is known about whether brain impairments and hypothalamic-pituitary-adrenal (HPA) axis abnormalities are already present in adolescents with pre-diabetic conditions such as insulin resistance (IR). This study included 33 adolescents with IR and 20 without IR. Adolescents with IR had a blunted CAR, smaller hippocampal volumes, and greater frontal lobe atrophy compared to controls. Mediation analyses indicated pathways whereby a smaller CAR was associated with higher BMI which was in turn associated with fasting insulin levels, which in turn was related to smaller hippocampal volume and greater frontal lobe atrophy. While we had hypothesized that HPA dysregulation may result from brain abnormalities, our findings suggest that HPA dysregulation may also impact brain structures through associations with metabolic abnormalities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Stimulation of insulin secretion by medium-chain triglycerides in patients with cirrhosis 1

    PubMed Central

    McCullough, Frank S.; Tzagournis, Manuel; Greenberger, Norton J.; Linscheer, Willem G.

    1971-01-01

    Oral medium-chain triglycerides were given to 10 normal volunteers, 12 cirrhotics (group I) without and 28 cirrhotics (group II) with abnormal portal systemic communications (ascites, splenomegaly, oesophageal varices, or surgically-created portacaval shunts). After 30 ml of medium-chain triglyceride oil there was no appreciable change in serum glucose levels in any of the three groups nor in serum insulin levels in the normals and in cirrhotics in group I. However, there was a significant increase in serum insulin levels in the cirrhotic patients in group II. It is suggested that the rise in serum insulin levels after medium-chain triglycerides noted in the cirrhotics with shunts is due to shunting of insulin-containing portal blood around the liver (anatomical shunts) and to a diminished hepatic cell mass capable of extracting insulin (functional shunt). This differential response of serum insulin levels to medium-chain triglycerides may prove to be of value in detecting the presence of abnormal portal systemic communications in cirrhotic patients. PMID:5548559

  13. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ying; Wang, Jianwei, E-mail: wangjianwei1968@gmail.com; Gu, Tieguang

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) indexmore » in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo

  14. Blood glucose and serum insulin responses to breakfast including guar gum and cooked or uncooked milk in type 2 (non-insulin-dependent) diabetic patients.

    PubMed

    Uusitupa, M; Aro, A; Korhonen, T; Tuunainen, A; Sarlund, H; Penttilä, I

    1984-06-01

    The post-prandial blood glucose and serum insulin responses to test meals, each including 300 ml fat-free milk taken separately with the meal or premixed before cooking into the meal consisting of oatmeal porridge, were studied in 10 diet-treated Type 2 (non-insulin-dependent) diabetic subjects. The modifying effect of guar gum on the responses was also studied by supplementing both types of test meals with 5 g granulated guar gum taken at the beginning of the meal. The blood glucose response was higher after the meal which contained cooked milk than after the respective meal with milk taken separately. The guar gum supplementation attenuated the blood glucose response after the meals, but the effect was more pronounced after the meal containing cooked milk. Post-prandial serum insulin responses were similar after all test meals. The results suggest that cooking may facilitate the absorption of lactose from milk-containing foods, and that supplementation with guar gum may counteract this response.

  15. Glinide, but Not Sulfonylurea, Can Evoke Insulin Exocytosis by Repetitive Stimulation: Imaging Analysis of Insulin Exocytosis by Secretagogue-Induced Repetitive Stimulations

    PubMed Central

    Aoyagi, Kyota; Ohara-Imaizumi, Mica; Nishiwaki, Chiyono; Nakamichi, Yoko; Nagamatsu, Shinya

    2009-01-01

    To investigate the different effects between sulfonylurea (SU) and glinide drugs in insulin secretion, pancreatic β-cells were repeatedly stimulated with SU (glimepiride) or glinide (mitiglinide). Total internal reflection fluorescent (TIRF) microscopy revealed that secondary stimulation with glimepiride, but not glucose and mitiglinide, failed to evoke fusions of insulin granules although primary stimulation with glucose, glimepiride, and mitiglinide induced equivalent numbers of exocytotic responses. Glimepiride, but not glucose and mitiglinide, induced abnormally sustained [Ca2+]i elevations and reductions of docked insulin granules on the plasma membrane. Our data suggest that the effect of glinide on insulin secretory mechanisms is similar to that of glucose. PMID:20069052

  16. Diabetes mellitus, insulin resistance and hepatitis C virus infection: A contemporary review.

    PubMed

    Desbois, Anne-Claire; Cacoub, Patrice

    2017-03-07

    To summarise the literature data on hepatitis C virus (HCV)-infected patients concerning the prevalence of glucose abnormalities and associated risk. We conducted a PubMed search and selected all studies found with the key words "HCV" or "hepatitis C virus" and "diabetes" or "insulin resistance". We included only comparative studies written in English or in French, published from January 2000 to April 2015. We collected the literature data on HCV-infected patients concerning the prevalence of glucose abnormalities [diabetes mellitus (DM) and insulin resistance (IR)] and associated risk [ i.e ., severe liver fibrosis, response to antivirals, and the occurrence of hepatocellular carcinoma (HCC)]. HCV infection is significantly associated with DM/IR compared with healthy volunteers and patients with hepatitis B virus infection. Glucose abnormalities were associated with advanced liver fibrosis, lack of sustained virologic response to interferon alfa-based treatment and with a higher risk of HCC development. As new antiviral therapies may offer a cure for HCV infection, such data should be taken into account, from a therapeutic and preventive point of view, for liver and non-liver consequences of HCV disease. The efficacy of antidiabetic treatment in improving the response to antiviral treatment and in decreasing the risk of HCC has been reported by some studies but not by others. Thus, the effects of glucose abnormalities correction in reducing liver events need further studies. Glucose abnormalities are strongly associated with HCV infection and show a negative impact on the main liver related outcomes.

  17. Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice

    PubMed Central

    Fujisawa, Yukiko; Kato, Teruhisa; Ohki, Shizuka; Ishikawa, Atsushi; Kitano, Hidemi; Sasaki, Takuji; Asahi, Tadashi; Iwasaki, Yukimoto

    1999-01-01

    Transgenic rice containing an antisense cDNA for the α subunit of rice heterotrimeric G protein produced little or no mRNA for the subunit and exhibited abnormal morphology, including dwarf traits and the setting of small seeds. In normal rice, the mRNA for the α subunit was abundant in the internodes and florets, the tissues closely related to abnormality in the dwarf transformants. The position of the α-subunit gene was mapped on rice chromosome 5 by mapping with the restriction fragment length polymorphism. The position was closely linked to the locus of a rice dwarf mutant, Daikoku dwarf (d-1), which is known to exhibit abnormal phenotypes similar to those of the transformants that suppressed the endogenous mRNA for the α subunit by antisense technology. Analysis of the cDNAs for the α subunits of five alleles of Daikoku dwarf (d-1), ID-1, DK22, DKT-1, DKT-2, and CM1361–1, showed that these dwarf mutants had mutated in the coding region of the α-subunit gene. These results show that the G protein functions in the formation of normal internodes and seeds in rice. PMID:10377457

  18. Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene.

    PubMed

    Knowles, Joshua W; Xie, Weijia; Zhang, Zhongyang; Chennamsetty, Indumathi; Chennemsetty, Indumathi; Assimes, Themistocles L; Paananen, Jussi; Hansson, Ola; Pankow, James; Goodarzi, Mark O; Carcamo-Orive, Ivan; Morris, Andrew P; Chen, Yii-Der I; Mäkinen, Ville-Petteri; Ganna, Andrea; Mahajan, Anubha; Guo, Xiuqing; Abbasi, Fahim; Greenawalt, Danielle M; Lum, Pek; Molony, Cliona; Lind, Lars; Lindgren, Cecilia; Raffel, Leslie J; Tsao, Philip S; Schadt, Eric E; Rotter, Jerome I; Sinaiko, Alan; Reaven, Gerald; Yang, Xia; Hsiung, Chao A; Groop, Leif; Cordell, Heather J; Laakso, Markku; Hao, Ke; Ingelsson, Erik; Frayling, Timothy M; Weedon, Michael N; Walker, Mark; Quertermous, Thomas

    2015-04-01

    Decreased insulin sensitivity, also referred to as insulin resistance (IR), is a fundamental abnormality in patients with type 2 diabetes and a risk factor for cardiovascular disease. While IR predisposition is heritable, the genetic basis remains largely unknown. The GENEticS of Insulin Sensitivity consortium conducted a genome-wide association study (GWAS) for direct measures of insulin sensitivity, such as euglycemic clamp or insulin suppression test, in 2,764 European individuals, with replication in an additional 2,860 individuals. The presence of a nonsynonymous variant of N-acetyltransferase 2 (NAT2) [rs1208 (803A>G, K268R)] was strongly associated with decreased insulin sensitivity that was independent of BMI. The rs1208 "A" allele was nominally associated with IR-related traits, including increased fasting glucose, hemoglobin A1C, total and LDL cholesterol, triglycerides, and coronary artery disease. NAT2 acetylates arylamine and hydrazine drugs and carcinogens, but predicted acetylator NAT2 phenotypes were not associated with insulin sensitivity. In a murine adipocyte cell line, silencing of NAT2 ortholog Nat1 decreased insulin-mediated glucose uptake, increased basal and isoproterenol-stimulated lipolysis, and decreased adipocyte differentiation, while Nat1 overexpression produced opposite effects. Nat1-deficient mice had elevations in fasting blood glucose, insulin, and triglycerides and decreased insulin sensitivity, as measured by glucose and insulin tolerance tests, with intermediate effects in Nat1 heterozygote mice. Our results support a role for NAT2 in insulin sensitivity.

  19. High-mix insulins

    PubMed Central

    Kalra, Sanjay; Farooqi, Mohammad Hamed; El-Houni, Ali E.

    2015-01-01

    Premix insulins are commonly used insulin preparations, which are available in varying ratios of different molecules. These drugs contain one short- or rapid-acting, and one intermediate- or long-acting insulin. High-mix insulins are mixtures of insulins that contain 50% or more than 50% of short-acting insulin. This review describes the clinical pharmacology of high-mix insulins, including data from randomized controlled trials. It suggests various ways, in which high-mix insulin can be used, including once daily, twice daily, thrice daily, hetero-mix, and reverse regimes. The authors provide a rational framework to help diabetes care professionals, identify indications for pragmatic high-mix use. PMID:26425485

  20. Subclinical metabolic abnormalities associated with obesity in prepubertal Mexican schoolchildren.

    PubMed

    Romero, Juana B; Briones, Evangelina; Palacios, Gerardo C; Castelán, Kathia

    2010-06-01

    Childhood obesity has increased to epidemic levels and is considered a public health problem due to its association with a number of metabolic abnormalities, which are being detected at earlier stages of life. The objective was to evaluate the association between the presence of subclinical metabolic abnormalities (SMA) and obesity in a sample of pre-pubertal Mexican schoolchildren. Children of both sexes and 6 to 13 years old were questioned for signs of puberty, underwent anthropometric measurement and had their Body Mass Index (BMI) calculated. Two groups were formed: those with obesity (case group) and those with normal weight paired by age and chosen randomly (control group). Fasting insulin, glucose and cholesterol were measured. 92 children were included, 46 in each group, mean age 9.9 and 9.5 years old, respectively (p = 0.97). A higher frequency of hyperinsulinism was found in the case group: Fasting insulin > 15 mU/ml, 75% vs. 21% (case group vs. control group, respectively); fasting glucose to insulin ratio < 6, 72% vs. 24%; HOMA IR > 2.7, 83% vs. 14%; and decrease in QUICKI (< 0.3), 80% vs. 19% (p = 0.000). Hypercholesterolemia was 25% vs. 15% (p = 0.22), impaired fasting glucose 28% vs. 8% (p = 0.01), and family history of diabetes mellitus (DM) 35% vs. 9% (OR = 5.6; 95% CI = 1.5-22.2; p = 0.002). In this sample of Mexican schoolchildren, obesity was associated to a higher frequency of SMA, such as hyperinsulinism and impaired fasting glucose, and to a family history of DM.

  1. Prognosis of Pregnant Women with One Abnormal Value on 75g OGTT.

    PubMed

    Kozuma, Yutaka; Inoue, Shigeru; Horinouchi, Takashi; Shinagawa, Takaaki; Nakayama, Hitomi; Kawaguchi, Atsushi; Hori, Daizo; Kamura, Toshiharu; Yamada, Kentaro; Ushijima, Kimio

    2015-01-01

    The aim of this study was to identify risk factors to allow us to detect patients at high risk of requiring insulin therapy, among Japanese pregnant women with one abnormal value (OAV) on a 75-g oral glucose tolerance test (75-g OGTT). A total of 118 pregnant women with OAV on a previous 75-g OGTT between 1997 and 2010 were studied. We identified the factors which can predict patients at high risk of requiring insulin therapy among Japanese pregnant women with OAV, by comparing severe abnormal glucose tolerance (insulin treatment; n=17) with mild glucose tolerance patients (diet only; n=101). The following factors were examined; plasma level of glucose (PG) and immunoreactive insulin (IRI) at fasting, 0.5, 1 and 2 hours after loading glucose, insulinogenic index, homeostasis model assessment insulin resistance (HOMA-IR), insulin sensitivity index-composite (ISI composite), and HbA1c at the time of the 75-g OGTT. Univariate analysis showed a positive correlation between insulin therapy and 2-h PG value, 0.5-h and 1-h IRI values, AUC-IRI and insulinogenic index (p<0.05). Multivariate analysis showed that the PG 2-h value and insulinogenic index were independent predictive factors of insulin therapy. A 2-h PG ≥153 mg / dl and an insulinogenic index of <0.42 had a sensitivity of 81.8%, a specificity of 83.8%, a positive predictive value of 60.0% and a negative predictive value of 93.9% for the prediction of patients who required insulin therapy among pregnant women with OAV. These results suggest that a level of 2-h PG ≥153 mg/dl and an insulinogenic index of <0.42 on 75-g OGTT are predictive factors for insulin therapy in Japanese pregnant women with OAV.

  2. Impaired postprandial tissue regulation of blood flow in insulin resistance: a determinant of cardiovascular risk?

    PubMed

    Summers, L K; Samra, J S; Frayn, K N

    1999-11-01

    The insulin resistant state is a major risk factor for coronary artery disease. This increased risk is likely to be due to associated lipid and coagulation abnormalities rather than just abnormalities in glucose metabolism or hyperinsulinaemia alone. Exaggerated postprandial lipaemia is a well-recognised associate of insulin resistance and postprandial hypertriglyceridaemia is particularly important in the development of coronary atheroma. It seems likely that insulin is one of the hormonal regulators of adipose tissue and skeletal muscle blood flow. The reduced blood flow and blunting of the postprandial rise of peripheral blood flow in insulin resistance may decrease chylomicron-triglyceride delivery to muscle in subjects with insulin resistance. This, in turn, will lead to increased production of atherogenic particles. We propose that impaired postprandial vasodilation, already recognised as a key feature of glucose intolerance, is also the cause of impaired lipid metabolism in insulin resistant subjects and predisposes them to cardiovascular disease.

  3. [Metabolic profile in obese patients with obstructive sleep apnea. A comparison between patients with insulin resistance and with insulin sensitivity].

    PubMed

    Dumitrache-Rujinski, Stefan; Dinu, Ioana; Călcăianu, George; Erhan, Ionela; Cocieru, Alexandru; Zaharia, Dragoş; Toma, Claudia Lucia; Bogdan, Miron Alexandru

    2014-01-01

    Obstructive sleep apnea syndrome (OSAS) may induce metabolic abnormalities through intermittent hypoxemia and simpathetic activation. It is difficult to demonstrate an independent role of OSAS in the occurrence of metabolic abnormalities, as obesity represents an important risk factor for both OSAS and metabolic abnormalities. to assess the relations between insulin resistance (IR), insulin sensitivity (IS), OSAS severity and nocturnal oxyhaemoglobin levels in obese, nondiabetic patients with daytime sleepiness. We evaluated 99 consecutive, obese, nondiabetic patients (fasting glycemia < 126 mg/dL, no hypoglycemic or hypolipemiant medication) diagnosed with OSAS (AHI > 5/hour and daytime sleepiness) by an ambulatory six channel cardio-respiratory polygraphy. Hight, weight serum triglycerides (TG), high density lipoprotein-cholesterol (HDL-C) levels were evaluated. Correlations between Apneea Hypopnea Index (AHI), Oxygen Desaturation Index (ODI), average and lowest oxyhaemoglobin saturation (SaO), body mass index (BMI) and insulin resistance or sensitivity were assesed. IR was defined as a TG/ HDL-Cratio > 3, and insulin sensitivity (IS) as a TG/HDL-C ratio < 2. 64 patients (out of 99) had lR and 18 IS. In the IR group (44 men and 20 women), the mean age was 52 +/- 10.6 years, mean BMI: 38.54 +/- 6.67 Kg/m2 (30-60), TG/HDL-C:5, 27 +/- 2.03 (3.02-11.1), mean AHI: 49.65 +/- 25.55/hour (7-110), mean ODI: 4769 +/- 24.95/hour (4-98), mean average SaO2 89.42 +/- 4.6 and mean lowest SaO2 68.4% +/- 13.8% (32-88%). 48 patients had severe, 7 moderate and 9 mild OSAS. In the IS group (10 men and 8 women), the mean age was 58.4 +/- 8.2years, mean BMI: 35.4 +/- 4.29 Kg/m2 (30-46), TG/ HDL-C: 1.64 +/- 0.29 (1.13-1.95), mean AHI: 45.8 +/- 30.3/hour (9-131), mean ODI: 39.9 +/- 32.2/hour (2-133), mean average SaO2 90.8 +/- 8.2 (81-95) and mean lowest SaO2: 74% +/- 10.8% (52-87%). 12 patients had severe, 3 moderate and 3 mild OSAS. Insulin sensitivity positively correlated with mean

  4. Continuous subcutaneous insulin infusion preserves axonal function in type 1 diabetes mellitus.

    PubMed

    Kwai, Natalie; Arnold, Ria; Poynten, Ann M; Lin, Cindy S-Y; Kiernan, Matthew C; Krishnan, Arun V

    2015-02-01

    Diabetic peripheral neuropathy is a common and debilitating complication of diabetes mellitus. Although strict glycaemic control may reduce the risk of developing diabetic peripheral neuropathy, the neurological benefits of different insulin regimens remain relatively unknown. In the present study, 55 consecutive patients with type 1 diabetes mellitus underwent clinical neurological assessment. Subsequently, 41 non-neuropathic patients, 24 of whom were receiving multiple daily insulin injections (MDII) and 17 receiving continuous subcutaneous insulin infusion (CSII), underwent nerve excitability testing, a technique that assesses axonal ion channel function and membrane potential in human nerves. Treatment groups were matched for glycaemic control, body mass index, disease duration and gender. Neurophysiological parameters were compared between treatment groups and those taken from age and sex-matched normal controls. Prominent differences in axonal function were noted between MDII-treated and CSII-treated patients. Specifically, MDII patients manifested prominent abnormalities when compared with normal controls in threshold electrotonus (TE) parameters including depolarizing TE(10-20ms), undershoot and hyperpolarizing TE (90-100 ms) (P < 0.05). Additionally, recovery cycle parameters superexcitability and subexcitability were also abnormal (P < 0.05). In contrast, axonal function in CSII-treated patients was within normal limits when compared with age-matched controls. The differences between the groups were noted in cross-sectional analysis and remained at longitudinal follow-up. Axonal function in type 1 diabetes is maintained within normal limits in patients treated with continuous subcutaneous insulin infusion and not with multiple daily insulin injections. This raises the possibility that CSII therapy may have neuroprotective potential in patients with type 1 diabetes. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Increased abundance of insulin/insulin-like growth factor-I hybrid receptors in skeletal muscle of obese subjects is correlated with in vivo insulin sensitivity.

    PubMed

    Federici, M; Porzio, O; Lauro, D; Borboni, P; Giovannone, B; Zucaro, L; Hribal, M L; Sesti, G

    1998-08-01

    We reported that in noninsulin-dependent diabetes melitus (NIDDM) patients expression of insulin/insulin-like growth factor I (IGF-I) hybrid receptors is increased in insulin target tissues. Whether this is a defect associated with NIDDM or represents a generalized abnormality associated with insulin resistant states is still unsettled. To address this, we applied a microwell-based immunoassay to measure abundance of insulin receptors, type 1 IGF receptors, and hybrid receptors in muscle of eight normal and eight obese subjects. Maximal insulin binding to insulin receptors was lower in obese than in control subjects (B/T = 1.8 +/- 0.20 and 2.6 +/- 0.30; P < 0.03, respectively) and was negatively correlated with insulinemia (r = -0.60; P < 0.01). Maximal IGF-I binding to type 1 IGF receptors was higher in obese than in controls (B/T = 1.9 +/- 0.20 and 0.86 +/- 0.10; P < 0.0001, respectively) and was negatively correlated with plasma IGF-I levels (r = -0.69; P < 0.003). Hybrid receptor abundance was higher in obese than in normal subjects (B/T = 1.21 +/- 0.14 and 0.44 +/- 0.06; P < 0.0003, respectively) and was negatively correlated with insulin binding (r = -0.60; P < 0.01) and positively correlated with IGF-I binding (r = 0.92; P < 0.0001). Increased abundance of hybrids was correlated with insulinemia (r = 0.70; P < 0.002) and body mass index (r = 0.71; P < 0.0019), whereas it was negatively correlated with in vivo insulin sensitivity measured by ITT (r = -0.67; P < 0.016). These results indicate that downregulation of insulin receptors or upregulation of type 1 IGF receptors because of changes in plasma insulin and IGF-I levels may result in modifications in hybrid receptor abundance.

  6. Metabolic signatures of insulin resistance in 7,098 young adults.

    PubMed

    Würtz, Peter; Mäkinen, Ville-Petteri; Soininen, Pasi; Kangas, Antti J; Tukiainen, Taru; Kettunen, Johannes; Savolainen, Markku J; Tammelin, Tuija; Viikari, Jorma S; Rönnemaa, Tapani; Kähönen, Mika; Lehtimäki, Terho; Ripatti, Samuli; Raitakari, Olli T; Järvelin, Marjo-Riitta; Ala-Korpela, Mika

    2012-06-01

    Metabolite associations with insulin resistance were studied in 7,098 young Finns (age 31 ± 3 years; 52% women) to elucidate underlying metabolic pathways. Insulin resistance was assessed by the homeostasis model (HOMA-IR) and circulating metabolites quantified by high-throughput nuclear magnetic resonance spectroscopy in two population-based cohorts. Associations were analyzed using regression models adjusted for age, waist, and standard lipids. Branched-chain and aromatic amino acids, gluconeogenesis intermediates, ketone bodies, and fatty acid composition and saturation were associated with HOMA-IR (P < 0.0005 for 20 metabolite measures). Leu, Ile, Val, and Tyr displayed sex- and obesity-dependent interactions, with associations being significant for women only if they were abdominally obese. Origins of fasting metabolite levels were studied with dietary and physical activity data. Here, protein energy intake was associated with Val, Phe, Tyr, and Gln but not insulin resistance index. We further tested if 12 genetic variants regulating the metabolites also contributed to insulin resistance. The genetic determinants of metabolite levels were not associated with HOMA-IR, with the exception of a variant in GCKR associated with 12 metabolites, including amino acids (P < 0.0005). Nonetheless, metabolic signatures extending beyond obesity and lipid abnormalities reflected the degree of insulin resistance evidenced in young, normoglycemic adults with sex-specific fingerprints.

  7. Insulin resistance and associated factors: a cross-sectional study of bank employees.

    PubMed

    Salaroli, Luciane Bresciani; Cattafesta, Monica; Molina, Maria Del Carmen Bisi; Zandonade, Eliana; Bissoli, Nazaré Souza

    2017-04-01

    Insulin resistance is characterized by the failure of target cells to respond to normal levels of circulating insulin, and this condition is related to cardiovascular disease. This study sought to evaluate the prevalence of insulin resistance and its association with markers of metabolic abnormalities and metabolic syndrome in bank employees. A cross-sectional study was performed on 498 working men and women aged ≥20 years old. The Homeostasis Model Assessment (HOMA-IR) was used to determine the presence of insulin resistance based on cut-off values of ≤2.71 for normal insulin levels and >2.71 for insulin resistance, as established for the adult Brazilian population. It was observed that the 52 (10.4%) overweight individuals with insulin resistance were 4.97 times (95%CI 1.31-18.83) more likely to have high HOMA-IR values than the normal-weight participants; among those who were obese, the likelihood increased to 17.87 (95%CI 4.36-73.21). Individuals with large waist circumferences were 3.27 times (95%CI 1.03-10.38) more likely to develop insulin resistance than those who were within normal parameters. The HOMA-IR values differed between subjects with and without metabolic syndrome, with values of 2.83±2.5 and 1.10±0.81 (p=0.001), respectively. The levels of insulin, ultrasensitive C-reactive protein and uric acid were also associated with insulin resistance. The prevalence of insulin resistance among bank employees is high, and insulin resistance is associated with and serves as a marker of metabolic syndrome. Cardiovascular disease and metabolic syndrome-associated metabolic abnormalities were observed, and insulin resistance may be a risk factor in this group of professionals.

  8. Insulin resistance and associated factors: a cross-sectional study of bank employees

    PubMed Central

    Salaroli, Luciane Bresciani; Cattafesta, Monica; Molina, Maria del Carmen Bisi; Zandonade, Eliana; Bissoli, Nazaré Souza

    2017-01-01

    OBJECTIVE: Insulin resistance is characterized by the failure of target cells to respond to normal levels of circulating insulin, and this condition is related to cardiovascular disease. This study sought to evaluate the prevalence of insulin resistance and its association with markers of metabolic abnormalities and metabolic syndrome in bank employees. METHODS: A cross-sectional study was performed on 498 working men and women aged ≥20 years old. The Homeostasis Model Assessment (HOMA-IR) was used to determine the presence of insulin resistance based on cut-off values of ≤2.71 for normal insulin levels and >2.71 for insulin resistance, as established for the adult Brazilian population. RESULTS: It was observed that the 52 (10.4%) overweight individuals with insulin resistance were 4.97 times (95%CI 1.31-18.83) more likely to have high HOMA-IR values than the normal-weight participants; among those who were obese, the likelihood increased to 17.87 (95%CI 4.36-73.21). Individuals with large waist circumferences were 3.27 times (95%CI 1.03-10.38) more likely to develop insulin resistance than those who were within normal parameters. The HOMA-IR values differed between subjects with and without metabolic syndrome, with values of 2.83±2.5 and 1.10±0.81 (p=0.001), respectively. The levels of insulin, ultrasensitive C-reactive protein and uric acid were also associated with insulin resistance. CONCLUSION: The prevalence of insulin resistance among bank employees is high, and insulin resistance is associated with and serves as a marker of metabolic syndrome. Cardiovascular disease and metabolic syndrome-associated metabolic abnormalities were observed, and insulin resistance may be a risk factor in this group of professionals. PMID:28492722

  9. Proteasome inhibitors, including curcumin, improve pancreatic β-cell function and insulin sensitivity in diabetic mice

    PubMed Central

    Weisberg, S; Leibel, R; Tortoriello, D V

    2016-01-01

    Background: Type 2 diabetes stems from obesity-associated insulin resistance, and in the genetically susceptible, concomitant pancreatic β-cell failure can occur, which further exacerbates hyperglycemia. Recent work by our group and others has shown that the natural polyphenol curcumin attenuates the development of insulin resistance and hyperglycemia in mouse models of hyperinsulinemic or compensated type 2 diabetes. Although several potential downstream molecular targets of curcumin exist, it is now recognized to be a direct inhibitor of proteasome activity. We now show that curcumin also prevents β-cell failure in a mouse model of uncompensated obesity-related insulin resistance (Leprdb/db on the Kaliss background). Results: In this instance, dietary supplementation with curcumin prevented hyperglycemia, increased insulin production and lean body mass, and prolonged lifespan. In addition, we show that short-term in vivo treatment with low dosages of two molecularly distinct proteasome inhibitors celastrol and epoxomicin reverse hyperglycemia in mice with β-cell failure by increasing insulin production and insulin sensitivity. Conclusions: These studies suggest that proteasome inhibitors may prove useful for patients with diabetes by improving both β-cell function and relieving insulin resistance. PMID:27110686

  10. Childhood obesity and insulin resistance: how should it be managed?

    PubMed

    Ho, Mandy; Garnett, Sarah P; Baur, Louise A

    2014-12-01

    Concomitant with the rise in global pediatric obesity in the past decades, there has been a significant increase in the number of children and adolescents with clinical signs of insulin resistance. Given insulin resistance is the important link between obesity and the associated metabolic abnormalities and cardiovascular risk, clinicians should be aware of high risk groups and treatment options. As there is no universally accepted biochemical definition of insulin resistance in children and adolescents, identification and diagnosis of insulin resistance usually relies on clinical features such as acanthosis nigricans, polycystic ovary syndrome, hypertension, dyslipidemia, and nonalcoholic fatty liver disease. Treatment for reducing insulin resistance and other obesity-associated comorbidities should focus on changes in health behaviors to achieve effective weight management. Lifestyle interventions incorporating dietary change, increased physical activity, and decreased sedentary behaviors, with the involvement of family and adoption of a developmentally appropriate approach, should be used as the first line treatment. Current evidence suggests that the primary objective of dietary interventions should be to reduce total energy intake and a combination of aerobic and resistance training should be encouraged. Metformin can be used in conjunction with a lifestyle intervention program in obese adolescents with clinical insulin resistance to achieve weight loss and to improve insulin sensitivity. Ongoing evaluation and research are required to explore optimal protocol and long-term effectiveness of lifestyle interventions, as well as to determine whether the improvements in insulin sensitivity induced by lifestyle interventions and weight loss will lead to a clinical benefit including reduced cardiovascular morbidity and mortality.

  11. Insulin-induced generation of reactive oxygen species and uncoupling of nitric oxide synthase underlie the cerebrovascular insulin resistance in obese rats

    PubMed Central

    Katakam, Prasad V G; Snipes, James A; Steed, Mesia M; Busija, David W

    2012-01-01

    Hyperinsulinemia accompanying insulin resistance (IR) is an independent risk factor for stroke. The objective is to examine the cerebrovascular actions of insulin in Zucker obese (ZO) rats with IR and Zucker lean (ZL) control rats. Diameter measurements of cerebral arteries showed diminished insulin-induced vasodilation in ZO compared with ZL. Endothelial denudation revealed vasoconstriction to insulin that was greater in ZO compared with ZL. Nonspecific inhibition of nitric oxide synthase (NOS) paradoxically improved vasodilation in ZO. Scavenging of reactive oxygen species (ROS), supplementation of tetrahydrobiopterin (BH4) precursor, and inhibition of neuronal NOS or NADPH oxidase or cyclooxygenase (COX) improved insulin-induced vasodilation in ZO. Immunoblot experiments revealed that insulin-induced phosphorylation of Akt, endothelial NOS, and expression of GTP cyclohydrolase-I (GTP-CH) were diminished, but phosphorylation of PKC and ERK was enhanced in ZO arteries. Fluorescence studies showed increased ROS in ZO arteries in response to insulin that was sensitive to NOS inhibition and BH4 supplementation. Thus, a vicious cycle of abnormal insulin-induced ROS generation instigating NOS uncoupling leading to further ROS production underlies the cerebrovascular IR in ZO rats. In addition, decreased bioavailability and impaired synthesis of BH4 by GTP-CH induced by insulin promoted NOS uncoupling. PMID:22234336

  12. Dietary Anthocyanins and Insulin Resistance: When Food Becomes a Medicine.

    PubMed

    Belwal, Tarun; Nabavi, Seyed Fazel; Nabavi, Seyed Mohammad; Habtemariam, Solomon

    2017-10-12

    Insulin resistance is an abnormal physiological state that occurs when insulin from pancreatic β-cells is unable to trigger a signal transduction pathway in target organs such as the liver, muscles and adipose tissues. The loss of insulin sensitivity is generally associated with persistent hyperglycemia (diabetes), hyperinsulinemia, fatty acids and/or lipid dysregulation which are often prevalent under obesity conditions. Hence, insulin sensitizers are one class of drugs currently employed to treat diabetes and associated metabolic disorders. A number of natural products that act through multiple mechanisms have also been identified to enhance insulin sensitivity in target organs. One group of such compounds that gained interest in recent years are the dietary anthocyanins. Data from their in vitro, in vivo and clinical studies are scrutinized in this communication to show their potential health benefit through ameliorating insulin resistance. Specific mechanism of action ranging from targeting specific signal transduction receptors/enzymes to the general antioxidant and anti-inflammatory mechanisms of insulin resistance are presented.

  13. Curcumin reverses the depressive-like behavior and insulin resistance induced by chronic mild stress.

    PubMed

    Shen, Ji-Duo; Wei, Yu; Li, Yu-Jie; Qiao, Jing-Yi; Li, Yu-Cheng

    2017-08-01

    Increasing evidence has demonstrated that patients with depression have a higher risk of developing type 2 diabetes. Insulin resistance has been identified as the key mechanism linking depression and diabetes. The present study established a rat model of depression complicated by insulin resistance using a 12-week exposure to chronic mild stress (CMS) and investigated the therapeutic effects of curcumin. Sucrose intake tests were used to evaluate depressive-like behaviors, and oral glucose tolerance tests (OGTT) and intraperitoneal insulin tolerance tests (IPITT) were performed to evaluate insulin sensitivity. Serum parameters were detected using commercial kits. Real-time quantitative PCR was used to examine mRNA expression. CMS rats exhibited reduced sucrose consumption, increased serum glucose, insulin, triglyceride (TG), low density lipoprotein-cholesterol (LDL-C), non-esterified fatty acid (NEFA), glucagon, leptin, and corticosterone levels, as well as impaired insulin sensitivity. Curcumin upregulated the phosphorylation of insulin receptor substrate (IRS)-1 and protein kinase B (Akt) in the liver, enhanced insulin sensitivity, and reversed the metabolic abnormalities and depressive-like behaviors mentioned above. Moreover, curcumin increased the hepatic glycogen content by inhibiting glycogen synthase kinase (GSK)-3β and prevented gluconeogenesis by inhibiting phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase). These results suggest that curcumin not only exerted antidepressant-like effects, but also reversed the insulin resistance and metabolic abnormalities induced by CMS. These data may provide evidence to support the potential use of curcumin against depression and/or metabolic disorders.

  14. Forced Hepatic Overexpression of CEACAM1 Curtails Diet-Induced Insulin Resistance

    PubMed Central

    Al-Share, Qusai Y.; DeAngelis, Anthony M.; Lester, Sumona Ghosh; Bowman, Thomas A.; Ramakrishnan, Sadeesh K.; Abdallah, Simon L.; Russo, Lucia; Patel, Payal R.; Kaw, Meenakshi K.; Raphael, Christian K.; Kim, Andrea Jung; Heinrich, Garrett; Lee, Abraham D.; Kim, Jason K.; Kulkarni, Rohit N.; Philbrick, William M.

    2015-01-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) regulates insulin sensitivity by promoting hepatic insulin clearance. Liver-specific inactivation or global null-mutation of Ceacam1 impairs hepatic insulin extraction to cause chronic hyperinsulinemia, resulting in insulin resistance and visceral obesity. In this study we investigated whether diet-induced insulin resistance implicates changes in hepatic CEACAM1. We report that feeding C57/BL6J mice a high-fat diet reduced hepatic CEACAM1 levels by >50% beginning at 21 days, causing hyperinsulinemia, insulin resistance, and elevation in hepatic triacylglycerol content. Conversely, liver-specific inducible CEACAM1 expression prevented hyperinsulinemia and markedly limited insulin resistance and hepatic lipid accumulation that were induced by prolonged high-fat intake. This was partly mediated by increased hepatic β-fatty acid oxidation and energy expenditure. The data demonstrate that the high-fat diet reduced hepatic CEACAM1 expression and that overexpressing CEACAM1 in liver curtailed diet-induced metabolic abnormalities by protecting hepatic insulin clearance. PMID:25972571

  15. Tissue-specific insulin signaling, metabolic syndrome and cardiovascular disease

    PubMed Central

    Rask-Madsen, Christian; Kahn, C. Ronald

    2012-01-01

    Summary Impaired insulin signaling is central to the development of the metabolic syndrome and can promote cardiovascular disease indirectly through development of abnormal glucose and lipid metabolism, hypertension and a proinflammatory state. However, insulin action directly on vascular endothelium, atherosclerotic plaque macrophages, and in the heart, kidney, and retina has now been described, and impaired insulin signaling in these locations can alter progression of cardiovascular disease in the metabolic syndrome and affect development of microvascular complications of diabetes. Recent advances in our understanding of the complex pathophysiology of insulin’s effects on vascular tissues offer new opportunities for preventing these cardiovascular disorders. PMID:22895666

  16. New insights into insulin action and resistance in the vasculature

    PubMed Central

    Manrique, Camila; Lastra, Guido; Sowers, James R.

    2014-01-01

    Two-thirds of adults in the United States are overweight or obese, and another 26 million have type 2 diabetes. Decreased insulin sensitivity in cardiovascular tissue is an underlying abnormality in these individuals. Insulin metabolic signaling increases endothelial cell nitric oxide production. Impaired vascular insulin sensitivity is an early defect leading to impaired vascular relaxation. In overweight and obese persons, as well as in those with hypertension, systemic and vascular insulin resistance often occurs in conjunction with activation of the cardiovascular tissue renin–angiotensin–aldosterone system (RAAS). Activated angiotensin II type 1 receptor and mineralocorticoid receptor signaling promote the development of vascular insulin resistance and impaired endothelial nitric oxide–mediated relaxation. Research in this area has implicated excessive serine phosphorylation and proteasomal degradation of the docking protein insulin receptor substrate and enhanced signaling through hybrid insulin/insulin-like growth factor (IGF-1) receptor as important mechanisms underlying RAAS impediment of downstream vascular insulin metabolic signaling. This review will present recent evidence supporting the notion that RAAS signaling represents a potential pathway for the development of vascular insulin resistance and impaired endothelial-mediated vasodilation. PMID:24650277

  17. Insulin resistance in patients with recurrent pregnancy loss is associated with lymphocyte population aberration.

    PubMed

    Yan, Yan; Bao, Shihua; Sheng, Shile; Wang, Liuliu; Tu, Weiyan

    2017-12-01

    This study was designed to investigate the relationship of insulin resistance (IR) and cellular immune abnormalities associated with women with recurrent pregnancy loss (RPL). Women with RPL were divided into two groups according to their homeostasis model assessment for IR (HOMA-IR) scores. The IR group received metformin approximately 3 months before pregnancy. The percentage of lymphocyte subsets and other blood biochemical indices were tested. The HOMA-IR and fasting serum insulin levels were related to the percentage of lymphocyte subsets. The women with RPL had higher CD3 + and CD3 + CD4 + cell levels while CD56 + CD16 + cell levels were lower. A higher likelihood of cellular immune abnormalities was observed. Women with normal lymphocyte subsets had normal pregnancy outcomes. Metformin significantly downregulated CD3 + and CD3 + CD4 + cells and improved pregnancy outcomes. IR was associated with cellular immune abnormalities in RPL. The data suggests that metformin affected the immune/inflammatory response, which may regulate the cellular immune balance and improve pregnancy outcomes. Abbreviations RPL: recurrent pregnancy loss; IR insulin resistance; HOMA-IR: homeostasis model assessment for IR.

  18. Intensive lifestyle intervention including high-intensity interval training program improves insulin resistance and fasting plasma glucose in obese patients.

    PubMed

    Marquis-Gravel, Guillaume; Hayami, Douglas; Juneau, Martin; Nigam, Anil; Guilbeault, Valérie; Latour, Élise; Gayda, Mathieu

    2015-01-01

    To analyze the effects of a long-term intensive lifestyle intervention including high-intensity interval training (HIIT) and Mediterranean diet (MedD) counseling on glycemic control parameters, insulin resistance and β-cell function in obese subjects. The glycemic control parameters (fasting plasma glucose, glycated hemoglobin), insulin resistance, and β-cell function of 72 obese subjects (54 women; mean age = 53 ± 9 years) were assessed at baseline and upon completion of a 9-month intensive lifestyle intervention program conducted at the cardiovascular prevention and rehabilitation center of the Montreal Heart Institute, from 2009 to 2012. The program included 2-3 weekly supervised exercise training sessions (HIIT and resistance exercise), combined to MedD counseling. Fasting plasma glucose (FPG) (mmol/L) (before: 5.5 ± 0.9; after: 5.2 ± 0.6; P < 0.0001), fasting insulin (pmol/L) (before: 98 ± 57; after: 82 ± 43; P = 0.003), and insulin resistance, as assessed by the HOMA-IR score (before: 3.6 ± 2.5; after: 2.8 ± 1.6; P = 0.0008) significantly improved, but not HbA1c (%) (before: 5.72 ± 0.55; after: 5.69 ± 0.39; P = 0.448), nor β-cell function (HOMA-β, %) (before: 149 ± 78; after: 144 ± 75; P = 0.58). Following a 9-month intensive lifestyle intervention combining HIIT and MedD counseling, obese subjects experienced significant improvements of FPG and insulin resistance. This is the first study to expose the effects of a long-term program combining HIIT and MedD on glycemic control parameters among obese subjects.

  19. Latent associations of low serum amylase with decreased plasma insulin levels and insulin resistance in asymptomatic middle-aged adults

    PubMed Central

    2012-01-01

    Background Low serum amylase is likely to be associated with obesity and metabolic abnormalities, which are often accompanied by impaired insulin action. However, it is unclear whether low serum amylase is associated with impaired insulin action in clinical settings. Therefore, we investigated the associations of low serum amylase with plasma insulin levels, and obesity-related parameters, including leptin. Research design and methods We measured serum amylase, plasma insulin, obesity-related parameters such as leptin, cardiometabolic risk factors, and anthropometric parameters in a cross-sectional study of 54 asymptomatic subjects (mean age 48.6 ± 7.6 years) who were not being treated for diabetes. Results Body mass index (BMI) and plasma glucose at 120 min after a 75-g oral glucose tolerance test (OGTT) were significantly higher in subjects with low serum amylase (< 60 IU/l, n = 21) than in those with normal-to-high serum amylase (n = 33) (P = 0.04 and P = 0.004, respectively). In univariate correlation analysis, serum amylase was significantly correlated with BMI alone (r = –0.39, P = 0.004). By contrast, multivariate logistic analysis showed that each 1-SD increase in quantitative insulin sensitivity check index, and each 1-SD decrease in plasma insulin OGTT at 0 and 60 min, homeostasis model assessment of insulin resistance (HOMA)-R, and HOMA-β were significantly associated with low serum amylase, particularly after adjusting for BMI. When subjects were divided into three groups according to HOMA-R, serum amylase levels were significantly lower in subjects with HOMA-R > 2.5 (n = 23) compared with subjects with HOMA-R 1.6–2.5 (n = 10) (61.1 ± 13.6 U/ml versus 76.9 ± 20.5 U/ml, Bonferroni test, P = 0.02), but not compared with subjects with HOMA-R<1.6 (n = 21; 62.7 ± 17.6 U/ml). Similar trends were observed when subjects were divided according to plasma leptin and fasting plasma

  20. Peripheral nervous system insulin resistance in ob/ob mice

    PubMed Central

    2013-01-01

    Background A reduction in peripheral nervous system (PNS) insulin signaling is a proposed mechanism that may contribute to sensory neuron dysfunction and diabetic neuropathy. Neuronal insulin resistance is associated with several neurological disorders and recent evidence has indicated that dorsal root ganglion (DRG) neurons in primary culture display altered insulin signaling, yet in vivo results are lacking. Here, experiments were performed to test the hypothesis that the PNS of insulin-resistant mice displays altered insulin signal transduction in vivo. For these studies, nondiabetic control and type 2 diabetic ob/ob mice were challenged with an intrathecal injection of insulin or insulin-like growth factor 1 (IGF-1) and downstream signaling was evaluated in the DRG and sciatic nerve using Western blot analysis. Results The results indicate that insulin signaling abnormalities documented in other “insulin sensitive” tissues (i.e. muscle, fat, liver) of ob/ob mice are also present in the PNS. A robust increase in Akt activation was observed with insulin and IGF-1 stimulation in nondiabetic mice in both the sciatic nerve and DRG; however this response was blunted in both tissues from ob/ob mice. The results also suggest that upregulated JNK activation and reduced insulin receptor expression could be contributory mechanisms of PNS insulin resistance within sensory neurons. Conclusions These findings contribute to the growing body of evidence that alterations in insulin signaling occur in the PNS and may be a key factor in the pathogenesis of diabetic neuropathy. PMID:24252636

  1. A model of insulin fibrils derived from the x-ray crystal structure of a monomeric insulin (despentapeptide insulin).

    PubMed

    Brange, J; Dodson, G G; Edwards, D J; Holden, P H; Whittingham, J L

    1997-04-01

    The crystal structure of despentapeptide insulin, a monomeric insulin, has been refined at 1.3 A spacing and subsequently used to predict and model the organization in the insulin fibril. The model makes use of the contacts in the densely packed despentapeptide insulin crystal, and takes into account other experimental evidence, including binding studies with Congo red. The dimensions of this model fibril correspond well with those measured experimentally, and the monomer-monomer contacts within the fibril are in accordance with the known physical chemistry of insulin fibrils. Using this model, it may be possible to predict mutations in insulin that might alleviate problems associated with fibril formation during insulin therapy.

  2. Fructose, but not glucose, impairs insulin signaling in the three major insulin-sensitive tissues

    PubMed Central

    Baena, Miguel; Sangüesa, Gemma; Dávalos, Alberto; Latasa, María-Jesús; Sala-Vila, Aleix; Sánchez, Rosa María; Roglans, Núria; Laguna, Juan Carlos; Alegret, Marta

    2016-01-01

    Human studies support the relationship between high intake of fructose-sweetened beverages and type 2 diabetes, but there is a debate on whether this effect is fructose-specific or it is merely associated to an excessive caloric intake. Here we investigate the effects of 2 months’ supplementation to female rats of equicaloric 10% w/v fructose or glucose solutions on insulin sensitivity in target tissues. Fructose supplementation caused hepatic deposition of triglycerides and changed the fatty acid profile of this fraction, with an increase in monounsaturated and a decrease in polyunsaturated species, but did not cause inflammation and oxidative stress. Fructose but not glucose-supplemented rats displayed an abnormal glucose tolerance test, and did not show increased phosphorylation of V-akt murine thymoma viral oncogene homolog-2 (Akt) in white adipose tissue and liver after insulin administration. In skeletal muscle, phosphorylation of Akt and of Akt substrate of 160 kDA (AS160) was not impaired but the expression of the glucose transporter type 4 (GLUT4) in the plasma membrane was reduced only in fructose-fed rats. In conclusion, fructose but not glucose supplementation causes fatty liver without inflammation and oxidative stress and impairs insulin signaling in the three major insulin-responsive tissues independently from the increase in energy intake. PMID:27194405

  3. Economic benefits of improved insulin stability in insulin pumps.

    PubMed

    Weiss, Richard C; van Amerongen, Derek; Bazalo, Gary; Aagren, Mark; Bouchard, Jonathan R

    2011-05-01

    Insulin pump users discard unused medication and infusion sets according to labeling and manufacturer's instructions. The stability labeling for insulin aspart (rDNA origin] (Novolog) was increased from two days to six. The associated savings was modeled from the perspective of a hypothetical one-million member health plan and the total United States population. The discarded insulin volume and the number of infusion sets used under a two-day stability scenario versus six were modeled. A mix of insulin pumps of various reservoir capacities with a range of daily insulin dosages was used. Average daily insulin dose was 65 units ranging from 10 to 150 units. Costs of discarded insulin aspart [rDNA origin] were calculated using WAC (Average Wholesale Price minus 16.67%). The cost of pump supplies was computed for the two-day scenario assuming a complete infusion set change, including reservoirs, every two days. Under the six-day scenario complete infusion sets were discarded every six days while cannulas at the insertion site were changed midway between complete changes. AWP of least expensive supplies was used to compute their costs. For the hypothetical health plan (1,182 pump users) the annual reduction in discarded insulin volume between scenarios was 19.8 million units. The corresponding cost reduction for the plan due to drug and supply savings was $3.4 million. From the U.S. population perspective, savings of over $1 billion were estimated. Using insulin that is stable for six days in pump reservoirs can yield substantial savings to health plans and other payers, including patients.

  4. Insulin resistance in young adults born small for gestational age (SGA).

    PubMed

    Putzker, Stephanie; Bechtold-Dalla Pozza, Susanne; Kugler, Karl; Schwarz, Hans P; Bonfig, Walter

    2014-03-01

    This work aimed to assess glucose metabolism and insulin sensitivity in young adults born small for gestational age (SGA) as well as to measure the body composition and adipocytokines of these subjects. A total of 108 out of 342 SGA-born participants were invited for reexamination from the former Bavarian Longitudinal Study (BLS), in which 7505 risk-newborns of the years 1985 to 1986 were prospectively followed. Of these, 76 (34 female/42 male) participants at the age of 19.7±0.5 years were enrolled. Clinical examination and oral glucose tolerance testing (oGTT) was performed with assessment of insulin resistance indices, HbA1c, body mass index (BMI), adipocytokines, and body composition by bioimpedance analysis (BIA). A total of 25 out of 76 (32.9%) patients had abnormal fasting and/or glucose-stimulated insulin levels. Glucose values measured during oGTT showed no abnormalities, except one participant who had impaired glucose tolerance. Homeostasis model assessment insulin resistance index (HOMA-IR) was 1.92±4.2, and insulin sensitivity index by Matsuda (ISI(Matsuda)) showed mean values of 7.85±4.49. HOMA-IR>2.5 was found in 8 patients (10.5%), and 20 patients (26.3%) had an ISI(Matsuda)<5, both interpreted as insulin resistant. No alterations of adipocytokines were found. Fat mass (FM) measured by BIA was within the normal range for both genders and correlated significantly with BMI (r=0.465, p<0.001) and leptin (r=0.668, p>0.001), but not with adiponectin. Insulin resistance correlated with change in weight-for-height Z-score during the first 3 months of age, indicating that weight gain during that early phase might be a risk factor for the development of insulin resistance in children born SGA. A high percentage of insulin-resistant subjects were reconfirmed in a large German cohort of young adults born SGA. Therefore, regular screening for disturbances in glucose metabolism is recommended in these subjects.

  5. Insulin receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahn, C.R.; Harrison, L.C.

    1988-01-01

    This book contains the procedure in insulin receptors. Part B: Clinical assessment, biological responses, and comparison to the IGF-1 receptor. Topics covered include: Insulin and IGF-1 receptors, Clinical assessment of receptor functions, and Biological responses.

  6. [Changes in the secretion of somatotropin and insulin in hyperthyroidism].

    PubMed

    Cavagnini, F; Peracchi, M; Panerai, A E; Pinto, M

    1975-06-01

    Twenty hyperthyroid patients were investigated for growth hormone (GH) and immunoreactive insulin (IRI) secretion in response to insulin hypoglycaemia, arginine infusion and glucose-induced hyperglycaemia. GH response to either insulin hypoglycaemia or arginine infusion was significantly reduced in these patients compared with 20 normal subjects. Thyrotoxic patients also displayed an abnormal GH pattern after a 100 g oral glucose load: in fact, serum GH underwent a paradoxical increase in spite of abnormally high levels attained by blood glucose. IRI secretion was also clearly reduced in response to arginine infusion and moderately blunted after oral glucose. In a group of patients re-evaluated under euthyroid conditions, a fair increase of GH response to the provocative stimuli jointly with the restoration of a normal suppressibility of serum GH by glucose were noted; by contrast, no significant change of IRI response to arginine or glucose took place. Likewise, the impairment of glucose tolerance was not improved. These findings indicate that an impairment of GH and IRI secretion is present in hyperthyroidism. The possibility that a potentiation of the catecholamine effects caused by the thyroid hormones is involved in this alteration deserves consideration.

  7. Is salivary gland function altered in noninsulin-dependent diabetes mellitus and obesity-insulin resistance?

    PubMed

    Ittichaicharoen, Jitjiroj; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2016-04-01

    Salivary gland dysfunction in several systemic diseases has been shown to decrease the quality of life in patients. In non-insulin dependent diabetes mellitus (NIDDM), inadequate salivary gland function has been evidenced to closely associate with this abnormal glycemic control condition. Although several studies demonstrated that NIDDM has a positive correlation with impaired salivary gland function, including decreased salivary flow rate, some studies demonstrated contradictory findings. Moreover, the changes of the salivary gland function in pre-diabetic stage known as insulin resistance are still unclear. The aim of this review is to comprehensively summarize the current evidence from in vitro, in vivo and clinical studies regarding the relationship between NIDDM and salivary gland function, as well as the correlation between obesity and salivary gland function. Consistent findings as well as controversial reports and the mechanistic insights regarding the effect of NIDDM and obesity-insulin resistance on salivary gland function are also presented and discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Insulin resistance is associated with depression risk in polycystic ovary syndrome.

    PubMed

    Greenwood, Eleni A; Pasch, Lauri A; Cedars, Marcelle I; Legro, Richard S; Eisenberg, Esther; Huddleston, Heather G

    2018-06-13

    To test the hypothesis that insulin resistance is associated with depression risk in polycystic ovary syndrome (PCOS). Secondary analysis of data from a multicenter randomized trial. Multicenter university-based clinical practices. Seven hundred thirty-eight women with PCOS by modified Rotterdam criteria seeking pregnancy enrolled in a randomized clinical trial comparing clomiphene citrate versus letrozole. The Primary Care Evaluation of Mental Disorders Patient Health Questionnaire was self-administered to identify depression using a validated algorithm at enrollment. Demographic and anthropometric data were collected, and serum assays were performed. Insulin resistance was estimated using the homeostatic model of insulin resistance (HOMA-IR), with a cutoff of >2.2 considered abnormal. Demographic, endocrine, and metabolic parameters associated with depression. In a univariate logistic regression analysis, elevated HOMA-IR was associated with 2.3-fold increased odds of depression (odds ratio [OR] = 2.32; 95% confidence interval [CI], 1.28-4.21). This association remained significant after controlling for age and body mass index (adjusted OR [aOR] = 2.23; 95% CI, 1.11-4.46) and in a model including additional potential confounders (aOR = 2.03; 95% CI, 1.00-4.16). Insulin resistance has a strong and independent association with depression in PCOS and may serve as a physiologic mediator. Our findings corroborate a growing body of evidence linking insulin resistance to depressed mood. The association between insulin resistance and depressed mood warrants further investigation to elucidate mechanisms and identify potential therapeutic targets. Copyright © 2018 American Society for Reproductive Medicine. All rights reserved.

  9. Insulin pumps and insulin quality--requirements and problems.

    PubMed

    Brange, J; Havelund, S

    1983-01-01

    In developing insulin solution suitable for delivery devices the chemical and biological stability, as well as the physical stability, must be taken into consideration. Addition of certain mono- and disaccharides increases the physical stability of neutral insulin solutions, but concurrently the chemical and biological stability decrease to an unacceptable degree. Addition of Ca-ions in low concentrations offers a physiologically acceptable method for stabilizing neutral insulin solutions against heat precipitation without affecting the quality, including the chemical and biological stability.

  10. Insulin and Its Cardiovascular Effects: What Is the Current Evidence?

    PubMed

    Dongerkery, Sahana Pai; Schroeder, Pamela R; Shomali, Mansur E

    2017-10-23

    In this article, we examine the nature of the complex relationship between insulin and cardiovascular disease. With metabolic abnormalities comes increased risk for cardiovascular complications. We discuss the key factors implicated in development and progression of cardiovascular disease, its relationship to insulin therapy, and what can be learned from large, recent cardiovascular outcome studies. Preclinical studies suggest that insulin has positive effects of facilitating glucose entry into cells and maintaining euglycemia and negative effects of favoring obesity and atherogenesis under certain conditions. Confounding this relationship is that cardiovascular morbidity is linked closely to duration and control of diabetes, and insulin is often used in patients with diabetes of longer duration. However, more recent clinical studies examining the cardiovascular safety of insulin therapy have been reassuring. Diabetes and cardiovascular outcomes are closely linked. Many studies have implicated insulin resistance and hyperinsulinemia as a major factor for poor cardiovascular outcomes. Additional studies link the anabolic effects of therapeutic insulin to weight gain, along with hypoglycemia, which may further aggravate cardiovascular risk in this population. Though good glycemic control has been shown to improve microvascular risks in type 1 and type 2 diabetes, what are the known cardiovascular effects of insulin therapy? The ORIGIN trial suggests at least a neutral effect of the basal insulin glargine on cardiovascular outcomes. Recent studies have demonstrated that ultra-long-acting insulin analogs like insulin degludec are non-inferior to insulin glargine with regard to cardiovascular outcomes.

  11. Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans

    PubMed Central

    Ingelsson, Erik; Langenberg, Claudia; Hivert, Marie-France; Prokopenko, Inga; Lyssenko, Valeriya; Dupuis, Josée; Mägi, Reedik; Sharp, Stephen; Jackson, Anne U.; Assimes, Themistocles L.; Shrader, Peter; Knowles, Joshua W.; Zethelius, Björn; Abbasi, Fahim A.; Bergman, Richard N.; Bergmann, Antje; Berne, Christian; Boehnke, Michael; Bonnycastle, Lori L.; Bornstein, Stefan R.; Buchanan, Thomas A.; Bumpstead, Suzannah J.; Böttcher, Yvonne; Chines, Peter; Collins, Francis S.; Cooper, Cyrus C.; Dennison, Elaine M.; Erdos, Michael R.; Ferrannini, Ele; Fox, Caroline S.; Graessler, Jürgen; Hao, Ke; Isomaa, Bo; Jameson, Karen A.; Kovacs, Peter; Kuusisto, Johanna; Laakso, Markku; Ladenvall, Claes; Mohlke, Karen L.; Morken, Mario A.; Narisu, Narisu; Nathan, David M.; Pascoe, Laura; Payne, Felicity; Petrie, John R.; Sayer, Avan A.; Schwarz, Peter E. H.; Scott, Laura J.; Stringham, Heather M.; Stumvoll, Michael; Swift, Amy J.; Syvänen, Ann-Christine; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Tönjes, Anke; Valle, Timo T.; Williams, Gordon H.; Lind, Lars; Barroso, Inês; Quertermous, Thomas; Walker, Mark; Wareham, Nicholas J.; Meigs, James B.; McCarthy, Mark I.; Groop, Leif; Watanabe, Richard M.; Florez, Jose C.

    2010-01-01

    OBJECTIVE Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 × 10−71). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes. PMID:20185807

  12. Phenytoin-induced improvement in muscle cramping and insulin action in three patients with the syndrome of insulin resistance, acanthosis nigricans, and acral hypertrophy.

    PubMed

    Minaker, K L; Flier, J S; Landsberg, L; Young, J B; Moxley, R T; Kingston, W J; Meneilly, G S; Rowe, J W

    1989-09-01

    Phenytoin sodium has been used to treat muscle cramps of diverse causes, and is known to increase insulin sensitivity during long-term use. We have previously described a syndrome of insulin resistance, acanthosis nigricans, and acral hypertrophy with continual muscle cramping. The effect of 300 mg/d of phenytoin (Dilantin) on muscle cramping and carbohydrate economy was studied in three affected patients and four control subjects. Oral glucose tolerance tests, euglycemic insulin infusion studies, and monocyte insulin binding tests were conducted before and after phenytoin administration. All three patients had notable improvement in muscle cramps. In response to phenytoin, metabolic improvements were variable, with improvement characteristically better in patients with less severe baseline metabolic abnormalities. Patient 1, with the mildest degree of glucose intolerance, had decreased fasting insulin and blood glucose levels, improved glucose tolerance, and insulin-mediated glucose disposal, associated with an increase in monocyte insulin receptors. Patient 2 had reduced fasting plasma glucose and insulin levels and improved oral glucose tolerance, suggesting a beneficial effect on carbohydrate metabolism. Patient 3, with the most severely impaired carbohydrate economy, showed no metabolic improvement despite marked lessening of muscle pain. These clinical characteristics were unaffected in control subjects. We conclude that phenytoin is of value in the therapy of muscle cramps and glucose intolerance in patients with this syndrome.

  13. Gene Therapy for Diabetes Mellitus in Rats by Hepatic Expression of Insulin

    NASA Astrophysics Data System (ADS)

    Kolodka, Tadeusz M.; Finegold, Milton; Moss, Larry; Woo, Savio L. C.

    1995-04-01

    Type 1 diabetes mellitus is caused by severe insulin deficiency secondary to the autoimmune destruction of pancreatic β cells. Patients need to be controlled by periodic insulin injections to prevent the development of ketoacidosis, which can be fatal. Sustained, low-level expression of the rat insulin 1 gene from the liver of severely diabetic rats was achieved by in vivo administration of a recombinant retroviral vector. Ketoacidosis was prevented and the treated animals exhibited normoglycemia during a 24-hr fast, with no evidence of hypoglycemia. Histopathological examination of the liver in the treated animals showed no apparent abnormalities. Thus, the liver is an excellent target organ for ectopic expression of the insulin gene as a potential treatment modality for type 1 diabetes mellitus by gene therapy.

  14. Insulin resistance syndrome in children : pathophysiology and potential management strategies.

    PubMed

    Decsi, Tamás; Molnár, Dénes

    2003-01-01

    The simultaneous presence of various cardiovascular risk factors in the same individual is not rare, even in the pediatric age group. The clustering of risk factors can be termed insulin resistance syndrome (IRS) because of the putative central role of tissue insulin insensitivity in the background of the inter-related metabolic disturbances. Fasting hyperinsulinemia, impaired glucose tolerance, dyslipidemia, and hypertension are considered to represent the basic abnormalities of IRS. The most prevalent related disturbances are increased plasma levels of plasminogen activator inhibitor-1, fibrinogen, uric acid, homocysteine, and C-reactive protein, as well as visceral adiposity, microalbuminuria, disturbed essential fatty acid metabolism, low availability of lipid-soluble antioxidant vitamins, and enhanced expression of tumor necrosis factor-alpha in adipose tissues. Certain genetic abnormalities have been associated with IRS, but explain only a small part of the variability in insulin resistance. The exact prevalence of IRS in children remains to be defined; it was found to be 9% in one survey among children with obesity seeking medical attention. Modification of lifestyle, i.e. reduction of energy intake and enhancement of physical activity, are unquestionable prerequisites for long-term success in the management of IRS. In at least two randomized controlled studies, metformin proved to be clinically effective in increasing insulin sensitivity in hyperinsulinemic, nondiabetic adolescents. Thiazolidinediones have been successfully tested for the treatment of insulin resistance in adults, but not in children as yet. Prevention of the development of IRS in children is obviously of great significance for the health status of the community. However, the efficacy of various preventive approaches should be investigated further in carefully designed controlled trials.

  15. Risk of specific congenital abnormalities in offspring of women with diabetes.

    PubMed

    Nielsen, G L; Nørgard, B; Puho, E; Rothman, K J; Sørensen, H T; Czeizel, A E

    2005-06-01

    To assess the extent to which the increased risk of congenital abnormalities seen in women with pre-gestational insulin-treated diabetes mellitus is unspecific or related to the embryology of specific organs. Cases with congenital abnormalities were identified in the population-based Hungarian Congenital Abnormality Registry from 1980 to 1996 with two newborn children without congenital abnormality selected from the National Birth Registry as controls. We adjusted for parity, maternal age, and use of antipsychotic drugs. Among cases we found 63/22,843 babies with maternal diabetes compared with 50/38,151 in the control group [adjusted prevalence odds ratio (POR) 2.1; 95% CI 1.5-3.1]. The association was strongest for the following congenital abnormalities: renal agenesis (POR: 14.8; 95% CI, 3.5-62.1), obstructive congenital abnormalities of the urinary tract (POR: 4.3; 95% CI, 1.3-13.9), cardiovascular congenital abnormalities (POR: 3.4; 95% CI, 2.0-5.7), and multiple congenital abnormalities (POR: 5.0; 95% CI, 2.4-10.2). These data indicate that pre-gestational maternal diabetes is associated with strong teratogenic effects on the kidney, urinary tract, and heart, and strongly associated with multiple congenital abnormalities. We found no material association between diabetes and spinal congenital abnormalities and limb deficiencies.

  16. Chromium Enhances Insulin Responsiveness via AMPK

    PubMed Central

    Hoffman, Nolan J.; Penque, Brent A.; Habegger, Kirk M.; Sealls, Whitney; Tackett, Lixuan; Elmendorf, Jeffrey S.

    2014-01-01

    Trivalent chromium (Cr3+) is known to improve glucose homeostasis. Cr3+ has been shown to improve plasma membrane-based aspects of glucose transporter GLUT4 regulation and increase activity of the cellular energy sensor 5′ AMP-activated protein kinase (AMPK). However, the mechanism(s) by which Cr3+ improves insulin responsiveness and whether AMPK mediates this action is not known. In this study we tested if Cr3+ protected against physiological hyperinsulinemia-induced plasma membrane cholesterol accumulation, cortical filamentous actin (F-actin) loss and insulin resistance in L6 skeletal muscle myotubes. In addition, we performed mechanistic studies to test our hypothesis that AMPK mediates the effects of Cr3+ on GLUT4 and glucose transport regulation. Hyperinsulinemia-induced insulin-resistant L6 myotubes displayed excess membrane cholesterol and diminished cortical F-actin essential for effective glucose transport regulation. These membrane and cytoskeletal abnormalities were associated with defects in insulin-stimulated GLUT4 translocation and glucose transport. Supplementing the culture medium with pharmacologically relevant doses of Cr3+ in the picolinate form (CrPic) protected against membrane cholesterol accumulation, F-actin loss, GLUT4 dysregulation and glucose transport dysfunction. Insulin signaling was neither impaired by hyperinsulinemic conditions nor enhanced by CrPic, whereas CrPic increased AMPK signaling. Mechanistically, siRNA-mediated depletion of AMPK abolished the protective effects of CrPic against GLUT4 and glucose transport dysregulation. Together these findings suggest that the micronutrient Cr3+, via increasing AMPK activity, positively impacts skeletal muscle cell insulin sensitivity and glucose transport regulation. PMID:24725432

  17. Chromium enhances insulin responsiveness via AMPK.

    PubMed

    Hoffman, Nolan J; Penque, Brent A; Habegger, Kirk M; Sealls, Whitney; Tackett, Lixuan; Elmendorf, Jeffrey S

    2014-05-01

    Trivalent chromium (Cr(3+)) is known to improve glucose homeostasis. Cr(3+) has been shown to improve plasma membrane-based aspects of glucose transporter GLUT4 regulation and increase activity of the cellular energy sensor 5' AMP-activated protein kinase (AMPK). However, the mechanism(s) by which Cr(3+) improves insulin responsiveness and whether AMPK mediates this action is not known. In this study we tested if Cr(3+) protected against physiological hyperinsulinemia-induced plasma membrane cholesterol accumulation, cortical filamentous actin (F-actin) loss and insulin resistance in L6 skeletal muscle myotubes. In addition, we performed mechanistic studies to test our hypothesis that AMPK mediates the effects of Cr(3+) on GLUT4 and glucose transport regulation. Hyperinsulinemia-induced insulin-resistant L6 myotubes displayed excess membrane cholesterol and diminished cortical F-actin essential for effective glucose transport regulation. These membrane and cytoskeletal abnormalities were associated with defects in insulin-stimulated GLUT4 translocation and glucose transport. Supplementing the culture medium with pharmacologically relevant doses of Cr(3+) in the picolinate form (CrPic) protected against membrane cholesterol accumulation, F-actin loss, GLUT4 dysregulation and glucose transport dysfunction. Insulin signaling was neither impaired by hyperinsulinemic conditions nor enhanced by CrPic, whereas CrPic increased AMPK signaling. Mechanistically, siRNA-mediated depletion of AMPK abolished the protective effects of CrPic against GLUT4 and glucose transport dysregulation. Together these findings suggest that the micronutrient Cr(3+), via increasing AMPK activity, positively impacts skeletal muscle cell insulin sensitivity and glucose transport regulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Glucose alteration and insulin resistance in asymptomatic obese children and adolescents.

    PubMed

    Assunção, Silvana Neves Ferraz de; Boa Sorte, Ney Christian Amaral; Alves, Crésio de Aragão Dantas; Mendes, Patricia S Almeida; Alves, Carlos Roberto Brites; Silva, Luciana Rodrigues

    Obesity is associated with the abnormal glucose metabolism preceding type 2 diabetes mellitus. Thus, further investigation on the prediction of this lethal outcome must be sought. The objective was the profile glycemic assessment of asymptomatic obese children and adolescents from Salvador, Brazil. A fasting venous blood sample was obtained from 90 consecutive obese individuals aged 8-18 years, of both sexes, for laboratory determinations of glycated hemoglobin, basal insulin, and the Homeostasis Model Assessment Insulin Resistance index. The clinical evaluation included weight, height, waist circumference, assessment of pubertal development, and acanthosis nigricans research. The body mass index/age indicator was used for the severity of overweight assessment. Glycemic alterations were evidenced clinically and biochemically, although these individuals had no complaints or symptoms related to blood sugar levels. Quantitative and qualitative variables were respectively expressed measures of central tendency/dispersion and simple/relative frequency, using the SPSS, version 20.0. A p-value <0.05 was considered significant. Notably, this study found a high prevalence of glucose and insulin disorders in asymptomatic obese children and adolescents. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  19. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver.

    PubMed

    Monetti, Mara; Levin, Malin C; Watt, Matthew J; Sajan, Mini P; Marmor, Stephen; Hubbard, Brian K; Stevens, Robert D; Bain, James R; Newgard, Christopher B; Farese, Robert V; Hevener, Andrea L; Farese, Robert V

    2007-07-01

    Hepatic steatosis, the accumulation of lipids in the liver, is widely believed to result in insulin resistance. To test the causal relationship between hepatic steatosis and insulin resistance, we generated mice that overexpress acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2), which catalyzes the final step of triacylglycerol (TG) biosynthesis, in the liver (Liv-DGAT2 mice). Liv-DGAT2 mice developed hepatic steatosis, with increased amounts of TG, diacylglycerol, ceramides, and unsaturated long-chain fatty acyl-CoAs in the liver. However, they had no abnormalities in plasma glucose and insulin levels, glucose and insulin tolerance, rates of glucose infusion and hepatic glucose production during hyperinsulinemic-euglycemic clamp studies, or activities of insulin-stimulated signaling proteins in the liver. DGAT1 overexpression in the liver also failed to induce glucose or insulin intolerance. Our results indicate that DGAT-mediated lipid accumulation in the liver is insufficient to cause insulin resistance and show that hepatic steatosis can occur independently of insulin resistance.

  20. Insulin Restores Gestational Diabetes Mellitus–Reduced Adenosine Transport Involving Differential Expression of Insulin Receptor Isoforms in Human Umbilical Vein Endothelium

    PubMed Central

    Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Puebla, Carlos; Guzmán-Gutiérrez, Enrique; Cifuentes, Fredi; Leiva, Andrea; Casanello, Paola; Sobrevia, Luis

    2011-01-01

    OBJECTIVE To determine whether insulin reverses gestational diabetes mellitus (GDM)–reduced expression and activity of human equilibrative nucleoside transporters 1 (hENT1) in human umbilical vein endothelium cells (HUVECs). RESEARCH DESIGN AND METHODS Primary cultured HUVECs from full-term normal (n = 44) and diet-treated GDM (n = 44) pregnancies were used. Insulin effect was assayed on hENT1 expression (protein, mRNA, SLC29A1 promoter activity) and activity (initial rates of adenosine transport) as well as endothelial nitric oxide (NO) synthase activity (serine1177 phosphorylation, l-citrulline formation). Adenosine concentration in culture medium and umbilical vein blood (high-performance liquid chromatography) as well as insulin receptor A and B expression (quantitative PCR) were determined. Reactivity of umbilical vein rings to adenosine and insulin was assayed by wire myography. Experiments were in the absence or presence of l-NG-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) or ZM-241385 (an A2A-adenosine receptor antagonist). RESULTS Umbilical vein blood adenosine concentration was higher, and the adenosine- and insulin-induced NO/endothelium-dependent umbilical vein relaxation was lower in GDM. Cells from GDM exhibited increased insulin receptor A isoform expression in addition to the reported NO–dependent inhibition of hENT1-adenosine transport and SLC29A1 reporter repression, and increased extracellular concentration of adenosine and NO synthase activity. Insulin reversed all these parameters to values in normal pregnancies, an effect blocked by ZM-241385 and l-NAME. CONCLUSIONS GDM and normal pregnancy HUVEC phenotypes are differentially responsive to insulin, a phenomenon where insulin acts as protecting factor for endothelial dysfunction characteristic of this syndrome. Abnormal adenosine plasma levels, and potentially A2A-adenosine receptors and insulin receptor A, will play crucial roles in this phenomenon in GDM. PMID:21515851

  1. Insulin restores gestational diabetes mellitus-reduced adenosine transport involving differential expression of insulin receptor isoforms in human umbilical vein endothelium.

    PubMed

    Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Puebla, Carlos; Guzmán-Gutiérrez, Enrique; Cifuentes, Fredi; Leiva, Andrea; Casanello, Paola; Sobrevia, Luis

    2011-06-01

    To determine whether insulin reverses gestational diabetes mellitus (GDM)-reduced expression and activity of human equilibrative nucleoside transporters 1 (hENT1) in human umbilical vein endothelium cells (HUVECs). Primary cultured HUVECs from full-term normal (n = 44) and diet-treated GDM (n = 44) pregnancies were used. Insulin effect was assayed on hENT1 expression (protein, mRNA, SLC29A1 promoter activity) and activity (initial rates of adenosine transport) as well as endothelial nitric oxide (NO) synthase activity (serine(1177) phosphorylation, l-citrulline formation). Adenosine concentration in culture medium and umbilical vein blood (high-performance liquid chromatography) as well as insulin receptor A and B expression (quantitative PCR) were determined. Reactivity of umbilical vein rings to adenosine and insulin was assayed by wire myography. Experiments were in the absence or presence of l-N(G)-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) or ZM-241385 (an A(2A)-adenosine receptor antagonist). Umbilical vein blood adenosine concentration was higher, and the adenosine- and insulin-induced NO/endothelium-dependent umbilical vein relaxation was lower in GDM. Cells from GDM exhibited increased insulin receptor A isoform expression in addition to the reported NO-dependent inhibition of hENT1-adenosine transport and SLC29A1 reporter repression, and increased extracellular concentration of adenosine and NO synthase activity. Insulin reversed all these parameters to values in normal pregnancies, an effect blocked by ZM-241385 and l-NAME. GDM and normal pregnancy HUVEC phenotypes are differentially responsive to insulin, a phenomenon where insulin acts as protecting factor for endothelial dysfunction characteristic of this syndrome. Abnormal adenosine plasma levels, and potentially A(2A)-adenosine receptors and insulin receptor A, will play crucial roles in this phenomenon in GDM.

  2. Intranasal Insulin Prevents Cognitive Decline, Cerebral Atrophy and White Matter Changes in Murine Type I Diabetic Encephalopathy

    ERIC Educational Resources Information Center

    Francis, George J.; Martinez, Jose A.; Liu, Wei Q.; Xu, Kevin; Ayer, Amit; Fine, Jared; Tuor, Ursula I.; Glazner, Gordon; Hanson, Leah R.; Frey, William H., II; Toth, Cory

    2008-01-01

    Insulin deficiency in type I diabetes may lead to cognitive impairment, cerebral atrophy and white matter abnormalities. We studied the impact of a novel delivery system using intranasal insulin (I-I) in a mouse model of type I diabetes (streptozotocin-induced) for direct targeting of pathological and cognitive deficits while avoiding potential…

  3. Ambient Air Pollution Exaggerates Adipose Inflammation and Insulin Resistance in a Mouse Model of Diet-Induced Obesity

    PubMed Central

    Sun, Qinghua; Yue, Peibin; Deiuliis, Jeffrey A.; Lumeng, Carey N.; Kampfrath, Thomas; Mikolaj, Michael B.; Cai, Ying; Ostrowski, Michael C.; Lu, Bo; Parthasarathy, Sampath; Brook, Robert D.; Moffatt-Bruce, Susan D.; Chen, Lung Chi; Rajagopalan, Sanjay

    2009-01-01

    Background There is a strong link between urbanization and type 2 diabetes mellitus. Although a multitude of mechanisms have been proposed, there are no studies evaluating the impact of ambient air pollutants and the propensity to develop type 2 diabetes mellitus. We hypothesized that exposure to ambient fine particulate matter (<2.5 μm; PM2.5) exaggerates diet-induced insulin resistance, adipose inflammation, and visceral adiposity. Methods and Results Male C57BL/6 mice were fed high-fat chow for 10 weeks and randomly assigned to concentrated ambient PM2.5 or filtered air (n=14 per group) for 24 weeks. PM2.5-exposed C57BL/6 mice exhibited marked whole-body insulin resistance, systemic inflammation, and an increase in visceral adiposity. PM2.5 exposure induced signaling abnormalities characteristic of insulin resistance, including decreased Akt and endothelial nitric oxide synthase phosphorylation in the endothelium and increased protein kinase C expression. These abnormalilties were associated with abnormalities in vascular relaxation to insulin and acetylcholine. PM2.5 increased adipose tissue macrophages (F4/80+ cells) in visceral fat expressing higher levels of tumor necrosis factor-α/interleukin-6 and lower interleukin-10/N-acetyl-galactosamine specific lectin 1. To test the impact of PM2.5 in eliciting direct monocyte infiltration into fat, we rendered FVBN mice expressing yellow fluorescent protein (YFP) under control of a monocyte-specific promoter (c-fms, c-fmsYFP) diabetic over 10 weeks and then exposed these mice to PM2.5 or saline intratracheally. PM2.5 induced YFP cell accumulation in visceral fat and potentiated YFP cell adhesion in the microcirculation. Conclusion PM2.5 exposure exaggerates insulin resistance and visceral inflammation/adiposity. These findings provide a new link between air pollution and type 2 diabetes mellitus. PMID:19153269

  4. Association between Myeloperoxidase Levels and Risk of Insulin Resistance in Egyptian Obese Women

    PubMed Central

    Zaki, Moushira; Basha, Walaa; Reyad, Hanaa; Mohamed, Ramy; Hassan, Naglaa; Kholousi, Shams

    2018-01-01

    BACKGROUND: Myeloperoxidase (MPO) is an enzyme involved in the pathogenesis of several diseases. AIM: The current study aimed to investigate serum MPO levels in obese Egyptian women and assess its relation with insulin resistance (IR) and other biochemical risk parameters. METHODS: The study included 80 obese women and 50 age-and-sex-matched healthy controls. Insulin resistance (IR) was evaluated by the Homeostasis Model Assessment-Insulin Resistance (HOMA-IR). Serum MPO, fasting glucose, insulin and blood lipids and anthropometry were measured. Obese cases were divided into three groups based on MPO tertiles. ROC analysis was performed to obtain the optimal cut-off values of MPO to predicate IR in obese women. RESULTS: The mean serum MPO was significantly higher in obese cases than controls. Cases in the highest MPO tertile had higher HOMA-IR, blood lipids and pressure levels compared with those in the lower tertile. The cutoff point of MPO was > 87.8 (ng/mL) and area under curves was 0.82 (p < 0.01) for diagnosis of IR. MPO levels were higher in obese Egyptian women than healthy controls. CONCLUSION: Elevation of MPO was associated with abnormal metabolic parameters. MPO might be used as an earlier biomarker for IR and metabolic disturbance in obese women. PMID:29731928

  5. Acquired partial lipodystrophy is associated with increased risk for developing metabolic abnormalities.

    PubMed

    Akinci, Baris; Koseoglu, Fatos Dilan; Onay, Huseyin; Yavuz, Sevgi; Altay, Canan; Simsir, Ilgin Yildirim; Ozisik, Secil; Demir, Leyla; Korkut, Meltem; Yilmaz, Nusret; Ozen, Samim; Akinci, Gulcin; Atik, Tahir; Calan, Mehmet; Secil, Mustafa; Comlekci, Abdurrahman; Demir, Tevfik

    2015-09-01

    Acquired partial lipodystrophy (APL) is a rare disorder characterized by progressive selective fat loss. In previous studies, metabolic abnormalities were reported to be relatively rare in APL, whilst they were quite common in other types of lipodystrophy syndromes. In this nationwide cohort study, we evaluated 21 Turkish patients with APL who were enrolled in a prospective follow-up protocol. Subjects were investigated for metabolic abnormalities. Fat distribution was assessed by whole body MRI. Hepatic steatosis was evaluated by ultrasound, MRI and MR spectroscopy. Patients with diabetes underwent a mix meal stimulated C-peptide/insulin test to investigate pancreatic beta cell functions. Leptin and adiponectin levels were measured. Fifteen individuals (71.4%) had at least one metabolic abnormality. Six patients (28.6%) had diabetes, 12 (57.1%) hypertrigylceridemia, 10 (47.6%) low HDL cholesterol, and 11 (52.4%) hepatic steatosis. Steatohepatitis was further confirmed in 2 patients with liver biopsy. Anti-GAD was negative in all APL patients with diabetes. APL patients with diabetes had lower leptin and adiponectin levels compared to patients with type 2 diabetes and healthy controls. However, contrary to what we observed in patients with congenital generalized lipodystrophy (CGL), we did not detect consistently very low leptin levels in APL patients. The mix meal test suggested that APL patients with diabetes had a significant amount of functional pancreatic beta cells, and their diabetes was apparently associated with insulin resistance. Our results show that APL is associated with increased risk for developing metabolic abnormalities. We suggest that close long-term follow-up is required to identify and manage metabolic abnormalities in APL. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Tolerance of centrifuge-simulated suborbital spaceflight in subjects with implanted insulin pumps.

    PubMed

    Levin, Dana R; Blue, Rebecca S; Castleberry, Tarah L; Vanderploeg, James M

    2015-04-01

    With commercial spaceflight comes the possibility of spaceflight participants (SFPs) with significant medical conditions. Those with previously untested medical conditions, such as diabetes mellitus (DM) and the use of indwelling medical devices, represent a unique challenge. It is unclear how SFPs with such devices will react to the stresses of spaceflight. This case report describes two subjects with Type I DM using insulin pumps who underwent simulated dynamic phases of spaceflight via centrifuge G force exposure. Two Type I diabetic subjects with indwelling Humalog insulin pumps, a 23-yr-old man averaging 50 u of Humalog daily and a 27-yr-old man averaging 60 u of Humalog daily, underwent seven centrifuge runs over 48 h. Day 1 consisted of two +Gz runs (peak = +3.5 Gz, run 2) and two +Gx runs (peak = +6.0 Gx, run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +Gx and +Gz). Data collected included blood pressure, electrocardiogram, pulse oximetry, neurovestibular evaluation, and questionnaires regarding motion sickness, disorientation, greyout, and other symptoms. Neither subject experienced adverse clinical responses to the centrifuge exposure. Both maintained blood glucose levels between 110-206 mg · dl(-1). Potential risks to SFPs with insulin pump dependent DM include hypo/hyperglycemia, pump damage, neurovestibular dysfunction, skin breakdown, and abnormal stress responses. A search of prior literature did not reveal any previous studies of individuals with DM on insulin pumps exposed to prolonged accelerations. These cases suggest that individuals with conditions dependent on continuous medication delivery might tolerate the accelerations anticipated for commercial spaceflight.

  7. Meiotic abnormalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  8. Overexpression of Lnk in the Ovaries Is Involved in Insulin Resistance in Women With Polycystic Ovary Syndrome.

    PubMed

    Hao, Meihua; Yuan, Feng; Jin, Chenchen; Zhou, Zehong; Cao, Qi; Xu, Ling; Wang, Guanlei; Huang, Hui; Yang, Dongzi; Xie, Meiqing; Zhao, Xiaomiao

    2016-10-01

    Polycystic ovary syndrome (PCOS) progression involves abnormal insulin signaling. SH2 domain-containing adaptor protein (Lnk) may be an important regulator of the insulin signaling pathway. We investigated whether Lnk was involved in insulin resistance (IR). Thirty-seven women due to receive laparoscopic surgery from June 2011 to February 2012 were included from the gynecologic department of the Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University. Samples of polycystic and normal ovary tissues were examined by immunohistochemistry. Ovarian cell lines underwent insulin stimulation and Lnk overexpression. Expressed Lnk underwent coimmunoprecipitation tests with green fluorescent protein-labeled insulin receptor and His-tagged insulin receptor substrate 1 (IRS1), and their colocalization in HEK293T cells was examined. Ovarian tissues from PCOS patients with IR exhibited higher expression of Lnk than ovaries from normal control subjects and PCOS patients without IR; mainly in follicular granulosa cells, the follicular fluid and plasma of oocytes in secondary follicles, and atretic follicles. Lnk was coimmunoprecipitated with insulin receptor and IRS1. Lnk and insulin receptor/IRS1 locations overlapped around the nucleus. IR, protein kinase B (Akt), and ERK1/2 activities were inhibited by Lnk overexpression and inhibited further after insulin stimulation, whereas IRS1 serine activity was increased. Insulin receptor (Tyr1150/1151), Akt (Thr308), and ERK1/2 (Thr202/Tyr204) phosphorylation was decreased, whereas IRS1 (Ser307) phosphorylation was increased with Lnk overexpression. In conclusion, Lnk inhibits the phosphatidylinositol 3 kinase-AKT and MAPK-ERK signaling response to insulin. Higher expression of Lnk in PCOS suggests that Lnk probably plays a role in the development of IR.

