Sample records for abnormally enlarged neurons

  1. Enhanced exosome secretion in Down syndrome brain - a protective mechanism to alleviate neuronal endosomal abnormalities.

    PubMed

    Gauthier, Sébastien A; Pérez-González, Rocío; Sharma, Ajay; Huang, Fang-Ke; Alldred, Melissa J; Pawlik, Monika; Kaur, Gurjinder; Ginsberg, Stephen D; Neubert, Thomas A; Levy, Efrat

    2017-08-29

    A dysfunctional endosomal pathway and abnormally enlarged early endosomes in neurons are an early characteristic of Down syndrome (DS) and Alzheimer's disease (AD). We have hypothesized that endosomal material can be released by endosomal multivesicular bodies (MVBs) into the extracellular space via exosomes to relieve neurons of accumulated endosomal contents when endosomal pathway function is compromised. Supporting this, we found that exosome secretion is enhanced in the brains of DS patients and a mouse model of the disease, and by DS fibroblasts. Furthermore, increased levels of the tetraspanin CD63, a regulator of exosome biogenesis, were observed in DS brains. Importantly, CD63 knockdown diminished exosome release and worsened endosomal pathology in DS fibroblasts. Taken together, these data suggest that increased CD63 expression enhances exosome release as an endogenous mechanism mitigating endosomal abnormalities in DS. Thus, the upregulation of exosome release represents a potential therapeutic goal for neurodegenerative disorders with endosomal pathology.

  2. Fetal Alcohol Spectrum Disorders and Abnormal Neuronal Plasticity

    PubMed Central

    Medina, Alexandre E.

    2012-01-01

    The ingestion of alcohol during pregnancy can result in a group of neurobehavioral abnormalities collectively known as fetal alcohol spectrum disorders (FASD). During the past decade, studies using animal models indicated that early alcohol exposure can dramatically affect neuronal plasticity, an essential property of the central nervous system responsible for the normal wiring of the brain and involved in processes such as learning and memory. The abnormalities in neuronal plasticity caused by alcohol can explain many of the neurobehavioral deficits observed in FASD. Conversely, improving neuronal plasticity may have important therapeutic benefits. In this review, the author discuss the mechanisms that lead to these abnormalities and comment on recent pharmacological approaches that have been showing promising results in improving neuronal plasticity in FASD. PMID:21383101

  3. Disappearance of enlarged nuchal translucency before 14 weeks' gestation: relationship with chromosomal abnormalities and pregnancy outcome.

    PubMed

    Müller, M A; Pajkrt, E; Bleker, O P; Bonsel, G J; Bilardo, C M

    2004-08-01

    The aim of this study was to investigate the natural course of enlarged nuchal translucency (NT) and to determine if its disappearance before 14 weeks' gestation is a favorable prognostic sign in relation to fetal karyotype and pregnancy outcome. A total of 147 women with increased NT (> 95th centile) at first measurement were included in this study. A second measurement was performed in all cases, at an interval of at least 2 days. Both measurements were taken between 10 + 3 and 14 + 0 weeks. All women underwent chorionic villus sampling or amniocentesis for subsequent karyotyping. In those women with a normal karyotype, a fetal anomaly scan was performed at 20 weeks' gestation. Pregnancy outcome was recorded in all cases. The finding of persistent or disappearing NT enlargement was analyzed in relation to fetal karyotype and pregnancy outcome. Of the 147 paired measurements, NT remained enlarged at the second measurement in 121 (82%) cases. An abnormal karyotype was found in 35% of these cases. In 26 (18%) fetuses the NT measurement was found to be below the 95th percentile at the second measurement and in only two of them an abnormal karyotype was found (8%). In the 103 chromosomally normal fetuses an adverse outcome (i.e. fetal loss or structural defects) was recorded in 22 fetuses with persistent enlargement (28%) and in four fetuses with disappearing enlargement (17%). Disappearance of an enlarged NT before 14 weeks' gestation is not a rare phenomenon and seems to be a favorable prognostic sign with respect to fetal karyotype. Overall, no significant difference in pregnancy outcome was found between chromosomally normal fetuses with persisting or disappearing NT enlargement. Copyright 2004 ISUOG

  4. Synchronization in a chaotic neural network with time delay depending on the spatial distance between neurons

    NASA Astrophysics Data System (ADS)

    Tang, Guoning; Xu, Kesheng; Jiang, Luoluo

    2011-10-01

    The synchronization is investigated in a two-dimensional Hindmarsh-Rose neuronal network by introducing a global coupling scheme with time delay, where the length of time delay is proportional to the spatial distance between neurons. We find that the time delay always disturbs synchronization of the neuronal network. When both the coupling strength and length of time delay per unit distance (i.e., enlargement factor) are large enough, the time delay induces the abnormal membrane potential oscillations in neurons. Specifically, the abnormal membrane potential oscillations for the symmetrically placed neurons form an antiphase, so that the large coupling strength and enlargement factor lead to the desynchronization of the neuronal network. The complete and intermittently complete synchronization of the neuronal network are observed for the right choice of parameters. The physical mechanism underlying these phenomena is analyzed.

  5. High Incidence of Progressive Postnatal Cerebellar Enlargement in Costello Syndrome: Brain Overgrowth Associated with HRAS Mutations as the Likely Cause of Structural Brain and Spinal Cord Abnormalities

    PubMed Central

    Gripp, Karen W.; Hopkins, Elisabeth; Doyle, Daniel; Dobyns, William B.

    2010-01-01

    Costello syndrome is a rasopathy caused by germline mutations in the proto-oncogene HRAS. Its presentation includes failure-to-thrive with macrocephaly, characteristic facial features, hypertrophic cardiomyopathy, papillomata, malignant tumors, and cognitive impairment. In a systematic review we found absolute or relative macrocephaly (100%), ventriculomegaly (50%), and other abnormalities on brain and spinal cord imaging studies in 27/28 individuals. Posterior fossa crowding with cerebellar tonsillar herniation (CBTH) was noted in 27/28 (96%), and in 10/17 (59%) with serial studies posterior fossa crowding progressed. Sequelae of posterior fossa crowding and CBTH included hydrocephalus requiring shunt or ventriculostomy (25%), Chiari 1 malformation (32%) and syrinx formation (25%). Our data reveal macrocephaly with progressive frontal bossing and CBTH, documenting an ongoing process rather than a static congenital anomaly. Comparison of images obtained in young infants to subsequent studies demonstrated postnatal development of posterior fossa crowding. This process of evolving megalencephaly and cerebellar enlargement is in keeping with mouse model data, delineating abnormal genesis of neurons and glia, resulting in an increased number of astrocytes and enlarged brain volume. In Costello syndrome and macrocephaly-capillary malformation syndrome disproportionate brain growth is the main factor resulting in postnatal CBTH and Chiari 1 malformation. PMID:20425820

  6. Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human-Induced Pluripotent Cells

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-15-1-0433 TITLE: Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human -Induced Pluripotent Cells...2015 - 31 Aug 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human -Induced...functions to normal in neurons derived from human pluripotent cells exposed to Gulf War toxins. 15. SUBJECT TERMS microtubule, neuron, Gulf War Illness

  7. Serotonin Neuron Abnormalities in the BTBR Mouse Model of Autism

    PubMed Central

    Guo, Yue-Ping; Commons, Kathryn G.

    2017-01-01

    The inbred mouse strain BTBR T+ Itpr3tf/J (BTBR) i studied as a model of idiopathic autism because they are less social and more resistant to change than other strains. Forebrain serotonin receptors and the response to serotonin drugs are altered in BTBR mice, yet it remains unknown if serotonin neurons themselves are abnormal. In this study, we found that serotonin tissue content and the density of serotonin axons is reduced in the hippocampus of BTBR mice in comparison to C57BL/6J (C57) mice. This was accompanied by possible compensatory changes in serotonin neurons that were most pronounced in regions known to provide innervation to the hippocampus: the caudal dorsal raphe (B6) and the median raphe. These changes included increased numbers of serotonin neurons and hyperactivation of Fos expression. Metrics of serotonin neurons in the rostral 2/3 of the dorsal raphe and serotonin content of the prefrontal cortex were less impacted. Thus, serotonin neurons exhibit region-dependent abnormalities in the BTBR mouse that may contribute to their altered behavioral profile. PMID:27478061

  8. Serotonin neuron abnormalities in the BTBR mouse model of autism.

    PubMed

    Guo, Yue-Ping; Commons, Kathryn G

    2017-01-01

    The inbred mouse strain BTBR T + Itpr3 tf /J (BTBR) is studied as a model of idiopathic autism because they are less social and more resistant to change than other strains. Forebrain serotonin receptors and the response to serotonin drugs are altered in BTBR mice, yet it remains unknown if serotonin neurons themselves are abnormal. In this study, we found that serotonin tissue content and the density of serotonin axons is reduced in the hippocampus of BTBR mice in comparison to C57BL/6J (C57) mice. This was accompanied by possible compensatory changes in serotonin neurons that were most pronounced in regions known to provide innervation to the hippocampus: the caudal dorsal raphe (B6) and the median raphe. These changes included increased numbers of serotonin neurons and hyperactivation of Fos expression. Metrics of serotonin neurons in the rostral 2/3 of the dorsal raphe and serotonin content of the prefrontal cortex were less impacted. Thus, serotonin neurons exhibit region-dependent abnormalities in the BTBR mouse that may contribute to their altered behavioral profile. Autism Res 2017, 10: 66-77. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  9. Abnormal Neural Progenitor Cells Differentiated from Induced Pluripotent Stem Cells Partially Mimicked Development of TSC2 Neurological Abnormalities.

    PubMed

    Li, Yaqin; Cao, Jiqing; Chen, Menglong; Li, Jing; Sun, Yiming; Zhang, Yu; Zhu, Yuling; Wang, Liang; Zhang, Cheng

    2017-04-11

    Tuberous sclerosis complex (TSC) is a disease featuring devastating and therapeutically challenging neurological abnormalities. However, there is a lack of specific neural progenitor cell models for TSC. Here, the pathology of TSC was studied using primitive neural stem cells (pNSCs) from a patient presenting a c.1444-2A>C mutation in TSC2. We found that TSC2 pNSCs had higher proliferative activity and increased PAX6 expression compared with those of control pNSCs. Neurons differentiated from TSC2 pNSCs showed enlargement of the soma, perturbed neurite outgrowth, and abnormal connections among cells. TSC2 astrocytes had increased saturation density and higher proliferative activity. Moreover, the activity of the mTOR pathway was enhanced in pNSCs and induced in neurons and astrocytes. Thus, our results suggested that TSC2 heterozygosity caused neurological malformations in pNSCs, indicating that its heterozygosity might be sufficient for the development of neurological abnormalities in patients. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Morphological and electrophysiological changes in intratelencephalic-type pyramidal neurons in the motor cortex of a rat model of levodopa-induced dyskinesia.

    PubMed

    Ueno, Tatsuya; Yamada, Junko; Nishijima, Haruo; Arai, Akira; Migita, Keisuke; Baba, Masayuki; Ueno, Shinya; Tomiyama, Masahiko

    2014-04-01

    Levodopa-induced dyskinesia (LID) is a major complication of long-term dopamine replacement therapy for Parkinson's disease, and becomes increasingly problematic in the advanced stage of the disease. Although the cause of LID still remains unclear, there is accumulating evidence from animal experiments that it results from maladaptive plasticity, resulting in supersensitive excitatory transmission at corticostriatal synapses. Recent work using transcranial magnetic stimulation suggests that the motor cortex displays the same supersensitivity in Parkinson's disease patients with LID. To date, the cellular mechanisms underlying the abnormal cortical plasticity have not been examined. The morphology of the dendritic spines has a strong relationship to synaptic plasticity. Therefore, we explored the spine morphology of pyramidal neurons in the motor cortex in a rat model of LID. We used control rats, 6-hydroxydopamine-lesioned rats (a model of Parkinson's disease), 6-hydroxydopamine-lesioned rats chronically treated with levodopa (a model of LID), and control rats chronically treated with levodopa. Because the direct pathway of the basal ganglia plays a central role in the development of LID, we quantified the density and size of dendritic spines in intratelencephalic (IT)-type pyramidal neurons in M1 cortex that project to the striatal medium spiny neurons in the direct pathway. The spine density was not different among the four groups. In contrast, spine size became enlarged in the Parkinson's disease and LID rat models. The enlargement was significantly greater in the LID model than in the Parkinson's disease model. This enlargement of the spines suggests that IT-type pyramidal neurons acquire supersensitivity to excitatory stimuli. To confirm this possibility, we monitored miniature excitatory postsynaptic currents (mEPSCs) in the IT-type pyramidal neurons in M1 cortex using whole-cell patch clamp. The amplitude of the mEPSCs was significantly increased in the LID

  11. Enlarging effects of estradiol on the nuclear volume of neurons in the hypothalamus during aging.

    PubMed

    Hsu, C; Yang, S L; Hsieh, Y L; Lue, S I; Hsu, H K; Peng, M T

    1998-01-01

    Neuronal nuclear volumes (NNVs) were measured in the medial preoptic nucleus (MPN), anterior hypothalamic area (AHA) and arcuate nucleus (ARN) of young adult, middle-aged, and old rats of both sexes. The NNVs in the darkly stained sexual-dimorphic nucleus of the preoptic area (SDN-POA) and the lighter staining surrounding area (non-SDN-POA) within the MPN were measured separately. Intact young and middle-aged female rats had larger NNVs than those of the males in SDN-POA, non-SDN-POA and AHA but not in ARN. During aging, only intact old female rats manifested significant NNV shrinkage in all the measured areas. Long-term treatment with estradiol benzoate (EB) caused a significant enlargement of the NNVs in non-SDN-POA and ARN of middle-aged and old male rats as well as the NNVs in SDN-POA, non-SDN-POA and ARN of old female rats. The enlarging effect of EB on NNVs in both SDN-POA and non-SDN-POA of female rats could be prevented by ovariectomy. Furthermore, NNVs in SDN-POA and non-SDN-POA of ovariectomized female rats were even smaller than those of the age-matched intact female rats. These results indicate that: (1) the NNVs of MPN and ARN in male and female rats were enlarged after long-term exposure of physiological dose of estradiol; (2) the enlarging effects of EB on NNV in MPN can explain why the NNV of intact female rats is larger than that of males, and (3) during aging, the sex-specific shrinkage of NNVs in MPN, AHA and ARN of female rats may be due to an intrinsic aging process rather than long-term effects of EB.

  12. Cell death in neural precursor cells and neurons before neurite formation prevents the emergence of abnormal neural structures in the Drosophila optic lobe.

    PubMed

    Hara, Yusuke; Sudo, Tatsuya; Togane, Yu; Akagawa, Hiromi; Tsujimura, Hidenobu

    2018-04-01

    Programmed cell death is a conserved strategy for neural development both in vertebrates and invertebrates and is recognized at various developmental stages in the brain from neurogenesis to adulthood. To understand the development of the central nervous system, it is essential to reveal not only molecular mechanisms but also the role of neural cell death (Pinto-Teixeira et al., 2016). To understand the role of cell death in neural development, we investigated the effect of inhibition of cell death on optic lobe development. Our data demonstrate that, in the optic lobe of Drosophila, cell death occurs in neural precursor cells and neurons before neurite formation and functions to prevent various developmental abnormalities. When neuronal cell death was inhibited by an effector caspase inhibitor, p35, multiple abnormal neuropil structures arose during optic lobe development-e.g., enlarged or fused neuropils, misrouted neurons and abnormal neurite lumps. Inhibition of cell death also induced morphogenetic defects in the lamina and medulla development-e.g., failures in the separation of the lamina and medulla cortices and the medulla rotation. These defects were reproduced in the mutant of an initiator caspase, dronc. If cell death was a mechanism for removing the abnormal neuropil structures, we would also expect to observe them in mutants defective for corpse clearance. However, they were not observed in these mutants. When dead cell-membranes were visualized with Apoliner, they were observed only in cortices and not in neuropils. These results suggest that the cell death occurs before mature neurite formation. Moreover, we found that inhibition of cell death induced ectopic neuroepithelial cells, neuroblasts and ganglion mother cells in late pupal stages, at sites where the outer and inner proliferation centers were located at earlier developmental stages. Caspase-3 activation was observed in the neuroepithelial cells and neuroblasts in the proliferation centers

  13. Magnetic resonance imaging of neuronal ceroid lipofuscinosis in a border collie.

    PubMed

    Koie, Hiroshi; Shibuya, Hisashi; Sato, Tsuneo; Sato, Akane; Nawa, Koji; Nawa, Yuko; Kitagawa, Masato; Sakai, Manabu; Takahashi, Tomoko; Yamaya, Yoshiki; Yamato, Osamu; Watari, Toshihiro; Tokuriki, Mikihiko

    2004-11-01

    A castrated male border collie 23 months of age weighing 19.4 kg was referred to the Animal Medical Center of Nihon University with complaints of visual disturbance and behavioral abnormality, hyperacusis and morbid fear. The MRI examination revealed the slight dilated cerebral sulci and cerebellar fissures and left ventricular enlargement. This is the first report of MRI findings of canine neuronal ceroid lipofuscinosis.

  14. The development of behavioral abnormalities in the motor neuron degeneration (mnd) mouse.

    PubMed

    Bolivar, Valerie J; Scott Ganus, J; Messer, Anne

    2002-05-24

    The motor neuron degeneration (mnd) mouse, which has widespread abnormal accumulating lipoprotein and neuronal degeneration, has a mutation in CLN8, the gene for human progressive epilepsy with mental retardation (EPMR). EPMR is one of the neuronal ceroid lipofuscinoses (NCLs), a group of neurological disorders characterized by autofluorescent lipopigment accumulation, blindness, seizures, motor deterioration, and dementia. The human phenotype of EPMR suggests that, in addition to the motor symptoms previously categorized, various types of progressive behavioral abnormalities would be expected in mnd mice. We have therefore examined exploratory behavior, fear conditioning, and aggression in 2-3 month and 4-5 month old male mnd mice and age-matched C57BL/6 (B6) controls. The mnd mice displayed increased activity with decreased habituation in the activity monitor, poor contextual and cued memory, and heightened aggression relative to B6 controls. These behavioral deficits were most prominent at 4-5 months of age, which is prior to the onset of gross motor symptoms at 6 months. Our results provide a link from the mutation via pathology to a quantifiable multidimensional behavioral phenotype of this naturally occurring mouse model of NCL.

  15. Mutations in α-Tubulin Cause Abnormal Neuronal Migration in Mice and Lissencephaly in Humans

    PubMed Central

    Keays, David A.; Tian, Guoling; Poirier, Karine; Huang, Guo-Jen; Siebold, Christian; Cleak, James; Oliver, Peter L.; Fray, Martin; Harvey, Robert J.; Molnár, Zoltán; Piñon, Maria C.; Dear, Neil; Valdar, William; Brown, Steve D.M.; Davies, Kay E.; Rawlins, J. Nicholas P.; Cowan, Nicholas J.; Nolan, Patrick; Chelly, Jamel; Flint, Jonathan

    2007-01-01

    Summary The development of the mammalian brain is dependent on extensive neuronal migration. Mutations in mice and humans that affect neuronal migration result in abnormal lamination of brain structures with associated behavioral deficits. Here, we report the identification of a hyperactive N-ethyl-N-nitrosourea (ENU)-induced mouse mutant with abnormalities in the laminar architecture of the hippocampus and cortex, accompanied by impaired neuronal migration. We show that the causative mutation lies in the guanosine triphosphate (GTP) binding pocket of α-1 tubulin (Tuba1) and affects tubulin heterodimer formation. Phenotypic similarity with existing mouse models of lissencephaly led us to screen a cohort of patients with developmental brain anomalies. We identified two patients with de novo mutations in TUBA3, the human homolog of Tuba1. This study demonstrates the utility of ENU mutagenesis in the mouse as a means to discover the basis of human neurodevelopmental disorders. PMID:17218254

  16. Morphological patterns in children with ganglion related enteric neuronal abnormalities.

    PubMed

    Henna, Nausheen; Nagi, Abdul H; Sheikh, Muhammad A; Shaukat, Mahmood

    2011-01-01

    Hirschsprung's Disease (HD) is a developmental disorder of enteric nervous system characterised by the absence of ganglion cells in submucosal (Meissner's) and myenteric (Aurbach's) plexuses of distal bowel. The purpose of the present study was to observe and report the morphological patterns of ganglion related enteric neuronal abnormalities in children presented with clinical features of (HD) in a Pakistani population. A total of 92 patients with clinical presentation of HD were enrolled between March 2009 and October 2009. Among them, 8 were excluded according to the exclusion criteria. After detailed history and physical examination, paraffin embedded H and E stained sections were prepared from the serial open biopsies from colorectum. The data was analysed using SPSS-17. Frequencies and percentages are given for qualitative variables. Non-parametric Binomial Chi-Square test was applied to observe within group associations and p<0.05 was considered statistically significant. Among 84 patients, 13 (15.5%) proved to be normally ganglionic whereas 71 (84.5%) showed ganglion related enteric neuronal abnormalities namely isolated hypoganglionosis 9 (12.7%), immaturity of ganglion cells 9 (12.7%), isolated hyperganglionosis (IND Type B) 2 (2.8%) and Hirschsprung's disease 51 (71.8%). Among HD group, 34 (66.7%) belonged to isolated form and 17 (33.3%) showed combined ganglion related abnormalities. Hirschsprung's disease is common in Pakistani population, followed by hypoganglionosis, immaturity of ganglion cells and IND type B. The presence of hypertrophic nerve fibres was significant in HD, hyperganglionosis and hypoganglionosis, whereas, no hypertrophic nerve fibres were appreciated in immaturity of ganglion cell group.

  17. Pericellular innervation of neurons expressing abnormally hyperphosphorylated tau in the hippocampal formation of Alzheimer's disease patients.

    PubMed

    Blazquez-Llorca, Lidia; Garcia-Marin, Virginia; Defelipe, Javier

    2010-01-01

    Neurofibrillary tangles (NFT) represent one of the main neuropathological features in the cerebral cortex associated with Alzheimer's disease (AD). This neurofibrillary lesion involves the accumulation of abnormally hyperphosphorylated or abnormally phosphorylated microtubule-associated protein tau into paired helical filaments (PHF-tau) within neurons. We have used immunocytochemical techniques and confocal microscopy reconstructions to examine the distribution of PHF-tau-immunoreactive (ir) cells, and their perisomatic GABAergic and glutamatergic innervations in the hippocampal formation and adjacent cortex of AD patients. Furthermore, correlative light and electron microscopy was employed to examine these neurons and the perisomatic synapses. We observed two patterns of staining in PHF-tau-ir neurons, pattern I (without NFT) and pattern II (with NFT), the distribution of which varies according to the cortical layer and area. Furthermore, the distribution of both GABAergic and glutamatergic terminals around the soma and proximal processes of PHF-tau-ir neurons does not seem to be altered as it is indistinguishable from both control cases and from adjacent neurons that did not contain PHF-tau. At the electron microscope level, a normal looking neuropil with typical symmetric and asymmetric synapses was observed around PHF-tau-ir neurons. These observations suggest that the synaptic connectivity around the perisomatic region of these PHF-tau-ir neurons was apparently unaltered.

  18. Computer-Aided Diagnosis of Splenic Enlargement Using Wave Pattern of Spleen in Abdominal CT Images: Initial Observations

    NASA Astrophysics Data System (ADS)

    Seong, Won; Cho, June-Sik; Noh, Seung-Moo; Park, Jong-Won

    In general, the spleen accompanied by abnormal abdomen is hypertrophied. However, if the spleen size is originally small, it is hard to detect the splenic enlargement due to abnormal abdomen by simply measure the size. On the contrary, the spleen size of a person having a normal abdomen may be large by nature. Therefore, measuring the size of spleen is not a reliable diagnostic measure of its enlargement or the abdomen abnormality. This paper proposes an automatic method to diagnose the splenic enlargement due to abnormality, by examining the boundary pattern of spleen in abdominal CT images.

  19. Sodium valproate induced gingival enlargement with pre-existing chronic periodontitis.

    PubMed

    Joshipura, Vaibhavi

    2012-04-01

    Gingival enlargement is a common clinical feature of gingival and periodontal diseases. Currently, more than 20 prescription medications are associated with gingival enlargement. Although the mechanisms of action may be different, the clinical and microscopic appearance of drug-induced gingival enlargement is similar with any drug. Gingival enlargement produces esthetic changes, and clinical symptoms including pain, tenderness, bleeding, speech disturbances, abnormal tooth movement, dental occlusion problems, enhancement of caries development and periodontal disorders. Sodium valproate is considered to produce gingival enlargement, but very rarely. This case report features sodium valproate induced gingival enlargement in a patient with pre-existing chronic periodontitis, who came to the Dental Department, Chinmaya Mission Hospital, Bangalore. The case is special as the patient did not develop the enlargement in spite of taking phenytoin for 1 year and developed enlargement with sodium valproate within 6 months.

  20. An unusual case of generalized severe gingival enlargement during pregnancy.

    PubMed

    McIntosh, Crystal L; Kolhatkar, Shilpa; Winkler, James R; Ojha, Junu; Bhola, Monish

    2010-01-01

    Increased hormone levels that are present during puberty and pregnancy are associated with localized or generalized gingival enlargement. This article reviews the gingival alterations that can occur during pregnancy and describes a case of generalized severe gingival enlargement associated with pregnancy and its management. A 36-year-old woman had severe bilateral gingival enlargement of short duration. The patient denied taking any medications. The laboratory report revealed no systemic abnormalities; however, the report disclosed that she was pregnant. Surgical therapy for the gingival enlargement included gingivectomy and gingivoplasty of all quadrants, which reduced the size of the enlarged gingiva. Postoperative visits demonstrated uneventful healing, with no recurrence seen at the one-year follow-up appointment. It appears that the English literature includes only one other case report that discusses generalized gingival enlargement during pregnancy. Pregnancy-related gingival enlargement should be included as a differential diagnosis in women who have non-drug-induced generalized gingival enlargement.

  1. 42 CFR 37.53 - Notification of abnormal roentgenographic findings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... suggesting, enlarged heart, tuberculosis, lung cancer, or any other significant abnormal findings other than... files and the most recent examination was interpreted to show enlarged heart, tuberculosis, cancer... findings suggesting, abnormality of cardiac shape or size, tuberculosis, lung cancer, or any other...

  2. PARD3 dysfunction in conjunction with dynamic HIPPO signaling drives cortical enlargement with massive heterotopia.

    PubMed

    Liu, Wenying Angela; Chen, She; Li, Zhizhong; Lee, Choong Heon; Mirzaa, Ghayda; Dobyns, William B; Ross, M Elizabeth; Zhang, Jiangyang; Shi, Song-Hai

    2018-06-01

    Proper organization and orderly mitosis of radial glial progenitors (RGPs) drive the formation of a laminated mammalian cortex in the correct size. However, the molecular underpinnings of the intricate process remain largely unclear. Here we show that RGP behavior and cortical development are controlled by temporally distinct actions of partitioning-defective 3 (PARD3) in concert with dynamic HIPPO signaling. RGPs lacking PARD3 exhibit developmental stage-dependent abnormal switches in division mode, resulting in an initial overproduction of RGPs located largely outside the ventricular zone at the expense of deep-layer neurons. Ectopically localized RGPs subsequently undergo accelerated and excessive neurogenesis, leading to the formation of an enlarged cortex with massive heterotopia and increased seizure susceptibility. Simultaneous removal of HIPPO pathway effectors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) suppresses cortical enlargement and heterotopia formation. These results define a dynamic regulatory program of mammalian cortical development and highlight a progenitor origin of megalencephaly with ribbon heterotopia and epilepsy. © 2018 Liu et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Three-dimensional analysis of somatic mitochondrial dynamics in fission-deficient injured motor neurons using FIB/SEM.

    PubMed

    Tamada, Hiromi; Kiryu-Seo, Sumiko; Hosokawa, Hiroki; Ohta, Keisuke; Ishihara, Naotada; Nomura, Masatoshi; Mihara, Katsuyoshi; Nakamura, Kei-Ichiro; Kiyama, Hiroshi

    2017-08-01

    Mitochondria undergo morphological changes through fusion and fission for their quality control, which are vital for neuronal function. In this study, we examined three-dimensional morphologies of mitochondria in motor neurons under normal, nerve injured, and nerve injured plus fission-impaired conditions using the focused ion beam/scanning electron microscopy (FIB/SEM), because the FIB/SEM technology is a powerful tool to demonstrate both 3D images of whole organelle and the intra-organellar structure simultaneously. Crossing of dynamin-related protein 1 (Drp1) gene-floxed mice with neuronal injury-specific Cre driver mice, Atf3:BAC Tg mice, allowed for Drp1 ablation specifically in injured neurons. FIB/SEM analysis demonstrated that somatic mitochondrial morphologies in motor neurons were not altered before or after nerve injury. However, the fission impairment resulted in prominent somatic mitochondrial enlargement, which initially induced complex morphologies with round regions and long tubular processes, subsequently causing a decrease in the number of processes and further enlargement of the round regions, which eventually resulted in big spheroidal mitochondria without processes. The abnormal mitochondria exhibited several degradative morphologies: local or total cristae collapse, vacuolization, and mitophagy. These suggest that mitochondrial fission is crucial for maintaining mitochondrial integrity in injured motor neurons, and multiple forms of mitochondria degradation may accelerate neuronal degradation. © 2017 Wiley Periodicals, Inc.

  4. Asymmetric Meckel Cave Enlargement: A Potential Marker of PHACES Syndrome.

    PubMed

    Wright, J N; Wycoco, V

    2017-06-01

    PHACES syndrome is a complex of morphologic abnormalities of unknown cause and includes posterior fossa abnormalities; head and neck infantile hemangiomas; arterial, cardiac, and eye anomalies; and sternal or abdominal wall defects. Accurate identification of the syndrome is important for optimal treatment. The purpose of this study was to investigate the incidence of asymmetric Meckel cave enlargement, a potential novel imaging marker, in a population of patients referred for evaluation of possible PHACES syndrome. Eighty-five patients referred for neuroimaging evaluation of possible PHACES syndrome were identified and stratified on the basis of their ultimate clinical PHACES diagnosis categorization into PHACES, possible PHACES, or not PHACES. MR imaging studies were subsequently reviewed for the presence or absence of unilateral Meckel cave enlargement, with the reviewer blinded to the ultimate PHACES syndrome categorization. Twenty-five of 85 patients (29%) were ultimately categorized as having PHACES or possible PHACES according to consensus guidelines. Asymmetric Meckel cave enlargement was present in 76% (19/25) of these patients and in 82% (19/23) of only those patients with definite PHACES. This finding was present in none of the 60 patients determined not to have PHACES syndrome. In 7/19 patients (37%) with this finding, subtle MR imaging abnormalities consistent with PHACES were missed on the initial MR imaging interpretation. Asymmetric Meckel cave enlargement was a common feature of patients with PHACES in our cohort and may serve as a novel imaging marker. Increased awareness of this imaging feature has the potential to increase the diagnostic accuracy of PHACES. © 2017 by American Journal of Neuroradiology.

  5. Impulsive-antisocial dimension of psychopathy linked to enlargement and abnormal functional connectivity of the striatum.

    PubMed

    Korponay, Cole; Pujara, Maia; Deming, Philip; Philippi, Carissa; Decety, Jean; Kosson, David S; Kiehl, Kent A; Koenigs, Michael

    2017-03-01

    Psychopathy is a mental health disorder characterized by callous and impulsive antisocial behavior, and is associated with a high incidence of violent crime, substance abuse, and recidivism. Recent studies suggest that the striatum may be a key component of the neurobiological basis for the disorder, though structural findings have been mixed and functional connectivity of the striatum in psychopathy has yet to be fully examined. We performed a multimodal neuroimaging study of striatum volume and functional connectivity in psychopathy, using a large sample of adult male prison inmates ( N =124). We conducted volumetric analyses in striatal subnuclei, and subsequently assessed resting-state functional connectivity in areas where volume was related to psychopathy severity. Total PCL-R and Factor 2 scores (which index the impulsive/antisocial traits of psychopathy) were associated with larger striatal subnuclei volumes and increased volume in focal areas throughout the striatum, particularly in the nucleus accumbens and putamen bilaterally. Furthermore, at many of the striatal areas where volume was positively associated with Factor 2 scores, psychopathy severity was also associated with abnormal functional connectivity with other brain regions, including dorsolateral prefrontal cortex, ventral midbrain and other areas of the striatum. The results were not attributable to age, race, IQ, substance use history, or intracranial volume. These findings associate the impulsive/antisocial dimension of psychopathy with enlarged striatal subnuclei and aberrant functional connectivity between the striatum and other brain regions. Furthermore, the co-localization of volumetric and functional connectivity findings suggests that these neural abnormalities may be pathophysiologically linked.

  6. Impulsive-antisocial dimension of psychopathy linked to enlargement and abnormal functional connectivity of the striatum

    PubMed Central

    Korponay, Cole; Pujara, Maia; Deming, Philip; Philippi, Carissa; Decety, Jean; Kosson, David S.; Kiehl, Kent A.; Koenigs, Michael

    2016-01-01

    Background Psychopathy is a mental health disorder characterized by callous and impulsive antisocial behavior, and is associated with a high incidence of violent crime, substance abuse, and recidivism. Recent studies suggest that the striatum may be a key component of the neurobiological basis for the disorder, though structural findings have been mixed and functional connectivity of the striatum in psychopathy has yet to be fully examined. Methods We performed a multimodal neuroimaging study of striatum volume and functional connectivity in psychopathy, using a large sample of adult male prison inmates (N=124). We conducted volumetric analyses in striatal subnuclei, and subsequently assessed resting-state functional connectivity in areas where volume was related to psychopathy severity. Results Total PCL-R and Factor 2 scores (which index the impulsive/antisocial traits of psychopathy) were associated with larger striatal subnuclei volumes and increased volume in focal areas throughout the striatum, particularly in the nucleus accumbens and putamen bilaterally. Furthermore, at many of the striatal areas where volume was positively associated with Factor 2 scores, psychopathy severity was also associated with abnormal functional connectivity with other brain regions, including dorsolateral prefrontal cortex, ventral midbrain and other areas of the striatum. The results were not attributable to age, race, IQ, substance use history, or intracranial volume. Conclusion These findings associate the impulsive/antisocial dimension of psychopathy with enlarged striatal subnuclei and aberrant functional connectivity between the striatum and other brain regions. Furthermore, the co-localization of volumetric and functional connectivity findings suggests that these neural abnormalities may be pathophysiologically linked. PMID:28367514

  7. Abnormal neuronal activity in Tourette syndrome and its modulation using deep brain stimulation

    PubMed Central

    Israelashvili, Michal; Loewenstern, Yocheved

    2015-01-01

    Tourette syndrome (TS) is a common childhood-onset disorder characterized by motor and vocal tics that are typically accompanied by a multitude of comorbid symptoms. Pharmacological treatment options are limited, which has led to the exploration of deep brain stimulation (DBS) as a possible treatment for severe cases. Multiple lines of evidence have linked TS with abnormalities in the motor and limbic cortico-basal ganglia (CBG) pathways. Neurophysiological data have only recently started to slowly accumulate from multiple sources: noninvasive imaging and electrophysiological techniques, invasive electrophysiological recordings in TS patients undergoing DBS implantation surgery, and animal models of the disorder. These converging sources point to system-level physiological changes throughout the CBG pathway, including both general altered baseline neuronal activity patterns and specific tic-related activity. DBS has been applied to different regions along the motor and limbic pathways, primarily to the globus pallidus internus, thalamic nuclei, and nucleus accumbens. In line with the findings that also draw on the more abundant application of DBS to Parkinson's disease, this stimulation is assumed to result in changes in the neuronal firing patterns and the passage of information through the stimulated nuclei. We present an overview of recent experimental findings on abnormal neuronal activity associated with TS and the changes in this activity following DBS. These findings are then discussed in the context of current models of CBG function in the normal state, during TS, and finally in the wider context of DBS in CBG-related disorders. PMID:25925326

  8. 42 CFR 37.53 - Notification of abnormal roentgenographic findings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... suggesting, enlarged heart, tuberculosis, lung cancer, or any other significant abnormal findings other than... files and the most recent examination was interpreted to show enlarged heart, tuberculosis, cancer...

  9. 42 CFR 37.53 - Notification of abnormal roentgenographic findings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... suggesting, enlarged heart, tuberculosis, lung cancer, or any other significant abnormal findings other than... files and the most recent examination was interpreted to show enlarged heart, tuberculosis, cancer...

  10. Development and characterization of NEX- Pten, a novel forebrain excitatory neuron-specific knockout mouse.

    PubMed

    Kazdoba, Tatiana M; Sunnen, C Nicole; Crowell, Beth; Lee, Gum Hwa; Anderson, Anne E; D'Arcangelo, Gabriella

    2012-01-01

    The phosphatase and tensin homolog located on chromosome 10 (PTEN) suppresses the activity of the phosphoinositide-3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway, a signaling cascade critically involved in the regulation of cell proliferation and growth. Human patients carrying germ line PTEN mutations have an increased predisposition to tumors, and also display a variety of neurological symptoms and increased risk of epilepsy and autism, implicating PTEN in neuronal development and function. Consistently, loss of Pten in mouse neural cells results in ataxia, seizures, cognitive abnormalities, increased soma size and synaptic abnormalities. To better understand how Pten regulates the excitability of principal forebrain neurons, a factor that is likely to be altered in cognitive disorders, epilepsy and autism, we generated a novel conditional knockout mouse line (NEX-Pten) in which Cre, under the control of the NEX promoter, drives the deletion of Pten specifically in early postmitotic, excitatory neurons of the developing forebrain. Homozygous mutant mice exhibited a massive enlargement of the forebrain, and died shortly after birth due to excessive mTOR activation. Analysis of the neonatal cerebral cortex further identified molecular defects resulting from Pten deletion that likely affect several aspects of neuronal development and excitability. Copyright © 2012 S. Karger AG, Basel.

  11. Hearing loss and enlarged internal auditory canal in children.

    PubMed

    Santos, Saturnino; Domínguez, M Jesús; Cervera, Javier; Suárez, Alicia; Bueno, Antonio; Bartolomé, Margarita; López, Rafael

    2014-01-01

    Among the temporal bone abnormalities that can be found in the etiological study of paediatric sensorineural hearing loss (SNHL) by imaging techniques, those related to the internal auditory canal (IAC) are the least frequent. The most prevalent of these abnormalities that is associated with SNHL is stenotic IAC due to its association with cochlear nerve deficiencies. Less frequent and less concomitant with SNHL is the finding of an enlarged IAC (>8mm). Retrospective and descriptive review of clinical associations, imaging, audiological patterns and treatment of 9 children with hearing loss and enlarged IAC in the period 1999 to 2012. Two groups of patients are described. The first, without association with vestibulocochlear dysplasias, consisted of: 2 patients with SNHL without other temporal bone or systemic abnormalities, one with bilateral mixed HL from chromosome 18q deletion, one with a genetic X-linked DFN3 hearing loss, one with unilateral hearing loss in neurofibromatosis type 2 with bilateral acoustic neuroma, and one with unilateral hearing loss with cochlear nerve deficiency. The second group, with association with vestibulocochlear dysplasias, was comprised of: one patient with moderate bilateral mixed hearing loss in branchio-oto-renal syndrome, one with profound unilateral SNHL with recurrent meningitis, and another with profound bilateral SNHL with congenital hypothyroidism. The presence of an enlarged IAC in children can be found in different clinical and audiological settings with relevancies that can range from life-threatening situations, such as recurrent meningitis, to isolated hearing loss with no other associations. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  12. Normalizing translation through 4E-BP prevents mTOR-driven cortical mislamination and ameliorates aberrant neuron integration.

    PubMed

    Lin, Tiffany V; Hsieh, Lawrence; Kimura, Tomoki; Malone, Taylor J; Bordey, Angélique

    2016-10-04

    Hyperactive mammalian target of rapamycin complex 1 (mTORC1) is a shared molecular hallmark in several neurodevelopmental disorders characterized by abnormal brain cytoarchitecture. The mechanisms downstream of mTORC1 that are responsible for these defects remain unclear. We show that focally increasing mTORC1 activity during late corticogenesis leads to ectopic placement of upper-layer cortical neurons that does not require altered signaling in radial glia and is accompanied by changes in layer-specific molecular identity. Importantly, we found that decreasing cap-dependent translation by expressing a constitutively active mutant of the translational repressor eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) prevents neuronal misplacement and soma enlargement, while partially rescuing dendritic hypertrophy induced by hyperactive mTORC1. Furthermore, overactivation of translation alone through knockdown of 4E-BP2 was sufficient to induce neuronal misplacement. These data show that many aspects of abnormal brain cytoarchitecture can be prevented by manipulating a single intracellular process downstream of mTORC1, cap-dependent translation.

  13. Neuronal ceroid-lipofuscinosis in longhaired Chihuahuas: clinical, pathologic, and MRI findings.

    PubMed

    Nakamoto, Yuya; Yamato, Osamu; Uchida, Kazuyuki; Nibe, Kazumi; Tamura, Shinji; Ozawa, Tsuyoshi; Ueoka, Naotami; Nukaya, Aya; Yabuki, Akira; Nakaichi, Munekazu

    2011-01-01

    Neuronal ceroid-lipofuscinosis (NCL) is a rare group of inherited neurodegenerative lysosomal storage diseases characterized histopathologically by the abnormal accumulation of ceroid- or lipofuscin-like lipopigments in neurons and other cells throughout the body. The present article describes the clinical, pathologic, and magnetic resonance imaging (MRI) findings of the NCL in three longhaired Chihuahuas between 16 mo and 24 mo of age. Clinical signs, including visual defects and behavioral abnormalities, started between 16 mo and 18 mo of age. Cranial MRI findings in all the dogs were characterized by diffuse severe dilation of the cerebral sulci, dilated fissures of diencephalons, midbrain, and cerebellum, and lateral ventricular enlargement, suggesting atrophy of the forebrain. As the most unusual feature, diffuse meningeal thickening was observed over the entire cerebrum, which was strongly enhanced on contrast T1-weighted images. The dogs' conditions progressed until they each died subsequent to continued neurologic deterioration between 23 mo and 24 mo of age. Histopathologically, there was severe to moderate neuronal cell loss with diffuse astrogliosis throughout the brain. The remaining neuronal cells showed intracytoplasmic accumulation of pale to slightly yellow lipopigments mimicking ceroid or lipofuscin. The thickened meninges consisted of the proliferation of connective tissues with abundant collagen fibers and mild infiltration of inflammatory cells suggesting neuroimmune hyperactivity. Although the etiology of this neuroimmune hyperactivity is not currently known, MRI findings such as meningeal thickening may be a useful diagnostic marker of this variant form of canine NCL.

  14. Neuron-specific knockdown of Drosophila PDHB induces reduction of lifespan, deficient locomotive ability, abnormal morphology of motor neuron terminals and photoreceptor axon targeting.

    PubMed

    Dung, Vuu My; Suong, Dang Ngoc Anh; Okamaoto, Yuji; Hiramatsu, Yu; Thao, Dang Thi Phuong; Yoshida, Hideki; Takashima, Hiroshi; Yamaguchi, Masamitsu

    2018-05-15

    Pyruvate dehydrogenase complex deficiency (PDCD) is a common primary cause of defects in mitochondrial function and also can lead to peripheral neuropathy. Pyruvate dehydrogenase E1 component subunit beta (PDHB) is a subunit of pyruvate dehydrogenase E1, which is a well-known component of PDC. In Drosophila melanogaster, the CG11876 (dPDHB) gene is a homolog of human PDHB. In this study, we established a Drosophila model with neuron-specific knockdown of dPDHB to investigate its role in neuropathy pathogenesis. Knockdown of dPDHB in pan-neurons induced locomotor defects in both larval and adult stages, which were consistent with abnormal morphology of the motor neuron terminals at neuromuscular junctions and mitochondrial fragmentation in brains. Moreover, neuron-specific knockdown of dPDHB also shortened the lifespan of adult flies. In addition, flies with knockdown of dPDHB manifested a rough eye phenotype and aberrant photoreceptor axon targeting. These results with the Drosophila model suggest the involvement of PDHB in peripheral neuropathy. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Enlarged thalamostriate vein causing unilateral Monro foramen obstruction. Case report.

    PubMed

    Leonardo, Jody; Grand, Walter

    2009-06-01

    Causes of unilateral hydrocephalus resulting from an obstruction at the Monro foramen include foraminal atresia, tumors, gliosis, contralateral shunting, and infectious and inflammatory conditions. However, few reports in the literature cite vascular lesions as the cause of the obstruction. To their knowledge, the authors present the first report of unilateral hydrocephalus occurring due to an abnormally enlarged thalamostriate vein independent of an arteriovenous malformation or developmental venous angioma. The condition was treated successfully by endoscopic septum pellucidum fenestration. A 28-year-old man was referred for evaluation due to a 10-year history of chronic headaches that worsened in severity over the past year. A CT scan of the head revealed unilateral right ventricular dilation. Cranial MR imaging with and without contrast administration showed a dilated right thalamostriate-internal vein complex without any evidence of associated arteriovenous malformation or venous angioma. Endoscopic exploration of the right lateral ventricle showed an enlarged subependymal thalamostriate vein obstructing the Monro foramen. An endoscopic fenestration of the septum pellucidum was performed, resulting in alleviation of the patient's symptoms. Abnormally enlarged venous structures may cause obstructive unilateral hydrocephalus and can be a rare cause of chronic, intermittent headaches in adults. Endoscopic fenestration of the septum pellucidum is an effective treatment.

  16. Chronic inflammatory gingival enlargement associated with orthodontic therapy--a case report.

    PubMed

    Jadhav, Tanya; Bhat, K Mahalinga; Bhat, G Subraya; Varghese, Jothi M

    2013-02-01

    Gingival enlargement, also synonymous with the terms gingival hyperplasia or hypertrophy, is defined as an abnormal overgrowth of gingival tissues. A case of a 19-year-old male presenting with maxillary and mandibular chronic inflammatory gingival enlargement associated with prolonged orthodontic therapy is reported here. Surgical therapy was carried out to provide a good aesthetic outcome. No recurrence was reported at the end of 1 year. The importance of patient motivation and compliance during and after therapy as a critical factor in the success of treatment has also been highlighted through this case report.

  17. Fetal adrenal gland enlargement - prenatal and postnatal management.

    PubMed

    Lackova, Eliska; Cunderlik, Anton; Ticha, Lubica; Gabor, Maria

    2017-11-01

    The enlargement of suprarenal gland is related to preterm birth and the birth weight. The ultrasound measurement of fetal adrenal gland volume may identify women at risk for impending preterm birth. The aim of our study was to investigate the newborns in the region of western Slovakia followed up due to suprarenal gland enlargement. To set the ratio of prenatally diagnosed suprarenal gland enlargment, postnatal managment and treatment and interventions. The newborns with congenital adrenal hyperplasia were excluded. We have analyzed 6 years of medical records of all cases from the western Slovakia region of suprarenal gland enlargement encountered to 1st Pediatric Department, Children's University Hospital Bratislava Republic in the time period of January 2010 to Janurary 2016. The diagnosis of suprarenal gland enlargement was set by ultrasound examination performed on the 4th postnatal day as an overall screening test. Newborns with positive laboratory screening on congenital adrenal hyperplasia (CAH) were excluded from our study. We analyzed the origin of surarenal gland enlargement, gestation week on the due date, the birth weight and other comorbidities and genetic pathologies in newborns with the enlarged suprarenal glands. There were 6 newborns followed up due to suprarenal gland enlargement. All of the patients had diagnosed the adrenal haemorrhage. Adrenal lesions like adrenal cysts or neuroblastomas were not confirmed. All of the adrenal enlargements were benign with no need of other medical or surgical intervention. None of the newborn patients had other genetic abnormalities, mineral or hormonal imbalances, problems with arterial pressure or haemodynamic instability. All of the patients underwent at least 5 prenatal ultrasound tests and at least 2 postnatal ultrasound measurements. The avarage birth weight was 3030 grams (2700 grams - to 3750 grams). The avarage birth lenght was 50 cm (47 centimeter to 53 cm).The average gestation week (gw) on due date

  18. Lysosomal storage disease upon disruption of the neuronal chloride transport protein ClC-6

    PubMed Central

    Poët, Mallorie; Kornak, Uwe; Schweizer, Michaela; Zdebik, Anselm A.; Scheel, Olaf; Hoelter, Sabine; Wurst, Wolfgang; Schmitt, Anja; Fuhrmann, Jens C.; Planells-Cases, Rosa; Mole, Sara E.; Hübner, Christian A.; Jentsch, Thomas J.

    2006-01-01

    Mammalian CLC proteins function as Cl− channels or as electrogenic Cl−/H+ exchangers and are present in the plasma membrane and intracellular vesicles. We now show that the ClC-6 protein is almost exclusively expressed in neurons of the central and peripheral nervous systems, with a particularly high expression in dorsal root ganglia. ClC-6 colocalized with markers for late endosomes in neuronal cell bodies. The disruption of ClC-6 in mice reduced their pain sensitivity and caused moderate behavioral abnormalities. Neuronal tissues showed autofluorescence at initial axon segments. At these sites, electron microscopy revealed electron-dense storage material that caused a pathological enlargement of proximal axons. These deposits were positive for several lysosomal proteins and other marker proteins typical for neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disease. However, the lysosomal pH of Clcn6−/− neurons appeared normal. CLCN6 is a candidate gene for mild forms of human NCL. Analysis of 75 NCL patients identified ClC-6 amino acid exchanges in two patients but failed to prove a causative role of CLCN6 in that disease. PMID:16950870

  19. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice.

    PubMed

    Zhang, Hongsheng; Kang, Eunchai; Wang, Yaqing; Yang, Chaojuan; Yu, Hui; Wang, Qin; Chen, Zheyu; Zhang, Chen; Christian, Kimberly M; Song, Hongjun; Ming, Guo-Li; Xu, Zhiheng

    2016-06-01

    Several genome- and proteome-wide studies have associated transcription and translation changes of CRMP2 (collapsing response mediator protein 2) with psychiatric disorders, yet little is known about its function in the developing or adult mammalian brain in vivo. Here we show that brain-specific Crmp2 knockout (cKO) mice display molecular, cellular, structural and behavioural deficits, many of which are reminiscent of neural features and symptoms associated with schizophrenia. cKO mice exhibit enlarged ventricles and impaired social behaviour, locomotor activity, and learning and memory. Loss of Crmp2 in the hippocampus leads to reduced long-term potentiation, abnormal NMDA receptor composition, aberrant dendrite development and defective synapse formation in CA1 neurons. Furthermore, knockdown of crmp2 specifically in newborn neurons results in stage-dependent defects in their development during adult hippocampal neurogenesis. Our findings reveal a critical role for CRMP2 in neuronal plasticity, neural function and behavioural modulation in mice.

  20. Mechanisms regulating neuronal excitability and seizure development following mTOR pathway hyperactivation.

    PubMed

    Lasarge, Candi L; Danzer, Steve C

    2014-01-01

    The phosphatidylinositol-3-kinase/phosphatase and tensin homolog (PTEN)-mammalian target of rapamycin (mTOR) pathway regulates a variety of neuronal functions, including cell proliferation, survival, growth, and plasticity. Dysregulation of the pathway is implicated in the development of both genetic and acquired epilepsies. Indeed, several causal mutations have been identified in patients with epilepsy, the most prominent of these being mutations in PTEN and tuberous sclerosis complexes 1 and 2 (TSC1, TSC2). These genes act as negative regulators of mTOR signaling, and mutations lead to hyperactivation of the pathway. Animal models deleting PTEN, TSC1, and TSC2 consistently produce epilepsy phenotypes, demonstrating that increased mTOR signaling can provoke neuronal hyperexcitability. Given the broad range of changes induced by altered mTOR signaling, however, the mechanisms underlying seizure development in these animals remain uncertain. In transgenic mice, cell populations with hyperactive mTOR have many structural abnormalities that support recurrent circuit formation, including somatic and dendritic hypertrophy, aberrant basal dendrites, and enlargement of axon tracts. At the functional level, mTOR hyperactivation is commonly, but not always, associated with enhanced synaptic transmission and plasticity. Moreover, these populations of abnormal neurons can affect the larger network, inducing secondary changes that may explain paradoxical findings reported between cell and network functioning in different models or at different developmental time points. Here, we review the animal literature examining the link between mTOR hyperactivation and epileptogenesis, emphasizing the impact of enhanced mTOR signaling on neuronal form and function.

  1. GABAergic Neuron-Specific Loss of Ube3a Causes Angelman Syndrome-Like EEG Abnormalities and Enhances Seizure Susceptibility.

    PubMed

    Judson, Matthew C; Wallace, Michael L; Sidorov, Michael S; Burette, Alain C; Gu, Bin; van Woerden, Geeske M; King, Ian F; Han, Ji Eun; Zylka, Mark J; Elgersma, Ype; Weinberg, Richard J; Philpot, Benjamin D

    2016-04-06

    Loss of maternal UBE3A causes Angelman syndrome (AS), a neurodevelopmental disorder associated with severe epilepsy. We previously implicated GABAergic deficits onto layer (L) 2/3 pyramidal neurons in the pathogenesis of neocortical hyperexcitability, and perhaps epilepsy, in AS model mice. Here we investigate consequences of selective Ube3a loss from either GABAergic or glutamatergic neurons, focusing on the development of hyperexcitability within L2/3 neocortex and in broader circuit and behavioral contexts. We find that GABAergic Ube3a loss causes AS-like increases in neocortical EEG delta power, enhances seizure susceptibility, and leads to presynaptic accumulation of clathrin-coated vesicles (CCVs)-all without decreasing GABAergic inhibition onto L2/3 pyramidal neurons. Conversely, glutamatergic Ube3a loss fails to yield EEG abnormalities, seizures, or associated CCV phenotypes, despite impairing tonic inhibition onto L2/3 pyramidal neurons. These results substantiate GABAergic Ube3a loss as the principal cause of circuit hyperexcitability in AS mice, lending insight into ictogenic mechanisms in AS. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. GABAergic neuron-specific loss of Ube3a causes Angelman syndrome-like EEG abnormalities and enhances seizure susceptibility

    PubMed Central

    Judson, Matthew C.; Wallace, Michael L.; Sidorov, Michael S.; Burette, Alain C.; Gu, Bin; van Woerden, Geeske M.; King, Ian F.; Han, Ji Eun; Zylka, Mark J.; Elgersma, Ype; Weinberg, Richard J.; Philpot, Benjamin D.

    2016-01-01

    SUMMARY Loss of maternal UBE3A causes Angelman syndrome (AS), a neurodevelopmental disorder associated with severe epilepsy. We previously implicated GABAergic deficits onto layer (L) 2/3 pyramidal neurons in the pathogenesis of neocortical hyperexcitability, and perhaps epilepsy, in AS model mice. Here we investigate consequences of selective Ube3a loss from either GABAergic or glutamatergic neurons, focusing on the development of hyperexcitability within L2/3 neocortex and in broader circuit and behavioral contexts. We find that GABAergic Ube3a loss causes AS-like increases in neocortical EEG delta power, enhances seizure susceptibility, and leads to presynaptic accumulation of clathrin-coated vesicles (CCVs) – all without decreasing GABAergic inhibition onto L2/3 pyramidal neurons. Conversely, glutamatergic Ube3a loss fails to yield EEG abnormalities, seizures, or associated CCV phenotypes, despite impairing tonic inhibition onto L2/3 pyramidal neurons. These results substantiate GABAergic Ube3a loss as the principal cause of circuit hyperexcitability in AS mice, lending insight into ictogenic mechanisms in AS. PMID:27021170

  3. Clinical correlates of enlarged cavum septum pellucidum in schizophrenia: A revisit through computed tomography.

    PubMed

    Srivastava, Naveen Kumar; Khanra, Sourav; Chail, Vivek; Khess, Christoday R J

    2015-06-01

    Like prevalence of abnormal cavum septum pellucidum in patients of schizophrenia remains controversial, its role in clinical outcome, duration of illness and effect on treatment remains less understood as well. Our study examined clinical correlates of enlarged cavum septum pellucidum in schizophrenia. A total of 139 patients diagnosed with schizophrenia during the year 2012 and 2013 were taken for the study. We compared them in respect to the presence and absence of enlarged cavum septum pellucidum. We found 16 patients with enlarged cavum septum pellucidum and were compared with those without enlarged cavum septum pellucidum for socio-demographic and clinical variables. We also correlated these clinical variables with dimension of cavum septum pellucidum. We found statistically significant increased current age and duration of illness in patients with enlarged cavum septum pellucidum. The implications of these findings are discussed with possible confounding effect of current age on neuroimaging. No meaningful correlation was found. No difference in clinical variables was found. Retrospective design and use of computed tomography were limitation of our study. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Abnormal tau phosphorylation in the thorny excrescences of CA3 hippocampal neurons in patients with Alzheimer's disease.

    PubMed

    Blazquez-Llorca, Lidia; Garcia-Marin, Virginia; Merino-Serrais, Paula; Ávila, Jesús; DeFelipe, Javier

    2011-01-01

    A key symptom in the early stages of Alzheimer's disease (AD) is the loss of declarative memory. The anatomical substrate that supports this kind of memory involves the neural circuits of the medial temporal lobe, and in particular, of the hippocampal formation and adjacent cortex. A main feature of AD is the abnormal phosphorylation of the tau protein and the presence of tangles. The sequence of cellular changes related to tau phosphorylation and tangle formation has been studied with an antibody that binds to diffuse phosphotau (AT8). Moreover, another tau antibody (PHF-1) has been used to follow the pathway of neurofibrillary (tau aggregation) degeneration in AD. We have used a variety of quantitative immunocytochemical techniques and confocal microscopy to visualize and characterize neurons labeled with AT8 and PHF-1 antibodies. We present here the rather unexpected discovery that in AD, there is conspicuous abnormal phosphorylation of the tau protein in a selective subset of dendritic spines. We identified these spines as the typical thorny excrescences of hippocampal CA3 neurons in a pre-tangle state. Since thorny excrescences represent a major synaptic target of granule cell axons (mossy fibers), such aberrant phosphorylation may play an essential role in the memory impairment typical of AD patients.

  5. Enlarged Adenoids

    MedlinePlus

    ... Feelings Expert Answers Q&A Movies & More for Teens Teens site Sitio para adolescentes Body Mind Sexual Health ... Educators Search English Español Enlarged Adenoids KidsHealth / For Teens / Enlarged Adenoids What's in this article? Symptoms of ...

  6. An enlarged parietal foramen in the late archaic Xujiayao 11 neurocranium from Northern China, and rare anomalies among Pleistocene Homo.

    PubMed

    Wu, Xiu-Jie; Xing, Song; Trinkaus, Erik

    2013-01-01

    We report here a neurocranial abnormality previously undescribed in Pleistocene human fossils, an enlarged parietal foramen (EPF) in the early Late Pleistocene Xujiayao 11 parietal bones from the Xujiayao (Houjiayao) site, northern China. Xujiayao 11 is a pair of partial posteromedial parietal bones from an adult. It exhibits thick cranial vault bones, arachnoid granulations, a deviated posterior sagittal suture, and a unilateral (right) parietal lacuna with a posteriorly-directed and enlarged endocranial vascular sulcus. Differential diagnosis indicates that the perforation is a congenital defect, an enlarged parietal foramen, commonly associated with cerebral venous and cranial vault anomalies. It was not lethal given the individual's age-at-death, but it may have been associated with secondary neurological deficiencies. The fossil constitutes the oldest evidence in human evolution of this very rare condition (a single enlarged parietal foramen). In combination with developmental and degenerative abnormalities in other Pleistocene human remains, it suggests demographic and survival patterns among Pleistocene Homo that led to an elevated frequency of conditions unknown or rare among recent humans.

  7. Altered localization, abnormal modification and loss of function of Sigma receptor-1 in amyotrophic lateral sclerosis.

    PubMed

    Prause, J; Goswami, A; Katona, I; Roos, A; Schnizler, M; Bushuven, E; Dreier, A; Buchkremer, S; Johann, S; Beyer, C; Deschauer, M; Troost, D; Weis, J

    2013-04-15

    Intracellular accumulations of mutant, misfolded proteins are major pathological hallmarks of amyotrophic lateral sclerosis (ALS) and related disorders. Recently, mutations in Sigma receptor 1 (SigR1) have been found to cause a form of ALS and frontotemporal lobar degeneration (FTLD). Our goal was to pinpoint alterations and modifications of SigR1 in ALS and to determine how these changes contribute to the pathogenesis of ALS. In the present study, we found that levels of the SigR1 protein were reduced in lumbar ALS patient spinal cord. SigR1 was abnormally accumulated in enlarged C-terminals and endoplasmic reticulum (ER) structures of alpha motor neurons. These accumulations co-localized with the 20s proteasome subunit. SigR1 accumulations were also observed in SOD1 transgenic mice, cultured ALS-8 patient's fibroblasts with the P56S-VAPB mutation and in neuronal cell culture models. Along with the accumulation of SigR1 and several other proteins involved in protein quality control, severe disturbances in the unfolded protein response and impairment of protein degradation pathways were detected in the above-mentioned cell culture systems. Furthermore, shRNA knockdown of SigR1 lead to deranged calcium signaling and caused abnormalities in ER and Golgi structures in cultured NSC-34 cells. Finally, pharmacological activation of SigR1 induced the clearance of mutant protein aggregates in these cells. Our results support the notion that SigR1 is abnormally modified and contributes to the pathogenesis of ALS.

  8. Enlargement of Ribbons in Zebrafish Hair Cells Increases Calcium Currents But Disrupts Afferent Spontaneous Activity and Timing of Stimulus Onset

    PubMed Central

    Schreck, Mary; Petralia, Ronald S.; Wang, Ya-Xian; Zhang, Qiuxiang

    2017-01-01

    In sensory hair cells of auditory and vestibular organs, the ribbon synapse is required for the precise encoding of a wide range of complex stimuli. Hair cells have a unique presynaptic structure, the synaptic ribbon, which organizes both synaptic vesicles and calcium channels at the active zone. Previous work has shown that hair-cell ribbon size is correlated with differences in postsynaptic activity. However, additional variability in postsynapse size presents a challenge to determining the specific role of ribbon size in sensory encoding. To selectively assess the impact of ribbon size on synapse function, we examined hair cells in transgenic zebrafish that have enlarged ribbons, without postsynaptic alterations. Morphologically, we found that enlarged ribbons had more associated vesicles and reduced presynaptic calcium-channel clustering. Functionally, hair cells with enlarged ribbons had larger global and ribbon-localized calcium currents. Afferent neuron recordings revealed that hair cells with enlarged ribbons resulted in reduced spontaneous spike rates. Additionally, despite larger presynaptic calcium signals, we observed fewer evoked spikes with longer latencies from stimulus onset. Together, our work indicates that hair-cell ribbon size influences the spontaneous spiking and the precise encoding of stimulus onset in afferent neurons. SIGNIFICANCE STATEMENT Numerous studies support that hair-cell ribbon size corresponds with functional sensitivity differences in afferent neurons and, in the case of inner hair cells of the cochlea, vulnerability to damage from noise trauma. Yet it is unclear whether ribbon size directly influences sensory encoding. Our study reveals that ribbon enlargement results in increased ribbon-localized calcium signals, yet reduces afferent spontaneous activity and disrupts the timing of stimulus onset, a distinct aspect of auditory and vestibular encoding. These observations suggest that varying ribbon size alone can influence

  9. In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons.

    PubMed

    Thomas, Elizabeth A; Coppola, Giovanni; Tang, Bin; Kuhn, Alexandre; Kim, SoongHo; Geschwind, Daniel H; Brown, Timothy B; Luthi-Carter, Ruth; Ehrlich, Michelle E

    2011-03-15

    Huntington's disease (HD), caused by a CAG repeat expansion in the huntingtin (HTT) gene, is characterized by abnormal protein aggregates and motor and cognitive dysfunction. Htt protein is ubiquitously expressed, but the striatal medium spiny neuron (MSN) is most susceptible to dysfunction and death. Abnormal gene expression represents a core pathogenic feature of HD, but the relative roles of cell-autonomous and non-cell-autonomous effects on transcription remain unclear. To determine the extent of cell-autonomous dysregulation in the striatum in vivo, we examined genome-wide RNA expression in symptomatic D9-N171-98Q (a.k.a. DE5) transgenic mice in which the forebrain expression of the first 171 amino acids of human Htt with a 98Q repeat expansion is limited to MSNs. Microarray data generated from these mice were compared with those generated on the identical array platform from a pan-neuronal HD mouse model, R6/2, carrying two different CAG repeat lengths, and a relatively high degree of overlap of changes in gene expression was revealed. We further focused on known canonical pathways associated with excitotoxicity, oxidative stress, mitochondrial dysfunction, dopamine signaling and trophic support. While genes related to excitotoxicity, dopamine signaling and trophic support were altered in both DE5 and R6/2 mice, which may be either cell autonomous or non-cell autonomous, genes related to mitochondrial dysfunction, oxidative stress and the peroxisome proliferator-activated receptor are primarily affected in DE5 transgenic mice, indicating cell-autonomous mechanisms. Overall, HD-induced dysregulation of the striatal transcriptome can be largely attributed to intrinsic effects of mutant Htt, in the absence of expression in cortical neurons.

  10. Neurons other than motor neurons in motor neuron disease.

    PubMed

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  11. Abnormal Glycogen Storage by Retinal Neurons in Diabetes.

    PubMed

    Gardiner, Tom A; Canning, Paul; Tipping, Nuala; Archer, Desmond B; Stitt, Alan W

    2015-12-01

    It is widely held that neurons of the central nervous system do not store glycogen and that accumulation of the polysaccharide may cause neurodegeneration. Since primary neural injury occurs in diabetic retinopathy, we examined neuronal glycogen status in the retina of streptozotocin-induced diabetic and control rats. Glycogen was localized in eyes of streptozotocin-induced diabetic and control rats using light microscopic histochemistry and electron microscopy, and correlated with immunohistochemical staining for glycogen phosphorylase and phosphorylated glycogen synthase (pGS). Electron microscopy of 2-month-old diabetic rats (n = 6) showed massive accumulations of glycogen in the perinuclear cytoplasm of many amacrine neurons. In 4-month-old diabetic rats (n = 11), quantification of glycogen-engorged amacrine cells showed a mean of 26 cells/mm of central retina (SD ± 5), compared to 0.5 (SD ± 0.2) in controls (n = 8). Immunohistochemical staining for glycogen phosphorylase revealed strong expression in amacrine and ganglion cells of control retina, and increased staining in cell processes of the inner plexiform layer in diabetic retina. In control retina, the inactive pGS was consistently sequestered within the cell nuclei of all retinal neurons and the retinal pigment epithelium (RPE), but in diabetics nuclear pGS was reduced or lost in all classes of retinal cell except the ganglion cells and cone photoreceptors. The present study identifies a large population of retinal neurons that normally utilize glycogen metabolism but show pathologic storage of the polysaccharide during uncontrolled diabetes.

  12. Soldier-Specific Modification of the Mandibular Motor Neurons in Termites

    PubMed Central

    Ishikawa, Yuki; Aonuma, Hitoshi; Miura, Toru

    2008-01-01

    Social insects exhibit a variety of caste-specific behavioral tendencies that constitute the basis of division of labor within the colony. In termites, the soldier caste display distinctive defense behaviors, such as aggressively attacking enemies with well-developed mandibles, while the other castes retreat into the colony without exhibiting any aggressive response. It is thus likely that some form of soldier-specific neuronal modification exists in termites. In this study, the authors compared the brain (cerebral ganglion) and the suboesophageal ganglion (SOG) of soldiers and pseudergates (workers) in the damp-wood termite, Hodotermopsis sjostedti. The size of the SOG was significantly larger in soldiers than in pseudergates, but no difference in brain size was apparent between castes. Furthermore, mandibular nerves were thicker in soldiers than in pseudergates. Retrograde staining revealed that the somata sizes of the mandibular motor neurons (MdMNs) in soldiers were more than twice as large as those of pseudergates. The enlargement of MdMNs was also observed in individuals treated with a juvenile hormone analogue (JHA), indicating that MdMNs become enlarged in response to juvenile hormone (JH) action during soldier differentiation. This enlargement is likely to have two functions: a behavioral function in which soldier termites will be able to defend more effectively through relatively faster and stronger mandibular movements, and a developmental function that associates with the development of soldier-specific mandibular muscle morphogenesis in termite head. The soldier-specific enlargement of mandibular motor neurons was observed in all examined species in five termite families that have different mechanisms of defense, suggesting that such neuronal modification was already present in the common ancestor of termites and is significant for soldier function. PMID:18612458

  13. Electrocardiographic abnormalities in amateur male marathon runners.

    PubMed

    Kaleta, Anna M; Lewicka, Ewa; Dąbrowska-Kugacka, Alicja; Lewicka-Potocka, Zuzanna; Wabich, Elżbieta; Szerszyńska, Anna; Dyda, Julia; Sobolewski, Jakub; Koenner, Jakub; Raczak, Grzegorz

    2018-06-18

    Sports activity has become extremely popular among amateurs. Electrocardiography is a useful tool in screening for cardiac pathologies in athletes; however, there is little data on electrocardiographic abnormalities in the group of amateur athletes. The aim of this study was to analyze the abnormalities in resting and exercise electrocardiograms (ECGs) in a group of amateur athletes, and try to determine whether the criteria applied for the general population or for athletes' ECGs should be implemented in this group. In 40 amateur male marathon runners, 3 consecutive 12-lead ECGs were performed: 2-3 weeks before (stage 1), just after the run (stage 2) and 2-3 weeks after the marathon (stage 3). Resting (stage 1) and exercise (stage 2) ECGs were analyzed following the refined criteria for the assessment of athlete's ECG (changes classified as training-related, borderline or training-unrelated). In resting ECGs, at least 1 abnormality was found in 92.5% of the subjects and the most common was sinus bradycardia (62.5%). In post-exercise ECGs, at least 1 abnormality was present in 77.5% of the subjects and the most common was right atrium enlargement (RAE) (42.5%). Training-related ECG variants were more frequent at rest (82.5% vs 42.5%; p = 0.0008), while borderline variants - after the run (22.5% vs 57.5%; p = 0.0004). Training-unrelated abnormalities were found in 15% and 10% of the subjects, respectively (p-value - nonsignificant), and the most common was T-wave inversion. Even if the refined criteria rather than the criteria used for normal sedentary population were applied, the vast majority of amateur runners showed at least 1 abnormality in resting ECGs, which were mainly training-related variants. However, at rest, in 15% of the subjects, pathologic training-unrelated abnormalities were found. The most frequent post-exercise abnormality was right atrial enlargement. General electrocardiographic screening in amateur athletes should be taken into consideration.

  14. Cat-scratch disease. Subtle vertebral bone marrow abnormalities demonstrated by MR imaging and radionuclide bone scan.

    PubMed

    Wilson, J D; Castillo, M

    1995-01-01

    Cat-scratch disease (CSD) is a benign, self-limited cause of lymphadenitis occurring mainly in children and young adults. Its etiology is a delicate, small gram-negative pleomorphic bacillus. Less common manifestations of CSD are seen in 5% of patients and include Parinaud's oculoglandular syndrome (with enlargement of the preauricular nodes), parotid gland enlargement, encephalitis, radiculopathy, pneumonitis, erythema nodosum, thrombocytopenia, and lytic bone lesions. We describe a patient in whom magnetic resonance imaging initially detected subtle vertebral bone marrow abnormalities that correlated with the site of abnormality on a subsequent radionuclide bone scan.

  15. Cullen's sign and massive ovarian enlargement secondary to primary hypothyroidism in a patient with a normal FSH receptor

    PubMed Central

    Sultan, A; Velaga, M R; Fleet, M; Cheetham, T

    2006-01-01

    Ovarian hyperstimulation is a recognised complication of longstanding hypothyroidism. A 12 year old girl with atrophic thyroiditis who presented with abdominal pain and distension is reported. She was noted to have bruising in the vicinity of the umbilicus (Cullen's sign). She had pronounced ovarian enlargement on ultrasonography and it was hypothesised that this profound phenotype might reflect an abnormal FSH receptor. However sequencing of the FSH receptor was normal. The ovarian enlargement resolved with thyroxine replacement. Physicians and surgeons should consider longstanding hypothyroidism in patients presenting with Cullen's sign. PMID:16714722

  16. Detection of eviscerated poultry spleen enlargement by machine vision

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Shao, June J.; Skeeles, John K.; Chen, Yud-Ren

    1999-01-01

    The size of a poultry spleen is an indication of whether the bird is wholesomeness or has a virus-related disease. This study explored the possibility of detecting poultry spleen enlargement with a computer imaging system to assist human inspectors in food safety inspections. Images of 45-day-old hybrid turkey internal viscera were taken using fluorescent and UV lighting systems. Image processing algorithms including linear transformation, morphological operations, and statistical analyses were developed to distinguish the spleen from its surroundings and then to detect abnormal spleens. Experimental results demonstrated that the imaging method could effectively distinguish spleens from other organ and intestine. Based on a total sample of 57 birds, the classification rates were 92% from a self-test set, and 95% from an independent test set for the correct detection of normal and abnormal birds. The methodology indicated the feasibility of using automated machine vision systems in the future to inspect internal organs and check the wholesomeness of poultry carcasses.

  17. Small reduction of neurokinin-1 receptor-expressing neurons in the pre-Bötzinger complex area induces abnormal breathing periods in awake goats.

    PubMed

    Wenninger, J M; Pan, L G; Klum, L; Leekley, T; Bastastic, J; Hodges, M R; Feroah, T; Davis, S; Forster, H V

    2004-11-01

    In awake rats, >80% bilateral reduction of neurokinin-1 receptor (NK1R)-expressing neurons in the pre-Bötzinger complex (pre-BötzC) resulted in hypoventilation and an "ataxic" breathing pattern (Gray PA, Rekling JC, Bocchiaro CM, Feldman JL, Science 286: 1566-1568, 1999). Accordingly, the present study was designed to gain further insight into the role of the pre-BötzC area NK1R-expressing neurons in the control of breathing during physiological conditions. Microtubules were chronically implanted bilaterally into the medulla of adult goats. After recovery from surgery, the neurotoxin saporin conjugated to substance P, specific for NK1R-expressing neurons, was bilaterally injected (50 pM in 10 microl) into the pre-BötzC area during the awake state (n = 8). In unoperated goats, 34 +/- 0.01% of the pre-BötzC area neurons are immunoreactive for the NK1R, but, in goats after bilateral injection of SP-SAP into the pre-BötzC area, NK1R immunoreactivity was reduced to 22.5 +/- 2.5% (29% decrease, P < 0.01). Ten to fourteen days after the injection, the frequency of abnormal breathing periods was sixfold greater than before injection (107.8 +/- 21.8/h, P < 0.001). Fifty-six percent of these periods were breaths of varying duration and volume with an altered respiratory muscle activation pattern, whereas the remaining were rapid, complete breaths with coordinated inspiratory-expiratory cycles. The rate of occurrence and characteristics of abnormal breathing periods were not altered during a CO2 inhalation-induced hyperpnea. Pathological breathing patterns were eliminated during non-rapid eye movement sleep in seven of eight goats, but they frequently occurred on arousal from non-rapid eye movement sleep. We conclude that a moderate reduction in pre-BötzC NK1R-expressing neurons results in state-dependent transient changes in respiratory rhythm and/or eupneic respiratory muscle activation patterns.

  18. Ectopic Expression of Nolz-1 in Neural Progenitors Promotes Cell Cycle Exit/Premature Neuronal Differentiation Accompanying with Abnormal Apoptosis in the Developing Mouse Telencephalon

    PubMed Central

    Chang, Sunny Li-Yun; Chen, Shih-Yun; Huang, Huai-Huei; Ko, Hsin-An; Liu, Pei-Tsen; Liu, Ya-Chi; Chen, Ping-Hau; Liu, Fu-Chin

    2013-01-01

    Nolz-1, as a murine member of the NET zinc-finger protein family, is expressed in post-mitotic differentiating neurons of striatum during development. To explore the function of Nolz-1 in regulating the neurogenesis of forebrain, we studied the effects of ectopic expression of Nolz-1 in neural progenitors. We generated the Cre-loxP dependent conditional transgenic mice in which Nolz-1 was ectopically expressed in proliferative neural progenitors. Ectopic expression of Nolz-1 in neural progenitors by intercrossing the Nolz-1 conditional transgenic mice with the nestin-Cre mice resulted in hypoplasia of telencephalon in double transgenic mice. Decreased proliferation of neural progenitor cells were found in the telencephalon, as evidenced by the reduction of BrdU−, Ki67− and phospho-histone 3-positive cells in E11.5–12.5 germinal zone of telencephalon. Transgenic Nolz-1 also promoted cell cycle exit and as a consequence might facilitate premature differentiation of progenitors, because TuJ1-positive neurons were ectopically found in the ventricular zone and there was a general increase of TuJ1 immunoreactivity in the telencephalon. Moreover, clusters of strong TuJ1-expressing neurons were present in E12.5 germinal zone. Some of these strong TuJ1-positive clusters, however, contained apoptotic condensed DNA, suggesting that inappropriate premature differentiation may lead to abnormal apoptosis in some progenitor cells. Consistent with the transgenic mouse analysis in vivo, similar effects of Nozl-1 over-expression in induction of apoptosis, inhibition of cell proliferation and promotion of neuronal differentiation were also observed in three different N18, ST14A and N2A neural cell lines in vitro. Taken together, our study indicates that ectopic expression of Nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation and induces abnormal apoptosis in the developing telencephalon. PMID:24073229

  19. Ectopic expression of nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation accompanying with abnormal apoptosis in the developing mouse telencephalon.

    PubMed

    Chang, Sunny Li-Yun; Chen, Shih-Yun; Huang, Huai-Huei; Ko, Hsin-An; Liu, Pei-Tsen; Liu, Ya-Chi; Chen, Ping-Hau; Liu, Fu-Chin

    2013-01-01

    Nolz-1, as a murine member of the NET zinc-finger protein family, is expressed in post-mitotic differentiating neurons of striatum during development. To explore the function of Nolz-1 in regulating the neurogenesis of forebrain, we studied the effects of ectopic expression of Nolz-1 in neural progenitors. We generated the Cre-loxP dependent conditional transgenic mice in which Nolz-1 was ectopically expressed in proliferative neural progenitors. Ectopic expression of Nolz-1 in neural progenitors by intercrossing the Nolz-1 conditional transgenic mice with the nestin-Cre mice resulted in hypoplasia of telencephalon in double transgenic mice. Decreased proliferation of neural progenitor cells were found in the telencephalon, as evidenced by the reduction of BrdU-, Ki67- and phospho-histone 3-positive cells in E11.5-12.5 germinal zone of telencephalon. Transgenic Nolz-1 also promoted cell cycle exit and as a consequence might facilitate premature differentiation of progenitors, because TuJ1-positive neurons were ectopically found in the ventricular zone and there was a general increase of TuJ1 immunoreactivity in the telencephalon. Moreover, clusters of strong TuJ1-expressing neurons were present in E12.5 germinal zone. Some of these strong TuJ1-positive clusters, however, contained apoptotic condensed DNA, suggesting that inappropriate premature differentiation may lead to abnormal apoptosis in some progenitor cells. Consistent with the transgenic mouse analysis in vivo, similar effects of Nozl-1 over-expression in induction of apoptosis, inhibition of cell proliferation and promotion of neuronal differentiation were also observed in three different N18, ST14A and N2A neural cell lines in vitro. Taken together, our study indicates that ectopic expression of Nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation and induces abnormal apoptosis in the developing telencephalon.

  20. Enhanced conversion of induced neuronal cells (iN cells) from human fibroblasts: utility in uncovering cellular deficits in mental illness-associated chromosomal abnormalities

    PubMed Central

    Passeri, Eleonora; Wilson, Ashley M.; Primerano, Amedeo; Kondo, Mari A.; Sengupta, Srona; Srivastava, Rupali; Koga, Minori; Obie, Cassandra; Zandi, Peter P.; Goes, Fernando S.; Valle, David; Rapoport, Judith L.; Sawa, Akira; Kano, Shin-ichi; Ishizuka, Koko

    2016-01-01

    The novel technology of induced neuronal cells (iN cells) is promising for translational neuroscience, as it allows the conversion of human fibroblasts into cells with postmitotic neuronal traits. However, a major technical barrier is the low conversion rate. To overcome this problem, we optimized the conversion media. Using our improved formulation, we studied how major mental illness-associated chromosomal abnormalities may impact the characteristics of iN cells. We demonstrated that our new iN cell culture protocol enabled us to obtain more precise measurement of neuronal cellular phenotypes than previous iN cell methods. Thus, this iN cell culture provides a platform to efficiently obtain possible cellular phenotypes caused by genetic differences, which can be more thoroughly studied in research using other human cell models such as induced pluripotent stem cells. PMID:26260244

  1. Painful unilateral temporalis muscle enlargement: reactive masticatory muscle hypertrophy.

    PubMed

    Katsetos, Christos D; Bianchi, Michael A; Jaffery, Fizza; Koutzaki, Sirma; Zarella, Mark; Slater, Robert

    2014-06-01

    An instance of isolated unilateral temporalis muscle hypertrophy (reactive masticatory muscle hypertrophy with fiber type 1 predominance) confirmed by muscle biopsy with histochemical fiber typing and image analysis in a 62 year-old man is reported. The patient presented with bruxism and a painful swelling of the temple. Absence of asymmetry or other abnormalities of the craniofacial skeleton was confirmed by magnetic resonance imaging and cephalometric analyses. The patient achieved symptomatic improvement only after undergoing botulinum toxin injections. Muscle biopsy is key in the diagnosis of reactive masticatory muscle hypertrophy and its distinction from masticatory muscle myopathy (hypertrophic branchial myopathy) and other non-reactive causes of painful asymmetric temporalis muscle enlargement.

  2. Prenatal isolated mild ventriculomegaly is associated with persistent ventricle enlargement at ages 1 and 2.

    PubMed

    Lyall, Amanda E; Woolson, Sandra; Wolfe, Honor M; Goldman, Barbara Davis; Reznick, J Steven; Hamer, Robert M; Lin, Weili; Styner, Martin; Gerig, Guido; Gilmore, John H

    2012-08-01

    Enlargement of the lateral ventricles is thought to originate from abnormal prenatal brain development and is associated with neurodevelopmental disorders. Fetal isolated mild ventriculomegaly (MVM) is associated with the enlargement of lateral ventricle volumes in the neonatal period and developmental delays in early childhood. However, little is known about postnatal brain development in these children. Twenty-eight children with fetal isolated MVM and 56 matched controls were followed at ages 1 and 2 years with structural imaging on a 3T Siemens scanner and assessment of cognitive development with the Mullen Scales of Early Learning. Lateral ventricle, total gray and white matter volumes, and Mullen cognitive composite scores and subscale scores were compared between groups. Compared to controls, children with prenatal isolated MVM had significantly larger lateral ventricle volumes at ages 1 and 2 years. Lateral ventricle volume at 1 and 2 years of age was significantly correlated with prenatal ventricle size. Enlargement of the lateral ventricles was associated with increased intracranial volumes and increased gray and white matter volumes. Children with MVM had Mullen composite scores similar to controls, although there was evidence of delay in fine motor and expressive language skills. Children with prenatal MVM have persistent enlargement of the lateral ventricles through the age of 2 years; this enlargement is associated with increased gray and white matter volumes and some evidence of delay in fine motor and expressive language development. Further study is needed to determine if enlarged lateral ventricles are associated with increased risk for neurodevelopmental disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Neuromuscular Ultrasound in the Assessment of Polyneuropathies and Motor Neuron Disease

    PubMed Central

    Shen, Jack; Cartwright, Michael S.

    2015-01-01

    Neuromuscular ultrasound is an emerging technology for the evaluation of conditions affecting nerve and muscle, with the majority of research focusing on focal neuropathies. Despite this focus, researchers have also investigated the ultrasonographic changes that occur in the nerves and muscles of those with more diffuse polyneuropathies and motor neuron diseases, and this review will detail the findings in these conditions. Specific findings are discussed in this paper, but general themes will also be presented and include the following: hereditary polyneuropathies show diffuse nerve enlargement whereas immune-mediated polyneuropathies show more patchy involvement; nerve enlargement is more profound in demyelinating than axonal polyneuropathies; and muscle changes in motor neuron diseases include heterogeneous increases in echogenicity, atrophy, readily detectable fasciculations, and increased subcutaneous tissue thickness. PMID:27035248

  4. Abnormal hippocampal shape in offenders with psychopathy.

    PubMed

    Boccardi, Marina; Ganzola, Rossana; Rossi, Roberta; Sabattoli, Francesca; Laakso, Mikko P; Repo-Tiihonen, Eila; Vaurio, Olli; Könönen, Mervi; Aronen, Hannu J; Thompson, Paul M; Frisoni, Giovanni B; Tiihonen, Jari

    2010-03-01

    Posterior hippocampal volumes correlate negatively with the severity of psychopathy, but local morphological features are unknown. The aim of this study was to investigate hippocampal morphology in habitually violent offenders having psychopathy. Manual tracings of hippocampi from magnetic resonance images of 26 offenders (age: 32.5 +/- 8.4), with different degrees of psychopathy (12 high, 14 medium psychopathy based on the Psychopathy Checklist Revised), and 25 healthy controls (age: 34.6 +/- 10.8) were used for statistical modelling of local changes with a surface-based radial distance mapping method. Both offenders and controls had similar hippocampal volume and asymmetry ratios. Local analysis showed that the high psychopathy group had a significant depression along the longitudinal hippocampal axis, on both the dorsal and ventral aspects, when compared with the healthy controls and the medium psychopathy group. The opposite comparison revealed abnormal enlargement of the lateral borders in both the right and left hippocampi of both high and medium psychopathy groups versus controls, throughout CA1, CA2-3 and the subicular regions. These enlargement and reduction effects survived statistical correction for multiple comparisons in the main contrast (26 offenders vs. 25 controls) and in most subgroup comparisons. A statistical check excluded a possible confounding effect from amphetamine and polysubstance abuse. These results indicate that habitually violent offenders exhibit a specific abnormal hippocampal morphology, in the absence of total gray matter volume changes, that may relate to different autonomic modulation and abnormal fear-conditioning. 2009 Wiley-Liss, Inc.

  5. Enlarged Heart

    MedlinePlus

    ... rheumatic fever, a heart defect, infections (infectious endocarditis), connective tissue disorders, certain medications or radiation treatments for cancer, your heart may enlarge. Disease of the heart ...