  9. Overexpression of Lnk in the Ovaries Is Involved in Insulin Resistance in Women With Polycystic Ovary Syndrome

    PubMed Central

    Hao, Meihua; Yuan, Feng; Jin, Chenchen; Zhou, Zehong; Cao, Qi; Xu, Ling; Wang, Guanlei; Huang, Hui

    2016-01-01

    Polycystic ovary syndrome (PCOS) progression involves abnormal insulin signaling. SH2 domain-containing adaptor protein (Lnk) may be an important regulator of the insulin signaling pathway. We investigated whether Lnk was involved in insulin resistance (IR). Thirty-seven women due to receive laparoscopic surgery from June 2011 to February 2012 were included from the gynecologic department of the Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University. Samples of polycystic and normal ovary tissues were examined by immunohistochemistry. Ovarian cell lines underwent insulin stimulation and Lnk overexpression. Expressed Lnk underwent coimmunoprecipitation tests with green fluorescent protein-labeled insulin receptor and His-tagged insulin receptor substrate 1 (IRS1), and their colocalization in HEK293T cells was examined. Ovarian tissues from PCOS patients with IR exhibited higher expression of Lnk than ovaries from normal control subjects and PCOS patients without IR; mainly in follicular granulosa cells, the follicular fluid and plasma of oocytes in secondary follicles, and atretic follicles. Lnk was coimmunoprecipitated with insulin receptor and IRS1. Lnk and insulin receptor/IRS1 locations overlapped around the nucleus. IR, protein kinase B (Akt), and ERK1/2 activities were inhibited by Lnk overexpression and inhibited further after insulin stimulation, whereas IRS1 serine activity was increased. Insulin receptor (Tyr1150/1151), Akt (Thr308), and ERK1/2 (Thr202/Tyr204) phosphorylation was decreased, whereas IRS1 (Ser307) phosphorylation was increased with Lnk overexpression. In conclusion, Lnk inhibits the phosphatidylinositol 3 kinase-AKT and MAPK-ERK signaling response to insulin. Higher expression of Lnk in PCOS suggests that Lnk probably plays a role in the development of IR. PMID:27459314

  10. PKCλ in liver mediates insulin-induced SREBP-1c expression and determines both hepatic lipid content and overall insulin sensitivity

    PubMed Central

    Matsumoto, Michihiro; Ogawa, Wataru; Akimoto, Kazunori; Inoue, Hiroshi; Miyake, Kazuaki; Furukawa, Kensuke; Hayashi, Yoshitake; Iguchi, Haruhisa; Matsuki, Yasushi; Hiramatsu, Ryuji; Shimano, Hitoshi; Yamada, Nobuhiro; Ohno, Shigeo; Kasuga, Masato; Noda, Tetsuo

    2003-01-01

    PKCλ is implicated as a downstream effector of PI3K in insulin action. We show here that mice that lack PKCλ specifically in the liver (L-λKO mice), produced with the use of the Cre-loxP system, exhibit increased insulin sensitivity as well as a decreased triglyceride content and reduced expression of the sterol regulatory element–binding protein-1c (SREBP-1c) gene in the liver. Induction of the hepatic expression of Srebp1c and of its target genes involved in fatty acid/triglyceride synthesis by fasting and refeeding or by hepatic expression of an active form of PI3K was inhibited in L-λKO mice compared with that in control animals. Expression of Srebp1c induced by insulin or by active PI3K in primary cultured rat hepatocytes was inhibited by a dominant-negative form of PKCλ and was mimicked by overexpression of WT PKCλ. Restoration of PKCλ expression in the liver of L-λKO mice with the use of adenovirus-mediated gene transfer corrected the metabolic abnormalities of these animals. Hepatic PKCλ is thus a determinant of hepatic lipid content and whole-body insulin sensitivity. PMID:12975478

  11. GPER Deficiency in Male Mice Results in Insulin Resistance, Dyslipidemia, and a Proinflammatory State

    PubMed Central

    Sharma, Geetanjali; Hu, Chelin; Brigman, Jonathan L.; Zhu, Gang; Hathaway, Helen J.

    2013-01-01

    Estrogen is an important regulator of metabolic syndrome, a collection of abnormalities including obesity, insulin resistance/glucose intolerance, hypertension, dyslipidemia, and inflammation, which together lead to increased risk of cardiovascular disease and diabetes. The role of the G protein-coupled estrogen receptor (GPER/GPR30), particularly in males, in these pathologies remains unclear. We therefore sought to determine whether loss of GPER contributes to aspects of metabolic syndrome in male mice. Although 6-month-old male and female GPER knockout (KO) mice displayed increased body weight compared with wild-type littermates, only female GPER KO mice exhibited glucose intolerance at this age. Weight gain in male GPER KO mice was associated with increases in both visceral and sc fat. GPER KO mice, however, exhibited no differences in food intake or locomotor activity. One-year-old male GPER KO mice displayed an abnormal lipid profile with higher cholesterol and triglyceride levels. Fasting blood glucose levels remained normal, whereas insulin levels were elevated. Although insulin resistance was evident in GPER KO male mice from 6 months onward, glucose intolerance was pronounced only at 18 months of age. Furthermore, by 2 years of age, a proinflammatory phenotype was evident, with increases in the proinflammatory and immunomodulatory cytokines IL-1β, IL-6, IL-12, TNFα, monocyte chemotactic protein-1, interferon γ-induced protein 10, and monokine induced by interferon gamma and a concomitant decrease in the adipose-specific cytokine adiponectin. In conclusion, our study demonstrates for the first time that in male mice, GPER regulates metabolic parameters associated with obesity and diabetes. PMID:23970785

  12. GPER deficiency in male mice results in insulin resistance, dyslipidemia, and a proinflammatory state.

    PubMed

    Sharma, Geetanjali; Hu, Chelin; Brigman, Jonathan L; Zhu, Gang; Hathaway, Helen J; Prossnitz, Eric R

    2013-11-01

    Estrogen is an important regulator of metabolic syndrome, a collection of abnormalities including obesity, insulin resistance/glucose intolerance, hypertension, dyslipidemia, and inflammation, which together lead to increased risk of cardiovascular disease and diabetes. The role of the G protein-coupled estrogen receptor (GPER/GPR30), particularly in males, in these pathologies remains unclear. We therefore sought to determine whether loss of GPER contributes to aspects of metabolic syndrome in male mice. Although 6-month-old male and female GPER knockout (KO) mice displayed increased body weight compared with wild-type littermates, only female GPER KO mice exhibited glucose intolerance at this age. Weight gain in male GPER KO mice was associated with increases in both visceral and sc fat. GPER KO mice, however, exhibited no differences in food intake or locomotor activity. One-year-old male GPER KO mice displayed an abnormal lipid profile with higher cholesterol and triglyceride levels. Fasting blood glucose levels remained normal, whereas insulin levels were elevated. Although insulin resistance was evident in GPER KO male mice from 6 months onward, glucose intolerance was pronounced only at 18 months of age. Furthermore, by 2 years of age, a proinflammatory phenotype was evident, with increases in the proinflammatory and immunomodulatory cytokines IL-1β, IL-6, IL-12, TNFα, monocyte chemotactic protein-1, interferon γ-induced protein 10, and monokine induced by interferon gamma and a concomitant decrease in the adipose-specific cytokine adiponectin. In conclusion, our study demonstrates for the first time that in male mice, GPER regulates metabolic parameters associated with obesity and diabetes.

  13. Effect of combined application insulin and insulin detemir on continous glucose monitor in children with type 1 diabetes mellitus.

    PubMed

    Chen, Xiao-Yun; Dong, Qing; Li, Gui-Mei

    2015-01-01

    Insulin detemir is a soluble long-acting human insulin analogue at neutral pH with a unique mechanism of action, which could strengthen the effects of insulin. This study aims to explore the effects of insulin combined with insulin detemir on the continous glucose in children with type 1 diabetes mellitus. In this study, 150 patients with type 1 diabetes enrolled were included and randomly divided into 3 groups: insulin group (group A), insulin detemir group (group B) and insulin combined with insulin detemir group (group C). Each subject underwent 72 h of continuous glucose monitoring (CGM). MAGE, HbA1c and Noctumal Hypoglycemia levels were examined by using the ELISA kits. The body weight changes were also detected in this study. The results indicated that the information including age, body weight, disease duration and glucose level and HbA1c percentage on the start time point among three groups indicated no statistical differences. Insulin combined with insulin detemir decrease MAGE and HbA1c level in Group C compared to Group A and Group A (P < 0.05). Insulin combined with insulin detemir decreas noctumal hypoglycemia levels and body weight changes (P < 0.05). In conclusion, this study confirmed efficacy of insulin detemir by demonstrating non-inferiority of insulin detemir compared with insulin with respect to HbA1c, with an improved safety profile including significantly fewer hypoglycaemic episodes and less undesirable weight gain in children.

  14. Early and progressive insulin resistance in young, non-obese cancer survivors treated with hematopoietic stem cell transplantation.

    PubMed

    Bizzarri, Carla; Pinto, Rita M; Ciccone, Sara; Brescia, Letizia P; Locatelli, Franco; Cappa, Marco

    2015-09-01

    It is unclear whether there is a causative relationship between the development of metabolic syndrome (MS) and increased risk of early cardiovascular morbidity in patients receiving hematopoietic stem cell transplantation (HSCT) during childhood. Early identification of risk factors associated with insulin resistance, MS, and abnormal glucose tolerance during childhood or adolescence in these patients could represent a useful tool for preventing cardiovascular disorders. In a single-center, prospective, descriptive, cross-sectional study, we studied 45 survivors of hematological malignancies (age: 13.9 ± 4.8 years) treated with HSCT before the age of 18 years and 90 matched healthy controls. We collected clinical, imaging, and laboratory data including oral glucose tolerance test (OGTT). 7/45 patients (15.6%) showed abnormal glucose tolerance at OGTT, 1/45 (2.2%) was obese, and none fulfilled the criteria for MS. A waist/height ratio >0.5 was associated with patients with abnormal glucose tolerance (85.7% of cases), compared to patients with normal glucose tolerance (42.1%) and controls (23.3%). In patients with abnormal glucose tolerance, use of total body irradiation (TBI) as conditioning regimen was more common, and time elapsed from HSCT was longer. Patients treated with HSCT may develop insulin resistance early after transplantation. They do not show overt obesity, but have redistribution of fat tissue with central fat accumulation. The main factors associated with increased metabolic risk are TBI and time from HSCT. Evaluation of MS and glucose tolerance should be part of hormonal follow-up, which should be routinely proposed to these patients. © 2015 Wiley Periodicals, Inc.

  15. Spectrum of endocrine abnormalities associated with acanthosis nigricans.

    PubMed

    Matsuoka, L Y; Wortsman, J; Gavin, J R; Goldman, J

    1987-10-01

    Acanthosis nigricans is a marker for disorders of insulin action, endocrine abnormalities, and cancer of internal organs. To evaluate the clinical significance of this marker the systemic alterations and clinical features of 26 patients with acanthosis nigricans seen at two institutions were reviewed. Most subjects affected by acanthosis nigricans were female (20 patients), Caucasian (22 patients), in the third decade of life (13 patients), and overweight (24 patients greater than 120 percent ideal body weight). Gonadal disease, present in 17 patients, was expressed as polycystic ovary syndrome (11 cases), disorders of prolactin secretion (two cases, one with polycystic ovary syndrome), streak gonads (one case), and hypogonadism of the male (four cases). Thyroid disease and tinea versicolor were present in four patients each. Three patients were receiving insulin therapy for diabetes mellitus, and in two additional patients diabetes mellitus was detected during the diagnostic workup. All patients had elevated fasting insulin levels; most of them also had an exaggerated insulin response to a glucose load. Two of 18 patients tested had antibodies against the insulin receptor in the circulation. Skin biopsy of acanthosis nigricans lesions from all 26 patients showed a typical pattern of hyperkeratosis, acanthosis, and epidermal papillomatosis. Colloidal iron staining showed glycosaminoglycan infiltration of the papillary dermis (21 of 21 cases), consisting mainly of hyaluronic acid. It is concluded that: (1) hyperinsulinenemia and local dermal glycosaminoglycan deposition are regular features in acanthosis nigricans and (2) patients with acanthosis nigricans should be screened for diabetes mellitus, gonadal disease, and hypothyroidism.

  16. Fenofibrate Decreases Insulin Clearance and Insulin Secretion to Maintain Insulin Sensitivity*

    PubMed Central

    Ramakrishnan, Sadeesh K.; Russo, Lucia; Ghanem, Simona S.; Patel, Payal R.; Oyarce, Ana Maria; Heinrich, Garrett; Najjar, Sonia M.

    2016-01-01

    High fat diet reduces the expression of CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a transmembrane glycoprotein that promotes insulin clearance and down-regulates fatty acid synthase activity in the liver upon its phosphorylation by the insulin receptor. Because peroxisome proliferator-activated receptor α (PPARα) transcriptionally suppresses CEACAM1 expression, we herein examined whether high fat down-regulates CEACAM1 expression in a PPARα-dependent mechanism. By activating PPARα, the lipid-lowering drug fenofibrate reverses dyslipidemia and improves insulin sensitivity in type 2 diabetes in part by promoting fatty acid oxidation. Despite reducing glucose-stimulated insulin secretion, fenofibrate treatment does not result in insulin insufficiency. To examine whether this is mediated by a parallel decrease in CEACAM1-dependent hepatic insulin clearance pathways, we fed wild-type and Pparα−/− null mice a high fat diet supplemented with either fenofibrate or Wy14643, a selective PPARα agonist, and examined their effect on insulin metabolism and action. We demonstrated that the decrease in insulin secretion by fenofibrate and Wy14643 is accompanied by reduction in insulin clearance in wild-type but not Pparα−/− mice, thereby maintaining normoinsulinemia and insulin sensitivity despite continuous high fat intake. Intact insulin secretion in L-CC1 mice with protected hepatic insulin clearance and CEACAM1 levels provides in vivo evidence that insulin secretion responds to changes in insulin clearance to maintain physiologic insulin and glucose homeostasis. These results also emphasize the relevant role of hepatic insulin extraction in regulating insulin sensitivity. PMID:27662905

  17. Important role of heparan sulfate in postnatal islet growth and insulin secretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Iwao; Noguchi, Naoya; Nata, Koji

    2009-05-22

    Heparan sulfate (HS) binds with several signaling molecules and regulates ligand-receptor interactions, playing an essential role in embryonic development. Here we showed that HS was intensively expressed in pancreatic islet {beta}-cells after 1 week of age in mice. The enzymatic removal of HS in isolated islets resulted in attenuated glucose-induced insulin secretion with a concomitant reduction in gene expression of several key components in the insulin secretion machinery. We further depleted islet HS by inactivating the exostosin tumor-like 3 gene specifically in {beta}-cells. These mice exhibited abnormal islet morphology with reduced {beta}-cell proliferation after 1 week of age and glucosemore » intolerance due to defective insulin secretion. These results demonstrate that islet HS is involved in the regulation of postnatal islet maturation and required to ensure normal insulin secretion.« less

  18. Low fat diet with omega-3 fatty acids increases plasma insulin-like growth factor concentration in healthy postmenopausal women

    USDA-ARS?s Scientific Manuscript database

    The insulin-like growth factor pathway plays a central role in the normal and abnormal growth of tissues; however, the nutritional determinants of insulin-like growth factor I (IGF-I) and its binding proteins in normal individuals are not well-defined. The purpose of this study was to determine the ...

  19. FoxO1 integrates insulin signaling to VLDL production

    PubMed Central

    Kamagate, Adama; Dong, H. Henry

    2009-01-01

    Very low-density lipoproteins (VLDL) are triglyceride-rich particles. VLDL is synthesized in hepatocytes and secreted from the liver in a pathway that is tightly regulated by insulin. Hepatic VLDL production is stimulated in response to reduced insulin action, resulting in increased release of VLDL into the blood under fasting conditions. Circulating VLDL serves as a vehicle for transporting lipids to peripheral tissues for energy homeostasis. Conversely, hepatic VLDL production is suppressed in response to increased insulin release after meals. This effect is critical for preventing prolonged excursion of postprandial plasma lipid profiles in normal individuals. In subjects with obesity and type 2 diabetes, the ability of insulin to regulate VLDL production becomes impaired due to insulin resistance in the liver, resulting in excessive VLDL secretion and accumulation of triglyceride-rich particles in the blood. Such abnormality in lipid metabolism characterizes the pathogenesis of hypertriglyceridemia and accounts for increased risk of coronary artery disease in obesity and type 2 diabetes. Nevertheless, the molecular basis that links insulin resistance to VLDL overproduction remains poorly understood. Our recent studies illustrate that the forkhead transcription factor FoxO1 acts in the liver to integrate hepatic insulin action to VLDL production. Augmented FoxO1 activity in insulin resistant livers promotes hepatic VLDL overproduction and predisposes to the development of hypertriglyceridemia. These new findings raise an important question: Is FoxO1 a therapeutic target for ameliorating hypertriglyceridemia? Here we discuss this question in the context of recent advances toward our understanding of the pathophysiology of hypertriglyceridemia. PMID:18927507

  20. Insulin transport into the brain.

    PubMed

    Gray, Sarah M; Barrett, Eugene J

    2018-05-30

    While there is a growing consensus that insulin has diverse and important regulatory actions on the brain, seemingly important aspects of brain insulin physiology are poorly understood. Examples include: what is the insulin concentration within brain interstitial fluid under normal physiologic conditions; whether insulin is made in the brain and acts locally; does insulin from the circulation cross the blood-brain barrier or the blood-CSF barrier in a fashion that facilitates its signaling in brain; is insulin degraded within the brain; do privileged areas with a "leaky" blood-brain barrier serve as signaling nodes for transmitting peripheral insulin signaling; does insulin action in the brain include regulation of amyloid peptides; whether insulin resistance is a cause or consequence of processes involved in cognitive decline. Heretofore, nearly all studies examining brain insulin physiology have employed techniques and methodologies that do not appreciate the complex fluid compartmentation and flow throughout the brain. This review attempts to provide a status report on historical and recent work that begins to address some of these issues. It is undertaken in an effort to suggest a framework for studies going forward. Such studies are inevitably influenced by recent physiologic and genetic studies of insulin accessing and acting in brain, discoveries relating to brain fluid dynamics and the interplay of cerebrospinal fluid, brain interstitial fluid, and brain lymphatics, and advances in clinical neuroimaging that underscore the dynamic role of neurovascular coupling.

  1. Insulin degludec and insulin aspart: novel insulins for the management of diabetes mellitus

    PubMed Central

    Atkin, Stephen; Javed, Zeeshan; Fulcher, Gregory

    2015-01-01

    Patients with type 2 diabetes mellitus require insulin as disease progresses to attain or maintain glycaemic targets. Basal insulin is commonly prescribed initially, alone or with one or more rapid-acting prandial insulin doses, to limit mealtime glucose excursions (a basal–bolus regimen). Both patients and physicians must balance the advantages of improved glycaemic control with the risk of hypoglycaemia and increasing regimen complexity. The rapid-acting insulin analogues (insulin aspart, insulin lispro and insulin glulisine) all have similar pharmacokinetic and pharmacodynamic characteristics and clinical efficacy/safety profiles. However, there are important differences in the pharmacokinetic and pharmacodynamic profiles of basal insulins (insulin glargine, insulin detemir and insulin degludec). Insulin degludec is an ultra-long-acting insulin analogue with a flat and stable glucose-lowering profile, a duration of action exceeding 30 h and less inter-patient variation in glucose-lowering effect than insulin glargine. In particular, the chemical properties of insulin degludec have allowed the development of a soluble co-formulation with prandial insulin aspart (insulin degludec/insulin aspart) that provides basal insulin coverage for at least 24 h with additional mealtime insulin for one or two meals depending on dose frequency. Pharmacokinetic and pharmacodynamic studies have shown that the distinct, long basal glucose-lowering action of insulin degludec and the prandial glucose-lowering effect of insulin aspart are maintained in the co-formulation. Evidence from pivotal phase III clinical trials indicates that insulin degludec/insulin aspart translate into sustained glycaemic control with less hypoglycaemia and the potential for a simpler insulin regimen with fewer daily injections. PMID:26568812

  2. Serum Insulin, Glucose, Indices of Insulin Resistance, and Risk of Lung Cancer.

    PubMed

    Argirion, Ilona; Weinstein, Stephanie J; Männistö, Satu; Albanes, Demetrius; Mondul, Alison M

    2017-10-01

    Background: Although insulin may increase the risk of some cancers, few studies have examined fasting serum insulin and lung cancer risk. Methods: We examined serum insulin, glucose, and indices of insulin resistance [insulin:glucose molar ratio and homeostasis model assessment of insulin resistance (HOMA-IR)] and lung cancer risk using a case-cohort study within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study of Finnish men. A total of 196 cases and 395 subcohort members were included. Insulin and glucose were measured in fasting serum collected 5 to 12 years before diagnosis. Cox proportional hazards models were utilized to estimate the relative risk of lung cancer. Results: The average time between blood collection and lung cancer was 9.6 years. Fasting serum insulin levels were 8.7% higher in subcohort members than cases. After multivariable adjustment, men in the fourth quartile of insulin had a significantly higher risk of lung cancer than those in the first quartile [HR = 2.10; 95% confidence interval (CI), 1.12-3.94]. A similar relationship was seen with HOMA-IR (HR = 1.83; 95% CI, 0.99-3.38). Risk was not strongly associated with glucose or the insulin:glucose molar ratio ( P trend = 0.55 and P trend = 0.27, respectively). Conclusions: Higher fasting serum insulin concentrations, as well as the presence of insulin resistance, appear to be associated with an elevated risk of lung cancer development. Impact: Although insulin is hypothesized to increase risk of some cancers, insulin and lung cancer remain understudied. Higher insulin levels and insulin resistance were associated with increased lung cancer risk. Although smoking cessation is the best method of lung cancer prevention, other lifestyle changes that affect insulin concentrations and sensitivity may reduce lung cancer risk. Cancer Epidemiol Biomarkers Prev; 26(10); 1519-24. ©2017 AACR . ©2017 American Association for Cancer Research.

  3. Pre-gravid physical activity and reduced risk of glucose intolerance in pregnancy: the role of insulin sensitivity.

    PubMed

    Retnakaran, Ravi; Qi, Ying; Sermer, Mathew; Connelly, Philip W; Zinman, Bernard; Hanley, Anthony J G

    2009-04-01

    Pre-gravid physical activity has been associated with a reduced risk of gestational diabetes mellitus (GDM), although neither the types of exercise nor the physiologic mechanisms underlying this protective effect have been well-studied. Thus, we sought to study the relationships between types of pre-gravid physical activity and metabolic parameters in pregnancy, including glucose tolerance, insulin sensitivity and beta-cell function. A total of 851 women underwent a glucose challenge test (GCT) and a 3-h oral glucose tolerance test (OGTT) in late pregnancy, yielding four glucose tolerance groups: (i) GDM; (ii) gestational impaired glucose tolerance (GIGT); (iii) abnormal GCT with normal glucose tolerance on OGTT (abnormal GCT NGT); and (iv) normal GCT with NGT on OGTT (normal GCT NGT). Pre-gravid physical activity was assessed using the Baecke questionnaire, which measures (i) total physical activity and (ii) its three component domains: work, nonsport leisure-time, and vigorous/sports activity. Glucose tolerance status improved across increasing quartiles of pre-gravid total physical activity (P = 0.0244). Whereas neither work nor nonsport leisure-time activity differed between glucose tolerance groups, pre-gravid vigorous/sports activity was significantly higher in women with normal GCT NGT compared to women with (i) abnormal GCT NGT (P = 0.0018) (ii) GIGT (P = 0.0025), and (iii) GDM (P = 0.0044). In particular, vigorous/sports activity correlated with insulin sensitivity (measured by IS(OGTT)) (r = 0.21, P < 0.0001). Furthermore, on multiple linear regression analysis, pre-gravid vigorous/sports activity emerged as a significant independent predictor of IS(OGTT) in pregnancy (t = 4.97, P < 0.0001). Pre-gravid vigorous/sports activity is associated with a reduced risk of glucose intolerance in pregnancy, an effect likely mediated by enhanced insulin sensitivity.

  4. Diabetes, insulin, and development of acute lung injury

    PubMed Central

    Honiden, Shyoko; Gong, Michelle N.

    2009-01-01

    Objectives Recently, many studies have investigated the immunomodulatory effects of insulin and glucose control in critical illness. This review examines evidence regarding the relationship between diabetes and the development of acute lung injury/acute respiratory distress syndrome (ALI/ARDS), reviews studies of lung injury related to glycemic and nonglycemic metabolic features of diabetes, and examines the effect of diabetic therapies. Data Sources and Study Selection A MEDLINE/PubMed search from inception to August 1, 2008, was conducted using the search terms acute lung injury, acute respiratory distress syndrome, hyperglycemia, diabetes mellitus, insulin, hydroxymethylglutaryl-CoA reductase inhibitors (statins), angiotensin-converting enzyme inhibitor, and peroxisome proliferator-activated receptors, including combinations of these terms. Bibliographies of retrieved articles were manually reviewed. Data Extraction and Synthesis Available studies were critically reviewed, and data were extracted with special attention to the human and animal studies that explored a) diabetes and ALI; b) hyperglycemia and ALI; c) metabolic nonhyperglycemic features of diabetes and ALI; and d) diabetic therapies and ALI. Conclusions Clinical and experimental data indicate that diabetes is protective against the development of ALI/ARDS. The pathways involved are complex and likely include effects of hyperglycemia on the inflammatory response, metabolic abnormalities in diabetes, and the interactions of therapeutic agents given to diabetic patients. Multidisciplinary, multifaceted studies, involving both animal models and clinical and molecular epidemiology techniques, are essential. PMID:19531947

  5. Continuous glucose monitoring, oral glucose tolerance, and insulin - glucose parameters in adolescents with simple obesity.

    PubMed

    El Awwa, A; Soliman, A; Al-Ali, M; Yassin, M; De Sanctis, V

    2012-09-01

    In obese adolescents pancreatic beta-cells may not be able to cope with insulin resistance leading to hyperglycemia and type2 diabetes (T2DM To assess oral glucose tolerance, 72-h continuous blood glucose concentrations (CGM) and calculate homeostatic model assessment (HOMA), and the quantitative insulin sensitivity check index (QUICKI) in 13 adolescents with simple obesity (BMI SDS=4 ± 1.06). OGTT performed in 13 obese adolescents (13.47 ± 3 years) revealed 3 cases (23%) with impaired fasting glucose (IFG: fasting glucose >5.6 mmol/L), 4 cases (30%) with impaired glucose tolerance (IGT: 2h blood glucose >7.8 <11.1 mmol/L), and none with diabetes. Using the continuous glucose monitoring system ( CGMS), IFG was detected in 4 cases, the maximum serum blood glucose (BG : 2h or more after meal) was >7.8 and <11.1 mmol/L (IGT) in 9 children (69%) and >11.1 mmol/L (diabetes) in one case (7.6%). Five cases had a minimum BG recorded of <2.7 mmol/L (hypoglycemia). No glycemic abnormality was detected using HbA1C (5.7 ± 0.3%). 11/13 patients had HOMA values >2.6 and QUICKI values <0.35 denoting insulin resistance. Beta cell mass percent (B %) = 200 ± 94.8% and insulin sensitivity values (IS)=50.4 ± 45.5% denoted insulin resistance with hyper-insulinaemia and preserved beta cell mass. In obese adolescents, CGMS is superior to OGTT and HbA1C in detecting glycemic abnormalities, which appears to be secondary to insulin resistance.

  6. Association of Cerebrospinal Fluid (CSF) Insulin with Cognitive Performance and CSF Biomarkers of Alzheimer's Disease.

    PubMed

    Geijselaers, Stefan L C; Aalten, Pauline; Ramakers, Inez H G B; De Deyn, Peter Paul; Heijboer, Annemieke C; Koek, Huiberdina L; OldeRikkert, Marcel G M; Papma, Janne M; Reesink, Fransje E; Smits, Lieke L; Stehouwer, Coen D A; Teunissen, Charlotte E; Verhey, Frans R J; van der Flier, Wiesje M; Biessels, Geert Jan

    2018-01-01

    Abnormal insulin signaling in the brain has been linked to Alzheimer's disease (AD). To evaluate whether cerebrospinal fluid (CSF) insulin levels are associated with cognitive performance and CSF amyloid-β and Tau. Additionally, we explore whether any such association differs by sex or APOE ɛ4 genotype. From 258 individuals participating in the Parelsnoer Institute Neurodegenerative Diseases, a nationwide multicenter memory clinic population, we selected 138 individuals (mean age 66±9 years, 65.2% male) diagnosed with subjective cognitive impairment (n = 45), amnestic mild cognitive impairment (n = 44), or AD (n = 49), who completed a neuropsychological assessment, including tests of global cognition and memory performance, and who underwent lumbar puncture. We measured CSF levels of insulin, amyloid-β1-42, total (t-)Tau, and phosphorylated (p-)Tau. CSF insulin levels did not differ between the diagnostic groups (p = 0.136). Across the whole study population, CSF insulin was unrelated to cognitive performance and CSF biomarkers of AD, after adjustment for age, sex, body mass index, diabetes status, and clinic site (all p≥0.131). Importantly, however, we observed effect modification by sex and APOE ɛ4 genotype. Specifically, among women, higher insulin levels in the CSF were associated with worse global cognition (standardized regression coefficient -0.483; p = 0.008) and higher p-Tau levels (0.353; p = 0.040). Among non-carriers of the APOE ɛ4 allele, higher CSF insulin was associated with higher t-Tau (0.287; p = 0.008) and p-Tau (0.246; p = 0.029). Our findings provide further evidence for a relationship between brain insulin signaling and AD pathology. It also highlights the need to consider sex and APOE ɛ4 genotype when assessing the role of insulin.

  7. Conversion from insulin glargine U-100 to insulin glargine U-300 or insulin degludec and the impact on dosage requirements.

    PubMed

    Pearson, Scott M; Trujillo, Jennifer M

    2018-04-01

    We wanted to determine whether basal insulin requirements change when patients transition from insulin glargine U-100 (Gla-100) to insulin glargine U-300 (Gla-300) or insulin degludec. This study involved subjects seen in the University of Colorado Health Endocrine Clinic who were transitioned from Gla-100 to either Gla-300 ( n = 95) or insulin degludec ( n = 39). The primary outcome was the difference between baseline Gla-100 dose and dose of Gla-300 or insulin degludec prescribed after first follow-up visit within 1-12 months. Secondary outcomes included changes in glycemic control and empiric dose conversion from Gla-100 to Gla-300 or insulin degludec on the day of transition. Wilcoxon rank sum tests evaluated changes in insulin doses, and paired t tests assessed changes in glycemic control using GraphPad statistical software. Median daily basal insulin dose increased for individuals transitioned from Gla-100 to Gla-300 from 30 [19-60 interquartile range (IQR)] units at baseline to 34.5 (19-70 IQR) units after follow up ( p = 0.01). For patients transitioned to insulin degludec, dose changes from baseline to follow up were not significantly different ( p = 0.56). At the time of transition, the prescribed dose of Gla-300 or insulin degludec did not significantly differ from the previous dose of Gla-100 ( p = 0.73 and 0.28, respectively), indicating that empiric dose adjustments were not routinely prescribed. Patients who transitioned from Gla-100 to Gla-300 had increased basal insulin requirements between visits, while basal insulin requirements for those transitioned from Gla-100 to insulin degludec were not significantly different.

  8. Conversion from insulin glargine U-100 to insulin glargine U-300 or insulin degludec and the impact on dosage requirements

    PubMed Central

    Trujillo, Jennifer M.

    2018-01-01

    Background: We wanted to determine whether basal insulin requirements change when patients transition from insulin glargine U-100 (Gla-100) to insulin glargine U-300 (Gla-300) or insulin degludec. Methods: This study involved subjects seen in the University of Colorado Health Endocrine Clinic who were transitioned from Gla-100 to either Gla-300 (n = 95) or insulin degludec (n = 39). The primary outcome was the difference between baseline Gla-100 dose and dose of Gla-300 or insulin degludec prescribed after first follow-up visit within 1–12 months. Secondary outcomes included changes in glycemic control and empiric dose conversion from Gla-100 to Gla-300 or insulin degludec on the day of transition. Wilcoxon rank sum tests evaluated changes in insulin doses, and paired t tests assessed changes in glycemic control using GraphPad statistical software. Results: Median daily basal insulin dose increased for individuals transitioned from Gla-100 to Gla-300 from 30 [19–60 interquartile range (IQR)] units at baseline to 34.5 (19–70 IQR) units after follow up (p = 0.01). For patients transitioned to insulin degludec, dose changes from baseline to follow up were not significantly different (p = 0.56). At the time of transition, the prescribed dose of Gla-300 or insulin degludec did not significantly differ from the previous dose of Gla-100 (p = 0.73 and 0.28, respectively), indicating that empiric dose adjustments were not routinely prescribed. Conclusions: Patients who transitioned from Gla-100 to Gla-300 had increased basal insulin requirements between visits, while basal insulin requirements for those transitioned from Gla-100 to insulin degludec were not significantly different. PMID:29619208

  9. Toward understanding insulin fibrillation.

    PubMed

    Brange, J; Andersen, L; Laursen, E D; Meyn, G; Rasmussen, E

    1997-05-01

    Formation of insulin fibrils is a physical process by which partially unfolded insulin molecules interact with each other to form linear aggregates. Shielding of hydrophobic domains is the main driving force for this process, but formation of intermolecular beta-sheet may further stabilize the fibrillar structure. Conformational displacement of the B-chain C-terminal with exposure of nonpolar, aliphatic core residues, including A2, A3, B11, and B15, plays a crucial role in the fibrillation process. Recent crystal analyses and molecular modeling studies have suggested that when insulin fibrillates this exposed domain interacts with a hydrophobic surface domain formed by the aliphatic residues A13, B6, B14, B17, and B18, normally buried when three insulin dimers form a hexamer. In rabbit immunization experiments, insulin fibrils did not elicit an increased immune response with respect to formation of IgG insulin antibodies when compared with native insulin. In contrast, the IgE response increased with increasing content of insulin in fibrillar form. Strategies and practical approaches to prevent insulin from forming fibrils are reviewed. Stabilization of the insulin hexameric structure and blockage of hydrophobic interfaces by addition of surfactants are the most effective means of counteracting insulin fibrillation.

  10. Insulin resistance in obese children and adolescents.

    PubMed

    Romualdo, Monica Cristina dos Santos; Nóbrega, Fernando José de; Escrivão, Maria Arlete Meil Schimith

    2014-01-01

    To evaluate the presence of insulin resistance and its association with other metabolic abnormalities in obese children and adolescents. Retrospective study of 220 children and adolescents aged 5-14 years. Anthropometric measurements were performed (weight, height, and waist circumference) and clinical (gender, age, pubertal stage, and degree of obesity) and biochemical (glucose, insulin, total cholesterol, and fractions, triglycerides) data were analyzed. Insulin resistance was identified by the homeostasis model assessment for insulin resistance (HOMA-IR) index. The analysis of the differences between the variables of interest and the HOMA-IR quartiles was performed by ANOVA or Kruskal-Wallis tests. Insulin resistance was diagnosed in 33.20% of the sample. It was associated with low levels of high-density lipoprotein cholesterol (HDL-C; p=0.044), waist circumference measurement (p=0.030), and the set of clinical and metabolic (p=0.000) alterations. Insulin-resistant individuals had higher mean age (p=0.000), body mass index (BMI; p=0.000), abdominal circumference (p=0.000), median triglycerides (p=0.001), total cholesterol (p≤0.042), and low-density lipoprotein cholesterol (LDL-C; p≤0.027); and lower HDL-C levels (p=0.005). There was an increase in mean BMI (p=0.000), abdominal circumference (p=0.000), and median triglycerides (p=0.002) as the values of HOMA -IR increased, with the exception of HDL-C, which decreased (p=0.001). Those with the highest number of simultaneous alterations were between the second and third quartiles of the HOMA-IR index (p=0.000). The results confirmed that insulin resistance is present in many obese children and adolescents, and that this condition is associated with alterations that represent an increased risk for developing metabolic disorders in adulthood. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  11. Paediatrics, insulin resistance and the kidney.

    PubMed

    Marlais, Matko; Coward, Richard J

    2015-08-01

    Systemic insulin resistance is becoming more prevalent in the young due to modern lifestyles predisposing to the metabolic syndrome and obesity. There is also evidence that there are critical insulin-resistant phases for the developing child, including puberty, and that renal disease per se causes systemic insulin resistance. This review considers the factors that render children insulin resistant, as well as the accumulating evidence that the kidney is an insulin-responsive organ and could be affected by insulin resistance.

  12. Anti-inflammatory effects of insulin.

    PubMed

    Dandona, Paresh; Chaudhuri, Ajay; Mohanty, Priya; Ghanim, Husam

    2007-07-01

    This review deals with the recent observations on the pro-inflammatory effects of glucose and the anti-inflammatory actions of insulin. Apart from being novel, they are central to our understanding of why hyperglycemia is a prognosticator of bad clinical outcomes including patients with acute coronary syndromes, stroke and in patients in the intensive care unit. The pro-inflammatory effect of glucose as well as that of other macronutrients including fast food meals provides the basis of chronic oxidative stress and inflammation in the obese and their propensity to atherosclerotic disease. The anti-inflammatory action of insulin provides a neutralizing effect to balance macronutrient induced inflammation on the one hand and the possibility of using insulin as an anti-inflammatory drug on the other. The actions of macronutrients and insulin described above explain why insulin resistant states like obesity and type 2 diabetes are associated with oxidative stress, inflammation and atherosclerosis. They also suggest that insulin may be antiatherogenic.

  13. Characteristics of the somatotropic axis in insulin dependent diabetes mellitus.

    PubMed

    Mercado, M; Baumann, G

    1995-01-01

    Growth hormone (GH) plays an important role in glucose homeostasis in both healthy subjects and patients with diabetes. Patients with poorly controlled insulin-dependent diabetes mellitus (IDDM) have high basal and integrated serum GH concentrations, as well as an enhanced GH response to several secretagogues. Yet, these patients have impaired generation of insulin-like growth factor-I (IGF-I). These abnormalities tend to return to normal as an adequate metabolic control is achieved. In view of this hormonal profile, IDDM has been considered a state of relative GH resistance. Studies in experimental animals with streptozotocin-induced diabetes have shown a decreased binding of radiolabeled GH to liver membranes. More recently, adults and children with IDDM have been found to have low levels of the high affinity growth hormone binding protein (GHBP), which represents the extracellular portion of the GH receptor, and is thought to reflect GH receptor tissue concentrations. The abnormalities in the GH/IGF-I axis have been implicated in the worsening of metabolic control that occurs in some patients, as well as in the development of microvascular complications, particularly retinopathy.

  14. Mechanical stress regulates insulin sensitivity through integrin-dependent control of insulin receptor localization.

    PubMed

    Kim, Jung; Bilder, David; Neufeld, Thomas P

    2018-01-15

    Insulin resistance, the failure to activate insulin signaling in the presence of ligand, leads to metabolic diseases, including type 2 diabetes. Physical activity and mechanical stress have been shown to protect against insulin resistance, but the molecular mechanisms remain unclear. Here, we address this relationship in the Drosophila larval fat body, an insulin-sensitive organ analogous to vertebrate adipose tissue and livers. We found that insulin signaling in Drosophila fat body cells is abolished in the absence of physical activity and mechanical stress even when excess insulin is present. Physical movement is required for insulin sensitivity in both intact larvae and fat bodies cultured ex vivo. Interestingly, the insulin receptor and other downstream components are recruited to the plasma membrane in response to mechanical stress, and this membrane localization is rapidly lost upon disruption of larval or tissue movement. Sensing of mechanical stimuli is mediated in part by integrins, whose activation is necessary and sufficient for mechanical stress-dependent insulin signaling. Insulin resistance develops naturally during the transition from the active larval stage to the immotile pupal stage, suggesting that regulation of insulin sensitivity by mechanical stress may help coordinate developmental programming with metabolism. © 2018 Kim et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Heterogeneous phenotypes of insulin resistance and its implications for defining metabolic syndrome in Asian Indian adolescents.

    PubMed

    Vikram, Naval K; Misra, Anoop; Pandey, Ravindra M; Luthra, Kalpana; Wasir, Jasjeet S; Dhingra, Vibha

    2006-05-01

    To assess the phenotypic correlations of insulin resistance with obesity and its relationship with the metabolic syndrome in Asian Indian adolescents. We analyzed clinical, anthropometric (body mass index [BMI], waist circumference [WC]) and laboratory (fasting blood glucose [FBG], lipids and fasting serum insulin) data from 793 subjects (401 males and 392 females) aged 14-19 years randomly selected from Epidemiological Study of Adolescents and Young (ESAY) adults (n=1447). The percentile cut-offs for 14-19 years age from ESAY cohort were used for defining abnormal values of variables. We devised three sets of definitions of metabolic syndrome by including BMI and fasting insulin levels with other defining variables. Nearly 28.9% of adolescents had fasting hyperinsulinemia despite normal values of BMI, WC, FBG, lipids, and blood pressure. Remarkably, NCEP criteria with appropriate percentile cut-off points for Asian Indian adolescents identified metabolic syndrome in only six (0.8%) subjects. Inclusion of both BMI and WC in the definition resulted in increase in the prevalence of metabolic syndrome to 4.3%. With inclusion of hyperinsulinemia, the prevalence of metabolic syndrome increased to 4.2% (from 0.8%) in the modified NCEP definition, 5.2% (from 0.9%) when BMI was substituted for WC, and 10.2 (from 4.3%) when both BMI and WC were included. Our data show marked heterogeneity of phenotypes of insulin resistance and poor value of NCEP definition to identify metabolic syndrome. We propose that BMI and fasting insulin should be evaluated in candidate definitions of metabolic syndrome in Asian Indian adolescents.

  16. Central insulin dysregulation and energy dyshomeostasis in two mouse models of Alzheimer's disease.

    PubMed

    Velazquez, Ramon; Tran, An; Ishimwe, Egide; Denner, Larry; Dave, Nikhil; Oddo, Salvatore; Dineley, Kelly T

    2017-10-01

    Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder worldwide. While the causes of AD are not known, several risk factors have been identified. Among these, type two diabetes (T2D), a chronic metabolic disease, is one of the most prevalent risk factors for AD. Insulin resistance, which is associated with T2D, is defined as diminished or absent insulin signaling and is reflected by peripheral blood hyperglycemia and impaired glucose clearance. In this study, we used complementary approaches to probe for peripheral insulin resistance, central nervous system (CNS) insulin sensitivity and energy homeostasis in Tg2576 and 3xTg-AD mice, two widely used animal models of AD. We report that CNS insulin signaling abnormalities are evident months before peripheral insulin resistance. In addition, we find that brain energy metabolism is differentially altered in both mouse models, with 3xTg-AD mice showing more extensive changes. Collectively, our data suggest that early AD may reflect engagement of different signaling networks that influence CNS metabolism, which in turn may alter peripheral insulin signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Glucose, Insulin and C-peptide Kinetics during an Oral Glucose Tolerance Test in Patients with Chronic Liver Disease

    PubMed Central

    Min, Yong Ki; Suh, Kyo II; Choi, Sang Jeon; Lee, Hong Kyu; Kim, Chung Yong; Koh, Chang-Soon; Min, Hun Ki

    1987-01-01

    To elucidate the mechanism of glucose intolerance in patients with chronic liver disease(CLD), we measured the levels of plasma glucose, insulin and C-peptide during oral glucose tolerance test and urinary excretion of C-peptide per 24 hours during a weight maintenance diet in 20 patients with CLD who had fasting plasma glucose(FBS) of less than 100 mg/dl. The patients with CLD who had normal FBS(FBS less than 100 mg/dl) were divided into two groups by the National Diabetes Data Group Criteria: one with abnormal glucose tolerance (abnormal GTT, Group 1) and the other with normal glucose tolerance (normal GTT. Group 2). Group 1 patients showed significantly higher plasma insulin (p<0.02 and p<0.01, respectively) and C-peptide concentrations (p<0.01) in the fasting state and 2 hours after a 75gram oral glucose loading (PP2) than group 2 patients. Urinary excretion of C-peptide per 24 hours was also higher in group 1 patients than in group 2 patients (p<0.01). Group 2 patients demonstrated similar plasma insulin, C-peptide and urinary excretion of C-peptide per 24 hours to normal subjects (p>0.05). These results suggest that patients with CLD who had normal FBS can be divided into two groups by oral glucose tolerance test(GTT) and those with abnormal GTT have hyperinsulinemia the mechanism of which is insulin hypersecretion from pancreatic B-cell. PMID:3154815

  18. Effect of metabolic abnormalities on endothelial dysfunction in normotensive offspring of subject with hypertension.

    PubMed

    Žižek, B; Žižek, D; Bedenčič, K; Jerin, A; Poredoš, P

    2013-08-01

    Essential hypertension (EH) is often accompanied by hyperinsulinemia/insulin resistance (IR) and deranged adiponectin secretion. IR may in turn be associated with endothelial dysfunction and increased levels of asymmetric dimethylarginine (ADMA). Therefore, we aimed to determine metabolic abnormalities in normotensive offspring of subjects with essential hypertension (familial trait-FT) and to examine their relations to endothelium-dependent vasodilation of the brachial artery (BA). We included 77 subjects, 38 were normotensive individuals with FT aged 28-39 (mean 33) years and 39 age-matched Controls without FT. Insulin, adiponectin and ADMA plasma levels were determined by radioimmunoassay. Using high-resolution ultrasound, BA diameters at rest and during reactive hyperemia (flow-mediated dilation-FMD) were measured. Subjects with FT had higher insulin and lower adiponectin levels than controls (13.65±6.70 vs. 7.09±2.20 mE/L; P<0.001 and 13.60±5.98 vs. 17.27±7.17 mg/L respectively; P<0.05). Insulin and adiponectin levels were negatively interrelated (r=-0.33, P=0.003). ADMA levels were comparable in both groups. The study group had worse FMD than Controls (6.11±3.28 vs. 10.20±2.07%; P<0.001). IR was independently associated with FMD (partial R2=0.23, P<0.001). Increased insulin and decreased adiponectin levels along with endothelial dysfunction are present in normotensive subjects with FT. IR and hypoadiponectinemia are interrelated, but only hyperinsulinemia has an independent adverse influence on endothelial function. Results of our study did not confirm the role of ADMA in pathogenesis of evolving hypertension.

  19. [News and perspectives in insulin treatment].

    PubMed

    Haluzík, Martin

    2014-09-01

    Insulin therapy is a therapeutic cornerstone in patients with type 1 diabetes and also in numerous patients with type 2 diabetes especially with longer history of diabetes. The initiation of insulin therapy in type 2 diabetes patients is often delayed which is at least partially due to suboptimal pharmacokinetic characteristics of available insulins. The development of novel insulins with more favorable characteristics than those of current insulins is therefore still ongoing. The aim of this paper is to review current knowledge of novel insulins that have been recently introduced to the market or are getting close to routine clinical use. We will also focus on the perspectives of insulin therapy in the long-term run including the alternative routes of insulin administration beyond its classical subcutaneous injection treatment.Key words: alternative routes of insulin administration - diabetes mellitus - hypoglycemia - insulin - insulin analogues.

  20. Immunosuppressive Therapy in Treatment of Refractory Hypoglycemia in Type B Insulin Resistance: A Case Report

    PubMed Central

    Sirisena, Imali

    2017-01-01

    Type B insulin resistance is a rare syndrome characterized by fluctuating glucose levels (ranging from hyperglycemia with extreme insulin resistance to intractable hypoglycemia without exogenous insulin administration), high serum insulin levels, and insulin receptor autoantibodies. Most cases occur in the African American population in association with other underlying autoimmune systemic diseases. Treatments with high-dose steroids, immunosuppressants, and plasmapheresis have been used, with variable outcomes, in patients without spontaneous remission. We report the case of a 60-year-old African American woman with history of systemic lupus erythematosus presenting with extreme fluctuations in glucose levels, ranging from severe hyperglycemia to refractory hypoglycemia, with high serum concentration of insulin in both phases. Her presentation and phenotype were very similar to those seen in known cases of type B insulin resistance associated with insulin receptor antibodies. Treatment in other reported cases used a combination of high-dose steroids and immunosuppressants. We tried high-dose steroids, azathioprine, and intravenous immunoglobulins, which resulted in improvement and barely detectable insulin receptor antibody. We present a case of type B insulin resistance with abnormally low titers of insulin receptor antibodies despite a typical clinical course and response. Future research is needed to improve diagnosis and treatment in this rare disease. PMID:29264467

  1. The insulin receptor.

    PubMed

    Kaplan, S A

    1984-03-01

    Cells are endowed with specific cognitive molecules that function as receptors for hormones, neurotransmitters, and other intercellular messengers. The receptor molecules may be present in the plasma membrane, cytoplasm, or nucleus. When occupied by the messenger, the receptor is coupled to the cellular machinery that responds to the message-bearing molecules. For some hormones the events following attachment of the messenger to the receptor are well known. An example is the generation of cAMP after combination of glucagon with its receptor and the series of steps culminating in activation of phosphorylase. In the case of many other messengers, including insulin, the nature of these coupling steps is not known. Receptors are subject to the regulatory processes of synthesis, degradation, and conformational change; alterations in receptor properties may have significant effects on the qualitative and quantitative responses of the cell to the extracellular messenger. The insulin receptor is located in the plasma membrane, is composed of two pairs of subunits, and has a molecular weight of about 350,000. It is located in cells such as adipocytes, hepatocytes, and skeletal muscle cells as well as in cells not considered to be typical target organ cells. Insulin receptors in nonfetal cells are downregulated by exposure of the cells to high concentrations of insulin. Other factors that regulate insulin binding include muscular exercise, diet, thyroid hormones, glucocorticoids, androgens, estrogens, and cyclic nucleotides. The fetus has high concentrations of insulin receptors in several tissues. These begin to appear early in fetal life and may outnumber those found in adult tissues. Fetal insulin receptors are unusual in that they may not undergo downregulation but may experience the opposite when exposed to insulin in high concentrations. Thus the offspring of a mother with poorly controlled diabetes may be placed in double jeopardy by fetal hyperinsulinemia and

  2. Insulin Resistance and Mitochondrial Dysfunction.

    PubMed

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  3. Protein synthesis by perfused hearts from normal and insulin-deficient rats. Effect of insulin in the presence of glucose and after depletion of glucose, glucose 6-phosphate and glycogen

    PubMed Central

    Chain, Ernst B.; Sender, Peter M.

    1973-01-01

    In the absence of glucose, insulin stimulated the incorporation of 14C-labelled amino acids into protein by perfused rat hearts that had been previously substantially depleted of endogenous glucose, glucose 6-phosphate and glycogen by substrate-free perfusion. This stimulation was also demonstrated in hearts perfused with buffer containing 2-deoxy-d-glucose, an inhibitor of glucose utilization. It is concluded that insulin exerts an effect on protein synthesis independent of its action on glucose metabolism. Streptozotocin-induced diabetes was found to have no effect either on 14C-labelled amino acid incorporation by the perfused heart or on the polyribosome profile and amino acid-incorporating activity of polyribosomes prepared from the non-perfused hearts of these insulin-deficient rats, which show marked abnormalities in glucose metabolism. Protein synthesis was not diminished in the perfused hearts from rats treated with anti-insulin antiserum. The significance of these findings is discussed in relation to the reported effects of insulin deficiency on protein synthesis in skeletal muscle. PMID:4269308

  4. Insulin-Independent GABAA Receptor-Mediated Response in the Barrel Cortex of Mice with Impaired Met Activity

    PubMed Central

    Lo, Fu-Sun; Erzurumlu, Reha S.

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder caused by genetic variants, susceptibility alleles, and environmental perturbations. The autism associated gene MET tyrosine kinase has been implicated in many behavioral domains and endophenotypes of autism, including abnormal neural signaling in human sensory cortex. We investigated somatosensory thalamocortical synaptic communication in mice deficient in Met activity in cortical excitatory neurons to gain insights into aberrant somatosensation characteristic of ASD. The ratio of excitation to inhibition is dramatically increased due to decreased postsynaptic GABAA receptor-mediated inhibition in the trigeminal thalamocortical pathway of mice lacking active Met in the cerebral cortex. Furthermore, in contrast to wild-type mice, insulin failed to increase GABAA receptor-mediated response in the barrel cortex of mice with compromised Met signaling. Thus, lacking insulin effects may be a risk factor in ASD pathogenesis. SIGNIFICANCE STATEMENT A proposed common cause of neurodevelopmental disorders is an imbalance in excitatory neural transmission, provided by the glutamatergic neurons, and the inhibitory signals from the GABAergic interneurons. Many genes associated with autism spectrum disorders impair synaptic transmission in the expected cell type. Previously, inactivation of the autism-associated Met tyrosine kinase receptor in GABAergic interneurons led to decreased inhibition. In thus report, decreased Met signaling in glutamatergic neurons had no effect on excitation, but decimated inhibition. Further experiments indicate that loss of Met activity downregulates GABAA receptors on glutamatergic neurons in an insulin independent manner. These data provide a new mechanism for the loss of inhibition and subsequent abnormal excitation/inhibition balance and potential molecular candidates for treatment or prevention. PMID:27030755

  5. Evidence in obese children: contribution of hyperlipidemia, obesity-inflammation, and insulin sensitivity.

    PubMed

    Chang, Chi-Jen; Jian, Deng-Yuan; Lin, Ming-Wei; Zhao, Jun-Zhi; Ho, Low-Tone; Juan, Chi-Chang

    2015-01-01

    Evidence shows a high incidence of insulin resistance, inflammation and dyslipidemia in adult obesity. The aim of this study was to assess the relevance of inflammatory markers, circulating lipids, and insulin sensitivity in overweight/obese children. We enrolled 45 male children (aged 6 to 13 years, lean control = 16, obese = 19, overweight = 10) in this study. The plasma total cholesterol, HDL cholesterol, triglyceride, glucose and insulin levels, the circulating levels of inflammatory factors, such as TNF-α, IL-6, and MCP-1, and the high-sensitive CRP level were determined using quantitative colorimetric sandwich ELISA kits. Compared with the lean control subjects, the obese subjects had obvious insulin resistance, abnormal lipid profiles, and low-grade inflammation. The overweight subjects only exhibited significant insulin resistance and low-grade inflammation. Both TNF-α and leptin levels were higher in the overweight/obese subjects. A concurrent correlation analysis showed that body mass index (BMI) percentile and fasting insulin were positively correlated with insulin resistance, lipid profiles, and inflammatory markers but negatively correlated with adiponectin. A factor analysis identified three domains that explained 74.08% of the total variance among the obese children (factor 1: lipid, 46.05%; factor 2: obesity-inflammation, 15.38%; factor 3: insulin sensitivity domains, 12.65%). Our findings suggest that lipid, obesity-inflammation, and insulin sensitivity domains predominantly exist among obese children. These factors might be applied to predict the outcomes of cardiovascular diseases in the future.

  6. Metformin ameliorates high uric acid-induced insulin resistance in skeletal muscle cells.

    PubMed

    Yuan, Huier; Hu, Yaqiu; Zhu, Yuzhang; Zhang, Yongneng; Luo, Chaohuan; Li, Zhi; Wen, Tengfei; Zhuang, Wanling; Zou, Jinfang; Hong, Liangli; Zhang, Xin; Hisatome, Ichiro; Yamamoto, Tetsuya; Cheng, Jidong

    2017-03-05

    Hyperuricemia occurs together with abnormal glucose metabolism and insulin resistance. Skeletal muscle is an important organ of glucose uptake, disposal, and storage. Metformin activates adenosine monophosphate-activated protein kinase (AMPK) to regulate insulin signaling and promote the translocation of glucose transporter type 4 (GLUT4), thereby stimulating glucose uptake to maintain energy balance. Our previous study showed that high uric acid (HUA) induced insulin resistance in skeletal muscle tissue. However, the mechanism of metformin ameliorating UA-induced insulin resistance in muscle cells is unknown and we aimed to determine it. In this study, differentiated C2C12 cells were exposed to UA (15 mg/dl), then reactive oxygen species (ROS) was detected with DCFH-DA and glucose uptake with 2-NBDG. The levels of phospho-insulin receptor substrate 1 (IRS1; Ser307), phospho-AKT (Ser473) and membrane GLUT4 were examined by western blot analysis. The impact of metformin on UA-induced insulin resistance was monitored by adding Compound C, an AMPK inhibitor, and LY294002, a PI3K/AKT inhibitor. Our data indicate that UA can increase ROS production, inhibit IRS1-AKT signaling and insulin-stimulated glucose uptake, and induce insulin resistance in C2C12 cells. Metformin can reverse this process by increasing intracellular glucose uptake and ameliorating UA-induced insulin resistance. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  7. Insulin glulisine in the management of diabetes

    PubMed Central

    Yamada, Satoru

    2009-01-01

    Insulin glulisine is appealing in principle, but the advantages of this drug over the other rapid-acting insulin analogs are still relatively unknown. The frequency of hypoglycemia, convenience in the timing of administration, and improvements in terms of HbA1c seem similar among the rapid-acting insulin analogs, including insulin glulisine. Only properly randomized long-term clinical studies with insulin glulisine will reveal the true value of this novel insulin analog. PMID:21437124

  8. Adipose extracellular matrix remodelling in obesity and insulin resistance☆

    PubMed Central

    Lin, De; Chun, Tae-Hwa; Kang, Li

    2016-01-01

    The extracellular matrix (ECM) of adipose tissues undergoes constant remodelling to allow adipocytes and their precursor cells to change cell shape and function in adaptation to nutritional cues. Abnormal accumulation of ECM components and their modifiers in adipose tissues has been recently demonstrated to cause obesity-associated insulin resistance, a hallmark of type 2 diabetes. Integrins and other ECM receptors (e.g. CD44) that are expressed in adipose tissues have been shown to regulate insulin sensitivity. It is well understood that a hypoxic response is observed in adipose tissue expansion during obesity progression and that hypoxic response accelerates fibrosis and inflammation in white adipose tissues. The expansion of adipose tissues should require angiogenesis; however, the excess deposition of ECM limits the angiogenic response of white adipose tissues in obesity. While recent studies have focused on the metabolic consequences and the mechanisms of adipose tissue expansion and remodelling, little attention has been paid to the role played by the interaction between peri-adipocyte ECM and their cognate cell surface receptors. This review will address what is currently known about the roles played by adipose ECM, their modifiers, and ECM receptors in obesity and insulin resistance. Understanding how excess ECM deposition in the adipose tissue deteriorates insulin sensitivity would provide us hints to develop a new therapeutic strategy for the treatment of insulin resistance and type 2 diabetes. PMID:27179976

  9. Comparative Effectiveness of Insulin versus Combination Sulfonylurea and Insulin: a Cohort Study of Veterans with Type 2 Diabetes.

    PubMed

    Min, Jea Young; Griffin, Marie R; Hung, Adriana M; Grijalva, Carlos G; Greevy, Robert A; Liu, Xulei; Elasy, Tom; Roumie, Christianne L

    2016-06-01

    Type 2 diabetes patients often initiate treatment with a sulfonylurea and subsequently intensify their therapy with insulin. However, information on optimal treatment regimens for these patients is limited. To compare risk of cardiovascular disease (CVD) and hypoglycemia between sulfonylurea initiators who switch to or add insulin. This was a retrospective cohort assembled using national Veterans Health Administration (VHA), Medicare, and National Death Index databases. Veterans who initiated diabetes treatment with a sulfonylurea between 2001 and 2008 and intensified their regimen with insulin were followed through 2011. The association between insulin versus sulfonylurea + insulin and time to CVD or hypoglycemia were evaluated using Cox proportional hazard models in a 1:1 propensity score-matched cohort. CVD included hospitalization for acute myocardial infarction or stroke, or cardiovascular mortality. Hypoglycemia included hospitalizations or emergency visits for hypoglycemia, or outpatient blood glucose measurements <60 mg/dL. Subgroups included age < 65 and ≥ 65 years and estimated glomerular filtration rate ≥ 60 and < 60 ml/min. There were 1646 and 3728 sulfonylurea monotherapy initiators who switched to insulin monotherapy or added insulin, respectively. The 1596 propensity score-matched patients in each group had similar baseline characteristics at insulin initiation. The rate of CVD per 1000 person-years among insulin versus sulfonylurea + insulin users were 49.3 and 56.0, respectively [hazard ratio (HR) 0.85, 95 % confidence interval (CI) 0.64, 1.12]. Rates of first and recurrent hypoglycemia events per 1000 person-years were 74.0 and 100.0 among insulin users compared to 78.9 and 116.8 among sulfonylurea plus insulin users, yielding HR (95 % CI) of 0.94 (0.76, 1.16) and 0.87 (0.69, 1.10), respectively. Subgroup analysis results were consistent with the main findings. Compared to sulfonylurea users who added insulin, those who switched

  10. Long-term exposure to abnormal glucose levels alters drug metabolism pathways and insulin sensitivity in primary human hepatocytes

    NASA Astrophysics Data System (ADS)

    Davidson, Matthew D.; Ballinger, Kimberly R.; Khetani, Salman R.

    2016-06-01

    Hyperglycemia in type 2 diabetes mellitus has been linked to non-alcoholic fatty liver disease, which can progress to inflammation, fibrosis/cirrhosis, and hepatocellular carcinoma. Understanding how chronic hyperglycemia affects primary human hepatocytes (PHHs) can facilitate the development of therapeutics for these diseases. Conversely, elucidating the effects of hypoglycemia on PHHs may provide insights into how the liver adapts to fasting, adverse diabetes drug reactions, and cancer. In contrast to declining PHH monocultures, micropatterned co-cultures (MPCCs) of PHHs and 3T3-J2 murine embryonic fibroblasts maintain insulin-sensitive glucose metabolism for several weeks. Here, we exposed MPCCs to hypo-, normo- and hyperglycemic culture media for ~3 weeks. While albumin and urea secretion were not affected by glucose level, hypoglycemic MPCCs upregulated CYP3A4 enzyme activity as compared to other glycemic states. In contrast, hyperglycemic MPCCs displayed significant hepatic lipid accumulation in the presence of insulin, while also showing decreased sensitivity to insulin-mediated inhibition of glucose output relative to a normoglycemic control. In conclusion, we show for the first time that PHHs exposed to hypo- and hyperglycemia can remain highly functional, but display increased CYP3A4 activity and selective insulin resistance, respectively. In the future, MPCCs under glycemic states can aid in novel drug discovery and mechanistic investigations.

  11. Selective Insulin Resistance in Adipocytes*

    PubMed Central

    Tan, Shi-Xiong; Fisher-Wellman, Kelsey H.; Fazakerley, Daniel J.; Ng, Yvonne; Pant, Himani; Li, Jia; Meoli, Christopher C.; Coster, Adelle C. F.; Stöckli, Jacqueline; James, David E.

    2015-01-01

    Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin. PMID:25720492

  12. A randomised trial of salsalate for insulin resistance and cardiovascular risk factors in persons with abnormal glucose tolerance

    PubMed Central

    Goldfine, A. B.; Conlin, P. R.; Halperin, F.; Koska, J.; Permana, P.; Schwenke, D.; Shoelson, S. E.

    2016-01-01

    Aims/hypothesis Chronic sub-acute inflammation contributes to the pathogenesis of type 2 diabetes mellitus and cardiovascular disease. High doses of salicylate reduce inflammation, glucose and triacylglycerols, and may improve insulin sensitivity, suggesting therapeutic potential in impaired fasting glucose and/or impaired glucose tolerance. This trial aimed to evaluate the effect of salsalate vs placebo on insulin resistance and glycaemia in impaired fasting glucose and/or impaired glucose tolerance. Methods We conducted a 12 week, two-centre, randomised, placebo-controlled study to evaluate the effect of salsalate (up to 4 g/day) vs placebo on systemic glucose disposal. Secondary objectives included treatment effects on glycaemia, inflammation and cardiovascular risk factors. Seventy-eight participants with impaired fasting glucose and/or impaired glucose tolerance from two VA healthcare systems were enrolled. Randomisation assignment was provided by the coordinating center directly to site pharmacists, and participants and research staff were blinded to treatment assignment. Results Seventy-one individuals were randomised to placebo (n = 36) or salsalate (n = 35). Glucose disposal did not change in either group (salsalate 1% [95% CI −39%, 56%]; placebo 6% [95% CI −20%, 61%], p = 0.3 for placebo vs salsalate). Fasting glucose was reduced by 6% during the study by salsalate (p = 0.006) but did not change with placebo. Declines in glucose were accompanied by declines in fasting C-peptide with salsalate. Insulin clearance was reduced with salsalate. In the salsalate group, triacylglycerol levels were lower by 25% (p = 0.01) and adiponectin increased by 53% (p = 0.02) at the end of the study. Blood pressure, endothelial function and other inflammation markers did not differ between groups. Adipose tissue nuclear factor κB (NF-κB) activity declined in the salsalate group compared with placebo (−16% vs 42%, p = 0.005), but was not correlated with metabolic

  13. Mutual relationship between Tau and central insulin signalling: consequences for AD and Tauopathies ?

    PubMed

    Gratuze, Maud; Joly-Amado, Aurélie; Vieau, Didier; Buée, Luc; Blum, David

    2018-02-13


    Alzheimer's disease (AD) is a progressive neurodegenerative disorder mainly characterized by cognitive deficits and neuropathological changes such as Tau lesions and amyloid plaques, but also associated with non-cognitive symptomatology. Metabolic and neuroendocrine abnormalities, such as alterations in body weight, brain insulin impairments and lower brain glucose metabolism, that often precede clinical diagnosis, have been extensively reported in AD patients. However, the origin of these symptoms and their relation to pathology and cognitive impairments remain misunderstood. Insulin is a hormone involved in the control of energy homeostasis both peripherally and centrally, and insulin resistant state has been linked to increased risk of dementia. It is now well established that insulin resistance can exacerbate Tau lesions, mainly by disrupting the balance between Tau kinases and phosphatases. On the other hand, emerging literature indicates that Tau protein can also modulate insulin signalling in the brain, thus creating a detrimental vicious circle. The following review will highlight our current understanding on the role of insulin in the brain and its relation to Tau protein in the context of AD and Tauopathies. Considering that insulin signaling is prone to be pharmacologically targeted at multiple levels, it constitutes an appealing approach to improve both insulin brain sensitivity and mitigate brain pathology with expected positive outcome in term of cognition.
    . ©2018S. Karger AG, Basel.

  14. Switching to insulin glargine 300 U/mL: is duration of prior basal insulin therapy important?

    PubMed

    Bonadonna, Riccardo C; Renard, Eric; Cheng, Alice; Fritsche, Andreas; Cali, Anna; Melas-Melt, Lydie; Umpierrez, Guillermo E

    2018-04-09

    To assess the impact of duration of prior basal insulin therapy on study outcomes in people with type 2 diabetes mellitus receiving insulin glargine 300 U/mL (Gla-300) or insulin glargine 100 U/mL (Gla-100) for 6 months. A post hoc patient-level meta-analysis of data from the EDITION 1 and 2 studies. Outcomes included: HbA 1c , percentage of participants with ≥1 confirmed or severe hypoglycaemic event at night (00:00-05:59 h) or any time (24 h), and body weight change. Data were analysed according to duration of prior basal insulin use: >0-≤2 years, >2-≤5 years, >5 years. This meta-analysis included 1618 participants. HbA 1c change from baseline to month 6 was comparable between Gla-300 and Gla-100 groups, regardless of duration of prior basal insulin therapy. The lower risk with Gla-300 versus Gla-100 of ≥1 confirmed (≤3.9 mmol/L [≤70 mg/dL]) or severe hypoglycaemic event, at night or any time (24 h), was unaffected by duration of prior basal insulin therapy. Similarly, weight change was unaffected by duration of prior basal insulin therapy. Switching to Gla-300 from other basal insulin therapies provided comparable glycaemic control with lower risk of hypoglycaemia versus Gla-100, regardless of duration of prior basal insulin therapy. Copyright © 2018. Published by Elsevier B.V.

  15. Retrospective chart review of children with type 2 diabetes mellitus evaluating the efficacy of metformin vs. insulin vs. combination insulin/metformin.

    PubMed

    Meyer, Stacy L; Hoffman, Robert P

    2011-10-01

    Type 2 diabetes mellitus is a growing problem in pediatrics and there is no consensus on the best treatment. We conducted this chart review on newly diagnosed pediatric patients with type 2 diabetes mellitus to compare the effect of treatment regimen on body mass index (BMI) and hemoglobin A1c over a 6-month period. We conducted a retrospective chart review on patients with type 2 DM who presented to Nationwide Children's Hospital. Data were collected on therapy type, BMI, and hemoglobin A1c over a 6-month follow-up. Therapy type was divided into metformin, insulin, or combination insulin and metformin. 1,997 charts were reviewed for inclusion based on ICD-9 codes consistent with a diagnosis of diabetes, abnormal oral glucose tolerance test, or insulin resistance. Of the 47 charts eligible for the review, 26 subjects were treated with metformin 1000-1500 mg daily, 14 patients were treated with insulin therapy, and 7 patients were treated with a combination of insulin and metformin therapy. At baseline, the only significant difference among groups was A1c (P = 0.012). In regression analysis with baseline A1c as a covariate, the only predictor of change in A1c over time was the A1c at onset (P < 0.001). Therapy type was not predictive of change (P = 0.905). Regression analysis showed a greater BMI at onset predicted a greater decrease in BMI (P = 0.006), but therapy type did not predict a change (P = 0.517). Metformin may be as effective as insulin or combination therapy for treatment of diabetes from onset to 6-month follow-up.

  16. Half-Unit Insulin Pens: Disease Management in Patients With Diabetes Who Are Sensitive to Insulin.

    PubMed

    Klonoff, David C; Nayberg, Irina; Stauder, Udo; Oualali, Hamid; Domenger, Catherine

    2017-05-01

    Insulin pens represent a significant technological advancement in diabetes management. While the vast majority have been designed with 1U-dosing increments, improved accuracy and precision facilitated by half-unit increments may be particularly significant in specific patients who are sensitive to insulin. These include patients with low insulin requirements and in those requiring more precise dose adjustments, such as the pediatric patient population. This review summarized functional characteristics of insulin half-unit pens (HUPs) and their effect on user experience. The literature search was restricted to articles published in English between January 1, 2000, and January 1, 2015. A total of 17 publications met the set criteria and were included in the review. Overall, studies outlined characteristics for 4 insulin HUPs. Based on their functionality, the pens were generally similar and all met the ISO 11608-1 criteria for accuracy. However, some had specific advantageous features in terms of size, weight, design, dialing torque, and injection force. Although limited, the currently available user preference studies in children and adolescents with diabetes and their carers suggest that the selection of an HUP is likely to be influenced by a combination of factors such as these, in addition to the prescribed insulin and dosing regimen. Insulin HUPs are likely to be a key diabetes management tool for patients who are sensitive to insulin; specific pen features may further advance diabetes management in these populations.

  17. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Mumbai cohort of the A1chieve study.

    PubMed

    Talwalkar, P G; Gupta, Vishal; Kovil, Rajiv

    2013-11-01

    The A1chieve, a multicentric (28 countries), 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726) in routine clinical care across four continents. Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Mumbai, India. A total of 2112 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 1561), insulin detemir (n = 313), insulin aspart (n = 144), basal insulin plus insulin aspart (n = 53) and other insulin combinations (n = 41). At baseline glycaemic control was poor for both insulin naïve (mean HbA1c: 8.7%) and insulin user (mean HbA1c: 9.2%) groups. After 24 weeks of treatment, both the groups showed improvement in HbA1c (insulin naïve: -1.4%, insulin users: -1.8%). SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  18. Role of insulin receptor and insulin signaling on αPS2CβPS integrins' lateral diffusion.

    PubMed

    Mainali, Dipak; Syed, Aleem; Arora, Neha; Smith, Emily A

    2014-12-01

    Integrins are ubiquitous transmembrane receptors with adhesion and signaling properties. The influence of insulin receptor and insulin signaling on αPS2CβPS integrins' lateral diffusion was studied using single particle tracking in S2 cells before and after reducing the insulin receptor expression or insulin stimulation. Insulin signaling was monitored by Western blotting for phospho-Akt expression. The expression of the insulin receptor was reduced using RNA interference (RNAi). After insulin receptor RNAi, four significant changes were measured in integrin diffusion properties: (1) there was a 24% increase in the mobile integrin population, (2) 14% of the increase was represented by integrins with Brownian diffusion, (3) for integrins that reside in confined zones of diffusion, there was a 45% increase in the diameter of the confined zone, and (4) there was a 29% increase in the duration integrins spend in confined zones of diffusion. In contrast to reduced expression of the insulin receptor, which alters integrin diffusion properties, insulin stimulation alone or insulin stimulation under conditions of reduced insulin receptor expression have minimal effects on altering the measured integrin diffusion properties. The differences in integrin diffusion measured after insulin receptor RNAi in the presence or absence of insulin stimulation may be the result of other insulin signaling pathways that are activated at reduced insulin receptor conditions. No change in the average integrin diffusion coefficient was measured for any conditions included in this study.

  19. Intensive insulin therapy improves insulin sensitivity and mitochondrial function in severely burned children.

    PubMed

    Fram, Ricki Y; Cree, Melanie G; Wolfe, Robert R; Mlcak, Ronald P; Qian, Ting; Chinkes, David L; Herndon, David N

    2010-06-01

    To institute intensive insulin therapy protocol in an acute pediatric burn unit and study the mechanisms underlying its benefits. Prospective, randomized study. An acute pediatric burn unit in a tertiary teaching hospital. Children, 4-18 yrs old, with total body surface area burned > or =40% and who arrived within 1 wk after injury were enrolled in the study. Patients were randomized to one of two groups. Intensive insulin therapy maintained blood glucose levels between 80 and 110 mg/dL. Conventional insulin therapy maintained blood glucose < or =215 mg/dL. Twenty patients were included in the data analysis consisting of resting energy expenditure, whole body and liver insulin sensitivity, and skeletal muscle mitochondrial function. Studies were performed at 7 days postburn (pretreatment) and at 21 days postburn (posttreatment). Resting energy expenditure significantly increased posttreatment (1476 +/- 124 to 1925 +/- 291 kcal/m(2) x day; p = .02) in conventional insulin therapy as compared with a decline in intensive insulin therapy. Glucose infusion rate was identical between groups before treatment (6.0 +/- 0.8 conventional insulin therapy vs. 6.8 +/- 0.9 mg/kg x min intensive insulin therapy; p = .5). Intensive insulin therapy displayed a significantly higher glucose clamp infusion rate posttreatment (9.1 +/- 1.3 intensive insulin therapy versus 4.8 +/- 0.6 mg/kg x min conventional insulin therapy, p = .005). Suppression of hepatic glucose release was significantly greater in the intensive insulin therapy after treatment compared with conventional insulin therapy (5.0 +/- 0.9 vs. 2.5 +/- 0.6 mg/kg x min; intensive insulin therapy vs. conventional insulin therapy; p = .03). States 3 and 4 mitochondrial oxidation of palmitate significantly improved in intensive insulin therapy (0.9 +/- 0.1 to 1.7 +/- 0.1 microm O(2)/CS/mg protein/min for state 3, p = .004; and 0.7 +/- 0.1 to 1.3 +/- 0.1 microm O(2)/CS/mg protein/min for state 4, p < .002), whereas conventional

  20. Insulin production rate in normal man as an estimate for calibration of continuous intravenous insulin infusion in insulin-dependent diabetic patients.

    PubMed

    Waldhäusl, W K; Bratusch-Marrain, P R; Francesconi, M; Nowotny, P; Kiss, A

    1982-01-01

    This study examines the feasibility of deriving the 24-h insulin requirement of insulin-dependent diabetic patients who were devoid of any endogenous insulin release (IDD) from the insulin-production rate (IPR) of healthy man (basal, 17 mU/min; stimulated 1.35 U/12.5 g glucose). To this end, continuous intravenous insulin infusion (CIVII) was initiated at a precalculated rate of 41.2 +/- 4.6 (SD) U/24 h in IDD (N - 12). Blood glucose profiles were compared with those obtained during intermittent subcutaneous (s.c.) insulin therapy (IIT) and those of healthy controls (N = 7). Regular insulin (Hoechst CS) was infused with an adapted Mill Hill Infuser at a basal infusion rate of 1.6 U/h (6:00 a.m. to 8:00 p.m.), and of 0.8 U/h from 8:00 p.m. to 6:00 a.m. Preprandial insulin (3.2-6.4 U) was added for breakfast, lunch, and dinner. Daily individual food intake totaled 7688 +/- 784 kJ (1836 +/- 187 kcal)/24 h including 184 +/- 37 g of glucose. Proper control of blood glucose (BG) (mean BG 105 +/- 10 mg/dl; mean amplitude of glycemic excursions 54 +/- 18 mg/dl; and 1 h postprandial BG levels not exceeding 160 mg/dl) and of plasma concentrations of beta-hydroxybutyrate and lactate was maintained by 41.4 +/- 4.4 U insulin/24 h. Although BG values only approximated the upper normal range as seen in healthy controls, they were well within the range reported by others during CIVII. Therefore, we conclude that in adult IDD completely devoid of endogenous insulin (1) the IPR of normal man can be used during CIVII as an estimate for the patient's minimal insulin requirement per 24 h, and (2) this approach allows for a blood glucose profile close to the upper range of a normal control group. Thus, deriving a patient's daily insulin dose from the insulin production rate of healthy man may add an additional experimental protocol which aids in making general calculations of a necessary insulin dose instead of using trial and error or a closed-loop insulin infusion system.

  1. Insulin-Independent GABAA Receptor-Mediated Response in the Barrel Cortex of Mice with Impaired Met Activity.

    PubMed

    Lo, Fu-Sun; Erzurumlu, Reha S; Powell, Elizabeth M

    2016-03-30

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder caused by genetic variants, susceptibility alleles, and environmental perturbations. The autism associated geneMETtyrosine kinase has been implicated in many behavioral domains and endophenotypes of autism, including abnormal neural signaling in human sensory cortex. We investigated somatosensory thalamocortical synaptic communication in mice deficient in Met activity in cortical excitatory neurons to gain insights into aberrant somatosensation characteristic of ASD. The ratio of excitation to inhibition is dramatically increased due to decreased postsynaptic GABAAreceptor-mediated inhibition in the trigeminal thalamocortical pathway of mice lacking active Met in the cerebral cortex. Furthermore, in contrast to wild-type mice, insulin failed to increase GABAAreceptor-mediated response in the barrel cortex of mice with compromised Met signaling. Thus, lacking insulin effects may be a risk factor in ASD pathogenesis. A proposed common cause of neurodevelopmental disorders is an imbalance in excitatory neural transmission, provided by the glutamatergic neurons, and the inhibitory signals from the GABAergic interneurons. Many genes associated with autism spectrum disorders impair synaptic transmission in the expected cell type. Previously, inactivation of the autism-associated Met tyrosine kinase receptor in GABAergic interneurons led to decreased inhibition. In thus report, decreased Met signaling in glutamatergic neurons had no effect on excitation, but decimated inhibition. Further experiments indicate that loss of Met activity downregulates GABAAreceptors on glutamatergic neurons in an insulin independent manner. These data provide a new mechanism for the loss of inhibition and subsequent abnormal excitation/inhibition balance and potential molecular candidates for treatment or prevention. Copyright © 2016 the authors 0270-6474/16/363691-07$15.00/0.

  2. Association of leptin and insulin resistance in PCOS: A case-controlled study.

    PubMed

    Namavar Jahromi, Bahia; Dabaghmanesh, Mohammad Hassan; Parsanezhad, Mohammad Ebrahim; Fatehpoor, Faranak

    2017-07-01

    Endocrine abnormalities related to polycystic ovary Syndrome (PCOS) are important problems. To compare serum leptin levels between infertile women with and without PCOS. To rank sensitivity of six indirect methods for detection of insulin resistance (IR) and to evaluate the association between leptin and IR in PCOS group. This Case-controlled study performed on 189 infertile women referred to Shiraz Mother and Child Hospital during 2012-2015. Ninety-nine PCOS cases according to Rotterdam criteria were compared to 90 cases without PCOS. Serum leptin, body mass index (BMI), several hormones, and their correlation coefficients with leptin were compared. IR in PCOS women was measured by indirect methods, including fasting blood sugar (FBS), fasting insulin (FI), glucose/insulin, homeostatic model assessment of insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI), and MacAuley index. Association between IR and leptin was evaluated. Independent sample t-test and Pearson's test were used. Infertile women with PCOS had higher BMI (26.47±3.62 vs. 24.82±5.18 kg/m 2 ) and serum leptin levels (41.79±187.89 vs. 19.38±12.57 ng/mL). Leptin showed significant association with weight and BMI in both groups (p<0.001) and to age in non-PCOS group. HOMA-IR showed the highest rate of IR followed by FI and QUICKI methods. The mean leptin levels had positive association with IR assessed by HOMA-IR (p<0.001), QUICKI (p<0.001), FI (p=.002), and FBS (p=0.02). BMI and IR have positive association with serum leptin in PCOS infertile women. HOMA-IR followed by FI and QUICKI is the most sensitive test for detection of IR.

  3. Conformational Dynamics of Insulin

    PubMed Central

    Hua, Qing-Xin; Jia, Wenhua; Weiss, Michael A.

    2011-01-01

    We have exploited a prandial insulin analog to elucidate the underlying structure and dynamics of insulin as a monomer in solution. A model was provided by insulin lispro (the active component of Humalog®; Eli Lilly and Co.). Whereas NMR-based modeling recapitulated structural relationships of insulin crystals (T-state protomers), dynamic anomalies were revealed by amide-proton exchange kinetics in D2O. Surprisingly, the majority of hydrogen bonds observed in crystal structures are only transiently maintained in solution, including key T-state-specific inter-chain contacts. Long-lived hydrogen bonds (as defined by global exchange kinetics) exist only at a subset of four α-helical sites (two per chain) flanking an internal disulfide bridge (cystine A20–B19); these sites map within the proposed folding nucleus of proinsulin. The anomalous flexibility of insulin otherwise spans its active surface and may facilitate receptor binding. Because conformational fluctuations promote the degradation of pharmaceutical formulations, we envisage that “dynamic re-engineering” of insulin may enable design of ultra-stable formulations for humanitarian use in the developing world. PMID:22649374

  4. Insulin glargine 300 units/mL: A new basal insulin product for diabetes mellitus.

    PubMed

    Clements, Jennifer N; Bello, Larkin

    2016-03-15

    The pharmacokinetics, efficacy, and safety of U-300 insulin glargine for the management of diabetes are reviewed. U-300 (300 units/mL) insulin glargine is a long-acting basal insulin with low within-day variability, high day-to-day reproducibility, longer duration, and constant pharmacokinetic profile compared with U-100 (100 units/mL) insulin glargine. U-300 was evaluated in six randomized, active-comparator, open-label, Phase III clinical studies (EDITION trials) among patients with type 1 or 2 diabetes. The primary endpoint for all EDITION studies was the reduction in glycosylated hemoglobin from baseline to six months. Safety endpoints included confirmed or nocturnal hypoglycemia between week 9 and month 6 and the change in weight from baseline. For hypoglycemic episodes, U-300 insulin glargine was superior to U-100 insulin glargine when comparing the risk of hypoglycemia. U-300 insulin glargine is supplied in a prefilled device (for safety purposes) and packaged in boxes of three or five pens. It is still early to determine the role of U-300 insulin glargine in diabetes management. When compared with U-100 insulin glargine, U-300 insulin glargine appeared to be associated with a lower risk of hypoglycemia and nocturnal hypoglycemia, most likely due to its pharmacokinetics. The wholesale average cost of U-300 insulin glargine is $335.48 per box of three pens. The efficacy outcomes of U-300 insulin glargine were similar to those of U-100 insulin glargine, but the constant pharmacokinetic profile and longer duration of action of U-300 insulin glargine may help certain patients with type 1 or type 2 diabetes achieve better glycemic control. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  5. Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse

    PubMed Central

    Ning, Jie; Hong, Tao; Yang, Xuefeng; Mei, Shuang; Liu, Zhenqi; Liu, Hui-Yu

    2011-01-01

    The primary player that induces insulin resistance has not been established. Here, we studied whether or not fat can cause insulin resistance in the presence of insulin deficiency. Our results showed that high-fat diet (HFD) induced insulin resistance in C57BL/6 (B6) mice. The HFD-induced insulin resistance was prevented largely by the streptozotocin (STZ)-induced moderate insulin deficiency. The STZ-induced insulin deficiency prevented the HFD-induced ectopic fat accumulation and oxidative stress in liver and gastrocnemius. The STZ-induced insulin deficiency prevented the HFD- or insulin-induced increase in hepatic expression of long-chain acyl-CoA synthetases (ACSL), which are necessary for fatty acid activation. HFD increased mitochondrial contents of long-chain acyl-CoAs, whereas it decreased mitochondrial ADP/ATP ratio, and these HFD-induced changes were prevented by the STZ-induced insulin deficiency. In cultured hepatocytes, we observed that expressions of ACSL1 and -5 were stimulated by insulin signaling. Results in cultured cells also showed that blunting insulin signaling by the PI3K inhibitor LY-294002 prevented fat accumulation, oxidative stress, and insulin resistance induced by the prolonged exposure to either insulin or oleate plus sera that normally contain insulin. Finally, knockdown of the insulin receptor prevented the oxidative stress and insulin resistance induced by the prolonged exposure to insulin or oleate plus sera. Together, our results show that insulin and insulin signaling are required for fat induction of insulin resistance in mice and cultured mouse hepatocytes. PMID:21586696

  6. Variations in the ultrastructure of human nasal cilia including abnormalities found in retinitis pigmentosa.

    PubMed Central

    Fox, B; Bull, T B; Arden, G B

    1980-01-01

    The electron microscopic structure of cilia from the inferior turbinate of the nose was studied in 12 adults, four with chronic sinusitis, one with allergic rhinitis, two with bronchiectasis, three with deviated nasal septum, and two normals. The changes are compared with those found in nasal cilia in 14 patients with retinitis pigmentosa. There were compound cilia in the seven cases with chronic sinusitis, allergic rhinitis, and bronchiectasis but, apart from this, the structure of the cilia was similar in all 12 cases. There were variations in the microtubular pattern in about 4% of cilia, dynein arms were not seen in 4%, and in the rest an average of 5-6 dynein arms were seen in each cilium. The orientation of the cilia was 0 to 90 degrees. In the retinitis pigmentosa patients there was a highly significant increase in cilial abnormalities. The establishment on a quantitative basis of the variations in normal structure of nasal cilila facilitated the recognition of an association between cilial abnormalities and retinitis pigmentosa and should help in the identification of associations that may exist between cilial abnormalities and other diseases. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 7 Fig. 8 PMID:7400333

  7. Different Criteria for the Definition of Insulin Resistance and Its Relation with Dyslipidemia in Overweight and Obese Children and Adolescents

    PubMed Central

    de Mello, Elza Daniel

    2018-01-01

    Purpose to compare cut off points corrected for age and gender (COOP) with fixed cut off points (FCOP) for fasting plasma insulin and Homeostatic model assessment-insulin resistance (HOMA-IR) for the diagnosis of IR in obese children and adolescents and their correlation with dyslipidemia. Methods A multicenter, cross-sectional study including 383 subjects aged 7 to 18 years, evaluating fasting blood glucose, plasma insulin, and lipid profile. Subjects with high insulin levels and/or HOMA-IR were considered as having IR, based on two defining criteria: FCOP or CCOP. The frequency of metabolic abnormalities, the presence of IR, and the presence of dyslipidemia in relation to FCOP or CCOP were analyzed using Fisher and Mann-Whitney exact tests. Results Using HOMA-IR, IR was diagnosed in 155 (40.5%) and 215 (56.1%) patients and, using fasting insulin, 150 (39.2%) and 221 (57.7%), respectively applying FCOP and CCOP. The use of CCOP resulted in lower insulin and HOMA-IR values than FCOP. Dyslipidemia was not related to FCOP or CCOP. Blood glucose remained within normal limits in all patients with IR. There was no difference in the frequency of IR identified by plasma insulin or HOMA-IR, both for FCOP and CCOP. Conclusion The CCOP of plasma insulin or of HOMA-IR detected more cases of IR as compared to the FCOP, but were not associated with the frequency of dyslipidemia. As blood glucose has almost no fluctuation in this age group, even in the presence of IR, fasting plasma insulin detected the same cases of IR that would be detected by HOMA-IR. PMID:29383306

  8. Basal plasma insulin and homeostasis model assessment (HOMA) are indicators of insulin sensitivity in cats.

    PubMed

    Appleton, D J; Rand, J S; Sunvold, G D

    2005-06-01

    The objective of this study was to compare simpler indices of insulin sensitivity with the minimal model-derived insulin sensitivity index to identify a simple and reliable alternative method for assessing insulin sensitivity in cats. In addition, we aimed to determine whether this simpler measure or measures showed consistency of association across differing body weights and glucose tolerance levels. Data from glucose tolerance and insulin sensitivity tests performed in 32 cats with varying body weights (underweight to obese), including seven cats with impaired glucose tolerance, were used to assess the relationship between Bergman's minimal model-derived insulin sensitivity index (S(I)), and various simpler measures of insulin sensitivity. The most useful overall predictors of insulin sensitivity were basal plasma insulin concentrations and the homeostasis model assessment (HOMA), which is the product of basal glucose and insulin concentrations divided by 22.5. It is concluded that measurement of plasma insulin concentrations in cats with food withheld for 24 h, in conjunction with HOMA, could be used in clinical research projects and by practicing veterinarians to screen for reduced insulin sensitivity in cats. Such cats may be at increased risk of developing impaired glucose tolerance and type 2 diabetes mellitus. Early detection of these cats would enable preventative intervention programs such as weight reduction, increased physical activity and dietary modifications to be instigated.

  9. Evaluation of two new surrogate indices including parameters not using insulin to assess insulin sensitivity/resistance in non-diabetic postmenopausal women: a MONET group study.

    PubMed

    Bastard, J-P; Lavoie, M-E; Messier, V; Prud'homme, D; Rabasa-Lhoret, R

    2012-06-01

    The study evaluated and compared, with other surrogate indices of insulin sensitivity/resistance (IS/R), the relevance of the TyG index, a product of fasting glucose and triglyceride (TG) levels, and the EGIR index, which includes TG, high-density lipoprotein cholesterol (HDL-c) and waist circumference in its formula to estimate IS/R, in non-diabetic postmenopausal women. A secondary analysis was performed using the baseline data for 163 non-diabetic postmenopausal women from the Montreal-Ottawa New Emerging Team (MONET) population database. The subjects participated in hyperinsulinaemic-euglycaemic (HIEG) clamp and oral glucose tolerance (OGTT) tests. Correlations and comparisons between surrogate indices were performed in addition to inter-rater agreement tests. The optimal value of surrogate indices for diagnosis of IS/R was established on a receiver operating characteristic (ROC) scatter plot. A significant correlation was found between the HIEG clamp and all IS/R surrogate indices tested [r=-0.370 (TyG index) to 0.608 (SIisOGTT index); P<0.001]. On ROC curve analysis, a higher AUROC was found for SIisOGTT (0.791) than for TyG and EGIR (0.706 and 0.675, respectively; P=0.07 and P<0.05, respectively). The TyG and EGIR IS/R indices were only relatively modestly related to the HIEG clamp. In contrast, both fasting- and OGTT-derived IS/R surrogate indices, which include insulin values in their formulae, appeared to be more accurate in estimating IS/R in our study population. Thus, the TyG and EGIR IS/R indices need to be tested and validated more extensively in different populations before being put to large-scale clinical use. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  10. [Mechanism of action of insulin sensitizer agents in the treatment of polycystic ovarian syndrome].

    PubMed

    Galindo García, Carlos G; Vega Arias, Maria de Jesús; Hernández Marín, Imelda; Ayala, Aquiles R

    2007-03-01

    Polycystic ovarian disease (PCOD) is the most important endocrine abnormality that affects women in reproductive age. It is characterized by chronic anovulation and hyperandrogenemia probably secondary to insulin resistance. Hence insulin sensitizers agents had been used in PCOD. Metformin is a biguanide used in the treatment of PCOD via decrease of hepatic gluconeogenesis and insulinemia; improvement peripheral glucose utilization, oxidative glucose metabolism, nonoxidative glucose metabolism and intracellular glucose transport. Such effects, when this drug is administered alone during 3 to 6 months, increase sex hormone binding globulin (SHBG), reduce free androgens index and hirsutism, decrease insulin resistance, and regulate menses in 60 to 70% of cases. Thiazolidinodiones are drugs that decrease insulin resistance in the liver with hepatic glucose production. Their mechanism of action is through the peroxisome proliferator-activated receptors gamma (PPAR-gamma), that help to decrease plasmatic concentrations of free fatty acids, pre and postprandial glucose, insulin, triglycerides, increased HDL cholesterol and decreased LDL, menses return to normality, with improvement of ovulation and decreased hirsutism. It seems that by modulation and attenuation of insulin resistance, hypoglucemic agents such as metfomin and thiazolidinodiones can be used effectively to treat anovulation, infertility and hyperandrogenemia.

  11. Familial juvenile autoimmune hypothyroidism, pituitary enlargement, obesity, and insulin resistance.

    PubMed

    Reutrakul, Sirimon; Hathout, Eba H; Janner, Donald; Hara, Manami; Donfack, Joseph; Bass, Joseph; Refetoff, Samuel

    2004-04-01

    The proband, a 9-year-old Hispanic female, presented with hair loss, strabismus, and weight gain. On magnetic resonance imaging (MRI) she was found to have severe primary hypothyroidism and a large pituitary mass. In addition, acanthosis nigricans, obesity, and hyperinsulinism were observed. Findings were similar in three of four siblings. Thyroid peroxidase antibodies were detected in the father and three of four siblings. Although all family members were obese, and hyperinsulinemia with high proinsulin and C-peptide was found in all except one sibling, only the mother and one child had overt type 2 diabetes mellitus. Because of the unusual association of autoimmune thyroid disease, insulin resistance and obesity rather than insulin deficiency, we searched for possible genetic abnormalities. The HLA haplotypes did not cosegregate with autoimmune thyroid disease or insulin resistance. Mutational analysis of known obesity genes was done. Leptin was not deficient, and sequencing of the proband's DNA showed no mutations in the perixisome proliferator activated receptor (PPAR)-gamma, PPAR-gamma(2), PPAR-alpha or melanocortin 4 receptor genes. Maternally inherited diabetes and deafness was ruled out since no mutations were found in mitochondria DNA. Insulin receptor antibodies were not detected. In conclusion, the remarkably high incidence of childhood autoimmune hypothyroidism, pituitary enlargement, insulin resistance and obesity in this family is not linked to known HLA types or known gene defects.

  12. Should insulin resistance be screened in lean hirsute women?

    PubMed

    Arduc, Ayse; Sarıcam, Orkun; Dogan, Bercem Aycicek; Tuna, Mazhar Muslum; Tutuncu, Yasemin Ates; Isik, Serhat; Berker, Dilek; Sennaroglu, Engin; Guler, Serdar

    2015-04-01

    The role of insulin resistance (IR) is well-documented in obese women with polycystic ovary syndrome (PCOS). Controversies exist concerning the presence of IR in idiopathic hirsutism (IH) or if it is a manifestation of high body mass index (BMI). We aimed to investigate the presence/absence of IR in lean hirsute women. One-hundred fifty-one lean women with hirsutism [96 PCOS (group 1) and 55 IH (group 2)] and 58 age-and BMI-matched healthy controls (group 3) were recruited in the study (mean age 25.21 ± 6.1 versus 26.26 ± 4.6years; BMI 21.79 ± 1.7 versus 22.02 ± 2.2 kg/m(2), respectively). Significantly higher insulin and HOMA-IR, and significantly lower fasting glucose insulin ratio (FGIR), quantitative insulin sensitivity check index (QUICKI), reciprocal insulin, and Raynaud index were detected in groups 1 and 2 than in group 3 (p < 0.05). These IR indices were similar between groups 1 and 2. The number of patients with IR (HOMA-IR > 2, FGIR < 7.2, or QUICKI < 0.357) was significantly higher in groups 1 and 2 than in group 3, but was similar between groups 1 and 2. A higher frequency of IR occurs in lean hirsute women regardless of they having PCOS or IH. IR may contribute to aetiopathogenesis of IH, or may cause some metabolic abnormalities in these patients.

  13. Human primary myoblast cell cultures from non-diabetic insulin resistant subjects retain defects in insulin action.

    PubMed Central

    Thompson, D B; Pratley, R; Ossowski, V

    1996-01-01

    Insulin resistance is a predictor of the development of noninsulin-dependent diabetes mellitus (NIDDM) in humans. It is unclear whether insulin resistance is a primary defect leading to NIDDM or the result of hyperinsulinemia and hyperglycemia. To determine if insulin resistance is the result of extrinsic factors such as hyperinsulinemia primary skeletal muscle cell cultures were established from muscle biopsies from Pima Indians with differing in vivo insulin sensitivities. These cell cultures expressed a variety of muscle-specific phenotypes including the proteins alpha-actinin and myosin, muscle-specific creatine kinase activity, and RNA encoding GLUT4, MYF5, MYOD1, and MYOGENIN. Labeled glucose was used to measure the insulin-stimulated conversion of glucose to glycogen in these cultures. The in vivo rates of insulin-stimulated glycogen production (insulin resistance) were correlated with in vitro measures of glycogen production (P = 0.007, r = 0.58). This defect in insulin action is stable in a uniform culture environment and is retained over time. The retention of insulin resistance in myoblast derived cell cultures is consistent with the expression of an underlying biochemical defect in insulin resistant skeletal muscle. PMID:8941652

  14. Association of Dyslipidemia and Glucose Abnormalities with Antiretroviral Treatment in a Cohort of HIV-infected Latin American Children

    PubMed Central

    Paganella, MP; Cohen, RA; Harris, DR; Kuchenbecker, RS; Sperhacke, RD; Kato, SK; Silva, CLO; Sturzbecher, FT; Oliveira, RHS; Pavía Ruz, N; Hazra, R

    2016-01-01

    Objective(s) To estimate the incidence of lipid and glucose abnormalities and assess their association with exposure to antiretroviral (ARV) regimens among perinatally HIV-infected Latin American children. Design Longitudinal cohort study. Methods Data were analyzed from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) International Site Development Initiative (NISDI) Pediatric Latin American Countries Epidemiologic Study (PLACES). The incidence of dyslipidemia (total cholesterol>200mg/dL, HDL<35mg/dL, LDL≥130mg/dL, triglycerides>110mg/dL [age<10 years] or >150mg/dL [≥10 years]) and fasting glucose abnormalities (homeostasis model assessment of insulin resistance >2.5 [Tanner Stage 1] or >4.0 [Tanner Stage>1]; impaired glucose: 110 to <126mg/dL; diabetes: ≥126 mg/dL) was estimated. Proportional hazards regression was used to evaluate the risk of abnormalities associated with ARV regimen, adjusted for covariates. Results There were 385 children eligible for analysis (mean age 6.6 years). Incident cholesterol abnormalities were reported in 18.1% of participants (95% confidence interval [CI] 14.1–22.8%), HDL and LDL cholesterol abnormalities in 19.6% (15.1–24.7%) and 15.0% (11.3–19.5%), respectively, and triglyceride abnormalities in 44.2% (37.7–50.8%). In multivariable analysis, ARV regimen was only associated with triglyceride abnormalities; participants receiving a protease inhibitor-containing (PI) regimen were 3.6 times as likely to experience a triglyceride abnormality as those receiving no ARVs (95% CI: 1.3–10.5; p=0.0167). The cumulative incidence of insulin resistance was 3.8% (1.8–7.1%); there were no incident cases of diabetes and only two of impaired fasting glucose. Conclusions Children receiving PI-containing regimens were at increased risk of developing triglyceride abnormalities. Continued monitoring of lipid levels in children receiving PI-containing regimens appears warranted. PMID:27570910

  15. Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity.

    PubMed

    Yamamoto, Soh; Kuramoto, Kenta; Wang, Nan; Situ, Xiaolei; Priyadarshini, Medha; Zhang, Weiran; Cordoba-Chacon, Jose; Layden, Brian T; He, Congcong

    2018-06-12

    Autophagy, a stress-induced lysosomal degradative pathway, has been assumed to exert similar metabolic effects in different organs. Here, we establish a model where autophagy plays different roles in insulin-producing β cells versus insulin-responsive cells, utilizing knockin (Becn1 F121A ) mice manifesting constitutively active autophagy. With a high-fat-diet challenge, the autophagy-hyperactive mice unexpectedly show impaired glucose tolerance, but improved insulin sensitivity, compared to mice with normal autophagy. Autophagy hyperactivation enhances insulin signaling, via suppressing ER stress in insulin-responsive cells, but decreases insulin secretion by selectively sequestrating and degrading insulin granule vesicles in β cells, a process we term "vesicophagy." The reduction in insulin storage, insulin secretion, and glucose tolerance is reversed by transient treatment of autophagy inhibitors. Thus, β cells and insulin-responsive tissues require different autophagy levels for optimal function. To improve insulin sensitivity without hampering secretion, acute or intermittent, rather than chronic, activation of autophagy should be considered in diabetic therapy development. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Acid-base and hormonal abnormalities in dogs with naturally occurring diabetes mellitus.

    PubMed

    Durocher, Lawren L; Hinchcliff, Kenneth W; DiBartola, Stephen P; Johnson, Susan E

    2008-05-01

    To examine acid-base and hormonal abnormalities in dogs with diabetes mellitus. Cross-sectional study. 48 dogs with diabetes mellitus and 17 healthy dogs. Blood was collected and serum ketone, glucose, lactate, electrolytes, insulin, glucagon, cortisol, epinephrine, norepinephrine, nonesterified fatty acid, and triglyceride concentrations were measured. Indicators of acid-base status were calculated and compared between groups. Serum ketone and glucose concentrations were significantly higher in diabetic than in healthy dogs, but there was no difference in venous blood pH or base excess between groups. Anion gap and strong ion difference were significantly higher and strong ion gap and serum bicarbonate concentration were significantly lower in the diabetic dogs. There were significant linear relationships between measures of acid-base status and serum ketone concentration, but not between measures of acid-base status and serum lactate concentration. Serum insulin concentration did not differ significantly between groups, but diabetic dogs had a wider range of values. All diabetic dogs with a serum ketone concentration > 1,000 micromol/L had a serum insulin concentration < 5 microU/mL. There were strong relationships between serum ketone concentration and serum glucagon-insulin ratio, serum cortisol concentration, and plasma norepinephrine concentration. Serum beta-hydroxybutyrate concentration, expressed as a percentage of serum ketone concentration, decreased as serum ketone concentration increased. Results suggested that ketosis in diabetic dogs was related to the glucagon-insulin ratio with only low concentrations of insulin required to prevent ketosis. Acidosis in ketotic dogs was attributable largely to high serum ketone concentrations.

  17. Routine OGTT: a robust model including incretin effect for precise identification of insulin sensitivity and secretion in a single individual.

    PubMed

    De Gaetano, Andrea; Panunzi, Simona; Matone, Alice; Samson, Adeline; Vrbikova, Jana; Bendlova, Bela; Pacini, Giovanni

    2013-01-01

    In order to provide a method for precise identification of insulin sensitivity from clinical Oral Glucose Tolerance Test (OGTT) observations, a relatively simple mathematical model (Simple Interdependent glucose/insulin MOdel SIMO) for the OGTT, which coherently incorporates commonly accepted physiological assumptions (incretin effect and saturating glucose-driven insulin secretion) has been developed. OGTT data from 78 patients in five different glucose tolerance groups were analyzed: normal glucose tolerance (NGT), impaired glucose tolerance (IGT), impaired fasting glucose (IFG), IFG+IGT, and Type 2 Diabetes Mellitus (T2DM). A comparison with the 2011 Salinari (COntinuos GI tract MOdel, COMO) and the 2002 Dalla Man (Dalla Man MOdel, DMMO) models was made with particular attention to insulin sensitivity indices ISCOMO, ISDMMO and kxgi (the insulin sensitivity index for SIMO). ANOVA on kxgi values across groups resulted significant overall (P<0.001), and post-hoc comparisons highlighted the presence of three different groups: NGT (8.62×10(-5)±9.36×10(-5) min(-1)pM(-1)), IFG (5.30×10(-5)±5.18×10(-5)) and combined IGT, IFG+IGT and T2DM (2.09×10(-5)±1.95×10(-5), 2.38×10(-5)±2.28×10(-5) and 2.38×10(-5)±2.09×10(-5) respectively). No significance was obtained when comparing ISCOMO or ISDMMO across groups. Moreover, kxgi presented the lowest sample average coefficient of variation over the five groups (25.43%), with average CVs for ISCOMO and ISDMMO of 70.32% and 57.75% respectively; kxgi also presented the strongest correlations with all considered empirical measures of insulin sensitivity. While COMO and DMMO appear over-parameterized for fitting single-subject clinical OGTT data, SIMO provides a robust, precise, physiologically plausible estimate of insulin sensitivity, with which habitual empirical insulin sensitivity indices correlate well. The kxgi index, reflecting insulin secretion dependency on glycemia, also significantly differentiates clinically

  18. Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis

    PubMed Central

    Garin, Intza; Edghill, Emma L.; Akerman, Ildem; Rubio-Cabezas, Oscar; Rica, Itxaso; Locke, Jonathan M.; Maestro, Miguel Angel; Alshaikh, Adnan; Bundak, Ruveyde; del Castillo, Gabriel; Deeb, Asma; Deiss, Dorothee; Fernandez, Juan M.; Godbole, Koumudi; Hussain, Khalid; O’Connell, Michele; Klupa, Thomasz; Kolouskova, Stanislava; Mohsin, Fauzia; Perlman, Kusiel; Sumnik, Zdenek; Rial, Jose M.; Ugarte, Estibaliz; Vasanthi, Thiruvengadam; Johnstone, Karen; Flanagan, Sarah E.; Martínez, Rosa; Castaño, Carlos; Patch, Ann-Marie; Fernández-Rebollo, Eduardo; Raile, Klemens; Morgan, Noel; Harries, Lorna W.; Castaño, Luis; Ellard, Sian; Ferrer, Jorge; de Nanclares, Guiomar Perez; Hattersley, Andrew T.

    2010-01-01

    Heterozygous coding mutations in the INS gene that encodes preproinsulin were recently shown to be an important cause of permanent neonatal diabetes. These dominantly acting mutations prevent normal folding of proinsulin, which leads to beta-cell death through endoplasmic reticulum stress and apoptosis. We now report 10 different recessive INS mutations in 15 probands with neonatal diabetes. Functional studies showed that recessive mutations resulted in diabetes because of decreased insulin biosynthesis through distinct mechanisms, including gene deletion, lack of the translation initiation signal, and altered mRNA stability because of the disruption of a polyadenylation signal. A subset of recessive mutations caused abnormal INS transcription, including the deletion of the C1 and E1 cis regulatory elements, or three different single base-pair substitutions in a CC dinucleotide sequence located between E1 and A1 elements. In keeping with an earlier and more severe beta-cell defect, patients with recessive INS mutations had a lower birth weight (−3.2 SD score vs. −2.0 SD score) and were diagnosed earlier (median 1 week vs. 10 weeks) compared to those with dominant INS mutations. Mutations in the insulin gene can therefore result in neonatal diabetes as a result of two contrasting pathogenic mechanisms. Moreover, the recessively inherited mutations provide a genetic demonstration of the essential role of multiple sequence elements that regulate the biosynthesis of insulin in man. PMID:20133622

  19. Chromium picolinate for insulin resistance in subjects with HIV disease: a pilot study.

    PubMed

    Feiner, J J; McNurlan, M A; Ferris, R E; Mynarcik, D C; Gelato, M C

    2008-02-01

    Multidrug regimens in HIV disease are associated with an increased incidence of insulin resistance, by as much as 50%. Not only does insulin resistance predisposes subjects to diabetes but also it is associated with the metabolic syndrome and increased risk of cardiovascular disease. Previous studies suggest that chromium picolinate can improve insulin resistance in patients with type 2 diabetes. The objective was to study the efficacy and safety of chromium picolinate as a treatment of insulin resistance in subjects infected with HIV. The ability of chromium picolinate (1000 mug/day) to improve insulin sensitivity, determined with a hyperinsulinaemic-euglycaemic insulin clamp, was determined in eight HIV-positive subjects on highly active antiretroviral therapy. The mean rate of glucose disposal during the clamp was 4.41 mg glucose/kg lean body mass (LBM)/min (range 2.67-5.50), which increased to 6.51 mg/kg LBM/min (range 3.19-12.78, p = .03), an increase of 25% after 8 weeks of treatment with chromium picolinate. There were no significant changes in blood parameters, HIV viral burden or CD4+ lymphocytes with chromium picolinate treatment. Two subjects experienced abnormalities of liver function during the study. Another subject experienced an elevation in blood urea nitrogen. The study shows that chromium picolinate therapy improves insulin resistance in some HIV-positive subjects, but with some concerns about safety in this population.

  20. Estrogen Treatment After Ovariectomy Protects Against Fatty Liver and May Improve Pathway-Selective Insulin Resistance

    PubMed Central

    Zhu, Lin; Brown, William C.; Cai, Qing; Krust, Andrée; Chambon, Pierre; McGuinness, Owen P.; Stafford, John M.

    2013-01-01

    Pathway-selective insulin resistance where insulin fails to suppress hepatic glucose production but promotes liver fat storage may underlie glucose and lipid abnormalities after menopause. We tested the mechanisms by which estrogen treatment may alter the impact of a high-fat diet (HFD) when given at the time of ovariectomy (OVX) in mice. Female C57BL/6J mice underwent sham operation, OVX, or OVX with estradiol (E2) treatment and were fed an HFD. Hyperinsulinemic-euglycemic clamps were used to assess insulin sensitivity, tracer incorporation into hepatic lipids, and liver triglyceride export. OVX mice had increased adiposity that was prevented with E2 at the time of OVX. E2 treatment increased insulin sensitivity with OVX and HFD. In sham and OVX mice, HFD feeding induced fatty liver, and insulin reduced hepatic apoB100 and liver triglyceride export. E2 treatment reduced liver lipid deposition and prevented the decrease in liver triglyceride export during hyperinsulinemia. In mice lacking the liver estrogen receptor α, E2 after OVX limited adiposity but failed to improve insulin sensitivity, to limit liver lipid deposition, and to prevent insulin suppression of liver triglyceride export. In conclusion, estrogen treatment may reverse aspects of pathway-selective insulin resistance by promoting insulin action on glucose metabolism but limiting hepatic lipid deposition. PMID:22966069

  1. FoxO6 Integrates Insulin Signaling With Gluconeogenesis in the Liver

    PubMed Central

    Kim, Dae Hyun; Perdomo, German; Zhang, Ting; Slusher, Sandra; Lee, Sojin; Phillips, Brett E.; Fan, Yong; Giannoukakis, Nick; Gramignoli, Roberto; Strom, Stephen; Ringquist, Steven; Dong, H. Henry

    2011-01-01

    OBJECTIVE Excessive endogenous glucose production contributes to fasting hyperglycemia in diabetes. This effect stems from inept insulin suppression of hepatic gluconeogenesis. To understand the underlying mechanisms, we studied the ability of forkhead box O6 (FoxO6) to mediate insulin action on hepatic gluconeogenesis and its contribution to glucose metabolism. RESEARCH DESIGN AND METHODS We characterized FoxO6 in glucose metabolism in cultured hepatocytes and in rodent models of dietary obesity, insulin resistance, or insulin-deficient diabetes. We determined the effect of FoxO6 on hepatic gluconeogenesis in genetically modified mice with FoxO6 gain- versus loss-of-function and in diabetic db/db mice with selective FoxO6 ablation in the liver. RESULTS FoxO6 integrates insulin signaling to hepatic gluconeogenesis. In mice, elevated FoxO6 activity in the liver augments gluconeogenesis, raising fasting blood glucose levels, and hepatic FoxO6 depletion suppresses gluconeogenesis, resulting in fasting hypoglycemia. FoxO6 stimulates gluconeogenesis, which is counteracted by insulin. Insulin inhibits FoxO6 activity via a distinct mechanism by inducing its phosphorylation and disabling its transcriptional activity, without altering its subcellular distribution in hepatocytes. FoxO6 becomes deregulated in the insulin-resistant liver, accounting for its unbridled activity in promoting gluconeogenesis and correlating with the pathogenesis of fasting hyperglycemia in diabetes. These metabolic abnormalities, along with fasting hyperglycemia, are reversible by selective inhibition of hepatic FoxO6 activity in diabetic mice. CONCLUSIONS Our data uncover a FoxO6-dependent pathway by which the liver orchestrates insulin regulation of gluconeogenesis, providing the proof-of-concept that selective FoxO6 inhibition is beneficial for curbing excessive hepatic glucose production and improving glycemic control in diabetes. PMID:21940782

  2. Insulin Rescues Impaired Spermatogenesis via the Hypothalamic-Pituitary-Gonadal Axis in Akita Diabetic Mice and Restores Male Fertility

    PubMed Central

    Schoeller, Erica L.; Albanna, Gabriella; Frolova, Antonina I.; Moley, Kelle H.

    2012-01-01

    The mechanism responsible for poor reproductive outcomes in type 1 diabetic males is not well understood. In light of new evidence that the Sertoli cells of the testis secrete insulin, it is currently unclear whether diabetic subfertility is the result of deficiency of pancreatic insulin, testicular insulin, or both. In this study, the Akita mouse diabetic model, which expresses a mutant, nonfunctional form of ins2 in testes and pancreas, was used to distinguish between systemic and local effects of insulin deficiency on the process of spermatogenesis and fertility. We determined that Akita homozygous male mice are infertile and have reduced testis size and abnormal morphology. Spermatogonial germ cells are still present but are unable to mature into spermatocytes and spermatids. Exogenous insulin treatment regenerates testes and restores fertility, but this plasma insulin cannot pass through the blood-testis barrier. We conclude that insulin does not rescue fertility through direct interaction with the testis; instead, it restores function of the hypothalamic-pituitary-gonadal axis and, thus, normalizes hormone levels of luteinizing hormone and testosterone. Although we show that the Sertoli cells of the testis secrete insulin protein, this insulin does not appear to be critical for fertility. PMID:22522616

  3. Insulin Secretagogues

    MedlinePlus

    ... the Spikes Is mealtime insulin right for you? Insulin Secretagogues September 2017 Download PDFs English Espanol Editors ... Additional Resources Affordable Insulin Project FDA What are insulin secretagogues? Insulin secretagogues are one type of medicine ...

  4. Impaired Insulin Suppression of VLDL-Triglyceride Kinetics in Nonalcoholic Fatty Liver Disease.

    PubMed

    Poulsen, Marianne K; Nellemann, Birgitte; Stødkilde-Jørgensen, Hans; Pedersen, Steen B; Grønbæk, Henning; Nielsen, Søren

    2016-04-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with glucose and lipid metabolic abnormalities. However, insulin suppression of very low-density lipoprotein-triglyceride (VLDL-TG) kinetics is not fully understood. The objective of the study was to determine VLDL-TG, glucose, and palmitate kinetics during fasting and hyperinsulinemia in men with (NAFLD+) and without NAFLD (NAFLD−). Twenty-seven nondiabetic, upper-body obese (waist to hip ratio > 0.9, body mass index > 28 kg/m2) men, 18 NAFLD+, and nine NAFLD− determined by magnetic resonance spectroscopy were enrolled.14C-labeled VLDL-TG and 3H-labeled glucose and palmitate tracers were applied in combination with indirect calorimetry and breath samples to assess kinetics and substrate oxidations postabsorptively and during a hyperinsulinemic-euglycemic clamp. Dual-X-ray absorptiometry and magnetic resonance imaging assessed body composition. Liver fat content was greater in NAFLD+ than NAFLD− men (21.0% vs 3.7%), even though body composition, metabolites (except triglycerides), and insulin were similar in the groups. Insulin suppression of VLDL-TG secretion (P = .0001), oxidation (P = .0003), and concentration (P= .008) as well as percentage decreases were lower in NAFLD+ than NAFLD− men (secretion: 31.9% ± 17.2% vs 64.7% ± 19.9%; oxidation: −9.0% ± 24.7% vs 46.5% ± 36.6%; concentration: 11.9% ± 20.7% vs 56.2% ± 22.9%, all P < .001). Likewise, lower insulin suppression of very low-density lipoprotein particle size was present in NAFLD+ than NAFLD− men (P = .0002). Conversely, insulin suppression of endogenous glucose production was similar in the groups. Compared with endogenous glucose production, the inability of NAFLD+ men to suppress VLDL-TG kinetics to compensate for the increased liver fat content seems to be an early pathophysiological manifestation of male NAFLD+. These data suggest therapeutic targets reducing liver fat content may ameliorate metabolic abnormalities associated with

  5. Fluorescence immunophenotyping and interphase cytogenetics (FICTION) detects BCL6 abnormalities, including gene amplification, in most cases of nodular lymphocyte-predominant Hodgkin lymphoma.

    PubMed

    Bakhirev, Alexei G; Vasef, Mohammad A; Zhang, Qian-Yun; Reichard, Kaaren K; Czuchlewski, David R

    2014-04-01

    BCL6 translocations are a frequent finding in B-cell lymphomas of diverse subtypes, including some cases of nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL). However, reliable analysis of BCL6 rearrangements using fluorescence in situ hybridization is difficult in NLPHL because of the relative paucity of neoplastic cells. Combined immunofluorescence microscopy and fluorescence in situ hybridization, or fluorescence immunophenotyping and interphase cytogenetics as a tool for the investigation of neoplasms (FICTION), permits targeted analysis of neoplastic cells. To better define the spectrum of BCL6 abnormalities in NLPHL using FICTION analysis. We performed an optimized FICTION analysis of 24 lymph nodes, including 11 NLPHL, 5 follicular hyperplasia with prominent progressive transformation of germinal centers, and 8 follicular hyperplasia without progressive transformation of germinal centers. BCL6 rearrangement was identified in 5 of 11 cases of NLPHL (46%). In addition, BCL6 gene amplification, with large clusters of BCL6 signals in the absence of chromosome 3 aneuploidy, was detected in 3 of 11 cases of NLPHL (27%). One NLPHL showed extra copies of BCL6 present in conjunction with multiple copies of chromosome 3. Altogether, we detected BCL6 abnormalities in 9 of 11 cases of NLPHL (82%). None of the progressive transformation of germinal centers or follicular hyperplasia cases showed BCL6 abnormalities by FICTION. To our knowledge, this is the first report of BCL6 gene amplification in NLPHL. Our optimized protocol for FICTION permits detection of cytogenetic abnormalities in most NLPHL cases and may represent a useful ancillary diagnostic technique.

  6. Sex differences in the metabolic dysfunction and insulin resistance of skeletal muscle glucose transport following high fructose ingestion.

    PubMed

    Rattanavichit, Yupaporn; Chukijrungroat, Natsasi; Saengsirisuwan, Vitoon

    2016-12-01

    The role of high fructose ingestion (HFI) in the development of conditions mimicking human metabolic syndrome has mostly been demonstrated in male animals; however, the extent of HFI-induced metabolic alterations in females remains unclear. The present study investigated whether HFI-induced metabolic perturbations differ between sexes and whether HFI aggravates the metabolic disturbances under ovarian hormone deprivation. Male, female, and ovariectomized (OVX) Sprague-Dawley rats were given either water or liquid fructose (10% wt/vol) for 6 wk. Blood pressure, glucose tolerance, insulin-stimulated glucose transport activity and signaling proteins, including insulin receptor (IR), insulin receptor substrate 1 (IRS-1), Akt, Akt substrate of 160 kDa (AS160), AMPKα, JNK, p38 MAPK, angiotensin-converting enzyme (ACE), ANG II type 1 receptor (AT 1 R), ACE2, and Mas receptor (MasR) in skeletal muscle, were evaluated. We found that HFI led to glucose intolerance and hypertension in male and OVX rats but not in female rats with intact ovaries. Moreover, HFI did not induce insulin resistance in the skeletal muscle of female and OVX rats but impaired the insulin-stimulated glucose transport activity in the skeletal muscle of male rats, which was accompanied by lower insulin-stimulated IRS-1 Tyr 989 (44%), Akt Ser 473 (30%), and AS160 Ser 588 (43%), and increases in insulin-stimulated IRS-1 Ser 307 (78%), JNK Thr 183 /Tyr 185 (69%), and p38 MAPK Thr 180 /Tyr 182 (81%). The results from the present study show sex differences in the development of metabolic syndrome-like conditions and indicate the protective role of female sex hormones against HFI-induced cardiometabolic abnormalities. Copyright © 2016 the American Physiological Society.

  7. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Northern Tunisia cohort of the A1chieve study

    PubMed Central

    Blouza, Samira; Jamoussi, Henda

    2013-01-01

    Background: The A1chieve, a multicentric (28 countries), 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726) in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Northern Tunisia. Results: A total of 443 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 137), insulin detemir (n = 243), insulin aspart (n = 11), basal insulin plus insulin aspart (n = 39) and other insulin combinations (n = 13). At baseline glycaemic control was poor for both insulin naïve (mean HbA1c: 10.2%) and insulin user (mean HbA1c: 9.8%) groups. After 24 weeks of treatment, both the study groups showed improvement in HbA1c (insulin naïve: −2.1%, insulin users: −0.9%). SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia. PMID:24404473

  8. Genetic variation in insulin-induced kinase signaling

    PubMed Central

    Wang, Isabel Xiaorong; Ramrattan, Girish; Cheung, Vivian G

    2015-01-01

    Individual differences in sensitivity to insulin contribute to disease susceptibility including diabetes and metabolic syndrome. Cellular responses to insulin are well studied. However, which steps in these response pathways differ across individuals remains largely unknown. Such knowledge is needed to guide more precise therapeutic interventions. Here, we studied insulin response and found extensive individual variation in the activation of key signaling factors, including ERK whose induction differs by more than 20-fold among our subjects. This variation in kinase activity is propagated to differences in downstream gene expression response to insulin. By genetic analysis, we identified cis-acting DNA variants that influence signaling response, which in turn affects downstream changes in gene expression and cellular phenotypes, such as protein translation and cell proliferation. These findings show that polymorphic differences in signal transduction contribute to individual variation in insulin response, and suggest kinase modulators as promising therapeutics for diseases characterized by insulin resistance. PMID:26202599

  9. Association of abdominal obesity, insulin resistance, and oxidative stress in adipose tissue in women with polycystic ovary syndrome.

    PubMed

    Chen, Li; Xu, Wen Ming; Zhang, Dan

    2014-10-01

    To study the expression of insulin signaling-related genes and oxidative stress markers in the visceral adipose tissue obtained from polycystic ovary syndrome (PCOS) patients and healthy control subjects and to investigate the relationships among abdominal obesity, insulin resistance, and oxidative stress at the tissue level. Case-control study. University teaching hospital. In total, 30 PCOS patients and 30 healthy control subjects, who underwent laparoscopic surgery, were included in the study. Abdominal obesity was defined based on waist circumference (WC). The homeostasis model index was used to assess insulin resistance (HOMA-IR). Gene expression of glucose transporter 4 (GLUT4) and insulin receptor substrate 1 (IRS1) in visceral adipose tissue (VAT) and the parameters of oxidative stress, such as superoxide dismutase, enzyme glutathione reductase, and dimethylarginine, were measured, and the expression of protein oxidative damage product 3-nitro-tyrosine residues (nitrotyrosine) in VAT was identified with the use of immunohistochemistry. PCOS was associated with lower expression of GLUT4 and IRS1 and a higher level of oxidative stress in VAT, which was strongly correlated with WC and HOMA-IR. Presence of abdominal obesity further intensified the correlations observed in our measurements. The nitrotyrosine expression in VAT was stronger in PCOS patients. The strong correlation of insulin resistance with oxidative stress at the VAT level suggests that local oxidative stress and abnormalities of insulin signaling in adipose tissue play critical roles in the pathogenesis of PCOS. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. QT prolongation caused by insulin-induced hypoglycaemia - An interventional study in 119 individuals.

    PubMed

    Kacheva, Stella; Karges, Beate; Göller, Katrin; Marx, Nikolaus; Mischke, Karl; Karges, Wolfram

    2017-01-01

    Hypoglycaemia is associated with increased risk of cardiovascular events and mortality in patients with diabetes, but the extent and mechanisms of this link are ill defined. We here prospectively studied cardiac repolarization abnormalities during insulin-induced hypoglycaemia in humans. 119 individuals (69 males, age 47.5±13.4years, range 18-82years) were assessed during hypoglycaemia after the injection of 0.1-0.25units/kg human insulin. Corrected QT intervals (QTc) and QT dispersion (QTd) were calculated from serially recorded twelve lead electrocardiograms, and plasma glucose and other endocrine markers were studied. QTc increased from 415.1±21.9ms (mean±standard deviation) at baseline to 444.9±26.5ms during hypoglycaemia (plasma glucose nadir, 1.6±0.5mmol/L, p=0.001), accompanied by an increase of QTd from 45.0±22.7ms to 64.1±40.0ms (p<0.001). Hypoglycaemia-induced abnormal QTc prolongation (defined as ⩾460ms in females and ⩾450ms in males) occurred in 17% (9/54) of females and 26% (17/65) of males. 97 of 119 of individuals (82%) developed transient hypokalaemia (K + ⩽3.6mmol/L), and plasma epinephrine increased from 220.4±169.5pmol/L at baseline to 2945.6±2421.4pmol/L during hypoglycaemia. Baseline QTc, but not age or gender, was a significant predictor of hypoglycaemia-induced QTc prolongation (p=0.001). Insulin-induced hypoglycaemia frequently causes abnormal QT prolongation and is associated with hypokalaemia and sympathoadrenal activation, thereby increasing the potential risk for ventricular arrhythmias, particularly in individuals with pre-existing high normal QTc. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. A higher score on the Aging Males' Symptoms scale is associated with insulin resistance in middle-aged men.

    PubMed

    Hamanoue, Nobuya; Tanabe, Makito; Tanaka, Tomoko; Akehi, Yuko; Murakami, Junji; Nomiyama, Takashi; Yanase, Toshihiko

    2017-05-30

    An age-associated androgen decrease and its pathological conditions are defined as late-onset hypogonadism (LOH). Among the various symptoms associated with LOH, a visceral fat increase is strongly associated with relatively low levels of testosterone. However, few studies have investigated the relationship between the Aging Males' Symptoms (AMS) scores and metabolic abnormalities. Thus, we aimed to clarify this relationship by investigating the relationship between AMS scores and various markers in blood. During routine health examinations in 241 middle-aged males (52.7±7.5 years of age, mean±SD), 150 males (62.2%) displayed higher AMS values than normal. No statistical association was observed between total AMS scores and any testosterone value. All mental, physical and sexual AMS subscales were significantly positively correlated with insulin levels and HOMA-IR. Only sexual subscale scores were significantly inversely associated with free or bioavailable testosterone level. Males with insulin resistance (HOMA-IR≥2.5) demonstrated significantly higher AMS scores than those with normal insulin sensitivity (HOMA-IR<2.5). AMS values were positively correlated with fasting blood glucose, insulin and HOMA-IR values. Interestingly, univariate and multivariate analyses revealed that HOMA-IR≥2.5 was a significant predictor for detection of moderately severe AMS values (AMS≥37), whereas AMS≥37 was not a predictor of metabolic syndrome by International Diabetes Federation (IDF) criterion. In conclusion, almost 60% of healthy male subjects displayed abnormal AMS scores. AMS values were not associated with testosterone values but rather were related to insulin resistance, particularly in subjects with moderately severe AMS values. Insulin resistance-related general unwellness might be reflected by AMS values.

  12. Insulin sensitivity and beta-cell function in protease inhibitor-treated and -naive human immunodeficiency virus-infected children.

    PubMed

    Bitnun, Ari; Sochett, Etienne; Dick, Paul T; To, Teresa; Jefferies, Craig; Babyn, Paul; Forbes, Jack; Read, Stanley; King, Susan M

    2005-01-01

    Previous pediatric studies have failed to demonstrate a clear association between protease inhibitor (PI) therapy and abnormal glucose homeostasis in HIV-infected children. To define more precisely the impact of PI therapy on glucose homeostasis in this population, we performed the insulin-modified frequent-sampling iv glucose tolerance test on 33 PI-treated and 15 PI-naive HIV-infected children. Other investigations included fasting serum lipids; glucose, insulin, and C-peptide; single-slice abdominal computed tomography; and, in a subset of PI-treated children, an oral glucose tolerance test. There were no differences between the two groups with respect to fasting serum insulin or C-peptide, homeostatic model assessment insulin resistance, or quantitative insulin sensitivity check index. The mean insulin sensitivity index of PI-treated and PI-naive children was 6.93 +/- 6.37 and 10.58 +/- 12.93 x 10(-4)min(-1) [microU/ml](-1), respectively (P = 0.17). The mean disposition index for the two groups was 1840 +/- 1575 and 3708 +/- 3005 x 10(-4)min(-1) (P = 0.013), respectively. After adjusting for potential confounding variables using multiple regression analysis, the insulin sensitivity index and disposition index of PI-treated children were significantly lower than that of PI-naive children (P = 0.01 for both). In PI-treated but not PI-naive children, insulin sensitivity correlated inversely with visceral adipose tissue area (r = -0.43, P = 0.01) and visceral to sc adipose tissue ratio (r = -0.49, P = 0.004). Mildly impaired glucose tolerance was noted in four of 21 PI-treated subjects tested. Our results demonstrate not only that PI therapy reduces insulin sensitivity in HIV-infected children but also that it impairs the beta-cell response to this reduction in insulin sensitivity and, in a subset of children, leads to the development of impaired glucose tolerance. The presence of insulin resistance, dyslipidemia, and the significant correlation of reduced insulin

  13. Reduced skeletal muscle inhibitor of kappaB beta content is associated with insulin resistance in subjects with type 2 diabetes: reversal by exercise training.

    PubMed

    Sriwijitkamol, Apiradee; Christ-Roberts, Christine; Berria, Rachele; Eagan, Phyllis; Pratipanawatr, Thongchai; DeFronzo, Ralph A; Mandarino, Lawrence J; Musi, Nicolas

    2006-03-01

    Skeletal muscle insulin resistance plays a key role in the pathogenesis of type 2 diabetes. It recently has been hypothesized that excessive activity of the inhibitor of kappaB (IkappaB)/nuclear factor kappaB (NFkappaB) inflammatory pathway is a mechanism underlying skeletal muscle insulin resistance. However, it is not known whether IkappaB/NFkappaB signaling in muscle from subjects with type 2 diabetes is abnormal. We studied IkappaB/NFkappaB signaling in vastus lateralis muscle from six subjects with type 2 diabetes and eight matched control subjects. Muscle from type 2 diabetic subjects was characterized by a 60% decrease in IkappaB beta protein abundance, an indicator of increased activation of the IkappaB/NFkappaB pathway. IkappaB beta abundance directly correlated with insulin-mediated glucose disposal (Rd) during a hyperinsulinemic (40 mU x m(-2) x min(-1))-euglycemic clamp (r = 0.63, P = 0.01), indicating that increased IkappaB/NFkappaB pathway activity is associated with muscle insulin resistance. We also investigated whether reversal of this abnormality could be a mechanism by which training improves insulin sensitivity. In control subjects, 8 weeks of aerobic exercise training caused a 50% increase in both IkappaB alpha and IkappaB beta protein. In subjects with type 2 diabetes, training increased IkappaB alpha and IkappaB beta protein to levels comparable with that of control subjects, and these increments were accompanied by a 40% decrease in tumor necrosis factor alpha muscle content and a 37% increase in insulin-stimulated glucose disposal. In summary, subjects with type 2 diabetes have reduced IkappaB protein abundance in muscle, suggesting excessive activity of the IkappaB/NFkappaB pathway. Moreover, this abnormality is reversed by exercise training.

  14. Proteomics Analysis of Human Skeletal Muscle Reveals Novel Abnormalities in Obesity and Type 2 Diabetes

    PubMed Central

    Hwang, Hyonson; Bowen, Benjamin P.; Lefort, Natalie; Flynn, Charles R.; De Filippis, Elena A.; Roberts, Christine; Smoke, Christopher C.; Meyer, Christian; Højlund, Kurt; Yi, Zhengping; Mandarino, Lawrence J.

    2010-01-01

    OBJECTIVE Insulin resistance in skeletal muscle is an early phenomenon in the pathogenesis of type 2 diabetes. Studies of insulin resistance usually are highly focused. However, approaches that give a more global picture of abnormalities in insulin resistance are useful in pointing out new directions for research. In previous studies, gene expression analyses show a coordinated pattern of reduction in nuclear-encoded mitochondrial gene expression in insulin resistance. However, changes in mRNA levels may not predict changes in protein abundance. An approach to identify global protein abundance changes involving the use of proteomics was used here. RESEARCH DESIGN AND METHODS Muscle biopsies were obtained basally from lean, obese, and type 2 diabetic volunteers (n = 8 each); glucose clamps were used to assess insulin sensitivity. Muscle protein was subjected to mass spectrometry–based quantification using normalized spectral abundance factors. RESULTS Of 1,218 proteins assigned, 400 were present in at least half of all subjects. Of these, 92 were altered by a factor of 2 in insulin resistance, and of those, 15 were significantly increased or decreased by ANOVA (P < 0.05). Analysis of protein sets revealed patterns of decreased abundance in mitochondrial proteins and altered abundance of proteins involved with cytoskeletal structure (desmin and alpha actinin-2 both decreased), chaperone function (TCP-1 subunits increased), and proteasome subunits (increased). CONCLUSIONS The results confirm the reduction in mitochondrial proteins in insulin-resistant muscle and suggest that changes in muscle structure, protein degradation, and folding also characterize insulin resistance. PMID:19833877

  15. Increased insulin-like growth factor-1 levels in cerebrospinal fluid of advanced subacute sclerosing panencephalitis patients.

    PubMed

    Yılmaz, Deniz; Yüksel, Deniz; Gökkurt, Didem; Oguz, Hava; Anlar, Banu

    2016-07-01

    Subacute sclerosing panencephalitis (SSPE) is a progressive, lethal disease. Brain histopathology in certain SSPE patients shows, neurofibrillary tangles composed of abnormally phosphorylated, microtubule-associated protein tau (PHF-tau). Because the, phosphorylation of tau is inhibited by insulin and insulin-like growth factor-1 (IGF-1), we investigated cerebrospinal fluid (CSF) insulin and IGF-1 levels in SSPE patients. In this study CSF IGF-1 and insulin levels of 45 SSPE and 25 age-matched control patients were investigated. CSF IGF-1 levels were significantly higher in SSPE patients at stage 4, compared to other stages (p 0.05). CSF insulin and IGF-1 levels were both positively correlated with serum measles IgG. The correlation between CSF insulin and IGF-1 levels and serum measles virus IgG titer may be the result of, insulin activating IGF-1 receptors, and consequently, IGF-1 stimulating, plasma cells and enhancing IgG production. Increased IGF-1 may also, inhibit the phosphorylation of tau. Further studies examining the, correlation between IGF-1, insulin, tau, and PHF-tau levels in the same, patients may clarify any possible pathogenetic relation between these, pathways. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  16. Insulin receptor isoform A ameliorates long-term glucose intolerance in diabetic mice

    PubMed Central

    Diaz-Castroverde, Sabela; Gómez-Hernández, Almudena; Fernández, Silvia; García-Gómez, Gema; Di Scala, Marianna; González-Aseguinolaza, Gloria; Fernández-Millán, Elisa; González-Rodríguez, Águeda; García-Bravo, María; Chambon, Pierre; Álvarez, Carmen; Perdomo, Liliana; Beneit, Nuria; Benito, Manuel

    2016-01-01

    ABSTRACT Type 2 diabetes mellitus is a complex metabolic disease and its pathogenesis involves abnormalities in both peripheral insulin action and insulin secretion. Previous in vitro data showed that insulin receptor isoform A, but not B, favours basal glucose uptake through its specific association with endogenous GLUT1/2 in murine hepatocytes and beta cells. With this background, we hypothesized that hepatic expression of insulin receptor isoform A in a mouse model of type 2 diabetes could potentially increase the glucose uptake of these cells, decreasing the hyperglycaemia and therefore ameliorating the diabetic phenotype. To assure this hypothesis, we have developed recombinant adeno-associated viral vectors expressing insulin receptor isoform A (IRA) or isoform B (IRB) under the control of a hepatocyte­-specific promoter. Our results demonstrate that in the long term, hepatic expression of IRA in diabetic mice is more efficient than IRB in ameliorating glucose intolerance. Consequently, it impairs the induction of compensatory mechanisms through beta cell hyperplasia and/or hypertrophy that finally lead to beta cell failure, reverting the diabetic phenotype in about 8 weeks. Our data suggest that long-term hepatic expression of IRA could be a promising therapeutic approach for the treatment of type 2 diabetes mellitus. PMID:27562101

  17. The lipid accumulation product as a useful index for identifying abnormal glucose regulation in young Korean women.

    PubMed

    Oh, J-Y; Sung, Y-A; Lee, H J

    2013-04-01

    The lipid accumulation product, a combination of waist circumference and triglycerides concentration, has been suggested as a better marker for abnormal glucose regulation than BMI. We aimed to compare the lipid accumulation product and BMI as useful markers for abnormal glucose regulation in young Korean women. The lipid accumulation product was calculated using the formula [waist circumference (cm) - 58] × triglycerides (mmol/l). Glucose tolerance status was determined using a 75-g oral glucose tolerance test in 2810 Korean women aged 18-39 years from the general population. The prevalence of abnormal glucose regulation was 6.8% (isolated impaired fasting glucose 1.8%, isolated impaired glucose tolerance 4.0%; impaired fasting glucose + impaired glucose tolerance 0.4% and diabetes mellitus 0.6%). According to the quintile distributions of the lipid accumulation product and BMI, women with a lipid accumulation product quintile greater than their BMI quintile exhibited significantly greater areas under the curve and higher levels of 2-h post-load glucose, insulin, homeostasis model analysis of insulin resistance and lipid profiles than did women with a BMI quintile greater than their lipid accumulation product quintile. Multiple logistic regression revealed that the lipid accumulation product exhibited a higher odds ratio for abnormal glucose regulation than did BMI after adjusting for age, systolic blood pressure, HDL cholesterol, previous history of gestational diabetes and family history of diabetes (odds ratios 3.5 and 2.6 of the highest vs. the lowest quintiles of lipid accumulation product and BMI, respectively). The lipid accumulation product could be useful for identifying the young Korean women with abnormal glucose regulation. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  18. Antidiabetogenic Effects of Chromium Mitigate Hyperinsulinemia-Induced Cellular Insulin Resistance via Correction of Plasma Membrane Cholesterol Imbalance

    PubMed Central

    Horvath, Emily M.; Tackett, Lixuan; McCarthy, Alicia M.; Raman, Priya; Brozinick, Joseph T.; Elmendorf, Jeffrey S.

    2008-01-01

    Previously, we found that a loss of plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate (PIP2)-regulated filamentous actin (F-actin) structure contributes to insulin-induced insulin resistance. Interestingly, we also demonstrated that chromium picolinate (CrPic), a dietary supplement thought to improve glycemic status in insulin-resistant individuals, augments insulin-regulated glucose transport in insulin-sensitive 3T3-L1 adipocytes by lowering PM cholesterol. Here, to gain mechanistic understanding of these separate observations, we tested the prediction that CrPic would protect against insulin-induced insulin resistance by improving PM features important in cytoskeletal structure and insulin sensitivity. We found that insulin-induced insulin-resistant adipocytes display elevated PM cholesterol with a reciprocal decrease in PM PIP2. This lipid imbalance and insulin resistance was corrected by the cholesterol-lowering action of CrPic. The PM lipid imbalance did not impair insulin signaling, nor did CrPic amplify insulin signal transduction. In contrast, PM analyses corroborated cholesterol and PIP2 interactions influencing cytoskeletal structure. Because extensive in vitro study documents an essential role for cytoskeletal capacity in insulin-regulated glucose transport, we next evaluated intact skeletal muscle from obese, insulin-resistant Zucker (fa/fa) rats. Because insulin resistance in these animals likely involves multiple mechanisms, findings that cholesterol-lowering restored F-actin cytoskeletal structure and insulin sensitivity to that witnessed in lean control muscle were striking. Also, experiments using methyl-β-cyclodextrin to shuttle cholesterol into or out of membranes respectively recapitulated the insulin-induced insulin-resistance and protective effects of CrPic on membrane/cytoskeletal interactions and insulin sensitivity. These data predict a PM cholesterol basis for hyperinsulinemia-associated insulin resistance and importantly

  19. Insulin resistance, metabolic stress, and atherosclerosis

    PubMed Central

    Pansuria, Meghana; Xi, Hang; Li, Le; Yang, Xiao-Feng; Wang, Hong

    2012-01-01

    Atherosclerosis, a pathological process that underlies the development of cardiovascular disease, is the primary cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). T2DM is characterized by hyperglycemia and insulin resistance (IR), in which target tissues fail to respond to insulin. Systemic IR is associated with impaired insulin signaling in the metabolic tissues and vasculature. Insulin receptor is highly expressed in the liver, muscle, pancreas, and adipose tissue. It is also expressed in vascular cells. It has been suggested that insulin signaling in vascular cells regulates cell proliferation and vascular function. In this review, we discuss the association between IR, metabolic stress, and atherosclerosis with focus on 1) tissue and cell distribution of insulin receptor and its differential signaling transduction and 2) potential mechanism of insulin signaling impairment and its role in the development of atherosclerosis and vascular function in metabolic disorders including hyperglycemia, hypertension, dyslipidemia, and hyperhomocysteinemia. We propose that insulin signaling impairment is the foremost biochemical mechanism underlying increased cardiovascular morbidity and mortality in atherosclerosis, T2DM, and metabolic syndrome. PMID:22202099

  20. The relationship between insulin secretion, the insulin-like growth factor axis and growth in children with cystic fibrosis.

    PubMed

    Ripa, Paulus; Robertson, Ian; Cowley, David; Harris, Margaret; Masters, I Brent; Cotterill, Andrew M

    2002-03-01

    , nutritional status or pulmonary function. There was a significant positive correlation between insulin secretion (area under the curve) and height velocity (P = 0.001) and serum IGFBP-3 levels (P = 0.001). Impaired glucose tolerance was present in 20% of children with cystic fibrosis. Impaired insulin secretion was common (65%) even in children with normal glucose tolerance. The mean height SDS for the group was low and the height velocity was abnormally slow in 39%, yet nutritional status as measured by BMI was appropriate for age. Relative insulin deficiency rather than nutritional deprivation or poor clinical status thus appears to be implicated in the poor linear growth of these children with relatively stable lung disease. This was a small study and firm conclusions on this chronic suppurative disease as to the cause of poor growth are not possible. The causes of poor growth are likely to be complex; nevertheless, the apparent decrease in insulin secretion combined with the expected increased demands on insulin production during pubertal growth raises the question as to whether insulin therapy should be considered in children with cystic fibrosis before the onset of cystic fibrosis-related diabetes mellitus.

  1. Determination of reference values for elevated fasting and random insulin levels and their associations with metabolic risk factors among rural Pakistanis from Sindh Province.

    PubMed

    Ahmadani, Muhammad Yakoob; Hakeem, Rubina; Fawwad, Asher; Basit, Abdul; Shera, A Samad

    2008-06-01

    To assess insulin levels and their association with metabolic risk factors (family history of diabetes, abnormal glucose tolerance, hypertension, overweight and android obesity) among a representative group of Pakistan. The study data was taken from the database of a population-based survey conducted in Sindh Province, Pakistan, in 1994 to assess the prevalence of diabetes mellitus and impaired glucose tolerance (IGT). Through stratified random sampling; oral glucose tolerance tests were performed in 967 adults; every fifth sample was estimated for fasting and random (2-hour post-75 gm glucose load) insulin levels. The total number of metabolic risk factors was counted for each subject, and their association with insulin levels studied. Of the 130 subjects, 56.1% were females and 95.4% were Sindhi. The mean age of males and females was 43.84 and 40.61 years, respectively. Family history for diabetes and frequency of overweight had significant positive associations with both fasting and random insulin levels (P < 0.05). Association between hypertension and insulin levels was significant only for random insulin levels, and between android obesity, abnormal glucose tolerance, or male gender and insulin levels only for fasting insulin levels (P < 0.05). Metabolic risk factors had significant positive associations with both fasting (r = 0.351 P = 0.000) as well as random insulin levels (r = 0.364 P = 0.000). This paper provides baseline pioneering information applicable to the Pakistani population. Furthermore, the observations made in this study about differences in association of fasting or random insulin levels with various metabolic risk factors highlight the possibility of using either of them for risk assessment. This finding needs to be assessed in a larger and nationally representative sample.

  2. α-Synuclein binds the KATP channel at insulin-secretory granules and inhibits insulin secretion

    PubMed Central

    Geng, Xuehui; Lou, Haiyan; Wang, Jian; Li, Lehong; Swanson, Alexandra L.; Sun, Ming; Beers-Stolz, Donna; Watkins, Simon; Perez, Ruth G.

    2011-01-01

    α-Synuclein has been studied in numerous cell types often associated with secretory processes. In pancreatic β-cells, α-synuclein might therefore play a similar role by interacting with organelles involved in insulin secretion. We tested for α-synuclein localizing to insulin-secretory granules and characterized its role in glucose-stimulated insulin secretion. Immunohistochemistry and fluorescent sulfonylureas were used to test for α-synuclein localization to insulin granules in β-cells, immunoprecipitation with Western blot analysis for interaction between α-synuclein and KATP channels, and ELISA assays for the effect of altering α-synuclein expression up or down on insulin secretion in INS1 cells or mouse islets, respectively. Differences in cellular phenotype between α-synuclein knockout and wild-type β-cells were found by using confocal microscopy to image the fluorescent insulin biosensor Ins-C-emGFP and by using transmission electron microscopy. The results show that anti-α-synuclein antibodies labeled secretory organelles within β-cells. Anti-α-synuclein antibodies colocalized with KATP channel, anti-insulin, and anti-C-peptide antibodies. α-Synuclein coimmunoprecipitated in complexes with KATP channels. Expression of α-synuclein downregulated insulin secretion at 2.8 mM glucose with little effect following 16.7 mM glucose stimulation. α-Synuclein knockout islets upregulated insulin secretion at 2.8 and 8.4 mM but not 16.7 mM glucose, consistent with the depleted insulin granule density at the β-cell surface membranes observed in these islets. These findings demonstrate that α-synuclein interacts with KATP channels and insulin-secretory granules and functionally acts as a brake on secretion that glucose stimulation can override. α-Synuclein might play similar roles in diabetes as it does in other degenerative diseases, including Alzheimer's and Parkinson's diseases. PMID:20858756

  3. Fasting insulin, insulin resistance, and risk of cardiovascular or all-cause mortality in non-diabetic adults: a meta-analysis.

    PubMed

    Zhang, Xiaohong; Li, Jun; Zheng, Shuiping; Luo, Qiuyun; Zhou, Chunmei; Wang, Chaoyang

    2017-10-31

    Studies on elevated fasting insulin or insulin resistance (IR) and cardiovascular or all-cause mortality risk in non-diabetic individuals have yielded conflicting results. This meta-analysis aimed to evaluate the association of elevated fasting insulin levels or IR as defined by homeostasis model assessment of IR (HOMA-IR) with cardiovascular or all-cause mortality in non-diabetic adults. We searched for relevant studies in PubMed and Emabse databases until November 2016. Only prospective observational studies investigating the association of elevated fasting insulin levels or HOMA-IR with cardiovascular or all-cause mortality risk in non-diabetic adults were included. Risk ratio (RR) with its 95% confidence intervals (CIs) was pooled for the highest compared with the lowest category of fasting insulin levels or HOMA-IR. Seven articles involving 26976 non-diabetic adults were included. The pooled, adjusted RR of all-cause mortality comparing the highest with the lowest category was 1.13 (95% CI: 1.00-1.27; P =0.058) for fasting insulin levels and 1.34 (95% CI: 1.11-1.62; P =0.002) for HOMA-IR, respectively. When comparing the highest with the lowest category, the pooled adjusted RR of cardiovascular mortality was 2.11 (95% CI: 1.01-4.41; P =0.048) for HOMA-IR in two studies and 1.40 (95% CI: 0.49-3.96; P =0.526) for fasting insulin levels in one study. IR as measured by HOMA-IR but not fasting insulin appears to be independently associated with greater risk of cardiovascular or all-cause mortality in non-diabetic adults. However, the association of fasting insulin and HOMA-IR with cardiovascular mortality may be unreliable due to the small number of articles included. © 2017 The Author(s).

  4. EADSG Guidelines: Insulin Therapy in Diabetes.

    PubMed

    Silver, Bahendeka; Ramaiya, Kaushik; Andrew, Swai Babu; Fredrick, Otieno; Bajaj, Sarita; Kalra, Sanjay; Charlotte, Bavuma M; Claudine, Karigire; Makhoba, Anthony

    2018-04-01

    A diagnosis of diabetes or hyperglycemia should be confirmed prior to ordering, dispensing, or administering insulin (A). Insulin is the primary treatment in all patients with type 1 diabetes mellitus (T1DM) (A). Typically, patients with T1DM will require initiation with multiple daily injections at the time of diagnosis. This is usually short-acting insulin or rapid-acting insulin analogue given 0 to 15 min before meals together with one or more daily separate injections of intermediate or long-acting insulin. Two or three premixed insulin injections per day may be used (A). The target glycated hemoglobin A1c (HbA1c) for all children with T1DM, including preschool children, is recommended to be < 7.5% (< 58 mmol/mol). The target is chosen aiming at minimizing hyperglycemia, severe hypoglycemia, hypoglycemic unawareness, and reducing the likelihood of development of long-term complications (B). For patients prone to glycemic variability, glycemic control is best evaluated by a combination of results with self-monitoring of blood glucose (SMBG) (B). Indications for exogenous insulin therapy in patients with type 2 diabetes mellitus (T2DM) include acute illness or surgery, pregnancy, glucose toxicity, contraindications to or failure to achieve goals with oral antidiabetic medications, and a need for flexible therapy (B). In T2DM patients, with regards to achieving glycemic goals, insulin is considered alone or in combination with oral agents when HbA1c is ≥ 7.5% (≥ 58 mmol/mol); and is essential for treatment in those with HbA1c ≥ 10% (≥ 86 mmol/mol), when diet, physical activity, and other antihyperglycemic agents have been optimally used (B). The preferred method of insulin initiation in T2DM is to begin by adding a long-acting (basal) insulin or once-daily premixed/co-formulation insulin or twice-daily premixed insulin, alone or in combination with glucagon-like peptide-1 receptor agonist (GLP-1 RA) or in combination with other oral antidiabetic

  5. Central insulin signaling is attenuated by long-term insulin exposure via insulin receptor substrate-1 serine phosphorylation, proteasomal degradation, and lysosomal insulin receptor degradation.

    PubMed

    Mayer, Christopher M; Belsham, Denise D

    2010-01-01

    Central insulin signaling is critical for the prevention of insulin resistance. Hyperinsulinemia contributes to insulin resistance, but it is not yet clear whether neurons are subject to cellular insulin resistance. We used an immortalized, hypothalamic, clonal cell line, mHypoE-46, which exemplifies neuronal function and expresses the components of the insulin signaling pathway, to determine how hyperinsulinemia modifies neuronal function. Western blot analysis indicated that prolonged insulin treatment of mHypoE-46 cells attenuated insulin signaling through phospho-Akt. To understand the mechanisms involved, time-course analysis was performed. Insulin exposure for 4 and 8 h phosphorylated Akt and p70-S6 kinase (S6K1), whereas 8 and 24 h treatment decreased insulin receptor (IR) and IR substrate 1 (IRS-1) protein levels. Insulin phosphorylation of S6K1 correlated with IRS-1 ser1101 phosphorylation and the mTOR-S6K1 pathway inhibitor rapamycin prevented IRS-1 serine phosphorylation. The proteasomal inhibitor epoxomicin and the lysosomal pathway inhibitor 3-methyladenine prevented the degradation of IRS-1 and IR by insulin, respectively, and pretreatment with rapamycin, epoxomicin, or 3-methyladenine prevented attenuation of insulin signaling by long-term insulin exposure. Thus, a sustained elevation of insulin levels diminishes neuronal insulin signaling through mTOR-S6K1-mediated IRS-1 serine phosphorylation, proteasomal degradation of IRS-1 and lysosomal degradation of the IR.

  6. Comparison quality of life patients treated with insulin and oral hypoglycemic drugs

    NASA Astrophysics Data System (ADS)

    Harahap, A. W.; Nasution, M. S.

    2018-03-01

    Diabetes mellitus (DM) is a group of chronic metabolic diseases with characteristic hyperglycemia that occurs due to abnormalities in insulin secretion, insulin action or both. Improved quality of life is one of the goals of DM management. This study aims to compare thequality of life in40 patients with type 2 diabetes using insulin therapy and 40 patients using oral hypoglycemic drugs in H. Adam Malik Hospital year 2015. This study is an observational study with cross-sectionalstudy designand consecutive sampling method. Evaluation of the patient’s quality of life taken through interviews and questionnaires using the Short Form-36 questionnaire consistingof8 domains of quality of life. Statistical analysis using unpaired t-test and Mann-Whitney test. Results of the quality of life-based on patient characteristics showed significant differences in education factor (p=0.005) and employment factor (p=0.001). Quality of life-based on therapy showed significant differences in domain role of physical (p=0.005) and domain role of emotional (p=0.038).The quality of life of patients with type 2 diabetes using insulin better than using hypoglycemic drug significantly in domain role of physical and domain role of emotions.

  7. Correction of Hypothyroidism Leads to Change in Lean Body Mass without Altering Insulin Resistance.

    PubMed

    Sirigiri, Sangeetha; Vaikkakara, Suresh; Sachan, Alok; Srinivasarao, P V L N; Epuri, Sunil; Anantarapu, Sailaja; Mukka, Arun; Chokkapu, Srinivasa Rao; Venkatanarasu, Ashok; Poojari, Ravi

    2016-12-01

    Hypothyroidism is associated with insulin resistance, dyslipidemia, and abnormal body composition. This study assessed changes in body composition and insulin resistance after thyroxine (T 4 ) replacement in overt hypothyroidism. In this prospective longitudinal study carried out in a tertiary care center, adult nondiabetic patients with overt hypothyroidism were rendered euthyroid on T 4 . Anthropometry including skinfold thickness (SFT) at the triceps and subscapularis was recorded. Patients underwent testing for fasting plasma glucose, creatinine, serum insulin, T 4 , thyrotropin (TSH) and body composition analysis by dual-energy X-ray absorptiometry (DEXA) both before and at 2 months after restoration to the euthyroid state. Twenty-seven patients (20 female and 7 male) aged 35.3 ± 11.0 years (min-max: 17-59 years) with overt hypothyroidism were recruited. Serum T 4 at the time of recruitment was 48.9 ± 24.6 nmol/l (normal range = 64.4-142 nmol/l). All patients had TSH ≥50 µIU/l. Following treatment, there was a mean body weight reduction of 1.7 kg (p = 0.01). Waist circumference as well as triceps and subscapularis SFT decreased significantly (p < 0.001). There was no change in fat mass (FM), percentage of fat (%FM) or bone mineral content in any of the specified regions or in the body as a whole. In contrast, mean lean body mass (LBM) decreased significantly by 0.8 kg (p < 0.01) in the trunk and 1.3 kg (p < 0.01) in the whole body. Insulin resistance and level of glycemia were not affected by treatment with T 4 . LBM decreases significantly without affecting FM after correction of hypothyroidism. Insulin resistance was not influenced by T 4 treatment.

  8. IGF-1 and Insulin Resistance Are Major Determinants of Common Carotid Artery Thickness in Morbidly Obese Young Patients.

    PubMed

    Sirbu, Anca; Nicolae, Horia; Martin, Sorina; Barbu, Carmen; Copaescu, Catalin; Florea, Suzana; Panea, Cristina; Fica, Simona

    2016-03-01

    We assessed the relationship between insulin resistance, serum insulin-like growth factor 1 (IGF-1) levels, and common carotid intima-media thickness (CC-IMT) in morbidly obese young patients. A total of 249 patients (aged 37.9 ± 9.8 years, body mass index [BMI] 45.6 ± 8.3 kg/m(2)) were evaluated (metabolic tests, serum IGF-1 measurements, homeostasis model assessment-insulin resistance [HOMA-IR], and ultrasonographically assessed CC-IMT) in a research program for bariatric surgery candidates. After adjusting for age, gender, BMI, systolic blood pressure, uric acid, antihypertensive and lipid-lowering treatment, metabolic syndrome, and metabolic class, both HOMA-IR and IGF-1 z-score were significantly associated with CC-IMT. These results were confirmed in logistic regression analysis, in which age (β = 1.11, P = .001), gender (β = 3.19, P = .001), HOMA-IR (β = 1.221, P = .005), and IGF-1 z-score (β = 1.734, P = .009) were the only independent determinants of abnormal CC-IMT, presumably modulating the effect of the other risk factors included in the regression. Area under the receiver-operating characteristic curve for the model was 0.841 (confidence interval: 0.776-0.907; P < .001). In conclusion, in morbidly obese young adults, insulin resistance and IGF-1 z-score are significantly associated with CC-IMT, independent of other major cardiovascular risk factors. © The Author(s) 2015.

  9. Insulin algorithms in the self-management of insulin-dependent diabetes: the interactive 'Apple Juice' program.

    PubMed

    Williams, A G

    1996-01-01

    The 'Apple Juice' program is an interactive diabetes self-management program which runs on a lap-top Macintosh Powerbook 100 computer. The dose-by-dose insulin advisory program was initially designed for children with insulin-dependent (type 1) diabetes mellitus. It utilizes several different insulin algorithms, measurement formulae, and compensation factors for meals, activity, medication and the dawn phenomenon. It was developed to assist the individual with diabetes and/or care providers, in determining specific insulin dosage recommendations throughout a 24 h period. Information technology functions include, but are not limited to automated record keeping, data recall, event reminders, data trend/pattern analyses and education. This paper highlights issues, observations and recommendations surrounding the use of the current version of the software, along with a detailed description of the insulin algorithms and measurement formulae applied successfully with the author's daughter over a six year period.

  10. Insulin resistance and subclinical abnormalities of global and regional left ventricular function in patients with aortic valve sclerosis.

    PubMed

    Utsunomiya, Hiroto; Yamamoto, Hideya; Kunita, Eiji; Hidaka, Takayuki; Kihara, Yasuki

    2014-04-27

    Insulin resistance, as a key mediator of metabolic syndrome, is thought to be associated with pathogenesis of calcific aortic valve disease and altered left ventricular (LV) function and structure. However, in patients with aortic valve sclerosis (AVS), the association between insulin resistance and subclinical impairment of LV function is not fully elucidated. We studied 57 patients (mean age 70 ± 8 years, 22 women) with asymptomatic AVS but normal LV ejection fraction in echocardiography. LV longitudinal and circumferential strain and strain rate was analyzed using two-dimensional speckle tracking echocardiography. Patients with uncontrolled hypertension and diabetes mellitus, chronic kidney disease, and concomitant coronary artery disease were excluded. They were divided into the insulin-resistant group (AVS+IR; N = 28) and no insulin-resistant group (AVS-IR; N = 29) according to the median value of homeostatic model assessment index. Computed tomography scans were also performed to measure the aortic valve calcium score and the visceral adipose tissue (VAT) area. In addition, age- and sex- adjusted 28 control subjects were recruited for the comparison. There were no significant differences in LV ejection fraction or mass index among the groups. The AVS+IR group had a higher aortic valve calcium score (median 94 versus 21, P = 0.022) and a larger VAT area (113 ± 42 cm2 versus 77 ± 38 cm2, P = 0.001) than the AVS-IR group. Notably, LV global longitudinal strain, strain rate (SR), and early diastolic SR were significantly lower in the AVS+IR group than in the AVS-IR group and in control subjects (strain: -16.2 ± 1.6% versus -17.2 ± 1.2% and -18.9 ± 0.8%; SR: -1.18 ± 0.26 s(-1) versus -1.32 ± 0.21 s(-1) and -1.52 ± 0.08 s(-1); early diastolic SR: -1.09 ± 0.23 s(-1) versus -1.23 ± 0.18 s(-1) and -1.35 ± 0.12 s(-1); P < 0.05 for all comparison), whereas circumferential function were not

  11. Insulin resistance and subclinical abnormalities of global and regional left ventricular function in patients with aortic valve sclerosis

    PubMed Central

    2014-01-01

    Background Insulin resistance, as a key mediator of metabolic syndrome, is thought to be associated with pathogenesis of calcific aortic valve disease and altered left ventricular (LV) function and structure. However, in patients with aortic valve sclerosis (AVS), the association between insulin resistance and subclinical impairment of LV function is not fully elucidated. Methods We studied 57 patients (mean age 70 ± 8 years, 22 women) with asymptomatic AVS but normal LV ejection fraction in echocardiography. LV longitudinal and circumferential strain and strain rate was analyzed using two-dimensional speckle tracking echocardiography. Patients with uncontrolled hypertension and diabetes mellitus, chronic kidney disease, and concomitant coronary artery disease were excluded. They were divided into the insulin-resistant group (AVS+IR; N = 28) and no insulin-resistant group (AVS-IR; N = 29) according to the median value of homeostatic model assessment index. Computed tomography scans were also performed to measure the aortic valve calcium score and the visceral adipose tissue (VAT) area. In addition, age- and sex- adjusted 28 control subjects were recruited for the comparison. Results There were no significant differences in LV ejection fraction or mass index among the groups. The AVS+IR group had a higher aortic valve calcium score (median 94 versus 21, P = 0.022) and a larger VAT area (113 ± 42 cm2 versus 77 ± 38 cm2, P = 0.001) than the AVS-IR group. Notably, LV global longitudinal strain, strain rate (SR), and early diastolic SR were significantly lower in the AVS+IR group than in the AVS-IR group and in control subjects (strain: -16.2 ± 1.6% versus -17.2 ± 1.2% and -18.9 ± 0.8%; SR: -1.18 ± 0.26 s-1 versus -1.32 ± 0.21 s-1 and -1.52 ± 0.08 s-1; early diastolic SR: -1.09 ± 0.23 s-1 versus -1.23 ± 0.18 s-1 and -1.35 ± 0.12 s-1; P < 0.05 for all comparison), whereas

  12. Optimizing inpatient glycemic control with basal-bolus insulin therapy.

    PubMed

    Pollom, R Daniel

    2010-11-01

    Hyperglycemia is highly prevalent in the acute-care setting and is associated with an increased risk of morbidity and mortality. Evidence suggests that glycemic control in this population is suboptimal, due in part to continued use of nonphysiologic sliding-scale insulin strategies without scheduled basal insulin doses or prandial insulin with concomitant correction doses. Although the ineffectiveness and risks of sliding-scale insulin regimens have been criticized for decades, sliding-scale insulin is still the most commonly prescribed subcutaneous insulin regimen among inpatients. Improving inpatient management requires the use of scheduled basal-bolus insulin therapy that includes basal insulin, nutritional insulin, and supplemental, or correctional, insulin. Insulin analogs are the preferred insulins, as they provide a more physiologic action than human insulin regimens, are associated with a lower risk of hypoglycemia, and are more convenient to administer than human insulins. Standardized insulin protocols and subcutaneous insulin order sets are critical components of effective inpatient glycemic control. Although preliminary data have demonstrated that inpatient diabetes management programs involving basal-bolus insulin therapy are effective and well tolerated, more research is needed.

  13. New Basal Insulins: a Clinical Perspective of Their Use in the Treatment of Type 2 Diabetes and Novel Treatment Options Beyond Basal Insulin.

    PubMed

    Frias, Patrick F; Frias, Juan Pablo

    2017-08-18

    The purpose of this review was to review advances in basal insulin formulations and new treatment options for patients with type 2 diabetes not achieving glycemic targets despite optimized basal insulin therapy. Advances in basal insulin formulations have resulted in products with increasingly favorable pharmacokinetic and pharmacodynamic properties, including flatter, peakless action profiles, less inter- and intra-patient variability, and longer duration of activity. These properties have translated to significantly reduced risk of hypoglycemia (particularly during the night) compared with previous generation basal insulins. When optimized basal insulin therapy is not sufficient to obtain or maintain glycemic goals, various options exist to improve glycemic control, including intensification of insulin therapy with the addition of prandial insulin or changing to pre-mixed insulin and, more recently, the addition of a GLP-1 receptor agonist, either as a separate injection or as a component of one of the new fixed-ratio combinations of a basal insulin and GLP-1 RA. New safer and often more convenient basal insulins and fixed ratio combinations containing basal insulin (and GLP-1 receptor agonist) are available today for patients with type 2 diabetes not achieving glycemic goals. Head-to-head studies comparing the latest generation basal insulins are underway, and future studies assessing the fixed-ratio combinations will be important to better understand their differentiating features.

  14. Insulin gene therapy for type 1 diabetes mellitus.

    PubMed

    Handorf, Andrew M; Sollinger, Hans W; Alam, Tausif

    2015-04-01

    Type 1 diabetes mellitus is an autoimmune disease resulting from the destruction of pancreatic β cells. Current treatments for patients with type 1 diabetes mellitus include daily insulin injections or whole pancreas transplant, each of which are associated with profound drawbacks. Insulin gene therapy, which has shown great efficacy in correcting hyperglycemia in animal models, holds great promise as an alternative strategy to treat type 1 diabetes mellitus in humans. Insulin gene therapy refers to the targeted expression of insulin in non-β cells, with hepatocytes emerging as the primary therapeutic target. In this review, we present an overview of the current state of insulin gene therapy to treat type 1 diabetes mellitus, including the need for an alternative therapy, important features dictating the success of the therapy, and current obstacles preventing the translation of this treatment option to a clinical setting. In so doing, we hope to shed light on insulin gene therapy as a viable option to treat type 1 diabetes mellitus.

  15. Nutritional Modulation of Non-Alcoholic Fatty Liver Disease and Insulin Resistance

    PubMed Central

    Yki-Järvinen, Hannele

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD) covers a spectrum of disorders ranging from simple steatosis (non-alcoholic fatty liver, NAFL) to non-alcoholic steatohepatitis (NASH) and cirrhosis. NAFL increases the risk of liver fibrosis. If the liver is fatty due to causes of insulin resistance such as obesity and physical inactivity, it overproduces glucose and triglycerides leading to hyperinsulinemia and a low high-density lipoprotein (HDL) cholesterol concentration. The latter features predispose to type 2 diabetes and cardiovascular disease (CVD). Understanding the impact of nutritional modulation of liver fat content and insulin resistance is therefore of interest for prevention and treatment of NAFLD. Hypocaloric, especially low carbohydrate ketogenic diets rapidly decrease liver fat content and associated metabolic abnormalities. However, any type of caloric restriction seems effective long-term. Isocaloric diets containing 16%–23% fat and 57%–65% carbohydrate lower liver fat compared to diets with 43%–55% fat and 27%–38% carbohydrate. Diets rich in saturated (SFA) as compared to monounsaturated (MUFA) or polyunsaturated (PUFA) fatty acids appear particularly harmful as they increase both liver fat and insulin resistance. Overfeeding either saturated fat or carbohydrate increases liver fat content. Vitamin E supplementation decreases liver fat content as well as fibrosis but has no effect on features of insulin resistance. PMID:26556368

  16. Stability and Performance of Rapid-Acting Insulin Analogs Used for Continuous Subcutaneous Insulin Infusion: A Systematic Review

    PubMed Central

    Kerr, David; Wizemann, Erik; Senstius, Jakob; Zacho, Mette; Ampudia-Blasco, Francisco Javier

    2013-01-01

    Aim: We review and summarize the literature on the safety and stability of rapid-acting insulin analogs used for continuous subcutaneous insulin infusion (CSII) in patients with diabetes. Methods Two predefined search strategies were systematically implemented to search Medline and the Cochrane Register of Clinical Trials for publications between 1996 and 2012. Results Twenty studies were included in the review: 13 in vitro studies and 7 clinical studies. In vitro studies investigated the effects of extreme CSII conditions (high temperature and mechanical agitation) on the risk of catheter occlusions and insulin stability factors, such as potency, purity, high molecular weight protein content, pH stability, and preservative content (m-cresol, phenol). Under these conditions, the overall stability of rapid-acting insulin analogs was similar for insulin lispro, insulin aspart, and insulin glulisine, although insulin glulisine showed greater susceptibility to insulin precipitation and catheter occlusions. A limited number of clinical trials were identified; this evidence-based information suggests that the rate of catheter occlusions in patients with type 1 diabetes using CSII treatment may vary depending on the rapid-acting analog used. Conclusions Based on a limited amount of available data, the safety, stability, and performance of the three available rapid-acting insulin analogs available for use with CSII were similar. However, there is limited evidence suggesting that the risk of occlusion may vary with the insulin preparation under certain circumstances. PMID:24351186

  17. Regulation of adiponectin production by insulin: interactions with tumor necrosis factor-α and interleukin-6.

    PubMed

    Hajri, Tahar; Tao, Huan; Wattacheril, Julia; Marks-Shulman, Pamela; Abumrad, Naji N

    2011-02-01

    Obesity is often associated with insulin resistance, low-grade systemic inflammation, and reduced plasma adiponectin. Inflammation is also increased in adipose tissue, but it is not clear whether the reductions of adiponectin levels are related to dysregulation of insulin activity and/or increased proinflammatory mediators. In this study, we investigated the interactions of insulin, tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) in the regulation of adiponectin production using in vivo and in vitro approaches. Plasma adiponectin and parameters of insulin resistance and inflammation were assessed in a cohort of lean and obese insulin-resistant subjects. In addition, the effect of insulin was examined in vivo using the hyperinsulinemic-euglycemic clamp, and in adipose tissue (AT) cultures. Compared with lean subjects, the levels of total adiponectin, and especially the high-molecular-weight (HMW) isomer, were abnormally low in obese insulin-resistant subjects. The hyperinsulinemic clamp data confirmed the insulin-resistant state in the obese patients and showed that insulin infusion significantly increased the plasma adiponectin in lean but not obese subjects (P < 0.01). Similarly, insulin increased total adiponectin release from AT explants of lean and not obese subjects. Moreover, expression and secretion of TNF-α and IL-6 increased significantly in AT of obese subjects and were negatively associated with expression and secretion of adiponectin. In 3T3-L1 and human adipocyte cultures, insulin strongly enhanced adiponectin expression (2-fold) and secretion (3-fold). TNF-α, and not IL-6, strongly opposed the stimulatory effects of insulin. Intriguingly, the inhibitory effect of TNF-α was especially directed toward the HMW isomer of adiponectin. In conclusion, these studies show that insulin upregulates adiponectin expression and release, and that TNF-α opposes the stimulatory effects of insulin. A combination of insulin resistance and increased TNF

  18. Biosimilar insulins.

    PubMed

    Heinemann, Lutz

    2012-08-01

    Until now most insulin used in developed countries is manufactured and distributed by a small number of multinational companies. Other pharmaceutical companies - many of these are located in countries such as India or China - are also able to manufacture insulin with modern biotechnological methods. Additionally, the patents for many insulin formulations have expired or are going to expire soon. This enables such companies to produce insulins and to apply for market approval of these as biosimilar insulins (BIs) in highly regulated markets such as the EU or the US. To understand the complexity of BIs' approval and usage, scientific and regulatory aspects have to be discussed. Differences in the manufacturing process (none of the insulin-manufacturing procedures are identical) result in the fact that all insulin that might become BIs differ from the originator insulin to some extent. The question is, have such differences in the structure of the insulin molecule and or the purity and so on clinically relevant consequences for the biological effects induced or not. The guidelines already in place in the EU for market approval require that the manufacturer demonstrates that his insulin has a safety and efficacy profile that is similar to that of the 'original' insulin formulation. Recently guidelines for biosimilars were issued in the US; however, these do not cover insulin. Although a challenging approval process for insulins to become BI might be regarded as a hurdle to keep companies out of certain markets, it is fair to say that the potential safety and efficacy issues surrounding BI are substantial and relevant, and do warrant a careful and evidence-driven approval process. Nevertheless, it is very likely that in the next years, BIs will come to the market also in highly regulated markets.