  6. Bilateral parotid gland enlargement and palpable nephromegaly in infant acute lymphoblastic leukemia: case report and review of the literature.

    PubMed

    Saha, Aniket; Dandekar, Smita; Milla, Sarah; Roman, Elizabeth; Bhatla, Teena

    2014-04-01

    Acute lymphoblastic leukemia (ALL) in infants below 1 year of age accounts for 2.5% to 5% of childhood ALL. Most children with ALL present with fever, bruising, mucosal bleeding, bone pain, pallor, hepatosplenomegaly, and lymphadenopathy. Common sites of extramedullary involvement at diagnosis include liver, spleen, lymph nodes, brain, and testes. Nephromegaly has also been reported. We present a novel case of bilateral parotid enlargement along with bilateral palpable nephromegaly in a patient with newly diagnosed infant ALL. This unique presentation highlights the importance of considering ALL in the differential diagnosis of parotid enlargement especially when associated with abnormal blood counts.

  7. Dynamic transition of neuronal firing induced by abnormal astrocytic glutamate oscillation

    NASA Astrophysics Data System (ADS)

    Li, Jiajia; Tang, Jun; Ma, Jun; Du, Mengmeng; Wang, Rong; Wu, Ying

    2016-08-01

    The gliotransmitter glutamate released from astrocytes can modulate neuronal firing by activating neuronal N-methyl-D-aspartic acid (NMDA) receptors. This enables astrocytic glutamate(AG) to be involved in neuronal physiological and pathological functions. Based on empirical results and classical neuron-glial “tripartite synapse” model, we propose a practical model to describe extracellular AG oscillation, in which the fluctuation of AG depends on the threshold of calcium concentration, and the effect of AG degradation is considered as well. We predict the seizure-like discharges under the dysfunction of AG degradation duration. Consistent with our prediction, the suppression of AG uptake by astrocytic transporters, which operates by modulating the AG degradation process, can account for the emergence of epilepsy.

  8. Lysosomal abnormalities in hereditary spastic paraplegia types SPG15 and SPG11

    PubMed Central

    Renvoisé, Benoît; Chang, Jaerak; Singh, Rajat; Yonekawa, Sayuri; FitzGibbon, Edmond J; Mankodi, Ami; Vanderver, Adeline; Schindler, Alice B; Toro, Camilo; Gahl, William A; Mahuran, Don J; Blackstone, Craig; Pierson, Tyler Mark

    2014-01-01

    Objective Hereditary spastic paraplegias (HSPs) are among the most genetically diverse inherited neurological disorders, with over 70 disease loci identified (SPG1-71) to date. SPG15 and SPG11 are clinically similar, autosomal recessive disorders characterized by progressive spastic paraplegia along with thin corpus callosum, white matter abnormalities, cognitive impairment, and ophthalmologic abnormalities. Furthermore, both have been linked to early-onset parkinsonism. Methods We describe two new cases of SPG15 and investigate cellular changes in SPG15 and SPG11 patient-derived fibroblasts, seeking to identify shared pathogenic themes. Cells were evaluated for any abnormalities in cell division, DNA repair, endoplasmic reticulum, endosomes, and lysosomes. Results Fibroblasts prepared from patients with SPG15 have selective enlargement of LAMP1-positive structures, and they consistently exhibited abnormal lysosomal storage by electron microscopy. A similar enlargement of LAMP1-positive structures was also observed in cells from multiple SPG11 patients, though prominent abnormal lysosomal storage was not evident. The stabilities of the SPG15 protein spastizin/ZFYVE26 and the SPG11 protein spatacsin were interdependent. Interpretation Emerging studies implicating these two proteins in interactions with the late endosomal/lysosomal adaptor protein complex AP-5 are consistent with shared abnormalities in lysosomes, supporting a converging mechanism for these two disorders. Recent work with Zfyve26−/− mice revealed a similar phenotype to human SPG15, and cells in these mice had endolysosomal abnormalities. SPG15 and SPG11 are particularly notable among HSPs because they can also present with juvenile parkinsonism, and this lysosomal trafficking or storage defect may be relevant for other forms of parkinsonism associated with lysosomal dysfunction. PMID:24999486

  9. Control of Abnormal Synchronization in Neurological Disorders

    PubMed Central

    Popovych, Oleksandr V.; Tass, Peter A.

    2014-01-01

    In the nervous system, synchronization processes play an important role, e.g., in the context of information processing and motor control. However, pathological, excessive synchronization may strongly impair brain function and is a hallmark of several neurological disorders. This focused review addresses the question of how an abnormal neuronal synchronization can specifically be counteracted by invasive and non-invasive brain stimulation as, for instance, by deep brain stimulation for the treatment of Parkinson’s disease, or by acoustic stimulation for the treatment of tinnitus. On the example of coordinated reset (CR) neuromodulation, we illustrate how insights into the dynamics of complex systems contribute to successful model-based approaches, which use methods from synergetics, non-linear dynamics, and statistical physics, for the development of novel therapies for normalization of brain function and synaptic connectivity. Based on the intrinsic multistability of the neuronal populations induced by spike timing-dependent plasticity (STDP), CR neuromodulation utilizes the mutual interdependence between synaptic connectivity and dynamics of the neuronal networks in order to restore more physiological patterns of connectivity via desynchronization of neuronal activity. The very goal is to shift the neuronal population by stimulation from an abnormally coupled and synchronized state to a desynchronized regime with normalized synaptic connectivity, which significantly outlasts the stimulation cessation, so that long-lasting therapeutic effects can be achieved. PMID:25566174

  10. Potential Adverse Effects of Prolonged Sevoflurane Exposure on Developing Monkey Brain: From Abnormal Lipid Metabolism to Neuronal Damage.

    PubMed

    Liu, Fang; Rainosek, Shuo W; Frisch-Daiello, Jessica L; Patterson, Tucker A; Paule, Merle G; Slikker, William; Wang, Cheng; Han, Xianlin

    2015-10-01

    Sevoflurane is a volatile anesthetic that has been widely used in general anesthesia, yet its safety in pediatric use is a public concern. This study sought to evaluate whether prolonged exposure of infant monkeys to a clinically relevant concentration of sevoflurane is associated with any adverse effects on the developing brain. Infant monkeys were exposed to 2.5% sevoflurane for 9 h, and frontal cortical tissues were harvested for DNA microarray, lipidomics, Luminex protein, and histological assays. DNA microarray analysis showed that sevoflurane exposure resulted in a broad identification of differentially expressed genes (DEGs) in the monkey brain. In general, these genes were associated with nervous system development, function, and neural cell viability. Notably, a number of DEGs were closely related to lipid metabolism. Lipidomic analysis demonstrated that critical lipid components, (eg, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol) were significantly downregulated by prolonged exposure of sevoflurane. Luminex protein analysis indicated abnormal levels of cytokines in sevoflurane-exposed brains. Consistently, Fluoro-Jade C staining revealed more degenerating neurons after sevoflurane exposure. These data demonstrate that a clinically relevant concentration of sevoflurane (2.5%) is capable of inducing and maintaining an effective surgical plane of anesthesia in the developing nonhuman primate and that a prolonged exposure of 9 h resulted in profound changes in gene expression, cytokine levels, lipid metabolism, and subsequently, neuronal damage. Generally, sevoflurane-induced neuronal damage was also associated with changes in lipid content, composition, or both; and specific lipid changes could provide insights into the molecular mechanism(s) underlying anesthetic-induced neurotoxicity and may be sensitive biomarkers for the early detection of anesthetic-induced neuronal damage. Published by Oxford University Press on behalf of the

  11. Neuronal network models of epileptogenesis

    PubMed Central

    Abdullahi, Aminu T.; Adamu, Lawan H.

    2017-01-01

    Epilepsy is a chronic neurological condition, following some trigger, transforming a normal brain to one that produces recurrent unprovoked seizures. In the search for the mechanisms that best explain the epileptogenic process, there is a growing body of evidence suggesting that the epilepsies are network level disorders. In this review, we briefly describe the concept of neuronal networks and highlight 2 methods used to analyse such networks. The first method, graph theory, is used to describe general characteristics of a network to facilitate comparison between normal and abnormal networks. The second, dynamic causal modelling, is useful in the analysis of the pathways of seizure spread. We concluded that the end results of the epileptogenic process are best understood as abnormalities of neuronal circuitry and not simply as molecular or cellular abnormalities. The network approach promises to generate new understanding and more targeted treatment of epilepsy. PMID:28416779

  12. Structural cerebral abnormalities and neurodevelopmental status in single ventricle congenital heart disease before Fontan procedure.

    PubMed

    Knirsch, Walter; Mayer, Kristina Nadine; Scheer, Ianina; Tuura, Ruth; Schranz, Dietmar; Hahn, Andreas; Wetterling, Kristina; Beck, Ingrid; Latal, Beatrice; Reich, Bettina

    2017-04-01

    Neonates with single ventricle congenital heart disease are at risk for structural cerebral abnormalities. Little is known about the further evolution of cerebral abnormalities until Fontan procedure. Between August 2012 and July 2015, we conducted a prospective cross-sectional two centre study using cerebral magnetic resonance imaging (MRI) and neuro-developmental outcome assessed by the Bayley-III. Forty-seven children (31 male) were evaluated at a mean age of 25.9 ± 3.4 months with hypoplastic left heart syndrome (25) or other single ventricle (22). Cerebral MRI was abnormal in 17 patients (36.2%) including liquor space enlargements (10), small grey (9) and minimal white (5) matter injuries. Eight of 17 individuals had combined lesions. Median (range) cognitive composite score (CCS) (100, 65-120) and motor composite score (MCS) (97, 55-124) were comparable to the reference data, while language composite score (LCS) (97, 68-124) was significantly lower ( P  = 0.040). Liquor space enlargement was associated with poorer performance on all Bayley-III subscores (CCS: P  = 0.02; LCS: P  = 0.002; MCS: P  = 0.013). The number of re-operations [odds ratio (OR) 2.2, 95% confidence interval (CI) 1.1-4.3] ( P  = 0.03) and re-interventions (OR 2.1, 95% CI 1.1-3.8) ( P  = 0.03) was associated with a higher rate of overall MRI abnormalities. Cerebral MRI abnormalities occur in more than one third of children with single ventricle, while the neuro-developmental status is less severely affected before Fontan procedure. Liquor space enlargement is the predominant MRI finding associated with poorer neuro-developmental status, warranting further studies to determine aetiology and further evolution until school-age. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  13. Excessive Astrocyte-Derived Neurotrophin-3 Contributes to the Abnormal Neuronal Dendritic Development in a Mouse Model of Fragile X Syndrome

    PubMed Central

    Guo, Yan-yan; Liu, Shui-bing; Wu, Yu-mei; Li, Xiao-qiang; Zhao, Ming-gao

    2012-01-01

    Fragile X syndrome (FXS) is a form of inherited mental retardation in humans that results from expansion of a CGG repeat in the Fmr1 gene. Recent studies suggest a role of astrocytes in neuronal development. However, the mechanisms involved in the regulation process of astrocytes from FXS remain unclear. In this study, we found that astrocytes derived from a Fragile X model, the Fmr1 knockout (KO) mouse which lacks FMRP expression, inhibited the proper elaboration of dendritic processes of neurons in vitro. Furthermore, astrocytic conditioned medium (ACM) from KO astrocytes inhibited proper dendritic growth of both wild-type (WT) and KO neurons. Inducing expression of FMRP by transfection of FMRP vectors in KO astrocytes restored dendritic morphology and levels of synaptic proteins. Further experiments revealed elevated levels of the neurotrophin-3 (NT-3) in KO ACM and the prefrontal cortex of Fmr1 KO mice. However, the levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), and ciliary neurotrophic factor (CNTF) were normal. FMRP has multiple RNA–binding motifs and is involved in translational regulation. RNA–binding protein immunoprecipitation (RIP) showed the NT-3 mRNA interacted with FMRP in WT astrocytes. Addition of high concentrations of exogenous NT-3 to culture medium reduced the dendrites of neurons and synaptic protein levels, whereas these measures were ameliorated by neutralizing antibody to NT-3 or knockdown of NT-3 expression in KO astrocytes through short hairpin RNAs (shRNAs). Prefrontal cortex microinjection of WT astrocytes or NT-3 shRNA infected KO astrocytes rescued the deficit of trace fear memory in KO mice, concomitantly decreased the NT-3 levels in the prefrontal cortex. This study indicates that excessive NT-3 from astrocytes contributes to the abnormal neuronal dendritic development and that astrocytes could be a potential therapeutic target for FXS. PMID:23300470

  14. Prenatal neurogenesis in autism spectrum disorders

    NASA Astrophysics Data System (ADS)

    Kaushik, Gaurav; Zarbalis, Konstantinos

    2016-03-01

    An ever-increasing body of literature describes compelling evidence that a subset of young children on the autism spectrum show abnormal cerebral growth trajectories. In these cases, normal cerebral size at birth is followed by a period of abnormal growth and starting in late childhood often by regression compared to unaffected controls. Recent work has demonstrated an abnormal increase in the number of neurons of the prefrontal cortex suggesting that cerebral size increase in autism is driven by excess neuronal production. In addition, some affected children display patches of abnormal laminar positioning of cortical projection neurons. As both cortical projection neuron numbers and their correct layering within the developing cortex requires the undisturbed proliferation of neural progenitors, it appears that neural progenitors lie in the center of the autism pathology associated with early brain overgrowth. Consequently, autism spectrum disorders associated with cerebral enlargement should be viewed as birth defects of an early embryonic origin with profound implications for their early diagnosis, preventive strategies, and therapeutic intervention.

  15. TorsinA dysfunction causes persistent neuronal nuclear pore defects.

    PubMed

    Pappas, Samuel S; Liang, Chun-Chi; Kim, Sumin; Rivera, CheyAnne O; Dauer, William T

    2018-02-01

    A critical challenge to deciphering the pathophysiology of neurodevelopmental disease is identifying which of the myriad abnormalities that emerge during CNS maturation persist to contribute to long-term brain dysfunction. Childhood-onset dystonia caused by a loss-of-function mutation in the AAA+ protein torsinA exemplifies this challenge. Neurons lacking torsinA develop transient nuclear envelope (NE) malformations during CNS maturation, but no NE defects are described in mature torsinA null neurons. We find that during postnatal CNS maturation torsinA null neurons develop mislocalized and dysfunctional nuclear pore complexes (NPC) that lack NUP358, normally added late in NPC biogenesis. SUN1, a torsinA-related molecule implicated in interphase NPC biogenesis, also exhibits localization abnormalities. Whereas SUN1 and associated nuclear membrane abnormalities resolve in juvenile mice, NPC defects persist into adulthood. These findings support a role for torsinA function in NPC biogenesis during neuronal maturation and implicate altered NPC function in dystonia pathophysiology. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Renal Epithelial Cyst Formation and Enlargement in vitro: Dependence on cAMP

    NASA Astrophysics Data System (ADS)

    Mangoo-Karim, Roberto; Uchic, Marie; Lechene, Claude; Grantham, Jared J.

    1989-08-01

    Cysts, a common abnormality of kidneys, are collections of urine-like fluid enclosed by a continuous layer of epithelial cells. Renal cysts derive from nephrons and collecting ducts and progressively enlarge as a consequence of epithelial proliferation and transepithelial fluid secretion. The initiation of cyst formation and the factors that control cyst enlargement are unknown. We used an in vitro model of renal cysts to explore the role of the cAMP signal transduction system in the formation and expansion of cysts. MDCK cells, cultured in hydrated-collagen gel, produced polarized monolayered epithelial cysts when intracellular cAMP was increased by prostaglandin E1, arginine vasopressin, cholera toxin, forskolin, or 8-bromoadenosine 3',5'-cyclic monophosphate. All agonists were potentiated by 3-isobutyl-1-methylxanthine, a nucleotide phosphodiesterase inhibitor. The cell proliferation component of cyst enlargement was accelerated by cAMP agonists, as shown by the increased growth of MDCK cells in subconfluent monolayers. The fluid secretion component, reflected by the transepithelial movement of fluid across polarized monolayers of MDCK cells grown on permeable supports, was stimulated by cAMP agonists in the basolateral medium. Chloride levels were higher in the cyst fluid and the secreted fluid than in the bathing medium. We conclude that the development of MDCK cysts is dependent on cAMP. This signal transduction system may be an important modulator of epithelial cell proliferation and transepithelial fluid secretion in the kidney.

  17. Abnormal presynaptic short-term plasticity and information processing in a mouse model of fragile X syndrome.

    PubMed

    Deng, Pan-Yue; Sojka, David; Klyachko, Vitaly A

    2011-07-27

    Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and the leading genetic cause of autism. It is associated with the lack of fragile X mental retardation protein (FMRP), a regulator of protein synthesis in axons and dendrites. Studies on FXS have extensively focused on the postsynaptic changes underlying dysfunctions in long-term plasticity. In contrast, the presynaptic mechanisms of FXS have garnered relatively little attention and are poorly understood. Activity-dependent presynaptic processes give rise to several forms of short-term plasticity (STP), which is believed to control some of essential neural functions, including information processing, working memory, and decision making. The extent of STP defects and their contributions to the pathophysiology of FXS remain essentially unknown, however. Here we report marked presynaptic abnormalities at excitatory hippocampal synapses in Fmr1 knock-out (KO) mice leading to defects in STP and information processing. Loss of FMRP led to enhanced responses to high-frequency stimulation. Fmr1 KO mice also exhibited abnormal synaptic processing of natural stimulus trains, specifically excessive enhancement during the high-frequency spike discharges associated with hippocampal place fields. Analysis of individual STP components revealed strongly increased augmentation and reduced short-term depression attributable to loss of FMRP. These changes were associated with exaggerated calcium influx in presynaptic neurons during high-frequency stimulation, enhanced synaptic vesicle recycling, and enlarged readily-releasable and reserved vesicle pools. These data suggest that loss of FMRP causes abnormal STP and information processing, which may represent a novel mechanism contributing to cognitive impairments in FXS.

  18. Ultrasonographic identification of nerve pathology in neuralgic amyotrophy: Enlargement, constriction, fascicular entwinement, and torsion.

    PubMed

    Arányi, Zsuzsanna; Csillik, Anita; Dévay, Katalin; Rosero, Maja; Barsi, Péter; Böhm, Josef; Schelle, Thomas

    2015-10-01

    The aim of this study was to characterize the ultrasonographic findings on nerves in neuralgic amyotrophy. Fourteen patients with neuralgic amyotrophy were examined using high-resolution ultrasound. Four types of abnormalities were found: (1) focal or diffuse nerve/fascicle enlargement (57%); (2) incomplete nerve constriction (36%); (3) complete nerve constriction with torsion (50%; hourglass-like appearance); and (4) fascicular entwinement (28%). Torsions were confirmed intraoperatively and were seen on the radial nerve in 85% of patients. A significant correlation was found between no spontaneous recovery of nerve function and constriction/torsion/fascicular entwinement (P = 0.007). Ultrasonographic nerve pathology in neuralgic amyotrophy varies in order of severity from nerve enlargement to constriction to nerve torsion, with treatment ranging from conservative to surgical. We postulate that the constriction caused by inflammation is the precursor of torsion and that development of nerve torsion is facilitated by the rotational movements of limbs. © 2015 Wiley Periodicals, Inc.

  19. Airport Performance and Construction Enlargement Activities

    NASA Astrophysics Data System (ADS)

    Hanun, Y.; Setiawan, M. I.; Kurniasih, N.; Hasyim, C.; Ahmar, A. S.

    2018-01-01

    The evaluation of transportation infrastructure project should consider the contribution towards infrastructure growth. This research aims to analyze the effect of Construction enlargement activities towards airport performance. This research is correlation study. The population includes 148 airports in Indonesia. By using total sampling, there were 148 sample airports. The result shows that the construction enlargement activities variable has relatively strong relationship to Airport Performance variable, while the adjusted R Square score shows the increasing construction enlargement activities that affected by the other factors aside from airport performance.

  20. Pseudoangiomatous stromal hyperplasia causing massive breast enlargement

    PubMed Central

    Bourke, Anita Geraldine; Tiang, Stephen; Harvey, Nathan; McClure, Robert

    2015-01-01

    Pseudoangiomatous stromal hyperplasia (PASH) of the breast is a benign mesenchymal proliferative process, initially described by Vuitch et al. We report an unusual case of a 46-year-old woman who presented with a 6-week history of bilateral massive, asymmetrical, painful enlargement of her breasts, without a history of trauma. On clinical examination, both breasts were markedly enlarged and oedematous, but there were no discrete palpable masses. Preoperative image-guided core biopsies and surgery showed PASH. PASH is increasingly recognised as an incidental finding on image-guided core biopsy performed for screen detected lesions. There are a few reported cases of PASH presenting as rapid breast enlargement. In our case, the patient presented with painful, asymmetrical, massive breast enlargement. Awareness needs to be raised of this entity as a differential diagnosis in massive, painful breast enlargement. PMID:26475873

  1. Mirror neuron function, psychosis, and empathy in schizophrenia

    PubMed Central

    McCormick, Laurie M.; Brumm, Michael C.; Beadle, Janelle N.; Paradiso, Sergio; Yamada, Thoru; Andreasen, Nancy

    2013-01-01

    Processing of social and emotional information has been shown to be disturbed in schizophrenia. The biological underpinnings of these abnormalities may be explained by an abnormally functioning mirror neuron system. Yet the relationship between mirror neuron system activity in schizophrenia, as measured using an electroencephalography (EEG) paradigm, and socio-emotional functioning has not been assessed. The present research measured empathy and mirror neuron activity using an established EEG paradigm assessing the integrity of the Mu rhythm (8–13 Hz) suppression over the sensorimotor cortex during observed and actual hand movement in 16 schizophrenia-spectrum disorder (SSD) participants (n=8 actively psychotic and n=8 in residual illness phase) and 16 age- and gender-matched healthy comparison participants. Actively psychotic SSD participants showed significantly greater mu suppression over the sensorimotor cortex of the left hemisphere than residual phase SSD and healthy comparison individuals. The latter two groups showed similar levels of mu suppression. Greater left-sided mu suppression was positively correlated with psychotic symptoms (i.e., greater mu suppression/mirror neuron activity was highest among subjects with the greater severity of psychotic symptoms). SSD subjects tended to have significantly higher levels of Personal Distress (as measured by the Interpersonal Reactivity Index) than healthy participants. The present study suggests that abnormal mirror neuron activity may exist among patients with schizophrenia during the active (psychotic) phase of the illness, and correlates with severity of psychosis. PMID:22510432

  2. Vector-averaged gravity alters myocyte and neuron properties in cell culture

    NASA Technical Reports Server (NTRS)

    Gruener, Raphael; Hoeger, Glenn

    1991-01-01

    The effect of changes in the gravitational field of developing neurons and myocytes on the development of these cells was investigated using observations of rotated cultures of embryonic spinal neurons and myocytes in a horizontal clinostat, in which rotation produces, from the cells' perspective, a 'vector-free' gravity environment by continous averaging of the vector, thus simulating the microgravity of space. It was found that, at rotation rates between 1 and 50 rpm, cellular and nuclear areas of myocytes become significantly enlarged and the number of presumptive nucleoli increase; in neurons, frequent and large swellings appeared along neuritic shafts. Some of these changes were reversible after the cessation of rotation.

  3. Hippocampal neuronal subtypes develop abnormal dendritic arbors in the presence of Fragile X astrocytes.

    PubMed

    Jacobs, S; Cheng, C; Doering, L C

    2016-06-02

    Astrocytes are now recognized as key players in the neurobiology of neurodevelopmental disorders such as Fragile X syndrome. However, the nature of Fragile X astrocyte-mediated control of dendrite development in subtypes of hippocampal neurons is not yet known. We used a co-culture procedure in which wildtype primary hippocampal neurons were cultured with astrocytes from either a wildtype or Fragile X mouse, for either 7, 14 or 21 days. The neurons were processed for immunocytochemistry with the dendritic marker MAP2, classified by morphological criteria into one of five neuronal subtypes, and subjected to Sholl analyses. Both linear and semi-log methods of Sholl analyses were applied to the neurons in order to provide an in depth analysis of the dendritic arborizations. We found that Fragile X astrocytes affect the development of dendritic arborization of all subtypes of wildtype hippocampal neurons. Furthermore, we show that hippocampal neurons with spiny stellate neuron morphology exhibit the most pervasive developmental delays, with significant dendritic arbor alterations persisting at 21 days in culture. The results further dictate the critical role astrocytes play in governing neuronal morphology including altered dendrite development in Fragile X. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. AgRP Neurons Can Increase Food Intake during Conditions of Appetite Suppression and Inhibit Anorexigenic Parabrachial Neurons.

    PubMed

    Essner, Rachel A; Smith, Alison G; Jamnik, Adam A; Ryba, Anna R; Trutner, Zoe D; Carter, Matthew E

    2017-09-06

    To maintain energy homeostasis, orexigenic (appetite-inducing) and anorexigenic (appetite suppressing) brain systems functionally interact to regulate food intake. Within the hypothalamus, neurons that express agouti-related protein (AgRP) sense orexigenic factors and orchestrate an increase in food-seeking behavior. In contrast, calcitonin gene-related peptide (CGRP)-expressing neurons in the parabrachial nucleus (PBN) suppress feeding. PBN CGRP neurons become active in response to anorexigenic hormones released following a meal, including amylin, secreted by the pancreas, and cholecystokinin (CCK), secreted by the small intestine. Additionally, exogenous compounds, such as lithium chloride (LiCl), a salt that creates gastric discomfort, and lipopolysaccharide (LPS), a bacterial cell wall component that induces inflammation, exert appetite-suppressing effects and activate PBN CGRP neurons. The effects of increasing the homeostatic drive to eat on feeding behavior during appetite suppressing conditions are unknown. Here, we show in mice that food deprivation or optogenetic activation of AgRP neurons induces feeding to overcome the appetite suppressing effects of amylin, CCK, and LiCl, but not LPS. AgRP neuron photostimulation can also increase feeding during chemogenetic-mediated stimulation of PBN CGRP neurons. AgRP neuron stimulation reduces Fos expression in PBN CGRP neurons across all conditions. Finally, stimulation of projections from AgRP neurons to the PBN increases feeding following administration of amylin, CCK, and LiCl, but not LPS. These results demonstrate that AgRP neurons are sufficient to increase feeding during noninflammatory-based appetite suppression and to decrease activity in anorexigenic PBN CGRP neurons, thereby increasing food intake during homeostatic need. SIGNIFICANCE STATEMENT The motivation to eat depends on the relative balance of activity in distinct brain regions that induce or suppress appetite. An abnormal amount of activity in

  5. Severe gingival enlargement associated with aggressive periodontitis

    PubMed Central

    Padmanabhan, Shyam; Dwarakanath, C. D.

    2013-01-01

    Enlargement of the gingiva can be due to various causes. Most prevalent are the inflammatory type and drug-induced type of gingival hyperplasia. However, sever enlargement associated with an aggressive type of periodontitis is an infrequent finding. Reported here is a case of a female patient aged 18 years who presented with severe enlargement of the maxillary and mandibular gingiva. Examination revealed enlargement extending up to the incisal edge of all the teeth and also an associated generalized loss of attachment with radiographic evidence of reduced bone height resembling an aggressive type of periodontitis. There were no associated systemic signs and symptoms or any family history except that there was generalized vitiligo of the skin and oral mucous membrane. The case was treated by gross electrosection of the gingiva. PMID:23633785

  6. Knockout Mice for Dyslexia Susceptibility Gene Homologs KIAA0319 and KIAA0319L have Unaffected Neuronal Migration but Display Abnormal Auditory Processing

    PubMed Central

    Guidi, Luiz G; Mattley, Jane; Martinez-Garay, Isabel; Monaco, Anthony P; Linden, Jennifer F; Velayos-Baeza, Antonio

    2017-01-01

    Abstract Developmental dyslexia is a neurodevelopmental disorder that affects reading ability caused by genetic and non-genetic factors. Amongst the susceptibility genes identified to date, KIAA0319 is a prime candidate. RNA-interference experiments in rats suggested its involvement in cortical migration but we could not confirm these findings in Kiaa0319-mutant mice. Given its homologous gene Kiaa0319L (AU040320) has also been proposed to play a role in neuronal migration, we interrogated whether absence of AU040320 alone or together with KIAA0319 affects migration in the developing brain. Analyses of AU040320 and double Kiaa0319;AU040320 knockouts (dKO) revealed no evidence for impaired cortical lamination, neuronal migration, neurogenesis or other anatomical abnormalities. However, dKO mice displayed an auditory deficit in a behavioral gap-in-noise detection task. In addition, recordings of click-evoked auditory brainstem responses revealed suprathreshold deficits in wave III amplitude in AU040320-KO mice, and more general deficits in dKOs. These findings suggest that absence of AU040320 disrupts firing and/or synchrony of activity in the auditory brainstem, while loss of both proteins might affect both peripheral and central auditory function. Overall, these results stand against the proposed role of KIAA0319 and AU040320 in neuronal migration and outline their relationship with deficits in the auditory system. PMID:29045729

  7. Knockdown of sodium channel NaV1.6 blocks mechanical pain and abnormal bursting activity of afferent neurons in inflamed sensory ganglia

    PubMed Central

    Xie, Wenrui; Strong, Judith A.; Ye, Ling; Mao, Ju-Xian; Zhang, Jun-Ming

    2013-01-01

    Inflammatory processes in the sensory ganglia contribute to many forms of chronic pain. We previously showed that local inflammation of the lumbar sensory ganglia rapidly leads to prolonged mechanical pain behaviors and high levels of spontaneous bursting activity in myelinated cells. Abnormal spontaneous activity of sensory neurons occurs early in many preclinical pain models, and initiates many other pathological changes, but its molecular basis is not well understood. The sodium channel isoform NaV1.6 can underlie repetitive firing and excitatory persistent and resurgent currents. We used in vivo knockdown of this channel via local injection of siRNA to examine its role in chronic pain following local inflammation of the rat lumbar sensory ganglia. In normal DRG, quantitative PCR showed that cells capable of firing repetitively had significantly higher relative expression of NaV1.6. In inflamed DRG, spontaneously active bursting cells expressed high levels of NaV1.6′ immunoreactivity. In vivo knockdown of NaV1.6 locally in the lumbar DRG at the time of DRG inflammation completely blocked development of pain behaviors and abnormal spontaneous activity, while having only minor effects on unmyelinated C-cells. Current research on isoform-specific sodium channel blockers for chronic pain is largely focused on NaV1.8, because it is present primarily in unmyelinated C fiber nociceptors, or on NaV1.7, because lack of this channel causes congenital indifference to pain. However, the results suggest that NaV1.6 may be a useful therapeutic target for chronic pain, and that some pain conditions may be primarily mediated by myelinated A-fiber sensory neurons. PMID:23622763

  8. AP4M1 is abnormally expressed in oxygen-glucose deprived hippocampal neurons.

    PubMed

    Zhang, J; Cheng, X Y; Sheng, G Y

    2014-03-20

    AP4M1 mutations have been suggested to be associated with autosomal recessive cerebral palsy syndrome. But the pathogenic mechanism remains uncertain. The purpose of this study is to investigate whether and how AP4M1 expression is changed in injured neurons. Primary cultured hippocampal neurons were prepared for this experiment. They were subjected to oxygen-glucose deprivation (OGD) leading to apoptosis, mimicking brain ischemia. Neuron-specific enolase (NSE) was labeled immunofluorescently to confirm that the purity of neuron was higher than 90%. Real-time PCR and western blotting were performed to measure the gene expression. AP4M1 was labeled with MAP2 or Tau-1 to observe the distribution. We found that the AP4M1 protein levels immediately after the procedure were similar between the OGD group and the sham group. However, down-regulation was observed 12h after the reperfusion, and became more notable at 24h. The real-time PCR showed similar results, except that the down-regulation of mRNA was able to be detected immediately after the OGD. Immunofluorescent labeling revealed AP4M1 distributed in the dendrites of normal neurons, but it redistributed to the axons after the OGD procedure. In conclusion, AP4M1 is not only down-regulated at both the mRNA and protein levels, but also redistributed from dendrites to axons in oxygen-glucose deprived hippocampal neurons. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Mesodermal and neuronal retinoids regulate the induction and maintenance of limb innervating spinal motor neurons.

    PubMed

    Ji, Sheng-Jian; Zhuang, BinQuan; Falco, Crystal; Schneider, André; Schuster-Gossler, Karin; Gossler, Achim; Sockanathan, Shanthini

    2006-09-01

    During embryonic development, the generation, diversification and maintenance of spinal motor neurons depend upon extrinsic signals that are tightly regulated. Retinoic acid (RA) is necessary for specifying the fates of forelimb-innervating motor neurons of the Lateral Motor Column (LMC), and the specification of LMC neurons into medial and lateral subtypes. Previous studies implicate motor neurons as the relevant source of RA for specifying lateral LMC fates at forelimb levels. However, at the time of LMC diversification, a significant amount of retinoids in the spinal cord originates from the adjacent paraxial mesoderm. Here we employ mouse genetics to show that RA derived from the paraxial mesoderm is required for lateral LMC induction at forelimb and hindlimb levels, demonstrating that mesodermally synthesized RA functions as a second source of signals to specify lateral LMC identity. Furthermore, reduced RA levels in postmitotic motor neurons result in a decrease of medial and lateral LMC neurons, and abnormal axonal projections in the limb; invoking additional roles for neuronally synthesized RA in motor neuron maintenance and survival. These findings suggest that during embryogenesis, mesodermal and neuronal retinoids act coordinately to establish and maintain appropriate cohorts of spinal motor neurons that innervate target muscles in the limb.

  10. Light adaptation does not prevent early retinal abnormalities in diabetic rats

    PubMed Central

    Kur, Joanna; Burian, Michael A.; Newman, Eric A.

    2016-01-01

    The aetiology of diabetic retinopathy (DR), the leading cause of blindness in the developed world, remains controversial. One hypothesis holds that retinal hypoxia, exacerbated by the high O2 consumption of rod photoreceptors in the dark, is a primary cause of DR. Based on this prediction we investigated whether early retinal abnormalities in streptozotocin-induced diabetic rats are alleviated by preventing the rods from dark adapting. Diabetic rats and their non-diabetic littermates were housed in a 12:12 hour light-dim light photocycle (30 lux during the day and 3 lux at night). Progression of early retinal abnormalities in diabetic rats was assessed by monitoring the ERG b-wave and oscillatory potentials, Müller cell reactive gliosis, and neuronal cell death, as assayed by TUNEL staining and retinal thickness at 6 and 12 weeks after diabetes induction. Maintaining diabetic animals in a dim-adapting light did not slow the progression of these neuronal and glial changes when compared to diabetic rats maintained in a standard 12:12 hour light-dark photocycle (30 lux during the day and 0 lux at night). Our results indicate that neuronal and glial abnormalities in early stages of diabetes are not exacerbated by rod photoreceptor O2 consumption in the dark. PMID:26852722

  11. Assessment of electrocardiographic criteria of left atrial enlargement.

    PubMed

    Batra, Mahesh Kumar; Khan, Atif; Farooq, Fawad; Masood, Tariq; Karim, Musa

    2018-05-01

    Background Left atrial enlargement is considered to be a robust, strong, and widely acceptable indicator of cardiovascular outcomes. Echocardiography is the gold standard for measurement of left atrial size, but electrocardiography can be simple, cost-effective, and noninvasive in clinical practice. This study was undertaken to assess the diagnostic accuracy of an established electrocardiographic criterion for left atrial enlargement, taking 2-dimensional echocardiography as the gold-standard technique. Methods A cross-sectional study was conducted on 146 consecutively selected patients with the complaints of dyspnea and palpitation and with a murmur detected on clinical examination, from September 10, 2016 to February 10, 2017. Electrocardiography and echocardiography were performed in all patients. Patients with a negative P wave terminal force in lead V 1  > 40 ms·mm on electrocardiography or left atrial dimension > 40 mm on echocardiography were classified as having left atrial enlargement. Sensitivity and specificity were calculated to assess the diagnostic accuracy. Results Taking 2-dimensional echocardiography as the gold-standard technique, electrocardiography correctly diagnosed 68 patients as positive for left atrial enlargement and 12 as negative. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of electrocardiography for left atrial enlargement were 54.4%, 57.1%, 88.3%, 17.4%, and 54.8%, respectively. Conclusion The electrocardiogram appears to be a reasonable indicator of left atrial enlargement. In case of nonavailability of echocardiography, electrocardiography can be used for diagnosis of left atrial enlargement.

  12. Neuronal 3',3,5-triiodothyronine (T3) uptake and behavioral phenotype of mice deficient in Mct8, the neuronal T3 transporter mutated in Allan-Herndon-Dudley syndrome.

    PubMed

    Wirth, Eva K; Roth, Stephan; Blechschmidt, Cristiane; Hölter, Sabine M; Becker, Lore; Racz, Ildiko; Zimmer, Andreas; Klopstock, Thomas; Gailus-Durner, Valerie; Fuchs, Helmut; Wurst, Wolfgang; Naumann, Thomas; Bräuer, Anja; de Angelis, Martin Hrabé; Köhrle, Josef; Grüters, Annette; Schweizer, Ulrich

    2009-07-29

    Thyroid hormone transport into cells requires plasma membrane transport proteins. Mutations in one of these, monocarboxylate transporter 8 (MCT8), have been identified as underlying cause for the Allan-Herndon-Dudley syndrome, an X-linked mental retardation in which the patients also present with abnormally high 3',3,5-triiodothyronine (T(3)) plasma levels. Mice deficient in Mct8 replicate the thyroid hormone abnormalities observed in the human condition. However, no neurological deficits have been described in mice lacking Mct8. Therefore, we subjected Mct8-deficient mice to a comprehensive immunohistochemical, neurological, and behavioral screen. Several behavioral abnormalities were found in the mutants. Interestingly, some of these behavioral changes are compatible with hypothyroidism, whereas others rather indicate hyperthyroidism. We thus hypothesized that neurons exclusively dependent on Mct8 are in a hypothyroid state, whereas neurons expressing other T(3) transporters become hyperthyroid, if they are exposed directly to the high plasma T(3). The majority of T(3) uptake in primary cortical neurons is mediated by Mct8, but pharmacological inhibition suggested functional expression of additional T(3) transporter classes. mRNAs encoding six T(3) transporters, including L-type amino acid transporters (LATs), were coexpressed with Mct8 in isolated neurons. We then demonstrated Lat2 expression in cultured neurons and throughout murine brain development. In contrast, LAT2 is expressed in microglia in the developing human brain during gestation, but not in neurons. We suggest that lack of functional complementation by alternative thyroid hormone transporters in developing human neurons precipitates the devastating neurodevelopmental phenotype in MCT8-deficient patients, whereas Mct8-deficient mouse neurons are functionally complemented by other transporters, for possibly Lat2.

  13. Enlarged squamous cell nuclei in cervical cytologic specimens from perimenopausal women ("PM Cells") : a cause of ASC overdiagnosis.

    PubMed

    Cibas, Edmund S; Browne, Tara-Jane; Bassichis, Michelle H Mantel; Lee, Kenneth R

    2005-07-01

    We studied the appropriateness of interpreting squamous cells with enlarged, smooth, bland nuclei in perimenopausal women ("PM cells") as atypical squamous cells (ASCs). Papanicolaou smears (Paps) from 100 women (40-55 years old) with a cytologic interpretation of ASC of undetermined significance (ASCUS) and human papillomavirus (HPV) testing or a biopsy within 6 months were reviewed by 2 observers without knowledge of the biopsy diagnosis or HPV results. Cases in which both reviewers agreed that the Paps were diagnosed more properly as "negative for intraepithelial lesion or malignancy" were compared with cases of "true ASCUS," using histologic squamous intraepithelial lesion and/or a positive high-risk HPV test as a positive outcome (abnormal follow-up). Of 100 cases, 28 were reclassified as benign by both observers. In 15 of these, the original ASCUS interpretation was based on cells with bland nuclear enlargement (2-3 times the area of intermediate cell nuclei), smooth nuclear membranes, and fine chromatin. Abnormal follow-up was identified in 1 (7%) of 15 benign cases but in 30 (42%) of 72 true ASCUS cases (P = .023). PM cells are a significant cause of ASC overdiagnosis in women 40 to 55 years old. Cervical Paps with cells no more atypical than these can be interpreted safely as negative for intraepithelial lesion or malignancy.

  14. MACF1 regulates the migration of pyramidal neurons via microtubule dynamics and GSK-3 signaling

    PubMed Central

    Ka, Minhan; Jung, Eui-Man; Mueller, Ulrich; Kim, Woo-Yang

    2014-01-01

    Neuronal migration and subsequent differentiation play critical roles for establishing functional neural circuitry in the developing brain. However, the molecular mechanisms that regulate these processes are poorly understood. Here, we show that microtubule actin crosslinking factor 1 (MACF1) determines neuronal positioning by regulating microtubule dynamics and mediating GSK-3 signaling during brain development. First, using MACF1 floxed allele mice and in utero gene manipulation, we find that MACF1 deletion suppresses migration of cortical pyramidal neurons and results in aberrant neuronal positioning in the developing brain. The cell autonomous deficit in migration is associated with abnormal dynamics of leading processes and centrosomes. Furthermore, microtubule stability is severely damaged in neurons lacking MACF1, resulting in abnormal microtubule dynamics. Finally, MACF1 interacts with and mediates GSK-3 signaling in developing neurons. Our findings establish a cellular mechanism underlying neuronal migration and provide insights into the regulation of cytoskeleton dynamics in developing neurons. PMID:25224226

  15. MACF1 regulates the migration of pyramidal neurons via microtubule dynamics and GSK-3 signaling.

    PubMed

    Ka, Minhan; Jung, Eui-Man; Mueller, Ulrich; Kim, Woo-Yang

    2014-11-01

    Neuronal migration and subsequent differentiation play critical roles for establishing functional neural circuitry in the developing brain. However, the molecular mechanisms that regulate these processes are poorly understood. Here, we show that microtubule actin crosslinking factor 1 (MACF1) determines neuronal positioning by regulating microtubule dynamics and mediating GSK-3 signaling during brain development. First, using MACF1 floxed allele mice and in utero gene manipulation, we find that MACF1 deletion suppresses migration of cortical pyramidal neurons and results in aberrant neuronal positioning in the developing brain. The cell autonomous deficit in migration is associated with abnormal dynamics of leading processes and centrosomes. Furthermore, microtubule stability is severely damaged in neurons lacking MACF1, resulting in abnormal microtubule dynamics. Finally, MACF1 interacts with and mediates GSK-3 signaling in developing neurons. Our findings establish a cellular mechanism underlying neuronal migration and provide insights into the regulation of cytoskeleton dynamics in developing neurons. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. RAGE-dependent potentiation of TRPV1 currents in sensory neurons exposed to high glucose.

    PubMed

    Lam, Doris; Momeni, Zeinab; Theaker, Michael; Jagadeeshan, Santosh; Yamamoto, Yasuhiko; Ianowski, Juan P; Campanucci, Verónica A

    2018-01-01

    Diabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) channel plays a central role in such sensory abnormalities and shows elevated expression levels in animal models of diabetes. Here, we investigated the function of TRPV1 channels in sensory neurons cultured from the dorsal root ganglion (DRG) of neonatal mice, under control (5mM) and high glucose (25mM) conditions. After maintaining DRG neurons in high glucose for 1 week, we observed a significant increase in capsaicin (CAP)-evoked currents and CAP-evoked depolarizations, independent of TRPV1 channel expression. These functional changes were largely dependent on the expression of the receptor for Advanced Glycation End-products (RAGE), calcium influx, cytoplasmic ROS accumulation, PKC, and Src kinase activity. Like cultured neurons from neonates, mature neurons from adult mice also displayed a similar potentiation of CAP-evoked currents in the high glucose condition. Taken together, our data demonstrate that under the diabetic condition, DRG neurons are directly affected by elevated levels of glucose, independent of vascular or glial signals, and dependent on RAGE expression. These early cellular and molecular changes to sensory neurons in vitro are potential mechanisms that might contribute to sensory abnormalities that can occur in the very early stages of diabetes.

  17. RAGE-dependent potentiation of TRPV1 currents in sensory neurons exposed to high glucose

    PubMed Central

    Lam, Doris; Momeni, Zeinab; Theaker, Michael; Jagadeeshan, Santosh; Yamamoto, Yasuhiko; Ianowski, Juan P.

    2018-01-01

    Diabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) channel plays a central role in such sensory abnormalities and shows elevated expression levels in animal models of diabetes. Here, we investigated the function of TRPV1 channels in sensory neurons cultured from the dorsal root ganglion (DRG) of neonatal mice, under control (5mM) and high glucose (25mM) conditions. After maintaining DRG neurons in high glucose for 1 week, we observed a significant increase in capsaicin (CAP)-evoked currents and CAP-evoked depolarizations, independent of TRPV1 channel expression. These functional changes were largely dependent on the expression of the receptor for Advanced Glycation End-products (RAGE), calcium influx, cytoplasmic ROS accumulation, PKC, and Src kinase activity. Like cultured neurons from neonates, mature neurons from adult mice also displayed a similar potentiation of CAP-evoked currents in the high glucose condition. Taken together, our data demonstrate that under the diabetic condition, DRG neurons are directly affected by elevated levels of glucose, independent of vascular or glial signals, and dependent on RAGE expression. These early cellular and molecular changes to sensory neurons in vitro are potential mechanisms that might contribute to sensory abnormalities that can occur in the very early stages of diabetes. PMID:29474476

  18. Spectrum of temporal bone abnormalities in patients with Waardenburg syndrome and SOX10 mutations.

    PubMed

    Elmaleh-Bergès, M; Baumann, C; Noël-Pétroff, N; Sekkal, A; Couloigner, V; Devriendt, K; Wilson, M; Marlin, S; Sebag, G; Pingault, V

    2013-01-01

    Waardenburg syndrome, characterized by deafness and pigmentation abnormalities, is clinically and genetically heterogeneous, consisting of 4 distinct subtypes and involving several genes. SOX10 mutations have been found both in types 2 and 4 Waardenburg syndrome and neurologic variants. The purpose of this study was to evaluate both the full spectrum and relative frequencies of inner ear malformations in these patients. Fifteen patients with Waardenburg syndrome and different SOX10 mutations were studied retrospectively. Imaging was performed between February 2000 and March 2010 for cochlear implant work-up, diagnosis of hearing loss, and/or evaluation of neurologic impairment. Eleven patients had both CT and MR imaging examinations, 3 had MR imaging only, and 1 had CT only. Temporal bone abnormalities were bilateral. The most frequent pattern associated agenesis or hypoplasia of ≥1 semicircular canal, an enlarged vestibule, and a cochlea with a reduced size and occasionally an abnormal shape, but with normal partition in the 13/15 cases that could be analyzed. Three patients lacked a cochlear nerve, bilaterally in 2 patients. In addition, associated abnormalities were found when adequate MR imaging sequences were available: agenesis of the olfactory bulbs (7/8), hypoplastic or absent lacrimal glands (11/14), hypoplastic parotid glands (12/14), and white matter signal anomalies (7/13). In the appropriate clinical context, bilateral agenesis or hypoplasia of the semicircular canals or both, associated with an enlarged vestibule and a cochlear deformity, strongly suggests a diagnosis of Waardenburg syndrome linked to a SOX10 mutation.

  19. Scalable screen-size enlargement by multi-channel viewing-zone scanning holography.

    PubMed

    Takaki, Yasuhiro; Nakaoka, Mitsuki

    2016-08-08

    Viewing-zone scanning holographic displays can enlarge both the screen size and the viewing zone. However, limitations exist in the screen size enlargement process even if the viewing zone is effectively enlarged. This study proposes a multi-channel viewing-zone scanning holographic display comprising multiple projection systems and a planar scanner to enable the scalable enlargement of the screen size. Each projection system produces an enlarged image of the screen of a MEMS spatial light modulator. The multiple enlarged images produced by the multiple projection systems are seamlessly tiled on the planar scanner. This screen size enlargement process reduces the viewing zones of the projection systems, which are horizontally scanned by the planar scanner comprising a rotating off-axis lens and a vertical diffuser to enlarge the viewing zone. A screen size of 7.4 in. and a viewing-zone angle of 43.0° are demonstrated.

  20. Enlarged Adenoids (For Parents)

    MedlinePlus

    ... topic for: Parents Kids Teens Tonsils and Tonsillectomies Strep Throat Obstructive Sleep Apnea Preparing Your Child for Surgery ... the Operating Room? Snoring Tonsillitis All About Adenoids Strep Throat Enlarged Adenoids Tonsils and Tonsillectomies What's It Like ...

  1. Secondary Abnormalities of Neurotransmitters in Infants with Neurological Disorders

    ERIC Educational Resources Information Center

    Garcia-Cazorla, A.; Serrano, M.; Perez-Duenas, B.; Gonzalez, V.; Ormazabal, A.; Pineda, M.; Fernandez-Alvarez, E.; Campistol, J. M. D.; Artuch, R. M. D.

    2007-01-01

    Neurotransmitters are essential in young children for differentiation and neuronal growth of the developing nervous system. We aimed to identify possible factors related to secondary neurotransmitter abnormalities in pediatric patients with neurological disorders. We analyzed cerebrospinal fluid (CSF) and biogenic amine metabolites in 56 infants…

  2. Femoral tunnel enlargement after anatomic ACL reconstruction: a biological problem?

    PubMed

    Silva, Alcindo; Sampaio, Ricardo; Pinto, Elisabete

    2010-09-01

    Tunnel enlargement after anterior cruciate ligament (ACL) reconstruction may compromise revision surgery. The cause of this tunnel enlargement is not yet fully understood, but it is thought to be multifactorial, with biomechanical and biological factors playing a role. Tunnel enlargement has been described particularly in patients who underwent ACL reconstruction with hamstring tendons with extracortical fixation devices. The purpose of our study was to evaluate prospectively with magnetic resonance imaging (MRI) the changes in femoral tunnel diameter following arthroscopic anatomic ACL reconstruction with hamstring tendons. At 3-month post-op, all tunnels had enlarged compared to the diameter of the drill and most tunnels enlarged more in the midsection than at the aperture. In the posterolateral tunnels, the entrance increased 16% in diameter and the middle of the tunnel increased 30% in diameter. In the anteromedial femoral tunnels, the tunnels enlarged 14% at the aperture and 35% in the midsection. All femoral tunnels enlarged and most of them enlarged in a fusiform manner. The biological factors explain better our findings than the mechanical theory, although mechanical factors may play a role and the cortical bone at the entrance of the tunnel may modify the way tunnels respond to mechanical stress.

  3. Energy Homeostasis and Abnormal RNA Metabolism in Amyotrophic Lateral Sclerosis

    PubMed Central

    Liu, Yu-Ju; Tsai, Po-Yi; Chern, Yijuang

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease that is clinically characterized by progressive muscle weakness and impaired voluntary movement due to the loss of motor neurons in the brain, brain stem and spinal cord. To date, no effective treatment is available. Ample evidence suggests that impaired RNA homeostasis and abnormal energy status are two major pathogenesis pathways in ALS. In the present review article, we focus on recent studies that report molecular insights of both pathways, and discuss the possibility that energy dysfunction might negatively regulate RNA homeostasis via the impairment of cytoplasmic-nuclear shuttling in motor neurons and subsequently contribute to the development of ALS. PMID:28522961

  4. Mitochondrial dynamics and bioenergetic dysfunction is associated with synaptic alterations in mutant SOD1 motor neurons

    PubMed Central

    Magrané, Jordi; Sahawneh, Mary Anne; Przedborski, Serge; Estévez, Álvaro G.; Manfredi, Giovanni

    2012-01-01

    Mutations in Cu,Zn superoxide dismutase (SOD1) cause familial amyotrophic lateral sclerosis (FALS), a rapidly fatal motor neuron disease. Mutant SOD1 has pleiotropic toxic effects on motor neurons, among which mitochondrial dysfunction has been proposed as one of the contributing factors in motor neuron demise. Mitochondria are highly dynamic in neurons; they are constantly reshaped by fusion and move along neurites to localize at sites of high-energy utilization, such as synapses. The finding of abnormal mitochondria accumulation in neuromuscular junctions, where the SOD1-FALS degenerative process is though to initiate, suggests that impaired mitochondrial dynamics in motor neurons may be involved in pathogenesis. We addressed this hypothesis by live imaging microscopy of photo-switchable fluorescent mitoDendra in transgenic rat motor neurons expressing mutant or wild type human SOD1. We demonstrate that mutant SOD1 motor neurons have impaired mitochondrial fusion in axons and cell bodies. Mitochondria also display selective impairment of retrograde axonal transport, with reduced frequency and velocity of movements. Fusion and transport defects are associated with smaller mitochondrial size, decreased mitochondrial density, and defective mitochondrial membrane potential. Furthermore, mislocalization of mitochondria at synapses among motor neurons, in vitro, correlates with abnormal synaptic number, structure, and function. Dynamics abnormalities are specific to mutant SOD1 motor neuron mitochondria, since they are absent in wild type SOD1 motor neurons, they do not involve other organelles, and they are not found in cortical neurons. Taken together, these results suggest that impaired mitochondrial dynamics may contribute to the selective degeneration of motor neurons in SOD1-FALS. PMID:22219285

  5. Pathological effects of chronic myocardial infarction on peripheral neurons mediating cardiac neurotransmission.

    PubMed

    Nakamura, Keijiro; Ajijola, Olujimi A; Aliotta, Eric; Armour, J Andrew; Ardell, Jeffrey L; Shivkumar, Kalyanam

    2016-05-01

    To determine whether chronic myocardial infarction (MI) induces structural and neurochemical changes in neurons within afferent and efferent ganglia mediating cardiac neurotransmission. Neuronal somata in i) right atrial (RAGP) and ii) ventral interventricular ganglionated plexi (VIVGP), iii) stellate ganglia (SG) and iv) T1-2 dorsal root ganglia (DRG) bilaterally derived from normal (n=8) vs. chronic MI (n=8) porcine subjects were studied. We examined whether the morphology and neuronal nitric oxide synthase (nNOS) expression in soma of RAGP, VIVGP, DRG and SG neurons were altered as a consequence of chronic MI. In DRG, we also examined immunoreactivity of calcitonin gene related peptide (CGRP), a marker of afferent neurons. Chronic MI increased neuronal size and nNOS immunoreactivity in VIVGP (but not RAGP), as well as in the SG bilaterally. Across these ganglia, the increase in neuronal size was more pronounced in nNOS immunoreactive neurons. In the DRG, chronic MI also caused neuronal enlargement, and increased CGRP immunoreactivity. Further, DRG neurons expressing both nNOS and CGRP were increased in MI animals compared to controls, and represented a shift from double negative neurons. Chronic MI impacts diverse elements within the peripheral cardiac neuraxis. That chronic MI imposes such widespread, diverse remodeling of the peripheral cardiac neuraxis must be taken into consideration when contemplating neuronal regulation of the ischemic heart. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. PATHOLOGICAL EFFECTS OF CHRONIC MYOCARDIAL INFARCTION ON PERIPHERAL NEURONS MEDIATING CARDIAC NEUROTRANSMISSION

    PubMed Central

    Nakamura, Keijiro; Ajijola, Olujimi A.; Aliotta, Eric; Armour, J. Andrew; Ardell, Jeffrey L.; Shivkumar, Kalyanam

    2016-01-01

    Objective To determine whether chronic myocardial infarction (MI) induces structural and neurochemical changes in neurons within afferent and efferent ganglia mediating cardiac neurotransmission. Methods Neuronal somata in i) right atrial (RAGP) and ii) ventral interventricular ganglionated plexi (VIVGP), iii) stellate ganglia (SG) and iv) T1-2 dorsal root ganglia (DRG) bilaterally derived from normal (n = 8) vs. chronic MI (n = 8) porcine subjects were studied. We examined whether the morphology and neuronal nitric oxide synthase (nNOS) expression in soma of RAGP, VIVGP, DRG and SG neurons were altered as a consequence of chronic MI. In DRG, we also examined immunoreactivity of calcitonin gene related peptide (CGRP), a marker of afferent neurons. Results Chronic MI increased neuronal size and nNOS immunoreactivity in VIVGP (but not RAGP), as well as in the SG bilaterally. Across these ganglia, the increase in neuronal size was more pronounced in nNOS immunoreacitive neurons. In the DRG, chronic MI also caused neuronal enlargement, and increased CGRP immunoreactivity. Further, DRG neurons expressing both nNOS and CGRP were increased in MI animals compared to controls, and represented a shift from double negative neurons. Conclusions Chronic MI impacts diverse elements within the peripheral cardiac neuraxis. That chronic MI imposes such widespread, diverse remodeling of the peripheral cardiac neuraxis must be taken into consideration when contemplating neuronal regulation of the ischemic heart. PMID:27209472

  7. Inhibition of swallowing reflex following phosphorylation of extracellular signal-regulated kinase in nucleus tractus solitarii neurons in rats with masseter muscle nociception.

    PubMed

    Tsujimura, Takanori; Kitagawa, Junichi; Ueda, Koichiro; Iwata, Koichi

    2009-02-06

    Pain is associated with swallowing abnormalities in dysphagic patients. Understanding neuronal mechanisms underlying the swallowing abnormalities associated with orofacial abnormal pain is crucial for developing new methods to treat dysphagic patients. However, how the orofacial abnormal pain is involved in the swallowing abnormalities is not known. In order to evaluate neuronal mechanisms of modulation of the swallows by masticatory muscle pain, here we first induced swallows by topical administration of distilled water to the pharyngolaryngeal region. The swallowing reflex was significantly inhibited after capsaicin (10, 30mM) injection into the masseter muscle compared to vehicle injection. Moreover the number of phosphorylated extracellular signal-regulated kinase-like immunoreactive (pERK-LI) neurons in the nucleus tractus solitarii (NTS) was significantly increased in the rats with capsaicin injection into the masseter muscle compared to that with vehicle injection. Rostro-caudal distribution of pERK-LI neurons in the NTS was peaked at the obex level. The capsaicin-induced inhibitory effect on swallowing reflex was reversed after intrathecal administration of mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor, PD98059. The present findings suggest that phosphorylation of ERK in NTS neurons may be involved in capsaicin-induced inhibition of swallowing reflex.

  8. Gamma band oscillations: a key to understanding schizophrenia symptoms and neural circuit abnormalities.

    PubMed

    McNally, James M; McCarley, Robert W

    2016-05-01

    We review our current understanding of abnormal γ band oscillations in schizophrenia, their association with symptoms and the underlying cortical circuit abnormality, with a particular focus on the role of fast-spiking parvalbumin gamma-aminobutyric acid (GABA) neurons in the disease state. Clinical electrophysiological studies of schizophrenia patients and pharmacological models of the disorder show an increase in spontaneous γ band activity (not stimulus-evoked) measures. These findings provide a crucial link between preclinical and clinical work examining the role of γ band activity in schizophrenia. MRI-based experiments measuring cortical GABA provides evidence supporting impaired GABAergic neurotransmission in schizophrenia patients, which is correlated with γ band activity level. Several studies suggest that stimulation of the cortical circuitry, directly or via subcortical structures, has the potential to modulate cortical γ activity, and improve cognitive function. Abnormal γ band activity is observed in patients with schizophrenia and disease models in animals, and is suggested to underlie the psychosis and cognitive/perceptual deficits. Convergent evidence from both clinical and preclinical studies suggest the central factor in γ band abnormalities is impaired GABAergic neurotransmission, particularly in a subclass of neurons which express parvalbumin. Rescue of γ band abnormalities presents an intriguing option for therapeutic intervention.

  9. Gamma band oscillations: a key to understanding schizophrenia symptoms and neural circuit abnormalities

    PubMed Central

    McNally, James M.; McCarley, Robert W.

    2016-01-01

    Purpose of review We review our current understanding of abnormal γ band oscillations in schizophrenia, their association with symptoms and the underlying cortical circuit abnormality, with a particular focus on the role of fast-spiking parvalbumin gamma-aminobutyric acid (GABA) neurons in the disease state. Recent findings Clinical electrophysiological studies of schizophrenia patients and pharmacological models of the disorder show an increase in spontaneous γ band activity (not stimulus-evoked) measures. These findings provide a crucial link between preclinical and clinical work examining the role of γ band activity in schizophrenia. MRI-based experiments measuring cortical GABA provides evidence supporting impaired GABAergic neurotransmission in schizophrenia patients, which is correlated with γ band activity level. Several studies suggest that stimulation of the cortical circuitry, directly or via subcortical structures, has the potential to modulate cortical γ activity, and improve cognitive function. Summary Abnormal γ band activity is observed in patients with schizophrenia and disease models in animals, and is suggested to underlie the psychosis and cognitive/perceptual deficits. Convergent evidence from both clinical and preclinical studies suggest the central factor in γ band abnormalities is impaired GABAergic neurotransmission, particularly in a subclass of neurons which express parvalbumin. Rescue of γ band abnormalities presents an intriguing option for therapeutic intervention. PMID:26900672

  10. Ontogeny and reversal of brain circuit abnormalities in a preclinical model of PCOS.

    PubMed

    Silva, Mauro Sb; Prescott, Melanie; Campbell, Rebecca E

    2018-04-05

    Androgen excess is a hallmark of polycystic ovary syndrome (PCOS), a prevalent yet poorly understood endocrine disorder. Evidence from women and preclinical animal models suggests that elevated perinatal androgens can elicit PCOS onset in adulthood, implying androgen actions in both PCOS ontogeny and adult pathophysiology. Prenatally androgenized (PNA) mice exhibit a robust increase of progesterone-sensitive GABAergic inputs to gonadotropin-releasing hormone (GnRH) neurons implicated in the pathogenesis of PCOS. It is unclear when altered GABAergic wiring develops in the brain, and whether these central abnormalities are dependent upon adult androgen excess. Using GnRH-GFP-transgenic mice, we determined that increased GABA input to GnRH neurons occurs prior to androgen excess and the manifestation of reproductive impairments in PNA mice. These data suggest that brain circuit abnormalities precede the postpubertal development of PCOS traits. Despite the apparent developmental programming of circuit abnormalities, long-term blockade of androgen receptor signaling from early adulthood rescued normal GABAergic wiring onto GnRH neurons, improved ovarian morphology, and restored reproductive cycles in PNA mice. Therefore, androgen excess maintains changes in female brain wiring linked to PCOS features and the blockade of androgen receptor signaling reverses both the central and peripheral PNA-induced PCOS phenotype.

  11. Ontogeny and reversal of brain circuit abnormalities in a preclinical model of PCOS

    PubMed Central

    Silva, Mauro S.B.; Prescott, Melanie; Campbell, Rebecca E.

    2018-01-01

    Androgen excess is a hallmark of polycystic ovary syndrome (PCOS), a prevalent yet poorly understood endocrine disorder. Evidence from women and preclinical animal models suggests that elevated perinatal androgens can elicit PCOS onset in adulthood, implying androgen actions in both PCOS ontogeny and adult pathophysiology. Prenatally androgenized (PNA) mice exhibit a robust increase of progesterone-sensitive GABAergic inputs to gonadotropin-releasing hormone (GnRH) neurons implicated in the pathogenesis of PCOS. It is unclear when altered GABAergic wiring develops in the brain, and whether these central abnormalities are dependent upon adult androgen excess. Using GnRH-GFP–transgenic mice, we determined that increased GABA input to GnRH neurons occurs prior to androgen excess and the manifestation of reproductive impairments in PNA mice. These data suggest that brain circuit abnormalities precede the postpubertal development of PCOS traits. Despite the apparent developmental programming of circuit abnormalities, long-term blockade of androgen receptor signaling from early adulthood rescued normal GABAergic wiring onto GnRH neurons, improved ovarian morphology, and restored reproductive cycles in PNA mice. Therefore, androgen excess maintains changes in female brain wiring linked to PCOS features and the blockade of androgen receptor signaling reverses both the central and peripheral PNA-induced PCOS phenotype. PMID:29618656

  12. Zebrafish embryos exposed to alcohol undergo abnormal development of motor neurons and muscle fibers.

    PubMed

    Sylvain, Nicole J; Brewster, Daniel L; Ali, Declan W

    2010-01-01

    Children exposed to alcohol in utero have significantly delayed gross and fine motor skills, as well as deficiencies in reflex development. The reasons that underlie the motor deficits caused by ethanol (EtOH) exposure remain to be fully elucidated. The present study was undertaken to investigate the effects of embryonic alcohol exposure (1.5%, 2% and 2.5% EtOH) on motor neuron and muscle fiber morphology in 3 days post fertilization (dpf) larval zebrafish. EtOH treated fish exhibited morphological deformities and fewer bouts of swimming in response to touch, compared with untreated fish. Immunolabelling with anti-acetylated tubulin indicated that fish exposed to 2.5% EtOH had significantly higher rates of motor neuron axon defects. Immunolabelling of primary and secondary motor neurons, using znp-1 and zn-8, revealed that fish exposed to 2% and 2.5% EtOH exhibited significantly higher rates of primary and secondary motor neuron axon defects compared to controls. Examination of red and white muscle fibers revealed that fish exposed to EtOH had significantly smaller fibers compared with controls. These findings indicate that motor neuron and muscle fiber morphology is affected by early alcohol exposure in zebrafish embryos, and that this may be related to deficits in locomotion. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Neuronal intranuclear inclusions are ultrastructurally and immunologically distinct from cytoplasmic inclusions of neuronal intermediate filament inclusion disease

    PubMed Central

    Mosaheb, Sabrina; Thorpe, Julian R.; Hashemzadeh-Bonehi, Lida; Bigio, Eileen H.; Gearing, Marla; Cairns, Nigel J.

    2006-01-01

    Abnormal neuronal cytoplasmic inclusions (NCIs) containing aggregates of α-internexin and the neurofilament (NF) subunits, NF-H, NF-M, and NF-L, are the signature lesions of neuronal intermediate filament (IF) inclusion disease (NIFID). The disease has a clinically heterogeneous phenotype, including fronto-temporal dementia, pyramidal and extrapyramidal signs presenting at a young age. NCIs are variably ubiquitinated and about half of cases also have neuronal intranuclear inclusions (NIIs), which are also ubiquitinated. NIIs have been described in polyglutamine-repeat expansion diseases, where they are strongly ubiquitin immunoreactive. The fine structure of NIIs of NIFID has not previously been described. Therefore, to determine the ultrastructure of NIIs, immunoelectron microscopy was undertaken on NIFID cases and normal aged control brains. Our results indicate that the NIIs of NIFID are strongly ubiquitin immunoreactive. However, unlike NCIs which contain ubiquitin, α-internexin and NF epitopes, NIIs contain neither epitopes of α-internexin nor NF subunits. Neither NIIs nor NCIs were recognised by antibodies to expanded polyglutamine repeats. The NII of NIFID lacks a limiting membrane and contains straight filaments of 20 nm mean width (range 11–35 nm), while NCIs contain filaments with a mean width of 10 nm (range 5–18 nm; t-test, P<0.001). Biochemistry revealed no differences in neuronal IF protein mobilities between NIFID and normal brain tissue. Therefore, NIIs of NIFID contain filaments morphologically and immunologically distinct from those of NCIs, and both types of inclusion lack expanded polyglutamine tracts of the triplet-repeat expansion diseases. These observations indicate that abnormal protein aggregation follows separate pathways in different neuronal compartments of NIFID. PMID:16025283

  14. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee

    2013-08-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalizedmore » to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.« less

  15. Dynamical analysis of Parkinsonian state emulated by hybrid Izhikevich neuron models

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Li, Huiyan; Loparo, Kenneth A.; Fietkiewicz, Chris

    2015-11-01

    Computational models play a significant role in exploring novel theories to complement the findings of physiological experiments. Various computational models have been developed to reveal the mechanisms underlying brain functions. Particularly, in the development of therapies to modulate behavioral and pathological abnormalities, computational models provide the basic foundations to exhibit transitions between physiological and pathological conditions. Considering the significant roles of the intrinsic properties of the globus pallidus and the coupling connections between neurons in determining the firing patterns and the dynamical activities of the basal ganglia neuronal network, we propose a hypothesis that pathological behaviors under the Parkinsonian state may originate from combined effects of intrinsic properties of globus pallidus neurons and synaptic conductances in the whole neuronal network. In order to establish a computational efficient network model, hybrid Izhikevich neuron model is used due to its capacity of capturing the dynamical characteristics of the biological neuronal activities. Detailed analysis of the individual Izhikevich neuron model can assist in understanding the roles of model parameters, which then facilitates the establishment of the basal ganglia-thalamic network model, and contributes to a further exploration of the underlying mechanisms of the Parkinsonian state. Simulation results show that the hybrid Izhikevich neuron model is capable of capturing many of the dynamical properties of the basal ganglia-thalamic neuronal network, such as variations of the firing rates and emergence of synchronous oscillations under the Parkinsonian condition, despite the simplicity of the two-dimensional neuronal model. It may suggest that the computational efficient hybrid Izhikevich neuron model can be used to explore basal ganglia normal and abnormal functions. Especially it provides an efficient way of emulating the large-scale neuron network

  16. Noninvasive assessment of T-wave abnormalities on precordial electrocardiograms in middle-aged professional bicyclists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, T.; Kambara, H.; Chen, C.H.

    Six middle-aged, active, professional bicyclists with T-wave abnormalities on precordial ECGs were studied noninvasively. Twenty-five aged-matched bicyclists without T-wave abnormalities served as the control subjects. Increased voltage of SV1 + RV5 was demonstrated in all subjects. A 5-year follow-up study revealed that these abnormalities of T-wave inversion became more pronounced with age, except in one case. VCGs showed enlargement of anterior QRS loop and discordant T loop, in all cases. On echocardiography, thickness of both the interventricular septum and the left ventricular posterior wall, and left ventricular mass were significantly increased compared with the control group. 201Tl myocardial scintigraphy atmore » rest and during exercise revealed no regional perfusion defects of the tracer in either case. We conclude that: (1) T-wave abnormalities of precordial ECGs in six middle-aged athletes were progressive in nature; and (2) these electrocardiographic abnormalities seem to be related to left ventricular hypertrophy induced by steady and strenuous training rather than to coronary artery disease.« less

  17. Use of Macrolane VRF 30 in emicircumferential penis enlargement.

    PubMed

    Sito, Giuseppe; Marlino, Sergio; Santorelli, Adriano

    2013-02-01

    Penis enlargement is increasingly in demand. Methods for penis enlargement can be classified into surgical, nonsurgical (filling), and mechanical. Each method has shown only relatively successful results. A new formulation of injectable, stabilized, hyaluronic acid (HA)-based, nonanimal gel is available that may have applications for this use. The authors propose a new technique for emicircumferential-injection filling of the penis and assess the safety and efficacy of this procedure compared with lipofilling. The authors retrospectively reviewed the charts of 83 patients who underwent penis enlargement with either their HA-injection technique or lipofilling between December 2007 and July 2011. Safety, efficacy, and patient satisfaction were assessed. The circumferential enlargement obtained from both techniques ranged from 3.2 to 4.5 cm, with a decrement during erection. In all patients, the increase in penis length ranged from 1.8 to 3.6 cm. No complications were seen in patients treated with HA, whereas 8 patients treated with lipofilling developed granuloma, and another experienced fat necrosis. The vast majority (n = 72) of patients reported being "very satisfied" with the results. The ideal technique for penis enlargement should be nonsurgical, with a satisfactory and predictable result, a low rate of complications, and long-term stability. Emicircumferential enlargement with HA filler meets these requirements. However, results have been durable but not definitive, and repeated treatment (with associated costs) is necessary.

  18. A newborn with unilateral limb enlargement.

    PubMed

    Sharma, Shanel; Maino, Anna P F; Husain, Shad M; Adams, Gill G W

    2012-03-01

    On routine neonatal examination, a newborn term male was noted to have unilateral enlargement of the right lower limb, loose thickened red skin over the palm and widening of all the fingers on the right hand. His body was pinker and warmer on the right side compared with the left and he had a right undescended testicle and hypoplastic scrotum. Radiological examination of the lower limbs demonstrated the enlargement of the soft tissue of the right lower limb compared to the left (Fig. 1). Therefore, the diagnosis was unclear from this constellation of findings and an ophthalmic assessment was requested.

  19. Job Enlargement: A Multidimensional Process

    ERIC Educational Resources Information Center

    Donaldson, Lex

    1975-01-01

    An evaluation study into the effects of a job enlargement exercise indicates that the expected increases in satisfaction associated with greater work variety, novelty, and felt use of abilities were achieved. (Author/MLF)

  20. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells

    NASA Astrophysics Data System (ADS)

    Wei, Hongying; Liang, Fan; Meng, Ge; Nie, Zhiqing; Zhou, Ren; Cheng, Wei; Wu, Xiaomeng; Feng, Yan; Wang, Yan

    2016-09-01

    Fine particulate matter (PM2.5) has been implicated as a risk factor for neurodevelopmental disorders including autism in children. However, the underlying biological mechanism remains unclear. DNA methylation is suggested to be a fundamental mechanism for the neuronal responses to environmental cues. We prepared whole particle of PM2.5 (PM2.5), water-soluble extracts (Pw), organic extracts (Po) and carbon core component (Pc) and characterized their chemical constitutes. We found that PM2.5 induced significant redox imbalance, decreased the levels of intercellular methyl donor S-adenosylmethionine and caused global DNA hypomethylation. Furthermore, PM2.5 exposure triggered gene-specific promoter DNA hypo- or hypermethylation and abnormal mRNA expression of autism candidate genes. PM2.5-induced DNA hypermethylation in promoter regions of synapse related genes were associated with the decreases in their mRNA and protein expression. The inhibiting effects of antioxidative reagents, a methylation-supporting agent and a DNA methyltransferase inhibitor demonstrated the involvement of redox/methylation mechanism in PM2.5-induced abnormal DNA methylation patterns and synaptic protein expression. The biological effects above generally followed a sequence of PM2.5 ≥ Pwo > Po > Pw > Pc. Our results implicated a novel epigenetic mechanism for the neurodevelopmental toxicity of particulate air pollution, and that eliminating the chemical components could mitigate the neurotoxicity of PM2.5.

  1. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells.

    PubMed

    Wei, Hongying; Liang, Fan; Meng, Ge; Nie, Zhiqing; Zhou, Ren; Cheng, Wei; Wu, Xiaomeng; Feng, Yan; Wang, Yan

    2016-09-14

    Fine particulate matter (PM2.5) has been implicated as a risk factor for neurodevelopmental disorders including autism in children. However, the underlying biological mechanism remains unclear. DNA methylation is suggested to be a fundamental mechanism for the neuronal responses to environmental cues. We prepared whole particle of PM2.5 (PM2.5), water-soluble extracts (Pw), organic extracts (Po) and carbon core component (Pc) and characterized their chemical constitutes. We found that PM2.5 induced significant redox imbalance, decreased the levels of intercellular methyl donor S-adenosylmethionine and caused global DNA hypomethylation. Furthermore, PM2.5 exposure triggered gene-specific promoter DNA hypo- or hypermethylation and abnormal mRNA expression of autism candidate genes. PM2.5-induced DNA hypermethylation in promoter regions of synapse related genes were associated with the decreases in their mRNA and protein expression. The inhibiting effects of antioxidative reagents, a methylation-supporting agent and a DNA methyltransferase inhibitor demonstrated the involvement of redox/methylation mechanism in PM2.5-induced abnormal DNA methylation patterns and synaptic protein expression. The biological effects above generally followed a sequence of PM2.5 ≥ Pwo > Po > Pw > Pc. Our results implicated a novel epigenetic mechanism for the neurodevelopmental toxicity of particulate air pollution, and that eliminating the chemical components could mitigate the neurotoxicity of PM2.5.

  2. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells

    PubMed Central

    Wei, Hongying; Liang, Fan; Meng, Ge; Nie, Zhiqing; Zhou, Ren; Cheng, Wei; Wu, Xiaomeng; Feng, Yan; Wang, Yan

    2016-01-01

    Fine particulate matter (PM2.5) has been implicated as a risk factor for neurodevelopmental disorders including autism in children. However, the underlying biological mechanism remains unclear. DNA methylation is suggested to be a fundamental mechanism for the neuronal responses to environmental cues. We prepared whole particle of PM2.5 (PM2.5), water-soluble extracts (Pw), organic extracts (Po) and carbon core component (Pc) and characterized their chemical constitutes. We found that PM2.5 induced significant redox imbalance, decreased the levels of intercellular methyl donor S-adenosylmethionine and caused global DNA hypomethylation. Furthermore, PM2.5 exposure triggered gene-specific promoter DNA hypo- or hypermethylation and abnormal mRNA expression of autism candidate genes. PM2.5-induced DNA hypermethylation in promoter regions of synapse related genes were associated with the decreases in their mRNA and protein expression. The inhibiting effects of antioxidative reagents, a methylation-supporting agent and a DNA methyltransferase inhibitor demonstrated the involvement of redox/methylation mechanism in PM2.5-induced abnormal DNA methylation patterns and synaptic protein expression. The biological effects above generally followed a sequence of PM2.5 ≥ Pwo > Po > Pw > Pc. Our results implicated a novel epigenetic mechanism for the neurodevelopmental toxicity of particulate air pollution, and that eliminating the chemical components could mitigate the neurotoxicity of PM2.5. PMID:27624276

  3. Molecular hierarchy in neurons differentiated from mouse ES cells containing a single human chromosome 21.

    PubMed

    Wang, Chi Chiu; Kadota, Mitsutaka; Nishigaki, Ryuichi; Kazuki, Yasuhiro; Shirayoshi, Yasuaki; Rogers, Michael Scott; Gojobori, Takashi; Ikeo, Kazuho; Oshimura, Mitsuo

    2004-02-06

    Defects in neurogenesis and neuronal differentiation in the fetal brain of Down syndrome (DS) patients lead to the apparent neuropathological abnormalities and contribute to the phenotypic characters of mental retardation, and premature development of Alzheimer's disease, those being the most common phenotype in DS. In order to understand the molecular mechanism underlying the cause of phenotypic abnormalities in the DS brain, we have utilized an in vitro model of TT2F mouse embryonic stem cells containing a single human chromosome 21 (hChr21) to study neuron development and neuronal differentiation by microarray containing 15K developmentally expressed cDNAs. Defective neuronal differentiation in the presence of extra hChr21 manifested primarily the post-transcriptional and translational modification, such as Mrpl10, SNAPC3, Srprb, SF3a60 in the early neuronal stem cell stage, and Mrps18a, Eef1g, and Ubce8 in the late differentiated stage. Hierarchical clustering patterned specific expression of hChr21 gene dosage effects on neuron outgrowth, migration, and differentiation, such as Syngr2, Dncic2, Eif3sf, and Peg3.

  4. Abnormal tuning of saccade-related cells in pontine reticular formation of strabismic monkeys.

    PubMed

    Walton, Mark M G; Mustari, Michael J

    2015-08-01

    Strabismus is a common disorder, characterized by a chronic misalignment of the eyes and numerous visual and oculomotor abnormalities. For example, saccades are often highly disconjugate. For humans with pattern strabismus, the horizontal and vertical disconjugacies vary with eye position. In monkeys, manipulations that disturb binocular vision during the first several weeks of life result in a chronic strabismus with characteristics that closely match those in human patients. Early onset strabismus is associated with altered binocular sensitivity of neurons in visual cortex. Here we test the hypothesis that brain stem circuits specific to saccadic eye movements are abnormal. We targeted the pontine paramedian reticular formation, a structure that directly projects to the ipsilateral abducens nucleus. In normal animals, neurons in this structure are characterized by a high-frequency burst of spikes associated with ipsiversive saccades. We recorded single-unit activity from 84 neurons from four monkeys (two normal, one exotrope, and one esotrope), while they made saccades to a visual target on a tangent screen. All 24 neurons recorded from the normal animals had preferred directions within 30° of pure horizontal. For the strabismic animals, the distribution of preferred directions was normal on one side of the brain, but highly variable on the other. In fact, 12/60 neurons recorded from the strabismic animals preferred vertical saccades. Many also had unusually weak or strong bursts. These data suggest that the loss of corresponding binocular vision during infancy impairs the development of normal tuning characteristics for saccade-related neurons in brain stem. Copyright © 2015 the American Physiological Society.

  5. Motor Control Abnormalities in Parkinson’s Disease

    PubMed Central

    Mazzoni, Pietro; Shabbott, Britne; Cortés, Juan Camilo

    2012-01-01

    The primary manifestations of Parkinson’s disease are abnormalities of movement, including movement slowness, difficulties with gait and balance, and tremor. We know a considerable amount about the abnormalities of neuronal and muscle activity that correlate with these symptoms. Motor symptoms can also be described in terms of motor control, a level of description that explains how movement variables, such as a limb’s position and speed, are controlled and coordinated. Understanding motor symptoms as motor control abnormalities means to identify how the disease disrupts normal control processes. In the case of Parkinson’s disease, movement slowness, for example, would be explained by a disruption of the control processes that determine normal movement speed. Two long-term benefits of understanding the motor control basis of motor symptoms include the future design of neural prostheses to replace the function of damaged basal ganglia circuits, and the rational design of rehabilitation strategies. This type of understanding, however, remains limited, partly because of limitations in our knowledge of normal motor control. In this article, we review the concept of motor control and describe a few motor symptoms that illustrate the challenges in understanding such symptoms as motor control abnormalities. PMID:22675667

  6. Otx genes in neurogenesis of mesencephalic dopaminergic neurons.

    PubMed

    Simeone, Antonio; Puelles, Eduardo; Omodei, Daniela; Acampora, Dario; Di Giovannantonio, Luca Giovanni; Di Salvio, Michela; Mancuso, Pietro; Tomasetti, Carmine

    2011-08-01

    Mesencephalic-diencephalic dopaminergic (mdDA) neurons play a relevant role in the control of movement, behavior, and cognition. Indeed loss and/or abnormal functioning of mdDA neurons are responsible for Parkinson's disease as well as for addictive and psychiatric disorders. In the last years a wealth of information has been provided on gene functions controlling identity, fate, and proliferation of mdDA progenitors. This review will focus on the role exerted by Otx genes in early decisions regulating sequential steps required for the neurogenesis of mesencephalic dopaminergic (mesDA) neurons. In this context, the regulatory network involving Otx functional interactions with signaling molecules and transcription factors required to promote or prevent the development of mesDA neurons will be analyzed in detail. Copyright © 2011 Wiley Periodicals, Inc.

  7. Superbranes, D = 11 CJS Supergravity and Enlarged Superspace Coordinates/Fields Correspondence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azcarraga, J.A. de; IFIC - CSIC-UVEG, Facultad de Fisica, 46100-Burjassot, Valencia

    2005-04-25

    We discuss the role of enlarged superspaces in two seemingly different contexts, the structure of the p-brane actions and that of the Cremmer-Julia-Scherk eleven-dimensional supergravity. Both provide examples of a common principle: the existence of an enlarged superspaces coordinates/fields correspondence by which all the (worldvolume or spacetime) fields of the theory are associated to coordinates of enlarged superspaces. In the context of p-branes, enlarged superspaces may be used to construct manifestly supersymmetry-invariant Wess-Zumino terms and as a way of expressing the Born-Infeld worldvolume fields of D-branes and the worldvolume M5-brane two-form in terms of fields associated to the coordinates ofmore » these enlarged superspaces. This is tantamount to saying that the Born-Infeld fields have a superspace origin, as do the other worldvolume fields, and that they have a composite structure. In D=11 supergravity theory enlarged superspaces arise when its underlying gauge structure is investigated and, as a result, the composite nature of the A3 field is revealed: there is a full one-parametric family of enlarged superspace groups that solve the problem of expressing A3 in terms of spacetime fields associated to their coordinates. The corresponding enlarged supersymmetry algebras turn out to be deformations of an expansion of the osp(1 vertical bar 32) algebra. The unifying mathematical structure underlying all these facts is the cohomology of the supersymmetry algebras involved.« less

  8. A Sympathetic Neuron Autonomous Role for Egr3-Mediated Gene Regulation in Dendrite Morphogenesis and Target Tissue Innervation

    PubMed Central

    Quach, David H.; Oliveira-Fernandes, Michelle; Gruner, Katherine A.; Tourtellotte, Warren G.

    2013-01-01

    Egr3 is a nerve growth factor (NGF)-induced transcriptional regulator that is essential for normal sympathetic nervous system development. Mice lacking Egr3 in the germline have sympathetic target tissue innervation abnormalities and physiologic sympathetic dysfunction similar to humans with dysautonomia. However, since Egr3 is widely expressed and has pleiotropic function, it has not been clear whether it has a role within sympathetic neurons and if so, what target genes it regulates to facilitate target tissue innervation. Here, we show that Egr3 expression within sympathetic neurons is required for their normal innervation since isolated sympathetic neurons lacking Egr3 have neurite outgrowth abnormalities when treated with NGF and mice with sympathetic neuron-restricted Egr3 ablation have target tissue innervation abnormalities similar to mice lacking Egr3 in all tissues. Microarray analysis performed on sympathetic neurons identified many target genes deregulated in the absence of Egr3, with some of the most significantly deregulated genes having roles in axonogenesis, dendritogenesis, and axon guidance. Using a novel genetic technique to visualize axons and dendrites in a subpopulation of randomly labeled sympathetic neurons, we found that Egr3 has an essential role in regulating sympathetic neuron dendrite morphology and terminal axon branching, but not in regulating sympathetic axon guidance to their targets. Together, these results indicate that Egr3 has a sympathetic neuron autonomous role in sympathetic nervous system development that involves modulating downstream target genes affecting the outgrowth and branching of sympathetic neuron dendrites and axons. PMID:23467373

  9. Properties of vestibular neurones projecting to neck segments of the cat spinal cord*

    PubMed Central

    Rapoport, S.; Susswein, A.; Uchino, Y.; Wilson, V. J.