  19. Expectations about insulin therapy, perceived insulin-delivery system social acceptability, and insulin treatment satisfaction contribute to decreases in insulin therapy self-efficacy in patients with type 2 diabetes after 36 weeks insulin therapy.

    PubMed

    Hayes, Risa P; Curtis, Bradley; Ilag, Liza; Nelson, David R; Wong, Mayme; Funnell, Martha

    2013-09-01

    Self-efficacy plays a critical role in diabetes self-care. Herein we explore factors contributing to decreased insulin therapy self-efficacy in insulin-naïve patients with type 2 diabetes mellitus (T2DM) initiating and managing insulin therapy over 36 weeks. The study was conducted within an international, randomized clinical trial comparing two insulin therapies administered by insulin pen in patients with T2DM inadequately controlled with oral antihyperglycemic medications. Patients completed the Self-Efficacy about Insulin Therapy Questionnaire (SEITQ) at baseline and endpoint. Patients also completed patient-reported measures assessing expectations about insulin therapy at baseline and perceptions about insulin therapy and insulin-delivery system (IDS) satisfaction at endpoint. Baseline and endpoint SEITQ scores were compared. Using prespecified criteria, patients were classified as having "decreased" or "no change/improved" insulin self-efficacy. Demographic, clinical, and patient-reported variables were entered into a logistic regression model with decreased insulin self-efficacy (yes or no) as the dependent variable. Baseline and endpoint SEITQ data were available for 450 insulin-naïve T2DM patients (mean age 59 years; 53% female; 57% Caucasian; mean baseline HbA1c 9.4%; 80.0 mmol/mol). Insulin therapy self-efficacy improved from baseline to endpoint (74.0 vs 77.5; P<0.001). Logistic regression analysis indicated that lower IDS satisfaction (P<0.0001), lower IDS social acceptability (P=0.004), and more positive expectations of insulin therapy (P<0.0001) were associated with decreased insulin self-efficacy. A candid discussion between clinicians and their insulin-naïve T2DM patients about the benefits and challenges of insulin therapy may prevent unrealistic expectations that could potentially undermine insulin self-efficacy. © 2013 Wiley Publishing Asia Pty Ltd and Ruijin Hospital, Shanghai Jiaotong University School of Medicine.

  20. Evaluation of fasting plasma insulin concentration as an estimate of insulin action in nondiabetic individuals: comparison with the homeostasis model assessment of insulin resistance (HOMA-IR).

    PubMed

    Abbasi, Fahim; Okeke, QueenDenise; Reaven, Gerald M

    2014-04-01

    Insulin-mediated glucose disposal varies severalfold in apparently healthy individuals, and approximately one-third of the most insulin resistant of these individuals is at increased risk to develop various adverse clinical syndromes. Since direct measurements of insulin sensitivity are not practical in a clinical setting, several surrogate estimates of insulin action have been proposed, including fasting plasma insulin (FPI) concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) calculated by a formula employing fasting plasma glucose (FPG) and FPI concentrations. The objective of this study was to compare FPI as an estimate of insulin-mediated glucose disposal with values generated by HOMA-IR in 758 apparently healthy nondiabetic individuals. Measurements were made of FPG, FPI, triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C) concentrations, and insulin-mediated glucose uptake was quantified by determining steady-state plasma glucose (SSPG) concentration during the insulin suppression test. FPI and HOMA-IR were highly correlated (r = 0.98, P < 0.001). The SSPG concentration also correlated to a similar degree (P < 0.001) with FPI (r = 0.60) and HOMA-IR (r = 0.64). Furthermore, the relationship between FPI and TG (r = 0.35) and HDL-C (r = -0.40) was comparable to that between HOMA-IR and TG (r = 0.39) and HDL-C (r = -0.41). In conclusion, FPI and HOMA-IR are highly correlated in nondiabetic individuals, with each estimate accounting for ~40% of the variability (variance) in a direct measure of insulin-mediated glucose disposal. Calculation of HOMA-IR does not provide a better surrogate estimate of insulin action, or of its associated dyslipidemia, than measurement of FPI.

  1. Insulin Is a Key Modulator of Fetoplacental Endothelium Metabolic Disturbances in Gestational Diabetes Mellitus

    PubMed Central

    Sobrevia, Luis; Salsoso, Rocío; Fuenzalida, Bárbara; Barros, Eric; Toledo, Lilian; Silva, Luis; Pizarro, Carolina; Subiabre, Mario; Villalobos, Roberto; Araos, Joaquín; Toledo, Fernando; González, Marcelo; Gutiérrez, Jaime; Farías, Marcelo; Chiarello, Delia I.; Pardo, Fabián; Leiva, Andrea

    2016-01-01

    Gestational diabetes mellitus (GDM) is a disease of the mother that associates with altered fetoplacental vascular function. GDM-associated maternal hyperglycaemia result in fetal hyperglycaemia, a condition that leads to fetal hyperinsulinemia and altered L-arginine transport and synthesis of nitric oxide, i.e., endothelial dysfunction. These alterations in the fetoplacental endothelial function are present in women with GDM that were under diet or insulin therapy. Since these women and their newborn show normal glycaemia at term, other factors or conditions could be altered and/or not resolved by restoring normal level of circulating D-glucose. GDM associates with metabolic disturbances, such as abnormal handling of the locally released vasodilator adenosine, and biosynthesis and metabolism of cholesterol lipoproteins, or metabolic diseases resulting in endoplasmic reticulum stress and altered angiogenesis. Insulin acts as a potent modulator of all these phenomena under normal conditions as reported in primary cultures of cells obtained from the human placenta; however, GDM and the role of insulin regarding these alterations in this disease are poorly understood. This review focuses on the potential link between insulin and endoplasmic reticulum stress, hypercholesterolemia, and angiogenesis in GDM in the human fetoplacental vasculature. Based in reports in primary culture placental endothelium we propose that insulin is a factor restoring endothelial function in GDM by reversing ERS, hypercholesterolaemia and angiogenesis to a physiological state involving insulin activation of insulin receptor isoforms and adenosine receptors and metabolism in the human placenta from GDM pregnancies. PMID:27065887

  2. Multinational Consensus: Insulin Initiation with Insulin Degludec/Aspart (IDegAsp).

    PubMed

    Kalra, Sanjay; Atkin, Stephen; Cervera, Antonio; Das, Ashok Kumar; Demir, Ozgur; Demir, Tevfik; Fariduddin, Md; Vo, Khoa Tuan; Ku, Bon Jeong; Kumar, Ajay; Latif, Zafar A; Malek, Rachid; Matawaran, Bien J; Mehta, Roopa; Tran, Nam Quang; Panelo, Araceli; Ruder, Sundeep; Saldana, Joel Rodriquez; Shaikh, Khalid A; Shakya, Amit; Shrestha, Dina; Unnikrishnan, A G

    2018-05-23

    Insulin degludec/aspart (IDegAsp) is the first soluble insulin co-formulation, combining a long-acting insulin degludec (IDeg) and rapid-acting insulin aspart (IAsp). In type 2 diabetes patients with oral antidiabetes agent (OAD) inadequacy, insulin initiation with IDegAsp once daily provides superior long-term glycemic control compared to insulin glargine, with similar fasting plasma glucose (FPG) and insulin doses, and numerically lower rates of overall and nocturnal hypoglycemia. Furthermore, in patients with uncontrolled type 2 diabetes previously treated with insulins, IDegAsp twice daily effectively improves glycated hemoglobin and FPG, with fewer hypoglycemic episodes versus premix insulins and basal bolus therapy. In patients with type 1 diabetes mellitus, IDegAsp once daily with two doses of IAsp is a convenient, yet effective, regimen as compared to the conventional 4-5 injection-based basal bolus therapy. IDegAsp is an appropriate and reasonable option for initiation of insulin therapy in both type 1 and type 2 diabetes.

  3. Hyperinsulinemic hypoglycemia associated with insulin antibodies caused by exogenous insulin analog.

    PubMed

    Su, Chih-Ting; Lin, Yi-Chun

    2016-01-01

    Insulin antibodies (IA) associated with exogenous insulin administration seldom caused hypoglycemia and had different characteristics from insulin autoantibodies (IAA) found in insulin autoimmune syndrome (IAS), which was first described by Dr Hirata in 1970. The characteristic of IAS is the presence of insulin-binding autoantibodies and related fasting or late postprandial hypoglycemia. Here, we report a patient with type 1 diabetes mellitus under insulin glargine and insulin aspart treatment who developed recurrent spontaneous post-absorptive hyperinsulinemic hypoglycemia with the cause probably being insulin antibodies induced by exogenous injected insulin. Examinations of serial sera disclosed a high titre of insulin antibodies (33%, normal <5%), high insulin concentration (111.9 IU/mL) and undetectable C-peptide when hypoglycemia occurred. An oral glucose tolerance test revealed persistent high serum levels of total insulin and undetectable C-peptide. Image studies of the pancreas were unremarkable, which excluded the diagnosis of insulinoma. The patient does not take any of the medications containing sulfhydryl compounds, which had been reported to cause IAS. After administering oral prednisolone for 3 weeks, hypoglycemic episodes markedly improved, and he was discharged smoothly. Insulin autoimmune syndrome (IAS) or IAS-like situation should be one of the differential diagnosis in patients with hyperinsulinemic hypoglycemia.Although less reported, insulin antibodies (IA) caused by exogenous insulin analog should be considered as the cause of hypoglycemia.Patients with suspected insulin autoimmune syndrome (IAS) should be screened for drugs related to autoimmunity to endogenous insulin.

  4. UV-light exposure of insulin: pharmaceutical implications upon covalent insulin dityrosine dimerization and disulphide bond photolysis.

    PubMed

    Correia, Manuel; Neves-Petersen, Maria Teresa; Jeppesen, Per Bendix; Gregersen, Søren; Petersen, Steffen B

    2012-01-01

    structure. Structural damage includes insulin dimerization via dityrosine cross-linking or disulphide bond disruption, which affects the hormone's structure and bioactivity.

  5. Insulin signaling in various equine tissues under basal conditions and acute stimulation by intravenously injected insulin.

    PubMed

    Warnken, Tobias; Brehm, Ralph; Feige, Karsten; Huber, Korinna

    2017-10-01

    The aim of the study was to analyze key proteins of the equine insulin signaling cascade and their extent of phosphorylation in biopsies from muscle tissue (MT), liver tissue (LT), and nuchal AT, subcutaneous AT, and retroperitoneal adipose tissues. This was investigated under unstimulated (B1) and intravenously insulin stimulated (B2) conditions, which were achieved by injection of insulin (0.1 IU/kg bodyweight) and glucose (150 mg/kg bodyweight). Twelve warmblood horses aged 15 ± 6.8 yr (yr), weighing 559 ± 79 kg, and with a mean body condition score of 4.7 ± 1.5 were included in the study. Key proteins of the insulin signaling cascade were semiquantitatively determined using Western blotting. Furthermore, modulation of the cascade was assessed. The basal expression of the proteins was only slightly influenced during the experimental period. Insulin induced a high extent of phosphorylation of insulin receptor in LT (P < 0.01) but not in MT. Protein kinase B and mechanistic target of rapamycin expressed a higher extent of phosphorylation in all tissues in B2 biopsies. Adenosine monophosphate protein kinase, as a component related to insulin signaling, expressed enhanced phosphorylation in MT (P < 0.05) and adipose tissues (nuchal AT P < 0.05; SCAT P < 0.01; retroperitoneal adipose tissue P < 0.05), but not in LT at B2. Tissue-specific variations in the acute response of insulin signaling to intravenously injected insulin were observed. In conclusion, insulin sensitivity in healthy horses is based on a complex concerted action of different tissues by their variations in the molecular response to insulin. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Rebelling against the (Insulin) Resistance: A Review of the Proposed Insulin-Sensitizing Actions of Soybeans, Chickpeas, and Their Bioactive Compounds

    PubMed Central

    Zahradka, Peter

    2018-01-01

    Insulin resistance is a major risk factor for diseases such as type 2 diabetes and metabolic syndrome. Current methods for management of insulin resistance include pharmacological therapies and lifestyle modifications. Several clinical studies have shown that leguminous plants such as soybeans and pulses (dried beans, dried peas, chickpeas, lentils) are able to reduce insulin resistance and related type 2 diabetes parameters. However, to date, no one has summarized the evidence supporting a mechanism of action for soybeans and pulses that explains their ability to lower insulin resistance. While it is commonly assumed that the biological activities of soybeans and pulses are due to their antioxidant activities, these bioactive compounds may operate independent of their antioxidant properties and, thus, their ability to potentially improve insulin sensitivity via alternative mechanisms needs to be acknowledged. Based on published studies using in vivo and in vitro models representing insulin resistant states, the proposed mechanisms of action for insulin-sensitizing actions of soybeans, chickpeas, and their bioactive compounds include increasing glucose transporter-4 levels, inhibiting adipogenesis by down-regulating peroxisome proliferator-activated receptor-γ, reducing adiposity, positively affecting adipokines, and increasing short-chain fatty acid-producing bacteria in the gut. Therefore, this review will discuss the current evidence surrounding the proposed mechanisms of action for soybeans and certain pulses, and their bioactive compounds, to effectively reduce insulin resistance. PMID:29601521

  7. Insulin-egg yolk dispersions in self microemulsifying system.

    PubMed

    Singnurkar, P S; Gidwani, S K

    2008-11-01

    Formulation of insulin into a microemulsion very often presents a physicochemical instability during their preparation and storage. In order to overcome this lack of stability and facilitate the handling of these colloidal systems, stabilization of insulin in presence of hydrophobic components of a microemulsion appears as the most promising strategy. The present paper reports the use of egg yolk for stabilization of insulin in self microemulsifying dispersions. Insulin loaded egg yolk self microemulsifying dispersions were prepared by lyophilization followed by dispersion into self microemulsifying vehicle. The physicochemical characterization of selfmicroemulsifying dispersions includes such as insulin encapsulation efficiency, in vitro stability of insulin in presence of proteolytic enzymes and in vitro release. The biological activity of insulin from the dispersion was estimated by enzyme-linked immunosorbant assay and in vivo using Wistar diabetic rats. The particle size ranged 1.023±0.316 μm in diameter and insulin encapsulation efficiency was 98.2±0.9 %. Insulin hydrophobic self microemulsifying dispersions suppressed insulin release in pH 7.4 phosphate buffer and shown to protect insulin from enzymatic degradation in vitro in presence of chymotripsin. Egg yolk encapsulated insulin was bioactive, demonstrated through both in vivo and in vitro.

  8. Hepatitis C virus nonstructural protein 5A favors upregulation of gluconeogenic and lipogenic gene expression leading towards insulin resistance: a metabolic syndrome.

    PubMed

    Parvaiz, Fahed; Manzoor, Sobia; Iqbal, Jawed; McRae, Steven; Javed, Farrakh; Ahmed, Qazi Laeeque; Waris, Gulam

    2014-05-01

    Chronic hepatitis C is a lethal blood-borne infection often associated with a number of pathologies such as insulin resistance and other metabolic abnormalities. Insulin is a key hormone that regulates the expression of metabolic pathways and favors homeostasis. In this study, we demonstrated the molecular mechanism of hepatitis C virus (HCV) nonstructural protein 5A (NS5A)-induced metabolic dysregulation. We showed that transient expression of HCV NS5A in human hepatoma cells increased lipid droplet formation through enhanced lipogenesis. We also showed increased transcriptional expression of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and diacylglycerol acyltransferase-1 (DGAT-1) in NS5A-expressing cells. On the other hand, there was significantly reduced transcriptional expression of microsomal triglyceride transfer protein (MTP) and peroxisome proliferator-activated receptor γ (PPARγ) in cells expressing HCV NS5A. Furthermore, increased gluconeogenic gene expression was observed in HCV-NS5A-expressing cells. In addition, it was also shown that HCV-NS5A-expressing hepatoma cells show serine phosphorylation of IRS-1, thereby hampering metabolic activity and contributing to insulin resistance. Therefore, this study reveals that HCV NS5A is involved in enhanced gluconeogenic and lipogenic gene expression, which triggers metabolic abnormality and impairs insulin signaling pathway.

  9. Effects of exenatide twice daily, exenatide once weekly or insulin in patients with type 2 diabetes and baseline HbA1c ≥10.0%: Two pooled analyses including 20 randomised controlled trials.

    PubMed

    Busch, Robert S; Ruggles, James; Han, Jenny; Hardy, Elise

    2017-12-01

    Patients with advanced type 2 diabetes (T2D) and high glycated haemoglobin (HbA1c) values can be difficult to treat because of their severe metabolic disease. This pooled analysis examined the treatment effects of exenatide twice daily (BID), exenatide once weekly (QW) and insulin in patients with high baseline HbA1c (≥10.0%). This post hoc analysis used pooled data from 12 and 8 randomised controlled trials of exenatide BID and exenatide QW, respectively. Patients with T2D who completed at least 24 weeks of treatment with exenatide BID, exenatide QW or insulin (insulin glargine, insulin detemir or insulin aspart) were categorised by baseline HbA1c. Patients with HbA1c ≥10.0% were included in the analysis. Both exenatide and insulin reduced HbA1c (mean ± SE reduction: -2.0% ± 0.2% [exenatide] and -2.1% ± 0.2% [insulin] in the exenatide BID studies, and -2.6% ± 0.1% [exenatide] and -2.1% ± 0.2% [insulin] in the exenatide QW studies; all P < .001). Body weight decreased with exenatide and increased with insulin. Systolic blood pressure decreased with exenatide QW. Insulin dose increased over the course of treatment. The most common adverse events with exenatide were gastrointestinal. Insulin was associated with some hypoglycaemia risk. Hypoglycaemia events occurred infrequently with exenatide when given without sulphonylureas. For patients with high HbA1c, treatment with exenatide or insulin both improved glycaemic control. Given the associated weight loss and low risk of hypoglycaemia, exenatide may be a suitable alternative to treatment with insulin in certain patients with T2D and high HbA1c. © 2017 John Wiley & Sons Ltd.

  10. Overfeeding Dairy Cattle During Late-Pregnancy Alters Hepatic PPARα-Regulated Pathways Including Hepatokines: Impact on Metabolism and Peripheral Insulin Sensitivity

    PubMed Central

    Khan, M Jawad; Jacometo, Carolina B; Graugnard, Daniel E; Corrêa, Marcio N; Schmitt, Eduardo; Cardoso, Felipe; Loor, Juan J

    2014-01-01

    Hepatic metabolic gene networks were studied in dairy cattle fed control (CON, 1.34 Mcal/kg) or higher energy (overfed (OVE), 1.62 Mcal/kg) diets during the last 45 days of pregnancy. A total of 57 target genes encompassing PPARα-targets/co-regulators, hepatokines, growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis, lipogenesis, and lipoprotein metabolism were evaluated on −14, 7, 14, and 30 days around parturition. OVE versus CON cows were in more negative energy balance (NEB) postpartum and had greater serum non-esterified fatty acids (NEFA), β-hydroxybutyrate (BHBA), and liver triacylglycerol (TAG) concentrations. Milk synthesis rate did not differ. Liver from OVE cows responded to postpartal NEB by up-regulating expression of PPARα-targets in the fatty acid oxidation and ketogenesis pathways, along with gluconeogenic genes. Hepatokines (fibroblast growth factor 21 (FGF21), angiopoietin-like 4 (ANGPTL4)) and apolipoprotein A-V (APOA5) were up-regulated postpartum to a greater extent in OVE than CON. OVE led to greater blood insulin prepartum, lower NEFA:insulin, and greater lipogenic gene expression suggesting insulin sensitivity was not impaired. A lack of change in APOB, MTTP, and PNPLA3 coupled with upregulation of PLIN2 postpartum in cows fed OVE contributed to TAG accumulation. Postpartal responses in NEFA and FGF21 with OVE support a role of this hepatokine in diminishing adipose insulin sensitivity. PMID:24737933

  11. Abnormal Glucose Metabolism and High-Energy Expenditure in Idiopathic Pulmonary Arterial Hypertension

    PubMed Central

    Malin, Steven K.; Barnes, Jarrod W.; Tian, Liping; Kirwan, John P.; Dweik, Raed A.

    2017-01-01

    Rationale: Insulin resistance has emerged as a potential mechanism related to the pathogenesis of idiopathic pulmonary arterial hypertension (IPAH). However, direct measurements of insulin and glucose metabolism have not been performed in patients with IPAH to date. Objectives: To perform comprehensive metabolic phenotyping of humans with IPAH. Methods: We assessed plasma insulin and glucose, using an oral glucose tolerance test and estimated insulin resistance, and β-cell function in 14 patients with IPAH and 14 control subjects matched for age, sex, blood pressure, and body mass index. Body composition (dual-energy X-ray absorptiometry), inflammation (CXC chemokine ligand 10, endothelin-1), physical fitness (6-min walk test), and energy expenditure (indirect calorimetry) were also assessed. Measurements and Main Results: Patients with IPAH had a higher rate of impaired glucose tolerance (57 vs. 14%; P < 0.05) and reduced glucose-stimulated insulin secretion compared with matched control subjects (IPAH: 1.31 ± 0.76 μU/ml⋅mg/dl vs. control subjects: 2.21 ± 1.27 μU/ml⋅mg/dl; P < 0.05). Pancreatic β-cell function was associated with circulating endothelin-1 (r = –0.71, P < 0.01) and CXC chemokine ligand 10 (r = –0.56, P < 0.05). Resting energy expenditure was elevated in IPAH (IPAH: 32 ± 3.4 vs. control subjects: 28.8 ± 2.9 kcal/d/kg fat-free mass; P < 0.05) and correlated with the plasma glucose response (r = 0.51, P < 0.01). Greater insulin resistance was associated with reduced 6-minute walk distance (r = 0.55, P < 0.05). Conclusions: Independent of age, sex, blood pressure, and body mass index, patients with IPAH have glucose intolerance, decreased insulin secretion in response to glucose, and elevated resting energy expenditure. These abnormalities are associated with circulating markers of inflammation and vascular dysfunction. PMID:27922752

  12. Pure Insulin Nanoparticle Agglomerates for Pulmonary Delivery

    PubMed Central

    Bailey, Mark M.; Gorman, Eric M.; Munson, Eric J.; Berkland, Cory J.

    2009-01-01

    Diabetes is a set of diseases characterized by defects in insulin utilization, either through autoimmune destruction of insulin-producing cells (Type I) or insulin resistance (Type II). Treatment options can include regular injections of insulin, which can be painful and inconvenient, often leading to low patient compliance. To overcome this problem, novel formulations of insulin are being investigated, such as inhaled aerosols. Sufficient deposition of powder in the peripheral lung to maximize systemic absorption requires precise control over particle size and density, with particles between 1 and 5 μm in aerodynamic diameter being within the respirable range. Insulin nanoparticles were produced by titrating insulin dissolved at low pH up to the pI of the native protein, and were then further processed into microparticles using solvent displacement. Particle size, crystallinity, dissolution properties, structural stability, and bulk powder density were characterized. We have demonstrated that pure drug insulin microparticles can be produced from nanosuspensions with minimal processing steps without excipients, and with suitable properties for deposition in the peripheral lung. PMID:18959432

  13. [Comparison between basal insulin glargine and NPH insulin in patients with diabetes type 1 on conventional intensive insulin therapy].

    PubMed

    Pesić, Milica; Zivić, Sasa; Radenković, Sasa; Velojić, Milena; Dimić, Dragan; Antić, Slobodan

    2007-04-01

    Insulin glargine is a long-acting insulin analog that mimics normal basal insulin secretion without pronounced peaks. The aim of this study was to compare insulin glargine with isophane insulin (NPH insulin) for basal insulin supply in patients with type 1 diabetes. A total of 48 type 1 diabetics on long term conventional intensive insulin therapy (IT) were randomized to three different regimens of basal insulin substitution: 1. continuation of NPH insulin once daily at bedtime with more intensive selfmonitoring (n = 15); 2. NPH insulin twice daily (n = 15); 3. insulin glargine once daily (n = 18). Meal time insulin aspart was continued in all groups. Fasting blood glucose (FBG) was lower in the glargine group (7.30+/-0.98 mmol/1) than in the twice daily NPH group (7.47+/-1.06 mmol/1), but without significant difference. FBG was significantly higher in the once daily NPH group (8.44+/-0.85 mmol/l; p < 0.05). HbAlc after 3 months did not change in the once daily NPH group, but decreased in the glargine group (from 7.72+/-0.86% to 6.87+/-0.50%), as well as in the twice daily NPH group (from 7.80+/-0.83% to 7.01+/-0.63%). Total daily insulin doses were similar in all groups but only in the glargine group there was an increase of basal and decrease of meal related insulin doses. The frequency of mild hypoglycemia was significantly lower in the glargine group (6.56+/-2.09) than in both NPH groups (9.0+/-1.65 in twice daily NPH group and 8.13+/-1.30 in other NPH group) (episodes/patients-month, p < 0.05). Basal insulin supplementation in type 1 diabetes mellitus with either twice daily NPH insulin or glargine can result in similar glycemic control when combined with meal time insulin aspart. However, with glargine regimen FBG, HbAlc and frequency of hypoglycemic event are lower. These facts contribute to better patients satisfaction with insulin glargine versus NPH insulin in IIT in type 1 diabetics.

  14. UV-Light Exposure of Insulin: Pharmaceutical Implications upon Covalent Insulin Dityrosine Dimerization and Disulphide Bond Photolysis

    PubMed Central

    Correia, Manuel; Neves-Petersen, Maria Teresa; Jeppesen, Per Bendix; Gregersen, Søren; Petersen, Steffen B.

    2012-01-01

    structure. Structural damage includes insulin dimerization via dityrosine cross-linking or disulphide bond disruption, which affects the hormone’s structure and bioactivity. PMID:23227203

  15. Simulation-Based Evaluation of Dose-Titration Algorithms for Rapid-Acting Insulin in Subjects with Type 2 Diabetes Mellitus Inadequately Controlled on Basal Insulin and Oral Antihyperglycemic Medications.

    PubMed

    Ma, Xiaosu; Chien, Jenny Y; Johnson, Jennal; Malone, James; Sinha, Vikram

    2017-08-01

    The purpose of this prospective, model-based simulation approach was to evaluate the impact of various rapid-acting mealtime insulin dose-titration algorithms on glycemic control (hemoglobin A1c [HbA1c]). Seven stepwise, glucose-driven insulin dose-titration algorithms were evaluated with a model-based simulation approach by using insulin lispro. Pre-meal blood glucose readings were used to adjust insulin lispro doses. Two control dosing algorithms were included for comparison: no insulin lispro (basal insulin+metformin only) or insulin lispro with fixed doses without titration. Of the seven dosing algorithms assessed, daily adjustment of insulin lispro dose, when glucose targets were met at pre-breakfast, pre-lunch, and pre-dinner, sequentially, demonstrated greater HbA1c reduction at 24 weeks, compared with the other dosing algorithms. Hypoglycemic rates were comparable among the dosing algorithms except for higher rates with the insulin lispro fixed-dose scenario (no titration), as expected. The inferior HbA1c response for the "basal plus metformin only" arm supports the additional glycemic benefit with prandial insulin lispro. Our model-based simulations support a simplified dosing algorithm that does not include carbohydrate counting, but that includes glucose targets for daily dose adjustment to maintain glycemic control with a low risk of hypoglycemia.

  16. Anti-insulin antibody test

    MedlinePlus

    Insulin antibodies - serum; Insulin Ab test; Insulin resistance - insulin antibodies; Diabetes - insulin antibodies ... You appear to have an allergic response to insulin Insulin no longer seems to control your diabetes

  17. Neurologic abnormalities in murderers.

    PubMed

    Blake, P Y; Pincus, J H; Buckner, C

    1995-09-01

    Thirty-one individuals awaiting trial or sentencing for murder or undergoing an appeal process requested a neurologic examination through legal counsel. We attempted in each instance to obtain EEG, MRI or CT, and neuropsychological testing. Neurologic examination revealed evidence of "frontal" dysfunction in 20 (64.5%). There were symptoms or some other evidence of temporal lobe abnormality in nine (29%). We made a specific neurologic diagnosis in 20 individuals (64.5%), including borderline or full mental retardation (9) and cerebral palsy (2), among others. Neuropsychological testing revealed abnormalities in all subjects tested. There were EEG abnormalities in eight of the 20 subjects tested, consisting mainly of bilateral sharp waves with slowing. There were MRI or CT abnormalities in nine of the 19 subjects tested, consisting primarily of atrophy and white matter changes. Psychiatric diagnoses included paranoid schizophrenia (8), dissociative disorder (4), and depression (9). Virtually all subjects had paranoid ideas and misunderstood social situations. There was a documented history of profound, protracted physical abuse in 26 (83.8%) and of sexual abuse in 10 (32.3%). It is likely that prolonged, severe physical abuse, paranoia, and neurologic brain dysfunction interact to form the matrix of violent behavior.

  18. Insulin resistance and improvements in signal transduction.

    PubMed

    Musi, Nicolas; Goodyear, Laurie J

    2006-02-01

    Type 2 diabetes and obesity are common metabolic disorders characterized by resistance to the actions of insulin to stimulate skeletal muscle glucose disposal. Insulin-resistant muscle has defects at several steps of the insulin-signaling pathway, including decreases in insulin-stimulated insulin receptor and insulin receptor substrate-1 tyrosine phosphorylation, and phosphatidylinositol 3-kinase (PI 3-kinase) activation. One approach to increase muscle glucose disposal is to reverse/improve these insulin-signaling defects. Weight loss and thiazolidinediones (TZDs) improve glucose disposal, in part, by increasing insulin-stimulated insulin receptor and IRS-1 tyrosine phosphorylation and PI 3-kinase activity. In contrast, physical training and metformin improve whole-body glucose disposal but have minimal effects on proximal insulin-signaling steps. A novel approach to reverse insulin resistance involves inhibition of the stress-activated protein kinase Jun N-terminal kinase (JNK) and the protein tyrosine phosphatases (PTPs). A different strategy to increase muscle glucose disposal is by stimulating insulin-independent glucose transport. AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge and becomes activated in situations of energy consumption, such as muscle contraction. Several studies have shown that pharmacologic activation of AMPK increases glucose transport in muscle, independent of the actions of insulin. AMPK activation is also involved in the mechanism of action of metformin and adiponectin. Moreover, in the hypothalamus, AMPK regulates appetite and body weight. The effect of AMPK to stimulate muscle glucose disposal and to control appetite makes it an important pharmacologic target for the treatment of type 2 diabetes and obesity.

  19. Weight loss after bariatric surgery reverses insulin-induced increases in brain glucose metabolism of the morbidly obese.

    PubMed

    Tuulari, Jetro J; Karlsson, Henry K; Hirvonen, Jussi; Hannukainen, Jarna C; Bucci, Marco; Helmiö, Mika; Ovaska, Jari; Soinio, Minna; Salminen, Paulina; Savisto, Nina; Nummenmaa, Lauri; Nuutila, Pirjo

    2013-08-01

    Obesity and insulin resistance are associated with altered brain glucose metabolism. Here, we studied brain glucose metabolism in 22 morbidly obese patients before and 6 months after bariatric surgery. Seven healthy subjects served as control subjects. Brain glucose metabolism was measured twice per imaging session: with and without insulin stimulation (hyperinsulinemic-euglycemic clamp) using [18F]fluorodeoxyglucose scanning. We found that during fasting, brain glucose metabolism was not different between groups. However, the hyperinsulinemic clamp increased brain glucose metabolism in a widespread manner in the obese but not control subjects, and brain glucose metabolism was significantly higher during clamp in obese than in control subjects. After follow-up, 6 months postoperatively, the increase in glucose metabolism was no longer observed, and this attenuation was coupled with improved peripheral insulin sensitivity after weight loss. We conclude that obesity is associated with increased insulin-stimulated glucose metabolism in the brain and that this abnormality can be reversed by bariatric surgery.

  20. Subcutaneous insulin absorption explained by insulin's physicochemical properties. Evidence from absorption studies of soluble human insulin and insulin analogues in humans.

    PubMed

    Kang, S; Brange, J; Burch, A; Vølund, A; Owens, D R

    1991-11-01

    To study the influence of molecular aggregation on rates of subcutaneous insulin absorption and to attempt to elucidate the mechanism of absorption of conventional soluble human insulin in humans. Seven healthy male volunteers aged 22-43 yr and not receiving any drugs comprised the study. This study consisted of a single-blind randomized comparison of equimolar dosages of 125I-labeled forms of soluble hexameric 2 Zn2+ human insulin and human insulin analogues with differing association states at pharmaceutical concentrations (AspB10, dimeric; AspB28, mixture of monomers and dimers; AspB9, GluB27, monomeric). After an overnight fast and a basal period of 1 h, 0.6 nmol/kg of either 125I-labeled human soluble insulin (Actrapid HM U-100) or 125I-labeled analogue was injected subcutaneously on 4 separate days 1 wk apart. Absorption was assessed by measurement of residual radioactivity at the injection site by external gamma-counting. The mean +/- SE initial fractional disappearance rates for the four preparations were 20.7 +/- 1.9 (hexameric soluble human insulin), 44.4 +/- 2.5 (dimeric analogue AspB10), 50.6 +/- 3.9 (analogue AspB28), and 67.4 +/- 7.4%/h (monomeric analogue AspB9, GluB27). Absorption of the dimeric analogue was significantly faster than that of hexameric human insulin (P less than 0.001); absorption of monomeric insulin analogue AspB9, GluB27 was significantly faster than that of dimeric analogue AspB10 (P less than 0.01). There was an inverse linear correlation between association state and the initial fractional disappearance rates (r = -0.98, P less than 0.02). Analysis of the disappearance data on a log linear scale showed that only the monomeric analogue had a monoexponential course throughout. Two phases in the rates of absorption were identified for the dimer and three for hexameric human insulin. The fractional disappearance rates (%/h) calculated by log linear regression analysis were monomer 73.3 +/- 6.8; dimer 44.4 +/- 2.5 from 0 to 2 h and

  1. Dietary patterns and the insulin resistance phenotype among non-diabetic adults

    USDA-ARS?s Scientific Manuscript database

    Background: Information on the relation between dietary patterns derived by cluster analysis and insulin resistance is scarce. Objective: To compare insulin resistance phenotypes, including waist circumference, body mass index, fasting and 2-hour post-challenge insulin, insulin sensitivity index (I...

  2. Closed loop insulin delivery in diabetes.

    PubMed

    Battelino, Tadej; Omladič, Jasna Šuput; Phillip, Moshe

    2015-06-01

    The primary goal of type 1 diabetes treatment is attaining near-normal glucose values. This currently remains out of reach for most people with type 1 diabetes despite intensified insulin treatment in the form of insulin analogues, educational interventions, continuous glucose monitoring, and sensor augmented insulin pump. The main remaining problem is risk of hypoglycaemia, which cannot be sufficiently reduced in all patient groups. Additionally, patients' burn-out often develops with years of tedious day-to-day diabetes management, rendering available diabetes-related technology less efficient. Over the past 40 years, several attempts have been made towards computer-programmed insulin delivery in the form of closed loop, with faster developments especially in the past decade. Automated insulin delivery has reduced human error in glycaemic control and considerably lessened the burden of routine self-management. In this chapter, data from randomized controlled trials with closed-loop insulin delivery that included type 1 diabetes population are summarized, and an evidence-based vision for possible routine utilization of closed loop is provided. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Projections for insulin treatment for diabetics.

    PubMed

    Cao, Ying; Lam, Laura

    2002-06-01

    The evolution of insulin treatment of diabetes has dramatically changed the natural course of this disease. Modern recombinant DNA technology has brought about many new insulin analogues with improved pharmacokinetics, resulting in better glycemic control. In addition, improved insulin delivery systems, such as insulin pumps and pens, have been introduced to provide convenience and to enhance patient compliance. Efforts are currently being devoted to developing noninvasive insulin formulations, such as oral and pulmonary insulin. A number of products are at different stages of clinical trials. Meanwhile, the quest for a permanent cure for diabetes continues. The frontier of diabetes research has gone through a period of substantial expansion, with the emergence of new areas that include gene therapy, islet cell transplantation and diabetic vaccine. Technological breakthroughs, such as recombinant DNA, nanotechnology, microarray-aided genomics and proteomics, will provide more profound insights into the pathogenesis, and the immunological and biological basis of diabetes. Our growing knowledge in these areas will ultimately contribute to the discovery of preventive methods against or a cure for this disease.

  4. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues

    PubMed Central

    Dong, Yanlan; Chen, Fang; Mitch, William E.; Zhang, Liping

    2015-01-01

    Background/Objective In mice, a high fat diet (HFD) induces obesity, insulin resistance and myostatin production. We tested whether inhibition of myostatin in mice can reverse these HFD-induced abnormalities. Subjects/Methods C57BL/6 mice were fed a HFD for 16 weeks including the final 4 weeks some mice were treated with an anti-myostatin peptibody. Body composition, the respiratory exchange ratio plus glucose and insulin tolerance tests were examined. Myostatin knock down in C2C12 cells was performed using ShRNA lentivirus. Adipose tissue-derived stem cells were cultured to measure their reponses to conditioned media from C2C12 cells lacking myostatin, or to recombinant myostatin or Irisin. Isolated peritoneal macrophages were treated with myostatin or Irisin to determine if myostatin or Irisin induce inflammatory mechanisms. Results In HFD-fed mice, peptibody treatment stimulated muscle growth and improved insulin resistance. The improved glucose and insulin tolerances were confirmed when we found increased muscle expression of p-Akt and the glucose transporter, Glut4. In mice fed the HFD, the peptibody suppressed macrophage infiltration and the expression of proinflammatory cytokines in both muscle and adipocytes. Inhibition of myostatin caused the conversion of white (WAT) to brown adipose tissue (BAT) while stimulating fatty acid oxidation and increasing energy expenditure. The related mechanism is a muscle-to-fat cross talk mediated by Irisin. Myostatin inhibition increased PGC-1α expression and Irisin production in muscle. Irisin then stimulated WAT browning. Irisin also suppresses inflammation and stimulates macrophage polarization from M1 to M2 types. Concusion these results uncover a metabolic pathway from an increase in myostatin that suppresses Irisin leading to activation of inflammatory cytokines and insulin resistance. Thus, myostatin is a potential therapeutic target to treat insulin resistance of type II diabetes as well as the shortage of brown

  5. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues.

    PubMed

    Dong, Jiangling; Dong, Yanjun; Dong, Yanlan; Chen, Fang; Mitch, William E; Zhang, Liping

    2016-03-01

    In mice, a high-fat diet (HFD) induces obesity, insulin resistance and myostatin production. We tested whether inhibition of myostatin in mice can reverse these HFD-induced abnormalities. C57BL/6 mice were fed a HFD for 16 weeks including the final 4 weeks some mice were treated with an anti-myostatin peptibody. Body composition, the respiratory exchange ratio plus glucose and insulin tolerance tests were examined. Myostatin knock down in C2C12 cells was performed using small hairpin RNA lentivirus. Adipose tissue-derived stem cells were cultured to measure their responses to conditioned media from C2C12 cells lacking myostatin, or to recombinant myostatin or irisin. Isolated peritoneal macrophages were treated with myostatin or irisin to determine whether myostatin or irisin induce inflammatory mechanisms. In HFD-fed mice, peptibody treatment stimulated muscle growth and improved insulin resistance. The improved glucose and insulin tolerances were confirmed when we found increased muscle expression of p-Akt and the glucose transporter, Glut4. In HFD-fed mice, the peptibody suppressed macrophage infiltration and the expression of proinflammatory cytokines in both the muscle and adipocytes. Inhibition of myostatin caused the conversion of white (WAT) to brown adipose tissue, whereas stimulating fatty acid oxidation and increasing energy expenditure. The related mechanism is a muscle-to-fat cross talk mediated by irisin. Myostatin inhibition increased peroxisome proliferator-activated receptor gamma, coactivator 1α expression and irisin production in the muscle. Irisin then stimulated WAT browning. Irisin also suppresses inflammation and stimulates macrophage polarization from M1 to M2 types. These results uncover a metabolic pathway from an increase in myostatin that suppresses irisin leading to the activation of inflammatory cytokines and insulin resistance. Thus, myostatin is a potential therapeutic target to treat insulin resistance of type II diabetes as well

  6. Association of MEP1A gene variants with insulin metabolism in central European women with polycystic ovary syndrome.

    PubMed

    Lam, Uyen D P; Lerchbaum, Elisabeth; Schweighofer, Natascha; Trummer, Olivia; Eberhard, Katharina; Genser, Bernd; Pieber, Thomas R; Obermayer-Pietsch, Barbara

    2014-03-10

    Polycystic ovary syndrome (PCOS) shows not only hyperandrogenemia, hirsutism and fertility problems, but also metabolic disturbances including obesity, cardiovascular events and type-2 diabetes. Accumulating evidence suggests some degree of inflammation associated with prominent aspects of PCOS. We aimed to investigate the association of genetic variants 3'UTR rs17468190 (G/T) of the inflammation-associated gene MEP1A (GenBank ID: NM_005588.2) with metabolic disturbances in PCOS and healthy control women. Genetic variants rs17468190 (G/T) of MEP1A gene were analyzed in 576 PCOS women and 206 controls by using the Taqman fluorogenic 5'-exonuclease assay. This polymorphism was tested for association with anthropometric, metabolic, hormonal, and functional parameters of PCOS. There was a borderline significant difference in genotype distribution between PCOS and control women (p=0.046). In overweight/obese PCOS patients, the variants rs17468190 (G/T) in the MEP1A gene are associated with glucose and insulin metabolism. In a dominant model, the GG genotype of the MEP1A gene was more strongly associated with insulin metabolism in overweight/obese PCOS women (body mass index, BMI>25 kg/m(2)), than in GT+TT genotypes. The MEP1A GG-carriers showed a significantly increased homeostatic model assessment - insulin resistance (HOMA-IR) (p=0.003), elevation of fasting insulin (p=0.004) and stimulated insulin (30 min, p<0.001; 60 min, p=0.009; 120 min, p=0.009) as well as triglyceride (p=0.032) levels. MEP1A is a possible target gene for disease modification in PCOS. It might contribute to the abnormalities of glucose metabolism and insulin sensitivity and serve as a diagnostic or therapeutic target gene for PCOS. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Insulin resistance in first-trimester pregnant women with pre-pregnant glucose tolerance and history of recurrent spontaneous abortion.

    PubMed

    Hong, Y; Xie, Q X; Chen, C Y; Yang, C; Li, Y Z; Chen, D M; Xie, M Q

    2013-01-01

    Insulin resistance (IR) has been reported to play an important role in recurrent spontaneous abortion (RSA) among patients with polycystic ovary syndrome (PCOS). However, scanted materials exist regarding the independent effect of IR on RSA. The aim of this study is to investigate the status of IR in first trimester pregnant patients with normal pre-pregnant glucose tolerance and history of RSA. This two-center case-control study enrolled totally 626 first trimester pregnant women including 161 patients with a history of recurrent spontaneous abortion, who were pre-pregnantly glucose-tolerant according to oral glucose tolerance test (OGTT), and 465 women with no history of abnormal pregnancies of any kind. Clinical, biochemical and hormonal parameters were simultaneously measured in all participants. Serum beta-HCG, estradiol, progesterone, fasting plasma glucose and fasting plasma insulin levels, as well, the calculated homeostasis model assessment of insulin resistance index (HOMA-IR), fasting plasma glucose/insulin ratio(G/I) and pregnancy outcome were analyzed and compared. Serum beta-HCG and progesterone were found to be significantly lower in RSA group compared to controls. Subjects in RSA group were found to have higher HOMA-IR and lower G/I ratio than those in control group. Serum beta-HCG and progesterone were negatively correlated with HOMA-IR, and positively with G/I ratio even after adjustment for BMI. The spontaneous abortion rate within first trimester pregnancy of RSA patients was significantly higher than that in controls. In conclusion, woman with recurrent spontaneous abortion and normal pre-pregnant glucose metabolism tends to be more insulin resistant during first trimester pregnancy than healthy controls, no matter whether she has PCOS or not. Insulin resistance might be one of the direct causes that lead to recurrent abortion.

  8. Variability of Directly Measured First-Pass Hepatic Insulin Extraction and its Association With Insulin Sensitivity and Plasma Insulin.

    PubMed

    Asare-Bediako, Isaac; Paszkiewicz, Rebecca L; Kim, Stella P; Woolcott, Orison O; Kolka, Cathryn M; Burch, Miguel A; Kabir, Morvarid; Bergman, Richard N

    2018-05-11

    While the β-cells secrete insulin, it is the liver with its first-pass insulin extraction (FPE) that regulates the amount of insulin allowed into circulation for action on target tissues. The metabolic clearance rate of insulin, of which FPE is the dominant component, is reported to be a major determinant of insulin sensitivity (SI). We studied the intricate relationship between FPE, SI and fasting insulin. We used a direct method of measuring FPE, the paired portal/peripheral infusion protocol (PPII) where insulin is infused step-wise, either via the portal vein or a peripheral vein in healthy young dogs (n =12). FPE is calculated as the difference in clearance rates (slope of infusion rate vs. steady insulin plot) between the paired experiments. Significant correlations were found between FPE vs. clamp assessed SI (r s = 0.74); FPE vs. fasting insulin (r s = -0.64) and SI vs. fasting insulin (r s = - 0.67). Also, we found a wide variance in FPE (22.4 -77.2%; mean ± SD of 50.4 ± 19.1%) which is reflected in the variability of plasma insulin (48.1 ± 30.9pM) and SI (9.4 ± 5.8 x10 4 dL * kg -1 * min -1 * pM -1 ). FPE could be the nexus of regulation of both plasma insulin and SI. © 2018 by the American Diabetes Association.

  9. Protein Kinase-C Beta Contributes to Impaired Endothelial Insulin Signaling in Humans with Diabetes Mellitus

    PubMed Central

    Tabit, Corey E; Shenouda, Sherene M; Holbrook, Monica; Fetterman, Jessica L; Kiani, Soroosh; Frame, Alissa A; Kluge, Matthew A; Held, Aaron; Dohadwala, Mustali; Gokce, Noyan; Farb, Melissa; Rosenzweig, James; Ruderman, Neil; Vita, Joseph A; Hamburg, Naomi M

    2013-01-01

    Background Abnormal endothelial function promotes atherosclerotic vascular disease in diabetes. Experimental studies indicate that disruption of endothelial insulin signaling through the activity of protein kinase C-β (PKCβ) and nuclear factor κB (NFκB) reduces nitric oxide availability. We sought to establish whether similar mechanisms operate in the endothelium in human diabetes mellitus. Methods and Results We measured protein expression and insulin response in freshly isolated endothelial cells from patients with Type 2 diabetes mellitus (n=40) and non-diabetic controls (n=36). Unexpectedly, we observed 1.7-fold higher basal endothelial nitric oxide synthase (eNOS) phosphorylation at serine 1177 in patients with diabetes (P=0.007) without a difference in total eNOS expression. Insulin stimulation increased eNOS phosphorylation in non-diabetic subjects but not in diabetic patients (P=0.003) consistent with endothelial insulin resistance. Nitrotyrosine levels were higher in diabetic patients indicating endothelial oxidative stress. PKCβ expression was higher in diabetic patients and was associated with lower flow-mediated dilation (r=−0.541, P=0.02) Inhibition of PKCβ with LY379196 reduced basal eNOS phosphorylation and improved insulin-mediated eNOS activation in patients with diabetes. Endothelial NFκB activation was higher in diabetes and was reduced with PKCβ inhibition. Conclusions We provide evidence for the presence of altered eNOS activation, reduced insulin action and inflammatory activation in the endothelium of patients with diabetes. Our findings implicate PKCβ activity in endothelial insulin resistance. PMID:23204109

  10. Central insulin action in energy and glucose homeostasis.

    PubMed

    Plum, Leona; Belgardt, Bengt F; Brüning, Jens C

    2006-07-01

    Insulin has pleiotropic biological effects in virtually all tissues. However, the relevance of insulin signaling in peripheral tissues has been studied far more extensively than its role in the brain. An evolving body of evidence indicates that in the brain, insulin is involved in multiple regulatory mechanisms including neuronal survival, learning, and memory, as well as in regulation of energy homeostasis and reproductive endocrinology. Here we review insulin's role as a central homeostatic signal with regard to energy and glucose homeostasis and discuss the mechanisms by which insulin communicates information about the body's energy status to the brain. Particular emphasis is placed on the controversial current debate about the similarities and differences between hypothalamic insulin and leptin signaling at the molecular level.

  11. Tau hyperphosphorylation induces oligomeric insulin accumulation and insulin resistance in neurons.

    PubMed

    Rodriguez-Rodriguez, Patricia; Sandebring-Matton, Anna; Merino-Serrais, Paula; Parrado-Fernandez, Cristina; Rabano, Alberto; Winblad, Bengt; Ávila, Jesús; Ferrer, Isidre; Cedazo-Minguez, Angel

    2017-12-01

    Insulin signalling deficiencies and insulin resistance have been directly linked to the progression of neurodegenerative disorders like Alzheimer's disease. However, to date little is known about the underlying molecular mechanisms or insulin state and distribution in the brain under pathological conditions. Here, we report that insulin is accumulated and retained as oligomers in hyperphosphorylated tau-bearing neurons in Alzheimer's disease and in several of the most prevalent human tauopathies. The intraneuronal accumulation of insulin is directly dependent on tau hyperphosphorylation, and follows the tauopathy progression. Furthermore, cells accumulating insulin show signs of insulin resistance and decreased insulin receptor levels. These results suggest that insulin retention in hyperphosphorylated tau-bearing neurons is a causative factor for the insulin resistance observed in tauopathies, and describe a novel neuropathological concept with important therapeutic implications. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Insulin Resistance in Adipose Tissue but Not in Liver Is Associated with Aortic Valve Calcification.

    PubMed

    Jorge-Galarza, Esteban; Posadas-Romero, Carlos; Torres-Tamayo, Margarita; Medina-Urrutia, Aida X; Rodas-Díaz, Marco A; Posadas-Sánchez, Rosalinda; Vargas-Alarcón, Gilberto; González-Salazar, María Del Carmen; Cardoso-Saldaña, Guillermo C; Juárez-Rojas, Juan G

    2016-01-01

    Background . Insulin resistance is involved in the pathogenesis of cardiovascular disease, but its relationship with cardiovascular calcification has yielded conflicting results. The purpose of the present study was to investigate the role of hepatic and adipose tissue insulin resistance on the presence of coronary artery (CAC > 0) and aortic valve calcification (AVC > 0). Methods . In 1201 subjects (52% women, 53.6 ± 9.3 years old) without familiar and personal history of coronary heart disease, CAC and AVC were assessed by multidetector-computed tomography. Cardiovascular risk factors were documented and lipid profile, inflammation markers, glucose, insulin, and free fatty acids were measured. Hepatic insulin resistance (HOMA-IR) and adipose tissue insulin resistance (Adipo-IR) indices were calculated. Results . There was a significant relationship between HOMA-IR and Adipo-IR indices ( r = 0.758, p < 0.001). Participants in the highest quartiles of HOMA-IR and Adipo-IR indices had a more adverse cardiovascular profile and higher prevalence of CAC > 0 and AVC > 0. After full adjustment, subjects in the highest quartile of Adipo-IR index had higher odds of AVC > 0 (OR: 2.40; 95% CI: 1.30-4.43), as compared to those in the lowest quartile. Conclusions . Adipo-IR was independently associated with AVC > 0. This suggests that abnormal adipose tissue function favors insulin resistance that may promote the development and progression of AVC.

  13. Insulin Therapy

    MedlinePlus

    ... Your Health Resources Drugs, Procedures & Devices Prescription Medicines Insulin Therapy Insulin Therapy Share Print When you digest food, your ... you eat into glucose (a form of sugar). Insulin allows this glucose to enter all the cells ...

  14. Insulin resistance possible risk factor for cognitive impairment in fibromialgic patients.

    PubMed

    Fava, Antonietta; Plastino, Massimiliano; Cristiano, Dario; Spanò, Antonio; Cristofaro, Stefano; Opipari, Carlo; Chillà, Antonio; Casalinuovo, Fatima; Colica, Carmen; De Bartolo, Matteo; Pirritano, Domenico; Bosco, Domenico

    2013-12-01

    To evaluate glucose metabolism and/or insulin resistance (IR) in 96 patients with Fibromyalgia (FM), associated or not to cognitive impairment. We investigated glucose metabolism in 96 FM patients. Enrolled patients were divided into two groups: 48 patients with memory deficit (group A) and 48 without memory deficit (control group). We evaluated glucose and insulin levels after a 2 h-Oral-Glucose-Tolerance-Test (2 h-OGTT) and insulin resistance (IR) by the homeostasis model assessment formula (HOMA). Body Mass Index (BMI), waist-to-hip-ratio (WHR), anxiety level, fasting plasma insulin and Non-Steroidal Anti-Inflammatory agents use were higher in patients with FM with memory impairment; while age, sex, waist circumference, education level, fasting plasma glucose, glycate hemoglobin, triglycerides, blood lipid profile, C- Reactivity-Protein (CRP), blood pressure and smoking habits were similar in both groups. Following OGTT the prevalence of glucose metabolism abnormalities was significantly higher in group A. IR was present in 79% patients, of whom 23% had also impaired glucose tolerance, 4% newly diagnosed diabetes mellitus and 52% IR only. Obesity and overweight prevailed in group A. IR, but not BMI or WHR was associated to an increased risk of memory impairment (OR = 2,6; 95% CI: 1,22-3,7). The results of this study suggest that IR may represent a risk factor for memory impairment in fibromialgic patients.

  15. Elevated whole blood viscosity is associated with insulin resistance and non-alcoholic fatty liver.

    PubMed

    Zhao, Hong-yan; Li, Jing; Xu, Min; Wang, Tian-ge; Sun, Wan-wan; Chen, Ying; Bi, Yu-fang; Wang, Wei-qing; Ning, Guang

    2015-12-01

    Accumulating evidences demonstrate that abnormalities in whole blood viscosity (WBV) have been implicated in insulin resistance which may lead to non-alcoholic fatty liver disease (NAFLD). However, epidemiological studies exploring the association between WBV and NAFLD were not available. Our objective was to evaluate the association between WBV levels and risk of prevalent NAFLD. This was a cross-sectional population-based study performed in Shanghai, China. A total of 8673 participants aged 40 years or older were included. WBV was calculated from haematocrit and plasma protein concentration, at a shear rate of 208(-1) s, by a validated equation. NAFLD was diagnosed by hepatic ultrasound after the exclusion of alcohol abuse and other liver diseases. Insulin resistance (IR) was assessed by homeostasis model assessment (HOMA-IR). The overall prevalence of NAFLD was 30·2% in this population. With the increase of WBV level, participants have larger waist circumference (WC), more severe insulin resistance and the prevalence of NAFLD increased significantly with elevated WBV quartiles. Compared with those in the lowest quartiles, adults in the highest quartile of WBV levels have higher prevalence of NAFLD (adjusted odds ratio 1·77, 95% confidence interval [CI] 1·48-2·13) and IR (2·72, 95% CI 2·26-3·27). Elevated WBV is associated with prevalence of NAFLD and IR in middle-aged and elderly Chinese population. © 2015 John Wiley & Sons Ltd.

  16. The interplay between noncoding RNAs and insulin in diabetes.

    PubMed

    Tian, Yan; Xu, Jia; Du, Xiao; Fu, Xianghui

    2018-04-10

    Noncoding RNAs (ncRNAs), including microRNAs, long noncoding RNAs and circular RNAs, regulate various biological processes and are involved in the initiation and progression of human diseases. Insulin, a predominant hormone secreted from pancreatic β cells, is an essential factor in regulation of systemic metabolism through multifunctional insulin signaling. Insulin production and action are tightly controlled. Dysregulations of insulin production and action can impair metabolic homeostasis, and eventually lead to the development of multiple metabolic diseases, especially diabetes. Accumulating data indicates that ncRNAs modulate β cell mass, insulin synthesis, secretion and signaling, and their role in diabetes is dramatically emerging. This review summarizes our current knowledge of ncRNAs as regulators of insulin, with particular emphasis on the implications of this interplay in the development of diabetes. We outline the role of ncRNAs in pancreatic β cell mass and function, which is critical for insulin production and secretion. We also highlight the involvement of ncRNAs in insulin signaling in peripheral tissues including liver, muscle and adipose, and discuss ncRNA-mediated inter-organ crosstalk under diabetic conditions. A more in-depth understanding of the interplay between ncRNAs and insulin may afford valuable insights and novel therapeutic strategies for treatment of diabetes, as well as other human diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Adverse cardiovascular outcomes between insulin-treated and non-insulin treated diabetic patients after percutaneous coronary intervention: a systematic review and meta-analysis.

    PubMed

    Bundhun, Pravesh Kumar; Li, Nuo; Chen, Meng-Hua

    2015-10-07

    Type 2 diabetes mellitus (DM) patients have worse adverse cardiovascular outcomes after Percutaneous Coronary Intervention (PCI). However, the adverse cardiovascular outcomes between insulin-treated and non-insulin treated DM patients have been a subject of debate. We sought to compare the short-term (<1 year) and long-term (≥1 year) cardiovascular outcomes between insulin-treated and non-insulin treated DM patients after PCI. Medline and Embase databases were searched for studies by typing 'diabetes and percutaneous coronary intervention/PCI' or 'insulin-treated and non-insulin treated diabetes mellitus and PCI'. Endpoints included adverse cardiovascular outcomes reported in these DM patients during the corresponding follow-up periods. Odd Ratio (OR) with 95% confidence interval (CI) was used to express the pooled effect on discontinuous variables and the pooled analyses were performed with RevMan 5.3. 21 studies have been included in this meta-analysis consisting of a total of 21,759 diabetic patients (6250 insulin-treated and 15,509 non-insulin treated DM patients). Short term mortality, myocardial infarction, target lesion revascularization, major adverse cardiac effects and, stent thrombosis were significantly higher in insulin-treated diabetic patients (OR 1.69, 95% CI 1.40-2.04, p < 0.00001), (OR 1.40, 95% CI 1.16-1.70, p = 0.0005), (OR 1.37, 95% CI 1.06-1.76, p = 0.02), (OR 1.46, 95% CI 1.22-1.76, p < 0.0001) and (OR 1.66, 95% CI 1.16-2.38, p = 0.005) respectively. Long-term cardiovascular outcomes were also significantly higher in insulin-treated DM patients. Insulin treatment in these DM patients was associated with a significantly higher short and long-term adverse cardiovascular outcomes after PCI compared to those DM patients not treated by insulin therapy.

  18. Insulin resistance in obesity can be reliably identified from fasting plasma insulin.

    PubMed

    ter Horst, K W; Gilijamse, P W; Koopman, K E; de Weijer, B A; Brands, M; Kootte, R S; Romijn, J A; Ackermans, M T; Nieuwdorp, M; Soeters, M R; Serlie, M J

    2015-12-01

    Insulin resistance is the major contributor to cardiometabolic complications of obesity. We aimed to (1) establish cutoff points for insulin resistance from euglycemic hyperinsulinemic clamps (EHCs), (2) identify insulin-resistant obese subjects and (3) predict insulin resistance from routinely measured variables. We assembled data from non-obese (n=112) and obese (n=100) men who underwent two-step EHCs using [6,6-(2)H2]glucose as tracer (insulin infusion dose 20 and 60 mU m(-2) min(-1), respectively). Reference ranges for hepatic and peripheral insulin sensitivity were calculated from healthy non-obese men. Based on these reference values, obese men with preserved insulin sensitivity or insulin resistance were identified. Cutoff points for insulin-mediated suppression of endogenous glucose production (EGP) and insulin-stimulated glucose disappearance rate (Rd) were 46.5% and 37.3 μmol kg(-)(1) min(-)(1), respectively. Most obese men (78%) had EGP suppression within the reference range, whereas only 12% of obese men had Rd within the reference range. Obese men with Rd <37.3 μmol kg(-1) min(-1) did not differ from insulin-sensitive obese men in age, body mass index (BMI), body composition, fasting glucose or cholesterol, but did have higher fasting insulin (110±49 vs 63±29 pmol l(-1), P<0.001) and homeostasis model assessment of insulin resistance (HOMA-IR) (4.5±2.2 vs 2.7±1.4, P=0.004). Insulin-resistant obese men could be identified with good sensitivity (80%) and specificity (75%) from fasting insulin >74 pmol l(-1). Most obese men have hepatic insulin sensitivity within the range of non-obese controls, but below-normal peripheral insulin sensitivity, that is, insulin resistance. Fasting insulin (>74 pmol l(-1) with current insulin immunoassay) may be used for identification of insulin-resistant (or metabolically unhealthy) obese men in research and clinical settings.

  19. Endothelial Fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice

    PubMed Central

    Tanigaki, Keiji; Chambliss, Ken L.; Yuhanna, Ivan S.; Sacharidou, Anastasia; Ahmed, Mohamed; Atochin, Dmitriy N.; Huang, Paul L.

    2016-01-01

    Modest elevations in C-reactive protein (CRP) are associated with type 2 diabetes. We previously revealed in mice that increased CRP causes insulin resistance and mice globally deficient in the CRP receptor Fcγ receptor IIB (FcγRIIB) were protected from the disorder. FcγRIIB is expressed in numerous cell types including endothelium and B lymphocytes. Here we investigated how endothelial FcγRIIB influences glucose homeostasis, using mice with elevated CRP expressing or lacking endothelial FcγRIIB. Whereas increased CRP caused insulin resistance in mice expressing endothelial FcγRIIB, mice deficient in the endothelial receptor were protected. The insulin resistance with endothelial FcγRIIB activation was due to impaired skeletal muscle glucose uptake caused by attenuated insulin delivery, and it was associated with blunted endothelial nitric oxide synthase (eNOS) activation in skeletal muscle. In culture, CRP suppressed endothelial cell insulin transcytosis via FcγRIIB activation and eNOS antagonism. Furthermore, in knock-in mice harboring constitutively active eNOS, elevated CRP did not invoke insulin resistance. Collectively these findings reveal that by inhibiting eNOS, endothelial FcγRIIB activation by CRP blunts insulin delivery to skeletal muscle to cause insulin resistance. Thus, a series of mechanisms in endothelium that impairs insulin movement has been identified that may contribute to type 2 diabetes pathogenesis. PMID:27207525

  20. [Concept Analysis for Psychological Insulin Resistance in Korean People with Diabetes].

    PubMed

    Song, Youngshin

    2016-06-01

    The purpose of this study was to define the concept for psychological insulin resistance in the Korean population with diabetes. The Hybrid model was used to perform the concept analysis of psychological insulin resistance. Results from both the theoretical review with 26 studies and a field study including 19 participants with diabetes were included in final process. The preceding factors of psychological insulin resistance were uncontrolled blood glucose and change in daily life. The concept of psychological insulin resistance was found to have three categories with 8 attributes such as emotional factors (negative feeling), cognitive factors (low awareness and knowledge, low confidence for self-injection) and supportive factors (economic burden, dependency life, embarrassing, feeling about supporters, feeling of trust in, vs mistrust of health care providers). The 8 attributes included 30 indicators. The psychological insulin resistance of population with diabetes in Korea was defined as a complex phenomenon associated with insulin therapy that can be affected by emotional factors, cognitive factors, and supportive relational factors. Based on the results, a tool for measuring psychological insulin resistance of Koreans with diabetes and effective programs for enhancing insulin adherence should be developed in future studies.

  1. Barbados Insulin Matters (BIM) study: Perceptions on insulin initiation by primary care doctors in the Caribbean island of Barbados.

    PubMed

    Taylor, Charles Grafton; Taylor, Gordon; Atherley, Anique; Hambleton, Ian; Unwin, Nigel; Adams, Oswald Peter

    2017-04-01

    With regards to insulin initiation in Barbados we explored primary care doctor (PCD) perception, healthcare system factors and predictors of PCD reluctance to initiate insulin. PCDs completed a questionnaire based on the theory of planned behaviour (TPB) and a reluctance to initiate insulin scale. Using linear regression, we explored the association between TPB domains and the reluctance to initiate insulin scale. Of 161 PCDs, 70% responded (75 private and 37 public sector). The majority felt initiating insulin was uncomplicated (68%) and there was benefit if used before complications developed (68%), but would not use it until absolutely necessary (58%). More private than public sector PCDs (p<0.05) thought that the healthcare system allowed enough flexibility of time for education (68 vs 38%) and initiating insulin was easy (63 vs 35%), but less thought system changes would help initiating insulin (42 vs 70%). Reasons for reluctance to initiate insulin included patient nonadherence (83%) and reluctance (63%). Only the attitudes and belief domain of the TPB was associated with the reluctance to initiate insulin scale (p<0.001). Interventions focusing on PCD attitudes and beliefs and restructuring services inclusive of the use of diabetes specialist nurses are required. Copyright © 2016 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  2. The impact of insulin therapy and attitudes towards insulin intensification among adults with type 2 diabetes: A qualitative study.

    PubMed

    Holmes-Truscott, Elizabeth; Browne, Jessica L; Speight, Jane

    2016-08-01

    As type 2 diabetes (T2DM) is a progressive chronic condition, regular clinical review and treatment intensification are critical for prevention of long-term complications. Our aim was to explore the personal impact of insulin therapy, both positive and negative consequences, and attitudes towards future insulin intensification. Twenty face-to-face interviews were conducted, and transcripts were analysed using thematic inductive analysis. Eligible participants were adults with T2DM, using insulin injections for <4years. Participants were mostly men (n=13, 65%), (median (range)) aged 65 (43-76) years, living with T2DM for 11.5 (2-27) years. Five themes emerged regarding the consequences (positive and negative) of insulin therapy, including: physical impact, personal control, emotional well-being, freedom/flexibility, (concerns about) others' reactions. Increased inconvenience and the perceived seriousness of using fast-acting insulin were both reported as barriers to future insulin intensification, despite most participants being receptive to the idea of administering additional injections. Positive and negative experiences of insulin therapy were reported by adults with T2DM and most were receptive to insulin intensification despite reported barriers. These findings may inform clinical interactions with people with T2DM and interventions to promote receptiveness to insulin initiation and intensification. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Exposures to arsenite and methylarsonite produce insulin resistance and impair insulin-dependent glycogen metabolism in hepatocytes.

    PubMed

    Zhang, Chongben; Fennel, Emily M J; Douillet, Christelle; Stýblo, Miroslav

    2017-12-01

    Environmental exposure to inorganic arsenic (iAs) has been shown to disturb glucose homeostasis, leading to diabetes. Previous laboratory studies have suggested several mechanisms that may underlie the diabetogenic effects of iAs exposure, including (i) inhibition of insulin signaling (leading to insulin resistance) in glucose metabolizing peripheral tissues, (ii) inhibition of insulin secretion by pancreatic β cells, and (iii) dysregulation of the methylation or expression of genes involved in maintenance of glucose or insulin metabolism and function. Published studies have also shown that acute or chronic iAs exposures may result in depletion of hepatic glycogen stores. However, effects of iAs on pathways and mechanisms that regulate glycogen metabolism in the liver have never been studied. The present study examined glycogen metabolism in primary murine hepatocytes exposed in vitro to arsenite (iAs 3+ ) or its methylated metabolite, methylarsonite (MAs 3+ ). The results show that 4-h exposures to iAs 3+ and MAs 3+ at concentrations as low as 0.5 and 0.2 µM, respectively, decreased glycogen content in insulin-stimulated hepatocytes by inhibiting insulin-dependent activation of glycogen synthase (GS) and by inducing activity of glycogen phosphorylase (GP). Further investigation revealed that both iAs 3+ and MAs 3+ inhibit insulin-dependent phosphorylation of protein kinase B/Akt, one of the mechanisms involved in the regulation of GS and GP by insulin. Thus, inhibition of insulin signaling (i.e., insulin resistance) is likely responsible for the dysregulation of glycogen metabolism in hepatocytes exposed to iAs 3+ and MAs 3+ . This study provides novel information about the mechanisms by which iAs exposure impairs glucose homeostasis, pointing to hepatic metabolism of glycogen as one of the targets.

  4. Monogenic syndromes of abnormal glucose homeostasis: clinical review and relevance to the understanding of the pathology of insulin resistance and ß cell failure

    PubMed Central

    Porter, J; Barrett, T

    2005-01-01

    Type 2 diabetes mellitus is caused by a combination of insulin resistance and ß cell failure. The polygenic nature of type 2 diabetes has made it difficult to study. Although many candidate genes for this condition have been suggested, in most cases association studies have been equivocal. Monogenic forms of diabetes have now been studied extensively, and the genetic basis of many of these syndromes has been elucidated, leading to greater understanding of the functions of the genes involved. Common variations in the genes causing monogenic disorders have been associated with susceptibility to type 2 diabetes in several populations and explain some of the linkage seen in genome-wide scans. Monogenic disorders are also helpful in understanding both normal and disordered glucose and insulin metabolism. Three main areas of defect contribute to diabetes: defects in insulin signalling leading to insulin resistance; defects of insulin secretion leading to hypoinsulinaemia; and apoptosis leading to decreased ß cell mass. These three pathological pathways are reviewed, focusing on rare genetic syndromes which have diabetes as a prominent feature. Apoptosis seems to be a final common pathway in both type 1 and type 2 diabetes. Study of rare forms of diabetes may help ion determining new therapeutic targets to preserve or increase ß cell mass and function. PMID:15772126

  5. The prevalence of abnormal metabolic parameters in obese and overweight children.

    PubMed

    Salvatore, Deborah; Satnick, Ava; Abell, Rebecca; Messina, Catherine R; Chawla, Anupama

    2014-09-01

    This retrospective study aimed to determine the prevalence of abnormal metabolic parameters in obese children and its correlation to the degree of obesity determined by body mass index (BMI). In total, 101 children seen at the Pediatric Gastroenterology Obesity Clinic at Stony Brook Children's University Hospital were enrolled in the study. The degree of obesity was characterized according to the following formula: (patient's BMI/BMI at 95th percentile) × 100%, with class I obesity >100%-120%, class II obesity >120%-140%, and class III obesity >140%. A set of metabolic parameters was evaluated in these patients. Frequency distributions of all study variables were examined using the χ(2) test of independence. Mean differences among the obesity classes and continuous measures were examined using 1-way analysis of variance. Within our study population, we found that 80% of our obese children had a low high-density lipoprotein (HDL) cholesterol level, 58% had elevated fasting insulin levels, and 32% had an elevated alanine aminotransferase (ALT) level. Class II obese children had a 2-fold higher ALT value when compared with class I children (P = .036). Fasting insulin, ALT, HDL cholesterol, and triglyceride levels trended with class of obesity. Obese children in classes II and III are at higher risk for developing abnormal laboratory values. We recommend obese children be further classified to reflect the severity of the obesity since this has predictive significance for comorbidities. Obesity classes I, II, and III could help serve as a screening tool to help communicate risk assessment. © 2013 American Society for Parenteral and Enteral Nutrition.

  6. Insulin Signalling in Hepatocytes of Type 2 Diabetic Humans. Excessive Expression and Activity of PKC-ι and Dependent Processes and Reversal by PKC-ι Inhibitors

    PubMed Central

    Sajan, M.P.; Farese, R. V.

    2012-01-01

    Aims/Hypothesis We examined the role of the protein kinase C-τ (PKC-ι) in mediating alterations in expression of enzymes in hepatocytes of type 2 diabetic humans that contribute importantly to development of lipid and carbohydrate abnormalities in type 2 diabetes. Methods We examined insulin signalling in isolated hepatocytes of non-diabetic and type 2 diabetic humans, and effects of two newly developed small molecule PKC-ι inhibitors on aberrant signalling and downstream processes. Results Opposite to PKC-ι deficiency in diabetic muscle, which diminishes glucose transport, "PKC-ι in diabetic hepatocytes was overexpressed and overactive, basally and following insulin treatment, and, moreover, was accompanied by increased expression of "PKC-ι-dependent lipogenic, proinflammatory and gluconeogenic enzymes. Heightened "PKC-ι activity most likely reflected heightened activity of insulin receptor substrate(IRS)-2-dependent phosphatidylinositol-3-kinase (PI3K), as IRS-1 levels and IRS-1/PI3K activity were markedly diminished.. Importantly, insulin stimulated "PKC-ι expression and its overexpression in diabetic hepatocytes was reversed in vitro by both insulin deprivation and "PKC-ι inhibitors; this suggested operation of an insulin-driven, feed-forward/positive-feedback mechanism. In contrast to "PKC-ι, Akt2 activity and activation by insulin was diminished, apparently reflecting IRS-1 deficiency. Treatment of diabetic hepatocytes with "PKC-ι/λ inhibitors diminished expression of lipogenic, proinflammatory and gluconeogenic enzymes. Conclusions/Interpretations Our findings suggest that a vicious cycle of "PKC-ι overactivity and overexpression exists in hepatocytes of type 2 diabetic humans and contributes importantly to maintaining overactivity of lipogenic, proinflammatory and gluconeogenic pathways that underlie lipid and carbohydrate abnormalities in type 2 diabetes. PMID:22349071

  7. Misadventures in insulin therapy: are you at risk?

    PubMed Central

    Grissinger, Matthew; Lease, Michael

    2003-01-01

    About dollar 1 out of every dollar 7 spent on health care is related to diabetes mellitus, a leading cause of blindness and kidney failure and a strong risk factor for heart disease. Prevalence of the disease has increased by a third among adults in general in the last decade, but intensive therapy has been shown to delay the onset and slow the progression of diabetes-related complications. While insulin therapy remains key in the management of type 1 diabetes, many patients with type 2, or insulin-resistant, diabetes encounter insulin administration errors that compromise the quality of insulin delivery. Insulin errors are a major, but modifiable, barrier to dosing accuracy and optimal diabetes control for many patients. Future trends to combat the problem include increased use of insulin inhalers and smaller doses of rapid- or short-acting insulin to supplement longer-acting injections. PMID:12653373

  8. Congenital hypothyroidism in a kitten resulting in decreased IGF-I concentration and abnormal liver function tests.

    PubMed

    Quante, Saskia; Fracassi, Federico; Gorgas, Daniela; Kircher, Patrick R; Boretti, Felicitas S; Ohlerth, Stefanie; Reusch, Claudia E

    2010-06-01

    A 7-month-old male kitten was presented with chronic constipation and retarded growth. Clinical examination revealed disproportional dwarfism with mild skeletal abnormalities and a palpable thyroid gland. The presumptive diagnosis of congenital hypothyroidism was confirmed by low serum total thyroxine (tT(4)) concentration prior to and after the administration of thyroid stimulation hormone (TSH), increased endogenous TSH concentration and abnormal thyroid scintigraphic scan. The kitten had abnormal liver function tests and decreased insulin-like growth factor 1 (IGF-1) concentration, both of which returned to normal in correspondence with an improvement of the clinical signs after 6 weeks of thyroxine therapy. Congenital hypothyroidism is a rare disease that may present with considerable variation in clinical manifestation. In cases in which clinical signs are ambiguous, disorders such as portosystemic shunt and hyposomatotropism have to be taken into account as differential diagnosis. As hypothyroidism may be associated with abnormal liver function tests and low IGF-1 concentrations, test results have to be interpreted carefully. Copyright 2010 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.

  9. Effects of intranasal insulin on endogenous glucose production in insulin-resistant men.

    PubMed

    Xiao, Changting; Dash, Satya; Stahel, Priska; Lewis, Gary F

    2018-03-14

    The effects of intranasal insulin on the regulation of endogenous glucose production (EGP) in individuals with insulin resistance were assessed in a single-blind, crossover study. Overweight or obese insulin-resistant men (n = 7; body mass index 35.4 ± 4.4 kg/m 2 , homeostatic model assessment of insulin resistance 5.6 ± 1.6) received intranasal spray of either 40 IU insulin lispro or placebo in 2 randomized visits. Acute systemic spillover of intranasal insulin into the circulation was matched with a 30-minute intravenous infusion of insulin lispro in the nasal placebo arm. EGP was assessed under conditions of a pancreatic clamp with a primed, constant infusion of glucose tracer. Under these experimental conditions, compared with placebo, intranasal administration of insulin did not significantly affect plasma glucose concentrations, EGP or glucose disposal in overweight/obese, insulin-resistant men, in contrast to our previous study, in which an equivalent dose of intranasal insulin significantly suppressed EGP in lean, insulin-sensitive men. Insulin resistance is probably associated with impairment in centrally mediated insulin suppression of EGP. © 2018 John Wiley & Sons Ltd.

  10. Impaired Insulin Secretion and Enhanced Insulin Sensitivity in Cholecystokinin-Deficient Mice

    PubMed Central

    Lo, Chun-Min; Obici, Silvana; Dong, H. Henry; Haas, Michael; Lou, Dawnwen; Kim, Dae Hyun; Liu, Min; D’Alessio, David; Woods, Stephen C.; Tso, Patrick

    2011-01-01

    OBJECTIVE Cholecystokinin (CCK) is released in response to lipid intake and stimulates insulin secretion. We hypothesized that CCK deficiency would alter the regulation of insulin secretion and glucose homeostasis. RESEARCH DESIGN AND METHODS We used quantitative magnetic resonance imaging to determine body composition and studied plasma glucose and insulin secretion of CCK gene knockout (CCK-KO) mice and their wild-type controls using intraperitoneal glucose and arginine infusions. The area of anti-insulin staining in pancreatic islets was measured by immunohistochemistry. Insulin sensitivity was assessed with euglycemic-hyperinsulemic clamps. RESULTS CCK-KO mice fed a low-fat diet had a reduced acute insulin response to glucose but a normal response to arginine and normal glucose tolerance, associated with a trend toward greater insulin sensitivity. However, when fed a high-fat diet (HFD) for 10 weeks, CCK-KO mice developed glucose intolerance despite increased insulin sensitivity that was associated with low insulin secretion in response to both glucose and arginine. The deficiency of insulin secretion in CCK-KO mice was not associated with changes in β-cell or islet size. CONCLUSIONS CCK is involved in regulating insulin secretion and glucose tolerance in mice eating an HFD. The impaired insulin response to intraperitoneal stimuli that do not typically elicit CCK release suggests that this hormone has chronic effects on β-cell adaptation to diet in addition to acute incretin actions. PMID:21602512

  11. Bromodomain-containing protein 2 induces insulin resistance via the mTOR/Akt signaling pathway and an inflammatory response in adipose tissue.

    PubMed

    Sun, Ruixin; Wu, Yi; Hou, Weihua; Sun, Zujun; Wang, Yuxiong; Wei, Huanhuan; Mo, Wei; Yu, Min

    2017-01-01

    Insulin resistance is a major metabolic abnormality in a large majority of patients with type II diabetes. Bromodomain-containing protein 2 (Brd2), a transcriptional co-activator/co-repressor with switch mating type/sucrose non-fermenting (SWI/SNF)-like functions that regulates chromatin, suppresses adipocyte differentiation and regulates pancreatic β-cell biology. However, the effects of Brd2 on insulin resistance remain unknown. Here, overexpression of Brd2 in white adipose tissue of wild-type (WT) mice led to insulin resistance. Brd2 overexpression induced the expression of nuclear Factor-κΒ (NF-κΒ) target genes, mainly involving proinflammatory and chemotactic factors, in adipocytes. Furthermore, it decreased the expression of DEP domain containing mTOR-interacting protein (Deptor) to enhance mechanistic target of rapamycin (mTOR) signaling, thus blocking insulin signaling. Collectively, these results provided evidence for a novel role of Brd2 in chronic inflammation and insulin resistance, suggesting its potential in improving insulin resistance and treating metabolic disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Insulin in the Brain: There and Back Again

    PubMed Central

    Banks, William A.; Owen, Joshua B.; Erickson, Michelle A

    2012-01-01

    Insulin performs unique functions within the CNS. Produced nearly exclusively by the pancreas, insulin crosses the blood-brain barrier (BBB) using a saturable transporter, affecting feeding and cognition through CNS mechanisms largely independent of glucose utilization. Whereas peripheral insulin acts primarily as a metabolic regulatory hormone, CNS insulin has an array of effects on brain that may more closely resemble the actions of the ancestral insulin molecule. Brain endothelial cells (BEC), the cells that form the vascular BBB and contain the transporter that translocates insulin from blood to brain, is itself regulated by insulin. The insulin transporter is altered by physiological and pathological factors including hyperglycemia and the diabetic state. The latter can lead to BBB disruption. Pericytes, pluripotent cells in intimate contact with the BEC, protect the integrity of the BBB and its ability to transport insulin. Most of insulin’s known actions within the CNS are mediated through two canonical pathways, the phosphoinositide-3 kinase (PI3)/Akt and Ras/mitogen activated kinase (MAPK) cascades. Resistance to insulin action within the CNS, sometimes referred to as diabetes mellitus type III, is associated with peripheral insulin resistance, but it is possible that variable hormonal resistance syndromes exist so that resistance at one tissue bed may be independent of that at others. CNS insulin resistance is associated with Alzheimer’s disease, depression, and impaired baroreceptor gain in pregnancy. These aspects of CNS insulin action and the control of its entry by the BBB are likely only a small part of the story of insulin within the brain. PMID:22820012

  13. Plasma HDL-cholesterol and triglycerides, but not LDL-cholesterol, are associated with insulin secretion in non-diabetic subjects.

    PubMed

    Natali, Andrea; Baldi, Simona; Bonnet, Fabrice; Petrie, John; Trifirò, Silvia; Tricò, Domenico; Mari, Andrea

    2017-04-01

    Experimental data support the notion that lipoproteins might directly affect beta cell function, however clinical data are sparse and inconsistent. We aimed at verifying whether, independently of major confounders, serum lipids are associated with alterations in insulin secretion or clearance non-diabetic subjects. Cross sectional and observational prospective (3.5yrs), multicentre study in which 1016 non-diabetic volunteers aged 30-60yrs. and with a wide range of BMI (20.0-39.9kg/m 2 ) were recruited in a setting of University hospital ambulatory care (RISC study). baseline fasting lipids, fasting and OGTT-induced insulin secretion and clearance (measured by glucose and C-peptide modeling), peripheral insulin sensitivity (by the euglycemic clamp). Lipids and OGTT were repeated in 980 subjects after 3.5years. LDL-cholesterol did not show independent associations with fasting or stimulated insulin secretion or clearance. After accounting for potential confounders, HDL-cholesterol displayed negative and triglycerides positive independent associations with fasting and OGTT insulin secretion; neither with insulin clearance. Low HDL-cholesterol and high triglycerides were associated with an increase in glucose-dependent and a decrease in non-glucose-dependent insulin secretion. Over 3.5years both an HDL-cholesterol decline and a triglycerides rise were associated with an increase in fasting insulin secretion independent of changes in body weight or plasma glucose. LDL-cholesterol does not seem to influence any major determinant of insulin bioavailability while low HDL-cholesterol and high triglycerides might contribute to sustain the abnormalities in insulin secretion that characterize the pre-diabetic state. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Inhibition of nitric oxide synthesis in forearm vasculature of insulin-dependent diabetic patients: blunted vasoconstriction in patients with microalbuminuria.