    1977-01-01

    1. Vestibular neurones projecting to the upper cervical grey matter (vestibulocollic neurones) were identified by localized microstimulation in the C3 segment of the cat spinal cord. 2. The neurones were found in the lateral (Deiters'), medial and descending nuclei bilaterally and projected to the spinal cord in the lateral and medial vestibulospinal tracts (LVST and MVST). Ipsilateral axons of Deiters' neurones were mostly in the LVST, axons of medial and descending neurones in the MVST; a few Deiters' neurones had axons in the MVST; some descending neurones had axons in the LVST. Most axons of contralateral neurones were in the MVST. 3. The axons of 62% of ipsilateral vestibulocollic Deiters' neurones not only gave off a collateral to C3, but also extended as far as the cervical enlargement (`branching'); some of these neurones projected as far as the upper thoracic cord, almost none to the lumbar cord. Ipsilateral descending nucleus neurones branch in the same fashion, but there is no branching in the relatively small medial nucleus population. 4. A large majority of vestibulocollic neurones receive monosynaptic excitation from the ipsilateral labyrinth and a number are inhibited by stimulation of the contralateral labyrinth (commissural inhibition). It is possible that commissural inhibition acts on a broad population of vestibular neurones involved in the control of eye, head and trunk movement. 5. Vestibulocollic neurones do not make up a homogeneous population acting only on the neck. Instead it is likely that subpopulations, for example branching and non-branching neurones, have different functions. PMID:874918

  10. European Security and NATO Enlargement: A View from Central Europe.

    DTIC Science & Technology

    1998-04-01

    8217iii 3. REPORT TYPE AND DATES COVERED Final fieport European Security and NATO Enlargement: A View from Central Europe (U) 6. AUTHOR(S) Stephen J...of views , including some not often heard, on the issues connected with NATO enlargement. 14. SUBJECT TERMS United States; NATO; post-Cold War...298-102 EUROPEAN SECURITY AND NATO ENLARGEMENT: A VIEW FROM CENTRAL EUROPE Edited by Stephen J. Blank April 1998 f"W DISTRIBUTION STATEMENT

  11. Associative and sensorimotor learning for parenting involves mirror neurons under the influence of oxytocin.

    PubMed

    Ho, S Shaun; Macdonald, Adam; Swain, James E

    2014-04-01

    Mirror neuron-based associative learning may be understood according to associative learning theories, in addition to sensorimotor learning theories. This is important for a comprehensive understanding of the role of mirror neurons and related hormone modulators, such as oxytocin, in complex social interactions such as among parent-infant dyads and in examples of mirror neuron function that involve abnormal motor systems such as depression.

  12. Developmental patterns of chimpanzee cerebral tissues provide important clues for understanding the remarkable enlargement of the human brain.

    PubMed

    Sakai, Tomoko; Matsui, Mie; Mikami, Akichika; Malkova, Ludise; Hamada, Yuzuru; Tomonaga, Masaki; Suzuki, Juri; Tanaka, Masayuki; Miyabe-Nishiwaki, Takako; Makishima, Haruyuki; Nakatsukasa, Masato; Matsuzawa, Tetsuro

    2013-02-22

    Developmental prolongation is thought to contribute to the remarkable brain enlargement observed in modern humans (Homo sapiens). However, the developmental trajectories of cerebral tissues have not been explored in chimpanzees (Pan troglodytes), even though they are our closest living relatives. To address this lack of information, the development of cerebral tissues was tracked in growing chimpanzees during infancy and the juvenile stage, using three-dimensional magnetic resonance imaging and compared with that of humans and rhesus macaques (Macaca mulatta). Overall, cerebral development in chimpanzees demonstrated less maturity and a more protracted course during prepuberty, as observed in humans but not in macaques. However, the rapid increase in cerebral total volume and proportional dynamic change in the cerebral tissue in humans during early infancy, when white matter volume increases dramatically, did not occur in chimpanzees. A dynamic reorganization of cerebral tissues of the brain during early infancy, driven mainly by enhancement of neuronal connectivity, is likely to have emerged in the human lineage after the split between humans and chimpanzees and to have promoted the increase in brain volume in humans. Our findings may lead to powerful insights into the ontogenetic mechanism underlying human brain enlargement.

  13. Developmental patterns of chimpanzee cerebral tissues provide important clues for understanding the remarkable enlargement of the human brain

    PubMed Central

    Sakai, Tomoko; Matsui, Mie; Mikami, Akichika; Malkova, Ludise; Hamada, Yuzuru; Tomonaga, Masaki; Suzuki, Juri; Tanaka, Masayuki; Miyabe-Nishiwaki, Takako; Makishima, Haruyuki; Nakatsukasa, Masato; Matsuzawa, Tetsuro

    2013-01-01

    Developmental prolongation is thought to contribute to the remarkable brain enlargement observed in modern humans (Homo sapiens). However, the developmental trajectories of cerebral tissues have not been explored in chimpanzees (Pan troglodytes), even though they are our closest living relatives. To address this lack of information, the development of cerebral tissues was tracked in growing chimpanzees during infancy and the juvenile stage, using three-dimensional magnetic resonance imaging and compared with that of humans and rhesus macaques (Macaca mulatta). Overall, cerebral development in chimpanzees demonstrated less maturity and a more protracted course during prepuberty, as observed in humans but not in macaques. However, the rapid increase in cerebral total volume and proportional dynamic change in the cerebral tissue in humans during early infancy, when white matter volume increases dramatically, did not occur in chimpanzees. A dynamic reorganization of cerebral tissues of the brain during early infancy, driven mainly by enhancement of neuronal connectivity, is likely to have emerged in the human lineage after the split between humans and chimpanzees and to have promoted the increase in brain volume in humans. Our findings may lead to powerful insights into the ontogenetic mechanism underlying human brain enlargement. PMID:23256194

  14. Cerebellar abnormalities typical of methylmercury poisoning in a fledged saltmarsh sparrow, Ammodramus caudacutus.

    PubMed

    Scoville, Sheila A; Lane, Oksana P

    2013-05-01

    A fledged, 12-15 day-old saltmarsh sparrow, Ammodramus caudacutus, was collected from an accidental kill on Cinder Island, Long Island, NY, USA. The sparrow was assessed for feather mercury levels and the brain analyzed for cerebellar abnormalities by microscopic examination. In humans, fetal Minamata disease is caused by maternal ingestion of mercury. It is characterized by disrupted and disordered cerebellar neuronal migration in the fetus or infant. Results from this sparrow show cerebellar abnormalities typical of Minamata disease. It is the first known avian or mammalian specimen taken from the wild to show the abnormalities typical of the human fetal syndrome.

  15. A three-dimensional definition of nodal spaces on the basis of CT images showing enlarged nodes for pelvic radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Portaluri, Maurizio; Bambace, Santa; Perez, Celeste

    2005-11-15

    Purpose: To demonstrate that margins of each pelvic chain may be derived by verifying the bony and soft tissue structures around abnormal nodes on computed tomography (CT) slices. Methods and Materials: Twenty consecutive patients (16 males, 4 females; mean age, 66 years; range, 43-80 years) with radiologic diagnosis of nodal involvement by histologically proved cervix carcinoma (two), rectum carcinoma (three), prostate carcinoma (four), lymphoma (five), penis carcinoma (one), corpus uteri carcinoma (one), bladder carcinoma (two), cutis tumor (one), and soft-tissue sarcoma (one) were retrospectively reviewed. One hundred CT scans showing 85 enlarged pelvic nodes were reviewed by two radiation oncologistsmore » (M.P., S.B.), and two radiologists (C.P., G.A.). Results: The more proximal structures to each enlarged node or group of nodes were thus recorded in a clockwise direction. Conclusion: According to their frequency and visibility, craniocaudal, anterior, lateral, posterior and medial margins of common iliac, external and internal iliac nodal chains, obturator and pudendal nodes, and deep and superficial inguinal nodes were derived from CT observations.« less

  16. Oligodendrocyte-Neuron Interactions: Impact on Myelination and Brain Function.

    PubMed

    Shimizu, Takeshi; Osanai, Yasuyuki; Ikenaka, Kazuhiro

    2018-01-01

    In the past, glial cells were considered to be 'glue' cells whose primary role was thought to be merely filling gaps in neural circuits. However, a growing number of reports have indicated the role of glial cells in higher brain function through their interaction with neurons. Myelin was originally thought to be just a sheath structure surrounding neuronal axons, but recently it has been shown that myelin exerts effects on the conduction velocity of neuronal axons even after myelin formation. Therefore, the investigation of glial cell properties and the neuron-glial interactions is important for understanding higher brain function. Moreover, since there are many neurological disorders caused by glial abnormalities, further understanding of glial cell-related diseases and the development of effective therapeutic strategies are warranted. In this review, we focused on oligodendrocyte-neuron interactions, with particular attention on (1) axonal signals underlying oligodendrocyte differentiation and myelination, (2) neuronal activity-dependent myelination and (3) the effects of myelination on higher brain function.

  17. Prenatal Ontogeny as a Susceptibility Period for Cortical GABA Neuron Disturbances in Schizophrenia

    PubMed Central

    Volk, David W.; Lewis, David A.

    2013-01-01

    Cognitive deficits in schizophrenia have been linked to disturbances in GABA neurons in the prefrontal cortex. Furthermore, cognitive deficits in schizophrenia appear well before the onset of psychosis and have been reported to be present during early childhood and even during the first year of life. Taken together, these data raise the following question: Does the disease process that produces abnormalities in prefrontal GABA neurons in schizophrenia begin prenatally and disrupt the ontogeny of cortical GABA neurons? Here, we address this question through a consideration of evidence that genetic and/or environmental insults that occur during gestation initiate a pathogenetic process that alters cortical GABA neuron ontogeny and produces the pattern of GABA neuron abnormalities, and consequently cognitive difficulties, seen in schizophrenia. First, we review available evidence from postmortem human brain tissue studies characterizing alterations in certain subpopulations of prefrontal GABA neuron that provide clues to a prenatal origin in schizophrenia. Second, we review recent discoveries of transcription factors, cytokine receptors, and other developmental regulators that govern the birth, migration, specification, maturation, and survival of different subpopulations of prefrontal GABA neurons. Third, we discuss recent studies demonstrating altered expression of these ontogenetic factors in the prefrontal cortex in schizophrenia. Fourth, we discuss the potential role of disturbances in the maternal-fetal environment such as maternal immune activation in the development of GABA neuron dysfunction. Finally, we propose critical questions that need to be answered in future research to further investigate the role of altered GABA neuron ontogeny in the pathogenesis of schizophrenia. PMID:23769891

  18. Phospholipids Trigger Cryptococcus neoformans Capsular Enlargement during Interactions with Amoebae and Macrophages

    PubMed Central

    Chrisman, Cara J.; Albuquerque, Patricia; Guimaraes, Allan J.; Nieves, Edward; Casadevall, Arturo

    2011-01-01

    A remarkable aspect of the interaction of Cryptococcus neoformans with mammalian hosts is a consistent increase in capsule volume. Given that many aspects of the interaction of C. neoformans with macrophages are also observed with amoebae, we hypothesized that the capsule enlargement phenomenon also had a protozoan parallel. Incubation of C. neoformans with Acanthamoeba castellanii resulted in C. neoformans capsular enlargement. The phenomenon required contact between fungal and protozoan cells but did not require amoeba viability. Analysis of amoebae extracts showed that the likely stimuli for capsule enlargement were protozoan polar lipids. Extracts from macrophages and mammalian serum also triggered cryptococcal capsular enlargement. C. neoformans capsule enlargement required expression of fungal phospholipase B, but not phospholipase C. Purified phospholipids, in particular, phosphatidylcholine, and derived molecules triggered capsular enlargement with the subsequent formation of giant cells. These results implicate phospholipids as a trigger for both C. neoformans capsule enlargement in vivo and exopolysaccharide production. The observation that the incubation of C. neoformans with phospholipids led to the formation of giant cells provides the means to generate these enigmatic cells in vitro. Protozoan- or mammalian-derived polar lipids could represent a danger signal for C. neoformans that triggers capsular enlargement as a non-specific defense mechanism against potential predatory cells. Hence, phospholipids are the first host-derived molecules identified to trigger capsular enlargement. The parallels apparent in the capsular response of C. neoformans to both amoebae and macrophages provide additional support for the notion that certain aspects of cryptococcal virulence emerged as a consequence of environmental interactions with other microorganisms such as protists. PMID:21637814

  19. Disrupted kisspeptin signaling in GnRH neurons leads to hypogonadotrophic hypogonadism.

    PubMed

    Novaira, Horacio J; Sonko, Momodou L; Hoffman, Gloria; Koo, Yongbum; Ko, Chemyong; Wolfe, Andrew; Radovick, Sally

    2014-02-01

    Landmark studies have shown that mutations in kisspeptin and the kisspeptin receptor (Kiss1r) result in reproductive dysfunction in humans and genetically altered mouse models. However, because kisspeptin and its receptor are present in target cells of the central and peripheral reproductive axis, the precise location(s) for the pathogenic signal is unknown. The study described herein shows that the kisspeptin-Kiss1r signaling pathway in the GnRH neuron is singularly critical for both the onset of puberty as well as the attainment of normal reproductive function. In this study, we directly test the hypothesis that kisspeptin neurons regulate GnRH secretion through the activation of Kiss1r on the plasma membrane of GnRH neurons. A GnRH neuron-specific Kiss1r knockout mouse model (GKirKO) was generated, and reproductive development and phenotype were assessed. Both female and male GKirKO mice were infertile, having low serum LH and FSH levels. External abnormalities such as microphallus and decreased anogenital distance associated with failure of preputial gland separation were present in GKirKO males. A delay in pubertal onset and abnormal estrous cyclicity were observed in female GKirKO mice. Taken together, these data provide in vivo evidence that Kiss1r in GnRH neurons is critical for reproductive development and fertility.

  20. Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders.

    PubMed

    Dapretto, Mirella; Davies, Mari S; Pfeifer, Jennifer H; Scott, Ashley A; Sigman, Marian; Bookheimer, Susan Y; Iacoboni, Marco

    2006-01-01

    To examine mirror neuron abnormalities in autism, high-functioning children with autism and matched controls underwent fMRI while imitating and observing emotional expressions. Although both groups performed the tasks equally well, children with autism showed no mirror neuron activity in the inferior frontal gyrus (pars opercularis). Notably, activity in this area was inversely related to symptom severity in the social domain, suggesting that a dysfunctional 'mirror neuron system' may underlie the social deficits observed in autism.

  1. Neuron number and size in prefrontal cortex of children with autism.

    PubMed

    Courchesne, Eric; Mouton, Peter R; Calhoun, Michael E; Semendeferi, Katerina; Ahrens-Barbeau, Clelia; Hallet, Melodie J; Barnes, Cynthia Carter; Pierce, Karen

    2011-11-09

    Autism often involves early brain overgrowth, including the prefrontal cortex (PFC). Although prefrontal abnormality has been theorized to underlie some autistic symptoms, the cellular defects that cause abnormal overgrowth remain unknown. To investigate whether early brain overgrowth in children with autism involves excess neuron numbers in the PFC. DESIGN, SETTING, AND CASES: Postmortem prefrontal tissue from 7 autistic and 6 control male children aged 2 to 16 years was examined by expert anatomists who were blinded to diagnostic status. Number and size of neurons were quantified using stereological methods within the dorsolateral (DL-PFC) and mesial (M-PFC) subdivisions of the PFC. Cases were from the eastern and southeastern United States and died between 2000 and 2006. Mean neuron number and size in the DL-PFC and M-PFC were compared between autistic and control postmortem cases. Correlations of neuron number with deviation in brain weight from normative values for age were also performed. Children with autism had 67% more neurons in the PFC (mean, 1.94 billion; 95% CI, 1.57-2.31) compared with control children (1.16 billion; 95% CI, 0.90-1.42; P = .002), including 79% more in DL-PFC (1.57 billion; 95% CI, 1.20-1.94 in autism cases vs 0.88 billion; 95% CI, 0.66-1.10 in controls; P = .003) and 29% more in M-PFC (0.36 billion; 95% CI, 0.33-0.40 in autism cases vs 0.28 billion; 95% CI, 0.23-0.34 in controls; P = .009). Brain weight in the autistic cases differed from normative mean weight for age by a mean of 17.6% (95% CI, 10.2%-25.0%; P = .001), while brains in controls differed by a mean of 0.2% (95% CI, -8.7% to 9.1%; P = .96). Plots of counts by weight showed autistic children had both greater total prefrontal neuron counts and brain weight for age than control children. In this small preliminary study, brain overgrowth in males with autism involved an abnormal excess number of neurons in the PFC.

  2. Abnormal expression of ephrin-A5 affects brain development of congenital hypothyroidism rats.

    PubMed

    Suo, Guihai; Shen, Feifei; Sun, Baolan; Song, Honghua; Xu, Meiyu; Wu, Youjia

    2018-05-14

    EphA5 and its ligand ephrin-A5 interaction can trigger synaptogenesis during early hippocampus development. We have previously reported that abnormal EphA5 expression can result in synaptogenesis disorder in congenital hypothyroidism (CH) rats. To better understand its precise molecular mechanism, we further analyzed the characteristics of ephrin-A5 expression in the hippocampus of CH rats. Our study revealed that ephrin-A5 expression was downregulated by thyroid hormone deficiency in the developing hippocampus and hippocampal neurons in rats. Thyroxine treatment for hypothyroid hippocampus and triiodothyronine treatment for hypothyroid hippocampal neurons significantly improved ephrin-A5 expression but could not restore its expression to control levels. Hypothyroid hippocampal neurons in-vitro showed synaptogenesis disorder characterized by a reduction in the number and length of neurites. Furthermore, the synaptogenesis-associated molecular expressions of NMDAR-1 (NR1), PSD95 and CaMKII were all downregulated correspondingly. These results suggest that ephrin-A5 expression may be decreased in CH, and abnormal activation of ephrin-A5/EphA5 signaling affects synaptogenesis during brain development. Such findings provide an important basis for exploring the pathogenesis of CH genetically.

  3. Designing a deep brain stimulator to suppress pathological neuronal synchrony.

    PubMed

    Montaseri, Ghazal; Yazdanpanah, Mohammad Javad; Bahrami, Fariba

    2015-03-01

    Some of neuropathologies are believed to be related to abnormal synchronization of neurons. In the line of therapy, designing effective deep brain stimulators to suppress the pathological synchrony among neuronal ensembles is a challenge of high clinical relevance. The stimulation should be able to disrupt the synchrony in the presence of latencies due to imperfect knowledge about parameters of a neuronal ensemble and stimulation impacts on the ensemble. We propose an adaptive desynchronizing deep brain stimulator capable of dealing with these uncertainties. We analyze the collective behavior of the stimulated neuronal ensemble and show that, using the designed stimulator, the resulting asynchronous state is stable. Simulation results reveal the efficiency of the proposed technique. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Enlarged perivascular spaces and cognitive impairment after stroke and transient ischemic attack.

    PubMed

    Arba, Francesco; Quinn, Terence J; Hankey, Graeme J; Lees, Kennedy R; Wardlaw, Joanna M; Ali, Myzoon; Inzitari, Domenico

    2018-01-01

    Background Previous studies suggested that enlarged perivascular spaces are neuroimaging markers of cerebral small vessel disease. However, it is not clear whether enlarged perivascular spaces are associated with cognitive impairment. We aimed to determine the cross-sectional relationship between enlarged perivascular spaces and small vessel disease, and to investigate the relationship between enlarged perivascular spaces and subsequent cognitive impairment in patients with recent cerebral ischemic event. Methods Anonymized data were accessed from the virtual international stroke trial archive. We rated number of lacunes, white matter hyperintensities, brain atrophy, and enlarged perivascular spaces with validated scales on magnetic resonance brain images after the index stroke. We defined cognitive impairment as a mini mental state examination score of ≤26, recorded at one year post stroke. We examined the associations between enlarged perivascular spaces and clinical and imaging markers of small vessel disease at presentation and clinical evidence of cognitive impairment at one year using linear and logistic regression models. Results We analyzed data on 430 patients with mean (±SD) age 64.7 (±12.7) years, 276 (64%) males. In linear regression analysis, age (β = 0.24; p < 0.001), hypertension (β = 0.09; p = 0.025), and deep white matter hyperintensities (β = 0.31; p < 0.001) were associated with enlarged perivascular spaces. In logistic regression analysis, basal ganglia enlarged perivascular spaces were independently associated with cognitive impairment at one year after adjusting for clinical confounders (OR = 1.72, 95% CI = 1.22-2.42) and for clinical and imaging confounders (OR = 1.54; 95% CI = 1.03-2.31). Conclusions Our data show that in patients with ischemic cerebral events, enlarged perivascular spaces are cross-sectionally associated with age, hypertension, and white matter hyperintensities and suggest that

  5. Modeling schizophrenia using hiPSC neurons

    PubMed Central

    Brennand, Kristen; Simone, Anthony; Jou, Jessica; Gelboin-Burkhart, Chelsea; Tran, Ngoc; Sangar, Sarah; Li, Yan; Mu, Yangling; Chen, Gong; Yu, Diana; McCarthy, Shane; Sebat, Jonathan; Gage, Fred H.

    2012-01-01

    SUMMARY Schizophrenia (SCZD) is a debilitating neurological disorder with a world-wide prevalence of 1%; there is a strong genetic component, with an estimated heritability of 80–85%1. Though postmortem studies have revealed reduced brain volume, cell size, spine density and abnormal neural distribution in the prefrontal cortex and hippocampus of SCZD brain tissue2 and neuropharmacological studies have implicated dopaminergic, glutamatergic and GABAergic activity in SCZD3, the cell types affected in SCZD and the molecular mechanisms underlying the disease state remain unclear. To elucidate the cellular and molecular defects of SCZD, we directly reprogrammed fibroblasts from SCZD patients into human induced pluripotent stem cells (hiPSCs) and subsequently differentiated these disorder-specific hiPSCs into neurons (SI Fig. 1). SCZD hiPSC neurons showed diminished neuronal connectivity in conjunction with decreased neurite number, PSD95-protein levels and glutamate receptor expression. Gene expression profiles of SCZD hiPSC neurons identified altered expression of many components of the cAMP and WNT signaling pathways. Key cellular and molecular elements of the SCZD phenotype were ameliorated following treatment of SCZD hiPSC neurons with the antipsychotic Loxapine. To date, hiPSC neuronal pathology has only been demonstrated in diseases characterized by both the loss of function of a single gene product and rapid disease progression in early childhood4–6. We now report hiPSC neuronal phenotypes and gene expression changes associated with SCZD, a complex genetic psychiatric disorder (SI Table 1). PMID:21490598

  6. [Transient enlargement of craniopharyngioma cysts after stereotactic radiotherapy and radiosurgery].

    PubMed

    Mazerkina, N A; Savateev, A N; Gorelyshev, S K; Konovalov, A N; Trunin, Yu Yu; Golanov, A V; Medvedeva, O A; Kalinin, P L; Kutin, M A; Astafieva, L I; Krasnova, T S; Ozerova, V I; Serova, N K; Butenko, E I; Strunina, Yu V

    Stereotactic radiotherapy/radiosurgery (RT/ES) is an effective technique for treating craniopharyngiomas (CPs). However, enlargement of the cystic part of the tumor occurs in some cases after irradiation. The enlargement may be transient and not require treatment or be a true relapse requiring treatment. In this study, we performed a retrospective analysis of 79 pediatric patients who underwent stereotactic RT or RS after resection of craniopharyngioma. Five-year relapse-free survival after complex treatment of CP was 86%. In the early period after irradiation, 3.5 months (2.7-9.4) on average, enlargement of the cystic component of the tumor was detected in 10 (12.7%) patients; in 9 (11.4%) of them, the enlargement was transient and did not require treatment; in one case, the patient underwent surgery due to reduced visual acuity. In 8 (10.1%) patients, an increase in the residual tumor (a solid component of the tumor in 2 cases and a cystic component of the tumor in 6 cases) occurred in the long-term period after irradiation - after 26.3 months (16.6-48.9) and did not decrease during follow-up in none of the cases, i.e. continued growth of the tumor was diagnosed. A statistical analysis revealed that differences in the terms of transient enlargement and true continued growth were statistically significant (p<0.01). Enlargement of a craniopharyngioma cyst in the early period (up to 1 year) after RT/RS is usually transient and does not require surgical treatment (except cases where worsening of neurological symptoms occurs, or occlusive hydrocephalus develops).

  7. Genetics Home Reference: enlarged parietal foramina

    MedlinePlus

    ... parietal foramina is an inherited condition of impaired skull development. It is characterized by enlarged openings (foramina) ... that form the top and sides of the skull. This condition is due to incomplete bone formation ( ...

  8. Cell Cycle Deregulation in the Neurons of Alzheimer’s Disease

    PubMed Central

    Moh, Calvin; Kubiak, Jacek Z.; Bajic, Vladan P.; Zhu, Xiongwei; Smith, Mark A.

    2018-01-01

    The cell cycle consists of four main phases: G1, S, G2, and M. Most cells undergo these cycles up to 40–60 times in their life. However, neurons remain in a nondividing, nonreplicating phase, G0. Neurons initiate but do not complete cell division, eventually entering apoptosis. Research has suggested that like cancer, Alzheimer’s disease (AD) involves dysfunction in neuronal cell cycle reentry, leading to the development of the two-hit hypothesis of AD. The first hit is abnormal cell cycle reentry, which typically results in neuronal apoptosis and prevention of AD. However, with the second hit of chronic oxidative damage preventing apoptosis, neurons gain “immortality” analogous to tumor cells. Once both of these hits are activated, AD can develop and produce senile plaques and neurofibrillary tangles throughout brain tissue. In this review, we propose a mechanism for neuronal cell cycle reentry and the development of AD. PMID:21630160

  9. Successfully use agglomeration for size enlargement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietsch, W.

    1996-04-01

    The processing of fine and ultrafine particles by size enlargement finds an ever increasing application. At the same time, undesirable agglomeration such as buildup, caking, bridging, and uncontrolled aggregation of fine particles can occur during processing and handling of these particulate solids. This article will provide a survey of the phenomena of agglomeration and discuss the unit operation of size enlargement by agglomeration. This article is also an invitation, particularly to young engineers, to become interested in agglomeration. Considering that mechanical process technologies are requiring more energy every year than any other group of consumers and efficiencies are typically inmore » the single digits or teens at best, considerable rewards can be expected from the development of scientifically modified, more energy-efficient methods and equipment.« less

  10. Characteristics of vestibular evoked myogenic potentials in children with enlarged vestibular aqueduct.

    PubMed

    Zhou, Guangwei; Gopen, Quinton

    2011-01-01

    To explore the characteristics of vestibular evoked myogenic potential (VEMP) in children with enlarged vestibular aqueduct (EVA) and to determine the diagnostic value of VEMP testing for this particular inner ear structural anomaly. Retrospective cohort study in a pediatric tertiary care facility. A total of 25 pediatric cases (37 ears) of EVA were identified with complete records, including otologic evaluation, CT scan of the temporal bone, and audiologic assessment. Results of audiometry, tympanometry, and VEMP testing were analyzed. Hearing loss was found in 97% (36/37) of the ears with EVA. Airbone gaps (conductive components) were found in all hearing losses with normal middle ear pressure and mobility. Abnormally low threshold VEMP responses were found in 92% (34/37) of the ears with EVA. VEMP responses were absent unilaterally in three EVA patients who had vestibular complaints. No clear correlation was found between the size of EVA and the audiologic findings. The presence of airbone gaps in children with EVA was found without apparent middle ear pathology. Characteristics of VEMP in EVA were lower thresholds and higher amplitudes despite of the presence of airbone gaps. The abnormally low threshold VEMP responses suggested a "third" window effect in the pathologic condition of EVA. Unilateral absence of VEMP may implicate peripheral vestibular impairment. The findings from our study are helpful in clinical evaluation of young children who usually give limited and ambiguous input regarding their hearing and vestibular problems.

  11. Chromosomal aneuploidies and copy number variations in posterior fossa abnormalities diagnosed by prenatal ultrasonography.

    PubMed

    Lei, Ting; Feng, Jie-Ling; Xie, Ying-Jun; Xie, Hong-Ning; Zheng, Ju; Lin, Mei-Fang

    2017-11-01

    To explore the genetic aetiology of fetal posterior fossa abnormalities (PFAs). This study involved cases of PFAs that were identified by prenatal ultrasonographic screening and confirmed postnatally between January 2012 and January 2016. Conventional cytogenetic analyses and chromosomal microarray analysis were performed, and chromosomal aneuploidies and copy number variations (CNVs) were identified. Among 74 cases included in this study, 8 were of Blake's pouch cyst; 7, Dandy-Walker malformation; 11, vermian hypoplasia; 32, enlarged cisterna magna; and 16, cerebellar hypoplasia. The rates of nonbenign chromosomal aberrations (including chromosomal aneuploidies, pathogenic CNVs, and variants of unknown significance) were 2/8 (25.0%), 2/7 (28.5%), 8/11 (72.7%), 7/32 (21.9%), and 6/16 (37.5%), respectively. Cases were also classified as isolated PFAs (30/74), PFAs with other central nervous system (CNS) abnormalities (13/74), or PFAs with extra-CNS structural abnormalities (31/74). No fetuses with isolated PFAs or PFAs accompanied by other CNS abnormalities exhibited chromosomal aneuploidies or pathogenic CNVs. The rate of pathogenic chromosomal aberrations in the remaining fetuses was 17/31 (22.9%). The combined use of chromosomal microarray analysis and karyotype analysis might assist the prenatal diagnosis and management of PFAs, with extra-CNS structural abnormalities being detected by ultrasonography. © 2017 John Wiley & Sons, Ltd.

  12. Neuronal glucose transporter isoform 3 deficient mice demonstrate features of autism spectrum disorders.

    PubMed

    Zhao, Y; Fung, C; Shin, D; Shin, B-C; Thamotharan, S; Sankar, R; Ehninger, D; Silva, A; Devaskar, S U

    2010-03-01

    Neuronal glucose transporter (GLUT) isoform 3 deficiency in null heterozygous mice led to abnormal spatial learning and working memory but normal acquisition and retrieval during contextual conditioning, abnormal cognitive flexibility with intact gross motor ability, electroencephalographic seizures, perturbed social behavior with reduced vocalization and stereotypies at low frequency. This phenotypic expression is unique as it combines the neurobehavioral with the epileptiform characteristics of autism spectrum disorders. This clinical presentation occurred despite metabolic adaptations consisting of an increase in microvascular/glial GLUT1, neuronal GLUT8 and monocarboxylate transporter isoform 2 concentrations, with minimal to no change in brain glucose uptake but an increase in lactate uptake. Neuron-specific glucose deficiency has a negative impact on neurodevelopment interfering with functional competence. This is the first description of GLUT3 deficiency that forms a possible novel genetic mechanism for pervasive developmental disorders, such as the neuropsychiatric autism spectrum disorders, requiring further investigation in humans.

  13. Chronic lymphoglandular enlargement and toxoplasmosis in children.

    PubMed Central

    Thomaidis, T; Anastassea-Vlachou, K; Mandalenaki-Lambrou, C; Theodoridis, C; Vrahnou, E

    1977-01-01

    Serum antitoxoplasma titres were determined simultaneously by the direct agglutination and the indirect immunofluorescent tests in 52 children aged 2 to 16 years having chronic lymph node enlargement, mainly cervical. Direct agglutination titres were raised (64 to 4096) in 22 children (42%), but rarely in the control groups of children with acute suppurative lymphadenitis, and healthy children, adults, nurses, and physicians. It is concluded that toxoplasmosis is commoner in Greek children than previously believed, and that it should be included in the differential diagnosis of lymphoglandular enlargement. Clinically the condition is mild and may be self-limited, but it should be treated promptly with trimethoprim-sulphamethoxazole, in order to prevent reactivation in adult life. PMID:326200

  14. Neuronal Atrophy Early in Degenerative Ataxia Is a Compensatory Mechanism to Regulate Membrane Excitability

    PubMed Central

    Dell'Orco, James M.; Wasserman, Aaron H.; Chopra, Ravi; Ingram, Melissa A. C.; Hu, Yuan-Shih; Singh, Vikrant; Wulff, Heike; Opal, Puneet; Orr, Harry T.

    2015-01-01

    Neuronal atrophy in neurodegenerative diseases is commonly viewed as an early event in a continuum that ultimately results in neuronal loss. In a mouse model of the polyglutamine disorder spinocerebellar ataxia type 1 (SCA1), we tested the hypothesis that cerebellar Purkinje neuron atrophy serves an adaptive role rather than being simply a nonspecific response to injury. In acute cerebellar slices from SCA1 mice, we find that Purkinje neuron pacemaker firing is initially normal but, with the onset of motor dysfunction, becomes disrupted, accompanied by abnormal depolarization. Remarkably, subsequent Purkinje cell atrophy is associated with a restoration of pacemaker firing. The early inability of Purkinje neurons to support repetitive spiking is due to unopposed calcium currents resulting from a reduction in large-conductance calcium-activated potassium (BK) and subthreshold-activated potassium channels. The subsequent restoration of SCA1 Purkinje neuron firing correlates with the recovery of the density of these potassium channels that accompanies cell atrophy. Supporting a critical role for BK channels, viral-mediated increases in BK channel expression in SCA1 Purkinje neurons improves motor dysfunction and partially restores Purkinje neuron morphology. Cerebellar perfusion of flufenamic acid, an agent that restores the depolarized membrane potential of SCA1 Purkinje neurons by activating potassium channels, prevents Purkinje neuron dendritic atrophy. These results suggest that Purkinje neuron dendritic remodeling in ataxia is an adaptive response to increases in intrinsic membrane excitability. Similar adaptive remodeling could apply to other vulnerable neuronal populations in neurodegenerative disease. SIGNIFICANCE STATEMENT In neurodegenerative disease, neuronal atrophy has long been assumed to be an early nonspecific event preceding neuronal loss. However, in a mouse model of spinocerebellar ataxia type 1 (SCA1), we identify a previously unappreciated

  15. Correlations between ventricular enlargement and gray and white matter volumes of cortex, thalamus, striatum, and internal capsule in schizophrenia.

    PubMed

    Horga, Guillermo; Bernacer, Javier; Dusi, Nicola; Entis, Jonathan; Chu, Kingwai; Hazlett, Erin A; Haznedar, M Mehmet; Kemether, Eileen; Byne, William; Buchsbaum, Monte S

    2011-10-01

    Ventricular enlargement is one of the most consistent abnormal structural brain findings in schizophrenia and has been used to infer brain shrinkage. However, whether ventricular enlargement is related to local overlying cortex and/or adjacent subcortical structures or whether it is related to brain volume change globally has not been assessed. We systematically assessed interrelations of ventricular volumes with gray and white matter volumes of 40 Brodmann areas (BAs), the thalamus and its medial dorsal nucleus and pulvinar, the internal capsule, caudate and putamen. We acquired structural MRI ( patients with schizophrenia (n = 64) and healthy controls (n = 56)) and diffusion tensor fractional anisotropy (FA) (untreated schizophrenia n = 19, controls n = 32). Volumes were assessed by manual tracing of central structures and a semi-automated parcellation of BAs. Patients with schizophrenia had increased ventricular size associated with decreased cortical gray matter volumes widely across the brain; a similar but less pronounced pattern was seen in normal controls; local correlations (e.g. temporal horn with temporal lobe volume) were not appreciably higher than non-local correlations (e.g. temporal horn with prefrontal volume). White matter regions adjacent to the ventricles similarly did not reveal strong regional relationships. FA and center of mass of the anterior limb of the internal capsule also appeared differentially influenced by ventricular volume but findings were similarly not regional. Taken together, these findings indicate that ventricular enlargement is globally interrelated with gray matter volume diminution but not directly correlated with volume loss in the immediately adjacent caudate, putamen, or internal capsule.

  16. Glomerular enlargement assessed by paired donor and early protocol renal allograft biopsies.

    PubMed

    Alperovich, Gabriela; Maldonado, Rafael; Moreso, Francesc; Fulladosa, Xavier; Grinyó, Josep M; Serón, Daniel

    2004-04-01

    The aim of the study was to evaluate the evolution of glomerular volume 4 months after transplantation. Mean glomerular volume (Vg) was estimated according to the Weibel and Gomez method in a donor and a protocol biopsy done at 139 +/- 58 d in 41 stable grafts. Biopsies were also evaluated according to the Banff schema. Vg increased after transplantation from 4.1 +/- 1.4 to 5.1 +/- 2.4 x 10(6) micro3 (p=0.02). In patients with chronic allograft nephropathy in the protocol biopsy (n=14), the Vg enlargement was -0.3 +/-x 10(6) micro3 while in patients without chronic allograft nephropathy (n=27), glomerular enlargement was 1.6 +/- 2.1 x 10(6) micro3 (p=0.01). There was a negative association between glomerular volume in the donor biopsy and glomerular enlargement after transplantation (R=- 0.34, p=0.03). Multivariate regression analysis confirmed that Vg in the donor biopsy and chronic allograft nephropathy in the protocol biopsy were independent predictors of glomerular enlargement after transplantation (R=0.48, p=0.01). Moreover, Vg in the protocol biopsy correlated with creatinine clearance at the time of biopsy (R=0.38, p=0.01). Glomeruli enlarge after transplantation and glomerular volume after 4 months correlates with creatinine clearance, suggesting that glomerular enlargement is a necessary condition for renal adaptation to the recipient. Glomerular enlargement is impaired in patients with chronic allograft nephropathy.

  17. High Risk of Dementia in Ventricular Enlargement with Normal Pressure Hydrocephalus Related Symptoms1.

    PubMed

    Koivisto, Anne M; Kurki, Mitja I; Alafuzoff, Irina; Sutela, Anna; Rummukainen, Jaana; Savolainen, Sakari; Vanninen, Ritva; Jääskeläinen, Juha E; Soininen, Hilkka; Leinonen, Ville

    2016-03-22

    Differential diagnosis of ventricular enlargement with normal pressure hydrocephalus (NPH) related symptoms is challenging. Patients with enlarged ventricles often manifest cognitive deterioration but their long-term outcome is not well known. We aim to evaluate long-term cognitive outcome in patients with enlarged ventricles and clinically suspected NPH. A neurologist and a neurosurgeon clinically evaluated 468 patients with enlarged ventricles and suspected NPH using radiological methods, intraventricular pressure monitoring, and frontal cortical brain biopsy. The neurologist confirmed final diagnoses after a median follow-up interval of 4.8 years. Altogether, 232 patients (50%) with enlarged ventricles did not fulfill the criteria for shunt surgery. The incidence of dementia among patients with enlarged ventricles, and at least one NPH-related symptom with adequate follow-up data (n = 446) was high, varying from 77 (iNPH, shunt responders) to 141/1000 person-years (non-shunted patients with enlarged ventricles). At the end of the follow-up, 59% of all these patients were demented. The demented population comprised 73% of non-shunted patients with enlarged ventricles, 63% of shunted iNPH patients that did not respond to treatment, and 46% of iNPH patients that were initially responsive to shunting. The most common cause of dementia was Alzheimer's disease (n = 94, 36%), followed by vascular dementia (n = 68, 26%). One-half of patients with enlarged ventricles and clinically suspected NPH were not shunted after intraventricular pressure monitoring. Dementia caused by various neurodegenerative diseases was frequently seen in patients with ventricular enlargement. Thus, careful diagnostic evaluation in collaboration with neurologists and neurosurgeons is emphasized.

  18. Mapping the dense scotoma and its enlargement in Stargardt disease

    PubMed Central

    Bernstein, Aryeh; Sunness, Janet S.; Applegate, Carol A.; Tegins, Elizabeth O.

    2016-01-01

    Purpose To describe the enlargement of the dense scotoma over time in Stargardt disease, and to highlight methodological issues in tracking enlargement. Methods Retrospective study of patients with full mapping of the border of the dense scotoma using the MP-1 for at least two visits. Results Fourteen eyes of 7 patients met this criterion. Patients had median of 3 visits (range 2 to 5), with median total f/u of 4.5 years (range 1.5-8). Mean baseline visual acuity was 20/56 (range 20/25-20/200), mean baseline dense scotoma area was 2.23mm2 (range 0.41-5.48), and mean dense scotoma enlargement rate was 1.36mm2/year (range 0.22-2.91). The younger patients tended to have more rapid loss of visual acuity, which tended to plateau when the VA was 20/100 or worse. The patients who developed Stargardt before age 20, and the single patient who developed Stargardt disease after age 40, had more rapid enlargement rates, with preservation of central vision in the oldest patient. The ability to precisely define the dense scotoma area was dependent upon the density location of the points tested; this led to significant variability in the assessment of the scotoma enlargement rate in 3 of the 7 patients. The dense scotoma was not described adequately by the extent of the homogeneous dark area on fundus autofluorescence imaging. Conclusion Microperimetry is necessary for mapping the scotoma in patients with Stargardt disease, since current imaging is not adequate. Standardized grid testing, plus a standardized procedure for refining the border of the dense scotoma, should allow more precise testing and longitudinal assessment of enlargement rates. PMID:26909568

  19. Calf enlargement associated with neurologic disease: two uncommon cases.

    PubMed

    Harwood, S C; Honet, J C

    1988-01-01

    Muscle enlargement and hypertrophy are rare findings in neurogenic lesions. The two in combination have been reported in cases of peripheral nerve lesions, polyneuropathy, and poliomyelitis. True and pseudo muscle hypertrophy are the two possible etiologies, whereas infiltration, stretch, or exercise of the muscle are the causative factors. We report two cases of unilateral calf enlargement, one occurring after surgery for S1 radiculopathy with associated cramping, and the other after poliomyelitis.

  20. A mouse model of DEPDC5-related epilepsy: Neuronal loss of Depdc5 causes dysplastic and ectopic neurons, increased mTOR signaling, and seizure susceptibility.

    PubMed

    Yuskaitis, Christopher J; Jones, Brandon M; Wolfson, Rachel L; Super, Chloe E; Dhamne, Sameer C; Rotenberg, Alexander; Sabatini, David M; Sahin, Mustafa; Poduri, Annapurna

    2018-03-01

    DEPDC5 is a newly identified epilepsy-related gene implicated in focal epilepsy, brain malformations, and Sudden Unexplained Death in Epilepsy (SUDEP). In vitro, DEPDC5 negatively regulates amino acid sensing by the mTOR complex 1 (mTORC1) pathway, but the role of DEPDC5 in neurodevelopment and epilepsy has not been described. No animal model of DEPDC5-related epilepsy has recapitulated the neurological phenotypes seen in patients, and germline knockout rodent models are embryonic lethal. Here, we establish a neuron-specific Depdc5 conditional knockout mouse by cre-recombination under the Synapsin1 promotor. Depdc5 flox/flox -Syn1 Cre (Depdc5cc+) mice survive to adulthood with a progressive neurologic phenotype that includes motor abnormalities (i.e., hind limb clasping) and reduced survival compared to littermate control mice. Depdc5cc+ mice have larger brains with increased cortical neuron size and dysplastic neurons throughout the cortex, comparable to the abnormal neurons seen in human focal cortical dysplasia specimens. Depdc5 results in constitutive mTORC1 hyperactivation exclusively in neurons as measured by the increased phosphorylation of the downstream ribosomal protein S6. Despite a lack of increased mTORC1 signaling within astrocytes, Depdc5cc+ brains show reactive astrogliosis. We observed two Depdc5cc+ mice to have spontaneous seizures, including a terminal seizure. We demonstrate that as a group Depdc5cc+ mice have lowered seizure thresholds, as evidenced by decreased latency to seizures after chemoconvulsant injection and increased mortality from pentylenetetrazole-induced seizures. In summary, our neuron-specific Depdc5 knockout mouse model recapitulates clinical, pathological, and biochemical features of human DEPDC5-related epilepsy and brain malformations. We thereby present an important model in which to study targeted therapeutic strategies for DEPDC5-related conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Neuronal Entropy-Rate Feature of Entopeduncular Nucleus in Rat Model of Parkinson's Disease.

    PubMed

    Darbin, Olivier; Jin, Xingxing; Von Wrangel, Christof; Schwabe, Kerstin; Nambu, Atsushi; Naritoku, Dean K; Krauss, Joachim K; Alam, Mesbah

    2016-03-01

    The function of the nigro-striatal pathway on neuronal entropy in the basal ganglia (BG) output nucleus, i.e. the entopeduncular nucleus (EPN) was investigated in the unilaterally 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD). In both control subjects and subjects with 6-OHDA lesion of dopamine (DA) the nigro-striatal pathway, a histological hallmark for parkinsonism, neuronal entropy in EPN was maximal in neurons with firing rates ranging between 15 and 25 Hz. In 6-OHDA lesioned rats, neuronal entropy in the EPN was specifically higher in neurons with firing rates above 25 Hz. Our data establishes that the nigro-striatal pathway controls neuronal entropy in motor circuitry and that the parkinsonian condition is associated with abnormal relationship between firing rate and neuronal entropy in BG output nuclei. The neuronal firing rates and entropy relationship provide putative relevant electrophysiological information to investigate the sensory-motor processing in normal condition and conditions such as movement disorders.

  2. Drugs of abuse that cause developing neurons to commit suicide.

    PubMed

    Farber, Nuri B; Olney, John W

    2003-12-30

    When neuronal activity is abnormally suppressed during the developmental period of synaptogenesis, the timing and sequence of synaptic connections is disrupted, and this causes nerve cells to receive an internal signal to commit suicide, a form of cell death known as "apoptosis". By altering glutamate and GABA transmission alcohol suppresses neuronal activity, causing millions of nerve cells to commit suicide in the developing brain. This proapoptotic effect of alcohol provides a likely explanation for the diminished brain size and lifelong neurobehavioral disturbances associated with the human fetal alcohol syndrome. These findings have public health significance, not only in relation to fetal alcohol syndrome, but also in relation to several other drugs of abuse and various drugs used in obstetric and pediatric medicine, because these additional drugs (e.g. phencyclidine, ketamine, benzodiazepines, barbiturates) also suppress neuronal activity and drive developing neurons to commit suicide.

  3. How do plants enlarge? A balancing act; Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyer, J.S.

    1996-12-31

    Cells of plants are surrounded by strong walls that prevent rupture from internal pressures that can be two or three times that of an automobile tire. In this way, the walls protect the cytoplasm. However, at the same time, the cells can enlarge as they grow. How this balancing act works and how it enlarges the plant were the subject of a recent conference at the University of Delaware in Lewes. The aim was to identify areas for future research that could explain the enlargement of whole plants. There is a large practical need to predict and modify plant enlargementmore » but the additional processes that overlie the molecular ones need to be integrated with the molecular information before a picture will emerge. How best to accomplish this involved input from cross-disciplinary areas in biomechanics, physics and engineering as well as molecular biology, biochemistry and ultrastructure.« less

  4. Extracellular matrix controls neuronal features that mediate the persistence of fear.

    PubMed

    Pignataro, Annabella; Pagano, Roberto; Guarneri, Giorgia; Middei, Silvia; Ammassari-Teule, Martine

    2017-12-01

    Degradation of the chondroitin sulfate proteoglycans of the extracellular matrix (ECM) by injections of the bacterial enzyme chondroitinase ABC (ChABC) in the basolateral amygdala (BLA) does not impair fear memory formation but accelerates its extinction and disrupts its reactivation. These observations suggest that the treatment might selectively interfere with the post-extinction features of neurons that mediate the reinstatement of fear. Here, we report that ChABC mice show regular fear memory and memory-driven c-fos activation and dendritic spine formation in the BLA. These mice then rapidly extinguish their fear response and exhibit a post-extinction concurrent reduction in c-fos activation and large dendritic spines that extends to the anterior cingulate cortex 7 days later. At this remote time point, fear renewal and fear retrieval are impaired. These findings show that a non-cellular component of the brain tissue controls post-extinction levels of neuronal activity and spine enlargement in the regions sequentially remodelled during the formation of recent and remote fear memory. By preventing BLA and aCC neurons to retain neuronal features that serve to reactivate an extinguished fear memory, ECM digestion might offer a therapeutic strategy for durable attenuation of traumatic memories.

  5. Inherited Paediatric Motor Neuron Disorders: Beyond Spinal Muscular Atrophy

    PubMed Central

    Sampaio, Hugo; Mowat, David; Roscioli, Tony

    2017-01-01

    Paediatric motor neuron diseases encompass a group of neurodegenerative diseases characterised by the onset of muscle weakness and atrophy before the age of 18 years, attributable to motor neuron loss across various neuronal networks in the brain and spinal cord. While the genetic underpinnings are diverse, advances in next generation sequencing have transformed diagnostic paradigms. This has reinforced the clinical phenotyping and molecular genetic expertise required to navigate the complexities of such diagnoses. In turn, improved genetic technology and subsequent gene identification have enabled further insights into the mechanisms of motor neuron degeneration and how these diseases form part of a neurodegenerative disorder spectrum. Common pathophysiologies include abnormalities in axonal architecture and function, RNA processing, and protein quality control. This review incorporates an overview of the clinical manifestations, genetics, and pathophysiology of inherited paediatric motor neuron disorders beyond classic SMN1-related spinal muscular atrophy and describes recent advances in next generation sequencing and its clinical application. Specific disease-modifying treatment is becoming a clinical reality in some disorders of the motor neuron highlighting the importance of a timely and specific diagnosis. PMID:28634552

  6. Schizophrenia-Like Dopamine Release Abnormalities in a Mouse Model of NMDA Receptor Hypofunction.

    PubMed

    Nakao, Kazuhito; Jeevakumar, Vivek; Jiang, Sunny Zhihong; Fujita, Yuko; Diaz, Noelia B; Pretell Annan, Carlos A; Eskow Jaunarajs, Karen L; Hashimoto, Kenji; Belforte, Juan E; Nakazawa, Kazu

    2018-01-31

    Amphetamine-induced augmentation of striatal dopamine and its blunted release in prefrontal cortex (PFC) is a hallmark of schizophrenia pathophysiology. Although N-methyl-D-aspartate receptor (NMDAR) hypofunction is also implicated in schizophrenia, it remains unclear whether NMDAR hypofunction leads to dopamine release abnormalities. We previously demonstrated schizophrenia-like phenotypes in GABAergic neuron-specific NMDAR hypofunctional mutant mice, in which Ppp1r2-Cre dependent deletion of indispensable NMDAR channel subunit Grin1 is induced in corticolimbic GABAergic neurons including parvalbumin (PV)-positive neurons, in postnatal development, but not in adulthood. Here, we report enhanced dopaminomimetic-induced locomotor activity in these mutants, along with bidirectional, site-specific changes in in vivo amphetamine-induced dopamine release: nucleus accumbens (NAc) dopamine release was enhanced by amphetamine in postnatal Ppp1r2-Cre/Grin1 knockout (KO) mice, whereas dopamine release was dramatically reduced in the medial PFC (mPFC) compared to controls. Basal tissue dopamine levels in both the NAc and mPFC were unaffected. Interestingly, the magnitude and distribution of amphetamine-induced c-Fos expression in dopamine neurons was comparable between genotypes across dopaminergic input subregions in the ventral tegmental area (VTA). These effects appear to be both developmentally and cell-type specifically modulated, since PV-specific Grin1 KO mice could induce the same effects as seen in postnatal-onset Ppp1r2-Cre/Grin1 KO mice, but no such abnormalities were observed in somatostatin-Cre/Grin1 KO mice or adult-onset Ppp1r2-Cre/Grin1 KO mice. These results suggest that PV GABAergic neuron-NMDAR hypofunction in postnatal development confers bidirectional NAc hyper- and mPFC hypo-sensitivity to amphetamine-induced dopamine release, similar to that classically observed in schizophrenia pathophysiology. © The Author(s) 2018. Published by Oxford University

  7. Progressive Retinal Nerve Fiber Layer Atrophy Associated With Enlarging Peripapillary Pit.

    PubMed

    Lee, Eun Ji; Kim, Tae-Woo

    2017-02-01

    To report a case in which progressive retinal nerve fiber layer (RNFL) atrophy was observed along with enlargement of the peripapillary pit. A 34-year-old male was diagnosed with primary open-angle glaucoma and followed up for 4 years with regular ophthalmic examinations. Both eyes were myopic (-10 D, OD and -10.5 D, OS), and untreated intraocular pressures were 18 mm Hg (OD) and 16 mm Hg (OS). A subtle depression of the superotemporal peripapillary area was deepened and emerged as a peripapillary pit during the follow-up period. With the enlargement of the peripapillary pit, a RNFL defect at the location of pit widened and thinned continuously. The enlargement of the pit was documented by the spectral-domain optical coherence tomography posterior pole scanning. Progressive RNFL atrophy was observed with enlargement of the peripapillary pit. The finding suggests that tensile stress derived from the scleral stretching may have significant influence on the integrity of the RNFL.

  8. Calcium localization and tipburn development in lettuce leaves during early enlargement

    NASA Technical Reports Server (NTRS)

    Barta, D. J.; Tibbitts, T. W.

    2000-01-01

    Tissue concentrations of Ca, Mg, and K were determined across immature leaves of lettuce (Lactuca sativa L. 'Buttercrunch') at different stages of enlargement using electron microprobe x-ray analysis. The analysis was with a wavelength dispersive spectrometer to permit detection of low concentrations of Ca. Patterns of mineral accumulation in immature leaves that were exposed were compared to patterns of accumulation in leaves that were enclosed within a developing head. The leaves developing without enclosure were free to transpire and developed normally whereas leaves developing with enclosure were restricted in transpiration and developed an injury that was characteristic of Ca deficiency. In the exposed leaves, Ca concentrations increased from an average of 1.0 to 2.1 mg g-1 dry weight (DW) as the leaves enlarged from 5 to 30 mm in length. In the enclosed leaves, Ca concentrations decreased from 1.0 to 0.7 mg g-1 DW as the leaves enlarged from 5 to 30 mm in length. At the tips of these enclosed leaves a larger decrease was found, from 0.9 to 0.3 mg g-1 DW during enlargement. Necrotic injury first became apparent in this tip area when the concentration was approximate to 0.4 mg g-1 DW. Magnesium concentrations across the exposed leaves were similar to concentrations across the enclosed leaves, and did not change with enlargement. Magnesium concentrations averaged 3.5. mg g-1 DW in both enclosed and exposed leaves during enlargement from 5 to 30 mm. In both exposed and enclosed leaves, K concentrations increased during enlargement from 40 to approximate to 60 mg g-1 DW. Potassium concentrations were highest toward the leaf apex and upper margin where injury symptoms occurred, and this may have enhanced injury development. This research documents the critical low levels of Ca (0.2 to 0.4 mg g-1 DW) that can occur in enclosed leaves of plants and which apparently leads to the marginal apex necrosis of developing leaves seen frequently on lettuce and other crops.

  9. Cytoplasmic mislocalization of RNA splicing factors and aberrant neuronal gene splicing in TDP-43 transgenic pig brain.

    PubMed

    Wang, Guohao; Yang, Huaqiang; Yan, Sen; Wang, Chuan-En; Liu, Xudong; Zhao, Bentian; Ouyang, Zhen; Yin, Peng; Liu, Zhaoming; Zhao, Yu; Liu, Tao; Fan, Nana; Guo, Lin; Li, Shihua; Li, Xiao-Jiang; Lai, Liangxue

    2015-09-03

    TAR DNA-binding protein 43 (TDP-43) is a nuclear protein, but it is redistributed in the neuronal cytoplasm in both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Because small transgenic animal models often lack cytoplasmic TDP-43, how the cytoplasmic accumulation of TDP-43 contributes to these diseases remains unclear. The current study is aimed at studying the mechanism of cytoplasmic pathology of TDP-43. We established transgenic pigs expressing mutant TDP-43 (M337V). This pig model shows severe phenotypes and early death. We found that transgenic TDP-43 is also distributed in the cytoplasm of neuronal cells in the spinal cord and brain. Transgenic TDP-43 interacts with PSF, an RNA splicing factor that associates with NeuN to regulate neuronal RNA splicing. The interaction of TDP-43, PSF and NeuN causes PSF and NeuN mislocalize into the neuronal cytoplasm in transgenic pigs. Consistently, abnormal PSF-related neuronal RNA splicing is seen in TDP-43 transgenic pigs. The cytoplasmic localization of PSF and NeuN as well as abnormal PSF-related neuronal RNA splicing was also found in ALS patient brains. Our findings from a large mammalian model suggest that cytoplasmic mutant TDP-43 could reduce the nuclear function of RNA splicing factors, contributing to neuropathology.

  10. Excessive activation of AhR signaling disrupts neuronal migration in the hippocampal CA1 region in the developing mouse.

    PubMed

    Kimura, Eiki; Kubo, Ken-Ichiro; Endo, Toshihiro; Nakajima, Kazunori; Kakeyama, Masaki; Tohyama, Chiharu

    2017-01-01

    The aryl hydrocarbon receptor (AhR) avidly binds dioxin, a ubiquitous environmental contaminant. Disruption of downstream AhR signaling has been reported to alter neuronal development, and rodent offspring exposed to dioxin during gestation and lactation showed abnormalities in learning and memory, emotion, and social behavior. However, the mechanism behind the disrupted AhR signaling and developmental neurotoxicity induced by xenobiotic ligands remains elusive. Therefore, we studied how excessive AhR activation affects neuronal migration in the hippocampal CA1 region of the developing mouse brain. We transfected constitutively active (CA)-AhR, AhR, or control vector plasmids into neurons via in utero electroporation on gestational day 14 and analyzed neuronal positioning in the hippocampal CA1 region of offspring on postnatal day 14. CA-AhR transfection affected neuronal positioning, whereas no change was observed in AhR-transfected or control hippocampus. These results suggest that constitutively activated AhR signaling disrupts neuronal migration during hippocampal development. Further studies are needed to investigate whether such developmental disruption in the hippocampus leads to the abnormal cognition and behavior of rodent offspring upon maternal exposure to AhR xenobiotic ligands.

  11. Early White-Matter Abnormalities of the Ventral Frontostriatal Pathway in Fragile X Syndrome

    ERIC Educational Resources Information Center

    Haas, Brian W.; Barnea-Goraly, Naama; Lightbody, Amy A.; Patnaik, Swetapadma S.; Hoeft, Fumiko; Hazlett, Heather; Piven, Joseph; Reiss, Allan L.

    2009-01-01

    Aim: Fragile X syndrome is associated with cognitive deficits in inhibitory control and with abnormal neuronal morphology and development. Method: In this study, we used a diffusion tensor imaging (DTI) tractography approach to reconstruct white-matter fibers in the ventral frontostriatal pathway in young males with fragile X syndrome (n = 17;…

  12. Genetic Causes of Microcephaly and Lessons for Neuronal Development

    PubMed Central

    Gilmore, Edward C.; Walsh, Christopher A.

    2012-01-01

    The study of human developmental microcephaly is providing important insights into brain development. It has become clear that developmental microcephalies are associated with abnormalities in cellular production, and that the pathophysiology of microcephaly provides remarkable insights into how the brain generates the proper number of neurons that determine brain size. Most of the genetic causes of ‘primary’ developmental microcephaly (i.e., not associated with other syndromic features) are associated with centrosomal abnormalities. In addition to other functions, centrosomal proteins control the mitotic spindle, which is essential for normal cell proliferation during mitosis. However, the brain is often uniquely affected when microcephaly genes are mutated implying special centrosomal related functions in neuronal production. Although models explaining how this could occur have some compelling data, they are not without controversy. Interestingly, some of the microcephaly genes show evidence that they were targets of evolutionary selection in primates and human ancestors, suggesting potential evolutionary roles in controlling neuronal number and brain volume across species. Mutations in DNA repair pathway genes also lead to microcephaly. Double stranded DNA breaks appear to be a prominent type of damage that needs to be repaired during brain development, yet why defects in DNA repair affect the brain preferentially and if DNA repair relates to centrosome function, are not clearly understood. PMID:24014418

  13. Abnormal electroretinogram associated with developmental brain anomalies.

    PubMed Central

    Cibis, G W; Fitzgerald, K M

    1995-01-01

    PURPOSE: We have encountered abnormal ERGs associated with optic nerve hypoplasia, macular, optic nerve and chorioretinal colobomata and developmental brain anomalies. Brain anomalies include cortical dysgenesis, lissencephaly, porencephaly, cerebellar and corpus callosum hypoplasia. We describe six exemplar cases. METHODS: Scotopic and photopic ERGs adherent to international standards were performed as well as photopic ERGs to long-duration stimuli. CT or MRI studies were also done. The ERGs were compared to age-matched normal control subjects. RESULTS: ERG changes include reduced amplitude b-waves to blue and red stimuli under scotopic testing conditions. Implicit times were often delayed. The photopic responses also showed reduced amplitude a- and b-waves with implicit time delays. The long-duration photopic ERG done in one case shows attenuation of both ON- and OFF-responses. CONCLUSIONS: Common underlying developmental genetic or environmental unifying casualties are speculated to be at fault in causing these cases of associated retinal and brain abnormalities. No single etiology is expected. Multiple potential causes acting early in embryogenesis effecting neuronal induction, migration and differentiation are theorized. These occur at a time when brain and retinal cells are sufficiently undifferentiated to be similarly effected. We call these cases examples of Brain Retina Neuroembryodysgenesis (BRNED). Homeobox and PAX genes with global neuronal developmental influences are gene candidates to unify the observed disruption of brain and retinal cell development. The ERG can provide a valuable clinical addition in understanding and ultimately classifying these disorders. Images FIGURE 1 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 PMID:8719676

  14. Fine-tuned SRF activity controls asymmetrical neuronal outgrowth: implications for cortical migration, neural tissue lamination and circuit assembly

    PubMed Central

    Scandaglia, Marilyn; Benito, Eva; Morenilla-Palao, Cruz; Fiorenza, Anna; del Blanco, Beatriz; Coca, Yaiza; Herrera, Eloísa; Barco, Angel

    2015-01-01

    The stimulus-regulated transcription factor Serum Response Factor (SRF) plays an important role in diverse neurodevelopmental processes related to structural plasticity and motile functions, although its precise mechanism of action has not yet been established. To further define the role of SRF in neural development and distinguish between cell-autonomous and non cell-autonomous effects, we bidirectionally manipulated SRF activity through gene transduction assays that allow the visualization of individual neurons and their comparison with neighboring control cells. In vitro assays showed that SRF promotes survival and filopodia formation and is required for normal asymmetric neurite outgrowth, indicating that its activation favors dendrite enlargement versus branching. In turn, in vivo experiments demonstrated that SRF-dependent regulation of neuronal morphology has important consequences in the developing cortex and retina, affecting neuronal migration, dendritic and axonal arborization and cell positioning in these laminated tissues. Overall, our results show that the controlled and timely activation of SRF is essential for the coordinated growth of neuronal processes, suggesting that this event regulates the switch between neuronal growth and branching during developmental processes. PMID:26638868

  15. Developmental abnormalities of the posterior pituitary gland.

    PubMed

    di Iorgi, Natascia; Secco, Andrea; Napoli, Flavia; Calandra, Erika; Rossi, Andrea; Maghnie, Mohamad

    2009-01-01

    While the molecular mechanisms of anterior pituitary development are now better understood than in the past, both in animals and in humans, little is known about the mechanisms regulating posterior pituitary development. The posterior pituitary gland is formed by the evagination of neural tissue from the floor of the third ventricle. It consists of the distal axons of the hypothalamic magnocellular neurones that shape the neurohypophysis. After its downward migration, it is encapsulated together with the ascending ectodermal cells of Rathke's pouch which form the anterior pituitary. By the end of the first trimester, this development is completed and vasopressin and oxytocin can be detected in neurohypophyseal tissue. Abnormal posterior pituitary migration such as the ectopic posterior pituitary lobe appearing at the level of median eminence or along the pituitary stalk have been reported in idiopathic GH deficiency or in subjects with HESX1, LHX4 and SOX3 gene mutations. Another intriguing feature of abnormal posterior pituitary development involves genetic forms of posterior pituitary neurodegeneration that have been reported in autosomal-dominant central diabetes insipidus and Wolfram disease. Defining the phenotype of the posterior pituitary gland can have significant clinical implications for management and counseling, as well as providing considerable insight into normal and abnormal mechanisms of posterior pituitary development in humans.

  16. Body-enlarging effect of royal jelly in a non-holometabolous insect species, Gryllus bimaculatus

    PubMed Central

    Miyashita, Atsushi; Kizaki, Hayato; Sekimizu, Kazuhisa; Kaito, Chikara

    2016-01-01

    ABSTRACT Honeybee royal jelly is reported to have body-enlarging effects in holometabolous insects such as the honeybee, fly and silkmoth, but its effect in non-holometabolous insect species has not yet been examined. The present study confirmed the body-enlarging effect in silkmoths fed an artificial diet instead of mulberry leaves used in the previous literature. Administration of honeybee royal jelly to silkmoth from early larval stage increased the size of female pupae and adult moths, but not larvae (at the late larval stage) or male pupae. We further examined the body-enlarging effect of royal jelly in a non-holometabolous species, the two-spotted cricket Gryllus bimaculatus, which belongs to the evolutionarily primitive group Polyneoptera. Administration of royal jelly to G. bimaculatus from its early nymph stage enlarged both males and females at the mid-nymph and adult stages. In the cricket, the body parts were uniformly enlarged in both males and females; whereas the enlarged female silkmoths had swollen abdomens. Administration of royal jelly increased the number, but not the size, of eggs loaded in the abdomen of silkmoth females. In addition, fat body cells were enlarged by royal jelly in the silkmoth, but not in the cricket. These findings suggest that the body-enlarging effect of royal jelly is common in non-holometabolous species, G. bimaculatus, but it acts in a different manner than in holometabolous species. PMID:27185266

  17. Body-enlarging effect of royal jelly in a non-holometabolous insect species, Gryllus bimaculatus.

    PubMed

    Miyashita, Atsushi; Kizaki, Hayato; Sekimizu, Kazuhisa; Kaito, Chikara

    2016-06-15

    Honeybee royal jelly is reported to have body-enlarging effects in holometabolous insects such as the honeybee, fly and silkmoth, but its effect in non-holometabolous insect species has not yet been examined. The present study confirmed the body-enlarging effect in silkmoths fed an artificial diet instead of mulberry leaves used in the previous literature. Administration of honeybee royal jelly to silkmoth from early larval stage increased the size of female pupae and adult moths, but not larvae (at the late larval stage) or male pupae. We further examined the body-enlarging effect of royal jelly in a non-holometabolous species, the two-spotted cricket Gryllus bimaculatus, which belongs to the evolutionarily primitive group Polyneoptera. Administration of royal jelly to G. bimaculatus from its early nymph stage enlarged both males and females at the mid-nymph and adult stages. In the cricket, the body parts were uniformly enlarged in both males and females; whereas the enlarged female silkmoths had swollen abdomens. Administration of royal jelly increased the number, but not the size, of eggs loaded in the abdomen of silkmoth females. In addition, fat body cells were enlarged by royal jelly in the silkmoth, but not in the cricket. These findings suggest that the body-enlarging effect of royal jelly is common in non-holometabolous species, G. bimaculatus, but it acts in a different manner than in holometabolous species. © 2016. Published by The Company of Biologists Ltd.

  18. Early physiological abnormalities after simian immunodeficiency virus infection.

    PubMed

    Horn, T F; Huitron-Resendiz, S; Weed, M R; Henriksen, S J; Fox, H S

    1998-12-08

    Central nervous system (CNS) damage and dysfunction are devastating consequences of HIV infection. Although the CNS is one of the initial targets for HIV infection, little is known about early viral-induced abnormalities that can affect CNS function. Here we report the detection of early physiological abnormalities in simian immunodeficiency virus-infected monkeys. The acute infection caused a disruption of the circadian rhythm manifested by rises in body temperature, observed in all five individuals between 1 and 2 weeks postinoculation (p.i.), accompanied by a reduction in daily motor activity to 50% of control levels. Animals remained hyperthermic at 1 and 2 months p.i. and returned to preinoculation temperatures at 3 months after viral inoculation. Although motor activity recovered to baseline values at 1 month p.i., activity levels then decreased to approximately 50% of preinoculation values over the next 2 months. Analysis of sensory-evoked responses 1 month p.i. revealed distinct infection-induced changes in auditory-evoked potential peak latencies that persisted at 3 months after viral inoculation. These early physiological abnormalities may precede the development of observable cognitive or motor deficiencies and can provide an assay to evaluate agents to prevent or alleviate neuronal dysfunction.

  19. Conversion of Fibroblasts to Parvalbumin Neurons by One Transcription Factor, Ascl1, and the Chemical Compound Forskolin*

    PubMed Central

    Shi, Zixiao; Zhang, Juan; Chen, Shuangquan; Li, Yanxin; Lei, Xuepei; Qiao, Huimin; Zhu, Qianwen; Hu, Baoyang; Zhou, Qi; Jiao, Jianwei

    2016-01-01

    Abnormalities in parvalbumin (PV)-expressing interneurons cause neurodevelopmental disorders such as epilepsy, autism, and schizophrenia. Unlike other types of neurons that can be efficiently differentiated from pluripotent stem cells, PV neurons were minimally generated using a conventional differentiation strategy. In this study we developed an adenovirus-based transdifferentiation strategy that incorporates an additional chemical compound for the efficient generation of induced PV (iPV) neurons. The chemical compound forskolin combined with Ascl1 induced ∼80% of mouse fibroblasts to iPV neurons. The iPV neurons generated by this procedure matured 5–7 days post infection and were characterized by electrophysiological properties and known neuronal markers, such as PV and GABA. Our studies, therefore, identified an efficient approach for generating PV neurons. PMID:27137935

  20. Trichloroethylene exposure aggravates behavioral abnormalities in mice that are deficient in superoxide dismutase.

    PubMed

    Otsuki, Noriyuki; Homma, Takujiro; Fujiwara, Hiroki; Kaneko, Kenya; Hozumi, Yasukazu; Shichiri, Mototada; Takashima, Mizuki; Ito, Junitsu; Konno, Tasuku; Kurahashi, Toshihiro; Yoshida, Yasukazu; Goto, Kaoru; Fujii, Satoshi; Fujii, Junichi

    2016-08-01

    Trichloroethylene (TCE) has been implicated as a causative agent for Parkinson's disease (PD). The administration of TCE to rodents induces neurotoxicity associated with dopaminergic neuron death, and evidence suggests that oxidative stress as a major player in the progression of PD. Here we report on TCE-induced behavioral abnormality in mice that are deficient in superoxide dismutase 1 (SOD1). Wild-type (WT) and SOD1-deficient (Sod1(-/-)) mice were intraperitoneally administered TCE (500 mg/kg) over a period of 4 weeks. Although the TCE-administrated Sod1(-/-) mice showed marked abnormal motor behavior, no significant differences were observed among the experimental groups by biochemical and histopathological analyses. However, treating mouse neuroblastoma-derived NB2a cells with TCE resulted in the down regulation of the SOD1 protein and elevated oxidative stress under conditions where SOD1 production was suppressed. Taken together, these data indicate that SOD1 plays a pivotal role in protecting motor neuron function against TCE toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Structural brain abnormalities in patients with inflammatory illness acquired following exposure to water-damaged buildings: a volumetric MRI study using NeuroQuant®.

    PubMed

    Shoemaker, Ritchie C; House, Dennis; Ryan, James C

    2014-01-01

    Executive cognitive and neurologic abnormalities are commonly seen in patients with a chronic inflammatory response syndrome (CIRS) acquired following exposure to the interior environment of water-damaged buildings (WDB), but a clear delineation of the physiologic or structural basis for these abnormalities has not been defined. Symptoms of affected patients routinely include headache, difficulty with recent memory, concentration, word finding, numbness, tingling, metallic taste and vertigo. Additionally, persistent proteomic abnormalities in inflammatory parameters that can alter permeability of the blood-brain barrier, such as C4a, TGFB1, MMP9 and VEGF, are notably present in cases of CIRS-WDB compared to controls, suggesting a consequent inflammatory injury to the central nervous system. Findings of gliotic areas in MRI scans in over 45% of CIRS-WDB cases compared to 5% of controls, as well as elevated lactate and depressed ratios of glutamate to glutamine, are regularly seen in MR spectroscopy of cases. This study used the volumetric software program NeuroQuant® (NQ) to determine specific brain structure volumes in consecutive patients (N=17) seen in a medical clinic specializing in inflammatory illness. Each of these patients presented for evaluation of an illness thought to be associated with exposure to WDB, and received an MRI that was evaluated by NQ. When compared to those of a medical control group (N=18), statistically significant differences in brain structure proportions were seen for patients in both hemispheres of two of the eleven brain regions analyzed; atrophy of the caudate nucleus and enlargement of the pallidum. In addition, the left amygdala and right forebrain were also enlarged. These volumetric abnormalities, in conjunction with concurrent abnormalities in inflammatory markers, suggest a model for structural brain injury in "mold illness" based on increased permeability of the blood-brain barrier due to chronic, systemic inflammation

  2. Intracellular iron concentration of neurons with and without perineuronal nets

    NASA Astrophysics Data System (ADS)

    Fiedler, Anja; Reinert, Tilo; Morawski, Markus; Brückner, Gert; Arendt, Thomas; Butz, Tilman

    2007-07-01

    Neurodegenerative diseases like Parkinson's disease, Alzheimer's disease and Huntington's disease are characterized by abnormally high concentrations of iron in the affected brain areas. Iron is believed to contribute to oxidative stress by catalysing radical generation and subsequently causing neuronal death. Interestingly, subpopulations of neurons are less vulnerable against degeneration. One of these subpopulations possesses a specialized extracellular matrix arranged as a perineuronal net (PN), a structure with poorly understood functions. In order to differentiate between neurons with and without PN according to their iron concentrations we have performed a μPIXE study at the Leipzig LIPSION laboratory. PN-ensheathed neurons in selected brain areas were detected by lectin-histochemical staining with Wisteria floribunda agglutinin (WFA). The staining was intensified by DAB- nickel by an established method enabling the visualisation of the PNs by nuclear microscopy. The cellular concentration of iron in the rat brain was about 1 mmol/l (ca. 30 μg/g dw). First results of subcellular analysis showed that the intracellular iron concentration of PN-ensheathed neurons tends to be slightly increased in comparison to neurons without PNs. The difference in intracellular iron concentrations could be an effect of the PNs.

  3. Selective disruption of acetylcholine synthesis in subsets of motor neurons: a new model of late-onset motor neuron disease.

    PubMed

    Lecomte, Marie-José; Bertolus, Chloé; Santamaria, Julie; Bauchet, Anne-Laure; Herbin, Marc; Saurini, Françoise; Misawa, Hidemi; Maisonobe, Thierry; Pradat, Pierre-François; Nosten-Bertrand, Marika; Mallet, Jacques; Berrard, Sylvie

    2014-05-01

    Motor neuron diseases are characterized by the selective chronic dysfunction of a subset of motor neurons and the subsequent impairment of neuromuscular function. To reproduce in the mouse these hallmarks of diseases affecting motor neurons, we generated a mouse line in which ~40% of motor neurons in the spinal cord and the brainstem become unable to sustain neuromuscular transmission. These mice were obtained by conditional knockout of the gene encoding choline acetyltransferase (ChAT), the biosynthetic enzyme for acetylcholine. The mutant mice are viable and spontaneously display abnormal phenotypes that worsen with age including hunched back, reduced lifespan, weight loss, as well as striking deficits in muscle strength and motor function. This slowly progressive neuromuscular dysfunction is accompanied by muscle fiber histopathological features characteristic of neurogenic diseases. Unexpectedly, most changes appeared with a 6-month delay relative to the onset of reduction in ChAT levels, suggesting that compensatory mechanisms preserve muscular function for several months and then are overwhelmed. Deterioration of mouse phenotype after ChAT gene disruption is a specific aging process reminiscent of human pathological situations, particularly among survivors of paralytic poliomyelitis. These mutant mice may represent an invaluable tool to determine the sequence of events that follow the loss of function of a motor neuron subset as the disease progresses, and to evaluate therapeutic strategies. They also offer the opportunity to explore fundamental issues of motor neuron biology. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Populations of subplate and interstitial neurons in fetal and adult human telencephalon.

    PubMed

    Judaš, Miloš; Sedmak, Goran; Pletikos, Mihovil; Jovanov-Milošević, Nataša

    2010-10-01

    ) interstitial neurons in the postnatal and adult deep cerebral white matter (i.e. corpus callosum, anterior commissure, internal and external capsule and the corona radiata/centrum semiovale). Although these deep interstitial neurons are poorly developed or absent in the brains of rodents, they represent a prominent feature of the significantly enlarged white matter of human and non-human primate brains. © 2010 The Authors. Journal of Anatomy © 2010 Anatomical Society of Great Britain and Ireland.

  5. Neuropsychological, Neurovirological and Neuroimmune Aspects of Abnormal GABAergic Transmission in HIV Infection.

    PubMed

    Buzhdygan, Tetyana; Lisinicchia, Joshua; Patel, Vipulkumar; Johnson, Kenneth; Neugebauer, Volker; Paessler, Slobodan; Jennings, Kristofer; Gelman, Benjamin

    2016-06-01

    The prevalence of HIV-associated neurocognitive disorders (HAND) remains high in patients with effective suppression of virus replication by combination antiretroviral therapy (cART). Several neurotransmitter systems were reported to be abnormal in HIV-infected patients, including the inhibitory GABAergic system, which mediates fine-tuning of neuronal processing and plays an essential role in cognitive functioning. To elucidate the role of abnormal GABAergic transmission in HAND, the expression of GABAergic markers was measured in 449 human brain specimens from HIV-infected patients with and without HAND. Using real-time polymerase chain reaction, immunoblotting and immunohistochemistry we found that the GABAergic markers were significantly decreased in most sectors of cerebral neocortex, the neostriatum, and the cerebellum of HIV-infected subjects. Low GABAergic expression in frontal neocortex was correlated significantly with high expression of endothelial cell markers, dopamine receptor type 2 (DRD2L), and preproenkephalin (PENK) mRNAs, and with worse performance on tasks of verbal fluency. Significant associations were not found between low GABAergic mRNAs and HIV-1 RNA concentration in the brain, the history of cART, or HIV encephalitis. Pathological evidence of neurodegeneration of the affected GABAergic neurons was not present. We conclude that abnormally low expression of GABAergic markers is prevalent in HIV-1 infected patients. Interrelationships with other neurotransmitter systems including dopaminergic transmission and with endothelial cell markers lend added support to suggestions that synaptic plasticity and cerebrovascular anomalies are involved with HAND in virally suppressed patients.

  6. Brain enlargement is associated with regression in preschool-age boys with autism spectrum disorders

    PubMed Central

    Nordahl, Christine Wu; Lange, Nicholas; Li, Deana D.; Barnett, Lou Ann; Lee, Aaron; Buonocore, Michael H.; Simon, Tony J.; Rogers, Sally; Ozonoff, Sally; Amaral, David G.

    2011-01-01

    Autism is a heterogeneous disorder with multiple behavioral and biological phenotypes. Accelerated brain growth during early childhood is a well-established biological feature of autism. Onset pattern, i.e., early onset or regressive, is an intensely studied behavioral phenotype of autism. There is currently little known, however, about whether, or how, onset status maps onto the abnormal brain growth. We examined the relationship between total brain volume and onset status in a large sample of 2- to 4-y-old boys and girls with autism spectrum disorder (ASD) [n = 53, no regression (nREG); n = 61, regression (REG)] and a comparison group of age-matched typically developing controls (n = 66). We also examined retrospective head circumference measurements from birth through 18 mo of age. We found that abnormal brain enlargement was most commonly found in boys with regressive autism. Brain size in boys without regression did not differ from controls. Retrospective head circumference measurements indicate that head circumference in boys with regressive autism is normal at birth but diverges from the other groups around 4–6 mo of age. There were no differences in brain size in girls with autism (n = 22, ASD; n = 24, controls). These results suggest that there may be distinct neural phenotypes associated with different onsets of autism. For boys with regressive autism, divergence in brain size occurs well before loss of skills is commonly reported. Thus, rapid head growth may be a risk factor for regressive autism. PMID:22123952

  7. Prenatal ketamine exposure causes abnormal development of prefrontal cortex in rat

    PubMed Central

    Zhao, Tianyun; Li, Chuanxiang; Wei, Wei; Zhang, Haixing; Ma, Daqing; Song, Xingrong; Zhou, Libing

    2016-01-01

    Ketamine is commonly used for anesthesia and as a recreational drug. In pregnant users, a potential neurotoxicity in offspring has been noted. Our previous work demonstrated that ketamine exposure of pregnant rats induces affective disorders and cognitive impairments in offspring. As the prefrontal cortex (PFC) is critically involved in emotional and cognitive processes, here we studied whether maternal ketamine exposure influences the development of the PFC in offspring. Pregnant rats on gestational day 14 were treated with ketamine at a sedative dose for 2 hrs, and pups were studied at postnatal day 0 (P0) or P30. We found that maternal ketamine exposure resulted in cell apoptosis and neuronal loss in fetal brain. Upon ketamine exposure in utero, PFC neurons at P30 showed more dendritic branching, while cultured neurons from P0 PFC extended shorter neurites than controls. In addition, maternal ketamine exposure postponed the switch of NR2B/2A expression, and perturbed pre- and postsynaptic protein expression in the PFC. These data suggest that prenatal ketamine exposure impairs neuronal development of the PFC, which may be associated with abnormal behavior in offsprings. PMID:27226073

  8. Salivary gland enlargement during oesophageal stricture dilatation.

    PubMed Central

    Martin, D.

    1980-01-01

    A case of recurrent salivary gland enlargement occurring during fibreoptic oesophagoscopy and oesophageal stricture dilatation with Eder-Puestow dilators is described. The genesis of this condition is discussed and its transient and usually benign nature emphasized. Images Fig. 1 PMID:7393809

  9. Tumescent power liposuction in the treatment of the enlarged male breast.

    PubMed

    Boni, Roland

    2006-01-01

    Tumescent power liposuction is widely used on various parts of the body for minimal-access lipectomy. The undesired fat deposits are injected with tumescence fluid containing saline, epinephrine, bicarbonate and lidocaine; the latter is used as the only source of pain control. The fat is then removed using vibrating microcannulas. To evaluate the value of tumescent power liposuction in the treatment of the enlarged male breast. 38 male patients aged 23-64 years (mean age 39.8 +/- 9.7 years) with enlarged breasts were enrolled in the study. In 32 patients, breasts were enlarged due to fat tissue, and the ductal glands were not palpable (pseudogynecomastia). In 6 patients, the ductal glands were enlarged (gynecomastia). All patients were treated with tumescent liposuction over a 2-year period using a single entry site from the axillary fossa. Both fat as well as ductal and stromal tissue were removed by microcannulas. None of the patients had early postoperative complications of infection, hematoma or seroma. There were no treatment-induced asymmetries, contour deformities or irregularities. No open excision or skin reduction procedures were required. Tumescent liposuction using a single entry site in the axillary fossa is a minimally invasive technique to treat enlarged male breasts. Both fat (pseudogynecomastia in adipose patients) as well as ductal and stromal tissue (in gynecomastia) can be removed with tumescent liposuction, resulting in a high level of patient satisfaction. Copyright 2006 S. Karger AG, Basel.

  10. Levator Muscle Enlargement in Thyroid Eye Disease-Related Upper Eyelid Retraction.

    PubMed

    Davies, Michael J; Dolman, Peter J

    To identify levator palpebrae superioris enlargement in thyroid eye disease (TED)-related upper eyelid retraction (ULR). Retrospective case-control. Subjects included 50 consecutive patients with unilateral thyroid eye disease-related ULR ≥ 2 mm and no previous eyelid surgery. The contralateral side was used as control. Clinical information was recorded from charts. CT scans were assessed by investigators blinded to the clinical data. A prediction of retracted side was made based on CT scan appearance and on basis of measured levator palpebrae superioris cross-sectional area at 2 defined points. Statistical analysis determined correlation between levator palpebrae superioris size and presence of ULR. The study was approved by the institutional ethics committee. Side with ULR predicted from CT scan review in over 85% of cases. Mean cross-sectional area of levator palpebrae superioris on retracted side was significantly larger than nonretracted side at 2 separate sites. Levator palpebrae superioris area was larger on retracted side compared with nonretracted side in over 85% of subjects. More than 30% of subjects had no enlargement of other extraocular muscles. Only 6% of patients had enlargement of the ipsilateral inferior rectus muscle. Levator palpebrae superioris enlargement from inflammation or scar is a factor in thyroid eye disease-related ULR. Upper eyelid retraction can be predicted from CT scan appearance in over 85% of cases. Ipsilateral inferior rectus enlargement is rare. Levator palpebrae superioris is the most commonly targeted muscle in thyroid eye disease.

  11. Relationship between intracranial internal carotid artery calcification and enlarged cerebral perivascular space.

    PubMed

    Tao, Xiao-Xiao; Li, Ge-Fei; Wu, Yi-Lan; Liu, Yi-Sheng; Zhao, Ying; Shi, Yan-Hui; Zhuang, Mei-Ting; Hou, Tian-Yu; Zhao, Rong; Liu, Feng-Di; Wang, Xue-Mei; Shen, Ying; Cui, Guo-Hong; Su, Jing-Jing; Chen, Wei; Tang, Xue-Mei; Sun, Ji; Liu, Jian-Ren

    2017-06-01

    The association between intracranial internal carotid artery (IICA) calcification and lacunes, white matter hyperintensity (WMH), and cerebral microbleeds (CMBs) has been well researched. However, enlarged cerebral perivascular space (PVS) has not yet been reported to correlate with intracranial internal carotid artery calcification. Therefore, the primary aim of this study was to investigate the relationship between IICA calcification and enlarged PVS. A total of 189 patients with ischemic stroke in the middle cerebral artery territory who presented within 7 days of ictus from 2012 to 2015 were enrolled respectively. All patients were required to have undergone head computed tomography, magnetic resonance imaging, susceptibility-weighted magnetic resonance imaging, magnetic resonance angiography, or computed tomography angiography. Clinical characteristics were recorded. IICA calcification and enlarged PVS were semi-quantitatively evaluated, and the presence of lacunes, WMH, and CMBs was recorded. Of the 189 patients, 63.5% were male. Mean age of the patients was 68.6 ± 12.2 years. There were 104 patients with IICA calcification. Age, diabetes mellitus, lacunes, and white matter hyperintensity were significantly associated with IICA calcification (P < 0.05). Multivariate logistic regression analysis showed that age, diabetes mellitus, and lacunes were independent predictors of IICA calcification (P < 0.05). A lower risk of IICA calcification was found in patients with a higher enlarged PVS score (P = 0.004). Higher enlarged PVS scores were associated with a lesser degree of IICA calcification. There appears to be a relationship between reduced risk of IICA calcification and enlarged PVS.