    PubMed

    Elliott, T G; Cockcroft, J R; Groop, P H; Viberti, G C; Ritter, J M

    1993-12-01

    1. Microalbuminuria is a risk factor for cardiovascular disease in patients with insulin-dependent diabetes mellitus, and may be a marker of microvascular dysfunction including endothelial damage. The purpose of this study was to determine whether vasoconstrictor responses to NG-monomethyl-L-arginine, an inhibitor of endothelium-derived relaxing factor/nitric oxide biosynthesis, differ between healthy subjects and insulin-dependent patients with or without microalbuminuria. 2. Twenty-eight insulin-dependent diabetic patients (14 with normal albumin excretion, 14 with microalbuminuria) were studied under euglycaemic conditions, together with 14 healthy control subjects. Forearm vascular responses to brachial artery infusions of NG-monomethyl-L-arginine, sodium nitroprusside (an endothelium-independent nitrovasodilator) and carbachol (an endothelium-dependent vasodilator) were determined by strain gauge plethysmography. 3. Basal blood flow and vasodilator responses were similar in each group. NG-Monomethyl-L-arginine reduced blood flow by 41.3 +/- 2.3% (mean +/- SEM) in healthy control subjects, 34.0 +/- 3.4% in diabetic patients without microalbuminuria and 29.2 +/- 2.0% in diabetic patients with microalbuminuria. Diabetic patients differed from healthy subjects (P = 0.005), due to a difference between control subjects and microalbuminuric diabetic patients (P < 0.001). NG-Monomethyl-L-arginine did not influence nitroprusside responses but reduced carbachol responses in control subjects and normoalbuminuric diabetic patients but not in microalbuminuric diabetic patients. 4. These results provide evidence of abnormal endothelium-derived relaxing factor/nitric oxide biosynthesis in insulin-dependent diabetic patients with microalbuminuria.

  15. Antibody-Mediated Extreme Insulin Resistance: A Report of Three Cases.

    PubMed

    Kim, Han Na; Fesseha, Betiel; Anzaldi, Laura; Tsao, Allison; Galiatsatos, Panagis; Sidhaye, Aniket

    2018-01-01

    Type 2 diabetes mellitus is characterized by relative insulin deficiency and insulin resistance. Features suggesting severe insulin resistance include acanthosis nigricans, hyperandrogenism, weight loss, and recurrent hospital admissions for diabetic ketoacidosis. In rare circumstances, hyperglycemia persists despite administration of massive doses of insulin. In these cases, it is important to consider autoimmune etiologies for insulin resistance, such as type B insulin resistance and insulin antibody-mediated extreme insulin resistance, which carry high morbidity and mortality if untreated. Encouragingly, immunomodulatory regimens have recently been published that induce remission at high rates. We describe 3 cases of extreme insulin resistance mediated by anti-insulin receptor autoantibodies or insulin autoantibodies. All cases were effectively treated with an immunomodulatory regimen. Although cases of extreme insulin resistance are rare, it is important to be aware of autoimmune causes, recognize suggestive signs and symptoms, and pursue appropriate diagnostic evaluation. Prompt treatment with immunomodulators is key to restoring euglycemia in patients with autoimmune etiologies of insulin resistance. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Biochemical abnormalities in neonatal seizures.

    PubMed

    Sood, Arvind; Grover, Neelam; Sharma, Roshan

    2003-03-01

    The presence of seizure does not constitute a diagnoses but it is a symptom of an underlying central nervous system disorder due to systemic or biochemical disturbances. Biochemical disturbances occur frequently in the neonatal seizures either as an underlying cause or as an associated abnormality. In their presence, it is difficult to control seizure and there is a risk of further brain damage. Early recognition and treatment of biochemical disturbances is essential for optimal management and satisfactory long term outcome. The present study was conducted in the department of pediatrics in IGMC Shimla on 59 neonates. Biochemical abnormalities were detected in 29 (49.15%) of cases. Primary metabolic abnormalities occurred in 10(16.94%) cases of neonatal seizures, most common being hypocalcaemia followed by hypoglycemia, other metabolic abnormalities include hypomagnesaemia and hyponateremia. Biochemical abnormalities were seen in 19(38.77%) cases of non metabolic seizure in neonates. Associated metabolic abnormalities were observed more often with Hypoxic-ischemic-encephalopathy (11 out of 19) cases and hypoglycemia was most common in this group. No infant had hyponateremia, hyperkelemia or low zinc level.

  17. Exercise, Insulin Absorption Rates, and Artificial Pancreas Control

    NASA Astrophysics Data System (ADS)

    Frank, Spencer; Hinshaw, Ling; Basu, Rita; Basu, Ananda; Szeri, Andrew J.

    2016-11-01

    Type 1 Diabetes is characterized by an inability of a person to endogenously produce the hormone insulin. Because of this, insulin must be injected - usually subcutaneously. The size of the injected dose and the rate at which the dose reaches the circulatory system have a profound effect on the ability to control glucose excursions, and therefore control of diabetes. However, insulin absorption rates via subcutaneous injection are variable and depend on a number of factors including tissue perfusion, physical activity (vasodilation, increased capillary throughput), and other tissue geometric and physical properties. Exercise may also have a sizeable effect on the rate of insulin absorption, which can potentially lead to dangerous glucose levels. Insulin-dosing algorithms, as implemented in an artificial pancreas controller, should account accurately for absorption rate variability and exercise effects on insulin absorption. The aforementioned factors affecting insulin absorption will be discussed within the context of both fluid mechanics and data driven modeling approaches.

  18. Reduction in insulin sensitivity and inadequate β-cell capacity to counteract the increase in insulin resistance in children with idiopathic growth hormone deficiency during 12 months of growth hormone treatment.

    PubMed

    Ciresi, A; Amato, M C; Giordano, C

    2015-03-01

    To evaluate the performance of various indexes of insulin sensitivity and secretion and to identify the most useful indicator of deterioration of glucose metabolism in a cohort of children with growth hormone (GH) deficiency (GHD) during GH treatment. In 73 GHD children (55 M, 18 F; mean age 10.5 years) at baseline and after 12 months of treatment, we evaluated a number of surrogate indexes of insulin secretion and sensitivity. In a subgroup of 11 children we also performed an euglycemic hyperinsulinemic clamp. After 12 months, a significant increase in fasting glucose (p < 0.001) and HbA1c levels (p < 0.001) was documented, despite all children remained with a normal glucose tolerance. With regard the insulin secretion, Homa-β did not show any significant change (p = 0.073), while oral disposition index (DIo) showed a significant decrease (p = 0.031). With regard the insulin sensitivity, Homa-IR significantly increased (p < 0.001) with a concomitant decrease in QUICKI (p < 0.001). ISI Matsuda showed a decrease, although not statistically significant (p = 0.069). In the subgroup of 11 children, the M value derived from clamp showed a significant decrease (p = 0.011) and a significant positive correlation was found between M value and ISI Matsuda both at baseline (ρ 0.950; p = 0.001) and after 12 months (ρ 0.980; p = 0.001) but not with Homa-IR and QUICKI. 12 months of GH treatment lead to a decrease in insulin sensitivity and impairment in insulin secretion relative to insulin sensitivity even without evident changes in glucose tolerance. DIo has proven to be the most useful indicator of deterioration of glucose metabolism even in cases in which the overt glucose abnormalities have not yet appeared.

  19. No evidence of insulin resistance in normal weight vegetarians. A case control study.

    PubMed

    Valachovicová, Martina; Krajcovicová-Kudlácková, Marica; Blazícek, Pavel; Babinská, Katarína

    2006-02-01

    Diets rich in carbohydrates with a low glycemic index and with high fiber content are associated with flat post-prandial rises of blood glucose, minimal post-prandial insulin secretion and maintenance of insulin sensitivity. Protective food commodities in the prevention of cardiovascular disease, insulin resistance syndrome or diabetes are crucial components of the vegetarian diet. Insulin resistance values were assessed in relation to different nutrition. Metabolic abnormality is a predictor of age-related diseases and can be more pronounced in obese subjects. Insulin resistance values in normal weight subjects of two different nutritional habits were correlated with age. Fasting concentrations of glucose and insulin as well as calculated values of insulin resistance IR (HOMA) were assessed in two nutritional groups of apparently healthy adult subjects (age range 19 - 64 years) with normal weight (body mass index 18.6 - 25.0 kg/m(2)): a vegetarian group (95 long-term lacto-ovo-vegetarians; duration of vegetarianism 10.2 +/- 0.5 years) and a non-vegetarian control group (107 subjects of general population on traditional western diet). Intake of energy and main nutrients (fats, saccharides, proteins) was similar in both groups. Glucose and insulin concentrations and IR (HOMA) values were significantly lower in vegetarians (glucose 4.47 +/- 0.05 vs. 4.71 +/- 0.07 mmol/l; insulin 4.96 +/- 0.23 vs. 7.32 +/- 0.41 mU/l; IR (HOMA) 0.99 +/- 0.05 vs. 1.59 +/- 0.10). IR (HOMA) dependence on age was only significant in subjects on a western diet. A significant increase of IR was found already in the age range 31-40 years, compared to vegetarians and it continued in later age decades. Age independent and low insulin resistance values in vegetarians are a consequence of an effective diet prevention by long-term frequent consumption of protective food. Vegetarians had a significantly higher consumption of whole grain products, pulses, products from oat and barley. The results of

  20. Insulin-induced inhibition of gluconeogenesis genes, including glutamic pyruvic transaminase 2, is associated with reduced histone acetylation in a human liver cell line.

    PubMed

    Honma, Kazue; Kamikubo, Michiko; Mochizuki, Kazuki; Goda, Toshinao

    2017-06-01

    Hepatic glutamic pyruvic transaminase (GPT; also known as alanine aminotransferase) is a gluconeogenesis enzyme that catalyzes conversions between alanine and pyruvic acid. It is also used as a blood biomarker for hepatic damage. In this study, we investigated whether insulin regulates GPT expression, as it does for other gluconeogenesis genes, and if this involves the epigenetic modification of histone acetylation. Human liver-derived HepG2 cells were cultured with 0.5-100nM insulin for 8h, and the mRNA expression of GPT, glutamic-oxaloacetic transaminase (GOT), γ-glutamyltransferase (GGT), PCK1, G6PC and FBP1 was measured. We also investigated the extent of histone acetylation around these genes. Insulin suppressed the mRNA expression of gluconeogenesis genes (GPT2, GOT1, GOT2, GGT1, GGT2, G6PC, and PCK1) in HepG2 cells in a dose-dependent manner. mRNA levels of GPT2, but not GPT1, were decreased by insulin. Histone acetylation was also reduced around GPT2, G6PC, and PCK1 in response to insulin. The expression of GPT2 and other gluconeogenesis genes such as G6PC and PCK1 was suppressed by insulin, in association with decreases in histone H3 and H4 acetylation surrounding these genes. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Comparison of two insulin assays for first-phase insulin release in type 1 diabetes prediction and prevention studies

    PubMed Central

    Mahon, Jeffrey L.; Beam, Craig A.; Marcovina, Santica M.; Boulware, David C.; Palmer, Jerry P.; Winter, William E.; Skyler, Jay S.; Krischer, Jeffrey P.

    2018-01-01

    Background Detection of below-threshold first-phase insulin release or FPIR (1 + 3 minute insulin concentrations during an intravenous glucose tolerance test [IVGTT]) is important in type 1 diabetes prediction and prevention studies including the TrialNet Oral Insulin Prevention Trial. We assessed whether an insulin immunoenzymometric assay (IEMA) could replace the less practical but current standard of a radioimmunoassay (RIA) for FPIR. Methods One hundred thirty-three islet autoantibody positive relatives of persons with type 1 diabetes underwent 161 IVGTTs. Insulin concentrations were measured by both assays in 1056 paired samples. A rule classifying FPIR (below-threshold, above-threshold, uncertain) by the IEMA was derived and validated against FPIR by the RIA. Results The insulin IEMA-based rule accurately classified below- and above-threshold FPIRs by the RIA in 110/161 (68%) IVGTTs, but was uncertain in 51/161 (32%) tests for which FPIR by RIA is needed. An uncertain FPIR by the IEMA was more likely among below-threshold vs above-threshold FPIRs by the RIA (64% [30/47] vs. 18% [21/114], respectively; p < 0.05). Conclusions An insulin IEMA for FPIR in subjects at risk for type 1 diabetes accurately determined below- and above-threshold FPIRs in 2/3 of tests relative to the current standard of the insulin RIA, but could not reliably classify the remaining FPIRs. TrialNet is limiting the insulin RIA for FPIR to the latter given the practical advantages of the more specific IEMA. PMID:21843518

  2. ALTERATIONS IN GLUCOSE EFFECTIVENESS AND INSULIN DYNAMICS: POLYCYSTIC OVARY SYNDROME OR BODY MASS INDEX

    PubMed Central

    Vuguin, Patricia; Sopher, Aviva B.; Roumimper, Hailey; Chin, Vivian; Silfen, Miriam; McMahon, Donald J.; Fennoy, Ilene; Oberfield, Sharon E.

    2018-01-01

    Background/Aims To delineate the relationship of PCOS, obesity, and hyperandrogenemia (HA) with glucose and insulin dynamics in adolescents across a broad body mass index (BMI). Methods Seventy-four PCOS (16 yr) and 82 controls (16 yr) were evaluated by an oral glucose tolerance test. Subjects were categorized by BMI: normal weight (NW; 21±0.4 kg/m2), overweight/obese (OO; 33±1.0 kg/m2), and severe obesity (SO; 48±1.4 kg/m2). Indices of glucose and insulin dynamics were determined. Multiple linear regression analysis was used to evaluate the contribution of PCOS, HA and BMI to these indices. Results BMI was significantly associated with systolic and diastolic blood pressure and insulin resistance. A significant interaction between BMI and PCOS and indices of post-glucose load was observed. The mean difference in peak glucose, early glucose response, area under the curve for glucose, and glucose effectiveness (SgIo) between PCOS and C were significantly different between OO and SO. In PCOS, testosterone was positively associated with BMI, fasting insulin, early insulin response, diastolic blood pressure, and negatively associated with Sglo. Conclusions Abnormal glucose dynamics in adolescents with PCOS is mainly due to SO. The combination of PCOS and SO has a synergistic effect on glucose dynamics when compared to all other groups. PMID:28478437

  3. A retrospective database analysis of insulin use patterns in insulin-naïve patients with type 2 diabetes initiating basal insulin or mixtures

    PubMed Central

    Bonafede, Machaon MK; Kalsekar, Anupama; Pawaskar, Manjiri; Ruiz, Kimberly M; Torres, Amelito M; Kelly, Karen R; Curkendall, Suellen M

    2010-01-01

    Objective: To describe insulin persistence among patients with type 2 diabetes initiating insulin therapy with basal insulin or insulin mixtures and determine factors associated with nonpersistence. Research design and methods: The Thomson Reuters MarketScan® databases were used to retrospectively analyze insulin-naïve patients with type 2 diabetes by initiating insulin therapy. Insulin use was described using a variety of measures. The persistence to insulin was described using both a gap-based measure and the number of claims measure. Results: Patients in the basal insulin cohort (N = 15,255) primarily used insulin analogs (88.1%) and vial and syringe (97%). Patients in the mixture cohort (N = 2,732) were more likely to initiate on human insulin mixtures (62.5%) and vial and syringe (68.1%). Average time between insulin refills was 80 and 71 days for basal and mixture initiators, respectively. Nearly, 75% of basal insulin initiators and 65% of insulin mixture initiators had a 90-day gap in insulin prescriptions. More than half of all the patients had at least one insulin prescription per quarter. Patients initiating with insulin analogs were more likely to be persistent compared with those initiating with human insulin across both cohorts and measures of persistence (P < 0.001). Conclusion: Persistence to insulin therapy is poorer than one would anticipate, but appears to be higher in users of insulin analogs and insulin mixtures. PMID:20622915

  4. Dandy-Walker syndrome and chromosomal abnormalities.

    PubMed

    Imataka, George; Yamanouchi, Hideo; Arisaka, Osamu

    2007-12-01

    Dandy-Walker syndrome (DWS) is a brain malformation of unknown etiology, but several reports have been published indicating that there is a causal relationship to various types of chromosomal abnormalities and malformation syndromes. In the present article, we present a bibliographical survey of several previously issued reports on chromosomal abnormalities associated with DWS, including our case of DWS found in trisomy 18. There are various types of chromosomal abnormalities associated with DWS; most of them are reported in chromosome 3, 9, 13 and 18. We also summarize some other chromosomal abnormalities and various congenital malformation syndromes.

  5. Pregestational diabetes with extreme insulin resistance: use of U-500 insulin in pregnancy.

    PubMed

    Zuckerwise, Lisa C; Werner, Erika F; Pettker, Christian M; McMahon-Brown, Erin K; Thung, Stephen F; Han, Christina S

    2012-08-01

    Increased insulin requirements in pregnancy can hinder attainment of glycemic control in diabetic patients. U-500 insulin is a concentrated form of regular insulin that can be a valuable tool in the treatment of patients with severe insulin resistance. A 24-year-old woman with pregestational diabetes mellitus experienced increasing insulin requirements during pregnancy, peaking at 650 units daily. The frequent, large-volume injections of standard-concentration insulin were poorly tolerated by the patient and resulted in nonadherence. She subsequently achieved glycemic control on thrice-daily U-500 insulin. Pregnancy exacerbates insulin resistance in diabetic patients, and these patients may require high doses of insulin. U-500 insulin is an effective alternative for patients with severe insulin resistance and should be considered for pregnant women with difficulty achieving glycemic control.

  6. Dietary Leucine - An Environmental Modifier of Insulin Resistance Acting on Multiple Levels of Metabolism

    PubMed Central

    Macotela, Yazmin; Emanuelli, Brice; Bång, Anneli M.; Espinoza, Daniel O.; Boucher, Jeremie; Beebe, Kirk; Gall, Walter; Kahn, C. Ronald

    2011-01-01

    Environmental factors, such as the macronutrient composition of the diet, can have a profound impact on risk of diabetes and metabolic syndrome. In the present study we demonstrate how a single, simple dietary factor—leucine—can modify insulin resistance by acting on multiple tissues and at multiple levels of metabolism. Mice were placed on a normal or high fat diet (HFD). Dietary leucine was doubled by addition to the drinking water. mRNA, protein and complete metabolomic profiles were assessed in the major insulin sensitive tissues and serum, and correlated with changes in glucose homeostasis and insulin signaling. After 8 weeks on HFD, mice developed obesity, fatty liver, inflammatory changes in adipose tissue and insulin resistance at the level of IRS-1 phosphorylation, as well as alterations in metabolomic profile of amino acid metabolites, TCA cycle intermediates, glucose and cholesterol metabolites, and fatty acids in liver, muscle, fat and serum. Doubling dietary leucine reversed many of the metabolite abnormalities and caused a marked improvement in glucose tolerance and insulin signaling without altering food intake or weight gain. Increased dietary leucine was also associated with a decrease in hepatic steatosis and a decrease in inflammation in adipose tissue. These changes occurred despite an increase in insulin-stimulated phosphorylation of p70S6 kinase indicating enhanced activation of mTOR, a phenomenon normally associated with insulin resistance. These data indicate that modest changes in a single environmental/nutrient factor can modify multiple metabolic and signaling pathways and modify HFD induced metabolic syndrome by acting at a systemic level on multiple tissues. These data also suggest that increasing dietary leucine may provide an adjunct in the management of obesity-related insulin resistance. PMID:21731668

  7. Chronic pancreatitis with secondary diabetes mellitus treated by use of insulin in an adult California sea lion.

    PubMed

    Meegan, Jenny M; Sidor, Inga F; Steiner, Jörg M; Sarran, Delphine; Dunn, J Lawrence

    2008-06-01

    A 21-year-old neutered male captive California sea lion developed chronic polyuria; polydipsia; polyphagia; accelerated development of existing cataracts; and frequent episodes of gastrointestinal upset including anorexia, signs of abdominal discomfort, diarrhea, and vomiting. Chronic hypercholesterolemia, hypertriglyceridemia, hyperglycemia, and glucosuria were identified. During episodes of gastrointestinal abnormalities, transient hyperbilirubinemia and increased serum J-glutamyltransferase activities developed. Clinical findings strongly suggested chronic pancreatitis with secondary diabetes mellitus and intermittent cholestasis. Multiple diagnostic tests, including abdominal ultrasonography, serial hematologic and serum biochemical analyses, fecal examinations, urinalyses and bacteriologic culture of urine, measurement of serum fructosamine and insulin concentrations, and evaluation of thyroid and adrenal function, did not reveal any specific parasitic, endocrine, hepatic, or neoplastic etiologies. For 1.5 years, the sea lion received once-daily administration of glargine insulin, gastrointestinal protectants, and a strict high-protein, low-fat diet. Daily monitoring of glucose regulation was achieved by training the sea lion to submit to blood and urine sampling. Glucose regulation ranged from fair to good, and clinical signs of diabetes mellitus lessened. Episodes of gastrointestinal upset still occurred, although the frequency and severity decreased. Ultimately, a severe episode developed, associated with diabetic ketoacidosis and sepsis, and the sea lion died. Severe fibrosing pancreatitis with exocrine and endocrine atrophy and abscesses arising from ectatic pancreatic ducts were found. Peripancreatic fibrosis caused stricture of the common bile duct, resulting in gallbladder distension without cholecystitis. Diabetes mellitus can occur secondary to chronic pancreatitis in California sea lions and insulin therapy should be considered.

  8. Insulin Infusion Set: The Achilles Heel of Continuous Subcutaneous Insulin Infusion

    PubMed Central

    Heinemann, Lutz; Krinelke, Lars

    2012-01-01

    Continuous subcutaneous insulin infusion from an insulin pump depends on reliable transfer of the pumped insulin to the subcutaneous insulin depot by means of an insulin infusion set (IIS). Despite their widespread use, the published knowledge about IISs and related issues regarding the impact of placement and wear time on insulin absorption/insulin action is relatively small. We also have to acknowledge that our knowledge is limited with regard to how often patients encounter issues with IISs. Reading pump wearer blogs, for instance, suggests that these are a frequent source of trouble. There are no prospective clinical studies available on current IIS and insulin formulations that provide representative data on the type and frequency of issues with infusion sets. The introduction of new IISs and patch pumps may foster a reassessment of available products and of patient problems related to their use. The aim of this review is to summarize the current knowledge and recommendations about IISs and to highlight potential directions of IIS development in order to make insulin absorption safer and more efficient. PMID:22920824

  9. Verification of Bioanalytical Method for Quantification of Exogenous Insulin (Insulin Aspart) by the Analyser Advia Centaur® XP.

    PubMed

    Mihailov, Rossen; Stoeva, Dilyana; Pencheva, Blagovesta; Pentchev, Eugeni

    2018-03-01

    In a number of cases the monitoring of patients with type I diabetes mellitus requires measurement of the exogenous insulin levels. For the purpose of a clinical investigation of the efficacy of a medical device for application of exogenous insulin aspart, a verification of the method for measurement of this synthetic analogue of the hormone was needed. The information in the available medical literature for the measurement of the different exogenous insulin analogs is insufficient. Thus, verification was required to be in compliance with the active standards in Republic of Bulgaria. A manufactured method developed for ADVIA Centaur XP Immunoassay, Siemens Healthcare, was used which we verified using standard solutions and a patient serum pool by adding the appropriate quantity exogenous insulin aspart. The method was verified in accordance with the bioanalytical method verification criteria and regulatory requirements for using a standard method: CLIA chemiluminescence immunoassay ADVIA Centaur® XP. The following parameters are determined and monitored: intra-day precision and accuracy, inter-day precision and accuracy, limit of detection and lower limit of quantification, linearity, analytical recovery. The routine application of the method for measurement of immunoreactive insulin using the analyzer ADVIA Centaur® XP is directed to the measurement of endogenous insulin. The method is applicable for measuring different types of exogenous insulin, including insulin aspart.

  10. C-reactive protein and homocysteine levels are associated with abnormal heart rate recovery in women with polycystic ovary syndrome.

    PubMed

    Kaya, Cemil; Akgül, Ebru; Pabuccu, Recai

    2010-06-01

    To determine heart rate recovery (HRR) in patients with polycystic ovary syndrome (PCOS) and its relation to C-reactive protein (CRP) and homocysteine (Hcy) levels. Prospective clinical study. University hospital. Sixty-eight women with PCOS and 68 healthy women were included this study. Heart rate recovery was evaluated. We measured serum levels of CRP and Hcy. The presence of insulin resistance was investigated using homeostasis model assesment (HOMA-IR). Heart rate recovery, CRP, Hcy. Heart rate recovery was significantly decreased in women with PCOS compared with control group women. Subjects with abnormal HRR had significantly greater levels of CRP and Hcy. The PCOS patients with HRR in the top tertile compared with the bottom quartile tended to have lower mean CRP and Hcy levels. The HRR was significantly and negatively correlated with age, CRP, Hcy, HOMA-IR, and body mass index. C-reactive protein and Hcy are independent determinants of HRR. The CRP and Hcy levels may affect the development and progression of abnormal HRR in PCOS. Crown Copyright (c) 2010. Published by Elsevier Inc. All rights reserved.

  11. Development of glucose-responsive 'smart' insulin systems.

    PubMed

    Rege, Nischay K; Phillips, Nelson F B; Weiss, Michael A

    2017-08-01

    The complexity of modern insulin-based therapy for type I and type II diabetes mellitus and the risks associated with excursions in blood-glucose concentration (hyperglycemia and hypoglycemia) have motivated the development of 'smart insulin' technologies (glucose-responsive insulin, GRI). Such analogs or delivery systems are entities that provide insulin activity proportional to the glycemic state of the patient without external monitoring by the patient or healthcare provider. The present review describes the relevant historical background to modern GRI technologies and highlights three distinct approaches: coupling of continuous glucose monitoring (CGM) to deliver devices (algorithm-based 'closed-loop' systems), glucose-responsive polymer encapsulation of insulin, and molecular modification of insulin itself. Recent advances in GRI research utilizing each of the three approaches are illustrated; these include newly developed algorithms for CGM-based insulin delivery systems, glucose-sensitive modifications of existing clinical analogs, newly developed hypoxia-sensitive polymer matrices, and polymer-encapsulated, stem-cell-derived pancreatic β cells. Although GRI technologies have yet to be perfected, the recent advances across several scientific disciplines that are described in this review have provided a path towards their clinical implementation.

  12. Inhaled Insulin: A Clinical and Historical Review.

    PubMed

    Chan, Jason; Cheng-Lai, Angela

    Insulin is the most effective blood glucose lowering agent and remains one of the cornerstones of diabetes management. However, many individuals with diabetes are either reluctant to initiate or are nonadherent to their insulin therapy for various reasons, including fear of frequent injections. Technosphere Insulin (TI) is a novel inhaled insulin powder that is approved by the United States Food and Drug Administration for the management of diabetes. The results from 2 phase III clinical trials have shown that TI was noninferior to subcutaneous insulin aspart and superior to inhaled placebo in lowering HbA1c in patients with diabetes mellitus types 1 and 2, respectively. Across both studies, TI appears to be generally well tolerated, with the most common adverse events being hypoglycemia and cough. However, long-term pulmonary safety concerns have not been addressed and additional studies are needed. Overall, TI appears to be a promising noninvasive prandial insulin alternative for individuals with diabetes who are at risk for medication nonadherence due to aversion to frequent injections. This article provides a review of the historical development of TI, its safety and efficacy data, and its advantages and disadvantages over traditional injectable insulins.

  13. Continuous subcutaneous insulin infusion (CSII) versus multiple insulin injections for type 1 diabetes mellitus.

    PubMed

    Misso, Marie L; Egberts, Kristine J; Page, Matthew; O'Connor, Denise; Shaw, Jonathan

    2010-01-20

    Type 1 diabetes is a metabolic disorder resulting from a defect in insulin secretion. Onset of type 1 diabetes mellitus may occur at any age and it is one of the most common chronic diseases of childhood and adolescence. Since there are no interventions known to prevent onset, it is vital that effective treatment regimes are available. Glycaemic control is maintained by replacement of insulin and may be in the form of 'conventional' insulin therapy (multiple injections per day) or continuous subcutaneous insulin infusion (CSII). To assess the effects of CSII compared to multiple insulin injections (MI) in people with type 1 diabetes mellitus. Studies were obtained from electronic searches of The Cochrane Library, MEDLINE, EMBASE and CINAHL. Studies were included if they were randomised controlled trials comparing CSII with three or more insulin injections per day (MI) in people with type 1 diabetes mellitus. Two authors independently assessed risk of bias and extracted characteristics of included studies. Authors contacted study investigators to obtain missing information. Generic inverse variance meta-analyses using a random-effects model were performed. Twenty three studies randomised 976 participants with type 1 diabetes to either intervention. There was a statistically significant difference in glycosylated haemoglobin A1c (HbA1c) favouring CSII (weighted mean difference -0.3% (95% confidence interval -0.1 to -0.4). There were no obvious differences between the interventions for non-severe hypoglycaemia, but severe hypoglycaemia appeared to be reduced in those using CSII. Quality of life measures suggest that CSII is preferred over MI. No significant difference was found for weight. Adverse events were not well reported, no information is available on mortality, morbidity and costs. There is some evidence to suggest that CSII may be better than MI for glycaemic control in people with type 1 diabetes. Non-severe hypoglycaemic events do not appear to be reduced

  14. Insulin oedema and treatment-induced neuropathy occurring in a 20-year-old patient with Type 1 diabetes commenced on an insulin pump.

    PubMed

    Rothacker, K M; Kaye, J

    2014-01-01

    Oedema may occur following initiation or intensification of insulin therapy in patients with Type 1 and Type 2 diabetes. Mild oedema is thought to be not uncommon, but under-reported, whilst generalized oedema with involvement of serous cavities has rarely been described. Multiple pathogenic mechanisms have been proposed, including insulin-induced sodium and water retention. Patients at greater risk for insulin oedema include those with poor glycaemic control. Dramatic improvement in glycaemic control is also associated with sensory and autonomic neuropathy. We describe a case of generalized oedema occurring in a 20-year-old, low body weight patient with Type 1 diabetes with poor glycaemic control 3 days following commencement of an insulin pump; blood sugars had dramatically improved with this treatment. Alternative causes for oedema were excluded. Oedema slowly improved with insulin dose reduction with higher blood sugar targets plus frusemide treatment. Subsequent to oedema resolution, the patient unfortunately developed generalized neuropathic pain, thought to be another manifestation of rapid improvement in glycaemic control. Caution should be taken when a patient with diabetes that is poorly controlled has an escalation in therapy that may dramatically improve their blood sugar levels; this includes the initiation of an insulin pump. Clinicians and patients should be aware of the potential risk of insulin oedema, treatment-induced neuropathy and worsening of diabetic retinopathy in the setting of rapid improvement in glycaemic control. © 2013 The Authors. Diabetic Medicine © 2013 Diabetes UK.

  15. Insulin resistance in the liver: Deficiency or excess of insulin?

    PubMed Central

    Bazotte, Roberto B; Silva, Lorena G; Schiavon, Fabiana PM

    2014-01-01

    In insulin-resistant states (obesity, pre-diabetes, and type 2 diabetes), hepatic production of glucose and lipid synthesis are heightened in concert, implying that insulin deficiency and insulin excess coexists in this setting. The fact that insulin may be inadequate or excessive at any one point in differing organs and tissues has many biologic ramifications. In this context the concept of metabolic compartmentalization in the liver is offered herein as one perspective of this paradox. In particular, we focus on the hypothesis that insulin resistance accentuates differences in periportal and perivenous hepatocytes, namely periportal glucose production and perivenous lipid synthesis. Subsequently, excessive production of glucose and accumulation of lipids could be expected in the livers of patients with obesity and insulin resistance. Overall, in this review, we provide our integrative perspective regarding how excessive production of glucose in periportal hepatocytes and accumulation of lipids in perivenous hepatocytes interact in insulin resistant states. PMID:25486190

  16. Neutral insulin solutions physically stabilized by addition of Zn2+.

    PubMed

    Brange, J; Havelund, S; Hommel, E; Sørensen, E; Kühl, C

    1986-01-01

    Commercial neutral insulin solutions, all of which contain 2-3 zinc atoms per hexameric unit of insulin, have a relatively limited physical stability when exposed to heat and movement, as for example in insulin infusion pumps. Physical stabilization of neutral insulin solutions has been obtained by addition of two extra Zn2+ per hexamer of insulin. This addition stabilizes porcine and human neutral solutions equally well and does not affect the chemical stability of the insulin. The stabilization is probably obtained by a further strengthening of the hexameric structure of insulin, so that the formation of insoluble insulin fibrils (via the dissociation into the insulin monomer or dimer) is impeded or prevented. The addition of an extra 2 Zn2+ has been shown to be without influence on the insulin immunogenicity in rabbits or on the rate of absorption after subcutaneous injection in diabetic patients. It is concluded that neutral insulin solution can be physically stabilized by addition of extra Zn2+ without affecting other qualities of the insulin preparation including chemical stability, immunogenicity, and duration of action after injection.

  17. Lipid-induced insulin resistance does not impair insulin access to skeletal muscle

    PubMed Central

    Richey, Joyce M.; Castro, Ana Valeria B.; Broussard, Josiane L.; Ionut, Viorica; Bergman, Richard N.

    2015-01-01

    Elevated plasma free fatty acids (FFA) induce insulin resistance in skeletal muscle. Previously, we have shown that experimental insulin resistance induced by lipid infusion prevents the dispersion of insulin through the muscle, and we hypothesized that this would lead to an impairment of insulin moving from the plasma to the muscle interstitium. Thus, we infused lipid into our anesthetized canine model and measured the appearance of insulin in the lymph as a means to sample muscle interstitium under hyperinsulinemic euglycemic clamp conditions. Although lipid infusion lowered the glucose infusion rate and induced both peripheral and hepatic insulin resistance, we were unable to detect an impairment of insulin access to the lymph. Interestingly, despite a significant, 10-fold increase in plasma FFA, we detected little to no increase in free fatty acids or triglycerides in the lymph after lipid infusion. Thus, we conclude that experimental insulin resistance induced by lipid infusion does not reduce insulin access to skeletal muscle under clamp conditions. This would suggest that the peripheral insulin resistance is likely due to reduced cellular sensitivity to insulin in this model, and yet we did not detect a change in the tissue microenvironment that could contribute to cellular insulin resistance. PMID:25852002

  18. Insulin use and persistence in patients with type 2 diabetes adding mealtime insulin to a basal regimen: a retrospective database analysis

    PubMed Central

    2011-01-01

    Background The objective of this study was to characterize insulin use and examine factors associated with persistence to mealtime insulin among patients with type 2 diabetes (T2D) on stable basal insulin therapy initiating mealtime insulin therapy. Methods Insulin use among patients with T2D initiating mealtime insulin was investigated using Thomson Reuters MarketScan® research databases from July 2001 through September 2006. The first mealtime insulin claim preceded by 6 months with 2 claims for basal insulin was used as the index event. A total of 21 months of continuous health plan enrollment was required. Patients were required to have a second mealtime insulin claim during the 12-month follow-up period. Persistence measure 1 defined non-persistence as the presence of a 90-day gap in mealtime insulin claims, effective the date of the last claim prior to the gap. Persistence measure 2 required 1 claim per quarter to be persistent. Risk factors for non-persistence were assessed using logistic regression. Results Patients initiating mealtime insulin (n = 4752; 51% male, mean age = 60.3 years) primarily used vial/syringe (87%) and insulin analogs (60%). Patients filled a median of 2, 3, and 4 mealtime insulin claims at 3, 6, and 12 months, respectively, with a median time of 76 days between refills. According to measure 1, persistence to mealtime insulin was 40.7%, 30.2%, and 19.1% at 3, 6, and 12 months, respectively. Results for measure 2 were considerably higher: 74.3%, 55.3%, and 42.2% of patients were persistent at 3, 6, and 12 months, respectively. Initiating mealtime insulin with human insulin was a risk factor for non-persistence by both measures (OR < 0.80, p < 0.01). Additional predictors of non-persistence at 12 months included elderly age, increased insulin copayment, mental health comorbidity, and polypharmacy (p < 0.05 for all). Conclusions Mealtime insulin use and persistence were both considerably lower than expected, and were significantly lower

  19. Effectiveness of insulin glargine in type 2 diabetes mellitus patients failing glycaemic control with premixed insulin: Adriatic countries data meta-analysis.

    PubMed

    Cigrovski Berkovic, Maja; Petrovski, Goran; Grulovic, Natasa

    2016-10-01

    Type 2 diabetes mellitus (T2DM) is a progressive disease, often requiring exogenous insulin therapy and treatment intensification. Despite new therapies, most patients do not reach the recommended HbA1c targets, among them a significant proportion of patients on premixed insulins. The aim was to summarize published data in Adriatic countries on effectiveness of insulin glargine based therapy in type 2 diabetic patients suboptimally controlled on premix insulin. A meta-analysis was carried out in major medical databases up to April 2014, focusing on Adriatic region. We searched observational studies with duration of at least 6 months, evaluating effectiveness and safety of insulin glargine (IGlar), in combination with OAD or bolus insulin in patients with T2 failing premixed insulin therapy. Outcomes included values of HbA1c, fasting blood glucose and two hours post-prandial glucose concentration as well as changes in body mass index after at least 6 months of study duration. Three prospective, observational, multicentric trials (698 patients in total) were included. The basal bolus regimen with glargine significantly reduced HbA1c (Mean Difference, MD=2.27, CI [1.76, 2.78]), fasting glucose (MD=5.15, CI [4.86, 5.44]) and 2-hours postprandial glucose concentration (MD=6.94, CI [6.53, 7.34]). No significant changes were found in BMI after switching from premixes to IGlar based treatment. Insulin glargine based therapy following premix failure is efficacious and safe option of type 2 diabetes treatment intensification.

  20. Alternative translation initiation of Caveolin-2 desensitizes insulin signaling through dephosphorylation of insulin receptor by PTP1B and causes insulin resistance.

    PubMed

    Kwon, Hayeong; Jang, Donghwan; Choi, Moonjeong; Lee, Jaewoong; Jeong, Kyuho; Pak, Yunbae

    2018-06-01

    Insulin resistance, defined as attenuated sensitivity responding to insulin, impairs insulin action. Direct causes and molecular mechanisms of insulin resistance have thus far remained elusive. Here we show that alternative translation initiation (ATI) of Caveolin-2 (Cav-2) regulates insulin sensitivity. Cav-2β isoform yielded by ATI desensitizes insulin receptor (IR) via dephosphorylation by protein-tyrosine phosphatase 1B (PTP1B), and subsequent endocytosis and lysosomal degradation of IR, causing insulin resistance. Blockage of Cav-2 ATI protects against insulin resistance by preventing Cav-2β-PTP1B-directed IR desensitization, thereby normalizing insulin sensitivity and glucose uptake. Our findings show that Cav-2β is a negative regulator of IR signaling, and identify a mechanism causing insulin resistance through control of insulin sensitivity via Cav-2 ATI. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Prevention of Hypoglycemia during Exercise in Children with Type 1 Diabetes by Suspending Basal Insulin

    PubMed Central

    2006-01-01

    Background Strategies for preventing hypoglycemia during exercise in children with T1D have not been well studied. DirecNet conducted a study to determine whether stopping basal insulin could reduce the frequency of hypoglycemia occurring during exercise. Methods Using a randomized, crossover design, 49 children 8–17y with T1D on insulin pump therapy were studied during structured exercise sessions on two days. On one day basal insulin was stopped during exercise and on the other day it was continued. Each exercise session, performed from approximately 4–5 p.m., consisted of four 15-minute treadmill cycles at a target heart rate of 140 beats/minute (interspersed with three 5-minute rest breaks over 75 minutes) followed by a 45 minute observation period. Frequently sampled glucose concentrations (measured in the DirecNet Central Laboratory) were measured prior to, during, and following the exercise. Results Hypoglycemia (≤70 mg/dL) during exercise occurred less frequently when the basal insulin was discontinued than when it was continued (16% vs. 43%; P=0.003). Hyperglycemia (increase from baseline of ≥20% to ≥200 mg/dL) 45 minutes after the completion of exercise was more frequent without basal insulin (27% vs. 4%; P=0.002). There were no cases of abnormal blood ketone levels. Conclusion Discontinuing basal insulin during exercise is an effective strategy for reducing hypoglycemia in children with T1D, but the risk of hyperglycemia is increased. PMID:17003293

  2. Insulin released from titanium discs with insulin coatings-Kinetics and biological activity.

    PubMed

    Malekzadeh, B Ö; Ransjo, M; Tengvall, P; Mladenovic, Z; Westerlund, A

    2017-10-01

    Local administration of insulin from a titanium surface has been demonstrated to increase bone formation in non-diabetic rats. The authors hypothesized that insulin was released from the titanium surface and with preserved biological activity after the release. Thus, in the present in vitro study, human recombinant insulin was immobilized onto titanium discs, and the insulin release kinetics was evaluated using Electro-chemiluminescence immunoassay. Neutral Red uptake assay and mineralization assay were used to evaluate the biological effects of the released insulin on human osteoblast-like MG-63 cells. The results confirmed that insulin was released from titanium surfaces during a six-week period. Etching the disc prior to insulin coating, thickening of the insulin coating and incubation of the discs in serum-enriched cell culture medium increased the release. However, longer storage time decreased the release of insulin. Furthermore, the released insulin had retained its biological activity, as demonstrated by the significant increase in cell number and a stimulated mineralization process, upon exposure to released insulin. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1847-1854, 2017. © 2016 Wiley Periodicals, Inc.

  3. Improving influence of insulin on cognitive functions in humans.

    PubMed

    Kern, W; Peters, A; Fruehwald-Schultes, B; Deininger, E; Born, J; Fehm, H L

    2001-10-01

    Insulin receptors have been identified in limbic brain structures, but their functional relevance is still unclear. In order to characterize some of their effects, we evaluated auditory evoked brain potentials (AEP) in a vigilance task, behavioral measures of memory (recall of words) and selective attention (Stroop test) during infusion of insulin. The hormone was infused at two different rates (1.5 mU/kg x min, "low insulin", and 15 mU/kg x min, "high insulin"), inducing respectively serum levels of 543 +/- 34 and 24,029 +/- 1,595 pmol/l. This experimental design allowed to compare cognitive parameters under two conditions presenting markedly different insulin levels, but with minimal incidence on blood glucose concentrations since these were kept constant by glucose infusion. A "no insulin treatment" group was not included in order to avoid leaving patients infused with glucose without insulin treatment. Measures were taken during a baseline phase preceding insulin infusion and every 90 min during the 360 min of insulin infusion. Compared with "low insulin", "high insulin" induced a slow negative potential shift in the AEP over the frontal cortex (average amplitude, high insulin: 0.27 +/- 0.48 microV; low insulin: 1.87 +/- 0.48 microV, p < 0.005), which was paralleled by enhanced memory performance (words recalled, high insulin: 22.04 +/- 0.93; low insulin: 19.29 +/- 0.92, p < 0.05). Also, during "high insulin" subjects displayed enhanced performance on the Stroop test (p < 0.05) and expressed less difficulty in thinking than during "low insulin" (p < 0.03). Results indicate an improving effect of insulin on cognitive function, and may provide a frame for further investigations of neurobehavioral effects of insulin in patients with lowered or enhanced brain insulin, i.e., patients with Alzheimer's disease or diabetes mellitus. Copyright 2001 S. Karger AG, Basel

  4. Insulin sensitizers in adolescents with polycystic ovary syndrome.

    PubMed

    LE, Trang N; Wickham, Edmond P; Nestler, John E

    2017-10-01

    Polycystic ovary syndrome (PCOS) is the most common disorder of androgen excess in women of reproductive age. The diagnosis of PCOS can be more challenging in adolescents than in adult women given significant overlap between normal puberty and the signs of PCOS, including acne, menstrual irregularity, and polycystic ovarian morphology. Optimal treatments for adult women with PCOS vary depending on patient risk factors and reproductive goals, but mainly include hormonal contraception and insulin sensitizers. There is continued interest in targeting the intrinsic insulin resistance that contributes to metabolic and hormonal derangements associated with PCOS. The vast majority of published data on insulin sensitizing PCOS treatments are reported in adult women; these have included weight loss, metformin, thiazolidinediones, and the inositols. Furthermore, there is also a small but growing body of evidence in support of the use of insulin sensitizers in adolescents, with or without oral contraceptives. Discussion of the available treatments, including benefits, potential side effects, and incorporation of patient and family preferences is critical in developing a plan of care aimed at achieving patient-important improvements in PCOS signs and symptoms while addressing the longer-term cardiometabolic risks associated with the syndrome.

  5. Peel flour of Passiflora edulis Var. Flavicarpa supplementation prevents the insulin resistance and hepatic steatosis induced by low-fructose-diet in young rats.

    PubMed

    Goss, M J; Nunes, M L O; Machado, I D; Merlin, L; Macedo, N B; Silva, A M O; Bresolin, T M B; Santin, J R

    2018-06-01

    The increase in fructose consumption in the last decades has an important correlation with the growth of overweight population. Fructose is a monosaccharide found in fruits, vegetables and honey, however, it is widely used in processed food and beverages such as sweeteners. This monosaccharide is metabolized in the liver, so it can produce glucose, lactate, triglycerides, free fatty acids and uric acid, which are responsible for negative effects on the liver and extrahepatic tissues. One effect of the high consumption of fructose is the resistance to Insulin, which appears to be an important issue in the development of metabolic abnormalities observed in animals that were subjected to a high fructose diet. The population and, consequently, the market search for natural sources to manage metabolic abnormalities is increasing, but, adequate scientific proof still is necessary. The Passiflora edulis peel flour (PEPF) is a byproduct of the juice industry, and, represents an important source of fiber and bioactive compounds. The present study investigates the PEPF supplementation (30%) effects on insulin sensitivity, adiposity and metabolic parameters in young rats that were given beverages enriched with 10% of fructose for 8 weeks. Fructose intake induced insulin resistance, increased serum triglycerides levels, growth of fat deposits in the liver and widening of the diameter of adipocytes. In contrast, the group that received PEPF did not present such abnormalities, which could be related to the presence of fiber or bioactive compounds (phenolics compounds, e.g., caffeic acid and isoorientin) in its composition, as identified by analytical methods. Thus, for the first time, it has been demonstrated that PEPF supplementation prevents insulin resistance and hepatic steatosis induced by low-fructose-diet in young rats. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Clinical use of the co-formulation of insulin degludec and insulin aspart.

    PubMed

    Kumar, A; Awata, T; Bain, S C; Ceriello, A; Fulcher, G R; Unnikrishnan, A G; Arechavaleta, R; Gonzalez-Gálvez, G; Hirose, T; Home, P D; Kaku, K; Litwak, L; Madsbad, S; Pinget, M; Mehta, R; Mithal, A; Tambascia, M; Tibaldi, J; Christiansen, J S

    2016-08-01

    To provide a review of the available data and practical use of insulin degludec with insulin aspart (IDegAsp). Premixed insulins provide basal and prandial glucose control; however, they have an intermediate-acting prandial insulin component and do not provide as effective basal coverage as true long-acting insulins, owing to the physicochemical incompatibility of their individual components, coupled with the inflexibility of adjustment. The molecular structure of the co-formulation of IDegAsp, a novel insulin preparation, allows these two molecules to coexist without affecting their individual pharmacodynamic profiles. Clinical evidence in phase 2/3 trials of IDegAsp efficacy and safety in type 1 and type 2 diabetes mellitus (T1DM and T2DM) have been assessed and summarised. In people with T2DM, once- and twice-daily dosing provides similar overall glycaemic control (HbA1c ) to current modern insulins, but with lower risk of nocturnal hypoglycaemia. In prior insulin users, glycaemic control was achieved with lower or equal insulin doses vs. other basal+meal-time or premix insulin regimens. In insulin-naïve patients with T2DM, IDegAsp can be started once or twice-daily, based on individual need. People switching from more than once-daily basal or premix insulin therapy can be converted unit-to-unit to once-daily IDegAsp, although this strategy should be assessed by the physician on an individual basis. IDegAsp offers physicians and people with T2DM a simpler insulin regimen than other available basal-bolus or premix-based insulin regimens, with stable daytime basal coverage, a lower rate of hypoglycaemia and some flexibility in injection timing compared with premix insulins. © 2016 John Wiley & Sons Ltd.

  7. Molecular Mechanisms of Chromium in Alleviating Insulin Resistance

    PubMed Central

    Hua, Yinan; Clark, Suzanne; Ren, Jun; Sreejayan, Nair

    2011-01-01

    Type 2 diabetes is often associated with obesity, dyslipidemia, and cardiovascular anomalies and is a major health problem approaching global epidemic proportions. Insulin resistance, a prediabetic condition, precedes the onset of frank type 2 diabetes and offers potential avenues for early intervention to treat the disease. Although lifestyle modifications and exercise can reduce the incidence of diabetes, compliance has proved to be difficult, warranting pharmacological interventions. However, most of the currently available drugs that improve insulin sensitivity have adverse effects. Therefore, attractive strategies to alleviate insulin resistance include dietary supplements. One such supplement is chromium, which has been shown reduce insulin resistance in some, but not all, studies. Furthermore, the molecular mechanisms of chromium in alleviating insulin resistance remain elusive. This review examines emerging reports on the effect of chromium, as well as molecular and cellular mechanisms by which chromium may provide beneficial effects in alleviating insulin resistance. PMID:22423897

  8. Comparison of two insulin assays for first-phase insulin release in type 1 diabetes prediction and prevention studies.

    PubMed

    Mahon, Jeffrey L; Beam, Craig A; Marcovina, Santica M; Boulware, David C; Palmer, Jerry P; Winter, William E; Skyler, Jay S; Krischer, Jeffrey P

    2011-11-20

    Detection of below-threshold first-phase insulin release or FPIR (1+3 minute insulin concentrations during an intravenous glucose tolerance test [IVGTT]) is important in type 1 diabetes prediction and prevention studies including the TrialNet Oral Insulin Prevention Trial. We assessed whether an insulin immunoenzymometric assay (IEMA) could replace the less practical but current standard of a radioimmunoassay (RIA) for FPIR. One hundred thirty-three islet autoantibody positive relatives of persons with type 1 diabetes underwent 161 IVGTTs. Insulin concentrations were measured by both assays in 1056 paired samples. A rule classifying FPIR (below-threshold, above-threshold, uncertain) by the IEMA was derived and validated against FPIR by the RIA. The insulin IEMA-based rule accurately classified below- and above-threshold FPIRs by the RIA in 110/161 (68%) IVGTTs, but was uncertain in 51/161 (32%) tests for which FPIR by RIA is needed. An uncertain FPIR by the IEMA was more likely among below-threshold vs above-threshold FPIRs by the RIA (64% [30/47] vs. 18% [21/114], respectively; p<0.05). An insulin IEMA for FPIR in subjects at risk for type 1 diabetes accurately determined below- and above-threshold FPIRs in 2/3 of tests relative to the current standard of the insulin RIA, but could not reliably classify the remaining FPIRs. TrialNet is limiting the insulin RIA for FPIR to the latter given the practical advantages of the more specific IEMA. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. The SH2B1 obesity locus and abnormal glucose homeostasis: lack of evidence for association from a meta-analysis in individuals of European ancestry.

    PubMed

    Prudente, S; Copetti, M; Morini, E; Mendonca, C; Andreozzi, F; Chandalia, M; Baratta, R; Pellegrini, F; Mercuri, L; Bailetti, D; Abate, N; Frittitta, L; Sesti, G; Florez, J C; Doria, A; Trischitta, V

    2013-11-01

    The development of type 2 diabetes (T2D) is influenced both by environmental and by genetic determinants. Obesity is an important risk factor for T2D, mostly mediated by obesity-related insulin resistance. Obesity and insulin resistance are also modulated by the genetic milieu; thus, genes affecting risk of obesity and insulin resistance might also modulate risk of T2D. Recently, 32 loci have been associated with body mass index (BMI) by genome-wide studies, including one locus on chromosome 16p11 containing the SH2B1 gene. Animal studies have suggested that SH2B1 is a physiological enhancer of the insulin receptor and humans with rare deletions or mutations at SH2B1 are obese with a disproportionately high insulin resistance. Thus, the role of SH2B1 in both obesity and insulin resistance makes it a strong candidate for T2D. However, published data on the role of SH2B1 variability on the risk for T2D are conflicting, ranging from no effect at all to a robust association. The SH2B1 tag SNP rs4788102 (SNP, single nucleotide polymorphism) was genotyped in 6978 individuals from six studies for abnormal glucose homeostasis (AGH), including impaired fasting glucose, impaired glucose tolerance or T2D, from the GENetics of Type 2 Diabetes in Italy and the United States (GENIUS T2D) consortium. Data from these studies were then meta-analyzed, in a Bayesian fashion, with those from DIAGRAM+ (n = 47,117) and four other published studies (n = 39,448). Variability at the SH2B1 obesity locus was not associated with AGH either in the GENIUS consortium (overall odds ratio (OR) = 0.96; 0.89-1.04) or in the meta-analysis (OR = 1.01; 0.98-1.05). Our data exclude a role for the SH2B1 obesity locus in the modulation of AGH. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Carotid body, insulin, and metabolic diseases: unraveling the links

    PubMed Central

    Conde, Sílvia V.; Sacramento, Joana F.; Guarino, Maria P.; Gonzalez, Constancio; Obeso, Ana; Diogo, Lucilia N.; Monteiro, Emilia C.; Ribeiro, Maria J.

    2014-01-01

    The carotid bodies (CB) are peripheral chemoreceptors that sense changes in arterial blood O2, CO2, and pH levels. Hypoxia, hypercapnia, and acidosis activate the CB, which respond by increasing the action potential frequency in their sensory nerve, the carotid sinus nerve (CSN). CSN activity is integrated in the brain stem to induce a panoply of cardiorespiratory reflexes aimed, primarily, to normalize the altered blood gases, via hyperventilation, and to regulate blood pressure and cardiac performance, via sympathetic nervous system (SNS) activation. Besides its role in the cardiorespiratory control the CB has been proposed as a metabolic sensor implicated in the control of energy homeostasis and, more recently, in the regulation of whole body insulin sensitivity. Hypercaloric diets cause CB overactivation in rats, which seems to be at the origin of the development of insulin resistance and hypertension, core features of metabolic syndrome and type 2 diabetes. Consistent with this notion, CB sensory denervation prevents metabolic and hemodynamic alterations in hypercaloric feed animal. Obstructive sleep apnea (OSA) is another chronic disorder characterized by increased CB activity and intimately related with several metabolic and cardiovascular abnormalities. In this manuscript we review in a concise manner the putative pathways linking CB chemoreceptors deregulation with the pathogenesis of insulin resistance and arterial hypertension. Also, the link between chronic intermittent hypoxia (CIH) and insulin resistance is discussed. Then, a final section is devoted to debate strategies to reduce CB activity and its use for prevention and therapeutics of metabolic diseases with an emphasis on new exciting research in the modulation of bioelectronic signals, likely to be central in the future. PMID:25400585

  11. Targeting Insulin Signaling for the Treatment of Alzheimer's Disease.

    PubMed

    Chen, Yanxing; Zhang, Jianfang; Zhang, Baorong; Gong, Cheng-Xin

    2016-01-01

    Sporadic Alzheimer's disease (AD) is caused by multiple etiological factors, among which impaired brain insulin signaling and decreased brain glucose metabolism are important metabolic factors. Contrary to previous belief that insulin would not act in the brain, studies in the last three decades have proven important roles of insulin and insulin signaling in various biological functions in the brain. Impaired brain insulin signaling or brain insulin resistance and its role in the molecular pathogenesis of sporadic AD have been demonstrated. Thus, targeting brain insulin signaling for the treatment of cognitive impairment and AD has now attracted much attention in the field of AD drug discovery. This article reviews recent studies that target brain insulin signaling, especially those investigations on intranasal insulin administration and drugs that improve insulin sensitivity, including incretins, dipeptidyl peptidase IV inhibitors, thiazolidinediones, and metformin. These drugs have been previously approved for the treatment of diabetes mellitus, which could expedite their development for the treatment of AD. Although larger clinical trials are needed for validating their efficacy for the treatment of cognitive impairment and AD, results of animal studies and clinical trials available to date are encouraging.

  12. A review of the security of insulin pump infusion systems.

    PubMed

    Paul, Nathanael; Kohno, Tadayoshi; Klonoff, David C

    2011-11-01

    Insulin therapy has enabled patients with diabetes to maintain blood glucose control to lead healthier lives. Today, rather than injecting insulin manually using syringes, a patient can use a device such as an insulin pump to deliver insulin programmatically. This allows for more granular insulin delivery while attaining blood glucose control. Insulin pump system features have increasingly benefited patients, but the complexity of the resulting system has grown in parallel. As a result, security breaches that can negatively affect patient health are now possible. Rather than focus on the security of a single device, we concentrate on protecting the security of the entire system. In this article, we describe the security issues as they pertain to an insulin pump system that includes an embedded system of components, which include the insulin pump, continuous glucose management system, blood glucose monitor, and other associated devices (e.g., a mobile phone or personal computer). We detail not only the growing wireless communication threat in each system component, but also describe additional threats to the system (e.g., availability and integrity). Our goal is to help create a trustworthy infusion pump system that will ultimately strengthen pump safety, and we describe mitigating solutions to address identified security issues. © 2011 Diabetes Technology Society.

  13. A Review of the Security of Insulin Pump Infusion Systems

    PubMed Central

    Paul, Nathanael; Kohno, Tadayoshi; Klonoff, David C

    2011-01-01

    Insulin therapy has enabled patients with diabetes to maintain blood glucose control to lead healthier lives. Today, rather than injecting insulin manually using syringes, a patient can use a device such as an insulin pump to deliver insulin programmatically. This allows for more granular insulin delivery while attaining blood glucose control. Insulin pump system features have increasingly benefited patients, but the complexity of the resulting system has grown in parallel. As a result, security breaches that can negatively affect patient health are now possible. Rather than focus on the security of a single device, we concentrate on protecting the security of the entire system. In this article, we describe the security issues as they pertain to an insulin pump system that includes an embedded system of components, which include the insulin pump, continuous glucose management system, blood glucose monitor, and other associated devices (e.g., a mobile phone or personal computer). We detail not only the growing wireless communication threat in each system component, but also describe additional threats to the system (e.g., availability and integrity). Our goal is to help create a trustworthy infusion pump system that will ultimately strengthen pump safety, and we describe mitigating solutions to address identified security issues. PMID:22226278

  14. Novel Simple Insulin Delivery Device Reduces Barriers to Insulin Therapy in Type 2 Diabetes

    PubMed Central

    Hermanns, Norbert; Lilly, Leslie C.; Mader, Julia K.; Aberer, Felix; Ribitsch, Anja; Kojzar, Harald; Warner, Jay; Pieber, Thomas R.

    2015-01-01

    Background: The PaQ® insulin delivery system is a simple-to-use patch-on device that provides preset basal rates and bolus insulin on demand. In addition to feasibility of use, safety, and efficacy (reported elsewhere), this study analyzed the impact of PaQ on patient-reported outcomes, including barriers to insulin treatment, diabetes-related distress, and attitudes toward insulin therapy in patients with type 2 diabetes on a stable multiple daily injection (MDI) regimen. Methods: This single-center, open-label, single-arm study comprised three 2-week periods: baseline (MDI), transition from MDI to PaQ, and PaQ treatment. Validated questionnaires were administered during the baseline and PaQ treatment periods: Barriers to Insulin Treatment questionnaire (BIT), Insulin Treatment Appraisal Scale (ITAS), and Problem Areas in Diabetes scale (PAID). Results: Eighteen patients (age 59 ± 5 years, diabetes duration 15 ± 7 years, 21% female, HbA1c 7.7 ± 0.7%) completed the questionnaires. There was a strong, significant effect of PaQ use in mean BIT total scores (difference [D] = −5.4 ± 0.7.7, P = .01, effect size [d] = 0.70). Patients perceived less stigmatization by insulin injection (D = −2.2 ± 6.2, P = .18, d = 0.35), increased positive outcome (D = 1.9 ± 6.6, P = .17, d = 0.29), and less fear of injections (1.3 ± 4.8, P = .55, d = 0.28). Mean change in ITAS scores after PaQ device use showed a nonsignificant improvement of 1.71 ± 5.63 but moderate effect size (d = 0.30, P = .14). No increase in PAID scores was seen. Conclusions: The results and moderate to large effects sizes suggest that PaQ device use has beneficial and clinically relevant effects to overcoming barriers to and negative appraisal of insulin treatment, without increasing other diabetes-related distress. PMID:25670847

  15. Insulin signalling mechanisms for triacylglycerol storage.

    PubMed

    Czech, M P; Tencerova, M; Pedersen, D J; Aouadi, M

    2013-05-01

    Insulin signalling is uniquely required for storing energy as fat in humans. While de novo synthesis of fatty acids and triacylglycerol occurs mostly in liver, adipose tissue is the primary site for triacylglycerol storage. Insulin signalling mechanisms in adipose tissue that stimulate hydrolysis of circulating triacylglycerol, uptake of the released fatty acids and their conversion to triacylglycerol are poorly understood. New findings include (1) activation of DNA-dependent protein kinase to stimulate upstream stimulatory factor (USF)1/USF2 heterodimers, enhancing the lipogenic transcription factor sterol regulatory element binding protein 1c (SREBP1c); (2) stimulation of fatty acid synthase through AMP kinase modulation; (3) mobilisation of lipid droplet proteins to promote retention of triacylglycerol; and (4) upregulation of a novel carbohydrate response element binding protein β isoform that potently stimulates transcription of lipogenic enzymes. Additionally, insulin signalling through mammalian target of rapamycin to activate transcription and processing of SREBP1c described in liver may apply to adipose tissue. Paradoxically, insulin resistance in obesity and type 2 diabetes is associated with increased triacylglycerol synthesis in liver, while it is decreased in adipose tissue. This and other mysteries about insulin signalling and insulin resistance in adipose tissue make this topic especially fertile for future research.

  16. Challenges constraining insulin access in Nepal-a country with no local insulin production.

    PubMed

    Sharma, Abhishek; Bhandari, Parash Mani; Neupane, Dipika; Kaplan, Warren A; Mishra, Shiva Raj

    2018-05-01

    Nepal is facing an increasing burden of diabetes and relies almost entirely on insulin imported through India. We employed a modified version of the WHO/Health Action International standard survey to assess insulin availability and prices, along with qualitative interviews with insulin retailers (pharmacists) and wholesalers in the Kathmandu Valley, Nepal. The mean availability of the two human insulins listed on the 2011 Nepal Essential Medicine List were 14.3% and 42.85% in the surveyed private- and public-sector pharmacies, respectively, compared with the WHO target of 80% availability. The median consumer price of human insulin cartridges, analogue insulin cartridges and pens was, respectively, 2.1, 4.6 and 5.3 times that of human insulin vials (US$5.54). The insulin cartridges made in India were less expensive (p<0.001) than those made elsewhere. The lowest-paid worker would need to spend between 3 and 17 days' wages to purchase a monthly insulin supply out of pocket. Insulin access is limited in Kathmandu owing to low availability and the highly unaffordable price. Insulin access could improve with the government exploring additional suppliers, pooling insulin tenders, auditing insulin utilization and developing independent prescribing guidelines. Furthermore, there is a need to educate physicians and develop a consensus statement on insulin initiation to curb the growing analogue use and promote rational use.

  17. Insulin structure and stability.

    PubMed

    Brange, J; Langkjoer, L

    1993-01-01

    Insulin is composed of 51 amino acids in two peptide chains (A and B) linked by two disulfide bonds. The three-dimensional structure of the insulin molecule (insulin monomer), essentially the same in solution and in solid phase, exists in two main conformations. These differ in the extent of helix in the B chain which is governed by the presence of phenol or its derivatives. In acid and neutral solutions, in concentrations relevant for pharmaceutical formulation, the insulin monomer assembles to dimers and at neutral pH, in the presence of zinc ions, further to hexamers. Many crystalline modifications of insulin have been identified but only those with the hexamer as the basic unit are utilized in preparations for therapy. The insulin hexamer forms a relatively stable unit but some flexibility remains within the individual molecules. The intrinsic flexibility at the ends of the B chain plays an important role in governing the physical and chemical stability of insulin. A variety of chemical changes of the primary structure (yielding insulin derivatives), and physical modifications of the secondary to quaternary structures (resulting in "denaturation," aggregation, and precipitation) are known to affect insulin and insulin preparations during storage and use (Fig. 8). The tendency of insulin to undergo structural transformation resulting in aggregation and formation of insoluble insulin fibrils has been one of the most intriguing and widely studied phenomena in relation to insulin stability. Although the exact mechanism of fibril formation is still obscure, it is now clear that the initial step is an exposure of certain hydrophobic residues, normally buried in the three-dimensional structure, to the surface of the insulin monomer. This requires displacement of the COOH-terminal B-chain residues from their normal position which can only be accomplished via monomerization of the insulin. Therefore, most methods stabilizing insulin against fibrillation share the

  18. Insulin treatment partially prevents cognitive and hippocampal alterations as well as glucocorticoid dysregulation in early-onset insulin-deficient diabetic rats.

    PubMed

    Marissal-Arvy, Nathalie; Campas, Marie-Neige; Semont, Audrey; Ducroix-Crepy, Céline; Beauvieux, Marie-Christine; Brossaud, Julie; Corcuff, Jean-Benoit; Helbling, Jean-Christophe; Vancassel, Sylvie; Bouzier-Sore, Anne-Karine; Touyarot, Katia; Ferreira, Guillaume; Barat, Pascal; Moisan, Marie-Pierre

    2018-04-17

    The diagnosis of Type 1 Diabetes (T1D) in ever younger children led us to question the impact of insulin deficiency or chronic hyperglycemia on cerebral development and memory performances. Here, we sought abnormalities in these traits in a model of streptozotocin-induced diabetes in juvenile rats treated or not by insulin. We made the assumption that such alterations would be related, at least in part, to excessive glucocorticoid exposition in hippocampal neurons. We have compared 3 groups of juvenile rats: controls, untreated diabetics and insulin-treated diabetics. Diabetes was induced by streptozotocin (65 mg/kg IP/day, 2 consecutive days), at postnatal days 21 and 22 and a subcutaneous pellet delivering 2 U of insulin/day was implanted in treated diabetic rats 3 days later. Three weeks after diabetes induction, cognitive performances (Y maze, object location and recognition tests), in vivo brain structure (brain volume and water diffusion by structural magnetic resonance imaging), and hippocampal neurogenesis (immunohistochemical labeling) measurements were undertaken. Corticosterone levels were evaluated in plasma under basal and stress conditions, and within hippocampus together with 11β-dehydrocorticosterone to assess 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity. The comparison of the three experimental groups revealed that, compared to controls, untreated diabetic rats showed decreased cognitive performances in Y-maze and object location test (p < 0.05), decreased brain and hippocampal microstructure (p < 0.05), and decreased maturation and survival of hippocampal newborn neurons (p < 0.05). These alterations were associated with increased plasma corticosterone at the baseline nadir of its secretion (p < 0.001) and during the recovery phase following a restraint stress (p < 0.001), as well as increased hippocampal corticosterone levels (p < 0.01) and 11β-HSD1 activity (p < 0.05). As untreated diabetic

  19. Cross-reactivity of insulin analogues with three insulin assays.

    PubMed

    Dayaldasani, A; Rodríguez Espinosa, M; Ocón Sánchez, P; Pérez Valero, V

    2015-05-01

    Immunometric assays have recently shown higher specificity in the detection of human insulin than radioimmunoassays with almost no cross-reaction with proinsulin or C peptide. The introduction of the new insulin analogues on the market, however, has raised the need to define their cross-reactivity in these assays. Several studies have been published in this regard with different results. The analogues studied were insulins lispro, aspart, glargine, detemir, and glulisine. Insulin concentrations were measured in Immulite(®) 2000 and Advia Centaur(®) XP (Siemens Healthcare Diagnostics), and Elecsys(®) Modular Analytics E170 (Roche). All samples were processed 15 times in the same analytical run following a random sequence. Those samples which showed statistically and clinically significant changes in insulin concentration were reprocessed using increasing concentrations of analogue, and this was done twice, using two different serum pools, one with a low concentration of insulin and one with a high concentration of insulin. In the Elecsys(®) E170 analyser, glargine showed statistical changes (comparison of mean concentrations with p < 0.05) and clinically significant changes in measured insulin (percentage difference 986.2% > reference change value: 59.8%), and the interference increased with increasing concentrations of analogue; the differences were not significant in the case of the other analogues. In the Advia Centaur(®) and Immulite(®) 2000 only the results for glulisine did not present significance (percentage difference 44.7% < reference change value 103.5%). Increasing concentrations of aspart, glargine, and lispro showed increased interference in Immulite(®) 2000. In the Elecsys(®) E170 assay, relevant cross-reactivity was only detected with insulin glargine, whereas in the other analysers all analogues except glulisine showed significant interference. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. Chorionic villus sampling for abnormal screening compared to historical indications: prevalence of abnormal karyotypes.

    PubMed

    Marshall, Nicole E; Fraley, Gwen; Feist, Cori; Burns, Michael J; Pereira, Leonardo

    2012-08-01

    To determine the prevalence of abnormal karyotype results in women undergoing chorionic villus sampling (CVS) for abnormal first trimester screening compared to CVS for historical indications (advanced maternal age (AMA) or prior aneuploidy). Retrospective cohort of all patients undergoing CVS at Oregon Health & Science University from January 2006 to June 2010. Patients were separated based on CVS indication: (1) positive ultrasound (U/S) or serum screening; or (2) AMA or prior aneuploidy with normal or no screening. Prevalence of abnormal karyotype results were compared between groups. Fetal karyotyping was successful in 500 of 506 CVS procedures performed. 203 CVS were performed for positive screening with 69 abnormal karyotypes (34.0%). 264 CVS were performed for historical indications with 11 abnormal karyotypes (4.2%). This difference was statistically significant (χ(2) 71.9, p < 0.001; OR 11.8 [95% CI 5.8, 24.6]). There were two age-related aneuplodies in AMA women without positive screening. 42 out of 44 AMA women diagnosed with aneuploidy (95.5%) had abnormal U/S and/or serum screening (35 U/S, 4 serum, 3 U/S and serum). Combined ultrasound and serum screening should be recommended to all women, including AMA women, prior to undergoing invasive testing to improve risk-based counseling and minimize morbidity.

  1. Label-Free Proteomic Identification of Endogenous, Insulin-Stimulated Interaction Partners of Insulin Receptor Substrate-1

    NASA Astrophysics Data System (ADS)

    Geetha, Thangiah; Langlais, Paul; Luo, Moulun; Mapes, Rebekka; Lefort, Natalie; Chen, Shu-Chuan; Mandarino, Lawrence J.; Yi, Zhengping

    2011-03-01

    Protein-protein interactions are key to most cellular processes. Tandem mass spectrometry (MS/MS)-based proteomics combined with co-immunoprecipitation (CO-IP) has emerged as a powerful approach for studying protein complexes. However, a majority of systematic proteomics studies on protein-protein interactions involve the use of protein overexpression and/or epitope-tagged bait proteins, which might affect binding stoichiometry and lead to higher false positives. Here, we report an application of a straightforward, label-free CO-IP-MS/MS method, without the use of protein overexpression or protein tags, to the investigation of changes in the abundance of endogenous proteins associated with a bait protein, which is in this case insulin receptor substrate-1 (IRS-1), under basal and insulin stimulated conditions. IRS-1 plays a central role in the insulin signaling cascade. Defects in the protein-protein interactions involving IRS-1 may lead to the development of insulin resistance and type 2 diabetes. HPLC-ESI-MS/MS analyses identified eleven novel endogenous insulin-stimulated IRS-1 interaction partners in L6 myotubes reproducibly, including proteins play an important role in protein dephosphorylation [protein phosphatase 1 regulatory subunit 12A, (PPP1R12A)], muscle contraction and actin cytoskeleton rearrangement, endoplasmic reticulum stress, and protein folding, as well as protein synthesis. This novel application of label-free CO-IP-MS/MS quantification to assess endogenous interaction partners of a specific protein will prove useful for understanding how various cell stimuli regulate insulin signal transduction.

  2. Insulin Therapy Improves Adeno-Associated Virus Transduction of Liver and Skeletal Muscle in Mice and Cultured Cells.

    PubMed

    Carrig, Sean; Bijjiga, Enoch; Wopat, Mitchell J; Martino, Ashley T

    2016-11-01

    Adeno-associated virus (AAV) gene transfer is a promising treatment for genetic abnormalities. Optimal AAV vectors are showing success in clinical trials. Gene transfer to skeletal muscle and liver is being explored as a potential therapy for some conditions, that is, α 1 -antitrypsin (AAT) disorder and hemophilia B. Exploring approaches that enhance transduction of liver and skeletal muscle, using these vectors, is beneficial for gene therapy. Regulating hormones as an approach to improve AAV transduction is largely unexplored. In this study we tested whether insulin therapy improves liver and skeletal muscle gene transfer. In vitro studies demonstrated that the temporary coadministration (2, 8, and 24 hr) of insulin significantly improves AAV2-CMV-LacZ transduction of cultured liver cells and differentiated myofibers, but not of lung cells. In addition, there was a dose response related to this improved transduction. Interestingly, when insulin was not coadministered with the virus but given 24 hr afterward, there was no increase in the transgene product. Insulin receptor gene (INSR) expression levels were increased 5- to 13-fold in cultured liver cells and differentiated myofibers when compared with lung cells. Similar INSR gene expression profiles occurred in mouse tissues. Insulin therapy was performed in mice, using a subcutaneously implanted insulin pellet or a high-carbohydrate diet. Insulin treatment began just before intramuscular delivery of AAV1-CMV-schFIX or liver-directed delivery of AAV8-CMV-schFIX and continued for 28 days. Both insulin augmentation therapies improved skeletal muscle- and liver-directed gene transduction in mice as seen by a 3.0- to 4.5-fold increase in human factor IX (hFIX) levels. The improvement was observed even after the insulin therapy ended. Monitoring insulin showed that insulin levels increased during the brief period of rAAV delivery and during the entire insulin augmentation period (28 days). This study demonstrates

  3. Continuous subcutaneous insulin infusion in diabetes: patient populations, safety, efficacy, and pharmacoeconomics.

    PubMed

    Pozzilli, Paolo; Battelino, Tadej; Danne, Thomas; Hovorka, Roman; Jarosz-Chobot, Przemyslawa; Renard, Eric

    2016-01-01

    The level of glycaemic control necessary to achieve optimal short-term and long-term outcomes in subjects with type 1 diabetes mellitus (T1DM) typically requires intensified insulin therapy using multiple daily injections or continuous subcutaneous insulin infusion. For continuous subcutaneous insulin infusion, the insulins of choice are the rapid-acting insulin analogues, insulin aspart, insulin lispro and insulin glulisine. The advantages of continuous subcutaneous insulin infusion over multiple daily injections in adult and paediatric populations with T1DM include superior glycaemic control, lower insulin requirements and better health-related quality of life/patient satisfaction. An association between continuous subcutaneous insulin infusion and reduced hypoglycaemic risk is more consistent in children/adolescents than in adults. The use of continuous subcutaneous insulin infusion is widely recommended in both adult and paediatric T1DM populations but is limited in pregnant patients and those with type 2 diabetes mellitus. All available rapid-acting insulin analogues are approved for use in adult, paediatric and pregnant populations. However, minimum patient age varies (insulin lispro: no minimum; insulin aspart: ≥2 years; insulin glulisine: ≥6 years) and experience in pregnancy ranges from extensive (insulin aspart, insulin lispro) to limited (insulin glulisine). Although more expensive than multiple daily injections, continuous subcutaneous insulin infusion is cost-effective in selected patient groups. This comprehensive review focuses on the European situation and summarises evidence for the efficacy and safety of continuous subcutaneous insulin infusion, particularly when used with rapid-acting insulin analogues, in adult, paediatric and pregnant populations. The review also discusses relevant European guidelines; reviews issues that surround use of this technology; summarises the effects of continuous subcutaneous insulin infusion on patients

  4. Continuous subcutaneous insulin infusion in diabetes: patient populations, safety, efficacy, and pharmacoeconomics

    PubMed Central

    Battelino, Tadej; Danne, Thomas; Hovorka, Roman; Jarosz‐Chobot, Przemyslawa; Renard, Eric

    2015-01-01

    Summary The level of glycaemic control necessary to achieve optimal short‐term and long‐term outcomes in subjects with type 1 diabetes mellitus (T1DM) typically requires intensified insulin therapy using multiple daily injections or continuous subcutaneous insulin infusion. For continuous subcutaneous insulin infusion, the insulins of choice are the rapid‐acting insulin analogues, insulin aspart, insulin lispro and insulin glulisine. The advantages of continuous subcutaneous insulin infusion over multiple daily injections in adult and paediatric populations with T1DM include superior glycaemic control, lower insulin requirements and better health‐related quality of life/patient satisfaction. An association between continuous subcutaneous insulin infusion and reduced hypoglycaemic risk is more consistent in children/adolescents than in adults. The use of continuous subcutaneous insulin infusion is widely recommended in both adult and paediatric T1DM populations but is limited in pregnant patients and those with type 2 diabetes mellitus. All available rapid‐acting insulin analogues are approved for use in adult, paediatric and pregnant populations. However, minimum patient age varies (insulin lispro: no minimum; insulin aspart: ≥2 years; insulin glulisine: ≥6 years) and experience in pregnancy ranges from extensive (insulin aspart, insulin lispro) to limited (insulin glulisine). Although more expensive than multiple daily injections, continuous subcutaneous insulin infusion is cost‐effective in selected patient groups. This comprehensive review focuses on the European situation and summarises evidence for the efficacy and safety of continuous subcutaneous insulin infusion, particularly when used with rapid‐acting insulin analogues, in adult, paediatric and pregnant populations. The review also discusses relevant European guidelines; reviews issues that surround use of this technology; summarises the effects of continuous subcutaneous insulin

  5. Acylcarnitines: potential implications for skeletal muscle insulin resistance

    USDA-ARS?s Scientific Manuscript database

    Insulin resistance is linked to increased acylcarnitine species in a number of tissues including skeletal muscle, due to incomplete fatty acid oxidation (FAO). It is not known if acylcarnitines participate in muscle insulin resistance or simply reflect dysregulated metabolism. The aim of this stud...

  6. Amelioration of hyperglycemia and associated metabolic abnormalities by a combination of fenugreek (Trigonella foenum-graecum) seeds and onion (Allium cepa) in experimental diabetes.

    PubMed

    Pradeep, Seetur R; Srinivasan, Krishnapura

    2017-09-26

    Fenugreek (Trigonella foenum-graecum) seeds and onion (Allium cepa) are independently known to have antidiabetic effects through different mechanisms. The beeneficial influence of a combination of dietary fenugreek seeds and onion on hyperglycemia and its associated metabolic abnormalities were evaluated in streptozotocin-induced diabetic rats. Diabetes was experimentally induced with streptozotocin and diabetic rats were fed with 10% fenugreek or 3% onion or their combination for 6 weeks. These dietary interventions significantly countered hyperglycemia, partially improved peripheral insulin resistance and impaired insulin secretion, reduced β-cell mass and markedly reversed the abnormalities in plasma albumin, urea, creatinine, glycated hemoglobin and advanced glycation end products in diabetic rats. These beneficial effects were highest in the fenugreek+onion group. Diabetic rats with these dietary interventions excreted lesser glucose, albumin, urea and creatinine, which were accompanied by improved body weights compared with the diabetic controls. These dietary interventions produced ameliorative effects on pancreatic pathology as reflected by near-normal islet cells, restored glycogen and collagen fiber deposition in diabetic rats. This study documented the hypoglycemic and insulinotropic effects of dietary fenugreek and onion, which were associated with countering of metabolic abnormalities and pancreatic pathology. It may be strategic to derive maximum nutraceutical antidiabetic benefits from these functional food ingredients by consuming them together.

  7. Insulin stimulates movement of sorting nexin 9 between cellular compartments: a putative role mediating cell surface receptor expression and insulin action.

    PubMed Central

    MaCaulay, S Lance; Stoichevska, Violet; Grusovin, Julian; Gough, Keith H; Castelli, Laura A; Ward, Colin W

    2003-01-01

    SNX9 (sorting nexin 9) is one member of a family of proteins implicated in protein trafficking. This family is characterized by a unique PX (Phox homology) domain that includes a proline-rich sequence and an upstream phospholipid binding domain. Many sorting nexins, including SNX9, also have a C-terminal coiled region. SNX9 additionally has an N-terminal SH3 (Src homology 3) domain. Here we have investigated the cellular localization of SNX9 and the potential role it plays in insulin action. SNX9 had a cytosolic and punctate distribution, consistent with endosomal and cytosolic localization, in 3T3L1 adipocytes. It was excluded from the nucleus. The SH3 domain was responsible, at least in part, for the membrane localization of SNX9, since expression of an SH3-domain-deleted GFP (green fluorescent protein)-SNX9 fusion protein in HEK293T cells rendered the protein cytosolic. Membrane localization may also be attributed in part to the PX domain, since in vitro phospholipid binding studies demonstrated SNX9 binding to polyphosphoinositides. Insulin induced movement of SNX9 to membrane fractions from the cytosol. A GST (glutathione S-transferase)-SNX9 fusion protein was associated with IGF1 (insulin-like growth factor 1) and insulin receptors in vitro. A GFP-SNX9 fusion protein, overexpressed in 3T3L1 adipocytes, co-immunoprecipitated with insulin receptors. Furthermore, overexpression of this GFP-SNX9 fusion protein in CHOT cells decreased insulin binding, consistent with a role for SNX9 in the trafficking of insulin receptors. Microinjection of 3T3L1 cells with an antibody against SNX9 inhibited stimulation by insulin of GLUT4 translocation. These results support the involvement of SNX9 in insulin action, via an influence on the processing/trafficking of insulin receptors. A secondary role in regulation of the cellular processing, transport and/or subcellular localization of GLUT4 is also suggested. PMID:12917015

  8. Effects of insulin detemir and NPH insulin on body weight and appetite-regulating brain regions in human type 1 diabetes: a randomized controlled trial.

    PubMed

    van Golen, Larissa W; Veltman, Dick J; IJzerman, Richard G; Deijen, Jan Berend; Heijboer, Annemieke C; Barkhof, Frederik; Drent, Madeleine L; Diamant, Michaela

    2014-01-01

    Studies in rodents have demonstrated that insulin in the central nervous system induces satiety. In humans, these effects are less well established. Insulin detemir is a basal insulin analog that causes less weight gain than other basal insulin formulations, including the current standard intermediate-long acting Neutral Protamine Hagedorn (NPH) insulin. Due to its structural modifications, which render the molecule more lipophilic, it was proposed that insulin detemir enters the brain more readily than other insulins. The aim of this study was to investigate whether insulin detemir treatment differentially modifies brain activation in response to food stimuli as compared to NPH insulin. In addition, cerebral spinal fluid (CSF) insulin levels were measured after both treatments. Brain responses to viewing food and non-food pictures were measured using functional Magnetic Resonance Imaging in 32 type 1 diabetic patients, after each of two 12-week treatment periods with insulin detemir and NPH insulin, respectively, both combined with prandial insulin aspart. CSF insulin levels were determined in a subgroup. Insulin detemir decreased body weight by 0.8 kg and NPH insulin increased weight by 0.5 kg (p = 0.02 for difference), while both treatments resulted in similar glycemic control. After treatment with insulin detemir, as compared to NPH insulin, brain activation was significantly lower in bilateral insula in response to visual food stimuli, compared to NPH (p = 0.02 for right and p = 0.05 for left insula). Also, CSF insulin levels were higher compared to those with NPH insulin treatment (p = 0.003). Our findings support the hypothesis that in type 1 diabetic patients, the weight sparing effect of insulin detemir may be mediated by its enhanced action on the central nervous system, resulting in blunted activation in bilateral insula, an appetite-regulating brain region, in response to food stimuli. ClinicalTrials.gov NCT00626080.

  9. A novel insulin resistance index to monitor changes in insulin sensitivity and glucose tolerance: the ACT NOW study.

    PubMed

    Tripathy, Devjit; Cobb, Jeff E; Gall, Walter; Adam, Klaus-Peter; George, Tabitha; Schwenke, Dawn C; Banerji, MaryAnn; Bray, George A; Buchanan, Thomas A; Clement, Stephen C; Henry, Robert R; Kitabchi, Abbas E; Mudaliar, Sunder; Ratner, Robert E; Stentz, Frankie B; Reaven, Peter D; Musi, Nicolas; Ferrannini, Ele; DeFronzo, Ralph A

    2015-05-01

    The objective was to test the clinical utility of Quantose M(Q) to monitor changes in insulin sensitivity after pioglitazone therapy in prediabetic subjects. Quantose M(Q) is derived from fasting measurements of insulin, α-hydroxybutyrate, linoleoyl-glycerophosphocholine, and oleate, three nonglucose metabolites shown to correlate with insulin-stimulated glucose disposal. Participants were 428 of the total of 602 ACT NOW impaired glucose tolerance (IGT) subjects randomized to pioglitazone (45 mg/d) or placebo and followed for 2.4 years. At baseline and study end, fasting plasma metabolites required for determination of Quantose, glycated hemoglobin, and oral glucose tolerance test with frequent plasma insulin and glucose measurements to calculate the Matsuda index of insulin sensitivity were obtained. Pioglitazone treatment lowered IGT conversion to diabetes (hazard ratio = 0.25; 95% confidence interval = 0.13-0.50; P < .0001). Although glycated hemoglobin did not track with insulin sensitivity, Quantose M(Q) increased in pioglitazone-treated subjects (by 1.45 [3.45] mg·min(-1)·kgwbm(-1)) (median [interquartile range]) (P < .001 vs placebo), as did the Matsuda index (by 3.05 [4.77] units; P < .0001). Quantose M(Q) correlated with the Matsuda index at baseline and change in the Matsuda index from baseline (rho, 0.85 and 0.79, respectively; P < .0001) and was progressively higher across closeout glucose tolerance status (diabetes, IGT, normal glucose tolerance). In logistic models including only anthropometric and fasting measurements, Quantose M(Q) outperformed both Matsuda and fasting insulin in predicting incident diabetes. In IGT subjects, Quantose M(Q) parallels changes in insulin sensitivity and glucose tolerance with pioglitazone therapy. Due to its strong correlation with improved insulin sensitivity and its ease of use, Quantose M(Q) may serve as a useful clinical test to identify and monitor therapy in insulin-resistant patients.