  12. Defects formation and spiral waves in a network of neurons in presence of electromagnetic induction.

    PubMed

    Rostami, Zahra; Jafari, Sajad

    2018-04-01

    Complex anatomical and physiological structure of an excitable tissue (e.g., cardiac tissue) in the body can represent different electrical activities through normal or abnormal behavior. Abnormalities of the excitable tissue coming from different biological reasons can lead to formation of some defects. Such defects can cause some successive waves that may end up to some additional reorganizing beating behaviors like spiral waves or target waves. In this study, formation of defects and the resulting emitted waves in an excitable tissue are investigated. We have considered a square array network of neurons with nearest-neighbor connections to describe the excitable tissue. Fundamentally, electrophysiological properties of ion currents in the body are responsible for exhibition of electrical spatiotemporal patterns. More precisely, fluctuation of accumulated ions inside and outside of cell causes variable electrical and magnetic field. Considering undeniable mutual effects of electrical field and magnetic field, we have proposed the new Hindmarsh-Rose (HR) neuronal model for the local dynamics of each individual neuron in the network. In this new neuronal model, the influence of magnetic flow on membrane potential is defined. This improved model holds more bifurcation parameters. Moreover, the dynamical behavior of the tissue is investigated in different states of quiescent, spiking, bursting and even chaotic state. The resulting spatiotemporal patterns are represented and the time series of some sampled neurons are displayed, as well.

  13. Synaptic plasticity and levodopa-induced dyskinesia: electrophysiological and structural abnormalities.

    PubMed

    Picconi, Barbara; De Leonibus, Elvira; Calabresi, Paolo

    2018-02-28

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive degeneration of dopaminergic neurons located in the midbrain. The gold-standard therapy for PD is the restoration of dopamine (DA) levels through the chronic administration of the DA precursor levodopa (L-DOPA). Although levodopa therapy is the main therapeutic approach for PD, its use is limited by the development of very disabling dyskinetic movements, mainly due to the fluctuation of DA cerebral content. Experimental animal models of PD identified in DA D1/ERK-signaling pathway aberrant activation, occurring in striatal projection neurons, coupled with structural spines abnormalities, the molecular and neuronal basis of L-DOPA-induced dyskinesia (LIDs) occurrence. Different electrophysiological approaches allowed the identification of  the alteration of homeostatic structural and synaptic changes, the neuronal bases of LIDs either in vivo in parkinsonian patients or in vitro in experimental animals. Here, we report the most recent studies showing electrophysiological and morphological evidence of aberrant synaptic plasticity in parkinsonian patients during LIDs in different basal ganglia nuclei and also in cortical transmission, accounting for the complexity of the synaptic changes during dyskinesias. All together, these studies suggest that LIDs are associated with a loss of homeostatic synaptic mechanisms.

  14. Patterns of Weakness, Classification of Motor Neuron Disease & Clinical Diagnosis of Sporadic ALS

    PubMed Central

    Statland, Jeffrey M.; Barohn, Richard J.; McVey, April L.; Katz, Jonathan; Dimachkie, Mazen M.

    2015-01-01

    Synopsis When approaching the patient with suspected motor neuron disease (MND) the pattern of weakness on exam helps distinguish MND from other diseases of peripheral nerves, the neuromuscular junction, or muscle. MND is a clinical diagnosis supported by findings on electrodiagnostic testing, in the absence of other abnormalities on neuroimaging or serological testing. MNDs exist on a spectrum: from a pure lower motor neuron; to mixed upper and lower motor neuron; to a pure upper motor neuron variant in addition to regional variants restricted to the arms, legs or bulbar region. Amyotrophic lateral sclerosis (ALS) is a progressive mixed upper and lower motor neuron disorder, most commonly sporadic (~85%), which is invariably fatal. The only FDA approved treatments for ALS are riluzole, which prolongs life by about 3 months, and dextromethorphan/quinidine which provides symptomatic relief for pseudobulbar affect (inappropriate bouts of laughter or crying). Here we describe a pattern approach to identifying motor neuron disease, and clinical features of sporadic ALS. PMID:26515618

  15. Prion propagation and toxicity occur in vitro with two-phase kinetics specific to strain and neuronal type.

    PubMed

    Hannaoui, Samia; Maatouk, Layal; Privat, Nicolas; Levavasseur, Etienne; Faucheux, Baptiste A; Haïk, Stéphane

    2013-03-01

    Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative disorders that occur in humans and animals. The neuropathological hallmarks of TSEs are spongiosis, glial proliferation, and neuronal loss. The only known specific molecular marker of TSEs is the abnormal isoform (PrP(Sc)) of the host-encoded prion protein (PrP(C)), which accumulates in the brain of infected subjects and forms infectious prion particles. Although this transmissible agent lacks a specific nucleic acid component, several prion strains have been isolated. Prion strains are characterized by differences in disease outcome, PrP(Sc) distribution patterns, and brain lesion profiles at the terminal stage of the disease. The molecular factors and cellular mechanisms involved in strain-specific neuronal tropism and toxicity remain largely unknown. Currently, no cellular model exists to facilitate in vitro studies of these processes. A few cultured cell lines that maintain persistent scrapie infections have been developed, but only two of them have shown the cytotoxic effects associated with prion propagation. In this study, we have developed primary neuronal cultures to assess in vitro neuronal tropism and toxicity of different prion strains (scrapie strains 139A, ME7, and 22L). We have tested primary neuronal cultures enriched in cerebellar granular, striatal, or cortical neurons. Our results showed that (i) a strain-specific neuronal tropism operated in vitro; (ii) the cytotoxic effect varied among strains and neuronal cell types; (iii) prion propagation and toxicity occurred in two kinetic phases, a replicative phase followed by a toxic phase; and (iv) neurotoxicity peaked when abnormal PrP accumulation reached a plateau.

  16. Prion Propagation and Toxicity Occur In Vitro with Two-Phase Kinetics Specific to Strain and Neuronal Type

    PubMed Central

    Hannaoui, Samia; Maatouk, Layal; Privat, Nicolas; Levavasseur, Etienne; Faucheux, Baptiste A.

    2013-01-01

    Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative disorders that occur in humans and animals. The neuropathological hallmarks of TSEs are spongiosis, glial proliferation, and neuronal loss. The only known specific molecular marker of TSEs is the abnormal isoform (PrPSc) of the host-encoded prion protein (PrPC), which accumulates in the brain of infected subjects and forms infectious prion particles. Although this transmissible agent lacks a specific nucleic acid component, several prion strains have been isolated. Prion strains are characterized by differences in disease outcome, PrPSc distribution patterns, and brain lesion profiles at the terminal stage of the disease. The molecular factors and cellular mechanisms involved in strain-specific neuronal tropism and toxicity remain largely unknown. Currently, no cellular model exists to facilitate in vitro studies of these processes. A few cultured cell lines that maintain persistent scrapie infections have been developed, but only two of them have shown the cytotoxic effects associated with prion propagation. In this study, we have developed primary neuronal cultures to assess in vitro neuronal tropism and toxicity of different prion strains (scrapie strains 139A, ME7, and 22L). We have tested primary neuronal cultures enriched in cerebellar granular, striatal, or cortical neurons. Our results showed that (i) a strain-specific neuronal tropism operated in vitro; (ii) the cytotoxic effect varied among strains and neuronal cell types; (iii) prion propagation and toxicity occurred in two kinetic phases, a replicative phase followed by a toxic phase; and (iv) neurotoxicity peaked when abnormal PrP accumulation reached a plateau. PMID:23255799

  17. Deficiency of Lipoprotein Lipase in Neurons Decreases AMPA Receptor Phosphorylation and Leads to Neurobehavioral Abnormalities in Mice

    PubMed Central

    Yu, Tian; Taussig, Matthew D.; DiPatrizio, Nicholas V.; Astarita, Giuseppe; Piomelli, Daniele; Bergman, Bryan C.; Dell’Acqua, Mark L.; Eckel, Robert H.; Wang, Hong

    2015-01-01

    Alterations in lipid metabolism have been found in several neurodegenerative disorders, including Alzheimer’s disease. Lipoprotein lipase (LPL) hydrolyzes triacylglycerides in lipoproteins and regulates lipid metabolism in multiple organs and tissues, including the central nervous system (CNS). Though many brain regions express LPL, the functions of this lipase in the CNS remain largely unknown. We developed mice with neuron-specific LPL deficiency that became obese on chow by 16 wks in homozygous mutant mice (NEXLPL-/-) and 10 mo in heterozygous mice (NEXLPL+/-). In the present study, we show that 21 mo NEXLPL+/- mice display substantial cognitive function decline including poorer learning and memory, and increased anxiety with no difference in general motor activities and exploratory behavior. These neurobehavioral abnormalities are associated with a reduction in the 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid (AMPA) receptor subunit GluA1 and its phosphorylation, without any alterations in amyloid β accumulation. Importantly, a marked deficit in omega-3 and omega-6 polyunsaturated fatty acids (PUFA) in the hippocampus precedes the development of the neurobehavioral phenotype of NEXLPL+/- mice. And, a diet supplemented with n-3 PUFA can improve the learning and memory of NEXLPL+/- mice at both 10 mo and 21 mo of age. We interpret these findings to indicate that LPL regulates the availability of PUFA in the CNS and, this in turn, impacts the strength of synaptic plasticity in the brain of aging mice through the modification of AMPA receptor and its phosphorylation. PMID:26263173

  18. Planar cell polarity genes control the connectivity of enteric neurons

    PubMed Central

    Sasselli, Valentina; Boesmans, Werend; Vanden Berghe, Pieter; Tissir, Fadel; Goffinet, André M.; Pachnis, Vassilis

    2013-01-01

    A highly complex network of intrinsic enteric neurons is required for the digestive and homeostatic functions of the gut. Nevertheless, the genetic and molecular mechanisms that regulate their assembly into functional neuronal circuits are currently unknown. Here we report that the planar cell polarity (PCP) genes Celsr3 and Fzd3 are required during murine embryogenesis to specifically control the guidance and growth of enteric neuronal projections relative to the longitudinal and radial gut axes. Ablation of these genes disrupts the normal organization of nascent neuronal projections, leading to subtle changes of axonal tract configuration in the mature enteric nervous system (ENS), but profound abnormalities in gastrointestinal motility. Our data argue that PCP-dependent modules of connectivity established at early stages of enteric neurogenesis control gastrointestinal function in adult animals and provide the first evidence that developmental deficits in ENS wiring may contribute to the pathogenesis of idiopathic bowel disorders. PMID:23478408

  19. Tinnitus Perception and Distress Is Related to Abnormal Spontaneous Brain Activity as Measured by Magnetoencephalography

    PubMed Central

    Weisz, Nathan; Moratti, Stephan; Meinzer, Marcus; Dohrmann, Katalin; Elbert, Thomas

    2005-01-01

    Background The neurophysiological mechanisms underlying tinnitus perception are not well understood. Surprisingly, there have been no group studies comparing abnormalities in ongoing, spontaneous neuronal activity in individuals with and without tinnitus perception. Methods and Findings Here, we show that the spontaneous neuronal activity of a group of individuals with tinnitus (n = 17) is characterised by a marked reduction in alpha (8–12 Hz) power together with an enhancement in delta (1.5–4 Hz) as compared to a normal hearing control group (n = 16). This pattern was especially pronounced for temporal regions. Moreover, correlations with tinnitus-related distress revealed strong associations with this abnormal spontaneous activity pattern, particularly in right temporal and left frontal areas. Overall, effects were stronger for the alpha than for the delta frequency band. A data stream of 5 min, recorded with a whole-head neuromagnetometer under a resting condition, was sufficient to extract the marked differences. Conclusions Despite some limitations, there are arguments that the regional pattern of abnormal spontaneous activity we found could reflect a tinnitus-related cortical network. This finding, which suggests that a neurofeedback approach could reduce the adverse effects of this disturbing condition, could have important implications for the treatment of tinnitus. PMID:15971936

  20. Negative Feedback Mediated by Fast Inhibitory Autapse Enhances Neuronal Oscillations Near a Hopf Bifurcation Point

    NASA Astrophysics Data System (ADS)

    Jia, Bing

    One-parameter and two-parameter bifurcations of the Morris-Lecar (ML) neuron model with and without the fast inhibitory autapse, which is a synapse from a neuron onto itself, are investigated. The ML neuron model without autapse manifests an inverse Hopf bifurcation point from firing to a depolarized resting state with high level of membrane potential, with increasing depolarization current. When a fast inhibitory autapse is introduced, a negative feedback or inhibitory current is applied to the ML model. With increasing conductance of the autapse to middle level, the depolarized resting state near the inverse Hopf bifurcation point can change to oscillation and the parameter region of the oscillation becomes wide, which can be well interpreted by the dynamic responses of the depolarized resting state to the inhibitory current stimulus mediated by the autapse. The enlargement of the parameter region of the oscillation induced by the negative feedback presents a novel viewpoint different from the traditional one that inhibitory synapse often suppresses the neuronal oscillation activities. Furthermore, complex nonlinear dynamics such as the coexisting behaviors and codimension-2 bifurcations including the Bautin and cusp bifurcations are acquired. The relationship between the bifurcations and the depolarization block, a physiological concept that indicates a neuron can enter resting state when receiving the depolarization current, is discussed.

  1. Inverse Association Between Basilar Artery Volume and Neuron Density in the Stellate Ganglion Following Bilateral Common Carotid Artery Ligation: An Experimental Study.

    PubMed

    Yilmaz, Ilhan; Eseoglu, Metehan; Onen, Mehmet Resid; Tanrıverdi, Osman; Kilic, Mustafa; Yilmaz, Adem; Musluman, Ahmet Murat; Aydin, Mehmet Dumlu; Gündogdu, Cemal

    2017-04-01

    This study examined the relationship between neuron density in the stellate ganglion and the severity of basilar artery (BA) enlargement after bilateral common carotid artery ligation. Rabbits (n = 24) were randomly divided into 3 groups: unoperated control group (n = 4), experimental group subjected to bilateral common carotid artery ligation (n = 15), and sham-operated control group (n = 5). Histologic examination of the BAs and stellate ganglia was performed 2 months later. Permanent bilateral common carotid artery ligation was induced by ligation of common carotid arteries at prebifurcation levels as a model for steno-occlusive carotid artery disease. Mean BA volume and neuron density in stellate ganglia for all animals were 4200 μm 3 ± 240 and 8325 μm 3 ± 210. In sham-operated animals, the mean values were 4360 μm 3 ± 340 and 8250 mm 3 ± 250. For the experimental group, mean volume and density in animals with slight dilatation of the BA (n = 6) were 4948 μm 3 ± 680 and 10,321 mm 3 ± 120, whereas in animals with severe dilatation (n = 9), the values were 6728 μm 3 ± 440 and 6300 mm 3 ± 730. An inverse association was observed between degree of BA enlargement and stellate ganglia neuronal density. High neuron density in stellate ganglia may protect against steno-occlusive carotid artery disease by preventing BA dilatation and aneurysm formation in the posterior circulatory arteries. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Conversion of Fibroblasts to Parvalbumin Neurons by One Transcription Factor, Ascl1, and the Chemical Compound Forskolin.

    PubMed

    Shi, Zixiao; Zhang, Juan; Chen, Shuangquan; Li, Yanxin; Lei, Xuepei; Qiao, Huimin; Zhu, Qianwen; Hu, Baoyang; Zhou, Qi; Jiao, Jianwei

    2016-06-24

    Abnormalities in parvalbumin (PV)-expressing interneurons cause neurodevelopmental disorders such as epilepsy, autism, and schizophrenia. Unlike other types of neurons that can be efficiently differentiated from pluripotent stem cells, PV neurons were minimally generated using a conventional differentiation strategy. In this study we developed an adenovirus-based transdifferentiation strategy that incorporates an additional chemical compound for the efficient generation of induced PV (iPV) neurons. The chemical compound forskolin combined with Ascl1 induced ∼80% of mouse fibroblasts to iPV neurons. The iPV neurons generated by this procedure matured 5-7 days post infection and were characterized by electrophysiological properties and known neuronal markers, such as PV and GABA. Our studies, therefore, identified an efficient approach for generating PV neurons. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. A structural abnormality associated with graded levels of thyroid hormone insufficiency: Dose dependent increases in heterotopia volume

    EPA Science Inventory

    A large number of environmental contaminants reduce circulating levels of thyroid hormone (TH), but clear markers of neurological insult associated with modest TH insufficiency are lacking. We have previously identified the presence of an abnormal cluster of misplaced neurons in ...

  4. Walk like me, talk like me. The connection between mirror neurons and autism spectrum disorder.

    PubMed

    Saffin, Jillian M; Tohid, Hassaan

    2016-04-01

    Understanding social cognition has become a hallmark in deciphering autism spectrum disorder. Neurobiological theories are taking precedence in causation studies as researchers look to abnormalities in brain development as the cause of deficits in social behavior, cognitive processes, and language. Following their discovery in the 1990s, mirror neurons have become a dominant theory for that the mirror neuron system may play a critical role in the pathophysiology of various symptoms of autism. Over the decades, the theory has evolved from the suggestion of a broken mirror neuron system to impairments in mirror neuron circuitry. The mirror neuron system has not gained total support due to inconsistent findings; a comprehensive analysis of the growing body of research could shed light on the benefits, or the disadvantage of continuing to study mirror neurons and their connection to autism.

  5. New Pharmacotherapy Targeting Cognitive Dysfunction of Schizophrenia via Modulation of GABA Neuronal Function

    PubMed Central

    Jeon, Won Je; Sumiyoshi, Tomiki; Kurachi, Masayoshi

    2015-01-01

    Schizophrenia is considered a neurodevelopmental and neurodegenerative disorder. Cognitive impairment is a core symptom in patients with the illness, and has been suggested a major predictor of functional outcomes. Reduction of parvalbumin (PV)-positive γ-aminobutyric acid (GABA) interneurons has been associated with the pathophysiology of schizophrenia, in view of the link between the abnormality of GABA neurons and cognitive impairments of the disease. It is assumed that an imbalance of excitatory and inhibitory (E-I) activity induced by low activity of glutamatergic projections and PV-positive GABA interneurons in the prefrontal cortex resulted in sustained neural firing and gamma oscillation, leading to impaired cognitive function. Therefore, it is important to develop novel pharmacotherapy targeting GABA neurons and their activities. Clinical evidence suggests serotonin (5-HT) 1A receptor agonist improves cognitive disturbances of schizophrenia, consistent with results from preclinical studies, through mechanism that corrects E-I imbalance via the suppression of GABA neural function. On the other hand, T-817MA, a novel neurotrophic agent, ameliorated loss of PV-positive GABA neurons in the medial prefrontal cortex and reduction of gamma-band activity, as well as cognitive dysfunction in animal model of schizophrenia. In conclusion, a pharmacotherapy to alleviate abnormalities in GABA neurons through 5-HT1A agonists and T-817MA is expected to prevent the onset and/or progression of schizophrenia. PMID:26630957

  6. New Pharmacotherapy Targeting Cognitive Dysfunction of Schizophrenia via Modulation of GABA Neuronal Function.

    PubMed

    Uehara, Takashi; Sumiyoshi, Tomiki; Kurachi, Masayoshi

    2015-01-01

    Schizophrenia is considered a neurodevelopmental and neurodegenerative disorder. Cognitive impairment is a core symptom in patients with the illness, and has been suggested a major predictor of functional outcomes. Reduction of parvalbumin (PV)-positive γ-aminobutyric acid (GABA) interneurons has been associated with the pathophysiology of schizophrenia, in view of the link between the abnormality of GABA neurons and cognitive impairments of the disease. It is assumed that an imbalance of excitatory and inhibitory (E-I) activity induced by low activity of glutamatergic projections and PV-positive GABA interneurons in the prefrontal cortex resulted in sustained neural firing and gamma oscillation, leading to impaired cognitive function. Therefore, it is important to develop novel pharmacotherapy targeting GABA neurons and their activities. Clinical evidence suggests serotonin (5-HT) 1A receptor agonist improves cognitive disturbances of schizophrenia, consistent with results from preclinical studies, through mechanism that corrects E-I imbalance via the suppression of GABA neural function. On the other hand, T-817MA, a novel neurotrophic agent, ameliorated loss of PV-positive GABA neurons in the medial prefrontal cortex and reduction of gamma-band activity, as well as cognitive dysfunction in animal model of schizophrenia. In conclusion, a pharmacotherapy to alleviate abnormalities in GABA neurons through 5-HT1A agonists and T-817MA is expected to prevent the onset and/or progression of schizophrenia.

  7. Cell death cascade and molecular therapy in ADAR2-deficient motor neurons of ALS.

    PubMed

    Yamashita, Takenari; Kwak, Shin

    2018-06-23

    TAR DNA-binding protein (TDP-43) pathology in the motor neurons is the most reliable pathological hallmark of amyotrophic lateral sclerosis (ALS), and motor neurons bearing TDP-43 pathology invariably exhibit failure in RNA editing at the GluA2 glutamine/arginine (Q/R) site due to down-regulation of adenosine deaminase acting on RNA 2 (ADAR2). Conditional ADAR2 knockout (AR2) mice display ALS-like phenotype, including progressive motor dysfunction due to loss of motor neurons. Motor neurons devoid of ADAR2 express Q/R site-unedited GluA2, and AMPA receptors with unedited GluA2 in their subunit assembly are abnormally permeable to Ca 2+ , which results in progressive neuronal death. Moreover, analysis of AR2 mice has demonstrated that exaggerated Ca 2+ influx through the abnormal AMPA receptors overactivates calpain, a Ca 2+ -dependent protease, that cleaves TDP-43 into aggregation-prone fragments, which serve as seeds for TDP-43 pathology. Activated calpain also disrupts nucleo-cytoplasmic transport and gene expression by cleaving molecules involved in nucleocytoplasmic transport, including nucleoporins. These lines of evidence prompted us to develop molecular targeting therapy for ALS by normalization of disrupted intracellular environment due to ADAR2 down-regulation. In this review, we have summarized the work from our group on the cell death cascade in sporadic ALS and discussed a potential therapeutic strategy for ALS. Copyright © 2018 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  8. Dental and maxillofacial abnormalities in long-term survivors of childhood cancer: effects of treatment with chemotherapy and radiation to the head and neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaffe, N.; Toth, B.B.; Hoar, R.E.

    1984-06-01

    Sixty-eight long-term survivors of childhood cancer were evaluated for dental and maxillofacial abnormalities. Forty-five patients had received maxillofacial radiation for lymphoma, leukemia, rhabdomyosarcoma, and miscellaneous tumors. Forty-three of the 45 patients and the remaining 23 who had not received maxillofacial radiation also received chemotherapy. Dental and maxillofacial abnormalities were detected in 37 of the 45 (82%) radiated patients. Dental abnormalities comprised foreshortening and blunting of roots, incomplete calcification, premature closure of apices, delayed or arrested tooth development, and caries. Maxillofacial abnormalities comprised trismus, abnormal occlusal relationships, and facial deformities. The abnormalities were more severe in those patients who received radiationmore » at an earlier age and at higher dosages. Possible chemotherapeutic effects in five of 23 patients who received treatment for tumors located outside the head and neck region comprised acquired amelogenesis imperfecta, microdontia of bicuspid teeth, and a tendency toward thinning of roots with an enlarged pulp chamber. Dental and maxillofacial abnormalities should be recognized as a major consequence of maxillofacial radiation in long-term survivors of childhood cancer, and attempts to minimize or eliminate such sequelae should involve an effective interaction between radiation therapists, and medical and dental oncologists.« less

  9. Exposure to the cytokine EGF leads to abnormal hyperactivity of pallidal GABA neurons: implications for schizophrenia and its modeling.

    PubMed

    Sotoyama, Hidekazu; Namba, Hisaaki; Chiken, Satomi; Nambu, Atsushi; Nawa, Hiroyuki

    2013-08-01

    Previous studies on a cytokine model for schizophrenia reveal that the hyperdopaminergic innervation and neurotransmission in the globus pallidus (GP) is involved in its behavioral impairments. Here, we further explored the physiological consequences of the GP abnormality in the indirect pathway, using the same schizophrenia model established by perinatal exposure to epidermal growth factor (EGF). Single-unit recordings revealed that the neural activity from the lateral GP was elevated in EGF-treated rats in vivo and in vitro (i.e., slice preparations), whereas the central area of the GP exhibited no significant differences. The increase in the pallidal activity was normalized by subchronic treatment with risperidone, which is known to ameliorate their behavioral deficits. We also monitored extracellular GABA concentrations in the substantia nigra, one of the targets of pallidal efferents. There was a significant increase in basal GABA levels in EGF-treated rats, whereas high potassium-evoked GABA effluxes and glutamate levels were not affected. A neurotoxic lesion in the GP of EGF-treated rats normalized GABA concentrations to control levels. Corroborating our in vivo results, GABA release from GP slices was elevated in EGF-treated animals. These findings suggest that the hyperactivity and enhanced GABA release of GP neurons represent the key pathophysiological features of this cytokine-exposure model for schizophrenia. © 2013 International Society for Neurochemistry.

  10. Merit Pay and Job Enlargement as Reforms: Incentives, Implementation, and Teacher Response.

    ERIC Educational Resources Information Center

    Firestone, William A.

    1991-01-01

    Based on intensive case studies of two school districts, this study compared two teacher work reforms: merit pay and job enlargement. Interviews with 64 teachers and 53 administrators, supplemented by over 1,300 survey responses, indicate the efficacy of each approach and the potential advantages of job enlargement. (SLD)

  11. Subclinical ultrasonographic abnormalities of the suspensory ligament branches in National Hunt racehorses.

    PubMed

    Fairburn, A J; Busschers, E; Barr, A R S

    2017-07-01

    Suspensory ligament branch (SLB) desmopathy is a common cause of lameness and an important cause of lost training in the Thoroughbred racing industry. Studies have assessed the impact of insertional injuries of the SLB on the careers of flat racehorses and established the prevalence of subclinical ultrasonographic SLB abnormalities in this population, but little work has investigated SLB injury in National Hunt (NH) racehorses. To investigate the prevalence of subclinical ultrasonographic SLB abnormalities in NH racehorses with no clinical signs or history of SLB injury and to establish the cross-sectional area (CSA) of SLBs in this population. Cross-sectional study using data collected from horses on an NH yard. Ultrasonographic examination of forelimb SLBs in 62 horses on a single NH yard was performed. Images were graded according to a previously reported system. CSA measurements were obtained from transverse images. Nineteen of 62 horses had at least one SLB with grade 2 ultrasonographic abnormalities. Grade 2 ultrasonographic abnormalities occurred more frequently in the medial than the lateral SLB (P = 0.05). The medial SLB insertional CSA was significantly larger (P<0.001) than that of the lateral SLB. Length of time on the yard (and therefore available veterinary history) is variable in this population. One in three NH racehorses without history or clinical signs of SLB injury had at least one SLB with a grade 2 ultrasonographic abnormality. The medial branch was over-represented. The medial SLB insertional CSA is larger than the lateral and thus comparison with the corresponding branch in the contralateral limb is recommended to avoid misdiagnosis of medial SLB enlargement. © 2016 EVJ Ltd.

  12. The thalamic reticular nucleus in schizophrenia and bipolar disorder: role of parvalbumin-expressing neuron networks and oxidative stress.

    PubMed

    Steullet, P; Cabungcal, J-H; Bukhari, S A; Ardelt, M I; Pantazopoulos, H; Hamati, F; Salt, T E; Cuenod, M; Do, Kim Q; Berretta, S

    2017-11-28

    Growing evidence points to a disruption of cortico-thalamo-cortical circuits in schizophrenia (SZ) and bipolar disorder (BD). Clues for a specific involvement of the thalamic reticular nucleus (TRN) come from its unique neuronal characteristics and neural connectivity, allowing it to shape the thalamo-cortical information flow. A direct involvement of the TRN in SZ and BD has not been tested thus far. We used a combination of human postmortem and rodent studies to test the hypothesis that neurons expressing parvalbumin (PV neurons), a main TRN neuronal population, and associated Wisteria floribunda agglutinin-labeled perineuronal nets (WFA/PNNs) are altered in SZ and BD, and that these changes may occur early in the course of the disease as a consequence of oxidative stress. In both disease groups, marked decreases of PV neurons (immunoreactive for PV) and WFA/PNNs were observed in the TRN, with no effects of duration of illness or age at onset. Similarly, in transgenic mice with redox dysregulation, numbers of PV neurons and WFA/PNN+PV neurons were decreased in transgenic compared with wild-type mice; these changes were present at postnatal day (P) 20 for PV neurons and P40 for WFA/PNN+PV neurons, accompanied by alterations of their firing properties. These results show profound abnormalities of PV neurons in the TRN of subjects with SZ and BD, and offer support for the hypothesis that oxidative stress may play a key role in impacting TRN PV neurons at early stages of these disorders. We put forth that these TRN abnormalities may contribute to disruptions of sleep spindles, focused attention and emotion processing in these disorders.Molecular Psychiatry advance online publication, 28 November 2017; doi:10.1038/mp.2017.230.

  13. GABA transporter currents activated by protein kinase A excite midbrain neurons during opioid withdrawal.

    PubMed

    Bagley, Elena E; Gerke, Michelle B; Vaughan, Christopher W; Hack, Stephen P; Christie, MacDonald J

    2005-02-03

    Adaptations in neurons of the midbrain periaqueductal gray (PAG) induced by chronic morphine treatment mediate expression of many signs of opioid withdrawal. The abnormally elevated action potential rate of opioid-sensitive PAG neurons is a likely cellular mechanism for withdrawal expression. We report here that opioid withdrawal in vitro induced an opioid-sensitive cation current that was mediated by the GABA transporter-1 (GAT-1) and required activation of protein kinase A (PKA) for its expression. Inhibition of GAT-1 or PKA also prevented withdrawal-induced hyperexcitation of PAG neurons. Our findings indicate that GAT-1 currents can directly increase the action potential rates of neurons and that GAT-1 may be a target for therapy to alleviate opioid-withdrawal symptoms.

  14. Visual patch clamp recording of neurons in thick portions of the adult spinal cord.

    PubMed

    Munch, Anders Sonne; Smith, Morten; Moldovan, Mihai; Perrier, Jean-François

    2010-07-15

    The study of visually identified neurons in slice preparations from the central nervous system offers considerable advantages over in vivo preparations including high mechanical stability in the absence of anaesthesia and full control of the extracellular medium. However, because of their relative thinness, slices are not appropriate for investigating how individual neurons integrate synaptic inputs generated by large numbers of neurons. Here we took advantage of the exceptional resistance of the turtle to anoxia to make slices of increasing thicknesses (from 300 to 3000 microm) from the lumbar enlargement of the spinal cord. With a conventional upright microscope in which the light condenser was carefully adjusted, we could visualize neurons present at the surface of the slice and record them with the whole-cell patch clamp technique. We show that neurons present in the middle of the preparation remain alive and capable of generating action potentials. By stimulating the lateral funiculus we can evoke intense synaptic activity associated with large increases in conductance of the recorded neurons. The conductance increases substantially more in neurons recorded in thick slices suggesting that the size of the network recruited with the stimulation increases with the thickness of the slices. We also find that that the number of spontaneous excitatory postsynaptic currents (EPSCs) is higher in thick slices compared with thin slices while the number of spontaneous inhibitory postsynaptic currents (IPSCs) remains constant. These preliminary data suggest that inhibitory and excitatory synaptic connections are balanced locally while excitation dominates long-range connections in the spinal cord. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Infratemporal fossa fat enlargement in chronic maxillary atelectasis.

    PubMed

    Kohn, Jocelyne C; Rootman, Daniel B; Xu, Dongdong; Goldberg, Robert A

    2013-08-01

    To describe the radiographic findings in chronic maxillary atelectasis and analyse the volume changes of the affected maxillary sinus, orbit, nasal vault and infratemporal fossa. Case series of all patients with diagnosis of chronic maxillary atelectasis presenting between January 2000 and August 2012 who underwent full oculoplastic and orbital evaluation including standardised photography and CT or MRI. Two-dimensional imaging features and volumetric changes were assessed. Affected and unaffected sides were compared. Demographic data, clinical presentation, Hertel measurements, photographic and radiological findings were analysed. 22 patients (64% men) met the inclusion criteria. Mean relative enophthalmos was 2.1 mm and mean hypoglobus was 1.8 mm. The most common radiographic findings were sinus opacification (91%), uncinate process retraction/middle meatus increase (91%), orbit enlargement (100%), ipsilateral septum deviation (64%) and infratemporal fossa fat enlargement (100%). Infratemporal fossa fat area and volume were significantly larger in the affected side (p<0.01). Additionally, ipsilateral orbit (p<0.01) and nasal vault volume (p<0.01) were similarly increased. Maxillary sinus volume correlated significantly only with infratemporal fossa fat enlargement (p<0.05). There is a significant increase in the infratemporal fossa fat, nasal and orbital volume corresponding to a decrease in maxillary sinus size in chronic maxillary atelectasis. Chronic maxillary atelectasis is associated with redistribution of volume between the maxillary sinus and the surrounding infratemporal fossa, orbit and nasal cavity.

  16. Pattern analysis of nerve enlargement using ultrasonography in chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Jang, Jae Hong; Cho, Charles S; Yang, Kyung-Sook; Seok, Hung Youl; Kim, Byung-Jo

    2014-09-01

    Focal nerve enlargement is a characteristic finding in chronic inflammatory demyelinating polyneuropathy (CIDP). We performed this study to assess the distribution of nerve enlargement through ultrasonographic examination of peripheral nerves and to correlate the ultrasonographic findings with clinical features. To compare the ultrasonographic features of 10 subjects with CIDP with those of 18 healthy controls, we bilaterally measured the cross-sectional areas (CSA) of the vagus, brachial plexus, musculocutaneous, median, ulnar, radial, sciatic, tibial, common peroneal, and sural nerves. We also analyzed correlations between CSAs and various clinical and electrophysiological features. Mean CSAs were significantly larger in CIDP patients than controls, especially at proximal and non-entrapment sites. CSAs were significantly correlated with muscle strength at initial presentation, but not at the time of ultrasonography. The CSAs of the median and ulnar nerves at the mid-forearm, tibial nerve at 7 cm proximal to the medial malleolus, and sural nerve correlated with the nerve conduction velocity of the corresponding region. Ultrasonography revealed widely distributed nerve enlargement, especially in proximal regions and non-entrapment sites, in patients with CIDP compared with healthy controls. Nerve enlargement correlated well with the electrophysiologic function of the nerve, but not current clinical status. Pattern analysis of nerve enlargement using ultrasonography is a supportive tool in the diagnosis of CIDP. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Role of motoneuron-derived neurotrophin 3 in survival and axonal projection of sensory neurons during neural circuit formation.

    PubMed

    Usui, Noriyoshi; Watanabe, Keisuke; Ono, Katsuhiko; Tomita, Koichi; Tamamaki, Nobuaki; Ikenaka, Kazuhiro; Takebayashi, Hirohide

    2012-03-01

    Sensory neurons possess the central and peripheral branches and they form unique spinal neural circuits with motoneurons during development. Peripheral branches of sensory axons fasciculate with the motor axons that extend toward the peripheral muscles from the central nervous system (CNS), whereas the central branches of proprioceptive sensory neurons directly innervate motoneurons. Although anatomically well documented, the molecular mechanism underlying sensory-motor interaction during neural circuit formation is not fully understood. To investigate the role of motoneuron on sensory neuron development, we analyzed sensory neuron phenotypes in the dorsal root ganglia (DRG) of Olig2 knockout (KO) mouse embryos, which lack motoneurons. We found an increased number of apoptotic cells in the DRG of Olig2 KO embryos at embryonic day (E) 10.5. Furthermore, abnormal axonal projections of sensory neurons were observed in both the peripheral branches at E10.5 and central branches at E15.5. To understand the motoneuron-derived factor that regulates sensory neuron development, we focused on neurotrophin 3 (Ntf3; NT-3), because Ntf3 and its receptors (Trk) are strongly expressed in motoneurons and sensory neurons, respectively. The significance of motoneuron-derived Ntf3 was analyzed using Ntf3 conditional knockout (cKO) embryos, in which we observed increased apoptosis and abnormal projection of the central branch innervating motoneuron, the phenotypes being apparently comparable with that of Olig2 KO embryos. Taken together, we show that the motoneuron is a functional source of Ntf3 and motoneuron-derived Ntf3 is an essential pre-target neurotrophin for survival and axonal projection of sensory neurons.

  18. Parallel changes in cortical neuron biochemistry and motor function in protein-energy malnourished adult rats.

    PubMed

    Alaverdashvili, Mariam; Hackett, Mark J; Caine, Sally; Paterson, Phyllis G

    2017-04-01

    While protein-energy malnutrition in the adult has been reported to induce motor abnormalities and exaggerate motor deficits caused by stroke, it is not known if alterations in mature cortical neurons contribute to the functional deficits. Therefore, we explored if PEM in adult rats provoked changes in the biochemical profile of neurons in the forelimb and hindlimb regions of the motor cortex. Fourier transform infrared spectroscopic imaging using a synchrotron generated light source revealed for the first time altered lipid composition in neurons and subcellular domains (cytosol and nuclei) in a cortical layer and region-specific manner. This change measured by the area under the curve of the δ(CH 2 ) band may indicate modifications in membrane fluidity. These PEM-induced biochemical changes were associated with the development of abnormalities in forelimb use and posture. The findings of this study provide a mechanism by which PEM, if not treated, could exacerbate the course of various neurological disorders and diminish treatment efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Early physiological abnormalities after simian immunodeficiency virus infection

    PubMed Central

    Horn, Thomas F. W.; Huitron-Resendiz, Salvador; Weed, Michael R.; Henriksen, Steven J.; Fox, Howard S.

    1998-01-01

    Central nervous system (CNS) damage and dysfunction are devastating consequences of HIV infection. Although the CNS is one of the initial targets for HIV infection, little is known about early viral-induced abnormalities that can affect CNS function. Here we report the detection of early physiological abnormalities in simian immunodeficiency virus-infected monkeys. The acute infection caused a disruption of the circadian rhythm manifested by rises in body temperature, observed in all five individuals between 1 and 2 weeks postinoculation (p.i.), accompanied by a reduction in daily motor activity to 50% of control levels. Animals remained hyperthermic at 1 and 2 months p.i. and returned to preinoculation temperatures at 3 months after viral inoculation. Although motor activity recovered to baseline values at 1 month p.i., activity levels then decreased to approximately 50% of preinoculation values over the next 2 months. Analysis of sensory-evoked responses 1 month p.i. revealed distinct infection-induced changes in auditory-evoked potential peak latencies that persisted at 3 months after viral inoculation. These early physiological abnormalities may precede the development of observable cognitive or motor deficiencies and can provide an assay to evaluate agents to prevent or alleviate neuronal dysfunction. PMID:9844017

  20. Varenicline and Abnormal Sleep Related Events

    PubMed Central

    Savage, Ruth L.; Zekarias, Alem; Caduff-Janosa, Pia

    2015-01-01

    Study Objectives: To assess adverse drug reaction reports of “abnormal sleep related events” associated with varenicline, a partial agonist to the α4β2 subtype of nicotinic acetylcholine receptors on neurones, indicated for smoking cessation. Design: Twenty-seven reports of “abnormal sleep related events” often associated with abnormal dreams, nightmares, or somnambulism, which are known to be associated with varenicline use, were identified in the World Health Organisation (WHO) Global Individual Case Safety Reports Database. Original anonymous reports were obtained from the four national pharmacovigilance centers that submitted these reports and assessed for reaction description and causality. Measurements and Results: These 27 reports include 10 of aggressive activity occurring during sleep and seven of other sleep related harmful or potentially harmful activities, such as apparently deliberate self-harm, moving a child or a car, or lighting a stove or a cigarette. Assessment of these 17 reports of aggression or other actual or potential harm showed that nine patients recovered or were recovering on varenicline withdrawal and there were no consistent alternative explanations. Thirteen patients experienced single events, and two had multiple events. Frequency was not stated for the remaining two patients. Conclusions: The descriptions of the reports of aggression during sleep with violent dreaming are similar to those of rapid eye movement sleep behavior disorder and also nonrapid eye movement (NREM) sleep parasomnias in some adults. Patients who experience somnambulism or dreams of a violent nature while taking varenicline should be advised to consult their health providers. Consideration should be given to clarifying the term sleep disorders in varenicline product information and including sleep related harmful and potentially harmful events. Citation: Savage RL, Zekarias A, Caduff-Janosa P. Varenicline and abnormal sleep related events. SLEEP 2015

  1. [X-ray computed tomographic abnormalities in schizophrenia. Trial of relationship with clinical data].

    PubMed

    D'Amato, T; Rochet, T; Dalery, J; Chauchat, J H; Terra, J L; Arteaga, C; Marie-Cardine, M

    1992-01-01

    Computerized tomography (CT-scan) studies in schizophrenia revealed that some patients have neuromorphological abnormalities. The structural changes consist mainly in lateral and third ventricle enlargement, and in cortical atrophy. The present study evaluates these three changes in 42 schizophrenics aged 18 to 50, compared to 24 healthy controls. Diagnosis were established from information gathered by personal interview with the SADS-LA. Clinical sub-types were evaluated according to the DSM III-R criteria. Moreover, detailed symptoms were rated according to the Positive And Negative Syndrome Scale (PANSS). CT scans were recorded in floppy disks and blindly analyzed. Schizophrenics shown significant higher mean size of lateral and third ventricles, and higher mean anterior cortical atrophy than healthy subjects. Significant differences were also found between subtypes, with more marked abnormalities in the disorganized group. The relationship between brain abnormalities and clinical symptoms recorded with the PANSS, were analysed using Pearson correlates. Positive correlations concerned mainly negative symptoms like blunted affect, emotional withdrawal, difficulties in abstract thinking, passive apathetic social withdrawal and lack of spontaneity of conversation. Positive correlations are also observed with some symptoms classified with the PANSS in the General Psychopathology scale such as mannerism and disorientation. Negative correlation concerned most of PANSS positive symptoms.

  2. Social Isolation During Postweaning Development Causes Hypoactivity of Neurons in the Medial Nucleus of the Male Rat Amygdala.

    PubMed

    Adams, Thomas; Rosenkranz, J Amiel

    2016-06-01

    Children exposed to neglect or social deprivation are at heightened risk for psychiatric disorders and abnormal social patterns as adults. There is also evidence that prepubertal neglect in children causes abnormal metabolic activity in several brain regions, including the amygdala area. The medial nucleus of the amygdala (MeA) is a key region for performance of social behaviors and still undergoes maturation during the periadolescent period. As such, the normal development of this region may be disrupted by social deprivation. In rodents, postweaning social isolation causes a range of deficits in sexual and agonistic behaviors that normally rely on the posterior MeA (MeAp). However, little is known about the effects of social isolation on the function of MeA neurons. In this study, we tested whether postweaning social isolation caused abnormal activity of MeA neurons. We found that postweaning social isolation caused a decrease of in vivo firing activity of MeAp neurons, and reduced drive from excitatory afferents. In vitro electrophysiological studies found that postweaning social isolation caused a presynaptic impairment of excitatory input to the dorsal MeAp, but a progressive postsynaptic reduction of membrane excitability in the ventral MeAp. These results demonstrate discrete, subnucleus-specific effects of social deprivation on the physiology of MeAp neurons. This pathophysiology may contribute to the disruption of social behavior after developmental social deprivation, and may be a novel target to facilitate the treatment of social disorders.

  3. Social Isolation During Postweaning Development Causes Hypoactivity of Neurons in the Medial Nucleus of the Male Rat Amygdala

    PubMed Central

    Adams, Thomas; Rosenkranz, J Amiel

    2016-01-01

    Children exposed to neglect or social deprivation are at heightened risk for psychiatric disorders and abnormal social patterns as adults. There is also evidence that prepubertal neglect in children causes abnormal metabolic activity in several brain regions, including the amygdala area. The medial nucleus of the amygdala (MeA) is a key region for performance of social behaviors and still undergoes maturation during the periadolescent period. As such, the normal development of this region may be disrupted by social deprivation. In rodents, postweaning social isolation causes a range of deficits in sexual and agonistic behaviors that normally rely on the posterior MeA (MeAp). However, little is known about the effects of social isolation on the function of MeA neurons. In this study, we tested whether postweaning social isolation caused abnormal activity of MeA neurons. We found that postweaning social isolation caused a decrease of in vivo firing activity of MeAp neurons, and reduced drive from excitatory afferents. In vitro electrophysiological studies found that postweaning social isolation caused a presynaptic impairment of excitatory input to the dorsal MeAp, but a progressive postsynaptic reduction of membrane excitability in the ventral MeAp. These results demonstrate discrete, subnucleus-specific effects of social deprivation on the physiology of MeAp neurons. This pathophysiology may contribute to the disruption of social behavior after developmental social deprivation, and may be a novel target to facilitate the treatment of social disorders. PMID:26677945

  4. Mechanism of gastrointestinal abnormal motor activity induced by cisplatin in conscious dogs.

    PubMed

    Ando, Hiroyuki; Mochiki, Erito; Ohno, Tetsuro; Yanai, Mitsuhiro; Toyomasu, Yoshitaka; Ogata, Kyoichi; Tabe, Yuichi; Aihara, Ryuusuke; Nakabayashi, Toshihiro; Asao, Takayuki; Kuwano, Hiroyuki

    2014-11-14

    To investigate whether 5-hydroxytryptamine (serotonin; 5-HT) is involved in mediating abnormal motor activity in dogs after cisplatin administration. After the dogs had been given a 2-wk recovery period, all of them were administered cisplatin, and the motor activity was recorded using strain gauge force transducers. Blood and intestinal fluid samples were collected to measure 5-HT for 24 h. To determine whether 5-HT in plasma or that in intestinal fluids is more closely related to abnormal motor activity we injected 5-HT into the bloodstream and the intestinal tract of the dogs. Cisplatin given intravenously produced abnormal motor activity that lasted up to 5 h. From 3 to 4 h after cisplatin administration, normal intact dogs exhibited retropropagation of motor activity accompanied by emesis. The concentration of 5-HT in plasma reached the peak at 4 h, and that in intestinal fluids reached the peak at 3 h. In normal intact dogs with resection of the vagus nerve that were administered kytril, cisplatin given intravenously did not produce abnormal motor activity. Intestinal serotonin administration did not produce abnormal motor activity, but intravenous serotonin administration did. After the intravenous administration of cisplatin, abnormal motor activity was produced in the involved vagus nerve and in the involved serotonergic neurons via another pathway. This study was the first to determine the relationship between 5-HT and emesis-induced motor activity.

  5. Familial juvenile autoimmune hypothyroidism, pituitary enlargement, obesity, and insulin resistance.

    PubMed

    Reutrakul, Sirimon; Hathout, Eba H; Janner, Donald; Hara, Manami; Donfack, Joseph; Bass, Joseph; Refetoff, Samuel

    2004-04-01

    The proband, a 9-year-old Hispanic female, presented with hair loss, strabismus, and weight gain. On magnetic resonance imaging (MRI) she was found to have severe primary hypothyroidism and a large pituitary mass. In addition, acanthosis nigricans, obesity, and hyperinsulinism were observed. Findings were similar in three of four siblings. Thyroid peroxidase antibodies were detected in the father and three of four siblings. Although all family members were obese, and hyperinsulinemia with high proinsulin and C-peptide was found in all except one sibling, only the mother and one child had overt type 2 diabetes mellitus. Because of the unusual association of autoimmune thyroid disease, insulin resistance and obesity rather than insulin deficiency, we searched for possible genetic abnormalities. The HLA haplotypes did not cosegregate with autoimmune thyroid disease or insulin resistance. Mutational analysis of known obesity genes was done. Leptin was not deficient, and sequencing of the proband's DNA showed no mutations in the perixisome proliferator activated receptor (PPAR)-gamma, PPAR-gamma(2), PPAR-alpha or melanocortin 4 receptor genes. Maternally inherited diabetes and deafness was ruled out since no mutations were found in mitochondria DNA. Insulin receptor antibodies were not detected. In conclusion, the remarkably high incidence of childhood autoimmune hypothyroidism, pituitary enlargement, insulin resistance and obesity in this family is not linked to known HLA types or known gene defects.

  6. Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia.

    PubMed

    Kita, Hitoshi; Kita, Takako

    2011-07-13

    The motor cortex (MC) sends massive projections to the basal ganglia. Motor disabilities in patients and animal models of Parkinson's disease (PD) may be caused by dopamine (DA)-depleted basal ganglia that abnormally process the information originating from MC. To study how DA depletion alters signal transfer in the basal ganglia, MC stimulation-induced (MC-induced) unitary responses were recorded from the basal ganglia of control and 6-hydroxydopamine-treated hemi-parkinsonian rats anesthetized with isoflurane. This report describes new findings about how DA depletion alters MC-induced responses. MC stimulation evokes an excitation in normally quiescent striatal (Str) neurons projecting to the globus pallidus external segment (GPe). After DA-depletion, the spontaneous firing of Str-GPe neurons increases, and MC stimulation evokes a shorter latency excitation followed by a long-lasting inhibition that was invisible under normal conditions. The increased firing activity and the newly exposed long inhibition generate tonic inhibition and a disfacilitation in GPe. The disfacilitation in GPe is then amplified in basal ganglia circuitry and generates a powerful long inhibition in the basal ganglia output nucleus, the globus pallidus internal segment. Intra-Str injections of a behaviorally effective dose of DA precursor l-3,4-dihydroxyphenylalanine effectively reversed these changes. These newly observed mechanisms also support the generation of pauses and burst activity commonly observed in the basal ganglia of parkinsonian subjects. These results suggest that the generation of abnormal response sequences in the basal ganglia contributes to the development of motor disabilities in PD and that intra-Str DA supplements effectively suppress abnormal signal transfer.

  7. Penile enlargement: from medication to surgery.

    PubMed

    Nugteren, Helena M; Balkema, G T; Pascal, A L; Schultz, W C M Weijmar; Nijman, J M; van Driel, M F

    2010-01-01

    Penis lengthening pills, stretch apparatus, vacuum pumps, silicone injections, and lengthening and thickening operations are available for men who worry about their penis size. Surgery is thus far the only proven scientific method for penile enlargement. In this article, we consider patient selection, outcome evaluation, and techniques applied. In our view, sexological counseling and detailed explanation of risks and complications are mandatory before any operative intervention.

  8. Routine transesophageal echocardiography for the diagnosis of aortic disruption in trauma patients without enlarged mediastinum.

    PubMed

    Vignon, P; Lagrange, P; Boncoeur, M P; Francois, B; Gastinne, H; Lang, R M

    1996-03-01

    To assess the value of routine transesophageal echocardiography (TEE) in diagnosing traumatic disruption of the aorta (TDA) in trauma patients presenting without enlarged mediastinum on chest x-ray films. Prospective study. TEE was routinely performed to exclude the presence of TDA in patients who sustained severe trauma secondary to abrupt deceleration collisions and presented with an upper mediastinum of fewer than 8 cm on supine chest x-ray films. Patients were divided into two groups according to the presence (group I) or absence (group II) of mediastinal hematoma diagnosed during TEE examination. Radiographic signs regarded as indicators of the presence of TDA were evaluated in both groups. Among the 40 consecutive patients studied, TEE demonstrated two cases of TDA associated with a mediastinal hematoma that were confirmed by both aortography and surgery. One of the patients had a normal mediastinum on presentation chest x-ray films, and the other only exhibited a blurred aortic knob. Radiographic mediastinal abnormalities suggestive of TDA were observed in 13 patients, but chest x-ray films were unremarkable in 12 patients. Twenty patients had multiple rib fractures. The frequency of chest radiographic abnormalities was not significantly higher in group I (n = 6) when compared with group II patients (n = 34). TEE examination demonstrated a normal thoracic aorta in 35 patients and was nondiagnostic in 3 patients (normal aortography). TEE should be routinely performed in victims of violent deceleration collisions, even in patients presenting apparently normal mediastinum on supine chest radiography.

  9. Axonal degeneration in Alzheimer’s disease: When signaling abnormalities meet the axonal transport system

    PubMed Central

    Kanaan, Nicholas M.; Pigino, Gustavo F.; Brady, Scott T.; Lazarov, Orly; Binder, Lester I.; Morfini, Gerardo A.

    2012-01-01

    Alzheimer’s disease (AD) is characterized by progressive, age-dependent degeneration of neurons in the central nervous system. A large body of evidence indicates that neurons affected in AD follow a dying-back pattern of degeneration, where abnormalities in synaptic function and axonal connectivity long precede somatic cell death. Mechanisms underlying dying-back degeneration of neurons in AD remain elusive but several have been proposed, including deficits in fast axonal transport (FAT). Accordingly, genetic evidence linked alterations in FAT to dying-back degeneration of neurons, and FAT defects have been widely documented in various AD models. In light of these findings, we discuss experimental evidence linking several AD-related pathogenic polypeptides to aberrant activation of signaling pathways involved in the phosphoregulation of microtubule-based motor proteins. While each pathway appears to affect FAT in a unique manner, in the context of AD, many of these pathways might work synergistically to compromise the delivery of molecular components critical for the maintenance and function of synapses and axons. Therapeutic approaches aimed at preventing FAT deficits by normalizing the activity of specific protein kinases may help prevent degeneration of vulnerable neurons in AD. PMID:22721767

  10. Spleen and liver enlargement in a patient with rheumatoid arthritis.

    PubMed

    Bedoya, María Eugenia; Ceccato, Federico; Paira, Sergio

    2015-01-01

    We describe the case of a 51-year-old woman with a seropositive, erosive, and non-nodular rheumatoid arthritis of 15 year of evolution. The patient had poor compliance with medical visits and treatment. She came to the clinic with persistent pancytopenia and spleen and liver enlargement. Liver and bone marrow biopsies were carried out and amyloidosis, neoplasias and infections were ruled out. We discuss the differential diagnosis of pancytopenia and spleen and liver enlargement in a long-standing rheumatoid arthritis patient. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  11. Xeroderma pigmentosum neurological abnormalities correlate with colony-forming ability after ultraviolet radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, A.D.; Barrett, S.F.; Robbins, J.H.

    1978-04-01

    Xeroderma pigmentosum is an autosomal recessive disease in which DNA repair processes are defective. All xeroderma pigmentosum patients develop premature aging of sun exposed skin, and some develop neurological abnormalities due to premature death of nerve cells. Sensitivity to ultraviolet radiation of 24 xeroderma pigmentosum fibroblast strains was studied in vitro by measuring each strain's ability to divide and form colonies after irradiation. The most sensitive strains were derived from patients who had an early onset of neurological abnormalities; less sensitive strains were from patients with a later onset; and the most resistant strains were from patients without neurological abnormalities.more » The uv sensitivities of strains from each member of a sibling pair with xeroderma pigmentosum were identical, indicating that uv sensitivity of xeroderma pigmentosum strains is determined by the patient's inherited DNA repair defect. The results suggest that effective DNA repair is required to maintain the functional integrity of the human nervous system by preventing premature death of neurons.« less

  12. ES1 is a mitochondrial enlarging factor contributing to form mega-mitochondria in zebrafish cones.

    PubMed

    Masuda, Takamasa; Wada, Yasutaka; Kawamura, Satoru

    2016-03-01

    Total mass of mitochondria increases during cell proliferation and differentiation through mitochondrial biogenesis, which includes mitochondrial proliferation and growth. During the mitochondrial growth, individual mitochondria have been considered to be enlarged independently of mitochondrial fusion. However, molecular basis for this enlarging process has been poorly understood. Cone photoreceptor cells in the retina possess large mitochondria, so-called mega-mitochondria that have been considered to arise via the enlarging process. Here we show that ES1 is a novel mitochondria-enlarging factor contributing to form mega-mitochondria in cones. ES1 is specifically expressed in cones and localized to mitochondria including mega-mitochondria. Knockdown of ES1 markedly reduced the mitochondrial size in cones. In contrast, ectopic expression of ES1 in rods significantly increased both the size of individual mitochondria and the total mass of the mitochondrial cluster without changing the number of them. RNA-seq analysis showed that ERRα and its downstream mitochondrial genes were significantly up-regulated in the ES1-expressing rods, suggesting facilitation of mitochondrial enlargement via ERRα-dependent processes. Furthermore, higher energy state was detected in the ES1-expressing rods, indicating that the enlarged mitochondria by ES1 are capable of producing high energy. ES1 is the mitochondrial protein that is first found to promote enlargement of individual mitochondria.

  13. Silencing of the Drosophila ortholog of SOX5 leads to abnormal neuronal development and behavioral impairment.

    PubMed

    Li, Airong; Hooli, Basavaraj; Mullin, Kristina; Tate, Rebecca E; Bubnys, Adele; Kirchner, Rory; Chapman, Brad; Hofmann, Oliver; Hide, Winston; Tanzi, Rudolph E

    2017-04-15

    SOX5 encodes a transcription factor that is expressed in multiple tissues including heart, lung and brain. Mutations in SOX5 have been previously found in patients with amyotrophic lateral sclerosis (ALS) and developmental delay, intellectual disability and dysmorphic features. To characterize the neuronal role of SOX5, we silenced the Drosophila ortholog of SOX5, Sox102F, by RNAi in various neuronal subtypes in Drosophila. Silencing of Sox102F led to misorientated and disorganized michrochaetes, neurons with shorter dendritic arborization (DA) and reduced complexity, diminished larval peristaltic contractions, loss of neuromuscular junction bouton structures, impaired olfactory perception, and severe neurodegeneration in brain. Silencing of SOX5 in human SH-SY5Y neuroblastoma cells resulted in a significant repression of WNT signaling activity and altered expression of WNT-related genes. Genetic association and meta-analyses of the results in several large family-based and case-control late-onset familial Alzheimer's disease (LOAD) samples of SOX5 variants revealed several variants that show significant association with AD disease status. In addition, analysis for rare and highly penetrate functional variants revealed four novel variants/mutations in SOX5, which taken together with functional prediction analysis, suggests a strong role of SOX5 causing AD in the carrier families. Collectively, these findings indicate that SOX5 is a novel candidate gene for LOAD with an important role in neuronal function. The genetic findings warrant further studies to identify and characterize SOX5 variants that confer risk for AD, ALS and intellectual disability. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Isolated amygdala enlargement in temporal lobe epilepsy: A systematic review.

    PubMed

    Beh, S M Jessica; Cook, Mark J; D'Souza, Wendyl J

    2016-07-01

    The objective of this study was to compare the seizure characteristics and treatment outcomes in patient groups with temporal lobe epilepsy (TLE) identified with isolated amygdala enlargement (AE) on magnetic resonance imaging studies. PubMed, Embase, and the Cochrane Library were searched for relevant studies using the keywords 'amygdala enlargement', 'epilepsy', and 'seizures' in April 2015. Human studies, written in English, that investigated cohorts of patients with TLE and AE were included. Of 204 abstracts initially identified using the search strategy, 14 studies met the inclusion criteria (11 epilepsy studies and 3 psychiatry studies). Ultimately, 8 full studies on AE and TLE involving 107 unique patients were analyzed. Gender distribution consisted of 50 males and 57 females. Right amygdala enlargement was seen in 39 patients, left enlargement in 58 patients, and bilateral enlargement in 7 patients. Surgical resection was performed in 28 patients, with the most common finding being dysplasia/hamartoma or focal cortical dysplasia. Most studies involved small samples of less than 12 patients. There was a wide discrepancy in the methods used to measure amygdala volume, in both patients and controls, hindering comparisons. Most TLE with AE studies observed a later age of seizure onset (mean: 32.2years) compared with studies involving TLE with HS (mean of mid- to late childhood). A higher frequency of complex partial seizures compared with that of convulsive seizures is seen in patients with AE (67-100% vs. 26-47%), and they have an excellent response to antiepileptic drugs (81.8%-100% of seizure-free patients). All studies that included controls also found a significant difference in frequency of seizure types between their cases and controls. Reliable assessment of amygdala volume remains a critical issue hindering better understanding of the clinical management and research of this focal epilepsy syndrome. Within these limitations, the literature suggests

  15. Job enlargement and mechanical exposure variability in cyclic assembly work.

    PubMed

    Möller, Therése; Mathiassen, Svend Erik; Franzon, Helena; Kihlberg, Steve

    2004-01-15

    Cyclic assembly work is known to imply a high risk for musculoskeletal disorders. To have operators rotate between work tasks is believed to be one way of decreasing this risk, since it is expected to increase variation in mechanical and psychological exposures (physical and mental loads). This assumption was investigated by assessing mechanical exposure variability in three assembly tasks in an electronics assembly plant, each on a separate workstation, as well as in a 'job enlargement' scenario combining all three stations. Five experienced operators worked for 1 h on each station. Data on upper trapezius and forearm extensor muscle activity were obtained by means of electromyography (EMG), and working postures of the head and upper arms were assessed by inclinometry. The cycle-to-cycle variance of parameters representing the three exposure dimensions: level, frequency and duration was estimated using ANOVA algorithms for each workstation separately as well as for a balanced combination of all three. For a particular station, the variability of trapezius EMG activity levels relative to the mean was higher than for extensor EMG: between-cycles coefficients of variation (CV) about 0.15 and 0.10, respectively. A similar relationship between CV applied to the parameter describing frequency of EMG activity. Except for head inclination levels, the between-cycles CV was larger for posture parameters than for EMG. The between-cycles variance increased up to six fold in the job enlargement scenario, as compared to working at only one station. The difference in mean exposure between workstations was larger for trapezius EMG parameters than for forearm extensor EMG and postures, and hence the effect of job enlargement on exposure variability was more pronounced for the trapezius. For some stations, job enlargement even implied less cycle-to-cycle variability in forearm extensor EMG parameters than working at that station only. Whether the changes in exposure variability

  16. Reduced anterior insula, enlarged amygdala in alcoholism and associated depleted von Economo neurons

    PubMed Central

    Senatorov, Vladimir V.; Damadzic, Ruslan; Mann, Claire L.; Schwandt, Melanie L.; George, David T.; Hommer, Daniel W.; Heilig, Markus

    2015-01-01

    The insula, a structure involved in higher order representation of interoceptive states, has recently been implicated in drug craving and social stress. Here, we performed brain magnetic resonance imaging to measure volumes of the insula and amygdala, a structure with reciprocal insular connections, in 26 alcohol-dependent patients and 24 healthy volunteers (aged 22–56 years, nine females in each group). We used an established morphometry method to quantify total and regional insular volumes. Volumetric measurements of the amygdala were obtained using a model-based segmentation/registration tool. In alcohol-dependent patients, anterior insula volumes were bilaterally reduced compared to healthy volunteers (left by 10%, right by 11%, normalized to total brain volumes). Furthermore, alcohol-dependent patients, compared with healthy volunteers, had bilaterally increased amygdala volumes. The left amygdala was increased by 28% and the right by 29%, normalized to total brain volumes. Post-mortem studies of the anterior insula showed that the reduced anterior insular volume may be associated with a population of von Economo neurons, which were 60% diminished in subjects with a history of alcoholism (n = 6) as compared to subjects without a history of alcoholism (n = 6) (aged 32–56 years, all males). The pattern of neuroanatomical change observed in our alcohol-dependent patients might result in a loss of top-down control of amygdala function, potentially contributing to impaired social cognition as well as an inability to control negatively reinforced alcohol seeking and use. PMID:25367022

  17. GSK-3β-induced Tau pathology drives hippocampal neuronal cell death in Huntington's disease: involvement of astrocyte-neuron interactions.

    PubMed

    L'Episcopo, F; Drouin-Ouellet, J; Tirolo, C; Pulvirenti, A; Giugno, R; Testa, N; Caniglia, S; Serapide, M F; Cisbani, G; Barker, R A; Cicchetti, F; Marchetti, B

    2016-04-28

    Glycogen synthase kinase-3β (GSK-3β) has emerged as a critical factor in several pathways involved in hippocampal neuronal maintenance and function. In Huntington's disease (HD), there are early hippocampal deficits both in patients and transgenic mouse models, which prompted us to investigate whether disease-specific changes in GSK-3β expression may underlie these abnormalities. Thirty-three postmortem hippocampal samples from HD patients (neuropathological grades 2-4) and age- and sex-matched normal control cases were analyzed using real-time quantitative reverse transcription PCRs (qPCRs) and immunohistochemistry. In vitro and in vivo studies looking at hippocampal pathology and GSK-3β were also undertaken in transgenic R6/2 and wild-type mice. We identified a disease and stage-dependent upregulation of GSK-3β mRNA and protein levels in the HD hippocampus, with the active isoform pGSK-3β-Tyr(216) being strongly expressed in dentate gyrus (DG) neurons and astrocytes at a time when phosphorylation of Tau at the AT8 epitope was also present in these same neurons. This upregulation of pGSK-3β-Tyr(216) was also found in the R6/2 hippocampus in vivo and linked to the increased vulnerability of primary hippocampal neurons in vitro. In addition, the increased expression of GSK-3β in the astrocytes of R6/2 mice appeared to be the main driver of Tau phosphorylation and caspase3 activation-induced neuronal death, at least in part via an exacerbated production of major proinflammatory mediators. This stage-dependent overactivation of GSK-3β in HD-affected hippocampal neurons and astrocytes therefore points to GSK-3β as being a critical factor in the pathological development of this condition. As such, therapeutic targeting of this pathway may help ameliorate neuronal dysfunction in HD.

  18. GSK-3β-induced Tau pathology drives hippocampal neuronal cell death in Huntington's disease: involvement of astrocyte–neuron interactions

    PubMed Central

    L'Episcopo, F; Drouin-Ouellet, J; Tirolo, C; Pulvirenti, A; Giugno, R; Testa, N; Caniglia, S; Serapide, M F; Cisbani, G; Barker, R A; Cicchetti, F; Marchetti, B

    2016-01-01

    Glycogen synthase kinase-3β (GSK-3β) has emerged as a critical factor in several pathways involved in hippocampal neuronal maintenance and function. In Huntington's disease (HD), there are early hippocampal deficits both in patients and transgenic mouse models, which prompted us to investigate whether disease-specific changes in GSK-3β expression may underlie these abnormalities. Thirty-three postmortem hippocampal samples from HD patients (neuropathological grades 2–4) and age- and sex-matched normal control cases were analyzed using real-time quantitative reverse transcription PCRs (qPCRs) and immunohistochemistry. In vitro and in vivo studies looking at hippocampal pathology and GSK-3β were also undertaken in transgenic R6/2 and wild-type mice. We identified a disease and stage-dependent upregulation of GSK-3β mRNA and protein levels in the HD hippocampus, with the active isoform pGSK-3β-Tyr216 being strongly expressed in dentate gyrus (DG) neurons and astrocytes at a time when phosphorylation of Tau at the AT8 epitope was also present in these same neurons. This upregulation of pGSK-3β-Tyr216 was also found in the R6/2 hippocampus in vivo and linked to the increased vulnerability of primary hippocampal neurons in vitro. In addition, the increased expression of GSK-3β in the astrocytes of R6/2 mice appeared to be the main driver of Tau phosphorylation and caspase3 activation-induced neuronal death, at least in part via an exacerbated production of major proinflammatory mediators. This stage-dependent overactivation of GSK-3β in HD-affected hippocampal neurons and astrocytes therefore points to GSK-3β as being a critical factor in the pathological development of this condition. As such, therapeutic targeting of this pathway may help ameliorate neuronal dysfunction in HD. PMID:27124580

  19. Prenatal Exposure to DEHP Induces Neuronal Degeneration and Neurobehavioral Abnormalities in Adult Male Mice.

    PubMed

    Barakat, Radwa; Lin, Po-Ching; Park, Chan Jin; Best-Popescu, Catherine; Bakery, Hatem H; Abosalum, Mohamed E; Abdelaleem, Nabila M; Flaws, Jodi A; Ko, CheMyong

    2018-04-23

    Phthalates are a family of synthetic chemicals that are used in producing a variety of consumer products. Di-(2-ethylhexyl) phthalate (DEHP) is an widely used phthalate and poses a public health concern. Prenatal exposure to DEHP has been shown to induce premature reproductive senescence in animal studies. In this study, we tested the hypothesis that prenatal exposure to DEHP impairs neurobehavior and recognition memory in her male offspring and we investigated one possible mechanism-oxidative damage in the hippocampus. Pregnant CD-1 female mice were orally administered 200μg, 500mg, or 750mg/kg/day DEHP or vehicle from gestational day 11 until birth. The neurobehavioral impact of the prenatal DEHP exposure was assessed at the ages of 16 to 22 months. Elevated plus maze and open field tests were used to measure anxiety levels. Y-maze and novel object recognition tests were employed to measure memory function. The oxidative damage in the hippocampus was measured by the levels of oxidative DNA damage and by SLIM microscopic counting of hippocampal neurons. Adult male mice that were prenatally exposed to DEHP exhibited anxious behaviors and impaired spatial and short-term recognition memory. The number of hippocampal pyramidal neurons was significantly decreased in the DEHP mice. Furthermore, DEHP mice expressed remarkably high levels of cyclooxygenase-2, 8-hydroxyguanine, and thymidine glycol in their hippocampal neurons. DEHP mice also had lower circulating testosterone concentrations and displayed a weaker immunoreactivity than the control mice to androgen receptor expression in the brain. This study found that prenatal exposure to DEHP caused elevated anxiety behavior and impaired recognition memory. These behavioral changes may originate from neurodegeneration caused by oxidative damage and inflammation in the hippocampus. Decreased circulating testosterone concentrations and decreased expression of androgen receptor in the brain also may be factors contributing

  20. Alterations of cortical GABA neurons and network oscillations in schizophrenia.

    PubMed

    Gonzalez-Burgos, Guillermo; Hashimoto, Takanori; Lewis, David A

    2010-08-01

    The hypothesis that alterations of cortical inhibitory gamma-aminobutyric acid (GABA) neurons are a central element in the pathology of schizophrenia has emerged from a series of postmortem studies. How such abnormalities may contribute to the clinical features of schizophrenia has been substantially informed by a convergence with basic neuroscience studies revealing complex details of GABA neuron function in the healthy brain. Importantly, activity of the parvalbumin-containing class of GABA neurons has been linked to the production of cortical network oscillations. Furthermore, growing knowledge supports the concept that gamma band oscillations (30-80 Hz) are an essential mechanism for cortical information transmission and processing. Herein we review recent studies further indicating that inhibition from parvalbumin-positive GABA neurons is necessary to produce gamma oscillations in cortical circuits; provide an update on postmortem studies documenting that deficits in the expression of glutamic acid decarboxylase67, which accounts for most GABA synthesis in the cortex, are widely observed in schizophrenia; and describe studies using novel, noninvasive approaches directly assessing potential relations between alterations in GABA, oscillations, and cognitive function in schizophrenia.

  1. Anorexia and Impaired Glucose Metabolism in Mice With Hypothalamic Ablation of Glut4 Neurons

    PubMed Central

    Ren, Hongxia; Lu, Taylor Y.; McGraw, Timothy E.

    2015-01-01

    The central nervous system (CNS) uses glucose independent of insulin. Nonetheless, insulin receptors and insulin-responsive glucose transporters (Glut4) often colocalize in neurons (Glut4 neurons) in anatomically and functionally distinct areas of the CNS. The apparent heterogeneity of Glut4 neurons has thus far thwarted attempts to understand their function. To answer this question, we used Cre-dependent, diphtheria toxin–mediated cell ablation to selectively remove basal hypothalamic Glut4 neurons and investigate the resulting phenotypes. After Glut4 neuron ablation, mice demonstrate altered hormone and nutrient signaling in the CNS. Accordingly, they exhibit negative energy balance phenotype characterized by reduced food intake and increased energy expenditure, without locomotor deficits or gross neuronal abnormalities. Glut4 neuron ablation affects orexigenic melanin-concentrating hormone neurons but has limited effect on neuropeptide Y/agouti-related protein and proopiomelanocortin neurons. The food intake phenotype can be partially normalized by GABA administration, suggesting that it arises from defective GABAergic transmission. Glut4 neuron–ablated mice show peripheral metabolic defects, including fasting hyperglycemia and glucose intolerance, decreased insulin levels, and elevated hepatic gluconeogenic genes. We conclude that Glut4 neurons integrate hormonal and nutritional cues and mediate CNS actions of insulin on energy balance and peripheral metabolism. PMID:25187366

  2. Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington's disease

    PubMed Central

    Gomez-Pastor, Rocio; Burchfiel, Eileen T.; Neef, Daniel W.; Jaeger, Alex M.; Cabiscol, Elisa; McKinstry, Spencer U.; Doss, Argenia; Aballay, Alejandro; Lo, Donald C.; Akimov, Sergey S.; Ross, Christopher A.; Eroglu, Cagla; Thiele, Dennis J.

    2017-01-01

    Huntington's Disease (HD) is a neurodegenerative disease caused by poly-glutamine expansion in the Htt protein, resulting in Htt misfolding and cell death. Expression of the cellular protein folding and pro-survival machinery by heat shock transcription factor 1 (HSF1) ameliorates biochemical and neurobiological defects caused by protein misfolding. We report that HSF1 is degraded in cells and mice expressing mutant Htt, in medium spiny neurons derived from human HD iPSCs and in brain samples from patients with HD. Mutant Htt increases CK2α′ kinase and Fbxw7 E3 ligase levels, phosphorylating HSF1 and promoting its proteasomal degradation. An HD mouse model heterozygous for CK2α′ shows increased HSF1 and chaperone levels, maintenance of striatal excitatory synapses, clearance of Htt aggregates and preserves body mass compared with HD mice homozygous for CK2α′. These results reveal a pathway that could be modulated to prevent neuronal dysfunction and muscle wasting caused by protein misfolding in HD. PMID:28194040

  3. Abnormally increased and incoherent resting-state activity is shared between patients with schizophrenia and their unaffected siblings.

    PubMed

    Liu, Chang; Xue, Zhimin; Palaniyappan, Lena; Zhou, Li; Liu, Haihong; Qi, Chang; Wu, Guowei; Mwansisya, Tumbwene E; Tao, Haojuan; Chen, Xudong; Huang, Xiaojun; Liu, Zhening; Pu, Weidan

    2016-03-01

    Several resting-state neuroimaging studies in schizophrenia indicate an excessive brain activity while others report an incoherent brain activity at rest. No direct evidence for the simultaneous presence of both excessive and incoherent brain activity has been established to date. Moreover, it is unclear whether unaffected siblings of schizophrenia patients who share half of the affected patient's genotype also exhibit the excessive and incoherent brain activity that may render them vulnerable to the development of schizophrenia. 27 pairs of schizophrenia patients and their unaffected siblings, as well as 27 healthy controls, were scanned using gradient-echo echo-planar imaging at rest. By using amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (Reho), we investigated the intensity and synchronization of local spontaneous neuronal activity in three groups. We observed that increased amplitude and reduced synchronization (coherence) of spontaneous neuronal activity were shared by patients and their unaffected siblings. The key brain regions with this abnormal neural pattern in both patients and siblings included the middle temporal, orbito-frontal, inferior occipital and fronto-insular gyrus. This abnormal neural pattern of excessive and incoherent neuronal activity shared by schizophrenia patients and their healthy siblings may improve our understanding of neuropathology and genetic predisposition in schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Redox Abnormalities as a Vulnerability Phenotype for Autism and Related Alterations in CNS Development

    DTIC Science & Technology

    2011-10-01

    the hypothesis that SJL mice would have impaired neuronal dendrite generation, as has been observed in autism . This was our prediction due to the...phenotype for Autism and related alterations in CNS development PRINCIPAL INVESTIGATOR: Mark D. Noble, Ph.D. CONTRACTING...SUBTITLE Redox abnormalities as a vulnerability phenotype for Autism 5a. CONTRACT NUMBER And related alterations in CNS development 5b. GRANT

  5. Bacterial Cell Enlargement Requires Control of Cell Wall Stiffness Mediated by Peptidoglycan Hydrolases.

    PubMed

    Wheeler, Richard; Turner, Robert D; Bailey, Richard G; Salamaga, Bartłomiej; Mesnage, Stéphane; Mohamad, Sharifah A S; Hayhurst, Emma J; Horsburgh, Malcolm; Hobbs, Jamie K; Foster, Simon J

    2015-07-28

    Most bacterial cells are enclosed in a single macromolecule of the cell wall polymer, peptidoglycan, which is required for shape determination and maintenance of viability, while peptidoglycan biosynthesis is an important antibiotic target. It is hypothesized that cellular enlargement requires regional expansion of the cell wall through coordinated insertion and hydrolysis of peptidoglycan. Here, a group of (apparent glucosaminidase) peptidoglycan hydrolases are identified that are together required for cell enlargement and correct cellular morphology of Staphylococcus aureus, demonstrating the overall importance of this enzyme activity. These are Atl, SagA, ScaH, and SagB. The major advance here is the explanation of the observed morphological defects in terms of the mechanical and biochemical properties of peptidoglycan. It was shown that cells lacking groups of these hydrolases have increased surface stiffness and, in the absence of SagB, substantially increased glycan chain length. This indicates that, beyond their established roles (for example in cell separation), some hydrolases enable cellular enlargement by making peptidoglycan easier to stretch, providing the first direct evidence demonstrating that cellular enlargement occurs via modulation of the mechanical properties of peptidoglycan. Understanding bacterial growth and division is a fundamental problem, and knowledge in this area underlies the treatment of many infectious diseases. Almost all bacteria are surrounded by a macromolecule of peptidoglycan that encloses the cell and maintains shape, and bacterial cells must increase the size of this molecule in order to enlarge themselves. This requires not only the insertion of new peptidoglycan monomers, a process targeted by antibiotics, including penicillin, but also breakage of existing bonds, a potentially hazardous activity for the cell. Using Staphylococcus aureus, we have identified a set of enzymes that are critical for cellular enlargement. We

  6. Quantification of abnormal intracranial pressure waves and isotope cisternography for diagnosis of occult communicating hydrocephalus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoso, E.R.; Piatek, D.; Del Bigio, M.R.

    1989-01-01

    Nineteen consecutive patients with suspected occult communicating hydrocephalus were investigated by means of clinical evaluation, neuropsychological testing, isotope cisternography, computed tomography scanning, and continuous intracranial pressure monitoring. Semi-quantitative grading systems were used in the evaluation of the clinical, neuropsychological, and cisternographic assessments. Clinical examination, neuropsychological testing, and computed tomography scanning were repeated 3 months after ventriculoperitoneal shunting. All patients showed abnormal intracranial pressure waves and all improved after shunting. There was close correlation between number, peak, and pulse pressures of B waves and the mean intracranial pressure. However, quantification of B waves by means of number, frequency, and amplitude didmore » not help in predicting the degree of clinical improvement postshunting. The most sensitive predictor of favorable response to shunting was enlargement of the temporal horns on computed tomography scan. Furthermore, the size of temporal horns correlated with mean intracranial pressure. There was no correlation between abnormalities on isotope cisternography and clinical improvement.« less

  7. Ablation of neurons expressing melanin-concentrating hormone (MCH) in adult mice improves glucose tolerance independent of MCH signaling.

    PubMed

    Whiddon, Benjamin B; Palmiter, Richard D

    2013-01-30

    Melanin-concentrating hormone (MCH)-expressing neurons have been ascribed many roles based on studies of MCH-deficient mice. However, MCH neurons express other neurotransmitters, including GABA, nesfatin, and cocaine-amphetamine-regulated transcript. The importance of these other signaling molecules made by MCH neurons remains incompletely characterized. To determine the roles of MCH neurons in vivo, we targeted expression of the human diphtheria toxin receptor (DTR) to the gene for MCH (Pmch). Within 2 weeks of diphtheria toxin injection, heterozygous Pmch(DTR/+) mice lost 98% of their MCH neurons. These mice became lean but ate normally and were hyperactive, especially during a fast. They also responded abnormally to psychostimulants. For these phenotypes, ablation of MCH neurons recapitulated knock-out of MCH, so MCH appears to be the critical neuromodulator released by these neurons. In contrast, MCH-neuron-ablated mice showed improved glucose tolerance when compared with MCH-deficient mutant mice and wild-type mice. We conclude that MCH neurons regulate glucose tolerance through signaling molecules other than MCH.

  8. NEURONS COMPRISING A HETEROTOPIA INDUCED BY DEVELOPMENTAL HYPOTHYROIDISM ARE BORN LATE IN GESTATION.

    EPA Science Inventory

    We previously described an abnormal cluster of neurons, a heterotopia, located in the corpus callosum in rat pups born to dams exposed to the goitrogen, propylthiouracil (PTU, Goodman et al., SfN 2004). In this study we determined 1) whether the formation of the heterotopia was u...

  9. The universe, life, and intelligence (Sixth enlarged edition)

    NASA Astrophysics Data System (ADS)

    Shklovskii, Iosif Samuilovich

    This classic work examines the possibility of the existence of life (including intelligent life) on other planetary systems. This enlarged edition includes essays on the search for extraterrestrial civilizations and the possibility of communication with intelligent beings on other planets.

  10. Developing neurons use a putative pioneer's peripheral arbor to establish their terminal fields.

    PubMed

    Gan, W B; Macagno, E R

    1995-05-01

    Pioneer neurons are known to guide later developing neurons during the initial phases of axonal outgrowth. To determine whether they are also important in the formation of terminal fields by the follower cells, we studied the role of a putative leech pioneer neuron, the pressure-sensitive (PD) neuron, in the establishment of other neurons' peripheral arbors. The PD neuron has a major axon that exits from its segmental ganglion to grow along the dorsal-posterior (DP) nerve to the dorsal body wall, where it arborizes extensively mainly in its own segment. It also has two minor axons that project to the two adjacent segments but branch to a lesser degree. We found that the peripheral projections of several later developing neurons, including the AP motor neuron and the TD sensory neuron, followed, with great precision, the major axon and peripheral arbor of the consegmental PD neuron, up to its fourth-order branches. When a PD neuron was ablated before it had grown to the body wall, the AP and TD axons grew normally toward and reached the target area, but then formed terminal arbors that were greatly reduced in size and abnormal in morphology. Further, if the ablation of a PD neuron was accompanied by the induction, in the same segment, of greater outgrowth of the minor axon of a PD neuron from the adjacent segment, the arbors of the same AP neurons grew along these novel PD neuron branches. These results demonstrate that the peripheral arbor of a PD neuron is a both necessary and sufficient template for the formation of normal terminal fields by certain later growing follower neurons.

  11. Mechanism of gastrointestinal abnormal motor activity induced by cisplatin in conscious dogs

    PubMed Central

    Ando, Hiroyuki; Mochiki, Erito; Ohno, Tetsuro; Yanai, Mitsuhiro; Toyomasu, Yoshitaka; Ogata, Kyoichi; Tabe, Yuichi; Aihara, Ryuusuke; Nakabayashi, Toshihiro; Asao, Takayuki; Kuwano, Hiroyuki

    2014-01-01

    AIM: To investigate whether 5-hydroxytryptamine (serotonin; 5-HT) is involved in mediating abnormal motor activity in dogs after cisplatin administration. METHODS: After the dogs had been given a 2-wk recovery period, all of them were administered cisplatin, and the motor activity was recorded using strain gauge force transducers. Blood and intestinal fluid samples were collected to measure 5-HT for 24 h. To determine whether 5-HT in plasma or that in intestinal fluids is more closely related to abnormal motor activity we injected 5-HT into the bloodstream and the intestinal tract of the dogs. RESULTS: Cisplatin given intravenously produced abnormal motor activity that lasted up to 5 h. From 3 to 4 h after cisplatin administration, normal intact dogs exhibited retropropagation of motor activity accompanied by emesis. The concentration of 5-HT in plasma reached the peak at 4 h, and that in intestinal fluids reached the peak at 3 h. In normal intact dogs with resection of the vagus nerve that were administered kytril, cisplatin given intravenously did not produce abnormal motor activity. Intestinal serotonin administration did not produce abnormal motor activity, but intravenous serotonin administration did. CONCLUSION: After the intravenous administration of cisplatin, abnormal motor activity was produced in the involved vagus nerve and in the involved serotonergic neurons via another pathway. This study was the first to determine the relationship between 5-HT and emesis-induced motor activity. PMID:25400453

  12. Expression of ESR1 in Glutamatergic and GABAergic Neurons Is Essential for Normal Puberty Onset, Estrogen Feedback, and Fertility in Female Mice.

    PubMed

    Cheong, Rachel Y; Czieselsky, Katja; Porteous, Robert; Herbison, Allan E

    2015-10-28

    Circulating estradiol exerts a profound influence on the activity of the gonadotropin-releasing hormone (GnRH) neuronal network controlling fertility. Using genetic strategies enabling neuron-specific deletion of estrogen receptor α (Esr1), we examine here whether estradiol-modulated GABA and glutamate transmission are critical for the functioning of the GnRH neuron network in the female mouse. Using Vgat- and Vglut2-ires-Cre knock-in mice and ESR1 immunohistochemistry, we demonstrate that subpopulations of GABA and glutamate neurons throughout the limbic forebrain express ESR1, with ESR1-GABAergic neurons being more widespread and numerous than ESR1-glutamatergic neurons. We crossed Vgat- and Vglut2-ires-Cre mice with an Esr1(lox/lox) line to generate animals with GABA-neuron-specific or glutamate-neuron-specific deletion of Esr1. Vgat-ires-Cre;Esr1(lox/lox) mice were infertile, with abnormal estrous cycles, and exhibited a complete failure of the estrogen positive feedback mechanism responsible for the preovulatory GnRH surge. However, puberty onset and estrogen negative feedback were normal. Vglut2-ires-Cre;Esr1(lox/lox) mice were also infertile but displayed a wider range of deficits, including advanced puberty onset, abnormal negative feedback, and abolished positive feedback. Whereas <25% of preoptic kisspeptin neurons expressed Cre in Vgat- and Vglut2-ires-Cre lines, ∼70% of arcuate kisspeptin neurons were targeted in Vglut2-ires-Cre;Esr1(lox/lox) mice, possibly contributing to their advanced puberty phenotype. These observations show that, unexpectedly, ESR1-GABA neurons are only essential for the positive feedback mechanism. In contrast, we reveal the key importance of ESR1 in glutamatergic neurons for multiple estrogen feedback loops within the GnRH neuronal network required for fertility in the female mouse. Copyright © 2015 the authors 0270-6474/15/3514533-11$15.00/0.

  13. Choline metabolism as a basis for the selective vulnerability of cholinergic neurons

    NASA Technical Reports Server (NTRS)

    Wurtman, R. J.

    1992-01-01

    The unique propensity of cholinergic neurons to use choline for two purposes--ACh and membrane phosphatidylcholine synthesis--may contribute to their selective vulnerability in Alzheimer's disease and other cholinergic neurodegenerative disorders. When physiologically active, the neurons use free choline taken from the 'reservoir' in membrane phosphatidylcholine to synthesize ACh; this can lead to an actual decrease in the quantity of membrane per cell. Alzheimer's disease (but not Down's syndrome, or other neurodegenerative disorders) is associated with characteristic neurochemical lesions involving choline and ethanolamine: brain levels of these compounds are diminished, while those of glycerophosphocholine and glycerophosphoethanolamine (breakdown products of their respective membrane phosphatides) are increased, both in cholinergic and noncholinergic brain regions. Perhaps this metabolic disturbance and the tendency of cholinergic neurons to 'export' choline--in the form of ACh--underlie the selective vulnerability of the neurons. Resulting changes in membrane composition could abnormally expose intramembraneous proteins such as amyloid precursor protein to proteases.