  10. A Novel Insulin Resistance Index to Monitor Changes in Insulin Sensitivity and Glucose Tolerance: the ACT NOW Study

    PubMed Central

    Tripathy, Devjit; Cobb, Jeff E.; Gall, Walter; Adam, Klaus-Peter; George, Tabitha; Schwenke, Dawn C.; Banerji, MaryAnn; Bray, George A.; Buchanan, Thomas A.; Clement, Stephen C.; Henry, Robert R.; Kitabchi, Abbas E.; Mudaliar, Sunder; Ratner, Robert E.; Stentz, Frankie B.; Reaven, Peter D.; Musi, Nicolas; Ferrannini, Ele

    2015-01-01

    Objective: The objective was to test the clinical utility of Quantose MQ to monitor changes in insulin sensitivity after pioglitazone therapy in prediabetic subjects. Quantose MQ is derived from fasting measurements of insulin, α-hydroxybutyrate, linoleoyl-glycerophosphocholine, and oleate, three nonglucose metabolites shown to correlate with insulin-stimulated glucose disposal. Research Design and Methods: Participants were 428 of the total of 602 ACT NOW impaired glucose tolerance (IGT) subjects randomized to pioglitazone (45 mg/d) or placebo and followed for 2.4 years. At baseline and study end, fasting plasma metabolites required for determination of Quantose, glycated hemoglobin, and oral glucose tolerance test with frequent plasma insulin and glucose measurements to calculate the Matsuda index of insulin sensitivity were obtained. Results: Pioglitazone treatment lowered IGT conversion to diabetes (hazard ratio = 0.25; 95% confidence interval = 0.13–0.50; P < .0001). Although glycated hemoglobin did not track with insulin sensitivity, Quantose MQ increased in pioglitazone-treated subjects (by 1.45 [3.45] mg·min−1·kgwbm−1) (median [interquartile range]) (P < .001 vs placebo), as did the Matsuda index (by 3.05 [4.77] units; P < .0001). Quantose MQ correlated with the Matsuda index at baseline and change in the Matsuda index from baseline (rho, 0.85 and 0.79, respectively; P < .0001) and was progressively higher across closeout glucose tolerance status (diabetes, IGT, normal glucose tolerance). In logistic models including only anthropometric and fasting measurements, Quantose MQ outperformed both Matsuda and fasting insulin in predicting incident diabetes. Conclusions: In IGT subjects, Quantose MQ parallels changes in insulin sensitivity and glucose tolerance with pioglitazone therapy. Due to its strong correlation with improved insulin sensitivity and its ease of use, Quantose MQ may serve as a useful clinical test to identify and monitor therapy in

  11. Ablation of XP-V gene causes adipose tissue senescence and metabolic abnormalities

    PubMed Central

    Chen, Yih-Wen; Harris, Robert A.; Hatahet, Zafer; Chou, Kai-ming

    2015-01-01

    Obesity and the metabolic syndrome have evolved to be major health issues throughout the world. Whether loss of genome integrity contributes to this epidemic is an open question. DNA polymerase η (pol η), encoded by the xeroderma pigmentosum (XP-V) gene, plays an essential role in preventing cutaneous cancer caused by UV radiation-induced DNA damage. Herein, we demonstrate that pol η deficiency in mice (pol η−/−) causes obesity with visceral fat accumulation, hepatic steatosis, hyperleptinemia, hyperinsulinemia, and glucose intolerance. In comparison to WT mice, adipose tissue from pol η−/− mice exhibits increased DNA damage and a greater DNA damage response, indicated by up-regulation and/or phosphorylation of ataxia telangiectasia mutated (ATM), phosphorylated H2AX (γH2AX), and poly[ADP-ribose] polymerase 1 (PARP-1). Concomitantly, increased cellular senescence in the adipose tissue from pol η−/− mice was observed and measured by up-regulation of senescence markers, including p53, p16Ink4a, p21, senescence-associated (SA) β-gal activity, and SA secretion of proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) as early as 4 wk of age. Treatment of pol η−/− mice with a p53 inhibitor, pifithrin-α, reduced adipocyte senescence and attenuated the metabolic abnormalities. Furthermore, elevation of adipocyte DNA damage with a high-fat diet or sodium arsenite exacerbated adipocyte senescence and metabolic abnormalities in pol η−/− mice. In contrast, reduction of adipose DNA damage with N-acetylcysteine or metformin ameliorated cellular senescence and metabolic abnormalities. These studies indicate that elevated DNA damage is a root cause of adipocyte senescence, which plays a determining role in the development of obesity and insulin resistance. PMID:26240351

  12. Molecular Mechanisms of Insulin Secretion and Insulin Action.

    ERIC Educational Resources Information Center

    Flatt, Peter R.; Bailey, Clifford J.

    1991-01-01

    Information and current ideas on the factors regulating insulin secretion, the mechanisms underlying the secretion and biological actions of insulin, and the main characteristics of diabetes mellitus are presented. (Author)

  13. Assessment of benzene induced oxidative impairment in rat isolated pancreatic islets and effect on insulin secretion.

    PubMed

    Bahadar, Haji; Maqbool, Faheem; Mostafalou, Sara; Baeeri, Maryam; Rahimifard, Mahban; Navaei-Nigjeh, Mona; Abdollahi, Mohammad

    2015-05-01

    Benzene (C6H6) is an organic compound used in petrochemicals and numerous other industries. It is abundantly released to our environment as a chemical pollutant causing widespread human exposure. This study mainly focused on benzene induced toxicity on rat pancreatic islets with respect to oxidative damage, insulin secretion and glucokinase (GK) activity. Benzene was dissolved in corn oil and administered orally at doses 200, 400 and 800mg/kg/day, for 4 weeks. In rats, benzene significantly raised the concentration of plasma insulin. Also the effect of benzene on the release of glucose-induced insulin was pronounced in isolated islets. Benzene caused oxidative DNA damage and lipid peroxidation, and also reduced the cell viability and total thiols groups, in the islets of exposed rats. In conclusion, the current study revealed that pancreatic glucose metabolism is susceptible to benzene toxicity and the resultant oxidative stress could lead to functional abnormalities in the pancreas. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Hypothalamic orexin prevents hepatic insulin resistance via daily bidirectional regulation of autonomic nervous system in mice.

    PubMed

    Tsuneki, Hiroshi; Tokai, Emi; Nakamura, Yuya; Takahashi, Keisuke; Fujita, Mikio; Asaoka, Takehiro; Kon, Kanta; Anzawa, Yuuki; Wada, Tsutomu; Takasaki, Ichiro; Kimura, Kumi; Inoue, Hiroshi; Yanagisawa, Masashi; Sakurai, Takeshi; Sasaoka, Toshiyasu

    2015-02-01

    Circadian rhythm is crucial for preventing hepatic insulin resistance, although the mechanism remains uncovered. Here we report that the wake-active hypothalamic orexin system plays a key role in this regulation. Wild-type mice showed that a daily rhythm in blood glucose levels peaked at the awake period; however, the glucose rhythm disappeared in orexin knockout mice despite normal feeding rhythm. Central administration of orexin A during nighttime awake period acutely elevated blood glucose levels but subsequently lowered daytime glucose levels in normal and diabetic db/db mice. The glucose-elevating and -lowering effects of orexin A were suppressed by adrenergic antagonists and hepatic parasympathectomy, respectively. Moreover, the expression levels of hepatic gluconeogenic genes, including Pepck, were increased and decreased by orexin A at nanomolar and femtomolar doses, respectively. These results indicate that orexin can bidirectionally regulate hepatic gluconeogenesis via control of autonomic balance, leading to generation of the daily blood glucose oscillation. Furthermore, during aging, orexin deficiency enhanced endoplasmic reticulum (ER) stress in the liver and caused impairment of hepatic insulin signaling and abnormal gluconeogenic activity in pyruvate tolerance test. Collectively, the daily glucose rhythm under control of orexin appears to be important for maintaining ER homeostasis, thereby preventing insulin resistance in the liver. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  15. Dose comparison of ultrasonic transdermal insulin delivery to subcutaneous insulin injection

    NASA Astrophysics Data System (ADS)

    Park, Eun-Joo; Dodds, Jeff; Barrie Smith, Nadine

    2010-03-01

    Prior studies have demonstrated the effectiveness of noninvasive transdermal insulin delivery using a cymbal transducer array. In this study the physiologic response to ultrasound mediated transdermal insulin delivery is compared to that of subcutaneously administered insulin. Anesthetized rats (350-550 g) were divided into four groups of four animals; one group representing ultrasound mediated insulin delivery and three representing subcutaneously administered insulin (0.15, 0.20, and 0.25 U/kg). The cymbal array was operated for 60 minutes at 20 kHz with 100 mW/cm2 spatial-peak temporal-peak intensity and a 20% duty cycle. The blood glucose level was determined at the beginning of the experiment and, following insulin administration, every 15 minutes for 90 minutes for both the ultrasound and injection groups. The change in blood glucose from baseline was compared between groups. When administered by subcutaneous injection at insulin doses of 0.15 and 0.20 U/kg, there was little change in the blood glucose levels over the 90 minute experiment. Following subcutaneous administration of insulin at a dose of 0.25 U/kg, blood glucose decreased by 190±96 mg/dl (mean±SD) at 90 minutes. The change in blood glucose following ultrasound mediated insulin delivery was -262±40 mg/dl at 90 minutes. As expected, the magnitude of change in blood glucose between the three injection groups was dependant on the dose of insulin administered. The change in blood glucose in the ultrasound group was greater than that observed in the injection groups suggesting that a higher effective dose of insulin was delivered.

  16. Importance of hepatitis C virus-associated insulin resistance: Therapeutic strategies for insulin sensitization

    PubMed Central

    Kawaguchi, Takumi; Sata, Michio

    2010-01-01

    Insulin resistance is one of the pathological features in patients with hepatitis C virus (HCV) infection. Generally, persistence of insulin resistance leads to an increase in the risk of life-threatening complications such as cardiovascular diseases. However, these complications are not major causes of death in patients with HCV-associated insulin resistance. Indeed, insulin resistance plays a crucial role in the development of various complications and events associated with HCV infection. Mounting evidence indicates that HCV-associated insulin resistance may cause (1) hepatic steatosis; (2) resistance to anti-viral treatment; (3) hepatic fibrosis and esophageal varices; (4) hepatocarcinogenesis and proliferation of hepatocellular carcinoma; and (5) extrahepatic manifestations. Thus, HCV-associated insulin resistance is a therapeutic target at any stage of HCV infection. Although the risk of insulin resistance in HCV-infected patients has been documented, therapeutic guidelines for preventing the distinctive complications of HCV-associated insulin resistance have not yet been established. In addition, mechanisms for the development of HCV-associated insulin resistance differ from lifestyle-associated insulin resistance. In order to ameliorate HCV-associated insulin resistance and its complications, the efficacy of the following interventions is discussed: a late evening snack, coffee consumption, dietary iron restriction, phlebotomy, and zinc supplements. Little is known regarding the effect of anti-diabetic agents on HCV infection, however, a possible association between use of exogenous insulin or a sulfonylurea agent and the development of HCC has recently been reported. On the other hand, insulin-sensitizing agents are reported to improve sustained virologic response rates. In this review, we summarize distinctive complications of, and therapeutic strategies for, HCV-associated insulin resistance. Furthermore, we discuss supplementation with branched

  17. Insulin Action in Brain Regulates Systemic Metabolism and Brain Function

    PubMed Central

    Kleinridders, André; Ferris, Heather A.; Cai, Weikang

    2014-01-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases. PMID:24931034

  18. Late Antiretroviral Therapy (ART) Initiation Is Associated with Long-Term Persistence of Systemic Inflammation and Metabolic Abnormalities

    PubMed Central

    Ghislain, Mathilde; Bastard, Jean-Philippe; Meyer, Laurence; Capeau, Jacqueline; Fellahi, Soraya; Gérard, Laurence; May, Thierry; Simon, Anne; Vigouroux, Corinne; Goujard, Cécile

    2015-01-01

    Objectives HIV-induced immunodeficiency is associated with metabolic abnormalities and systemic inflammation. We investigated the effect of antiretroviral therapy (ART) on restoration of insulin sensitivity, markers of immune activation and inflammation. Methods Immunological, metabolic and inflammatory status was assessed at antiretroviral therapy initiation and three years later in 208 patients from the ANRS-COPANA cohort. Patients were compared according to their pre-ART CD4+ cell count (group 1: ≤ 200/mm3, n = 66 vs. group 2: > 200/mm3, n = 142). Results Median CD4+ cell count increased in both groups after 3 years of successful ART but remained significantly lower in group 1 than in group 2 (404 vs 572 cells/mm3). Triglyceride and insulin levels were higher or tended to be higher in group 1 than in group 2 at ART initiation (median: 1.32 vs 0.97 mmol/l, p = 0.04 and 7.6 vs 6.8 IU, p = 0.09, respectively) and remained higher after three years of ART (1.42 vs 1.16 mmol/L, p = 0.0009 and 8.9 vs 7.2 IU, p = 0.01). After adjustment for individual characteristics and antiretroviral therapy regimens (protease inhibitor (PI), zidovudine), insulin levels remained significantly higher in patients with low baseline CD4+ cell count. Baseline IL-6, sCD14 and sTNFR2 levels were higher in group 1 than in group 2. Most biomarkers of immune activation/inflammation declined during ART, but IL-6 and hsCRP levels remained higher in patients with low baseline CD4+ cell count than in the other patients (median are respectively 1.4 vs 1.1 pg/ml, p = 0.03 and 2.1 vs 1.3 mg/ml, p = 0.07). Conclusion After three years of successful ART, low pretreatment CD4+ T cell count remained associated with elevated insulin, triglyceride, IL-6 and hsCRP levels. These persistent metabolic and inflammatory abnormalities could contribute to an increased risk of cardiovascular and metabolic disease. PMID:26636578

  19. Partial ablation of adult Drosophila insulin-producing neurons modulates glucose homeostasis and extends life span without insulin resistance.

    PubMed

    Haselton, Aaron; Sharmin, Effat; Schrader, Janel; Sah, Megha; Poon, Peter; Fridell, Yih-Woei C

    2010-08-01

    In Drosophila melanogaster (D. melanogaster), neurosecretory insulin-like peptide-producing cells (IPCs), analogous to mammalian pancreatic beta cells are involved in glucose homeostasis. Extending those findings, we have developed in the adult fly an oral glucose tolerance test and demonstrated that IPCs indeed are responsible for executing an acute glucose clearance response. To further develop D. melanogaster as a relevant system for studying age-associated metabolic disorders, we set out to determine the impact of adult-specific partial ablation of IPCs (IPC knockdown) on insulin-like peptide (ILP) action, metabolic outcomes and longevity. Interestingly, while IPC knockdown flies are hyperglycemic and glucose intolerant, these flies remain insulin sensitive as measured by peripheral glucose disposal upon insulin injection and serine phosphorylation of a key insulin-signaling molecule, Akt. Significant increases in stored glycogen and triglyceride levels as well as an elevated level of circulating lipid measured in adult IPC knockdown flies suggest profound modulation in energy metabolism. Additional physiological outcomes measured in those flies include increased resistance to starvation and impaired female fecundity. Finally, increased life span and decreased mortality rates measured in IPC knockdown flies demonstrate that it is possible to modulate ILP action in adult flies to achieve life span extension without insulin resistance. Taken together, we have established and validated an invertebrate genetic system to further investigate insulin action, metabolic homeostasis and regulation of aging regulated by adult IPCs.

  20. Effect of HCV on fasting glucose, fasting insulin and peripheral insulin resistance in first 5 years of infection.

    PubMed

    Ahmed, Naeema; Rashid, Amir; Naveed, Abdul Khaliq; Bashir, Qudsia

    2016-02-01

    To assess the effects of hepatitis C virus infection in the first 5 years on fasting glucose, fasting insulin and peripheral insulin resistance. The case-control study was conducted at the Army Medical College, Rawalpindi, from December 2011 to November 2012, and comprised subjects recruited from a government hospital in Rawalpindi. The subjects included known cases of hepatitis C virus infection for at least 5 years, and normal healthy controls. Fasting blood samples of all the subjects were collected and analysed for serum fasting insulin and serum fasting glucose levels. Homeostatic model assessment-Insulin resistance was calculated SPSS 11 was used for statistical analysis. Of the 30 subjects, 20(66.6%) were cases, while 10(33.3%) were controls. Serum fasting glucose mean level in cases was 89.55±9.53 compared to 84.40±9.80 in the controls (p=0.188). The mean serum fasting insulin in controls was 7.52±3.23 and 6.79±3.30 in cases (p=0.567). Homeostatic model assessment-Insulin resistance level in controls was 1.60±0.76 and In the cases it was 1.49±0.74 (p=0.695). Peripheral insulin resistance and development of type 2 diabetes as a complication of hepatitis C virus infection was not likely at least within the first five years of infection.

  1. Exogenous insulin antibody syndrome (EIAS): a clinical syndrome associated with insulin antibodies induced by exogenous insulin in diabetic patients.

    PubMed

    Hu, Xiaolei; Chen, Fengling

    2018-01-01

    Insulin has been used for diabetes therapy and has achieved significant therapeutic effect. In recent years, the use of purified and recombinant human insulin preparations has markedly reduced, but not completely suppressed, the incidence of insulin antibodies (IAs). IAs induced by exogenous insulin in diabetic patients is associated with clinical events, which is named exogenous insulin antibody syndrome (EIAS). The present review is based on our research and summarizes the characterization of IAs, the factors affecting IA development, the clinical significance of IAs and the treatments for EIAS. © 2018 The authors.

  2. Exogenous insulin antibody syndrome (EIAS): a clinical syndrome associated with insulin antibodies induced by exogenous insulin in diabetic patients

    PubMed Central

    Hu, Xiaolei

    2018-01-01

    Insulin has been used for diabetes therapy and has achieved significant therapeutic effect. In recent years, the use of purified and recombinant human insulin preparations has markedly reduced, but not completely suppressed, the incidence of insulin antibodies (IAs). IAs induced by exogenous insulin in diabetic patients is associated with clinical events, which is named exogenous insulin antibody syndrome (EIAS). The present review is based on our research and summarizes the characterization of IAs, the factors affecting IA development, the clinical significance of IAs and the treatments for EIAS. PMID:29233817

  3. The effect of tubing dwell time on insulin adsorption during intravenous insulin infusions.

    PubMed

    Thompson, Cecilia D; Vital-Carona, Jessica; Faustino, E Vincent S

    2012-10-01

    Insulin adsorbs to plastic tubing, which decreases the concentration of an insulin solution delivered from an intravenous infusion set. Dwelling insulin within tubing before starting the infusion decreases adsorption but delays treatment initiation and wastes time in infusion preparation. The lack of data on dwell time effects results in wide variability in practice. We aim to determine the effect of dwell time on insulin concentration from intravenous infusion tubing. In this in vitro study, we used insulin solutions with concentrations of 0.1 unit/mL, 1 unit/mL, and 10 units/mL. Each solution dwelled in intravenous infusion sets for 0, 15, 30, or 60 min. After the dwell, we measured insulin concentrations from the solution bags and tubing. We repeated each insulin concentration-dwell time combination five times. Comparisons were performed using analyses of variance. For each of the three insulin concentrations, the mean insulin concentrations from the tubing were not significantly different between dwell times. Duration of dwell time did not affect insulin adsorption in polypropylene intravenous infusion sets. We recommend that following a 20-mL flush, insulin infusions can be started without any dwell time. Removal of dwell times may improve clinical practice by minimizing preparation time and will allow faster initiation of insulin infusion therapy.

  4. Incorporating a Generic Model of Subcutaneous Insulin Absorption into the AIDA v4 Diabetes Simulator 3. Early Plasma Insulin Determinations

    PubMed Central

    Lehmann, Eldon D.; Tarín, Cristina; Bondia, Jorge; Teufel, Edgar; Deutsch, Tibor

    2009-01-01

    Introduction AIDA is an interactive educational diabetes simulator that has been available without charge via the Internet for over 12 years. Recent articles have described the incorporation of a novel generic model of insulin absorption into AIDA as a way of enhancing its capabilities. The basic model components to be integrated have been overviewed, with the aim being to provide simulations of regimens utilizing insulin analogues, as well as insulin doses greater than 40 IU (the current upper limit within the latest release of AIDA [v4.3a]). Some preliminary calculated insulin absorption results have also recently been described. Methods This article presents the first simulated plasma insulin profiles from the integration of the generic subcutaneous insulin absorption model, and the currently implemented model in AIDA for insulin disposition. Insulin absorption has been described by the physiologically based model of Tarín and colleagues. A single compartment modeling approach has been used to specify how absorbed insulin is distributed in, and eliminated from, the human body. To enable a numerical solution of the absorption model, a spherical subcutaneous depot for the injected insulin dose has been assumed and spatially discretized into shell compartments with homogeneous concentrations, having as its center the injection site. The number of these compartments will depend on the dose and type of insulin. Insulin inflow arises as the sum of contributions to the different shells. For this report the first bench testing of plasma insulin determinations has been done. Results Simulated plasma insulin profiles are provided for currently available insulin preparations, including a rapidly acting insulin analogue (e.g., lispro/Humalog or aspart/Novolog), a short-acting (regular) insulin preparation (e.g., Actrapid), intermediate-acting insulins (both Semilente and neutral protamine Hagedorn types), and a very long-acting insulin analogue (e.g., glargine/Lantus), as

  5. Aβ-Induced Insulin Resistance and the Effects of Insulin on the Cholesterol Synthesis Pathway and Aβ Secretion in Neural Cells.

    PubMed

    Najem, Dema; Bamji-Mirza, Michelle; Yang, Ze; Zhang, Wandong

    2016-06-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) toxicity, tau pathology, insulin resistance, neuroinflammation, and dysregulation of cholesterol homeostasis, all of which play roles in neurodegeneration. Insulin has polytrophic effects on neurons and may be at the center of these pathophysiological changes. In this study, we investigated possible relationships among insulin signaling and cholesterol biosynthesis, along with the effects of Aβ42 on these pathways in vitro. We found that neuroblastoma 2a (N2a) cells transfected with the human gene encoding amyloid-β protein precursor (AβPP) (N2a-AβPP) produced Aβ and exhibited insulin resistance by reduced p-Akt and a suppressed cholesterol-synthesis pathway following insulin treatment, and by increased phosphorylation of insulin receptor subunit-1 at serine 612 (p-IRS-S612) as compared to parental N2a cells. Treatment of human neuroblastoma SH-SY5Y cells with Aβ42 also increased p-IRS-S612, suggesting that Aβ42 is responsible for insulin resistance. The insulin resistance was alleviated when N2a-AβPP cells were treated with higher insulin concentrations. Insulin increased Aβ release from N2a-AβPP cells, by which it may promote Aβ clearance. Insulin increased cholesterol-synthesis gene expression in SH-SY5Y and N2a cells, including 24-dehydrocholesterol reductase (DHCR24) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) through sterol-regulatory element-binding protein-2 (SREBP2). While Aβ42-treated SH-SY5Y cells exhibited increased HMGCR expression and c-Jun phosphorylation as pro-inflammatory responses, they also showed down-regulation of neuro-protective/anti-inflammatory DHCR24. These results suggest that Aβ42 may cause insulin resistance, activate JNK for c-Jun phosphorylation, and lead to dysregulation of cholesterol homeostasis, and that enhancing insulin signaling may relieve the insulin-resistant phenotype and the dysregulated cholesterol-synthesis pathway to promote A

  6. Association of obesity risk SNPs in PCSK1 with insulin sensitivity and proinsulin conversion.

    PubMed

    Heni, Martin; Haupt, Axel; Schäfer, Silke A; Ketterer, Caroline; Thamer, Claus; Machicao, Fausto; Stefan, Norbert; Staiger, Harald; Häring, Hans-Ulrich; Fritsche, Andreas

    2010-06-09

    Prohormone convertase 1 is involved in maturation of peptides. Rare mutations in gene PCSK1, encoding this enzyme, cause childhood obesity and abnormal glucose homeostasis with elevated proinsulin concentrations. Common single nucleotide polymorphisms (SNPs) within this gene, rs6232 and rs6235, are associated with obesity. We studied whether these SNPs influence the prediabetic traits insulin resistance, beta-cell dysfunction, or glucose intolerance. We genotyped 1498 German subjects for SNPs rs6232 and rs6235 within PCSK1. The subjects were metabolically characterized by oral glucose tolerance test with glucose, insulin, proinsulin, and C-peptide measurements. A subgroup of 512 subjects underwent a hyperinsulinemic-euglycemic clamp. The minor allele frequencies were 25.8% for SNP rs6235 and 6.0% for rs6232. After adjustment for sex and age, we found no association of SNPs rs6235 and rs6232 with BMI or other weight-related traits (all p >or= 0.07). Both minor alleles, adjusted for sex, age, BMI and insulin sensitivity were associated with elevated AUCproinsulin and AUCproinsulin/AUCinsulin (rs6235: p(additive) model Insulin secretion was not affected by the variants (different secretion parameters, all p >or= 0.08). The minor allele of SNP rs6232 was additionally associated with 15% higher OGTT-derived and 19% higher clamp-derived insulin sensitivity (pdom insulin secretion. In addition, rs6232, encoding the amino acid exchange N221D, influences insulin sensitivity and glucose homeostasis.

  7. Immune Abnormalities in Patients with Autism.

    ERIC Educational Resources Information Center

    Warren, Reed P.; And Others

    1986-01-01

    A study of 31 autistic patients (3-28 years old) has revealed several immune-system abnormalities, including decreased numbers of T lymphocytes and an altered ratio of helper-to-suppressor T cells. Immune-system abnormalities may be directly related to underlying biologic processes of autism or an indirect reflection of the actual pathologic…

  8. Early-life stress and the development of obesity and insulin resistance in juvenile bonnet macaques.

    PubMed

    Kaufman, Daniel; Banerji, Mary Ann; Shorman, Igor; Smith, Eric L P; Coplan, Jeremy D; Rosenblum, Leonard A; Kral, John G

    2007-05-01

    Stress is a risk factor for chronic illnesses such as obesity, type 2 diabetes, and hypertension and has been postulated to cause the metabolic syndrome via perturbation of the hypothalamo-pituitary-adrenal (HPA) axis. In our model of early-life stress (variable foraging demand [VFD]), food insecurity is imposed on monkey mothers for 16 weeks beginning when their nursing offspring are 3-5 months of age. Under VFD, food availability is never restricted, and the infant's growth is unaffected. VFD rearing does, however, cause a range of neurobiological abnormalities, including dysregulation of the HPA axis, manifested in abnormal cerebrospinal fluid cortisol and corticotropin-releasing factor levels. We previously reported spontaneous occurrence of metabolic syndrome in 14% of normally reared peripubertal bonnet macaques given ad libitum access to standard monkey chow. Here, we show that compared with normally reared monkeys, peripubertal VFD juveniles exhibit greater weight, BMI, abdominal circumference, and glucagon-like peptide-1 and decreased glucose disposal rates during hyperinsulinemic-euglycemic clamps. Our data suggest that early-life stress during a critical period of neuro development can result in the peripubertal emergence of obesity and insulin resistance.

  9. Utilization patterns of insulin therapy and healthcare services among Japanese insulin initiators during their first year: a descriptive analysis of administrative hospital data.

    PubMed

    Ikeda, Shunya; Crawford, Bruce; Sato, Masayo

    2016-01-12

    Type 2 diabetes poses an increasing healthcare burden in Japan. Although insulin treatment has diversified in recent years, the literature on the utilization of healthcare services among patients with type 2 diabetes undergoing different insulin therapy regimens is scarce. The current study aimed to characterize the real-world insulin treatment patterns and associated utilization of healthcare services among patients with type 2 diabetes who initiated insulin therapy during the study period. We examined data from a hospital-based database consisting of administrative and laboratory data from 121 acute-phase hospitals throughout Japan from April 2008 to August 2012. Patients diagnosed with type 2 diabetes and receiving continuous insulin therapy, defined by three insulin claims or more, were included in the analysis. Of the 2,145 insulin initiators, at initiation 46.5% received rapid-acting insulin alone, 36.6% received an intensive regimen, 11.4% received long-acting insulin alone, and 5.5% received pre-mixed insulin alone. Patients treated with rapid-acting insulin alone were older, experienced more comorbid conditions, had lower HbA1c, and more often had initiated their insulin treatment at inpatient admission, compared to patients treated with other types of insulin. Inpatient admission was more common and longer for patients taking rapid-acting insulin and an intensive regimen than those taking long-acting or pre-mixed insulin, and most were readmitted within 1 year. Utilization of outpatient clinics was approximately once per month, and emergency department visits were observed to be rare. This retrospective observational descriptive study found varied treatment and healthcare service utilization patterns, as well as disparities in patient characteristics across insulin regimens. Future research should assess the basis for these various utilization patterns associated with insulin to conduct robust analyses of clinical and economic outcomes.

  10. Dissecting the relationship between obesity and hyperinsulinemia: Role of insulin secretion and insulin clearance.

    PubMed

    Kim, Mee Kyoung; Reaven, Gerald M; Kim, Sun H

    2017-02-01

    The aim of this study was to better delineate the complex interrelationship among insulin resistance (IR), secretion rate (ISR), and clearance rate (ICR) to increase plasma insulin concentrations in obesity. Healthy volunteers (92 nondiabetic individuals) had an insulin suppression test to measure IR and graded-glucose infusion test to measure ISR and ICR. Obesity was defined as a body mass index (BMI) ≥30 kg/m 2 , and IR was defined as steady-state plasma glucose (SSPG) ≥10 mmol/L during the insulin suppression test. Plasma glucose and insulin concentrations, ISR, and ICR were compared in three groups: insulin sensitive/overweight; insulin sensitive/obesity; and insulin resistant/obesity. Compared with the insulin-sensitive/overweight group, the insulin-sensitive/obesity had significantly higher insulin area under the curve (AUC) and ISR AUC during the graded-glucose infusion test (P < 0.001). Glucose AUC and ICR were similar. The insulin-resistant/obesity group had higher insulin AUC and ISR AUC compared with the insulin-sensitive/obesity but also had higher glucose AUC and decreased ICR (P < 0.01). In multivariate analysis, both BMI and SSPG were significantly associated with ISR. Plasma insulin concentration and ISR are increased in individuals with obesity, irrespective of degree of IR, but a decrease in ICR is confined to the subset of individuals with IR. © 2016 The Obesity Society.

  11. Endocrine abnormalities in critical care patients with moderate-to-severe head trauma: incidence, pattern and predisposing factors.

    PubMed

    Dimopoulou, Ioanna; Tsagarakis, Stylianos; Theodorakopoulou, Maria; Douka, Evangelia; Zervou, Maria; Kouyialis, Andreas T; Thalassinos, Nikolaos; Roussos, Charis

    2004-06-01

    To investigate the incidence and type of endocrine abnormalities in critical care patients with traumatic brain injury (TBI) and to examine their relationships to possible predisposing factors. Prospective study. General intensive care unit in a university hospital. Thirty-four TBI patients (27 men, 7 women), having a mean age of 37+/-16 years, were studied after weaning from mechanical ventilation. Baseline endocrine assessment was carried out by measuring cortisol, corticotropin, dehydroepiandrosterone sulfate, free thyroxine, thyrotropin (TSH), testosterone, oestradiol, follicle stimulating hormone (FSH), luteinizing hormone, prolactin, growth hormone and insulin-like growth factor I. Dynamic evaluation was performed by human corticotropin releasing hormone and growth hormone releasing hormone in all patients. Male patients underwent additional investigation with gonadotropin-releasing hormone. Severity of neurological derangement was graded according to Glasgow Coma Scale (GCS), Marshall Computerized Tomographic Classification and intracranial pressure (ICP) levels. Eighteen of the 34 patients (53%) had an abnormal result in at least one hormonal axis tested, with cortisol hyporesponsiveness and gonadal dysfunction being equally common, affecting 24% of patients. Endocrine abnormalities were associated with a higher brain CT-scan classification score ( p=0.02). The GCS on admission correlated positively with baseline FSH (r=0.37, p=0.03), peak FSH (r=0.41, p=0.03), testosterone (r=0.44, p=0.02) and TSH (r=0.39, p=0.03). There were no relations between ICP(max) and any baseline or dynamic hormone measurements. Patients with TBI receiving critical care show changes in their neuroendocrine responses, which depend upon clinical and radiological measures of head injury severity. Most common abnormalities include cortisol hyporesponsiveness and hypogonadism.

  12. Memory dysfunction and autonomic neuropathy in non-insulin-dependent (type 2) diabetic patients.

    PubMed

    Zaslavsky, L M; Gross, J L; Chaves, M L; Machado, R

    1995-11-01

    Considering the nervous system as a unit, it might be expected that diabetic patients with autonomic neuropathy could have a central abnormality expressed as cognitive dysfunction. To determine whether autonomic neuropathy is independently associated with cognitive dysfunction, we studied a cross-section of 20 non-insulin-dependent diabetic patients with autonomic neuropathy (14 males and six females; age (mean) = 60 + or - 1 years); 29 non-insulin-dependent diabetic patients without autonomic neuropathy (14 males and 15 females; age = 59 + or - 1 years) and 34 non-diabetic patients (10 males and 24 females; age = 58 + or - 1 years), matched by age, education and duration of disease. Cognitive function was evaluated by tests of immediate, recent and remote memory: verbal (digit span; word span) and visual (recognition of towers and famous faces). Diabetic patients with autonomic neuropathy scored (median) lower in visual memory tests than diabetic patients without autonomic neuropathy and controls (towers immediate = 5 versus 7 and 6; towers recent = 4 versus 6 and 6; faces = 16 versus 18 and 18; respectively; Kruskal-Wallis; P < 0.05). There was no difference in verbal memory performance (Kruskal-Wallis; P > 0.05). Entering age, education, duration of disease and fasting plasma glucose in a stepwise multiple regression, the performance in these tests remained associated with autonomic neuropathy (towers immediate, P = 0.0054, partial r2 = 0.166; towers recent, P = 0.0076, partial r2 = 0.163). Scores in visual tests correlated negatively with the number of abnormal cardiovascular tests (faces, r = -0.25; towers recent, r = -0.24; Spearman; P < 0.05). Decreased visual cognitive function in non-insulin-dependent diabetic patients is associated with the presence and degree of autonomic neuropathy.

  13. Comparison of prandial AIR inhaled insulin alone to intensified insulin glargine alone and to AIR insulin plus intensified insulin glargine in patients with type 2 diabetes previously treated with once-daily insulin glargine.

    PubMed

    Rosenstock, Julio; Eliaschewitz, Freddy G; Heilmann, Cory R; Muchmore, Douglas B; Hayes, Risa P; Belin, Ruth M

    2009-09-01

    Patients with type 2 diabetes often initiate insulin with once-daily basal insulin. Over time, many patients intensify their insulin regimens in an attempt to attain and sustain glycemic targets. This study compares three intensification approaches: changing insulin glargine to preprandial AIR inhaled insulin (developed by Alkermes, Inc. [Cambridge, MA] and Eli Lilly and Company [Indianapolis, IN]; AIR is a registered trademark of Alkermes, Inc.), intensifying glargine via validated titration algorithms (IG), or adding AIR insulin while intensifying glargine (AIR + IG). Five hundred sixty patients with hemoglobin A(1c) (A1C) of 7.5-10.5%, on one or more antihyperglycemic medications, and on once-daily insulin glargine for > or =4 months were randomly allocated to one of the three treatments lasting 52 weeks. The primary objective assessed between-group differences in A1C mean change from baseline to 24 weeks using last-observation-carried-forward (LOCF) in the intent-to-treat population. At 24 weeks, A1C was reduced from a mean baseline of 8.5% to 7.7%, 7.9%, and 7.5% for the AIR, IG, and AIR + IG groups, respectively. AIR produced 0.20% greater A1C decrease than IG (least-squares mean difference = -0.20%; 95% confidence interval [CI], -0.39, -0.02). AIR + IG had a 0.35% greater A1C decrease versus IG (95% CI, -0.57, -0.13). The -0.15% difference between AIR + IG versus AIR was not significant (P < 0.198). More hypoglycemia categorized as severe occurred with AIR alone versus IG alone at LOCF end points. More nocturnal hypoglycemia occurred with IG alone versus AIR alone and AIR + IG. Preprandial inhaled insulin provides an alternative for patients not optimized on insulin glargine alone. Glycemic control, hypoglycemic risk, delivery preference, and regimen complexity must be considered when selecting insulin initiation and optimization regimens.

  14. Significance of abnormal serum binding of insulin-like growth factor II in the development of hypoglycemia in patients with non-islet-cell tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daughaday, W.H.; Kapadia, M.

    1989-09-01

    The authors reported that serum and tumor from a hypoglycemic patient with a fibrosarcoma contained insulin-like growth factor II (IGF-II), mostly in a large molecular form designated big IGF-II. They now describe two additional patients with non-islet-cell tumor with hypoglycemia (NICTH) whose sera contained big IGF-II. Removal of the tumor eliminated most of the big IGF-II from the sera of two patients. Because specific IGF-binding proteins modify the bioactivity of IGFs, the sizes of the endogenous IGF-binding protein complexes were determined after neutral gel filtration through Sephadex G-200. Normally about 75% of IGFs are carried as a ternary complex ofmore » 150 kDa consisting of IGF, a growth hormone (GH)-dependent IGF-binding protein, and an acid-labile complexing component. The three patients with NICTH completely lacked the 150-kDa complex. IGF-II was present as a 60-kDa complex with variable contributions of smaller complexes. In the immediate postoperative period, a 110-kDa complex appeared rather than the expected 150-kDa complex. Abnormal IGF-II binding may be important in NICTH because the 150-kDa complexes cross the capillary membrane poorly. The smaller complexes present in our patients' sera would be expected to enter interstitial fluid readily, and a 4- to 5-fold increase in the fraction of IGFs reaching the target cells would result.« less

  15. Linear scleroderma en coup de sabre including abnormal dental development.

    PubMed

    Hørberg, M; Lauesen, S R; Daugaard-Jensen, J; Kjær, I

    2015-04-01

    Linear scleroderma en coup de sabre (SCS) is a rare skin condition, where dense collagen is deposited in a localised groove of the head and neck area resembling the stroke of a sabre. The SCS may involve the oral cavity, but the severity and relation to this skin abnormality is unknown. A paediatric dentist may be the first medical person to identify SCS by its involvement in dentition. It is assumed that the malformation of a dentition could be associated with the severity of the skin deviation. A 6-year and 10-month-old Turkish girl with a history of SCS was referred for dental diagnostics and treatment. The SCS skin lesion affected the left side of her hairline over the forehead and nose, involving the left orbit proceeding towards the left oral region. Dental clinical/radiographic examination revealed malformed left maxillary incisors with short roots and lack of eruption. The patient has been regularly controlled and treated since she was first diagnosed. A surgical and orthodontic treatment was performed to ensure optimal occlusion, space and alveolar bone development. The present age of the patient is 14 years and 10 months. This case demonstrated a patient with a left-sided skin defect (SCS) and a left-sided local malformation in her dentition. It is possible that there is a developmental connection between these two left-sided defects, both with an ectodermal origin.

  16. Insulin and growth hormone secretion in the nephrotic syndrome.

    PubMed

    Bridgman, J F; Summerskill, J; Buckler, J M; Hellman, B; Rosen, S M

    1975-01-01

    Carbohydrate metabolism was studied in a series of patients with the nephrotic syndrome and compared with a similar number of normal controls. The nephrotic syndrome was associated with a smaller secretion of insulin in response to intravenous glucose and tolbutamide than occurred in normals. In the syndrom fasting serum growth hormone (G.H.) concentrations were increased and did not show the characteristic suppression after glucose administration, and the disappearance rate of glucose (k value) was lower. well marked correlation existed between serum G.H. concentrations and the total urinary protein excreted. These abnormal findings returned to normal in a patient who underwent a repeat study when the nephrotic syndrome had resolved.

  17. The Effect of Tubing Dwell Time on Insulin Adsorption During Intravenous Insulin Infusions

    PubMed Central

    Vital-Carona, Jessica; Faustino, E. Vincent S.

    2012-01-01

    Abstract Background Insulin adsorbs to plastic tubing, which decreases the concentration of an insulin solution delivered from an intravenous infusion set. Dwelling insulin within tubing before starting the infusion decreases adsorption but delays treatment initiation and wastes time in infusion preparation. The lack of data on dwell time effects results in wide variability in practice. We aim to determine the effect of dwell time on insulin concentration from intravenous infusion tubing. Materials and Methods In this in vitro study, we used insulin solutions with concentrations of 0.1 unit/mL, 1 unit/mL, and 10 units/mL. Each solution dwelled in intravenous infusion sets for 0, 15, 30, or 60 min. After the dwell, we measured insulin concentrations from the solution bags and tubing. We repeated each insulin concentration–dwell time combination five times. Comparisons were performed using analyses of variance. Results For each of the three insulin concentrations, the mean insulin concentrations from the tubing were not significantly different between dwell times. Duration of dwell time did not affect insulin adsorption in polypropylene intravenous infusion sets. Conclusions We recommend that following a 20-mL flush, insulin infusions can be started without any dwell time. Removal of dwell times may improve clinical practice by minimizing preparation time and will allow faster initiation of insulin infusion therapy. PMID:22746979

  18. LKB1-AMPK signaling in muscle from obese insulin-resistant Zucker rats and effects of training.

    PubMed

    Sriwijitkamol, Apiradee; Ivy, John L; Christ-Roberts, Christine; DeFronzo, Ralph A; Mandarino, Lawrence J; Musi, Nicolas

    2006-05-01

    AMPK is a key regulator of fat and carbohydrate metabolism. It has been postulated that defects in AMPK signaling could be responsible for some of the metabolic abnormalities of type 2 diabetes. In this study, we examined whether insulin-resistant obese Zucker rats have abnormalities in the AMPK pathway. We compared AMPK and ACC phosphorylation and the protein content of the upstream AMPK kinase LKB1 and the AMPK-regulated transcriptional coactivator PPARgamma coactivator-1 (PGC-1) in gastrocnemius of sedentary obese Zucker rats and sedentary lean Zucker rats. We also examined whether 7 wk of exercise training on a treadmill reversed abnormalities in the AMPK pathway in obese Zucker rats. In the obese rats, AMPK phosphorylation was reduced by 45% compared with lean rats. Protein expression of the AMPK kinase LKB1 was also reduced in the muscle from obese rats by 43%. In obese rats, phosphorylation of ACC and protein expression of PGC-1alpha, two AMPK-regulated proteins, tended to be reduced by 50 (P = 0.07) and 35% (P = 0.1), respectively. There were no differences in AMPKalpha1, -alpha2, -beta1, -beta2, and -gamma3 protein content between lean and obese rats. Training caused a 1.5-fold increase in AMPKalpha1 protein content in the obese rats, although there was no effect of training on AMPK phosphorylation and the other AMPK isoforms. Furthermore, training also significantly increased LKB1 and PGC-1alpha protein content 2.8- and 2.5-fold, respectively, in the obese rats. LKB1 protein strongly correlated with hexokinase II activity (r = 0.75, P = 0.001), citrate synthase activity (r = 0.54, P = 0.02), and PGC-1alpha protein content (r = 0.81, P < 0.001). In summary, obese insulin-resistant rodents have abnormalities in the LKB1-AMPK-PGC-1 pathway in muscle, and these abnormalities can be restored by training.

  19. Retinal abnormalities in β-thalassemia major

    PubMed Central

    Bhoiwala, Devang L.; Dunaief, Joshua L.

    2015-01-01

    Patients with beta (β)-thalassemia (β-TM: thalassemia major, β-TI: thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelium degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with β-TM are transfusion dependent and require iron chelation therapy (ICT) in order to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by ICT. Some who were never treated with ICT exhibited retinopathy, and others receiving ICT had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with β-TM viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. PMID:26325202

  20. Nanolayer encapsulation of insulin-chitosan complexes improves efficiency of oral insulin delivery

    PubMed Central

    Song, Lei; Zhi, Zheng-liang; Pickup, John C

    2014-01-01

    Current oral insulin formulations reported in the literature are often associated with an unpredictable burst release of insulin in the intestine, which may increase the risk for problematic hypoglycemia. The aim of the study was to develop a solution based on a nanolayer encapsulation of insulin-chitosan complexes to afford sustained release after oral administration. Chitosan/heparin multilayer coatings were deposited onto insulin-chitosan microparticulate cores in the presence of poly(ethylene) glycol (PEG) in the precipitating and coating solutions. The addition of PEG improved insulin loading and minimized an undesirable loss of the protein resulting from redissolution. Nanolayer encapsulation and the formation of complexes enabled a superior loading capacity of insulin (>90%), as well as enhanced stability and 74% decreased solubility at acid pH in vitro, compared with nonencapsulated insulin. The capsulated insulin administered by oral gavage lowered fasting blood glucose levels by up to 50% in a sustained and dose-dependent manner and reduced postprandial glycemia in streptozotocin-induced diabetic mice without causing hypoglycemia. Nanolayer encapsulation reduced the possibility of rapid and erratic falls of blood glucose levels in animals. This technique represents a promising strategy to promote the intestinal absorption efficiency and release behavior of the hormone, potentially enabling an efficient and safe route for oral insulin delivery of insulin in diabetes management. PMID:24833901

  1. Defective calcium inactivation causes long QT in obese insulin-resistant rat.

    PubMed

    Lin, Yen-Chang; Huang, Jianying; Kan, Hong; Castranova, Vincent; Frisbee, Jefferson C; Yu, Han-Gang

    2012-02-15

    The majority of diabetic patients who are overweight or obese die of heart disease. We suspect that the obesity-induced insulin resistance may lead to abnormal cardiac electrophysiology. We tested this hypothesis by studying an obese insulin-resistant rat model, the obese Zucker rat (OZR). Compared with the age-matched control, lean Zucker rat (LZR), OZR of 16-17 wk old exhibited an increase in QTc interval, action potential duration, and cell capacitance. Furthermore, the L-type calcium current (I(CaL)) in OZR exhibited defective inactivation and lost the complete inactivation back to the closed state, leading to increased Ca(2+) influx. The current density of I(CaL) was reduced in OZR, whereas the threshold activation and the current-voltage relationship of I(CaL) were not significantly altered. L-type Ba(2+) current (I(BaL)) in OZR also exhibited defective inactivation, and steady-state inactivation was not significantly altered. However, the current-voltage relationship and activation threshold of I(BaL) in OZR exhibited a depolarized shift compared with LZR. The total and membrane protein expression levels of Cav1.2 [pore-forming subunit of L-type calcium channels (LTCC)], but not the insulin receptors, were decreased in OZR. The insulin receptor was found to be associated with the Cav1.2, which was weakened in OZR. The total protein expression of calmodulin was reduced, but that of Cavβ2 subunit was not altered in OZR. Together, these results suggested that the 16- to 17-wk-old OZR has 1) developed cardiac hypertrophy, 2) exhibited altered electrophysiology manifested by the prolonged QTc interval, 3) increased duration of action potential in isolated ventricular myocytes, 4) defective inactivation of I(CaL) and I(BaL), 5) weakened the association of LTCC with the insulin receptor, and 6) decreased protein expression of Cav1.2 and calmodulin. These results also provided mechanistic insights into a remodeled cardiac electrophysiology under the condition of

  2. Comparison of insulin analogue B9AspB27Glu and soluble human insulin in insulin-treated diabetes.

    PubMed

    Kang, S; Owens, D R; Vora, J P; Brange, J

    1990-02-10

    Postprandial plasma glucose excursions and plasma levels of free insulin after subcutaneous bolus injection of a rapidly absorbed monomeric insulin analogue (B9AspB27Glu) or soluble human insulin ('Actrapid HM' U100) were studied in six insulin-treated diabetic subjects. 10 U actrapid or an equimolar amount of the analogue were injected, in random order with an interval of 1 week, immediately before a 500 kcal test meal. Basal insulin levels were similar on the 2 study days (mean 74.1 [SE 5.1] pmol/l, actrapid; 79.7 [13.0] pmol/l, analogue). After injection of actrapid plasma free insulin levels rose slowly, reaching a plateau by 105 min at 222 (19) pmol/l. Injection of the analogue resulted in a rapid early peak at 30 min (798 [112] pmol/l), and levels were significantly higher than those after actrapid between 15 and 210 min. The more physiological plasma insulin levels achieved with the analogue were accompanied by a substantial reduction in postprandial plasma glucose excursions; the integrated area under the incremental plasma glucose curve was 45% lower after the analogue than after actrapid.

  3. Treatment duration (persistence) of basal insulin supported oral therapy (BOT) in Type-2 diabetic patients: comparison of insulin glargine with NPH insulin.

    PubMed

    Quinzler, Renate; Ude, Miriam; Franzmann, Alexandra; Feldt, Sandra; Schüssel, Katrin; Leuner, Kristina; Müller, Walter E; Dippel, Franz-Werner; Schulz, Martin

    2012-01-01

    To compare the persistence (treatment duration) of basal insulin supported oral therapy (BOT) using insulin glargine (GLA) or NPH insulin (NPH) in Type-2 diabetic patients. This retrospective cohort study reports results from an analysis of claims data from prescriptions for ambulatory patients within the German Statutory Health Insurance scheme. The study is based on claims data from more than 80% of German community pharmacies. Treatment duration until switching to a basal bolus treatment regimen (intensified conventional insulin therapy: ICT) was determined in insulin-naïve patients who began treatment with BOT using GLA or NPH between 01/2003 and 12/2006. A total of 97,998 patients (61,070 GLA and 36,928 NPH) were included. Within the observation period, 23.5% of GLA patients and 28.0% of NPH patients switched from BOT to ICT. The upper quartile of probability of continuation of therapy (the 75th percentile) was reached after 769 days in GLA patients and after 517 days in NPH patients. Therefore, the risk of switching to ICT was significantly higher with NPH compared to GLA: hazard ratios were 1.34 (99% CI: 1.29-1.38; unadjusted) and 1.22 (99% CI: 1.18-1.27) after adjustment for predefined covariates. Various sensitivity analyses using modified inclusion criteria and endpoint definitions were applied and these confirmed the initial results. Type-2 diabetic patients under BOT with GLA stayed significantly longer on the initial therapy before switching to ICT than patients on BOT using NPH.

  4. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses

    PubMed Central

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-01-01

    Abstract Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague–Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by ∼60%. However, supplementing gAd fully rescued insulin’s microvascular action and significantly improved the metabolic responses to insulin in HFD male rats and these actions were abolished by inhibition of either AMPK or nitric oxide production. We conclude that HFD induces vascular adiponectin and insulin resistance but gAd administration can restore vascular insulin responses and improve insulin’s metabolic action via an AMPK- and nitric oxide-dependent mechanism in male rats. Key points Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle

  5. Abnormal placentation.

    PubMed

    Bauer, Samuel T; Bonanno, Clarissa

    2009-04-01

    Abnormal placentation poses a diagnostic and treatment challenge for all providers caring for pregnant women. As one of the leading causes of postpartum hemorrhage, abnormal placentation involves the attachment of placental villi directly to the myometrium with potentially deeper invasion into the uterine wall or surrounding organs. Surgical procedures that disrupt the integrity of uterus, including cesarean section, dilatation and curettage, and myomectomy, have been implicated as key risk factors for placenta accreta. The diagnosis is typically made by gray-scale ultrasound and confirmed with magnetic resonance imaging, which may better delineate the extent of placental invasion. It is critical to make the diagnosis before delivery because preoperative planning can significantly decrease blood loss and avoid substantial morbidity associated with placenta accreta. Aggressive management of hemorrhage through the use of uterotonics, fluid resuscitation, blood products, planned hysterectomy, and surgical hemostatic agents can be life-saving for these patients. Conservative management, including the use of uterine and placental preservation and subsequent methotrexate therapy or pelvic artery embolization, may be considered when a focal accreta is suspected; however, surgical management remains the current standard of care.

  6. Insulin detemir: a review of its use in the management of diabetes mellitus.

    PubMed

    Keating, Gillian M

    2012-12-03

    Insulin detemir (Levemir®) is a long-acting insulin analogue indicated for use as basal insulin therapy in patients with type 1 or 2 diabetes mellitus. The protracted action of insulin detemir is explained by increased self-association and reversible binding to albumin, which slows its systemic absorption from the injection site. In glucose-clamp studies, less within-patient variability in glucose-lowering effect was seen with insulin detemir than with neutral protamine Hagedorn (NPH) insulin or insulin glargine in patients with type 1 or 2 diabetes. The beneficial effect of insulin detemir on glycaemic control was shown in numerous randomized, open-label, multicentre trials, including when used as basal-bolus therapy in patients with type 1 or 2 diabetes and as basal therapy in addition to oral antidiabetic drugs in insulin-naive patients with type 2 diabetes. In terms of glycosylated haemoglobin (HbA(1c)).[primary endpoint in most trials], insulin detemir was generally at least as effective as NPH insulin, insulin glargine or insulin lispro protamine suspension in patients with type 1 or 2 diabetes, and at least as effective as biphasic insulin aspart in patients with type 2 diabetes. Less within-patient variability in blood glucose was also generally seen with insulin detemir than with NPH insulin in patients with type 1 or 2 diabetes. Significantly less weight gain was generally seen with insulin detemir than with NPH insulin in patients with type 1 diabetes or with insulin detemir than with NPH insulin, insulin glargine, insulin lispro protamine suspension or biphasic insulin aspart (in one study) in patients with type 2 diabetes (i.e. insulin detemir generally had a weight-sparing effect). The addition of insulin detemir to liraglutide plus metformin improved glycaemic control in insulin-naive patients with type 2 diabetes and inadequate glycaemic control, although a significantly greater reduction in bodyweight was seen in patients receiving liraglutide

  7. Insulin deprivation induces PP2A inhibition and tau hyperphosphorylation in hTau mice, a model of Alzheimer's disease-like tau pathology.

    PubMed

    Gratuze, Maud; Julien, Jacinthe; Petry, Franck R; Morin, Françoise; Planel, Emmanuel

    2017-04-12

    Abnormally hyperphosphorylated tau aggregated as intraneuronal neurofibrillary tangles is one of the two neuropathological hallmarks of Alzheimer's disease (AD). The majority of AD cases are sporadic with numerous environmental, biological and genetic risks factors. Interestingly, insulin dysfunction and hyperglycaemia are both risk factors for sporadic AD. However, how hyperglycaemia and insulin dysfunction affect tau pathology, is not well understood. In this study, we examined the effects of insulin deficiency on tau pathology in transgenic hTau mice by injecting different doses of streptozotocin (STZ), a toxin that destroys insulin-producing cells in the pancreas. One high dose of STZ resulted in marked diabetes, and five low doses led to a milder diabetes. Both groups exhibited brain tau hyperphosphorylation but no increased aggregation. Tau hyperphosphorylation correlated with inhibition of Protein Phosphatase 2A (PP2A), the main tau phosphatase. Interestingly, insulin injection 30 minutes before sacrifice partially restored tau phosphorylation to control levels in both STZ-injected groups. Our results confirm a link between insulin homeostasis and tau phosphorylation, which could explain, at least in part, a higher incidence of AD in diabetic patients.

  8. Effects of Insulin Detemir and NPH Insulin on Body Weight and Appetite-Regulating Brain Regions in Human Type 1 Diabetes: A Randomized Controlled Trial

    PubMed Central

    van Golen, Larissa W.; Veltman, Dick J.; IJzerman, Richard G.; Deijen, Jan Berend; Heijboer, Annemieke C.; Barkhof, Frederik; Drent, Madeleine L.; Diamant, Michaela

    2014-01-01

    Studies in rodents have demonstrated that insulin in the central nervous system induces satiety. In humans, these effects are less well established. Insulin detemir is a basal insulin analog that causes less weight gain than other basal insulin formulations, including the current standard intermediate-long acting Neutral Protamine Hagedorn (NPH) insulin. Due to its structural modifications, which render the molecule more lipophilic, it was proposed that insulin detemir enters the brain more readily than other insulins. The aim of this study was to investigate whether insulin detemir treatment differentially modifies brain activation in response to food stimuli as compared to NPH insulin. In addition, cerebral spinal fluid (CSF) insulin levels were measured after both treatments. Brain responses to viewing food and non-food pictures were measured using functional Magnetic Resonance Imaging in 32 type 1 diabetic patients, after each of two 12-week treatment periods with insulin detemir and NPH insulin, respectively, both combined with prandial insulin aspart. CSF insulin levels were determined in a subgroup. Insulin detemir decreased body weight by 0.8 kg and NPH insulin increased weight by 0.5 kg (p = 0.02 for difference), while both treatments resulted in similar glycemic control. After treatment with insulin detemir, as compared to NPH insulin, brain activation was significantly lower in bilateral insula in response to visual food stimuli, compared to NPH (p = 0.02 for right and p = 0.05 for left insula). Also, CSF insulin levels were higher compared to those with NPH insulin treatment (p = 0.003). Our findings support the hypothesis that in type 1 diabetic patients, the weight sparing effect of insulin detemir may be mediated by its enhanced action on the central nervous system, resulting in blunted activation in bilateral insula, an appetite-regulating brain region, in response to food stimuli. Trial Registration ClinicalTrials.gov NCT00626080

  9. Re-evaluation of Sepharose-insulin as a tool for the study of insulin action.

    PubMed Central

    Kolb, H J; Renner, R; Hepp, K D; Weiss, L; Wieland, O H

    1975-01-01

    The biological activity of Sepharose-insulin in different assays in vitro, e.g., stimulation of glucose oxidation, lipogenesis, and antilipolysis and activation of pyruvate dehydrogenase (EC 1.2.4.1) activity, has been investigated. According to amino acid analysis, between 270 and 330 mug (6.9-8.2 U) of insulin were coupled per ml of packed beads. Related to the total insulin content, 0.2-0.7% of the insulin was biologically active. Comparable biological activity was observed with isolated fat cells and fat pad pieces. After incubation with tissue or cells, Sepharose-insulin particles were separated by centrifugation from the medium. The clear supernatant was assayed for biologically and immunologically reactive insulin and contained soluble insulin activity. A quantitative evaluation of the soluble biological and immunological insulin activity in the supernatant accounted for the total insulin activity of Sepharose-insulin. PMID:1054501

  10. Insulin Test

    MedlinePlus

    ... sometimes used in conjunction with the glucose tolerance test (GTT) . In this situation, blood glucose and insulin levels are measured at pre-established time intervals to evaluate insulin resistance. When ...

  11. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats.

    PubMed

    Sena, Gabriela C; Freitas-Lima, Leandro C; Merlo, Eduardo; Podratz, Priscila L; de Araújo, Julia F P; Brandão, Poliane A A; Carneiro, Maria T W D; Zicker, Marina C; Ferreira, Adaliene V M; Takiya, Christina M; de Lemos Barbosa, Carolina M; Morales, Marcelo M; Santos-Silva, Ana Paula; Miranda-Alves, Leandro; Silva, Ian V; Graceli, Jones B

    2017-03-15

    Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine-disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus-pituitary-gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus-pituitary-gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100ng/kg/day) for 15days via gavage. We analyzed their effects on the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co-occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by TBT may be

  12. Insulin resistance in dairy cows.

    PubMed

    De Koster, Jenne D; Opsomer, Geert

    2013-07-01

    Glucose is the molecule that drives milk production, and insulin plays a pivotal role in the glucose metabolism of dairy cows. The effect of insulin on the glucose metabolism is regulated by the secretion of insulin by the pancreas and the insulin sensitivity of the skeletal muscles, the adipose tissue, and the liver. Insulin resistance may develop as part of physiologic (pregnancy and lactation) and pathologic processes, which may manifest as decreased insulin sensitivity or decreased insulin responsiveness. A good knowledge of the normal physiology of insulin is needed to measure the in vivo insulin resistance of dairy cows. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Insulin Resistance and Glucose Levels in Subjects with Subclinical Hypothyroidism.

    PubMed

    Khan, Sikandar Hayat; Fazal, Nadeem; Ijaz, Aamir; Manzoor, Syed Mohsin; Asif, Naveed; Rafi, Tariq; Yasir, Muhammad; Niazi, Najmusaquib Khan

    2017-06-01

    To compare insulin resistance and glycemic indicators among subjects with euthyroidism and subclinical hypothyroidism. Comparative cross-sectional study. Department of Pathology and Medicine, PNS Hafeez, Islamabad, in collaboration with the Department of Chemical Pathology and Endocrinology at the Armed Forces Institute of Pathology (AFIP), Rawalpindi, from December 2015 to September 2016. Subjects referred for executive screening of apparently healthy population (without any known history of diabetes, hypertension, heart disease or other chronic ailments), were included. Subjects were grouped as euthyroidism and subclinical hypothyroidism. Median (IQR) insulin resistance indices including fasting insulin and Homeostasis Model Assessment for Insulin Resistance in subjects with group-1 (n=176, 87%, Thyroid Stimulating Hormone: 0.5 - 3.5 mIU/L) and group-2 (n=26, 13%, Thyroid Stimulating Hormone: 3.51 - 15 mIU/L) were 7.6 (6.70) vs. 11.4 (13.72, p=0.040) and 1.77 (1.79) vs. 2.8 (3.07, p=0.071). The median differences for fasting plasma glucose were 5.0 (1.0) in group-1 vs. 5.0 (1.47) for Group-2 [p=0.618], and glycated hemoglobin was 5.60 (1.1) vs. 5.60 (1.7, p=0.824). Homeostasis Model Assessment for beta sensitivity index in paradox showed slightly higher values for group-2 [median (IQR) 86.67 (92.94)] than group-1 [111.6 (189.64, p= 0.040)]. Measures of insulin resistance including Homeostasis Model Assessment for Insulin Resistance and fasting insulin levels were significantly different between subjects with euthyroidism and having subclinical hypothyroidism.

  14. Thinking about brain insulin resistance.

    PubMed

    Al Haj Ahmad, Reem M; Al-Domi, Hayder A

    2018-05-06

    Dementia and type 2 diabetes mellitus (T2DM) are two of the epidemics of our time; in which insulin resistance (IR) is playing the central role. Epidemiological studies found that different types of dementia development may be promoted by the presence of T2DM. We aimed in this review to highlight the role of insulin and the IR in the brain as a pathophysiological factor of dementia development and also to expand our understanding of T2DM as a mediator of IR in the brain and to review the possible mechanisms of action that may explain the association. A critical review of the relevant published English articles up to 2018, using PubMed, Google Scholar, Science Direct, ADI, and WHO database was carried out. Keywords were included insulin resistance, T3DM, T2DM, dementia, brain insulin resistance were used. The rapidly increased prevalence of dementia concurrently with T2DM and obesity need urgent action to illustrate guidelines for prevention, modifying, and treatment based on mechanistic studies. Copyright © 2018 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  15. Short-acting insulin analogues versus regular human insulin for adults with type 1 diabetes mellitus.

    PubMed

    Fullerton, Birgit; Siebenhofer, Andrea; Jeitler, Klaus; Horvath, Karl; Semlitsch, Thomas; Berghold, Andrea; Plank, Johannes; Pieber, Thomas R; Gerlach, Ferdinand M

    2016-06-30

    Short-acting insulin analogue use for people with diabetes is still controversial, as reflected in many scientific debates. To assess the effects of short-acting insulin analogues versus regular human insulin in adults with type 1 diabetes. We carried out the electronic searches through Ovid simultaneously searching the following databases: Ovid MEDLINE(R), Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid OLDMEDLINE(R) (1946 to 14 April 2015), EMBASE (1988 to 2015, week 15), the Cochrane Central Register of Controlled Trials (CENTRAL; March 2015), ClinicalTrials.gov and the European (EU) Clinical Trials register (both March 2015). We included all randomised controlled trials with an intervention duration of at least 24 weeks that compared short-acting insulin analogues with regular human insulins in the treatment of adults with type 1 diabetes who were not pregnant. Two review authors independently extracted data and assessed trials for risk of bias, and resolved differences by consensus. We graded overall study quality using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) instrument. We used random-effects models for the main analyses and presented the results as odds ratios (OR) with 95% confidence intervals (CI) for dichotomous outcomes. We identified nine trials that fulfilled the inclusion criteria including 2693 participants. The duration of interventions ranged from 24 to 52 weeks with a mean of about 37 weeks. The participants showed some diversity, mainly with regard to diabetes duration and inclusion/exclusion criteria. The majority of the trials were carried out in the 1990s and participants were recruited from Europe, North America, Africa and Asia. None of the trials was carried out in a blinded manner so that the risk of performance bias, especially for subjective outcomes such as hypoglycaemia, was present in all of the trials. Furthermore, several trials showed inconsistencies in

  16. Urinary albumin excretion is a risk factor for diabetes mellitus in men, independently of initial metabolic profile and development of insulin resistance. The DESIR Study.

    PubMed

    Halimi, Jean-Michel; Bonnet, Fabrice; Lange, Céline; Balkau, Beverley; Tichet, Jean; Marre, Michel

    2008-11-01

    Elevated urinary albumin excretion (UAE) is more frequent in patients with the metabolic syndrome or insulin resistance. Whether UAE predicts the development of diabetes mellitus, independently of the presence or the development of the metabolic syndrome, is unclear, in particular, in women. We prospectively assessed the association between baseline UAE and subsequent diabetes mellitus in participants selected from the general population. Four thousand and seventy-four nondiabetic patients (aged 30-64 years) included in the Data from an Epidemiological Study on the Insulin Resistance syndrome Study had a baseline UAE. Among them, 3851 patients had complete data regarding diabetes mellitus. Diabetes mellitus occurred in 171 out of 3851 patients during the 9-year follow-up (132/2056 men and 39/1795 women). UAE was associated with diabetes mellitus in a dose-dependent manner in men [as compared to men with UAE<9 mg/l, hazard ratios were 1.81 (P=0.0160), 1.83 (P=0.0134), 2.31 (P=0.0008) and 4.43 (P=0.0005) for men with UAE: 9-12 mg/l, 12-19 mg/l, 20-200 mg/l and >200 mg/l, respectively] but not in women; the association was more marked after exclusion of men with baseline impaired fasting glucose [hazard ratios were 3.28 (P=0.0007), 3.08 (P=0.0012), 3.27 (P=0.0022), 9.23 (P<0.0001), respectively]. The association remained significant after adjustments on BMI, sporting activity, diet, smoking, waist circumference, insulin and homeostasis model assessment of insulin resistance, lipids, C-reactive protein and family of history of diabetes mellitus. Adjustment on the first 3-year change in weight, glucose, insulin and homeostasis model assessment of insulin resistance did not modify the results. Elevated UAE predicts the 9-year risk of diabetes mellitus in men, independent of baseline or early development of metabolic abnormalities or insulin resistance.

  17. A model to estimate insulin sensitivity in dairy cows.

    PubMed

    Holtenius, Paul; Holtenius, Kjell

    2007-10-11

    Impairment of the insulin regulation of energy metabolism is considered to be an etiologic key component for metabolic disturbances. Methods for studies of insulin sensitivity thus are highly topical. There are clear indications that reduced insulin sensitivity contributes to the metabolic disturbances that occurs especially among obese lactating cows. Direct measurements of insulin sensitivity are laborious and not suitable for epidemiological studies. We have therefore adopted an indirect method originally developed for humans to estimate insulin sensitivity in dairy cows. The method, "Revised Quantitative Insulin Sensitivity Check Index" (RQUICKI) is based on plasma concentrations of glucose, insulin and free fatty acids (FFA) and it generates good and linear correlations with different estimates of insulin sensitivity in human populations. We hypothesized that the RQUICKI method could be used as an index of insulin function in lactating dairy cows. We calculated RQUICKI in 237 apparently healthy dairy cows from 20 commercial herds. All cows included were in their first 15 weeks of lactation. RQUICKI was not affected by the homeorhetic adaptations in energy metabolism that occurred during the first 15 weeks of lactation. In a cohort of 24 experimental cows fed in order to obtain different body condition at parturition RQUICKI was lower in early lactation in cows with a high body condition score suggesting disturbed insulin function in obese cows. The results indicate that RQUICKI might be used to identify lactating cows with disturbed insulin function.

  18. Diagnostic Usefulness of Insulin-Like Growth Factor 1 and Insulin-Like Growth Factor Binding Protein 3 in Children with Suspected Pituitary Dwarfism.

    PubMed

    Zelazowska-Rutkowska, Beata; Trusiak, Marta; Bossowski, Artur; Cylwik, Bogdan

    2018-05-01

    Pituitary dwarfism (also known as short stature) is a medical condition in which the pituitary gland does not produce enough growth hormone (GH). To confirm the diagnosis of growth hormone deficiency the overnight profile of GH secretion and GH provocative tests are usually performed; however, due to wide GH fluctuations throughout the day and night and the invasiveness of stimulation tests, their clinical utility is limited. Therefore, screening for IGF-1 (insulin-like growth factor 1) and IGFBP-3 (insulin-like growth factor binding protein type 3) is proposed, suggesting that these tests provide a more accurate reflection of the mean plasma GH level, although the results of these tests are still problematic. In this context, the aim of this study was to assess the diagnostic usefulness of IGF-1 and IGFBP-3 in children with suspected pituitary dwarfism. Studies were carried out in 127 children with abnormal growth and low spontaneous 24-hour plasma GH profiles and abnormal results of GH stimulation tests. Fasting serum IGF-1 and IGFBP-3 were determined by chemiluminescent quantitative measurement using the IMMULITE 1000 IGF-1 and IGFBP-3 kits (Siemens Healthcare Diagnostics, United Kingdom) on the IMMULITE 1000 analyzer (Siemens Healthcare Diagnostics, USA). Results were compared to the normal range by children's age. Mean serum IGF-1 concentrations were within the lower normal range (41.7% cases), and 58.3% results were below the normal reference range in the study group. The average serum IGFBP-3 levels were within the lower normal range. We conclude that IGF-1 test can be a useful tool in the diagnosis of pituitary dwarfism in children suspected of this condition, but due to relatively poor sensitivity the testing cannot be performed alone, but in combination with other tests. The IGFBP-3 test is not useful for the diagnosis of this disease.

  19. Combined treatment with melatonin and insulin improves glycemic control, white adipose tissue metabolism and reproductive axis of diabetic male rats.

    PubMed

    Oliveira, Ariclecio Cunha de; Andreotti, Sandra; Sertie, Rogério António Laurato; Campana, Amanda Baron; de Proença, André Ricardo Gomes; Vasconcelos, Renata Prado; Oliveira, Keciany Alves de; Coelho-de-Souza, Andrelina Noronha; Donato-Junior, José; Lima, Fábio Bessa

    2018-04-15

    Melatonin treatment has been reported to be capable of ameliorating metabolic diabetes-related abnormalities but also to cause hypogonadism in rats. We investigated whether the combined treatment with melatonin and insulin can improve insulin resistance and other metabolic disorders in rats with streptozotocin-induced diabetes during neonatal period and the repercussion of this treatment on the hypothalamic-pituitary-gonadal axis. At the fourth week of age, diabetic animals started an 8-wk treatment with only melatonin (0.2 mg/kg body weight) added to drinking water at night or associated with insulin (NHP, 1.5 U/100 g/day) or only insulin. Animals were then euthanized, and the subcutaneous (SC), epididymal (EP), and retroperitoneal (RP) fat pads were excised, weighed and processed for adipocyte isolation for morphometric analysis as well as for measuring glucose uptake, oxidation, and incorporation of glucose into lipids. Hypothalamus was collected for gene expression and blood samples were collected for biochemical assays. The treatment with melatonin plus insulin (MI) was capable of maintaining glycemic control. In epididymal (EP) and subcutaneous (SC) adipocytes, the melatonin plus insulin (MI) treatment group recovered the insulin responsiveness. In the hypothalamus, melatonin treatment alone promoted a significant reduction in kisspeptin-1, neurokinin B and androgen receptor mRNA levels, in relation to control group. Combined treatment with melatonin and insulin promoted a better glycemic control, improving insulin sensitivity in white adipose tissue (WAT). Indeed, melatonin treatment reduced hypothalamic genes related to reproductive function. Copyright © 2017. Published by Elsevier Inc.

  20. The emergence of biosimilar insulin preparations--a cause for concern?

    PubMed

    Owens, David R; Landgraf, Wolfgang; Schmidt, Andrea; Bretzel, Reinhard G; Kuhlmann, Martin K

    2012-11-01

    Several biopharmaceuticals, including insulin and insulin analogs, are, or shortly will be, off-patent, thereby providing an opportunity for companies to attempt to manufacture "copies" commonly referred to as biosimilars and also known as follow-on biologics. Reassurance that such copy biologics are equally safe and effective as the conventional products is essential. It is important for the clinician to consider what information is therefore necessary for such assurances. Biopharmaceuticals, produced from living organisms and manufactured by complex processes, differ in many respects from chemically derived drugs. The biological source materials and manufacturing processes for non-innovator biologics may differ considerably from those used for producing the innovator substance. Differences between innovator and non-innovator products can be identified analytically (e.g., batch-to-batch consistency, product stability along side clinical safety). This provides a strong argument for caution before automatic substitution of conventional products (e.g., insulin by biosimilars). Several non-innovator insulins, including insulin analogs (while still patent-protected), are already available in many countries. Many of these lack rigorous regulations for biosimilar approval and pharmacovigilance. Recently an application for a biosimilar recombinant human insulin was withdrawn by the European Medicines Agency because of safety and efficacy concerns. Therefore, every biosimilar insulin and insulin analog should be assessed by well-defined globally harmonized preclinical and clinical studies followed by post-marketing pharmacovigilance programs, in the interest of people with diabetes worldwide.

  1. The Emergence of Biosimilar Insulin Preparations—A Cause for Concern?

    PubMed Central

    Landgraf, Wolfgang; Schmidt, Andrea; Bretzel, Reinhard G.; Kuhlmann, Martin K.

    2012-01-01

    Abstract Several biopharmaceuticals, including insulin and insulin analogs, are, or shortly will be, off-patent, thereby providing an opportunity for companies to attempt to manufacture “copies” commonly referred to as biosimilars and also known as follow-on biologics. Reassurance that such copy biologics are equally safe and effective as the conventional products is essential. It is important for the clinician to consider what information is therefore necessary for such assurances. Biopharmaceuticals, produced from living organisms and manufactured by complex processes, differ in many respects from chemically derived drugs. The biological source materials and manufacturing processes for non-innovator biologics may differ considerably from those used for producing the innovator substance. Differences between innovator and non-innovator products can be identified analytically (e.g., batch-to-batch consistency, product stability along side clinical safety). This provides a strong argument for caution before automatic substitution of conventional products (e.g., insulin by biosimilars). Several non-innovator insulins, including insulin analogs (while still patent-protected), are already available in many countries. Many of these lack rigorous regulations for biosimilar approval and pharmacovigilance. Recently an application for a biosimilar recombinant human insulin was withdrawn by the European Medicines Agency because of safety and efficacy concerns. Therefore, every biosimilar insulin and insulin analog should be assessed by well-defined globally harmonized preclinical and clinical studies followed by post-marketing pharmacovigilance programs, in the interest of people with diabetes worldwide. PMID:23046400

  2. Prevalence and predictors of metabolic abnormalities in Chinese women with PCOS: a cross- sectional study

    PubMed Central

    2014-01-01

    Background Polycystic ovary syndrome (PCOS) is a common condition estimated to affect 5.61% of Chinese women of reproductive age, but little is known about the prevalence and predictors in Chinese PCOS patients. This study aimed to determine the prevalence and predictors of the metabolic abnormalities in Chinese women with and without PCOS. Methods A large-scale national epidemiological investigation was conducted in reproductive age women (19 to 45 years) across China. 833 reproductive aged PCOS women, who participated in the healthcare screening, were recruited from ten provinces in China. Clinical history, ultrasonographic exam (ovarian follicle), hormonal and metabolic parameters were the main outcome measures. Results The prevalence of metabolic syndrome (MetS) as compared in PCOS and non-PCOS women from community were 18.2% vs 14.7%, and IR (insulin resistance) were 14.2% vs 9.3% (p < 0.001) respectively. After adjusting for age, the indicators (central obesity, hypertension, fasting insulin, SHBG, dyslipinaemia) for metabolic disturbances were significantly higher in PCOS than in non-PCOS groups. Using multivariate logistic regression, central obesity and FAI were risk factors, while SHBG was a protective factor on the occurrence of Mets and IR in PCOS women (OR: 1.132, 1.105 and 0.995). Conclusions The risk factors of the metabolic syndrome and insulin resistance were BMI and FAI for PCOS women, respectively. The decrease of SHBG level was also a risk factor for insulin resistance in both PCOS and metabolic disturbance. PMID:25223276

  3. Prevalence and predictors of metabolic abnormalities in Chinese women with PCOS: a cross- sectional study.

    PubMed

    Li, Rong; Yu, Geng; Yang, Dongzi; Li, Shangwei; Lu, Shulan; Wu, Xiaoke; Wei, Zhaolian; Song, Xueru; Wang, Xiuxia; Fu, Shuxin; Qiao, Jie

    2014-09-16

    Polycystic ovary syndrome (PCOS) is a common condition estimated to affect 5.61% of Chinese women of reproductive age, but little is known about the prevalence and predictors in Chinese PCOS patients. This study aimed to determine the prevalence and predictors of the metabolic abnormalities in Chinese women with and without PCOS. A large-scale national epidemiological investigation was conducted in reproductive age women (19 to 45 years) across China. 833 reproductive aged PCOS women, who participated in the healthcare screening, were recruited from ten provinces in China. Clinical history, ultrasonographic exam (ovarian follicle), hormonal and metabolic parameters were the main outcome measures. The prevalence of metabolic syndrome (MetS) as compared in PCOS and non-PCOS women from community were 18.2% vs 14.7%, and IR (insulin resistance) were 14.2% vs 9.3% (p < 0.001) respectively. After adjusting for age, the indicators (central obesity, hypertension, fasting insulin, SHBG, dyslipinaemia) for metabolic disturbances were significantly higher in PCOS than in non-PCOS groups. Using multivariate logistic regression, central obesity and FAI were risk factors, while SHBG was a protective factor on the occurrence of Mets and IR in PCOS women (OR: 1.132, 1.105 and 0.995). The risk factors of the metabolic syndrome and insulin resistance were BMI and FAI for PCOS women, respectively. The decrease of SHBG level was also a risk factor for insulin resistance in both PCOS and metabolic disturbance.

  4. Electrocardiographic abnormalities in opiate addicts.

    PubMed

    Wallner, Christina; Stöllberger, Claudia; Hlavin, Anton; Finsterer, Josef; Hager, Isabella; Hermann, Peter

    2008-12-01

    To determine in a cross-sectional study the prevalence of electrocardiographic (ECG) abnormalities in opiate addicts who were therapy-seeking and its association with demographic, clinical and drug-specific parameters. In consecutive therapy-seeking opiate addicts, a 12-lead ECG was registered within 24 hours after admission and evaluated according to a pre-set protocol between October 2004 and August 2006. Additionally, demographic, clinical and drug-specific parameters were recorded. Included were 511 opiate-addicts, 25% female, with a mean age of 29 years (range 17-59 years). One or more ECG abnormalities were found in 314 patients (61%). In the 511 patients we found most commonly ST abnormalities (19%), QTc prolongation (13%), tall R- and/or S-waves (11%) and missing R progression (10%). ECG abnormalities were more common in males than in females (64 versus 54%, P < 0.05), and in patients with positive than negative urine findings for cannabis (68 versus 57%, P < 0.05). Patients with ST abnormalities were more often males than females (21 versus 11%, P < 0.05), had a history of seizures less often (16 versus 27%, P < 0.05), had positive than negative urine findings for cannabis more often (26 versus 15%, P < 0.01) and had negative than positive urine findings for methadone more often (21 versus 11%, P < 0.05). QTc prolongation was more frequent in patients with high dosages of maintenance drugs than in patients with medium or low dosages (27 versus 12 versus 10%, P < 0.05) and in patients whose urine findings were positive than negative for methadone (23 versus 11%, P < 0.001) as well as for benzodiazepines (17 versus 9%, P < 0.05). Limitations of the data are that in most cases other risk factors for the cardiac abnormalities were not known. ECG abnormalities are frequent in opiate addicts. The most frequent ECG abnormalities are ST abnormalities, QTc prolongation and tall R- and/or S-waves. ST abnormalities are associated with cannabis, and QTc prolongation

  5. Economic Impact of Treatment Duration and Persistence with Basal Insulin in Previously Insulin-Naive Users.

    PubMed

    Kalirai, Samaneh; Duan, Ran; Liu, Dongju; Reed, Beverly L

    2017-03-01

    Although insulin is a well-established therapy that is associated with improved clinical outcomes, adherence and persistence with insulin regimens are poor in patients with type 2 diabetes mellitus (T2DM). Diabetes-related health care costs and the impact of insulin persistence patterns on these health care costs have been previously studied; however, these aspects of insulin therapy have limited data beyond the first year of use and have not been characterized among patients previously naive to basal insulin. To (a) describe and compare medical- and pharmacy-related costs, health care resource utilization, and comorbidities and complications during the initial year and second (experienced) year of basal insulin therapy, and (b) describe and compare the impact of continuous versus interrupted basal insulin use during each year. This was a retrospective observational database analysis using claims from multiple U.S. commercial health plans (Truven Health MarketScan) in previously insulin-naive patients with T2DM who were initiated on basal insulin. Data collected included all-cause and diabetes-related medical and pharmacy costs, health care resource utilization (i.e., number and type of outpatient visits, hospitalization, emergency department [ED] visits), medication use, and preselected comorbidities and complications. This cost analysis described and compared health care costs and resource use between the initial and experienced years and further compared health care costs and resource use between continuers and interrupters within each of those years. A total of 23,645 patients were included in the analysis; 12,224 were classified as continuers and 11,421 were classified as interrupters. Among all patients, mean increases from the initial year to the experienced year were observed for all-cause medical costs ($12,690-$13,408; P = 0.048), all-cause pharmacy costs ($6,253-$6,559; P < 0.001), and all-cause health care costs ($18,943-$19,967; P = 0.006), after

  6. Insulin non-persistence among people with type 2 diabetes: how to get your patients to stay on insulin therapy.

    PubMed

    Garnero, Theresa L; Davis, Nichola J; Perez-Nieves, Magaly; Hadjiyianni, Irene; Cao, Dachuang; Ivanova, Jasmina I; Peyrot, Mark

    2018-05-01

    Continuing use of medication is key to effective treatment and positive health outcomes, particularly in chronic conditions such as diabetes. However, in primary care, non-persistence (i.e. discontinuing or interrupting treatment) with insulin therapy is a common problem among patients with type 2 diabetes. To help primary care physicians manage patients who are non-persistent or likely not to be persistent, this review aimed to provide an overview of modifiable and non-modifiable factors associated with insulin non-persistence as well as practical strategies to address them. Data were extracted from published studies evaluating factors associated with non-persistence among patients with type 2 diabetes. A targeted literature review was performed using PubMed to identify recent studies (2000-2016) reporting measures of non-persistence with insulin therapy. Practical strategies to identify and prevent non-persistence were based on the authors' direct experience in primary care. Non-modifiable factors associated with non-persistence included gender, age, prior treatments, and cost of therapy. Before/at insulin initiation, modifiable factors included patients' perception of diabetes, preference for oral medication, and concerns/expectations about treatment complexity, inconvenience, or side effects. After initiation, modifiable factors included syringe use, difficulties during the first week of therapy, side effects, and insufficient glycemic control. Open-ended and patient-centered questions and a blame-free environment can help physicians identify, prevent, and reduce non-persistence behaviors. Possible questions to start a conversation with patients are provided. Effective physician-patient communication is essential to the management of diabetes. Primary care physicians should be familiar with the most common reasons for insulin non-persistence.

  7. Appropriate insulin initiation dosage for insulin-naive type 2 diabetes outpatients receiving insulin monotherapy or in combination with metformin and/or pioglitazone.