  14. Olivocochlear neuron central anatomy is normal in alpha 9 knockout mice.

    PubMed

    Brown, M Christian; Vetter, Douglas E

    2009-03-01

    Olivocochlear (OC) neurons were studied in a transgenic mouse with deletion of the alpha 9 nicotinic acetylcholine receptor subunit. In this alpha 9 knockout mouse, the peripheral effects of OC stimulation are lacking and the peripheral terminals of OC neurons under outer hair cells have abnormal morphology. To account for this mouse's apparently normal hearing, it has been proposed to have central compensation via collateral branches to the cochlear nucleus. We tested this idea by staining OC neurons for acetylcholinesterase and examining their morphology in knockout mice, wild-type mice of the same background strain, and CBA/CaJ mice. Knockout mice had normal OC systems in terms of numbers of OC neurons, dendritic patterns, and numbers of branches to the cochlear nucleus. The branch terminations were mainly to edge regions and to a lesser extent the core of the cochlear nucleus, and were similar among the strains in terms of the distribution and staining density. These data demonstrate that there are no obvious changes in the central morphology of the OC neurons in alpha 9 knockout mice and make less attractive the idea that there is central compensation for deletion of the peripheral receptor in these mice.

  15. Hypoplastic uterus and clitoris enlargement in Swyer syndrome.

    PubMed

    Hétu, Valérie; Caron, Evelyne; Francoeur, Diane

    2010-02-01

    Swyer syndrome is associated with absent testicular differentiation in a 46XY phenotypic female. A 17-year-old female presented with primary amenorrhea and 46XY karyotype. Breast and pubic hair development were Tanner 2, and clitoral enlargement was noted. Magnetic resonance imaging revealed a hypoplastic uterus and 2 "normal ovaries." Serum follicle-stimulating hormone and luteinizing hormone were elevated. Testosterone and androstenedione were in the female range. Dehydroepiandrosterone sulfate was slightly elevated. Laparoscopic bilateral gonadectomy was performed. Pathology reports showed bilateral microscopic benign hilar cell tumors. The diagnosis was a real puzzle for the clinicians because of the association of clitoral hypertrophy without hirsutism, female internal genitalia, and a 46XY karyotype. Clitoral enlargement can be explained by transient androgen secretion by the hilar cells found in the resected gonads. Copyright 2010 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  16. Bidirectional nucleolar dysfunction in C9orf72 frontotemporal lobar degeneration.

    PubMed

    Mizielinska, Sarah; Ridler, Charlotte E; Balendra, Rubika; Thoeng, Annora; Woodling, Nathan S; Grässer, Friedrich A; Plagnol, Vincent; Lashley, Tammaryn; Partridge, Linda; Isaacs, Adrian M

    2017-04-18

    An intronic GGGGCC expansion in C9orf72 is the most common known cause of both frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). The repeat expansion leads to the generation of sense and antisense repeat RNA aggregates and dipeptide repeat (DPR) proteins, generated by repeat-associated non-ATG translation. The arginine-rich DPR proteins poly(glycine-arginine or GR) and poly(proline-arginine or PR) are potently neurotoxic and can localise to the nucleolus when expressed in cells, resulting in enlarged nucleoli with disrupted functionality. Furthermore, GGGGCC repeat RNA can bind nucleolar proteins in vitro. However, the relevance of nucleolar stress is unclear, as the arginine-rich DPR proteins do not localise to the nucleolus in C9orf72-associated FTLD/ALS (C9FTLD/ALS) patient brain. We measured nucleolar size in C9FTLD frontal cortex neurons using a three-dimensional, volumetric approach. Intriguingly, we found that C9FTLD brain exhibited bidirectional nucleolar stress. C9FTLD neuronal nucleoli were significantly smaller than control neuronal nucleoli. However, within C9FTLD brains, neurons containing poly(GR) inclusions had significantly larger nucleolar volumes than neurons without poly(GR) inclusions. In addition, expression of poly(GR) in adult Drosophila neurons led to significantly enlarged nucleoli. A small but significant increase in nucleolar volume was also observed in C9FTLD frontal cortex neurons containing GGGGCC repeat-containing RNA foci. These data show that nucleolar abnormalities are a consistent feature of C9FTLD brain, but that diverse pathomechanisms are at play, involving both DPR protein and repeat RNA toxicity.

  17. Alterations in the cholinergic system of brain stem neurons in a mouse model of Rett syndrome.

    PubMed

    Oginsky, Max F; Cui, Ningren; Zhong, Weiwei; Johnson, Christopher M; Jiang, Chun

    2014-09-15

    Rett syndrome is an autism-spectrum disorder resulting from mutations to the X-linked gene, methyl-CpG binding protein 2 (MeCP2), which causes abnormalities in many systems. It is possible that the body may develop certain compensatory mechanisms to alleviate the abnormalities. The norepinephrine system originating mainly in the locus coeruleus (LC) is defective in Rett syndrome and Mecp2-null mice. LC neurons are subject to modulation by GABA, glutamate, and acetylcholine (ACh), providing an ideal system to test the compensatory hypothesis. Here we show evidence for potential compensatory modulation of LC neurons by post- and presynaptic ACh inputs. We found that the postsynaptic currents of nicotinic ACh receptors (nAChR) were smaller in amplitude and longer in decay time in the Mecp2-null mice than in the wild type. Single-cell PCR analysis showed a decrease in the expression of α3-, α4-, α7-, and β3-subunits and an increase in the α5- and α6-subunits in the mutant mice. The α5-subunit was present in many of the LC neurons with slow-decay nAChR currents. The nicotinic modulation of spontaneous GABAA-ergic inhibitory postsynaptic currents in LC neurons was enhanced in Mecp2-null mice. In contrast, the nAChR manipulation of glutamatergic input to LC neurons was unaffected in both groups of mice. Our current-clamp studies showed that the modulation of LC neurons by ACh input was reduced moderately in Mecp2-null mice, despite the major decrease in nAChR currents, suggesting possible compensatory processes may take place, thus reducing the defects to a lesser extent in LC neurons. Copyright © 2014 the American Physiological Society.

  18. Developmental abnormalities and age-related neurodegeneration in a mouse model of Down syndrome

    PubMed Central

    Holtzman, David M.; Santucci, Daniela; Kilbridge, Joshua; Chua-Couzens, Jane; Fontana, David J.; Daniels, Scott E.; Johnson, Randolph M.; Chen, Karen; Sun, Yuling; Carlson, Elaine; Alleva, Enrico; Epstein, Charles J.; Mobley, William C.

    1996-01-01

    To study the pathogenesis of central nervous system abnormalities in Down syndrome (DS), we have analyzed a new genetic model of DS, the partial trisomy 16 (Ts65Dn) mouse. Ts65Dn mice have an extra copy of the distal aspect of mouse chromosome 16, a segment homologous to human chromosome 21 that contains much of the genetic material responsible for the DS phenotype. Ts65Dn mice show developmental delay during the postnatal period as well as abnormal behaviors in both young and adult animals that may be analogous to mental retardation. Though the Ts65Dn brain is normal on gross examination, there is age-related degeneration of septohippocampal cholinergic neurons and astrocytic hypertrophy, markers of the Alzheimer disease pathology that is present in elderly DS individuals. These findings suggest that Ts65Dn mice may be used to study certain developmental and degenerative abnormalities in the DS brain. PMID:8917591

  19. Abnormal neuronal response to rectal and anal stimuli in patients treated with primary radiotherapy for anal cancer.

    PubMed

    Haas, Susanne; Faaborg, Pia; Gram, Mikkel; Lundby, Lilli; Brock, Christina; Drewes, Anbjørn M; Laurberg, Søren; Krogh, Klaus; Christensen, Peter

    2018-04-26

    Sphincter-sparing radiotherapy or chemoradiation (RT/CRT) have become the standard treatments for most patients with anal cancer. Unfortunately, long-term survivors often suffer from severe bowel symptoms indicating sensory dysfunction. The aim of the present study was to characterize the sensory pathways of the brain-gut axis after radiotherapy for anal cancer. Cortical evoked potentials (CEPs) were recorded during repeated, rapid balloon distensions of the rectum and anal canal in 13 patients with anal cancer treated with radiotherapy or chemoradiation and in 17 healthy volunteers. Latencies and amplitudes of rectal CEPs were compared between the groups. CEPs from both rectal and anal distensions were examined using single sweep spectral band analysis to determine the relative amplitude of five spectral bands as a proxy of neuronal processing. Groups were comparable by age (62.4 ± 7.8 vs 58.9 ± 8.9, p < 0.32) and gender. Patients had a mean Wexner fecal incontinence score of 5.5 (±3.8) and median LARS Score of 29 (0-39). Rectal CEP latencies were prolonged in patients (F = 11.7; p < 0.001), whereas amplitudes were similar (F = 0.003; p = 0.96). Spectral analysis of CEPs from rectal distensions showed significant differences between groups in theta (4-8 Hz), alpha (8-12 Hz), beta (12-32 Hz) and gamma (32-70 Hz) bands (all p < 0.001) and CEPs from anal distensions showed significant differences in the alpha, beta and gamma bands (all p ≤ 0.002). Patients treated with RT/CRT for anal cancer have impaired ano-rectal sensory pathways and abnormal cortical processing. This may play a central role for the pathogenesis of late proctopathy. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. M- and T-tropic HIVs Promote Apoptosis in Rat Neurons

    PubMed Central

    Bachis, Alessia; Biggio, Francesca; Major, Eugene O.; Mocchetti, Italo

    2009-01-01

    Neuronal loss, reactive astrocytes, and other abnormalities are seen in the brain of individuals with acquired immune deficiency syndrome-associated Dementia Complex (ADC). Human immunodeficiency virus-1 (HIV-1) is believed to be the main agent causing ADC. However, little is known about the molecular and cellular mechanisms of HIV-1 neurotoxicity considering that HIV-1 does not infect post-mitotic neurons and that viral load does not necessarily correlate with ADC. Various viral proteins, such as the envelope protein gp120 and the transcription activator Tat, have been shown to induce neuronal apoptosis through direct and indirect mechanisms both in vitro and in vivo. Progeny HIV-1 virions can also cause neuronal death. However, it has not been fully established yet whether HIV-1 promotes neuronal apoptosis by a direct mechanism. To explore the neurotoxic effect of HIV-1, we exposed rat cerebellar granule cells and cortical neurons in culture to two different strains of HIV-1, IIIB and BaL, T- and M-tropic strains that utilize CXCR4 and CCR5 coreceptors, respectively, to infect cells. We observed that both viruses elicit a time-dependent apoptotic cell death in these cultures without inducing a productive infection as determined by the absence of the core protein of HIV-1, p24, in cell lysates. Instead, neurons were gp 120 positive, suggesting that the envelope protein is shed by the virus and then subsequently internalized by neurons. The CXCR4 receptor antagonist AMD3100 or the CCR5 receptor inhibitor D-Ala-peptide T-amide blocked HIV IIIB and HIV Bal neurotoxicity, respectively. In contrast, the N-methyl-D-aspartate receptor blocker MK801 failed to protect neurons from HIV-mediated apoptosis, suggesting that HIV-1 neurotoxicity can be initiated by the viral protein gp 120 binding to neuronal chemokine receptors. PMID:19034668

  1. NATO Enlargement 2000 - 2015. Implications for Defense Planning

    DTIC Science & Technology

    2001-01-01

    alliance, while reaffirming its commitment to the collective defense of its members, expanded its mission to include conflict prevention and conflict ... management throughout Europe, including areas outside the boundaries of the NATO treaty area. Both NATO’s enlargement and its transformation have been

  2. Viewing-zone enlargement method for sampled hologram that uses high-order diffraction.

    PubMed

    Mishina, Tomoyuki; Okui, Makoto; Okano, Fumio

    2002-03-10

    We demonstrate a method of enlarging the viewing zone for holography that has holograms with a pixel structure. First, aliasing generated by the sampling of a hologram by pixel is described. Next the high-order diffracted beams reproduced from the hologram that contains aliasing are explained. Finally, we show that the viewing zone can be enlarged by combining these high-order reconstructed beams from the hologram with aliasing.

  3. Lysosome enlargement during inhibition of the lipid kinase PIKfyve proceeds through lysosome coalescence.

    PubMed

    Choy, Christopher H; Saffi, Golam; Gray, Matthew A; Wallace, Callen; Dayam, Roya M; Ou, Zhen-Yi A; Lenk, Guy; Puertollano, Rosa; Watkins, Simon C; Botelho, Roberto J

    2018-05-21

    Lysosomes receive and degrade cargo from endocytosis, phagocytosis and autophagy. They also play an important role in sensing and instructing cells on their metabolic state. The lipid kinase PIKfyve generates phosphatidylinositol-3,5-bisphosphate to modulate lysosome function. PIKfyve inhibition leads to impaired degradative capacity, ion dysregulation, abated autophagic flux and a massive enlargement of lysosomes. Collectively, this leads to various physiological defects, including embryonic lethality, neurodegeneration and overt inflammation. The reasons for such drastic lysosome enlargement remain unclear. Here, we examined whether biosynthesis and/or fusion-fission dynamics contribute to swelling. First, we show that PIKfyve inhibition activates TFEB, TFE3 and MITF, enhancing lysosome gene expression. However, this did not augment lysosomal protein levels during acute PIKfyve inhibition, and deletion of TFEB and/or related proteins did not impair lysosome swelling. Instead, PIKfyve inhibition led to fewer but enlarged lysosomes, suggesting that an imbalance favouring lysosome fusion over fission causes lysosome enlargement. Indeed, conditions that abated fusion curtailed lysosome swelling in PIKfyve-inhibited cells. © 2018. Published by The Company of Biologists Ltd.

  4. Abnormal mTOR Activation in Autism.

    PubMed

    Winden, Kellen D; Ebrahimi-Fakhari, Darius; Sahin, Mustafa

    2018-01-25

    The mechanistic target of rapamycin (mTOR) is an important signaling hub that integrates environmental information regarding energy availability and stimulates anabolic molecular processes and cell growth. Abnormalities in this pathway have been identified in several syndromes in which autism spectrum disorder (ASD) is highly prevalent. Several studies have investigated mTOR signaling in developmental and neuronal processes that, when dysregulated, could contribute to the development of ASD. Although many potential mechanisms still remain to be fully understood, these associations are of great interest because of the clinical availability of mTOR inhibitors. Clinical trials evaluating the efficacy of mTOR Expected final online publication date for the Annual Review of Neuroscience Volume 41 is July 8, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  5. Role of Microglia Disturbances and Immune-Related Marker Abnormalities in Cortical Circuitry Dysfunction in Schizophrenia

    PubMed Central

    Volk, David W.

    2017-01-01

    Studies of genetics, serum cytokines, and autoimmune illnesses suggest that immune-related abnormalities are involved in the disease process of schizophrenia. Furthermore, direct evidence of cortical immune activation, including markedly elevated levels of many immune-related markers, have been reported in the prefrontal cortex in multiple cohorts of schizophrenia subjects. Within the prefrontal cortex in schizophrenia, deficits in the basilar dendritic spines of layer 3 pyramidal neurons and disturbances in inhibitory inputs to pyramidal neurons have also been commonly reported. Interestingly, microglia, the resident immune-related cells of the brain, also regulate excitatory and inhibitory input to pyramidal neurons. Consequently, in this review, we describe the cytological and molecular evidence of immune activation that has been reported in the brains of individuals with schizophrenia and the potential links between these immune-related disturbances with previously reported disturbances in pyramidal and inhibitory neurons in the disorder. Finally, we discuss the role that activated microglia may play in connecting these observations and as potential therapeutic treatment targets in schizophrenia. PMID:28007586

  6. CNTN6 mutations are risk factors for abnormal auditory sensory perception in autism spectrum disorders.

    PubMed

    Mercati, O; Huguet, G; Danckaert, A; André-Leroux, G; Maruani, A; Bellinzoni, M; Rolland, T; Gouder, L; Mathieu, A; Buratti, J; Amsellem, F; Benabou, M; Van-Gils, J; Beggiato, A; Konyukh, M; Bourgeois, J-P; Gazzellone, M J; Yuen, R K C; Walker, S; Delépine, M; Boland, A; Régnault, B; Francois, M; Van Den Abbeele, T; Mosca-Boidron, A L; Faivre, L; Shimoda, Y; Watanabe, K; Bonneau, D; Rastam, M; Leboyer, M; Scherer, S W; Gillberg, C; Delorme, R; Cloëz-Tayarani, I; Bourgeron, T

    2017-04-01

    Contactin genes CNTN5 and CNTN6 code for neuronal cell adhesion molecules that promote neurite outgrowth in sensory-motor neuronal pathways. Mutations of CNTN5 and CNTN6 have previously been reported in individuals with autism spectrum disorders (ASDs), but very little is known on their prevalence and clinical impact. In this study, we identified CNTN5 and CNTN6 deleterious variants in individuals with ASD. Among the carriers, a girl with ASD and attention-deficit/hyperactivity disorder was carrying five copies of CNTN5. For CNTN6, both deletions (6/1534 ASD vs 1/8936 controls; P=0.00006) and private coding sequence variants (18/501 ASD vs 535/33480 controls; P=0.0005) were enriched in individuals with ASD. Among the rare CNTN6 variants, two deletions were transmitted by fathers diagnosed with ASD, one stop mutation CNTN6 W923X was transmitted by a mother to her two sons with ASD and one variant CNTN6 P770L was found de novo in a boy with ASD. Clinical investigations of the patients carrying CNTN5 or CNTN6 variants showed that they were hypersensitive to sounds (a condition called hyperacusis) and displayed changes in wave latency within the auditory pathway. These results reinforce the hypothesis of abnormal neuronal connectivity in the pathophysiology of ASD and shed new light on the genes that increase risk for abnormal sensory perception in ASD.

  7. Continuity of neuropil threads with tangle-bearing and tangle-free neurons in Alzheimer disease cortex. A confocal laser scanning microscopy study.

    PubMed

    Schmidt, M L; Murray, J M; Trojanowski, J Q

    1993-04-01

    Neuropil threads (NTs) are abnormal processes that are associated with tangle-bearing neurons in gray matter areas of Alzheimer disease (AD) brains. Although NTs contain paired helical filaments (PHFs) and share multiple tau epitopes with neurobrillary tangles (NFTs), the relationship between NTs and tangle-bearing neurons is unclear. For this reason, we assessed the continuity of NTs with tangle-bearing and tangle-free neurons. Since astrocytes express low levels of tau and rarely have been shown to contain PHFs, we also examined the relationship of NTs to cortical astrocytes. This was done using histochemical and immunochemical methods in conjunction with confocal laser scanning microscopy to examine NTs in amygdala and entorhinal cortex of seven AD brains. Only a small fraction of NTs (< 1%) in 3.5 x 10(6) microns 3 of amygdala and entorhinal cortex could be traced to local neurons with NFTs or to neurons that did not contain NFTs, and no NTs were continuous with cortical astrocytes. These results indicate that only a very small percentage of NTs in entorhinal cortex and amygdala occur in the most proximal segments of processes that emanate from tangle-bearing or tangle-free neurons. This implies that the majority of NTs reside in the distal parts of dendrites and/or the terminal arborizations of axons or that NTs are discontinuous abnormalities. Taken together, these data suggest that NTs could disrupt local and long distance neuronal circuitry and thereby contribute to the cognitive impairments seen in AD patients.

  8. MND2: A new mouse model of inherited motor neuron disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, J.M.; Albin, R.L.; Feldman, E.L.

    1993-06-01

    The autosomal recessive mutation mnd2 results in early onset motor neuron disease with rapidly progressive paralysis, severe muscle wasting, regression of thymus and spleen, and death before 40 days of age. mnd2 has been mapped to mouse chromosome 6 with the gene order: centromere-Tcrb-Ly-2-Sftp-3-D6Mit4-mnd2-D6Mit6, D6Mit9-D6Rck132-Raf-1, D6Mit11-D6Mit12-D6Mit14. mnd2 is located within a conserved linkage group with homologs on human chromosome 2p12-p13. Spinal motor neurons of homozygous affected animals are swollen and stain weakly, and electromyography revealed spontaneous activity characteristic of muscle denervation. Myelin staining was normal throughout the neuraxis. The clinical observations are consistent with a primary abnormality of lower motormore » neuron function. This new animal model will be of value for identification of a genetic defect responsible for motor neuron disease and for evaluation of new therapies. 36 refs., 7 figs., 2 tabs.« less

  9. Using Human iPSC-Derived Neurons to Model TAU Aggregation

    PubMed Central

    Verheyen, An; Diels, Annick; Dijkmans, Joyce; Oyelami, Tutu; Meneghello, Giulia; Mertens, Liesbeth; Versweyveld, Sofie; Borgers, Marianne; Buist, Arjan; Peeters, Pieter; Cik, Miroslav

    2015-01-01

    Alzheimer’s disease and frontotemporal dementia are amongst the most common forms of dementia characterized by the formation and deposition of abnormal TAU in the brain. In order to develop a translational human TAU aggregation model suitable for screening, we transduced TAU harboring the pro-aggregating P301L mutation into control hiPSC-derived neural progenitor cells followed by differentiation into cortical neurons. TAU aggregation and phosphorylation was quantified using AlphaLISA technology. Although no spontaneous aggregation was observed upon expressing TAU-P301L in neurons, seeding with preformed aggregates consisting of the TAU-microtubule binding repeat domain triggered robust TAU aggregation and hyperphosphorylation already after 2 weeks, without affecting general cell health. To validate our model, activity of two autophagy inducers was tested. Both rapamycin and trehalose significantly reduced TAU aggregation levels suggesting that iPSC-derived neurons allow for the generation of a biologically relevant human Tauopathy model, highly suitable to screen for compounds that modulate TAU aggregation. PMID:26720731

  10. Reduced anterior insula, enlarged amygdala in alcoholism and associated depleted von Economo neurons.

    PubMed

    Senatorov, Vladimir V; Damadzic, Ruslan; Mann, Claire L; Schwandt, Melanie L; George, David T; Hommer, Daniel W; Heilig, Markus; Momenan, Reza

    2015-01-01

    The insula, a structure involved in higher order representation of interoceptive states, has recently been implicated in drug craving and social stress. Here, we performed brain magnetic resonance imaging to measure volumes of the insula and amygdala, a structure with reciprocal insular connections, in 26 alcohol-dependent patients and 24 healthy volunteers (aged 22-56 years, nine females in each group). We used an established morphometry method to quantify total and regional insular volumes. Volumetric measurements of the amygdala were obtained using a model-based segmentation/registration tool. In alcohol-dependent patients, anterior insula volumes were bilaterally reduced compared to healthy volunteers (left by 10%, right by 11%, normalized to total brain volumes). Furthermore, alcohol-dependent patients, compared with healthy volunteers, had bilaterally increased amygdala volumes. The left amygdala was increased by 28% and the right by 29%, normalized to total brain volumes. Post-mortem studies of the anterior insula showed that the reduced anterior insular volume may be associated with a population of von Economo neurons, which were 60% diminished in subjects with a history of alcoholism (n = 6) as compared to subjects without a history of alcoholism (n = 6) (aged 32-56 years, all males). The pattern of neuroanatomical change observed in our alcohol-dependent patients might result in a loss of top-down control of amygdala function, potentially contributing to impaired social cognition as well as an inability to control negatively reinforced alcohol seeking and use. Published by Oxford University Press on behalf of the Guarantors of Brain 2014. This work is written by US Government employees and is in the public domain in the US.

  11. Harmonious functional and aesthetic correction of severe localised pregnancy-induced gingival enlargement associated with capillary haemangioma

    PubMed Central

    Kaushal, Shalini; Kumar, Avadhesh; Azmatullah, Mohammed; Gupta, Sanjay; Singh, Rajeev Kumar

    2013-01-01

    Gingival enlargement is a clinical condition that has been widely studied and is directly associated with specific local or systemic conditions. Pregnancy has been presented to increase susceptibility to gingival inflammation. Sex hormones are believed to be a risk factor for periodontitis because of their ability to proliferate specific periodontal microorganisms and affect host immunological response, but it is unclear whether pregnancy gingivitis exposes or proceeds to periodontitis. In this case report, the patient reported with severe localised enlarged gingival mass which initiated when she was pregnant. After parturition, gingival enlargement was persisting and causing functional and aesthetic problem. Enlargement did not resolve even after non-surgical therapy; therefore, surgical excision of the entire enlarged gingival mass was preformed. Histopathological examination revealed capillary haemangioma. No evidence of malignancy was seen. No recurrence was seen even after 2 years of follow-up. PMID:23774710

  12. Muscle Mitochondrial Uncoupling Dismantles Neuromuscular Junction and Triggers Distal Degeneration of Motor Neurons

    PubMed Central

    Dupuis, Luc; Gonzalez de Aguilar, Jose-Luis; Echaniz-Laguna, Andoni; Eschbach, Judith; Rene, Frédérique; Oudart, Hugues; Halter, Benoit; Huze, Caroline; Schaeffer, Laurent; Bouillaud, Frédéric; Loeffler, Jean-Philippe

    2009-01-01

    Background Amyotrophic lateral sclerosis (ALS), the most frequent adult onset motor neuron disease, is associated with hypermetabolism linked to defects in muscle mitochondrial energy metabolism such as ATP depletion and increased oxygen consumption. It remains unknown whether muscle abnormalities in energy metabolism are causally involved in the destruction of neuromuscular junction (NMJ) and subsequent motor neuron degeneration during ALS. Methodology/Principal Findings We studied transgenic mice with muscular overexpression of uncoupling protein 1 (UCP1), a potent mitochondrial uncoupler, as a model of muscle restricted hypermetabolism. These animals displayed age-dependent deterioration of the NMJ that correlated with progressive signs of denervation and a mild late-onset motor neuron pathology. NMJ regeneration and functional recovery were profoundly delayed following injury of the sciatic nerve and muscle mitochondrial uncoupling exacerbated the pathology of an ALS animal model. Conclusions/Significance These findings provide the proof of principle that a muscle restricted mitochondrial defect is sufficient to generate motor neuron degeneration and suggest that therapeutic strategies targeted at muscle metabolism might prove useful for motor neuron diseases. PMID:19404401

  13. Varenicline and abnormal sleep related events.

    PubMed

    Savage, Ruth L; Zekarias, Alem; Caduff-Janosa, Pia

    2015-05-01

    To assess adverse drug reaction reports of "abnormal sleep related events" associated with varenicline, a partial agonist to the α4β2 subtype of nicotinic acetylcholine receptors on neurones, indicated for smoking cessation. Twenty-seven reports of "abnormal sleep related events" often associated with abnormal dreams, nightmares, or somnambulism, which are known to be associated with varenicline use, were identified in the World Health Organisation (WHO) Global Individual Case Safety Reports Database. Original anonymous reports were obtained from the four national pharmacovigilance centers that submitted these reports and assessed for reaction description and causality. These 27 reports include 10 of aggressive activity occurring during sleep and seven of other sleep related harmful or potentially harmful activities, such as apparently deliberate self-harm, moving a child or a car, or lighting a stove or a cigarette. Assessment of these 17 reports of aggression or other actual or potential harm showed that nine patients recovered or were recovering on varenicline withdrawal and there were no consistent alternative explanations. Thirteen patients experienced single events, and two had multiple events. Frequency was not stated for the remaining two patients. The descriptions of the reports of aggression during sleep with violent dreaming are similar to those of rapid eye movement sleep behavior disorder and also nonrapid eye movement (NREM) sleep parasomnias in some adults. Patients who experience somnambulism or dreams of a violent nature while taking varenicline should be advised to consult their health providers. Consideration should be given to clarifying the term sleep disorders in varenicline product information and including sleep related harmful and potentially harmful events. © 2015 Associated Professional Sleep Societies, LLC.

  14. Neurochemical abnormalities in premanifest and early spinocerebellar ataxias.

    PubMed

    Joers, James M; Deelchand, Dinesh K; Lyu, Tianmeng; Emir, Uzay E; Hutter, Diane; Gomez, Christopher M; Bushara, Khalaf O; Eberly, Lynn E; Öz, Gülin

    2018-04-01

    To investigate whether early neurochemical abnormalities are detectable by high-field magnetic resonance spectroscopy (MRS) in individuals with spinocerebellar ataxias (SCAs) 1, 2, 3, and 6, including patients without manifestation of ataxia. A cohort of 100 subjects (N = 18-21 in each SCA group, including premanifest mutation carriers; mean score on the Scale for the Assessment and Rating of Ataxia [SARA] <10 for all genotypes, and 22 matched controls) was scanned at 7 Tesla to obtain neurochemical profiles of the cerebellum and brainstem. A novel multivariate approach (distance-weighted discrimination) was used to combine regional profiles into an "MRS score." MRS scores robustly distinguished individuals with SCA from controls, with misclassification rates of 0% (SCA2), 2% (SCA3), 5% (SCA1), and 17% (SCA6). Premanifest mutation carriers with estimated disease onset within 10 years had MRS scores in the range of early-manifest SCA subjects. Levels of neuronal and glial markers significantly correlated with SARA and an Activities of Daily Living score in subjects with SCA. Regional neurochemical alterations were different between SCAs at comparable disease severity, with SCA2 displaying the most extensive neurochemical abnormalities, followed by SCA1, SCA3, and SCA6. Neurochemical abnormalities are detectable in individuals before manifest disease, which may allow premanifest enrollment in future SCA trials. Correlations with ataxia and quality-of-life scores show that neurochemical levels can serve as clinically meaningful endpoints in trials. Ranking of SCA types by degree of neurochemical abnormalities indicates that the neurochemistry may reflect synaptic function or density. Ann Neurol 2018;83:816-829. © 2018 American Neurological Association.

  15. Mitochondrial Dynamics Mediated by Mitofusin 1 Is Required for POMC Neuron Glucose-Sensing and Insulin Release Control.

    PubMed

    Ramírez, Sara; Gómez-Valadés, Alicia G; Schneeberger, Marc; Varela, Luis; Haddad-Tóvolli, Roberta; Altirriba, Jordi; Noguera, Eduard; Drougard, Anne; Flores-Martínez, Álvaro; Imbernón, Mónica; Chivite, Iñigo; Pozo, Macarena; Vidal-Itriago, Andrés; Garcia, Ainhoa; Cervantes, Sara; Gasa, Rosa; Nogueiras, Ruben; Gama-Pérez, Pau; Garcia-Roves, Pablo M; Cano, David A; Knauf, Claude; Servitja, Joan-Marc; Horvath, Tamas L; Gomis, Ramon; Zorzano, Antonio; Claret, Marc

    2017-06-06

    Proopiomelanocortin (POMC) neurons are critical sensors of nutrient availability implicated in energy balance and glucose metabolism control. However, the precise mechanisms underlying nutrient sensing in POMC neurons remain incompletely understood. We show that mitochondrial dynamics mediated by Mitofusin 1 (MFN1) in POMC neurons couple nutrient sensing with systemic glucose metabolism. Mice lacking MFN1 in POMC neurons exhibited defective mitochondrial architecture remodeling and attenuated hypothalamic gene expression programs during the fast-to-fed transition. This loss of mitochondrial flexibility in POMC neurons bidirectionally altered glucose sensing, causing abnormal glucose homeostasis due to defective insulin secretion by pancreatic β cells. Fed mice lacking MFN1 in POMC neurons displayed enhanced hypothalamic mitochondrial oxygen flux and reactive oxygen species generation. Central delivery of antioxidants was able to normalize the phenotype. Collectively, our data posit MFN1-mediated mitochondrial dynamics in POMC neurons as an intrinsic nutrient-sensing mechanism and unveil an unrecognized link between this subset of neurons and insulin release. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Ablation of Neurons Expressing Melanin-Concentrating Hormone (MCH) in Adult Mice Improves Glucose Tolerance Independent of MCH Signaling

    PubMed Central

    Whiddon, Benjamin B.; Palmiter, Richard D.

    2013-01-01

    Melanin-concentrating hormone (MCH)-expressing neurons have been ascribed many roles based on tudies of MCH-deficient mice. However, MCH neurons express other neurotransmitters, including GABA, nesfatin, and cocaine–amphetamine-regulated transcript. The importance of these other signaling molecules made by MCH neurons remains incompletely characterized. To determine the roles of MCH neurons in vivo, we targeted expression of the human diphtheria toxin receptor (DTR) to the gene for MCH (Pmch). Within 2 weeks of diphtheria toxin injection, heterozygous PmchDTR/+ mice lost 98% of their MCH neurons. These mice became lean but ate normally and were hyperactive, especially during a fast. They also responded abnormally to psychostimulants. For these phenotypes, ablation of MCH neurons recapitulated knock-out of MCH, so MCH appears to be the critical neuromodulator released by these neurons. In contrast, MCH-neuron-ablated mice showed improved glucose tolerance when compared with MCH-deficient mutant mice and wild-type mice. We conclude that MCH neurons regulate glucose tolerance through signaling molecules other than MCH. PMID:23365238

  17. Temporal bone changes in patients with Goldenhar syndrome with special emphasis on inner ear abnormalities.

    PubMed

    Hennersdorf, Florian; Friese, Natascha; Löwenheim, Hubert; Tropitzsch, Anke; Ernemann, Ulrike; Bisdas, Sotirios

    2014-06-01

    Goldenhar syndrome is a developmental disorder presenting with orofacial and vertebral anomalies, which are also accompanied by abnormalities in other organs. We examined temporal bone changes with special emphasis on inner ear abnormalities in these patients. A retrospective review of 7 new cases in addition to a previously published series of 14 cases with clinically diagnosed Goldenhar syndrome was carried out to search for inner ear anomalies. In addition, temporal bone imaging studies from the literature were summarized and compared with our results. Departments of Neuroradiology and Otorhinolaryngology at a university hospital. In addition to the previous series of 14 patients, 7 new patients with Goldenhar syndrome were identified. Patients underwent otologic examination, audiometric studies, and high-resolution computed tomography (CT) or magnetic resonance imaging (MRI) of the temporal bone. Temporal bone changes and specifically inner ear malformations. Nineteen of 21 patients showed changes of the external and middle ear correlating with the literature. Seven of 21 patients showed inner ear abnormalities constituting one-third of all patients. These ranged from mild such as vestibular enlargement to severe defects such as cochlear hypoplasia and common cavity. Inner ear abnormalities were present in one-third of patients. Although in some cases, these might not be of clinical significance, some patients show severe defects of the inner ear requiring more complex hearing loss therapy. Therefore, imaging of the temporal bone structures is important in the care of these patients.

  18. Monosodium glutamate-sensitive hypothalamic neurons contribute to the control of bone mass

    NASA Technical Reports Server (NTRS)

    Elefteriou, Florent; Takeda, Shu; Liu, Xiuyun; Armstrong, Dawna; Karsenty, Gerard

    2003-01-01

    Using chemical lesioning we previously identified hypothalamic neurons that are required for leptin antiosteogenic function. In the course of these studies we observed that destruction of neurons sensitive to monosodium glutamate (MSG) in arcuate nuclei did not affect bone mass. However MSG treatment leads to hypogonadism, a condition inducing bone loss. Therefore the normal bone mass of MSG-treated mice suggested that MSG-sensitive neurons may be implicated in the control of bone mass. To test this hypothesis we assessed bone resorption and bone formation parameters in MSG-treated mice. We show here that MSG-treated mice display the expected increase in bone resorption and that their normal bone mass is due to a concomitant increase in bone formation. Correction of MSG-induced hypogonadism by physiological doses of estradiol corrected the abnormal bone resorptive activity in MSG-treated mice and uncovered their high bone mass phenotype. Because neuropeptide Y (NPY) is highly expressed in MSG-sensitive neurons we tested whether NPY regulates bone formation. Surprisingly, NPY-deficient mice had a normal bone mass. This study reveals that distinct populations of hypothalamic neurons are involved in the control of bone mass and demonstrates that MSG-sensitive neurons control bone formation in a leptin-independent manner. It also indicates that NPY deficiency does not affect bone mass.

  19. Post-movement beta rebound abnormality as indicator of mirror neuron system dysfunction in autistic spectrum disorder: an MEG study.

    PubMed

    Honaga, Eiko; Ishii, Ryouhei; Kurimoto, Ryu; Canuet, Leonides; Ikezawa, Koji; Takahashi, Hidetoshi; Nakahachi, Takayuki; Iwase, Masao; Mizuta, Ichiro; Yoshimine, Toshiki; Takeda, Masatoshi

    2010-07-12

    The mu rhythm is regarded as a physiological indicator of the human mirror neuron system (MNS). The dysfunctional MNS hypothesis in patients with autistic spectrum disorder (ASD) has often been tested using EEG and MEG, targeting mu rhythm suppression during action observation/execution, although with controversial results. We explored neural activity related to the MNS in patients with ASD, focusing on power increase in the beta frequency band after observation and execution of movements, known as post-movement beta rebound (PMBR). Multiple source beamformer (MSBF) and BrainVoyager QX were used for MEG source imaging and statistical group analysis, respectively. Seven patients with ASD and ten normal subjects participated in this study. During the MEG recordings, the subjects were asked to observe and later execute object-related hand actions performed by an experimenter. We found that both groups exhibited pronounced PMBR exceeding 20% when observing and executing actions with a similar topographic distribution of maximal activity. However, significantly reduced PMBR was found only during the observation condition in the patients relative to controls in cortical regions within the MNS, namely the sensorimotor area, premotor cortex and superior temporal gyrus. Reduced PMBR during the observation condition was also found in the medial prefrontal cortex. These results support the notion of a dysfunctional execution/observation matching system related to MNS impairment in patients with ASD, and the feasibility of using MEG to detect neural activity, in particular PMBR abnormalities, as an index of MNS dysfunction during performance of motor or cognitive tasks. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Prolactin deficiency, obesity, and enlarged testes--a new syndrome?

    PubMed Central

    Roitman, A; Assa, S; Kauli, R; Laron, Z

    1980-01-01

    A 4-year-old boy is described who was obese and slightly mentally retarded. His testes were enlarged. The only endocrine disorder present was a failure to increase plasma prolactin after stimulation. Images Figure PMID:7436524

  1. Excision of an enlarging vaginal epidermal inclusion cyst during pregnancy: a case report.

    PubMed

    Pereira, Nigel; Guilfoil, Daniel S

    2012-07-01

    The study aimed to report the case of a patient with an enlarging and symptomatic epidermal inclusion cyst during pregnancy that required surgical excision. This study was a case report of a 28-year-old woman (gravida 8, para 5, aborta 2) at a gestational age of 18 weeks 5 days who reported a tender vaginal mass that had grown larger for more than a week. An enlarging symptomatic cystic mass was surgically excised. Histopathologic findings of the excised mass were consistent with an epidermal inclusion cyst with surrounding moderate chronic inflammation and cyst rupture. The patient's symptoms resolved completely by her postoperative visit. Although most epithelial inclusion cysts are asymptomatic and can be managed expectantly, cysts that enlarge or become symptomatic should be excised surgically.

  2. Targeting neuronal dysfunction in schizophrenia with nicotine: Evidence from neurophysiology to neuroimaging

    PubMed Central

    Smucny, Jason; Tregellas, Jason R

    2018-01-01

    Patients with schizophrenia self-administer nicotine at rates higher than is self-administered for any other psychiatric illness. Although the reasons are unclear, one hypothesis suggests that nicotine is a form of ‘self-medication’ in order to restore normal levels of nicotinic signaling and target abnormalities in neuronal function associated with cognitive processes. This brief review discusses evidence from neurophysiological and neuroimaging studies in schizophrenia patients that nicotinic agonists may effectively target dysfunctional neuronal circuits in the illness. Evidence suggests that nicotine significantly modulates a number of these circuits, although relatively few studies have used modern neuroimaging techniques (e.g. functional magnetic resonance imaging (fMRI)) to examine the effects of nicotinic drugs on disease-related neurobiology. The neuronal effects of nicotine and other nicotinic agonists in schizophrenia remain a priority for psychiatry research. PMID:28441884

  3. Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy.

    PubMed

    Vilchez, David; Ros, Susana; Cifuentes, Daniel; Pujadas, Lluís; Vallès, Jordi; García-Fojeda, Belén; Criado-García, Olga; Fernández-Sánchez, Elena; Medraño-Fernández, Iria; Domínguez, Jorge; García-Rocha, Mar; Soriano, Eduardo; Rodríguez de Córdoba, Santiago; Guinovart, Joan J

    2007-11-01

    Glycogen synthesis is normally absent in neurons. However, inclusion bodies resembling abnormal glycogen accumulate in several neurological diseases, particularly in progressive myoclonus epilepsy or Lafora disease. We show here that mouse neurons have the enzymatic machinery for synthesizing glycogen, but that it is suppressed by retention of muscle glycogen synthase (MGS) in the phosphorylated, inactive state. This suppression was further ensured by a complex of laforin and malin, which are the two proteins whose mutations cause Lafora disease. The laforin-malin complex caused proteasome-dependent degradation both of the adaptor protein targeting to glycogen, PTG, which brings protein phosphatase 1 to MGS for activation, and of MGS itself. Enforced expression of PTG led to glycogen deposition in neurons and caused apoptosis. Therefore, the malin-laforin complex ensures a blockade of neuronal glycogen synthesis even under intense glycogenic conditions. Here we explain the formation of polyglucosan inclusions in Lafora disease by demonstrating a crucial role for laforin and malin in glycogen synthesis.

  4. Different requirements of functional telomeres in neural stem cells and terminally differentiated neurons.

    PubMed

    Lobanova, Anastasia; She, Robert; Pieraut, Simon; Clapp, Charlie; Maximov, Anton; Denchi, Eros Lazzerini

    2017-04-01

    Telomeres have been studied extensively in peripheral tissues, but their relevance in the nervous system remains poorly understood. Here, we examine the roles of telomeres at distinct stages of murine brain development by using lineage-specific genetic ablation of TRF2, an essential component of the shelterin complex that protects chromosome ends from the DNA damage response machinery. We found that functional telomeres are required for embryonic and adult neurogenesis, but their uncapping has surprisingly no detectable consequences on terminally differentiated neurons. Conditional knockout of TRF2 in post-mitotic immature neurons had virtually no detectable effect on circuit assembly, neuronal gene expression, and the behavior of adult animals despite triggering massive end-to-end chromosome fusions across the brain. These results suggest that telomeres are dispensable in terminally differentiated neurons and provide mechanistic insight into cognitive abnormalities associated with aberrant telomere length in humans. © 2017 Lobanova et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Anorexia and impaired glucose metabolism in mice with hypothalamic ablation of Glut4 neurons.

    PubMed

    Ren, Hongxia; Lu, Taylor Y; McGraw, Timothy E; Accili, Domenico

    2015-02-01

    The central nervous system (CNS) uses glucose independent of insulin. Nonetheless, insulin receptors and insulin-responsive glucose transporters (Glut4) often colocalize in neurons (Glut4 neurons) in anatomically and functionally distinct areas of the CNS. The apparent heterogeneity of Glut4 neurons has thus far thwarted attempts to understand their function. To answer this question, we used Cre-dependent, diphtheria toxin-mediated cell ablation to selectively remove basal hypothalamic Glut4 neurons and investigate the resulting phenotypes. After Glut4 neuron ablation, mice demonstrate altered hormone and nutrient signaling in the CNS. Accordingly, they exhibit negative energy balance phenotype characterized by reduced food intake and increased energy expenditure, without locomotor deficits or gross neuronal abnormalities. Glut4 neuron ablation affects orexigenic melanin-concentrating hormone neurons but has limited effect on neuropeptide Y/agouti-related protein and proopiomelanocortin neurons. The food intake phenotype can be partially normalized by GABA administration, suggesting that it arises from defective GABAergic transmission. Glut4 neuron-ablated mice show peripheral metabolic defects, including fasting hyperglycemia and glucose intolerance, decreased insulin levels, and elevated hepatic gluconeogenic genes. We conclude that Glut4 neurons integrate hormonal and nutritional cues and mediate CNS actions of insulin on energy balance and peripheral metabolism. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  6. Enlargement of basilar artery aneurysms following balloon occlusion--"water-hammer effect". Report of two cases.

    PubMed

    Kwan, E S; Heilman, C B; Shucart, W A; Klucznik, R P

    1991-12-01

    Two patients with distal basilar aneurysms were treated with intra-aneurysmal balloon occlusion. After apparently successful therapy, follow-up angiograms demonstrated aneurysm enlargement with balloon migration distally in the sac. Geometric mismatch between the base of the balloons and the aneurysm neck together with transmitted pulsation through the 2-hydroxyl-ethylmethacrylate (HEMA)-filled balloon directly contributed to aneurysm enlargement. In this report, the authors discuss the problems of progressive aneurysm enlargement due to a "water-hammer effect" and the possibility of hemorrhage following subtotal occlusion.

  7. Gingival enlargement in a pregnant woman with acute monocytic leukaemia: a case report.

    PubMed

    Fu, Y-W; Xu, H-Z

    2017-09-01

    The objective of the present study was to report the case of a pregnant woman with severe gingival enlargement for 3 months with undiagnosed acute leukaemia. The pregnant woman presented with anaemia and generalized gingival enlargement. A provisional diagnosis of gingival enlargement in pregnancy was made. Twelve days after the initial treatment, the patient was referred and admitted to the haematology department of a local hospital with clinical signs of anaemia and thrombocytopenia. Blood count showed a white blood cell count of 9.68 × 10 9 /L, with a haemoglobin count of 64.0 g/L and a platelet count of 17 × 10 9 /L. Bone marrow aspiration showed 94.5% monoblasts, and the morphological diagnosis was acute monocytic leukaemia. One day after admission, the patient delivered a male infant by Caesarean section. Ten days after the Caesarean section, the patient was started on a course of chemotherapy. Pulmonary infection, hypokalaemia, and respiratory failure developed, and the patient died 23 days after the Caesarean section. The present case shows the importance of awareness of severe gingival enlargement as an initial oral sign of acute leukaemia. © 2017 Australian Dental Association.

  8. Bacterial Cell Enlargement Requires Control of Cell Wall Stiffness Mediated by Peptidoglycan Hydrolases

    PubMed Central

    Wheeler, Richard; Turner, Robert D.; Bailey, Richard G.; Salamaga, Bartłomiej; Mesnage, Stéphane; Mohamad, Sharifah A. S.; Hayhurst, Emma J.; Horsburgh, Malcolm; Hobbs, Jamie K.

    2015-01-01

    ABSTRACT Most bacterial cells are enclosed in a single macromolecule of the cell wall polymer, peptidoglycan, which is required for shape determination and maintenance of viability, while peptidoglycan biosynthesis is an important antibiotic target. It is hypothesized that cellular enlargement requires regional expansion of the cell wall through coordinated insertion and hydrolysis of peptidoglycan. Here, a group of (apparent glucosaminidase) peptidoglycan hydrolases are identified that are together required for cell enlargement and correct cellular morphology of Staphylococcus aureus, demonstrating the overall importance of this enzyme activity. These are Atl, SagA, ScaH, and SagB. The major advance here is the explanation of the observed morphological defects in terms of the mechanical and biochemical properties of peptidoglycan. It was shown that cells lacking groups of these hydrolases have increased surface stiffness and, in the absence of SagB, substantially increased glycan chain length. This indicates that, beyond their established roles (for example in cell separation), some hydrolases enable cellular enlargement by making peptidoglycan easier to stretch, providing the first direct evidence demonstrating that cellular enlargement occurs via modulation of the mechanical properties of peptidoglycan. PMID:26220963

  9. Enlargement and sculpturing of a small and deformed glans.

    PubMed

    Perovic, Savra; Radojicic, Zoran I; Djordjevic, Miroslav Lj; Vukadinovic, Vojkan V

    2003-10-01

    We present 2 techniques of enhancement and sculpturing of a small and/or deformed glans. The small glans in primary or re-do hypospadias repair was enhanced by longitudinal double-faced island flaps incorporated onto the ventral side of the glans between the glans wings. The deformed glans, of small or normal size (with normal urethra or well functioning neourethra), was enlarged and sculptured by injection of hydrogel. Between May 1997 and March 2002, 27 patients underwent glans enhancement and sculpturing. Small deformed glans occurred after failed hypospadias repair in 10 patients, penile trauma in 3, hemangioma sclerozation in 2, primary hypospadias in 8 and normally developed penile body in 4. A double-faced island flap was performed in 14 patients, glans was enhanced by hydrogel injection in 9 and both procedures were performed in 4. Mean followup was 34 months for the double-faced flap technique 17 months for hydrogel injection. Satisfactory enlargement and esthetic appearance were achieved in 13 of the 14 patients who underwent the double-faced flap technique and 1 required surgical correction. Of the 9 patients who underwent either single or multistage hydrogel injection 8 had good results and 1 required partial removal of hydrogel after hypercorrection. The combination of these 2 techniques provided satisfactory results in all 4 cases. Enlargement and sculpturing of a small deformed glans are challenging and difficult. A double-faced island flap and/or injection of hydrogel resolves this problem satisfactorily.

  10. Amygdala enlargement and emotional responses in (autoimmune) temporal lobe epilepsy.

    PubMed

    Holtmann, Olga; Schlossmacher, Insa; Moenig, Constanze; Johnen, Andreas; Rutter, Lisa-Marie; Tenberge, Jan-Gerd; Schiffler, Patrick; Everding, Judith; Golombeck, Kristin S; Strippel, Christine; Dik, Andre; Schwindt, Wolfram; Wiendl, Heinz; Meuth, Sven G; Bruchmann, Maximilian; Melzer, Nico; Straube, Thomas

    2018-06-22

    Temporal lobe epilepsy with amygdala enlargement (TLE-AE) is increasingly recognized as a distinct adult electroclinical syndrome. However, functional consequences of morphological alterations of the amygdala in TLE-AE are poorly understood. Here, two emotional stimulation designs were employed to investigate subjective emotional rating and skin conductance responses in a sample of treatment-naïve patients with suspected or confirmed autoimmune TLE-AE (n = 12) in comparison to a healthy control group (n = 16). A subgroup of patients completed follow-up measurements after treatment. As compared to healthy controls, patients with suspected or confirmed autoimmune TLE-AE showed markedly attenuated skin conductance responses and arousal ratings, especially pronounced for anxiety-inducing stimuli. The degree of right amygdala enlargement was significantly correlated with the degree of autonomic arousal attenuation. Furthermore, a decline of amygdala enlargement following prompt aggressive immunotherapy in one patient suffering from severe confirmed autoimmune TLE-AE with a very recent clinical onset was accompanied by a significant improvement of autonomic responses. Findings suggest dual impairments of autonomic and cognitive discrimination of stimulus arousal as hallmarks of emotional processing in TLE-AE. Emotional responses might, at least partially, recover after successful treatment, as implied by first single case data.

  11. Effect analysis of intradermal hyaluronic acid injection to treat enlarged facial pores.

    PubMed

    Qian, Wei; Zhang, Yan-Kun; Hou, Ying; Lyu, Wei; Cao, Qian; Li, Yan-Qi; Fan, Ju-Feng

    2017-08-08

    To investigate the clinical application and efficacy of intradermal injection of low molecular weight hyaluronic acid (LMW-HA) for treating enlarged facial pores. From January 2015 to May 2016, 42 subjects who sought aesthetic treatment underwent intradermal injection of LMW-HA to improve enlarged facial pores. For each treatment, 2.5 mL (25 mg) of LMW-HA was injected into the skin of the full face. The treatment was repeated 2-5 times with an interval of 1 to 1.5 months between consecutive treatments. The postoperative follow-up period was 1 to 6 months. Statistical analysis was used to compare the degree of enlargement of facial pores before and after injection. The clinical efficacy and adverse effects were recorded. The enlarged facial pores before and after treatment were categorized and subjected to the Wilcoxon matched-pairs signed-rank test. The difference was statistically significant (P<.01). The improvement rate was 40.03±18.41%. No infection, nodules, or pigmentation was reported at the injection sites in the subjects who sought aesthetic treatment. The overall satisfaction rate was 92.8%. Intradermal injection of LMW-HA can significantly improve skin texture, reduce pore size, and enhance skin radiance. The injection technique was simple, safe, and effective and could easily be extended to clinical practice. © 2017 Wiley Periodicals, Inc.

  12. Restoring neuronal progranulin reverses deficits in a mouse model of frontotemporal dementia

    PubMed Central

    Arrant, Andrew E.; Filiano, Anthony J.; Unger, Daniel E.; Young, Allen H.

    2017-01-01

    Loss-of-function mutations in progranulin (GRN), a secreted glycoprotein expressed by neurons and microglia, are a common autosomal dominant cause of frontotemporal dementia, a neurodegenerative disease commonly characterized by disrupted social and emotional behaviour. GRN mutations are thought to cause frontotemporal dementia through progranulin haploinsufficiency, therefore, boosting progranulin expression from the intact allele is a rational treatment strategy. However, this approach has not been tested in an animal model of frontotemporal dementia and it is unclear if boosting progranulin could correct pre-existing deficits. Here, we show that adeno-associated virus-driven expression of progranulin in the medial prefrontal cortex reverses social dominance deficits in Grn+/– mice, an animal model of frontotemporal dementia due to GRN mutations. Adeno-associated virus-progranulin also corrected lysosomal abnormalities in Grn+/– mice. The adeno-associated virus-progranulin vector only transduced neurons, suggesting that restoring neuronal progranulin is sufficient to correct deficits in Grn+/– mice. To further test the role of neuronal progranulin in the development of frontotemporal dementia-related deficits, we generated two neuronal progranulin-deficient mouse lines using CaMKII-Cre and Nestin-Cre. Measuring progranulin levels in these lines indicated that most brain progranulin is derived from neurons. Both neuronal progranulin-deficient lines developed social dominance deficits similar to those in global Grn+/– mice, showing that neuronal progranulin deficiency is sufficient to disrupt social behaviour. These data support the concept of progranulin-boosting therapies for frontotemporal dementia and highlight an important role for neuron-derived progranulin in maintaining normal social function. PMID:28379303

  13. Ketamine induces toxicity in human neurons differentiated from embryonic stem cells via mitochondrial apoptosis pathway

    PubMed Central

    Bosnjak, Zeljko J.; Yan, Yasheng; Canfield, Scott; Muravyeva, Maria Y.; Kikuchi, Chika; Wells, Clive; Corbett, John; Bai, Xiaowen

    2013-01-01

    Ketamine is widely used for anesthesia in pediatric patients. Growing evidence indicates that ketamine causes neurotoxicity in a variety of developing animal models. Our understanding of anesthesia neurotoxicity in humans is currently limited by difficulties in obtaining neurons and performing developmental toxicity studies in fetal and pediatric populations. It may be possible to overcome these challenges by obtaining neurons from human embryonic stem cells (hESCs) in vitro. hESCs are able to replicate indefinitely and differentiate into every cell type. In this study, we investigated the toxic effect of ketamine on neurons differentiated from hESCs. Two-week-old neurons were treated with different doses and durations of ketamine with or without the reactive oxygen species (ROS) scavenger, Trolox. Cell viability, ultrastructure, mitochondrial membrane potential (ΔΨm), cytochrome c distribution within cells, apoptosis, and ROS production were evaluated. Here we show that ketamine induced ultrastructural abnormalities and dose- and time-dependently caused cell death. In addition, ketamine decreased ΔΨm and increased cytochrome c release from mitochondria. Ketamine also increased ROS production and induced differential expression of oxidative stress-related genes. Specifically, abnormal ultrastructural and ΔΨm changes occurred earlier than cell death in the ketamine-induced toxicity process. Furthermore, Trolox significantly decreased ROS generation and attenuated cell death caused by ketamine in a dose-dependent manner. In conclusion, this study illustrates that ketamine time- and dose-dependently induces human neurotoxicity via ROS-mediated mitochondrial apoptosis pathway and that these side effects can be prevented by the antioxidant agent Trolox. Thus, hESC-derived neurons might provide a promising tool for studying anesthetic-induced developmental neurotoxicity and prevention strategies. PMID:22873495

  14. FUS immunogold labelling TEM analysis of the neuronal cytoplasmic inclusions of neuronal intermediate filament inclusion disease: a frontotemporal lobar degeneration with FUS proteinopathy

    PubMed Central

    Page, Tristan; Gitcho, Michael A.; Mosaheb, Sabrina; Carter, Deborah; Chakraverty, Sumi; Perry, Robert H.; Bigio, Eileen H.; Gearing, Marla; Ferrer, Isidre; Goate, Alison M.; Cairns, Nigel J.; Thorpe, Julian R.

    2012-01-01

    Fused in sarcoma (FUS)-immunoreactive neuronal and glial inclusions define a novel molecular pathology called FUS proteinopathy. FUS has been shown to be a component of inclusions of familial amyotrophic lateral sclerosis with FUS mutation and three FTLD entities, including neuronal intermediate filament inclusion disease (NIFID). The pathogenic role of FUS is unknown. In addition to FUS, many neuronal cytoplasmic inclusions (NCI) of NIFID contain aggregates of α-internexin and neurofilament proteins. Herein, we have: (1) shown that FUS becomes relatively insoluble in NIFID and there are no post-translational modifications; (2) shown there are no pathogenic abnormalities in the FUS gene in NIFID; (3) performed an immunoelectron microscopy analysis of the precise localizations of FUS in NIFID, as this has not previously been described. FUS localized to euchromatin, and strongly with paraspeckles, in nuclei, consistent with its RNA/DNA-binding functions. NCI of varying morphologies were observed. Most frequent were the ‘loosely aggregated cytoplasmic inclusions’ (LACI), 81% of which had moderate or high levels of FUS-immunoreactivity. Much rarer ‘compact cytoplasmic inclusions’ (CCI) and ‘Tangled twine ball inclusions’ (TTBI) were FUS-immunoreactive at their granular peripheries, or heavily FUS-positive throughout, respectively. Thus FUS may aggregate in the cytoplasm and then admix with neuronal intermediate filament accumulations. PMID:21603978

  15. Effects of Two Commonly Found Strains of Influenza A Virus on Developing Dopaminergic Neurons, in Relation to the Pathophysiology of Schizophrenia

    PubMed Central

    Landreau, Fernando; Galeano, Pablo; Caltana, Laura R.; Masciotra, Luis; Chertcoff, Agustín; Pontoriero, A.; Baumeister, Elsa; Amoroso, Marcela; Brusco, Herminia A.; Tous, Mónica I.; Savy, Vilma L.; Lores Arnaiz, María del Rosario; de Erausquin, Gabriel A.

    2012-01-01

    Influenza virus (InfV) infection during pregnancy is a known risk factor for neurodevelopment abnormalities in the offspring, including the risk of schizophrenia, and has been shown to result in an abnormal behavioral phenotype in mice. However, previous reports have concentrated on neuroadapted influenza strains, whereas increased schizophrenia risk is associated with common respiratory InfV. In addition, no specific mechanism has been proposed for the actions of maternal infection on the developing brain that could account for schizophrenia risk. We identified two common isolates from the community with antigenic configurations H3N2 and H1N1 and compared their effects on developing brain with a mouse modified-strain A/WSN/33 specifically on the developing of dopaminergic neurons. We found that H1N1 InfV have high affinity for dopaminergic neurons in vitro, leading to nuclear factor kappa B activation and apoptosis. Furthermore, prenatal infection of mothers with the same strains results in loss of dopaminergic neurons in the offspring, and in an abnormal behavioral phenotype. We propose that the well-known contribution of InfV to risk of schizophrenia during development may involve a similar specific mechanism and discuss evidence from the literature in relation to this hypothesis. PMID:23251423

  16. Long term follow up of idiopathic gingival enlargement associated with chronic periodontitis: A case report and review.

    PubMed

    Nagarale, Girish P; Ravindra, S; Thakur, Srinath; Setty, Swati

    2013-03-01

    Idiopathic gingival enlargement is a rare condition characterized by massive enlargement of the gingiva. It may be associated with other diseases/conditions characterizing a syndrome, but rarely associated with periodontitis. This case report describes an unusual clinical form of gingival enlargement associated with chronic periodontitis. Clinical examination revealed diffuse gingival enlargement. The lesion was asymptomatic, firm, and pinkish red. Generalized periodontal pockets were observed. Radiographic evaluation revealed generalized severe alveolar bone loss. Histopathological investigations revealed atrophic epithelium with dense fibrocollagenous tissue. Lesions healed successfully following extraction and surgical excision, and no recurrence was observed after 1 year follow-up but recurrence was observed at 3 and 5-years follow-up. Successful treatment of idiopathic gingival enlargement depends on proper identification of etiologic factors and improving esthetics and function through surgical excision of the over growth. However, there may be recurrence.

  17. Amygdala and Hippocampus Enlargement during Adolescence in Autism

    ERIC Educational Resources Information Center

    Groen, Wouter; Teluij, Michelle; Buitelaar, Jan; Tendolkar, Indira

    2010-01-01

    Objective: The amygdala and hippocampus are key components of the neural system mediating emotion perception and regulation and are thought to be involved in the pathophysiology of autism. Although some studies in children with autism suggest that there is an enlargement of amygdala and hippocampal volume, findings in adolescence are sparse.…

  18. Nature of the abnormal band gap narrowing in highly crystalline Zn1-xCoxO nanorods

    NASA Astrophysics Data System (ADS)

    Qiu, Xiaoqing; Li, Liping; Li, Guangshe

    2006-03-01

    Highly crystalline Zn1-xCoxO nanorods were prepared using a hydrothermal method. With increasing Co2+ dopant concentration, the lattice volume enlarged considerably, which is associated with the enhanced repulsive interactions of defect dipole moments on the wall surfaces. This lattice modification produced a significant decrease in band gap energies with its magnitude that followed the relationship, ΔEg=ΔE0•(e-x/B-1), where x and B are Co2+ dopant concentration and a constant, respectively. The abnormal band gap energies were indicated to originate from the sp-d exchange interactions that are proportional to the square of lattice volume.

  19. Fluid-attenuated inversion recovery: correlations of hippocampal cell densities with signal abnormalities.

    PubMed

    Diehl, B; Najm, I; Mohamed, A; Wyllie, E; Babb, T; Ying, Z; Hilbig, A; Bingaman, W; Lüders, H O; Ruggieri, P

    2001-09-25

    Hippocampal sclerosis (HS) is characterized by hippocampal atrophy and increased signal on T2-weighted images and on fluid-attenuated inversion recovery (FLAIR) images. To quantitate cell loss and compare it with signal abnormalities on FLAIR images. Thirty-one patients with temporal lobe resection, pathologically proven HS, and Engel class I and II outcome were included: 20 with HS only and 11 with HS associated with pathologically proven cortical dysplasia (dual pathology). The signal intensity on FLAIR was rated as present or absent in the hippocampus and correlated with the neuronal losses in the hippocampus. FLAIR signal increases were present in 77% (24/31) of all patients studied. In patients with isolated HS, 90% (18/20) had ipsilateral signal increases, but in patients with dual pathology, only 55% (6/11; p < 0.02) showed FLAIR signal increase. Hippocampal cell losses were significantly higher in the isolated HS group. The average cell loss in patients with FLAIR signal abnormalities was 64.8 +/- 8.0% as compared with only 32.7 +/- 5.1% in patients with no FLAIR signal abnormalities. There was a significant positive correlation between the presence of signal abnormality and average hippocampal cell loss in both pathologic groups. Ipsilateral FLAIR signal abnormalities occur in the majority of patients with isolated HS but are less frequent in those with dual pathology. The presence of increased FLAIR signal is correlated with higher hippocampal cell loss.

  20. HIV-1 transgenic rats display mitochondrial abnormalities consistent with abnormal energy generation and distribution.

    PubMed

    Villeneuve, Lance M; Purnell, Phillip R; Stauch, Kelly L; Callen, Shannon E; Buch, Shilpa J; Fox, Howard S

    2016-10-01

    With the advent of the combination antiretroviral therapy era (cART), the development of AIDS has been largely limited in the USA. Unfortunately, despite the development of efficacious treatments, HIV-1-associated neurocognitive disorders (HAND) can still develop, and as many HIV-1 positive individuals age, the prevalence of HAND is likely to rise because HAND manifests in the brain with very low levels of virus. However, the mechanism producing this viral disorder is still debated. Interestingly, HIV-1 infection exposes neurons to proteins including Tat, Nef, and Vpr which can drastically alter mitochondrial properties. Mitochondrial dysfunction has been posited to be a cornerstone of the development of numerous neurodegenerative diseases. Therefore, we investigated mitochondria in an animal model of HAND. Using an HIV-1 transgenic rat model expressing seven of the nine HIV-1 viral proteins, mitochondrial functional and proteomic analysis were performed on a subset of mitochondria that are particularly sensitive to cellular changes, the neuronal synaptic mitochondria. Quantitative mass spectroscopic studies followed by statistical analysis revealed extensive proteome alteration in this model paralleling mitochondrial abnormalities identified in HIV-1 animal models and HIV-1-infected humans. Novel mitochondrial protein changes were discovered in the electron transport chain (ETC), the glycolytic pathways, mitochondrial trafficking proteins, and proteins involved in various energy pathways, and these findings correlated well with the function of the mitochondria as assessed by a mitochondrial coupling and flux assay. By targeting these proteins and proteins upstream in the same pathway, we may be able to limit the development of HAND.

  1. Spinal motor and sensory neurons are androgen targets in an acrobatic bird.

    PubMed

    Fuxjager, Matthew J; Schultz, J Douglas; Barske, Julia; Feng, Ni Y; Fusani, Leonida; Mirzatoni, Anahid; Day, Lainy B; Hau, Michaela; Schlinger, Barney A

    2012-08-01

    Sex steroids affect the motivation to court mates, but less is known about how they influence motor movements associated with courtship behavior. Steroidal control of motor function may be especially important for species in which courtship requires superior strength, stamina, and neuromuscular coordination. Here we use the golden-collared manakin (Manacus vitellinus) to examine whether the neuromuscular circuitry that controls motoric aspects of courtship activity is sensitive to androgens. Males of this tropical species attract mates by rapidly jumping among branches in a courtship arena and using their wings to produce loud wing snaps. Testosterone activates this display via the androgen receptor (AR), and past work reveals that manakins injected with radio-labeled T ((3)H-T) accumulate radioactivity in the spinal cord. Thus, we used quantitative PCR to measure AR, estrogen receptor-α (ER-α) subtype, and aromatase (AROM) mRNA in spinal cords of male and female manakins and zebra finches. Expression of AR, but not ER-α or aromatase, was higher throughout the manakin spinal cord compared with the zebra finch. Next, we tested whether AR-expressing skeletal muscles are innervated by motor and sensory neurons that also express AR. To do this, we backfilled spinal neurons by injecting fluorescent tracers into select AR-sensitive wing and leg muscles of wild caught male and female manakins. We then removed these spinal cords and measured AR expression with in situ hybridization. Both sexes showed abundant AR mRNA in the cervical and lumbosacral spinal enlargements as well as in dorsal root ganglia attached to these enlargements. Together our findings suggest that androgens act widely on peripheral motor and sensory circuits in golden-collared manakins to influence wing snapping displays.

  2. Shp2 in Forebrain Neurons Regulates Synaptic Plasticity, Locomotion, and Memory Formation in Mice

    PubMed Central

    Kusakari, Shinya; Saitow, Fumihito; Ago, Yukio; Shibasaki, Koji; Sato-Hashimoto, Miho; Matsuzaki, Yasunori; Kotani, Takenori; Murata, Yoji; Hirai, Hirokazu; Matsuda, Toshio; Suzuki, Hidenori

    2015-01-01

    Shp2 (Src homology 2 domain-containing protein tyrosine phosphatase 2) regulates neural cell differentiation. It is also expressed in postmitotic neurons, however, and mutations of Shp2 are associated with clinical syndromes characterized by mental retardation. Here we show that conditional-knockout (cKO) mice lacking Shp2 specifically in postmitotic forebrain neurons manifest abnormal behavior, including hyperactivity. Novelty-induced expression of immediate-early genes and activation of extracellular-signal-regulated kinase (Erk) were attenuated in the cerebral cortex and hippocampus of Shp2 cKO mice, suggestive of reduced neuronal activity. In contrast, ablation of Shp2 enhanced high-K+-induced Erk activation in both cultured cortical neurons and synaptosomes, whereas it inhibited that induced by brain-derived growth factor in cultured neurons. Posttetanic potentiation and paired-pulse facilitation were attenuated and enhanced, respectively, in hippocampal slices from Shp2 cKO mice. The mutant mice also manifested transient impairment of memory formation in the Morris water maze. Our data suggest that Shp2 contributes to regulation of Erk activation and synaptic plasticity in postmitotic forebrain neurons and thereby controls locomotor activity and memory formation. PMID:25713104

  3. Beadex Function in the Motor Neurons Is Essential for Female Reproduction in Drosophila melanogaster

    PubMed Central

    Kairamkonda, Subhash; Nongthomba, Upendra

    2014-01-01

    Drosophila melanogaster has served as an excellent model system for understanding the neuronal circuits and molecular mechanisms regulating complex behaviors. The Drosophila female reproductive circuits, in particular, are well studied and can be used as a tool to understand the role of novel genes in neuronal function in general and female reproduction in particular. In the present study, the role of Beadex, a transcription co-activator, in Drosophila female reproduction was assessed by generation of mutant and knock down studies. Null allele of Beadex was generated by transposase induced excision of P-element present within an intron of Beadex gene. The mutant showed highly compromised reproductive abilities as evaluated by reduced fecundity and fertility, abnormal oviposition and more importantly, the failure of sperm release from storage organs. However, no defect was found in the overall ovariole development. Tissue specific, targeted knock down of Beadex indicated that its function in neurons is important for efficient female reproduction, since its neuronal knock down led to compromised female reproductive abilities, similar to Beadex null females. Further, different neuronal class specific knock down studies revealed that Beadex function is required in motor neurons for normal fecundity and fertility of females. Thus, the present study attributes a novel and essential role for Beadex in female reproduction through neurons. PMID:25396431

  4. A diffusely enlarged pancreas: the (un)usual suspect.

    PubMed

    Magalhães-Costa, Pedro; Brito, Maria José; Pinto-Marques, Pedro

    2016-12-01

    An 81-years-old female presented with obstructive jaundice and a non-specific clinical picture of nausea and appetite loss. Labs demonstrated a conjugated hyperbilirrubinemia (7.7 mg/dL), increased aspartate aminotransferase and alanine aminotransferase (10xULN and 8xULN, respectively), increased lactate dehydrogenase (10xULN) and serum lipase (3xULN). CA 19.9 was 342 U/mL (Ref value < 37 U/mL). There was no evidence of peripheral lymphadenopathy or hepatosplenomegaly. Imaging (Figure 1A and 1B) revealed a marked homogeneous enlargement of the pancreas (without any well-defined mass), dilation of the extra and intra-hepatic bile ducts and ascites. Endoscopic ultrasound (Figure 1C and 1D) identified an enlarged homogeneous hypoechoic pancreas, without any well-defined lesion, no dilation of the main pancreatic duct, no peripancreatic or celiac enlarged lymph nodes. A fine-needle biopsy was performed yielding, on cytological examination and cell-block technique (Figure 2A and 2B), numerous medium/large sized atypical lymphoid cells that displayed a B-cell lineage immunophenotype (Figure 2A-2F). Even though, further characterization (by flow cytometric immunophenotyping) could not be obtained, a final diagnosis of primary pancreatic lymphoma (PPL) was assumed. Primary pancreatic lymphoma is a remarkably rare tumor of the pancreas, representing approximately 0.5% of all pancreatic neoplasms and <2% of all lymphomas (1,2). A correct diagnosis is crucial because therapeutic management differs from other pancreatic malignancies (pancreatic ductal adenocarcinoma, neuroendocrine tumor and metastases) (2,3). Two morphologic patterns of PPL are recognized: a focal form (occurring in the pancreatic head in 80% of cases) and a rarer diffuse/infiltrative pattern, as depicted herein, emulating an acute/autoimmune pancreatitis (1).

  5. 1. Historic American Buildings Survey L. D. Andrew, Photographer (Enlarged ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey L. D. Andrew, Photographer (Enlarged by) Aug. 6, 1936 Photographed by Harold Bush-Brown SIDE VIEW - Covered Bridge, Spanning Soap Creek, Atlanta, Fulton County, GA

  6. Abnormal nuclear envelopes in the striatum and motor deficits in DYT11 myoclonus-dystonia mouse models.

    PubMed

    Yokoi, Fumiaki; Dang, Mai T; Zhou, Tong; Li, Yuqing

    2012-02-15

    DYT11 myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonic symptoms and caused by mutations in paternally expressed SGCE, which codes for ε-sarcoglycan. Paternally inherited Sgce heterozygous knock-out (KO) mice exhibit motor deficits and spontaneous myoclonus. Abnormal nuclear envelopes have been reported in cellular and mouse models of early-onset DYT1 generalized torsion dystonia; however, the relationship between the abnormal nuclear envelopes and motor symptoms are not clear. Furthermore, it is not known whether abnormal nuclear envelope exists in non-DYT1 dystonia. In the present study, abnormal nuclear envelopes in the striatal medium spiny neurons (MSNs) were found in Sgce KO mice. To analyze whether the loss of ε-sarcoglycan in the striatum alone causes abnormal nuclear envelopes, motor deficits or myoclonus, we produced paternally inherited striatum-specific Sgce conditional KO (Sgce sKO) mice and analyzed their phenotypes. Sgce sKO mice exhibited motor deficits in both beam-walking and accelerated rotarod tests, while they did not exhibit abnormal nuclear envelopes, alteration in locomotion, or myoclonus. The results suggest that the loss of ε-sarcoglycan in the striatum contributes to motor deficits, while it alone does not produce abnormal nuclear envelopes or myoclonus. Development of therapies targeting the striatum to compensate for the loss of ε-sarcoglycan function may rescue the motor deficits in DYT11 M-D patients.

  7. Cultural Resources Survey of Three Iberville Parish Levee Enlargement and Revetment Construction Items

    DTIC Science & Technology

    1993-09-22

    SURVEY OF THREE IBERVILLE PARISH LEVEE ENLARGEMENT AND REVETMENT CONSTRUCTION ITEMS September 1993 Sam .4 D2 FINAL REPORT E R. Christopher Goodwin...LEVEE ENLARGEMENT ANj REVETMENT CONSTRUCTION ITEMS 12. PERSONAL AUTHOR(S) R. Christopher Goodwin, Ph.d., Rebecca E. Bruce, Lawrence L Hewitt, and E... block number) FIELD GROUP SUB-GROUP Acadian Coast Historic Arche6cogy Rice Antebellum Iberville Parish Saw Mill Plantation Carville Leprosarium Ophelia

  8. [Infantile autism and mirror neurons].

    PubMed

    Cornelio-Nieto, J O

    2009-02-27

    Infantile autism is a disorder that is characterised by alterations affecting reciprocal social interactions, abnormal verbal and non-verbal communication, poor imaginative activity and a restricted repertoire of activities and interests. The causes of autism remain unknown, but there are a number of different approaches that attempt to explain the neurobiological causes of the syndrome. A recent theory that has been considered is that of a dysfunction in the mirror neuron system (MNS). The MNS is a neuronal complex, originally described in monkeys and also found in humans, that is related with our movements and which offers specific responses to the movements and intended movements of other subjects. This system is believed to underlie processes of imitation and our capacity to learn by imitation. It is also thought to play a role in language acquisition, in expressing the emotions, in understanding what is happening to others and in empathy. Because these functions are altered in children with autism, it has been suggested that there is some dysfunction present in the MNS of those with autism. Dysfunction of the MNS could account for the symptoms that are observed in children with autism.

  9. Enlargement and contracture of C2-ceramide channels.

    PubMed

    Siskind, Leah J; Davoody, Amirparviz; Lewin, Naomi; Marshall, Stephanie; Colombini, Marco

    2003-09-01

    Ceramides are known to play a major regulatory role in apoptosis by inducing cytochrome c release from mitochondria. We have previously reported that ceramide, but not dihydroceramide, forms large and stable channels in phospholipid membranes and outer membranes of isolated mitochondria. C(2)-ceramide channel formation is characterized by conductance increments ranging from <1 to >200 nS. These conductance increments often represent the enlargement and contracture of channels rather than the opening and closure of independent channels. Enlargement is supported by the observation that many small conductance increments can lead to a large decrement. Also the initial conductances favor cations, but this selectivity drops dramatically with increasing total conductance. La(+3) causes rapid ceramide channel disassembly in a manner indicative of large conducting structures. These channels have a propensity to contract by a defined size (often multiples of 4 nS) indicating the formation of cylindrical channels with preferred diameters rather than a continuum of sizes. The results are consistent with ceramides forming barrel-stave channels whose size can change by loss or insertion of multiple ceramide columns.

  10. Enlargement and Contracture of C2-Ceramide Channels

    PubMed Central

    Siskind, Leah J.; Davoody, Amirparviz; Lewin, Naomi; Marshall, Stephanie; Colombini, Marco

    2003-01-01

    Ceramides are known to play a major regulatory role in apoptosis by inducing cytochrome c release from mitochondria. We have previously reported that ceramide, but not dihydroceramide, forms large and stable channels in phospholipid membranes and outer membranes of isolated mitochondria. C2-ceramide channel formation is characterized by conductance increments ranging from <1 to >200 nS. These conductance increments often represent the enlargement and contracture of channels rather than the opening and closure of independent channels. Enlargement is supported by the observation that many small conductance increments can lead to a large decrement. Also the initial conductances favor cations, but this selectivity drops dramatically with increasing total conductance. La+3 causes rapid ceramide channel disassembly in a manner indicative of large conducting structures. These channels have a propensity to contract by a defined size (often multiples of 4 nS) indicating the formation of cylindrical channels with preferred diameters rather than a continuum of sizes. The results are consistent with ceramides forming barrel-stave channels whose size can change by loss or insertion of multiple ceramide columns. PMID:12944273

  11. Long term follow up of idiopathic gingival enlargement associated with chronic periodontitis: A case report and review

    PubMed Central

    Nagarale, Girish P.; Ravindra, S.; Thakur, Srinath; Setty, Swati

    2013-01-01

    Background: Idiopathic gingival enlargement is a rare condition characterized by massive enlargement of the gingiva. It may be associated with other diseases/conditions characterizing a syndrome, but rarely associated with periodontitis. Case Description: This case report describes an unusual clinical form of gingival enlargement associated with chronic periodontitis. Clinical examination revealed diffuse gingival enlargement. The lesion was asymptomatic, firm, and pinkish red. Generalized periodontal pockets were observed. Radiographic evaluation revealed generalized severe alveolar bone loss. Histopathological investigations revealed atrophic epithelium with dense fibrocollagenous tissue. Lesions healed successfully following extraction and surgical excision, and no recurrence was observed after 1 year follow-up but recurrence was observed at 3 and 5-years follow-up. Clinical Implications: Successful treatment of idiopathic gingival enlargement depends on proper identification of etiologic factors and improving esthetics and function through surgical excision of the over growth. However, there may be recurrence. PMID:23869135

  12. 1. Historic American Buildings Survey L. D. Andrew, Photographer Enlarged ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey L. D. Andrew, Photographer Enlarged Photographed by Harold Bush-Brown Nov. 14, 1936 GENERAL VIEW OF SLAVE CABINS - Bass Place (Slave Cabins), Columbus, Muscogee County, GA

  13. 2. Historic American Buildings Survey L. D. Andrew, Photographer, Enlarged ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey L. D. Andrew, Photographer, Enlarged Photographed by Harold Bush-Brown Nov. 14, 1936 VIEW OF EASTERN SLAVE CABIN - Bass Place (Slave Cabins), Columbus, Muscogee County, GA

  14. A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease

    PubMed Central

    Westbroek, Wendy; Nguyen, Matthew; Siebert, Marina; Lindstrom, Taylor; Burnett, Robert A.; Aflaki, Elma; Jung, Olive; Tamargo, Rafael; Rodriguez-Gil, Jorge L.; Acosta, Walter; Hendrix, An; Behre, Bahafta; Tayebi, Nahid; Fujiwara, Hideji; Sidhu, Rohini; Renvoise, Benoit; Ginns, Edward I.; Dutra, Amalia; Pak, Evgenia; Cramer, Carole; Ory, Daniel S.; Pavan, William J.

    2016-01-01

    ABSTRACT Glucocerebrosidase is a lysosomal hydrolase involved in the breakdown of glucosylceramide. Gaucher disease, a recessive lysosomal storage disorder, is caused by mutations in the gene GBA1. Dysfunctional glucocerebrosidase leads to accumulation of glucosylceramide and glycosylsphingosine in various cell types and organs. Mutations in GBA1 are also a common genetic risk factor for Parkinson disease and related synucleinopathies. In recent years, research on the pathophysiology of Gaucher disease, the molecular link between Gaucher and Parkinson disease, and novel therapeutics, have accelerated the need for relevant cell models with GBA1 mutations. Although induced pluripotent stem cells, primary rodent neurons, and transfected neuroblastoma cell lines have been used to study the effect of glucocerebrosidase deficiency on neuronal function, these models have limitations because of challenges in culturing and propagating the cells, low yield, and the introduction of exogenous mutant GBA1. To address some of these difficulties, we established a high yield, easy-to-culture mouse neuronal cell model with nearly complete glucocerebrosidase deficiency representative of Gaucher disease. We successfully immortalized cortical neurons from embryonic null allele gba−/− mice and the control littermate (gba+/+) by infecting differentiated primary cortical neurons in culture with an EF1α-SV40T lentivirus. Immortalized gba−/− neurons lack glucocerebrosidase protein and enzyme activity, and exhibit a dramatic increase in glucosylceramide and glucosylsphingosine accumulation, enlarged lysosomes, and an impaired ATP-dependent calcium-influx response; these phenotypical characteristics were absent in gba+/+ neurons. This null allele gba−/− mouse neuronal model provides a much-needed tool to study the pathophysiology of Gaucher disease and to evaluate new therapies. PMID:27482815

  15. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture.

    PubMed

    Paşca, Anca M; Sloan, Steven A; Clarke, Laura E; Tian, Yuan; Makinson, Christopher D; Huber, Nina; Kim, Chul Hoon; Park, Jin-Young; O'Rourke, Nancy A; Nguyen, Khoa D; Smith, Stephen J; Huguenard, John R; Geschwind, Daniel H; Barres, Ben A; Paşca, Sergiu P

    2015-07-01

    The human cerebral cortex develops through an elaborate succession of cellular events that, when disrupted, can lead to neuropsychiatric disease. The ability to reprogram somatic cells into pluripotent cells that can be differentiated in vitro provides a unique opportunity to study normal and abnormal corticogenesis. Here, we present a simple and reproducible 3D culture approach for generating a laminated cerebral cortex-like structure, named human cortical spheroids (hCSs), from pluripotent stem cells. hCSs contain neurons from both deep and superficial cortical layers and map transcriptionally to in vivo fetal development. These neurons are electrophysiologically mature, display spontaneous activity, are surrounded by nonreactive astrocytes and form functional synapses. Experiments in acute hCS slices demonstrate that cortical neurons participate in network activity and produce complex synaptic events. These 3D cultures should allow a detailed interrogation of human cortical development, function and disease, and may prove a versatile platform for generating other neuronal and glial subtypes in vitro.

  16. Hyperactivity of newborn Pten knock-out neurons results from increased excitatory synaptic drive.

    PubMed

    Williams, Michael R; DeSpenza, Tyrone; Li, Meijie; Gulledge, Allan T; Luikart, Bryan W

    2015-01-21

    Developing neurons must regulate morphology, intrinsic excitability, and synaptogenesis to form neural circuits. When these processes go awry, disorders, including autism spectrum disorder (ASD) or epilepsy, may result. The phosphatase Pten is mutated in some patients having ASD and seizures, suggesting that its mutation disrupts neurological function in part through increasing neuronal activity. Supporting this idea, neuronal knock-out of Pten in mice can cause macrocephaly, behavioral changes similar to ASD, and seizures. However, the mechanisms through which excitability is enhanced following Pten depletion are unclear. Previous studies have separately shown that Pten-depleted neurons can drive seizures, receive elevated excitatory synaptic input, and have abnormal dendrites. We therefore tested the hypothesis that developing Pten-depleted neurons are hyperactive due to increased excitatory synaptogenesis using electrophysiology, calcium imaging, morphological analyses, and modeling. This was accomplished by coinjecting retroviruses to either "birthdate" or birthdate and knock-out Pten in granule neurons of the murine neonatal dentate gyrus. We found that Pten knock-out neurons, despite a rapid onset of hypertrophy, were more active in vivo. Pten knock-out neurons fired at more hyperpolarized membrane potentials, displayed greater peak spike rates, and were more sensitive to depolarizing synaptic input. The increased sensitivity of Pten knock-out neurons was due, in part, to a higher density of synapses located more proximal to the soma. We determined that increased synaptic drive was sufficient to drive hypertrophic Pten knock-out neurons beyond their altered action potential threshold. Thus, our work contributes a developmental mechanism for the increased activity of Pten-depleted neurons. Copyright © 2015 the authors 0270-6474/15/350943-17$15.00/0.

  17. Unbiased View of Synaptic and Neuronal Gene Complement in Ctenophores: Are There Pan-neuronal and Pan-synaptic Genes across Metazoa?

    PubMed Central

    Moroz, Leonid L.; Kohn, Andrea B.

    2015-01-01

    Hypotheses of origins and evolution of neurons and synapses are controversial, mostly due to limited comparative data. Here, we investigated the genome-wide distribution of the bilaterian “synaptic” and “neuronal” protein-coding genes in non-bilaterian basal metazoans (Ctenophora, Porifera, Placozoa, and Cnidaria). First, there are no recognized genes uniquely expressed in neurons across all metazoan lineages. None of the so-called pan-neuronal genes such as embryonic lethal abnormal vision (ELAV), Musashi, or Neuroglobin are expressed exclusively in neurons of the ctenophore Pleurobrachia. Second, our comparative analysis of about 200 genes encoding canonical presynaptic and postsynaptic proteins in bilaterians suggests that there are no true “pan-synaptic” genes or genes uniquely and specifically attributed to all classes of synapses. The majority of these genes encode receptive and secretory complexes in a broad spectrum of eukaryotes. Trichoplax (Placozoa) an organism without neurons and synapses has more orthologs of bilaterian synapse-related/neuron-related genes than do ctenophores—the group with well-developed neuronal and synaptic organization. Third, the majority of genes encoding ion channels and ionotropic receptors are broadly expressed in unicellular eukaryotes and non-neuronal tissues in metazoans. Therefore, they cannot be viewed as neuronal markers. Nevertheless, the co-expression of multiple types of ion channels and receptors does correlate with the presence of neural and synaptic organization. As an illustrative example, the ctenophore genomes encode a greater diversity of ion channels and ionotropic receptors compared with the genomes of the placozoan Trichoplax and the demosponge Amphimedon. Surprisingly, both placozoans and sponges have a similar number of orthologs of “synaptic” proteins as we identified in the genomes of two ctenophores. Ctenophores have a distinct synaptic organization compared with other animals. Our

  18. Postoperative enlargement and prognostic effects of portal venous bypass grafts in children undergoing Rex shunt.

    PubMed

    Zhang, Jin-Shan; Li, Long; Cheng, Wei

    2018-05-22

    Patency of the bypass vein after a Rex shunt is an important indicator of prognosis. However, there is no report about the change of caliber of the bypass vein after a Rex shunt. The aim of this study was to identify postoperative changes of the bypass vein and to assess the relationship with prognosis. Between October 2008 and October 2016 in our center, 114 children were diagnosed with extrahepatic portal venous obstruction. The portal cavernoma-portal bypass with interposition of grafted portal vessels was performed in 31 children, the gastroportal shunt was performed in 54 children, and other Rex shunts were performed in another 29 children. At follow-up, the patency and diameter of the bypass vein were assessed with ultrasound and computed tomography. The intraoperative and postoperative diameters of the bypass vein were compared to identify postoperative changes of the bypass vein. Prognosis was compared between children with and children without an enlarged bypass vein. The caliber of the bypass vein was enlarged in 50% of children (40/80) at 6 months postoperatively. The postoperative incidences of rebleeding and esophageal varices were significantly lower in children with an enlarged bypass vein than in those without (P < .05). Postoperatively, the reduced splenic size was significantly higher in children with an enlarged bypass vein than in those without (P < .05). The postoperative increase in platelet count in children with an enlarged bypass vein was significantly higher than in those without (P = .006). There was no significant difference in the flow velocity of the bypass vein between children with and children without an enlarged bypass vein (P = .133). The portal pressure was significantly reduced after surgery in children with an enlarged bypass vein than in children without an enlarged bypass vein (P = .017). The caliber of the bypass vein increases in 50% of children after a Rex shunt using a grafted portal vessel, which is related to a

  19. Dissolution-Enlarged Fractures Imaging Using Electrical Resistivity Tomography (ERT)

    NASA Astrophysics Data System (ADS)

    Siami-Irdemoosa, Elnaz

    In recent years the electrical imaging techniques have been largely applied to geotechnical and environmental investigations. These techniques have proven to be the best geophysical methods for site investigations in karst terrain, particularly when the overburden soil is clay-dominated. Karst is terrain with a special landscape and distinctive hydrological system developed by dissolution of rocks, particularly carbonate rocks such as limestone and dolomite, made by enlarging fractures into underground conduits that can enlarge into caverns, and in some cases collapse to form sinkholes. Bedding planes, joints, and faults are the principal structural guides for underground flow and dissolution in almost all karstified rocks. Despite the important role of fractures in karst development, the geometry of dissolution-enlarged fractures remain poorly unknown. These features are characterized by an strong contrast with the surrounding formations in terms of physical properties, such as electrical resistivity. Electrical resistivity tomography (ERT) was used as the primary geophysical tool to image the subsurface in a karst terrain in Greene County, Missouri. Pattern, orientation and density of the joint sets were interpreted from ERT data in the investigation site. The Multi-channel Analysis of Surface Wave (MASW) method and coring were employed to validate the interpretation results. Two sets of orthogonal visually prominent joints have been identified in the investigation site: north-south trending joint sets and west-east trending joint sets. However, most of the visually prominent joint sets are associated with either cultural features that concentrate runoff, natural surface drainage features or natural surface drainage.

  20. Neuronal Growth and Behavioral Alterations in Mice Deficient for the Psychiatric Disease-Associated Negr1 Gene

    PubMed Central

    Singh, Katyayani; Loreth, Desirée; Pöttker, Bruno; Hefti, Kyra; Innos, Jürgen; Schwald, Kathrin; Hengstler, Heidi; Menzel, Lutz; Sommer, Clemens J.; Radyushkin, Konstantin; Kretz, Oliver; Philips, Mari-Anne; Haas, Carola A.; Frauenknecht, Katrin; Lilleväli, Kersti; Heimrich, Bernd; Vasar, Eero; Schäfer, Michael K. E.

    2018-01-01

    Neuronal growth regulator 1 (NEGR1), a member of the immunoglobulin superfamily cell adhesion molecule subgroup IgLON, has been implicated in neuronal growth and connectivity. In addition, genetic variants in or near the NEGR1 locus have been associated with obesity and more recently with learning difficulties, intellectual disability and psychiatric disorders. However, experimental evidence is lacking to support a possible link between NEGR1, neuronal growth and behavioral abnormalities. Initial expression analysis of NEGR1 mRNA in C57Bl/6 wildtype (WT) mice by in situ hybridization demonstrated marked expression in the entorhinal cortex (EC) and dentate granule cells. In co-cultures of cortical neurons and NSC-34 cells overexpressing NEGR1, neurite growth of cortical neurons was enhanced and distal axons occupied an increased area of cells overexpressing NEGR1. Conversely, in organotypic slice co-cultures, Negr1-knockout (KO) hippocampus was less permissive for axons grown from EC of β-actin-enhanced green fluorescent protein (EGFP) mice compared to WT hippocampus. Neuroanatomical analysis revealed abnormalities of EC axons in the hippocampal dentate gyrus (DG) of Negr1-KO mice including increased numbers of axonal projections to the hilus. Neurotransmitter receptor ligand binding densities, a proxy of functional neurotransmitter receptor abundance, did not show differences in the DG of Negr1-KO mice but altered ligand binding densities to NMDA receptor and muscarinic acetylcholine receptors M1 and M2 were found in CA1 and CA3. Activity behavior, anxiety-like behavior and sensorimotor gating were not different between genotypes. However, Negr1-KO mice exhibited impaired social behavior compared to WT littermates. Moreover, Negr1-KO mice showed reversal learning deficits in the Morris water maze and increased susceptibility to pentylenetetrazol (PTZ)-induced seizures. Thus, our results from neuronal growth assays, neuroanatomical analyses and behavioral

  1. 1. Historic American Buildings Survey L. D. Andrew, Photographer Enlarged ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey L. D. Andrew, Photographer Enlarged from picture photographed by Harold Bush-Brown Aug. 1936 VIEW OF FRONT AND RIGHT SIDE - Old Methodist Church, Roswell, Fulton County, GA

  2. Loss of polyubiquitin gene Ubb leads to metabolic and sleep abnormalities in mice

    PubMed Central

    Ryu, K.-Y.; Fujiki, N.; Kazantzis, M.; Garza, J. C.; Bouley, D. M.; Stahl, A.; Lu, X.-Y.; Nishino, S.; Kopito, R. R.

    2010-01-01

    Aims Ubiquitin performs essential roles in a myriad of signalling pathways required for cellular function and survival. Recently, we reported that disruption of the stress-inducible ubiquitin-encoding gene Ubb reduces ubiquitin content in the hypothalamus and leads to adult-onset obesity coupled with a loss of arcuate nucleus neurones and disrupted energy homeostasis in mice. Neuropeptides expressed in the hypothalamus control both metabolic and sleep behaviours. In order to demonstrate that the loss of Ubb results in broad hypothalamic abnormalities, we attempted to determine whether metabolic and sleep behaviours were altered in Ubb knockout mice. Methods Metabolic rate and energy expenditure were measured in a metabolic chamber, and sleep stage was monitored via electroencephalographic/electromyographic recording. The presence of neurodegeneration and increased reactive gliosis in the hypothalamus were also evaluated. Results We found that Ubb disruption leads to early-onset reduced activity and metabolic rate. Additionally, we have demonstrated that sleep behaviour is altered and sleep homeostasis is disrupted in Ubb knockout mice. These early metabolic and sleep abnormalities are accompanied by persistent reactive gliosis and the loss of arcuate nucleus neurones, but are independent of neurodegeneration in the lateral hypothalamus. Conclusions Ubb knockout mice exhibit phenotypes consistent with hypothalamic dysfunction. Our data also indicate that Ubb is essential for the maintenance of the ubiquitin levels required for proper regulation of metabolic and sleep behaviours in mice. PMID:20002312

  3. Nonsurgical management of an enlarging pneumatocele by fibrin sealant injection via pigtail catheter.

    PubMed

    Park, Tae Hyun; Kim, Jin Kyu

    2016-02-01

    Most pneumatoceles disappear spontaneously and do not cause severe symptoms. Treatment alternatives include various conventional or surgical methods. However, an enlarging, complicated pneumatocele with cardiorespiratory instability requires imaging-guided catheter drainage or surgery. Here, we report the case of a newborn girl with an enlarging pneumatocele accompanied by pulmonary interstitial emphysema secondary to mechanical ventilation. The pneumatocele was successfully managed by the injection of fibrin sealant via a pigtail catheter. © 2015 Wiley Periodicals, Inc.

  4. Dnmt1 and Dnmt3a are required for the maintenance of DNA methylation and synaptic function in adult forebrain neurons

    PubMed Central

    Feng, Jian; Zhou, Yu; Campbell, Susan L.; Le, Thuc; Li, En; Sweatt, J. David; Silva, Alcino J.; Fan, Guoping

    2011-01-01

    Dnmt1 and Dnmt3a, two major DNA methyltransferases, are expressed in postmitotic neurons, but their function in the central nervous system (CNS) is unclear. We generated conditional mutant mice that lack either Dnmt1, or Dnmt3a, or both exclusively in forebrain excitatory neurons and found only double knockout (DKO) mice exhibited abnormal hippocampal CA1 long-term plasticity and deficits of learning and memory. While no neuronal loss was found, the size of hippocampal neurons in DKO was smaller; furthermore, DKO neurons showed a deregulation of gene expression including class I MHC and Stat1 that are known to play a role in synaptic plasticity. In addition, we observed a significant decrease in DNA methylation in DKO neurons. We conclude that Dnmt1 and Dnmt3a are required for synaptic plasticity, learning and memory through their overlapping roles in maintaining DNA methylation and modulating neuronal gene expression in adult CNS neurons. PMID:20228804

  5. Restoring neuronal progranulin reverses deficits in a mouse model of frontotemporal dementia.

    PubMed

    Arrant, Andrew E; Filiano, Anthony J; Unger, Daniel E; Young, Allen H; Roberson, Erik D

    2017-05-01

    Loss-of-function mutations in progranulin (GRN), a secreted glycoprotein expressed by neurons and microglia, are a common autosomal dominant cause of frontotemporal dementia, a neurodegenerative disease commonly characterized by disrupted social and emotional behaviour. GRN mutations are thought to cause frontotemporal dementia through progranulin haploinsufficiency, therefore, boosting progranulin expression from the intact allele is a rational treatment strategy. However, this approach has not been tested in an animal model of frontotemporal dementia and it is unclear if boosting progranulin could correct pre-existing deficits. Here, we show that adeno-associated virus-driven expression of progranulin in the medial prefrontal cortex reverses social dominance deficits in Grn+/- mice, an animal model of frontotemporal dementia due to GRN mutations. Adeno-associated virus-progranulin also corrected lysosomal abnormalities in Grn+/- mice. The adeno-associated virus-progranulin vector only transduced neurons, suggesting that restoring neuronal progranulin is sufficient to correct deficits in Grn+/- mice. To further test the role of neuronal progranulin in the development of frontotemporal dementia-related deficits, we generated two neuronal progranulin-deficient mouse lines using CaMKII-Cre and Nestin-Cre. Measuring progranulin levels in these lines indicated that most brain progranulin is derived from neurons. Both neuronal progranulin-deficient lines developed social dominance deficits similar to those in global Grn+/- mice, showing that neuronal progranulin deficiency is sufficient to disrupt social behaviour. These data support the concept of progranulin-boosting therapies for frontotemporal dementia and highlight an important role for neuron-derived progranulin in maintaining normal social function. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Lack of tryptophan hydroxylase-1 in mice results in gait abnormalities.

    PubMed

    Suidan, Georgette L; Duerschmied, Daniel; Dillon, Gregory M; Vanderhorst, Veronique; Hampton, Thomas G; Wong, Siu Ling; Voorhees, Jaymie R; Wagner, Denisa D

    2013-01-01

    The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (-/-) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system.

  7. Distal Predominance of Electrodiagnostic Abnormalities in Early Stage Amyotrophic Lateral Sclerosis.

    PubMed

    Shayya, Luay; Babu, Suma; Pioro, Erik P; Li, Jianbo; Li, Yuebing

    2018-05-09

    We compare the electrodiagnostic (EDX) yield of limb muscles in revealing lower motor neuron (LMN) dysfunction by electromyography (EMG) in early stage amyotrophic lateral sclerosis (ALS). Single-site retrospective review Results: This study includes 122 consecutive patients with possible ALS as defined by revised El Escorial Criteria. Distal limb muscles show more frequent EMG abnormalities than proximal muscles. EDX yield is higher in the limb where weakness begins and when clinical signs of LMN dysfunction are evident. Adoption of Awaji criteria increases the yield of EMG positive segments significantly in the cervical (p<0.0005) and lumbosacral regions (P<0.0001), and upgrades 19 patients into probable and 1 patient into definite categories. Electromyographic abnormalities are distal limb-predominant in early stage ALS. A redefinition of an EDX-positive cervical or lumbosacral segment, with an emphasis on distal limb muscles, may result in an earlier ALS diagnosis. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  8. Regional grey matter volume abnormalities in bulimia nervosa and binge-eating disorder.

    PubMed

    Schäfer, Axel; Vaitl, Dieter; Schienle, Anne

    2010-04-01

    This study investigated whether bulimia nervosa (BN) and binge-eating disorder (BED) are associated with structural brain abnormalities. Both disorders share the main symptom binge-eating, but are considered differential diagnoses. We attempted to identify alterations in grey matter volume (GMV) that are present in both psychopathologies as well as disorder-specific GMV characteristics. Such information can help to improve neurobiological models of eating disorders and their classification. A total of 50 participants (patients suffering from BN (purge type), BED, and normal-weight controls) underwent structural MRI scanning. GMV for specific brain regions involved in food/reinforcement processing was analyzed by means of voxel-based morphometry. Both patient groups were characterized by greater volumes of the medial orbitofrontal cortex (OFC) compared to healthy controls. In BN patients, who had increased ventral striatum volumes, body mass index and purging severity were correlated with striatal grey matter volume. Altogether, our data implicate a crucial role of the medial OFC in the studied eating disorders. The structural abnormality might be associated with dysfunctions in food reward processing and/or self-regulation. The bulimia-specific volume enlargement of the ventral striatum is discussed in the framework of negative reinforcement through purging and associated weight regulation. Copyright 2009 Elsevier Inc. All rights reserved.

  9. Caenorhabditis elegans flamingo cadherin fmi-1 regulates GABAergic neuronal development.

    PubMed

    Najarro, Elvis Huarcaya; Wong, Lianna; Zhen, Mei; Carpio, Edgar Pinedo; Goncharov, Alexandr; Garriga, Gian; Lundquist, Erik A; Jin, Yishi; Ackley, Brian D

    2012-03-21

    In a genetic screen for regulators of synaptic morphology, we identified the single Caenorhabditis elegans flamingo-like cadherin fmi-1. The fmi-1 mutants exhibit defective axon pathfinding, reduced synapse number, aberrant synapse size and morphology, as well as an abnormal accumulation of synaptic vesicles at nonsynaptic regions. Although FMI-1 is primarily expressed in the nervous system, it is not expressed in the ventral D-type (VD) GABAergic motorneurons, which are defective in fmi-1 mutants. The axon and synaptic defects of VD neurons could be rescued when fmi-1 was expressed exclusively in non-VD neighboring neurons, suggesting a cell nonautonomous action of FMI-1. FMI-1 protein that lacked its intracellular domain still retained its ability to rescue the vesicle accumulation defects of GABAergic motorneurons, indicating that the extracellular domain was sufficient for this function of FMI-1 in GABAergic neuromuscular junction development. Mutations in cdh-4, a Fat-like cadherin, cause similar defects in GABAergic motorneurons. The cdh-4 is expressed by the VD neurons and seems to function in the same genetic pathway as fmi-1 to regulate GABAergic neuron development. Thus, fmi-1 and cdh-4 cadherins might act together to regulate synapse development and axon pathfinding.

  10. Loss of thymidine kinase 2 alters neuronal bioenergetics and leads to neurodegeneration

    PubMed Central

    Bartesaghi, Stefano; Betts-Henderson, Joanne; Cain, Kelvin; Dinsdale, David; Zhou, Xiaoshan; Karlsson, Anna; Salomoni, Paolo; Nicotera, Pierluigi

    2010-01-01

    Mutations of thymidine kinase 2 (TK2), an essential component of the mitochondrial nucleotide salvage pathway, can give rise to mitochondrial DNA (mtDNA) depletion syndromes (MDS). These clinically heterogeneous disorders are characterized by severe reduction in mtDNA copy number in affected tissues and are associated with progressive myopathy, hepatopathy and/or encephalopathy, depending in part on the underlying nuclear genetic defect. Mutations of TK2 have previously been associated with an isolated myopathic form of MDS (OMIM 609560). However, more recently, neurological phenotypes have been demonstrated in patients carrying TK2 mutations, thus suggesting that loss of TK2 results in neuronal dysfunction. Here, we directly address the role of TK2 in neuronal homeostasis using a knockout mouse model. We demonstrate that in vivo loss of TK2 activity leads to a severe ataxic phenotype, accompanied by reduced mtDNA copy number and decreased steady-state levels of electron transport chain proteins in the brain. In TK2-deficient cerebellar neurons, these abnormalities are associated with impaired mitochondrial bioenergetic function, aberrant mitochondrial ultrastructure and degeneration of selected neuronal types. Overall, our findings demonstrate that TK2 deficiency leads to neuronal dysfunction in vivo, and have important implications for understanding the mechanisms of neurological impairment in MDS. PMID:20123860

  11. Loss of thymidine kinase 2 alters neuronal bioenergetics and leads to neurodegeneration.

    PubMed

    Bartesaghi, Stefano; Betts-Henderson, Joanne; Cain, Kelvin; Dinsdale, David; Zhou, Xiaoshan; Karlsson, Anna; Salomoni, Paolo; Nicotera, Pierluigi

    2010-05-01

    Mutations of thymidine kinase 2 (TK2), an essential component of the mitochondrial nucleotide salvage pathway, can give rise to mitochondrial DNA (mtDNA) depletion syndromes (MDS). These clinically heterogeneous disorders are characterized by severe reduction in mtDNA copy number in affected tissues and are associated with progressive myopathy, hepatopathy and/or encephalopathy, depending in part on the underlying nuclear genetic defect. Mutations of TK2 have previously been associated with an isolated myopathic form of MDS (OMIM 609560). However, more recently, neurological phenotypes have been demonstrated in patients carrying TK2 mutations, thus suggesting that loss of TK2 results in neuronal dysfunction. Here, we directly address the role of TK2 in neuronal homeostasis using a knockout mouse model. We demonstrate that in vivo loss of TK2 activity leads to a severe ataxic phenotype, accompanied by reduced mtDNA copy number and decreased steady-state levels of electron transport chain proteins in the brain. In TK2-deficient cerebellar neurons, these abnormalities are associated with impaired mitochondrial bioenergetic function, aberrant mitochondrial ultrastructure and degeneration of selected neuronal types. Overall, our findings demonstrate that TK2 deficiency leads to neuronal dysfunction in vivo, and have important implications for understanding the mechanisms of neurological impairment in MDS.

  12. Pain following foraminal enlargement in mandibular molars with necrosis and apical periodontitis: A randomized controlled trial.

    PubMed

    Saini, H R; Sangwan, P; Sangwan, A

    2016-12-01

    This randomized controlled trial was conducted to evaluate the effect of foraminal enlargement during chemomechanical root canal preparation on postoperative pain. Seventy mandibular first molars with asymptomatic pulp necrosis and chronic apical periodontitis were randomized into two groups - foraminal enlargement (FE) and conventional nonforaminal enlargement (NFE). Canals were prepared according to the respective protocols, and the teeth were restored temporarily. Postoperatively, the patients were prescribed ibuprofen 400 mg, to be taken if required. Pain experience and analgesic intake were recorded for 7 days following chemomechanical preparation. The data were analysed using Mann-Whitney U-test and chi-square tests. Pain experience was higher with foraminal enlargement than when using a conventional technique. A significant difference was observed in postoperative pain during the first 4 days and the sixth day (P < 0.05), with greater pain in the FE as compared to the NFE group. There was no significant difference in prevalence of analgesic intake and number of doses between the experimental groups (P > 0.05). Enlargement of the apical foramen during root canal treatment increased the incidence and intensity of postoperative pain. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  13. MR Imaging Features of the Cerebellum in Adult-Onset Neuronal Intranuclear Inclusion Disease: 8 Cases.

    PubMed

    Sugiyama, A; Sato, N; Kimura, Y; Maekawa, T; Enokizono, M; Saito, Y; Takahashi, Y; Matsuda, H; Kuwabara, S

    2017-11-01

    Neuronal intranuclear inclusion disease is a neurodegenerative disorder pathologically characterized by eosinophilic hyaline intranuclear inclusions. A high-intensity signal along the corticomedullary junction on DWI has been described as a specific MR imaging finding of the cerebrum in neuronal intranuclear inclusion disease. However, MR imaging findings of the cerebellum in neuronal intranuclear inclusion disease have not been fully evaluated. Here, we review MR imaging findings of the cerebellum in a series of 8 patients with pathologically confirmed neuronal intranuclear inclusion disease. The MR imaging results showed cerebellar atrophy (8/8 patients) and high-intensity signal on FLAIR images in the medial part of the cerebellar hemisphere right beside the vermis (the "paravermal area") (6/8) and in the middle cerebellar peduncle (4/8). The paravermal abnormal signals had a characteristic distribution, and they could be an indicator of the diagnosis of neuronal intranuclear inclusion disease even when using the results of past MR imaging examinations in which DWI findings were not examined. © 2017 by American Journal of Neuroradiology.

  14. [Non-neoplastic enlargement of salivary glands: clinico-histologic analysis].

    PubMed

    González Guevara, Martha Beatriz; Torres Tejero, Marco Antonio; Martínez Mata, Guillermo

    2005-01-01

    We carried out a retrospective study on non-neoplastic enlargement of the salivary glands at the Oral Histopathology Diagnostic Center of the Autonomous Metropolitan University at Xochimilco (UAM-Xochimilco) in Mexico during a period of 24 years (1979-2003). From 5,625 biopsies received and analyzed, a total of 461 (8.2%) were non-neoplastic enlargement of the salivary glands; for each case, we registered demographic data as well as clinic characteristics. These lesions were characterized as a heterogeneous group of pathologic entities among which we included local, obstructive, infectious, and immunopathologic lesions. The most frequent lesion was the extravasation cyst in 341 (74%) cases, followed by chronic sialoadenitis and Sjögren's syndrome with 54 (11.7%) and 41 (8.8%) cases, respectively, and at a lesser percentage mucous retention cyst, sialosis, benign lymphoepithelial lesions and those related with sialolytes. Females were affected more frequently; mean age was second to third life decades. These lesions were most frequently localized on inferior labial mucosa.

  15. Changes in the Excitability of Neocortical Neurons in a Mouse Model of Amyotrophic Lateral Sclerosis Are Not Specific to Corticospinal Neurons and Are Modulated by Advancing Disease.

    PubMed

    Kim, Juhyun; Hughes, Ethan G; Shetty, Ashwin S; Arlotta, Paola; Goff, Loyal A; Bergles, Dwight E; Brown, Solange P

    2017-09-13

    monotonically with disease progression. Moreover, although all neuronal cell types tested exhibited abnormal functional properties, analysis of their gene expression demonstrated cell type-specific responses to the ALS-causing mutation. These findings suggest that therapies for ALS may need to be tailored for different cell types and stages of disease. Copyright © 2017 the authors 0270-6474/17/379038-17$15.00/0.

  16. Cytidine-5-diphosphocholine supplement in early life induces stable increase in dendritic complexity of neurons in the somatosensory cortex of adult rats

    PubMed Central

    Rema, V.; Bali, K.K.; Ramachandra, R.; Chugh, M.; Darokhan, Z.; Chaudhary, R.

    2008-01-01

    Cytidine-5-diphosphocholine (CDP-choline or citicholine) is an essential molecule that is required for biosynthesis of cell membranes. In adult humans it is used as a memory-enhancing drug for treatment of age-related dementia and cerebrovascular conditions. However the effect of CDP-choline on perinatal brain is not known. We administered CDP-choline to Long Evans rats each day from conception (maternal ingestion) to postnatal day 60 (P60). Pyramidal neurons from supragranular layers 2/3, granular layer 4 and infragranular layer 5 of somatosensory cortex were examined with Golgi–Cox staining at P240. CDP-choline treatment significantly increased length and branch points of apical and basal dendrites. Sholl analysis shows that the complexity of apical and basal dendrites of neurons is maximal in layers 2/3 and layer 5. In layer 4 significant increases were seen in basilar dendritic arborization. CDP-choline did not increase the number of primary basal dendrites on neurons in the somatosensory cortex. Primary cultures from somatosensory cortex were treated with CDP-choline to test its effect on neuronal survival. CDP-choline treatment neither enhanced the survival of neurons in culture nor increased the number of neurites. However significant increases in neurite length, branch points and total area occupied by the neurons were observed. We conclude that exogenous supplementation of CDP-choline during development causes stable changes in neuronal morphology. Significant increase in dendritic growth and branching of pyramidal neurons from the somatosensory cortex resulted in enlarging the surface area occupied by the neurons which we speculate will augment processing of sensory information. PMID:18619738

  17. Unbiased View of Synaptic and Neuronal Gene Complement in Ctenophores: Are There Pan-neuronal and Pan-synaptic Genes across Metazoa?

    PubMed

    Moroz, Leonid L; Kohn, Andrea B

    2015-12-01

    Hypotheses of origins and evolution of neurons and synapses are controversial, mostly due to limited comparative data. Here, we investigated the genome-wide distribution of the bilaterian "synaptic" and "neuronal" protein-coding genes in non-bilaterian basal metazoans (Ctenophora, Porifera, Placozoa, and Cnidaria). First, there are no recognized genes uniquely expressed in neurons across all metazoan lineages. None of the so-called pan-neuronal genes such as embryonic lethal abnormal vision (ELAV), Musashi, or Neuroglobin are expressed exclusively in neurons of the ctenophore Pleurobrachia. Second, our comparative analysis of about 200 genes encoding canonical presynaptic and postsynaptic proteins in bilaterians suggests that there are no true "pan-synaptic" genes or genes uniquely and specifically attributed to all classes of synapses. The majority of these genes encode receptive and secretory complexes in a broad spectrum of eukaryotes. Trichoplax (Placozoa) an organism without neurons and synapses has more orthologs of bilaterian synapse-related/neuron-related genes than do ctenophores-the group with well-developed neuronal and synaptic organization. Third, the majority of genes encoding ion channels and ionotropic receptors are broadly expressed in unicellular eukaryotes and non-neuronal tissues in metazoans. Therefore, they cannot be viewed as neuronal markers. Nevertheless, the co-expression of multiple types of ion channels and receptors does correlate with the presence of neural and synaptic organization. As an illustrative example, the ctenophore genomes encode a greater diversity of ion channels and ionotropic receptors compared with the genomes of the placozoan Trichoplax and the demosponge Amphimedon. Surprisingly, both placozoans and sponges have a similar number of orthologs of "synaptic" proteins as we identified in the genomes of two ctenophores. Ctenophores have a distinct synaptic organization compared with other animals. Our analysis of

  18. Morphometric abnormalities of the lateral ventricles in methamphetamine-dependent subjects☆

    PubMed Central

    Jeong, Hyeonseok S.; Lee, Sunho; Yoon, Sujung; Jung, Jiyoung J.; Cho, Han Byul; Kim, Binna N.; Ma, Jiyoung; Ko, Eun; Im, Jooyeon Jamie; Ban, Soonhyun; Renshaw, Perry F.; Lyoo, In Kyoon

    2017-01-01

    Background The presence of morphometric abnormalities of the lateral ventricles, which can reflect focal or diffuse atrophic changes of nearby brain structures, is not well characterized in methamphetamine dependence. The current study was aimed to examine the size and shape alterations of the lateral ventricles in methamphetamine-dependent subjects. Methods High-resolution brain structural images were obtained from 37 methamphetamine-dependent subjects and 25 demographically matched healthy individuals. Using a combined volumetric and surface-based morphometric approach, the structural variability of the lateral ventricles, with respect to extent and location, was examined. Results Methamphetamine-dependent subjects had an enlarged right lateral ventricle compared with healthy individuals. Morphometric analysis revealed a region-specific pattern of lateral ventricular expansion associated with methamphetamine dependence, which was mainly distributed in the areas adjacent to the ventral striatum, medial prefrontal cortex, and thalamus. Conclusions Patterns of shape decomposition in the lateral ventricles may have relevance to the structural vulnerability of the prefrontal-ventral striatal-thalamic circuit to methamphetamine-induced neurotoxicity. PMID:23769159

  19. Selective Modulation of K+ Channel Kv7.4 Significantly Affects the Excitability of DRN 5-HT Neurons.

    PubMed

    Zhao, Chen; Su, Min; Wang, Yingzi; Li, Xinmeng; Zhang, Yongxue; Du, Xiaona; Zhang, Hailin

    2017-01-01

    The serotonin (5-HT) system originating in the dorsal raphe nucleus (DRN) is implicated in various mood- and emotion-related disorders, such as anxiety, fear and stress. Abnormal activity of DRN 5-HT neurons is the key factor in the development of these disorders. Here, we describe a crucial role for the Kv7.4 potassium channel in modulating DRN 5-HT neuronal excitability. We demonstrate that Kv7.4 is selectively expressed in 5-HT neurons of the DRN. Using selective Kv7.4 opener fasudil and Kv7.4 knock-out mice, we demonstrate that Kv7.4 is a potent modulator of DRN 5-HT neuronal excitability. Furthermore, we demonstrate that the cellular redox signaling mechanism is involved in this 5-HT activation of Kv7.4. The current study suggests a new strategy for treating psychiatric disorders related to altered activity of DRN 5-HT neurons using K + channel modulators.

  20. Selective Modulation of K+ Channel Kv7.4 Significantly Affects the Excitability of DRN 5-HT Neurons

    PubMed Central

    Zhao, Chen; Su, Min; Wang, Yingzi; Li, Xinmeng; Zhang, Yongxue; Du, Xiaona; Zhang, Hailin

    2017-01-01

    The serotonin (5-HT) system originating in the dorsal raphe nucleus (DRN) is implicated in various mood- and emotion-related disorders, such as anxiety, fear and stress. Abnormal activity of DRN 5-HT neurons is the key factor in the development of these disorders. Here, we describe a crucial role for the Kv7.4 potassium channel in modulating DRN 5-HT neuronal excitability. We demonstrate that Kv7.4 is selectively expressed in 5-HT neurons of the DRN. Using selective Kv7.4 opener fasudil and Kv7.4 knock-out mice, we demonstrate that Kv7.4 is a potent modulator of DRN 5-HT neuronal excitability. Furthermore, we demonstrate that the cellular redox signaling mechanism is involved in this 5-HT activation of Kv7.4. The current study suggests a new strategy for treating psychiatric disorders related to altered activity of DRN 5-HT neurons using K+ channel modulators. PMID:29311835

  1. Neuronal nicotinic acetylcholine receptor subunits in autism: an immunohistochemical investigation in the thalamus.

    PubMed

    Ray, M A; Graham, A J; Lee, M; Perry, R H; Court, J A; Perry, E K

    2005-08-01

    The cholinergic system has been implicated in the development of autism on the basis of neuronal nicotinic acetylcholine receptor (nAChR) losses in cerebral and cerebellar cortex. In the present study, the first to explore nAChRs in the thalamus in autism, alpha4, alpha7 and beta2 nAChR subunit expression in thalamic nuclei of adult individuals with autism (n=3) and age-matched control cases (n=3) was investigated using immunochemical methods. Loss of alpha7- and beta2- (but not alpha4-) immunoreactive neurons occurred in the paraventricular nucleus (PV) and nucleus reuniens in autism. Preliminary results indicated glutamic acid decarboxylase immunoreactivity occurred at a low level in PV, co-expressed with alpha7 in normal and autistic cases and was not reduced in autism. This suggested loss of neuronal alpha7 in autism is not caused by loss of GABAergic neurons. These findings indicate nicotinic abnormalities that occur in the thalamus in autism which may contribute to sensory or attentional deficits.

  2. Clinical correlates of enlarged prostate size in subjects with sexual dysfunction

    PubMed Central

    Corona, Giovanni; Gacci, Mauro; Maseroli, Elisa; Rastrelli, Giulia; Vignozzi, Linda; Sforza, Alessandra; Forti, Gianni; Mannucci, Edoardo; Maggi, Mario

    2014-01-01

    Digito-rectal examination (DRE) of the prostate provides useful information on the state of prostate growth and on the presence of suspected peripheral nodules. The aim of this study is to describe the clinical and biochemical correlates of finding an enlarged prostate size at DRE in subjects with sexual dysfunction (SD). A consecutive series of 2379 patients was retrospectively studied. The analysis was focused on a subset of subjects (n = 1823; mean age 54.7 ± 11.4) selected for being free from overt prostatic diseases. Several parameters were investigated. After adjusting for confounders, the presence of an enlarged prostate size at DRE was associated with a higher risk of metabolic syndrome (HR = 1.346 (1.129–1.759); P = 0.030), type 2 diabetes mellitus (HR = 1.489 (1.120–1.980); P = 0.006), increased LDL cholesterol (>100 mg dl−1; HR = 1.354 (1.018–1.801); P = 0.037) and increased mean blood pressure (BP) values (HR = 1.017 (1.007–1.027) for each mmHg increment; P = 0.001). Accordingly, enlarged prostate size was also associated with a higher risk of arteriogenic erectile dysfunction (ED), as well as with other andrological conditions, such as varicocele and premature ejaculation (PE). PSA levels were significantly higher in subjects with enlarged prostate size when compared to the rest of the sample (HR = 3.318 (2.304; 4.799) for each log unit increment in PSA levels; P < 0.0001). Arteriogenic ED, according to different criteria, was also associated with increased PSA levels. In conclusion, our data support the need to examine prostate size either by clinical (DRE) or biochemical (PSA) inspection in subjects with SD, in order to have insights into the nature of the SD and the metabolic and cardiovascular (CV) background of the patient. PMID:24830688

  3. Glial degeneration with oxidative damage drives neuronal demise in MPSII disease

    PubMed Central

    Zalfa, Cristina; Verpelli, Chiara; D'Avanzo, Francesca; Tomanin, Rosella; Vicidomini, Cinzia; Cajola, Laura; Manara, Renzo; Sala, Carlo; Scarpa, Maurizio; Vescovi, Angelo Luigi; De Filippis, Lidia

    2016-01-01

    Mucopolysaccharidosis type II (MPSII) is a lysosomal storage disorder due to the deficit of the iduronate 2-sulfatase (IDS) enzyme, causing progressive neurodegeneration in patients. Neural stem cells (NSCs) derived from the IDS-ko mouse can recapitulate MPSII pathogenesis in vitro. In differentiating IDS-ko NSCs and in the aging IDS-ko mouse brain, glial degeneration precedes neuronal degeneration. Here we show that pure IDS-ko NSC-derived astrocytes are selectively able to drive neuronal degeneration when cocultured with healthy neurons. This phenotype suggests concurrent oxidative damage with metabolic dysfunction. Similar patterns were observed in murine IDS-ko animals and in human MPSII brains. Most importantly, the mutant phenotype of IDS-ko astrocytes was reversed by low oxygen conditions and treatment with vitamin E, which also reversed the toxic effect on cocultured neurons. Moreover, at very early stages of disease we detected in vivo the development of a neuroinflammatory background that precedes astroglial degeneration, thus suggesting a novel model of MPSII pathogenesis, with neuroinflammation preceding glial degeneration, which is finally followed by neuronal death. This hypothesis is also consistent with the progression of white matter abnormalities in MPSII patients. Our study represents a novel breakthrough in the elucidation of MPSII brain pathogenesis and suggests the antioxidant molecules as potential therapeutic tools to delay MPSII onset and progression. PMID:27512952

  4. Glial degeneration with oxidative damage drives neuronal demise in MPSII disease.

    PubMed

    Zalfa, Cristina; Verpelli, Chiara; D'Avanzo, Francesca; Tomanin, Rosella; Vicidomini, Cinzia; Cajola, Laura; Manara, Renzo; Sala, Carlo; Scarpa, Maurizio; Vescovi, Angelo Luigi; De Filippis, Lidia

    2016-08-11

    Mucopolysaccharidosis type II (MPSII) is a lysosomal storage disorder due to the deficit of the iduronate 2-sulfatase (IDS) enzyme, causing progressive neurodegeneration in patients. Neural stem cells (NSCs) derived from the IDS-ko mouse can recapitulate MPSII pathogenesis in vitro. In differentiating IDS-ko NSCs and in the aging IDS-ko mouse brain, glial degeneration precedes neuronal degeneration. Here we show that pure IDS-ko NSC-derived astrocytes are selectively able to drive neuronal degeneration when cocultured with healthy neurons. This phenotype suggests concurrent oxidative damage with metabolic dysfunction. Similar patterns were observed in murine IDS-ko animals and in human MPSII brains. Most importantly, the mutant phenotype of IDS-ko astrocytes was reversed by low oxygen conditions and treatment with vitamin E, which also reversed the toxic effect on cocultured neurons. Moreover, at very early stages of disease we detected in vivo the development of a neuroinflammatory background that precedes astroglial degeneration, thus suggesting a novel model of MPSII pathogenesis, with neuroinflammation preceding glial degeneration, which is finally followed by neuronal death. This hypothesis is also consistent with the progression of white matter abnormalities in MPSII patients. Our study represents a novel breakthrough in the elucidation of MPSII brain pathogenesis and suggests the antioxidant molecules as potential therapeutic tools to delay MPSII onset and progression.

  5. Photographic Enlargement of Printed Music: Technique, Application, and Implications.

    ERIC Educational Resources Information Center

    Flynn, Pauline T.; Rich, A. Jeanette

    1982-01-01

    Addressed a need for enlargement of music when retirement home residents were deprived of a self-fulfillment opportunity from choir activities due to failing eyesight. A photographic process yielded the needed feasible large reproductions. Innovative application of this technique affords wide-ranging potential for positive benefit beyond music…

  6. Characteristics and significance of D-tagatose-induced liver enlargement in rats: An interpretative review.

    PubMed

    Bär, A

    1999-04-01

    This review addresses the issue of asymptomatic liver enlargement in rats. It was necessitated by the observation of significantly increased liver weights in rats fed diets with 10 to 20% D-tagatose, a potential new bulk sweetener, for between 28 and 90 days. Increases of liver size without accompanying histopathological changes or impairment of organ function have been observed in rats in response to the ingestion of various xenobiotic compounds (including some food additives), changes of dietary composition (e.g. , high doses of fructose and sucrose), metabolic aberrations (e.g., diabetes), as well as normal pregnancy and lactation. The underlying mechanism(s) are not yet understood in detail but peroxisome proliferation, microsomal enzyme induction, increased storage of glycogen or lipids, and hyperfunction due to an excessive workload are well-established causes of hepatomegaly in rats. In D-tagatose- and fructose-fed rats, a treatment-related increase of hepatic glycogen storage was identified as a likely cause of the liver enlargement. Dietary levels of 5% and about 15-20% were determined as no-effect levels (NOEL) for D-tagatose- and fructose-induced liver enlargement, respectively. At doses above the NOEL, D-tagatose is about four times more efficient than fructose in inducing liver enlargement. On the other hand, the estimated intake of D-tagatose from its intended uses in food is about four times lower than the actual fructose intake. Consequently, a similar safety margin would apply for both sugars. Considering the similarity of the liver effects in rats of fructose, a safe food ingredient, and D-tagatose, the absence of histopathological changes in rats fed a diet with 20% D-tagatose for 90 days, and the absence of adverse long-term consequences of glycogen-induced liver enlargement in rats, it is concluded that the observed liver enlargement in D-tagatose-fed rats has no relevance for the assessment of human safety of this substance. Copyright 1999

  7. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models

    PubMed Central

    Barmada, Sami J.; Serio, Andrea; Arjun, Arpana; Bilican, Bilada; Daub, Aaron; Ando, D. Michael; Tsvetkov, Andrey; Pleiss, Michael; Li, Xingli; Peisach, Daniel; Shaw, Christopher; Chandran, Siddharthan; Finkbeiner, Steven

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have distinct clinical features but a common pathology—cytoplasmic inclusions rich in TDP43. Rare TDP43 mutations cause ALS or FTD, but abnormal TDP43 levels and localization may cause disease even if TDP43 lacks a mutation. Here we showed that individual neurons vary in their ability to clear TDP43 and are exquisitely sensitive to TDP43 levels. To measure TDP43 clearance, we developed and validated a single-cell optical method that overcomes the confounding effects of aggregation and toxicity, and discovered that pathogenic mutations significantly shorten TDP43 half-life. Novel compounds that stimulate autophagy improved TDP43 clearance and localization, and enhanced survival in primary murine neurons and in human stem cell–derived neurons and astrocytes harboring mutant TDP43. These findings indicate that the levels and localization of TDP43 critically determine neurotoxicity and show that autophagy induction mitigates neurodegeneration by acting directly on TDP43 clearance. PMID:24974230

  8. Brain-region–specific alterations of the trajectories of neuronal volume growth throughout the lifespan in autism

    PubMed Central

    2014-01-01

    Several morphometric studies have revealed smaller than normal neurons in the neocortex of autistic subjects. To test the hypothesis that abnormal neuronal growth is a marker of an autism-associated global encephalopathy, neuronal volumes were estimated in 16 brain regions, including various subcortical structures, Ammon’s horn, archicortex, cerebellum, and brainstem in 14 brains from individuals with autism 4 to 60 years of age and 14 age-matched control brains. This stereological study showed a significantly smaller volume of neuronal soma in 14 of 16 regions in the 4- to 8-year-old autistic brains than in the controls. Arbitrary classification revealed a very severe neuronal volume deficit in 14.3% of significantly altered structures, severe in 50%, moderate in 21.4%, and mild in 14.3% structures. This pattern suggests desynchronized neuronal growth in the interacting neuronal networks involved in the autistic phenotype. The comparative study of the autistic and control subject brains revealed that the number of structures with a significant volume deficit decreased from 14 in the 4- to 8-year-old autistic subjects to 4 in the 36- to 60-year-old. Neuronal volumes in 75% of the structures examined in the older adults with autism are comparable to neuronal volume in age-matched controls. This pattern suggests defects of neuronal growth in early childhood and delayed up-regulation of neuronal growth during adolescence and adulthood reducing neuron soma volume deficit in majority of examined regions. However, significant correction of neuron size but limited clinical improvements suggests that delayed correction does not restore functional deficits. PMID:24612906

  9. Morphological remodeling of C. elegans neurons during aging is modified by compromised protein homeostasis

    PubMed Central

    Vayndorf, Elena M; Scerbak, Courtney; Hunter, Skyler; Neuswanger, Jason R; Toth, Marton; Parker, J Alex; Neri, Christian; Driscoll, Monica; Taylor, Barbara E

    2016-01-01

    Understanding cellular outcomes, such as neuronal remodeling, that are common to both healthy and diseased aging brains is essential to the development of successful brain aging strategies. Here, we used Caenorhabdits elegans to investigate how the expression of proteotoxic triggers, such as polyglutamine (polyQ)-expanded huntingtin and silencing of proteostasis regulators, such as the ubiquitin–proteasome system (UPS) and protein clearance components, may impact the morphological remodeling of individual neurons as animals age. We examined the effects of disrupted proteostasis on the integrity of neuronal cytoarchitecture by imaging a transgenic C. elegans strain in which touch receptor neurons express the first 57 amino acids of the human huntingtin (Htt) gene with expanded polyQs (128Q) and by using neuron-targeted RNA interference in adult wild-type neurons to knockdown genes encoding proteins involved in proteostasis. We found that proteostatic challenges conferred by polyQ-expanded Htt and knockdown of specific genes involved in protein homeostasis can lead to morphological changes that are restricted to specific domains of specific neurons. The age-associated branching of PLM neurons is suppressed by N-ter polyQ-expanded Htt expression, whereas ALM neurons with polyQ-expanded Htt accumulate extended outgrowths and other soma abnormalities. Furthermore, knockdown of genes important for ubiquitin-mediated degradation, lysosomal function, and autophagy modulated these age-related morphological changes in otherwise normal neurons. Our results show that the expression of misfolded proteins in neurodegenerative disease such as Huntington’s disease modifies the morphological remodeling that is normally associated with neuronal aging. Our results also show that morphological remodeling of healthy neurons during aging can be regulated by the UPS and other proteostasis pathways. Collectively, our data highlight a model in which morphological remodeling during

  10. Ventricular enlargement as a possible measure of Alzheimer's disease progression validated using the Alzheimer's disease neuroimaging initiative database

    PubMed Central

    Nestor, Sean M.; Rupsingh, Raul; Borrie, Michael; Smith, Matthew; Accomazzi, Vittorio; Wells, Jennie L.; Fogarty, Jennifer

    2008-01-01

    Ventricular enlargement may be an objective and sensitive measure of neuropathological change associated with mild cognitive impairment (MCI) and Alzheimer's disease (AD), suitable to assess disease progression for multi-centre studies. This study compared (i) ventricular enlargement after six months in subjects with MCI, AD and normal elderly controls (NEC) in a multi-centre study, (ii) volumetric and cognitive changes between Apolipoprotein E genotypes, (iii) ventricular enlargement in subjects who progressed from MCI to AD, and (iv) sample sizes for multi-centre MCI and AD studies based on measures of ventricular enlargement. Three dimensional T1-weighted MRI and cognitive measures were acquired from 504 subjects (NEC n = 152, MCI n = 247 and AD n = 105) participating in the multi-centre Alzheimer's Disease Neuroimaging Initiative. Cerebral ventricular volume was quantified at baseline and after six months using semi-automated software. For the primary analysis of ventricle and neurocognitive measures, between group differences were evaluated using an analysis of covariance, and repeated measures t-tests were used for within group comparisons. For secondary analyses, all groups were dichotomized for Apolipoprotein E genotype based on the presence of an ε4 polymorphism. In addition, the MCI group was dichotomized into those individuals who progressed to a clinical diagnosis of AD, and those subjects that remained stable with MCI after six months. Group differences on neurocognitive and ventricle measures were evaluated by independent t-tests. General sample size calculations were computed for all groups derived from ventricle measurements and neurocognitive scores. The AD group had greater ventricular enlargement compared to both subjects with MCI (P = 0.0004) and NEC (P < 0.0001), and subjects with MCI had a greater rate of ventricular enlargement compared to NEC (P = 0.0001). MCI subjects that progressed to clinical AD after six months had greater ventricular

  11. Abnormalities in Dynamic Brain Activity Caused by Mild Traumatic Brain Injury Are Partially Rescued by the Cannabinoid Type-2 Receptor Inverse Agonist SMM-189

    PubMed Central

    McAfee, Samuel S.; Guley, Natalie M.; Del Mar, Nobel; Bu, Wei; Heldt, Scott A.; Honig, Marcia G.; Moore, Bob M.

    2017-01-01

    Abstract Mild traumatic brain injury (mTBI) can cause severe long-term cognitive and emotional deficits, including impaired memory, depression, and persevering fear, but the neuropathological basis of these deficits is uncertain. As medial prefrontal cortex (mPFC) and hippocampus play important roles in memory and emotion, we used multi-site, multi-electrode recordings of oscillatory neuronal activity in local field potentials (LFPs) in awake, head-fixed mice to determine if the functioning of these regions was abnormal after mTBI, using a closed-skull focal cranial blast model. We evaluated mPFC, hippocampus CA1, and primary somatosensory/visual cortical areas (S1/V1). Although mTBI did not alter the power of oscillations, it did cause increased coherence of θ (4-10 Hz) and β (10-30 Hz) oscillations within mPFC and S1/V1, reduced CA1 sharp-wave ripple (SWR)-evoked LFP activity in mPFC, downshifted SWR frequencies in CA1, and enhanced θ-γ phase-amplitude coupling (PAC) within mPFC. These abnormalities might be linked to the impaired memory, depression, and persevering fear seen after mTBI. Treatment with the cannabinoid type-2 (CB2) receptor inverse agonist SMM-189 has been shown to mitigate functional deficits and neuronal injury after mTBI in mice. We found that SMM-189 also reversed most of the observed neurophysiological abnormalities. This neurophysiological rescue is likely to stem from the previously reported reduction in neuron loss and/or the preservation of neuronal function and connectivity resulting from SMM-189 treatment, which appears to stem from the biasing of microglia from the proinflammatory M1 state to the prohealing M2 state by SMM-189. PMID:28828401

  12. Abnormalities in Dynamic Brain Activity Caused by Mild Traumatic Brain Injury Are Partially Rescued by the Cannabinoid Type-2 Receptor Inverse Agonist SMM-189.

    PubMed

    Liu, Yu; McAfee, Samuel S; Guley, Natalie M; Del Mar, Nobel; Bu, Wei; Heldt, Scott A; Honig, Marcia G; Moore, Bob M; Reiner, Anton; Heck, Detlef H

    2017-01-01

    Mild traumatic brain injury (mTBI) can cause severe long-term cognitive and emotional deficits, including impaired memory, depression, and persevering fear, but the neuropathological basis of these deficits is uncertain. As medial prefrontal cortex (mPFC) and hippocampus play important roles in memory and emotion, we used multi-site, multi-electrode recordings of oscillatory neuronal activity in local field potentials (LFPs) in awake, head-fixed mice to determine if the functioning of these regions was abnormal after mTBI, using a closed-skull focal cranial blast model. We evaluated mPFC, hippocampus CA1, and primary somatosensory/visual cortical areas (S1/V1). Although mTBI did not alter the power of oscillations, it did cause increased coherence of θ (4-10 Hz) and β (10-30 Hz) oscillations within mPFC and S1/V1, reduced CA1 sharp-wave ripple (SWR)-evoked LFP activity in mPFC, downshifted SWR frequencies in CA1, and enhanced θ-γ phase-amplitude coupling (PAC) within mPFC. These abnormalities might be linked to the impaired memory, depression, and persevering fear seen after mTBI. Treatment with the cannabinoid type-2 (CB2) receptor inverse agonist SMM-189 has been shown to mitigate functional deficits and neuronal injury after mTBI in mice. We found that SMM-189 also reversed most of the observed neurophysiological abnormalities. This neurophysiological rescue is likely to stem from the previously reported reduction in neuron loss and/or the preservation of neuronal function and connectivity resulting from SMM-189 treatment, which appears to stem from the biasing of microglia from the proinflammatory M1 state to the prohealing M2 state by SMM-189.

  13. A Role for Hypocretin/Orexin in Metabolic and Sleep Abnormalities in a Mouse Model of Non-metastatic Breast Cancer.

    PubMed

    Borniger, Jeremy C; Walker Ii, William H; Surbhi; Emmer, Kathryn M; Zhang, Ning; Zalenski, Abigail A; Muscarella, Stevie L; Fitzgerald, Julie A; Smith, Alexandra N; Braam, Cornelius J; TinKai, Tial; Magalang, Ulysses J; Lustberg, Maryam B; Nelson, Randy J; DeVries, A Courtney

    2018-05-14

    We investigated relationships among immune, metabolic, and sleep abnormalities in mice with non-metastatic mammary cancer. Tumor-bearing mice displayed interleukin-6 (IL-6)-mediated peripheral inflammation, coincident with altered hepatic glucose processing and sleep. Tumor-bearing mice were hyperphagic, had reduced serum leptin concentrations, and enhanced sensitivity to exogenous ghrelin. We tested whether these phenotypes were driven by inflammation using neutralizing monoclonal antibodies against IL-6; despite the reduction in IL-6 signaling, metabolic and sleep abnormalities persisted. We next investigated neural populations coupling metabolism and sleep, and observed altered activity within lateral-hypothalamic hypocretin/orexin (HO) neurons. We used a dual HO-receptor antagonist to test whether increased HO signaling was causing metabolic abnormalities. This approach rescued metabolic abnormalities and enhanced sleep quality in tumor-bearing mice. Peripheral sympathetic denervation prevented tumor-induced increases in serum glucose. Our results link metabolic and sleep abnormalities via the HO system, and provide evidence that central neuromodulators contribute to tumor-induced changes in metabolism. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. RELATIONSHIP BETWEEN ENTROPY OF SPIKE TIMING AND FIRING RATE IN ENTOPEDUNCULAR NUCLEUS NEURONS IN ANESTHETIZED RATS: FUNCTION OF THE NIGRO-STRIATAL PATHWAY

    PubMed Central

    Darbin, Olivier; Jin, Xingxing; von Wrangel, Christof; Schwabe, Kerstin; Nambu, Atsushi; Naritoku, Dean K; Krauss, Joachim K.; Alam, Mesbah

    2016-01-01

    The function of the nigro-striatal pathway on neuronal entropy in the basal ganglia (BG) output nucleus (entopeduncular nucleus, EPN) was investigated in the unilaterally 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson’s disease (PD). In both control subjects and subjects with 6-OHDA lesion of the nigro-striatal pathway, a histological hallmark for parkinsonism, neuronal entropy in EPN was maximal in neurons with firing rates ranging between 15Hz and 25 Hz. In 6-OHDA lesioned rats, neuronal entropy in the EPN was specifically higher in neurons with firing rates above 25Hz. Our data establishes that nigro-striatal pathway controls neuronal entropy in motor circuitry and that the parkinsonian condition is associated with abnormal relationship between firing rate and neuronal entropy in BG output nuclei. The neuronal firing rates and entropy relationship provide putative relevant electrophysiological information to investigate the sensory-motor processing in normal condition and conditions with movement disorders. PMID:26711712

  15. Abnormal Mitochondrial Dynamics and Synaptic Degeneration as Early Events in Alzheimer’s Disease: Implications to Mitochondria-Targeted Antioxidant Therapeutics

    PubMed Central

    Reddy, P. Hemachandra; Tripathy, Raghav; Troung, Quang; Thirumala, Karuna; Reddy, Tejaswini P.; Anekonda, Vishwanath; Shirendeb, Ulziibat P.; Calkins, Marcus J.; Reddy, Arubala P.; Mao, Peizhong; Manczak, Maria

    2011-01-01

    Synaptic pathology and mitochondrial oxidative damage are early events in Alzheimer’s disease (AD) progression. Loss of synapses and synaptic damage are the best correlate of cognitive deficits found in AD patients. Recent research on amyloid bet (Aβ) and mitochondria in AD revealed that Aβ accumulates in synapses and synaptic mitochondria, leading to abnormal mitochondrial dynamics and synaptic degeneration in AD neurons. Further, recent studies using live-cell imaging and primary neurons from amyloid beta precursor protein (AβPP) transgenic mice revealed that reduced mitochondrial mass, defective axonal transport of mitochondria and synaptic degeneration, indicating that Aβ is responsible for mitochondrial and synaptic deficiencies. Tremendous progress has been made in studying antioxidant approaches in mouse models of AD and clinical trials of AD patients. This article highlights the recent developments made in Aβ-induced abnormal mitochondrial dynamics, defective mitochondrial biogenesis, impaired axonal transport and synaptic deficiencies in AD. This article also focuses on mitochondrial approaches in treating AD, and also discusses latest research on mitochondria-targeted antioxidants in AD. PMID:22037588

  16. Abnormal nuclear envelopes in the striatum and motor deficits in DYT11 myoclonus-dystonia mouse models

    PubMed Central

    Yokoi, Fumiaki; Dang, Mai T.; Zhou, Tong; Li, Yuqing

    2012-01-01

    DYT11 myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonic symptoms and caused by mutations in paternally expressed SGCE, which codes for ɛ-sarcoglycan. Paternally inherited Sgce heterozygous knock-out (KO) mice exhibit motor deficits and spontaneous myoclonus. Abnormal nuclear envelopes have been reported in cellular and mouse models of early-onset DYT1 generalized torsion dystonia; however, the relationship between the abnormal nuclear envelopes and motor symptoms are not clear. Furthermore, it is not known whether abnormal nuclear envelope exists in non-DYT1 dystonia. In the present study, abnormal nuclear envelopes in the striatal medium spiny neurons (MSNs) were found in Sgce KO mice. To analyze whether the loss of ɛ-sarcoglycan in the striatum alone causes abnormal nuclear envelopes, motor deficits or myoclonus, we produced paternally inherited striatum-specific Sgce conditional KO (Sgce sKO) mice and analyzed their phenotypes. Sgce sKO mice exhibited motor deficits in both beam-walking and accelerated rotarod tests, while they did not exhibit abnormal nuclear envelopes, alteration in locomotion, or myoclonus. The results suggest that the loss of ɛ-sarcoglycan in the striatum contributes to motor deficits, while it alone does not produce abnormal nuclear envelopes or myoclonus. Development of therapies targeting the striatum to compensate for the loss of ɛ-sarcoglycan function may rescue the motor deficits in DYT11 M-D patients. PMID:22080833

  17. Hemispheric comparisons of neuron density in the planum temporale of schizophrenia and nonpsychiatric brains

    PubMed Central

    Smiley, John F.; Rosoklija, Gorazd; Mancevski, Branislav; Pergolizzi, Denise; Figarsky, Khadija; Bleiwas, Cynthia; Duma, Aleksej; Mann, J. John; Javitt, Daniel C.; Dwork, Andrew J.

    2010-01-01

    Postmortem and in vivo studies of schizophrenia frequently reveal reduced cortical volume, but the underlying cellular abnormalities are incompletely defined. One influential hypothesis, especially investigated in Brodmann’s area 9 of prefrontal cortex, is that the number of neurons is normal, and the volume change is caused by reduction of the surrounding neuropil. However, studies have differed on whether the cortex has the increased neuron density that is predicted by this hypothesis. In a recent study of bilateral planum temporale (PT), we reported smaller volume and width of the outer cortex (layers I-III), especially in the left hemisphere, among subjects with schizophrenia. In the present study, we measured neuron density and size in the same PT samples, and also in prefrontal area 9 of the same brains. In the PT, separate stereological measurements were made in layers II, IIIc, and VI, whereas area 9 was sampled in layer IIIb-c. In both cortical regions, there was no significant effect of schizophrenia on neuronal density or size. There was, nevertheless, a trend-level right>left hemispheric asymmetry of neuron density in the PT, which may partially explain the previously reported left>right asymmetry of cortical width. In schizophrenia, our findings suggest that closer packing of neurons may not always explain reduced cortical volume, and subtly decreased neuron number may be a contributing factor. PMID:21377842

  18. A proteomics study of hyperhomocysteinemia injury of the hippocampal neurons using iTRAQ.

    PubMed

    Fang, Min; Wang, Jing; Yan, Han; Zhao, Yan-Xin; Liu, Xue-Yuan

    2014-11-01

    High levels of homocysteine, caused by abnormal methionine metabolism, can induce degeneration of mouse hippocampal neurons. iTRAQ™ technology has been widely used in the field of proteomics research and through employing this technology, the present study identified that hyperhomocysteinemia induced the downregulation of 52 proteins and upregulation of 44 proteins in the mouse hippocampus. Through gene ontology and pathway analysis, the upregulation of components of the cytoskeleton, actin, regulators of focal adhesion, calcium signaling pathways, tight junctions, ErbB and gonadotrophin‑releasing hormone signaling, leukocyte, transendothelial migration, propanoate and pyruvate metabolism, valine, leucine and isoleucine biosynthesis, synthesis and degradation of ketone bodies and benzoate degradation via CoA ligation pathway, was identified. It was additionally verified that tau protein was highly expressed in the hyperhomocysteinemic neurons. Further analysis revealed that tau network proteins played functional roles in homocysteine‑induced neuronal damage.

  19. Developmental basis for telencephalon expansion in waterfowl: enlargement prior to neurogenesis

    PubMed Central

    Charvet, Christine J.; Striedter, Georg F.

    2009-01-01

    Some altricial and some precocial species of birds have evolved enlarged telencephalons compared with other birds. Previous work has shown that finches and parakeets, two species that hatch in an immature (i.e. altricial) state, enlarged their telencephalon by delaying telencephalic neurogenesis. To determine whether species that hatch in a relatively mature (i.e. precocial) state also enlarged their telencephalon by delaying telencephalic neurogenesis, we examined brain development in geese, ducks, turkeys and chickens, which are all precocial. Whereas the telencephalon occupies less than 55 per cent of the brain in chickens and turkeys, it occupies more than 65 per cent in ducks and geese. To determine how these species differences in adult brain region proportions arise during development, we examined brain maturation (i.e. neurogenesis timing) and estimated telencephalon, tectum and medulla volumes from serial Nissl-stained sections in the four species. We found that incubation time predicts the timing of neurogenesis in all major brain regions and that the telencephalon is proportionally larger in ducks and geese before telencephalic neurogenesis begins. These findings demonstrate that the expansion of the telencephalon in ducks and geese is achieved by altering development prior to neurogenesis onset. Thus, precocial and altricial species evolved different developmental strategies to expand their telencephalon. PMID:19605398

  20. Developmental basis for telencephalon expansion in waterfowl: enlargement prior to neurogenesis.

    PubMed

    Charvet, Christine J; Striedter, Georg F

    2009-10-07

    Some altricial and some precocial species of birds have evolved enlarged telencephalons compared with other birds. Previous work has shown that finches and parakeets, two species that hatch in an immature (i.e. altricial) state, enlarged their telencephalon by delaying telencephalic neurogenesis. To determine whether species that hatch in a relatively mature (i.e. precocial) state also enlarged their telencephalon by delaying telencephalic neurogenesis, we examined brain development in geese, ducks, turkeys and chickens, which are all precocial. Whereas the telencephalon occupies less than 55 per cent of the brain in chickens and turkeys, it occupies more than 65 per cent in ducks and geese. To determine how these species differences in adult brain region proportions arise during development, we examined brain maturation (i.e. neurogenesis timing) and estimated telencephalon, tectum and medulla volumes from serial Nissl-stained sections in the four species. We found that incubation time predicts the timing of neurogenesis in all major brain regions and that the telencephalon is proportionally larger in ducks and geese before telencephalic neurogenesis begins. These findings demonstrate that the expansion of the telencephalon in ducks and geese is achieved by altering development prior to neurogenesis onset. Thus, precocial and altricial species evolved different developmental strategies to expand their telencephalon.

  1. Complexity in neuronal noise depends on network interconnectivity.

    PubMed

    Serletis, Demitre; Zalay, Osbert C; Valiante, Taufik A; Bardakjian, Berj L; Carlen, Peter L

    2011-06-01

    "Noise," or noise-like activity (NLA), defines background electrical membrane potential fluctuations at the cellular level of the nervous system, comprising an important aspect of brain dynamics. Using whole-cell voltage recordings from fast-spiking stratum oriens interneurons and stratum pyramidale neurons located in the CA3 region of the intact mouse hippocampus, we applied complexity measures from dynamical systems theory (i.e., 1/f(γ) noise and correlation dimension) and found evidence for complexity in neuronal NLA, ranging from high- to low-complexity dynamics. Importantly, these high- and low-complexity signal features were largely dependent on gap junction and chemical synaptic transmission. Progressive neuronal isolation from the surrounding local network via gap junction blockade (abolishing gap junction-dependent spikelets) and then chemical synaptic blockade (abolishing excitatory and inhibitory post-synaptic potentials), or the reverse order of these treatments, resulted in emergence of high-complexity NLA dynamics. Restoring local network interconnectivity via blockade washout resulted in resolution to low-complexity behavior. These results suggest that the observed increase in background NLA complexity is the result of reduced network interconnectivity, thereby highlighting the potential importance of the NLA signal to the study of network state transitions arising in normal and abnormal brain dynamics (such as in epilepsy, for example).

  2. DLP1-Dependent Mitochondrial Fragmentation Mediates 1-methyl-4-phenylpyridinium Toxicity in Neurons: Implications for Parkinson's Disease

    PubMed Central

    Wang, Xinglong; Su, Bo; Liu, Wanhong; He, Xiaohua; Gao, Yuan; Castellani, Rudy J.; Perry, George; Smith, Mark A.; Zhu, Xiongwei

    2011-01-01

    SUMMARY Selective degeneration of nigrostriatal dopaminergic neurons in Parkinson disease (PD) can be modeled by the administration of the neurotoxin 1-methyl-4-phenylpyridinium (MPP+). Since abnormal mitochondrial dynamics are increasingly implicated in the pathogenesis of PD, in this study, we investigated the effect of MPP+ on mitochondrial dynamics and assessed temporal and causal relationship with other toxic effects induced by MPP+ in neuronal cells. In SH-SY5Y cells, MPP+ causes a rapid increase in mitochondrial fragmentation followed by a second wave of increase in mitochondrial fragmentation, along with increased DLP1 expression and mitochondrial translocation. Genetic inactivation of DLP1 completely blocks MPP+-induced mitochondrial fragmentation. Notably, this approach partially rescues MPP+-induced decline in ATP levels and ATP/ADP ratio and increased [Ca2+]i and almost completely prevents increased reactive oxygen species production, loss of mitochondrial membrane potential, enhanced autophagy and cell death, suggesting that mitochondria fragmentation is an upstream event that mediates MPP+-induced toxicity. On the other hand, thiol antioxidant NAC or glutamate receptor antagonist D-AP5 also partially alleviate MPP+-induced mitochondrial fragmentation, suggesting a vicious spiral of events contributes to MPP+-induced toxicity. We further validated our findings in primary rat midbrain dopaminergic neurons that 0.5 μM MPP+ induced mitochondrial fragmentation only in TH-positive dopaminergic neurons in a similar pattern to that in SH-SY5Y cells but had no effects on these mitochondrial parameters in TH-negative neurons. Overall, these findings suggest that DLP1-dependent mitochondrial fragmentation plays a crucial role in mediating MPP+-induced mitochondria abnormalities and cellular dysfunction and may represent a novel therapeutic target for PD. PMID:21615675

  3. Rabbit aortic aneurysm model with enlarging diameter capable of better mimicking human aortic aneurysm disease.

    PubMed

    Bi, Yonghua; Chen, Hongmei; Li, Yahua; Yu, Zepeng; Han, Xinwei; Ren, Jianzhuang

    2018-01-01

    The self-healing phenomenon can be found in the elastase-induced abdominal aortic aneurysm (AAA) model, and an enlarging AAA model was successfully induced by coarctation. Unfortunately, aortic coarctation in these enlarging models is generally not found in human AAA disease. This study aimed to create an experiment model of enlarging AAA in rabbits to better mimic human aortic aneurysm disease. Eighty-four male New Zealand white rabbits were randomly divided into three equal groups: two aneurysm groups (A and B) and a SHAM group. Aneurysm group rabbits underwent extrinsic aortic stenosis below the right renal artery and received a 10-minute incubation of 60 μl elastase (1 unit/μl). Absorbable suture was used in Group A and nonabsorbable cotton thread was used in Group B. A sham operation was performed in the SHAM group. Aortic diameter was measured after 1, 3, 7, and 15 weeks; thereafter animals were sacrificed for histopathological, immunohistochemical and quantitative studies. Two rabbits died at 29 and 48 days, respectively, after operation in Group B. All aneurysms formed and enlarged progressively by 3 weeks in the Aneurysm groups. However, diameter enlargement in Group A was significantly lower than that in Group B at 7 weeks. Aneurysm groups developed intimal hyperplasia; intima-media thickness (IMT) increased significantly by week 7, and aortic media thickness and intima-media ratio (IMR) increased significantly by week 15. Marked destruction of elastin fibers and smooth muscle cells (SMCs) occurred 1 week later and increased progressively thereafter. Intimal hyperplasia and SMCs content in Group A increased significantly by week 15 compared with Group B. Aneurysm groups exhibited strong expression of matrix metalloproteinases 2 and 9 and RAM11 by week 1, and decreased progressively thereafter. In conclusion, this novel rabbit AAA model enlarges progressively without coarctation and is capable of better mimicking human aortic aneurysm disease.

  4. Aging-Related Hyperexcitability in CA3 Pyramidal Neurons Is Mediated by Enhanced A-Type K+ Channel Function and Expression.

    PubMed

    Simkin, Dina; Hattori, Shoai; Ybarra, Natividad; Musial, Timothy F; Buss, Eric W; Richter, Hannah; Oh, M Matthew; Nicholson, Daniel A; Disterhoft, John F

    2015-09-23

    Aging-related impairments in hippocampus-dependent cognition have been attributed to maladaptive changes in the functional properties of pyramidal neurons within the hippocampal subregions. Much evidence has come from work on CA1 pyramidal neurons, with CA3 pyramidal neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing in the hippocampal circuit. Here, we use whole-cell current-clamp to demonstrate that aged rat (29-32 months) CA3 pyramidal neurons fire significantly more action potentials (APs) during theta-burst frequency stimulation and that this is associated with faster AP repolarization (i.e., narrower AP half-widths and enlarged fast afterhyperpolarization). Using a combination of patch-clamp physiology, pharmacology, Western blot analyses, immunohistochemistry, and array tomography, we demonstrate that these faster AP kinetics are mediated by enhanced function and expression of Kv4.2/Kv4.3 A-type K(+) channels, particularly within the perisomatic compartment, of CA3 pyramidal neurons. Thus, our study indicates that inhibition of these A-type K(+) channels can restore the intrinsic excitability properties of aged CA3 pyramidal neurons to a young-like state. Significance statement: Age-related learning deficits have been attributed, in part, to altered hippocampal pyramidal neuronal function with normal aging. Much evidence has come from work on CA1 neurons, with CA3 neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing. Hence, we conducted a series of experiments to identify the cellular mechanisms that underlie the hyperexcitability reported in the CA3 region. Contrary to CA1 neurons, we demonstrate that postburst afterhyperpolarization is not altered with aging and that aged CA3 pyramidal neurons are able to fire significantly more action potentials and that this is associated with

  5. Aging-Related Hyperexcitability in CA3 Pyramidal Neurons Is Mediated by Enhanced A-Type K+ Channel Function and Expression

    PubMed Central

    Simkin, Dina; Hattori, Shoai; Ybarra, Natividad; Musial, Timothy F.; Buss, Eric W.; Richter, Hannah; Oh, M. Matthew

    2015-01-01

    Aging-related impairments in hippocampus-dependent cognition have been attributed to maladaptive changes in the functional properties of pyramidal neurons within the hippocampal subregions. Much evidence has come from work on CA1 pyramidal neurons, with CA3 pyramidal neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing in the hippocampal circuit. Here, we use whole-cell current-clamp to demonstrate that aged rat (29–32 months) CA3 pyramidal neurons fire significantly more action potentials (APs) during theta-burst frequency stimulation and that this is associated with faster AP repolarization (i.e., narrower AP half-widths and enlarged fast afterhyperpolarization). Using a combination of patch-clamp physiology, pharmacology, Western blot analyses, immunohistochemistry, and array tomography, we demonstrate that these faster AP kinetics are mediated by enhanced function and expression of Kv4.2/Kv4.3 A-type K+ channels, particularly within the perisomatic compartment, of CA3 pyramidal neurons. Thus, our study indicates that inhibition of these A-type K+ channels can restore the intrinsic excitability properties of aged CA3 pyramidal neurons to a young-like state. SIGNIFICANCE STATEMENT Age-related learning deficits have been attributed, in part, to altered hippocampal pyramidal neuronal function with normal aging. Much evidence has come from work on CA1 neurons, with CA3 neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing. Hence, we conducted a series of experiments to identify the cellular mechanisms that underlie the hyperexcitability reported in the CA3 region. Contrary to CA1 neurons, we demonstrate that postburst afterhyperpolarization is not altered with aging and that aged CA3 pyramidal neurons are able to fire significantly more action potentials and that this is associated with

  6. Fluorescent diamond nanoparticle as a probe of intracellular traffic in primary neurons in culture

    NASA Astrophysics Data System (ADS)

    Le, Xuan Loc; Lepagnol-Bestel, Aude-Marie; Adam, Marie-Pierre; Thomas, Alice; Dantelle, Géraldine; Chang, Cheng-Chun; Mohan, Nitin; Chang, Huan-Cheng; Treussart, François; Simonneau, Michel

    2012-03-01

    Neurons display dendritic spines plasticity and morphology anomalies in numerous psychiatric and neurodegenerative diseases. These changes are associated to abnormal dendritic traffic that can be evidenced by fluorescence microscopy. As a fluorescent probe we propose to use fluorescent diamond nanoparticles with size of < 50 nm. Color centers embedded inside the diamond nanoparticles are perfectly photostable emitters allowing for long-term tracking. Nanodiamond carbon surface is also well suited for biomolecule functionalization to target specific cellular compartments. We show that fluorescent nanodiamonds can be spontaneously internalized in neurons in culture and imaged by confocal and Total Internal Reflection (TIRF) microscopy with a high signal over background ratio.

  7. Association between gingivitis and anterior gingival enlargement in subjects undergoing fixed orthodontic treatment.

    PubMed

    Zanatta, Fabricio Batistin; Ardenghi, Thiago Machado; Antoniazzi, Raquel Pippi; Pinto, Tatiana Militz Perrone; Rösing, Cassiano Kuchenbecker

    2014-01-01

    The aim of this study was to investigate the association among gingival enlargement (GE), periodontal conditions and socio-demographic characteristics in subjects undergoing fixed orthodontic treatment. A sample of 330 patients undergoing fixed orthodontic treatment for at least 6 months were examined by a single calibrated examiner for plaque and gingival indexes, probing pocket depth, clinical attachment loss and gingival enlargement. Socio-economic background, orthodontic treatment duration and use of dental floss were assessed by oral interviews. Associations were assessed by means of unadjusted and adjusted Poisson's regression models. The presence of gingival bleeding (RR 1.01; 95% CI 1.00-1.01) and excess resin around brackets (RR 1.02; 95% CI 1.02-1.03) were associated with an increase in GE. No associations were found between socio-demographic characteristics and GE. Proximal anterior gingival bleeding and excess resin around brackets are associated with higher levels of anterior gingival enlargement in subjects under orthodontic treatment.

  8. Association between gingivitis and anterior gingival enlargement in subjects undergoing fixed orthodontic treatment

    PubMed Central

    Zanatta, Fabricio Batistin; Ardenghi, Thiago Machado; Antoniazzi, Raquel Pippi; Pinto, Tatiana Militz Perrone; Rösing, Cassiano Kuchenbecker

    2014-01-01

    Objective The aim of this study was to investigate the association among gingival enlargement (GE), periodontal conditions and socio-demographic characteristics in subjects undergoing fixed orthodontic treatment. Methods A sample of 330 patients undergoing fixed orthodontic treatment for at least 6 months were examined by a single calibrated examiner for plaque and gingival indexes, probing pocket depth, clinical attachment loss and gingival enlargement. Socio-economic background, orthodontic treatment duration and use of dental floss were assessed by oral interviews. Associations were assessed by means of unadjusted and adjusted Poisson's regression models. Results The presence of gingival bleeding (RR 1.01; 95% CI 1.00-1.01) and excess resin around brackets (RR 1.02; 95% CI 1.02-1.03) were associated with an increase in GE. No associations were found between socio-demographic characteristics and GE. Conclusion Proximal anterior gingival bleeding and excess resin around brackets are associated with higher levels of anterior gingival enlargement in subjects under orthodontic treatment. PMID:25162567

  9. Primary tuberculosis clinically presenting as gingival enlargement: a case report.

    PubMed

    Sharma, C G Dileep; Pradeep, A R; Karthikeyan, B V

    2006-11-01

    Tuberculosis is a chronic systemic granulomatous disease which rarely affects the oral cavity. Oral lesions can be either primary or secondary to systemic tuberculosis, the former being rare. This is a never-before reported case of primary tuberculosis presenting as a localized diffuse gingival enlargement in an 11-year-old Indian female patient. The diagnosis was reached through identification of positive histopathological features, Tuberculin test results, presence of anti-tubercular antibodies confirmed by a polymerase chain reaction. In view of the recent increase in the incidence of tuberculosis and the prevalence of the same, it is reasonable to include tuberculosis in the differential diagnosis of gingival enlargements. This is essential to avoid any serious complications for both the clinician and patient due to a delay in the diagnosis of such a rare but plausible oral condition.

  10. Drosophila Atlastin in motor neurons is required for locomotion and presynaptic function.

    PubMed

    De Gregorio, Cristian; Delgado, Ricardo; Ibacache, Andrés; Sierralta, Jimena; Couve, Andrés

    2017-10-15

    Hereditary spastic paraplegias (HSPs) are characterized by spasticity and weakness of the lower limbs, resulting from length-dependent axonopathy of the corticospinal tracts. In humans, the HSP-related atlastin genes ATL1 - ATL3 catalyze homotypic membrane fusion of endoplasmic reticulum (ER) tubules. How defects in neuronal Atlastin contribute to axonal degeneration has not been explained satisfactorily. Using Drosophila , we demonstrate that downregulation or overexpression of Atlastin in motor neurons results in decreased crawling speed and contraction frequency in larvae, while adult flies show progressive decline in climbing ability. Broad expression in the nervous system is required to rescue the atlastin -null Drosophila mutant ( atl 2 ) phenotype. Importantly, both spontaneous release and the reserve pool of synaptic vesicles are affected. Additionally, axonal secretory organelles are abnormally distributed, whereas presynaptic proteins diminish at terminals and accumulate in distal axons, possibly in lysosomes. Our findings suggest that trafficking defects produced by Atlastin dysfunction in motor neurons result in redistribution of presynaptic components and aberrant mobilization of synaptic vesicles, stressing the importance of ER-shaping proteins and the susceptibility of motor neurons to their mutations or depletion. © 2017. Published by The Company of Biologists Ltd.

  11. Atypical PKC, PKCλ/ι, activates β-secretase and increases Aβ1-40/42 and phospho-tau in mouse brain and isolated neuronal cells, and may link hyperinsulinemia and other aPKC activators to development of pathological and memory abnormalities in Alzheimer's disease.

    PubMed

    Sajan, Mini P; Hansen, Barbara C; Higgs, Margaret G; Kahn, C Ron; Braun, Ursula; Leitges, Michael; Park, Collin R; Diamond, David M; Farese, Robert V

    2018-01-01

    Hyperinsulinemia activates brain Akt and PKC-λ/ι and increases Aβ 1-40/42 and phospho-tau in insulin-resistant animals. Here, we examined underlying mechanisms in mice, neuronal cells, and mouse hippocampal slices. Like Aβ 1-40/42 , β-secretase activity was increased in insulin-resistant mice and monkeys. In insulin-resistant mice, inhibition of hepatic PKC-λ/ι sufficient to correct hepatic abnormalities and hyperinsulinemia simultaneously reversed increases in Akt, atypical protein kinase C (aPKC), β-secretase, and Aβ 1-40/42 , and restored acute Akt activation. However, 2 aPKC inhibitors additionally blocked insulin's ability to activate brain PKC-λ/ι and thereby increase β-secretase and Aβ 1-40/42 . Furthermore, direct blockade of brain aPKC simultaneously corrected an impairment in novel object recognition in high-fat-fed insulin-resistant mice. In neuronal cells and/or mouse hippocampal slices, PKC-ι/λ activation by insulin, metformin, or expression of constitutive PKC-ι provoked increases in β-secretase, Aβ 1-40/42 , and phospho-thr-231-tau that were blocked by various PKC-λ/ι inhibitors, but not by an Akt inhibitor. PKC-λ/ι provokes increases in brain β-secretase, Aβ 1-40/42 , and phospho-thr-231-tau. Excessive signaling via PKC-λ/ι may link hyperinsulinemia and other PKC-λ/ι activators to pathological and functional abnormalities in Alzheimer's disease. Published by Elsevier Inc.

  12. Childhood asymmetric labium majus enlargement: mimicking a neoplasm.

    PubMed

    Vargas, Sara O; Kozakewich, Harry P W; Boyd, Theonia K; Ecklund, Kirsten; Fishman, Steven J; Laufer, Marc R; Perez-Atayde, Antonio R

    2005-08-01

    We report a distinctive lesion of the labium majus resected in 14 girls from 3.9 to 13.2 years of age. All presented with enlargement of 1 or occasionally both labia majora. Radiographic imaging and surgical exploration showed expansion of the labium majus without definable borders. Grossly, specimens consisted of fibro-fatty tissue from 2 to 8 cm in greatest dimension. Microscopic examination revealed the usual constituents of vulvar soft tissue, with expansion of the fibrous component. Sparsely to moderately cellular interconnected bands encircled lobules of fat, blood vessels, and nerves. The bands consisted of plump and occasionally stellate or round fibroblasts immersed in an abundant pale myxoid matrix containing thin collagen fibers. These fibrous bands merged with thinner denser fibrous septa simlar to those seen in the vulva from age-matched controls. Elastic stains showed variably abundant thin parallel elastic fibers. Fibroblasts were immunohistochemically positive for estrogen and progesterone receptors. Electron microscopy showed fibroblasts with dilated rough endoplasmic reticulum cisternae and prominent nuclear fibrous laminae; extracellular matrix contained precollagen, collagen, elastic fibers, and numerous proteoglycan granules. Cytogenetic analysis of 3 lesions revealed a normal karyotype. Recurrence was observed in 7 (50%) patients, and regression was observed in 1 whose recurrence was not reexcised. Over an 11-year period at Children's Hospital (Boston, MA), these lesions represented 22% of all pediatric vulvar soft tissue masses and 3% of all vulvar lesions biopsied. We conclude that "childhood asymmetric labium majus enlargement" is a distinctive clinicopathologic entity of pre- and early puberty. Recognition of this fairly common lesion is important, since it may clinically, radiographically, and histologically mimic an infiltrative neoplasm. Its occurrence at an age roughly coincident with the time of breast budding, capacity for

  13. Fragile X Mental Retardation Protein (FMRP) controls diacylglycerol kinase activity in neurons.

    PubMed

    Tabet, Ricardos; Moutin, Enora; Becker, Jérôme A J; Heintz, Dimitri; Fouillen, Laetitia; Flatter, Eric; Krężel, Wojciech; Alunni, Violaine; Koebel, Pascale; Dembélé, Doulaye; Tassone, Flora; Bardoni, Barbara; Mandel, Jean-Louis; Vitale, Nicolas; Muller, Dominique; Le Merrer, Julie; Moine, Hervé

    2016-06-28

    Fragile X syndrome (FXS) is caused by the absence of the Fragile X Mental Retardation Protein (FMRP) in neurons. In the mouse, the lack of FMRP is associated with an excessive translation of hundreds of neuronal proteins, notably including postsynaptic proteins. This local protein synthesis deregulation is proposed to underlie the observed defects of glutamatergic synapse maturation and function and to affect preferentially the hundreds of mRNA species that were reported to bind to FMRP. How FMRP impacts synaptic protein translation and which mRNAs are most important for the pathology remain unclear. Here we show by cross-linking immunoprecipitation in cortical neurons that FMRP is mostly associated with one unique mRNA: diacylglycerol kinase kappa (Dgkκ), a master regulator that controls the switch between diacylglycerol and phosphatidic acid signaling pathways. The absence of FMRP in neurons abolishes group 1 metabotropic glutamate receptor-dependent DGK activity combined with a loss of Dgkκ expression. The reduction of Dgkκ in neurons is sufficient to cause dendritic spine abnormalities, synaptic plasticity alterations, and behavior disorders similar to those observed in the FXS mouse model. Overexpression of Dgkκ in neurons is able to rescue the dendritic spine defects of the Fragile X Mental Retardation 1 gene KO neurons. Together, these data suggest that Dgkκ deregulation contributes to FXS pathology and support a model where FMRP, by controlling the translation of Dgkκ, indirectly controls synaptic proteins translation and membrane properties by impacting lipid signaling in dendritic spine.

  14. Antiviral treatment normalizes neurophysiological but not movement abnormalities in simian immunodeficiency virus–infected monkeys

    PubMed Central

    Fox, Howard S.; Weed, Michael R.; Huitron-Resendiz, Salvador; Baig, Jamal; Horn, Thomas F.W.; Dailey, Peter J.; Bischofberger, Norbert; Henriksen, Steven J.

    2000-01-01

    Simian immunodeficiency virus (SIV) infection of rhesus monkeys provides an excellent model of the central nervous system (CNS) consequences of HIV infection. To discern the relationship between viral load and abnormalities induced in the CNS by the virus, we infected animals with SIV and later instituted antiviral treatment to lower peripheral viral load. Measurement of sensory-evoked potentials, assessing CNS neuronal circuitry, revealed delayed latencies after infection that could be reversed by lowering viral load. Cessation of treatment led to the reappearance of these abnormalities. In contrast, the decline in general motor activity induced by SIV infection was unaffected by antiviral treatment. An acute increase in the level of the chemokine monocyte chemoattractant protein-1 (MCP-1) was found in the cerebrospinal fluid (CSF) relative to plasma in the infected animals at the peak of acute viremia, likely contributing to an early influx of immune cells into the CNS. Examination of the brains of the infected animals after return of the electrophysiological abnormalities revealed diverse viral and inflammatory findings. Although some of the physiological abnormalities resulting from SIV infection can be at least temporarily reversed by lowering viral load, the viral-host interactions initiated by infection may result in long-lasting changes in CNS-mediated functions. PMID:10880046

  15. Antiviral treatment normalizes neurophysiological but not movement abnormalities in simian immunodeficiency virus-infected monkeys.

    PubMed

    Fox, H S; Weed, M R; Huitron-Resendiz, S; Baig, J; Horn, T F; Dailey, P J; Bischofberger, N; Henriksen, S J

    2000-07-01

    Simian immunodeficiency virus (SIV) infection of rhesus monkeys provides an excellent model of the central nervous system (CNS) consequences of HIV infection. To discern the relationship between viral load and abnormalities induced in the CNS by the virus, we infected animals with SIV and later instituted antiviral treatment to lower peripheral viral load. Measurement of sensory-evoked potentials, assessing CNS neuronal circuitry, revealed delayed latencies after infection that could be reversed by lowering viral load. Cessation of treatment led to the reappearance of these abnormalities. In contrast, the decline in general motor activity induced by SIV infection was unaffected by antiviral treatment. An acute increase in the level of the chemokine monocyte chemoattractant protein-1 (MCP-1) was found in the cerebrospinal fluid (CSF) relative to plasma in the infected animals at the peak of acute viremia, likely contributing to an early influx of immune cells into the CNS. Examination of the brains of the infected animals after return of the electrophysiological abnormalities revealed diverse viral and inflammatory findings. Although some of the physiological abnormalities resulting from SIV infection can be at least temporarily reversed by lowering viral load, the viral-host interactions initiated by infection may result in long-lasting changes in CNS-mediated functions.