    PubMed

    Liao, Lin; Yang, Ming; Qiu, Lu-Lu; Mou, Ya-Ru; Zhao, Jia-Jun; Dong, Jian-Jun

    2010-12-01

    Few studies have given suggestions on appropriate initiation insulin dosage when combined with oral antidiabetic drugs (OADs). This research was to investigate appropriate initiation insulin doses for insulin-naive type 2 diabetes patients with different combinations and the relationship between insulin dosage and relevant factors. This was a randomized, open-label, treat to target study. The target was 20% decrease of both fasting plasma glucose (FPG) and 2 hours post-breakfast blood glucose (P2hBG). One hundred and forty-seven insulin-naive Chinese patients recruited were randomly assigned to 3 groups: group A, patients received insulin monotherapy; group B, received insulin plus metformin (0.5 g, tid) and group C, received insulin plus metformin (0.5 g, tid) and pioglitazone (15 mg, qd). Insulin doses were initiated with a dose of 0.3 U×kg(-1)×d(-1) and titrated according to FPG and P2hBG till reached the targets. Both the time of getting 20% reduction of FPG and P2hBG showed significant differences among the three groups. The time was shortest in Group C. The insulin doses needed to achieve glucose reduction of 20% in three treatment groups were (0.40 ± 0.04) U×kg(-1)×d(-1) for Group A, (0.37 ± 0.04) U×kg(-1)×d(-1) for Group B, and (0.35 ± 0.03) U×kg(-1)×d(-1) for Group C, respectively. Multiple linear stepwise regression analysis showed that insulin doses correlated with body weight, FPG, diabetes duration, age and history of sulfonylurea treatment. The standardized regression coefficients were 0.871, 0.322, 0.089, 0.067 and 0.063 (with all P < 0.05). To achieve blood glucose's reduction of 20% within safety context, initial insulin doses were recommended as the following: 0.40 U×kg(-1)×d(-1) for insulin mono-therapy, 0.37 U×kg(-1)×d(-1) for insulin plus metformin treatment, and 0.35 U×kg(-1)×d(-1) for insulin plus metformin and pioglitazone treatment in Chinese type 2 diabetes outpatients. Body weight is found the most closely related factor

  8. Acylcarnitines: potential implications for skeletal muscle insulin resistance.

    PubMed

    Aguer, Céline; McCoin, Colin S; Knotts, Trina A; Thrush, A Brianne; Ono-Moore, Kikumi; McPherson, Ruth; Dent, Robert; Hwang, Daniel H; Adams, Sean H; Harper, Mary-Ellen

    2015-01-01

    Insulin resistance may be linked to incomplete fatty acid β-oxidation and the subsequent increase in acylcarnitine species in different tissues including skeletal muscle. It is not known if acylcarnitines participate in muscle insulin resistance or simply reflect dysregulated metabolism. The aims of this study were to determine whether acylcarnitines can elicit muscle insulin resistance and to better understand the link between incomplete muscle fatty acid β-oxidation, oxidative stress, inflammation, and insulin-resistance development. Differentiated C2C12, primary mouse, and human myotubes were treated with acylcarnitines (C4:0, C14:0, C16:0) or with palmitate with or without carnitine acyltransferase inhibition by mildronate. Treatment with C4:0, C14:0, and C16:0 acylcarnitines resulted in 20-30% decrease in insulin response at the level of Akt phosphorylation and/or glucose uptake. Mildronate reversed palmitate-induced insulin resistance concomitant with an ∼25% decrease in short-chain acylcarnitine and acetylcarnitine secretion. Although proinflammatory cytokines were not affected under these conditions, oxidative stress was increased by 2-3 times by short- or long-chain acylcarnitines. Acylcarnitine-induced oxidative stress and insulin resistance were reversed by treatment with antioxidants. Results are consistent with the conclusion that incomplete muscle fatty acid β-oxidation causes acylcarnitine accumulation and associated oxidative stress, raising the possibility that these metabolites play a role in muscle insulin resistance. © FASEB.

  9. Recombinant DNA derived monomeric insulin analogue: comparison with soluble human insulin in normal subjects.

    PubMed

    Vora, J P; Owens, D R; Dolben, J; Atiea, J A; Dean, J D; Kang, S; Burch, A; Brange, J

    1988-11-12

    To compare the rate of absorption from subcutaneous tissue and the resulting hypoglycaemic effect of iodine-125 labelled soluble human insulin and a monomeric insulin analogue derived by recombinant DNA technology. Single blind randomised comparison of equimolar doses of 125I labelled soluble human insulin and insulin analogue. Study in normal people at a diabetes research unit and a university department of medical physics. Seven healthy male volunteers aged 20-39 not receiving any other drugs. After an overnight fast and a basal period of one hour two doses (0.05 and 0.1 U/kg) of 125I labelled soluble human insulin and insulin analogue were injected subcutaneously into the anterior abdominal wall on four separate days. To find a fast acting insulin for meal related requirements in insulin dependent diabetics. MEASUREMENTS and main results--Residual radioactivity at the injection site was measured continuously for the first two hours after injection of the 125I labelled preparations and thereafter for five minutes simultaneously with blood sampling. Frequent venous blood samples were obtained over six hours for determination of plasma immunoreactive insulin, insulin analogue, glucose, and glucagon values. Time to 50% of initial radioactivity at the injection site for the insulin analogue compared with soluble insulin was 61 v 135 minutes (p less than 0.05) with 0.05 U/kg and 67 v 145 minutes (p less than 0.001) with 0.1 U/kg. Concentrations in plasma increased faster after the insulin analogue compared with soluble insulin, resulting in higher plasma concentrations between 10 and 150 minutes (0.001 less than p less than 0.05) after 0.05 U/kg and between 40 and 360 minutes (0.001 less than p less than 0.05) after 0.1 U/kg. The hypoglycaemic response to insulin analogue was a plasma glucose nadir at 60 minutes with both doses compared with 90 and 120 minutes with soluble insulin at 0.5 and 0.1 U/kg respectively. The response of glucagon substantiated the earlier and

  10. Recombinant DNA derived monomeric insulin analogue: comparison with soluble human insulin in normal subjects.

    PubMed Central

    Vora, J. P.; Owens, D. R.; Dolben, J.; Atiea, J. A.; Dean, J. D.; Kang, S.; Burch, A.; Brange, J.

    1988-01-01

    OBJECTIVE--To compare the rate of absorption from subcutaneous tissue and the resulting hypoglycaemic effect of iodine-125 labelled soluble human insulin and a monomeric insulin analogue derived by recombinant DNA technology. DESIGN--Single blind randomised comparison of equimolar doses of 125I labelled soluble human insulin and insulin analogue. SETTING--Study in normal people at a diabetes research unit and a university department of medical physics. SUBJECTS--Seven healthy male volunteers aged 20-39 not receiving any other drugs. INTERVENTIONS--After an overnight fast and a basal period of one hour two doses (0.05 and 0.1 U/kg) of 125I labelled soluble human insulin and insulin analogue were injected subcutaneously into the anterior abdominal wall on four separate days. END POINT--To find a fast acting insulin for meal related requirements in insulin dependent diabetics. MEASUREMENTS and main results--Residual radioactivity at the injection site was measured continuously for the first two hours after injection of the 125I labelled preparations and thereafter for five minutes simultaneously with blood sampling. Frequent venous blood samples were obtained over six hours for determination of plasma immunoreactive insulin, insulin analogue, glucose, and glucagon values. Time to 50% of initial radioactivity at the injection site for the insulin analogue compared with soluble insulin was 61 v 135 minutes (p less than 0.05) with 0.05 U/kg and 67 v 145 minutes (p less than 0.001) with 0.1 U/kg. Concentrations in plasma increased faster after the insulin analogue compared with soluble insulin, resulting in higher plasma concentrations between 10 and 150 minutes (0.001 less than p less than 0.05) after 0.05 U/kg and between 40 and 360 minutes (0.001 less than p less than 0.05) after 0.1 U/kg. The hypoglycaemic response to insulin analogue was a plasma glucose nadir at 60 minutes with both doses compared with 90 and 120 minutes with soluble insulin at 0.5 and 0.1 U

  11. Innate immunity, insulin resistance and type 2 diabetes.

    PubMed

    Fernández-Real, José Manuel; Pickup, John C

    2008-01-01

    Recent evidence has disclosed previously unrecognized links among insulin resistance, obesity, circulating immune markers, immunogenetic susceptibility, macrophage function and chronic infection. Genetic variations leading to altered production or function of circulating innate immune proteins, cellular pattern-recognition receptors and inflammatory cytokines have been linked with insulin resistance, type 2 diabetes, obesity and atherosclerosis. Cellular innate immune associations with obesity and insulin resistance include increased white blood cell count and adipose tissue macrophage numbers. The innate immune response is modulated possibly by both predisposition (genetic or fetal programming), perhaps owing to evolutionary pressures caused by acute infections at the population level (pandemics), and chronic low exposure to environmental products or infectious agents. The common characteristics shared among innate immunity activation, obesity and insulin resistance are summarized.

  12. High-fat diet induced insulin resistance in pregnant rats through pancreatic pax6 signaling pathway.

    PubMed

    Wu, Hao; Liu, Yunyun; Wang, Hongkun; Xu, Xianming

    2015-01-01

    To explore the changes in pancreas islet function of pregnant rats after consumption of high-fat diet and the underlying mechanism. Thirty pregnant Wistar rats were randomly divided into two groups: high-fat diet group and normal control group. Twenty days after gestation, fasting blood glucose concentration (FBG) and fasting serum insulin concentration (FINS) were measured. Then, oral glucose tolerance test (OGTT) and insulin release test (IRT) were performed. Finally, all the rats were sacrificed and pancreas were harvested. Insulin sensitivity index (ISI) and insulin resistance index (HOMA-IR) were calculated according to FBG and FINS. RT-PCR and Real-time PCR were performed to study the expression of paired box 6 transcription factor (Pax6) and its target genes in pancreatic tissues. The body weight was significantly increased in the high-fat diet group compared with that of normal control rats (P<0.05). The fasting plasma glucose of rats in high-fat diet group was significantly increased compared with that of normal control rats (6.62 mmol/L vs. 4.96 mmol/L, P<0.05), however there was no significant difference in fasting serum insulin concentration between the two groups. OGTT and IRT were abnormal in the high-fat diet group. The high-fat diet rats were more prone to impaired glucose tolerance and insulin resistance. The level of the expression of Pax6 transcription factor and its target genes in pancreas, such as pancreatic and duodenal homeobox factor-1 (Pdx1), v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) and glucose transporter 2 (Glut2) were decreased significantly compared with those of normal control group. High-fat diet feeding during pregnancy may induce insulin resistance in maternal rats by inhibiting pancreatic Pax6 and its target genes expression.

  13. High-fat diet induced insulin resistance in pregnant rats through pancreatic pax6 signaling pathway

    PubMed Central

    Wu, Hao; Liu, Yunyun; Wang, Hongkun; Xu, Xianming

    2015-01-01

    Objective: To explore the changes in pancreas islet function of pregnant rats after consumption of high-fat diet and the underlying mechanism. Methods: Thirty pregnant Wistar rats were randomly divided into two groups: high-fat diet group and normal control group. Twenty days after gestation, fasting blood glucose concentration (FBG) and fasting serum insulin concentration (FINS) were measured. Then, oral glucose tolerance test (OGTT) and insulin release test (IRT) were performed. Finally, all the rats were sacrificed and pancreas were harvested. Insulin sensitivity index (ISI) and insulin resistance index (HOMA-IR) were calculated according to FBG and FINS. RT-PCR and Real-time PCR were performed to study the expression of paired box 6 transcription factor (Pax6) and its target genes in pancreatic tissues. Results: The body weight was significantly increased in the high-fat diet group compared with that of normal control rats (P<0.05). The fasting plasma glucose of rats in high-fat diet group was significantly increased compared with that of normal control rats (6.62 mmol/L vs. 4.96 mmol/L, P<0.05), however there was no significant difference in fasting serum insulin concentration between the two groups. OGTT and IRT were abnormal in the high-fat diet group. The high-fat diet rats were more prone to impaired glucose tolerance and insulin resistance. The level of the expression of Pax6 transcription factor and its target genes in pancreas, such as pancreatic and duodenal homeobox factor-1 (Pdx1), v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) and glucose transporter 2 (Glut2) were decreased significantly compared with those of normal control group. Conclusion: High-fat diet feeding during pregnancy may induce insulin resistance in maternal rats by inhibiting pancreatic Pax6 and its target genes expression. PMID:26191217

  14. Inhibition of Insulin Degrading Enzyme and Insulin Degradation by UV-Killed Lactobacillus acidophilus.

    PubMed

    Neyazi, Nadia; Motevaseli, Elahe; Khorramizadeh, Mohammad Reza; Mohammadi Farsani, Taiebeh; Nouri, Zahra; Nasli Esfahani, Ensieh; Ghahremani, Mohammad Hossein

    2018-05-11

    Probiotics have beneficial effects on management of type 2 diabetes (T2D). The major hallmarks of T2D are insulin deficiency and insulin resistance which emphasize insulin therapy in onset of disease. Lactobacilli such as Lactobacillus acidophilus ( L. acidophilus ) have well known properties on prevention of T2D and insulin resistance but not on insulin degradation. Insulin-degrading enzyme (IDE) degrades insulin in the human body. We studied the effects of cell-free supernatant (CFS) and ultraviolet (UV)-killed L. acidophilus (ATCC 314) on IDE activity and insulin degradation in vitro. Cell growth inhibition by CFS and UV-killed L. acidophilus (ATCC 314) was studied and Western blotting and a fluoregenic assay was performed to determine IDE expression and its activity, respectively. Insulin degradation was evaluated by sandwich enzyme-linked immunosorbent assay(ELISA). IDE expression and activity was reduced by CFS and UV-killed L. acidophilus (ATCC 314). Although, decreased enzyme expression and activity was not significant for CFS in contrast to MRL (MRS with same pH as CFS). Also, reduction in IDE activity was not statistically considerable when compared to IDE expression. Insulin degradation was increased by CFS but decreased by UV-killed L. acidophilus (ATCC 314).

  15. Calcium phosphate-PEG-insulin-casein (CAPIC) particles as oral delivery systems for insulin.

    PubMed

    Morçöl, T; Nagappan, P; Nerenbaum, L; Mitchell, A; Bell, S J D

    2004-06-11

    An oral delivery system for insulin was developed and functional activity was tested in a non-obese diabetic (NOD) mice model. Calcium phosphate particles containing insulin was synthesized in the presence of PEG-3350 and modified by aggregating the particles with caseins to obtain the calcium phosphate-PEG-insulin-casein (CAPIC) oral insulin delivery system. Single doses of CAPIC formulation were tested in NOD mice under fasting or fed conditions to evaluate the glycemic activity. The blood glucose levels were monitored every 1-2h for 12h following the treatments using an ACCU CHECK blood glucose monitoring system. Orally administered and subcutaneously injected free insulin solution served as controls in the study. Based on the results obtained we propose that: (1). the biological activity of insulin is preserved in CAPIC formulation; (2). insulin in CAPIC formulations, but not the free insulin, displays a prolonged hypoglycemic effect after oral administration to diabetic mice; (3). CAPIC formulation protects insulin from degradation while passing through the acidic environment of the GI track until it is released in the less acidic environment of the intestines where it can be absorbed in its biologically active form; (4). CAPIC formulation represents a new and unique oral delivery system for insulin and other macromolecules.

  16. Numerically abnormal chromosome constitutions in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  17. Plasma IGF-I, INSL3, testosterone, inhibin concentrations and scrotal circumferences surrounding puberty in Japanese Black beef bulls with normal and abnormal semen.

    PubMed

    Weerakoon, W W P N; Sakase, M; Kawate, N; Hannan, M A; Kohama, N; Tamada, H

    2018-07-01

    The relationships between semen abnormalities and peripheral concentrations of testicular and metabolic hormones in beef bulls are unclear. Here we compared plasma insulin-like growth factor I (IGF-I), insulin-like peptide 3 (INSL3), testosterone, inhibin concentrations, and scrotal circumferences surrounding puberty in Japanese Black beef bulls (n = 66) with normal or abnormal semen. We collected blood samples and measured scrotal circumferences monthly from 4 to 24 months of age. Semen was collected weekly from 12 months until at least 18 months of age. Fresh semen was evaluated for semen volume, sperm motility, concentrations, and morphological defects. The normal fresh semen was frozen by a standard method and examined for post-thaw sperm motility and fertility. Bulls were classified as having either normal post-thaw semen (n = 45) or abnormal semen (n = 21, when at least one of the above test items was abnormal for 6 months). Abnormal semen was classified into abnormal fresh or low-fertility post-thaw which evaluated for rates of transferable embryos. The abnormal fresh was categorized as having sperm morphological defects, low motility, and morphological defects plus low motility. Scrotal circumferences were smaller for the abnormal-semen group vs. the normal-semen group at 20 and 24 months (p < 0.05). Plasma IGF-I, INSL3, and inhibin concentrations in the abnormal-semen group were lower than those of the normal-semen group (p < 0.05) surrounding puberty (4-6, 8, 18-22, and 24 months for IGF-I; 6, 9, 11-14, 17, and 20-21 months for INSL3; 5, 8-13, 16, 17, 19, and 20 months for inhibin). The plasma testosterone concentrations were lower in the abnormal-semen bulls vs. normal-semen bulls only at 22 months (p < 0.05). Analyses of the classified abnormal semen showed lower plasma INSL3 concentrations for morphological defects plus low motility in fresh semen (p < 0.05) and lower IGF-I and inhibin concentrations for low-fertility post

  18. [Variation of insulin receptor substrate-2 gene 3'-untranslated region in patients with type 2 diabetes mellitus].

    PubMed

    Zeng, Wei-Min; Chen, Shu-Hua; Xie, Ping; Liu, Mei-Lian; Song, Hui-Ping

    2003-08-01

    Insulin receptor substrate-2(IRS-2) belongs to a family of cytoplasmic adaptor proteins, which link insulin, insulin-like growth factor-1(IGF-1), and cytokine receptor tyrosine kinases to signaling pathways regulating metabolism, growth, differentiation, reproduction, and homestasis. Deficiency of IRS-2 in mice causes type 2 diabetes mellitus (T2DM), suggesting that abnormal structure and dysfunction of the IRS-2 gene may contribute to the pathogenesis of T2DM. Variations in the open reading frame (ORF) and promoter region of IRS-2 gene in patients with T2DM have been reported over the past few years. These genetic variations are from ethnically different patients, confounding any analysis of the contribution of IRS-2 gene variations to the development of T2DM. The 3'-untranslated region(3'-UTR) of IRS-2 gene variation may be contribute to the T2DM. So far, the relationship between 3'-UTR of IRS-2 gene variations and T2DM have not been investigated. Based on the 3'-UTR of eukaryotic gene plays an important role in the eukaryotic gene regulation, we investigated abnormalities of IRS-2 gene 3'-UTR and their relation with T2DM in the Chinese population. Genomic DNA was extracted from leukocyte of 128 patients with T2DM and 125 control subjects in Hunan, China. A segment of IRS-2 gene 3'-UTR was scanned by polymerase chain reaction (PCR)-denaturing high-performance liquid chromatography (DHPLC). All PCR products with abnormal DHPLC pattern were submitted to DNA sequence analysis. A T-->C mutation at 4064 bp of IRS-2 gene 3'-UTR was found in 18 patients with T2DM, while it was only found in 5 control subjects. The incidence of the mutation in patients with T2DM were much higher than that in contol subjects (14.1% vs 4.0%, x2 = 7.748, P = 0.005). These results indicate that the T4064-->C in IRS-2 gene 3'-UTR may be related to Chinese patients with T2DM.

  19. A novel validated model for the prediction of insulin therapy initiation and adverse perinatal outcomes in women with gestational diabetes mellitus.

    PubMed

    Barnes, Robyn A; Wong, Tang; Ross, Glynis P; Jalaludin, Bin B; Wong, Vincent W; Smart, Carmel E; Collins, Clare E; MacDonald-Wicks, Lesley; Flack, Jeff R

    2016-11-01

    Identifying women with gestational diabetes mellitus who are more likely to require insulin therapy vs medical nutrition therapy (MNT) alone would allow risk stratification and early triage to be incorporated into risk-based models of care. The aim of this study was to develop and validate a model to predict therapy type (MNT or MNT plus insulin [MNT+I]) for women with gestational diabetes mellitus (GDM). Analysis was performed of de-identified prospectively collected data (1992-2015) from women diagnosed with GDM by criteria in place since 1991 and formally adopted and promulgated as part of the more detailed 1998 Australasian Diabetes in Pregnancy Society management guidelines. Clinically relevant variables predictive of insulin therapy by univariate analysis were dichotomised and included in a multivariable regression model. The model was tested in a separate clinic population. In 3317 women, seven dichotomised significant independent predictors of insulin therapy were maternal age >30 years, family history of diabetes, pre-pregnancy obesity (BMI ≥30 kg/m(2)), prior GDM, early diagnosis of GDM (<24 weeks gestation), fasting venous blood glucose level (≥5.3 mmol/l) and HbA1c at GDM diagnosis ≥5.5% (≥37 mmol/mol). The requirement for MNT+I could be estimated according to the number of predictors present: 85.7-93.1% of women with 6-7 predictors required MNT+I compared with 9.3-14.7% of women with 0-1 predictors. This model predicted the likelihood of several adverse outcomes, including Caesarean delivery, early delivery, large for gestational age and an abnormal postpartum OGTT. The model was validated in a separate clinic population. This validated model has been shown to predict therapy type and the likelihood of several adverse perinatal outcomes in women with GDM.

  20. Safety and effectiveness of biphasic insulin aspart 30 in people with type 2 diabetes switching from basal-bolus insulin regimens in the A1chieve study.

    PubMed

    Dieuzeide, Guillermo; Chuang, Lee-Ming; Almaghamsi, Abdulrahman; Zilov, Alexey; Chen, Jian-Wen; Lavalle-González, Fernando J

    2014-07-01

    Biphasic insulin aspart 30 allows fewer daily injections versus basal-bolus insulin regimens, which may improve adherence and treatment outcome. This sub-analysis of the observational A1chieve study assessed clinical safety and effectiveness of biphasic insulin aspart 30 in people with type 2 diabetes previously receiving basal-bolus insulin regimens. A1chieve was an international, open-label, 24-week study in people with type 2 diabetes starting/switching to biphasic insulin aspart 30, insulin detemir or insulin aspart. This sub-analysis assessed patients switching from insulin glargine- or neutral protamine Hagedorn insulin-based basal-bolus insulin regimens to biphasic insulin aspart 30. 1024 patients were included. At 24 weeks, glycated haemoglobin and fasting plasma glucose were significantly reduced from baseline in both cohorts (all p<0.001). The proportion reporting any hypoglycaemia, major hypoglycaemia or nocturnal hypoglycaemia was significantly reduced after 24 weeks (all p<0.05). No serious adverse drug reactions were reported. Both cohorts had significantly improved health-related quality of life (HRQoL; p<0.001). 24 weeks after switching from basal-bolus insulin regimens to biphasic insulin aspart 30, glycaemic control and HRQoL were significantly improved, and hypoglycaemia was significantly reduced. This suggests that people with type 2 diabetes inadequately controlled on basal-bolus insulin regimens can consider biphasic insulin aspart 30. Copyright © 2013 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  1. Identification of residues in the insulin molecule important for binding to insulin-degrading enzyme.

    PubMed

    Affholter, J A; Cascieri, M A; Bayne, M L; Brange, J; Casaretto, M; Roth, R A

    1990-08-21

    Insulin-degrading enzyme (IDE) hydrolyzes insulin at a limited number of sites. Although the positions of these cleavages are known, the residues of insulin important in its binding to IDE have not been defined. To this end, we have studied the binding of a variety of insulin analogues to the protease in a solid-phase binding assay using immunoimmobilized IDE. Since IDE binds insulin with 600-fold greater affinity than it does insulin-like growth factor I (25 nM and approximately 16,000 nM, respectively), the first set of analogues studied were hybrid molecules of insulin and IGF I. IGF I mutants [insB1-17,17-70]IGF I, [Tyr55,Gln56]IGF I, and [Phe23,Phe24,Tyr25]IGF I have been synthesized and share the property of having insulin-like amino acids at positions corresponding to primary sites of cleavage of insulin by IDE. Whereas the first two exhibit affinities for IDE similar to that of wild type IGF I, the [Phe23,Phe24,Tyr25]IGF I analogue has a 32-fold greater affinity for the immobilized enzyme. Replacement of Phe-23 by Ser eliminates this increase. Removal of the eight amino acid D-chain region of IGF I (which has been predicted to interfere with binding to the 23-25 region) results in a 25-fold increase in affinity for IDE, confirming the importance of residues 23-25 in the high-affinity recognition of IDE. A similar role for the corresponding (B24-26) residues of insulin is supported by the use of site-directed mutant and semisynthetic insulin analogues. Insulin mutants [B25-Asp]insulin and [B25-His]insulin display 16- and 20-fold decreases in IDE affinity versus wild-type insulin.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Does endothelial dysfunction correlate with endocrinal abnormalities in patients with polycystic ovary syndrome?

    PubMed Central

    Dube, Rajani

    2016-01-01

    To study and critically analyze the published evidence on correlation of hormonal abnormalities and endothelial dysfunction (ED) in polycystic ovary syndrome (PCOS) through a systematic review. The databases including MEDLINE, PubMed, Up-To-Date, and Science Direct were searched using Medical subject handling terms and free text term keywords such as endocrine abnormalities in PCOS, ED assessment in PCOS, ED in combination with insulin resistance (IR), hyperandrogenism (HA), increased free testosterone, free androgen index (FAI), gonadotrophin levels, luteinizing hormone (LH), prolactin, estrogen, adipocytokines to search trials, and observational studies published from January 1987 to September 2015. Authors of original studies were contacted for additional data when necessary. PCOS increases the risk of cardiovascular disease in women. ED, which is a reliable indicator of cardiovascular risk in general population, is seen in most (but not all) women with PCOS. IR, seen in 70% patients with PCOS, is associated with ED in these women, but patients can have normal endothelial function even in the presence of IR. Free testosterone and FAI are consistently associated with ED, but endothelial function can be normal despite HA. Estradiol (not estrone) appears to be protective against ED though estrone is the predominant estrogen produced in PCOS. Increased levels of adipocytokines (visfatin) are promising in predicting ED and cardiovascular risk. However, more studies are required focusing on direct correlation of levels of prolactin, LH, estrone, and visfatin with ED in PCOS. PMID:27843797

  3. Associations Between Insulin Resistance, Free Fatty Acids, and Oocyte Quality in Polycystic Ovary Syndrome During In Vitro Fertilization

    PubMed Central

    Niu, Zhihong; Lin, Nan; Gu, Ruihuan; Sun, Yijuan

    2014-01-01

    Context: Both polycystic ovary syndrome (PCOS) and obesity are associated with specific reproductive health complications, including lower oocyte quality and clinical pregnancy rates in assisted conception cycles, which may be a result of metabolism-induced changes in the oocyte through the microenvironment of follicular fluid. Free fatty acids (FFAs) are important biomedical indicators of abnormal lipid metabolism and have pronounced effects on cells, leading to changes in metabolism, cell growth, and differentiation Objective: Our objective was to determine the effect of FFA metabolism in plasma and follicular fluid on oocyte quality in the women with PCOS undergoing in vitro fertilization. Design and Setting: Ninety-three women undergoing in vitro fertilization treatment, including 55 with PCOS and 38 age-matched controls, were recruited. PCOS patients were divided into obese and nonobese subgroups on the basis of their body mass index. Main Outcome Measures: Embryo quality was morphologically assessed, and serum sex hormone and insulin levels were measured. FFAs in plasma and follicular fluid were measured using gas chromatography-mass spectrometry. Results: PCOS was found to be associated with significantly higher LH/FSH, total T, free androgen index (FAI), and lower SHBG levels, independent of obesity(P < .05). Obese women with PCOS had a significantly higher total T level, FAI, fasting insulin, insulin resistance index as determined by homeostasis model assessment for insulin resistance, and lower SHBG levels than the nonobese women with PCOS (P < .05). The embryo fragmentation score was significantly positively correlated with the oleic acid concentration in all PCOS patients (r = 0.22, P = .04, for nonobese patients and r = 0.25, P = .03, for obese patients). Conclusions: Our findings clearly demonstrated that PCOS is associated with significantly higher FAI and insulin resistance levels and decreased plasma SHBG levels, independent of body mass index

  4. Insulin deprivation induces PP2A inhibition and tau hyperphosphorylation in hTau mice, a model of Alzheimer’s disease-like tau pathology

    PubMed Central

    Gratuze, Maud; Julien, Jacinthe; Petry, Franck R.; Morin, Françoise; Planel, Emmanuel

    2017-01-01

    Abnormally hyperphosphorylated tau aggregated as intraneuronal neurofibrillary tangles is one of the two neuropathological hallmarks of Alzheimer’s disease (AD). The majority of AD cases are sporadic with numerous environmental, biological and genetic risks factors. Interestingly, insulin dysfunction and hyperglycaemia are both risk factors for sporadic AD. However, how hyperglycaemia and insulin dysfunction affect tau pathology, is not well understood. In this study, we examined the effects of insulin deficiency on tau pathology in transgenic hTau mice by injecting different doses of streptozotocin (STZ), a toxin that destroys insulin-producing cells in the pancreas. One high dose of STZ resulted in marked diabetes, and five low doses led to a milder diabetes. Both groups exhibited brain tau hyperphosphorylation but no increased aggregation. Tau hyperphosphorylation correlated with inhibition of Protein Phosphatase 2A (PP2A), the main tau phosphatase. Interestingly, insulin injection 30 minutes before sacrifice partially restored tau phosphorylation to control levels in both STZ-injected groups. Our results confirm a link between insulin homeostasis and tau phosphorylation, which could explain, at least in part, a higher incidence of AD in diabetic patients. PMID:28402338

  5. Evaluation of efficiency of insulin suppository formulations containing sodium salicylate or sodium cholate in insulin dependent diabetic patients.

    PubMed

    Hosny, Ehab A; Al-Marzouki, Zohair M H; Metwally, Mohammed E S; Souaida, Mamdouh Y S; Alshaik, Abdel Rhman A M

    2003-10-01

    Two formulations of insulin suppositories were prepared to contain different amounts of sodium salicylate and sodium cholate as absorption promoters and also of insulin with the purpose of obtaining the most effective formulation in reducing plasma glucose levels after rectal administration to diabetic patients. The results show that insulin suppositories containing 100 mg sodium salicylate and 100 or 200 U of crystalline insulin showed no significant difference in AUC, Cmax and Tmax and both formulations showed significant reduction in plasma glucose level compared to initial values within 1.5-2 h. The results from experiments carried out in health volunteers showed that 100 mg sodium salicylate is the optimum amount to be included in insulin suppositories producing significantly higher Cmax and AUC compared to those produced after rectal administration of insulin suppositories containing 50 or 200 mg sodium salicylate. The results also show that using sodium cholate in 50 mg amount did not produce any significant reduction in plasma glucose levels of insulin dependent diabetic patients given suppositories containing 100 U of insulin, but this amount in suppositories containing 200 U of insulin was able to produce significant (p < 0.05) reduction in plasma glucose level within 1 h which lasted till end of experiment producing Cmax of 29.7 +/- 6.61% at Tmax of 1.5 +/- 0.61 h. On increasing the amount of sodium cholate to 100 mg in the suppositories, a marked (p < 0.01) reduction in plasma glucose level took place and the Cmax increased to 47.7 +/- 12.24% at Tmax of 1.5 +/- 0.63 h. This resulted in AUC of 86.7 +/- 22.4 mg%h which was non significantly higher from that produced after administration of suppositories containing 50 mg sodium cholate and 200 U insulin (62.5 +/- 17.6 mg%h). The results also show that insulin suppositories containing 100 mg sodium cholate and 200 U insulin resulted in a non significant differences in Cmax and AUC from those produced by S

  6. Metformin and insulin receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigneri, R.; Gullo, D.; Pezzino, V.

    The authors evaluated the effect of metformin (N,N-dimethylbiguanide), a biguanide known to be less toxic than phenformin, on insulin binding to its receptors, both in vitro and in vivo. Specific /sup 125/I-insulin binding to cultured IM-9 human lymphocytes and MCF-7 human breast cancer cells was determined after preincubation with metformin. Specific /sup 125/I-insulin binding to circulating monocytes was also evaluated in six controls, eight obese subjects, and six obese type II diabetic patients before and after a short-term treatment with metformin. Plasma insulin levels and blood glucose were also measured on both occasions. Metformin significantly increased insulin binding in vitromore » to both IM-9 lymphocytes and MCF-7 cells; the maximum increment was 47.1% and 38.0%, respectively. Metformin treatment significantly increased insulin binding in vivo to monocytes of obese subjects and diabetic patients. Scatchard analysis indicated that the increased binding was mainly due to an increase in receptor capacity. Insulin binding to monocytes of normal controls was unchanged after metformin as were insulin levels in all groups; blood glucose was significantly reduced after metformin only in diabetic patients. These data indicate that metformin increases insulin binding to its receptors in vitro and in vivo. The effect in vivo is observed in obese subjects and in obese type II diabetic patients, paralleling the clinical effectiveness of this antidiabetic agent, and is not due to receptor regulation by circulating insulin, since no variation in insulin levels was recorded.« less

  7. Cognitively impaired elderly exhibit insulin resistance and no memory improvement with infused insulin.

    PubMed

    Morris, Jill K; Vidoni, Eric D; Mahnken, Jonathan D; Montgomery, Robert N; Johnson, David K; Thyfault, John P; Burns, Jeffrey M

    2016-03-01

    Insulin resistance is a risk factor for Alzheimer's disease (AD), although its role in AD etiology is unclear. We assessed insulin resistance using fasting and insulin-stimulated measures in 51 elderly subjects with no dementia (ND; n = 37) and with cognitive impairment (CI; n = 14). CI subjects exhibited either mild CI or AD. Fasting insulin resistance was measured using the homeostatic model assessment of insulin resistance (HOMA-IR). Insulin-stimulated glucose disposal was assessed using the hyperinsulinemic-euglycemic clamp to calculate glucose disposal rate into lean mass, the primary site of insulin-stimulated glucose disposal. Because insulin crosses the blood-brain barrier, we also assessed whether insulin infusion would improve verbal episodic memory compared to baseline. Different but equivalent versions of cognitive tests were administered in counterbalanced order in the basal and insulin-stimulated state. Groups did not differ in age or body mass index. Cognitively impaired subjects exhibited greater insulin resistance as measured at fasting (HOMA-IR; ND: 1.09 [1.1] vs. CI: 2.01 [2.3], p = 0.028) and during the hyperinsulinemic clamp (glucose disposal rate into lean mass; ND: 9.9 (4.5) vs. AD 7.2 (3.2), p = 0.040). Cognitively impaired subjects also exhibited higher fasting insulin compared to ND subjects, (CI: 8.7 [7.8] vs. ND: 4.2 [3.8] μU/mL; p = 0.023) and higher fasting amylin (CI: 24.1 [39.1] vs. 8.37 [14.2]; p = 0.050) with no difference in fasting glucose. Insulin infusion elicited a detrimental effect on one test of verbal episodic memory (Free and Cued Selective Reminding Test) in both groups (p < 0.0001) and no change in performance on an additional task (delayed logical memory). In this study, although insulin resistance was observed in cognitively impaired subjects compared to ND controls, insulin infusion did not improve memory. Furthermore, a significant correlation between HOMA-IR and glucose disposal rate was present only in ND

  8. Klinefelter syndrome, insulin resistance, metabolic syndrome, and diabetes: review of literature and clinical perspectives.

    PubMed

    Salzano, Andrea; D'Assante, Roberta; Heaney, Liam M; Monaco, Federica; Rengo, Giuseppe; Valente, Pietro; Pasquali, Daniela; Bossone, Eduardo; Gianfrilli, Daniele; Lenzi, Andrea; Cittadini, Antonio; Marra, Alberto M; Napoli, Raffaele

    2018-03-23

    Klinefelter syndrome (KS), the most frequent chromosomic abnormality in males, is associated with hypergonadotropic hypogonadism and an increased risk of cardiovascular diseases (CVD). The mechanisms involved in increasing risk of cardiovascular morbidity and mortality are not completely understood. This review summarises the current understandings of the complex relationship between KS, metabolic syndrome and cardiovascular risk in order to plan future studies and improve current strategies to reduce mortality in this high-risk population. We searched PubMed, Web of Science, and Scopus for manuscripts published prior to November 2017 using key words "Klinefelter syndrome" AND "insulin resistance" OR "metabolic syndrome" OR "diabetes mellitus" OR "cardiovascular disease" OR "testosterone". Manuscripts were collated, studied and carried forward for discussion where appropriate. Insulin resistance, metabolic syndrome, and type 2 diabetes are more frequently diagnosed in KS than in the general population; however, the contribution of hypogonadism to metabolic derangement is highly controversial. Whether this dangerous combination of risk factors fully explains the CVD burden of KS patients remains unclear. In addition, testosterone replacement therapy only exerts a marginal action on the CVD system. Since fat accumulation and distribution seem to play a relevant role in triggering metabolic abnormalities, an early diagnosis and a tailored intervention strategy with drugs aimed at targeting excessive visceral fat deposition appear necessary in patients with KS.

  9. Deficiency of PDK1 in liver results in glucose intolerance, impairment of insulin-regulated gene expression and liver failure

    PubMed Central

    2004-01-01

    The liver plays an important role in insulin-regulated glucose homoeostasis. To study the function of the PDK1 (3-phosphoinositide-dependent protein kinase-1) signalling pathway in mediating insulin's actions in the liver, we employed CRE recombinase/loxP technology to generate L(liver)-PDK1−/− mice, which lack expression of PDK1 in hepatocytes and in which insulin failed to induce activation of PKB in liver. The L-PDK1−/− mice were not insulin-intolerant, possessed normal levels of blood glucose and insulin under normal feeding conditions, but were markedly glucose-intolerant when injected with glucose. The L-PDK1−/− mice also possessed 10-fold lower levels of hepatic glycogen compared with control littermates, and were unable to normalize their blood glucose levels within 2 h after injection of insulin. The glucose intolerance of the L-PDK1−/− mice may be due to an inability of glucose to suppress hepatic glucose output through the gluconeogenic pathway, since the mRNA encoding hepatic PEPCK (phosphoenolpyruvate carboxykinase), G6Pase (glucose-6-phosphatase) and SREBP1 (sterol-regulatory-element-binding protein 1), which regulate gluconeogenesis, are no longer controlled by feeding. Furthermore, three other insulin-controlled genes, namely IGFBP1 (insulin-like-growth-factor-binding protein-1), IRS2 (insulin receptor substrate 2) and glucokinase, were regulated abnormally by feeding in the liver of PDK1-deficient mice. Finally, the L-PDK1−/− mice died between 4–16 weeks of age due to liver failure. These results establish that the PDK1 signalling pathway plays an important role in regulating glucose homoeostasis and controlling expression of insulin-regulated genes. They suggest that a deficiency of the PDK1 pathway in the liver could contribute to development of diabetes, as well as to liver failure. PMID:15554902

  10. Losartan increases muscle insulin delivery and rescues insulin's metabolic action during lipid infusion via microvascular recruitment

    PubMed Central

    Wang, Nasui; Chai, Weidong; Zhao, Lina; Tao, Lijian; Cao, Wenhong

    2013-01-01

    Insulin delivery and transendothelial insulin transport are two discrete steps that limit muscle insulin action. Angiotensin II type 1 receptor (AT1R) blockade recruits microvasculature and increases glucose use in muscle. Increased muscle microvascular perfusion is associated with increased muscle delivery and action of insulin. To examine the effect of acute AT1R blockade on muscle insulin uptake and action, rats were studied after an overnight fast to examine the effects of losartan on muscle insulin uptake (protocol 1), microvascular perfusion (protocol 2), and insulin's microvascular and metabolic actions in the state of insulin resistance (protocol 3). Endothelial cell insulin uptake was assessed, using 125I-insulin as tracer. Systemic lipid infusion was used to induce insulin resistance. Losartan significantly increased muscle insulin uptake (∼60%, P < 0.03), which was associated with a two- to threefold increase in muscle microvascular blood volume (MBV; P = 0.002) and flow (MBF; P = 0.002). Losartan ± angiotensin II had no effect on insulin internalization in cultured endothelial cells. Lipid infusion abolished insulin-mediated increases in muscle MBV and MBF and lowered insulin-stimulated whole body glucose disposal (P = 0.0001), which were reversed by losartan administration. Inhibition of nitric oxide synthase abolished losartan-induced muscle insulin uptake and reversal of lipid-induced metabolic insulin resistance. We conclude that AT1R blockade increases muscle insulin uptake mainly via microvascular recruitment and rescues insulin's metabolic action in the insulin-resistant state. This may contribute to the clinical findings of decreased cardiovascular events and new onset of diabetes in patients receiving AT1R blockers. PMID:23299501

  11. Thermic effect of infused glucose and insulin in man. Decreased response with increased insulin resistance in obesity and noninsulin-dependent diabetes mellitus.

    PubMed

    Ravussin, E; Bogardus, C; Schwartz, R S; Robbins, D C; Wolfe, R R; Horton, E S; Danforth, E; Sims, E A

    1983-09-01

    The thermic effect of infused glucose and insulin was measured by combining the hyperinsulinemic euglycemic clamp technique with indirect calorimetry, in 10 normal weight volunteers (group I), 7 obese subjects with normal glucose tolerance (group II), and 13 obese subjects with abnormal glucose tolerance or noninsulin-dependent diabetes mellitus before (group IIIa) and after weight loss of 10.8 +/- 0.4 kg (group IIIb). During hyperinsulinemia (760-1,100 pmol/liter), total glucose disposal from combined endogenous production and glucose infusion was 545 +/- 49, 441 +/- 70, 233 +/- 35, 231 +/- 31 mg/min and energy expenditure changed by + 0.476 +/- 0.080, +0.293 +/- 0.095, -0.114 +/- 0.063, and +0.135 +/- 0.082 kJ/min in group I, II, IIIa, and IIIb, respectively. The increased energy expenditure correlated with glucose storage (measured cost of processing the glucose: 1.33 kJ/g). In group IIIa there was no increase in energy expenditure in response to glucose and insulin infusions. After therapy (group IIIb) there was a significant recovery (P less than 0.05) of the thermic effect of infused glucose although total glucose disposal was unchanged. It is proposed that the recovered thermic effect of infused insulin/glucose is due to the different contributions of gluconeogenesis in the fasting state and during the glucose clamp before and after weight loss. In addition we hypothesize that some of the lower thermic effect of food reported in obese noninsulin-dependent diabetics may be explained by decreased energy expenditure due to a greater suppression of hepatic gluconeogenesis as well as by lower storage rate.

  12. Tea enhances insulin activity.

    PubMed

    Anderson, Richard A; Polansky, Marilyn M

    2002-11-20

    The most widely known health benefits of tea relate to the polyphenols as the principal active ingredients in protection against oxidative damage and in antibacterial, antiviral, anticarcinogenic, and antimutagenic activities, but polyphenols in tea may also increase insulin activity. The objective of this study was to determine the insulin-enhancing properties of tea and its components. Tea, as normally consumed, was shown to increase insulin activity >15-fold in vitro in an epididymal fat cell assay. Black, green, and oolong teas but not herbal teas, which are not teas in the traditional sense because they do not contain leaves of Camellia senensis, were all shown to increase insulin activity. High-performance liquid chromatography fractionation of tea extracts utilizing a Waters SymmetryPrep C18 column showed that the majority of the insulin-potentiating activity for green and oolong teas was due to epigallocatechin gallate. For black tea, the activity was present in several regions of the chromatogram corresponding to, in addition to epigallocatechin gallate, tannins, theaflavins, and other undefined compounds. Several known compounds found in tea were shown to enhance insulin with the greatest activity due to epigallocatechin gallate followed by epicatechin gallate, tannins, and theaflavins. Caffeine, catechin, and epicatechin displayed insignificant insulin-enhancing activities. Addition of lemon to the tea did not affect the insulin-potentiating activity. Addition of 5 g of 2% milk per cup decreased the insulin-potentiating activity one-third, and addition of 50 g of milk per cup decreased the insulin-potentiating activity approximately 90%. Nondairy creamers and soy milk also decreased the insulin-enhancing activity. These data demonstrate that tea contains in vitro insulin-enhancing activity and the predominant active ingredient is epigallocatechin gallate.

  13. Higher glucose, insulin and insulin resistance (HOMA-IR) in childhood predict adverse cardiovascular risk in early adulthood: the Pune Children's Study.

    PubMed

    Yajnik, Chittaranjan S; Katre, Prachi A; Joshi, Suyog M; Kumaran, Kalyanaraman; Bhat, Dattatray S; Lubree, Himangi G; Memane, Nilam; Kinare, Arun S; Pandit, Anand N; Bhave, Sheila A; Bavdekar, Ashish; Fall, Caroline H D

    2015-07-01

    The Pune Children's Study aimed to test whether glucose and insulin measurements in childhood predict cardiovascular risk factors in young adulthood. We followed up 357 participants (75% follow-up) at 21 years of age who had undergone detailed measurements at 8 years of age (glucose, insulin, HOMA-IR and other indices). Oral glucose tolerance, anthropometry, plasma lipids, BP, carotid intima-media thickness (IMT) and arterial pulse wave velocity (PWV) were measured at 21 years. Higher fasting glucose, insulin and HOMA-IR at 8 years predicted higher glucose, insulin, HOMA-IR, BP, lipids and IMT at 21 years. A 1 SD change in 8 year variables was associated with a 0.10-0.27 SD change at 21 years independently of obesity/adiposity at 8 years of age. A greater rise in glucose-insulin variables between 8 and 21 years was associated with higher cardiovascular risk factors, including PWV. Participants whose HOMA-IR measurement remained in the highest quartile (n = 31) had a more adverse cardiovascular risk profile compared with those whose HOMA-IR measurement remained in the lowest quartile (n = 28). Prepubertal glucose-insulin metabolism is associated with adult cardiovascular risk and markers of atherosclerosis. Our results support interventions to improve glucose-insulin metabolism in childhood to reduce cardiovascular risk in later life.

  14. Subetta increases phosphorylation of insulin receptor β-subunit alone and in the presence of insulin

    PubMed Central

    Gorbunov, E A; Nicoll, J; Kachaeva, E V; Tarasov, S A; Epstein, O I

    2015-01-01

    It has been previously shown that Subetta (a drug containing released-active forms of antibodies to the insulin receptor β-subunit and antibodies to endothelial nitric oxide synthase) stimulated insulin-induced adiponectin production by mature human adipocytes in the absence of insulin. Therefore, it was assumed that Subetta could activate the insulin receptor. To confirm this hypothesis, the capacity of Subetta to activate the insulin receptor in mature human adipocytes in the absence or presence of the insulin was investigated. Cells were incubated either with Subetta or with vehicle, or with basal medium for 3 days. Then, adipocytes were treated with water or insulin (100 nm) for 15 min. Following treatment, lysates were prepared and phosphorylation of insulin receptor β-subunits was analyzed by western blot analysis. It was shown that Subetta significantly increased (P<0.001) the ‘phosphorylated-insulin receptor β-subunit/total insulin receptor β-subunit' ratios in both the presence and the absence of insulin. These results support previously published data and indicate that Subetta could activate the insulin receptor through the effect on its β-subunits, whose conformational state is essential for insulin receptor activation. This action might serve as one of the primary mechanisms of the drug's antidiabetic effect. PMID:26148148

  15. Effect of tadalafil administration on insulin secretion and insulin sensitivity in obese men.

    PubMed

    González-Ortiz, Manuel; Martínez-Abundis, Esperanza; Hernández-Corona, Diana M; Ramírez-Rodríguez, Alejandra M

    2017-10-01

    To evaluate the effect of tadalafil administration on insulin secretion and insulin sensitivity in obese men without diabetes. A randomized, double-blind, placebo-controlled clinical trial was carried out in obese male patients between 30 and 50 years of age. Eighteen subjects were randomly assigned to two groups of nine patients each. During a 28-day period, subjects received 5 mg orally of tadalafil or placebo each night. Patients were evaluated before and after the intervention. Total insulin secretion and first phase of insulin secretion were calculated by insulinogenic index and Stumvoll index, respectively, and insulin sensitivity was calculated using the Matsuda index. Tolerability and compliance were evaluated permanently throughout the study. There were no significant differences after administration of tadalafil in total insulin secretion (0.82 ± 0.45 vs. 0.61 ± 0.27, p = 0.594), first phase of insulin secretion (1332 ± 487 vs. 1602 ± 800, p = 0.779) and insulin sensitivity (4.6 ± 1.2 vs. 4.9 ± 2.5, p = 0.779). No significant differences were shown in other measurements. Tadalafil administration for 28 days did not modify insulin secretion or insulin sensitivity in obese men.

  16. Treatment of severe insulin resistance in pregnancy with 500 units per milliliter of concentrated insulin.

    PubMed

    Mendez-Figueroa, Hector; Maggio, Lindsay; Dahlke, Joshua D; Daley, Julie; Lopes, Vrishali V; Coustan, Donald R; Rouse, Dwight J

    2013-07-01

    To evaluate glycemic control and pregnancy outcomes among pregnant women with severe insulin resistance treated with 500 units/mL concentrated insulin. Retrospective analysis of gravid women with severe insulin resistance (need for greater than 100 units of insulin per injection or greater than 200 units/d) treated with either 500 units/mL concentrated insulin or conventional insulin therapy. We performed a two-part analysis: 1) between gravid women treated with and without 500 units/mL concentrated insulin; and 2) among gravid women treated with 500 units/mL concentrated insulin, comparing glycemic control before and after its initiation. Seventy-three pregnant women with severe insulin resistance were treated with 500 units/mL concentrated insulin and 78 with conventional insulin regimens. Patients treated with 500 units/mL concentrated insulin were older and more likely to have type 2 diabetes mellitus. Average body mass index was comparable between both groups (38.6 compared with 40.4, P=.11) as were obstetric and perinatal outcomes and glycemic control during the last week of gestation. Within the 500 units/mL concentrated insulin cohort, after initiation of this medication, fasting and postprandial blood glucose concentrations improved. However, the rates of blood glucose values less than 60 mg/dL and less than 50 mg/dL were higher in the 500 units/mL concentrated insulin group after initiation than before, 4.8% compared with 2.0% (P<.01) and 2.0% compared with 0.7% (P<.01), respectively. The use of 500 units/mL concentrated insulin in severely obese insulin-resistant pregnant women confers similar glycemic control compared with traditional insulin regimens but may increase the risk of hypoglycemia. II.

  17. The Effect of Spirulina platensis versus Soybean on Insulin Resistance in HIV-Infected Patients: A Randomized Pilot Study

    PubMed Central

    Marcel, Azabji-Kenfack; Ekali, Loni G.; Eugene, Sobngwi; Arnold, Onana E.; Sandrine, Edie D.; von der Weid, Denis; Gbaguidi, Emmanuel; Ngogang, Jeanne; Mbanya, Jean C.

    2011-01-01

    HIV-infected patients develop abnormalities of glucose metabolism due to the virus and antiretroviral drugs. Spirulina and soybean are nutritional supplements that are cheap, accessible in our community and affect glucose metabolism. We carried out a randomized study to assess the effect of Spirulina platensis versus soybean as a food supplement on HIV/HAART-associated insulin resistance (IR) in 33 insulin-resistant HIV-infected patients. The study lasted for two months at the National Obesity Centre of Cameroon. Insulin resistance was measured using the short insulin tolerance test. Physical activity and diet did not change over the study duration. On-treatment analysis was used to analyze data. The Mann-Whitney U test, the Students T test and the Chi square test were used as appropriate. Curve gradients were analyzed using ANCOVA. Seventeen subjects were randomized to spirulina and 16 to soybean. Each received 19 g of supplement daily. The follow up rate was 65% vs. 100% for spirulina and soybean groups, respectively, and both groups were comparable at baseline. After eight weeks, insulin sensitivity (IS) increased by 224.7% vs. 60% in the spirulina and soybean groups respectively (p < 0.001). One hundred per cent vs. 69% of subjects on spirulina versus soybean, respectively, improved their IS (p = 0.049) with a 1.45 (1.05–2.02) chance of improving insulin sensitivity on spirulina. This pilot study suggests that insulin sensitivity in HIV patients improves more when spirulina rather than soybean is used as a nutritional supplement. Trial registration: ClinicalTrials.gov identifier NCT01141777. PMID:22254118

  18. Immunohistochemical expression of insulin, glucagon, and somatostatin in pancreatic islets of horses with and without insulin resistance.

    PubMed

    Newkirk, Kim M; Ehrensing, Gordon; Odoi, Agricola; Boston, Raymond C; Frank, Nicholas

    2018-02-01

    OBJECTIVE To assess insulin, glucagon, and somatostatin expression within pancreatic islets of horses with and without insulin resistance. ANIMALS 10 insulin-resistant horses and 13 insulin-sensitive horses. PROCEDURES For each horse, food was withheld for at least 10 hours before a blood sample was collected for determination of serum insulin concentration. Horses with a serum insulin concentration < 20 μU/mL were assigned to the insulin-sensitive group, whereas horses with a serum insulin concentration > 20 μU/mL underwent a frequently sampled IV glucose tolerance test to determine sensitivity to insulin by minimal model analysis. Horses with a sensitivity to insulin < 1.0 × 10 -4 L•min -1 •mU -1 were assigned to the insulin-resistant group. All horses were euthanized with a barbiturate overdose, and pancreatic specimens were harvested and immunohistochemically stained for determination of insulin, glucagon, and somatostatin expression in pancreatic islets. Islet hormone expression was compared between insulin-resistant and insulin-sensitive horses. RESULTS Cells expressing insulin, glucagon, and somatostatin made up approximately 62%, 12%, and 7%, respectively, of pancreatic islet cells in insulin-resistant horses and 64%, 18%, and 9%, respectively, of pancreatic islet cells in insulin-sensitive horses. Expression of insulin and somatostatin did not differ between insulin-resistant and insulin-sensitive horses, but the median percentage of glucagon-expressing cells in the islets of insulin-resistant horses was significantly less than that in insulin-sensitive horses. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that, in insulin-resistant horses, insulin secretion was not increased but glucagon production might be downregulated as a compensatory response to hyperinsulinemia.

  19. Advances in understanding paternally transmitted Chromosomal Abnormalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, F; Sloter, E; Wyrobek, A J

    2001-03-01

    Multicolor FISH has been adapted for detecting the major types of chromosomal abnormalities in human sperm including aneuploidies for clinically-relevant chromosomes, chromosomal aberrations including breaks and rearrangements, and other numerical abnormalities. The various sperm FISH assays have been used to evaluate healthy men, men of advanced age, and men who have received mutagenic cancer therapy. The mouse has also been used as a model to investigate the mechanism of paternally transmitted genetic damage. Sperm FISH for the mouse has been used to detect chromosomally abnormal mouse sperm, while the PAINT/DAPI analysis of mouse zygotes has been used to evaluate themore » types of chromosomal defects that can be paternally transmitted to the embryo and their effects on embryonic development.« less

  20. Comparison of Subcutaneous Regular Insulin and Lispro Insulin in Diabetics Receiving Continuous Nutrition

    PubMed Central

    Stull, Mamie C.; Strilka, Richard J.; Clemens, Michael S.; Armen, Scott B.

    2015-01-01

    Background: Optimal management of non–critically ill patients with diabetes maintained on continuous enteral feeding (CEN) is poorly defined. Subcutaneous (SQ) lispro and SQ regular insulin were compared in a simulated type 1 and type 2 diabetic patient receiving CEN. Method: A glucose-insulin feedback mathematical model was employed to simulate type 1 and type 2 diabetic patients on CEN. Each patient received 25 SQ injections of regular insulin or insulin lispro, ranging from 0-6 U. Primary endpoints were the change in mean glucose concentration (MGC) and change in glucose variability (GV); hypoglycemic episodes were also reported. The model was first validated against patient data. Results: Both SQ insulin preparations linearly decreased MGC, however, SQ regular insulin decreased GV whereas SQ lispro tended to increase GV. Hourly glucose concentration measurements were needed to capture the increase in GV. In the type 2 diabetic patient, “rebound hyperglycemia” occurred after SQ lispro was rapidly metabolized. Although neither SQ insulin preparation caused hypoglycemia, SQ lispro significantly lowered MGC compared to SQ regular insulin. Thus, it may be more likely to cause hypoglycemia. Analyses of the detailed glucose concentration versus time data suggest that the inferior performance of lispro resulted from its shorter duration of action. Finally, the effects of both insulin preparations persisted beyond their duration of actions in the type 2 diabetic patient. Conclusions: Subcutaneous regular insulin may be the short-acting insulin preparation of choice for this subset of diabetic patients. Clinical trial is required before a definitive recommendation can be made. PMID:26134836

  1. Neprilysin participates in skeletal muscle regeneration and is accumulated in abnormal muscle fibres of inclusion body myositis.

    PubMed

    Broccolini, Aldobrando; Gidaro, Teresa; Morosetti, Roberta; Gliubizzi, Carla; Servidei, Tiziana; Pescatori, Mario; Tonali, Pietro A; Ricci, Enzo; Mirabella, Massimiliano

    2006-02-01

    Neprilysin (NEP, EP24.11), a metallopeptidase originally shown to modulate signalling events by degrading small regulatory peptides, is also an amyloid-beta- (Abeta) degrading enzyme. We investigated a possible role of NEP in inclusion body myositis (IBM) and other acquired and hereditary muscle disorders and found that in all myopathies NEP expression was directly associated with the degree of muscle fibre regeneration. In IBM muscle, NEP protein was also strongly accumulated in Abeta-bearing abnormal fibres. In vitro, during the experimental differentiation of myoblasts, NEP protein expression was regulated at the post-transcriptional level with a rapid increase in the early stage of myoblast differentiation followed by a gradual reduction thereafter, coincident with the progression of the myogenic programme. Treatment of differentiating muscle cells with the NEP inhibitor dl-3-mercapto-2-benzylpropanoylglycine resulted in impaired differentiation that was mainly associated with an abnormal regulation of Akt activation. Therefore, NEP may play an important role during muscle cell differentiation, possibly through the regulation, either directly or indirectly, of the insulin-like growth factor I-driven myogenic programme. In IBM muscle increased NEP may be instrumental in (i) reducing the Abeta accumulation in vulnerable fibres and (ii) promoting a repair/regenerative attempt of muscle fibres possibly through the modulation of insulin-like growth factor I-dependent pathways.

  2. Retinal abnormalities in β-thalassemia major.

    PubMed

    Bhoiwala, Devang L; Dunaief, Joshua L

    2016-01-01

    Patients with beta (β)-thalassemia (β-TM: β-thalassemia major, β-TI: β-thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelial degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with β-thalassemia major are transfusion dependent and require iron chelation therapy to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by iron chelation therapy. Some who were never treated with iron chelation therapy exhibited retinopathy, and others receiving iron chelation therapy had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with β-thalassemia major viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Insulin signaling pathways in a patient with insulin resistance of difficult management - a case report

    PubMed Central

    2009-01-01

    Insulin signalling pathways were investigated in a 33 year-old woman with immunologic insulin resistance. Her past medical history was remarkable for intermittent use of insulin and allergic reactions to several drugs, and measure of plasma anti-insulin antibodies level corroborated the clinical suspicion of immune mediated insulin resistance (8074 nU/ml - RIA - Ref value: <60). Treatment with several immunosuppressive regimens was tried, however the results were disappointing. Possible subcellular mechanisms of insulin resistance were investigated by performing analysis of insulin receptor and post receptor signaling in skeletal muscle biopsy. The expression of insulin receptor (IR), insulin receptor substrate 1 (IRS-1) and glucose transporter 4 (GLUT-4) was evaluated in total extract from muscle tissue by Western blotting. Basal IR, IRS-1 and GLUT-4 expression was detected, however receptor autophosphorylation was not observed. A study of translocation of GLUT-4 to plasma membrane showed that tissue presented low levels of membrane-associated GLUT-4. When in vitro stimulation was undertaken, tissue was capable to be responsive to insulin. Our results suggest that even though IR expression was normally occurring, IR β-subunit tyrosine kinase activity in muscle was down-regulated leading to alterations in insulin post receptor signaling. Consistent with normal insulin receptor and post receptor signaling, our results were compatible with decreased insulin binding to IR probably due to neutralization by anti-insulin antibodies. In conclusion, this patient has immunologic insulin resistance and treatment should be based on immunosuppressive drugs as tolerated. PMID:19941665

  4. Therapeutics of diabetes mellitus: focus on insulin analogues and insulin pumps.

    PubMed

    Valla, Vasiliki

    2010-01-01

    Inadequately controlled diabetes accounts for chronic complications and increases mortality. Its therapeutic management aims in normal HbA1C, prandial and postprandial glucose levels. This review discusses diabetes management focusing on the latest insulin analogues, alternative insulin delivery systems and the artificial pancreas. Intensive insulin therapy with multiple daily injections (MDI) allows better imitation of the physiological rhythm of insulin secretion. Longer-acting, basal insulin analogues provide concomitant improvements in safety, efficacy and variability of glycaemic control, followed by low risks of hypoglycaemia. Continuous subcutaneous insulin infusion (CSII) provides long-term glycaemic control especially in type 1 diabetic patients, while reducing hypoglycaemic episodes and glycaemic variability. Continuous subcutaneous glucose monitoring (CGM) systems provide information on postprandial glucose excursions and nocturnal hypo- and/or hyperglycemias. This information enhances treatment options, provides a useful tool for self-monitoring and allows safer achievement of treatment targets. In the absence of a cure-like pancreas or islets transplants, artificial "closed-loop" systems mimicking the pancreatic activity have been also developed. Individualized treatment plans for insulin initiation and administration mode are critical in achieving target glycaemic levels. Progress in these fields is expected to facilitate and improve the quality of life of diabetic patients.

  5. Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary absorption of encapsulated insulin compared with co-administered insulin.

    PubMed

    Chono, Sumio; Togami, Kohei; Itagaki, Shirou

    2017-11-01

    We have previously shown that aerosolized liposomes with dipalmitoyl phosphatidylcholine (DPPC) enhance the pulmonary absorption of encapsulated insulin. In this study, we aimed to compare insulin encapsulated into the liposomes versus co-administration of empty liposomes and unencapsulated free insulin, where the DPCC liposomes would serve as absorption enhancer. The present study provides the useful information for development of noninvasive treatment of diabetes. Co-administration of empty DPPC liposomes and unencapsulated free insulin was investigated in vivo to assess the potential enhancement in protein pulmonary absorption. Co-administration was compared to DPPC liposomes encapsulating insulin, and free insulin. DPPC liposomes enhanced the pulmonary absorption of unencapsulated free insulin; however, the enhancing effect was lower than that of the DPPC liposomes encapsulating insulin. The mechanism of the pulmonary absorption of unencapsulated free insulin by DPPC liposomes involved the opening of epithelial cell space in alveolar mucosa, and not mucosal cell damage, similar to that of the DPPC liposomes encapsulating insulin. In an in vitro stability test, insulin in the alveolar mucus layer that covers epithelial cells was stable. These findings suggest that, although unencapsulated free insulin spreads throughout the alveolar mucus layer, the concentration of insulin released near the absorption surface is increased by the encapsulation of insulin into DPPC liposomes and the absorption efficiency is also increased. We revealed that the encapsulation of insulin into DPPC liposomes is more effective for pulmonary insulin absorption than co-administration of DPPC liposomes and unencapsulated free insulin.

  6. Abnormal findings in peers during skills learning.

    PubMed

    Wearn, Andy; Nakatsuji, Miriam; Bhoopatkar, Harsh

    2017-02-01

    Peer physical examination (PPE), where students examine each other, is common in contemporary clinical skills learning. A range of benefits and risks have been explored in the literature. One persistent concern has been the identification and management of abnormal physical findings. Two previous studies have attempted to quantify the risk, one through the discussion of two exemplar cases and the other with a retrospective student survey. Here, we report the first prospective study of the number and type of abnormalities encountered as part of early clinical skills learning in a medical programme. We have a formal written consent process for PPE, which includes the management of abnormal findings through the completion of an event form. Our data come from cohorts undertaking years 2 and 3 of the programme between 2003 and 2014. One persistent concern (of PPE) has been the identification and management of abnormal physical findings RESULTS: Nineteen event forms were completed over this period. The incidence rates per year ranged from 0.23 to 1.05 per cent. Abnormal findings included raised blood pressure, heart murmur, abnormal bedside test values, and eye and skin conditions. The low event rate, along with a feasible process for dealing with this issue, goes some way to reassuring those with concerns. We acknowledge that some abnormalities may have been missed, and that some data may have been lost as a result of incorrect process; however, even the highest annual rate is low in absolute terms. We recommend a formal process for managing abnormalities. Ideally this would be part of an overall PPE written policy, communicated to students, enacted by tutors and approved by the local ethics committee. © 2016 John Wiley & Sons Ltd.

  7. Scopoletin protects against methylglyoxal-induced hyperglycemia and insulin resistance mediated by suppression of advanced glycation endproducts (AGEs) generation and anti-glycation.

    PubMed

    Chang, Wen-Chang; Wu, Shinn-Chih; Xu, Kun-Di; Liao, Bo-Chieh; Wu, Jia-Feng; Cheng, An-Sheng

    2015-02-09

    Recently, several types of foods and drinks, including coffee, cream, and cake, have been found to result in high methylglyoxal (MG) levels in the plasma, thus causing both nutritional and health concerns. MG can be metabolized by phase-II enzymes in liver through the positive regulation of nuclear factor-erythroid 2-related factor 2 (Nrf2). In this study, we investigated the ability of scopoletin (SP) to protect against MG-induced hyperglycemia and insulin resistance. Recently, SP was shown to be a peroxisome proliferator-activated receptor-γ activator to elevate insulin sensitivity. We investigated the effects of oral administration of SP on the metabolic, biochemical, and molecular abnormalities characteristic of type 2 diabetes in MG-treated Wistar rats to understand the potential mechanism of scopoletin for diabetes protection. Our results suggested that SP activated Nrf2 by Ser40 phosphorylation, resulting in the metabolism of MG into d-lactic acid and the inhibition of AGEs generation, which reduced the accumulation of AGEs in the livers of MG-induced rats. In this manner, SP improved the results of the oral glucose tolerance test and dyslipidemia. Moreover, SP also increased the plasma translocation of glucose transporter-2 and promoted Akt phosphorylation caused by insulin treatment in MG-treated FL83B hepatocytes. In contrast, SP effectively suppressed protein tyrosine phosphatase 1B (PTP1B) expression, thereby alleviating insulin resistance. These findings suggest that SP acts as an anti-glycation and anti-diabetic agent, and thus has therapeutic potential for the prevention of diabetes.

  8. Endothelial insulin receptor restoration rescues vascular function in male insulin receptor haploinsufficient mice.

    PubMed

    Sengupta, Anshuman; Patel, Peysh A; Yuldasheva, Nadira Y; Mughal, Romana S; Galloway, Stacey; Viswambharan, Hema; Walker, Andrew M N; Aziz, Amir; Smith, Jessica; Ali, Noman; Mercer, Ben N; Imrie, Helen; Sukumar, Piruthivi; Wheatcroft, Stephen B; Kearney, Mark T; Cubbon, Richard M

    2018-05-15

    Reduced systemic insulin signaling promotes endothelial dysfunction and diminished endogenous vascular repair. We asked whether restoration of endothelial insulin receptor expression could rescue this phenotype. Insulin receptor haploinsufficient mice (IRKO) were crossed with mice expressing a human insulin receptor transgene in the endothelium (hIRECO), to produce IRKO-hIRECO progeny. No metabolic differences were noted between IRKO and IRKO-hIRECO in glucose- and insulin-tolerance tests. In contrast with control IRKO littermates, IRKO-hIRECO exhibited normal blood pressure and aortic vasodilatation in response to acetylcholine, comparable to parameters noted in wild-type littermates. These phenotypic changes were associated with enhanced basal- and insulin-stimulated nitric oxide production. IRKO-hIRECO also demonstrated normalized endothelial repair after denuding arterial injury, which was associated with rescued endothelial cell migration in vitro, but not with changes in circulating progenitor populations or culture-derived myeloid angiogenic cells. These data show that restoration of endothelial insulin receptor expression alone is sufficient to prevent the vascular dysfunction caused by systemically reduced insulin signaling.

  9. Attitudes of patients and physicians to insulin therapy in Japan: an analysis of the Global Attitude of Patients and Physicians in Insulin Therapy study.

    PubMed

    Harashima, Shin-Ichi; Nishimura, Akiko; Inagaki, Nobuya

    2017-01-01

    The barriers to insulin therapy perceived by Japanese patients with diabetes and their physicians are unclear. We performed sub-analyses of the Global Attitude of Patients and Physicians in Insulin Therapy (GAPP™) study, which included 100 Japanese physicians (of 1250 participating physicians) and 150 Japanese patients (of 1530 patients) who participated in Internet surveys (physicians) or computer-assisted telephone surveys (patients) across eight countries in 2010. We compared the results of Japanese participants with those obtained for the other seven countries. Overall, 44% of the Japanese patients reported omission or non-adherence to insulin, a greater value than that reported in other countries. Japanese physicians reported that non-adherence to insulin was driven by their patients' lifestyles. A greater proportion of patients had a history of hypoglycemia in Japan than in other countries. Most of the physicians (94%) and patients (84%) in Japan reported that the currently available insulin treatment regimens do not fit the diverse lifestyles of patients. Many Japanese patients receiving insulin therapy omit or do not adhere to insulin, possibly because of fear of hypoglycemia, or for lifestyle reasons. Insulin regimens that reduce the risk of hypoglycemia without interfering with patients' lifestyles are needed.

  10. Glucose-lowering effect and glycaemic variability of insulin glargine, insulin detemir and insulin lispro protamine in people with type 1 diabetes.

    PubMed

    Derosa, G; Franzetti, I; Querci, F; Romano, D; D'Angelo, A; Maffioli, P

    2015-06-01

    To compare, using a continuous glucose monitoring (CGM) system, the effect on glycaemic variability of insulin glargine, detemir and lispro protamine. A total of 49 white people with type 1 diabetes, not well controlled by three times daily insulin lispro, taken for at least 2 months before study and on a stable dose, were enrolled. The study participants were randomized to add insulin glargine, detemir or lispro protamine, once daily, in the evening. We used a CGM system, the iPro Digital Recorder (Medtronic MiniMed, Northridge, CA, USA) for 1 week. Glycaemic control was assessed according to mean blood glucose values, the area under the glucose curve above 3.9 mmol/l (AUC(>3.9)) or above 10.0 mmol/l (AUC(>10.0)), and the percentage of time spent with glucose values >3.9 or >10.0 mmol/l. Intraday glycaemic variability was assessed using standard deviation (s.d.) values, the mean amplitude of glycaemic excursions and continuous overlapping of net glycaemic action. Day-to-day glycaemic variability was assessed using the mean of daily differences. The s.d. was found to be significantly lower with insulin lispro protamine and glargine compared with insulin detemir. AUC(>3.9) was higher and AUC(>10.0) was lower with insulin lispro protamine and glargine compared with detemir. The mean amplitude of glycaemic excursions and continuous overlapping net glycaemic action values were lower with insulin lispro protamine and glargine compared with detemir. In addition, the mean of daily differences was significantly lower with insulin lispro protamine and glargine compared with detemir. Fewer hypoglycaemic events were recorded during the night-time with insulin lispro protamine compared with glargine and detemir. The results suggest that insulin lispro protamine and glargine are more effective than detemir in reducing glycaemic variability and improving glycaemic control in people with type 1 diabetes. Insulin lispro protamine seems to lead to fewer hypoglycaemic

  11. Glycation & Insulin Resistance: Novel Mechanisms and Unique Targets?

    PubMed Central

    Song, Fei; Schmidt, Ann Marie

    2012-01-01

    Objectives Multiple biochemical, metabolic and signal transduction pathways contribute to insulin resistance. In this review, we present the evidence that the post-translational process of protein glycation may play role in insulin resistance. The post-translational modifications, the advanced glycation endproducts (AGEs), are formed and accumulate by endogenous and exogenous mechanisms. Methods and Results AGEs may contribute to insulin resistance by a variety of mechanisms, including generation of tumor necrosis factor-alpha, direct modification of the insulin molecule thereby leading to its impaired action, generation of oxidative stress, and impairment of mitochondrial function, as examples. AGEs may stimulate signal transduction via engagement of cellular receptors, such as RAGE, or receptor for AGE. AGE-RAGE interaction perpetuates AGE formation and cellular stress via induction of inflammation, oxidative stress and reduction in the expression and activity of the enzyme, glyoxalase I that detoxifies the AGE precursor, methylglyoxal, or MG. Conclusions Once set in motion, glycation-promoting mechanisms may stimulate ongoing AGE production and target tissue stresses that reduce insulin responsiveness. Strategies to limit AGE accumulation and action may contribute to prevention of insulin resistance and its consequences. PMID:22815341

  12. Exocyst sec5 regulates exocytosis of newcomer insulin granules underlying biphasic insulin secretion.

    PubMed

    Xie, Li; Zhu, Dan; Kang, Youhou; Liang, Tao; He, Yu; Gaisano, Herbert Y

    2013-01-01

    The exocyst complex subunit Sec5 is a downstream effector of RalA-GTPase which promotes RalA-exocyst interactions and exocyst assembly, serving to tether secretory granules to docking sites on the plasma membrane. We recently reported that RalA regulates biphasic insulin secretion in pancreatic islet β cells in part by tethering insulin secretory granules to Ca(2+) channels to assist excitosome assembly. Here, we assessed β cell exocytosis by patch clamp membrane capacitance measurement and total internal reflection fluorescence microscopy to investigate the role of Sec5 in regulating insulin secretion. Sec5 is present in human and rodent islet β cells, localized to insulin granules. Sec5 protein depletion in rat INS-1 cells inhibited depolarization-induced release of primed insulin granules from both readily-releasable pool and mobilization from the reserve pool. This reduction in insulin exocytosis was attributed mainly to reduction in recruitment and exocytosis of newcomer insulin granules that undergo minimal docking time at the plasma membrane, but which encompassed a larger portion of biphasic glucose stimulated insulin secretion. Sec5 protein knockdown had little effect on predocked granules, unless vigorously stimulated by KCl depolarization. Taken together, newcomer insulin granules in β cells are more sensitive than predocked granules to Sec5 regulation.

  13. Evaluation of current trends and recent development in insulin therapy for management of diabetes mellitus.

    PubMed

    Nawaz, Muhammad Sarfraz; Shah, Kifayat Ullah; Khan, Tahir Mehmood; Rehman, Asim Ur; Rashid, Haroon Ur; Mahmood, Sajid; Khan, Shahzeb; Farrukh, Muhammad Junaid

    2017-12-01

    Diabetes mellitus is a major health problem in developing countries. There are various insulin therapies to manage diabetes mellitus. This systematic review evaluates various insulin therapies for management of diabetes mellitus worldwide. This review also focuses on recent developments being explored for better management of diabetes mellitus. We reviewed a number of published articles from 2002 to 2016 to find out the appropriate management of diabetes mellitus. The paramount parameters of the selected studies include the insulin type & its dose, type of diabetes, duration and comparison of different insulin protocols. In addition, various newly developed approaches for insulin delivery with potential output have also been evaluated. A great variability was observed in managing diabetes mellitus through insulin therapy and the important controlling factors found for this therapy include; dose titration, duration of insulin use, type of insulin used and combination therapy of different insulin. A range of research articles on current trends and recent advances in insulin has been summarized, which led us to the conclusion that multiple daily insulin injections or continuous subcutaneous insulin infusion (insulin pump) is the best method to manage diabetes mellitus. In future perspectives, development of the oral and inhalant insulin would be a tremendous breakthrough in Insulin therapy. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  14. Abnormal cation transport in uremia. Mechanisms in adipocytes and skeletal muscle from uremic rats.

    PubMed

    Druml, W; Kelly, R A; May, R C; Mitch, W E

    1988-04-01

    The cause of the abnormal active cation transport in erythrocytes of some uremic patients is unknown. In isolated adipocytes and skeletal muscle from chronically uremic chronic renal failure rats, basal sodium pump activity was decreased by 36 and 30%, and intracellular sodium was increased by 90 and 50%, respectively, compared with pair-fed control rats; insulin-stimulated sodium pump activity was preserved in both tissues. Lower basal NaK-ATPase activity in adipocytes was due to a proportionate decline in [3H]ouabain binding, while in muscle, [3H]ouabain binding was not changed, indicating that the NaK-ATPase turnover rate was decreased. Normal muscle, but not normal adipocytes, acquired defective Na pump activity when incubated in uremic sera. Thus, the mechanism for defective active cation transport in CRF is multifactorial and tissue specific. Sodium-dependent amino acid transport in adipocytes closely paralleled diminished Na pump activity (r = 0.91), indicating the importance of this defect to abnormal cellular metabolism in uremia.

  15. Abnormal cation transport in uremia. Mechanisms in adipocytes and skeletal muscle from uremic rats.

    PubMed Central

    Druml, W; Kelly, R A; May, R C; Mitch, W E

    1988-01-01

    The cause of the abnormal active cation transport in erythrocytes of some uremic patients is unknown. In isolated adipocytes and skeletal muscle from chronically uremic chronic renal failure rats, basal sodium pump activity was decreased by 36 and 30%, and intracellular sodium was increased by 90 and 50%, respectively, compared with pair-fed control rats; insulin-stimulated sodium pump activity was preserved in both tissues. Lower basal NaK-ATPase activity in adipocytes was due to a proportionate decline in [3H]ouabain binding, while in muscle, [3H]ouabain binding was not changed, indicating that the NaK-ATPase turnover rate was decreased. Normal muscle, but not normal adipocytes, acquired defective Na pump activity when incubated in uremic sera. Thus, the mechanism for defective active cation transport in CRF is multifactorial and tissue specific. Sodium-dependent amino acid transport in adipocytes closely paralleled diminished Na pump activity (r = 0.91), indicating the importance of this defect to abnormal cellular metabolism in uremia. PMID:2832446

  16. In vivo differential effects of fasting, re-feeding, insulin and insulin stimulation time course on insulin signaling pathway components in peripheral tissues.

    PubMed

    Agouni, Abdelali; Owen, Carl; Czopek, Alicja; Mody, Nimesh; Delibegovic, Mirela

    2010-10-08

    Components of the insulin receptor signaling pathway are probably some of the best studied ones. Even though methods for studying these components are well established, the in vivo effects of different fasting regimens, and the time course of insulin receptor phosphorylation and that of its downstream components in insulin-sensitive peripheral tissues have not been analyzed in detail. When assessing insulin signaling, it may be beneficial to drive insulin levels as low as possible by performing an overnight fast before injecting a supra-physiological dose of insulin. Recent studies have shown however that 5 or 6 h fast in mice is sufficient to assess physiological responses to insulin and/or glucose in glucose tolerance tests, insulin tolerance tests and euglycemic hyperinsulinemic clamp studies. Moreover, mice are nocturnal feeders, with ∼70% of their daily caloric intake occurring during the dark cycle, and their metabolic rate is much higher than humans. Therefore, an overnight fast in mice is closer to starvation than just food withdrawal. Thus our aim was to assess insulin signaling components from the insulin receptor to downstream targets IRS1, Akt/PKB, GSK3, Erk1/2 and ribosomal protein S6 in muscle, liver and adipose tissue in 5 h versus 16 h (overnight) fasted mice, and the time course (0-30 min) of these phosphorylation events. We also assessed whether re-feeding under 5 h and 16 h fasting conditions was a more robust stimulus than insulin alone. Our study determines that a short food withdrawal from mice, for a period of 5 h, results in a similar insulin-stimulated response in phosphorylation events as the long overnight fast, presenting a more physiological experimental set up. We also demonstrate that in vivo, insulin-stimulated phosphorylation of its signaling components is different between different peripheral tissues, and depending on the tissue(s) and protein(s) of interest, an appropriate time course should be chosen. Copyright © 2010

  17. Abnormal/Emergency Situations. Impact of Unmanned Aircraft Systems Emergency and Abnormal Events on the National Airspace System

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Access 5 analyzed the differences between UAS and manned aircraft operations under five categories of abnormal or emergency situations: Link Failure, Lost Communications, Onboard System Failures, Control Station Failures and Abnormal Weather. These analyses were made from the vantage point of the impact that these operations have on the US air traffic control system, with recommendations for new policies and procedures included where appropriate.

  18. Serum visfatin in relation to insulin resistance and markers of hyperandrogenism in lean and obese women with polycystic ovary syndrome.

    PubMed

    Kowalska, Irina; Straczkowski, Marek; Nikolajuk, Agnieszka; Adamska, Agnieszka; Karczewska-Kupczewska, Monika; Otziomek, Elzbieta; Wolczynski, Slawomir; Gorska, Maria

    2007-07-01

    Visfatin, a protein secreted by adipose tissue, is suggested to play a role in pathogenesis of insulin resistance. In polycystic ovary syndrome (PCOS), insulin resistance might be involved in the development of endocrine and metabolic abnormalities. The aim of the study was to asses the relation between serum visfatin concentration and insulin sensitivity and markers of hyperandrogenism in lean and obese PCOS patients. The study group consisted of 70 women with PCOS (23 lean and 47 obese) and 45 healthy women (25 lean and 20 obese). Euglycemic hyperinsulinemic clamp and the measurements of serum visfatin, sex hormones were performed. The PCOS group had lower insulin sensitivity (P=0.00049) and higher serum visfatin (P=0.047) in comparison to the control group. The decrease in insulin sensitivity was present in both the lean (P=0.019) and obese (P=0.0077) PCOS subjects, whereas increase in serum visfatin was observed only in lean PCOS subjects (P=0.012). In the whole group, serum visfatin was negatively correlated with insulin sensitivity (r=-0.27, P=0.004). This relationship was also observed in the subgroup of lean (r=-0.30, P=0.038), but not obese women. Additionally, in lean women, visfatin was associated with serum testosterone (r=0.47, P=0.002) and free androgen index (r=0.48, P=0.002), independently of other potential confounding factors. Visfatin is associated with insulin resistance and markers of hyperandrogenism in lean PCOS patients.

  19. Insulin Resistance Induced by Hyperinsulinemia Coincides with a Persistent Alteration at the Insulin Receptor Tyrosine Kinase Domain

    PubMed Central

    Catalano, Karyn J.; Maddux, Betty A.; Szary, Jaroslaw; Youngren, Jack F.; Goldfine, Ira D.; Schaufele, Fred

    2014-01-01

    Insulin resistance, the diminished response of target tissues to insulin, is associated with the metabolic syndrome and a predisposition towards diabetes in a growing proportion of the worldwide population. Under insulin resistant states, the cellular response of the insulin signaling pathway is diminished and the body typically responds by increasing serum insulin concentrations to maintain insulin signaling. Some evidence indicates that the increased insulin concentration may itself further dampen insulin response. If so, insulin resistance would worsen as the level of circulating insulin increases during compensation, which could contribute to the transition of insulin resistance to more severe disease. Here, we investigated the consequences of excess insulin exposure to insulin receptor (IR) activity. Cells chronically exposed to insulin show a diminished the level of IR tyrosine and serine autophosphorylation below that observed after short-term insulin exposure. The diminished IR response did not originate with IR internalization since IR amounts at the cell membrane were similar after short- and long-term insulin incubation. Förster resonance energy transfer between fluorophores attached to the IR tyrosine kinase (TK) domain showed that a change in the TK domain occurred upon prolonged, but not short-term, insulin exposure. Even though the altered ‘insulin refractory’ IR TK FRET and IR autophosphorylation levels returned to baseline (non-stimulated) levels after wash-out of the original insulin stimulus, subsequent short-term exposure to insulin caused immediate re-establishment of the insulin-refractory levels. This suggests that some cell-based ‘memory’ of chronic hyperinsulinemic exposure acts directly at the IR. An improved understanding of that memory may help define interventions to reset the IR to full insulin responsiveness and impede the progression of insulin resistance to more severe disease states. PMID:25259572

  20. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment.

    PubMed

    Wong, Chun Y; Al-Salami, Hani; Dass, Crispin R

    2017-10-28

    Nanoparticles have demonstrated significant advancements in potential oral delivery of insulin. In this publication, we review the current status of polymeric, inorganic and solid-lipid nanoparticles designed for oral administration of insulin. Firstly, the structure and physiological function of insulin are examined. Then, the efficiency and shortcomings of insulin nanoparticle are discussed. These include the susceptibility to digestive enzyme degradation, instability in the acidic pH environment, poor mucus diffusion and inadequate permeation through the gastrointestinal epithelium. In order to optimise the nanocarriers, the following considerations, including polymer nature, surface charge, size, polydispersity index and morphology of nanoparticles, have to be taken into account. Some novel designs such as chitosan-based glucose-responsive nanoparticles, layer by layer technique-based nanoparticles and zwitterion nanoparticles are being adopted to overcome the physiological challenges. The review ends with some future directions and challenges to be addressed for the success of oral delivery of insulin-loaded nanoparticle formulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Nutritional Modulation of Insulin Resistance

    PubMed Central

    Weickert, Martin O.