  16. Hereditary sensory neuropathy type 1-associated deoxysphingolipids cause neurotoxicity, acute calcium handling abnormalities and mitochondrial dysfunction in vitro.

    PubMed

    Wilson, Emma R; Kugathasan, Umaiyal; Abramov, Andrey Y; Clark, Alex J; Bennett, David L H; Reilly, Mary M; Greensmith, Linda; Kalmar, Bernadett

    2018-05-18

    Hereditary sensory neuropathy type 1 (HSN-1) is a peripheral neuropathy most frequently caused by mutations in the SPTLC1 or SPTLC2 genes, which code for two subunits of the enzyme serine palmitoyltransferase (SPT). SPT catalyzes the first step of de novo sphingolipid synthesis. Mutations in SPT result in a change in enzyme substrate specificity, which causes the production of atypical deoxysphinganine and deoxymethylsphinganine, rather than the normal enzyme product, sphinganine. Levels of these abnormal compounds are elevated in blood of HSN-1 patients and this is thought to cause the peripheral motor and sensory nerve damage that is characteristic of the disease, by a largely unresolved mechanism. In this study, we show that exogenous application of these deoxysphingoid bases causes dose- and time-dependent neurotoxicity in primary mammalian neurons, as determined by analysis of cell survival and neurite length. Acutely, deoxysphingoid base neurotoxicity manifests in abnormal Ca 2+ handling by the endoplasmic reticulum (ER) and mitochondria as well as dysregulation of cell membrane store-operated Ca 2+ channels. The changes in intracellular Ca 2+ handling are accompanied by an early loss of mitochondrial membrane potential in deoxysphingoid base-treated motor and sensory neurons. Thus, these results suggest that exogenous deoxysphingoid base application causes neuronal mitochondrial dysfunction and Ca 2+ handling deficits, which may play a critical role in the pathogenesis of HSN-1. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Electrophysiological characterization of spinal neurons in different models of diabetes type 1- and type 2-induced neuropathy in rats.

    PubMed

    Schuelert, N; Gorodetskaya, N; Just, S; Doods, H; Corradini, L

    2015-04-16

    Diabetic polyneuropathy (DPN) is a devastating complication of diabetes. The underlying pathogenesis of DPN is still elusive and an effective treatment devoid of side effects presents a challenge. There is evidence that in type-1 and -2 diabetes, metabolic and morphological changes lead to peripheral nerve damage and altered central nociceptive transmission, which may contribute to neuropathic pain symptoms. We characterized the electrophysiological response properties of spinal wide dynamic range (WDR) neurons in three diabetic models. The streptozotocin (STZ) model was used as a drug-induced model of type-1 diabetes, and the BioBreeding/Worcester (BB/Wor) and Zucker diabetic fatty (ZDF) rat models were used for genetic DPN models. Data were compared to the respective control group (BB/Wor diabetic-resistant, Zucker lean (ZL) and saline-injected Wistar rat). Response properties of WDR neurons to mechanical stimulation and spontaneous activity were assessed. We found abnormal response properties of spinal WDR neurons in all diabetic rats but not controls. Profound differences between models were observed. In BB/Wor diabetic rats evoked responses were increased, while in ZDF rats spontaneous activity was increased and in STZ rats mainly after discharges were increased. The abnormal response properties of neurons might indicate differential pathological, diabetes-induced, changes in spinal neuronal transmission. This study shows for the first time that specific electrophysiological response properties are characteristic for certain models of DPN and that these might reflect the diverse and complex symptomatology of DPN in the clinic. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Magnetic resonance diffusion tensor imaging of cervical spinal cord and lumbosacral enlargement in patients with cervical spondylotic myelopathy.

    PubMed

    Chen, Xueming; Kong, Chao; Feng, Shiqing; Guan, Hua; Yu, Zhenshan; Cui, Libin; Wang, Yanhui

    2016-06-01

    To identify the correlations of diffusion tensor imaging (DTI) indices between the cervical spinal cord and lumbosacral enlargement in healthy volunteers and patients with cervical spondylotic myelopathy (CSM). DTI was performed at the cervical spinal cord and lumbosacral enlargement in 10 CSM patients and 10 volunteers at 1.5T. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values of were measured and compared between CSM patients and volunteers. DTI indices of different cervical segments in volunteers were compared. DTI indices of the cervical spinal cord were correlated with those of the lumbosacral enlargement. In healthy subjects, DTI indices of different cervical cord sections showed no significant difference (ADC: F = 0.62; P = 0.65; FA: F = 1.228; P = 0.312); there was no correlation between the DTI indices of the cervical spinal cord and those of the lumbosacral enlargement (ADC: r = 0.442, P = 0.201; FA: r = -0.054, P = 0.881). In the CSM patients, the ADC value significantly increased, while the FA value significantly decreased in the cervical spinal cord (ADC: P = 0.002; FA: P < 0.001) and lumbosacral enlargement (ADC: P = 0.003; FA: P < 0.001) compared with the healthy group. Both DTI indices showed no correlation between the cervical spinal cord and those of the lumbosacral enlargement in the CSM group (ADC: r = -0.052, P = 0.887; FA: r = 0.129, P = 0.722). The ADC value of the cervical spinal cord and lumbosacral enlargement in CSM patients showed significant increase compared with healthy volunteers, while the FA value significantly decreased. Both DTI indices of the cervical spinal cord had no linear correlation with those of the lumbosacral enlargement. J. Magn. Reson. Imaging 2016;43:1484-1491. © 2015 Wiley Periodicals, Inc.

  19. Left Atrial Enlargement in Young High-Level Endurance Athletes - Another Sign of Athlete's Heart?

    PubMed

    Król, Wojciech; Jędrzejewska, Ilona; Konopka, Marcin; Burkhard-Jagodzińska, Krystyna; Klusiewicz, Andrzej; Pokrywka, Andrzej; Chwalbińska, Jolanta; Sitkowski, Dariusz; Dłużniewski, Mirosław; Mamcarz, Artur; Braksator, Wojciech

    2016-12-01

    Enlargement of the left atrium is perceived as a part of athlete's heart syndrome, despite the lack of evidence. So far, left atrial size has not been assessed in the context of exercise capacity. The hypothesis of the present study was that LA enlargement in athletes was physiological and fitness-related condition. In addition, we tried to assess the feasibility and normal values of left atrial strain parameters and their relationship with other signs of athlete's heart. The study group consisted of 114 international-level rowers (17.5 ± 1.5 years old; 46.5% women). All participants underwent a cardio-pulmonary exercise test and resting transthoracic echocardiography. Beside standard echocardiographic measurements, two dimensional speckle tracking echocardiography was used to assess average peak atrial longitudinal strain, peak atrial contraction strain and early left atrial diastolic longitudinal strain. Mild, moderate and severe left atrial enlargement was present in 27.2°%, 11.4% and 4.4% athletes, respectively. There were no significant differences between subgroups with different range of left atrial enlargement in any of echocardiographic parameters of the left ventricle diastolic function, filling pressure or hypertrophy. A significant correlation was found between the left atrial volume index and maximal aerobic capacity (R > 0.3; p < 0.001). Left atrial strain parameters were independent of atrial size, left ventricle hypertrophy and left ventricle filling pressure. Decreased peak atrial longitudinal strain was observed in 4 individuals (3.5%). We concluded that LA enlargement was common in healthy, young athletes participating in endurance sport disciplines with a high level of static exertion and was strictly correlated with exercise capacity, therefore, could be perceived as another sign of athlete's heart.

  20. Epidemiology of senile prostatic enlargement among elderly men in Arar, Kingdom of Saudi Arabia

    PubMed Central

    Alanazi, Abdullah Barghash; Alshalan, Anfal Muaddi; Alanazi, Omar Ayed; Alanazi, Munif Salah; Alanazi, Abdulaziz Inad; Alanazi, Abdullah Hussain; Alhadhari, Anwar Mohammed; Alanazi, Ahmed Saad; Alanazi, Rahmah Abdulhadi; Alanazi, Ibtisam Matan; Alanazi, Mohammed Abdullah; Alkhidhr, Mohammed Abdullah; Aldehneen, Hassan Ali; Alanazi, Raed Khalid

    2017-01-01

    Background and aim Senile prostatic enlargement due to benign prostatic hyperplasia (BPH) is a common problem among older men, and is responsible for considerable disability. This study was conducted to determine the prevalence and determinants of the clinically diagnosed prostatic enlargement among elderly men in Arar, Northern Saudi Arabia. Methods This cross-sectional study was carried out on all consented elderly males attending the outpatient clinic of the urology department of Arar Central Hospital from February 2017 to July 30, 2017. Each participant underwent a general examination and digital per rectal to detect general chronic diseases, obesity and prostatic enlargement. Data were analyzed by SPSS version 16, using descriptive statistics and Chi-squared test. Results Among 81 elderly male participants in the study, 19.8% had clinically diagnosed senile prostatic enlargement (SPE) and 3.7% had prostatic tumors. There was significant relation between SPE and age as 6.2% of cases were 60–69 years, 43.8% were 70–79 years and 44.0% were 80 years or more (p<0.05). There was also significant relation between SPE and obesity as 62.5% of cases were obese and 37.5% were non obese (p<0.05). There was no significant relation with marital status, smoking or diabetes mellitus (p<0.05). Conclusion Senile prostatic enlargement is one of the significant important issues in public health in Arar city, Northern Saudi Arabia. The prevalence of this condition reaches 19.3%, thereby placing even greater burden on the quality of life of the elderly and on the health system in the region. PMID:29038720

  1. Multiregion apodized photon sieve with enhanced efficiency and enlarged pinhole sizes.

    PubMed

    Liu, Tao; Zhang, Xin; Wang, Lingjie; Wu, Yanxiong; Zhang, Jizhen; Qu, Hemeng

    2015-08-20

    A novel multiregion structure apodized photon sieve is proposed. The number of regions, the apodization window values, and pinhole sizes of each pinhole ring are all optimized to enhance the energy efficiency and enlarge the pinhole sizes. The design theory and principle are thoroughly proposed and discussed. Two numerically designed apodized photon sieves with the same diameter are given as examples. Comparisons have shown that the multiregion apodized photon sieve has a 25.5% higher energy efficiency and the minimum pinhole size is enlarged by 27.5%. Meanwhile, the two apodized photon sieves have the same form of normalized intensity distribution at the focal plane. This method could improve the flexibility of the design and the fabrication the apodized photon sieve.

  2. 24. Lake Hodges Flume conduit enlargement. April 1930. Courtesy of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Lake Hodges Flume conduit enlargement. April 1930. Courtesy of the Mandeville Department of Special Collections, Central Library, University of California, San Diego. - Lake Hodges Flume, Along San Dieguito River between Lake Hodges & San Dieguito Reservoir, Rancho Santa Fe, San Diego County, CA

  3. U.S. Decision Making and Post-Cold War NATO Enlargement

    DTIC Science & Technology

    2015-03-01

    believed that President Yeltsin was truly committed to democratic reform in Russia and attributed Yeltsin’s public conflagrations to Russian...recommending any concrete steps toward enlargement.46 The position of America’s Allies began to change once the United States demonstrated its firm

  4. Pneumocranium secondary to halo vest pin penetration through an enlarged frontal sinus.

    PubMed

    Cheong, Min Lee; Chan, Chris Yin Wei; Saw, Lim Beng; Kwan, Mun Keong

    2009-07-01

    We present a case report of a patient with pneumocranium secondary to halo vest pin penetration and a review of literature. The objectives of this study are to report a rare complication of halo vest pin insertion and to discuss methods of prevention of this complication. Halo vest orthosis is a commonly used and well-tolerated upper cervical spinal stabilizing device. Reports of complications related to pin penetration is rare and from our review, there has been no reports of pneumocranium occurring from insertion of pins following standard anatomical landmarks. A 57-year-old male sustained a type 1 traumatic spondylolisthesis of C2/C3 following a motor vehicle accident. During application of the halo vest, penetration of the left anterior pin through the abnormally enlarged frontal sinus occurred. The patient developed headache, vomiting and CSF rhinorrhoea over his left nostril. He was treated with intravenous Ceftriaxone for 1 week. This resulted in resolution of his symptoms as well as the pneumocranium. In conclusion, complications of halo vest pin penetration are rare and need immediate recognition. Despite the use of anatomical landmarks, pin penetration is still possible due to aberrant anatomy. All patients should have a skull X-ray with a radio-opaque marker done prior to placement of the halo vest pins and halo vest pins have to be inserted by experienced personnel to enable early detection of pin penetration.

  5. Abnormal dendritic maturation of neurons under the influence of a Tilorone analogue (R 10.874).

    PubMed

    Pfau, D; Westphal, S; Bossanyi, P V; Dietzmann, K

    1995-11-01

    Tilorone analogue (R 10.874) has a close affinity to the lysosomal compartment of cells and forms a non degradable carbohydrate-lipid-drug complex accumulated within digesting organelles. Resembling biochemical and structural changes are seen in hereditary mucopolysaccharidoses accompanied with abnormal dendritogenesis. On the other hand, developmental toxicity (TERRY et al. 1992), antiproliferative effects (ALGARRA et al. 1993) and interactions with DNA (GELLER et al. 1985) are generated by tilorone. Therefore it should be interesting to know whether the amphiphilic cationic compound is able to produce an abnormal dendritogenesis as in storage diseases or an impaired arborisation of dendrites and what could be the reason for the misdevelopment. We demonstrate that there was a fetal retardation in the development of dendritic network, even under influence of low dosis of the analogue R 10.874. The dendritic dismaturation was concomitant with an increased amount of fatty acids and a slightly disarranged metabolic pathway of gangliosides. The dendritic arborisation closed the gap of retarded development between intrauterine treated and untreated rats after 7 days of postnatal drug elimination. We suppose that a fetotoxic effect and not the lysosomopathy is responsible for the reduced dendritic network.

  6. Neuronal survival in the brain: neuron type-specific mechanisms.

    PubMed

    Pfisterer, Ulrich; Khodosevich, Konstantin

    2017-03-02

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation. Furthermore, pro-survival factors and intracellular responses depend on the type of neuron and region of the brain. Thus, in addition to some common neuronal pro-survival signaling, different types of neurons possess a variety of 'neuron type-specific' pro-survival constituents that might help them to adapt for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various types of immature neurons. Importantly, we mainly focus on in vivo data to describe neuronal survival specifically in the brain, without extrapolating data obtained in the PNS or spinal cord, and thus emphasize the influence of the complex brain environment on neuronal survival during development.

  7. Behavioral Abnormalities and Circuit Defects in the Basal Ganglia of a Mouse Model of 16p11.2 Deletion Syndrome

    PubMed Central

    Portmann, Thomas; Ellegood, Jacob; Dolen, Gul; Bader, Patrick L.; Grueter, Brad A.; Goold, Carleton; Fisher, Elaine; Clifford, Katherine; Rengarajan, Pavitra; Kalikhman, David; Loureiro, Darren; Saw, Nay L.; Zhengqui, Zhou; Miller, Michael A.; Lerch, Jason P.; Henkelman, Mark; Shamloo, Mehrdad; Malenka, Robert C.; Crawley, Jacqueline N.; Dolmetsch, Ricardo E.

    2014-01-01

    Summary A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11+/−). We found elevated numbers of striatal medium spiny neurons (MSNs) expressing the dopamine D2 receptor (Drd2+) and fewer dopamine-sensitive (Drd1+) neurons in deep layers of cortex. Electrophysiological recordings of Drd2+ MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11+/− mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11+/− mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism. PMID:24794428

  8. Amplitude of low frequency fluctuation abnormalities in adolescents with online gaming addiction.

    PubMed

    Yuan, Kai; Jin, Chenwang; Cheng, Ping; Yang, Xuejuan; Dong, Tao; Bi, Yanzhi; Xing, Lihong; von Deneen, Karen M; Yu, Dahua; Liu, Junyu; Liang, Jun; Cheng, Tingting; Qin, Wei; Tian, Jie

    2013-01-01

    The majority of previous neuroimaging studies have demonstrated both structural and task-related functional abnormalities in adolescents with online gaming addiction (OGA). However, few functional magnetic resonance imaging (fMRI) studies focused on the regional intensity of spontaneous fluctuations in blood oxygen level-dependent (BOLD) during the resting state and fewer studies investigated the relationship between the abnormal resting-state properties and the impaired cognitive control ability. In the present study, we employed the amplitude of low frequency fluctuation (ALFF) method to explore the local features of spontaneous brain activity in adolescents with OGA and healthy controls during resting-state. Eighteen adolescents with OGA and 18 age-, education- and gender-matched healthy volunteers participated in this study. Compared with healthy controls, adolescents with OGA showed a significant increase in ALFF values in the left medial orbitofrontal cortex (OFC), the left precuneus, the left supplementary motor area (SMA), the right parahippocampal gyrus (PHG) and the bilateral middle cingulate cortex (MCC). The abnormalities of these regions were also detected in previous addiction studies. More importantly, we found that ALFF values of the left medial OFC and left precuneus were positively correlated with the duration of OGA in adolescents with OGA. The ALFF values of the left medial OFC were also correlated with the color-word Stroop test performance. Our results suggested that the abnormal spontaneous neuronal activity of these regions may be implicated in the underlying pathophysiology of OGA.

  9. Gene therapy and editing: Novel potential treatments for neuronal channelopathies.

    PubMed

    Wykes, R C; Lignani, G

    2018-04-01

    Pharmaceutical treatment can be inadequate, non-effective, or intolerable for many people suffering from a neuronal channelopathy. Development of novel treatment options, particularly those with the potential to be curative is warranted. Gene therapy approaches can permit cell-specific modification of neuronal and circuit excitability and have been investigated experimentally as a therapy for numerous neurological disorders, with clinical trials for several neurodegenerative diseases ongoing. Channelopathies can arise from a wide array of gene mutations; however they usually result in periods of aberrant network excitability. Therefore gene therapy strategies based on up or downregulation of genes that modulate neuronal excitability may be effective therapy for a wide range of neuronal channelopathies. As many channelopathies are paroxysmal in nature, optogenetic or chemogenetic approaches may be well suited to treat the symptoms of these diseases. Recent advances in gene-editing technologies such as the CRISPR-Cas9 system could in the future result in entirely novel treatment for a channelopathy by repairing disease-causing channel mutations at the germline level. As the brain may develop and wire abnormally as a consequence of an inherited or de novo channelopathy, the choice of optimal gene therapy or gene editing strategy will depend on the time of intervention (germline, neonatal or adult). This article is part of the Special Issue entitled 'Channelopathies.' Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Factors that Contribute to Neuron Survival and Neuron Growth after Injury

    DTIC Science & Technology

    1993-02-03

    and undergo a laminectomy to expose the fourth lumbar (L4) segment. The adjacent dorsal roots are cut near the dorsal root entry zone and reflected...caudally. A hemisection cavity 3-4mm in length is aspirated from the lumbar enlargement, the appropriate transplant is introduced into the cavity, and the...transplanted into the lumbar enlargement of adult Sprague-Dawley rats, and the IA or L5 dorsal root was cut and then juxtaposed to the transplant One

  11. Illicit Stimulant Use Is Associated with Abnormal Substantia Nigra Morphology in Humans

    PubMed Central

    Todd, Gabrielle; Noyes, Carolyn; Flavel, Stanley C.; Della Vedova, Chris B.; Spyropoulos, Peter; Chatterton, Barry; Berg, Daniela; White, Jason M.

    2013-01-01

    Use of illicit stimulants such as methamphetamine, cocaine, and ecstasy is an increasing health problem. Chronic use can cause neurotoxicity in animals and humans but the long-term consequences are not well understood. The aim of the current study was to investigate the long-term effect of stimulant use on the morphology of the human substantia nigra. We hypothesised that history of illicit stimulant use is associated with an abnormally bright and enlarged substantia nigra (termed ‘hyperechogenicity’) when viewed with transcranial sonography. Substantia nigra morphology was assessed in abstinent stimulant users (n = 36; 31±9 yrs) and in two groups of control subjects: non-drug users (n = 29; 24±5 yrs) and cannabis users (n = 12; 25±7 yrs). Substantia nigra morphology was viewed with transcranial sonography and the area of echogenicity at the anatomical site of the substantia nigra was measured at its greatest extent. The area of substantia nigra echogenicity was significantly larger in the stimulant group (0.273±0.078 cm2) than in the control (0.201±0.054 cm2; P<0.001) and cannabis (0.202±0.045 cm2; P<0.007) groups. 53% of stimulant users exhibited echogenicity that exceeded the 90th percentile for the control group. The results of the current study suggest that individuals with a history of illicit stimulant use exhibit abnormal substantia nigra morphology. Substantia nigra hyperechogenicity is a strong risk factor for developing Parkinson's disease later in life and further research is required to determine if the observed abnormality in stimulant users is associated with a functional deficit of the nigro-striatal system. PMID:23418568

  12. NG2 glial cells regulate neuroimmunological responses to maintain neuronal function and survival.

    PubMed

    Nakano, Masayuki; Tamura, Yasuhisa; Yamato, Masanori; Kume, Satoshi; Eguchi, Asami; Takata, Kumi; Watanabe, Yasuyoshi; Kataoka, Yosky

    2017-02-14

    NG2-expressing neural progenitor cells (i.e., NG2 glial cells) maintain their proliferative and migratory activities even in the adult mammalian central nervous system (CNS) and produce myelinating oligodendrocytes and astrocytes. Although NG2 glial cells have been observed in close proximity to neuronal cell bodies in order to receive synaptic inputs, substantive non-proliferative roles of NG2 glial cells in the adult CNS remain unclear. In the present study, we generated NG2-HSVtk transgenic rats and selectively ablated NG2 glial cells in the adult CNS. Ablation of NG2 glial cells produced defects in hippocampal neurons due to excessive neuroinflammation via activation of the interleukin-1 beta (IL-1β) pro-inflammatory pathway, resulting in hippocampal atrophy. Furthermore, we revealed that the loss of NG2 glial cell-derived hepatocyte growth factor (HGF) exacerbated these abnormalities. Our findings suggest that NG2 glial cells maintain neuronal function and survival via the control of neuroimmunological function.

  13. Abnormal Microstructure of the Atrophic Thalamus in Preterm Survivors with Periventricular Leukomalacia

    PubMed Central

    Nagasunder, A.C.; Kinney, H.C.; Blüml, S.; Tavaré, C.J.; Rosser, T.; Gilles, F.H.; Nelson, M.D.; Panigrahy, A.

    2012-01-01

    BACKGROUND AND PURPOSE The neuroanatomic substrate of cognitive deficits in long-term survivors of prematurity with PVL is poorly understood. The thalamus is critically involved in cognition via extensive interconnections with the cerebral cortex. We hypothesized that the thalamus is atrophic (reduced in volume) in childhood survivors of prematurity with neuroimaging evidence of PVL and that the atrophy is associated with selective microstructural abnormalities within its subdivisions. MATERIALS AND METHODS We performed quantitative volumetric and DTI measurements of the thalamus in 17 children with neuroimaging evidence of PVL (mean postconceptional age, 5.6 ± 4.0 years) who were born prematurely and compared these with 74 term control children (5.7 ± 3.4 years). RESULTS The major findings were the following: 1) a significant reduction in the overall volume of the thalamus in patients with PVL compared with controls (P < .0001), which also correlated with the severity of PVL (P = .001); 2) significantly decreased FA (P = .003) and increased λ⊥ (P = .02) in the thalamus overall and increased axial, radial, and mean diffusivities in the pulvinar (P < .03), suggesting injury to afferent and efferent myelinated axons; and 3) a positive correlation of pulvinar abnormalities with those of the parieto-occipital white matter in periventricular leukomalacia, suggesting that the pulvinar abnormalities reflect secondary effects of damaged interconnections between the pulvinar and parieto-occipital cortices in the cognitive visual network. CONCLUSIONS There are volumetric and microstructural abnormalities of the thalamus in preterm children with PVL, very likely reflecting neuronal loss and myelinated axonal injury. The selective microstructural damage in the pulvinar very likely contributes to abnormal cognitive visual processing known to occur in such survivors. PMID:20930003

  14. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function

    PubMed Central

    Sharma, Aarti; Lyashchenko, Alexander K.; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z.; Shneider, Neil A.

    2016-01-01

    Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations. PMID:26842965

  15. Extract of Ginkgo biloba promotes neuronal regeneration in the hippocampus after exposure to acrylamide.

    PubMed

    Huang, Wei-Ling; Ma, Yu-Xin; Fan, Yu-Bao; Lai, Sheng-Min; Liu, Hong-Qing; Liu, Jing; Luo, Li; Li, Guo-Ying; Tian, Su-Min

    2017-08-01

    Previous studies have demonstrated a neuroprotective effect of extract of Ginkgo biloba against neuronal damage, but have mainly focused on antioxidation of extract of Ginkgo biloba . To date, limited studies have determined whether extrasct of Ginkgo biloba has a protective effect on neuronal damage. In the present study, acrylamide and 30, 60, and 120 mg/kg extract of Ginkgo biloba were administered for 4 weeks by gavage to establish mouse models. Our results showed that 30, 60, and 120 mg/kg extract of Ginkgo biloba effectively alleviated the abnormal gait of poisoned mice, and up-regulated protein expression levels of doublecortin (DCX), brain-derived neurotrophic factor, and growth associated protein-43 (GAP-43) in the hippocampus. Simultaneously, DCX- and GAP-43-immunoreactive cells increased. These findings suggest that extract of Ginkgo biloba can mitigate neurotoxicity induced by acrylamide, and thereby promote neuronal regeneration in the hippocampus of acrylamide-treated mice.

  16. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function.

    PubMed

    Sharma, Aarti; Lyashchenko, Alexander K; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z; Shneider, Neil A

    2016-02-04

    Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations.

  17. Calpastatin inhibits motor neuron death and increases survival of hSOD1(G93A) mice.

    PubMed

    Rao, Mala V; Campbell, Jabbar; Palaniappan, Arti; Kumar, Asok; Nixon, Ralph A

    2016-04-01

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease with a poorly understood cause and no effective treatment. Given that calpains mediate neurodegeneration in other pathological states and are abnormally activated in ALS, we investigated the possible ameliorative effects of inhibiting calpain over-activation in hSOD1(G93A) transgenic (Tg) mice in vivo by neuron-specific over-expression of calpastatin (CAST), the highly selective endogenous inhibitor of calpains. Our data indicate that over-expression of CAST in hSOD1(G93A) mice, which lowered calpain activation to levels comparable to wild-type mice, inhibited the abnormal breakdown of cytoskeletal proteins (spectrin, MAP2 and neurofilaments), and ameliorated motor axon loss. Disease onset in hSOD1(G93A) /CAST mice compared to littermate hSOD1(G93A) mice is delayed, which accounts for their longer time of survival. We also find that neuronal over-expression of CAST in hSOD1(G93A) transgenic mice inhibited production of putative neurotoxic caspase-cleaved tau and activation of Cdk5, which have been implicated in neurodegeneration in ALS models, and also reduced the formation of SOD1 oligomers. Our data indicate that inhibition of calpain with CAST is neuroprotective in an ALS mouse model. CAST (encoding calpastatin) inhibits hyperactivated calpain to prevent motor neuron disease operating through a cascade of events as indicated in the schematic, with relevance to amyotrophic lateral sclerosis (ALS). We propose that over-expression of CAST in motor neurons of hSOD1(G93A) mice inhibits activation of CDK5, breakdown of cytoskeletal proteins (NFs, MAP2 and Tau) and regulatory molecules (Cam Kinase IV, Calcineurin A), and disease-causing proteins (TDP-43, α-Synuclein and Huntingtin) to prevent neuronal loss and delay neurological deficits. In our experiments, CAST could also inhibit cleavage of Bid, Bax, AIF to prevent mitochondrial, ER and lysosome-mediated cell death mechanisms. Similarly, CAST

  18. The Print and Computer Enlargement System--PACE. Final Report.

    ERIC Educational Resources Information Center

    Morford, Ronald A.

    The Print and Computer Enlargement (PACE) System is being designed as a portable computerized reading and writing system that enables a low-vision person to read regular print and then create and edit text using large-print computerized output. The design goal was to develop a system that: weighed no more than 12 pounds so it could be easily…

  19. Modeling the Effect of Enlarging Seating Room on Passengers' Preference of Taiwan's Domestic Airlines

    NASA Technical Reports Server (NTRS)

    Lu, Jin-Long; Tsai, Li-Non

    2003-01-01

    This study addresses the need for measuring the effect of enlarging seating room in airplane on passengers' preferences of airline in Taiwan. The results can assist Taiwan's domestic air carriers in better understanding their customers' expectations. Stated choice experiment is used to incorporate passengers' trade-offs in the preferred measurement, and three major attributes are taken into account in the stated choice experiment: (1) type of seat (enlarged or not), (2) price, and (3) brand names of airlines. Furthermore, a binary logit model is used to model the choice behavior of air passengers. The findings show that the type of seat is a major significant variable; price and airline's brand are also significant as well. It concludes that air carriers should put more emphasis on the issue of improving the quality of seat comfort. Keywords: Passengers' preference, Enlarged seating room, Stated choice experiment, Binary logit model.

  20. Improving the Effect and Efficiency of FMD Control by Enlarging Protection or Surveillance Zones

    PubMed Central

    Halasa, Tariq; Toft, Nils; Boklund, Anette

    2015-01-01

    An epidemic of foot-and-mouth disease (FMD) in a FMD-free country with large exports of livestock and livestock products would result in profound economic damage. This could be reduced by rapid and efficient control of the disease spread. The objectives of this study were to estimate the economic impact of a hypothetical FMD outbreak in Denmark based on changes to the economic assumptions of the model, and to investigate whether the control of an FMD epidemic can be improved by combining the enlargement of protection or surveillance zones with pre-emptive depopulation or emergency vaccination. The stochastic spatial simulation model DTU-DADS was used to simulate the spread of FMD in Denmark. The control strategies were the basic EU and Danish strategy, pre-emptive depopulation, suppressive or protective vaccination, enlarging protection or surveillance zones, and a combination of pre-emptive depopulation or emergency vaccination with enlarged protection or surveillance zones. Herds are detected either based on basic detection through the appearance of clinical signs, or as a result of surveillance in the control zones. The economic analyses consisted of direct costs and export losses. Sensitivity analysis was performed on uncertain and potentially influential input parameters. Enlarging the surveillance zones from 10 to 15 km, combined with pre-emptive depopulation over a 1-km radius around detected herds resulted in the lowest total costs. This was still the case even when the different input parameters were changed in the sensitivity analysis. Changing the resources for clinical surveillance did not affect the epidemic consequences. In conclusion, an FMD epidemic in Denmark would have a larger economic impact on the agricultural sector than previously anticipated. Furthermore, the control of a potential FMD outbreak in Denmark may be improved by combining pre-emptive depopulation with an enlarged protection or surveillance zone. PMID:26664996

  1. Improving the Effect and Efficiency of FMD Control by Enlarging Protection or Surveillance Zones.

    PubMed

    Halasa, Tariq; Toft, Nils; Boklund, Anette

    2015-01-01

    An epidemic of foot-and-mouth disease (FMD) in a FMD-free country with large exports of livestock and livestock products would result in profound economic damage. This could be reduced by rapid and efficient control of the disease spread. The objectives of this study were to estimate the economic impact of a hypothetical FMD outbreak in Denmark based on changes to the economic assumptions of the model, and to investigate whether the control of an FMD epidemic can be improved by combining the enlargement of protection or surveillance zones with pre-emptive depopulation or emergency vaccination. The stochastic spatial simulation model DTU-DADS was used to simulate the spread of FMD in Denmark. The control strategies were the basic EU and Danish strategy, pre-emptive depopulation, suppressive or protective vaccination, enlarging protection or surveillance zones, and a combination of pre-emptive depopulation or emergency vaccination with enlarged protection or surveillance zones. Herds are detected either based on basic detection through the appearance of clinical signs, or as a result of surveillance in the control zones. The economic analyses consisted of direct costs and export losses. Sensitivity analysis was performed on uncertain and potentially influential input parameters. Enlarging the surveillance zones from 10 to 15 km, combined with pre-emptive depopulation over a 1-km radius around detected herds resulted in the lowest total costs. This was still the case even when the different input parameters were changed in the sensitivity analysis. Changing the resources for clinical surveillance did not affect the epidemic consequences. In conclusion, an FMD epidemic in Denmark would have a larger economic impact on the agricultural sector than previously anticipated. Furthermore, the control of a potential FMD outbreak in Denmark may be improved by combining pre-emptive depopulation with an enlarged protection or surveillance zone.

  2. METHAMPHETAMINE-INDUCED CELL DEATH: SELECTIVE VULNERABILITY IN NEURONAL SUBPOPULATIONS OF THE STRIATUM IN MICE

    PubMed Central

    ZHU, J. P. Q.; XU, W.; ANGULO, J. A.

    2010-01-01

    imbalance in the populations of striatal neurons may lead to functional abnormalities in the output and processing of neural information in this part of the brain. PMID:16650608

  3. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  4. The Significance of Macrocephaly or Enlarging Head Circumference in Infants With the Triad

    PubMed Central

    Miller, David; Barnes, Patrick; Miller, Marvin

    2015-01-01

    Abstract Infants with the triad (neurologic dysfunction, subdural hematoma [SDH], and retinal hemorrhage) are often diagnosed as victims of shaken baby syndrome. Medical conditions/predisposing factors to developing the triad are often dismissed: short falls, birth-related SDH that enlarges, macrocephaly, sinus/cortical vein thrombosis, and others. Six infants with the triad are described in which child abuse was diagnosed, but parents denied wrongdoing. All 6 had either macrocephaly or enlarging head circumference, which suggested medical explanations. Three infants incurred short falls, 1 had a difficult delivery in which there was likely a rebleed of a birth-related SDH, 1 had a spontaneous SDH associated with increased extra-axial fluid spaces, and 1 had a sinus thrombosis. Following legal proceedings, all 6 infants were returned to their parents, and there has been no child maltreatment in follow-up, suggesting child abuse never happened. The results indicate that alternative medical explanations for causing the triad should be considered and that macrocephaly or an enlarging head circumference raises the possibility of a medical explanation. PMID:25893912

  5. Abnormal Uterine Bleeding

    MedlinePlus

    ... abnormal uterine bleeding? Abnormal uterine bleeding is any heavy or unusual bleeding from the uterus (through your ... one symptom of abnormal uterine bleeding. Having extremely heavy bleeding during your period can also be considered ...

  6. Influence of sex hormone levels on gingival enlargement in adolescent patients undergoing fixed orthodontic therapy: A pilot study

    PubMed Central

    Hosadurga, Rajesh; Nabeel Althaf, M. S.; Hegde, Shashikanth; Rajesh, Kashyap S.; Arun Kumar, M. S.

    2016-01-01

    Background: Sex hormones may be a modifying factor in the periodontal disease pathogenesis. Aim: The association between gingival enlargement and sex hormone levels in adolescent patients undergoing fixed orthodontic therapy needs to be determined. Settings and Design: This study was conducted in the Department of Periodontology in association with the Department of Orthodontics, Yenepoya Dental College, Yenepoya University, Mangaluru. Materials and Methods: A pilot study was conducted on 21 adolescent patients between the age group of 13–19 years, who had undergone fixed orthodontic therapy for at least 3 months. Apicocoronally, the gingival enlargement was assessed by the index described by Miller and Damm. Miranda and Brunet index was used to assess gingival overgrowth in the buccal–lingual direction in the interdental papilla. Furthermore, the patients were assigned to two groups - Group 1-GE and Group 2-non-GE. Sex hormones assessed were estradiol and progesterone in females and testosterone in males in both groups. Results: 57.1% of the study population had enlargement of the gingiva. The mean plaque score was 0.59 and 0.56, respectively, in both groups. A statistically significant relationship was found between estradiol and testosterone levels with gingival enlargement. However, a significant relationship was not obtained for progesterone levels with the gingival enlargement. Conclusion: Direct correlation between estradiol, testosterone, and gingival enlargement was seen. PMID:27994419

  7. Polychlorinated biphenyl 138 exposure-mediated lipid droplet enlargement endows adipocytes with resistance to TNF-α-induced cell death.

    PubMed

    Kim, Yeon A; Kim, Hye Young; Oh, Yoo Jin; Kwon, Woo Young; Lee, Mi Hwa; Bae, Ju Yong; Woo, Min Seok; Kim, Jong-Min; Yoo, Young Hyun

    2018-04-25

    Although epidemiological reports have shown the association between polychlorinated biphenyls (PCBs) and obesity, the molecular mechanism of PCB-induced obesity is mostly unknown. The aim of the present study was to further dissect the significance of lipid droplet (LD) enlargement in PCB-induced obesity. For this aim, we hypothesized that PCB-induced LD enlargement endows adipocytes with resistance to cell death, inhibiting the natural loss of adipocytes. Four types of PCBs were screened, and the detailed molecular mechanism was investigated by using PCB-138. We observed that PCB-138-conferred cell death resistance to hypertrophic adipocytes with enlarged LDs. We further observed that PCB-138 prevents Tumour necrosis factor-α (TNF-α)-induced apoptosis and necroptosis in 3T3-L1 adipocytes and increases the expression of anti-apoptotic proteins, including survivin, in vitro and in vivo. In addition, we demonstrated that fat-specific protein 27 (Fsp27), perilipin, and survivin endow adipocytes with resistance to TNF-α-induced cell death through sustaining enlarged LDs. Thus, the present study suggests that PCB-138-induced LD enlargement endows adipocytes with resistance to TNF-α-induced cell death and that Fsp27, perilipin, and survivin, at least in part, help adipocytes to sustain enlarged LDs, contributing to the induction of obesity. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Lack of Tryptophan Hydroxylase-1 in Mice Results in Gait Abnormalities

    PubMed Central

    Suidan, Georgette L.; Vanderhorst, Veronique; Hampton, Thomas G.; Wong, Siu Ling; Voorhees, Jaymie R.; Wagner, Denisa D.

    2013-01-01

    The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (−/−) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system. PMID:23516593

  9. Attenuation of dichlorvos-induced microglial activation and neuronal apoptosis by 4-hydroxy TEMPO.

    PubMed

    Sunkaria, Aditya; Sharma, Deep Raj; Wani, Willayat Yousuf; Gill, Kiran Dip

    2014-02-01

    The neurotoxic consequences of acute high-level as well as chronic low-level organophosphates exposure are associated with a range of abnormalities in nerve functions. Previously, we have shown that after 24 h of dichlorvos exposure, microglia become activated and secrete pro-inflammatory molecules like nitric oxide, tumour necrosis factor-α and interleukin-1β. Here, we extended our findings and focused on the neuronal damage caused by dichlorvos via microglial activation. For this, neurons and microglia were isolated separately from 1-day-old Wistar rat pups. Microglia were treated with dichlorvos for 24 h and supernatant was collected (dichlorvos-induced conditioned medium, DCM). However, when 4-hydroxy TEMPO (4-HT) pretreatment was given, we observed significant attenuation of dichlorvos-induced microglial activation; we also collected the supernatant of this culture (4-HT + DCM, TDCM). Next, we checked the effects of DCM on neurons and found heavy loss in viability as evident from NF-H immunostaining and MTT results, whereas dichlorvos alone-treated neurons showed comparatively less damage. However, we observed significant increase in neuronal viability when cells were treated with TDCM. Semi-quantitative PCR and western blot results revealed significant increase in p53, Bax and cytochrome c levels along with caspase 3 activation after 24 h of DCM treatment. However, TDCM-treated neurons showed significant decrease in the expression of these pro-apoptotic molecules. Taken together, these findings suggest that 4-HT can significantly attenuate dichlorvos-induced microglial activation and prevent apoptotic neuronal cell death.

  10. Different types of exercise induce differential effects on neuronal adaptations and memory performance.

    PubMed

    Lin, Tzu-Wei; Chen, Shean-Jen; Huang, Tung-Yi; Chang, Chia-Yuan; Chuang, Jih-Ing; Wu, Fong-Sen; Kuo, Yu-Min; Jen, Chauying J

    2012-01-01

    Different exercise paradigms show differential effects on various forms of memory. We hypothesize that the differential effects of exercises on memory performance are caused by different neuroplasticity changes in relevant brain regions in response to different exercise trainings. We examined the effects of treadmill running (TR) and wheel running (WR) on the Pavlovian fear conditioning task that assesses learning and memory performance associated with the amygdala (cued conditioning) and both the amygdala and hippocampus (contextual conditioning). The skeletal muscle citrate synthase activity, an indicator of aerobic capacity, was elevated in rats received 4 w of TR, but not WR. While both TR and WR elevated the contextual conditional response, only TR facilitated the cued conditional response. Using a single-neuron labeling technique, we found that while both TR and MR enlarged the dendritic field and increased the spine density in hippocampal CA3 neurons, only TR showed these effects in basolateral amygdalar neurons. Moreover, both types of exercise upregulated synaptic proteins (i.e., TrkB and SNAP-25) in the hippocampus; however only TR showed similar effects in the amygdala. Injection of K252a, a TrkB kinase inhibitor, in the dorsal hippocampus or basolateral amygdala abolished the exercise-facilitated contextual or cued fear learning and memory performance, respectively, regardless of the types of exercise. In summary, our results supported that different types of exercise affect the performance of learning and memory via BDNF-TrkB signaling and neuroplasticity in specific brain regions. The brain region-specific neuronal adaptations are possibly induced by various levels of intensity/stress elicited by different types of exercise. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Intermedin Enlarges the Vascular Lumen by Inducing the Quiescent Endothelial Cell Proliferation.

    PubMed

    Wang, Li-Jun; Xiao, Fei; Kong, Ling-Miao; Wang, De-Nian; Li, Hong-Yu; Wei, Yong-Gang; Tan, Chun; Zhao, Huan; Zhang, Ting; Cao, Gui-Qun; Zhang, Kang; Wei, Yu-Quan; Yang, Han-Shuo; Zhang, Wei

    2018-02-01

    Intermedin plays an important role in vascular remodeling and significantly improves blood perfusion, but the precise mechanism remains unclear. Herein, we aimed to define whether vascular lumen enlargement is responsible for the intermedin-increased blood perfusion and explore the underlying cellular and molecular mechanisms. To study the role of intermedin, we generated the IMD-KO ( Adm2 -/- ) mice using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) system. Intermedin significantly promoted vascular lumen enlargement in vitro (fibrin beads assay) and in vivo (murine retinas), which contributed to the improved blood perfusion in both physiological (retinal) and pathological (tumor) angiogenic models. We designed experiments to calculate the endothelial cell (EC) size and found that the lumen enlargement is because of EC proliferation but not because of a change in cell shape. ECs that construct vessel walls are considered quiescent cells because they are in a state of contact inhibition and show reduced responsiveness to VEGF (vascular endothelial growth factor). Using immunoprecipitation, Western blot assay, and fluorescent microscopy, we found that intermedin induced the formation of a signaling complex containing CRLR (calcitonin receptor-like receptor)/β-arr1 (β-arrestin1)/Src in ECs and promoted it internalizing into cytoplasm in a clathrin-dependent manner to activate downstream ERK1/2 (extracellular signal-regulated kinase 1/2). Importantly, this effect was not abrogated by cell-cell contacts of ECs. Through this mechanism, intermedin could reactivate the quiescent ECs to proliferate, resulting in continuous lumen expanding and a more effective blood perfusion. Our findings suggest a novel mechanism that may explain how quiescent ECs overcome the contact inhibition and regain the ability to proliferate for continuous vascular lumen enlargement. © 2017 American

  12. Quantitative parameters of CT texture analysis as potential markersfor early prediction of spontaneous intracranial hemorrhage enlargement.

    PubMed

    Shen, Qijun; Shan, Yanna; Hu, Zhengyu; Chen, Wenhui; Yang, Bing; Han, Jing; Huang, Yanfang; Xu, Wen; Feng, Zhan

    2018-04-30

    To objectively quantify intracranial hematoma (ICH) enlargement by analysing the image texture of head CT scans and to provide objective and quantitative imaging parameters for predicting early hematoma enlargement. We retrospectively studied 108 ICH patients with baseline non-contrast computed tomography (NCCT) and 24-h follow-up CT available. Image data were assessed by a chief radiologist and a resident radiologist. Consistency analysis between observers was tested. The patients were divided into training set (75%) and validation set (25%) by stratified sampling. Patients in the training set were dichotomized according to 24-h hematoma expansion ≥ 33%. Using the Laplacian of Gaussian bandpass filter, we chose different anatomical spatial domains ranging from fine texture to coarse texture to obtain a series of derived parameters (mean grayscale intensity, variance, uniformity) in order to quantify and evaluate all data. The parameters were externally validated on validation set. Significant differences were found between the two groups of patients within variance at V 1.0 and in uniformity at U 1.0 , U 1.8 and U 2.5 . The intraclass correlation coefficients for the texture parameters were between 0.67 and 0.99. The area under the ROC curve between the two groups of ICH cases was between 0.77 and 0.92. The accuracy of validation set by CTTA was 0.59-0.85. NCCT texture analysis can objectively quantify the heterogeneity of ICH and independently predict early hematoma enlargement. • Heterogeneity is helpful in predicting ICH enlargement. • CTTA could play an important role in predicting early ICH enlargement. • After filtering, fine texture had the best diagnostic performance. • The histogram-based uniformity parameters can independently predict ICH enlargement. • CTTA is more objective, more comprehensive, more independently operable, than previous methods.

  13. New predictor of aortic enlargement in uncomplicated type B aortic dissection based on elliptic Fourier analysis.

    PubMed

    Sato, Hiroshi; Ito, Toshiro; Kuroda, Yosuke; Uchiyama, Hiroki; Watanabe, Toshitaka; Yasuda, Naomi; Nakazawa, Junji; Harada, Ryo; Kawaharada, Nobuyoshi

    2017-12-01

    This study aimed to re-examine the conventional predictive factors for dissected aortic enlargement, such as the aortic and false lumen diameter and to consider whether the morphological elements of the dissected aorta could be predictors by quantifying the 'shape' of the true lumen based on elliptic Fourier analysis. A total of 80 patients with uncomplicated type B aortic dissection were included. The patients were divided into 'Enlargement group' and 'No Change group.' Between the 2 groups, the mean systolic blood pressure during follow-up, aortic and false lumen maximum diameters, and analysed morphological data were compared using each statistical method. The maximum aortic and false lumen diameters were significantly larger in the Enlargement group than in the No Change group (39.3 vs 35.9 mm; P = 0.0058) (23.5 vs 18.2 mm; P = 0.000095). The principal component 1, which is the data calculated by elliptic Fourier analysis, was significantly lower in the Enlargement group than in the No Change group (0.020 vs - 0.072; P = 0.000049). The mean systolic blood pressure ≥130 mmHg, aortic diameter, false lumen diameter and principal component 1 were included in the Cox proportional hazard model as covariates to determine the significant predictive variable. Principal component 1 demonstrated the only significance with aortic enlargement on multivariate analysis (odds ratio = 0.32; P = 0.048). The analysed and calculated morphological data of the shape of the true lumen can be more effective predictive factors of aortic enlargement of type B dissection than the conventional factors. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  14. Characterization of the of the Pathological and Biochemical Markers That Correlate to the Clinical Features of Autism. Subproject 2. Contribution of Significant Delay of Neuronal Development and Metabolic Shift of Neurons to Clinical Phenotype of Autism

    DTIC Science & Technology

    2013-04-01

    skills, (e) problems with generalization of previously acquired skills, (f) rigidity and resistance to change, (g) social and communication ...their known role in social behavior, communication , and stereotypic behavior results in identification of a structural component of functional deficits...neurons. These abnormalities may contribute to social and communication deficits, and restricted repetitive and stereotyped patterns of behavior. 3

  15. Cholinergic Neurons Excite Cortically Projecting Basal Forebrain GABAergic Neurons

    PubMed Central

    Yang, Chun; McKenna, James T.; Zant, Janneke C.; Winston, Stuart; Basheer, Radhika

    2014-01-01

    The basal forebrain (BF) plays an important role in the control of cortical activation and attention. Understanding the modulation of BF neuronal activity is a prerequisite to treat disorders of cortical activation involving BF dysfunction, such as Alzheimer's disease. Here we reveal the interaction between cholinergic neurons and cortically projecting BF GABAergic neurons using immunohistochemistry and whole-cell recordings in vitro. In GAD67-GFP knock-in mice, BF cholinergic (choline acetyltransferase-positive) neurons were intermingled with GABAergic (GFP+) neurons. Immunohistochemistry for the vesicular acetylcholine transporter showed that cholinergic fibers apposed putative cortically projecting GABAergic neurons containing parvalbumin (PV). In coronal BF slices from GAD67-GFP knock-in or PV-tdTomato mice, pharmacological activation of cholinergic receptors with bath application of carbachol increased the firing rate of large (>20 μm diameter) BF GFP+ and PV (tdTomato+) neurons, which exhibited the intrinsic membrane properties of cortically projecting neurons. The excitatory effect of carbachol was blocked by antagonists of M1 and M3 muscarinic receptors in two subpopulations of BF GABAergic neurons [large hyperpolarization-activated cation current (Ih) and small Ih, respectively]. Ion substitution experiments and reversal potential measurements suggested that the carbachol-induced inward current was mediated mainly by sodium-permeable cation channels. Carbachol also increased the frequency of spontaneous excitatory and inhibitory synaptic currents. Furthermore, optogenetic stimulation of cholinergic neurons/fibers caused a mecamylamine- and atropine-sensitive inward current in putative GABAergic neurons. Thus, cortically projecting, BF GABAergic/PV neurons are excited by neighboring BF and/or brainstem cholinergic neurons. Loss of cholinergic neurons in Alzheimer's disease may impair cortical activation, in part, through disfacilitation of BF cortically

  16. 30. Photocopy from enlarged microfiche of 1896 drawing captioned: Part ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Photocopy from enlarged microfiche of 1896 drawing captioned: Part of Plan C/80 showing changes proposed in end doors of Storehouse, then under construction by the Penn Bridge Co. of Beaver Falls, Pa. - Puget Sound Naval Shipyard, Pattern Shop, Farragut Avenue, Bremerton, Kitsap County, WA

  17. Control of axonal sprouting and dendrite branching by the Nrg-Ank complex at the neuron-glia interface.

    PubMed

    Yamamoto, Misato; Ueda, Ryu; Takahashi, Kuniaki; Saigo, Kaoru; Uemura, Tadashi

    2006-08-22

    Neurons are highly polarized cells with distinct subcellular compartments, including dendritic arbors and an axon. The proper function of the nervous system relies not only on correct targeting of axons, but also on development of neuronal-class-specific geometry of dendritic arbors [1-4]. To study the intercellular control of the shaping of dendritic trees in vivo, we searched for cell-surface proteins expressed by Drosophila dendritic arborization (da) neurons [5-7]. One of them was Neuroglian (Nrg), a member of the Ig superfamily ; Nrg and vertebrate L1-family molecules have been implicated in various aspects of neuronal wiring, such as axon guidance, axonal myelination, and synapse formation [9-12]. A subset of the da neurons in nrg mutant embryos exhibited deformed dendritic arbors and abnormal axonal sprouting. Our functional analysis in a cell-type-selective manner strongly suggested that those da neurons employed Nrg to interact with the peripheral glia for suppressing axonal sprouting and for forming second-order dendritic branches. At least for the former role, Nrg functioned in concert with the intracellular adaptor protein Ankyrin (Ank) [13]. Thus, the neuron-glia interaction that is mediated by Nrg, together with Ank under some situations, contributes to axonal and dendritic morphogenesis.

  18. Enlargement of sacral subcutaneous meningocele associated with retained medullary cord.

    PubMed

    Shirozu, Noritoshi; Morioka, Takato; Inoha, Satoshi; Imamoto, Naoyuki; Sasaguri, Takakazu

    2018-04-27

    A retained medullary cord (RMC) is a rare closed spinal dysraphism with a robust elongated neural structure continuous from the conus and extending to the dural cul-de-sac. Four cases of RMC extending down to the base of an associated subcutaneous meningocele at the sacral level have been reported. We report an additional case of RMC, in whom serial MRI examination revealed an enlargement of the meningocele associated with RMC over a 3-month period between 8 and 11 months of age, when he began to stand. At the age of 12 months, untethering of the cord was performed. Histologically, the presence of ependyma-lined central canals in the dense neuroglial cores was noted in all cord-like structures in the intradural and intrameningocele sacs and at the attachment to the meningocele. It is conceivable that the hydrodynamic pressure with standing position and the check valve phenomenon were involved in meningocele enlargement. We should be mindful of these potential morphological changes.

  19. Ventricular enlargement in schizophrenia related to volume reduction of the thalamus, striatum, and superior temporal cortex.

    PubMed

    Gaser, Christian; Nenadic, Igor; Buchsbaum, Bradley R; Hazlett, Erin A; Buchsbaum, Monte S

    2004-01-01

    Enlargement of the lateral ventricles is among the most frequently reported macroscopic brain structural changes in schizophrenia, although variable in extent and localization. The authors investigated whether ventricular enlargement is related to regionally specific volume loss. High-resolution magnetic resonance imaging scans from 39 patients with schizophrenia were analyzed with deformation-based morphometry, a voxel-wise whole brain morphometric technique. Significant negative correlations with the ventricle-brain ratio were found for voxels in the left and right thalamus and posterior putamen and in the left superior temporal gyrus and insula. Thalamic shrinkage, especially of medial nuclei and the adjacent striatum and insular cortex, appear to be important contributors to ventricular enlargement in schizophrenia.

  20. Neuronal DNA Methylation Profiling of Blast-Related Traumatic Brain Injury.

    PubMed

    Haghighi, Fatemeh; Ge, Yongchao; Chen, Sean; Xin, Yurong; Umali, Michelle U; De Gasperi, Rita; Gama Sosa, Miguel A; Ahlers, Stephen T; Elder, Gregory A

    2015-08-15

    Long-term molecular changes in the brain resulting from blast exposure may be mediated by epigenetic changes, such as deoxyribonucleic acid (DNA) methylation, that regulate gene expression. Aberrant regulation of gene expression is associated with behavioral abnormalities, where DNA methylation bridges environmental signals to sustained changes in gene expression. We assessed DNA methylation changes in the brains of rats exposed to three 74.5 kPa blast overpressure events, conditions that have been associated with long-term anxiogenic manifestations weeks or months following the initial exposures. Rat frontal cortex eight months post-exposure was used for cell sorting of whole brain tissue into neurons and glia. We interrogated DNA methylation profiles in these cells using Expanded Reduced Representation Bisulfite Sequencing. We obtained data for millions of cytosines, showing distinct methylation profiles for neurons and glia and an increase in global methylation in neuronal versus glial cells (p<10(-7)). We detected DNA methylation perturbations in blast overpressure-exposed animals, compared with sham blast controls, within 458 and 379 genes in neurons and glia, respectively. Differentially methylated neuronal genes showed enrichment in cell death and survival and nervous system development and function, including genes involved in transforming growth factor β and nitric oxide signaling. Functional validation via gene expression analysis of 30 differentially methylated neuronal and glial genes showed a 1.2 fold change in gene expression of the serotonin N-acetyltransferase gene (Aanat) in blast animals (p<0.05). These data provide the first genome-based evidence for changes in DNA methylation induced in response to multiple blast overpressure exposures. In particular, increased methylation and decreased gene expression were observed in the Aanat gene, which is involved in converting serotonin to the circadian hormone melatonin and is implicated in sleep

  1. Mitochondrial DNA Depletion in Respiratory Chain-Deficient Parkinson Disease Neurons.

    PubMed

    Grünewald, Anne; Rygiel, Karolina A; Hepplewhite, Philippa D; Morris, Christopher M; Picard, Martin; Turnbull, Doug M

    2016-03-01

    To determine the extent of respiratory chain abnormalities and investigate the contribution of mtDNA to the loss of respiratory chain complexes (CI-IV) in the substantia nigra (SN) of idiopathic Parkinson disease (IPD) patients at the single-neuron level. Multiple-label immunofluorescence was applied to postmortem sections of 10 IPD patients and 10 controls to quantify the abundance of CI-IV subunits (NDUFB8 or NDUFA13, SDHA, UQCRC2, and COXI) and mitochondrial transcription factors (TFAM and TFB2M) relative to mitochondrial mass (porin and GRP75) in dopaminergic neurons. To assess the involvement of mtDNA in respiratory chain deficiency in IPD, SN neurons, isolated with laser-capture microdissection, were assayed for mtDNA deletions, copy number, and presence of transcription/replication-associated 7S DNA employing a triplex real-time polymerase chain reaction (PCR) assay. Whereas mitochondrial mass was unchanged in single SN neurons from IPD patients, we observed a significant reduction in the abundances of CI and II subunits. At the single-cell level, CI and II deficiencies were correlated in patients. The CI deficiency concomitantly occurred with low abundances of the mtDNA transcription factors TFAM and TFB2M, which also initiate transcription-primed mtDNA replication. Consistent with this, real-time PCR analysis revealed fewer transcription/replication-associated mtDNA molecules and an overall reduction in mtDNA copy number in patients. This effect was more pronounced in single IPD neurons with severe CI deficiency. Respiratory chain dysfunction in IPD neurons not only involves CI, but also extends to CII. These deficiencies are possibly a consequence of the interplay between nDNA and mtDNA-encoded factors mechanistically connected via TFAM. © 2016 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.

  2. Mitochondrial DNA Depletion in Respiratory Chain–Deficient Parkinson Disease Neurons

    PubMed Central

    Rygiel, Karolina A.; Hepplewhite, Philippa D.; Morris, Christopher M.; Picard, Martin; Turnbull, Doug M.

    2016-01-01

    Objective To determine the extent of respiratory chain abnormalities and investigate the contribution of mtDNA to the loss of respiratory chain complexes (CI–IV) in the substantia nigra (SN) of idiopathic Parkinson disease (IPD) patients at the single‐neuron level. Methods Multiple‐label immunofluorescence was applied to postmortem sections of 10 IPD patients and 10 controls to quantify the abundance of CI–IV subunits (NDUFB8 or NDUFA13, SDHA, UQCRC2, and COXI) and mitochondrial transcription factors (TFAM and TFB2M) relative to mitochondrial mass (porin and GRP75) in dopaminergic neurons. To assess the involvement of mtDNA in respiratory chain deficiency in IPD, SN neurons, isolated with laser‐capture microdissection, were assayed for mtDNA deletions, copy number, and presence of transcription/replication‐associated 7S DNA employing a triplex real‐time polymerase chain reaction (PCR) assay. Results Whereas mitochondrial mass was unchanged in single SN neurons from IPD patients, we observed a significant reduction in the abundances of CI and II subunits. At the single‐cell level, CI and II deficiencies were correlated in patients. The CI deficiency concomitantly occurred with low abundances of the mtDNA transcription factors TFAM and TFB2M, which also initiate transcription‐primed mtDNA replication. Consistent with this, real‐time PCR analysis revealed fewer transcription/replication‐associated mtDNA molecules and an overall reduction in mtDNA copy number in patients. This effect was more pronounced in single IPD neurons with severe CI deficiency. Interpretation Respiratory chain dysfunction in IPD neurons not only involves CI, but also extends to CII. These deficiencies are possibly a consequence of the interplay between nDNA and mtDNA‐encoded factors mechanistically connected via TFAM. ANN NEUROL 2016;79:366–378 PMID:26605748

  3. Axial level-specific regulation of neuronal development: lessons from PITX2.

    PubMed

    Waite, Mindy R; Martin, Donna M

    2015-02-01

    Transcriptional regulation of gene expression is vital for proper control of proliferation, migration, differentiation, and survival of developing neurons. Pitx2 encodes a homeodomain transcription factor that is highly expressed in the developing and adult mammalian brain. In humans, mutations in PITX2 result in Rieger syndrome, characterized by defects in the development of the eyes, umbilicus, and teeth and variable abnormalities in the brain, including hydrocephalus and cerebellar hypoplasia. Alternative splicing of Pitx2 in the mouse results in three isoforms, Pitx2a, Pitx2b, and Pitx2c, each of which is expressed symmetrically along the left-right axis of the brain throughout development. Here, we review recent evidence for axial and brain region-specific requirements for Pitx2 during neuronal migration and differentiation, highlighting known isoform contributions. © 2014 Wiley Periodicals, Inc.

  4. Failure to suppress low-frequency neuronal oscillatory activity underlies the reduced effectiveness of random patterns of deep brain stimulation.

    PubMed

    McConnell, George C; So, Rosa Q; Grill, Warren M

    2016-06-01

    Subthalamic nucleus (STN) deep brain stimulation (DBS) is an established treatment for the motor symptoms of Parkinson's disease (PD). However, the mechanisms of action of DBS are unknown. Random temporal patterns of DBS are less effective than regular DBS, but the neuronal basis for this dependence on temporal pattern of stimulation is unclear. Using a rat model of PD, we quantified the changes in behavior and single-unit activity in globus pallidus externa and substantia nigra pars reticulata during high-frequency STN DBS with different degrees of irregularity. Although all stimulus trains had the same average rate, 130-Hz regular DBS more effectively reversed motor symptoms, including circling and akinesia, than 130-Hz irregular DBS. A mixture of excitatory and inhibitory neuronal responses was present during all stimulation patterns, and mean firing rate did not change during DBS. Low-frequency (7-10 Hz) oscillations of single-unit firing times present in hemiparkinsonian rats were suppressed by regular DBS, and neuronal firing patterns were entrained to 130 Hz. Irregular patterns of DBS less effectively suppressed 7- to 10-Hz oscillations and did not regularize firing patterns. Random DBS resulted in a larger proportion of neuron pairs with increased coherence at 7-10 Hz compared with regular 130-Hz DBS, which suggested that long pauses (interpulse interval >50 ms) during random DBS facilitated abnormal low-frequency oscillations in the basal ganglia. These results suggest that the efficacy of high-frequency DBS stems from its ability to regularize patterns of neuronal firing and thereby suppress abnormal oscillatory neural activity within the basal ganglia. Copyright © 2016 the American Physiological Society.

  5. Resveratrol Treatment after Status Epilepticus Restrains Neurodegeneration and Abnormal Neurogenesis with Suppression of Oxidative Stress and Inflammation.

    PubMed

    Mishra, Vikas; Shuai, Bing; Kodali, Maheedhar; Shetty, Geetha A; Hattiangady, Bharathi; Rao, Xiaolan; Shetty, Ashok K

    2015-12-07

    Antiepileptic drug therapy, though beneficial for restraining seizures, cannot thwart status epilepticus (SE) induced neurodegeneration or down-stream detrimental changes. We investigated the efficacy of resveratrol (RESV) for preventing SE-induced neurodegeneration, abnormal neurogenesis, oxidative stress and inflammation in the hippocampus. We induced SE in young rats and treated with either vehicle or RESV, commencing an hour after SE induction and continuing every hour for three-hours on SE day and twice daily thereafter for 3 days. Seizures were terminated in both groups two-hours after SE with a diazepam injection. In contrast to the vehicle-treated group, the hippocampus of animals receiving RESV during and after SE presented no loss of glutamatergic neurons in hippocampal cell layers, diminished loss of inhibitory interneurons expressing parvalbumin, somatostatin and neuropeptide Y in the dentate gyrus, reduced aberrant neurogenesis with preservation of reelin + interneurons, lowered concentration of oxidative stress byproduct malondialdehyde and pro-inflammatory cytokine tumor necrosis factor-alpha, normalized expression of oxidative stress responsive genes and diminished numbers of activated microglia. Thus, 4 days of RESV treatment after SE is efficacious for thwarting glutamatergic neuron degeneration, alleviating interneuron loss and abnormal neurogenesis, and suppressing oxidative stress and inflammation. These results have implications for restraining SE-induced chronic temporal lobe epilepsy.

  6. Developmental axon stretch stimulates neuron growth while maintaining normal electrical activity, intracellular calcium flux, and somatic morphology

    PubMed Central

    Loverde, Joseph R.; Pfister, Bryan J.

    2015-01-01

    Elongation of nerve fibers intuitively occurs throughout mammalian development, and is synchronized with expansion of the growing body. While most tissue systems enlarge through mitosis and differentiation, elongation of nerve fibers is remarkably unique. The emerging paradigm suggests that axons undergo stretch as contiguous tissues enlarge between the proximal and distal segments of spanning nerve fibers. While stretch is distinct from growth, tension is a known stimulus which regulates the growth of axons. Here, we hypothesized that the axon stretch-growth process may be a natural form of injury, whereby regenerative processes fortify elongating axons in order to prevent disconnection. Harnessing the live imaging capability of our axon stretch-growth bioreactors, we assessed neurons both during and following stretch for biomarkers associated with injury. Utilizing whole-cell patch clamp recording, we found no evidence of changes in spontaneous action potential activity or degradation of elicited action potentials during real-time axon stretch at strains of up to 18% applied over 5 min. Unlike traumatic axonal injury, functional calcium imaging of the soma revealed no shifts in free intracellular calcium during axon stretch. Finally, the cross-sectional areas of nuclei and cytoplasms were normal, with no evidence of chromatolysis following week-long stretch-growth limited to the lower of 25% strain or 3 mm total daily stretch. The neuronal growth cascade coupled to stretch was concluded to be independent of the changes in membrane potential, action potential generation, or calcium flux associated with traumatic injury. While axon stretch-growth is likely to share overlap with regenerative processes, we conclude that developmental stretch is a distinct stimulus from traumatic axon injury. PMID:26379492

  7. DeepNeuron: an open deep learning toolbox for neuron tracing.

    PubMed

    Zhou, Zhi; Kuo, Hsien-Chi; Peng, Hanchuan; Long, Fuhui

    2018-06-06

    Reconstructing three-dimensional (3D) morphology of neurons is essential for understanding brain structures and functions. Over the past decades, a number of neuron tracing tools including manual, semiautomatic, and fully automatic approaches have been developed to extract and analyze 3D neuronal structures. Nevertheless, most of them were developed based on coding certain rules to extract and connect structural components of a neuron, showing limited performance on complicated neuron morphology. Recently, deep learning outperforms many other machine learning methods in a wide range of image analysis and computer vision tasks. Here we developed a new Open Source toolbox, DeepNeuron, which uses deep learning networks to learn features and rules from data and trace neuron morphology in light microscopy images. DeepNeuron provides a family of modules to solve basic yet challenging problems in neuron tracing. These problems include but not limited to: (1) detecting neuron signal under different image conditions, (2) connecting neuronal signals into tree(s), (3) pruning and refining tree morphology, (4) quantifying the quality of morphology, and (5) classifying dendrites and axons in real time. We have tested DeepNeuron using light microscopy images including bright-field and confocal images of human and mouse brain, on which DeepNeuron demonstrates robustness and accuracy in neuron tracing.

  8. [Enlarged vestibular aqueduct syndrome. A review of 55 paediatric patients].

    PubMed

    Santos, Saturnino; Sgambatti, Luciano; Bueno, Antonio; Albi, Gustavo; Suárez, Alicia; Domínguez, Maria Jesús

    2010-01-01

    Enlarged vestibular aqueduct (EVA) is the commonest congenital anomaly found with imaging techniques in paediatric sensorineural hearing loss (SNHL). Our aim was to describe clinical and audiological findings in paediatric hearing loss associated to EVA. Retrospective review of 55 children with imaging-technique EVA findings from 2000 to 2009. Subjective and/or objective audiological tests were analysed and audiological findings related to clinical features were described. Thirty-seven patients (67.27%) showed bilateral EVA and 18 (32.72%) were unilateral. Hearing loss was bilateral in 46 (83.63%) patients and unilateral in 9 (16.36%). Mean age at diagnosis was 3.78 years. Fifty-three (96.36%) children showed SNHL (28 bilateral and profound), while 2 (3.63%) patients had mixed hearing loss. There were 3 cases of hearing loss progression, 2 fluctuations, 2 of them were asymmetric and 2 patients suffered from vestibular symptoms. Concomitant image findings were 6 cochlear hypoplasia, 2 enlarged internal auditory canals, 1 enlarged vestibule and 1 hypoplastic lateral semicircular canal. Six clinical syndromes were found (2 cases of Down's, and 1 each of Jacobsen, Pendred, Waardenburg and branchio-oto-renal). One child was positive for GJB2 mutation. Familial hearing loss was demonstrated on 12 (21.8%) cases. The clinical picture of hearing loss associated to EVA is characterised by great variability. It should be included in the differential diagnosis of unexplained mixed hearing loss. Familial and syndromic findings have to be taken into consideration in the diagnostic evaluations of such patients. Knowledge about the natural history of this illness is needed so as to give parents prognostic information. Copyright © 2010 Elsevier España, S.L. All rights reserved.

  9. Vasculo-Neuronal Coupling: Retrograde Vascular Communication to Brain Neurons.

    PubMed

    Kim, Ki Jung; Ramiro Diaz, Juan; Iddings, Jennifer A; Filosa, Jessica A

    2016-12-14

    Continuous cerebral blood flow is essential for neuronal survival, but whether vascular tone influences resting neuronal function is not known. Using a multidisciplinary approach in both rat and mice brain slices, we determined whether flow/pressure-evoked increases or decreases in parenchymal arteriole vascular tone, which result in arteriole constriction and dilation, respectively, altered resting cortical pyramidal neuron activity. We present evidence for intercellular communication in the brain involving a flow of information from vessel to astrocyte to neuron, a direction opposite to that of classic neurovascular coupling and referred to here as vasculo-neuronal coupling (VNC). Flow/pressure increases within parenchymal arterioles increased vascular tone and simultaneously decreased resting pyramidal neuron firing activity. On the other hand, flow/pressure decreases evoke parenchymal arteriole dilation and increased resting pyramidal neuron firing activity. In GLAST-CreERT2; R26-lsl-GCaMP3 mice, we demonstrate that increased parenchymal arteriole tone significantly increased intracellular calcium in perivascular astrocyte processes, the onset of astrocyte calcium changes preceded the inhibition of cortical pyramidal neuronal firing activity. During increases in parenchymal arteriole tone, the pyramidal neuron response was unaffected by blockers of nitric oxide, GABA A , glutamate, or ecto-ATPase. However, VNC was abrogated by TRPV4 channel, GABA B , as well as an adenosine A 1 receptor blocker. Differently to pyramidal neuron responses, increases in flow/pressure within parenchymal arterioles increased the firing activity of a subtype of interneuron. Together, these data suggest that VNC is a complex constitutive active process that enables neurons to efficiently adjust their resting activity according to brain perfusion levels, thus safeguarding cellular homeostasis by preventing mismatches between energy supply and demand. We present evidence for vessel-to-neuron

  10. Equine protozoal myeloencephalitis due to Neospora hughesi and equine motor neuron disease in a mule.

    PubMed

    Finno, Carrie J; Eaton, Joshua Seth; Aleman, Monica; Hollingsworth, Steven R

    2010-07-01

    A 23-year-old female mule was presented for bilateral ocular abnormalities and an abnormal pelvic limb gait. Anisocoria, unilateral enophthalmos, medial strabismus, ptosis, pupillary light reflex deficits, and bilateral reticulated pigmentary retinopathy were observed on ophthalmic examination. Neurologic abnormalities included right-sided facial nerve paralysis, extensive symmetric muscle atrophy, and asymmetric pelvic limb ataxia with an abnormal pelvic limb gait. A positive titer (1:40) for equine protozoal myeloencephalitis (EPM) associated with Neospora hughesi was obtained from cerebrospinal fluid with minimal (<1 red blood cell/microL) blood contamination. Muscle biopsies of the sacrocaudalis dorsalis medialis muscle revealed predominantly type I neurogenic muscle atrophy, consistent with a diagnosis of equine motor neuron disease (EMND). Treatment included a 2-month course of ponazuril (5 mg/kg PO q24 h), vitamin E (8000 IU PO q24 h), and selenium (2 mg PO q24 h). Clinical improvement was not observed after 2 months although the mule remained stable. Clinical deterioration was reported upon discontinuation of the ponazuril after a 2-month course. Concurrent disease with EPM associated with N. hughesi and EMND should be considered in cases demonstrating cranial nerve abnormalities, pronounced symmetric muscle atrophy, unusual asymmetric gait abnormalities, and reticulated pigmentary retinopathy.

  11. Mouse maternal protein restriction during preimplantation alone permanently alters brain neuron proportion and adult short-term memory.

    PubMed

    Gould, Joanna M; Smith, Phoebe J; Airey, Chris J; Mort, Emily J; Airey, Lauren E; Warricker, Frazer D M; Pearson-Farr, Jennifer E; Weston, Eleanor C; Gould, Philippa J W; Semmence, Oliver G; Restall, Katie L; Watts, Jennifer A; McHugh, Patrick C; Smith, Stephanie J; Dewing, Jennifer M; Fleming, Tom P; Willaime-Morawek, Sandrine

    2018-06-25

    Maternal protein malnutrition throughout pregnancy and lactation compromises brain development in late gestation and after birth, affecting structural, biochemical, and pathway dynamics with lasting consequences for motor and cognitive function. However, the importance of nutrition during the preimplantation period for brain development is unknown. We have previously shown that maternal low-protein diet (LPD) confined to the preimplantation period (Emb-LPD) in mice, with normal nutrition thereafter, is sufficient to induce cardiometabolic and locomotory behavioral abnormalities in adult offspring. Here, using a range of in vivo and in vitro techniques, we report that Emb-LPD and sustained LPD reduce neural stem cell (NSC) and progenitor cell numbers at E12.5, E14.5, and E17.5 through suppressed proliferation rates in both ganglionic eminences and cortex of the fetal brain. Moreover, Emb-LPD causes remaining NSCs to up-regulate the neuronal differentiation rate beyond control levels, whereas in LPD, apoptosis increases to possibly temper neuron formation. Furthermore, Emb-LPD adult offspring maintain the increase in neuron proportion in the cortex, display increased cortex thickness, and exhibit short-term memory deficit analyzed by the novel-object recognition assay. Last, we identify altered expression of fragile X family genes as a potential molecular mechanism for adverse programming of brain development. Collectively, these data demonstrate that poor maternal nutrition from conception is sufficient to cause abnormal brain development and adult memory loss.

  12. Multimodal Imaging in Rat Model Recapitulates Alzheimer's Disease Biomarkers Abnormalities.

    PubMed

    Parent, Maxime J; Zimmer, Eduardo R; Shin, Monica; Kang, Min Su; Fonov, Vladimir S; Mathieu, Axel; Aliaga, Antonio; Kostikov, Alexey; Do Carmo, Sonia; Dea, Doris; Poirier, Judes; Soucy, Jean-Paul; Gauthier, Serge; Cuello, A Claudio; Rosa-Neto, Pedro

    2017-12-13

    Imaging biomarkers are frequently proposed as endpoints for clinical trials targeting brain amyloidosis in Alzheimer's disease (AD); however, the specific impact of amyloid-β (Aβ) aggregation on biomarker abnormalities remains elusive in AD. Using the McGill-R-Thy1-APP transgenic rat as a model of selective Aβ pathology, we characterized the longitudinal progression of abnormalities in biomarkers commonly used in AD research. Middle-aged (9-11 months) transgenic animals (both male and female) displayed mild spatial memory impairments and disrupted cingulate network connectivity measured by resting-state fMRI, even in the absence of hypometabolism (measured with PET [ 18 F]FDG) or detectable fibrillary amyloidosis (measured with PET [ 18 F]NAV4694). At more advanced ages (16-19 months), cognitive deficits progressed in conjunction with resting connectivity abnormalities; furthermore, hypometabolism, Aβ plaque accumulation, reduction of CSF Aβ 1-42 concentrations, and hippocampal atrophy (structural MRI) were detectable at this stage. The present results emphasize the early impact of Aβ on brain connectivity and support a framework in which persistent Aβ aggregation itself is sufficient to impose memory circuits dysfunction, which propagates to adjacent brain networks at later stages. SIGNIFICANCE STATEMENT The present study proposes a "back translation" of the Alzheimer pathological cascade concept from human to animals. We used the same set of Alzheimer imaging biomarkers typically used in large human cohorts and assessed their progression over time in a transgenic rat model, which allows for a finer spatial resolution not attainable with mice. Using this translational platform, we demonstrated that amyloid-β pathology recapitulates an Alzheimer-like profile of biomarker abnormalities even in the absence of other hallmarks of the disease such as neurofibrillary tangles and widespread neuronal losses. Copyright © 2017 Parent et al.

  13. Multimodal Imaging in Rat Model Recapitulates Alzheimer's Disease Biomarkers Abnormalities

    PubMed Central

    Parent, Maxime J.; Kang, Min Su; Mathieu, Axel; Aliaga, Antonio; Do Carmo, Sonia; Dea, Doris; Gauthier, Serge; Cuello, A. Claudio

    2017-01-01

    Imaging biomarkers are frequently proposed as endpoints for clinical trials targeting brain amyloidosis in Alzheimer's disease (AD); however, the specific impact of amyloid-β (Aβ) aggregation on biomarker abnormalities remains elusive in AD. Using the McGill-R-Thy1-APP transgenic rat as a model of selective Aβ pathology, we characterized the longitudinal progression of abnormalities in biomarkers commonly used in AD research. Middle-aged (9–11 months) transgenic animals (both male and female) displayed mild spatial memory impairments and disrupted cingulate network connectivity measured by resting-state fMRI, even in the absence of hypometabolism (measured with PET [18F]FDG) or detectable fibrillary amyloidosis (measured with PET [18F]NAV4694). At more advanced ages (16–19 months), cognitive deficits progressed in conjunction with resting connectivity abnormalities; furthermore, hypometabolism, Aβ plaque accumulation, reduction of CSF Aβ1-42 concentrations, and hippocampal atrophy (structural MRI) were detectable at this stage. The present results emphasize the early impact of Aβ on brain connectivity and support a framework in which persistent Aβ aggregation itself is sufficient to impose memory circuits dysfunction, which propagates to adjacent brain networks at later stages. SIGNIFICANCE STATEMENT The present study proposes a “back translation” of the Alzheimer pathological cascade concept from human to animals. We used the same set of Alzheimer imaging biomarkers typically used in large human cohorts and assessed their progression over time in a transgenic rat model, which allows for a finer spatial resolution not attainable with mice. Using this translational platform, we demonstrated that amyloid-β pathology recapitulates an Alzheimer-like profile of biomarker abnormalities even in the absence of other hallmarks of the disease such as neurofibrillary tangles and widespread neuronal losses. PMID:29097597

  14. Loss of MeCP2 in cholinergic neurons causes part of RTT-like phenotypes via α7 receptor in hippocampus.

    PubMed

    Zhang, Ying; Cao, Shu-Xia; Sun, Peng; He, Hai-Yang; Yang, Ci-Hang; Chen, Xiao-Juan; Shen, Chen-Jie; Wang, Xiao-Dong; Chen, Zhong; Berg, Darwin K; Duan, Shumin; Li, Xiao-Ming

    2016-06-01

    Mutations in the X-linked MECP2 gene cause Rett syndrome (RTT), an autism spectrum disorder characterized by impaired social interactions, motor abnormalities, cognitive defects and a high risk of epilepsy. Here, we showed that conditional deletion of Mecp2 in cholinergic neurons caused part of RTT-like phenotypes, which could be rescued by re-expressing Mecp2 in the basal forebrain (BF) cholinergic neurons rather than in the caudate putamen of conditional knockout (Chat-Mecp2(-/y)) mice. We found that choline acetyltransferase expression was decreased in the BF and that α7 nicotine acetylcholine receptor signaling was strongly impaired in the hippocampus of Chat-Mecp2(-/y) mice, which is sufficient to produce neuronal hyperexcitation and increase seizure susceptibility. Application of PNU282987 or nicotine in the hippocampus rescued these phenotypes in Chat-Mecp2(-/y) mice. Taken together, our findings suggest that MeCP2 is critical for normal function of cholinergic neurons and dysfunction of cholinergic neurons can contribute to numerous neuropsychiatric phenotypes.

  15. Abnormal ventricular development in preterm neonates with visually normal MRIs

    NASA Astrophysics Data System (ADS)

    Shi, Jie; Wang, Yalin; Lao, Yi; Ceschin, Rafael; Mi, Liang; Nelson, Marvin D.; Panigrahy, Ashok; Leporé, Natasha

    2015-12-01

    Children born preterm are at risk for a wide range of neurocognitive and neurobehavioral disorders. Some of these may stem from early brain abnormalities at the neonatal age. Hence, a precise characterization of neonatal neuroanatomy may help inform treatment strategies. In particular, the ventricles are often enlarged in neurocognitive disorders, due to atrophy of surrounding tissues. Here we present a new pipeline for the detection of morphological and relative pose differences in the ventricles of premature neonates compared to controls. To this end, we use a new hyperbolic Ricci flow based mapping of the ventricular surfaces of each subjects to the Poincaré disk. Resulting surfaces are then registered to a template, and a between group comparison is performed using multivariate tensor-based morphometry. We also statistically compare the relative pose of the ventricles within the brain between the two groups, by performing a Procrustes alignment between each subject's ventricles and an average shape. For both types of analyses, differences were found in the left ventricles between the two groups.

  16. Rapid Morphological Brain Abnormalities during Acute Methamphetamine Intoxication in the Rat. An Experimental study using Light and Electron Microscopy

    PubMed Central

    Sharma, Hari S.; Kiyatkin, Eugene A.

    2009-01-01

    This study describes morphological abnormalities of brain cells during acute methamphetamine (METH) intoxication in the rat and demonstrates the role of hyperthermia, disruption of the blood-brain barrier (BBB) and edema in their development. Rats with chronically implanted brain, muscle and skin temperature probes and an intravenous (iv) catheter were exposed to METH (9 mg/kg) at standard (23°C) and warm (29°C) ambient temperatures, allowing for the observation of hyperthermia ranging from mild to pathological levels (38–42°C). When brain temperature peaked or reached a level suggestive of possible lethality (>41.5°C), rats were injected with Evans blue (EB), rapidly anesthetized, perfused, and their brains were taken for further analyses. Four brain areas (cortex, hippocampus, thalamus and hypothalamus) were analyzed for EB extravasation, water and electrolyte (Na+, K+, Cl−) contents, immunostained for albumin and glial fibrillary acidic protein, and examined for neuronal, glial and axonal alterations using standard light and electron microscopy. These examinations revealed profound abnormalities in neuronal, glial, and endothelial cells, which were stronger with METH administered at 29°C than 23°C and tightly correlated with brain and body hyperthermia. These changes had some structural specificity, but in each structure they tightly correlated with increases in EB levels, the numbers of albumin-positive cells, and water and ion contents, suggesting leakage of the BBB, acutely developing brain edema, and serious shifts in brain ion homeostasis as leading factors underlying brain abnormalities. While most of these acute structural and functional abnormalities appear to be reversible, they could trigger subsequent cellular alterations in the brain and accelerate neurodegeneration—the most dangerous complication of chronic amphetamine-like drug abuse. PMID:18773954

  17. Deletion of Otx2 in GnRH neurons results in a mouse model of hypogonadotropic hypogonadism.

    PubMed

    Diaczok, Daniel; DiVall, Sara; Matsuo, Isao; Wondisford, Fredric E; Wolfe, Andrew M; Radovick, Sally

    2011-05-01

    GnRH is the central regulator of reproductive function responding to central nervous system cues to control gonadotropin synthesis and secretion. GnRH neurons originate in the olfactory placode and migrate to the forebrain, in which they are found in a scattered distribution. Congenital idiopathic hypogonadotropic hypogonadism (CIHH) has been associated with mutations or deletions in a number of genes that participate in the development of GnRH neurons and expression of GnRH. Despite the critical role of GnRH in mammalian reproduction, a comprehensive understanding of the developmental factors that are responsible for regulating the establishment of mature GnRH neurons and the expression of GnRH is lacking. orthodenticle homeobox 2 (OTX2), a homeodomain protein required for the formation of the forebrain, has been shown to be expressed in GnRH neurons, up-regulated during GnRH neuronal development, and responsible for increased GnRH promoter activity in GnRH neuronal cell lines. Interestingly, mutations in Otx2 have been associated with human hypogonadotropic hypogonadism, but the mechanism by which Otx2 mutations cause CIHH is unknown. Here we show that deletion of Otx2 in GnRH neurons results in a significant decrease in GnRH neurons in the hypothalamus, a delay in pubertal onset, abnormal estrous cyclicity, and infertility. Taken together, these data provide in vivo evidence that Otx2 is critical for GnRH expression and reproductive competence.

  18. Income, Deprivation and Economic Stress in the Enlarged European Union

    ERIC Educational Resources Information Center

    Whelan, Christopher T.; Maitre, Bertrand

    2007-01-01

    At risk of poverty indicators based on relative income measures suggest that within the enlarged EU societies located at quite different points on a continuum of affluence have similar levels of poverty. Substantial differences in levels of income between societies do not in themselves invalidate this approach. However, the relative income…

  19. Crumbs 2 prevents cortical abnormalities in mouse dorsal telencephalon.

    PubMed

    Dudok, Jacobus J; Murtaza, Mariyam; Henrique Alves, C; Rashbass, Pen; Wijnholds, Jan

    2016-07-01

    The formation of a functionally integrated nervous system is dependent on a highly organized sequence of events that includes timely division and differentiation of progenitors. Several apical polarity proteins have been shown to play crucial roles during neurogenesis, however, the role of Crumbs 2 (CRB2) in cortical development has not previously been reported. Here, we show that conditional ablation of Crb2 in the murine dorsal telencephalon leads to defects in the maintenance of the apical complex. Furthermore, within the mutant dorsal telencephalon there is premature expression of differentiation proteins. We examined the physiological function of Crb2 on wild type genetic background as well as on background lacking Crb1. Telencephalon lacking CRB2 resulted in reduced levels of PALS1 and CRB3 from the apical complex, an increased number of mitotic cells and expanded neuronal domain. These defects are transient and therefore only result in rather mild cortical abnormalities. We show that CRB2 is required for maintenance of the apical polarity complex during development of the cortex and regulation of cell division, and that loss of CRB2 results in cortical abnormalities. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. Layer-specific gene expression in epileptogenic type II focal cortical dysplasia: normal-looking neurons reveal the presence of a hidden laminar organization

    PubMed Central

    2014-01-01

    Background Type II focal cortical dysplasias (FCDs) are malformations of cortical development characterised by the disorganisation of the normal neocortical structure and the presence of dysmorphic neurons (DNs) and balloon cells (BCs). The pathogenesis of FCDs has not yet been clearly established, although a number of histopathological patterns and molecular findings suggest that they may be due to abnormal neuronal and glial proliferation and migration processes. In order to gain further insights into cortical layering disruption and investigate the origin of DNs and BCs, we used in situ RNA hybridisation of human surgical specimens with a neuropathologically definite diagnosis of Type IIa/b FCD and a panel of layer-specific genes (LSGs) whose expression covers all cortical layers. We also used anti-phospho-S6 ribosomal protein antibody to investigate mTOR pathway hyperactivation. Results LSGs were expressed in both normal and abnormal cells (BCs and DNs) but their distribution was different. Normal-looking neurons, which were visibly reduced in the core of the lesion, were apparently located in the appropriate cortical laminae thus indicating a partial laminar organisation. On the contrary, DNs and BCs, labelled with anti-phospho-S6 ribosomal protein antibody, were spread throughout the cortex without any apparent rule and showed a highly variable LSG expression pattern. Moreover, LSGs did not reveal any differences between Type IIa and IIb FCD. Conclusion These findings suggest the existence of hidden cortical lamination involving normal-looking neurons, which retain their ability to migrate correctly in the cortex, unlike DNs which, in addition to their morphological abnormalities and mTOR hyperactivation, show an altered migratory pattern. Taken together these data suggest that an external or environmental hit affecting selected precursor cells during the very early stages of cortical development may disrupt normal cortical development. PMID:24735483

  1. Neuronal correlates of personal space intrusion in violent offenders.

    PubMed

    Schienle, Anne; Wabnegger, Albert; Leitner, Mario; Leutgeb, Verena

    2017-04-01

    Personal space (PS) is defined as the imagery region immediately surrounding our body, which acts as safety zone. It has been suggested that PS is enlarged in violent offenders and that this group shows an enhanced sensitivity to the reduction of interpersonal distance. In the present fMRI study high-risk violent offenders and noncriminal controls were presented with photos of neutral facial expressions by men and women. All images were shown twice, as static photos, and animated (i.e., appearing to approach the subject) in order to simulate PS intrusion. Approaching faces generally provoked activation of a fronto-parietal network and the insula. Offenders responded with greater insula activation to approaching faces, especially when the person was male. Insular activation has been recognized before as a neuronal correlate of potential threat and harm detection in PS. The increased reactivity of violent offenders is possibly a result of their hostile attribution bias.

  2. Desynchronization boost by non-uniform coordinated reset stimulation in ensembles of pulse-coupled neurons

    PubMed Central

    Lücken, Leonhard; Yanchuk, Serhiy; Popovych, Oleksandr V.; Tass, Peter A.

    2013-01-01

    Several brain diseases are characterized by abnormal neuronal synchronization. Desynchronization of abnormal neural synchrony is theoretically compelling because of the complex dynamical mechanisms involved. We here present a novel type of coordinated reset (CR) stimulation. CR means to deliver phase resetting stimuli at different neuronal sub-populations sequentially, i.e., at times equidistantly distributed in a stimulation cycle. This uniform timing pattern seems to be intuitive and actually applies to the neural network models used for the study of CR so far. CR resets the population to an unstable cluster state from where it passes through a desynchronized transient, eventually resynchronizing if left unperturbed. In contrast, we show that the optimal stimulation times are non-uniform. Using the model of weakly pulse-coupled neurons with phase response curves, we provide an approach that enables to determine optimal stimulation timing patterns that substantially maximize the desynchronized transient time following the application of CR stimulation. This approach includes an optimization search for clusters in a low-dimensional pulse coupled map. As a consequence, model-specific non-uniformly spaced cluster states cause considerably longer desynchronization transients. Intriguingly, such a desynchronization boost with non-uniform CR stimulation can already be achieved by only slight modifications of the uniform CR timing pattern. Our results suggest that the non-uniformness of the stimulation times can be a medically valuable parameter in the calibration procedure for CR stimulation, where the latter has successfully been used in clinical and pre-clinical studies for the treatment of Parkinson's disease and tinnitus. PMID:23750134

  3. Homeodomain interacting protein kinase 2 regulates postnatal development of enteric dopaminergic neurons and glia via BMP signaling.

    PubMed

    Chalazonitis, Alcmène; Tang, Amy A; Shang, Yulei; Pham, Tuan D; Hsieh, Ivy; Setlik, Wanda; Gershon, Michael D; Huang, Eric J

    2011-09-28

    Trophic factor signaling is important for the migration, differentiation, and survival of enteric neurons during development. The mechanisms that regulate the maturation of enteric neurons in postnatal life, however, are poorly understood. Here, we show that transcriptional cofactor HIPK2 (homeodomain interacting protein kinase 2) is required for the maturation of enteric neurons and for regulating gliogenesis during postnatal development. Mice lacking HIPK2 display a spectrum of gastrointestinal (GI) phenotypes, including distention of colon and slowed GI transit time. Although loss of HIPK2 does not affect the enteric neurons in prenatal development, a progressive loss of enteric neurons occurs during postnatal life in Hipk2(-/-) mutant mice that preferentially affects the dopaminergic population of neurons in the caudal region of the intestine. The mechanism by which HIPK2 regulates postnatal enteric neuron development appears to involve the response of enteric neurons to bone morphogenetic proteins (BMPs). Specifically, compared to wild type mice, a larger proportion of enteric neurons in Hipk2(-/-) mutants have an abnormally high level of phosphorylated Smad1/5/8. Consistent with the ability of BMP signaling to promote gliogenesis, Hipk2(-/-) mutants show a significant increase in glia in the enteric nervous system. In addition, numbers of autophagosomes are increased in enteric neurons in Hipk2(-/-) mutants, and synaptic maturation is arrested. These results reveal a new role for HIPK2 as an important transcriptional cofactor that regulates the BMP signaling pathway in the maintenance of enteric neurons and glia, and further suggest that HIPK2 and its associated signaling mechanisms may be therapeutically altered to promote postnatal neuronal maturation.

  4. Neuronal glycosylation differentials in normal, injured and chondroitinase-treated environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilcoyne, Michelle; Sharma, Shashank; McDevitt, Niamh

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Carbohydrates are important in the CNS and ChABC has been used for spinal cord injury (SCI) treatment. Black-Right-Pointing-Pointer Neuronal glycosylation in injury and after ChABC treatment is unknown. Black-Right-Pointing-Pointer In silico mining verified that glyco-related genes were differentially regulated after SCI. Black-Right-Pointing-Pointer In vitro model system revealed abnormal sialylation in an injured environment. Black-Right-Pointing-Pointer The model indicated a return to normal neuronal glycosylation after ChABC treatment. -- Abstract: Glycosylation is found ubiquitously throughout the central nervous system (CNS). Chondroitin sulphate proteoglycans (CSPGs) are a group of molecules heavily substituted with glycosaminoglycans (GAGs) and are found in the extracellularmore » matrix (ECM) and cell surfaces. Upon CNS injury, a glial scar is formed, which is inhibitory for axon regeneration. Several CSPGs are up-regulated within the glial scar, including NG2, and these CSPGs are key inhibitory molecules of axonal regeneration. Treatment with chondroitinase ABC (ChABC) can neutralise the inhibitory nature of NG2. A gene expression dataset was mined in silico to verify differentially regulated glycosylation-related genes in neurons after spinal cord injury and identify potential targets for further investigation. To establish the glycosylation differential of neurons that grow in a healthy, inhibitory and ChABC-treated environment, we established an indirect co-culture system where PC12 neurons were grown with primary astrocytes, Neu7 astrocytes (which overexpress NG2) and Neu7 astrocytes treated with ChABC. After 1, 4 and 8 days culture, lectin cytochemistry of the neurons was performed using five fluorescently-labelled lectins (ECA MAA, PNA, SNA-I and WFA). Usually {alpha}-(2,6)-linked sialylation scarcely occurs in the CNS but this motif was observed on the neurons in the injured environment only at day 8

  5. FAT/CD36: a major regulator of neuronal fatty acid sensing and energy homeostasis in rats and mice.

    PubMed

    Le Foll, Christelle; Dunn-Meynell, Ambrose; Musatov, Serguei; Magnan, Christophe; Levin, Barry E

    2013-08-01

    Hypothalamic "metabolic-sensing" neurons sense glucose and fatty acids (FAs) and play an integral role in the regulation of glucose, energy homeostasis, and the development of obesity and diabetes. Using pharmacologic agents, we previously found that ~50% of these neurons responded to oleic acid (OA) by using the FA translocator/receptor FAT/CD36 (CD36). For further elucidation of the role of CD36 in neuronal FA sensing, ventromedial hypothalamus (VMH) CD36 was depleted using adeno-associated viral (AAV) vector expressing CD36 short hairpin RNA (shRNA) in rats. Whereas their neuronal glucosensing was unaffected by CD36 depletion, the percent of neurons that responded to OA was decreased specifically in glucosensing neurons. A similar effect was seen in total-body CD36-knockout mice. Next, weanling rats were injected in the VMH with CD36 AAV shRNA. Despite significant VMH CD36 depletion, there was no effect on food intake, body weight gain, or total carcass adiposity on chow or 45% fat diets. However, VMH CD36-depleted rats did have increased plasma leptin and subcutaneous fat deposition and markedly abnormal glucose tolerance. These results demonstrate that CD36 is a critical factor in both VMH neuronal FA sensing and the regulation of energy and glucose homeostasis.

  6. Single-cell axotomy of cultured hippocampal neurons integrated in neuronal circuits.

    PubMed

    Gomis-Rüth, Susana; Stiess, Michael; Wierenga, Corette J; Meyn, Liane; Bradke, Frank

    2014-05-01

    An understanding of the molecular mechanisms of axon regeneration after injury is key for the development of potential therapies. Single-cell axotomy of dissociated neurons enables the study of the intrinsic regenerative capacities of injured axons. This protocol describes how to perform single-cell axotomy on dissociated hippocampal neurons containing synapses. Furthermore, to axotomize hippocampal neurons integrated in neuronal circuits, we describe how to set up coculture with a few fluorescently labeled neurons. This approach allows axotomy of single cells in a complex neuronal network and the observation of morphological and molecular changes during axon regeneration. Thus, single-cell axotomy of mature neurons is a valuable tool for gaining insights into cell intrinsic axon regeneration and the plasticity of neuronal polarity of mature neurons. Dissociation of the hippocampus and plating of hippocampal neurons takes ∼2 h. Neurons are then left to grow for 2 weeks, during which time they integrate into neuronal circuits. Subsequent axotomy takes 10 min per neuron and further imaging takes 10 min per neuron.

  7. Activation of Supraoptic Oxytocin Neurons by Secretin Facilitates Social Recognition.

    PubMed

    Takayanagi, Yuki; Yoshida, Masahide; Takashima, Akihide; Takanami, Keiko; Yoshida, Shoma; Nishimori, Katsuhiko; Nishijima, Ichiko; Sakamoto, Hirotaka; Yamagata, Takanori; Onaka, Tatsushi

    2017-02-01

    Social recognition underlies social behavior in animals, and patients with psychiatric disorders associated with social deficits show abnormalities in social recognition. Oxytocin is implicated in social behavior and has received attention as an effective treatment for sociobehavioral deficits. Secretin receptor-deficient mice show deficits in social behavior. The relationship between oxytocin and secretin concerning social behavior remains to be determined. Expression of c-Fos in oxytocin neurons and release of oxytocin from their dendrites after secretin application were investigated. Social recognition was examined after intracerebroventricular or local injection of secretin, oxytocin, or an oxytocin receptor antagonist in rats, oxytocin receptor-deficient mice, and secretin receptor-deficient mice. Electron and light microscopic immunohistochemical analysis was also performed to determine whether oxytocin neurons extend their dendrites into the medial amygdala. Supraoptic oxytocin neurons expressed the secretin receptor. Secretin activated supraoptic oxytocin neurons and facilitated oxytocin release from dendrites. Secretin increased acquisition of social recognition in an oxytocin receptor-dependent manner. Local application of secretin into the supraoptic nucleus facilitated social recognition, and this facilitation was blocked by an oxytocin receptor antagonist injected into, but not outside of, the medial amygdala. In the medial amygdala, dendrite-like thick oxytocin processes were found to extend from the supraoptic nucleus. Furthermore, oxytocin treatment restored deficits of social recognition in secretin receptor-deficient mice. The results of our study demonstrate that secretin-induced dendritic oxytocin release from supraoptic neurons enhances social recognition. The newly defined secretin-oxytocin system may lead to a possible treatment for social deficits. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights

  8. Unusual presentation of localized gingival enlargement associated with a slow-growing odontogenic myxoma

    PubMed Central

    Miranda Rius, Jaume; Nadal, Alfons; Lahor, Eduard; Mtui, Beatus; Brunet, Lluís

    2013-01-01

    Unusual presentation of localized gingival enlargement associated with a subjacent tumoural pathology is reported. The patient was a 55-year-old black male, whose chief complaint was a progressive gingival overgrowth for more than ten years, in the buccal area of the anterior left mandible. According to the clinical features and the radiological diagnosis of odontogenic keratocyst, a conservative surgery with enucleation and curettage was performed. Tissue submitted for histopathological analysis rendered the diagnosis of odontogenic myxoma. After 12-month of follow-up, no evidence of recurrence was found. Clinicians should be cautious when facing any gingival enlargement to avoid diagnostic pitfalls and to indicate the appropriate treatment. PMID:23722914

  9. 64. June 1979. Copy of color enlargement from an original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. June 1979. Copy of color enlargement from an original 35mm slide by William S. Anderson. Oblique aerial view of Borough House and immediately adjacent dependencies from the southeast. - Borough House, West Side State Route 261, about .1 mile south side of junction with old Garners Ferry Road, Stateburg, Sumter County, SC

  10. 23. Photocopy of photograph (4 x 5 inch enlargement of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Photocopy of photograph (4 x 5 inch enlargement of 1940 3-1/4 x 4-1/4 inch print by R. Nevan McCullough; in Cultural Resource files, Supervisor's Office, Mt. Baker-Snoqualmie National Forest) SOUTH FRONT - Suntop Lookout, Forest Road 510, Mt. Baker-Snoqualmie National Forest, Greenwater, Pierce County, WA

  11. Enlarging vertebral body pneumatocysts in the cervical spine.

    PubMed

    Kitagawa, Tomoaki; Fujiwara, Atsushi; Tamai, Kazuya; Kobayashi, Naoki; Saiki, Kazuhiko; Omata, Sadatoshi; Saotome, Koichi

    2003-09-01

    An intravertebral pneumatocyst is a relatively rare condition, and its natural course and etiology are unclear. We report a case of intravertebral pneumatocysts in the C5 vertebra that gradually enlarged during a 16-month period as documented by follow-up CT. In addition, direct communication was observed between the gas in the intervertebral disk and another pneumatocyst in the C6 vertebral body, which suggests that the gas in the pneumatocyst had an association with the gas in the degenerated intervertebral disk.

  12. Modelling APOE ɛ3/4 allele-associated sporadic Alzheimer's disease in an induced neuron.

    PubMed

    Kim, Hongwon; Yoo, Junsang; Shin, Jaein; Chang, Yujung; Jung, Junghyun; Jo, Dong-Gyu; Kim, Janghwan; Jang, Wonhee; Lengner, Christopher J; Kim, Byung-Soo; Kim, Jongpil

    2017-08-01

    The recent generation of induced neurons by direct lineage conversion holds promise for in vitro modelling of sporadic Alzheimer's disease. Here, we report the generation of induced neuron-based model of sporadic Alzheimer's disease in mice and humans, and used this system to explore the pathogenic mechanisms resulting from the sporadic Alzheimer's disease risk factor apolipoprotein E (APOE) ɛ3/4 allele. We show that mouse and human induced neurons overexpressing mutant amyloid precursor protein in the background of APOE ɛ3/4 allele exhibit altered amyloid precursor protein (APP) processing, abnormally increased production of amyloid-β42 and hyperphosphorylation of tau. Importantly, we demonstrate that APOE ɛ3/4 patient induced neuron culture models can faithfully recapitulate molecular signatures seen in APOE ɛ3/4-associated sporadic Alzheimer's disease patients. Moreover, analysis of the gene network derived from APOE ɛ3/4 patient induced neurons reveals a strong interaction between APOE ɛ3/4 and another Alzheimer's disease risk factor, desmoglein 2 (DSG2). Knockdown of DSG2 in APOE ɛ3/4 induced neurons effectively rescued defective APP processing, demonstrating the functional importance of this interaction. These data provide a direct connection between APOE ɛ3/4 and another Alzheimer's disease susceptibility gene and demonstrate in proof of principle the utility of induced neuron-based modelling of Alzheimer's disease for therapeutic discovery. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Abnormalities of neural circuitry in Alzheimer's disease: hippocampus and cortical cholinergic innervation.

    PubMed

    Geula, C

    1998-07-01

    Severe pathology in Alzheimer's disease (AD) results in marked disruption of cortical circuitry. Formation of neurofibrillary tangles, neuronal loss, decrease in dendritic extent, and synaptic depletion combine to halt communication among various cortical areas, resulting in anatomic isolation and fragmentation of many cortical zones. The clinical manifestation of this disruption is severe and debilitating cognitive dysfunction, often accompanied by psychiatric and behavioral disturbances and a diminished ability to perform activities of daily living. However, different cortical circuits are not equally vulnerable to AD pathology. In particular, two cortical systems that appear to be involved in the neural processing of memory are selectively vulnerable to degeneration in AD. One consists of connections between the hippocampus and its neighboring cortical structures within the temporal lobe. The second is the cortical cholinergic system that originates in neurons within the basal forebrain and innervates the entire cortical mantle. The circuitry in these systems shows early and severe degenerative changes in the course of AD. The selective vulnerability of these circuits is the probable reason for the early and marked loss of memory observed in these patients. This review presents current knowledge of the general pattern of cortical circuitry, followed by a summary of abnormalities of this circuitry in AD. The cortical circuits that exhibit selective pathology in AD are described in greater detail. Therapeutic implications of the abnormal circuitry in AD are also discussed. For therapies to be effective, early diagnosis of AD is necessary. Future efforts at AD therapy must be combined with an equally intense effort to develop tools capable of early diagnosis of AD, preferably at a preclinical stage before the onset of cognitive symptoms.

  14. Mice with experimental antiphospholipid syndrome display hippocampal dysfunction and a reduction of dendritic complexity in hippocampal CA1 neurones.

    PubMed

    Frauenknecht, Katrin; Katzav, Aviva; Weiss Lavi, Ronen; Sabag, Avishag; Otten, Susanne; Chapman, Joab; Sommer, Clemens J

    2015-08-01

    The antiphospholipid syndrome (APS) is an autoimmune disease characterized by high titres of auto-antibodies (aPL) leading to thrombosis and consequent infarcts. However, many affected patients develop neurological symptoms in the absence of stroke. Similarly, in a mouse model of this disease (eAPS), animals consistently develop behavioural abnormalities despite lack of ischemic brain injury. Therefore, the present study was designed to identify structural alterations of hippocampal neurones underlying the neurological symptoms in eAPS. Adult female Balb/C mice were subjected to either induction of eAPS by immunization with β2-Glycoprotein 1 or to a control group. After sixteen weeks animals underwent behavioural and cognitive testing using Staircase test (experiment 1 and 2) and Y-maze alternation test (experiment 1) and were tested for serum aPL levels (both experiments). Animals of experiment 1 (n = 7/group) were used for hippocampal neurone analysis using Golgi-Cox staining. Animals of experiment 2 (n = 7/group) were used to analyse molecular markers of total dendritic integrity (MAP2), presynaptic plasticity (synaptobrevin 2/VAMP2) and dendritic spines (synaptopodin) using immunohistochemistry. eAPS mice developed increased aPL titres and presented with abnormal behaviour and impaired short term memory. Further, they revealed a reduction of dendritic complexity of hippocampal CA1 neurones as reflected by decreased dendritic length, arborization and spine density, respectively. Additional decrease of the spine-associated protein expression of Synaptopodin points to dendritic spines as major targets in the pathological process. Reduction of hippocampal dendritic complexity may represent the structural basis for the behavioural and cognitive abnormalities of eAPS mice. © 2014 British Neuropathological Society.

  15. Meiotic abnormalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  16. Long-term results of pulmonary valve annular enlargement with valve repair in tetralogy of Fallot.

    PubMed

    Kim, Hyungtae; Sung, Si Chan; Choi, Kwang Ho; Lee, Hyoung Doo; Kim, Geena; Ko, Hoon; Lee, Young Seok

    2018-06-01

    We adopted an operative technique of pulmonary valve (PV) annular enlargement with valve repair in tetralogy of Fallot (TOF) correction to reduce postoperative pulmonary regurgitation (PR) 16 years ago. Here, we have evaluated the long-term results. Between April 2000 and August 2005, 43 patients (26 men) with tetralogy of Fallot with pulmonary stenosis underwent PV annular enlargement with valve repair. The median age and body weight at the time of surgery were 14 months and 10.2 kg, respectively. There was no operative mortality. Mean postoperative PR grade at discharge was 0.93 ± 0.40 (none or trivial in 10 patients, mild in 27 patients, mild to moderate in 5 patients and moderate in 1 patient), and the mean postoperative pressure gradient across PV was 13.0 ± 10.9 mmHg. The mean follow-up duration was 131.9 ± 42.9 months. During follow-up, 1 reoperation was performed for residual ventricular septal defect. The mean PR grade at the last follow-up echocardiography was 1.59 ± 0.60 (mild in 17 patients, mild to moderate in 8 patients, moderate in 14 patients, moderate to severe in 1 patient and severe in 3 patients), and the mean pressure gradient was 22.7 ± 9.9 mmHg. We have compared the incidence of moderate or more PR with the incidence of patients who underwent simple transannular patch enlargement through propensity score matching. The PV repair group had a lower incidence of moderate or more PR compared with the simple transannular patch group (40% vs 68%, P = 0.04). PV annular enlargement with valve repair has reasonable long-term results and yields a lower long-term incidence of significant PR compared with the simple transannular patch enlargement technique.

  17. Dendritic Arborization and Spine Dynamics Are Abnormal in the Mouse Model of MECP2 Duplication Syndrome

    PubMed Central

    Jiang, Minghui; Ash, Ryan T.; Baker, Steven A.; Suter, Bernhard; Ferguson, Andrew; Park, Jiyoung; Rudy, Jessica; Torsky, Sergey P.; Chao, Hsiao-Tuan; Zoghbi, Huda Y.

    2013-01-01

    MECP2 duplication syndrome is a childhood neurological disorder characterized by intellectual disability, autism, motor abnormalities, and epilepsy. The disorder is caused by duplications spanning the gene encoding methyl-CpG-binding protein-2 (MeCP2), a protein involved in the modulation of chromatin and gene expression. MeCP2 is thought to play a role in maintaining the structural integrity of neuronal circuits. Loss of MeCP2 function causes Rett syndrome and results in abnormal dendritic spine morphology and decreased pyramidal dendritic arbor complexity and spine density. The consequences of MeCP2 overexpression on dendritic pathophysiology remain unclear. We used in vivo two-photon microscopy to characterize layer 5 pyramidal neuron spine turnover and dendritic arborization as a function of age in transgenic mice expressing the human MECP2 gene at twice the normal levels of MeCP2 (Tg1; Collins et al., 2004). We found that spine density in terminal dendritic branches is initially higher in young Tg1 mice but falls below control levels after postnatal week 12, approximately correlating with the onset of behavioral symptoms. Spontaneous spine turnover rates remain high in older Tg1 animals compared with controls, reflecting the persistence of an immature state. Both spine gain and loss rates are higher, with a net bias in favor of spine elimination. Apical dendritic arbors in both simple- and complex-tufted layer 5 Tg1 pyramidal neurons have more branches of higher order, indicating that MeCP2 overexpression induces dendritic overgrowth. P70S6K was hyperphosphorylated in Tg1 somatosensory cortex, suggesting that elevated mTOR signaling may underlie the observed increase in spine turnover and dendritic growth. PMID:24336718

  18. The Neuron-specific Chromatin Regulatory Subunit BAF53b is Necessary for Synaptic Plasticity and Memory

    PubMed Central

    Vogel-Ciernia, Annie; Matheos, Dina P.; Barrett, Ruth M.; Kramár, Enikö; Azzawi, Soraya; Chen, Yuncai; Magnan, Christophe N.; Zeller, Michael; Sylvain, Angelina; Haettig, Jakob; Jia, Yousheng; Tran, Anthony; Dang, Richard; Post, Rebecca J.; Chabrier, Meredith; Babayan, Alex; Wu, Jiang I.; Crabtree, Gerald R.; Baldi, Pierre; Baram, Tallie Z.; Lynch, Gary; Wood, Marcelo A.

    2013-01-01

    Recent exome sequencing studies have implicated polymorphic BAF complexes (mammalian SWI/SNF chromatin remodeling complexes) in several human intellectual disabilities and cognitive disorders. However, it is currently unknown how mutations in BAF complexes result in impaired cognitive function. Post mitotic neurons express a neuron specific assembly, nBAF, characterized by the neuron-specific subunit BAF53b. Mice harboring selective genetic manipulations of BAF53b have severe defects in longterm memory and long-lasting forms of hippocampal synaptic plasticity. We rescued memory impairments in BAF53b mutant mice by reintroducing BAF53b in the adult hippocampus, indicating a role for BAF53b beyond neuronal development. The defects in BAF53b mutant mice appear to derive from alterations in gene expression that produce abnormal postsynaptic components, such as spine structure and function, and ultimately lead to deficits in synaptic plasticity. Our studies provide new insight into the role of dominant mutations in subunits of BAF complexes in human intellectual and cognitive disorders. PMID:23525042

  19. EPILEPSY SURGERY IN DRUG RESISTANT TEMPORAL LOBE EPILEPSY ASSOCIATED WITH NEURONAL ANTIBODIES

    PubMed Central

    Carreño, Mar; Bien, Christian; Asadi-Pooya, Ali A.; Sperling, Michael; Marusic, Petr.; Elisak, Martin; Pimentel, Jose; Wehner, Tim; Mohanraj, Rajiv; Uranga, Juan; Gómez-Ibáñez, Asier; Villanueva, Vicente; Gil, Francisco; Donaire, Antonio; Bargalló, Nuria; Rumià, Jordi; Roldán, Pedro; Setoain, Xavier; Pintor, Luis; Boget, Teresa; Bailles, Eva; Falip, Mercè; Aparicio, Javier; Dalmau, Josep; Graus, Francesc

    2017-01-01

    We assessed the outcome of patients with drug resistant epilepsy and neuronal antibodies who underwent epilepsy surgery. Retrospective study, information collected with a questionnaire sent to epilepsy surgery centers. Thirteen patients identified, with antibodies to GAD (8), Ma2 (2), Hu (1), LGI1 (1) or CASPR2 (1). Mean age at seizure onset: 23 years. Five patients had an encephalitic phase. Three had testicular tumors and five had autoimmune diseases. All had drug resistant temporal lobe epilepsy (median: 20 seizures/month). MRI showed unilateral temporal lobe abnormalities (mainly hippocampal sclerosis) in 9 patients, bilateral abnormalities in 3, and was normal in 1. Surgical procedures included anteromesial temporal lobectomy (10 patients), selective amygdalohippocampectomy (1), temporal pole resection (1) and radiofrequency ablation of mesial structures (1). Perivascular lymphocytic infiltrates were seen in 7/12 patients. One year outcome available in all patients, at 3 years in 9. At last visit 5/13 patients (38.5%) (with Ma2, Hu, LGI1, and 2 GAD antibodies) were in Engel`s classes I or II. Epilepsy surgery may be an option for patients with drug resistant seizures associated with neuronal antibodies. Outcome seems to be worse than that expected in other etiologies, even in the presence of unilateral HS. Intracranial EEG may be required in some patients. PMID:28043058

  20. Epilepsy surgery in drug resistant temporal lobe epilepsy associated with neuronal antibodies.

    PubMed

    Carreño, Mar; Bien, Christian G; Asadi-Pooya, Ali A; Sperling, Michael; Marusic, Petr; Elisak, Martin; Pimentel, Jose; Wehner, Tim; Mohanraj, Rajiv; Uranga, Juan; Gómez-Ibáñez, Asier; Villanueva, Vicente; Gil, Francisco; Donaire, Antonio; Bargalló, Nuria; Rumià, Jordi; Roldán, Pedro; Setoain, Xavier; Pintor, Luis; Boget, Teresa; Bailles, Eva; Falip, Mercè; Aparicio, Javier; Dalmau, Josep; Graus, Francesc

    2017-01-01

    We assessed the outcome of patients with drug resistant epilepsy and neuronal antibodies who underwent epilepsy surgery. Retrospective study, information collected with a questionnaire sent to epilepsy surgery centers. Thirteen patients identified, with antibodies to GAD (8), Ma2 (2), Hu (1), LGI1 (1) or CASPR2 (1). Mean age at seizure onset: 23 years. Five patients had an encephalitic phase. Three had testicular tumors and five had autoimmune diseases. All had drug resistant temporal lobe epilepsy (median: 20 seizures/month). MRI showed unilateral temporal lobe abnormalities (mainly hippocampal sclerosis) in 9 patients, bilateral abnormalities in 3, and was normal in 1. Surgical procedures included anteromesial temporal lobectomy (10 patients), selective amygdalohippocampectomy (1), temporal pole resection (1) and radiofrequency ablation of mesial structures (1). Perivascular lymphocytic infiltrates were seen in 7/12 patients. One year outcome available in all patients, at 3 years in 9. At last visit 5/13 patients (38.5%) (with Ma2, Hu, LGI1, and 2 GAD antibodies) were in Engel's classes I or II. Epilepsy surgery may be an option for patients with drug resistant seizures associated with neuronal antibodies. Outcome seems to be worse than that expected in other etiologies, even in the presence of unilateral HS. Intracranial EEG may be required in some patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Cerebrospinal Fluid (CSF) Neuronal Biomarkers across the Spectrum of HIV Infection: Hierarchy of Injury and Detection

    PubMed Central

    Peterson, Julia; Gisslen, Magnus; Zetterberg, Henrik; Fuchs, Dietmar; Shacklett, Barbara L.; Hagberg, Lars; Yiannoutsos, Constantin T.; Spudich, Serena S.; Price, Richard W.

    2014-01-01

    The character of central nervous system (CNS) HIV infection and its effects on neuronal integrity vary with evolving systemic infection. Using a cross-sectional design and archived samples, we compared concentrations of cerebrospinal fluid (CSF) neuronal biomarkers in 143 samples from 8 HIV-infected subject groups representing a spectrum of untreated systemic HIV progression and viral suppression: primary infection; four groups of chronic HIV infection neuroasymptomatic (NA) subjects defined by blood CD4+ T cells of >350, 200–349, 50–199, and <50 cells/µL; HAD; treatment-induced viral suppression; and ‘elite’ controllers. Samples from 20 HIV-uninfected controls were also examined. The neuronal biomarkers included neurofilament light chain protein (NFL), total and phosphorylated tau (t-tau, p-tau), soluble amyloid precursor proteins alpha and beta (sAPPα, sAPPβ) and amyloid beta (Aβ) fragments 1–42, 1–40 and 1–38. Comparison of the biomarker changes showed a hierarchy of sensitivity in detection and suggested evolving mechanisms with progressive injury. NFL was the most sensitive neuronal biomarker. Its CSF concentration exceeded age-adjusted norms in all HAD patients, 75% of NA CD4<50, 40% of NA CD4 50–199, and 42% of primary infection, indicating common neuronal injury with untreated systemic HIV disease progression as well as transiently during early infection. By contrast, only 75% of HAD subjects had abnormal CSF t-tau levels, and there were no significant differences in t-tau levels among the remaining groups. sAPPα and β were also abnormal (decreased) in HAD, showed less marked change than NFL with CD4 decline in the absence of HAD, and were not decreased in PHI. The CSF Aβ peptides and p-tau concentrations did not differ among the groups, distinguishing the HIV CNS injury profile from Alzheimer's disease. These CSF biomarkers can serve as useful tools in selected research and clinical settings for patient classification, pathogenetic

  2. Cerebrospinal fluid (CSF) neuronal biomarkers across the spectrum of HIV infection: hierarchy of injury and detection.

    PubMed

    Peterson, Julia; Gisslen, Magnus; Zetterberg, Henrik; Fuchs, Dietmar; Shacklett, Barbara L; Hagberg, Lars; Yiannoutsos, Constantin T; Spudich, Serena S; Price, Richard W

    2014-01-01

    The character of central nervous system (CNS) HIV infection and its effects on neuronal integrity vary with evolving systemic infection. Using a cross-sectional design and archived samples, we compared concentrations of cerebrospinal fluid (CSF) neuronal biomarkers in 143 samples from 8 HIV-infected subject groups representing a spectrum of untreated systemic HIV progression and viral suppression: primary infection; four groups of chronic HIV infection neuroasymptomatic (NA) subjects defined by blood CD4+ T cells of >350, 200-349, 50-199, and <50 cells/µL; HAD; treatment-induced viral suppression; and 'elite' controllers. Samples from 20 HIV-uninfected controls were also examined. The neuronal biomarkers included neurofilament light chain protein (NFL), total and phosphorylated tau (t-tau, p-tau), soluble amyloid precursor proteins alpha and beta (sAPPα, sAPPβ) and amyloid beta (Aβ) fragments 1-42, 1-40 and 1-38. Comparison of the biomarker changes showed a hierarchy of sensitivity in detection and suggested evolving mechanisms with progressive injury. NFL was the most sensitive neuronal biomarker. Its CSF concentration exceeded age-adjusted norms in all HAD patients, 75% of NA CD4<50, 40% of NA CD4 50-199, and 42% of primary infection, indicating common neuronal injury with untreated systemic HIV disease progression as well as transiently during early infection. By contrast, only 75% of HAD subjects had abnormal CSF t-tau levels, and there were no significant differences in t-tau levels among the remaining groups. sAPPα and β were also abnormal (decreased) in HAD, showed less marked change than NFL with CD4 decline in the absence of HAD, and were not decreased in PHI. The CSF Aβ peptides and p-tau concentrations did not differ among the groups, distinguishing the HIV CNS injury profile from Alzheimer's disease. These CSF biomarkers can serve as useful tools in selected research and clinical settings for patient classification, pathogenetic analysis

  3. 4. Photocopy of photograph (4 x 5 inch enlargement of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photocopy of photograph (4 x 5 inch enlargement of 1942 3-1/2 x 5-7/8 inch print by R. Fromme; in Recreation files, Supervisor's Office, Mt. Baker-Snoqualmie National Forest) EAST (MAIN) ELEVATION OF PROTECTION ASSISTANT'S RESIDENCE - Glacier Ranger Station, Protection Assistant's Residence, Washington State Route 542, Glacier, Whatcom County, WA

  4. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus

    PubMed Central

    Hernández, Vivian M.; Hegeman, Daniel J.; Cui, Qiaoling; Kelver, Daniel A.; Fiske, Michael P.; Glajch, Kelly E.; Pitt, Jason E.; Huang, Tina Y.; Justice, Nicholas J.

    2015-01-01

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. SIGNIFICANCE STATEMENT Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping

  5. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus.

    PubMed

    Hernández, Vivian M; Hegeman, Daniel J; Cui, Qiaoling; Kelver, Daniel A; Fiske, Michael P; Glajch, Kelly E; Pitt, Jason E; Huang, Tina Y; Justice, Nicholas J; Chan, C Savio

    2015-08-26

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping expression of the

  6. Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons.

    PubMed

    Mounien, Lourdes; Marty, Nell; Tarussio, David; Metref, Salima; Genoux, David; Preitner, Frédéric; Foretz, Marc; Thorens, Bernard

    2010-06-01

    The physiological contribution of glucose in thermoregulation is not completely established nor whether this control may involve a regulation of the melanocortin pathway. Here, we assessed thermoregulation and leptin sensitivity of hypothalamic arcuate neurons in mice with inactivation of glucose transporter type 2 (Glut2)-dependent glucose sensing. Mice with inactivation of Glut2-dependent glucose sensors are cold intolerant and show increased susceptibility to food deprivation-induced torpor and abnormal hypothermic response to intracerebroventricular administration of 2-deoxy-d-glucose compared to control mice. This is associated with a defect in regulated expression of brown adipose tissue uncoupling protein I and iodothyronine deiodinase II and with a decreased leptin sensitivity of neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons, as observed during the unfed-to-refed transition or following i.p. leptin injection. Sites of central Glut-2 expression were identified by a genetic tagging approach and revealed that glucose-sensitive neurons were present in the lateral hypothalamus, the dorsal vagal complex, and the basal medulla but not in the arcuate nucleus. NPY and POMC neurons were, however, connected to nerve terminals from Glut2-expressing neurons. Thus, our data suggest that glucose controls thermoregulation and the leptin sensitivity of NPY and POMC neurons through activation of Glut2-dependent glucose-sensing neurons located outside of the arcuate nucleus.

  7. Prefrontal NMDA receptors expressed in excitatory neurons control fear discrimination and fear extinction.

    PubMed

    Vieira, Philip A; Corches, Alex; Lovelace, Jonathan W; Westbrook, Kevin B; Mendoza, Michael; Korzus, Edward

    2015-03-01

    N-methyl-D-aspartate receptors (NMDARs) are critically involved in various learning mechanisms including modulation of fear memory, brain development and brain disorders. While NMDARs mediate opposite effects on medial prefrontal cortex (mPFC) interneurons and excitatory neurons, NMDAR antagonists trigger profound cortical activation. The objectives of the present study were to determine the involvement of NMDARs expressed specifically in excitatory neurons in mPFC-dependent adaptive behaviors, specifically fear discrimination and fear extinction. To achieve this, we tested mice with locally deleted Grin1 gene encoding the obligatory NR1 subunit of the NMDAR from prefrontal CamKIIα positive neurons for their ability to distinguish frequency modulated (FM) tones in fear discrimination test. We demonstrated that NMDAR-dependent signaling in the mPFC is critical for effective fear discrimination following initial generalization of conditioned fear. While mice with deficient NMDARs in prefrontal excitatory neurons maintain normal responses to a dangerous fear-conditioned stimulus, they exhibit abnormal generalization decrement. These studies provide evidence that NMDAR-dependent neural signaling in the mPFC is a component of a neural mechanism for disambiguating the meaning of fear signals and supports discriminative fear learning by retaining proper gating information, viz. both dangerous and harmless cues. We also found that selective deletion of NMDARs from excitatory neurons in the mPFC leads to a deficit in fear extinction of auditory conditioned stimuli. These studies suggest that prefrontal NMDARs expressed in excitatory neurons are involved in adaptive behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Upregulation of Ih expressed in IB4-negative Aδ nociceptive DRG neurons contributes to mechanical hypersensitivity associated with cervical radiculopathic pain

    PubMed Central

    Liu, Da-Lu; Lu, Na; Han, Wen-Juan; Chen, Rong-Gui; Cong, Rui; Xie, Rou-Gang; Zhang, Yu-Fei; Kong, Wei-Wei; Hu, San-Jue; Luo, Ceng

    2015-01-01

    Cervical radiculopathy represents aberrant mechanical hypersensitivity. Primary sensory neuron’s ability to sense mechanical force forms mechanotransduction. However, whether this property undergoes activity-dependent plastic changes and underlies mechanical hypersensitivity associated with cervical radiculopathic pain (CRP) is not clear. Here we show a new CRP model producing stable mechanical compression of dorsal root ganglion (DRG), which induces dramatic behavioral mechanical hypersensitivity. Amongst nociceptive DRG neurons, a mechanically sensitive neuron, isolectin B4 negative Aδ-type (IB4− Aδ) DRG neuron displays spontaneous activity with hyperexcitability after chronic compression of cervical DRGs. Focal mechanical stimulation on somata of IB4- Aδ neuron induces abnormal hypersensitivity. Upregulated HCN1 and HCN3 channels and increased Ih current on this subset of primary nociceptors underlies the spontaneous activity together with neuronal mechanical hypersensitivity, which further contributes to the behavioral mechanical hypersensitivity associated with CRP. This study sheds new light on the functional plasticity of a specific subset of nociceptive DRG neurons to mechanical stimulation and reveals a novel mechanism that could underlie the mechanical hypersensitivity associated with cervical radiculopathy. PMID:26577374

  9. Abnormal branching and regression of the notochord and its relationship to foregut abnormalities.

    PubMed

    Vleesch Dubois, V N; Quan Qi, B; Beasley, S W; Williams, A

    2002-04-01

    An abnormally positioned notochord has been reported in embryos that develop foregut abnormalities, vertebral defects and other abnormalities of the VATER association. This study examines the patterns of regression of the abnormal notochord in the rat model of the VATER association and investigates the relationship between developmental abnormalities of the notochord and those of the vertebra and foregut. Timed-pregnant Sprague-Dawley rats were given daily intraperitoneal injections of 1.75 mg/kg adriamycin on gestational days 6 - 9 inclusive. Rats were sacrificed between days 14 and 20 and their embryos harvested, histologically sectioned and stained and examined serially. The location and appearance of the degenerating notochord and its relationship to regional structural defects were analysed. All 26 embryos exposed to adriamycin developed foregut abnormalities and had an abnormal notochord. The notochord disappeared by a process of apoptotic degeneration that lagged behind that of the normal embryo: the notochord persisted in the abnormal embryo beyond day 17, whereas in the normal rat it had already disappeared. Similarly, formation of the nucleus pulposus was delayed. Vertebral abnormalities occurred when the notochord was ventrally-positioned. The notochord disappears during day 16 in the normal embryo whereas abnormal branches of the notochord persist until day 19 in the adriamycin-treated embryo. Degeneration of the notochord is dominated by apoptosis. An excessively ventrally-placed notochord is closely associated with abnormalities of the vertebral column, especially hemivertebrae.

  10. Postinhibitory rebound neurons and networks are disrupted in retrovirus-induced spongiform neurodegeneration

    PubMed Central

    Li, Ying; Davey, Robert A.; Lynch, William P.

    2014-01-01

    Certain retroviruses induce progressive spongiform motor neuron disease with features resembling prion diseases and amyotrophic lateral sclerosis. With the neurovirulent murine leukemia virus (MLV) FrCasE, Env protein expression within glia leads to postsynaptic vacuolation, cellular effacement, and neuronal loss in the absence of neuroinflammation. To understand the physiological changes associated with MLV-induced spongiosis, and its neuronal specificity, we employed patch-clamp recordings and voltage-sensitive dye imaging in brain slices of the mouse inferior colliculus (IC), a midbrain nucleus that undergoes extensive spongiosis. IC neurons characterized by postinhibitory rebound firing (PIR) were selectively affected in FrCasE-infected mice. Coincident with Env expression in microglia and in glia characterized by NG2 proteoglycan expression (NG2 cells), rebound neurons (RNs) lost PIR, became hyperexcitable, and were reduced in number. PIR loss and hyperexcitability were reversed by raising internal calcium buffer concentrations in RNs. PIR-initiated rhythmic circuits were disrupted, and spontaneous synchronized bursting and prolonged depolarizations were widespread. Other IC neuron cell types and circuits within the same degenerative environment were unaffected. Antagonists of NMDA and/or AMPA receptors reduced burst firing in the IC but did not affect prolonged depolarizations. Antagonists of L-type calcium channels abolished both bursts and slow depolarizations. IC infection by the nonneurovirulent isogenic virus Friend 57E (Fr57E), whose Env protein is structurally similar to FrCasE, showed no RN hyperactivity or cell loss; however, PIR latency increased. These findings suggest that spongiform neurodegeneration arises from the unique excitability of RNs, their local regulation by glia, and the disruption of this relationship by glial expression of abnormal protein. PMID:25252336

  11. Loss of M5 muscarinic acetylcholine receptors leads to cerebrovascular and neuronal abnormalities and cognitive deficits in mice.

    PubMed

    Araya, Runa; Noguchi, Takanori; Yuhki, Munehiro; Kitamura, Naohito; Higuchi, Makoto; Saido, Takaomi C; Seki, Kenjiro; Itohara, Shigeyoshi; Kawano, Masako; Tanemura, Kentaro; Takashima, Akihiko; Yamada, Kazuyuki; Kondoh, Yasushi; Kanno, Iwao; Wess, Jürgen; Yamada, Masahisa

    2006-11-01

    The M5 muscarinic acetylcholine receptor (M5R) has been shown to play a crucial role in mediating acetylcholine-dependent dilation of cerebral blood vessels. We show that male M5R-/- mice displayed constitutive constriction of cerebral arteries using magnetic resonance angiography in vivo. Male M5R-/- mice exhibited a significantly reduced cerebral blood flow (CBF) in the cerebral cortex, hippocampus, basal ganglia, and thalamus. Cortical and hippocampal pyramidal neurons from M5R-/- mice showed neuronal atrophy. Hippocampus-dependent spatial and nonspatial memory was also impaired in M5R-/- mice. In M5R-/- mice, CA3 pyramidal cells displayed a significantly attenuated frequency of the spontaneous postsynaptic current and long-term potentiation was significantly impaired at the mossy fiber-CA3 synapse. Our findings suggest that impaired M5R signaling may play a role in the pathophysiology of cerebrovascular deficits. The M5 receptor may represent an attractive novel therapeutic target to ameliorate memory deficits caused by impaired cerebrovascular function.

  12. A Flavonoid Compound Promotes Neuronal Differentiation of Embryonic Stem Cells via PPAR-β Modulating Mitochondrial Energy Metabolism.

    PubMed

    Mei, Yu-Qin; Pan, Zong-Fu; Chen, Wen-Teng; Xu, Min-Hua; Zhu, Dan-Yan; Yu, Yong-Ping; Lou, Yi-Jia

    2016-01-01

    Relatively little is known regarding mitochondrial metabolism in neuronal differentiation of embryonic stem (ES) cells. By using a small molecule, present research has investigated the pattern of cellular energy metabolism in neural progenitor cells derived from mouse ES cells. Flavonoid compound 4a faithfully facilitated ES cells to differentiate into neurons morphologically and functionally. The expression and localization of peroxisome proliferator-activated receptors (PPARs) were examined in neural progenitor cells. PPAR-β expression showed robust upregulation compared to solvent control. Treatment with PPAR-β agonist L165041 alone or together with compound 4a significantly promoted neuronal differentiation, while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound 4a. Consistently, knockdown of PPAR-β in ES cells abolished compound 4a-induced neuronal differentiation. Interestingly, we found that mitochondrial fusion protein Mfn2 was also abolished by sh-PPAR-β, resulting in abnormal mitochondrial Ca2+ ([Ca2+]M) transients as well as impaired mitochondrial bioenergetics. In conclusion, we demonstrated that by modulating mitochondrial energy metabolism through Mfn2 and mitochondrial Ca2+, PPAR-β took an important role in neuronal differentiation induced by flavonoid compound 4a.

  13. A Flavonoid Compound Promotes Neuronal Differentiation of Embryonic Stem Cells via PPAR-β Modulating Mitochondrial Energy Metabolism

    PubMed Central

    Mei, Yu-qin; Pan, Zong-fu; Chen, Wen-teng; Xu, Min-hua; Zhu, Dan-yan; Yu, Yong-ping; Lou, Yi-jia

    2016-01-01

    Relatively little is known regarding mitochondrial metabolism in neuronal differentiation of embryonic stem (ES) cells. By using a small molecule, present research has investigated the pattern of cellular energy metabolism in neural progenitor cells derived from mouse ES cells. Flavonoid compound 4a faithfully facilitated ES cells to differentiate into neurons morphologically and functionally. The expression and localization of peroxisome proliferator-activated receptors (PPARs) were examined in neural progenitor cells. PPAR-β expression showed robust upregulation compared to solvent control. Treatment with PPAR-β agonist L165041 alone or together with compound 4a significantly promoted neuronal differentiation, while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound 4a. Consistently, knockdown of PPAR-β in ES cells abolished compound 4a-induced neuronal differentiation. Interestingly, we found that mitochondrial fusion protein Mfn2 was also abolished by sh-PPAR-β, resulting in abnormal mitochondrial Ca2+ ([Ca2+]M) transients as well as impaired mitochondrial bioenergetics. In conclusion, we demonstrated that by modulating mitochondrial energy metabolism through Mfn2 and mitochondrial Ca2+, PPAR-β took an important role in neuronal differentiation induced by flavonoid compound 4a. PMID:27315062

  14. Ultrastructural Alterations of Von Economo Neurons in the Anterior Cingulate Cortex in Schizophrenia.

    PubMed

    Krause, Martin; Theiss, Carsten; Brüne, Martin

    2017-11-01

    Von Economo neurons (VENs) are large bipolar projection neurons mainly located in layer Vb of anterior cingulate cortex (ACC) and anterior insula. Both regions are involved in cognitive and emotional procedures and are functionally and anatomically altered in schizophrenia. Although the detailed function of VEN remains unclear, it has been suggested that these neurons are involved in the pathomechanism of schizophrenia. Here, we were interested in the question whether or not the VEN of schizophrenia patients would show abnormalities at the ultrastructural level. Accordingly, we examined the amount of lysosomal aggregations of the VEN in post-mortem tissue of patients with schizophrenia, bipolar disorder and psychologically unaffected individuals, and compared the findings with aggregations in adjacent pyramidal cells in layer Vb of the ACC. VEN of patients with schizophrenia, and to a lesser degree individuals with bipolar disorder contained significantly more lysosomal aggregations compared with tissue from unaffected controls. Specifically, the larger amount of lysosomal aggregations in schizophrenia seemed to be selective for VEN, with no differences occurring in pyramidal cells. These findings may indicate that the VEN of schizophrenia patients are selectively vulnerable to neuronal damage. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:2017-2024, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Improved Lung Perfusion After Left Pulmonary Artery Patch Enlargement During the Norwood Operation.

    PubMed

    Salehi Ravesh, Mona; Scheewe, Jens; Attmann, Tim; Al Bulushi, Abdullah; Jussli-Melchers, Marka-Jill; Jerosch-Herold, Michael; Gabbert, Dominik D; Wegner, Philip; Kramer, Hans-Heiner; Rickers, Carsten

    2018-05-01

    Optimal pulmonary perfusion is crucial for a well-functioning Fontan circulation in patients with hypoplastic left heart syndrome (HLHS). To obtain an adequate size of the left pulmonary artery (LPA), patch enlargement is a routine part of the hemi-Fontan procedure in our center. However, LPA patch enlargement at the time of the modified Norwood procedure may have surgical advantages. Therefore, the aim of this study was to evaluate whether anatomic and functional effects of the new approach are superior. A total of 51 consecutive HLHS patients underwent a cardiovascular magnetic resonance imaging study including assessment of LPA anatomy and lung perfusion. The LPA of 20 patients was enlarged during the modified Norwood procedure (group N) and of 31 patients during the hemi-Fontan procedure (group HF). The median indexed cross-sectional area of the LPA in group N was significantly higher than in group HF (49.5 versus 27.9 mm 2 /m 2 , p < 0.0001). The regional pulmonary perfusion as measured by first-pass, contrast-enhanced signal intensity upslope was significantly improved in group N (left side 0.67 s -1 versus 0.40 s -1 , p = 0.002; right side 0.84 s -1 versus 0.52 s -1 , p = 0.01). The total hemi-Fontan bypass and procedure times were significantly shorter in group N (both p < 0.001). These first magnetic resonance imaging data show that HLHS patients after LPA patch enlargement during the modified Norwood procedure have significantly higher LPA cross-sectional areas and show improved lung perfusion and shorter overall procedure time as compared with LPA patching during second stage (hemi-Fontan). Therefore, this promising surgical technique may improve blood flow dynamics of the Fontan circulation in the long run. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Contribution of amygdala CRF neurons to chronic pain.

    PubMed

    Andreoli, Matthew; Marketkar, Tanvi; Dimitrov, Eugene

    2017-12-01

    We investigated the role of amygdala corticotropin-releasing factor (CRF) neurons in the perturbations of descending pain inhibition caused by neuropathic pain. Forced swim increased the tail-flick response latency in uninjured mice, a phenomenon known as stress-induced analgesia (SIA) but did not change the tail-flick response latency in mice with neuropathic pain caused by sciatic nerve constriction. Neuropathic pain also increased the expression of CRF in the central amygdala (CeAmy) and ΔFosB in the dorsal horn of the spinal cord. Next, we injected the CeAmy of CRF-cre mice with cre activated AAV-DREADD (Designer Receptors Exclusively Activated by Designer Drugs) vectors. Activation of CRF neurons by DREADD/Gq did not affect the impaired SIA but inhibition of CRF neurons by DREADD/Gi restored SIA and decreased allodynia in mice with neuropathic pain. The possible downstream circuitry involved in the regulation of SIA was investigated by combined injections of retrograde cre-virus (CAV2-cre) into the locus ceruleus (LC) and cre activated AAV-diphtheria toxin (AAV-FLEX-DTX) virus into the CeAmy. The viral injections were followed by a sciatic nerve constriction ipsilateral or contralateral to the injections. Ablation of amygdala projections to the LC on the side of injury but not on the opposite side, completely restored SIA, decreased allodynia and decreased ΔFosB expression in the spinal cord in mice with neuropathic pain. The possible lateralization of SIA impairment to the side of injury was confirmed by an experiment in which unilateral inhibition of the LC decreased SIA even in uninjured mice. The current view in the field of pain research attributes the process of pain chronification to abnormal functioning of descending pain inhibition. Our results demonstrate that the continuous activity of CRF neurons brought about by persistent pain leads to impaired SIA, which is a symptom of dysregulation of descending pain inhibition. Therefore, an over

  17. 22. PHOTOGRAPHIC ENLARGEMENT OF UPPER PHOTOGRAPH ON PAGE 986 IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. PHOTOGRAPHIC ENLARGEMENT OF UPPER PHOTOGRAPH ON PAGE 986 IN Keystone Coal Buyers Catalog, 1922, VIEW SOUTH, COMMUNITY OF ETHEL; ETHEL COAL COMPANY MINE SUPPLY BUILDING IS LOCATED IN MID-GROUND LEFT OF CENTER PARTIALLY OBSCURED BY ROOF OF HOUSE IN FOREGROUND - Ethel Coal Company & Supply Building, Left fork of Dingess Run (Ethel Hollow), Ethel, Logan County, WV

  18. 23. PHOTOGRAPHIC ENLARGEMENT OF UPPER PHOTOGRAPH ON PAGE 986 IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. PHOTOGRAPHIC ENLARGEMENT OF UPPER PHOTOGRAPH ON PAGE 986 IN Keystone Coal Buyers Catalog, 1922, VIEW SOUTH, COMMUNITY OF ETHEL; ETHEL COAL COMPANY MINE SUPPLY BUILDING IS LOCATED IN MID-GROUND IN CENTER PARTIALLY OBSCURED BY ROOF OF HOUSE IN FOREGROUND - Ethel Coal Company & Supply Building, Left fork of Dingess Run (Ethel Hollow), Ethel, Logan County, WV

  19. Morphological and functional changes in TRPM8-expressing corneal cold thermoreceptor neurons during aging and their impact on tearing in mice.

    PubMed

    Alcalde, Ignacio; Íñigo-Portugués, Almudena; González-González, Omar; Almaraz, Laura; Artime, Enol; Morenilla-Palao, Cruz; Gallar, Juana; Viana, Félix; Merayo-Lloves, Jesús; Belmonte, Carlos

    2018-08-01

    Morphological and functional alterations of peripheral somatosensory neurons during the aging process lead to a decline of somatosensory perception. Here, we analyze the changes occurring with aging in trigeminal ganglion (TG), TRPM8-expressing cold thermoreceptor neurons innervating the mouse cornea, which participate in the regulation of basal tearing and blinking and have been implicated in the pathogenesis of dry eye disease (DED). TG cell bodies and axonal branches were examined in a mouse line (TRPM8 BAC -EYFP) expressing a fluorescent reporter. In 3 months old animals, about 50% of TG cold thermoreceptor neurons were intensely fluorescent, likely providing strongly fluorescent axons and complex corneal nerve terminals with ongoing activity at 34°C and low-threshold, robust responses to cooling. The remaining TRPM8 + corneal axons were weakly fluorescent with nonbeaded axons, sparsely ramified nerve terminals, and exhibited a low-firing rate at 34°C, responding moderately to cooling pulses as do weakly fluorescent TG neurons. In aged (24 months) mice, the number of weakly fluorescent TG neurons was strikingly high while the morphology of TRPM8 + corneal axons changed drastically; 89% were weakly fluorescent, unbranched, and often ending in the basal epithelium. Functionally, 72.5% of aged cold terminals responded as those of young animals, but 27.5% exhibited very low-background activity and abnormal responsiveness to cooling pulses. These morpho-functional changes develop in parallel with an enhancement of tear's basal flow and osmolarity, suggesting that the aberrant sensory inflow to the brain from impaired peripheral cold thermoreceptors contributes to age-induced abnormal tearing and to the high incidence of DED in elderly people. © 2018 Wiley Periodicals, Inc.

  20. Obstructive Hydrocephalus Secondary to Enlarged Virchow-Robin Spaces: A Rare Cause of Pulsatile Tinnitus.

    PubMed

    Donaldson, Christopher; Chatha, Gurkirat; Chandra, Ronil V; Goldschlager, Tony

    2017-05-01

    Obstructive hydrocephalus secondary to enlarged Virchow-Robin Spaces (VRS) is a rare entity, with only a few cases reported in the literature. Presenting symptoms vary widely from headaches to dizziness. We report a case of a 31-year-old man who presented with pulsatile tinnitus and magnetic resonance imaging showing obstructive hydrocephalus secondary to tumefactive VRS. After a cerebrospinal fluid diversion procedure in the form of an endoscopic third ventriculostomy, he had almost complete resolution of his symptoms. This is the first case of obstructive hydrocephalus secondary to enlarged VRS, presenting with pulsatile tinnitus. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Primary Enlarged Craniotomy in Organized Chronic Subdural Hematomas

    PubMed Central

    CALLOVINI, Giorgio Maria; BOLOGNINI, Andrea; CALLOVINI, Gemma; GAMMONE, Vincenzo

    2014-01-01

    The aim of the study is to evaluate the efficacy of craniotomy and membranectomy as initial treatment of organized chronic subdural hematoma (OCSH). We retrospectively reviewed a series of 34 consecutive patients suffering from OCSH, diagnosed by magnetic resonance imaging (MRI) or contrast computer tomography (CCT) in order to establish the degree of organization and determine the intrahematomal architecture. The indication to perform a primary enlarged craniotomy as initial treatment for non-liquefied chronic subdural hematoma (CSDH) with multilayer loculations was based on the hematoma MRI appearance—mostly hyperintense in both T1- and T2-weighted images with a hypointense web- or net-like structure within the hematoma cavity. The reason why some hematomas evolve towards a complex and organized architecture remains unclear; the most common aspect to come to light was the “long standing” of the CSDHs which, in our series, had an average interval of 10 weeks between head injury and initial scan. Recurrence was found to have occurred in 2 patients (6% of cases) in the form of acute subdural hematoma. One patient died as the result of an intraventricular and subarachnoid haemorrhage, while 2 patients (6%) suffered an haemorrhagic stroke ipsilateral to the OCSH. Eighty-nine percent of cases had a good recovery, while 11% remained unchanged or worsened. In select cases, based on the MRI appearance, primary enlarged craniotomy seems to be the treatment of choice for achieving a complete recovery and a reduced recurrence rate in OCSH. PMID:24305027

  2. A priori collaboration in population imaging: The Uniform Neuro-Imaging of Virchow-Robin Spaces Enlargement consortium.

    PubMed

    Adams, Hieab H H; Hilal, Saima; Schwingenschuh, Petra; Wittfeld, Katharina; van der Lee, Sven J; DeCarli, Charles; Vernooij, Meike W; Katschnig-Winter, Petra; Habes, Mohamad; Chen, Christopher; Seshadri, Sudha; van Duijn, Cornelia M; Ikram, M Kamran; Grabe, Hans J; Schmidt, Reinhold; Ikram, M Arfan

    2015-12-01

    Virchow-Robin spaces (VRS), or perivascular spaces, are compartments of interstitial fluid enclosing cerebral blood vessels and are potential imaging markers of various underlying brain pathologies. Despite a growing interest in the study of enlarged VRS, the heterogeneity in rating and quantification methods combined with small sample sizes have so far hampered advancement in the field. The Uniform Neuro-Imaging of Virchow-Robin Spaces Enlargement (UNIVRSE) consortium was established with primary aims to harmonize rating and analysis (www.uconsortium.org). The UNIVRSE consortium brings together 13 (sub)cohorts from five countries, totaling 16,000 subjects and over 25,000 scans. Eight different magnetic resonance imaging protocols were used in the consortium. VRS rating was harmonized using a validated protocol that was developed by the two founding members, with high reliability independent of scanner type, rater experience, or concomitant brain pathology. Initial analyses revealed risk factors for enlarged VRS including increased age, sex, high blood pressure, brain infarcts, and white matter lesions, but this varied by brain region. Early collaborative efforts between cohort studies with respect to data harmonization and joint analyses can advance the field of population (neuro)imaging. The UNIVRSE consortium will focus efforts on other potential correlates of enlarged VRS, including genetics, cognition, stroke, and dementia.

  3. A Freeze Substitution Fixation-Based Gold Enlarging Technique for EM Studies of Endocytosed Nanogold-Labeled Molecules

    PubMed Central

    He, Wanzhong; Kivork, Christine; Machinani, Suman; Morphew, Mary K.; Gail, Anna M.; Tesar, Devin B.; Tiangco, Noreen E.; McIntosh, J. Richard; Bjorkman, Pamela J.

    2007-01-01

    We have developed methods to locate individual ligands that can be used for electron microscopy studies of dynamic events during endocytosis and subsequent intracellular trafficking. The methods are based on enlargement of 1.4 nm Nanogold attached to an endocytosed ligand. Nanogold, a small label that does not induce misdirection of ligand-receptor complexes, is ideal for labeling ligands endocytosed by live cells, but is too small to be routinely located in cells by electron microscopy. Traditional pre-embedding enhancement protocols to enlarge Nanogold are not compatible with high pressure freezing/freeze substitution fixation (HPF/FSF), the most accurate method to preserve ultrastructure and dynamic events during trafficking. We have developed an improved enhancement procedure for chemically-fixed samples that reduced autonucleation, and a new pre-embedding gold-enlarging technique for HPF/FSF samples that preserved contrast and ultrastructure and can be used for high-resolution tomography. We evaluated our methods using labeled Fc as a ligand for the neonatal Fc receptor. Attachment of Nanogold to Fc did not interfere with receptor binding or uptake, and gold-labeled Fc could be specifically enlarged to allow identification in 2D projections and in tomograms. These methods should be broadly applicable to many endocytosis and transcytosis studies. PMID:17723309

  4. Clinical and Histological Evaluations of Enlarged Facial Skin Pores After Low Energy Level Treatments With Fractional Carbon Dioxide Laser in Korean Patients.

    PubMed

    Kwon, Hyuck Hoon; Choi, Sun Chul; Lee, Won-Yong; Jung, Jae Yoon; Park, Gyeong-Hun

    2018-03-01

    Enlarged facial pores can be an early manifestation of skin aging and they are a common aesthetic concern for Asians. However, studies of improving the appearance of enlarged pores have been limited. The authors aimed to study the application of CO2 fractional laser treatment in patients with enlarged facial pores. A total of 32 patients with dilated facial pores completed 3 consecutive sessions of low energy level treatments with a fractional CO2 laser at 4-week intervals. Image analysis was performed to calculate the number of enlarged pores before each treatment session and 12 weeks after the final treatment. After application of laser treatments, there was a significant decrease in the number of enlarged pores. The mean number of enlarged pores was decreased by 28.8% after the second session and by 54.5% at post-treatment evaluation. Post-treatment side effects were mild and transitory. Histological and immunohistochemical analyses demonstrated clear increases in the number of collagen fibers and the expression of transforming growth factor-β1. The short-term results showed that treatment with low energy level CO2 fractional laser therapy could be a safe and effective option for patients with Fitzpatrick skin Types III and IV who are concerned with enlarged pores.

  5. Forebrain deletion of the dystonia protein torsinA causes dystonic-like movements and loss of striatal cholinergic neurons

    PubMed Central

    Pappas, Samuel S; Darr, Katherine; Holley, Sandra M; Cepeda, Carlos; Mabrouk, Omar S; Wong, Jenny-Marie T; LeWitt, Tessa M; Paudel, Reema; Houlden, Henry; Kennedy, Robert T; Levine, Michael S; Dauer, William T

    2015-01-01

    Striatal dysfunction plays an important role in dystonia, but the striatal cell types that contribute to abnormal movements are poorly defined. We demonstrate that conditional deletion of the DYT1 dystonia protein torsinA in embryonic progenitors of forebrain cholinergic and GABAergic neurons causes dystonic-like twisting movements that emerge during juvenile CNS maturation. The onset of these movements coincides with selective degeneration of dorsal striatal large cholinergic interneurons (LCI), and surviving LCI exhibit morphological, electrophysiological, and connectivity abnormalities. Consistent with the importance of this LCI pathology, murine dystonic-like movements are reduced significantly with an antimuscarinic agent used clinically, and we identify cholinergic abnormalities in postmortem striatal tissue from DYT1 dystonia patients. These findings demonstrate that dorsal LCI have a unique requirement for torsinA function during striatal maturation, and link abnormalities of these cells to dystonic-like movements in an overtly symptomatic animal model. DOI: http://dx.doi.org/10.7554/eLife.08352.001 PMID:26052670

  6. Bone Morphogenetic Protein Regulation of Enteric Neuronal Phenotypic Diversity: Relationship to Timing of Cell Cycle Exit

    PubMed Central

    Chalazonitis, Alcmène; Pham, Tuan.D.; Li, Zhishan; Roman, Daniel; Guha, Udayan; Gomes, William; Kan, Lixin; Kessler, John A.; Gershon, Michael D.

    2008-01-01

    The effects of bone morphogenetic protein (BMP) signaling on enteric neuron development were examined in transgenic mice over expressing either the BMP inhibitor, noggin, or BMP4 under control of the neuron specific enolase (NSE) promoter. Noggin antagonism of BMP signaling increased total numbers of enteric neurons and those of subpopulations derived from precursors that exit the cell cycle early in neurogenesis (serotonin, calretinin, calbindin). In contrast, noggin overexpression decreased numbers of neurons derived from precursors that exit the cell cycle late (γ-aminobutyric acid, tyrosine hydroxylase [TH], dopamine transporter, calcitonin gene related peptide, TrkC). Numbers of TH- and TrkC-expressing neurons were increased by overexpression of BMP4. These observations are consistent with the idea that phenotypic expression in the enteric nervous system (ENS) is determined, in part, by the number of proliferative divisions neuronal precursors undergo before their terminal mitosis. BMP signaling may thus regulate enteric neuronal phenotypic diversity by promoting the exit of precursors from the cell cycle. BMP2 increased the numbers of TH- and TrkC-expressing neurons developing in vitro from immunoselected enteric crest-derived precursors; BMP signaling may thus also specify or promote the development of dopaminergic TrkC/NT-3-dependent neurons. The developmental defects in the ENS of noggin overexpressing mice caused a relatively mild disturbance of motility (irregular rapid transit and increased stool frequency, weight, and water content). Although the function of the gut thus displays a remarkable tolerance for ENS defects, subtle functional abnormalities in motility or secretion may arise when ENS defects short of aganglionosis occur during development. PMID:18537141

  7. GSK-3 signaling in developing cortical neurons is essential for radial migration and dendritic orientation.

    PubMed

    Morgan-Smith, Meghan; Wu, Yaohong; Zhu, Xiaoqin; Pringle, Julia; Snider, William D

    2014-07-29

    GSK-3 is an essential mediator of several signaling pathways that regulate cortical development. We therefore created conditional mouse mutants lacking both GSK-3α and GSK-3β in newly born cortical excitatory neurons. Gsk3-deleted neurons expressing upper layer markers exhibited striking migration failure in all areas of the cortex. Radial migration in hippocampus was similarly affected. In contrast, tangential migration was not grossly impaired after Gsk3 deletion in interneuron precursors. Gsk3-deleted neurons extended axons and developed dendritic arbors. However, the apical dendrite was frequently branched while basal dendrites exhibited abnormal orientation. GSK-3 regulation of migration in neurons was independent of Wnt/β-catenin signaling. Importantly, phosphorylation of the migration mediator, DCX, at ser327, and phosphorylation of the semaphorin signaling mediator, CRMP-2, at Thr514 were markedly decreased. Our data demonstrate that GSK-3 signaling is essential for radial migration and dendritic orientation and suggest that GSK-3 mediates these effects by phosphorylating key microtubule regulatory proteins.DOI: http://dx.doi.org/10.7554/eLife.02663.001. Copyright © 2014, Morgan-Smith et al.

  8. Imbalance between Glutamate and GABA in Fmr1 Knockout Astrocytes Influences Neuronal Development

    PubMed Central

    Wang, Lu; Wang, Yan; Zhou, Shimeng; Yang, Liukun; Shi, Qixin; Li, Yujiao; Zhang, Kun; Yang, Le; Zhao, Minggao; Yang, Qi

    2016-01-01

    Fragile X syndrome (FXS) is a form of inherited mental retardation that results from the absence of the fragile X mental retardation protein (FMRP), the product of the Fmr1 gene. Numerous studies have shown that FMRP expression in astrocytes is important in the development of FXS. Although astrocytes affect neuronal dendrite development in Fmr1 knockout (KO) mice, the factors released by astrocytes are still unclear. We cultured wild type (WT) cortical neurons in astrocyte-conditioned medium (ACM) from WT or Fmr1 KO mice. Immunocytochemistry and Western blotting were performed to detect the dendritic growth of both WT and KO neurons. We determined glutamate and γ-aminobutyric acid (GABA) levels using high-performance liquid chromatography (HPLC). The total neuronal dendritic length was reduced when cultured in the Fmr1 KO ACM. This neurotoxicity was triggered by an imbalanced release of glutamate and GABA from Fmr1 KO astrocytes. We found increased glutaminase and GABA transaminase (GABA-T) expression and decreased monoamine oxidase B expression in Fmr1 KO astrocytes. The elevated levels of glutamate contributed to oxidative stress in the cultured neurons. Vigabatrin (VGB), a GABA-T inhibitor, reversed the changes caused by glutamate and GABA release in Fmr1 KO astrocytes and the abnormal behaviors in Fmr1 KO mice. Our results indicate that the imbalance in the astrocytic glutamate and GABA release may be involved in the neuropathology and the underlying symptoms of FXS, and provides a therapeutic target for treatment. PMID:27517961

  9. Losing the sugar coating: potential impact of perineuronal net abnormalities on interneurons in schizophrenia.

    PubMed

    Berretta, Sabina; Pantazopoulos, Harry; Markota, Matej; Brown, Christopher; Batzianouli, Eleni T

    2015-09-01

    Perineuronal nets (PNNs) were shown to be markedly altered in subjects with schizophrenia. In particular, decreases of PNNs have been detected in the amygdala, entorhinal cortex and prefrontal cortex. The formation of these specialized extracellular matrix (ECM) aggregates during postnatal development, their functions, and association with distinct populations of GABAergic interneurons, bear great relevance to the pathophysiology of schizophrenia. PNNs gradually mature in an experience-dependent manner during late stages of postnatal development, overlapping with the prodromal period/age of onset of schizophrenia. Throughout adulthood, PNNs regulate neuronal properties, including synaptic remodeling, cell membrane compartmentalization and subsequent regulation of glutamate receptors and calcium channels, and susceptibility to oxidative stress. With the present paper, we discuss evidence for PNN abnormalities in schizophrenia, the potential functional impact of such abnormalities on inhibitory circuits and, in turn, cognitive and emotion processing. We integrate these considerations with results from recent genetic studies showing genetic susceptibility for schizophrenia associated with genes encoding for PNN components, matrix-regulating molecules and immune system factors. Notably, the composition of PNNs is regulated dynamically in response to factors such as fear, reward, stress, and immune response. This regulation occurs through families of matrix metalloproteinases that cleave ECM components, altering their functions and affecting plasticity. Several metalloproteinases have been proposed as vulnerability factors for schizophrenia. We speculate that the physiological process of PNN remodeling may be disrupted in schizophrenia as a result of interactions between matrix remodeling processes and immune system dysregulation. In turn, these mechanisms may contribute to the dysfunction of GABAergic neurons. Copyright © 2015. Published by Elsevier B.V.

  10. Neuron-derived IgG protects neurons from complement-dependent cytotoxicity.

    PubMed

    Zhang, Jie; Niu, Na; Li, Bingjie; McNutt, Michael A

    2013-12-01

    Passive immunity of the nervous system has traditionally been thought to be predominantly due to the blood-brain barrier. This concept must now be revisited based on the existence of neuron-derived IgG. The conventional concept is that IgG is produced solely by mature B lymphocytes, but it has now been found to be synthesized by murine and human neurons. However, the function of this endogenous IgG is poorly understood. In this study, we confirm IgG production by rat cortical neurons at the protein and mRNA levels, with 69.0 ± 5.8% of cortical neurons IgG-positive. Injury to primary-culture neurons was induced by complement leading to increases in IgG production. Blockage of neuron-derived IgG resulted in more neuronal death and early apoptosis in the presence of complement. In addition, FcγRI was found in microglia and astrocytes. Expression of FcγR I in microglia was increased by exposure to neuron-derived IgG. Release of NO from microglia triggered by complement was attenuated by neuron-derived IgG, and this attenuation could be reversed by IgG neutralization. These data demonstrate that neuron-derived IgG is protective of neurons against injury induced by complement and microglial activation. IgG appears to play an important role in maintaining the stability of the nervous system.

  11. Abnormal turning behaviour, GABAergic inhibition and the degeneration of astrocytes in ovine Tribulus terrestris motor neuron disease.

    PubMed

    Bourke, C A

    2006-01-01

    To observe the clinical signs of sheep affected by Tribulus terrestris motor neuron disease, to ascertain their response to striatal dopamine reducing drugs, and to examine their brains and spinal cords for microscopic changes. Twenty-eight sheep displaying well developed clinical signs of the disorder were observed. Twenty-two of these and 22 normal sheep were then randomly allocated to three groups and treated with diazepam, chlorpromazine, or xylazine. The time that it took an animal to return to a standing position following drug administration was recorded. The brain and complete spinal cord were removed from each of the other six affected sheep and fixed in formalin. Brains were sectioned throughout at 5 mm intervals and spinal cords at 10 mm intervals. All tissues were paraffin embedded and examined by light microscopy. A few samples were examined by electron microscopy. Clinical signs included postural asymmetry with a right:left body-side dominance within the group of 50:50, unequal flaccid paresis in the pelvic limbs, extensor muscle atrophy and adduction of the weaker pelvic limb, and concurrent abduction of the stronger. Forward motion followed either a fixed left or right hand curved trajectory, the sheep no longer being able to choose which. Twelve animals intermittently displayed rotational behaviour that involved loss of postural balance without locomotor activation. The administration of diazepam, chlorpromazine, or xylazine caused limb paresis and sedation, with affected sheep being slower than normal sheep by factors of 8, 3 and 2 respectively, to return to a standing position. There were scattered areas of mild Wallerian degeneration throughout the spinal cord, and in both the brain and the cord there were small numbers of degenerate astrocytes containing novel cytoplasmic pigment granules. Affected sheep had a dysfunction in the control of directional change and this provides a new insight into the normal mechanism for 'turning' in quadrupeds

  12. INDIUM AND ZINC MEDIATED ONE-ATOM CARBOCYCLE ENLARGEMENT IN WATER. (R822668)

    EPA Science Inventory

    Abstract

    Six-, seven-, eight-membered rings are enlarged by one carbon-atom into seven-, eight- and nine-membered ring derivatives respectively, via indium or zinc mediated reactions in aqueous medium.

  13. Neuronal plasticity and neurotrophic factors in drug responses

    PubMed Central

    Castrén, Eero; Antila, Hanna

    2017-01-01

    Neurotrophic factors, particularly brain-derived neurotrophic factor (BDNF) and other members of the neurotrophin family, are central mediators of the activity-dependent plasticity through which environmental experiences, such as sensory information are translated into the structure and function of neuronal networks. Synthesis, release and action of BDNF is regulated by neuronal activity and BDNF in turn leads to trophic effects such as formation, stabilization and potentiation of synapses through its high-affinity TrkB receptors. Several clinically available drugs directly activate neurotrophins and neuronal plasticity. In particular, antidepressant drugs rapidly activate TrkB signaling and gradually increase BDNF expression, and the behavioral effects of antidepressants are mediated by and dependent on BDNF signaling through TrkB at least in rodents. These findings indicate that antidepressants, widely used drugs, effectively act as TrkB activators. They further imply that neuronal plasticity is a central mechanism in the action of antidepressant drugs. Indeed, it was recently discovered that antidepressants reactivate a state of plasticity in the adult cerebral cortex that closely resembles the enhanced plasticity normally observed during postnatal critical periods. This state of induced plasticity, known as iPlasticity, allows environmental stimuli to beneficially reorganize networks abnormally wired during early life. iPlasticity has been observed in cortical as well as subcortical networks and is induced by several pharmacological and non-pharmacological treatments. iPlasticity is a new pharmacological principle where drug treatment and rehabilitation cooperate: the drug acts permissively to enhance plasticity and rehabilitation provides activity to guide the appropriate wiring of the plastic network. Optimization of iPlastic drug treatment with novel means of rehabilitation may help improve the efficacy of available drug treatments and expand the use of

  14. A neuron-astrocyte transistor-like model for neuromorphic dressed neurons.

    PubMed

    Valenza, G; Pioggia, G; Armato, A; Ferro, M; Scilingo, E P; De Rossi, D

    2011-09-01

    Experimental evidences on the role of the synaptic glia as an active partner together with the bold synapse in neuronal signaling and dynamics of neural tissue strongly suggest to investigate on a more realistic neuron-glia model for better understanding human brain processing. Among the glial cells, the astrocytes play a crucial role in the tripartite synapsis, i.e. the dressed neuron. A well-known two-way astrocyte-neuron interaction can be found in the literature, completely revising the purely supportive role for the glia. The aim of this study is to provide a computationally efficient model for neuron-glia interaction. The neuron-glia interactions were simulated by implementing the Li-Rinzel model for an astrocyte and the Izhikevich model for a neuron. Assuming the dressed neuron dynamics similar to the nonlinear input-output characteristics of a bipolar junction transistor, we derived our computationally efficient model. This model may represent the fundamental computational unit for the development of real-time artificial neuron-glia networks opening new perspectives in pattern recognition systems and in brain neurophysiology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Clinical Findings Documenting Cellular and Molecular Abnormalities of Glia in Depressive Disorders

    PubMed Central

    Czéh, Boldizsár; Nagy, Szilvia A.

    2018-01-01

    Depressive disorders are complex, multifactorial mental disorders with unknown neurobiology. Numerous theories aim to explain the pathophysiology. According to the “gliocentric theory”, glial abnormalities are responsible for the development of the disease. The aim of this review article is to summarize the rapidly growing number of cellular and molecular evidences indicating disturbed glial functioning in depressive disorders. We focus here exclusively on the clinical studies and present the in vivo neuroimaging findings together with the postmortem molecular and histopathological data. Postmortem studies demonstrate glial cell loss while the in vivo imaging data reveal disturbed glial functioning and altered white matter microstructure. Molecular studies report on altered gene expression of glial specific genes. In sum, the clinical findings provide ample evidences on glial pathology and demonstrate that all major glial cell types are affected. However, we still lack convincing theories explaining how the glial abnormalities develop and how exactly contribute to the emotional and cognitive disturbances. Abnormal astrocytic functioning may lead to disturbed metabolism affecting ion homeostasis and glutamate clearance, which in turn, affect synaptic communication. Abnormal oligodendrocyte functioning may disrupt the connectivity of neuronal networks, while microglial activation indicates neuroinflammatory processes. These cellular changes may relate to each other or they may indicate different endophenotypes. A theory has been put forward that the stress-induced inflammation—mediated by microglial activation—triggers a cascade of events leading to damaged astrocytes and oligodendroglia and consequently to their dysfunctions. The clinical data support the “gliocentric” theory, but future research should clarify whether these glial changes are truly the cause or simply the consequences of this devastating disorder. PMID:29535607

  16. Single neuron modeling and data assimilation in BNST neurons

    NASA Astrophysics Data System (ADS)

    Farsian, Reza

    Neurons, although tiny in size, are vastly complicated systems, which are responsible for the most basic yet essential functions of any nervous system. Even the most simple models of single neurons are usually high dimensional, nonlinear, and contain many parameters and states which are unobservable in a typical neurophysiological experiment. One of the most fundamental problems in experimental neurophysiology is the estimation of these parameters and states, since knowing their values is essential in identification, model construction, and forward prediction of biological neurons. Common methods of parameter and state estimation do not perform well for neural models due to their high dimensionality and nonlinearity. In this dissertation, two alternative approaches for parameters and state estimation of biological neurons have been demonstrated: dynamical parameter estimation (DPE) and a Markov Chain Monte Carlo (MCMC) method. The first method uses elements of chaos control and synchronization theory for parameter and state estimation. MCMC is a statistical approach which uses a path integral formulation to evaluate a mean and an error bound for these unobserved parameters and states. These methods have been applied to biological system of neurons in Bed Nucleus of Stria Termialis neurons (BNST) of rats. State and parameters of neurons in both systems were estimated, and their value were used for recreating a realistic model and predicting the behavior of the neurons successfully. The knowledge of biological parameters can ultimately provide a better understanding of the internal dynamics of a neuron in order to build robust models of neuron networks.

  17. Mesencephalic dopaminergic neurons express a repertoire of olfactory receptors and respond to odorant-like molecules.

    PubMed

    Grison, Alice; Zucchelli, Silvia; Urzì, Alice; Zamparo, Ilaria; Lazarevic, Dejan; Pascarella, Giovanni; Roncaglia, Paola; Giorgetti, Alejandro; Garcia-Esparcia, Paula; Vlachouli, Christina; Simone, Roberto; Persichetti, Francesca; Forrest, Alistair R R; Hayashizaki, Yoshihide; Carloni, Paolo; Ferrer, Isidro; Lodovichi, Claudia; Plessy, Charles; Carninci, Piero; Gustincich, Stefano

    2014-08-27

    The mesencephalic dopaminergic (mDA) cell system is composed of two major groups of projecting cells in the Substantia Nigra (SN) (A9 neurons) and the Ventral Tegmental Area (VTA) (A10 cells). Selective degeneration of A9 neurons occurs in Parkinson's disease (PD) while abnormal function of A10 cells has been linked to schizophrenia, attention deficit and addiction. The molecular basis that underlies selective vulnerability of A9 and A10 neurons is presently unknown. By taking advantage of transgenic labeling, laser capture microdissection coupled to nano Cap-Analysis of Gene Expression (nanoCAGE) technology on isolated A9 and A10 cells, we found that a subset of Olfactory Receptors (OR)s is expressed in mDA neurons. Gene expression analysis was integrated with the FANTOM5 Helicos CAGE sequencing datasets, showing the presence of these ORs in selected tissues and brain areas outside of the olfactory epithelium. OR expression in the mesencephalon was validated by RT-PCR and in situ hybridization. By screening 16 potential ligands on 5 mDA ORs recombinantly expressed in an heterologous in vitro system, we identified carvone enantiomers as agonists at Olfr287 and able to evoke an intracellular Ca2+ increase in solitary mDA neurons. ORs were found expressed in human SN and down-regulated in PD post mortem brains. Our study indicates that mDA neurons express ORs and respond to odor-like molecules providing new opportunities for pharmacological intervention in disease.

  18. 1. 8' x 10' enlargement from 4' x 5' negative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. 8' x 10' enlargement from 4' x 5' negative Kevin Kriesel-Coons, Photographer, November 13, 1990 EXTERIOR OF HYDRO PLANT, SHOWING CURRENT STATE OF DISREPAIR. VIEW FROM WALKWAY OVER TAILRACE OF CROSSCUT CANAL TO THE LARGER, ORIGINAL CROSSCUT HYDRO PLANT. - Crosscut Steam Plant, Ancillary Hydro Unit, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  19. Upregulation of three Drosophila homologs of human chromosome 21 genes alters synaptic function: Implications for Down syndrome

    PubMed Central

    Chang, Karen T.; Min, Kyung-Tai

    2009-01-01

    At the neuronal level of Down syndrome (DS) brains, there are evidences of altered shape, number, and density of synapses, as well as aberrant endocytosis associated with accumulation of enlarged endosomes, suggesting that proteins involved in synaptic vesicle recycling may play key roles in DS neurons. However, the exact mechanism underlying those anomalies is not well understood. We hypothesize that overexpression of three genes, dap160/itsn1, synj/synj1, and nla/dscr1, located on human chromosome 21 play important roles in DS neurons. Here, we systematically investigate the effects of multiple gene overexpression on synaptic morphology and endocytosis to identify possible dominant gene or genes. We found that overexpression of individual genes lead to abnormal synaptic morphology, but all three genes are necessary to cause impaired vesicle recycling and affect locomotor vigor. Furthermore, we report that dap160 overexpression alters the subcellular distribution of synaptojanin, and overexpression of nla regulates the phosphoinositol 5′ phosphatase activity of synaptojanin. These findings imply that restoring the level of any one of these genes may reduce endocytic defects seen in DS. PMID:19805187

  20. MANF regulates dopaminergic neuron development in larval zebrafish.

    PubMed

    Chen, Y-C; Sundvik, M; Rozov, S; Priyadarshini, M; Panula, P

    2012-10-15

    Mesencephalic astrocyte derived neurotrophic factor (MANF) is recognized as a dopaminergic neurotrophic factor, which can protect dopaminergic neurons from neurotoxic damage. However, little is known about the function of MANF during the vertebrate development. Here, we report that MANF expression is widespread during embryonic development and in adult organs analyzed by qPCR and in situ hybridization in zebrafish. Knockdown of MANF expression with antisense splice-blocking morpholino oligonucleotides resulted in no apparent abnormal phenotype. Nevertheless, the dopamine level of MANF morphants was lower than that of the wild type larvae, the expression levels of the two tyrosine hydroxylase gene transcripts were decreased and a decrease in neuron number in certain groups of th1 and th2 cells in the diencephalon region in MANF morphants was observed. These defects were rescued by injection of exogenous manf mRNA. Strikingly, manf mRNA could partly restore the decrease of th1 positive cells in Nr4a2-deficient larvae. These results suggest that MANF is involved in the regulation of the development of dopaminergic system in zebrafish. Copyright © 2012 Elsevier Inc. All rights reserved.