    2012-01-01

    Insulin resistance has been proposed as the strongest single predictor for the development of Type 2 Diabetes (T2DM). Chronic oversupply of energy from food, together with inadequate physical activity, have been recognized as the most relevant factors leading to overweight, abdominal adiposity, insulin resistance, and finally T2DM. Conversely, energy reduced diets almost invariably to facilitate weight loss and reduce abdominal fat mass and insulin resistance. However, sustained weight loss is generally difficult to achieve, and distinct metabolic characteristics in patients with T2DM further compromise success. Therefore, investigating the effects of modulating the macronutrient composition of isoenergetic diets is an interesting concept that may lead to additional important insights. Metabolic effects of various different dietary concepts and strategies have been claimed, but results from randomized controlled studies and particularly from longer-term-controlled interventions in humans are often lacking. However, some of these concepts are supported by recent research, at least in animal models and short-term studies in humans. This paper provides an update of the current literature regarding the role of nutrition in the modulation of insulin resistance, which includes the discussion of weight-loss-independent metabolic effects of commonly used dietary concepts. PMID:24278690

  2. Blood Glucose and Insulin Concentrations after Octreotide Administration in Horses With Insulin Dysregulation.

    PubMed

    Frank, N; Hermida, P; Sanchez-Londoño, A; Singh, R; Gradil, C M; Uricchio, C K

    2017-07-01

    Octreotide is a somatostatin analog that suppresses insulin secretion. We hypothesized that octreotide would suppress insulin concentrations in horses and that normal (N) horses and those with insulin dysregulation (ID) would differ significantly in their plasma glucose and insulin responses to administration of octreotide. Twelve horses, N = 5, ID = 7. Prospective study. An oral sugar test was performed to assign horses to N and ID groups. Octreotide (1.0 μg/kg IV) was then administered, and blood was collected at 0, 5, 10, 15, 20, 25, 30, 45, 60, 75, and 90 minute, and 2, 3, 4, 6, 8, 12, and 24 hour for measurement of glucose and insulin concentrations. Area under the curve (AUC) values were calculated. Mean AUC values for glucose and insulin did not differ between normal (n = 5) and ID (n = 7) groups after octreotide injection. Significant time (P < .001) effects were detected for glucose and insulin concentrations. A group × time interaction (P = .091) was detected for insulin concentrations after administration of octreotide, but the group (P = .33) effect was not significant. Octreotide suppresses insulin secretion, resulting in hyperglycemia, and then concentrations increase above baseline as glycemic control is restored. Our hypothesis that octreotide causes insulin concentrations to decrease in horses was supported, but differences between N and ID groups did not reach statistical significance when blood glucose and insulin responses were compared. The utility of an octreotide response test remains to be determined. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  3. Patient safety and minimizing risk with insulin administration - role of insulin degludec.

    PubMed

    Aye, Myint M; Atkin, Stephen L

    2014-01-01

    Diabetes is a lifelong condition requiring ongoing medical care and patient self-management. Exogenous insulin therapy is essential in type 1 diabetes and becomes a necessity in patients with longstanding type 2 diabetes who fail to achieve optimal control with lifestyle modification, oral agents, and glucagon-like peptide 1-based therapy. One of the risks that hinders insulin use is hypoglycemia. Optimal insulin therapy should therefore minimize the risk of hypoglycemia while improving glycemic control. Insulin degludec (IDeg) is a novel basal insulin that, following subcutaneous injection, assembles into a depot of soluble multihexamer chains. These subsequently release IDeg monomers that are absorbed at a slow and steady rate into the circulation, with the terminal half-life of IDeg being ~25 hours. Thus, it requires only once-daily dosing unlike other basal insulin preparations that often require twice-daily dosing. Despite its long half-life, once-daily IDeg does not cause accumulation of insulin in the circulation after reaching steady state. IDeg once a day will produce a steady-state profile with a lower peak:trough ratio than other basal insulins. In clinical trials, this profile translates into a lower frequency of nocturnal hypoglycemia compared with insulin glargine, as well as an ability to allow some flexibility in dose timing without compromising efficacy and safety. Indeed, a study that tested the extremes of dosing intervals of 8 and 40 hours showed no detriment in either glycemic control or hypoglycemic frequency versus insulin glargine given at the same time each day. While extreme flexibility in dose timing is not recommended, these findings are reassuring. This may be particularly beneficial to elderly patients, patients with learning difficulties, or others who have to rely on health-care professionals for their daily insulin injections. Further studies are required to confirm whether this might benefit adherence to treatment, reduce long

  4. Insulin, cognition, and dementia

    PubMed Central

    Cholerton, Brenna; Baker, Laura D.; Craft, Suzanne

    2015-01-01

    Cognitive disorders of aging represent a serious threat to the social and economic welfare of current society. It is now widely recognized that pathology related to such conditions, particularly Alzheimer’s disease, likely begins years or decades prior to the onset of clinical dementia symptoms. This revelation has led researchers to consider candidate mechanisms precipitating the cascade of neuropathological events that eventually lead to clinical Alzheimer’s disease. Insulin, a hormone with potent effects in the brain, has recently received a great deal of attention for its potential beneficial and protective role in cognitive function. Insulin resistance, which refers to the reduced sensitivity of target tissues to the favorable effects of insulin, is related to multiple chronic conditions known to impact cognition and increase dementia risk. With insulin resistance-associated conditions reaching epidemic proportions, the prevalence of Alzheimer’s disease and other cognitive disorders will continue to rise exponentially. Fortunately, these chronic insulin-related conditions are amenable to pharmacological intervention. As a result, novel therapeutic strategies that focus on increasing insulin sensitivity in the brain may be an important target for protecting or treating cognitive decline. The following review will highlight our current understanding of the role of insulin in brain, potential mechanisms underlying the link between insulin resistance and dementia, and current experimental therapeutic strategies aimed at improving cognitive function via modifying the brain’s insulin sensitivity. PMID:24070815

  5. Conventional insulin vs insulin infusion therapy in acute coronary syndrome diabetic patients

    PubMed Central

    Arvia, Caterina; Siciliano, Valeria; Chatzianagnostou, Kyriazoula; Laws, Gillian; Quinones Galvan, Alfredo; Mammini, Chiara; Berti, Sergio; Molinaro, Sabrina; Iervasi, Giorgio

    2014-01-01

    AIM: To evaluate the impact on glucose variability (GLUCV) of an nurse-implemented insulin infusion protocol when compared with a conventional insulin treatment during the day-to-day clinical activity. METHODS: We enrolled 44 type 2 diabetic patients (n = 32 males; n = 12 females) with acute coronary syndrome (ACS) and randomy assigned to standard a subcutaneous insulin treatment (n = 23) or a nurse-implemented continuous intravenous insulin infusion protocol (n = 21). We utilized some parameters of GLUCV representing well-known surrogate markers of prognosis, i.e., glucose standard deviation (SD), the mean daily δ glucose (mean of daily difference between maximum and minimum glucose), and the coefficient of variation (CV) of glucose, expressed as percent glucose (SD)/glucose (mean). RESULTS: At the admission, first fasting blood glucose, pharmacological treatments (insulin and/or anti-diabetic drugs) prior to entering the study and basal glycated hemoglobin (HbA1c) were observed in the two groups treated with subcutaneous or intravenous insulin infusion, respectively. When compared with patients submitted to standard therapy, insulin-infused patients showed both increased first 24-h (median 6.9 mmol/L vs 5.7 mmol/L P < 0.045) and overall hospitalization δ glucose (median 10.9 mmol/L vs 9.3 mmol/L, P < 0.028), with a tendency to a significant increase in first 24-h glycaemic CV (23.1% vs 19.6%, P < 0.053). Severe hypoglycaemia was rare (14.3%), and it was observed only in 3 patients receiving insulin infusion therapy. HbA1c values measured during hospitalization and 3 mo after discharge did not differ in the two groups of treatment. CONCLUSION: Our pilot data suggest that no real benefit in terms of GLUCV is observed when routinely managing blood glucose by insulin infusion therapy in type 2 diabetic ACS hospitalized patients in respect to conventional insulin treatment PMID:25126402

  6. One week treatment with the IL-1 receptor antagonist anakinra leads to a sustained improvement in insulin sensitivity in insulin resistant patients with type 1 diabetes mellitus.

    PubMed

    van Asseldonk, Edwin J P; van Poppel, Pleun C M; Ballak, Dov B; Stienstra, Rinke; Netea, Mihai G; Tack, Cees J

    2015-10-01

    Inflammation associated with obesity is involved in the development of insulin resistance. We hypothesized that anti-inflammatory treatment with the Interleukin-1 receptor antagonist anakinra would improve insulin sensitivity. In an open label proof-of-concept study, we included overweight patients diagnosed with type 1 diabetes with an HbA1c level over 7.5%. Selecting insulin resistant patients with longstanding type 1 diabetes allowed us to study the effects of anakinra on insulin sensitivity. Patients were treated with 100mg anakinra daily for one week. Insulin sensitivity, insulin need and blood glucose profiles were measured before, after one week and after four weeks of follow-up. Fourteen patients completed the study. One week of anakinra treatment led to an improvement of insulin sensitivity, an effect that was sustained for four weeks. Similarly, glucose profiles, HbA1c levels and insulin needs improved. In conclusion, one week of treatment with anakinra improves insulin sensitivity in patients with type 1 diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Effects of dietary carbohydrate replaced with wild rice (Zizania latifolia (Griseb) Turcz) on insulin resistance in rats fed with a high-fat/cholesterol diet.

    PubMed

    Han, Shufen; Zhang, Hong; Qin, Liqiang; Zhai, Chengkai

    2013-02-15

    Wild rice (WR) is a very nutritious grain that has been used to treat diabetes in Chinese medicinal practice. City diet (CD) is based on the diet consumed by Asian area residents in modern society, which is rich in saturated fats, cholesterol and carbohydrates. The present study was aimed at evaluating the effects of replacing white rice and processed wheat starch of CD with WR as the chief source of dietary carbohydrates on insulin resistance in rats fed with a high-fat/cholesterol diet. Except the rats of the low-fat (LF) diet group, the rats of the other three groups, including to high-fat/cholesterol (HFC) diet, CD and WR diet, were fed with high-fat/cholesterol diets for eight weeks. The rats fed with CD exhibited higher weight gain and lower insulin sensitivity compared to the rats consuming a HFC diet. However, WR suppressed high-fat/cholesterol diet-induced insulin resistance. WR decreased liver homogenate triglyceride and free fatty acids levels, raised serum adiponectin concentration and reduced serum lipocalin-2 and visfatin concentrations. In addition, the WR diet potently augmented the relative expressions of adiponectin receptor 2, peroxisome proliferator-activated receptors, alpha and gamma, and abated relative expressions of leptin and lipocalin-2 in the tissues of interest. These findings indicate that WR is effective in ameliorating abnormal glucose metabolism and insulin resistance in rats, even when the diet consumed is high in fat and cholesterol.

  8. Sugar-sweetened beverages and prevalence of the metabolically abnormal phenotype in the Framingham Heart Study.

    PubMed

    Green, Angela K; Jacques, Paul F; Rogers, Gail; Fox, Caroline S; Meigs, James B; McKeown, Nicola M

    2014-05-01

    The purpose of this study was to examine the relationship between usual sugar-sweetened beverage (SSB) consumption and prevalence of abnormal metabolic health across body mass index (BMI) categories. The metabolic health of 6,842 non-diabetic adults was classified using cross-sectional data from the Framingham Heart Study Offspring (1998-2001) and Third Generation (2002-2005) cohorts. Adults were classified as normal weight, overweight or obese and, within these categories, metabolic health was defined based on five criteria-hypertension, elevated fasting glucose, elevated triglycerides, low HDL cholesterol, and insulin resistance. Individuals without metabolic abnormalities were considered metabolically healthy. Logistic regression was used to examine the associations between categories of SSB consumption and risk of metabolic health after stratification by BMI. Comparing the highest category of SSB consumers (median of 7 SSB per week) to the lowest category (non-consumers), odds ratios (95% confidence intervals) for metabolically abnormal phenotypes, compared to the metabolically normal, were 1.9 (1.1-3.4) among the obese, 2.0 (1.4-2.9) among the overweight, and 1.9 (1.4-2.6) among the normal weight individuals. In this cross-sectional analysis, it is observed that, irrespective of weight status, consumers of SSB were more likely to display metabolic abnormalities compared to non-consumers in a dose-dependent manner. Copyright © 2014 The Obesity Society.

  9. Fasting and feeding variations of insulin requirements and insulin binding to erythrocytes at different times of the day in insulin dependent diabetics--assessed under the condition of glucose-controlled insulin infusion.

    PubMed

    Hung, C T; Beyer, J; Schulz, G

    1986-07-01

    Nine insulin-dependent diabetic patients were examined for insulin requirement, counterregulatory hormones, and receptor binding during their connection to glucose-controlled insulin infusion system. They were of 103% ideal body weight. A diet of 45% carbohydrate, 20% protein and 35% fat was divided into three meals and three snacks averaging the daily calorie intake of 1859 kcal. Following an equilibrating phase of 14 hours after the connection to the glucose-controlled insulin infusion system the blood samples were taken at 0800, 1200 and 1800. The insulin infusion rate increased at 0300 in the early morning from 0.128 mU/kg/min to 0.221 mU/kg/min (P less than 0.02). The postprandial insulin infusion rate jumped from 0.7 U/h (0700-0800) to 7.5 U/h (0800-0900). The calorie related and carbohydrate related insulin demands after breakfast were also highest and declined after lunch respectively (1.16 uU/kg/min kj vs. 0.61 uU/kg/min kj, P less than 0.05 and 236 mU/g CHO vs. 129 mU/g CHO and 143 mU/g CHO). Of the counterregulatory hormones the cortisol showed a significant diurnal rhythm to insulin demands. The insulin tracer binding was higher at 0800 before breakfast than that at 1200 before lunch (P less than 0.05). The increased binding could be better attributed to receptor concentration change than to affinity change. The cause of insulin relative insensitivity in the morning could be due to altered liver response to the cortisol peak in type 1 diabetics. The preserved variation of insulin binding in our patients might be referred to feeding.

  10. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sena, Gabriela C.; Freitas-Lima, Leandro C.; Merlo

    Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine-disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus-pituitary-gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus-pituitary-gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100 ng/kg/day) for 15 days via gavage. We analyzed their effects onmore » the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co-occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by

  11. Evaluation of the correlation between insulin like factor 3, polycystic ovary syndrome, and ovarian maldescent.

    PubMed

    Seyam, Emaduldin; Hefzy, Enas

    2018-06-01

    The aim of this study was to investigate a proposed correlation between the incidentally discovered undescended ovaries and their confirmed diagnosis as a polycystic ovary disease (PCOD) for all cases included, and to evaluate the role of estimated insulin like factor 3 (INSL3) circulating level in the pathogenesis of both abnormal findings. The study group (A) comprised 35 women whose ovaries had been incidentally found to be undescended during the routine laparoscopy for infertility causes, and all had been diagnosed as PCOD. The control category included two subgroups; subgroup (B) included 35 women group, diagnosed as PCOD but with normally allocated ovaries in the true pelvis, and subgroup (C) included 35 healthy women with regular menses and no signs of hyperandrogenism. Correlations between the level of INSL3 and other PCOD relevant biochemical tests: [e.g. BMI, waist-to-hip ratio (WHR), LH, FSH, androstendione (A), total and free testosterone (T & Ft), DHEA-S, and SHBG] had been also investigated. INSL3 levels were significantly higher in PCOD groups (A) and (B) compared to the healthy fertile control subgroup (C) (80.5 ± 29.4, 65.11 ± 15.6, and 41.11 ± 10.2 pg/mL, respectively), and was highest in group (A). Moreover, we identified a strong correlation between INSL3 and androstenedione (r = 0.42, p = 0.0012), and free (r = 0.42, p = .0123) and total testosterone (r = 0.41, p = .004) in the PCOD (A) and (B) subgroup compared to the levels in subgroup (C). LH was significantly higher in all PCOD women in groups (A&B) (12. 3 ± 3.4, and 11.2 ± 1.4 mIU/L, respectively) compared to those in group (A) (5.7 ± 2.5 mIU/L), with a fair correlation with INSL3. However, there was no statistically significant correlation between INSL3 and FSH, DHEA-S, glucose, basal insulin concentration or HOMA-IR in all PCOD women. The strong positive correlation between INSL3, and high ovarian androgens levels in all PCOD women

  12. Insulin for the treatment of women with gestational diabetes.

    PubMed

    Brown, Julie; Grzeskowiak, Luke; Williamson, Kathryn; Downie, Michelle R; Crowther, Caroline A

    2017-11-05

    Gestational diabetes mellitus (GDM) is associated with short- and long-term complications for the mother and her infant. Women who are unable to maintain their blood glucose concentration within pre-specified treatment targets with diet and lifestyle interventions will require anti-diabetic pharmacological therapies. This review explores the safety and effectiveness of insulin compared with oral anti-diabetic pharmacological therapies, non-pharmacological interventions and insulin regimens. To evaluate the effects of insulin in treating women with gestational diabetes. We searched Pregnancy and Childbirth's Trials Register (1 May 2017), ClinicalTrials.gov, WHO International Clinical Trials Registry Platform (ICTRP) (1 May 2017) and reference lists of retrieved studies. We included randomised controlled trials (including those published in abstract form) comparing:a) insulin with an oral anti-diabetic pharmacological therapy;b) with a non-pharmacological intervention;c) different insulin analogues;d) different insulin regimens for treating women with diagnosed with GDM.We excluded quasi-randomised and trials including women with pre-existing type 1 or type 2 diabetes. Cross-over trials were not eligible for inclusion. Two review authors independently assessed study eligibility, risk of bias, and extracted data. Data were checked for accuracy. We included 53 relevant studies (103 publications), reporting data for 7381 women. Forty-six of these studies reported data for 6435 infants but our analyses were based on fewer number of studies/participants.Overall, the risk of bias was unclear; 40 of the 53 included trials were not blinded. Overall, the quality of the evidence ranged from moderate to very low quality. The primary reasons for downgrading evidence were imprecision, risk of bias and inconsistency. We report the results for our maternal and infant GRADE outcomes for the main comparison. Insulin versus oral anti-diabetic pharmacological therapyFor the mother

  13. A meta-analysis of rate ratios for nocturnal confirmed hypoglycaemia with insulin degludec vs. insulin glargine using different definitions for hypoglycaemia.

    PubMed

    Heller, S; Mathieu, C; Kapur, R; Wolden, M L; Zinman, B

    2016-04-01

    A prospective meta-analysis of phase 3 trials showed lower rates of nocturnal hypoglycaemia with insulin degludec vs. insulin glargine. We investigated the consistency of the results across different definitions of hypoglycaemia. This post-hoc, patient-level meta-analysis included six randomized, controlled, 26- or 52-week phase 3a trials in insulin-naïve participants with Type 2 diabetes mellitus (Type 2 diabetesinsulin naïve ), participants with Type 2 diabetes mellitus using basal-bolus therapy (Type 2 diabetesBB ) and those with Type 1 diabetes mellitus. We used three definitions of hypoglycaemia and different timescales for the nocturnal period. Rates were analysed for the entire core trial period, the 'maintenance period' only, and the extension trial set population. Analyses utilized a negative binomial regression model. In Type 2 diabetesinsulin naïve participants, risk of nocturnal hypoglycaemia was significantly lower with insulin degludec vs. insulin glargine for all hypoglycaemia definitions and trial periods. Risk was also lower for the timescale 21.59-05.59, but not 00.01-07.59. For Type 2 diabetesBB , nocturnal hypoglycaemia rates were lower with insulin degludec vs. insulin glargine across all definitions, timescales and trial periods, with one exception. For individuals with Type 1 diabetes mellitus, nocturnal hypoglycaemia risk was significantly lower with insulin degludec during the maintenance period for the original definition (plasma glucose < 3.1 mmol/l, timescale 00.01-05.59) and in the extension trial set population for all hypoglycaemia definitions except for the nocturnal timescale 00.01-07.59. Compared with insulin glargine, insulin degludec is associated with lower rates of nocturnal hypoglycaemia in people with Type 2 diabetes mellitus, and similar or lower rates in Type 1 diabetes mellitus, across different definitions. © 2015 The Authors. Diabetic Medicine published by John Wiley & Sons Ltd on behalf of Diabetes UK.

  14. Interactive roles of Ras, insulin receptor substrate-1, and proteins with Src homology-2 domains in insulin signaling in Xenopus oocytes.

    PubMed

    Chuang, L M; Hausdorff, S F; Myers, M G; White, M F; Birnbaum, M J; Kahn, C R

    1994-11-04

    Insulin receptor substrate-1 (IRS-1) serves as the major immediate substrate of insulin/insulin-like growth factor (IGF)-1 receptors and following tyrosine phosphorylation binds to specific Src homology-2 (SH2) domain-containing proteins including the p85 subunit of phosphatidylinositol (PI) 3-kinase and GRB2, a molecule believed to link IRS-1 to the Ras pathway. To investigate how these SH2-containing signaling molecules interact to regulate insulin/IGF-1 action, IRS-1, glutathione S-transferase (GST)-SH2 domain fusion proteins and Ras proteins were microinjected into Xenopus oocytes. We found that pleiotropic insulin actions are mediated by IRS-1 through two independent, but convergent, pathways involving PI 3-kinase and GRB2. Thus, microinjection of GST-fusion proteins of either p85 or GRB2 inhibited IRS-1-dependent activation of mitogen-activated protein (MAP) and S6 kinases and oocyte maturation, although only the GST-SH2 of p85 reduced insulin-stimulated PI 3-kinase activation. Co-injection of a dominant negative Ras (S17N) with IRS-1 inhibited insulin-stimulated MAP and S6 kinase activation. Micro-injection of activated [Arg12,Thr59]Ras increased basal MAP and S6 kinase activities and sensitized the oocytes to insulin-stimulated maturation without altering insulin-stimulated PI 3-kinase. The Ras-enhanced oocyte maturation response, but not the elevated basal level of MAP and S6 kinase, was partially blocked by the SH2-p85, but not SH2-GRB2. These data strongly suggest that IRS-1 can mediate many of insulin's actions on cellular enzyme activation and cell cycle progression requires binding and activation of multiple different SH2-domain proteins.

  15. Association of obesity risk SNPs in PCSK1 with insulin sensitivity and proinsulin conversion

    PubMed Central

    2010-01-01

    Background Prohormone convertase 1 is involved in maturation of peptides. Rare mutations in gene PCSK1, encoding this enzyme, cause childhood obesity and abnormal glucose homeostasis with elevated proinsulin concentrations. Common single nucleotide polymorphisms (SNPs) within this gene, rs6232 and rs6235, are associated with obesity. We studied whether these SNPs influence the prediabetic traits insulin resistance, β-cell dysfunction, or glucose intolerance. Methods We genotyped 1498 German subjects for SNPs rs6232 and rs6235 within PCSK1. The subjects were metabolically characterized by oral glucose tolerance test with glucose, insulin, proinsulin, and C-peptide measurements. A subgroup of 512 subjects underwent a hyperinsulinemic-euglycemic clamp. Results The minor allele frequencies were 25.8% for SNP rs6235 and 6.0% for rs6232. After adjustment for sex and age, we found no association of SNPs rs6235 and rs6232 with BMI or other weight-related traits (all p ≥ 0.07). Both minor alleles, adjusted for sex, age, BMI and insulin sensitivity were associated with elevated AUCproinsulin and AUCproinsulin/AUCinsulin (rs6235: padditive model ≤ 0.009, effect sizes 8/8%, rs6232: pdominant model ≤ 0.01, effect sizes 10/21%). Insulin secretion was not affected by the variants (different secretion parameters, all p ≥ 0.08). The minor allele of SNP rs6232 was additionally associated with 15% higher OGTT-derived and 19% higher clamp-derived insulin sensitivity (pdom ≤ 0.0047), 4.5% lower HOMAIR (pdom = 0.02) and 3.5% lower 120-min glucose (pdom = 0.0003) independently of BMI and proinsulin conversion. SNP rs6235 was not associated with parameters of glucose metabolism. Conclusions Like rare mutations in PCSK1, the more common variants tested determine glucose-stimulated proinsulin conversion, but not insulin secretion. In addition, rs6232, encoding the amino acid exchange N221D, influences insulin sensitivity and glucose homeostasis. PMID:20534142

  16. Brain and bone abnormalities of thanatophoric dwarfism.

    PubMed

    Miller, Elka; Blaser, Susan; Shannon, Patrick; Widjaja, Elysa

    2009-01-01

    The purpose of this article is to present the imaging findings of skeletal and brain abnormalities in thanatophoric dwarfism, a lethal form of dysplastic dwarfism. The bony abnormalities associated with thanatophoric dwarfism include marked shortening of the tubular bones and ribs. Abnormal temporal lobe development is a common associated feature and can be visualized as early as the second trimester. It is important to assess the brains of fetuses with suspected thanatophoric dwarfism because the presence of associated brain malformations can assist in the antenatal diagnosis of thanatophoric dwarfism.

  17. Effect of flow rate and insulin priming on the recovery of insulin from microbore infusion tubing.

    PubMed

    Fuloria, M; Friedberg, M A; DuRant, R H; Aschner, J L

    1998-12-01

    A retrospective medical record review of 13 consecutive, hyperglycemic, extremely low birth weight (ELBW) infants treated with continuous insulin infusions revealed a 14- to 24-hour delay (mean, 19 hours) in blood glucose normalization despite stepwise increases in insulin infusion rates. This in vitro study examined the effects of flow rate and insulin priming on insulin recovery from polyvinyl chloride (PVC) tubing and polyethylene (PE)-lined PVC tubing infused with a standard insulin stock solution. Stock insulin solution (0.2 U/mL) was infused through microbore PVC or PE-lined tubing at flow rates of 0.05 and 0.2 mL/h. To determine if saturation of nonspecific binding sites would alter effluent insulin concentration, we compared insulin recovery from tubing previously flushed with the stock solution and tubing primed with 5 U/mL of insulin for 20 minutes. Effluent samples, which were collected at baseline and at six time points during a 24-hour period, were immediately frozen at -20 degreesC. Insulin concentration was measured by IMx immunoassay. Data were analyzed using general linear modeling with repeated measures. At 0.05 mL/h flow rate, insulin recovery from unprimed PVC tubing at 1, 2, 4, and 8 hours was 17%, 11%, 27%, and 55%, respectively, with 100% recovery at 24 hours. From insulin-primed tubing, insulin recovery was approximately 70% at 1, 2, and 4 hours, and close to 100% at 8 hours. At a faster flow rate of 0.2 mL/h, insulin recovery at 1, 2, 4, and 8 hours was 22%, 38%, 67%, and 75% vs 42%, 85%, 91% and 95% from unprimed and insulin-primed PVC tubing, respectively. Similar results were obtained from unprimed and insulin-primed PE-lined tubing at 0.2 mL/h flow rate. Priming of microbore tubing with 5 U/mL of insulin solution for 20 minutes to block nonspecific binding sites enhances delivery of a standard insulin stock at infusion rates typically used to treat hyperglycemic ELBW infants. We conclude that priming the tubing with a higher

  18. The role of insulin pump therapy for type 2 diabetes mellitus.

    PubMed

    Landau, Zohar; Raz, Itamar; Wainstein, Julio; Bar-Dayan, Yosefa; Cahn, Avivit

    2017-01-01

    Many patients with type 2 diabetes fail to achieve adequate glucose control despite escalation of treatment and combinations of multiple therapies including insulin. Patients with long-standing type 2 diabetes often suffer from the combination of severe insulin deficiency in addition to insulin resistance, thereby requiring high doses of insulin delivered in multiple injections to attain adequate glycemic control. Insulin-pump therapy was first introduced in the 1970s as an approach to mimic physiological insulin delivery and attain normal glucose in patients with type 1 diabetes. The recent years have seen an increase in the use of this technology for patients with type 2 diabetes. This article summarizes the clinical studies evaluating insulin pump use in patients with type 2 diabetes and discusses the benefits and shortcomings of pump therapy in this population. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Self-management support for insulin therapy in type 2 diabetes.

    PubMed

    Funnell, Martha M; Kruger, Davida F; Spencer, Mary

    2004-01-01

    The purpose of this article is to describe the self-management support that can be provided by diabetes educators for type 2 diabetes patients who are transitioning from therapy with oral hypoglycemic agents to insulin. The role of the diabetes educator in patient education and self-management support during all aspects of insulin therapy is discussed. Phases during which support may be especially important include the decision-making process, initiation, and maintenance. Although some patients make the decision fairly easily, the introduction of insulin therapy is likely to raise many issues and questions for many type 2 diabetes patients. The more reluctant patients may experience psychological insulin resistance, a syndrome where insulin therapy is viewed as a threat or failure, which can affect health professionals as well. The diabetes educator can provide support and approaches to help diminish this resistance and make the transition to insulin therapy easier and more effective for patients with type 2 diabetes. Education and ongoing self-management support are needed for informed decision making and the initiation and maintenance of insulin therapy. Therefore, diabetes educators have a critical role to play during both the decision-making process and the safe transition to insulin therapy.

  20. Reduced nocturnal hypoglycaemia with basal insulin peglispro compared with insulin glargine: pooled analyses of five randomized controlled trials.

    PubMed

    Rosenstock, Julio; Marre, Michel; Qu, Yongming; Zhang, Shuyu; Bastyr, Edward J; Prince, Melvin J; Chang, Annette M

    2016-11-01

    Basal insulin peglispro (BIL) is a novel basal insulin with hepato-preferential action, resulting from reduced peripheral effects. This report summarizes hypoglycaemia data from five BIL phase III studies with insulin glargine as the comparator, including three double-blind trials. Prespecified pooled analyses (n = 4927) included: patients with type 2 diabetes (T2D) receiving basal insulin only, those with T2D on basal-bolus therapy, and those with type 1 diabetes (T1D). BIL treatment resulted in a 36-45% lower nocturnal hypoglycaemia rate compared with glargine, despite greater reduction in glycated haemoglobin (HbA1c) and higher basal insulin dosing. The total hypoglycaemia rate was similar in patients with T2D on basal treatment only, trended towards being higher (10%) in patients with T2D on basal-bolus treatment (p = .053), and was 15% higher (p < .001) with BIL versus glargine in patients with T1D, with more daytime hypoglycaemia in the T1D and T2D groups who were receiving basal-bolus therapy. In T1D, during the maintenance treatment period (26-52 weeks), the total hypoglycaemia rate was not significantly different. There were no differences in severe hypoglycaemia in the T1D or T2D pooled analyses. BIL versus glargine treatment resulted in greater HbA1c reduction with less nocturnal hypoglycaemia in all patient populations, higher daytime hypoglycaemia with basal-bolus therapy in the T1D and T2D groups, and an associated increase in total hypoglycaemia in the patients with T1D. © 2016 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

  1. Low-fat diet with omega-3 fatty acids increases plasma insulin-like growth factor concentration in healthy postmenopausal women.

    PubMed

    Young, Lindsay R; Kurzer, Mindy S; Thomas, William; Redmon, J Bruce; Raatz, Susan K

    2013-07-01

    The insulin-like growth factor pathway plays a central role in the normal and abnormal growth of tissues; however, nutritional determinants of insulin-like growth factor I (IGF-I) and its binding proteins in healthy individuals are not well defined. Three test diets-high-fat diet (40% energy as fat), low-fat diet (LF; 20% energy as fat), and a diet with low fat and high omega-3 fatty acid (LFn3; 23% energy as fat)--were tested in a randomized crossover designed controlled feeding trial in healthy postmenopausal women. Plasma IGF-I, IGF binding protein-3 (IGFBP-3), insulin, glucose, and ratio of IGF-I/IGFBP-3 concentrations were measured in response to diets. Insulin sensitivity was calculated using the homeostatic model assessment of insulin resistance We hypothesized that IGF-I, insulin, and glucose concentrations would decrease and IGFBP-3 concentration would increase in response to the low-fat diets. Eight weeks of the LFn3 diet increased circulating IGF-I (P < .001) and IGFBP-3 (P = .01) and the LF diet increased IGFBP-3 (P = .04), resulting in trends toward an increased IGF-I/IGFBP-3 ratio with the LFn3 diet and a decreased IGF-I/IGFBP-3 ratio with the LF diet (P = .13 for both comparisons). No statistically significant differences were detected between treatments at baseline or 8 weeks for IGF-1, IGFBP-3, or the ratio of IGF-1/IGFBP-3. Insulin, glucose, and the homeostatic model assessment of insulin resistance were not altered by the interventions. Low-fat diet with high n-3 fatty acids may increase circulating IGF-I concentrations without adversely affecting insulin sensitivity in healthy individuals. Published by Elsevier Inc.

  2. Insulin-like growth factor I in inclusion-body myositis and human muscle cultures.

    PubMed

    Broccolini, Aldobrando; Ricci, Enzo; Pescatori, Mario; Papacci, Manuela; Gliubizzi, Carla; D'Amico, Adele; Servidei, Serenella; Tonali, Pietro; Mirabella, Massimiliano

    2004-06-01

    Possible pathogenic mechanisms of sporadic inclusion-body myositis (sIBM) include abnormal production and accumulation of amyloid beta (A beta), muscle aging, and increased oxidative stress. Insulin-like growth factor I (IGF-I), an endocrine and autocrine/paracrine trophic factor, provides resistance against A beta toxicity and oxidative stress in vitro and promotes cell survival. In this study we analyzed the IGF-I signaling pathway in sIBM muscle and found that 16.2% +/- 2.5% of nonregenerating fibers showed increased expression of IGF-I, phosphatidylinositide 3'OH-kinase, and Akt. In the majority of sIBM abnormal muscle fibers, increased IGF-I mRNA and protein correlated with the presence of A beta cytoplasmic inclusions. To investigate a possible relationship between A beta toxicity and IGF-I upregulation, normal primary muscle cultures were stimulated for 24 hours with the A beta(25-35) peptide corresponding to the biologically active domain of A beta. This induced an increase of IGF-I mRNA and protein in myotubes at 6 hours, followed by a gradual reduction thereafter. The level of phosphorylated Akt showed similar changes. We suggest that in sIBM. IGF-I overexpression represents a reactive response to A beta toxicity, possibly providing trophic support to vulnerable fibers. Understanding the signaling pathways activated by IGF-I in sIBM may lead to novel therapeutic strategies for the disease.

  3. Stem cells with potential to generate insulin producing cells in man.

    PubMed

    Zulewski, Henryk

    2006-10-14

    Replacement of insulin-producing cells represents an almost ideal treatment for patients with diabetes mellitus type 1. Transplantation of pancreatic islets of Langerhans--although successful in experienced centres--is limited by the lack of donor organs. Generation of insulin-producing cells from stem cells represents an attractive alternative. Stem cells with the potential to differentiate into insulin-producing cells include embryonic stem cells (ESC) as well as adult stem cells from various tissues including the pancreas, liver, central nervous system, bone marrow and adipose tissue. The use of human ESC is hampered by ethical concerns and the inability to create patient specific ESC with therapeutic cloning. Among adult stem cells mesenchymal stem cells appear to have a particular developmental plasticity ex vivo that include their ability to adopt a pancreatic endocrine phenotype. The present review summarises the current knowledge on the development of insulin-producing cells from stem cells with special emphasis on human mesenchymal stem cells isolated from the pancreas and adipose tissue.

  4. Stem cells with potential to generate insulin-producing cells in man.

    PubMed

    Zulewski, Henryk

    2007-03-02

    Replacement of insulin-producing cells represents an almost ideal treatment for patients with diabetes mellitus type 1. Transplantation of pancreatic islets of Langerhans--although successful in experienced centres--is limited by the lack of donor organs. Generation of insulin-producing cells from stem cells represents an attractive alternative. Stem cells with the potential to differentiate into insulin-producing cells include embryonic stem cells (ESC) as well as adult stem cells from various tissues including the pancreas, liver, central nervous system, bone marrow and adipose tissue. The use of human ESC is hampered by ethical concerns and the inability to create patient specific ESC with therapeutic cloning. Among adult stem cells mesenchymal stem cells appear to have a particular developmental plasticity ex vivo that include their ability to adopt a pancreatic endocrine phenotype. The present review summarises the current knowledge on the development of insulin-producing cells from stem cells with special emphasis on human mesenchymal stem cells isolated from the pancreas and adipose tissue.

  5. Use of insulin glargine in dogs with diabetes mellitus.

    PubMed

    Fracassi, F; Boretti, F S; Sieber-Ruckstuhl, N S; Reusch, C E

    2012-01-01

    The objective of this study was to evaluate the safety and efficacy of insulin glargine in dogs with diabetes mellitus (DM). Twelve client-owned dogs with DM were included. All dogs received insulin glargine every 12 hours for at least six months, re-evaluations were performed after one, two, four, eight, 12 and 24 weeks and included clinical signs, blood glucose curves (BGCs) and measurement of serum fructosamine concentrations. Mean blood glucose concentrations were significantly lower after two weeks of treatment and remained significantly lower for the duration of the study. By week 24, polyuria/polydipsia had improved in 91 per cent of the dogs. No clinical signs that could have been caused by hypoglycaemia were observed. Based on BGCs and remission of the clinical signs for judging the success of the treatment, 58, 33 and 8 per cent of the dogs attained good, moderate and poor glycaemic control by week 24 of the study, respectively. Insulin glargine administered subcutaneously twice daily is a possible and safe method of treatment for dogs with naturally occurring DM. Although only a few studies are available on the use of other types of insulin in dogs, their success rate is somewhat greater than that with insulin glargine.

  6. [Historical review of insulin and its preparations in pharmacopoeia (3). Fish insulins].

    PubMed

    Suehiro, M

    1992-01-01

    Existence of encapsulated glands situated in the mesentery of certain teleosti was reported by Brockmann (1846) and Stannius (1848), respectively. Thus the gland was named stannius corpuscle or Brockmann body. Later, as results of histological study, cells of stannius corpuscle tissues were constituted with Langerhans islet cells observed in mammalian pancreas by Diammare (1899) and Laguesse (1906). Thus, before the days of discovery of insulin by Banting and Best in 1921, stannius corpuscle has been interesting from the aspects of comparative anatomy and physiology. Rennie (1906) examined a large number of specimens in various species of teleosti and gave the term "principal islet" to easily recognizable stannius corpuscle. Osawa studied comparative anatomy in Freiburg and returned to Tokyo. He continued the study of comparative anatomy of Langerhans islet aand published a report on observation of "principal islet" of flatfish, limanda yokohamae Gth. in 1912 in Japanese. His report seemed to be a milestone of studies of fish insulin in Japan. Macleod attempted to demonstrate direct evidence on secretion of insulin from Langerhans islet cells. Experiments were made on extraction of "principal islet" of teleosti, angler Lophius) and sculpin (Myoxocephalus) to obtain insulin and demonstrated activity. No insulin activity was obtained from pancreatic tissues constituted with acinar cells of these fishes. In the case of elasmobranch, Langerhans islets are not separated, but potent insulin could be extracted from the pancreas. His report published in 1922 was the first report on fish insulin. Succeeding to Macleod's report, several reports on fish insulin were contnributed from Canada, England and U.S.A. until 1929. Dr. Kkumagai, Professor of Internal Medicine, Tohoku Imperial University (Sendai) also conducted the studies on extraction of active principle of pancreas since 1920, independently. But, a Toronto group reached the goal on discovery of insulin earlier than

  7. Glucose and Insulin Secretory Response Patterns Following Diet and Tolazamide Therapy in Diabetes

    PubMed Central

    Turtle, J. R.

    1970-01-01

    Glucose and insulin secretory response patterns during glucose tolerance tests were determined in 28 maturity-onset diabetics, and the sequential effects of diet and a sulphonylurea, tolazamide, were assessed. Untreated diabetics showed hyperglycaemia, increased serum immunoreactive insulin response patterns, delayed insulin release, and relative insulin deficiency. Diet alone partially corrected the hyperglycaemia and serum immunoreactive insulin response but had no effect on the delayed insulin release or relative insulin deficiency. Tolazamide plus diet restored all values towards normal. The net effect of maintenance tolazamide therapy was to (1) restore the insulin secretory response pattern to normal, (2) reduce total pancreatic insulin output, and (3) improve the efficiency of insulin secretion. The results suggest that there is a rational basis for the use of sulphonylurea in all maturity-onset diabetics, including patients with mild carbohydrate intolerance and those who are apparently controlled by diet alone. PMID:5470087

  8. Insulin signalling in hepatocytes of humans with type 2 diabetes: excessive production and activity of protein kinase C-ι (PKC-ι) and dependent processes and reversal by PKC-ι inhibitors.

    PubMed

    Sajan, M P; Farese, R V

    2012-05-01

    We examined the role of protein kinase C-ι (PKC-ι) in mediating alterations in the abundance of enzymes in hepatocytes of type 2 diabetic humans that contribute importantly to the development of lipid and carbohydrate abnormalities in type 2 diabetes. We examined (1) insulin signalling in isolated hepatocytes of non-diabetic and type 2 diabetic humans and (2) the effects of two newly developed small molecule PKC-ι inhibitors on aberrant signalling and downstream processes. In contrast with PKC-ι deficiency in diabetic muscle, which diminishes glucose transport, PKC-ι in diabetic hepatocytes was overproduced and overactive, basally and after insulin treatment, and, moreover, was accompanied by increased abundance of PKC-ι-dependent lipogenic, proinflammatory and gluconeogenic enzymes. Heightened PKC-ι activity most likely reflected heightened activity of IRS-2-dependent phosphatidylinositol 3-kinase (PI3K), as IRS-1 levels and IRS-1/PI3K activity were markedly diminished. Importantly, insulin-stimulated PKC-ι abundance and its overabundance in diabetic hepatocytes was reversed in vitro by both insulin deprivation and PKC-ι inhibitors; this suggested operation of an insulin-driven, feed-forward/positive-feedback mechanism. In contrast with PKC-ι, protein kinase B (Akt2) activity and activation by insulin was diminished, apparently reflecting IRS-1 deficiency. Treatment of diabetic hepatocytes with PKC-ι/λ inhibitors diminished abundance of lipogenic, proinflammatory and gluconeogenic enzymes. Our findings suggest that a vicious cycle of PKC-ι overactivity and overproduction exists in hepatocytes of humans with type 2 diabetes and contributes importantly to maintaining overactivity of lipogenic, proinflammatory and gluconeogenic pathways, which underlies the lipid and carbohydrate abnormalities in type 2 diabetes.

  9. The Renin Angiotensin Aldosterone System and Insulin Resistance in Humans

    PubMed Central

    Underwood, Patricia C

    2012-01-01

    Alterations in the renin angiotensin aldosterone system (RAAS) contribute to the underlying pathophysiology of insulin resistance in humans; however, individual differences in the treatment response of insulin resistance to RAAS blockade persist. Thus, understanding inter-individual differences in the relationship between the RAAS and insulin resistance may provide insights into improved personalized treatments and improved outcomes. The effects of the systemic RAAS on blood pressure regulation and glucose metabolism have been studied extensively; however, recent discoveries on the influence of local tissue RAAS in the skeletal muscle, heart, vasculature, adipocytes, and pancreas have led to an improved understanding of how activated tissue RAAS influences the development of insulin resistance and diabetes in humans. Angiotensin II (ANGII) is the predominant RAAS component contributing to insulin resistance; however, other players such as aldosterone, renin, and ACE2 are also involved. This review examines the role of local ANGII activity on insulin resistance development in skeletal muscle, adipocytes, and pancreas, followed by a discussion of the other RAAS components implicated in insulin resistance, including ACE2, Ang1-7, renin, and aldosterone. PMID:23242734

  10. Ferulic acid attenuates diabetes-induced cognitive impairment in rats via regulation of PTP1B and insulin signaling pathway.

    PubMed

    Wang, Hao; Sun, Xiaoxu; Zhang, Ning; Ji, Zhouye; Ma, Zhanqiang; Fu, Qiang; Qu, Rong; Ma, Shiping

    2017-12-01

    Cognitive impairment has been recognized as a typical characteristic of neurodegenerative disease in diabetes mellitus (DM) and this cognitive dysfunction may be a risk factor for Alzheimer's disease (AD). Ferulic acid, a phenolic compound commonly found in a range of plants, has emerged various properties including anti-inflammatory and neuroprotective effects. In the present study, the protective activities and relevant mechanisms of ferulic acid were evaluated in diabetic rats with cognitive deficits, which were induced by a high-glucose-fat (HGF) diet and low dose of streptozotocin (STZ). It was observed that ferulic acid significantly increased body weight and decreased blood glucose levels. Meanwhile, ferulic acid could markedly ameliorate spatial memory of diabetic rats in Morris water maze (MWM) and decrease AD-like pathologic changes (Aβ deposition and Tau phosphorylation) in the hippocampus, which might be correlated with the inhibition of inflammatory cytokines release and reduction of protein tyrosine phosphatase 1B (PTP1B) expression. Moreover, the levels of brain insulin signal molecules p-IRS, p-Akt and p-GSK3β were also investigated. We found that ferulic acid administration restored the alterations in insulin signaling. In conclusion, ferulic acid exhibited beneficial effects on diabetes-induced cognition lesions, which was involved in the regulation of PTP1B and insulin signaling pathway. We suppose that PTP1B inhibition may represent a promising approach to correct abnormal signaling linked to diabetes-induced cognitive impairment. Copyright © 2017. Published by Elsevier Inc.

  11. Insulin Resistance in Alzheimer's Disease

    PubMed Central

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-01-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. PMID:25237037

  12. Challenges constraining access to insulin in the private-sector market of Delhi, India

    PubMed Central

    Kaplan, Warren A

    2016-01-01

    Objective India's majority of patients—including those living with diabetes—seek healthcare in the private sector through out-of-pocket (OOP) payments. We studied access to insulin in the private-sector market of Delhi state, India. Methods A modified World Health Organization/Health Action International (WHO/HAI) standard survey to assess insulin availability and prices, and qualitative interviews with insulin retailers (pharmacists) and wholesalers to understand insulin market dynamics. Results In 40 pharmacy outlets analysed, mean availability of the human and analogue insulins on the 2013 Delhi essential medicine list was 44.4% and 13.1%, respectively. 82% of pharmacies had domestically manufactured human insulin phials, primarily was made in India under licence to overseas pharmaceutical companies. Analogue insulin was only in cartridge and pen forms that were 4.42 and 5.81 times, respectively, the price of human insulin phials. Domestically manufactured human phial and cartridge insulin (produced for foreign and Indian companies) was less expensive than their imported counterparts. The lowest paid unskilled government worker in Delhi would work about 1.5 and 8.6 days, respectively, to be able to pay OOP for a monthly supply of human phial and analogue cartridge insulin. Interviews suggest that the Delhi insulin market is dominated by a few multinational companies that import and/or license in-country production. Several factors influence insulin uptake by patients, including doctor's prescribing preference. Wholesalers have negative perceptions about domestic insulin manufacturing. Conclusions The Delhi insulin market is an oligopoly with limited market competition. Increasing competition from Indian companies is going to require some additional policies, not presently in place. As more Indian companies produce biosimilars, brand substitution policies are needed to be able to benefit from market competition. PMID:28588966

  13. Challenges constraining access to insulin in the private-sector market of Delhi, India.

    PubMed

    Sharma, Abhishek; Kaplan, Warren A

    2016-01-01

    India's majority of patients-including those living with diabetes-seek healthcare in the private sector through out-of-pocket (OOP) payments. We studied access to insulin in the private-sector market of Delhi state, India. A modified World Health Organization/Health Action International (WHO/HAI) standard survey to assess insulin availability and prices, and qualitative interviews with insulin retailers (pharmacists) and wholesalers to understand insulin market dynamics. In 40 pharmacy outlets analysed, mean availability of the human and analogue insulins on the 2013 Delhi essential medicine list was 44.4% and 13.1%, respectively. 82% of pharmacies had domestically manufactured human insulin phials, primarily was made in India under licence to overseas pharmaceutical companies. Analogue insulin was only in cartridge and pen forms that were 4.42 and 5.81 times, respectively, the price of human insulin phials. Domestically manufactured human phial and cartridge insulin (produced for foreign and Indian companies) was less expensive than their imported counterparts. The lowest paid unskilled government worker in Delhi would work about 1.5 and 8.6 days, respectively, to be able to pay OOP for a monthly supply of human phial and analogue cartridge insulin. Interviews suggest that the Delhi insulin market is dominated by a few multinational companies that import and/or license in-country production. Several factors influence insulin uptake by patients, including doctor's prescribing preference. Wholesalers have negative perceptions about domestic insulin manufacturing. The Delhi insulin market is an oligopoly with limited market competition. Increasing competition from Indian companies is going to require some additional policies, not presently in place. As more Indian companies produce biosimilars, brand substitution policies are needed to be able to benefit from market competition.

  14. Tagging insulin in microgravity

    NASA Technical Reports Server (NTRS)

    Dobeck, Michael; Nelson, Ronald S.

    1992-01-01

    Knowing the exact subcellular sites of action of insulin in the body has the potential to give basic science investigators a basis from which a cause and cure for this disease can be approached. The goal of this project is to create a test reagent that can be used to visualize these subcellular sites. The unique microgravity environment of the Shuttle will allow the creation of a reagent that has the possibility of elucidating the subcellular sites of action of insulin. Several techniques have been used in an attempt to isolate the sites of action of items such as insulin. One of these is autoradiography in which the test item is obtained from animals fed radioactive materials. What is clearly needed is to visualize individual insulin molecules at their sites of action. The insulin tagging process to be used on G-399 involves the conjugation of insulin molecules with ferritin molecules to create a reagent that will be used back on Earth in an attempt to elucidate the sites of action of insulin.

  15. Adipokines and insulin action

    PubMed Central

    Knights, Alexander J; Funnell, Alister PW; Pearson, Richard CM; Crossley, Merlin; Bell-Anderson, Kim S

    2014-01-01

    Obesity is a major public health concern and a strong risk factor for insulin resistance, type 2 diabetes mellitus (T2DM), and cardiovascular disease. The last two decades have seen a reconsideration of the role of white adipose tissue (WAT) in whole body metabolism and insulin action. Adipose tissue-derived cytokines and hormones, or adipokines, are likely mediators of metabolic function and dysfunction. While several adipokines have been associated with obese and insulin-resistant phenotypes, a select group has been linked with insulin sensitivity, namely leptin, adiponectin, and more recently, adipolin. What is known about these insulin-sensitizing molecules and their effects in healthy and insulin resistant states is the subject of this review. There remains a significant amount of research to do to fully elucidate the mechanisms of action of these adipokines for development of therapeutics in metabolic disease. PMID:24719781

  16. Insulin-Like Growth Factor II Targets the mTOR Pathway to Reverse Autism-Like Phenotypes in Mice.

    PubMed

    Steinmetz, Adam B; Stern, Sarah A; Kohtz, Amy S; Descalzi, Giannina; Alberini, Cristina M

    2018-01-24

    Autism spectrum disorder (ASD) is a developmental disability characterized by impairments in social interaction and repetitive behavior, and is also associated with cognitive deficits. There is no current treatment that can ameliorate most of the ASD symptomatology; thus, identifying novel therapies is urgently needed. We used male BTBR T + Itpr3 tf /J (BTBR) mice, a model that reproduces most of the core behavioral phenotypes of ASD, to test the effects of systemic administration of insulin-like growth factor II (IGF-II), a polypeptide that crosses the blood-brain barrier and acts as a cognitive enhancer. We show that systemic IGF-II treatments reverse the typical defects in social interaction, cognitive/executive functions, and repetitive behaviors reflective of ASD-like phenotypes. In BTBR mice, IGF-II, via IGF-II receptor, but not via IGF-I receptor, reverses the abnormal levels of the AMPK-mTOR-S6K pathway and of active translation at synapses. Thus, IGF-II may represent a novel potential therapy for ASD. SIGNIFICANCE STATEMENT Currently, there is no effective treatment for autism spectrum disorder (ASD), a developmental disability affecting a high number of children. Using a mouse model that expresses most of the key core as well as associated behavioral deficits of ASD, that are, social, cognitive, and repetitive behaviors, we report that a systemic administration of the polypeptide insulin-like growth factor II (IGF-II) reverses all these deficits. The effects of IGF-II occur via IGF-II receptors, and not IGF-I receptors, and target both basal and learning-dependent molecular abnormalities found in several ASD mice models, including those of identified genetic mutations. We suggest that IGF-II represents a potential novel therapeutic target for ASD. Copyright © 2018 the authors 0270-6474/18/371015-15$15.00/0.

  17. [Continuous insulin therapy versus multiple insulin injections in the management of type 1 diabetes: a longitutinal study].

    PubMed

    Ribeiro, Maria Estela Bellini; Del Roio Liberatore Junior, Raphael; Custodio, Rodrigo; Martinelli Junior, Carlos Eduardo

    2016-01-01

    To compare multiple doses of insulin and continuous insulin infusion therapy as treatment for type 1 diabetes melito. 40 patients with type 1 diabetes melito (21 female) with ages between 10 and 20 years (mean=14.2) and mean duration of diabetes of 7 years used multiple doses of insulin for at least 6 months and after that, continuous insulin infusion therapy for at least 6 months. Each one of the patients has used multiple doses of insulin and continuous insulin infusion therapy. For analysis of HbA1c, mean glycated hemoglobin levels (mHbA1c) were obtained during each treatment period (multiple doses of insulin and continuous insulin infusion therapy period). Although mHbA1c levels were lower during continuous insulin infusion therapy the difference was not statistically significant. During multiple doses of insulin, 14.2% had mHbA1c values below 7.5% vs. 35.71% while on continuous insulin infusion therapy; demonstrating better glycemic control with the use of continuous insulin infusion therapy. During multiple doses of insulin, 15-40 patients have severe hypoglycemic events versus 5-40 continuous insulin infusion therapy. No episodes of ketoacidosis events were recorded. This is the first study with this design comparing multiple doses of insulin and continuous insulin infusion therapy in Brazil showing no significant difference in HbA1c; hypoglycemic events were less frequent during continuous insulin infusion therapy than during multiple doses of insulin and the percentage of patients who achieved a HbA1c less than 7.5% was greater during continuous insulin infusion therapy than multiple doses of insulin therapy. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  18. Combining insulins for optimal blood glucose control in type 1 and 2 diabetes: Focus on insulin glulisine

    PubMed Central

    Ulrich, Heather; Snyder, Benjamin; K Garg, Satish

    2007-01-01

    Normalization of blood glucose is essential for the prevention of diabetes mellitus (DM)-related microvascular and macrovascular complications. Despite substantial literature to support the benefits of glucose lowering and clear treatment targets, glycemic control remains suboptimal for most people with DM in the United States. Pharmacokinetic limitations of conventional insulins have been a barrier to achieving treatment targets secondary to adverse effects such as hypoglycemia and weight gain. Recombinant DNA technology has allowed modification of the insulin molecule to produce insulin analogues that overcome these pharmacokinetic limitations. With time action profiles that more closely mimic physiologic insulin secretion, rapid acting insulin analogues (RAAs) reduce post-prandial glucose excursions and hypoglycemia when compared to regular human insulin (RHI). Insulin glulisine (Apidra®) is a rapid-acting insulin analogue created by substituting lysine for asparagine at position B3 and glutamic acid for lysine at position B29 on the B chain of human insulin. The quick absorption of insulin glulisine more closely reproduces physiologic first-phase insulin secretion and its rapid acting profile is maintained across patient subtypes. Clinical trials have demonstrated comparable or greater efficacy of insulin glulisine versus insulin lispro or RHI, respectively. Efficacy is maintained even when insulin glulisine is administered post-meal. In addition, glulisine appears to have a more rapid time action profile compared with insulin lispro across various body mass indexes (BMIs). The safety and tolerability profile of insulin glulisine is also comparable to that of insulin lispro or RHI in type 1 or 2 DM and it has been shown to be as safe and effective when used in a continuous subcutaneous insulin infusion (CSII). In summary, insulin glulisine is a safe, effective, and well tolerated rapid-acting insulin analogue across all BMIs and a worthy option for prandial

  19. Novel simple insulin delivery device reduces barriers to insulin therapy in type 2 diabetes: results from a pilot study.

    PubMed

    Hermanns, Norbert; Lilly, Leslie C; Mader, Julia K; Aberer, Felix; Ribitsch, Anja; Kojzar, Harald; Warner, Jay; Pieber, Thomas R

    2015-05-01

    The PaQ® insulin delivery system is a simple-to-use patch-on device that provides preset basal rates and bolus insulin on demand. In addition to feasibility of use, safety, and efficacy (reported elsewhere), this study analyzed the impact of PaQ on patient-reported outcomes, including barriers to insulin treatment, diabetes-related distress, and attitudes toward insulin therapy in patients with type 2 diabetes on a stable multiple daily injection (MDI) regimen. This single-center, open-label, single-arm study comprised three 2-week periods: baseline (MDI), transition from MDI to PaQ, and PaQ treatment. Validated questionnaires were administered during the baseline and PaQ treatment periods: Barriers to Insulin Treatment questionnaire (BIT), Insulin Treatment Appraisal Scale (ITAS), and Problem Areas in Diabetes scale (PAID). Eighteen patients (age 59 ± 5 years, diabetes duration 15 ± 7 years, 21% female, HbA1c 7.7 ± 0.7%) completed the questionnaires. There was a strong, significant effect of PaQ use in mean BIT total scores (difference [D] = -5.4 ± 0.7.7, P = .01, effect size [d] = 0.70). Patients perceived less stigmatization by insulin injection (D = -2.2 ± 6.2, P = .18, d = 0.35), increased positive outcome (D = 1.9 ± 6.6, P = .17, d = 0.29), and less fear of injections (1.3 ± 4.8, P = .55, d = 0.28). Mean change in ITAS scores after PaQ device use showed a nonsignificant improvement of 1.71 ± 5.63 but moderate effect size (d = 0.30, P = .14). No increase in PAID scores was seen. The results and moderate to large effects sizes suggest that PaQ device use has beneficial and clinically relevant effects to overcoming barriers to and negative appraisal of insulin treatment, without increasing other diabetes-related distress. © 2015 Diabetes Technology Society.

  20. Pitfalls of Insulin Pump Clocks

    PubMed Central

    Reed, Amy J.

    2014-01-01

    The objective was to raise awareness about the importance of ensuring that insulin pumps internal clocks are set up correctly at all times. This is a very important safety issue because all commercially available insulin pumps are not GPS-enabled (though this is controversial), nor equipped with automatically adjusting internal clocks. Special attention is paid to how basal and bolus dose errors can be introduced by daylight savings time changes, travel across time zones, and am-pm clock errors. Correct setting of insulin pump internal clock is crucial for appropriate insulin delivery. A comprehensive literature review is provided, as are illustrative cases. Incorrect setting can potentially result in incorrect insulin delivery, with potential harmful consequences, if too much or too little insulin is delivered. Daylight saving time changes may not significantly affect basal insulin delivery, given the triviality of the time difference. However, bolus insulin doses can be dramatically affected. Such problems may occur when pump wearers have large variations in their insulin to carb ratio, especially if they forget to change their pump clock in the spring. More worrisome than daylight saving time change is the am-pm clock setting. If this setting is set up incorrectly, both basal rates and bolus doses will be affected. Appropriate insulin delivery through insulin pumps requires correct correlation between dose settings and internal clock time settings. Because insulin pumps are not GPS-enabled or automatically time-adjusting, extra caution should be practiced by patients to ensure correct time settings at all times. Clinicians and diabetes educators should verify the date/time of insulin pumps during patients’ visits, and should remind their patients to always verify these settings. PMID:25355713

  1. Amelioration of Abnormalities Associated with the Metabolic Syndrome by Spinacia oleracea (Spinach) Consumption and Aerobic Exercise in Rats.

    PubMed

    Panda, Vandana; Mistry, Kinjal; Sudhamani, S; Nandave, Mukesh; Ojha, Shreesh Kumar

    2017-01-01

    The present study evaluates the protective effects of an antioxidant-rich extract of Spinacea oleracea (NAOE) in abnormalities associated with the metabolic syndrome (MetS) in rats. HPTLC of NAOE revealed the presence of 13 total antioxidants, 14 flavonoids, and 10 phenolic acids. Rats administered with fructose (20%  w / v ) in drinking water for 45 days to induce abnormalities of MetS received NAOE (200 and 400 mg/kg, po), the standard drug gemfibrozil (60 mg/kg, po), aerobic exercise (AE), and a combination of NAOE 400 mg/kg and AE (NAOEAE) daily for 45 days. All treatments significantly altered the lipid profile and attenuated the fructose-elevated levels of uric acid, C-reactive protein, homocysteine, and marker enzymes (AST, LDH, and CK-MB) in serum and malondialdehyde in the heart and restored the fructose-depleted levels of glutathione and antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase). A significant decrease in blood glucose and insulin levels decreased insulin resistance, and improved glucose tolerance was observed in the treatment animals when compared with the fructose-fed animals. The best mitigation of MetS was shown by the NAOEAE treatment indicating that regular exercise along with adequate consumption of antioxidant-rich foods such as spinach in diet can help control MetS.

  2. Amelioration of Abnormalities Associated with the Metabolic Syndrome by Spinacia oleracea (Spinach) Consumption and Aerobic Exercise in Rats

    PubMed Central

    Mistry, Kinjal; Sudhamani, S.

    2017-01-01

    The present study evaluates the protective effects of an antioxidant-rich extract of Spinacea oleracea (NAOE) in abnormalities associated with the metabolic syndrome (MetS) in rats. HPTLC of NAOE revealed the presence of 13 total antioxidants, 14 flavonoids, and 10 phenolic acids. Rats administered with fructose (20% w/v) in drinking water for 45 days to induce abnormalities of MetS received NAOE (200 and 400 mg/kg, po), the standard drug gemfibrozil (60 mg/kg, po), aerobic exercise (AE), and a combination of NAOE 400 mg/kg and AE (NAOEAE) daily for 45 days. All treatments significantly altered the lipid profile and attenuated the fructose-elevated levels of uric acid, C-reactive protein, homocysteine, and marker enzymes (AST, LDH, and CK-MB) in serum and malondialdehyde in the heart and restored the fructose-depleted levels of glutathione and antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase). A significant decrease in blood glucose and insulin levels decreased insulin resistance, and improved glucose tolerance was observed in the treatment animals when compared with the fructose-fed animals. The best mitigation of MetS was shown by the NAOEAE treatment indicating that regular exercise along with adequate consumption of antioxidant-rich foods such as spinach in diet can help control MetS. PMID:28798859

  3. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery.

    PubMed

    Sajeesh, S; Sharma, Chandra P

    2006-11-15

    Present investigation was aimed at developing an oral insulin delivery system based on hydroxypropyl beta cyclodextrin-insulin (HPbetaCD-I) complex encapsulated polymethacrylic acid-chitosan-polyether (polyethylene glycol-polypropylene glycol copolymer) (PMCP) nanoparticles. Nanoparticles were prepared by the free radical polymerization of methacrylic acid in presence of chitosan and polyether in a solvent/surfactant free medium. Dynamic light scattering (DLS) experiment was conducted with particles dispersed in phosphate buffer (pH 7.4) and size distribution curve was observed in the range of 500-800 nm. HPbetaCD was used to prepare non-covalent inclusion complex with insulin and complex was analyzed by Fourier transform infrared (FTIR) and fluorescence spectroscopic studies. HPbetaCD complexed insulin was encapsulated into PMCP nanoparticles by diffusion filling method and their in vitro release profile was evaluated at acidic/alkaline pH. PMCP nanoparticles displayed good insulin encapsulation efficiency and release profile was largely dependent on the pH of the medium. Enzyme linked immunosorbent assay (ELISA) study demonstrated that insulin encapsulated inside the particles was biologically active. Trypsin inhibitory effect of PMCP nanoparticles was evaluated using N-alpha-benzoyl-L-arginine ethyl ester (BAEE) and casein as substrates. Mucoadhesive studies of PMCP nanoparticles were conducted using freshly excised rat intestinal mucosa and the particles were found fairly adhesive. From the preliminary studies, cyclodextrin complexed insulin encapsulated mucoadhesive nanoparticles appear to be a good candidate for oral insulin delivery.

  4. Urtica dioica modulates hippocampal insulin signaling and recognition memory deficit in streptozotocin induced diabetic mice.

    PubMed

    Patel, Sita Sharan; Gupta, Sahil; Udayabanu, Malairaman

    2016-06-01

    Diabetes mellitus has been associated with functional abnormalities in the hippocampus and performance of cognitive function. Urtica dioica (UD) has been used in the treatment of diabetes. In our previous report we observed that UD extract attenuate diabetes mediated associative and spatial memory dysfunction. The present study aimed to evaluate the effect of UD extract on mouse model of diabetes-induced recognition memory deficit and explore the possible mechanism behind it. Streptozotocin (STZ) (50 mg/kg, i.p. consecutively for 5 days) was used to induce diabetes followed by UD extract (50 mg/kg, oral) or rosiglitazone (ROSI) (5 mg/kg, oral) administration for 8 weeks. STZ induced diabetic mice showed significant decrease in hippocampal insulin signaling and translocation of glucose transporter type 4 (GLUT4) to neuronal membrane resulting in cognitive dysfunction and hypolocomotion. UD treatment effectively improved hippocampal insulin signaling, glucose tolerance and recognition memory performance in diabetic mice, which was comparable to ROSI. Further, diabetes mediated oxidative stress and inflammation was reversed by chronic UD or ROSI administration. UD leaves extract acts via insulin signaling pathway and might prove to be effective for the diabetes mediated central nervous system complications.

  5. New ways of insulin delivery.

    PubMed

    Heinemann, L

    2011-02-01

    active in the last year; at least they have not published new study results. It is clear that for companies that produce insulin themselves (e.g. Biocon) the costs of the good are not of such relevance as for companies that have to buy it commercially. For the latter ones a low bioavailability/biopotency compared with SC insulin administration can be a real hurdle when it comes to the price of their product. Despite some publications about nasal insulin, the overall activity with this route of insulin administration appears to be low; the same holds true for transdermal insulin. Insulin pens have gained more scientific interest in recent years, which is also reflected by an increase in publications, starting from practically nil 10 years ago to a solid number of five to 10 papers per year nowadays. Besides ARIA there are also attempts to increase the speed of insulin absorption after injection into the skin by applying it not into the SC tissue but intradermally or by heating up the skin above the SC insulin depot. Reading a number of papers that were not included in this chapter because they do not present any clinical data but are novel developments tested only in animal experiments so far, the clear message is that there is definitely not a lack of creativity/imagination amongst scientists; each year a plethora of new ideas for insulin application show up. Unfortunately not too many make it towards a full clinical development. As long as there is not a single successful product on the market that is based on a given ARIA approach, this area of research will not mature. For many patients, avoiding the need for SC injections is attractive; however, as long as no clear 'advantage' can be demonstrated, reimbursement will be difficult to achieve. Living in the time of evidence-based medicine it is clear that 'relevant' clinical advantages must be proven. The question is what is relevant. Is it just an improvement in metabolic control (= decrease in HbA1c)? Can this also

  6. Control of brain development and homeostasis by local and systemic insulin signalling.

    PubMed

    Liu, J; Spéder, P; Brand, A H

    2014-09-01

    Insulin and insulin-like growth factors (IGFs) are important regulators of growth and metabolism. In both vertebrates and invertebrates, insulin/IGFs are made available to various organs, including the brain, through two routes: the circulating systemic insulin/IGFs act on distant organs via endocrine signalling, whereas insulin/IGF ligands released by local tissues act in a paracrine or autocrine fashion. Although the mechanisms governing the secretion and action of systemic insulin/IGF have been the focus of extensive investigation, the significance of locally derived insulin/IGF has only more recently come to the fore. Local insulin/IGF signalling is particularly important for the development and homeostasis of the central nervous system, which is insulated from the systemic environment by the blood-brain barrier. Local insulin/IGF signalling from glial cells, the blood-brain barrier and the cerebrospinal fluid has emerged as a potent regulator of neurogenesis. This review will address the main sources of local insulin/IGF and how they affect neurogenesis during development. In addition, we describe how local insulin/IGF signalling couples neural stem cell proliferation with systemic energy state in Drosophila and in mammals. © 2014 John Wiley & Sons Ltd.

  7. Insulin resistance and polycystic ovary syndrome.

    PubMed

    Galluzzo, Aldo; Amato, Marco Calogero; Giordano, Carla

    2008-09-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in humans, affecting approximately 7-8% of women of reproductive age. Despite the criteria adopted, PCOS is considered to be a predominantly hyperandrogenetic syndrome and the evaluation of metabolic parameters and insulin sensitivity is not mandatory. Most women with PCOS also exhibit features of the metabolic syndrome, including insulin resistance, obesity and dyslipidaemia. While the association with type 2 diabetes is well established, whether the incidence of cardiovascular disease is increased in women with PCOS remains unclear. Acknowledging the strong impact of insulin-resistance in the genesis of PCOS could be helpful not only to make the diagnosis more robust, but also for conferring better cardiovascular risk prevention. Several current studies support a strong recommendation that women with PCOS should undergo comprehensive evaluation for the metabolic syndrome and recognized cardiovascular risk factors, and receive appropriate treatment as needed. Lifestyle modifications remain the first-line therapy for all obese women with PCOS. However, many of these women do not lose weight easily. Insulin-sensitizing drugs are discussed as a promising and unique therapeutic option for the chronic treatment of PCOS.

  8. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  9. Effects of intravitreal insulin and insulin signaling cascade inhibitors on emmetropization in the chick

    PubMed Central

    Penha, Alexandra Marcha; Burkhardt, Eva; Schaeffel, Frank

    2012-01-01

    Purpose Intravitreal insulin has been shown to be a powerful stimulator of myopia in chickens, in particular if the retinal image is degraded or defocused. In most tissues, the insulin receptor activates two main signaling pathways: a) the mitogen-activated protein kinase (MAPK) cascade (e.g., mitogen-activated protein kinasem kinase [MEK] and extracellular regulated kinase [ERK]) and b) the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. In the current study, insulin was injected, and these pathways were separately inhibited to determine which is activated when the retinal image is defocused by spectacle lenses. Methods Chicks were treated with either +7 D, −7 D, or no lenses. They were intravitreally injected with insulin, the MEK inhibitor U0126, the PI3K inhibitor Ly294002, or a combination of insulin and one of the inhibitors. Refractions and ocular dimension were measured at the beginning and after four days of treatment. The retinal proteins of the chicks were measured with western blots after 2 h and four days of treatment. Incubation occurred with anti-Akt1, anti-Erk1/2, anti-phospho-AktThr308, and anti-phospho-Erk1/2(Thr202/Tyr204) antibodies, and the ratio between the relative intensity of the phospho-form and the total-form was calculated. Results Chicks wearing positive lenses and injected with saline and with PI3K inhibitor compensated for the imposed defocus and became hyperopic. Insulin injections and insulin plus PI3K inhibitor injections prevented lens-induced hyperopia, whereas the MEK inhibitor alone and insulin plus MEK inhibitor had no effect. Obviously, the MEK inhibitor suppressed the effect of insulin on eye growth in the plus lens–treated animals. Chicks treated with negative lenses and injected with insulin, or with insulin plus MEK inhibitor, overcompensated for the imposed defocus. This effect of insulin was not detected in eyes injected with PI3K inhibitor plus insulin, suggesting that the PI3K inhibitor

  10. Effects of intravitreal insulin and insulin signaling cascade inhibitors on emmetropization in the chick.

    PubMed

    Penha, Alexandra Marcha; Burkhardt, Eva; Schaeffel, Frank; Feldkaemper, Marita P

    2012-01-01

    Intravitreal insulin has been shown to be a powerful stimulator of myopia in chickens, in particular if the retinal image is degraded or defocused. In most tissues, the insulin receptor activates two main signaling pathways: a) the mitogen-activated protein kinase (MAPK) cascade (e.g., mitogen-activated protein kinasem kinase [MEK] and extracellular regulated kinase [ERK]) and b) the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. In the current study, insulin was injected, and these pathways were separately inhibited to determine which is activated when the retinal image is defocused by spectacle lenses. Chicks were treated with either +7 D, -7 D, or no lenses. They were intravitreally injected with insulin, the MEK inhibitor U0126, the PI3K inhibitor Ly294002, or a combination of insulin and one of the inhibitors. Refractions and ocular dimension were measured at the beginning and after four days of treatment. The retinal proteins of the chicks were measured with western blots after 2 h and four days of treatment. Incubation occurred with anti-Akt1, anti-Erk1/2, anti-phospho-Akt(Thr308), and anti-phospho-Erk1/2((Thr202/Tyr204)) antibodies, and the ratio between the relative intensity of the phospho-form and the total-form was calculated. Chicks wearing positive lenses and injected with saline and with PI3K inhibitor compensated for the imposed defocus and became hyperopic. Insulin injections and insulin plus PI3K inhibitor injections prevented lens-induced hyperopia, whereas the MEK inhibitor alone and insulin plus MEK inhibitor had no effect. Obviously, the MEK inhibitor suppressed the effect of insulin on eye growth in the plus lens-treated animals. Chicks treated with negative lenses and injected with insulin, or with insulin plus MEK inhibitor, overcompensated for the imposed defocus. This effect of insulin was not detected in eyes injected with PI3K inhibitor plus insulin, suggesting that the PI3K inhibitor suppressed the effects of

  11. Insulin Delivery System

    NASA Technical Reports Server (NTRS)

    1988-01-01

    When Programmable Implantable Medication System (PIMS) is implanted in human body, it delivers precise programmed amounts of insulin over long periods of time. Mini-Med Technologies has been refining the Technologies since initial development at APL. The size of a hockey puck, and encased in titanium shell, PIMS holds about 2 1/2 teaspoons of insulin at a programmed basal rate. If a change in measured blood sugar level dictates a different dose, the patient can vary the amount of insulin delivered by holding a small radio transceiver over the implanted system and dialing in a specific program held in the PIMS computer memory. Insulin refills are accomplished approximately 4 times a year by hypodermic needle.

  12. The interaction of insulin, glucose, and insulin-glucose mixtures with a phospholipid monolayer.

    PubMed

    Shigenobu, Hayato; McNamee, Cathy E

    2012-12-15

    We determined how glucose or insulin interacts with a phospholipid monolayer at the air/water interface and explained these mechanisms from a physico-chemical point of view. The 1,2-dipalmitoyl-2-sn-glycero-3-phosphatidylcholine (DPPC) monolayer at an air/water interface acted as a model membrane, which allowed the effect of the molecular packing density in the monolayer on the interactions to be determined. The interaction of glucose, insulin, and a mixture of glucose and insulin to the DPPC monolayer were investigated via surface pressure-area per molecule Langmuir isotherms and fluorescence microscopy. Glucose adsorbed to the underside of the DPPC monolayer, while insulin was able to penetrate through the monolayer when the phospholipid molecules were not densely packed. The presence of a mixture of insulin and glucose affected the molecular packing in the DPPC monolayer differently than the pure insulin or glucose solutions, and the glucose-insulin mixture was seen to be able to penetrate through the monolayer. These results indicated that glucose and insulin interact with one another, giving a material that may then transported through a pore in the monolayer or through the spaces between the molecules of the monolayer. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Influence of Unweighting on Insulin Signal Transduction in Muscle

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.

    2002-01-01

    Unweighting of the juvenile soleus muscle is characterized by an increased binding capacity for insulin relative to muscle mass due to sparing of the receptors during atrophy. Although carbohydrate metabolism and protein degradation in the unweighted muscle develop increased sensitivity to insulin in vivo, protein synthesis in vivo and system A amino acid transport in vitro do not appear to develop such an enhanced response. The long-term goal is to identify the precise nature of this apparent resistance in the insulin signal transduction pathway and to consider how reduced weight-bearing may elicit this effect, by evaluating specific components of the insulin signalling pathway. Because the insulin-signalling pathway has components in common with the signal transduction pathway for insulin-like growth factor (IGF-1) and potentially other growth factors, the study could have important implications in the role of weight-bearing function on muscle growth and development. Since the insulin signalling pathway diverges following activation of insulin receptor tyrosine kinase, the immediate specific aims will be to study the receptor tyrosine kinase (IRTK) and those branches, which lead to phosphorylation of insulin receptor substrate-1 (IRS-1) and of Shc protein. To achieve these broader objectives, we will test in situ, by intramuscular injection, the responses of glucose transport, system A amino acid transport and protein synthesis to insulin analogues for which the receptor has either a weaker or much stronger binding affinity compared to insulin. Studies will include: (1) estimation of the ED(sub 50) for each analogue for these three processes; (2) the effect of duration (one to four days) of unweighting on the response of each process to all analogues tested; (3) the effect of unweighting and the analogues on IRTK activity; and (4) the comparative effects of unweighting and analogue binding on the tyrosine phosphorylation of IRTK, IRS-1, and Shc protein.

  14. Reduction of Insulin Related Preventable Severe Hypoglycemic Events in Hospitalized Children

    PubMed Central

    Poppy, Amy; Retamal-Munoz, Claudia; Cree-Green, Melanie; Wood, Colleen; Davis, Shanlee; Clements, Scott A.; Majidi, Shideh; Steck, Andrea K.; Alonso, G. Todd; Chambers, Christina; Rewers, Arleta

    2018-01-01

    OBJECTIVE Insulin is a commonly used, high-risk medication in the inpatient setting. Incorrect insulin administration can lead to preventable hypoglycemic events, which are a significant morbidity in inpatient diabetes care. The goal of this intervention was to decrease preventable insulin-related hypoglycemic events in an inpatient setting in a tertiary care pediatric hospital. METHODS Methods included the institution of several interventions such as nursing and physician education, electronic medical record order sets, electronic communication note templates, and the development of new care guidelines. RESULTS After the institution of multiple interventions, the rate of preventable hypoglycemic events decreased from 1.4 preventable events per 100 insulin days to 0.4 preventable events per 100 insulin days. CONCLUSIONS Through the use of a multi-interventional approach with oversight of a multidisciplinary insulin safety committee, a sustained decreased rate of severe preventable hypoglycemic events in hospitalized pediatric patients receiving insulin was achieved. PMID:27317577

  15. Reduction of Insulin Related Preventable Severe Hypoglycemic Events in Hospitalized Children.

    PubMed

    Poppy, Amy; Retamal-Munoz, Claudia; Cree-Green, Melanie; Wood, Colleen; Davis, Shanlee; Clements, Scott A; Majidi, Shideh; Steck, Andrea K; Alonso, G Todd; Chambers, Christina; Rewers, Arleta

    2016-07-01

    Insulin is a commonly used, high-risk medication in the inpatient setting. Incorrect insulin administration can lead to preventable hypoglycemic events, which are a significant morbidity in inpatient diabetes care. The goal of this intervention was to decrease preventable insulin-related hypoglycemic events in an inpatient setting in a tertiary care pediatric hospital. Methods included the institution of several interventions such as nursing and physician education, electronic medical record order sets, electronic communication note templates, and the development of new care guidelines. After the institution of multiple interventions, the rate of preventable hypoglycemic events decreased from 1.4 preventable events per 100 insulin days to 0.4 preventable events per 100 insulin days. Through the use of a multi-interventional approach with oversight of a multidisciplinary insulin safety committee, a sustained decreased rate of severe preventable hypoglycemic events in hospitalized pediatric patients receiving insulin was achieved. Copyright © 2016 by the American Academy of Pediatrics.

  16. Abnormal Uterine Bleeding

    MedlinePlus

    ... abnormal uterine bleeding? Abnormal uterine bleeding is any heavy or unusual bleeding from the uterus (through your ... one symptom of abnormal uterine bleeding. Having extremely heavy bleeding during your period can also be considered ...

  17. Accurate screening for insulin resistance in PCOS women using fasting insulin concentrations.

    PubMed

    Lunger, Fabian; Wildt, Ludwig; Seeber, Beata

    2013-06-01

    The aims of this cross-sectional study were to evaluate the relative agreement of both static and dynamic methods of diagnosing IR in women with polycystic ovary syndrome (PCOS) and to suggest a simple screening method for IR. All participants underwent serial blood draws for hormonal profiling and lipid assessment, a 3 h, 75 g load oral glucose tolerance test (OGTT) with every 15 min measurements of glucose and insulin, and an ACTH stimulation test. The prevalence of IR ranged from 12.2% to 60.5%, depending on the IR index used. Based on largest area under the curve on receiver operating curve (ROC) analyses, the dynamic indices outperformed the static indices with glucose to insulin ratio and fasting insulin (fInsulin) demonstrating the best diagnostic properties. Applying two cut-offs representing fInsulin extremes (<7 and >13 mIU/l, respectively) gave the diagnosis in 70% of the patients with high accuracy. Currently utilized indices for assessing IR give highly variable results in women with PCOS. The most accurate indices based on dynamic testing can be time-consuming and labor-intensive. We suggest the use of fInsulin as a simple screening test, which can reduce the number of OGTTs needed to routinely assess insulin resistance in women with PCOS.

  18. Fasting Insulin is Better Partitioned according to Family History of Type 2 Diabetes Mellitus than Post Glucose Load Insulin of Oral Glucose Tolerance Test in Young Adults.

    PubMed

    Francis, Saritha; Chandran, Sindhu Padinjareveedu; Nesheera, K K; Jacob, Jose

    2017-05-01

    Hyperinsulinemia is contributed by insulin resistance, hepatic insulin uptake, insulin secretion and rate of insulin degradation. Family history of type 2 diabetes mellitus has been reported to cause hyperinsulinemia. Correlation of fasting insulin with post glucose load Oral Glucose Tolerance Test (OGTT) insulin in young adults and their partitioning according to family history of type 2 diabetes. In this observational cross-sectional study, clinical evaluation and biochemical assays of insulin and diabetes related parameters, and secondary clinical influences on type 2 diabetes in volunteers were done for inclusion as participants (n=90) or their exclusion. Cut off levels of quantitative biochemical variables were fixed such that they included the effects of insulin resistance, but excluded other secondary clinical influences. Distribution was analysed by Shapiro-Wilk test; equality of variances by Levene's test; Log 10 transformations for conversion of groups to Gaussian distribution and for equality of variances in the groups compared. When the groups compared had Gaussian distribution and there was equality of variance, parametric methods were used. Otherwise, non parametric methods were used. Fasting insulin was correlating significantly with 30, 60 and 120 minute OGTT insulin showing that hyperinsulinemia in the fasting state was related to hyperinsulinemia in the post glucose load states. When fasting and post glucose load OGTT insulin were partitioned into those without and with family history of type 2 diabetes, maximum difference was seen in fasting insulin (p<0.001), followed by 120 (p=0.001) and 60 (p= 0.002) minute OGTT insulin. The 30 minute insulin could not be partitioned (p=0.574). Fasting, 60 and 120 minute OGTT insulin can be partitioned according to family history of type 2 diabetes, demonstrating stratification and heterogeneity in the insulin sample. Of these, fasting insulin was better partitioned and could be used for baseline reference

  19. Changes in insulin and insulin signaling in Alzheimer’s disease: cause or consequence?

    PubMed Central

    Stanley, Molly; Macauley, Shannon L.

    2016-01-01

    Individuals with type 2 diabetes have an increased risk for developing Alzheimer’s disease (AD), although the causal relationship remains poorly understood. Alterations in insulin signaling (IS) are reported in the AD brain. Moreover, oligomers/fibrils of amyloid-β (Aβ) can lead to neuronal insulin resistance and intranasal insulin is being explored as a potential therapy for AD. Conversely, elevated insulin levels (ins) are found in AD patients and high insulin has been reported to increase Aβ levels and tau phosphorylation, which could exacerbate AD pathology. Herein, we explore whether changes in ins and IS are a cause or consequence of AD. PMID:27432942

  20. Enhanced skeletal muscle lipid oxidative efficiency in insulin-resistant vs insulin-sensitive nondiabetic, nonobese humans.

    PubMed

    Galgani, Jose E; Vasquez, Karla; Watkins, Guillermo; Dupuy, Aude; Bertrand-Michel, Justine; Levade, Thierry; Moro, Cedric

    2013-04-01

    Skeletal muscle insulin resistance is proposed to result from impaired skeletal muscle lipid oxidative capacity. However, there is no evidence indicating that muscle lipid oxidative capacity is impaired in healthy otherwise insulin-resistant individuals. The objective of the study was to assess muscle lipid oxidative capacity in young, nonobese, glucose-tolerant, insulin-resistant vs insulin-sensitive individuals. In 13 insulin-sensitive [by Matsuda index (MI) (22.6 ± 0.6 [SE] kg/m(2)); 23 ± 1 years; MI 5.9 ± 0.1] and 13 insulin-resistant (23.2 ± 0.6 kg/m(2); 23 ± 3 years; MI 2.2 ± 0.1) volunteers, skeletal muscle biopsy, blood extraction before and after an oral glucose load, and dual-energy x-ray absorptiometry were performed. Skeletal muscle mitochondrial to nuclear DNA ratio, oxidative phosphorylation protein content, and citrate synthase and β-hydroxyacyl-CoA dehydrogenase activities were assessed. Muscle lipids and palmitate oxidation ((14)CO2 and (14)C-acid soluble metabolites production) at 4 [1-(14)C]palmitate concentrations (45-520 μM) were also measured. None of the muscle mitochondrial measures showed differences between groups, except for a higher complex V protein content in insulin-resistant vs insulin-sensitive volunteers (3.5 ± 0.4 vs 2.2 ± 0.4; P = .05). Muscle ceramide content was significantly increased in insulin-resistant vs insulin-sensitive individuals (P = .04). Total palmitate oxidation showed a similar concentration-dependent response in both groups (P = .69). However, lipid oxidative efficiency (CO2 to (14)C-acid soluble metabolites ratio) was enhanced in insulin-resistant vs insulin-sensitive individuals, particularly at the highest palmitate concentration (0.24 ± 0.04 vs 0.12 ± 0.02; P = .02). We found no evidence of impaired muscle mitochondrial oxidative capacity in young, nonobese, glucose-tolerant, otherwise insulin-resistant vs insulin-sensitive individuals. Enhanced muscle lipid oxidative efficiency in insulin